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Abstract

In recent years, the size and complexity of the available data have grown rapidly, mak-
ing visualization and exploratory data analysis very difficult. Therefore, researchers have
proposed many methods to reduce the dimensionality of the data, by finding suitable data
transformations that map the observed (measured) covariates into a smaller set of fea-
tures, which hopefully then contain all the relevant or discriminatory information while
simultaneously eliminating redundancies, and noise. Due to their simplicity, linear data
transformations have been of special interest, and are very often obtained using the projec-
tion pursuit, a family of methods searching for, mostly univariate, projections of the data
which maximize a predefined objective function, also known as projection index. Given
the assumption that the data are a mixture of low-dimensional, non-Gaussian signal and
independent high-dimensional Gaussian noise, the appropriate statistical framework is the
non-Gaussian components analysis (NGCA) model. Finding the non-Gaussian components
of the data is often considered as an important preprocessing step for efficient data analy-
sis, thus making the aim of the feature extraction within the NGCA model to project the
data onto a subspace that contains only the signal. Therefore, the aim of the thesis is to
first study the feature extraction, as well as the estimation of the dimension of the feature
subspace, under the multivariate non-Gaussian component model, with a special focus on
homoscedastic Gaussian mixture model with two classes and the projection pursuit, and
then to further extend the obtained methods to accommodate for the data which naturally
allows a matrix representation such as e.g. grayscale images.
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Part I.

Summary
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1. Introduction

Nowadays, due to technological advancements, the size and complexity of the available data
sets have grown rapidly, making visualization and exploratory data analysis very difficult.
Therefore, in recent years, researchers have proposed many methods to reduce the dimen-
sionality of the data and extract important data features. Simply stated, the goal of the
feature extraction is to find a transformation of the data which maps the observed (mea-
sured) covariates into a smaller set of features, which hopefully then contain all the relevant
or discriminatory information about the data while eliminating irrelevant data, redundan-
cies, and noise (Foley and Sammon, 1975). Therefore, feature extraction is closely related
to dimension reduction, and the two are often considered synonyms. Due to their simplicity,
linear data transformations, i.e. those which map the original vector of covariates into the
feature subspace through a projection matrix have been of special interest. Principal com-
ponent analysis (PCA) (Jolliffe, 2002) and linear discriminant analysis (LDA) (Fisher, 1936)
are perhaps the two most well-known linear feature extraction methods. In PCA, a projec-
tion matrix is chosen such that the obtained subspace accounts for as much of the variability
in the data as possible, under the orthogonality of extracted directions. On the other hand,
LDA projects the data onto the feature subspace which accounts for the maximum separa-
bility in data. In general, to direct the search for relevant low-dimensional features, while
eliminating noise, statistical models may be specified. If one assumes the data are a mix-
ture of low-dimensional, non-Gaussian signal and independent high-dimensional Gaussian
noise, then the appropriate framework is the non-Gaussian components analysis (NGCA)
model (Bickel and Levina, 2004). Accordingly, the aim of the feature extraction within the
NGCA model is to project the data onto a subspace that contains only the signal (Blanchard
et al., 2006; Kawanabe et al., 2007; Theis et al., 2011; Bean, 2014; Sasaki et al., 2016; Virta
et al., 2016). A special case of the wide NGCA model is the non-Gaussian independent
component model (NGICA), in which signal components are assumed to be independent,
thus making the aim of the feature extraction in NGICA the recovery of the independent
and non-Gaussian signals (Nordhausen et al., 2017; Risk et al., 2019). If data originates
from a heterogeneous population, where the underlying populations (classes) have different
means, then Everitt and Hand (1981) suggest a more parametric approach, thus proposing
a mixture model as a suitable statistical framework, where perhaps the most famous among
all mixture models are Gaussian mixture models (GMM). Nordhausen et al. (2017) argue
how the p-variate homoscedastic GMM with p+ 1 classes is an NGCA model, while in Pa-
per II it is shown that any homoscedastic GMM with 2 classes is in fact an NGICA model.
Feature extraction within GMM is mostly done with the aim of optimal group separation.
Even though LDA is essentially a model-free method, it bears a close connection to the
homoscedastic Gaussian mixture model with two classes, where it is shown to be optimal
in the sense that it generates a projection direction that is used to construct the optimal
Bayes classifier (Rao, 1948).

Feature extraction is intimately connected to the projection pursuit (PP) (Huber, 1985),
where PP denotes a family of methods searching for, mostly univariate, projections of the
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1. Introduction

data, which maximize a predefined objective function (projection index). Thus, extracted
features usually maximize some criterion of high-variability, non-Gaussianity, or indepen-
dence specified by a projection index.

Besides high-dimensional multivariate data, the availability and the need for analysis of
matrix-variate data, such as e.g. image data (also known as image processing) has also
increased rapidly over the years, thus naturally raising the question of dimension reduction
and feature extraction in the matrix-variate setting. Examples of such data are abundant
nowadays, the most notable example being image data where the elements of the matrix
represent the gray-scale intensities of the individual pixels of an image. For example, in
a coronary tissue (CT) image each pixel represents a tissue and it has an assigned value
of grayscale level between 0 and 255. This grayscale value represents the X-ray beam
attenuation to the tissue. Pixels with values close to 0 (darker pixels) represent structures
having less attenuation to the beam, i.e. soft tissue, while pixels close to 255 (light pixels)
represent structures having high attenuation, i.e., calcifications (Athanasiou et al., 2017).
Thus, extracting features that would characterize the existence and the type of calcification
in the soft tissue could be used for diagnostic purposes, by allowing classification of CT
images w.r.t presence and the type of the calcification. In general, image classification and
recognition, as well as image compression are classical problems in image processing.

When the observations are matrix-valued, traditional data analysis techniques can be
implemented to tackle presented problems by first vectorizing the observed matrices into a
long vector. However, this approach is often suboptimal, since it ignores the underlying data
structure while at the same time producing a high-dimensional vector, making further data
analysis difficult. Thus, the aim of the thesis is to first study the feature extraction, as well
as the estimation of the dimension of the feature subspace, under the multivariate NGCA
model, with a special focus on homoscedastic GMM with two classes and the projection
pursuit, and then to further extend the obtained methods to accommodate for the matrix
structure of the data.

The thesis is structured as follows. The first part of the thesis considers feature extrac-
tion and dimension reduction for vector-valued data under various multivariate models. In
the first section, we define location and scatter functionals and focus on feature extraction,
noise, and dimension reduction in the scope of elliptical models. The following two sec-
tions consider dimension reduction in the scope of non-Gaussian component models and
independent component models, using two-scatter matrices and the projection pursuit ap-
proach. We conclude the discussion on the feature extraction in the vector-valued models
with Gaussian mixture models, with a special focus on two-class models and linear discrim-
inant analysis. In cases where data are matrix-valued, as discussed, ignoring the matrix
structure loses information about the data, thus implying that simply applying methods for
vector-valued data to vectorized matrices yields sub-optimal procedures. Thus, the second
part of the thesis focuses on feature extraction and dimension reduction for matrix-valued
data. Section 3.2 considers dimension reduction in the context of the noisy second-order
matrix model, while in Section 3.4 we discuss the use of orthogonal rank-1 tensor projec-
tions in the context of LDA with aim of data clustering using various projection indices
with emphasis on matrix Gaussian mixtures. Throughout the thesis, various properties of
data were discussed as projection pursuit indices in the quest for meaningful directions in
multivariate data; cumulants, entropy, Gaussianity, independence, to name a few. Thus,
we conclude with a discussion on some characteristics of univariate distributions as well as

3



1. Introduction

their application to the ordering of random variables. The importance of Chapter 4 lays in
the connections between information, non-Gaussianity, and statistical independence in the
context of independent component analysis, which is often taken for granted. Chapter 5
then concludes the thesis with a discussion on future work.
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2. Feature extraction for multivariate data

2.1. Location-scatter model and its generalizations

Before the main discussion, we introduce the general framework under which we will be
working in this chapter. Namely, all models discussed in this section can be derived from
the location-scatter model or its extensions (Oja, 2010). The location-scatter model we
consider is

x = Az + µ, (2.1)

where x is an observable p-variate random vector, z is a latent p-variate random vector
whose distribution we will discuss in each model separately, µ is a p-variate location vector
and A is a full-rank, p × p-mixing matrix. Usually, the latent vector z is assumed to be
standardized in a way specified later in the thesis, and imposing various assumptions on
the distribution of z yields a large variety of multivariate models. For example, assuming
that z has a standard normal distribution yields the multivariate normal model for x.

2.1.1. Multivariate normal model

The multivariate normal model is probably the most studied model in the multivariate anal-
ysis. In the context of the location-scatter Model (2.1), z is required to have a multivariate
standard normal distribution, z ∼ N (0, Ip), yielding E(x) = µ and Cov(x) = AA�. The
probability density function of the random vector x from a multivariate normal distribution
is given by

φ(x;µ,Σ) =
1

(2π)p/2|Σ|1/2 exp{−
1
2
Σ−1/2(x − µ)
22}.

Note that the multivariate normal model is fully characterized by its mean vector µ and
covariance matrix Σ. The multivariate normal model is also fully symmetric around the lo-
cation µ and all of its marginal distributions are normally distributed. Thus, the kurtosis of
each component is the same and is equal to 3. The standard normal distribution N (0, σ2Ip),
σ2 > 0 is the only spherical distribution with independent components, thus guaranteeing
principal component analysis to find independent projections (Bilodeau and Brenner, 1999).

However, the multivariate normal model has a drawback in not being able to model
heavy-tailed phenomena. Hence, a natural generalization of the multivariate normal model
is the elliptical model.

2.1.2. Elliptical model

Before considering the elliptical model, let us define the spherical model.

Definition 1. A p-variate random vector x has a spherical distribution if x−µ ∼ U(x−µ),
for all orthogonal matrices U ∈ Op×p. The p-variate vector µ ∈ Rp is the location vector
of x.

5



2. Feature extraction for multivariate data

From the definition of the spherical model, it is clear that it is symmetric around its
location and that all of its marginals are equally distributed. This further implies that,
under the assumption that the first two moments exist, Cov(x) = σ2Ip, for σ2 > 0. Since it
is invariant to rotations, one can argue that all directions are equally (un)interesting. The
elliptical model is then a special case of location-scatter model

x = Az + µ, (2.2)

where the latent vector z ∈ Rp has spherical distribution around the origin. The density
function f of a random vector x which has an elliptical distribution is given by

f(x;µ,Σ) = |Σ|−1/2exp{−g(
Σ−1/2(x − µ)
22)},
where µ is a location vector as above, Σ is a symmetric semi-positive definite matrix, which
determines the scale and the correlation structure of x and g is a real-valued function (Frahm
et al., 2003). Assuming the existence of first two moments, µ = E(x) and Cov(x) ∝ Σ.
The multivariate normal distribution is a member of the elliptical model, with g(t) =
1/2t + p/2 ln 2/π. Another well-known member of the elliptical model is the family of the
multivariate t-distributions (Kotz and Nadarajah, 2004), as well as the uniform distribution
on an ellipsoid. Thus, the elliptical model is an extension of the normal model which
allows for both lighter and heavier tails, while still requiring that all the marginals are
alike in shape. Owen and Rabinovitch (1983) argue how for full rank matrix B ∈ Rp×d,
the projection B�x is again a member of an elliptical model. Especially, all the univariate
projections of the random vectors from an elliptical model are symmetric. It is important to
note that the elliptical model is identifiable only up to post-multiplication by an orthogonal
matrix, in sense that if p× p matrix W recovers the latent vector z = W(x−µ), then due
to spherical symmetry of z, so does WU, for any orthogonal matrix U ∈ Op×p.

In general, feature extraction in the elliptical models is closely related to the spread, and
interesting data projections are usually found using the first two moments, assuming these
exist. For that purpose, we next discuss general location and scatter functionals.

2.2. Location and scatter functionals and their usage

Let again x be a p-variate random vector with distribution function Fx. Then a p-vector-
valued functional T(Fx) = T(x) is called a location functional if it is affine equivariant in
the sense that

T(Ax + b) = AT(x) + b,

for all full rank p× p matrices A and all p-variate vectors b.

A p × p matrix-valued functional S(Fx) = S(x) is called a scatter functional if it is
symmetric, positive semi-definite and affine equivariant in the sense that

S(Ax + b) = AS(x)A�,

for all full rank p × p matrices A and all p-variate vectors b (Oja, 2010). A broader class
of scatter functionals are so-called orthogonally equivariant scatters, which are required to
satisfy affine equivariance only for orthogonal matrices. Thus, location and scatter func-
tionals are a way to describe the centrality and spread of the data and are estimated by

6



2. Feature extraction for multivariate data

replacing Fx with the empirical distribution. Furthermore, location and scatter functionals
are often used to derive various skewness and kurtosis measures. More precisely, for two
location functionals T1, T2 and two scatter functionals S1, S2, T1(x)−T2(x) is a measure
of skewness of x, while the eigenvalues of S−1

1 (x)S2(x) can be seen as a kurtosis measures
in the direction of the corresponding eigenvectors (Tyler et al., 2009).

Probably the most widely used pair of a location and scatter functionals are the expected
value E(x) and the covariance matrix

Cov(x) = E((x − E(x)(x − E(x)�).

However, estimation of some location and scatter functionals, including mean and covari-
ance, is heavily influenced by the presence of outliers, and not efficient for heavy-tailed
distributions. Under the elliptical model, location and scatter functionals have interest-
ing properties. If x has an elliptical distribution with p-variate location vector µ, then
T(x) = µ, for all location functionals T, provided that they exist. Furthermore, assuming
the covariance matrix Cov(x) exists, then S(x) ∝ Cov(x), for all scatter matrices S. This
specifically means that in the elliptical model, all location functionals are equal and corre-
spond to the center of symmetry, while all scatter matrices are proportional to each other,
and especially to the covariance matrix if it exists (Oja et al., 2006), thus estimating the
symmetry center and the scatter.

The literature is full of alternatives for the mean vector and the covariance matrix, which
have different desirable properties, like robustness or efficiency, at specific models. A large
family of functionals which we will discuss in the following in more detail are the M -
estimators of location and scatter (Maronna, 1976). Some additional classes of robust
location and scatter functionals are S-functionals (Davies, 1987) and τ -functionals (Lop-
uhaä, 1991), just to name a few, which are all constructed for inference only in the scope
of elliptical models. For a general review of robust estimators of multivariate location and
scatter functionals see Maronna and Yohai (2016).

M-estimators of location and scatter

M -functionals of location and scatter were first introduced by Maronna (1976) and are
usually jointly estimated as the solutions of the two following implicit equations:

T(x) = E
�
w1(r))

−1E(w1(r)x
�

and
S(x) = E

�
w2(r) (x − T(x)) (x − T(x))�

�
,

where w1(r) and w2(r) are nonnegative continuous functions of the (pseudo) Mahalanobis
distance r = ||S(x)−1/2(x − T(x))||. Thus, one can think of M -functionals of location and
scatter as weighted variants of the mean and the covariance matrix yielding them as special
cases when choosing w1(r) = w2(r) = 1. Usually the weight functions are chosen to be non-
increasing to obtain estimators that may be robust. Some popular members of the family
of M -estimators are Huber’s M -estimators (Huber, 1964) which have the weight functions

w1(r) =

�
1 r ≤ c
c/r r > c

and w2(r) =

�
1/σ2 r ≤ c

c/(r2σ2) r > c
.
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2. Feature extraction for multivariate data

The scaling factor σ2 is chosen so that E(Qw2(
√
Q)) = p and c is a tuning constant chosen

to satisfy P(Q ≤ c2) = q, where Q ∼ χ2
p, and q ∈ (0, 1). Another class of M -estimators are

those based on the likelihood of a t-distribution having ν ≥ 1 degrees of freedom (Kent and
Tyler, 1991), which yields weight functions

w1(r) = w2(r) =
p+ ν

r2 + ν
.

A special case of M -estimators based on the t-distribution are Cauchy M -estimators, which
correspond to t-estimators with ν = 1. Traditionally, M -estimators of location and scatter
are computed via fixed-point algorithms which are iterated from an initial starting point
until the difference in successive functional values is less than some predetermined thresh-
old (Huber, 1964; Kent and Tyler, 1991). Depending on the weight functions there are
however also other algorithms available. For example, a gradient descent method and a
partial Newton-Raphson method are discussed in Dümbgen et al. (2016). For a recent gen-
eral review of M-estimators see Düembgen et al. (2013).

Since it can sometimes be computationally demanding running the whole iterative process
until convergence, a compromise in the iterative process are the so-called one-step M -
estimators of location and scatter. One step M -estimators start with a pair of location and
scatter functionals (T1,S1) and two weight functions w1 = w1(r) and w2 = w2(r) and then
use just one updating step to obtain weighted new functionals

T2(x) = E
�
w1(r1))

−1E(w1(r1)x
�
, S2(x) = E

�
w2(r1) (x − T1(x)) (x − T1(x))�

�
,

where r1 = 
S1(x)−1/2(x − T1(x))
. A scatter functional from this family which we will
consider later is the scatter matrix of fourth moments which starts with the pair of location
and scatter functionals (T1, S1)=(E,Cov) and weight functions w1(r) = r2, w2(r) = r2/(p+
2). The resulting location-scatter pair (T2,S2) are then the vector of the third moments
T2(x) = E3(x) and the matrix of the fourth moments S2(x) = Cov4(x) defined as

E3(x) =
1

p
E(r2x), Cov4(x) =

1

p+ 2
E
�
r2 (x − E(x)) (x − E(x))�

�
,

where r = ||Cov(x)−1/2(x − E(x))||.

Independence properties of scatter functionals

Even though scatter and location functionals are discussed mainly in the context of ellip-
tical models, they have an important role in analyzing independent component models as
well. However, as the Gaussian distribution is the only elliptical distribution with indepen-
dent components, additional properties of scatter functionals are of interest when exploring
meaningful directions of multivariate vectors from a non-elliptical model. One of such prop-
erties is independence. A scatter functional S(x) is said to have the (full) independence
property if

S(x) = D(x)

for all x having independent components, where D(x) denotes a diagonal matrix. Moreover,
if the p-variate vector x = (x�

1, . . . ,x
�
k)

� has k independent sub-vectors with corresponding
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2. Feature extraction for multivariate data

block dimensions p1, . . . , pk, then a scatter functional S(x) is said to have the block inde-
pendence property if

S(x) = B(x),

where B(x) is the block diagonal matrix with block dimensions p1, . . . , pk. If x has inde-
pendent components, we can consider each component to be a univariate block. Therefore,
block independence is the stronger assumption and it implies full independence.

Most scatter functionals do not possess the full or block independence property, however
Cov and Cov4 do. On the other hand, Nordhausen and Tyler (2015) argue how all scatter
functionals S(x) are diagonal and block diagonal if all but one of the independent parts of x
are symmetric. Thus, exploiting the concept of symmetry, we can define symmetrized scatter
functionals. More precisely, let S denote any scatter functional. Then its symmetrized
version is defined as

Ssym(x) := S(x1 − x2),

where x1 and x2 are independent copies of x. For example, Nordhausen and Tyler (2015)
show that every symmetrized scatter functional possess both full and block independence
properties. Observe that symmetrized scatter functionals do not require a location func-
tional. In fact, they are usually computed using all pairwise differences and then computing
the original scatter with respect to the origin. Interestingly, both Cov and Cov4 can be
expressed as functions of pairwise differences. Symmetrized M -estimators of scatter are
investigated in Sirkiä et al. (2007), while the computational issues are especially discussed
in Dümbgen et al. (2016) and Miettinen et al. (2016).

2.2.1. Principal component analysis

Principal component analysis (PCA) (Jolliffe, 2002) is a data analysis method defined as an
orthogonal linear transformation, that creates a new coordinate system (rotates the data
set), so that new coordinates are uncorrelated. More precisely, the analysis aims to create
a new set of axes along which the variation of the data is maximized. If we write

Cov(x) = UDU�

to be the eigendecomposition of Cov(x), where D = diag(d1, . . . , dp), d1 ≥ d2 ≥ · · · ≥ dp ≥
0 is a diagonal matrix containing the ordered eigenvalues of Cov(x), and U is an orthogonal
matrix containing the eigenvectors of Cov(x) as columns, then, projecting the observations
along the eigenvectors in U, one obtains the principal component scores (features) y =
U�x. The covariance matrix of such obtained features is now diagonal, implying that the
features are uncorrelated, while the eigenvalues correspond to variances of the corresponding
components.

In general, provided that the eigenvalues of Cov(x) are distinct, ordering of the eigenval-
ues in D implies ordering of corresponding features in y. In the context of PCA, features
obtained by projecting data onto eigenvectors of Cov(x) along which the variance is larger
(that correspond to larger eigenvalues) are considered more important. Then, one usually
discards a certain number of features with the lowest variance, thus obtaining a data trans-
formation of a lower dimension. The question is now, how many featuers to keep? Before
we tackle this question, let us discuss the special connection between PCA and elliptical
models.

9



2. Feature extraction for multivariate data

In the case where x is a p-variate random vector from elliptical model (2.2), the covariance
matrix of x is, as discussed,

Cov(x) = σ2AA�,

for σ2 > 0, which corresponds to variance of each individual component in z. In that
case, U corresponds to left-singular matrix of A, making y = D1/2V�z+U�µ, the solution
to the elliptical model (which is identifiable up to post-multiplication by an orthogonal
matrix), thus implying the connection between the PCA and elliptical models. Another
reason we stress the connection of PCA and elliptical models is that the most common use
of the elliptical models in practice is to craft distributions that share some key properties of
the normal distribution while at the same time having heavier tails, making estimation of
standard covariance matrix in these models potentially not efficient. However, the previous
derivation of PCA in elliptical models holds not just for the covariance matrix but for any
affine equivariant scatter matrix (remember that these are all proportional), thus potentially
obtaining a more robust procedure (Marden, 1999; Visuri et al., 2000).

Dimension reduction in PCA

The question of dimension reduction becomes more straightforward if we assume that
Cov(x) is a singular matrix, i.e. if some of the measured features in x are mutually linearly
dependent and thus obsolete. This raises the question of estimation of rank of Cov(x).
However, it is more often in practice for data to be measured with a certain error, which is
usually independent of the signal part. Thus, Jolliffe (2002) proposes the so-called principal
component model

x = s + n, (2.3)

where the signal component s and noise component n are independent and are such that
Cov(s) = M is singular with rank d and Cov(n) = σ2

nIp. The problem now is the estimation
of the rank of the matrix M. The inference on the dimension of the signal subspace in PCA
is generally done using eigenvalues of the sample covariance matrix, see e.g. Jolliffe (2002)
and Schott (2006) and references therein. A popular graphical technique for selecting the
number of significant components is the plot of eigenvalues of the covariance matrix in the
decreasing order, also known as the scree plot. One then looks for the “elbow” in the plot,
i.e. the point where the eigenvalues seem to equalize, thus selecting the components prior
to this point as significant.

However, variation in the eigenvectors of Cov(x) also carries information on the dimension
of the signal subspace. Simply stated, when the eigenvalues of a random matrix are close
together, their eigenvectors tend to vary greatly, while when the eigenvalues are far apart,
their variability tends to be small (Luo and Li, 2016). Methods based on detecting changes
in the variation of eigenvectors mostly use bootstrap resampling techniques to approximate
the variation of the span of the first k sample eigenvectors, where high variation indicates
that the chosen eigenvectors belong to the same eigenspace, i.e. the difference between
the corresponding eigenvalues is small, as it is the case for eigenvectors corresponding to
the negligible eigenvalues. For more details see Ye and Weiss (2003). The work in Luo
and Li (2016) combines the previous two methodologies, where the negligible eigenvalues
are identified by using both the information on the magnitude of the eigenvalue as well as
the variability in the corresponding eigenspace. Luo and Li (2021) suggested an alterna-
tive approach in estimating the variation in eigenvectors, by employing data augmentation
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2. Feature extraction for multivariate data

and argues that, if a suitable random component xS of dimension r > 0, mimicking the
first and the second order behaviour of n is added to the observed x ∈ Rp, thus obtaining
x∗ = (x�,x�

S)
� ∈ Rp+r, then the augmented parts of the first d eigenvectors of the matrix

Cov(x∗) are smaller in magnitude than the augmented parts of the latter eigenvectors of
the corresponding matrix. When combining this information with the information from the
eigenvalues, one obtains a curve whose minimum inclines to occur at the true dimension.
For more insight see Figure 2.1, where one can see how information obtained from the norm
of augmented subvectors greatly helps in determining how many components should be
kept. Interesting to mention is the connection between the multivariate normal distribution
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Figure 2.1.: Left to right, scree plot, augmented norms and the objective function for the
augmented estimator using r = 5 as a combination of the augmented norms and the
scaled eigenvalues, calculated for the data from Model (2.3) with the signal s from
the multivariate normal distribution with mean E(s) = 0 and the covariance matrix
Cov(s) = diag(2.1, 1.6, 1.1, 0.6, 0.1, 0.1, 0, 0, 0, 0), and the additive noise from the multi-
variate normal distribution with E(n) = 0 and Cov(n) = 0.9 I10. Signal dimension is
d = 6 and coincides with the minimum in the right panel.

and the dimension reduction using PCA. Namely, Linsker (1988) showed that if x obeys the
PCA model (2.3) in which additionally both the signal and the noise have a multivariate
normal distribution, then PCA maximizes the mutual information between the signal and
the reduced transformation of x. Tipping and Bishop (1999) demonstrate how the principal
axes may be determined through maximum-likelihood estimation of parameters in a latent
variable model, where both the distribution of latent vector and the conditional distribution
of the observable vector given the latent vector are Gaussian. The approach is known as
the probabilistic PCA.

2.2.2. Whitening

Whitening is a basic data transformation that subtracts location to shift the data to the
origin and then rotates data so that new components are uncorrelated. Finally, it rescales
rotated components to have unit variance. Formally, the transformation is

xst = Cov(x)−1/2(x − E(x)),

and satisfies
E(xst) = 0, Cov(xst) = Ip.
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2. Feature extraction for multivariate data

Observe that if x has a multivariate normal distribution, then xst has independent and
identically distributed margins, while in the case where x follows an elliptical model, xst

has a spherical distribution. The difference between PCA and whitening is that in PCA,
one does not rescale the components to have the unit variance, but uses this information to
order obtained features. For more insight see Figure 2.2.

No direction in whitened xst is now more interesting than the other, with respect to the
scale. Whitening is often referred to as standardization, and can be done using any pair
of a location and scatter functionals, not necessarily only (E,Cov). For more details on
whitening see for example Ilmonen et al. (2012).
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Figure 2.2.: Left to right, a sample of size 500 from the centered multivariate normal dis-
tribution, corresponding principal components, and whitened data.

2.3. Non-Gaussian component model

It is often that the observed data is a mixture between low-dimensional signal and noise
which originates from various sources, making the non-Gaussian component (NGCA) model
(Blanchard et al., 2005) the right statistical framework to guide the feature extraction in
that case. The NGCA model is a location-scatter model

x = Az + µ = A1s + A2n + µ,

where z = (s�, n�)� is a latent p-variate vector consisting of the q-variate non-Gaussian signal
vector s and the (p − q)-variate Gaussian noise vector n. The signal and noise vectors are
independent, and both are assumed to be standardized. The full-rank matrices A1 ∈ Rp×q

and A2 ∈ Rp×(p−q) specify the signal and noise parts of x respectively, while p-variate vector
µ is a location vector.

NGCA model can be seen as a special case of independent subspace analysis (ISA) (Car-
doso, 1998) with two independent blocks, where ISA assumes that the latent vector z con-
sists of k independent sub-vectors. The aim is then to find an estimate of a transformation
matrix to recover the independent sub-vectors. For details about ISA see for example Theis
(2007); Nordhausen and Oja (2016).
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2. Feature extraction for multivariate data

The aim of the feature extraction within the NGCA model is to identify the signal part
of x, i.e., to project the data onto the signal subspace. Thus, one seeks a p × p full rank
unmixing block matrix W = (W�

1 W�
2)

� with submatrices W1 and W2, such that W1x
recovers the non-Gaussian signal subspace and W2x the Gaussian noise subspace. Observe
that matrices A1 and A2 are identifiable only up to post-multiplication with q × q and
(p−q)×(p−q) dimensional orthogonal matrices, respectively. Thus, A, and consequentially
W are not identifiable either, making the goal of NGCA analysis to estimate subspace
spanned by columns of W1. The identifiability issue is closely related to the lack of the
assumptions posed to signal component s, thus resulting that the individual signals can not
be recovered.

A special case of the NGCA model in which all components of signal s are independent
(remember that components of s are only needed to be uncorrelated in the NGCA model)
is a non-Gaussian independent component (NGICA) model. The NGICA model has the
advantage over the general NGCA model in that the signal components of s are identifi-
able up to their order and signs, thus making the aim of the feature extraction within the
NGICA model to estimate the individual signals. NGICA was for example considered in
Nordhausen et al. (2017); Risk et al. (2019).

If we further assume that the data originates from the various independent signal sources
and at most a single noise source, we find ourselves in the domain of the independent
component (ICA) model.

2.3.1. Independent component model

The ICA model is an NGICA model in which the noise component is either univariate or
does not exist at all. More precisely, the independent component model is a location-scatter
model

x = Az + µ, (2.4)

for p-variate, standardized, latent vector z with independent components and at most one
normally distributed component, a non-singular matrix A and the location vector µ. Re-
strictions on the number of the Gaussian components of z are due to the identifiability of
the model. Remember that the standard normal distribution is spherical, and is thus invari-
ant to orthogonal transformations. The aim of the feature extraction in the ICA model is
then to recover independent components. The reason we make a distinction from the wider,
NGICA model is that in the NGICA model, the dimension of the signal subspace is usually
unknown. Thus, the problem of feature extraction is intertwined with the estimation of the
dimension of the signal subspace.

Even though the ICA model is significantly narrower than the wide NGCA model, it is
still fitting to model e.g. skewed or even clustered data. Figure 2.3 shows scatter plots of
random samples from the standard normal model, heavy-tailed elliptical model, and ICA
model, showcasing how these can differ.

For more details on the independent component model see for example Hyvärinen et al.
(2001); Hyvärinen (1999); Comon and Jutten (2010); Nordhausen and Oja (2018).
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Figure 2.3.: From left to right, random samples of size 200 from the multivariate normal
distribution, multivariate t-distribution with 3 degrees of freedom, and an independent
component model with t3 and χ2

3 components. Each sample is standardized.

2.3.2. Independent component analysis

As discussed, feature extraction in the ICA model is done with the aim of extraction of the
independent components. Hyvärinen and Oja (1997) make a heuristic argument on how
a sum of two independent random variables, as a consequence of central limit theorem,
usually has a distribution that is closer to Gaussian than any of the two original random
variables, thus justifying one of the principles of ICA given in Hyvärinen and Oja (1997):
“Non-Gaussian is independent”. Therefore, exploring various measures of non-Gaussianity,
like e.g., kurtosis and negentropy, one obtains a wide range of algorithms for ICA, most of
which are projection pursuit based. Moreover Hyvärinen and Oja (1997) make an explicit
connection between the ICA and PP, emphasizing that if the ICA model holds, optimization
of the non-Gaussianity measures produces independent components, while if the model does
not hold, then what is obtained are the projection pursuit directions.

Projection pursuit based ICA

One of the most popular ICA methods is the so-called fastICA algorithm (Hyvärinen and
Oja, 1997). It is a PP based method, where the projection index is tailored such that the
extracted components maximize negentropy, which is mostly taken as a non-Gaussianity
measure. For a standardized continuous random variable x with the probability density
function f , negentropy is defined as

NH(x) = H(z)−H(x) ≥ 0,

where z ∼ N (0, 1) and H(x) = −E(log f(x)) is a differential entropy. Negentropy is always
non-negative since the standard normal distribution is the one with the largest entropy
among all distributions of unit variance (Cover and Thomas, 2006). However, it is difficult
to directly apply negentropy, since the knowledge of the density f is usually lacking. This
makes it necessary to approximate it. One possible approximation is a cumulant based
approximation proposed in Jones and Sibson (1987), where NH of the random variable x is
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2. Feature extraction for multivariate data

approximated by

NH(x) ≈ 1

12
(E(x3))2 +

1

48
(E(x4)− 3)2.

The first part of the approximation is skewness-, while the latter is kurtosis-based. We
will consider a similar projection pursuit index when blindly estimating linear discriminant
direction in data from the Gaussian mixture model. However, this approximation is lacking
robustness. An alternative approach proposed in Hyvärinen (1997) is

NH(x) ≈ (E(G(x))− E(G(z)))2,

where z ∼ N(0, 1) and G is usually taken to be G(x) = log(cosh(αx))/α or G(x) =
−exp(−x2/2), for tuning parameter 1 ≤ α ≤ 2. In case the components are sequentially
extracted, the method is known as deflation-based fastICA. For more details fastICA see
for example Hyvärinen and Oja (1997); Miettinen et al. (2017) and references therein.

ICA based on two scatter matrices

As mentioned, there are many methods for extraction of independent components within
the ICA model, and many of these are based on projection pursuit ideas. The approach of
interest in this section is based however on the simultaneous use of two scatter functionals
S1 and S2.

One of earliest contributions to ICA includes the fourth order blind identification method
(FOBI), originally suggested as an ICA method in Cardoso (1989) and considered in an ex-
ploratory data analysis context in Tyler et al. (2009). It starts by choosing two scatters
S1 = Cov and S2 = Cov4 and defining the fourth-order-blind-identification (FOBI) func-
tional W, which jointly diagonalizes S1 and S2. More precisely, let x be a p-variate random
vector with finite fourth moments and set S1 = Cov and S2 = Cov4. Then the FOBI
functional is defined as the p× p matrix-valued functional W for which

W(x)S1(x)W(x)� = Ip and W(x)S2(x)W(x)� = D(x), (2.5)

where D(x) is a diagonal matrix with decreasing diagonal elements. For convenience and
when the context is clear, the dependence on x of S1, S2, W and D will be omitted. In
Miettinen et al. (2015) it is shown that in the ICA model the diagonal elements d1, . . . , dp
of D, correspond to kurtosis measures of latent variables z, yielding di = 1 if and only
if E(z4i ) = 3. Thus, in ICA, the FOBI functional is well-defined (up to signs) if all inde-
pendent components have distinct kurtoses and in that case, z corresponds to the original
independent components up to signs and order.

The FOBI functional W is usually obtained by first whitening x �→ xst = S1(x)−1/2(x−
E(x)) and then performing an eigendecomposition of S2(xst) = UDU�. It can then be
shown that W = US−1/2

1 , and that D in the eigendecomposition of S2(xst) is equal to
D from Definition 2.5 of the FOBI functional. The latent components z1, . . . , zp are then
obtained as

z = W(x − µ).

The intuition behind this transformation is that W = US−1/2
1 gives latent components

z = W(x − µ) obtained by first whitening x with respect to S1 and then choosing z to be
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2. Feature extraction for multivariate data

the principal components, with respect to S2 of the whitened x. In that sense, one can think
of FOBI based ICA as an extension of PCA. Figure 2.4 illustrates the benefit of an addi-
tional rotation when moving from (scaled) PCA, i.e. whitening, to ICA. Virta (2018) argues
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Figure 2.4.: Bivariate scatters of a sample of size 400 from ICA model; left to right, observed
data, corresponding principal components, and independent components obtained using
FOBI algorithm, respectively.

how in general, ICA is considered superior to PCA (PCA finds (only) uncorrelated, while
ICA finds independent components). However, one can also see them as parallel methods,
since both solve a generalization of the multivariate normal model. Especially, under the
multivariate normal model PCA actually recovers independent components, further making
PCA and ICA, the signature methods of the elliptical and independent component model,
equivalent in the intersection of the two models.

It is important to mention how the joint usage of two general scatter functionals (not just
Cov and Cov4) is of interest in ICA but is however not limited to it. Tyler et al. (2009) give
then a general method for exploring multivariate data using two scatter matrices, based
on the eigenvalue–eigenvector decomposition of one scatter matrix w.r.t. to another. The
method is called invariant co-ordinate selection (ICS) and FOBI can be considered to be a
special case of it.

Let now S1 and S2 be two scatter functionals. Then, in general, p× p variate functional
W, which satisfies

W(x)S1(x)W(x)� = Ip and W(x)S2(x)W(x)� = D(x),

is of interest especially outside of an elliptical model, where S1 and S2 are sometimes
required to satisfy certain properties. The reason why the combination S1−S2 is considered
especially outside an elliptical model is that if x has an elliptical distribution all scatters
calculated at x, provided that they exist, are proportional to each other. In Oja et al.
(2006) it is shown that any two scatter functionals that have the full independence property
can be used in such a way as an ICA method, provided that the diagonal elements in
D are distinct. The independence property can be neglected if p − 1 latent components
have symmetric distributions (Tyler et al., 2009). Namely, as discussed, the eigenvalues
of S−1

1 (x)S2(x) can be seen as a kurtosis measures in the direction of the corresponding
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eigenvectors. Thus, diagonal elements d1, . . . , dp in D correspond to S1 − S2-kurtoses of
the marginal latent components in z. Observe that the matrix D depends on the scaling of
scatter functionals S1 and S2. Often, S1 and S2 are standardized under the multivariate
normal model implying that D(x) = Ip, for x ∼ N (µ,Σ). That is for example the case for
Cov − Cov4 combination of scatters.

Therefore, in order to identify individual independent components using the S1 − S2

combination of scatters, it is important for S1 − S2 kurtoses of the components to differ.
For example, in a model where one component has Gaussian distribution and the other
homoscedastic Gaussian mixture distribution with two classes and mixing proportion of
1/2− 1/

√
12, both components have the classical (Cov−Cov4) kurtosis value of 1, making

them indistinguishable w.r.t. classical kurtosis. However, these could still be separated
using the different combination of scatters.

For the exploratory use, there are also some guidelines provided by Tyler et al. (2009)
on how to choose the two scatters while arguing that there is no general best combination.
The joint use of two scatters is of interest in the mixture models as well. Namely, Tyler
et al. (2009) show that in an elliptical mixture model, ICS can be seen as an unsupervised
Fisher’s linear discriminant method.

2.3.3. Dimension estimation in NGCA

Estimation of the signal subspace dimension in the NGCA model is crucial to the successful
separation of the signal subspace from the noise. While there are meanwhile many sug-
gestions, like in Blanchard et al. (2006); Kawanabe et al. (2007); Theis et al. (2011); Bean
(2014); Sasaki et al. (2016); Virta et al. (2016) to name a few, on how to perform NGCA
there is not much research yet on how to estimate the dimensions of the two subspaces.

In the NGCA model, the FOBI functional has the advantage that the eigenvalues in D
of Gaussian components are known to be one. Nordhausen et al. (2021) and Nordhausen
et al. (2017) provide then asymptotic results and bootstrapping strategies to obtain p-values
when testing the hypothesis

H0k : There are exactly k non-Gaussian components, (2.6)

by testing that there are p − k eigenvalues in D equal to 1, and using the mean squared
deviation of the p−k eigenvalues in D closest to 1, from the theoretical value of 1, as a test
statistic. Successive application of the tests can then be used to estimate the dimension.

On the other side, the idea of the bootrstrap strategy is to first sample with replacement an
n-dimensional sample X̃ = (x̃1, . . . , x̃n) ∈ Rp×n from a random sample X = (x1, . . . ,xn) ∈
Rp×n and estimate its signal component as S̃ = (s̃1, . . . , s̃n) = Ŵ1X̃ ∈ Rk×n. Then, in
order to make the noise space Gaussian, transform X̃ ← Ŵ

−1
(S̃ � N�)�, where N ∈ R(p−k)×n

is an n-dimensional random sample from N (0, Ip−k). The value of the test statistics is
then calculated in each of the bootstrap samples and the estimated p-values are obtained
by comparing the value of the test statistics calculated in sample X to those of bootstrap
samples.

In Paper I, we show that any two scatter matrix combination can be used in NGCA
to separate the Gaussian from the non-Gaussian subspace, provided that S1–S2- kurtoses
of the signals differ from the corresponding Gaussian value. However, it is then usually
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not known what is the noise eigenvalue. Therefore, when testing the hypothesis (2.6) we
suggest to identify the set of the noise components as the one corresponding to the set of
eigenvalues having a minimal variance, under the assumption that the Gaussian subspace
is larger than any set of the signal components which would share the same eigenvalue.
Asymptotic results for the test statistic depend on the specific choice of S1 and S2, and
are in most cases not tractable. However, as discussed, the bootstrap strategy described
above for FOBI can be adapted for a general combination of scatters, where the used test
statistics is the variance of the p− k- subset of eigenvalues that has the smallest variance.
For more details see Paper I.

Even though the NGCA model is successfully used to model clustered data, a natural
framework when working with data from multiple underlying populations is finite mixture
models. Among those, we place a special focus on finite mixtures of multivariate Gaussian
distributions.

2.4. Gaussian mixture model

A Gaussian mixture model (GMM) is often referred to as parametric probability density
function, which is represented as a convex combination of Gaussian densities, with not
necessarily equal location and scale parameters (McLachlan and Peel, 2000). For a p-
dimensional random vector x from Gaussian mixture model with k-classes, k ∈ N, the
probability density function is given by

f(x;αi,µi,Σi) =

k�
i=1

αiφ(x;µi,Σi), (2.7)

where α1, . . . , αk ≥ 0,
�k

i=1 αi = 1 are mixing proportions, µi and Σi are p-variate mean
vector and p× p covariance matrix of i-th population (class), respectively, for i = 1, . . . , k.
φ(· ;µ,Σ) is the probability density function of N (µ,Σ) distribution. The mean vector and
the covariance matrix of x are

µ =

k�
i=1

αiµi, Cov(x) =
k�

i=1

αiΣi +

k�
i=1

αi(µi − µ)(µi − µ)�,

respectively, where

ΣW =
k�

i=1

αiΣi and ΣB =
k�

i=1

αi(µi − µ)(µi − µ)�,

are so-called the within-class and the between-class scatters, respectively. In case where
all the class covariances are equal, the corresponding GMM is called homoscedastic GMM.
Nordhausen et al. (2017) argues how homoscedastic Gaussian mixture models with p + 1
classes are included in the NGCA model. Moreover, in Paper II it is shown that homoscedas-
tic GMM with 2 classes is in fact an NGICA model. How wide the class of GMM is, is for
example discussed in McLachlan and Peel (2000), where it is stated how any continuous
distribution can be approximated arbitrarily well by a finite mixture of normal densities
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with common covariance. To our particular interest in following section is the homoscedas-
tic GMM with two classes.

As discussed, GMM is particularly convenient for modeling heterogeneous data, originat-
ing from multiple underlying populations, wherein the absence of class labels one wishes
to correctly classify the observed data. In general, parameter estimation and clustering in
the scope of GMM are usually considered jointly. When it comes to parameter estimation,
maximum likelihood approach is considered a gold standard and one of the most popular al-
gorithms for that purpose is known as Expectation-Maximization (EM) algorithm. For more
details on the EM algorithm see for example Friedman et al. (2001), while for more details on
the implementation of the EM algorithm see documentation on R-package mclust (Scrucca
et al., 2016). Other well-known clustering methods for Gaussian mixture modeling are e.g.
k-means clustering or spectral clustering, see Friedman et al. (2001); Von Luxburg (2007).
However, when dealing with high-dimensional data, the likelihood function is usually highly
multi-modal, thus making high-dimensional maximization a rather difficult and often un-
reachable task. Moreover, the space over which we are optimizing grows exponentially with
the dimension of the data, making a blind search for global optimum a wild goose chase.
Thus, one is advised to perform exploratory data analysis to initialize model parameters
more accurately, which is again rather difficult if the dimension p of x is large. A partial
solution to the problem lies in first doing dimension reduction, i.e. projecting data to an
appropriate lower-dimensional space, which hopefully then contains all the discriminatory
features of the original data set. One of the most common unsupervised methods for re-
vealing clusters is still arguably PCA. However, it is also well known that PCA does not, in
general, yield a consistent estimator of the optimal linear discriminant direction. A standard
example demonstrating this is the extreme case where the within-class covariance matrix
Σ is heavily concentrated on a direction orthogonal to the difference of the group means
µ2−µ1. In such a case, the projections of the two group means onto the first principal com-
ponent direction overlap, making clustering based on the direction impossible. Figure 2.5
illustrates how PCA fails in extracting feature which contains discriminatory information
on the data. In case the class membership of the data is known, linear discriminant analysis
(LDA) (Fisher, 1936) can be used to extract such directions.

Linear discriminant analysis

Linear discriminant analysis was originally derived to discriminate between the two classes,
under the assumption of homoscedasticity and normality, i.e. in the scope of homoscedastic
Gaussian mixture model with two classes (Fisher, 1936). For the direction w ∈ Rp and the
p-variate random vector x from homoscedastic two-class GMM with common variance Σ
and class means µ1 and µ2, the within-class and between-class variances of the projection
w�x are

σ2
W = w�Σw, σ2

B = (w�µ1 − w�µ2)
2,

respectively. The optimal linear discriminant direction is obtained following Fisher’s linear
discriminant rule, which searches for projection w�x of the data x, for which the ratio of
the between-class variance to the within-class variance is maximal. The solution w to the
given maximization problem is the leading eigenvector of Σ−1(µ1 − µ2)(µ1 − µ2)

�, thus
implying that w ∝ Σ−1(µ1 − µ2). Fisher’s linear discriminant and LDA are often used as
synonyms. In the homoscedastic, two-class GMM, LDA is optimal in the sense that the
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Figure 2.5.: The dashed line gives the optimal PCA direction (left) and LDA direction
(right) for random samples of size 400 from balanced, two-component Gaussian mixture
model.

optimal Bayes classifier (the one having the minimal misclassification rate out of all classi-
fiers), depends on the data only through the projection (Σ−1(µ1 − µ2))

�x, see e.g. Mardia
et al. (1995). In Paper II it is shown that GMM with 2 classes with equal covariances is
in fact an NGICA model. Moreover, inspecting the proof of the statement yields that the
p − 1 of latent independent components are Gaussian, while the remaining non-Gaussian
component has homoscedastic Gaussian distribution and is up to a scale equal to optimal
discriminant feature, extracted by the LDA.

In the case of more than two classes, one can extend the analysis used in the derivation of
Fisher’s discriminant to find a subspace that contains most of the class variability. Again,
using Fisher’s discriminant rule, the class separation direction w maximizes the ratio of the
variance between- to the variance within the classes

w�ΣWw
w�ΣBw

,

where in the homoscedastic setting with the common variance Σ, within-class variance
ΣW = Σ. In the case where Σ−1

W ΣB is diagonalizable, the class variability is contained in
the subspace spanned by the eigenvectors of Σ−1

W ΣB, which later serve primarily in the di-
mension reduction, as it is in the PCA. Another approach in multiclass LDA is to partition
the classes, and then to use standard, two-class LDA to classify each partition separately.
A common way of partitioning is the extraction of one group at a time, meaning to combine
all but one group. The procedure is then applied k − 1 times, resulting in k − 1 linear
discriminant directions. An alternative is a pairwise classification, where one considers all
of k(k − 1)/2 pairs of groups, thus obtaining k(k − 1)/2 discriminant directions. As men-
tioned in Section 2.3, Tyler et al. (2009) show that in an elliptical mixture model, ICS can
be seen as an LDA method without knowing the class labels. For more details on LDA see
e.g. Hastie et al. (2004); Rao (1948) and references therein.
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2. Feature extraction for multivariate data

However, in practice, it is rarely the case that the data directly follow a GMM. It is more
often the case that data contain a certain amount of redundant information, i.e. noise,
which then interferes with clustering. Especially, in the setting where the magnitude of the
noise is comparable to the one of the signal which reveals the cluster structure, discussed
classification methods usually do not apply directly. To illustrate the problem, consider a
random sample from the NGCA model

x = A(s�, n�)�, (2.8)

where signal s follows GMM with density f(s) = 0.5φ(µ1,Σ)+0.5φ(µ2,Σ), while the noise
n has two independent, standard normal components, where µ1 = (−4,−4), µ2 = (2, 1)
and the covariance matrix Σ and the mixing matrix A are

Σ =

�
2 1
1 2

�
, A =

��
1 0 3 0
0 −1 0 3

−0.2 0 1 1
0 −0.3 1 1

�� ,

respectively. Figure 2.6 and 2.7 illustrate how scatter plots of the observed sample and
the corresponding principal components reveal no clear cluster structure. However, if one
extracts only a signal subspace, then the underlying cluster structure becomes obvious, as
it is shown in Figure 2.8.
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Figure 2.6.: Scatter plot of the sample of size n = 400 from Model (2.8).
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Figure 2.7.: Scatter plot of the principal components of the sample of size n = 400 from
Model (2.8).
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Figure 2.8.: Signal part of the sample of size n = 400 from Model (2.8) (left), and corre-
sponding estimated signal using FOBI method.
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2. Feature extraction for multivariate data

2.4.1. A supervised estimation of the linear discriminant

When it comes to the estimation of the linear discriminant direction, in case of the su-
pervised estimation, the approach is straightforward. We give the estimator in the case
of homoscedastic GMM with two classes, as it will be relevant for further discussion. Let
x be a random vector from homoscedastic GMM with two classes, and let the Bernoulli
random variable y ∼ Bernoulli(α1) describe the class membership, where α1 > 0 is the
mixing proportion. If we have a sample (x1, y1), . . . , (xn, yn) from the distribution of the
full pair (x, y) available, the standard estimator of Σ−1(µ2 − µ1) is the plug-in estimator
(which is also its MLE, up to the scaling of the pooled covariance matrix). That is, using
the notation,

x̄n1 :=
1�n
i=1 yi

n�
i=1

yixi, x̄n2 :=
1�n

i=1(1− yi)

n�
i=1

(1− yi)xi,

Sn :=
1

n− 2

�
n�

i=1

yi(xi − x̄1)(xi − x̄1)
� +

n�
i=1

(1− yi)(xi − x̄2)(xi − x̄2)
�
�
,

the plug-in estimator of Σ−1(µ2 − µ1) is defined as,

wn := S−1
n (x̄n2 − x̄n1).

Asymptotic results for LDA are very standard in the literature, see e.g. Anderson (2003)
and are usually given in the case of fixed group sizes, whereas in our model the group sizes
are determined by the indicator variables y1, . . . , yn and are, as such, random. Paper II
gives the limiting distribution of plug-in estimator for the presented model and shows that
the magnitude of the variance of the estimator is larger the more imbalanced the groups
are, as well as the larger amount of variation in the direction of the optimal discriminant
direction is.

However, it is often the case that the knowledge of group membership is lacking and one
wishes to cluster data into meaningful clusters. Furthermore, in the situations where the
class label is given, supervised methods usually first use a so-called training sample with
known labels to estimate the parameters of the method, and then treat new, unlabeled
data, based on the estimated parameters. This way supervised methods, in general, gain
no additional information from the new data.

2.4.2. Projection pursuit based estimation of the linear discriminant

Projection pursuit is a general family of methods searching for a projection direction that
maximizes the value of the so-called projection index, and can be seen as an alternative
to cluster analysis (Huber, 1985; Bolton and Krzanowski, 2003; Bickel et al., 2018; Fischer
et al., 2019). Huber (1985), for example, suggested that interesting projections are those
that produce minimum entropy (non-normal) distributions, thus implying that any test
statistic used for testing normality could potentially be used as a projection index. Es-
pecially, Huber (1985) suggested the use of standardized absolute cumulants as projection
indices for cluster detection. The approach was later followed by Jones and Sibson (1987)
who proposed the use of a linear combination of squared third and fourth cumulants of
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2. Feature extraction for multivariate data

projection of the standardized data, as a projection index for cluster identification. As dis-
cussed in Section 2.3, the proposed projection index also serves as the approximation of the
negentropy in fastICA. Asymptotic results for general projection indices have been derived
earlier in the context of ICA, see, e.g., Ollila (2009); Dermoune and Wei (2013); Miettinen
et al. (2015); Virta et al. (2016).

Peña and Prieto (2001) studied the use of kurtosis κ : Sp−1 → R

κ(u) =
E{(u�(X − E(X)))4}
[E{(u�(X − E(X)))2}]2 ,

as projection index in this setting, where Sp−1 = {x ∈ Rp : 
x
 = 1} is the centered unit
sphere in Rp. Namely, denoting the common covariance matrix by Σ and the two group
means by µ1 and µ2, Peña and Prieto (2001) showed that using kurtosis as the projection
index in the projection pursuit allows the unsupervised estimation of the projection direction
θ := Σ−1(µ2 −µ1) used in the linear discriminant analysis to construct the optimal Bayes
classifier, in the absence of information on group membership, except in some special cases.
Namely, for mixing proportion α1 ∈ {δ1, δ2}, where δ1 = 1/2−1/

√
12 and δ2 = 1/2+1/

√
12,

corresponding GMM is indistinguishable from normal model, w.r.t. kurtosis. The result of
Peña and Prieto (2001) raises a natural question regarding the efficiency of the procedure.
The main question we address in Paper II is how much do we lose by not knowing the group
membership and relying solely on the projection pursuit to recover direction θ, compared to
using the supervised LDA estimator to recover the same direction, working, for simplicity,
under the assumption of homoscedastic GMM with two classes.

Use of the kurtosis as a projection index as described in Peña and Prieto (2001) in
practice requires information about the mixing proportion α1. Namely, if α1 ∈ (δ1, δ2) then
the linear discriminant θ/
θ
 is found as the minimizer of κ, whereas if α1 ∈ (0, δ1)∪ (δ2, 1)
then θ/
θ
 is found as the maximizer of κ. Thus, to obtain a truly blind estimator, in Paper
II we propose using the squared excess kurtosis (κ(u) − 3)2 as an objective function and
show that it yields a Fisher consistent estimate of the linear discriminant, apart from the
degenerate cases α1 ∈ {δ1, δ2}, where excess kurtosis vanishes. Interestingly, the limiting
covariance is shown to be proportional to the one of the supervised linear discriminant
estimator. For more details on the limiting distribution and the proportionality constant
see Paper II.

While kurtosis is arguably the most popular choice for the projection index in PP, skew-
ness γ : Sp−1 → R

γ(u) =
E{(u�(X − E(X)))3}

[E{(u�(X − E(X)))2}]3/2 ,

is a common alternative. Loperfido (2013) shows that skewness has the same ability to
find the optimal projection direction in the absence of the group membership information,
except in the symmetric setting (α1 = 0.5), where due to symmetry, skewness of all pro-
jections is zero. Therefore, in Paper II we discuss also skewness-based projection pursuit
in this context, showing that the limiting covariance of the unsupervised skewness-based
estimator of the linear discriminant is proportional to those of kurtosis-based- and super-
vised estimator. As discussed, a drawback of both kurtosis and skewness is that the two
indices are unable to recover the optimal projection direction for some particular values of
the mixing proportion, that however can be mitigated by combining both cumulants into a
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single projection index, in a form of a convex combination η : Sp−1 → R

η(u) = η(u;w1) := w1γ(u)2 + w2{κ(u)− 3}2,

where w1, w2 ≥ 0, w1+w2 = 1. Virta et al. (2016) e.g. studied some asymptotic properties
of the hybrid index η in the context of independent component analysis, while in Paper
II we derive the limiting distribution of the hybrid-estimator of the linear discriminant
giving also a full covariance matrix, which again turns out to be proportional to those of
kurtosis and skewness based estimators. Studying the asymptotic relative efficiency of the
hybrid estimator w.r.t. the supervised one, we discuss optimal weighting if information
on mixing proportion is available. As a further interesting observation, when the mixture
model approaches the multivariate normal model, the limit of the optimal weight seems to
approach the value 0.8, which is the exact weighting used in the Jarque-Bera test statistic
for testing normality, (n/6)γ2n + (n/24)(κn − 3)2 (Jarque and Bera, 1980). It is concluded
that in the case of moderately balanced and infinitely well-separated groups, projection pur-
suit is able to reach asymptotic efficiency equal to LDA with an optimal choice of weighting.

It is important to mention that from an inferential point of view, skewness and kurto-
sis as test statistics were first introduced by Malkovich and Afifi (1973). Machado (1983)
discusses asymptotic distribution under the null hypothesis of normality, of statistics pro-
posed by Malkovich and Afifi (1973). Friedman (1987) and Posse (1995) propose to assess
the significance of results by comparing the observed value of the projection index with
the sampling distribution of the same index, obtained by simulating many random samples
from a Gaussian distribution of the same dimension and cardinality as the data. Kuriki and
Takemura (2008) use a geometric approach to derive exact formulae for the tail probabilities
of Malkovich and Afifi (1973) statistics. Loperfido (2018) conjectures that the asymptotic
distribution of the maximal skewness attainable by a linear combination of Gaussian ran-
dom variables is skew-normal. In that manner, work presented in Paper II can be considered
in the direction of an inferential PP, where the role of inferential procedures is in deciding
whether the directed structure is real or just the artifact of the noise.
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3. Feature extraction for matrix-variate
data

We next move to an extension of concepts presented in Chapter 1 to the setting where
the observations are assumed to be matrix-valued. Examples of such data are abundant
nowadays, the most notable example being image data where the elements of the matrix
represent the gray-scale intensities of the individual pixels of an image. For example, images
of hand-written signs (digits, letters...) are represented this way, where one often aims to
classify observed signs to e.g. transfer hand-written documents into the digital format.
Figure 3.1 shows a sample of handwritten digits 1 and 2, from data set digits, available
freely in the R package tensorBSS (Virta et al., 2021a) and consisting of 16× 16 grayscale
images of normalized handwritten digits 1−9, automatically scanned from envelopes by the
U.S. Postal Service. Furthermore, magnetic resonance imaging (MRI) and coronary tissue

Figure 3.1.: A collection of images of digits 1 and 2 (up) from the digits data set.

(CT) data are naturally represented in that way. Other examples include e.g. biological
abundance data where each matrix contains the abundances of a single species in p regions
(the rows) over q time points (the columns).

Methods for analysis of matrix-valued data can be roughly divided into two groups. The
first one are vectorization-based methods which constitute the simplest approach to matrix
modeling. Namely, one defines vectorization operator vec : Rp×q → Rpq, where for observed
p × q matrices Xi, i = 1, . . . , n, vec(Xi) = xi ∈ Rpq obtained by stacking columns of Xi

on top of each other into a large vector. Such vector xi is then subjected to the desired
multivariate method. Although probably a natural way to tackle the problem, the simplicity
of analysis introduced by vectorization, comes with a price. The vectorization loses the
spatial structure one had in original matrices, while at the same time produces vector xi of
potentially high dimension pq. The alternative way of dealing with the matrix-variate data
is to keep the matrix structure and develop methods to accommodate it. We will focus on
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the latter approach. In general, analyzing raw, high-dimensional matrix-variate data can be
computationally expensive and often intractable. Consequentially, feature extraction is an
important and often occurring problem in image processing, where observed matrix-variate
(image) data is transformed into a lower-dimensional space in a way that the obtained
representation contains important properties of the original data.

As in the multivariate setting, we introduce the statistical frameworks that will guide the
feature extraction of the matrix-variate data.

3.1. Location-scatter model

We motivate the following models again through a general location-scatter model. We say
that a (p× q)-variate random matrix X obeys the matrix location-scatter model if

X = AZB� + T,

where location matrix T ∈ Rp×q and non-singular mixing matrices A ∈ Rp×p, B ∈ Rq×q

are unknown parameters and latent random matrix Z ∈ Rp×q satisfies

E(vec(Z)) = 0, Cov(vec(Z)) = Ipq.

When vectorizing the location-scatter matrix-variate model we obtain a structured vector-
valued location-scatter model, where the mixing matrix has the Kronecker structure B⊗A.
For matrices A ∈ Rp×p and B ∈ Rq×q, the Kronecker product is pq× pq block matrix, such
that (i, j)-block of A ⊗ B is Ai,jB, for i, j = 1 . . . , p (Henderson and Searle, 1981). Ob-
serve now if one would simply vectorize the location-scatter model with aim of estimation
of mixing matrix B⊗A, one would estimate pq(pq + 1)/2 unknown parameters. However,
if the underlying structure of the model is considered, then the number of parameters one
estimates is p(p+ 1)/2 + q(q + 1)/2 and is considerably smaller than in the previous case.
The approach in which we keep the structure of the vectorized data is known as the struc-
tured covariance estimation (Srivastava et al., 2008), and to some extent shows how not all
methods starting with vectorization lose all the spatial structure, what is important is how
one proceeds post vectorization.

As is the case for vector-valued models, posing various additional assumptions on the
latent matrix Z leads into various families of models, the simplest of which being the
matrix-variate normal model.

3.1.1. Matrix-variate normal model

Definition 2. The p×q random matrix X is said to have matrix-variate normal distribution
with p × q mean matrix T and covariance matrix Ω ⊗ Σ, if vec(X) follows pq-variate
normal distribution N (vec(T),Ω⊗Σ), where Σ ∈ Rp×p and Ω ∈ Rq×q are positive-definite
symmetric matrices. We write X ∼ MNp×q(T,Σ,Ω).

Definition 2 implies that if X ∼ MNp×q(T,Σ,Ω), then X� ∼ MNp×q(T�,Ω,Σ). Let now
X = (x�

1, . . . ,x
�
q)

� ∼ MN p,q(M,Σ,Ω), where xi ∈ Rp is i-th column of X, i = 1, . . . , q. The
structured covariance matrix of vec(X) implies that Cov(xi,xj) = Ωi,jΣ, i, j = 1, . . . , q.
Therefore, E((X − T)(X − T)�) =

�q
i=1Cov(xi) = tr(Ω)Σ. Similarly, Cov(x̃i, x̃j) =
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Σi,jΩ, i, j = 1, . . . , p, where x̃i ∈ Rq is i-th row of X, i = 1, . . . , p, further implying that
E((X − T)�(X − T)) = tr(Σ)Ω. Observe that, if e.g. Σ = Ip, then Cov(x̃i, x̃j) = 0, for
i �= j, implying that rows of X are mutually independent and up to a location, identically
distributed. Furthermore, in that case E((X−T)�(X−T))/p =

�p
i=1Cov(x̃i)/p = Ω, thus

implying that in case where the rows are independent copies from multivariate Gaussian
distribution, Ω is the corresponding (column) covariance. Similar is true Σ as well. That
is the reason why we often refer to Σ and Ω as to row and column covariance matrices,
respectively.

It is now clear that not all random matrices with normally distributed entries are from
matrix-variate normal model. As it is the case for multivariate normal distribution, the
family of matrix-variate normal distributions is also closed under linear transformations.
More precisely, if X ∼ MNp×q(T,Σ,Ω) then for full rank matrices A ∈ Rp×r, r ≤ p and
B ∈ Rq×s, s ≤ q is

A�XB ∼ MNr×s(A�TB,A�ΣA,B�ΩB).

In the context of location-scatter model, if we assume that Z ∼ MNp×q(0, Ip, Iq), then
X = AZB� + T ∼ MNp×q(T,AA�,BB�), which gives a mean of sampling from matrix-
variate distribution. In the following, we refer to MNp×q(0, Ip, Iq) as to matrix-variate stan-
dard normal distribution, that is, as its vector counterpart, a spherical distribution, while
Z ∼ MNp×q(0, Ip, Iq) has independent entries from univariate standard normal distribution.
Consequentially, matrix-variate normal distribution belongs to the class of matrix-variate
elliptical distributions.

The probability density function of X ∼ MN p×q(T,Σ,Ω) is

φ(p×q)(X;T,Σ,Ω) =
exp(−1

2tr
�
Ω−1(X − T)�Σ−1(X − T)

�
)

(2π)pq/2 det(Ω)p/2det(Σ)q/2
,

thus showing that the matrix-variate normal model is fully characterized by the mean ma-
trix T and row and column covariance matrices Σ and Ω. For more details and properties
of matrix-variate normal distribution see Gupta and Nagar (1999), and references therein.

3.1.2. Elliptical models

As is the case in the vector setting, matrix-valued elliptical models are derived from the
location-scatter model assuming that latent matrix Z has matrix-variate spherical distribu-
tion.

Definition 3. A p× q-variate random matrix X is said to have

a) right spherical distribution if (X − T) ∼ (X − T)V, for all orthogonal matrices V ∈
Oq×q,

b) left spherical distribution if (X − T) ∼ U�(X − T), for all orthogonal matrices U ∈
Op×p,

c) spherical distribution if (X−T) ∼ U�(X−T)V, for all orthogonal matrices U ∈ Op×p

and V ∈ Oq×q,
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where T ∈ Rp×q is a location matrix of X.

An alternative way of defining matrix spherical distributions is using vectorization op-
erator and requiring that vec(Z) has vector-valued spherical distribution. Such definition
gives a somewhat narrower class of distributions (Arashi, 2017). However, we define matrix
spherical distribution according to the first definition, as it is given in Gupta and Nagar
(1999).

If the second moments of spherically distributed X exist, then Cov(vec(X)) ∝ Ip ⊗ Iq =
Ipq. The class of p× q matrix-valued elliptical distributions is now defined as the set of all
distributions of the form

X = AZB� + T,

where A ∈ Rp×p, B ∈ Rq×q, T ∈ Rp×q and latent matrix Z ∈ Rp×q has matrix spherical
distribution around the origin. As discussed, a matrix-variate normal distribution is a
member of the elliptical family. Another well-known member of the matrix-elliptical model
is matrix-variate t-distribution.

Definition 4. The random matrix X ∈ Rp×q is said to have matrix-variate t-distribution
with ν > 0 degrees of freedom, and parameters T ∈ Rp×q, Σ ∈ Rp×p and Ω ∈ Rq×q,
X ∼ Tp×q(ν,T,Σ,Ω), if its probability density function is given by

fX(X) =
Γp

	
ν+p+q−1

2

�
π

pq
2 Γp

	
ν+p−1

2

� det(Ω)−p/2det(Σ)−q/2

× det(Ip +Σ−1(X−T)Ω−1(X−T)�)−
ν+p+q−1

2 ,

where Σ ∈ Rp×p and Ω ∈ Rq×q are positive definite symmetric matrices.

For ν = 1, matrix-variate t-distribution with ν degrees of freedom is often referred to
as Cauchy distribution. In particular, if T = 0, (centered) matrix-variate t distribution
belongs to class of left spherical distributions for Σ = Ip, right spherical distributions for
Ω = Iq and the class of spherical distributions if Σ = Ip and Ω = Iq. For more details
about the matrix-variate t-distribution see Gupta and Nagar (1999).

In general, in the case where the elliptically distributed random matrix X = AZB� + T
has a probability density function, it is of the form

fX(X) =
g(tr

�
Ω−1(X − T)�Σ−1(X − T)

�
)

det(Ω)p/2det(Σ)q/2
,

for symmetric positive definite matrices Σ = AA� and Ω = BB� and real valued function g.
In case the second moments of X exits, E(vec(X)) = vec(T), while Cov(vec(X)) ∝ Ω⊗Σ,
where the proportionality constant depends on the specific distribution. For further results
on matrix-variate elliptical distributions see e.g. Gupta and Nagar (1999); Fang and Ting
(1990). As in the vector case, analysis of matrix-variate elliptical models is mostly done by
inspecting second-order moment behaviour. Thus, in the next section we discuss extensions
of PCA for matrix-variate data, with the note that in general, matrix-variate extensions of
PCA are model-free procedures, just as multivariate PCA is.
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3.2. Matrix-variate principal component analysis

As discussed in Section 2.2.1, PCA (Jolliffe, 2002) is often used with aim of dimension
reduction in the high-dimensional data analysis, by searching for the transformation of
the data onto a low-dimensional space that retains maximal variation. When the data
is matrix-valued, traditional analysis vectorizes each observation into a long vector, thus
producing a model with a large number of parameters. For example, in the PCA-based
face recognition methods (Turk and Pentland, 1991; Zhao et al., 2003), the face image
matrices must be pre-vectorizes into large vectors, which often leads to high-dimensional
vector spaces, making it rather difficult to accurately estimate the covariance matrix (Yang
et al., 2004). Thus, in cases where the sample size is relatively small, many existing vector-
valued statistical methods fail to work satisfactorily. A possible strategy for overcoming
the presented difficulty is to take advantage of the matrix structure of the data. Probably
most straightforward generalization of the standard (vector) PCA to matrices searches for
low-dimensional projections of matrix objects which again capture maximal data variation,
where methods differ based on how one measures variation in higher-order data. E.g. in
two-component principal component analysis (Zhang and Zhou, 2005) it is characterized by
the trace of the covariance of the projection while Lu et al. (2008) use the squared Frobenius
norm of the covariance of the transformation.

Probably the biggest difference between the vectorial and matrix PCA is that in the
latter, connection with matrix-variate elliptical models is not as clear. For it to hold, one
would need to define affine equivariant scatter functionals Si : Rp1×p2 → Rpi×pi , i = 1, 2,
such that

S1(AXB�) = AS1(X)A�, S2(AXB�) = BS2(X)B�,

for all regular matrices A ∈ Rp×p, B ∈ Rq×q. Virta et al. (2017) conjectures that such
functionals in general do not exist. However, orthogonally equivariant analogs to presented
scatters do exist with E((X−E(X)(X−E(X))�) and E((X−E(X))�(X−E(X)) being one
of them. Thus, we continue discussion on matrix PCA methods in scope of Model (3.1).

Definition 5. The random matrix X ∈ Rp1×p2 follows the noisy second-order (NS) model
if it allows a representation

X = T+U1ZU�
2 + ε, (3.1)

where T ∈ Rp1×p2 is the mean matrix, U1 ∈ Rp1×d1 , U2 ∈ Rp2×d2 are unknown matrices
with orthonormal columns and Z is a d1 × d2 core matrix with zero mean and dimensions
d1 ≤ p1, d2 ≤ p2.

Additionally, one poses the technical assumptions that E
Z
2 < ∞ and that E(ZZ�)
and E(Z�Z) are positive definite matrices. The additive p1 × p2 noise matrix ε is taken
to be independent from the core Z and has a matrix spherical distribution, implying that
E(εε�) = σ2Ip1 for some σ2 ≥ 0. Furthermore, for sake of identifibility of the parameters
of Model (3.1), one assumes that multiplicity of eigenvalues of E(ZZ�) and E(Z�Z) is 1,
respectively.

To overcome the problems obtained by applying vector PCA to matrix-valued observa-
tions, Zhang and Zhou (2005) propose an image projection technique, called two-dimensional

30



3. Feature extraction for matrix-variate data

principal component analysis (2DPCA). For the p1×p2 random matrix X from Model (3.1),
2DPCA searches for mutually orthogonal directions vk ∈ Rp2 , k = 1, . . . , d2 such that the
total variation of the projection Xvk of X onto vk, which is being characterised by the trace
of the covariance matrix of the projection, is maximal. More precisely, v1 ∈ Rp2 maximizes

tr
�
E((Xv − E(Xv))(Xv − E(Xv))�))

�
= v�E((X − E(X))(X − E(X))�)v.

The matrix E((X−E(X))(X−E(X))�) is called image covariance or scatter matrix. Observe
that it is not a covariance matrix in a standard definition of it. However, due to the
resemblance to the covariance matrix of a random vector, we refer to it as such. Second
direction v2 then maximizes v�E((X − E(X))(X − E(X))�)v, subject to being orthogonal
to v1, and so on. It is now clear that v1, . . . ,vd2 can be found as first d2 eigenvectors of
positive, semi-definite symmetric matrix E((X−E(X))(X−E(X))�). The obtained result of
2DPCA is now XV2, where V2 = (v1, . . . ,vd2). Observe that 2DPCA is essentially working
in the row-direction of the matrix X. One extracts information contained in columns of
X by applying the analogous procedure to X�, thus projecting X� onto orthogonal matrix
V1 ∈ Rp1×d1 . Within the scope of Model (3.1) and under the additional assumption on
multiplicity of eigenvalues of E(ZZ�) and E(Z�Z), 2DPCA recovers mixing matrices U1 and
U2, up to ordering and sign changes of the columns.

Zhang and Zhou (2005) propose simultaneous use of matrices V1 and V2 obtained by
2DPCA through the projection V�

1XV2. The method is known as two-component-two-
direction principal component analysis (2D2PCA). Zhang and Zhou (2005) further compare
the accuracy of classification of gray-scale images of frontal faces pre-transformed using
PCA, 2DPCA, and 2D2PCA, concluding that 2D2PCA is superior to the former two meth-
ods both in accuracy and computational time.

Alternatively to the presented procedure, one can estimate mixing matrices simultane-
ously. The approach called multilinear principal component analysis (MPCA) was given
in Lu et al. (2008) for general order m tensors. For sake of simplicity, we present the idea
of the method for order-2 tensors, i.e. matrices. The MPCA solution to Model (3.1) is
V�

1XV2, where the unmixing matrices V1 ∈ Op1×d1 and V2 ∈ Op2×d2 with orthogonal
columns are found such that total variation captured by the projection is maximal. More
precisely, V1 and V2 maximize E
V�

1(X − E(X))V2
2F , where 
 · 
F denotes Frobenius
matrix norm. The solution to the presented maximization problem can be found by the
higher-order orthogonal iteration algorithm (HOOI) (Sheehan and Saad, 2007), which relies
on the estimating equations

E
	
(X̃V2)((X̃V2)

�
�

V1 = V1D1, E
	
X̃

�
V1)(X̃

�
V1)

�
�

V2 = V2D2,

where X̃ = X−E(X), and D1 ∈ Rd1×d1 , D2 ∈ Rd2×d2 are diagonal matrices containing the
eigenvalues of E((X̃V2)((X̃V2)

�) and E((X̃�
V1)((X̃

�
V1)

�), respectively. As it is the case
for 2DPCA, MPCA also recovers the latent mixing matrices U1 and U2 under Model (3.1)
and additional assumption posed on multiplicity of eigenvalues of E(ZZ�) and E(Z�Z), up
to the sign and order changes of their columns. Hung et al. (2012) argues that MPCA is
asymptotically more efficient than 2D2PCA in estimating the target dimension reduction
subspace. However, the price to pay is increased computational cost.
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3. Feature extraction for matrix-variate data

Regardless of the estimation procedure used for estimation of latent mixing matrices
U1 ∈ Rp1×d1 , Up2×d2

2 , knowledge of the dimension of the core matrix Z ∈ Rd1×d2 is needed.

Dimension estimation in two-dimensional PCA

As discussed, Model (3.1) itself can be thought of as a form of dimension reduction for the
images where, for each original image Xi, there exists a low-rank latent core image Zi that
contains the signal/information content of the image. This signal is then contaminated by
the noise εi to produce the observed image. Thus the “true” row and column dimensions of
the images are d1 and d2, respectively, and the objective is to estimate them based solely on
the sample X1, . . . ,Xn from Model (3.1). Standard dimension estimation techniques rely
solely on the magnitude of the eigenvalues of E(X̃�

X̃) and E(X̃X̃
�
) and use mostly a rule of

thumb where enough components (features) are selected to reach a pre-determined amount
of “explained variation” (Yang et al., 2004; Lu et al., 2008). A naive “automated” way of
estimating the dimensions would be to plot the eigenvalues of E(X̃X̃

�
) and E(X̃

�
X̃) as a

scree plot and search for an “elbow”. However, this is often difficult to locate (see middle
Figure 3.2), and additional information are usually needed in order to estimate dimensions
accurately.

In Paper III, we propose an automatic tool for determining the optimal number of com-
ponents, in the context of Model (3.1) and 2D2PCA, by extending the approach presented
in Luo and Li (2021) for vector-valued observations. Since the Model (3.1) is fully symmet-
ric, we further clarify the proposed augmentation estimator of the row-dimension d1 > 0
only, where for the simplicity of the notation we assume that E(X) = 0. That being said,
the augmentation estimator extends the idea presented in Luo and Li (2021) for vector-
valued observations and concatenates the observed X with additional artificial normally
distributed rows XS ∈ Rr×p2 that mimic the first and second-moment behavior of the error
ε in Model (3.1) to produce the augmented observation X∗ = (X�,X�

S)
�, where number of

rows r ≥ 1 of XS is a tuning parameter. The augmented (artificially added) part of the
first d1 eigenvectors of E{X∗(X∗)�} turns out to be negligible when compared to the aug-
mented parts of the latter eigenvectors, allowing us to distinguish between the eigenvectors
belonging to the first d1, significant, eigenvalues, and the remaining ones. For illustration
see Figure 3.2. More precisely, in Model (3.1), E(XX�) = U1E(ZZ�)U�

1 + E(εε�) where
E(εε�) = σ2

1Ip1 for some σ2
1 ≥ 0. Consequently, the rank of E(XX�)− σ2

1Ip1 is precisely the
dimension d1 we aim to estimate. Then, for r > 0, and X∗ = (X�,X�

S)
� as above,

M∗ := E{X∗(X∗)�} − σ2
1Ip1+r =

�
U1E(ZZ�)U�

1 0
0 0

�
and U1E(ZZ�)U�

1 are of the same rank and also have the same positive eigenvalues. Denote
next the eigenvalues of E(ZZ�) by λ1 ≥ λ2 ≥ · · · ≥ λd1 > 0 and let the (p1 + r)-variate
vector β∗

i = (β�
i,β

�
i,S)

�, i = 1, . . . , p1 + r, be any eigenvector of M∗ corresponding to its ith
eigenvalue. We call the r-dimensional subvector βi,S the augmented part (subvector) of the
ith eigenvector. Then, for i ≤ d1, M∗β∗

i = (U1E(ZZ�)U�
1β

�
i,0�)� = λi(β

�
i,β

�
i,S)

�, implying
that βi,S = 0 for i = 1, . . . d1. Observe also that the same does not hold for the later
eigenvectors.

A similar procedure is then applied to X� with aim of estimation of d2. The estimation
of unknown parameters σ2

1 = E(εε�) and σ2
2 = E(ε�ε) is crucial for successful implementa-

tion of presented method. As both row and column dimensions are usually unknown and
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Figure 3.2.: Left to right, the logarithmized objective function for the augmented ladle es-
timator using r = 10 augmented components as a combination of the augmented norms
and the scaled eigenvalues, logarithmized scree plot for row and column PCs, and loga-
rithmized augmented norms, calculated for the subset of fingers data set, available freely
in https://www.kaggle.com/koryakinp/fingers and consisting of 128× 128 grayscale
images of hands with 0 and 5 fingers extended.

estimated, several consistent pooled estimators of unknown quantities are given in Paper
III. The automated procedure is implemented in R-package tensorBSS (Virta et al., 2021a)
and is shown to perform very well in both simulated and real data.

It is worth mentioning that to our best knowledge, automated dimension selection in this
context has been developed earlier only by Tu et al. (2019) who use Stein’s unbiased risk
estimation (SURE) for the task, which is however computational very expansive and often
unfeasible, as it iterates through all possible combinations of p and q.

3.3. Matrix-variate independent component model

Matrix-variate elliptical models inherit the symmetry properties from the multivariate ellip-
tical models. Thus, to model e.g. skewed data, one could use the matrix-variate independent
component model as a working framework.

Definition 6. A random matrix X ∈ Rp×q is said to follow matrix-variate independent
component model if it allows representation

X = AZB� +T, (3.2)

where T ∈ Rp×q is the mean matrix, the invertible A ∈ Rp×p and B ∈ Rq×q are un-
known mixing matrices and the latent matrix Z is assumed to have mutually independent,
marginally standardized components.

Thus, in the context of the location-scatter model, an additional assumption of indepen-
dence is posed to latent matrix Z. As in the multivariate setting, ICA aims to estimate
unknown mixing matrices, i.e. to identify latent matrix Z. Under the additional assump-
tion that at most one entire row, and most one entire column of Z have a multivariate
normal distribution, latent matrix Z is identifiable up to the order, joint scaling, and signs
of its rows and columns. On the contrary, in Model (3.2) Z is allowed to contain up to
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3. Feature extraction for matrix-variate data

pq − max(p, q) normal components, given that all the non-normal ones are suitably lo-
cated. As discussed for the general location-scatter model, vectorizing Model (3.2) yields a
Kronecker-structured multivariate independent component model

vec(X) = (B ⊗ A)vec(Z) + vec(T).

Naturally, any reasonable multivariate ICA method applied to the vectorized model should
take into account the special form of the mixing matrix. However, to our knowledge,
such methods were not developed. On the other hand, the problem of estimation of un-
known mixing matrices under the matrix representation of Model (3.2) is considered in
e.g. Virta et al. (2017, 2018, 2021b), where two classical multivariate ICA procedures, the
fourth-order blind identification (FOBI) (Cardoso, 1989) and joint diagonalization of eigen-
matrices (JADE) (Cardoso and Souloumiac, 1993), were extended to TFOBI and TJADE,
respectively, to estimate unknown parameters in Model (3.2). It is important to emphasize
that Model (3.2) and the discussed method for its solving are derived in more general form,
for general rth order tensors.

To the best of our knowledge there are not yet matrix-variate extensions of multivariate
NGCA and NGICA models, thus making it difficult to put it into a framework for feature
extraction as e.g. a preprocessing step for clustering as in the vector case.

3.4. Matrix-variate Gaussian mixture model

As it is the case in a multivariate setting, matrix mixture models are particularly con-
venient for modeling data originating from heterogeneous populations (the data naturally
groups into several classes), where the aim of feature extraction in those models is usu-
ally classification or clustering, depending on whether the class membership is known or
not. Multivariate Gaussian mixture models then naturally generalize to the matrix-variate
setting as mixtures of matrix-variate normal distributions.

Definition 7. Random matrix X ∈ Rp×q is said to follow matrix-variate Gaussian mixture
model (MGMM) with k-classes if its probability density function is given by

f(X;α1, . . . , αk,Θ1, . . . ,Θk) =
k�

i=1

αiφ
(p×q)
i (X;Ti,Σi,Ωi),

where Θi = (Ti,Σi,Ωi) and φ
(p×q)
i (·;Ti,Σi,Ωi), i = 1, . . . , k denote the set of parameters

and probability density function of ith matrix-variate normally distributed class, respectively.

We say that MGMM is homoscedastic if all classes have common covariances, i.e. when
Σi = Σ and Ωi = Ω, for all i = 1, . . . , k, where Σ ∈ Rp×p and Ω ∈ Rq×q are positive definite
symmetric matrices. As a consequence of the fact that vectorization transfers MGMM to
multivariate GMM, all MGMM belong to location-scatter models. Moreover, homoscedastic
MGMM have a location-scatter representation in which the latent matrix Z is a mixture of
spherical, matrix-variate normal distributions (Viroli, 2011). More precisely, a p×q random
matrix X, from homoscedastic MGMM with density f(X) =

�k
i=1 αiφ

(p×q)
i (X;Ti,Σ,Ω),
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allows a representation as X = Σ1/2ZΩ1/2 + T, where Z follows homoscedastic MGMM
with k-classes and probability density function

f(Z) =
k�

i=1

αiφ
(p×q)
i (Z;Σ−1/2(Ti − T)Ω−1/2, Ip, Iq),

where T =
�k

i=1 αiTi. The mean and the covariance matrix of the random matrix X from
MGMM (7) are

E(vec(X)) =
k�

i=1

αivec(Ti) and

Cov(vec(X)) =

k�
i=1

αi

�
vec(Ti)vec(Ti)

� +Ωi ⊗Σi

�
−



k�

i=1

αivec(Ti)

�

k�

i=1

αivec(Ti)

��
,

respectively. Mixtures of matrix-variate Gaussian distribution inherit many properties from
matrix-variate normal distributions. Especially, for random matrix X from MGMM (7) and
full rank matrices A ∈ Rp×r, r ≤ p and B ∈ Rq×s, s ≤ q, probability density function of
the linear transformation A�XB ∈ Rr×s is given by

f(A�XB;α1, . . . , αk,Θ1, . . . ,Θk) =

k�
i=1

αiφ
(r×s)
i (X;A�TiB,A�ΣiA,B�ΩiB).

The proof of the statement can be found in Viroli (2011), and its importance lies in the
fact that it shows how low-rank projections of MGMM are again MGMM. Thus, appro-
priate linear transformations can be applied for visualizations, dimension reduction, and
consequentially classification. As a special case, when A or (and) B are vectors, the above
consideration shows the connection between matrix-variate and multivariate (univariate)
GMM. Especially relevant for our purposes are rank-1 projections obtained for r = s = 1,
i.e., when both A and B are vectors.

Parameter estimation in matrix-variate GMM is done similarly as in the multivariate
setting. With maximum likelihood estimation as a gold standard, parameters in MGMM
can be estimated through EM algorithm (Dempster et al., 1977; Friedman et al., 2001),
where the concrete adaptation of multivariate EM algorithm to MGMM can be found
in Viroli (2011) and references therein. However, as the problem of multimodality of the
likelihood function in high-dimensional multivariate settings is even more troubling in the
matrix-variate case as the dimensions increase, so does the need for performing appropriate
dimension reduction. As discussed in Section 3.2, probably the most widely used class of
methods for this purpose are various extensions of PCA. However, in e.g. both 2D2PCA
and MPCA, the criterion by which the feature extraction is done is not tailored in a way
to ensure maximal separation between the classes in the lower-dimensional space. Thus, we
next discuss the extension of multivariate LDA to the matrix-variate setting.
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3.4.1. Matrix-variate linear discriminant analysis

Based on the Fisher discriminant rule Foley and Sammon (1975) presented a method for
the extraction of features in two-class image data. To use the matrix structure of (p × q)
random matrix X, Foley and Sammon (1975) seek 0 < d ≤ q mutually orthogonal lin-
ear discriminant directions u1, . . . ,ud that maximize the trace of the between-class scatter
over the trace of the within-class scatter of the projection xk = Xuk, k = 1, . . . d . The
method naturally involves the inverse of the within-class scatter, which can, due to the
small sample size when compared to data dimensionality, be singular. Various algorithms
which overcome this problem and also generalize to multiple classes have been developed
over the years. One of the most popular is perhaps 2D-LDA (Li and Yuan, 2005). However,
2D-LDA ignores the between-row correlations in the matrix observations which can lead
to substantially higher missclassification error than applying multivariate Fisher’s LDA to
vectorized observations, when the rows are correlated (Zheng et al., 2008). Thus, to dis-
criminate the matrix-variate observations Zhong et al. (2015) propose one-step method to
find d rank-1-projections u�

iXv, i = 1, . . . , d which exhibit the maximum ratio of between-
class- to the within-class variance, where ui ∈ Rd are mutually orthogonal and v ∈ Rq.
Zhong et al. (2015) also discusses a two-step generalization of the initially proposed method
that accommodates for multiple v as well. The term rank-1 projection stems from the
representation u�Xv = tr(vu�X) = �uv�,X� of projecting X onto the rank-1 matrix uv�

(w.r.t. the standard Euclidean geometry on matrices), and has a long use in the machine
learning literature, most often in the context of classification using projection indices based
on second moments, see, e.g., Hua et al. (2007); Liu et al. (2011); Wu et al. (2011a,b).

On the other hand, probably the most straightforward extension of multivariate LDA to
matrix-variate setting is to vectorize matrix-valued observations and proceed by applying
well-studied multivariate LDA. In recent years, some progress has been made on developing
sparse multivariate LDA using l1-regularization (Tibshirani, 1996), including Shao et al.
(2011); Fan et al. (2012); Mai et al. (2012). However, all these methods, as well as the
classical multivariate LDA deal with vector-valued covariates. Also, l1-regularization, which
has shown success in a high-dimensional vector setting, does not necessarily work well
in the matrix-variate context because the underlying matrix-variate signals are usually
approximately low-rank rather than l0-sparse (Hu et al., 2020). Thus, in Paper IV we
propose a special kind of regularization to LDA optimal direction, where we assume that
it allows a natural matrix representation, and then proceed by unsupervised estimation of
such matrix, one rank-1-block at the time, where the individual blocks are estimated using
projection pursuit, with a special focus on estimation in homoscedastic MGMM with two
classes.

3.4.2. Projection pursuit based estimation of the linear discriminant

As discussed, when it comes to the feature extraction, one of the most common approaches
is projection pursuit, and in the recent years, due to the growing complexity of the available
data sets, the need for projection pursuit has only increased. However, applying projection
pursuit to large, high-dimensional data, where the large sample size n is not necessarily
larger then the large number of observed covariates p, is not as straightforward. Namely,
PP faces several issues in very high-dimensional setting. Diaconis and Freedman (1984)
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show how most univariate projections of the high-dimensional point clouds are approxi-
mately normal. Huber (1985) thus argues that in high-dimensional settings there is little
information to be found by projection pursuit, since Gaussianity is usually considered as
noise. On the other hand, Pires and Branco (2019) show that when the dimension of the
data p is larger then the available sample size n, one can always find a two-dimensional
projection equal to (up to affine transformation) arbitrary configuration of points in R2.
Thus, applying PP in the high-dimensional setting may seem like a rather futile exercise.
However, these issues can be bypassed by imposing a suitable structure on the data. In
Paper IV we therefore assume that the observable pq-variate random vector x allows a
natural representation as a random p × q matrix X, such that vec(X) = x, thus further
working with projections of the form u�Xv where u ∈ Sp−1, v ∈ Sq−1. Such projections
have a total of p+ q − 2 degrees of freedom, where the standard approach of vectorizing X
and working with the usual projections w�vec(X) involves pq − 1 degrees of freedom. For
illustration, take a horizontal slice of an fMRI image at typical resolution of 64× 64 pixels
(Lindquist, 2008). The rank-1 projection on u ∈ S63, v ∈ S63 involves estimation of 126
parameters, whereas a projection after vectorization has in total 642−1 = 4095 parameters,
with a difference of more than one order of magnitude. Observe that the structure-ignoring
projection w�vec(X) can be represented as a rank-d projection since w�vec(X) = �W,X�,
where vec(W) = w, and d = rank(W). This shows that rank-1 projections and projection
after vectorization, are two ends of a range of projections of different rank.

Given a p×q random matrix X (with finite fourth moments) and the projection directions
(u,v) ∈ Sp−1 × Sq−1, in Paper IV we propose the kurtosis of the projection u�Xv,

κX(u,v) =
E
�
[u�{X − E(X)}v]4�

{E ([u�{X − E(X)}v]2)}2 ,

as the PP index. As an alternative to κX, we provide an index which measures the impor-
tance of the “one-sided” projection u�X using the Mardia’s measure of multivariate kurtosis
(Mardia, 1970), defined for a q-dimensional random vector x as

ψ(x) = E
�{x − E(x)}�Cov(x)−1{x − E(x)}�2 .

Hence, given a p × q random matrix X (with finite fourth moments) and the projection
direction u ∈ Sp−1, Mardia’s kurtosis of the projection u�X is,

ψX(u) = E
�
u�(X − E(X))

�
E
�
(X − E(X))�uu�(X − E(X))

��−1
(X − E(X))�u

�2
.

To estimate the projection direction v, the right-hand side analogue of ψX is naturally
needed. We show that under mild assumptions about moments of X, both κX and ψX have
both a minimizer and a maximizers in Sp−1 × Sq−1 and Sp−1, respectively. However, we
consider those indices especially in the scope of homoscedastic MGMM with two classes,
i.e. we assume that the p× q random matrix X has a probability density function

f(X;α,T1,T2,Σ,Ω) = α1φ
(p×q)
1 (X;T1,Σ,Ω) + (1− α1)φ

(p×q)
2 (X;T2,Σ,Ω), (3.3)

for class means T1 ∈ Rp×q, T2 ∈ Rp×q, T1 �= T2, positive definite common covariances
Σ ∈ Rp×p and Ω ∈ Rq×q, and mixing proportion α1 > 0. Under Model (3.3), the optimal
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projection for separating the parts of the mixture in the sense of LDA is �WLDA,X�, where
the projection direction is

WLDA := A−1(T2 − T1)B−1.

In Paper IV we show that under mild conditions, sequential optimization under right linear
constraints of both projection indices allows the reconstruction of WLDA, one rank-1 block
at a time. The rank-1 projection of the data onto each of the d extracted rank-1 blocks is
then considered an interesting data feature, which enables discriminating between the two
classes, where d = rank(WLDA). Furthermore, the value of the PP index then serves as
an ordering of the extracted features, allowing us to further reduce the dimension of the
feature subspace.

On the other side, we also show that the same is not possible for the second-order counter-
parts. That is, we give necessary and sufficient conditions for which the leading projections
extracted by the second-order methods MPCA and (2D)2PCA to be able to recover optimal
LDA projection, in the case where the mean difference T1 − T2 is of rank 1.

Furthermore, we establish strong consistency results for optimizers of both κX and ψX,
which further imply strong consistency of estimated WLDA and conjecture that the κX-
based estimate of WLDA is asymptotically normal, with standard,

√
n convergence rate.

It is important to mention that, unlike the second-order methods, sequential optimizers of
both projection indices possess an affine equivariance property.
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and independence

In the engineering literature independent component analysis (Hyvärinen, 1999; Nordhausen
and Oja, 2018) is often described as a search for the uncorrelated linear combinations of the
original variables that maximize non-Gaussianity. As discussed in Section 2.3, in case of
estimation by FOBI method, first the vector of principal components is found and the com-
ponents are standardized to have zero means and unit variances, and second, the vector is
further rotated so that the new components maximize a selected measure of non-Gaussianity.
It is then argued that the features extracted this way are as independent as possible or that
they display the maximal information. The aim of this chapter is to discuss and clarify to
some extent the somewhat vague connections between non-Gaussianity, independence and
notions of information of univariate random variables in the context of the independent
component analysis.

4.1. Orderings of random variables

Let us start by defining some elementary characteristics of univariate random variables,
and arguably some of the most classical ones are the location and dispersion. Location
and dispersion of a random variable x are often considered by defining the corresponding
measures (functionals) for these properties, as functions of the distribution of x. More
precisely, we say that a functional

i) T = T (x) ∈ R is a location measure if T (ax+ b) = aT (x) + b, for all a, b ∈ R,

ii) S = S(x) ∈ R+ is a dispersion measure if S(ax+ b) = |a|S(x), for all a, b ∈ R.

Consequentially, a functional S2 = S2(x) ∈ R+ is a squared dispersion measure if S2(ax+ b)
= a2S2(x), for all a, b ∈ R. Observe that location measures and squared dispersion measures
are in fact univariate counterparts of location and scatter functionals, and thus share all
their properties. For squared dispersion measures Huber (1985) considered the concepts
of additivity, subadditivity and superadditivity, which are in Paper V shown to be crucial
when considering projection indices for ICA. We say that a squared dispersion measure
is (sub)[super]additive if S2(x + y)(≤)[≥] = S2(x) + S2(y), for all independent x and y.
For example, Huber (1985) shows that the cumulants κ

2/k
k (x), k ≥ 2, when calculated for

standardized distributions, and exponential negentropy exp{NH(x)}, among many others
notions of information, provide subadditive squared dispersion measures.

Comparing different location and dispersion measures yields measures of skewness and
kurtosis

η(x) =
T1(x)− T2(x)

S(x)
and κ(x) =

S2
1(x)

S2
2(x)

,
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respectively, and we have studied their use as projection indices for traditional choice of
location and scatter. However, one can raise a question if it is possible to order random
variables with respect to discussed measures, thus answering if one random variable “posses”
e.g. kurtosis, more strongly then the other one. One can answer the question by defining
the partial orderings using the, so-called shift function Δ, where for continuous x and y
with cumulative distribution functions (cdf) F and G, Δ(x) = G−1(F (x))− x (Bickel and
Lehmann, 1975, 1976; Zwet, 1964; Oja, 1981). The transformation x �→ x + Δ(x) is the
Monge-Kantorovich optimal transport map, when transporting x to y (Rachev, 1998).

Oja (1981) for example argues how F and G are comparable in the location sense, if the
corresponding shift function Δ is positive. Observe that Δ(x) ≥ 0 ⇐⇒ F (X) ≥ G(x),
so the partial ordering coincides with well-known stochastic order. Similarly, Oja (1981)
argues how F and G are comparable in the dispersion sense, for Δ increasing, while these
are comparable in the skewness sense, if Δ is convex. For symmetrical distributions Oja
(1981) proposes kurtosis ordering by stating that F and G are comparable in the kurtosis
sense if Δ is concave-convex around the center of the symmetry of F , while for the non-
symmetrical distributions the mode of F is taken instead of the symmetry center. Bickel
and Lehmann (1975, 1976); Oja (1981) argue how in addition to properties like affine in-
variance and equivariance, measures of location, dispersion, skewness and kurtosis should
be monotone w.r.t. the corresponding orderings.

However, when considering orderings of random variables, it seems only natural to order
them by the amount of information they carry.

4.1.1. Information orderings for discrete distributions

In general, for a discrete distribution with k possible values and probabilities listed in
p = (p1, ..., pk), it is often presumed that it is more informative if the result of the exper-
iment involving p is known with a high probability (Cover and Thomas, 2006), or that p
contains only a very small portion of the very high probabilities pi. These somewhat naive
characterizations suggest the following well-known partial ordering for discrete distributions
(Marshall et al., 2011).

Definition 8. For two discrete distributions p and q, we say that p is majorized by q, and
write p ≺ q if

j�
i=1

p(i) ≥
j�

i=1

q(i), j = 1, ..., k.

Pecaric et al. (1992) then gives a characterization of the majorization, which directly
implies that for all discrete p with up to k values, (1/k, ..., 1/k) ≺ p ≺ (0, ..., 0, 1) and, for
simple mixtures, p ≺ q ⇒ p ≺ λp+ (1− λ)q ≺ q, 0 ≤ λ ≤ 1.

4.1.2. Information orderings for continuous distributions

When exploring concepts of an information ordering for the continuous distributions, one
starts by mimicking those for the discrete variables.
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Definition 9. For a continuous random variable x with probability density function (pdf)
f on (0, 1), f↓(u) = sup{y : m(y) > u}, u ∈ (0, 1), provides the decreasing rearrangement
of f , where m(y) = µ{u : f(u) > y} and µ is Lebesgue measure.

Observe that decreasing rearrangements to some extent generalize the concept of ordering
probabilities in the discrete distribution. For more details and examples of decreasing
rearrangements, see e.g. Kristiansson (2002). Then, using the decreasing rearrangement,
and mimicking majorization of discrete distributions, one constructs a partial ordering of
continuous random variables with support on (0, 1).

Definition 10. Let f and g be density functions on the interval (0, 1). Then g has more
information than f , write f ≺ g, if� u

0
f↓(v)dv ≤

� u

0
g↓(v)dv, for all u ∈ (0, 1)

Ryff (1963) then gives a characterization of the partial orderings for functions with the
support on (0, 1), as f ≺ g if and only if� 1

0
C(f(u))du ≤

� 1

0
C(g(u))du for all continuous convex functions C.

Jensen inequality then implies that if f is probability density function of U(0, 1), then f ≺ g,
for all g.

When it comes to extending partial orderings from Definition 10, the approach we take
is mapping the distribution of the random variable with support on R, into the one with
bounded, (0, 1) support. Furthermore, the transformation should be location and scale
invariant. To find a location and scale-free version of the density, Staudte (2017) proposed
the transformation

f(x), x ∈ R �→ f∗(u) =
f(F−1(u))

E[f(x)]
, u ∈ (0, 1).

Function f∗, called the probability density quantile (pdQ), is a probability density function
on (0, 1) which is invariant under linear transformations of the original variable x (Staudte,
2017). Furthermore, for given f∗, the original f is known up location and scale (Staudte,
2017).

As an alternative to pdQ, to find a location and scale-free version of the density, in Paper
V we propose the transformation

f(x), x ∈ R �→ f : ϕ(u) =
f(Φ−1(u))

ϕ(Φ−1(u))
, u ∈ (0, 1),

where ϕ and Φ are the pdf and the cdf of a normal distribution with mean E(x) and variance
Var(x), respectively. It is clear that if f is a pdf of a normal distribution, then f : ϕ
is a pdf of U(0, 1). Observe that the negative differential entropy of the transformation
f : ϕ(u), −H(f : ϕ(u)) = KL(f, ϕ) ≥ 0, where KL(f, ϕ) = Ef (log(f(x)/g(x))) is the
Kullback-Leibler (KL) divergence (Cover and Thomas, 2006) between f and g, that, in
Lehman’s terms, measures how much the probability distribution g differs from the reference
distribution f . Figure 4.1 shows comparison of f , f∗ and f : ϕ for normal and uniform
distribution.
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Figure 4.1.: Comparison of f , f∗ and f : ϕ for normal and uniform distribution.

4.2. Independent component analysis, projection pursuit and
information measures

Let p-variate random vector x = Az + µ follow ICA model (2.4), where z = (z1, ..., zp)
�

is the vector of standardized independent components. When extracting features in ICA
model, one often uses projection pursuit with projection index tailored as some measure
of non-Gaussianity. The question is, what justification one has for the projection index
D(u) = D(u�x) to find the independent components via projection pursuit? Moreover, are
the extracted features provided by the most informative directions as it is often stated in
the literature? We partially answer these questions in Paper V, where we argue how any
subadditive squared dispersion measure, as well as its monotone transformations, can justly
be used in order to recover independents components. Furthermore, the same is true for
monotonic decreasing transformations of a superadditive squared dispersion measure.

Due to Huber (1985), many notions of information, exponential negentropy being one of
them, are subadditive squared dispersion measures. Therefore, their monotone transforma-
tions, like e.g. negentropy, can be used as projection indices when searching for independent
components, making the components extracted that way to indeed provide the most infor-
mative features. On the other side, 3rd and 4th cumulants, among others, when calculated
in a standardized distribution can also be justly used as projection indices while at the same
time measuring deviation from Gaussianity.

In Paper V, we further define monotone information measures, as measures of distribution
that are monotone w.r.t. corresponding partial orderings, and show that many famous
notions of information are in fact information measures, with negative differential entropy
(and negentropy as its monotone transformation) being one of them. Thus, if the ordering
is defined by pdQ f∗ as the transformation of pdf f , measures of information will attain
their minimum at uniform distribution. If however the corresponding ordering is defined by
f : ϕ transformation, then monotone information measures will attain their minimum at
normal distribution. Furthermore, in that case negentropy of such location and scale-free
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version of f then measures how much f differs from the normal distribution, thus further
connecting concepts of non-Gaussianity and information measure.

Recall that information as stated for discrete distributions is invariant under the per-
mutations of the probabilities in (p1, ..., pk), while all permutations consist of successive
pairwise exchanges of two probabilities. In Paper V we extend that concept to continuous
distributions and show that many notions of information are invariant under such elemen-
tal probability transformation. For more details and examples of monotone information
measures and their properties, see Paper V.
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5. Final remarks

In the thesis we considered dimension reduction and feature extraction for vector- and
matrix-valued data, using projection pursuit in the scope of the non-Gaussian component
model. Starting with the vector setting, we studied simultaneous use of two scatter func-
tionals with aim of the dimension reduction in the non-Gaussian component model, and
discussed under which conditions two different scatters can be used to estimate the sub-
spaces. Based on this consideration we suggest bootstrap techniques to test for a specific
subspace dimension and also show how successive applications of the presented tests can
be used to obtain an estimate of the dimensions of interest. As illustrated in Figures 2.6
and 2.7, the successful estimation of the latent dimension is of great need for feature ex-
traction prior to classification or clustering. We then focused on feature extraction in the
homoscedastic GMM with two classes, that we showed is in fact an NGICA model, using
projection pursuit. We conduct an asymptotic comparison of two popular estimators of
the linear discriminant direction, supervised plug-in LDA estimator and projection pursuit
estimator based on skewness and kurtosis. For the latter, we proposed using the con-
vex combination of squared excess kurtosis and squared skewness as the projection index
(giving the individual cumulants as special cases). Both the theoretical results and simu-
lations indicate that with a suitable choice of weighting, such projection pursuit achieves
good performance compared to supervised LDA, considering it operates in absence of group
membership information. Moreover, in the case of moderately balanced and infinitely well-
separated groups, projection pursuit is able to reach asymptotic efficiency equal to LDA
with an optimal choice of weighting. We further studied the usage of various information
criteria in vector-variate ICA, as well as the connections between notions of information
and statistical independence, and the special role of the Gaussian distribution, while giving
the result which justified their use as projection indices in a projection pursuit governed
ICA (and homoscedastic GMM with two classes for that matter).

Furthermore, we generalized the ideas presented for the vector-valued observations to the
matrix-variate setting. However, in absence of the matrix-variate extension of the vector-
valued NGCA model, we move our focus to the matrix-variate PCA and estimation of
the latent dimension in Model (3.1). Thus, we extended the augmentation-based estimator
introduced in Luo and Li (2021) for vector-valued observations, to the matrix-variate setting
and demonstrated its excellent performance for both simulated and real data. As the part
of the future work, we will also derive the theoretical properties of the estimator and extend
it to the general tensorial PCA case to also cover, for example, color images and video data.
We further extended the ideas presented in Paper II to the homoscedastic MGMM with two
classes, thus developing projection pursuit for the data that admit a natural representation
in the matrix form. The projection indices we propose are extensions of the classical kurtosis
and Mardia’s multivariate kurtosis and we show that both are able to recover the optimally
separating projection in the full absence of any label information, while also establishing the
strong consistency of the corresponding sample estimators. As the part of the future work,
we will derive limiting distribution of the estimators, which we conjecture are Gaussian with
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√
n convergence rate, and further extend results from Paper II to matrix variate setting, in

sense of using skewness as well as the combination of skewness and the kurtosis as projection
indices.

One of the particular difficulties regarding the presented model is that it is highly affected
by the outliers. Thus, we will also consider more robust alternatives to the presented
projection indices. Furthermore, we will consider extending the NGCA and NGICA models
to matrix variate setting while also investigating if the matrix-variate PP can also be used
for the matrix-variate NGICA, as it is successfully done in the multivariate setting.
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I

Non-Gaussian component analysis: testing
the dimension of the signal subspace

Summary

Publication I considers the simultaneous use of two scatter functionals in the context of
the dimension reduction in the non-Gaussian component model, where the aim is to divide
the data into a non-Gaussian part, the signal, and a Gaussian part, the noise. For this
purpose bootstrap test strategies are introduced to test the dimension of the non-Gaussian
subspace, and an extensive simulation study was conducted to estimate the power of the
test for various combinations of scatters. Sequential application of the test can then be used
to estimate the signal dimension.

Bibliographic information

U. Radojicic and K. Nordhausen. Non-Gaussian component analysis: testing the dimen-
sion of the non-Gaussian subspace. In M. Maciak, M. Pestas and M. Schindler, editors,
Analytical Methods in Statistics, AMISTAT 2019, pages 101-123, Springer Cham, 2019.

Author’s contribution

U. Radojicic participated in several discussions with the coauthor to develop the idea and the
methodology. Furthermore, U. Radojicic conducted the simulation study and implemented
the R code for the examples. U. Radojicic contributed in deriving main results as well
as the proofs, and also contributed in overall writing and editing of the paper as well as
the review of the paper based on joint discussion with coauthor and the suggestions of the
reviewers.
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II

Large-sample properties of blind
estimation of the linear discriminant using
projection pursuit

Summary

Publication II considers the estimation of the linear discriminant with projection pursuit,
in an unsupervised manner. The viewpoint we take is asymptotic and, as our main contri-
bution, we derive central limit theorems for estimators based on three different projection
indices, skewness, kurtosis and their convex combination. The results show that in each
case the limiting covariance matrix is proportional to that of LDA, a supervised estimator
of the discriminant. An extensive comparative study between the asymptotic variances
reveals that projection pursuit is able to achieve efficiency equal to LDA when the groups
are arbitrarily well-separated and their sizes are reasonably balanced. Simulations reveal
very good performance of the methods, while also confirming the validity of the obtained
asymptotic results.

Bibliographic information

U. Radojicic, K. Nordhausen and J. Virta. Large-sample properties of blind estimation of
the linear discriminant using projection pursuit. arXiv preprint arXiv:2103.04678, 2021.

Author’s contribution

U. Radojicic participated in several discussions with the coauthors to develop the idea
and the methodology. Furthermore, U. Radojicic carried out the simulation study and
contributed in deriving the proofs of the presented results. U. Radojicic also contributed in
overall writing and editing of the paper.
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III

Dimension estimation in two-dimensional
PCA

Summary

Publication III considers the estimation of the optimal number of low-rank components in
the dimension reduction of image data. For that purpose we develop an automated method
based on the combination of two-dimensional principal component analysis and an aug-
mentation estimator proposed in Luo and Li (2021) for vector-valued observations. Simply
stated, the method combines a scree plot with information extracted from the eigenvectors
of the covariance matrix. Simulation studies show that the method performs well and gives
the accurate estimates of the latent dimensions, while the real data example showcasts good
performance in practice.

Bibliographic information

U. Radojicic, N. Lietzen, K. Nordhausen and J. Virta. Dimension estimation in two-
dimensional PCA. In Proceedings of the 12th International Symposium on Image and Signal
Processing and Analysis, pages 16-22, 2021.

Author’s contribution

U. Radojicic participated in several discussions with the coauthors to develop the idea and
the methodology. Furthermore, U. Radojicic contributed in deriving the results presented
in the paper, as well as in implementing the method to tensorBSS package. U. Radojicic
wrote the first version of the draft and reviewed the manuscript based on joint discussions
with the coauthors and suggestions of the reviewers.
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IV

Kurtosis-based projection pursuit for
matrix-valued data

Summary

Publication IV considers projection pursuit for data that admit a natural representation in
matrix form. The projection indices we propose are extensions of the classical kurtosis and
Mardia’s multivariate kurtosis. The first index estimates projections for both sides of the
matrices simultaneously, while the second one finds the two projections separately. Both
indices are shown to recover the optimally separating projection for two-group Gaussian
mixtures in the full absence of any label information. We further establish the strong
consistency of the corresponding sample estimators. Simulations and a real data example
on hand-written postal code data demonstrate good performance of the proposed method
in the simulated as well the real data.

Bibliographic information

U. Radojicic, K. Nordhausen and J. Virta. Kurtosis-based projection pursuit for matrix-
valued data. arXiv preprint arXiv:2109.04167, 2021.

Author’s contribution

U. Radojicic participated in several discussions with the coauthors to develop the idea
and the methodology. Furthermore, U. Radojicic contributed in deriving the asymptotical
results and those considering second-order methods, as well as the corresponding proofs. U.
Radojicic implemented the methods in R and carried out the simulations and the real data
example, while also contributing in overall writing and editing of the paper.
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V

Notion of information and independent
component analysis

Summary

Publication V considers partial orderings and measures of information for continuous uni-
variate random variables, while discussing the special roles of the Gaussian and uniform
distribution. As discussed in Huber (1985), the information measures and measures of
non-Gaussianity including the third and fourth cumulants are generally used as projection
indices in the projection pursuit approach. We derive a result which justifies their use in
the independent component analysis. Furthermore, we discuss in detail the connections
between information, non-Gaussianity and statistical independence in the context of inde-
pendent component analysis.

Bibliographic information

U. Radojicic, K. Nordhausen and H. Oja. Notion of information and independent compo-
nent analysis. Applications of Mathematics, 65:311-330, 2020.

Author’s contribution

U. Radojicic participated in several discussions with the coauthors to develop the idea and
the methodology. Furthermore, U. Radojicic contributed in deriving the information orders
for continuous distributions as well as the examples and figures. U. Radojcic contributed
in overall writing and editing of the paper as well as the review of the paper based on joint
discussion with coauthors and the suggestions of the reviewers.
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