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Institut für Statistik, TU Graz

Wien, am 13. Oktober 2021



Abstract

Multivariate data where each measurement is taken at a different location in space are encoun-
tered in many practical applications. Typical features of such data are that measurements in
close proximity tend to be more similar than the ones further separated. Proper statistical tools
need to account for this fact. Recently, the popular blind source separation methodology was
formulated for such spatial data denoted as spatial blind source separation (SBSS). Specifically,
it is assumed that the observed data is formed by linear combinations of unobserved compo-
nents. Recovering these latent components is very beneficial as they are uncorrelated, most
often show underlying physical processes that generated the data and for domain experts it is
highly likely that only a few components are of interest. All advantages were proven on a geo-
chemical dataset. However, the original SBSS only considers the case when all components are
of equal interest and are invariant under translation in space (second-order stationarity). This
thesis extends these methods for various features commonly present in spatial data. Namely,
first and second order non-stationarity or noisy spatial data. Furthermore, the usefulness of
blind source separation in spatial regression as well as spatial prediction is investigated.
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Kurzfassung

Viele Datensätze bestehen aus multivariaten Messungen, die an verschiedenen geographischen
Orten durchgeführt wurden. Typischerweise besitzen solche Datensätze die Eigenschaft, dass
Messungen in unmittelbarer Nähe ähnlicher sind als Messungen, die eine große Entfernung auf-
weisen. In der statistischen Analyse solcher räumlichen Daten sollte diese spezielle Eigenschaft
berücksichtigt werden. In letzter Zeit wurde in der statistischen Literatur die sogenannte Blind
Source Separation Methode auf räumliche Daten erweitert. In diesem Model wird angenom-
men, dass die Daten aus Linearkombinationen von unbeobachteten Variablen bestehen, und
das Ziel ist diese latenten Variablen zu bestimmen. Die weitere Analyse der Daten kann nun
mit Hilfe dieser unbeobachteten Variablen durchgeführt werden. Dies bietet einige Vorteile:
die latenten Variablen sind unkorreliert und zeigen oft physikalische Prozesse, welche die Da-
ten generieren und in den meisten Fällen sind nicht alle latenten Variablen von Interesse. All
diese Vorteile wurden anhand eines geochemischen Datensatzes eindrucksvoll nachgewiesen.
Die originale räumliche Blind Source Separation Methode ist nur für latente Komponenten
formuliert, die invariant unter räumlicher Translation (schwach stationär) und von gleichem
Interesse sind. In dieser Dissertation wird die räumliche Blind Source Separation Methode für
weitere Eigenschaften von räumlichen Daten adaptiert. Der Fokus liegt auf in erster oder zwei-
ter Ordnung nicht stationären Daten und Daten die von weißem Rauschen beeinflusst sind.
Weiters zeigt diese Arbeit den Nutzen der räumlichen Blind Source Separation Methode für
räumliche Prognosen und Regression.
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Summary
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1. Introduction

Datasets consisting of measurements that are taken at different locations in space are a popular
form of data. Mining engineers take drill wholes across a mine to determine sweet spots for
mining, climate scientist measure concentrations of different pollutants at different roads in a
city or geochemists analyze soil samples for detecting different geological formations. All of
these examples share the property that most insights of the data can be gained when considering
dependence in and in between measurements as a function of spatial separation. This leads
to the fact that the usefulness of classical statistical tools designed for cross-sectional data
is rather limited. Often scientist are interested in finding linear combinations of the spatial
dataset at hand which are easy to interpret and might show physical processes that drive
the data generation. Moreover, the best scenario is achieved when only a small number of
such linear combinations needs to be considered which can be viewed as a form of dimension
reduction.

Interest in finding the underlying structure of the data is generally given in statistical lit-
erature. E.g.: the well-known principal component analysis finds transformation of the data
that maximize variance which might lead to more meaningful components. Another strategy
is given by the methodology of blind source separation (BSS). The original motivation of BSS
is to solve the so-called cocktail party problem. Several people are inside a room talking to
each other and the corresponding sound signal is measured with some microphones that are
placed all over the room. The goal is to transform the recorded signal in such a way that
each voice can be recovered individually. Furthermore, to keep this example, not all of the
found conversations might be of interest. This practical example translates to the motivations
of BSS. Namely, it aims to find physical signals that led to the observed signal by assuming
that the way of mixing these physical signals is linear. BSS has been used with great success
for many forms of data, e.g.: cross-sectional data leading to independent component analysis,
various time series data, tensorial data, etc. Or more specifically: separating the heart beat
signal from a fetus and its mother based on the mothers electrocardiogram (ECG) signal or it
is successfully used to extract neural signals of the brain from electroencephalography (EEG)
data to name some examples.
Clearly, the interest of geostatisticians to explore a spatial dataset by finding a small number

of meaningful linear combinations that are easy to interpret coincides with the motivations
of the BSS methodology. This is also pointed out in more detail in the recent literature
(Nordhausen et al., 2015; Bachoc et al., 2020) which extends successfully BSS for stationary
multivariate spatial data. The findings of the former two publications act as a starting point for
the present thesis where the goal is to refine the recently introduced spatial BSS methodology
to account for various features commonly present in spatial data. Namely, extensions for first or
second order spatial dependence that vary in space (non-stationary spatial data), determining
the actual signals of the found components, dimension reduction in spatial regression and the
usefulness of this methodology in spatial prediction. In total the present thesis consists of six
scientific publications as well as software for the various introduced methods.

This summary part consists of four sections that follow this introductory part. Section 2
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introduces the commonly considered statistical framework of spatial data where the emphasis
is laid on characterizing second order spatial dependence and (linear) spatial prediction. Sim-
ilarly, Section 3 reviews the BSS methodology for independently and identically distributed
data as well as time series data by stating various models and estimators and additionally
considering the case when noise is present in the data. The summary part is concluded by
Section 4 which summarizes the main scientific contributions of the six scientific publications
of this thesis and Section 5 that outlines directions for future research. Software for almost all
methods of Section 4 is provided for the statistical computing software R (Team, 2021) by the
package SpatialBSS (Muehlmann et al., 2021d).
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2. Geostatistics

Geostatistics is concerned with the analysis of data where each measurement is taken at a
different geographical location. For example geochemists take soil samples and measure con-
centrations of typical elements (Reimann et al., 2010, 2014) or climate scientist measure certain
climate indicators such as soil moisture via remote sensing (Bauer-Marschallinger et al., 2013).
All the beforehand datasets share the property that measurements are separated in space and
therefore it is highly likely that nearby measurements are more related than the ones further
apart. Moreover, often several quantities are measured at each sample location which leads
to spatial dependencies also in-between variables. The goal of geostatistics is to provide a
statistical framework that specifically accounts for this features of such multivariate spatial
data. Great introductions are given in textbooks such as Cressie (1993); Wackernagel (2003);
Chilés and Delfiner (2012).
The following sections aim to state the main principles of geostatistics where Section 2.1

introduces the notion of a random field and introduces stationarity concepts. The main tool of
characterizing (second order) spatial dependence is the spatial covariance where properties and
approaches of modeling this quantity are given in Section 2.2. Lastly, Section 2.3 is devoted to
the task of predicting a value of the data at hand on an unobserved location where the focus
lies on the well-known Kriging methodology. These three sections are mainly based on the
discussions provided by Wackernagel (2003); Chilés and Delfiner (2012); Genton and Kleiber
(2015).

2.1. Random fields and stationarity concepts

One central concept in the statistical analysis of spatial data is the assumption that a stochastic
process generated the data at hand and the theoretical analysis is carried out by studying this
stochastic process. Such a data generating process (DGP) is denoted as random field and
defined as follows.

Definition 1 (Random field). A p-variate random field (x(s))s∈S (or equivalently x(s)) is a
family of p-variate random vectors indexed by the spatial domain S ⊆ Rd which are defined on
a probability space (Ω,A, P ).

The spatial domain S contains all the possible locations where the random field is defined.
Such locations might be pairs of longitude and latitude values or simply x and y values in some
length unit. Often the dimension of the domain equals d = 1, 2, 3. In practical applications a
finite set of sample locations C = {s1, . . . , sn} ⊂ S is given and the geostatistician is concerned
with a wide variety of tasks (e.g.: inference about parameters for spatial models, prediction
of measurements at unobserved locations, etc.) which are based only on one realization of the
random field on C. Figure 2.1 depicts two different sets of sample locations for the case of
d = 2.

In principle all the dependencies and the probabilistic behavior of the random field are given
by its joint cumulative distribution function (cdf). However, exact modeling of the cdf is
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Figure 2.1.: Left panel: 625 uniformly sampled locations on a domain of S = [0, 25] × [0, 25].
Right panel: Sample locations for the GEMAS dataset (Reimann et al., 2014). Both figures
are examples for two-dimensional domains (d = 2). Map tiles by Stamen Design, under CC
BY 3.0. Data by OpenStreetMap, under ODbL.

indefeasible as moments of any order need to be modeled. To overcome this issue it is common
to only consider the first and second order spatial dependence structure (this procedure is
often denoted as structural analysis) of the random field at hand. The first order dependence
is given by the mean function (often denoted as drift function)

m : S → Rp

s �→ E (x(s)) ,

and the second order dependence is given by the (spatial) covariance function

C : S × S → Rp×p

(s, s�) �→ Cov(x(s),x(s�)).

For the special case of a Gaussian random field the former two quantities specify the model
completely as the Gaussian distribution is completely characterized by its first two moments.
Formally, a Gaussian random field is defined as follows.

Definition 2 (Gaussian random field). A p-variate random field (x(s))s∈S is a Gaussian
random field if for any finite set of sample locations C = {s1, . . . , sn} ⊂ S the random vector�
x(s1)

�, . . . ,x(sn)�
��

is multivariate Gaussian distributed.
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Generally, a proper spatial covariance matrix functional C needs to possess the property
that for any given set of n sample locations C ⊂ S the pn× pn covariance matrix of the joint
vector (x(s1)

�, . . . ,x(sn)�)� written as

Σ =





C(s1, s1) C(s1, s2) . . . C(s1, sn)
C(s2, s1) C(s2, s2) . . . C(s2, sn)

...
...

. . .
...

C(sn, s1) C(sn, s2) . . . C(sn, sn)

��� (2.1)

needs to be positive semi-definite (if it exists). Hence, for any vector a ∈ Rpn it must hold that
a�Σa ≥ 0. Other properties and a thorough discussion about the covariance matrix functional
is given in Chapter 2.2. Modeling of proper covariance matrices is one of the central tasks for
spatial data analysis, it is unfortunately also a very challenging task as pointed out by Genton
and Kleiber (2015). The covariance function of a random field depends specifically on the two
location arguments, which allows a wide variety of second order dependencies across the whole
spatial domain. Thus, a severe simplification which might be justified in practical applications
and which acts as a starting point for more complex modeling, is the concept of second order
stationarity (also denoted as weak stationarity or simply stationarity). Second order stationary
states that the second order dependence is invariant under shifts and is formally defined as
follows.

Definition 3 (Second-order stationary random field). A p-variate random field x(s) is said
to be second order stationary if it fulfills the following conditions.

• E
�
x(s)
2� < ∞ for all s ∈ S,

• E (x(s)) = m for all s ∈ S and

• Cov(x(s),x(s�)) = Cov(x(s+ s��),x(s� + s��)) for all s, s+ s��, s�, s� + s�� ∈ S.
The three conditions above state that all random vectors x(s) need to be square integrable,

the drift is constant throughout the domain and the covariance function is only dependent on
the difference between locations. The latter condition can be re-formulated by setting s�� = −s
which results in Cov(x(0),x(s− s�)). In this view the covariance depends only on the distance
between sample locations h = s− s� leading to C(s, s�) = C(h). If additionally the covariance
is independent of the direction of the spatial lag vector h, then the random field is said to be
isotropic and the covariance function reduces to a function with a scalar argument C(h) where
h = 
h
. The simplest example for a stationary process is a white noise process that is defined
as follows.

Definition 4 (White noise). A p-variate random field defined on a spatial domain S is denoted
white noise if it satisfies

• E
�
x(s)
2� < ∞ for all s ∈ S,

• E (x(s)) = 0 for all s ∈ S,

• E
�
x(s)x(s)�

�
= Σ for all s ∈ S where Σ is a positive semi-definite matrix and

• E
�
x(s)x(s�)�

�
= 0p for all s, s� ∈ S and s �= s� where 0p is the p × p matrix containing

only zeros.
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Figure 2.2.: Example of a three-variate Gaussian white noise process with a diagonal covariance
matrix. The diagonal elements equal 0.5, 1.5 and 3. The considered domain and the set of
sample locations equal the ones from the left panel of Figure 2.1.

From this perspective white noise is a random field that does not exhibit second order spatial
dependence as the spatial covariance matrix is the zero matrix for h �= 0 and any covariance
matrix for h = 0. The first and second property state that white noise is square integrable
and zero mean, which reflects its weak stationarity property. Figure 2.2 depicts an example
of a white noise process. Often a white noise random field is an additive term statistically
independent from other summands describing a measurement error of some quantity of interest.
The stationary and isotropic covariance matrix of white noise is given by

CWN (h) = ΣWNI(h = 0),

which is in geostatistical terms often denoted as nugget effect, here ΣWN is a positive definite
p× p matrix.

A more general class of random fields is given by the intrinsic stationarity concept which is
based on working with difference processes rather than the original one.

Definition 5 (Intrinsic stationary random field). A p-variate random field x(s) is said to be
intrinsic stationary if for every lag vector h the corresponding difference process x(s+h)−x(s)
is second order stationary.

An instrinsic stationary random field is characterized by the drift function of the differences
m�(h) = E (x(s+ h)− x(s)) which is linear in its argument, i.e.: m�(h) = a�h where a ∈ Rp

is an arbitrary vector. This is seen by

x(s+ h+ h�)− x(s) = (x(s+ h)− x(s)) +
�
x(s+ h+ h�)− x(s+ h)

�
which leads to

m�(h+ h�) = m�(h) +m�(h�).

7



Often, m�(h) is simply set to the zero-vector. Furthermore, the natural measure of second
order dependence for an instrinsic random field is given by the so called semivariogram

γ : S × S → Rp×p

(s, s�) �→ 1

2
Cov(x(s)− x(s�)),

which only depends on the lag vector h. Namely, γ(h) = 1/2Cov(x(s+ h)− x(s)). Note that
the variogram equals twice times the semivariogram. Sometimes it is assumed that the cross
increments xi(s)− xj(s

�) are stationary which leads to the so-called pseudo variogram

π : S × S → Rp×p

(s, s�) �→ 1

2

�
Var(xi(s)− xj(s

�))
�
i,j=1,...,p

.

Genton and Kleiber (2015) argue that the pseudo variogram is favorable as it has advantage
when used for multivariate spatial prediction. In contrast, Wackernagel (2003, Chapter 21)
states that the stationarity of the cross-increments is an unrealistic assumption and that often
the entries of a random field measure different physical quantities which leads to the fact that
differences make no sense.

As outlined in Chilés and Delfiner (2012, Chapter 2) for the univariate case the variogram
has two benefits over the covariance function. Firstly, as it relies only on the difference process;
the mean of the random field does not need to be estimated which is a practical argument.
Secondly, as every weakly stationary field is also intrinsic stationary but the opposite does not
hold true it follows that the class of intrinsic stationary random fields is richer as the weakly
stationary one. Therefore, more random fields are covered by the intrinsic stationary class
which is a theoretical argument. In contrast, for the multivariate case Genton and Kleiber
(2015) argue that interpretation of the variogram is more difficult contrarily to the covariance.
Furthermore, for an intrinsic stationary random field that is also weakly stationary it holds
that

γ(h) = C(0)− 1

2
(C(−h) +C(h)) .

Thus, the variogram is an even function in its argument and does not cover the odd term of the
covariance (Wackernagel, 2003, Chapter 21). Therefore, in the multivariate case the covariance
might be favored. Generally, it seems that most authors favor the variogram for the univariate
case but the covariance for the multivariate case.
One example of an intrinsic stationary field that is not weakly stationary is given by the

fractional Brownian field (Dobrić and Ojeda, 2006). Its covariance function is defined by

C(s, s�;H) =
1

2

�
s
2H + 
s�
2H − 
s− s�
2H�
.

Here, H ∈ (0, 1] is denoted as Hurst parameter. Realizations of such a random field for different
Hurst parameters can be seen in Figure 2.3.

Finally, a random field where the drift and/or the covariance function specifically depends
on the location is denoted as non-stationary and acts as the opposite of weak stationarity.

Definition 6 (Non-stationary random field). A p-variate random field x(s) is said to be non-
stationary if the mean and/or the covariance function specifically depends on the spatial loca-
tion.

8



x1 x2 x3

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

0

5

10

15

20

25

0 5 10

Figure 2.3.: Three examples of a Gaussian fractional Brownian field where the Hurst param-
eters equal H = 0.3, 0.5 and 0.8. The considered domain and the set of sample locations
equal the ones from the left panel of Figure 2.1.

2.2. Covariance models

By the positive definite condition of proper covariance functionals it follows that Σ of Equa-
tion (2.1) needs to be symmetric. Therefore it holds that

C(s1, s2) = C(s2, s1)
�.

But if only the coordinates are switched or the variables are interchanged the covariance
generally also changes

C(s1, s2) �= C(s2, s1) and C(s1, s2) �= C(s1, s2)
�.

Therefore, the covariance between different locations is not symmetric in general but the on-
site covariance is. Furthermore, for a vector a ∈ R2p (considering only two coordinates s1, s2)
where the i-th element is set to one and the j + p element is set to (C(s1, s2))ij/(C(s2, s2))jj
for i, j ∈ {1, . . . , p} the quadratic form a�Σa ≥ 0 leads to

(C(s1, s1))ii(C(s2, s2))jj ≥ |(C(s1, s2))ij |2.

Under stationary this translates to

(C(0))ii(C(0))jj ≥ |(C(h))ij |2.

Therefore, the covariance matrices for each entry of the random field are bounded by the
on-site variance, i.e.: (C(0))ii ≥ |(C(h))ii|. In contrast, no such bounds exist for the cross
covariances, i.e.: |(C(h))ij | is not bounded by |(C(0))ij | which is often referred to delay effect.
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This is very common in time series where the highest influence of one variable to another might
arises delayed in time.
Estimation of the covariance matrix for a given dataset with n irregularly spaced sample

locations collected in the set C is usually done by the following estimator (often denoted as
empirical covariogram or empirical covariance)

Ĉ(h) = |N(h)|−1
�

(i,j)∈N (h)

(x(si)− x̄)(x(sj)− x̄)�,

where x̄ = n−1
�n

i=1 x(si) is the sample mean and the set N (h) = {(i, j) : si − sj = h} covers
all sample locations that are separated by the lag vector h. Usually, for irregularly spaced
sample locations the separation vectors between each coordinates are unique. To overcome
this issue the set N (h) is adapted in the sense that it considers sample locations which are
separated between h−a and h+a, often also angles are considered to model anisotropy. After
the estimation usually a parametric covariance function is fitted by different least squares
approaches. In contrast, fitting of the covariance function directly to the data by maximum
likelihood or within the Bayesian framework are also widely used in the literature.

There exist many approaches on covariance modeling in the literature. Genton and Kleiber
(2015) give an thorough investigation of multivariate stationary and non-stationary covariances,
Sampson (2010) review different strategies for univariate non-stationary covariance models. In
the following two prominent approaches to model the covariance matrix functional are given.
Section 2.2.1 covers the rich family of Matérn covariance functions which are adapted for the
uni- and multivariate as well as the stationary and non-stationary case and Section 2.2.2 details
how more complex covariance functions can be build upon simple univariate ones in a linear
fashion.

2.2.1. The Matérn family

One covariance function that gets great attention in the literature is the so-called Matérn
covariance function (Guttorp and Gneiting, 2006). It is stationary and isotropic and formally
defined by

CM (h;σ2, ν, φ) =
σ2

2ν−1Γ(ν)

�
h

φ

�ν

Kν

�
h

φ

�
. (2.2)

The Matérn covariance function is parametrized by σ2 > 0, ν > 0 and φ > 0 which are the
variance, shape and range parameters respectively. Kν denotes the Bessel function of second
kind with shape parameter ν and Γ denotes the gamma function. The main advantage of
this covariance function is that the shape parameter controls the behavior at small lags. Or
equivalently ν controls the smoothness of realizations of random fields. Lower values lead to
sharper realizations. Another advantage lies in the fact that other popular covariance functions
arise if the smoothness parameter takes values of k + 1/2 where k is a natural number. To
name an example: for ν = 1/2 it results in the popular exponential covariance function

Cexp(h) = σ2 exp (−h/φ) ,

more examples are provided by Guttorp and Gneiting (2006). Figure 2.4 illustrates the Matérn
covariance function for different parameter sets and Figure 2.5 depicts corresponding realiza-
tions.
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Figure 2.4.: Three different univariate stationary Matérn covariance functions. The parameters
equal (σ2, ν, φ) = (1.0, 0.5, 1.0), (1.0, 1.0, 1.5) and (1.0, 1.5, 2.0) for x1, x2 and x3 respectively.
Example realizations for these covariance models are depicted in Figure 2.5.

Extensions to the multivariate case are also provided in the literature. Gneiting et al. (2010)
introduce models where the marginal as well as the cross covariance functions are all Matérn
functions, i.e.:

CM
ii (h) = σ2

iiC
M (h; 1, νii, φii) and CM

ij (h) = ρijσiiσjjC
M (h; 1, νij , φij),

for i, j = 1, . . . , p with i �= j. Sufficient conditions on the parameters to provide a valid
covariance functional are also given in the publication. For the case of p > 2 a so-called
parsimonious Matérn is described by setting the range parameters equal across all functions
(φij = φ for all i, j = 1, . . . , p) and the cross shape parameters are set to the average of
the marginal ones (νij = (νii + νjj)/2 for all i, j = 1, . . . , p with i �= j). Conditions on
the correlation parameters ρij are rather involved and the interested reader is referred to the
original publication. The publication also introduces the full bivariate Matérn model which
relaxes the former conditions for different scale and shape parameters for the cross covariances
in the case of p = 2. Apanasovich et al. (2012) extend the parsimonious Matérn model and
allow under mild conditions different scale and shape parameters as well. Genton and Kleiber
(2015) review the stationary Matérn family in more detail.
Anderes and Stein (2011) provide a univariate non-stationary Matérn model. This is achieved

by allowing spatial varying shape ν : Rd → R+ and variance σ2 : Rd → R+ as well as spatial
varying scale by φ : Rd → Rd×d

pd where R+ is the set of positive real numbers and Rd×d
pd is the

set of real positive definite d× d matrices. The non-stationary Matérn model is defined by

CM (s, s�) = σ(s)σ(s�) det
�
φ
−1/2
s,s�

����φ−1/2
s,s� (s− s�)

���νs,s� Kνs,s�

����φ−1/2
s,s� (s− s�)

���� ,

with φs,s� = (φ(s)−φ(s�))/2 and νs,s� = (ν(s)− ν(s�))/2. The matrix valued scale function φ
can be restricted to map only onto the set of positive-valued diagonal matrices which leads to
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Figure 2.5.: Example realization of Gaussian random fields with Matérn covariance functions
seen in Figure 2.4. The considered domain and the set of sample locations equal the ones
from the left panel of Figure 2.1.

an isotropic model. Anderes and Stein (2011) also provide a slightly different version of the
above model by only allowing isotropy and they show that for very smooth scale, shape and
variance functions the above form (almost) simplifies to the stationary Matérn model.
Kleiber and Nychka (2012) combine the notions of Gneiting et al. (2010) and Anderes and

Stein (2011) to provide a multivariate non-stationary covariance model where the marginal
and cross covariances are of the non-stationary Matérn form.
As pointed out by Gneiting et al. (2010) the least squares framework should be avoided when

fitting Matérn models as equal weight is put on each spatial lag which results in suboptimal
estimation of the shape parameter. Gneiting et al. (2010) and Apanasovich et al. (2012) provide
different parameter estimation algorithms based on maximum likelihood for the multivariate
stationary case. For the non-stationary case parameter estimation is naturally an even more
demanding task as parameter functions need to be estimated. Anderes and Stein (2011) use
a local maximum likelihood variant for the non-stationary univarate case and Kleiber and
Nychka (2012) introduce a two-step procedure that only relies on assuming that the first and
second moments exist.

2.2.2. Linear model of coregionalization

Building more complex covariance models from simple univariate ones is a popular approach.
For that purpose one can decompose the random field at hand into several independent ones
by

x(s) =

N�
i=1

xi(s) +m,
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Figure 2.6.: Covariance structure for a three-variate LMC with N = 2. The univariate corre-
lation functions are Matérn correlation functions with parameters (σ2, ν, φ) = (1.0, 0.5, 1.0)
and (1.0, 1.5, 2.0) (which equal the parameters of x1 and x3 seen in Figure 2.4). The entries
for the matrices A1 and A2 are drawn iid from N(0, 1). An example realization of this model
can be seen in Figure 2.7.

where m is a constant and each xi(s) is stationary, centered and for s, s� ∈ S, i, j = 1, . . . , N
and i �= j it holds that Cov(xi(s), xj(s

�)) = 0. Leading to E (x(s)) = m and the linear model
of regionalization (LMR) defined by

CLMR(h) =

N�
i=1

Ci(h) =

N�
i=1

σ2
i ρi(h).

Here, Ci, ρi and σ2
i are the covariance, correlation functions and the variance parameter for the

i-th random field. In practical applications the covariance functions are chosen in such a way
that they act at different spatial scales. For example, a suiting model might consists of N = 3
summands where the first one is a nugget effect and the second and third ones are exponential
correlation functions with different range parameters to account for short and long distance
effects reflecting the regionalization aspect of this model.
This idea is extended to the multivariate case by considering a separable covariance function

defined by
C(h) = Mρ(h),

where M is a p × p covariance matrix (it is positive semi-definite) often denoted as coregion-
alization matrix and ρ(h) is a univariate spatial correlation function. For this model each
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Figure 2.7.: Example realization of a Gaussian random field with the LMC structure seen in
Figure 2.6. The considered domain and the set of sample locations equal the ones from the
left panel of Figure 2.1.

marginal and cross covariance is formed by the corresponding entry of the matrix M multi-
plied by a univariate correlation function which is equal for each marginal and cross covariance.
This model arises when the multivariate random field is build by

x(s) = Az(s) +m.

In the above form A is any p × p matrix, m is any p-dimensional vector and z(s) is a p-
variate stationary and centered random field with independent entries (often denoted as factors)
where ρ(h) is the spatial correlation function for each factor. This leads to E (x(s)) = 0 and
M = AA� which is positive semi-definite and its rank equals the one of A. Note that this
model is closely related to the spatial blind source separation model discussed in Chapter 4. In
less recent literature such as Helterbrand and Cressie (1994) or Wackernagel (2003, Chapter
23) a separable covariance function is referred to as intrinsic correlation model.

Taking one step further the principle of regionalization is used for the cross covariances as
well leading to the prominent linear model of coregionalization (LMC), see for example Goulard
and Voltz (1992); Vargas-Guzmán et al. (2002); Emery (2010) or Wackernagel (2003, Chapter
26). It is defined by

CLMC(h) =

N�
i=1

Miρi(h). (2.3)

Here, ρi(h) are univariate correlation functions and Mi are the positive semi-definite core-
gionalization matrices. The LMC is symmetric in its distance argument as it is build from
univariate stationary correlation functions. Note that the separable model is a special case of
the LMC for N = 1. Similar as for the LMR the LMC arises when the random field is formed
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Figure 2.8.: IDW interpolation of x3 of Figure 2.5 on the integer grid (S ∩ Z2) for different
parameters r = 1, 2 and 5.

by a sum of independent ones written as

x(s) =
N�
i=1

Aizi(s) +m.

In the above formula Ai are p × p matrices, m is any p-dimensional vector and xi(s) are p-
variate stationary and independent random fields which consist of independent entries (factors)
with equal spatial correlation. Yielding Cov((zi(s + h))k(zi(s))k) = ρi(h) and Cov((zi(s +
h))k(zj(s))l) = 0 for all i, j = 1, . . . , N and k, l = 1, . . . , p with i �= j and k �= l and s, s+h ∈ S.
Therefore, E (x(s)) = m and the coregionalization matrices are formed by Mi = AiA

�
i which

are of the same rank as Ai. Figure 2.6 depicts the covariance matrix for an example LMC
and Figure 2.7 shows one corresponding realization. Fitting of a LMC is usually done in a
two-step procedure. Firstly, the number N and the parameters of the univariate correlation
functions are chosen based on visual inspection of the empirical semivariogram or covariogram.
Secondly, the coregionalization matrices are fitted by keeping the parameters of the univariate
correlation functions untouched. Such a procedure is outlined for example by Goulard and
Voltz (1992).

Gelfand et al. (2004) extended the LMC to the non-stationary case by letting the coeffi-
cient matrices depend on the spatial location, i.e.: Ai(s), but keeping the univariate spatial
correlation functions still stationary.

2.3. Spatial prediction

One central task in the analysis of geostatistical datasets is predicting a measurement at an
unobserved location, namely spatial interpolation or prediction. Specifically, the univariate
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random field x(s) is observed on n sample locations C = {s1, . . . , sn}. The task is now to
predict the value of x(s) at some unobserved location s0.

Many methods form the prediction in a linear fashion by

x̂(s0) =

n�
i=1

aix(si). (2.4)

For example, the very simple inverse distance weighting (IDW) method determines the weights
by the inverse of the distance, i.e.: ai = 
s0 − si
−r, with the restriction that the weights
sum up to one. IDW has the advantage that no algorithms to fit the weights have to be
utilized and the weights decrease quickly as a function of distance which leads to so-called local
interpolation. However, the weights will always be positive, there is no error to characterize
the prediction quality and the choice of r seems to be (mostly) arbitrary. Figure 2.8 shows the
IDW interpolation for different r values of x3 from Figure 2.5. Another class of methods that
predict in such a linear way is provided by the Kriging methodology discussed below.
Countless variants that predict in a different fashion are also considered in the literature.

For example, Wang et al. (2019) use neural networks with different forms of feature selection
for univariate prediction. Generally, Li and Heap (2014); Jiang (2019) give an overview of the
countless possibilities.

Ordinary Kriging Kriging is the standard tool for spatial prediction and extensively reviewed
in the literature. There exist many variants, e.g.: for stationary, intrinsic stationary random
fields, for multivariate random fields, with and without an external drift, etc. but all share
the same principle. Namely, a linear predictor as seen in Equation (2.4) where the weights
are determined by requiring that the bias is zero and minimizing the prediction mean squared
error (MSE). Table 2.3 gives an overview and corresponding literature for prominent Kriging
methods. As the principle of Kriging is equal for each method ordinary Kriging (OK) acts as
an illustrative example and is detailed in the following.
For OK it is assumed that a univariate random field x(s) is observed on n sample locations

C = {s1, . . . , sn} with a constant but unknown mean m. The OK predictor can either be
expressed in terms of the variogram (Wackernagel, 2003, Chapter 12) or the covariance function
(Cressie, 1993, Chapter 3.2) where the former one relies on the assumptions that the random
field is intrinsic stationary and the latter one on second-order stationarity assumptions. As
stated above the prediction of the random field at the unobserved location s0 is formed by a
linear combination of the observed values as seen in Equation (2.4). The quantity which is
minimized to determine the weights ai is the MSE which can be deduced into a variance and
a bias term by

E
�
(x̂(s0)− x(s0))

2
�
= Var (x̂(s0)− x(s0)) + E (x̂(s0)− x(s0))

2 ,

where the last term is the squared bias. The desired property of zero bias

E (x̂(s0)− x(s0)) = m
n�

i=1

ai −m = 0

leads to the following conditions on the weights

n�
i=1

ai = 1.
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Table 2.1.: Overview of popular Kriging methods

Method Description/Assumptions Selected literature

Simple
Kriging

Random field is stationary, the
mean is constant and known

Wackernagel (2003, Chapter 3)

Ordinary
Kriging

Random field is stationary or
intrinsic stationary, the mean is
constant but unknown

Cressie (1993, Chapter 3.2),
Wackernagel (2003, Chapter 12)

Universal
Kriging

The random field is formed by a
deterministic drift function and
an intrinsic random field with
mean zero, the drift function
is a linear combination of ba-
sis functions, often low order
monomials in the coordinates

Cressie (1993, Chapter 3.4),
Wackernagel (2003, Chapter 31)

Factorial
Kriging

Prediction of the factors that
lead to the LMC, see also Sec-
tion 2.2.2

Goovaerts (1992),
Ma et al. (2014)

Cokriging Multivariate extension, all vari-
ables are measured at all sam-
ple locations is denoted as iso-
topic Cokriging, variables are
measured at different locations
is denoted as heterotopic Cok-
riging, the latter is often found
in practice when one variable is
expensive and others are cheap
to measure

Stein and Corsten (1991),
Wackernagel (1994),
Goovaerts (1998)

Under this condition minimizing the MSE is equal to minimizing the prediction error variance
which writes as

Var (x̂(s0)− x(s0)) =
n�

i,j=1

aiajC(si − sj)− 2
n�

i=1

aiC(si − s0) + C(0).

This can be equivalently rewritten in vector notation by letting a = (a1, . . . , an)
�, δ = (C(s1−

s0), . . . , C(sn − s0))
� and Σ as seen in Equation (2.1) leading to

a�Σa− 2a�δ + C(0).

Now the MSE can be minimized with respect to the constraint on the weights by using the
method of Lagrange multipliers which defines the Lagrange function to be

φ(a, a0) = a�Σa− 2a�δ + C(0) + 2a0(a
�1− 1),

where 1 is the n-vector of ones and a0 is the Lagrange multiplier. Setting the partial derivatives
of the Lagrange function with respect to the weights to zero leads to the optimization equations

Σa+ a01 = δ and a�1 = 1,
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where the latter equation is again the zero-bias condition. The above n + 1 linear equations
can be comfortably written in a single matrix multiplication as�

Σ 1
1� 0

�
� �� �

=Σ̃

�
a
a0

�
=

�
δ
1

�
.

The weights can be simply computed by inverting Σ̃. Σ̃ is invertible if Σ is positive definite
which is ensured when a proper covariance matrix functional is chosen and each sample location
is only present once in the set of sample locations. The uncertainty of the prediction can be
characterized by the prediction error variance which can be expressed using the optimization
equations as

σ2
err = C(0)− a0 − a�δ.

Ordinary Kriging ensures exact prediction. Considering s0 = si then the i-th column of Σ
is equal to δ. Σ is still full-rank ensuring that the only solution is the zero vector with the
only non-zero element ai = 1 leading to x̂(si) = x(si).

So far it is assumed that the spatial covariance is known which is in practical applications
rarely encountered. Usually, a parametric model is fitted to the data as described in Section 2.2
leading to the fact that the Kriging prediction is additionally affected by the possible variation
of the model parameters. Several cases can be characterized as follows. The semivariogram
usually approaches a constant value when its argument tends to infinity as the spatial depen-
dence usually vanishes at very large distances, this is denoted as sill. For a stationary random
field the sill corresponds to the covariance at lag zero. A higher sill does not affect the Kriging
weights but increases the prediction error variance. Usually, the sill is the sum of the nugget
effect and the on-site variances of other considered covariance models where a higher relative
nugget effect leads to more similar Kriging weights. This is intuitively explained by the fact
that each Kriging weight equals 1/n when only a nugget effect is considered leading to weights
approaching 1/n as the relative share of the nugget effect in the sill increases. The highest
effect on the Kriging weights and on the error variance is given by possible anisotropies which
are not included in the model, the overall range of spatial dependence present in the model and
the behavior of the semivariogram (or covariance) near the origin. Due to the high influence
of the latter the Matérn family is a very popular covariance choice as the shape parameter ν
can control the behavior at the origin with high flexibility.
Generally, a thorough discussion about the influence of estimated parameters on the Kriging

methodology is far beyond the scope of the present thesis. As pointed out by Stein (1999,
Chapter 6) characterization of such effects is very involved due to the fact that linear predictions
formed by the data at hand are no longer linear when the weights depend on parameters that
are estimated from the same data.
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3. Blind source separation

Blind source separation (BSS) is a multivariate statistical tool which is well-established for
many forms of data. The foundation of the BSS methodology forms the so-called location-
scatter model

x = Az+ b, (3.1)

where x and z are p-variate random vectors denoted as observable and source or latent vector,
both forming the random parts of the model. A is the invertible p×p mixing matrix and b is a
location vector where both are deterministic. The aim of all BSS methods is to find a location
vector functional T = T(x) as well as a so-called unmixing matrix functional W = W(x)
which together recover the source vector by W(x − T) given only the observable x. One
example for W would be simply the inverse of the mixing matrix A−1, indeed under sufficient
assumptions on the source it is possible to recover A−1 up to certain ambiguities. Chapter 3.1
discusses different BSS models for different kinds of data with proper assumptions on the
source and Chapter 3.2 outlines properties of unmixing matrix functionals. In Chapter 3.3
a two step procedure to find the unmixing matrix applicable for almost all BSS models is
detailed and unmixing matrix functionals for the models discussed in Section 3.1 are given in
Section 3.4. Lastly, Section 3.5 discusses the implications of noise and how the signal subspace
can be found. Profound discussions on BSS are given in textbooks such as Cichocki and Amari
(2002); Comon and Jutten (2010) and in review papers such as Nordhausen and Oja (2018);
Pan et al. (2021).

Still, a natural question arises: What are the advantages of recovering the source over
analyzing the original data? The advantages of BSS are threefold. (i) The entries of the
source are at least uncorrelated or even independent. This leads to the great advantage that
the data can be pre-processed by some BSS method and then each entry of the source can
be studied individually. For example, in prediction tasks this procedure discards the need of
building one multivariate model in favor of p univariate ones. (ii) The model states a linear
connection between the source and observable. Hence, interpretations of the results can follow
the same loadings-scores interpretation scheme as in principle component analysis (PCA),
where the loadings correspond to the unmixing matrix and the scores to the source. But in
contrast to PCA the BSS methods find features of the data beyond the correlation structure,
the unmixing matrix is not restricted to be orthogonal and the results of the methods do not
depend on prior linear transformations. The latter attribute is denoted as affine equivariance
(discussed in Chapter 3.2). (iii) The dimension of the observable and the source is for both
cases p. However, in most applications only a few components of the source are of interest.
This acts as a form of dimension reduction which additionally also simplifies the univariate
modeling as only less than p models need to be formulated.
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3.1. Blind source separation models

Equation (3.1) forms the basic equation for the (instantaneous) mixture model, the aim of
this chapter is to discuss different assumptions on the unobserved source vector which leads to
different models for different forms of data.

3.1.1. Independent component model

For independently and identically distributed (iid) data BSS models are based on statistical
independence assumptions on the source which results in the well-known independent com-
ponent analysis (ICA). As outlined by Virta (2018) to motivate the independent component
(IC) model consider the random vector z to be p-variate standard normal distributed, i.e.:
z ∼ Np(0, Ip). z has two characteristic properties:

1. Spherical symmetry: z ∼ Vz, where V is a p× p orthogonal matrix.

2. Independence property: all components of z are statistically independent.

Generalizations of the standard normal model that show the spherical symmetry property
in conjunction with the location-scatter model lead to the class of elliptical models and the
ones that posses the independence property lead to the class of IC models. The standard
normal distribution is the only distribution that possesses these two former properties. If it is
combined with the location-scatter model it forms the multivariate Gaussian model which is
the only model in the intersection of the IC and elliptical models. Figure 3.1 gives examples
for these three discussed models. A thorough discussion of the location-scatter model and its
implications is given for example by Oja et al. (2006); Nordhausen and Oja (2018). Formally,
the considered IC model is defined as follows.

Definition 7 (Independent component (IC) model). Consider a p-variate random vector x.
It follows an independent component model if it can be written as

x = Az+ b,

where x is the p-variate observable random vector, z is the p-variate latent random vector, A
is the deterministic p×p mixing matrix of full-rank and b is a p-variate deterministic location
vector. Furthermore, z fulfills the following conditions.

(IC 1) E (z) = 0 and Cov(z) = E
�
zz�

�
= Ip,

(IC 2) the entries of the latent vector are mutually independent and

(IC 3) at most one component of the latent vector is Gaussian distributed.

In the above model minimal distributional assumptions on the source vector z are stated.
The first assumption fixes the location and scale leading to E (z) = b and Cov(x) = AA� and
the second one states the key independence property of the latent components. (IC 3) is in its
essence an identifiability condition for the model parameters (namely the mixing matrix) and
will be discussed in a subsequent chapter. Stronger assumptions than (IC 3) need to be stated
for different estimators of the unmixing matrix as seen in Chapter 3.4.
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Figure 3.1.: Examples for the location-scatter model (Equation (3.1)) with different bivariate
latent components z. The first row corresponds to the latent vector where the first one
follows a bivariate standard normal distribution, the second one a bivariate spherical t6
distribution and the third one consists of a uniform and a univariate t5 distribution. All
latent vectors are centered and have unit covariance matrix. The second row shows the
corresponding vectors x when the latent components are inserted into the location-scatter
model with b = 0 and the mixing matrix entries are drawn iid from N(0, 1). This yields a
multivariate normal, an elliptical and an IC model respectively. The sample size equals 250
for all six panels.

3.1.2. Second order source separation model

In contrast to iid data, time series data shows dependence between the random vectors at
different time stamps, hence, at least the independence assumptions of iid data is not fulfilled.
This property is exploited for time series BSS models in favor of the non-Gaussianity and the
independence property of the IC model. The second order source separation (SOS) model is
build around second-order stationary time series which are defined in similar fashion as in the
spatial case. Specifically, a (univariate) time series (xt)t∈Z is said to be second-order stationary
if (1) E

�
x2t

�
< ∞, (2) E (xt) = E (xt�) and (3) Cov(xt+τ , xt) = Cov(xt�+τ , xt�) for all t, t

�, τ ∈ Z.
Figure 3.2 illustrates three different stationary time series. More details on time series can be
found in textbooks such as Shumway and Stoffer (2011).

Definition 8 (Second order source separation (SOS) model). Consider a p-variate time series
xt for all t ∈ Z. xt follows a second order source separation model if it can be written as

xt = Azt + b,
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Figure 3.2.: Sample paths for three different stationary time series models. The first and third
models are autoregressive AR(2) and AR(4) models where the parameters equal (0.2, 0.7)
and (−0.1, 0.6, 0.2, 0.2) respectively. The second model is a MA(4) moving average process
with parameters (−0.4, 0.3, 0.7,−0.1). The lengths of the time series equal 500.

where xt is the p-variate observable time series, zt is the p-variate latent time series, A is
the deterministic p × p mixing matrix of full-rank and b is a p-variate deterministic location
vector. Furthermore, zt fulfills the following conditions.

(SOS 1) E (zt) = 0, Cov(zt) = E
�
ztz

�
t

�
= Ip for all t ∈ Z and

(SOS 2) Cov(zt+τ , zt) = E
�
zt+τz

�
t

�
= Dτ for all t ∈ Z and τ = ±1,±2, . . . where Dτ is a

diagonal matrix containing the (univariate) autocovariance functions for each entry of zt
which only depend on the lag τ on its diagonal elements.

This model implies that the latent time series is formed by weakly stationary uncorrelated
time series and that the way of mixing is constant for all time stamps (instantaneous mixing).
Similar as in the iid model the location and scale is fixed by (SOS 1) but in contrast the
separation of the signals is now based on their second order serial dependence (SOS 2). Hence,
it is allowed that the source time series are Gaussian distributed. Further conditions for the
source separation to be possible are different for the different estimators and discussed in
Section 3.4. Figure 3.3 depicts a three-variate example of a SOS model. The SOS model
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Figure 3.3.: Example of an SOS model which is formed by mixing the time series seen in
Figure 3.2. The entries of the mixing matrix are drawn iid from N(0, 1) and b = 0.

is widely considered in the literature, see for example Tong et al. (1990); Belouchrani et al.
(1997); Miettinen et al. (2016). Pan et al. (2021) extensively review BSS for time series data.

3.1.3. Non-stationary source separation model

As BSS originates from the signal processing community it was soon noticed that for example
in speech signals the stationarity assumption is not justified. Matsuoka et al. (1995) argued
that rather a time varying variance of the source is a more realistic scenario. In that fashion
a non-stationary time series can be defined as a time series that either shows a non-constant
mean and/or a time varying second-order dependence structure. The latter case is considered
in the non-stationary source separation (NSS) model as follows.

Definition 9 (Non-stationary source separation (NSS) model). Consider a p-variate time
series xt for all t ∈ Z. xt follows a non-stationary source separation model if it can be written
as

xt = Azt + b,

where xt is the p-variate observable time series, zt is the p-variate latent time series, A is
the deterministic p × p mixing matrix of full-rank and b is a p-variate deterministic location
vector. Furthermore, zt fulfills the following conditions.

(NSS 1) E (zt) = 0 for all t ∈ Z,
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(NSS 2) Cov(zt) = E
�
ztz

�
t

�
= Dt for all t ∈ Z where Dt are a positive definite diagonal

matrices and

(NSS 3) Cov(zt, zt�) = E
�
ztz

�
t�
�
= Dt,t� for all t, t� ∈ Z with t �= t� where Dt,t� are a diagonal

matrices depending on t and t�.

In the above model definition (NSS 1) fixes the location of the source but the scale cannot
be fixed as it is allowed to vary in time by (NSS 2). A strategy to impose a scale restriction
is achieved by assuming that the “global” covariance

�T
t=1 E

�
ztz

�
t

�
equals Ip which comes

without loss of generality as a global scale is not identifiable (see Section 3.2). Assumption
(NSS 3) states that the serial second order dependence does depend on the specific times and
not just on the lag between. Both assumptions, (NSS 2) and (NSS 3), reflect the non-stationary
second-order dependence of the source vector. In some situations (NSS 2) and (NSS 3) are
replaced by the stricter so-called block-stationary assumption. It states that the time series
can be divided into non-overlapping sub-time series where each is second-order stationary with
different (constant) covariance. For more details on the NSS model see Choi and Cichocki
(2000a,b); Choi et al. (2001); Pham (2002); Pham and Cardoso (2001); Tanaka et al. (2006);
Nordhausen (2014); Pan et al. (2021) and references therein.

The block-stationary model can also be viewed in a different way. Namely, each block time
series might be seen as a realization of a BSS model where the sources are different but the
mixing matrix is equal across blocks. This is often encountered in EEG datasets where the
placement of sensors is equal for each patient. BSS for such form of data is often denoted as
group ICA, details are for example given in Cong et al. (2013); Pfister et al. (2019).

3.1.4. Models in the context of regression analysis

In regression analysis the main aim is to find the relationship between a response random
variable y (often univariate) and an explaining random vector x in the presence of some error
term � which in its most general form can be written as

y = f(x, �).

In such a model the function f is assumed to be unknown and the error term � is assumed to be
independent of x. With increasing dimension of the explaining vector modeling of the function
f is increasingly difficult. Therefore, it would come with great advantage if r (linear) transfor-
mations of the explaining vector can be found which cover as much of the relationship between
x and y as possible. In the best case r � p. The problem of finding such transformations is
denoted as sufficient dimension reduction (SDR) and extensively considered in the literature, a
review is provided by Ma and Zhu (2013) and a textbook by Li (2017). Certain SDR methods
are also set into the context of the invariant coordinate system methodology (see Section 3.2)
by Liski et al. (2014) as well as BSS by Matilainen et al. (2017a, 2019); Nordhausen et al.
(2021b). The latter three publications consider the following model.

Definition 10 (SDR model in a BSS context). Consider a (p + 1)-variate random vector
(y,x�)� where y is the (univariate) response and x is its explaining vector which has the
representation

x = Az+ b = A

�
z1
z2

�
+ b,
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where A is the invertible p × p mixing matrix, b is the deterministic p-dimensional location
vector and z = (z�1 , z�2 )� is the p-variate latent random vector. z is partitioned into a r-variate
subvector z1 and a (p− r)-variate subvector z2 which satisfy:

(SDR 1) E (z) = 0 and Cov(z) = Ip and

(SDR 2)
�
y, z�1

�� ⊥⊥ z2.

The dimension r and the partitioning are minimal in the sense that, for projection matrices

satisfying (y,Pz) ⊥⊥ (I − P)z, the rank of P is larger than or equal to r and P
�
z�1 ,0�

��
=�

z�1 ,0�
��

.

This models is formed around the location-scatter model and the typical BSS assumptions
on the first two moments of the source (SDR 1). (SDR 2) is the key assumption which states
that the relationship of the observable and the response variable is only given by the r-variate
source subvector z1. The dimension r is the smallest for which all projections of the source
still satisfy the key independence assumption (SDR 2). (SDR 2) is usually weakened in the
SDR literature, e.g.: one of the first works on SDR (Li, 1991; Cook and Weisberg, 1991) state
the following assumption.

(SDR 2’) z2 ⊥⊥ y|z1 and E (z2|z1) = 0 (a.s.).

(SDR 2) implies (SDR 2’) and is favored in the BSS literature as tests on the dimension r
can be easily formulated (Nordhausen et al., 2021b).

After the source vector is found one can consider the regression model

y = g(z1, �),

where g is unknown and (possibly) different from f . Modeling of g is considerably simplified
as the dimension of z1 is hopefully much less as the one of the original data x (r � p).

Matilainen et al. (2017a, 2019) consider a similar outline for (stationary) time series. In the
above spirit one is interested in modeling a univariate response time series (yt)t∈Z based on
a p-variate explaining time series (xt)t∈Z. But in contrast to the iid setting it is natural to
additionally consider a link between the regressors present value and the predictors past values

yt+1 = f(xt,xt−1, . . . , �t, �t−1, . . . ).

Here, the function f is again unknown and (�t)t∈Z is an unobserved time series that is inde-
pendent from (xt)t∈Z. If the dimension of the time series is high it would be again of great
advantage to find a small number of linear combinations of the predictor time series that cap-
ture as much of the dependency as possible between xt and yt. Formally, the time series BSS
model for SDR writes as follows.

Definition 11 (Time series SDR model in a BSS context (TSDR)). Consider a (p+1)-variate
time series (yt,x

�
t )

� with t ∈ Z where yt is the (univariate) response and xt is its explaining
time series which has the representation

xt = Azt + b = A

�
z1,t
z2,t

�
+ b,

where A is the invertible p × p mixing matrix, b is the deterministic p-dimensional location
vector and zt = (z�1,t, z�2,t)� is the p-variate stationary latent time series. zt is partitioned into
a r-variate time series z1,t and a (p− r)-variate time series z2,t which satisfy:
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(TSDR 1) E (zt) = 0, Cov(zt) = E
�
ztz

�
t

�
= Ip for all t ∈ Z and

(TSDR 2)
�
yt�� , z

�
1,t�

�� ⊥⊥ z2,t for all t, t�, t�� ∈ Z.

The dimension r and the partitioning are minimal as in Definition 10.

As in the SOS model the assumed mixture is instantaneous (the mixing matrix is independent
of the time) and the latent time series is centered and has identity covariance matrix (TSDR 1).
(TSDR 2) is the key assumptions which states that all dependency of the observable time series
goes through the r-variate part of the latent time series z1,t, hence, the (p − r)-variate part
z2,t can be considered as noise and discarded for further regression analysis. If the dimension
of the subvector is much smaller than the original predictor time series the goal of dimension
reduction is achieved and the (hopefully) much simpler model

yt+1 = g(z1,t, z1,t−1, . . . , �t, �t−1, . . . ).

can be considered. Here, g is possibly different from the former link function f .
In SDR only some of the latent components are considered as signal, i.e., those that carry

information about the response. In similar fashion this can be formulated generally for BSS
without a response variable. Namely, only some components might be of interest and the
remaining ones can be discarded as they are noise. The specific definition of noise depends on
the considered BSS model as follows.

3.1.5. Internal and external noise model

All the former BSS models share the same property that the source dimension as well as the
observable dimension is equal. However, often only a few components of the source are of
interest and the remaining ones can be discarded as noise. This circumstance leads to the
internal noise model (INM). In contrast, in the external noise model (ENM) it is assumed that
an additional p-variate noise term is added to the location scatter model.

Internal noise model The INM is formulated and discussed in the context of the SOS model
(Definition 8) as considered in Matilainen et al. (2018); Nordhausen and Virta (2018); Virta
and Nordhausen (2021) and defined as follows.

Definition 12 (Internal noise model in the SOS context (INM)). Let xt for all t ∈ Z be a
p-variate time series. xt follows an internal noise model if it can be written as

xt = A

�
zsg,t
zns,t

�
+ b,

where A is the deterministic p×p mixing matrix of full-rank and b is a p-variate deterministic

location vector. The latent time series zt =
�
z�sg,t, z�ns,t

��
can be divided into a q-variate

signal time series zsg,t and a (p − q)-variate noise time series zns,t satisfying the following
assumptions.

(INM 1) E (zsg,t) = 0, Cov(zsg,t) = E
�
zsg,tz

�
sg,t

�
= Ip for all t ∈ Z and

(INM 2) Cov(zsg,t+τ , zsg,t) = E
�
zsg,t+τz

�
sg,t

�
= Dτ for all t ∈ Z, τ = ±1,±2, . . . where Dτ is

a diagonal matrix containing the (univariate) autocovariance functions for each entry of
zsg,t which only depend on the lag τ on its diagonal.
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(INM 3) The noise time series zns,t is white noise with identity covariance matrix and it is
independent of zsg,t.

The above model states that the latent time series is divided into a signal time series and
noise time series where the former exhibits second order stationary dependence in time (the
signal time series obeys an SOS model) and the latter does not. Additionally, the signal and the
noise time series are statistically independent. The main goal for such a model is to estimate
the signal subspace (namely zsg,t and the corresponding dimension q). In further analysis only
the signal part of the latent time series can be considered which leads to dimension reduction
and further simplification of univariate modeling as only q time series need to be considered.
Nordhausen et al. (2017); Nordhausen and Oja (2018) consider a similar outline for the IC

model (Definition 7) where the components of interest (signal) are assumed to be non-Gaussian
and the noise part is assumed to be Gaussian. Nordhausen et al. (2017) provide bootstrap and
asymptotic strategies for the signal subspace estimation, Luo and Li (2016, 2021) determine
the signal subspace by using an information criterion based on eigenvalues and the variation
of eigenvectors.

External noise model In the following the ENM is formulated in the context of the SOS
model (Definition 8) as for example considered in Belouchrani and Cichocki (2000); Georgiev
and Cichocki (2001) or in Cichocki and Amari (2002, Chapter 4).

Definition 13 (External noise model in the SOS context (ENM)). Let xt for all t ∈ Z be a
p-variate time series. xt follows an external noise model if it can be written as

xt = Azt + b+ �t,

where A is the deterministic p×q mixing matrix of full-rank and b is a p-variate deterministic
location vector. xt is the p-variate observable time series, zt is the q-variate latent source time
series and �t is the p-variate noise fulfilling the following assumptions.

(ENM 1) E (zt) = 0, Cov(zt) = E
�
ztz

�
t

�
= Iq for all t ∈ Z,

(ENM 2) Cov(zt+τ , zt) = E
�
zt+τz

�
t

�
= Dτ for all t ∈ Z and τ = ±1,±2, . . . where Dτ is a

q×q diagonal matrix containing the (univariate) autocovariance functions for each entry
of zt which only depend on the lag τ on its diagonal,

(ENM 3) The noise �t is independent of the source zt, centered and exhibits zero serial de-
pendence and

(ENM 4) Cov(�t) = E
�
�t�

�
t

�
= R for all t ∈ Z where R is a non-negative definite p × p

matrix.

In contrast to the INM in the ENM a white noise time series is an additional additive term
to the location-scatter model and the source obeys a SOS model but the dimension q is less
or equal to p. The ENM model assumptions differ in the literature based on the context
of the analysis. For the case of q < p the goal is to infer the number q and provide an
orthogonal transformation to q components which still cover the signal. For this case Virta
and Nordhausen (2019) outlined a similar model for iid data. For the case of q = p the goal is
to properly estimate the unmixing matrix without influence of the noise which is outlined in
Belouchrani and Cichocki (2000); Georgiev and Cichocki (2001). Choi et al. (2002) combine
the ENM with the NSS model (Definition 9).
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3.2. Unmixing matrix functional properties

Two properties are usually formulated in the literature that BSS unmixing matrix functionals
are supposed to fulfill. Identifiability is concerned with assumptions on the latent vector in or-
der to make the model parameters identifiable (up to certain ambiguities). Affine equivariance
ensures that the same latent components are found independently of the way of mixing, it is
a property desired for many statistical tools.

Identifiability A natural discussion regards the question if (or under which conditions) the
model parameters, namely the mixing matrix A (or its counterpart the unmixing matrix W)
and the location vector b can be identified. Without any further assumptions on the source
the location-scatter model (Equation (3.1)) is totally ill-defined in the sense that the pairs
(A, z) and (AM,M−1z) lead to the same observable x for any invertible p× p matrix M. To
make the parameters more identifiable almost all BSS methods state assumptions on the first
two moments (e.g.: (IC 1) from Definition 7 or (SOS 1) from Definition 8). These assumptions
ensure an identifiable location vector and that the pairs (A, z) and (AV,V�z) lead to the
same observable x for any orthogonal p× p matrix V, where z∗ = V�z fulfills for example (IC
1).

Still, the set of orthogonal matrices is too rich, therefore, the ambiguities are reduced by
further assumptions on the latent vector. These further assumptions are specific to the form
of data and lead to a rich family of BSS models (see Section 3.1 for some examples). As an
example the IC model (Definition 7) is examined in more detail as follows. (IC 2) states that
the source is formed by independent components. On the one hand it is clear that if more than
one component of the latent vector is Gaussian distributed still an orthogonal matrix forms
the ambiguity of the model by the spherical symmetry of the standard normal distribution
but on the other hand it is not clear if (non-trivial) linear combinations of independent non-
Gaussian random variables can be constructed that are statistically independent. This would
again result in an orthogonal matrix ambiguity of the model. However, the Skitovich-Darmon
theorem (Ghurye and Olkin, 1962) states that if (non-trivial) linear combinations of indepen-
dent random variables that are themselves independent can be constructed then the original
random variables are Gaussian distributed. Both arguments above form the foundation of the
assumption (IC 3) which results in (almost) identifiable parameters as only pairs (A, z) and
(APJ,JP�z) lead to the same observable x, where z∗ = JP�z fulfills (IC 1) - (IC 3). Here,
P is any permutation matrix which contains exactly one 1 in each column and row and zero
otherwise and J is any sign-change matrix which is diagonal and contains either -1 or 1 as
diagonal elements. Therefore, (IC 3) results in a totally identifiable IC model meaning that
the unmixing matrix is now identifiable up to sign and order of its rows. Virta et al. (2016);
Nordhausen and Oja (2018) discuss implications for the IC model with more than one Gaussian
component which is then naturally an INM for the iid case.

Note that often it is said that the latent vector is identifiable up to sign and order, which in
its essence does not change the statements above. In some BSS models (e.g.: Definition 9) also
the scale is not identifiable, resulting in replacing PJ by PJD where D is any positive-definite
diagonal matrix. General discussions of the ambiguities in BSS models are given for example
in Tong et al. (1991); Eriksson and Koivunen (2004).

Affine equivariance Besides the discussion about indentifiability, BSS methods are also de-
sired to possess the affine equivariance property. Namely, if the observable is affine transformed
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by xaf = Mx + a where M is any invertible p × p matrix and a ∈ Rp is any vector then the
unmixing matrix functional W(xaf ) should equal W(x)M−1 up to the ambiguities discussed
before. Hence, the same latent vector z is obtained up to sign, order (and possible scale) inde-
pendently of the way of mixing, or alternatively independently of the coordinate system. BSS
methods are one of many statistical methods that possess the affine equivariance property, the
class of such methods is denoted as invariant coordinate system (ICS) and discussed for exam-
ple in Tyler et al. (2009); Ilmonen et al. (2010a, 2012). This property can be motivated also
by the fact that BSS methods were designed to recover physical processes that are measured
by sensors. The placement of the sensors defines the way of mixing (mixing matrix). Classical
physical processes take place equally independently of the actual way of measuring, therefore
recovering of these processes should be independent of the way of measuring as well.
One example of the great advantage of the affine equivariance property is given by data

where relative information is of importance. Such data is denoted as compositional data,
for details see textbooks such as Aitchison (2003). For compositional data it is common
to linearly transform the raw data into different coordinate systems which have advantages
in interpretation. However, the affine equivariance property of BSS methods leads to the
advantage that always the same latent components are found but interpretations can be carried
out with respect to the favored coordinate system. Details on that approach are given in
Nordhausen et al. (2015, 2021a); Muehlmann et al. (2021b).
Both properties above are formalized by the following definition (see also Miettinen et al.

(2015, Definition 1) for the iid case and Matilainen et al. (2015, Definition 1) for the time series
case).

Definition 14 (Unmixing matrix functional). Let x be a p-variate random vector following
an IC model from Definition 7. A p× p matrix-valued functional W(x) is an unmixing matrix
functional if it possesses the following identifiability and affine equivariance properties.

(Identifiability) W(z) = PJ for any p×p permutation matrix P and p×p sign change matrix
J.

(Affine equivariance) W(Mx + a) = PJW(x)M−1 where M is any invertible p × p matrix,
a is a p-dimensional vector, P is any p× p permutation matrix and J is any p× p sign
change matrix.

Note that Definition 14 is formulated for the special case of an IC model, but in its essence
the outline is equal for other BSS models. As discussed above for some BSS functionals it
is not possible to recover the scale. Therefore, the definition above would be adapted in the
sense that additionally to the indeterminacies of sign and order also the scale is added by a
positive-definite diagonal matrix.

Minimum distance index In simulation situations it is desirable to quantify the performance
of a BSS method. This can be done by measuring the distance between WA and the identity
matrix up to sign, order and scale. Note that due to the affine equivariance property WA
yields always PJ (or PJD), therefore, in simulations it comes without loss of generality to
only consider the trivial mixing A = Ip.

One popular performance measure is the so-called minimum distance index (MDI) studied
by Ilmonen et al. (2010b); Lietzen et al. (2020) and defined as follows (again formulated for
the IC model but easily adapted to any BSS model).
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Definition 15 (Minimum distance index). For a p-variate vector x generated by a IC model
(Definition 7) with corresponding mixing matrix A the minimum distance index (MDI) for an
unmixing matrix functional W = W(x) is defined as

MDI(W) =
1√
p− 1

inf
H∈H


HWA− Ip
F ,

where H is the set of all p× p matrices that contain exactly one non-zero element on each row
an column.

In the former definition 
·
F denotes the Frobenius matrix norm and H contains all possible
matrix products of sign change, permutation and positive-definite diagonal matrices (the inde-
terminacies outlined above). The MDI is a function MDI : Rp×p → [0, 1] where zero indicates
a perfect recovery of the unmixing matrix. Publications III, IV, and VI use this quantity to
validate the performance of the introduced BSS functionals in extensive simulation studies.

3.3. How to find an unmixing matrix functional?

The former sections review popular BSS models and state desirable properties of an unmixing
matrix functional. In this section approaches of finding such an unmixing matrix functional
are discussed. In general, this is a demanding task as an unmixing matrix is only restricted
to be invertible. Therefore, many BSS methods utilize the fact that the problem of finding
any invertible matrix can be reduced to only finding an orthogonal matrix after a proper
transformation. This is based on a theorem which is for example stated and proved in Miettinen
et al. (2015) for the IC model as follows.

Lemma 1. Let x be a p-variate random vector obeying an IC model (Definition 7). The
mean vector equals E (x) = b and the covariance matrix equals Cov(x) = AA�. The whitened
version of x writes as xwh = Cov−1/2(x) (x− b). Then, it holds that

xwh = U�z,

where U is some p× p orthogonal matrix.

Based on the former lemma the outline to find an unmixing matrix for almost all BSS
models can be divided into two steps. Whitening step: Whiten the observable with respect to
the covariance matrix (or suitable other matrices as discussed below). Rotation step: Find an
orthogonal transformation that maximizes some information criterion of interest. To obtain
the resulting unmixing matrix functional the matrices from the first and second step are simply
combined via matrix multiplication. Scatter matrices as defined below play an important role
in the discussion of BSS methods.

Definition 16 (Scatter matrix functional). Let x be a p-variate random vector. A p × p
matrix functional S = S(x) is a scatter matrix if it is symmetric, positive definite and possess
the affine equivariance property

S(Mx+ a) = MS(x)M�,

for any choice of x where M is any p× p invertible matrix and a is any p-dimensional vector.

Scatter matrices are discussed in the context of BSS for example by Oja et al. (2006) and
Nordhausen and Tyler (2015) where the latter publications relaxes the positive definite prop-
erty to positive semi-definiteness. Scatter matrices play also an important role in ICS (Ilmonen
et al., 2012).
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3.3.1. Whitening step

The whitening step is most often carried out with respect to the covariance matrix Cov(x)
which is the most prominent example of a scatter matrix. As it is positive (semi)-definite its
eigen-decomposition given by VDV� always exists, here V is an orthogonal matrix containing
the eigenvectors of Cov(x) as columns and D is a diagonal matrix containing the eigenvalues
of Cov(x) as diagonal entries. If the diagonal elements of D are pairwise distinct then the
eigen-decomposition is unique. Additionally, if the diagonal elements of D are strictly positive
(Cov(x) is positive definite) the inverse square-root of Cov(x) can be defined as VD−1/2V�

which is symmetric and unique as well. One advantage of the symmetric choice is its behavior
when the observable is transformed under affine transformations. As outlined by Ilmonen et al.
(2012) it holds that Cov−1/2(Mx + a) = OCov−1/2(x)M−1 for a unique orthogonal matrix
O, any invertible matrix M and any vector a. This property together with proper choices
of information criteria in the following discussed rotation step ensures the affine equivariance
property of BSS functionals generally. A thorough discussion of whitening is provided by
Ilmonen et al. (2012); Virta (2018).

The whitening step with respect to the covariance matrix also shows the relation of BSS
methods to PCA. The principal components are obtained by the orthogonal transformation
defined by the matrix of eigenvectors V�. The additional transformation given by D−1/2

transforms all the principal components to unit variance. In total the whitening step removes
the correlation structure of the observable where the last orthogonal transformation given by
V has no influence on the unit covariance. The followup rotation step in BSS methods yields
another rotation U which finds structure of the data past its correlation structure. In that
sense BSS methods might be seen as an extension of PCA. The relation between ICA and PCA
is also discussed by Nordhausen and Oja (2018); Virta (2018) and summarized by

V�(x− E (x)), VD−1/2V�(x− E (x)) and U�VD−1/2V�(x− E (x)).

Here the first form corresponds to the the principal components, the second form yields the
whitened version of x and the last form corresponds to the independent components. Figure 3.4
depicts the resulting principal components as well as the whitened version of the three models
seen in the second row of Figure 3.1.
The whitening step can in principle be carried out with respect to any scatter matrix func-

tional S = S(x). However, it must fulfill that the so-called global mixing matrix S−1/2(x)A is
orthogonal which is equivalent to the condition that S(z) = D where D is a positive definite
diagonal matrix. Note that usually S needs to additionally fulfill the independence property
which is in more detail discussed in Section 3.4.1. This ensures that the rotation step can be
carried out in a meaningful way. If so, it holds that S−1/2(x)(x − b) = S−1/2(x)Az = Uz
which reflects Lemma 1, where U is an orthogonal matrix and S−1/2(x)(x−b) is the whitened
version of x with respect to the scatter matrix S. This procedure is for example used in
BSS methods with external noise (more details in Section 3.5.2) where it is denoted as robust
orthogonalization, see Belouchrani and Cichocki (2000); Georgiev and Cichocki (2001); Choi
et al. (2002) or the textbook Cichocki and Amari (2002, Chapter 4).

3.3.2. Rotation step

The rotation step is concerned with finding an orthogonal matrix that maximizes some infor-
mation criterion of interest which is suited to the BSS model at hand. Two popular strategies
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Figure 3.4.: Principal components and the whitened version of the data seen in the second row
of Figure 3.1.

are utilized by almost all BSS methods. The first approach that is exclusively followed in
the present thesis is based on moment assumptions and simultaneous/joint diagonalization of
two/many suitable matrices. Such methods are sometimes denoted as algebraic BSS methods
and detailed in Section 3.4.

Another popular strategy is based on projection pursuit (PP) (Huber, 1985) ideas and orig-
inally formulated for the IC model leading to the well-known fastICA methodology. The main
idea of PP is to find linear combinations of the multivariate data at hand that maximize
some information criterion. This information criterion is also denoted as projection index and
typically has the following form for fastICA

p�
i=1

|G(u�
i x

wh)|a,

where U = (u1, . . . ,up) is the p × p orthogonal maximizer of the above projection index.
The so called non-linearity G : R → R is supposed to be non-linear and non-quadratic and
aims to measure the non-Gaussianity of its argument. Therefore, it possesses E (G(x)) = 0
if x ∼ N(0, 1). Popular choices for the non-linearity are the pow3, tanh and gauss function
which write as (x4 − 3)/4, log(cos(x)) − ct and − exp(−x2/2)cg(x

4 − 3)/4 respectively, where
ct and cg are constants to ensure the minimum condition. Algorithms that find the orthogonal
maximizer U are usually fixed-point algorithms and rely only on the derivatives of G which
act also as the names for the non-linearities.
FastICA methods can be roughly classified by the way of finding the orthogonal maximizer
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and the value of a ∈ {1, 2}. The first introduced fastICA method relies on the pow3 non-
linearity, a = 1 and finds each column of U one-by-one (this procedure is denoted as deflation-
based), see Hyvärinen and Oja (1997); Hyvärinen (1999a); Ollila (2010). The drawback of
the deflation-based approach is that the estimation quality depends heavily on the order of
the found directions as the error of estimation progresses through the directions. This issue is
addressed by the reloaded fast ICA method (Nordhausen et al., 2011) which uses firstly FOBI
or k-JADE (see the subsequent chapter) and then finds the optimal component order based
on asymptotic arguments. One step further is taken by Miettinen et al. (2014) who suggest a
fastICA variant where not only the optimal order but also the optimal non-linearity is chosen
from a broad set of functions based on asymptotic arguments, denoted as adaptive deflation-
based fastICA. The first row of Figure 3.5 illustrates the independent components found by
applying the adaptive deflation-based fastICA method on the data seen in the second row of
Figure 3.1. Another workaround is provided by the symmetric fastICA approach (Hyvärinen,
1999b; Wei, 2015), it uses a = 1 and finds all directions simultaneously (denoted as symmetric).
In similar fashion the squared symmetric fastICA variant (Miettinen et al., 2017) finds the
directions in a symmetric way and replaces the absolute value with the square (a = 2) for the
projection index leading to optimization equations that put more emphasis on non-Gaussian
components. For the above fastICA variants the reloaded, adaptive deflation-based, symmetric
and squared symmetric variants are affine equivariant whereas the original deflation-based
fastICA method lacks this property.

Also FastICA ideas are adapted for time series data for example by Hyvärinen (2001); Shi
et al. (2009).

3.4. Unnmixing matrix functionals using simultaneous/joint
diagonalization

Algebraic BSS methods are usually based on the diagonalization of two (simultaneous diago-
nalization) or many (joint diagonalization) matrices. The details on either approach as well as
specific methods for the models of Section 3.1 are discussed in the following.

Simultaneous diagonalization Simultaneous diagonalization is the problem of finding a ma-
trix that diagonalizes two symmetric matrices. Details on this problem can be found for
example in Harville (1997, Chapter 21).

Definition 17 (Simultaneous diagonalization problem). Let M1,M2 be two symmetric p× p
dimensional matrices. A p× p simultaneous diagonalization matrix W satisfies

WM1W
� = Ip and WM2W

� = D,

where D is a diagonal matrix.

The two conditions above are equivalently rewritten as

M2W
� = M1W

�D,

which can be identified as a generalized eigenproblem (GEVD) whereW� contains the general-
ized eigenvectors as columns and D carries the generalized eigenvalues as its diagonal elements.
The GEVD can always be solved, if M1 is positive-definite then the generalized eigenvalues are
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all positive and the generalized eigenvectors are orthogonal with respect to the inner product
defined by M1.
By further inversion of the involved matrices (M1 is from now on assumed to be positive

definite) the GEVD can be formulated as an eigenproblem by

M−1
1 M2 = W�DW−�,

where W� and D contain the eigenvectors (as columnvectors) and the eigenvalues (as diagonal
elements) of M−1

1 M2. Note that the latter matrix is not symmetric which leads to non-
orthogonal eigenvectors. In this view it is also clear that the solution is unique if the eigenvalues
of M−1

1 M2 are pairwise distinct.
It is also possible to find the simultaneous diagonalizer by utilizing a two step procedure.

In the first step the eigendecomposition of M1 = VD1V
� is performed and its square-root is

computed by M
−1/2
1 = VD

−1/2
1 V�. Secondly, the eigendecomposition of M

−1/2
1 M2M

−1/2
1 =

UD1,2U
� is performed which leads to the joint diagonalizer W = U�M−1/2

1 . This two-step
procedure reflects also the condition on M1 to be positive definite, otherwise the inversion of
M1 in the first step would be impossible. Note that in a BSS context M1 and M2 are scatter
matrices which leads to the fact that this two-step procedure is equal to the two-step outline
in Section 3.3. The first step corresponds to whitening of the observable and the second step
corresponds to the eigendecomposition of M2 evaluated on the whitened data.

Joint diagonalization Joint diagonalization is the extension of the simultaneous diagonaliza-
tion principle for more than two symmetric matrices.

Definition 18 (Joint diagonalization problem). Let M1, . . . ,MK be K symmetric p × p di-
mensional matrices with K > 2. A p× p joint diagonalization matrix W satisfies

WMkW
� = Dk for k = 1, . . . ,K,

where Dk are diagonal matrices.

As shown in Harville (1997, Chapter 21) exact joint diagonalization is only possible if the
matrices commute, i.e.: MkMl = MlMk for all k, l = 1, . . . ,K and k �= l. This is equivalent
to the statement that the eigenvectors are equal for all matrices Mk. The exact diagonalizer
is unique if for each pair i, j = 1, . . . , p and i �= j there exists a k ∈ {1, . . . ,K} for which the
diagonal elements of Dk are non-equal (Dk)ii �= (Dk)jj , see for example Belouchrani et al.
(1997).

In statistical applications the set of matrices to be jointly diagonalized do usually commute
on the population level but most often not on the sample level due to the estimation error.
Therefore, algorithms that approximately jointly diagonalize the matrices at hand need to be
utilized. Such methods find the joint diagonalizer by maximizing some diagonalization criterion
where most often the squared Frobenius matrix norm of the diagonal elements

K�
k=1


diag(WMkW
�)
2F

is maximized. To avoid finding the trivial solution (W = 0) many algorithms use one of the K

matrices to transform the remaining K − 1 by Mtr
k = M

−1/2
1 MkM

−1/2
1 for k = 2, . . . ,K and
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find an approximate joint diagonalizer U of the transformed matrices that is restricted to be

orthogonal. The joint diagonalizer of the original matrices is then given by W = U�M−1/2
1

Note that for this procedure M1 additionally needs to be positive definite. Yeredor (2002)
discusses procedures of finding the approximate joint diagonalizer without the orthogonality
constraint.

The orthogonal joint diagonalizer can be either found deflation based (each column is found
one by another) see Nordhausen et al. (2012) or each direction simultaneously. The latter
approach is exclusively followed by Publications I - VI. Specifically, iteratively Givens rotations
are performed on each 2 × 2 submatrix set until the angles of the rotations are very close to
zero. See Clarkson (1988); Cardoso (1989) for details on this approach and Theis and Inouye
(2006); Illner et al. (2015) for others.
For the BSS methods the set of matrices usually consists of scatter matrices. Therefore,

the transformation step above can be seen as a whitening step with respect to M1 and the
orthogonal joint diagonalizer is then found by diagonalizing the matrices M2, . . . ,MK which
are evaluated on the whitened data. This is equivalent to the outline in Section 3.3.

3.4.1. FOBI and JADE

Algebraic ICA methods use cumulants as the central information criterion for characterizing the
distribution of the observable as outlined by Virta (2018). Similar as moments the cumulants
are defined by the coefficients of the cumulant generating function

log(Mx(t)) with Mx(t) = E
�
exp(t�x)

�
.

In the above formula Mx(t) is the moment-generating function for a random vector x. As the
following methods rely on cumulants up to order four but usually one is used to work with
moments the relationship between the cumulants and the moments are given in the following.
For the marginal fourth order cumulants this yields

κ2(x) = E
�
x2

�
, κ3(x) = E

�
x3

�
and κ4(x) = E

�
x4

�− 3E
�
x2

�2
.

In similar fashion the excess kurtosis of a random variable can be expressed in terms of its
cumulants by

β2 =
κ4
κ22

,

which yields zero if the random variable is standard normal distributed, i.e.: x ∼ N(0, 1). For
the joint cumulants of random variables x1, x2, x3 and x4 it holds that

κ(x1, x2) = E (x1x2)

κ(x1, x2, x3) = E (x1x2x3)

κ(x1, x2, x3, x4) = E (x1x2x3x4)− E (x1x2)E (x3x4)

− E (x1x3)E (x2x4)− E (x1x4)E (x2x3) .

Based on the last line of the above equation all possible fourth order joint cumulants can be
captured by the following p2 matrices

Kij(x) = E
�
xwh
i xwh

j xwhxwh�
�
−Eij −E�

ij − tr(Eij)Ip,
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for i, j = 1, . . . , p, where Eij is the zero matrix where only the ij-th element caries an one and
xwh is the whitened version of x given by xwh = Cov−1/2(x)(x − E (x)). As the number of
different joint cumulant matrices rises quickly with the dimension of the data the information
of the cumulants is often somewhat compressed by considering the matrix of fourth moments

Cov4(x) =

p�
i=1

Kii(x) = E
�
xwh�xwhxwhxwh�

�
− 3Ip.

The key property of joint cumulants for the use in ICA states that if the argument of the
joint cumulant contains (at least) two independent random variables then the cumulant equals
zero. This property together with the IC model (Definition 7) leads to the fact that the joint
cumulant matrices as well as the matrix of fourth moments is diagonal when evaluated on the
source which motivates the diagonalization of this quantities as follows. More informations on
the use of cumulants in the context of ICA is given by Miettinen et al. (2015); Virta (2018).

FOBI One of the first ICA methods is the fourth order blind identification (FOBI) method
which is originally introduced by Cardoso (1989). It simultaneously diagonalizes the covariance
matrix and the matrix of fourth moments as follows.

Definition 19 (Fourth order blind identification (FOBI)). Let x be a p-variate random vector
following the IC model (Definition 7). The FOBI unmixing matrix functional W = W(x)
satisfies

WCov(x)W� = Ip and WCov4(x)W
� = D,

where D is a diagonal matrix with decreasingly ordered diagonal elements.

Note that in the FOBI method the order of the source components is determined by the
decreasingly ordered diagonal elements of the matrix D. As the matrix of fourth moments
is orthogonal invariant it immediately follows that FOBI is affine equivariant (Miettinen
et al., 2015). Additionally, the matrix of fourth moments evaluated on the source vector
z = (z1, . . . , zp) equals

Cov4(z) =

p�
i=1

(κ4(zi) + p+ 2)Eii,

which results in identifiable latent components if their fourth order cumulants are pairwise
distinct. As the fourth order cumulants are closely related with the kurtosis (see the above
outline) it can be equivalently stated that the kurtosis values of the source must be pairwise
distinct. This identifiability assumption is stricter than (IC 3) from the IC model. For more
details on FOBI see Miettinen et al. (2015); Nordhausen and Virta (2019).

JADE Joint approximate diagonalization of eigenmatrices (JADE) originally introduced by
Cardoso and Souloumiac (1993) is an extension of the FOBI methods which jointly diagonalizes
all p2 joint cumulants matrices as follows.

Definition 20 (Joint approximate diagonalization of eigenmatrices (JADE)). Let x be a p-
variate random vector following the IC model (Definition 7). Define the whitened version of
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Figure 3.5.: Independent components of the data seen in the second row of Figure 3.1 which
are found by the adaptive deflation-based fastICA or JADE method. Note that for the
multivariate normal model and for the elliptical model the found independent components
are only a random rotation of the whitened versions seen in the second row of Figure 3.4.
For the IC model both methods find the true independent components up to sign and
permutation.

x by xwh = Cov−1/2(x)(x − b). Let U = U(x) be the orthogonal p × p joint diagonalization
matrix of Kij(x) for i, j = 1, . . . , p, maximizing

p�
i,j=1


diag(U�Kij(x)U)
2F .

The JADE unmixing matrix functional W = W(x) equals W = U�Cov−1/2(x).

As shown in Miettinen et al. (2015) JADE is affine equivariant and the source is identifiable
if at most one latent component has zero fourth order cumulant (or equivalently kurtosis). The
last row of Figure 3.5 illustrates the found independent components when FOBI is applied on
the data seen in the second row of Figure 3.1.

As the number of joint cumulant matrices rises quickly with the dimension of the source
Miettinen et al. (2013) introduce the k-JADE method. It uses the FOBI result for whitening
and then diagonalizes all joint cumulant matrices Kij for i, j = 1, . . . , p with the condition that
|i− j| < k.

Related methods A related approach to find an unmixing matrix functional for the IC model
(Definition 7) is followed by Oja et al. (2006); Taskinen et al. (2007); Nordhausen et al. (2016).
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All publications consider simultaneous diagonalization of scatter matrices that posses the in-
dependence property defined as follows.

Definition 21 (Independence property). Consider any p-variate random vector x and a scatter
matrix functional S = S(x) (Definition 16). If S(x) is diagonal for any choice of x with
independent components then it is said to posses the independence property.

As proven in Oja et al. (2006); Nordhausen and Tyler (2015) scatter matrices symmetrized
in terms of differences posses the independence property. A symmetrized version of a scatter
matrix is given by

Ss(x) = S(v −w),

where v and w are independent copies of the random vector x. Naturally, the covariance
matrix is already symmetrized as Cov(x) = 2−1E

�
(v −w)(v −w)�

�
. For example a popular

robust counterpart of the covariance matrix is the minimum determinant covariance (MCD)
(Hubert et al., 2018) which does not posses the independence property unless it is symmetrized.
Therefore, a procedure to construct robust BSS functionals can be based on robust scatter
matrices which are evaluated on differences. Nordhausen and Tyler (2015) argued theoretically
and in simulations that this procedure is valid. Note that the number of differences rises with
the square of the sample size resulting in very expensive computations of the symmetrized
versions.

3.4.2. AMUSE and SOBI

In contrast to the ICA methods BSS for stationary time series relies on the dependence between
the random vectors at different time stamps. Under the weak stationarity assumptions the
autocovariance can be written as

Sτ (xt) = E
�
(xt+τ − E (xt))(xt − E (xt))

�
�
.

As the former quantity is not symmetric, (i.e.: E (xi,t+τxj,t) �= E (xj,t+τxi,t)) it is often sym-
metrized by

S�
τ (xt) =

1

2

�
Sτ (xt) + S�

τ (xt)
�
,

which forms the basis for the algorithm for multiple unknown signals extraction (AMUSE) and
the second-order blind identification (SOBI) methods where both solve the SOS model seen in
Definition 8.

AMUSE One of the first unmixing matrix functionals for the SOS model is the AMUSE
method (Tong et al., 1990) that simultaneously diagonalizes the covariance matrix as well as
one autocovariance matrix as follows.

Definition 22 (Algorithm for multiple unknown signals extraction (AMUSE)). Let xt be a
p-variate time series following the SOS model (Definition 8). Let τ > 0 be some lag. The
AMUSE unmixing matrix functional W = W(xt) satisfies

WCov(xt)W
� = Ip and WS�

τ (xt)W
� = D,

where D is a diagonal matrix with decreasingly ordered diagonal elements.
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Figure 3.6.: Latent time series which are found by applying SOBI with the set of lags L =
{1, . . . , 12} on the data seen in Figure 3.3.

The AMUSE unmixing matrix functional is affine equivariant (Miettinen et al., 2012) and it
is identifiable if the diagonal elements of S�

τ (zt) are pairwise distinct. In practical applications
the considered lag is often chosen to be τ = 1 as the autocovariances of the source compo-
nents might be most different for this choice. Generally, the performance of AMUSE crucially
depends on the choice of the lag, hence, the identifiability condition might be too restricting.
Therefore, a method that jointly diagonalizes several autocovariances is introduced.

SOBI The SOBI methods (Belouchrani et al., 1997) solves the SOS model by diagonalizing
several autocovariance matrices as follows.

Definition 23 (Second-order blind identification (SOBI)). Let xt be a p-variate time se-
ries following the SOS model (Definition 8). Define the whitened version of xt by xwh

t =
Cov−1/2(xt)(xt−b). Let L be a finite set of strictly positive integer numbers which act as lags.
Let U = U(xt) be the orthogonal p × p joint diagonalization matrix of S�

τ (x
wh
t ) for τ ∈ L,

maximizing �
τ∈L


diag(U�S�
τ (x

wh
t )U)
2F .

The SOBI unmixing matrix functional W = W(xt) equals W = U�Cov−1/2(xt).

The SOBI method is affine equivariant and the parameters are identifiable if for each pair
i, j = 1, . . . , p with i �= j there exists a lag τ ∈ L for which (S�

τ (zt))ii �= (S�
τ (zt))jj which is far

less restricting than the AMUSE identifiability condition (Miettinen et al., 2016). In practical
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applications often the lags from one to twelve are used, however, as pointed out by Tang et al.
(2005) this choice is not always the optimal one. Figure 3.6 depicts the latent time series when
SOBI is applied on the the data from Figure 3.3. More details on the SOBI (and AMUSE)
method are given by Miettinen et al. (2012, 2016).

As the order of the latent components is not identifiable often the order of the sources is
dictated by the decreasing order of the so-called pseudo-eigenvalues

λ2
i =

�
τ∈L

�
u�
i S

�
τ (x

wh
t )ui

�2
,

where U = (u1, . . . ,up) meaning that ui is the i-th column of the orthogonal joint diagonalizer.
Based on this definition it might be viewed in the way that the order is determined by the
found source components that show the highest serial second order dependence averaged over
the chosen lags L.

Related methods The SOS model and the above two unmixing matrix functionals are based
on the use of second order time dependence structure and processes that are weakly stationary
(e.g.: ARMA processes). Different forms of processes are more suited towards financial time
series. Specifically, financial time series exhibit so-called stochastic volatility which leads to
the fact that the information is captured in higher order time dependence. Certain time series
models exhibiting stochastic volatility have a vanishing second-order serial dependence (e.g.:
ARCH, GARCH or SV processes see for example Matteson and Ruppert (2011) and references
below) which are clearly not captured by the SOS model leading to the fact that AMUSE or
SOBI delivers meaningless results. To overcome this issue Matilainen et al. (2015) extended the
IC model (Definition 7) by stating that the source time series are independent and introduce
generalized FOBI and JADE (gFOBI and gJADE) which utilize joint cumulant matrices (and
the matrix of fourth moments) for different lag combinations.

A different direction is taken by introducing non-linearities in the optimization problem of
the original SOBI by

�
τ∈L

p�
i=1

���E�
G(u�

i x
wh
t+τ )G(u�

i x
wh
t )

�
− E

�
G(u�

i x
wh
t+τ )

�
E
�
G(u�

i x
wh
t )

����a ,
where U = (u1, . . . ,up) is an orthogonal maximizer. For the choice of a = 1 the above function
leads to the fixed-point algorithm for maximizing the non-linear autocorrelation (FixNA) and a
variant of it (FixNA2) introduced by Hyvärinen (2001); Shi et al. (2009). For the choice a = 2
Matilainen et al. (2017b) introduce the variant of SOBI (vSOBI) method, this publication gives
also statistical properties and comparisons of the three methods.

The most general method is introduced by Miettinen et al. (2020) which is designed for
a source containing components that show stochastic volatility as well as second order serial
dependence. This generalized SOBI (gSOBI) method combines the original SOBI with a vSOBI
variant (G(x) = x2) leading to

w
�
τ1∈L1

p�
i=1

�
u�
i E

�
xtx

�
t+τ1

�
ui

�2
+ (1− w)

�
τ2∈L2

p�
i=1

�
E
�
(u�

i xt)
2(u�

i xt+τ2)
2 − 1

��2
,

where U = (u1, . . . ,up) is an orthogonal maximizer. The left part of the above equation is the
SOBI part which uses the lag set L1 and the right part is the vSOBI part using the lag set L2
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where the strength of either part is controlled by the weight w ∈ [0, 1]. The proposed default
values are given by L1 = {1, . . . , 12}, L2 = {1, 2, 3} and w = 0.9 and Piccolotto et al. (2020)
provide visual analytic tools for choosing appropriate parameters for the problem at hand.

Effort has been put in developing a robust counterpart to the classical SOBI estimator. To
ensure robust BSS estimators the whitening step has to be adapted as well as the information
criteria that are used in the rotation step. This needs robust location and scatter functionals
that are diagonal for the source under the SOS model, as pointed out above and by Nordhausen
and Tyler (2015) symmetrized scatter matrices can be used. Theis et al. (2010) used spatial
sign autocovariance matrices defined by

Ssp
τ (xt) = E

�
xt+τ


xt+τ

xt


xt

�

for the whitening as well as the rotation step. These matrices are robust as the absolute
value of the random vector at time t is canceled by the division through the norm of it. This
sign autocovariance SOBI (SAM-SOBI) method is not affine equivariant as the Ssp

τ matrices
are only orthogonal invariant which leads to problems in the whitening step. Ilmonen et al.
(2015) introduce an affine equivariant extension denoted as eSAM-SOBI which uses the robust
Hettmansperger-Randels estimates of location and scatter (Hettmansperger and Randles, 2002)
that are affine equivariant.

3.4.3. NSS-SD, NSS-JD and NSS-TD-JD

The NSS model (Definition 9) allows for time varying variance as well as autocovariances
that specifically depend on the time stamps. Therefore, the covariance is not equal along time
which leads to the need of an adapted whitening procedure and additionally a new information
criterion for the rotation step. For this purpose Choi and Cichocki (2000a,b) introduce the
notion of (auto)covariances that are computed only for a subset of the whole time series.
Specifically, for a finite set T = {t1, t1+1, . . . , t2} ⊂ Z with t1 < t2 the autocovariance for this
interval can be defined by

ST ,τ (xt) =
1

|T | − τ

�
t∈T

E
�
(xt+τ − E (xt))(xt − E (xt))

�
�
I(t+ τ ∈ T ),

where again the mean is assumed to be constant (see the NSS model). As introduced above
S�
T ,τ (xt) is the symmetrized version of the above quantity. For a lag of τ = 0 this reduces to

the average covariance in the finite sub time series T

ST ,0(xt) =
1

|T |
�
t∈T

E
�
(xt − E (xt))(xt − E (xt))

�
�
,

which is also a reasonable choice for whitening if the set T is chosen to be the whole available
time series. Based on the former quantities Choi and Cichocki (2000a,b) introduce the following
three methods that solve the NSS problem.

NSS-SD Two average covariance matrices for two different sub time series are simultaneously
diagonalized by the non-stationary source separation simultaneous diagonalization (NSS-SD)
method.
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Definition 24 (Non-stationary source separation - simultaneous diagonalization (NSS-SD)).
Let xt be a p-variate time series following the NSS model (Definition 9). Consider two non-
overlapping finite time intervals T1, T2 ⊂ Z. The NSS-SD unmixing matrix functional W =
W(xt) satisfies

WST1,0(xt)W
� = Ip and WST2,0(xt)W

� = D,

where D is a diagonal matrix with decreasingly ordered diagonal elements.

The NSS-SD functional is affine equivariant and the parameters are identifiable if the di-
agonal elements of S−1

T1,0(zt)ST2,0(zt) are pairwise distinct (Nordhausen, 2014). Similar as in
the stationary case the identifiability condition might be too restricting which leads to the
following extension.

NSS-JD The non-stationary source separation joint diagonalization (NSS-JD) method jointly
diagonalizes several average covariance matrices for different sub time series.

Definition 25 (Non-stationary source separation - joint diagonalization (NSS-JD)). Let xt

be a p-variate time series following the NSS model (Definition 9). Consider K + 1 finite time
intervals T , T1, T2, . . . , TK ⊂ Z, where T1, . . . , TK are non-overlapping and T corresponds to

the whole considered time. Define the whitened version of xt by xwh
t = S

−1/2
T ,0 (xt)(xt − b). Let

U = U(xt) be the orthogonal p × p joint diagonalization matrix of STk,0 for k = 1, . . . ,K,
maximizing

K�
k=1


diag(U�STk,0(x
wh
t )U)
2F .

The NSS-JD unmixing matrix functional W = W(xt) equals W = U�S−1/2
T ,0 (xt).

Again the NSS-JD functional is affine equivariant but the identifiability condition is less
restrictive as the parameters are identifiable if for each pair i, j = 1, . . . , p with i �= j the exists a
k ∈ {1, . . . ,K} for which (S−1

T ,0(zt)STk,0(zt))ii �= (S−1
T ,0(zt)STk,0(zt))jj . The above two methods

utilize only information from the covariance that is possibly different across time. Information
useful for the signal separation might also be present in the autocovariance structure which is
exploited in the following method.

NSS-TD-JD The non-stationary source separation time delayed joint diagonalization (NSS-
TD-JD) method jointly diagonalizes many autocovariance matrices for different sub time series.

Definition 26 (Non-stationary source separation - time delayed - joint diagonalization (NSS-T-
D-JD)). Let xt be a p-variate time series following the NSS model (Definition 9). Consider
K + 1 finite time intervals T , T1, T2, . . . , TK ⊂ Z, where T1, . . . , TK are non-overlapping and
T corresponds to the whole considered time and a finite set of non-negative integers L acting

as lags. Define the whitened version of xt by xwh
t = S

−1/2
T ,0 (xt)(xt − b). Let U = U(xt) be

the orthogonal p × p joint diagonalization matrix of S�
Tk,τ for k = 1, . . . ,K and all τ ∈ L,

maximizing
K�
k=1

�
τ∈L


diag(U�S�
Tk,τ (x

wh
t )U)
2F .

The NSS-TD-JD unmixing matrix functional W = W(xt) is written as W = U�S−1/2
T ,0 (xt).
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The NSS-TD-JD functional is affine equivariant and the parameters are identifiable if for
each pair i, j = 1, . . . , p with i �= j the exists a k ∈ {1, . . . ,K} and τ ∈ L for which
(S−1

T ,0(zt)STk,τ (zt))ii �= (S−1
T ,0(zt)STk,τ (zt))jj . This is the most general condition for these three

different estimators. Note that the NSS-SD and the NSS-JD are special cases of the NSS-TD-
JD method and if in the set of lags L the element zero is contained then NSS-TD-JD is the
most general method. However, the number of matrices that need to be jointly diagonalized
equals |L|K which might lead to noise for the utilized approximate joint diagonalization algo-
rithms. In similar fashion when only one time interval is considered (K = 1) then NSS-TD-JD
reduces to AMUSE/SOBI (Definition 22/23) if the set of lags consists of one/many elements.
Furthermore, to properly estimate the autocovariance matrices weak stationary needs to hold
in each of the intervals Tk. In practical applications the choice of this intervals is not clear
a-priori, often the time series is divided into a small number of equal length intervals in order
to keep the sample size (for each interval) relatively high for proper estimation of the involved
quantities.

Related methods Nordhausen (2014) introduces robust counterparts for the above three
methods by again using spatial sign matrices and the Hettmansperger-Randels estimates for
whitening as done in the stationary counterpart method eSAM-SOBI described above.

3.4.4. SIR in a blind source separation context

One of the first SDR methods is sliced inverse regression (SIR) originally introduced by (Li,
1991). It is based on inverse regression meaning that the role of the predictor x and the
regressor y are interchanged. The key quantity in SIR is the covariance of the inverse regression
curve

Cov(E (x|y)).
Under the model assumptions of Definition 10 (and also the less restrictive version stated in
the original SIR publication) it holds that

Cov(E (z|y)) =
�
Cov(E (z1|y)) 0

0 0

�
,

which motivates to diagonalize this quantity evaluated on the whitened vector x leading to the
SIR method embedded in the BSS methodology as described in Matilainen et al. (2017a).

Definition 27 (SIR in a BSS framework). Let (y,x�)� be a (p + 1)-variate random vector
following the BSS SDR model (Definition 10). The SIR unmixing matrix functional W =
W((y,x�)�) satisfies

WCov(x)W� = Ip and WCov(E (x|y))W� = D,

where D is a diagonal matrix with decreasingly ordered diagonal elements.

Computation of the inverse regression curve is rather complicated. Therefore, the real line
is usually split into K non-overlapping intervals (R = R1 ∪ · · · ∪ RK) and the regressor is
replaced by its sliced counterpart ysl(y) =

�K
k=1 ykI(y ∈ Rk) for some choices yk. Often ten

slices are used and yk are chosen to be the sample mean of each slice. The found components
Wx are whitened, the components of the corresponding inverse regression curve E (Wx|y)
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are uncorrelated and their order is given by their variances contained as diagonal elements
of the matrix D. Moreover, the variances hint the importance of the dependence between
the regressor and the components of Wx and the last p − r values should be zero under the
model assumptions. Tests for the actual dimension of r are discussed in Bura and Cook (2001);
Nordhausen et al. (2021b). Note that the original SIR method is equal to the BSS SIR method
above. The core difference is that the model in the original SIR publication is less restrictive
than the one state in Definition 10.
For the time series SDR model seen in Definition 11 Matilainen et al. (2017a) extended the

former framework to also consider lagged inverse regression curves as the serial dependence
present in time series data is something to consider naturally. Specifically, the quantities of
interest write as

Cov(E (xt|yt+τ )) for all τ ≥ 0.

As seen before the model assumptions lead to

Cov(E (zt|yt+τ )) =

�
Cov(E (z1,t|yt+τ )) 0

0 0

�
for all τ ≥ 0,

which motivates to jointly diagonalize a number of such matrices as introduced by Matilainen
et al. (2017a).

Definition 28 (Time series SIR in a BSS framework (TSIR)). Let (yt,x
�
t )

� be a (p + 1)-
variate time series following the time series BSS SDR model (Definition 11). Define the
whitened version of xt by xwh

t = Cov−1/2(xt)(xt − b). Let L be a finite set of non-negative
integer numbers. Let U = U((yt,x

�
t )

�) be the orthogonal p× p joint diagonalization matrix of
Cov

�
E
�
xwh
t |yt+τ

��
for τ ∈ T , maximizing�

τ∈L

���diag�U�Cov
�
E
�
xwh
t |yt+τ

��
U
����2

F
.

The TSIR unmixing matrix functional W = W((yt,x
�
t )

�) is written as W = U�Cov−1/2(xt).

In the same fashion as in the iid case the response time series yt is sliced to estimate the
different lagged inverse regression curves. The key advantage of jointly diagonalizing the
covariance matrices of the lagged inverse regression curves is given by the fact that the squared
pseudo-eigenvalues

λi,τ =
�
u�
i Cov

�
E
�
xwh
t |yt+τ

��
ui

�2

hold the desired information about the dependence structure between the response and the
latent time series. The components of Wxt are order according to λi,. =

�
τ∈L λi,τ where high

values indicate a strong dependence between the component and the response time series. High
values of λi,τ indicate a strong dependence between the i-th found component and the lagged
response time series yt+τ . Matilainen et al. (2017a) introduce several strategies of finding the
most important components and lag combinations for further regression analysis based on the
pseudo-eigenvalues.

Related methods One disadvantage is that the SIR methodology fails completely when the
relationship between the response and source is symmetric (i.e.: y = f(z1) + � where f is
symmetric in its argument). To overcome this issue Cook (2000) replace the inverse regression
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curve E (x|y) by the conditional variance Cov(x|y) where the resulting method is denoted as
sliced average variance estimation (SAVE). In the same fashion as in the above outline for SIR
Matilainen et al. (2019) reformulate SAVE in a BSS framework. Additionally, the publication
introduces its time series variant TSAVE as well as a novel estimator that combines TSIR and
TSAVE denoted as time series SIR and SAVE hybrid (TSSH) which uses a combination of the
variation of the inverse regression curve and the conditional variance.

3.5. Determining the signal subspace in noisy models

For the INM (Definition 12) as well as the ENM (Definition 13) the first goal is to find the
signal dimension q which can be done for example as follows.

3.5.1. Asymptotic and bootstrap tests and ladle estimator for the internal noise
model

Considering the INM (Definition 12) the main interest is to find the number of signal compo-
nents of the latent time series. This can be achieved by formulating a statistical test with the
following null hypothesis for q ∈ {0, · · · , p− 1}

H0 : There are exactly p− q white noise time series in zt.

A procedure for testing this null hypothesis as considered in Virta and Nordhausen (2021)
can be motivated as follows. Under sufficient conditions (stated in the former publication), for
a given finite set of strictly positive integers (set of lags) L a given observable time series of
length T the AMUSE or SOBI method (Definition 22 or 23) estimates an unmixing matrix Ŵ
which makes the matrices

D̂τ = ŴŜ�
τ (xt)Ŵ

� for all τ ∈ L,

as diagonal as possible. Under the null the last p− q latent components do not exhibit second
order serial dependence. This motivates to split the above matrices into blocks leading to the
form

D̂τ =

�
D̂qq

τ D̂q0
τ

D̂0q
τ D̂00

τ

�
for all τ ∈ L,

where D̂qq
τ is a q×q and D̂00

τ is a (p−q)×(p−q) matrix corresponding to the (p−q)×(p−q) matrix
Ŝ�
τ (ẑns,t). The latter quantity should be (approximately) the zero matrix as it corresponds to

the (estimated) autocovariance at lag τ of the estimated noise part ẑns,t which is white noise
under the null (it does not exhibit serial dependence). Therefore, the following test statistics
can be motivated

tq =
1

|L|(p− q)2

�
τ∈L


D̂00
τ 
2F . (3.2)

The distribution of the null hypothesis can be either approximated by bootstrap strategies
or by large sample theory results (both strategies are discussed below) and the test can be
carried out for a specific number of signal components q.

Estimation of the actual signal dimension can be obtained by sequentially carrying out the
tests for different hypothetical noise dimensions where Matilainen et al. (2018); Virta and
Nordhausen (2021) consider a forward, backward and divide-and-conquer strategy. A forward
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strategy starts with q = 0 and decreases this number by one until the first test accepts the null
hypothesis, a backward strategy starts with q = p − 1 and the signal dimension is estimated
by q� − 1 where q� is the hypothetical noise dimension of the first rejecting test. Another
approach is the divide-and-conquer strategy which halves the interval of possible hypothetical
noise dimensions until the border between rejection and acceptance of the tests is found.

Asymptotic results Virta and Nordhausen (2021) provide and proof the following result based
on the former outline.

Proposition 1. Under sufficient conditions it holds that

T |L|(p− q)2tq
L−→ χ2

|L|(p−q)(p−q+1)/2 as n → ∞,

where χ2
ν denotes the chi-square distribution with ν degrees of freedom.

The sufficient conditions state that each signal time series has at least for one lag τ ∈ L non-
vanishing autocovariance and that the latent time series is a linear process having a MA(∞)
representation. The exact conditions are found in the original publication. The closed form
asymptotic distribution of the test statistic can be easily used to carry out an (approximate)
test for the signal dimension q.

Virta and Nordhausen (2021) provide also a result that the signal dimension can be con-
sistently estimated. However, the practical use of this result is rather limited. Therefore,
estimation of the signal dimension is based on strategies that apply sequential hypothesis test
as described above.

Bootstrap strategies The bootstrap is a non-parametric statistical tool which is developed
to estimate the distribution or population quantities (e.g. the mean squared error (MSE)) of
some considered estimator. Details on the bootsrap can be found in monographs such as Lahiri
(2003). In the following the idea of the bootstrap is explained for the iid case.

Let X1, X2, . . . be a sequence of iid random variables with common cdf F and let X1, . . . , Xn

be the n random variables which generate the sample of size n. Furthermore, θ is a parameter
of the random process of interest (hence θ = θ(F )) and θ̂n = g(X1, . . . , Xn;F ) is a sample
estimate of θ. The goal is to estimate population quantities or the distribution of θ̂n without
stating any assumptions on the unknown cdf F based on the sample alone. This is done by
firstly replacing F with an estimate Fn, usually Fn is chosen to be the empirical cumulative
distribution function (ecdf) defined by

Fn(x) =
1

n

n�
i=1

I(Xi ≤ x).

Secondly, the original sample is replaced by a bootstrap sample X∗
1 , . . . , X

∗
n which is generated

by using the estimator Fn (for simplicity the number or replicates is chosen to be the sample
size). Lastly, the distribution of the bootstraped quantity θ̂∗n = g(X∗

1 , . . . , X
∗
n;F

∗
n) denoted as

Gn is studied. In practice, as the number of distinct bootstrap samples is given by nn and the
distribution of θ̂∗n depends on this additional variation of the bootstrapped sample usually Gn

is studied approximately by making use of the Gliwenko-Cantelli theorem. Namely, repeating
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the sampling procedure B times leading to X∗
1,b, . . . , X

∗
n,b and θ̂∗n,b = g(X∗

1,b, . . . , X
∗
n,b;F

∗
n) for

b = 1, . . . , B then it holds that

1

B

B�
b=1

I(θ̂∗n,b ≤ x) ≈ Gn(x).

In this view the distribution of θ̂∗n can be approximated with higher precision by simply drawing
an increasing number of bootstrap samples. Nordhausen et al. (2017) use this iid bootstrap
strategy in the context of the IC model and FOBI.
Matilainen et al. (2018) consider the following strategy for the time series setting. The aim

is to investigate the distribution of the test statistic under the null hypothesis Hq which can
be used to estimate p-values. Namely, the quantity of interest is a bootstrap estimate of

P (tq ≤ x).

Naturally, for a time series xt following the INM (Definition 12) and in the outline above
the test statistic tq = tq(xt) is a function of xt. A procedure to generate bootstrap samples x∗

t

under the null hypothesis that the last p− q components of the source are white noise can be
formulated in the following three step procedure.

Step 1 The source time series ẑt and the unmixing matrix Ŵ are estimated by SOBI (or
AMUSE) based on the set of lags L and the corresponding test statistic tq(xt) is com-
puted.

Step 2 The last p − q components of ẑt are white noise under the null hypothesis. Hence,
they are replaced by a bootstrap sample using one of the four subsequently described
strategies.

Step 3 The bootstrap sample ẑ∗t generated in Step 2 is mixed again by x̂∗
t = Ŵ−1ẑ∗t which

leads to a bootstrap sample x̂∗
t of the original time series xt. x̂

∗
t is used to compute the

test statistic t∗q(x̂∗
t ).

In order to estimate the p-value forH0 Steps 2 and 3 are repeated B times leading to t∗q,b(x̂
∗
t,b)

for b = 1, . . . , B. The p-value is then simply given by the ratio of bootstraped test statistics
that are larger as the original one

p̂ =
#(t∗q,b ≥ tq) + 1

B + 1
,

where the plus one in the numerator and denominator account for possible numerical instabil-
ities ensuring that a p-value of zero is impossible.
Matilainen et al. (2018) introduces four different approaches of generating a bootstrap sample

for Step 2 as follows.

Parametric The noise is assumed to be iid standard normal. Therefore, bootstrap samples are
drawn from N(0, 1).

Non-parametric 1 The above parametric assumption is relaxed by only assuming that the
noise part is an iid realization of some distribution. Hence, the bootstrap sample is
drawn from the ecdf of the joint T (p− q) noise vector.
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Non-parametric 2 Here the above parametric assumption is relaxed by assuming that each in-
dividual noise component is an iid realization of some (not necessarily equal) distribution.
Therefore, each noise component is bootstraped from the individual ecdf’s.

Non-parametric 3 Here it is assumed that the p − q noise vector is a realization of some
multivariate (not serially dependent) distribution. Leading to a the bootstrap sample
drawn from the multivariate ecdf of the p− q noise samples.

Note that the above approaches only resample the hypothetical noise part, variation from
the time series structure is not accounted. Probably a more suited strategy would be to
additionally draw a time series bootstrap sample after the noise part is manipulated.

Equally as in the asymptotic testing strategy the estimation of the signal dimension can be
carried out by sequentially testing for different signal dimension, e.g.: with the divide-and-
conquer strategy discussed above.

Signal dimension estimation based on the variation of eigenvectors Nordhausen and Virta
(2018) estimate the signal dimension q by focusing on the variation of eigenvectors when
the corresponding eigenvalues are degenerated. Specifically, the last p − q orthogonal vectors
found in the rotation step of the SOBI or AMUSE method cannot be recovered as the last p−q
eigenvalues of the symmetrized autocovariance matrices are all zero under the null (as the last
p − q components are white noise). Hence, when drawing bootstrap samples the variation of
the p− q last orthogonal vectors should be much higher than the variation for the first q ones.
This procedure is denoted as ladle strategy and originally formulated by Luo and Li (2016) in
an iid context.

For this approach the original iid bootstrap is not suitable as the serial dependence would be
completely destroyed when drawing a bootstrap sample from the ecdf of the data. Therefore,
Kunsch (1989) introduces the block bootstrap method where the set of bootstrap candidates
are not the individual observations for each time stamp but rather sub time series of equal
length that either overlap or non-overlap. However, this approach does not necessarily generate
bootstrap samples that are second order stationary which is desired as the SOS model is
considered. It turns out that relaxing the fixed block length to rather generate sub time series
of different lengths where the lengths are samples from the geometric distribution is enough to
keep the bootstrapped time series stationary. This procedure is denoted as stationary bootstrap
and detailed in Politis and Romano (1994). Nordhausen and Virta (2018) use both bootstrap
strategies in the context of the ladle estimate and carry out an extensive simulation study.

3.5.2. PCA and robust whitening for the external noise model

Considering the ENM (Definition 13) with q < p an orthogonal transformation can be found by
using PCA and discarding the last p− q components. For that purpose Virta and Nordhausen
(2019) replace (ENM 4) by the stricter assumption that �t has a spherical distribution centered
around zero and that its covariance matrix is of the form R = σIp. With this stricter assump-
tion the eigenvalues of the covariance matrix Cov(xt) equal λ1+σ ≥ · · · ≥ λq+σ > σ = · · · = σ
where the values λi for i = 1, . . . , q are the squared singular values of the p× q mixing matrix
A. These eigenvalues can be either used in graphical diagnostic tools such as the scree-plot
or Virta and Nordhausen (2019) formulate statistical tests for q based on asymptotic results
or bootstrap strategies. The orthogonal transformation given by the first q eigenvectors of

48



Cov(xt) leads to components that still cover the signal but discard meaningless components of
the original time series.

For the case of q = p (this case can also be achieved by firstly using the former strategies) the
main aim is to estimate the unmixing matrix by avoiding the influence of the external noise.
For this purpose Belouchrani and Cichocki (2000); Georgiev and Cichocki (2001) introduce
a robust whitening procedure which accounts for the fact that the regular covariance matrix
equals

Cov(xt) = ACov(zt)A
� +R,

where Cov(zt) is a positive definite diagonal matrix. The above equation shows that whitening
with respect to the standard covariance matrix is corrupted by the additional covariance term
of the noise R. In contrast, (symmetrized) autocovariance matrices are not influenced by the
noise as

S�
τ (xt) = AS�

τ (zt)A
� for all τ > 0,

where S�
τ (zt) is a positive semi-definite diagonal matrix. In that view whitening can be carried

out with respect to an autocovariance matrix. However, this is not always possible as it is not
ensured that S�

τ (zt) is positive definite which results in the fact that S�
τ (xt) cannot be inverted.

To overcome this issue a positive definite linear combination of autocovariance matrices

|L|�
i=1

αiS
�
τ (xt)

can be found, where L is a finite set of positive integers (the set of lags). Belouchrani and
Cichocki (2000); Georgiev and Cichocki (2001) outline an iterative algorithm to find the pa-
rameters αi which is ensured to converge in a finite number of steps as outlined in Tong et al.
(1991). Note that in the ENM the source time series can never be estimated asWxt = zt+W�t
(up to the standard ambiguities of BSS) where the (transformed) noise partW�t is still present.
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4. Spatial blind source separation

The following part forms the core of the present thesis. It is devoted to combine the geostatis-
tical principles seen in Section 2 with the BSS principles discussed in Section 3 by summarizing
the main contributions of Publications I-VI. Specifically, Section 4.1 summarizes the findings
of Nordhausen et al. (2015); Bachoc et al. (2020) and Publication I which considers BSS for
stationary random fields (SBSS) and a properly adapted INM with concepts of estimating
the signal subspace. Section 4.2 discusses implications for the SBSS methodology when a
non-constant drift is present (Publication II and III) and when the second order (spatial)
dependence is non-stationary (Publication IV). Lastly, Section 4.3 outlines how the unmix-
ing matrix functionals introduced in Section 4.1 and 4.2 can be useful in spatial prediction
(Publication V) and how SIR can be adapted to the spatial case (Publication VI).

4.1. Stationary spatial source separation

Sections 4.1.1 and 4.1.2 introduce the statistical model of BSS for stationary random fields
based on Nordhausen et al. (2015); Bachoc et al. (2020). In Section 4.1.3 the INM is extended
to the spatial stationary BSS model as outlined in Publication I.

4.1.1. Stationary spatial blind source separation model

SBSS is originally introduced by Nordhausen et al. (2015), it is refined and theoretically studied
by Bachoc et al. (2020). Both publications assume the following statistical model.

Definition 29 (Stationary spatial blind source separation (SBSS) model). Consider a p-
variate random field x(s) which is defined on a spatial domain S ⊆ Rd of dimension d. x(s)
follows a stationary spatial blind source separation model if it can be written as

x(s) = Az(s) + b,

where x(s) is the p-variate observable random field, z(s) is the p-variate latent random field, A
is the deterministic p×p mixing matrix of full-rank and b is a p-variate deterministic location
vector. Furthermore, z(s) fulfills the following two conditions.

(SBSS 1) E (z(s)) = 0, Cov(z(s)) = E
�
z(s)z(s)�

�
= Ip for all s ∈ S and

(SBSS 2) Cov(z(s), z(s�)) = E
�
z(s)z(s�)�

�
= Dh, where h = s − s�, ∀ s, s� ∈ S, s �= s� and

Dh is a diagonal matrix containing the (univariate) covariance functions for each entry
of z(s) on its diagonal elements which depend only on h.

The SBSS model is based on the location-scatter model as seen in Equation (3.1) it can
be viewed as a direct extension of the SOS model (Definition 8) for stationary time series to
stationary random fields. As usual (SBSS 1) states on-site moment assumptions which fix
the mean to be zero and the scale to be identity. (SBSS 2) states that the source vector z(s)
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Figure 4.1.: Example for a SBSS model which is formed by mixing the random fields seen in
Figure 2.5. The entries of the mixing matrix are drawn iid from N(0, 1) and the location
vector is set to b = 0.

contains stationary random fields, leading to the fact that also x(s) is stationary as the location
vector b is globally constant. In total, (SBSS 1) and (SBSS 2) state that z(s) if formed by
uncorrelated, stationary random fields, the assumption of uncorrelatedness might be replaced
by statistical independence. Figure 4.1 depicts an example of a SBSS model.
Let Ci(h) denote the stationary covariance functions of (z(s))i for i = 1, . . . , p, then the

covariance matrix of x(s) from the SBSS model writes as

Cov(x(0),x(h)) =

p�
i=1

aia
�
i Ci(h).

Here, ai is the i-th row vector of the mixing matrix A. In that view the SBSS model is a
special case of the LMC (Equation (2.3)) model which is symmetric and the coregionalization
matrices are of rank one. The key advantage to the usual LMC methodology is that the SBSS
methods find these coregionalization matrices (or equivalently the unmixing matrix) without
any model assumption or estimation of the p univariate correlation functions of the latent field.
In that view the complex fitting of an LMC or a multivariate Matérn model can be avoided by
using the powerful BSS methodology which leads to the following unmixing matrix functionals.

4.1.2. Unmixing matrix functionals

Similarly as in the SOS model, (SBSS 3) states that the spatial covariance matrix of the latent
field is diagonal for any lag vector. Therefore, it might be a good strategy to diagonalize scatter
matrices that measure spatial second order dependence evaluated on the whitened version of
the observable in the spirit of AMUSE and SOBI. For that purpose Bachoc et al. (2020)
introduce local covariance matrices which are defined as
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LCovf (x(s)) = n−1
n�

i,j=1

f(si − sj)E
�
(x(si)− E (x(si)))(x(sj)− E (x(sj)))

�
�
. (4.1)

The sample version of the former quantity is given by

ˆLCovf (x(s)) = n−1
n�

i,j=1

f(si − sj)(x(si)− x̄)(x(sj)− x̄)�,

where x̄ = n−1
�n

i=1 x(si). Given n sample locations these matrices compute a weighted
average of covariance matrices between all n2 possible pairs of sample locations. The weights
are determined by functions f : Rd → R which are denoted as spatial kernel functions. The
following three options are considered by Bachoc et al. (2020).

• Ball kernel: fb(s; r) = I(
s
 ≤ r) where r ≥ 0.

• Ring kernel: fr(s; ri, ro) = I(ri < 
s
 ≤ ro) where ro > ri ≥ 0.

• Gauss kernel: fg(s; r) = exp(−0.5(Φ−1(0.95)
s
/r)2) where Φ−1(0.95) is the 95% quan-
tile of the standard Normal distribution and r > 0.

I(·) denotes the indicator function. All kernel functions above are designed for isotropic
random fields as they exclusively rely on the norm of the distance as argument. It is possible
to design kernel function that specifically account for the direction of the separation vector. As
an example a LCovf matrix in conjunction with a ring kernel function measures the average
second order spatial dependence of observations separated at least by a distance of ri and at
most by a distance of ro. This might be viewed as an extension of autocovariance matrices
where the ring kernel forms a higher dimensional extension of lags in time series. Note that
local covariance matrices are scatter matrices. For the whitening step it is convenient to write
the covariance matrix as a local covariance matrix by using a ball kernel function with a
parameter of r = 0 namely f = f0 = fb(·; 0) which yields

LCovf0(x(s)) = n−1
n�

i=1

E
�
(x(si)− E (x(si)))(x(si)− E (x(si)))

�
�
.

The sample version of LCovf0 follows from the above sample version of LCovf .
As LCovf0(x(s)) is a proper choice for whitening and the LCovf (x(s)) matrices are diag-

onal for the latent random field in a SBSS model SBSS unmixing matrix functionals can be
defined based on simultaneous/joint diagonalization diagonalization as typically used in BSS
(Section 3.3).

Definition 30 (SBSS simultaneous diagonalization). Let x(s) be a p-variate random field
following the SBSS model (Definition 29) and let f be a spatial kernel function. The SBSS
unmixing matrix functional W = W(x(s)) based on simultaneous diagonalization satisfies

WLCovf0(x(s))W
� = Ip and WLCovf (x(s))W

� = Df ,

where Df is a diagonal matrix with decreasingly ordered diagonal elements.
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The above unmixing matrix functional can be seen as a direct extension of AMUSE (Defini-
tion 22) as the covariance and one local covariance matrices are simultaneously diagonalized.
The above method is affine equivariant and as stated by Bachoc et al. (2020, Proposition 1) if
the diagonal elements of LCovf (z(s)) are pairwise distinct then the solution is unique up to
sign (the order is fixed by the ordering of the diagonal elements of Df and the scale is fixed
by the SBSS model). This identifiability condition is a joint property of the actual covariance
functions for each entry of the latent field as well as the used spatial kernel function which
leads to the fact that the choice of the kernel function is critical for the performance of this
method. In practical applications this might lead to problems. Similarly, in the time series
case (SOS model) it was found to be beneficial to jointly diagonalize several autocovariance
matrices (SOBI) over diagonalizing only one (AMUSE) in order to reduce the influence of the
chosen lag for the latter approach. Hence, joint diagonalization is applied in the SBSS context
as a direct extension of the SOBI method (Definition 23).

Definition 31 (SBSS joint diagonalization). Let x(s) be a p-variate random field following
the SBSS model (Definition 29) and {f1, . . . , fL} be a set of spatial kernel functions. Define

the whitened version of x(s) by xwh(s) = LCov
−1/2
f0

(x(s))(x(s)− b). Let U = U(x(s)) be the

orthogonal p× p joint diagonalization matrix of LCovfl(x
wh(s)) for l = 1, . . . , L, maximizing

L�
l=1


diag(U� LCovfl(x
wh(s))U)
2F .

The SBSS unmixing matrix functional W = W(x(s)) based on joint diagonalization equals

W = U� LCov
−1/2
f0

(x(s)).

The former method is affine equivariant and as formulated by Bachoc et al. (2020, Propo-
sition 5) a unique solution (up to sign as the order is fixed by the arrangement of the
pseudo-eigenvalues and the scale is fixed by the SBSS model) can be found if for every
pair i, j = 1, . . . , p with i �= j there exists a number l = 1, . . . , L for which it holds that
(LCovfl(z(s)))ii �= (LCovfl(z(s)))jj . This identifiability condition is far less restrictive than
the one stated for the method outlined in Definition 30 which is the great advantage of joint over
simultaneous diagonalization methods. Note that for the case of L = 1 Definition 31 reduces
to Definition 30. The optimization equation for the orthogonal matrix can be equivalently
rewritten as

p�
i=1

λ2
i , λ

2
i =

L�
l=1

�
u�
i LCovfl(x

wh(s))ui

�2
,

where U = (u1, . . . ,up) is the orthogonal joint diagonalization matrix and λ2
i are the pseudo-

eigenvalues which hint the spatial dependence of the found latent field entries. For a given
sample the population versions of the above quantities are replaced by their sample coun-
terparts and approximate joint digaonalization algorithms have to be utilized as outlined in
Section 3.4. Figure 4.2 depicts the SBSS solution using two ring kernel functions for the data
seen in Figure 4.1. In summary, methods relying on joint diagonalization are generally less
sensitive to the parameter choice but come at the cost of using complex approximate joint
diagonalization algorithms.
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Figure 4.2.: Latent random fields which are found by applying SBSS with two ring kernel
functions where the parameters equal (0, 1) and (1, 2) applied on the data from Figure 4.1.

4.1.3. Determining the signal subspace

In the same fashion as in the INM for stationary time series in the BSS model (Definition 12)
not all components of the latent field might be of interest. For that purpose Publication I
(Muehlmann et al., 2020a) introduces the INM for the SBSS model as follows.

Definition 32 (Spatial internal noise model (SINM)). Let x(s) be a p-variate observable
random field defined on a spatial domain S ⊆ Rd. x(s) follows a spatial internal noise model
if it can be written as

x(s) = A

�
zsg(s)
zns(s)

�
+ b,

where A is the deterministic p×p mixing matrix of full-rank and b is a p-variate deterministic

location vector. The latent random field z(s) =
�
zsg(s)

�, zns(s)�
��

can be divided into a q-
variate signal random field zsg(s) and (p − q)-variate noise random field zns(s) satisfying the
following assumptions.

(SINM 1) E (zsg(s)) = 0 for ∀ s ∈ S,
(SINM 2) Cov(zsg(s)) = E

�
zsg(s)zsg(s)

�� = Ip for ∀ s ∈ S and

(SINM 3) Cov(zsg(s), zsg(s
�)) = E

�
zsg(s)zsg(s

�)�
�
= Dh, where h = s − s�, for ∀ s, s� ∈

S, s �= s� and Dh is a diagonal matrix containing the (univariate) covariance functions
for each entry of z(s) on its diagonal elements which depend only on h.

(SINM 4) The noise latent field zns(s) is white noise with identity covariance matrix and it
is statistically independent of zsg(s).
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Typical for an INM is that only a few components are of interest and the remaining ones
are discarded as noise. Specifically, (SINM 1) - (SINM 3) state that the q signal parts are
uncorrelated stationary random fields exhibiting second order spatial dependence, namely the
signal part follows a SBSS model. In contrast (SINM 4) states that the remaining p − q
components of the latent field are statistically independent of the signal part and are white
noise (Definition 4).

The aim of Publication I is to infer the noise dimension q based on asymptotic results
and bootstrap strategies. For that purpose the publication introduces an adapted version
of local covariance matrices (Equation (4.1)) to obtain elegant asymptotic results. Namely,
given n sample locations the normalization factor n−1 from Bachoc et al. (2020) is replaced by

n−1F
−1/2
f,n where

Ff,n = n−1
n�

i,j=1

f2(si − sj),

which might be interpreted as the average (squared) number of neighboring sample locations
for a given kernel function f . This adaptation leads to

LCov�
f (x(s)) =

1

n
�
Ff,n

n�
i,j=1

f(si − sj)E
�
(x(si)− E (x(si)))(x(sj)− E (x(sj)))

�
�
,

and its sample version is given by

ˆLCov�
f (x(s)) =

1

n
�

Ff,n

n�
i,j=1

f(si − sj)(x(si)− x̄)(x(sj)− x̄)�.

Consequently, the former two SBSS methods (Definition 30 and 31) are adapted by replacing
the LCovf (x(s)) with the corresponding LCov�

f (x(s)) matrices. The general outline of the
methods and the corresponding optimization strategies keep unchanged and the procedure for
testing the signal dimension q is equal to the one outlined for the INM in Section 3.5.1. The
considered test statistic is given by

tq,n =
n

2

L�
l=1


D̂00
fl

2F , (4.2)

where the approximately jointly diagonalized local covariance matrices

D̂fl = Ŵ ˆLCov
�
fl
(x(s))Ŵ� for l = 1, . . . , L,

are obtained by one of the SBSS methods before. Again they are partitioned into the noise
and signal sub-matrices by

D̂fl =

�
D̂qq

fl
D̂q0

fl

D̂0q
fl

D̂00
fl



for l = 1, . . . , L.

tq,n is expected to diverge with n when there is a signal component in the hypothetical noise
part and bounded when the noise part consists only of white noise. The distribution of the null
hypothesis can be either approximated by asymptotic results or bootstrap strategies described
below.
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Asymptotic results As outlined in Publication I under sufficient conditions the limiting dis-
tribution of the test statistic seen in Equation (4.2) can be derived yielding the following
proposition.

Proposition 2. Under sufficient conditions, detailed in Publication I, it holds that

tq,n
L−→ χ2

L(p−q)(p−q+1)/2 as n → ∞,

where χ2
ν is the chi-squared distribution with ν degrees of freedom.

Roughly, these conditions are that the latent field consists of Gaussian components, that the
domain increases as the number of sample locations increases (increasing domain asymptotics)
and more technical conditions which can be found in the publication. The former result is
based on the outline of Virta and Nordhausen (2021).
The nice closed form asymptotic distribution of the test statistic seen in Proposition 2 can

be easily used to carry out an (approximate) test for the signal dimension q. Additionally,
the publication also provides results that this test strategy can consistently estimate q but in
practical considerations estimation of the signal dimension are rather carried out by applying
sequential testing strategies such as the ones discussed in Section 3.5.

Bootstrap strategies Publication I considers the iid bootstrap similar as Matilainen et al.
(2018) (see Section 3.5) to infer a signal dimension. Additionally, an optional spatial bootstrap
step is added to the testing procedure. Namely, the quantity of interest is a bootstrap estimate
of

P (tq,n ≤ x),

where tq,n = tq,n(x(s)) is a function of x(s). The bootstrap is based on the four following steps.

Step 1 The latent random field ẑ(s) and the unmixing matrix Ŵ are estimated by some SBSS
method and the corresponding test statistic tq,n(x(s)) is computed.

Step 2 The last p − q components of ẑ(s) are white noise under the null hypothesis. They
are either replaced by an iid sample of N(0, 1) (parametric strategy) or an iid bootsrap
sample of the ecdf of the n(p − q)-variate vector formed by joining all noise vectors
(non-parametric 1 strategy). This leads to ẑ∗(s).

Step 3 Step 2 only accounts for the hypothetical noise part but does not account for the
spatial dependence of the data at hand. Therefore, as an optional step 3 a full spatial
bootstrap sample from ẑ∗(s) is drawn.

Step 4 The bootstrap sample ẑ∗(s) generated in Step 2 (and optionally in Step 3) is mixed
again by x̂∗(s) = Ŵ−1ẑ∗(s) which leads to a bootstrap sample x̂∗(s) of the original
random field x(s). With that bootstrap sample the test statistic t∗q,n(x̂∗(s)) can be
computed.

In the same fashion as described in Section 3.5 the computation of the p-value is based on
B repetitions of Step 2 - 4. Equally as in the asymptotic testing strategy the estimation of the
signal dimension can be carried out by sequentially testing for different signal dimension, e.g.:
with the divide-and-conquer strategy discussed above.
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The spatial bootstrap variant used as an optional Step 3 is based on sampling from a suitable
set of blocks rather then sampling from the individual observations. It is in detail discussed in
Lahiri (2003, Chapter 12) and recalled as follows. Consider a univariate random field x(s) that
is observed at n sample locations C = {s1, . . . , sn} ⊂ S which are located inside the spatial
domain S ⊆ Rd. For a real number α > 0 the set of non-overlapping blocks (partly) contained
in S can be defined by

Bnol = {µ ∈ Zd : α
�
µ+ (0, 1]d

�
∩ S �= ∅}

which leads to S = ∪µ∈Bnol
Sµ with Sµ = α

�
µ+ (0, 1]d

�∩S for all µ ∈ Bnol. Loosely formulated
Sµ are blocks with a side length of α that are cut to the shape of the domain border if the
block does not fully lie inside the domain. Similarly, the set of overlapping blocks that lie
completely inside the domain is defined by

Bol = {ν ∈ Zd : ν + (0, 1]d ⊂ S}.

For each non-overlapping block µ ∈ Bnol a block from the set of overlapping blocks can be
selected and trimmed to the shape of Sµ by

Sµ,ν = (Sµ − αµ+ ν) ∩
�
ν + (0, 1]d

�
.

With this definition Sµ,ν has the same shape as Sµ but lies at the location given by ν. The
bootstrap sample is defined by replacing each Sµ by some block Sµ,ν where the index ν ∈ Bol

is drawn randomly with replacement. Specifically, for each µ ∈ Bnol a random variable Yµ can
be defined that puts equal weight on each possible index of overlapping blocks ν ∈ Bol by

P (Yµ = ν) =
1

|Bol| for all ν ∈ Bol.

Finally, the bootstrap version of the random field Z(s) is formed by concatenated all boot-
straped blocks by

Z∗(s) = ∪µ∈Bnol
{Z(s) : s ∈ Sµ,Yµ ∩ C}.

Similar as in the iid case the distribution of quantities that are based on Z∗(s) is estimated
by drawing B samples of the random variables Yµ for all µ ∈ Bnol leading to Z∗

b (s) for b =
1, . . . , B. Lahiri (2003, Chapter 12) provides also a detailed discussion about the allowed
random processes that generate the set of sample locations C, discussion about allowed shapes
of the domain S as well as discussion about the large sample behavior of the above outline.

4.2. Non-stationary spatial source separation

It is well-studied that the second order stationary assumptions might be too restricting in
practical considerations. On the one hand the random field at hand might shows a non-
constant drift function leading to the considerations of Section 4.2.1 but on the other hand
the variance or generally the second order (spatial) dependence varies across the domain and
is not invariant under shifts, this case is discussed in Section 4.2.2.
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4.2.1. Non-stationary drift function

Publication II and III (Muehlmann et al., 2020b, 2021c) evolve the idea of using differences
over the usual local covariances for random fields with a non-constant drift function. The
use of differences leads to many advantages in the context of ICA (Section 3.4.1) and is com-
mon practice in geostatistics where often the variogram is favored over the covariance matrix
(Section 2.1). Local difference matrices are defined by

LDifff (x(s)) =
1

n

n�
i,j=1

f(si − sj)E
�
(x(si)− x(sj))(x(si)− x(sj))

�
�
,

where f is a spatial kernel functions as discussed above. For a multivariate random field
exhibiting the location scatter-model with a non-constant drift function x(s) = Az(s) +m(s)
local difference matrices are of the form

LDifff (x(s)) = LDifff (Az(s)) +
1

n

n�
i,j=1

f(si − sj)(m(si)−m(sj))(m(si)−m(sj))
�.

The last term is supposed to be negligible if the drift is a function with a low-valued absolute
value of the gradient vector. In contrast local covariance matrices are highly corrupted as the
mean needs to be estimated which is usually done by the sample mean. Due to this reasons
Publication II and III replace local covariance matrices by local difference matrices in the SBSS
methods (Definition 30 and 31). For this adaptation it is advisable to use ball kernels with a
small parameter in order to keep the influence of the drift small.

Still the adapted methods utilize whitening with respect to the standard covariance matrix.
Therefore, Publication III replaces also the covariance in the whitening step by a local difference
matrix which is an example of the robust whitening procedure described in Section 3.3.1 and
3.5.2. However, local difference matrices always capture the on-site covariance which leads to
the fact that they are always invertible under the SBSS model. This adaptation yields the
following definition.

Definition 33. Consider two spatial kernel functions f1 and f2. For a random field x(s)
following the SBSS model in Definition 29. The unmixing matrix functional W = W(x(s))
simultaneously diagonalizes the corresponding two local difference matrices such that

WLDifff1(x(s))W
� = Ip and WLDifff2(x(s))W

� = Df1f2 .

Where Df1f2 is a diagonal matrix with increasingly ordered diagonal elements.

Note that all the adapted methods still rely on the strict stationarity assumptions of the
SBSS model (Definition 29). Only for the method seen in Definition 33 the assumptions (SBSS
1) and (SBSS 2) can be relaxed to the following ones.

(SBSS 1’) E (z(s)) = 0, LDifff1(z(s)) = Ip for all s ∈ S and

(SBSS 2’) E
�
(z(s)− z(s�))(z(s)− z(s�))�

�
= Dh where h = s − s�, ∀ s, s� ∈ S, s �= s� and

Dh is a diagonal matrix containing the (univariate) variogram functions for each entry
of z(s) on its diagonal elements which depend only on h.

Publication III shows the usefulness of this methods in an extensive simulation study where
stationary random fields with non-constant drift functions and intrinsic stationary random
fields are considered as well as a geochemical data example.
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4.2.2. Non-stationary second order spatial dependence

Publication IV (Muehlmann et al., 2021a) adapts the original SBSS methodology by keeping
the constant drift assumptions but allowing non-stationary second order (spatial) dependence.
This publications considers the following model which can be seen as a direct extension of the
NSS model (Definition 9).

Definition 34 (Spatial non-stationary source separation model (SNSS)). A p-variate random
field x(s) defined on a d-dimensional spatial domain S ⊆ Rd follows a spatial non-stationary
source separation model (SNSS) if it can be formulated as

x(s) = Az(s) + b,

where A is a deterministic invertible p×p mixing matrix, b is a p-variate deterministic location
vector and z(s) is a p-variate latent random field which fulfills the following assumptions

(SNSS 1) E (z(s)) = 0 for all s ∈ S,
(SNSS 2) Cov(z(s)) = E

�
z(s)z(s)�

�
= Ds for all s ∈ S where Ds is a positive definite

diagonal matrix and

(SNSS 3) Cov(z(s), z(s�)) = E
�
z(s)z(s�)�

�
= Dss� , for all s, s� ∈ S with s �= s� where Dss� is

a diagonal matrix depending on s and s�.

Similarly as for the NSS methods (Definition 24, 25 and 26) local covariance matrices are
adapted to only consider sub-domains which do not necessarily need to cover all sample loca-
tions yielding

LCovS,f (x(s)) =
1

|S ∩ C|
�

si,sj∈S∩C
f(si − sj)E

�
(x(si)− E (x(si)))(x(sj)− E (x(sj)))

�� .
As the covariance function is not defined for the SNSS model the whitening step can be carried
out with respect to an adapted local covariance matrix with the kernel choice f = f0 = fb(·; 0)
which yields

LCovS,f0(x(s)) =
1

|S ∩ C|
�

s∈S∩C
E
�
(x(s)− E (x(s)))(x(s)− E (x(s)))�

�
.

In this outline three SNSS methods are introduced which are a direct extension of the
three NSS methods seen in Definition 24, 25 and 26. The first one is based on simultaneous
diagonalization of covariance matrices for two sub-domains.

Definition 35 (Spatial non-stationary source separation - simultaneous diagonalization (SNSS-
SD)). Consider a random field x(s) following the SNSS model (Definition 34) and a partition
of the spatial domain S into S1,S2 where S1∩S2 = ∅. The SNSS-SD functional W = W(x(s))
is defined as the simultaneous diagonalizer satisfying

WLCovS1,f0(x(s))W
� = Ip and WLCovS2,f0(x(s))W

� = DS1S2 ,

where DS1S2 is a diagonal matrix with decreasingly ordered diagonal elements.

The second method extends the former one by jointly diagonalizing covariance matrices for
more than two sub-domains.
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Definition 36 (Spatial non-stationary source separation - joint diagonalization (SNSS-JD)).
Consider a random field x(s) following the SNSS model (seen in Definition 34). Whiten x(s)

by xwh(s) = M
−1/2
S,f0 (x(s))(x(s)− b) and partition the spatial domain S into S1, . . . ,SK where

Sm ∩ Sn = ∅ for m,n = 1, . . . ,K and m �= n. Let U = U(x(s)) be the orthogonal p × p joint
diagonalizer of the matrices LCovSk,f0(x

wh(s)) for k = 1, . . . ,K, which maximizes

K�
k=1


diag(ULCovSk,f0(x
wh(s))U�)
2F .

Then, the SNSS-JD functional equals W(x(s)) = ULCov
−1/2
S,f0 (x(s)).

The last method is the most general one as for the sub-domains not only covariance matrices
but also local covariance matrices are used.

Definition 37 (Spatial non-stationary source separation - spatial joint diagonalization (SNSS-
SJD)). Consider a random field x(s) following the SNSS model (Definition 34). Whiten x(s)

by xwh(s) = LCov
−1/2
S,f0 (x(s))(x(s) − b) and partition the spatial domain S into S1, . . . ,SK

where Sm ∩ Sn = ∅ for m,n = 1, . . . ,K and m �= n. For a set of spatial kernel functions
{f1, . . . , fL}, U = U(x(s)) is an orthogonal p× p joint diagonalization matrix of the matrices
LCovSk,fl(x

st(s)) for all k = 1, . . . ,K and l = 1, . . . , L, which maximizes

K�
k=1

L�
l=1


diag(ULCovSk,fl(x
wh(s))U�)
2F .

Then, the SNSS-SJD functional is given by W(x(s)) = ULCov
−1/2
S,f0 (x(s)).

Publication IV proofs the affine equivariance property for all the above methods and gives
sufficient conditions for the identifiability of the model parameters. Additionally, the use of
these methods are proven experimentally in an extensive simulation study and on a geochemical
dataset.

4.3. Spatial source separation in spatial prediction

BSS in the context of spatial data analysis is also useful in spatial prediction. Section 4.3.1
discusses the use of SBSS in the context of spatial prediction and Section 4.3.2 extends TSIR
to stationary random fields which has great advantages in spatial regression tasks.

4.3.1. Spatial prediction

For all above discussed SBSS methods it holds that the estimated latent random field consists of
uncorrelated components. This comes with great advantage in spatial prediction (Section 2.3)
as multivariate predictions of the original field can be based on p univariate ones in the following
three step procedure.

Step 1 The latent random field ẑ(s) and the unmixing matrix Ŵ are estimated by some SBSS
variant outlined above.
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Figure 4.3.: IDW predictions (see Section 2.3) using the parameter r = 5 of the latent fields
seen in Figure 4.2 on the integer grid (S ∩ Z2).

Step 2 A univariate spatial prediction model can be used for each entry of the estimated
latent field ẑi(s) for i = 1, . . . , p individually to predict the latent field components at
some unobserved location s�. The individual predictions are again collected in a vector
by ẑ(s�) = (ẑ1(s

�), . . . , ẑp(s�))�.

Step 3 The prediction of the original field is obtained by mixing the predictions from Step 2.
Namely, x̂(s�) = Ŵ−1ẑ(s�) + T̂(x(s)) where T̂(x(s)) is some location functional.

For Step 2 any spatial prediction method can be utilized. For example if the method of
Definition 33 is used in Step 1 and it is assumed that the observable has a non-constant drift
then a universal Kriging estimator would be suitable as still some transformed drift is present
on the latent field (see also Publication III). For the case of the SINM model (Definition 32)
in conjunction with the methods of Definition 30 or 31 Step 2 can be simplified even further
by estimating the signal subspace as outlined in Section 4.1.3. If q < p then only q predictions
need to be carried out as the white noise is simply predicted with zero.

The above procedure is illustrated by considering the following example. Figure 4.2 depicts
the SBSS solution of the data seen in Figure 4.1 using two ring kernel functions which corre-
sponds to Step 1. Figure 4.3 depicts IDW predictions on a grid of the latent field illustrating
Step 2 of the above procedure. Finally, Step 3 forms multivariate predictions of the original
data on a grid by mixing the predictions again as seen in Figure 4.4.

Publication V (Muehlmann et al., 2020c) studies the usefulness of this procedure on a geo-
chemical dataset and by carrying out an extensive simulation study. The contender methods
are multivariate predictions using the gold standard Cokriging estimator in conjunction with
the LMC (Equation (2.3)) and different forms of neural networks. Pre-processing the data
with SBSS and then using univariate predictions with an ordinary Kriging estimator using
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Figure 4.4.: Multivariate predictions of the random field seen in Figure 4.1 based on using
SBSS in conjunction with IDW on the integer grid (S ∩ Z2) (see also Figure 4.2 and 4.3).

the univariate Matérn covariance function (Equation (2.2)) showed in almost all simulation
settings better results compared to the contender methods.

4.3.2. Spatial regression

Publication VI (Muehlmann et al., 2021e) extends the time series version of SIR (Definition 28)
to the spatial case by considering a univariate response random field (y(s))s∈Z2 which is re-
gressed on the predicting random field (x(s))s∈Z2 assumed to be second order stationary. The
following model is considered.

Definition 38 (Spatial sufficient dimension reduction model in a BSS context (SSDR)). Con-
sider a (p + 1)-variate random field (y(s),x(s)�)� with s ∈ Z2 where y(s) is the (univariate)
response and x(s) is its explaining random field which has the representation

x(s) = Az(s) + b = A

�
z1(s)
z2(s)

�
+ b,

where A is the invertible p × p mixing matrix, b is the deterministic p-dimensional location
vector and z(s) = (z1(s)

�, z2(s)�)� is the p-variate stationary latent random field. z(s) is
partitioned into a r-variate random field z1(s) and a (p− r)-variate random field z2(s) which
satisfy:

(SSDR 1) E (z(s)) = 0, Cov(z(s)) = E
�
z(s)z(s)�

�
= Ip for all s ∈ Z2 and

(SSDR 2)
�
y(s��), z1(s�)�

�� ⊥⊥ z2(s) for all s, s�, s�� ∈ Z2.

The dimension r and the partitioning are minimal as in Definition 10.
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For the extension of TSIR to the spatial case the variation of the lagged inverse regression
curve can be defined by

Cov(E (x(s)|y(s+ h)) for all h ∈ Z2.

Note that this extension can be easily done as all considerations in this chapter are concerned
with random fields which are defined on a gird-shaped domain (S = Z2). Based on the former
model it holds that

Cov(E (z(s)|y(s+ h)) =

�
Cov(E (z1(s)|y(s+ h)) 0

0 0

�
for all h ∈ Z2,

which motivates to jointly diagonalize several of this quantities as utilized in the following
extension of SIR.

Definition 39 (Spatial SIR in a BSS framework (SSIR)). Let (y(s),x(s)�)� be a (p + 1)-
variate random field following the SSDR model (Definition 38). Define the whitened ver-
sion of x(s) by xwh(s) = Cov−1/2(x(s))(x(s) − b). Let L ⊂ Z2 be a finite set of spatial
lags. Let U = U((y(s),x(s)�)�) be the orthogonal p × p joint diagonalization matrix of
Cov

�
E
�
xwh(s)|y(s+ h

��
for all h ∈ L, maximizing�

h∈L

���diag�U�Cov
�
E
�
xwh(s)|y(s+ h

��
U
����2

F
.

The spatial SIR (SSIR) unmixing matrix functional W = W((y(s),x(s)�)�) is given by W =
U�Cov−1/2(x(s)).

Publication VI studies the performance of the above method in an extensive simulation study
and also discusses the identification of the signal dimension.
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5. Conclusion

BSS for spatial data is a relatively new field in the statistical literature. Formulating SBSS by
considering the location-scatter model with latent fields that are second order stationary is the
starting point of this thesis. The core quantity for the estimation of the unmixing matrix for
such a model is given by local covariance matrices. These matrices are formed by a weighted
average of spatial covariance matrices where the weights are given by spatial kernel functions.
In this thesis the original SBSS methodology is extended in three ways. Namely, allowing
some latent components to be white noise, a mild drift or non-stationary second order spatial
dependence. These three extensions are treated with asymptotic theory and bootstrap based
tests, by replacing local covariance with differences and by computing local covariance matrices
for sub-domains respectively. Furthermore, this thesis investigates SBSS as a pre-processing
tool in the context of multivariate spatial prediction and formulates the popular SIR method
in a BSS context for spatial data on a grid.

Naturally, many more extensions of the original SBSS methodology can be considered in fu-
ture research. The BSS problem solved by simultaneous diagonalization of two scatter matrices
can act as a way of robustifing SBSS. For example, a robust covariance estimator and local
covariance matrices evaluated on signs might be a good choice that is motivated by robust time
series BSS. Another direction applied in time series BSS is the use of higher order moments
in the estimation of the unmixing matrix. This is useful when the latent time series follow
models where all information lies in higher order time dependence such as ARCH or GARCH
models. Similar, SBSS might be reformulated to account for higher order spatial dependence
found in spatial ARCH and GARCH models (Otto et al., 2018; Otto and Schmid, 2020). For
the spatial SIR adaptation it is currently restrictive that the allowed sample location patterns
are lattices. Extensions for irregular sample locations could be achieved by using spatial kernel
functions as in the original SBSS. Furthermore, SAVE might be also extended for spatial data
similar as SIR. Generally, all extensions presented in this thesis lack results for the case when
the sample size is increasing, thus, asymptotic results might be derived in future research.

Although almost all methods presented in this thesis consider d-dimensional spatial domains
the focus lies on d = 2 which is the usual case for spatial data. However, measurements might
also be taken for example on transects or in different depths of drill holes leading to spatial data
where the domain is naturally one-dimensional. The practical usefulness of SBSS for such data
might be explored in future work. In similar fashion, BSS for spatial data might be reformulated
by considering functional data with spatial dependence as it is recently introduced for PCA by
Kuenzer et al. (2021). Another direction is given by considering not only measurements taken
at different spatial locations but also in time. Orthogonal diagonalization for such spatio-
temporal data has already been considered in the literature by Iaco et al. (2013) but a full
embedding of spatio-temporal data in the BSS framework is still an open research question.
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Statistischen Gesellschaft)

Talk, Pulse-Shape discrimination with deep learning in CRESST (CRESST Collaboration
Meeting November 2018)

Talk, Pulse-Shape discrimination with deep learning in CRESST (Colloquium on Machine
Learning in Particle Physics, ESA Munich, 2018)

Talk, Pulse-Shape discrimination with deep learning in CRESST (CRESST Collaboration
Meeting June 2018)

List of software

C. Muehlmann, K. Nordhausen, and J. Virta. SpatialBSS: Blind source separation for multi-
variate spatial data, 2021. https://CRAN.R-project.org/package=SpatialBSS. R package.

List of articles

C. Muehlmann, P. Filzmoser, and K. Nordhausen. Local difference matrices for spatial blind
source separation. To appear in proceedings of the 3rd conference of the Arabian journal of
geosciences, 2020.

C. Muehlmann, K. Nordhausen, and M. Yi. On Cokriging, neural networks, and spatial blind
source separation for multivariate spatial prediction. IEEE Geoscience and Remote Sensing
Letters, pages 1–5, 2020. doi: 10.1109/LGRS.2020.3011549.

C. Muehlmann, H. Oja, and K. Nordhausen. Sliced inverse regression for spatial data. In E.
Bura and B. Li, editors, Festschrift in Honor of R. Dennis Cook: Fifty Years of Contribution
to Statistical Science, pages 87–107. Springer, Cham, 2021. doi: 10.1007/978-3-030-69009-0 5.

76

https://CRAN.R-project.org/package=SpatialBSS
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Test of the latent dimension of a spatial blind
source separation model

Summary

Publication I considers the spatial blind source separation model introduced by Nordhausen
et al. (2015); Bachoc et al. (2020) but assumes that some components of the latent field are
white noise. The goal is to determine the signal subspace of the latent field. For this purpose
bootstrap test strategies are introduced and a test based on asymptotic results is derived where
both approaches are found to be useful in an extensive simulation study and on a real data
example.

Bibliographic information

C. Muehlmann, F. Bachoc, K. Nordhausen, and M. Yi. Test of the latent dimension of a
spatial blind source separation model. Submitted. Preprint at arXiv:2011.01711, 2020.

Author’s contribution

C. Muehlmann participated in several discussions with the coauthors to develop the idea and
the methodology. Furthermore, C. Muehlmann implemented all methods in R, carried out all
simulations as well as the real data example. C. Muehlmann wrote the bootstrap, simulation
and real data part of the draft and finalized the draft based on joint discussions with the
coauthors.
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Local difference matrices for spatial blind
source separation

Summary

Publication II considers the spatial blind source separation model as introduced by Nordhausen
et al. (2015); Bachoc et al. (2020) for the case when the location vector might depend on the
actual sample location. Hence, for the case when a drift is present. As local covariance matrices
rely on the estimation of a global location the drift significantly worsens the performance
of the methods. To overcome this issue local covariance matrices are adapted to consider
difference processes in favor of the original one. This avoids the estimation of a global mean.
A geochemical dataset is analyzed with this approach.

Bibliographic information

C. Muehlmann, P. Filzmoser, and K. Nordhausen. Local difference matrices for spatial blind
source separation. To appear in Proceedings of the 3rd Conference of the Arabian Journal of
Geosciences, 2020.

Author’s contribution

C. Muehlmann participated in several discussions with the coauthors to develop the idea and
the methodology. Furthermore, C. Muehlmann implemented all methods in R and carried out
the real data example. C. Muehlmann wrote the first version of the draft and finalized the
draft based on joint discussions with the coauthors.

80



Spatial blind source separation in the presence
of a drift

Summary

Publication III is an extended version of Publication II. In addition to Publication II this
article adapts all spatial blind source separation methods introduced by Nordhausen et al.
(2015); Bachoc et al. (2020) to use local difference matrices in contrast to local covariance
matrices. Furthermore, the whitening procedure is also adapted to be robust against a drift
present in the data. This is achieved by replacing the covariance matrix by a local difference
matrix. The statistical model is also adapted to relax the stationarity assumptions to intrinsic
stationarity. The new methods are shown to be useful in an extensive simulation study and
on a real data example.

Bibliographic information

C. Muehlmann, P. Filzmoser, and K. Nordhausen. Spatial blind source separation in the
presence of a drift. Submitted. Preprint at arXiv:2108:13813, 2021.

Author’s contribution

C. Muehlmann participated in several discussions with the coauthors to develop the idea and
the methodology. Furthermore, C. Muehlmann implemented all methods in R and carried out
all simulations as well as the real data example. C. Muehlmann wrote the first version of the
draft and finalized the draft based on joint discussions with the coauthors.
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Blind source separation for non-stationary
random fields

Summary

Publication IV introduces spatial blind source separation for the case when the components
of the latent field exhibit non-stationary second order spatial dependence. A new spatial non-
stationary source separation model is formulated and three methods to recover the latent field
are introduced. The affine equivariance property and parameter identifiability conditions are
derived for all three methods. These methods are an adaptation of the methods described by
Nordhausen (2014) for the spatial setting. The new estimators are evaluated in an extensive
simulation study and on a geochemical application.

Bibliographic information

C. Muehlmann, F. Bachoc, and K. Nordhausen. Blind source separation for non-stationary
random fields. Submitted. Preprint at arXiv:2107.01916, 2021.

Author’s contribution

C. Muehlmann participated in several discussions with the coauthors to develop the idea and
the methodology. Furthermore, C. Muehlmann implemented all methods in R and carried out
the simulations and the real data example. C. Muehlmann wrote the first version of the draft
and finalized the draft based on joint discussions with the coauthors.
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On Cokriging, neural networks, and spatial
blind source separation for multivariate spatial
prediction

Summary

Publication V considers the spatial blind source separation methods introduced by Nordhausen
et al. (2015); Bachoc et al. (2020) in the context of spatial prediction. Specifically, predictions
of the original multivariate random field can be formed by predicting each component of the
latent field individually with any univariate spatial prediction tool and then mixing these
predictions again. This approach is motivated by the fact that the components of the latent
field are uncorrelated or even independent. Predictions with this procedure are compared with
predictions from Cokriging and neural networks in an extensive simulation study and on a data
example.

Bibliographic information

C. Muehlmann, K. Nordhausen, and M. Yi. On Cokriging, neural networks, and spatial blind
source separation for multivariate spatial prediction. IEEE Geoscience and Remote Sensing
Letters, pages 1–5, 2020. doi: 10.1109/LGRS.2020.3011549.

Author’s contribution

C. Muehlmann participated in several discussions with the coauthors to develop the idea and
the methodology. Furthermore, C. Muehlmann implemented all methods in R and carried out
the simulations as well as the real data example. C. Muehlmann wrote the first version of the
draft and finalized the draft based on joint discussions with the coauthors.
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Sliced inverse regression for spatial data

Summary

Certain sufficient dimension reduction methods such as sliced inverse regression or sliced aver-
age variance estimation can be embedded in the blind source separation methodology. This is
done by Matilainen et al. (2017a, 2019) for time series data. Publication VI formulates sliced
inverse regression for stationary spatial data observed on a grid and evaluates the method in
an extensive simulation study.

Bibliographic information

C. Muehlmann, H. Oja, and K. Nordhausen. Sliced inverse regression for spatial data. In E.
Bura and B. Li, editors, Festschrift in Honor of R. Dennis Cook: Fifty Years of Contribution
to Statistical Science, pages 87–107. Springer, Cham, 2021. doi: 10.1007/978-3-030-69009-0 5.

Author’s contribution

C. Muehlmann participated in several discussions with the coauthors to develop the idea and
the methodology. Furthermore, C. Muehlmann implemented all methods in R and carried out
all simulations. C. Muehlmann wrote the first version of the draft and finalized the draft based
on joint discussions with the coauthors.
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