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Abstract

The manipulation of small objects with waves is of great interest in various fields of
science including, e.g., medicine and biology. Recently a theory based on the generalized
Wigner-Smith (GWS) operator was developed, where the knowledge of the scattering
matrix of a static system is enough to find optimal states for micromanipulation. In the
present thesis, we extend this concept to time-periodic Floquet-setups. For such systems
a unitary scattering matrix can be found, too, which we use to introduce the Floquet
Wigner-Smith (FWS) operator. To illustrate the operative principle of our theory, we
apply this new operator to four different potentials. We start with the simple case of a
Dirac delta potential oscillating in strength or position. Due to the pointlike interaction
region, such potentials are convenient to handle. We then look at more realistic setups of
an extended rectangular barrier. We study a rectangular potential barrier also oscillating
in strength or position. The eigenstates of the FWS operators in all of the above cases
develop properties, which are favourable for the micromanipulation of periodically moving
objects. We can interpret the specific behaviour of those eigenstates since they share a
strong connection to their static GWS counterparts.

Kurzzusammenfassung

In vielen naturwissenschaftlichen Gebieten, wie zum Beispiel Medizin oder Biologie,
gibt es starkes Interesse daran, kleine Objekte mit Hilfe von Wellen zu manipulieren.
Basierend auf dem sogenannten generalisierten Wigner-Smith (GWS) Operator konnte
vor Kurzem eine Theorie entwickelt werden, bei der das Wissen um die Streumatrix
eines statischen Systems genügt, um optimale Zustände für die Mikromanipulation zu
finden. In dieser Diplomarbeit verallgemeinern wir diese Konzepte auf periodisch zeitab-
hängige Systeme, sogenannte Floquet-Systeme. Da auch in diesen Systemen eine unitäre
Streumatrix zu finden ist, ist die Verallgemeinerung auf eine konsistente Art und Weise
möglich. Wir nutzen diese Streumatrix, um den Floquet Wigner-Smith (FWS) Operator
einzuführen. Wir wenden unsere Theorie auf vier verschiedenen Potentialen an, um das
operative Prinzip vorzustellen. Dafür untersuchen wir den Fall eines Dirac-Delta Poten-
tials, das im Ort oder in der Stärke oszilliert. Wir wählen zunächst diese Potentiale, da
ihre Streuregionen jeweils nur ein Punkt sind, was eine einfache Beschreibung zulässt.
Nachdem wir diese verstanden haben, betrachten wir realistischere Systeme, die eine aus-
gedehnte Streuregion besitzen. Wir untersuchen eine rechteckige Potentialbarriere, die
auch entweder im Ort oder in der Stärke schwingt. Die Eigenzustände des FWS Opera-
tors haben in allen Fällen Eigenschaften, die wünschenswert für das Mikromanipulieren
von periodisch schwingenden Objekten sind. Da diese Zustände eine starke Verbindung
zu ihren GWS Gegenstücken haben, können wir ihre jeweiligen Eigenschaften leicht in-
terpretieren.
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1. Introduction

Controlling and manipulating small objects with waves is the essence of various physical
tools with applications, for example in medicine and biology [1, 2]. Therefore, being
able to understand and exploit the behaviour of wave scattering is of great interest. A
promising approach in this regard using the advantages of wave control is the generalized
Wigner-Smith operator (GWS). The GWS operator was proposed lately in [3] and is
based on concepts introduced by Wigner [4] and Smith [5] more than 60 years ago.
The power of the GWS theory has very recently been demonstrated theoretically and
experimentally in a static microwave setup [6]. The key object in this time-independent
protocol is the scattering matrix – connecting incoming and outgoing modes at the same
frequency – which is then used to set up the GWS operator. The eigenstates of the
GWS operator are shown to be optimal for micromanipulating small objects. Extending
this framework into the realm of time-dependent systems is of great interest. First steps
have been made using a “frozen scattering matrix” approach [7], where one could show
that cooling an ensemble of particles can be realized using a GWS approach. However,
this technique is only applicable for slow particles where a quasi-stationary, adiabatic
description is valid. Clearly this imposes constrains, especially for in-situ applications.
Thus, there is major interest to lift this constraint and exploit the full potential of the
additional time parameter by looking at a fully time-dependent description. A first
step is presented in this thesis by studying time-periodic systems in which the time
dependence can be incorporated without any approximation. Even though energy is
in general not conserved anymore in case of time-dependent potentials, the scattering
matrix in Floquet theory is unitary and time-independent. This enables us to extend the
GWS operator concept in a straightforward way thus introducing the Floquet Wigner-
Smith (FWS) operator. Due to the similar structure of the GWS operator and the FWS
operator we find analytic expressions for the eigenvalues of the FWS operator, where the
corresponding eigenstates feature in general now multiple frequency components and are
thus usually pulsed.

We start by introducing the theoretical framework of describing periodically moving
objects and their scattering properties – the so-called Floquet scattering theory – in Sec-
tion 2. In this thesis, we choose to build up our theory for electrons described by the
time-dependent Schrödinger equation. This is done, because, historically many investiga-
tions focused on the scattering of electrons at periodically moving potentials. Note that
the presented concepts based on the Schrödinger equation can be easily transferred into
a photonic setup based on the Helmholtz equation. We discuss the main consequences of
dealing with a time-periodic Hamiltonian and its implications for the scattering matrix.
We then summarize the main concepts of the GWS operator and introduce the novel
FWS operator in Section 3. There, we find a strict relation between the eigenvalues of
the FWS operator and the absolute value squared of the wavefunction inside the scat-
tering region. This enables one to connect the eigenvalues of the FWS operator with
local properties of the wavefunction inside the scattering region. In Sections 4 and 5 we
apply the new Floquet concept to specific potentials. In particular, in Section 4 we study
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the case of electrons scattering off a Dirac delta potential either oscillating in strength
or position. We choose to start with Dirac delta potentials since the interaction regions
for such potentials are just a single point in space and therefore its scattering properties
are easy to handle. We proceed by examining in Section 5 a more realistic setup of an
extended barrier potential – again oscillating in strength or position. We show for all of
our examples that the eigenstates of the FWS operator develop exciting properties for
the micromanipulation of periodically moving objects.
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2. Floquet Scattering Theory

2.1. Hamiltonian, Symmetries and Eigenstates

We start from the time-dependent Schrödinger equation (� = 1)

H(t) |Φ� = i
∂

∂t
|Φ� , (1)

where H(t) = H(t + T ) is a Hermitian Hamiltonian periodic in time with period T =
2π/ω. The Hamiltonian can be separated into the time-independent kinetic energy term
and the real, time-periodic potential, i.e.,

H(t) =
p2

2m
+ V (t), (2)

with V (t) = V (t + T ). In this work we focus on two different kinds of oscillations:
potentials oscillating in their amplitude [8, 9] as well as lateral oscillations of their position
[10]. Since the system is time-dependent the total energy is not conserved. Nevertheless,
the periodicity of the potential induces a conserved quantity: the quasienergy �. In the
following we summarize the connection between the Hamiltonian, the time evolution
operator U(t, t0) and the quasienergy. We closely follow the discussions presented in
[11–13].

Since the Hamiltonian is Hermitian, the probability is conserved in the system [14],
which induces a unitary time evolution operator [15]. The time evolution operator trans-
forms a state from time t0 to t

|Φ(t)� = U(t, t0) |Φ(t0)� , (3)

which in general involves a time-ordered exponential [16]. The time evolution operator
itself satisfies a Schrödinger-like equation

i
d

dt
U(t, t0) = H(t)U(t, t0), (4)

U(t0, t0) = 1. (5)

Furthermore, since

U(t2, t1) |Φ(t1)� = U(t2, t1)U(t1, t0) |Φ(t0)� = U(t2, t0) |Φ(t0)� , (6)

it holds that
U(t2, t0) = U(t2, t1)U(t1, t0). (7)

We now can make use of the fact that the Hamiltonian is periodic in time and derive
some helpful results. Following the approach of [17], we first insert U(t + nT, t0 + nT )
into Eq. (4), which leads to

i
d

dt
U(t+ nT, t0 + nT ) = H(t+ nT )U(t+ nT, t0 + nT ) (8)

= H(t)U(t+ nT, t0 + nT ), (9)
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where we used the periodicity of the Hamiltonian. Since U(t, t0) satisfies the same
differential equation and the same initial condition as U(t+ nT, t0 + nT ), it holds that

U(t+ nT, t0 + nT ) = U(t, t0). (10)

Next, we consider the time evolution from an initial time t = t0 to some later time
t = t0 + nT , i.e.,

U(t0 + nT, t0) = U [t0 + nT, t0 + (n− 1)T ]× · · · × U(t0 + T, t0)

= U(t0 + T, t0)× · · · × U(t0 + T, t0)

= [U(t0 + T, t0)]
n ,

(11)

where we used Eq. (7) in the first line and Eq. (10) in the second line. This result proves
that propagating by an integer number of periods is equal to the repeated action of the
one-period time evolution operator. Finally, by using Eqs. (7) and (11) we observe

U(t+ nT, t0) = U(t+ nT, t0 + nT )U(t0 + nT, t0)

= U(t, t0) [U(t0 + T, t0)]
n .

(12)

This result reflects a crucial point in the theory of Floquet dynamics: it is sufficient to
know U(t, t0) for t0 ≤ t ≤ T in order to construct U(t, t0) for all times t ≥ t0 [12]. Let
now |ΦT (t)� be an eigenstate of the one-period time evolution operator U(t+ T, t),

U(t+ T, t) |ΦT (t)� = λT (t) |ΦT (t)� . (13)

To show that the eigenvalues λT (t) of the one-period time evolution operator are actually
time-independent, i.e., λT (t) = λT = const., and therefore conserved, we follow the
derivation presented in [11]. We use Eqs. (7) and (10) to rewrite the above definition as

λT (t) |ΦT (t)� = U(t+ T, t	 + T )U(t	 + T, t	)U(t	, t) |ΦT (t)�
= U(t, t	)U(t	 + T, t	)U(t	, t) |ΦT (t)� .

(14)

Applying U(t	, t) from the left on both sides gives

λT (t)U(t	, t) |ΦT (t)� = U(t	 + T, t	)U(t	, t) |ΦT (t)� , (15)
λT (t)

��ΦT (t
	)
�
= U(t	 + T, t	)

��ΦT (t
	)
�
. (16)

This means that if |ΦT (t)� is the eigenstate of U(t + T, t) with eigenvalue λT (t), then
for any time t	, |ΦT (t

	)� is eigenstate of U(t	 + T, t	) with the same eigenvalue λT (t).
Therefore, the eigenvalues of U(t + T, t) must be constant and its eigenvectors evolve
in time according to U(t, t0). Since U is a unitary operator its eigenvalues lie on the
complex unit circle and we will write

λT = e−i�T , (17)
|ΦT (t)� ≡ |Φ�(t)� . (18)
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Here we introduced the quasienergy �. We will discuss its physical implications after
defining the so-called Floquet modes.

The Floquet theorem ensures the periodicity of the time-dependent Floquet modes
|φ�(t)� = |φ�(t+ T )�, which are defined with respect to the Floquet state |Φ�(t)� as

|Φ�(t)� = e−i�t |φ�(t)� . (19)

Note that only the Floquet states |Φ�(t)� are solutions of the time-dependent Schrödinger
equation. Nevertheless, the Floquet modes |φ�(t)� are eigenstates of a Hermitian opera-
tor, which we will exploit later. The periodicity of the Floquet modes can be understood
by the following argument. We use the eigenvalue equation Eq. (17) and Eq. (19) to
write

|Φ�(t+ T )� = U(t+ T, t) |Φ�(t)� = e−i�T |Φ�(t)� = e−i�T e−i�t |φ�(t)� , (20)

|Φ�(t+ T )� = e−i�(t+T ) |φ�(t+ T )� = e−i�T e−i�t |φ�(t+ T )� . (21)

Since both lines must hold for any time t, the Floquet modes |φ�(t)� must possess the
same periodicity as the Hamiltonian and since |Φ�(t)|2 = |φ�(t)|2 the probability density
is also time-periodic. Because of the periodicity, we can Fourier expand these modes as

|φ�(t)� =
�
n

e−inωt |ψn
� � , (22)

where n is sometimes referred to as the Floquet channel [10]. Summarizing, we can write
the Floquet state in the Fourier basis as

|Φ�(t)� =
�
n

e−i(nω+�)t |ψn
� � . (23)

Coming back to the quasienergy � we observe that Eq. (13) does not define the
quasienergy uniquely, since

e−i(�+mω)T = e−i�T = λT (24)

for any integer m, where we used that T = 2π/ω. There is a similar redundancy concern-
ing the states. We observe that we can write the eigenstate of U(t+ T, t) from Eq. (19)
as

|Φ�(t)� = e−i�t
�
n

e−inωt |ψn
� �

= e−i(�+mω)t
�
n

e−i(n−m)ωt |ψn
� �

= e−i(�+mω)t
�
n

e−inωt
��ψn+m

�

� (25)

Furthermore, a state with quasienergy �+mω reads in the Fourier basis as follows

|Φ�+mω(t)� = e−i(�+mω)t
�
n

e−inωt
��ψn

�+mω

�
. (26)
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However, since U(t + T, t) is non degenerate and |Φ�(t)� and |Φ�+mω(t)� have the same
eigenvalue, they denote the same eigenstate. Therefore, it holds that��ψn

�+mω

�
=

��ψn+m
�

�
. (27)

Since there is an equivalence between Floquet states whose quasienergies differ by an
integer multiple of ω, we can restrict ourselves to states within a particular interval of �
with size ω (like the Bloch theorem enables one to restricts the wavevector to the first
Brillouin zone in spatially periodic potential). We make the common choice 0 < � < ω,
which we will use throughout this thesis.

As already mentioned above, the Floquet modes themselves satisfy an eigenvalue equa-
tion

H |φ�(t)� = � |φ�(t)� , (28)

with the Hermitian operator H = H − i ∂
∂t [18, 19]. Since they are eigenfuctions of

a Hermitian operator, they form a complete, orthonormal basis set of the composite
Hilbert space F = R ⊗ T . Here R is the Hilbert space of square integrable functions
ξ�(x) on configuration space with the inner product defined as

�ξ�1+nω|ξ�2+mω� =
�

dx ξ∗�1+nω(x)ξ�2+mω(x). (29)

Here, the asterisk stands for complex conjugation. On the space T of functions which
are periodic in t with period T the inner product is defined as [13]

(m,n) =
1

T

� T

0
dt ei(n−m)ωt. (30)

Therefore, the inner product on the composite Hilbert space F may be defined as

��φ�1+nω(t)|φ�2+mω(t)�� = 1

T

� T

0

�
dtdxφ∗

�1+nω(x, t)φ�2+mω(x, t). (31)

The double bracket symbol introduced here, indicates the inner product used in the
Floquet formalism [13, 17, 18]. As one can see, this is a time averaged version of the
standard spatial inner product known from quantum mechanics.
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2.2. Scattering Properties

Having presented the main theoretical aspects of time-periodic Hamiltonians and Floquet
states in the last section, we now summarize their scattering properties. Here we discuss
the general characteristics of describing scattering off a time-periodic potential and in-
troduce the Floquet scattering matrix, which will be the key ingredient in formulating a
Floquet Wigner-Smith theory.

In this work, we deal with 1D-potentials, which are localized in space. This means
that there always exist (asymptotic) potential-free regions, i.e.,

V (x) =

��
0 x < −x1,

W (x) −x1 < x < x1,

0 x > x1.

(32)

More specifically, we have x1 = L/2 for the potential barrier and x1 = 0 for the Dirac
delta potential. Therefore, we can always divide the space into at most three regions.
The potential-free regions I (x < −x1) and III (x > x1) and the interaction region II
(−x1 < x < x1). Note, that for the Dirac delta potential the interaction region is just a
single point in space and therefore region II vanishes. In the potential-free regions we
can make a flux-normalized plane wave ansatz. The form of the wavefunction inside the
scattering region depends on the specific potential W (x). In general, a typical Floquet
ansatz for localized potentials is given by

Φ�(x, t) =

∞�
n=−∞

ψn(x)e
−i(�+nω)t, (33)

with

ψn(x) =

��
ψ
(I)
n (x) x < −x1,

ψ
(II)
n (x) −x1 < x < x1,

ψ
(III)
n (x) x > x1,

(34)

=

����
1√
kn

�
ane

iknx + dne
−iknx

�
x < −x1,

ψ
(II)
n (x) −x1 < x < x1,
1√
kn

�
cne

iknx + bne
−iknx

�
x > x1.

(35)

The asymptotic wavevector is defined as

kn =
�
2µ (�+ nω). (36)

Note that for reasons of readability, we adapted the notation from Eq. (22) as �x|ψn
� � =

ψn
� (x) → ψn(x). We keep this convention throughout the work. The coefficients an and

bn (cn and dn) are the incoming (outgoing) amplitudes of the corresponding Floquet
modes in the Fourier basis ψn(x) scattering off the potential. A sketch of such a setting

7



Figure 1: Sketch of a typical setting we focus on in this thesis: a 1D potential, which is
localized in space. Therefore, one can divide the space into at most 3 regions, i.e., the
asymptotic free regions I and III and the interaction region II. The incoming (blue)
and outgoing (red) Floquet coefficients in the asymptotic regions are also indicated.

is depicted in Fig. 1. In the following sections the time-periodic probability density
|Φ�(x, t)|2 = |φ�(x, t)|2 will be studied in order to investigate the properties of various
Floquet states.

Modes corresponding to a negative n represent evanescent modes, since in this case
the wavevector is purely imaginary (we use the convention 0 < � < ω). Since the wave-
function must be finite everywhere, it holds that there cannot exist incoming evanescent
modes, i.e., an<0 = bn<0 = 0. Thus, evanescent modes are non-propagating and expo-
nentially damped solutions.

With the above ansatz we impose two kinds of normalizations. As mentioned before, we
use flux-normalized states in order to get a unitary and flux-conserving Floquet scattering
matrix. Additionally, we also demand an intensity normalization, i.e.,�

n≥0

|an|2 + |bn|2 = 1. (37)

One now can define a generalized scattering matrix σ in the Floquet mode basis that
connects all incoming with all outgoing mode coefficients (including contributions from
evanescent modes), i.e., �

d
c

�
= σ

�
a
b

�
. (38)
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Here, a = (. . . a−1, a0, a1 . . . )
T is the vector of Floquet mode coefficients, where negative

integer subscripts correspond to evanescent modes. Note that σ is not a unitary ma-
trix. However, keeping only entries that connect contributions from propagating modes
and neglecting those corresponding to evanescent modes then results in the object we
are interested in – the unitary Floquet scattering matrix S. It transforms incoming,
asymptotically free, propagating states into propagating, outgoing ones�

dp

cp

�
= S

�
ap

bp

�
, (39)

where the subscript indicates that we deal with vectors of the form ap = (a0, a1 . . . )
T ,

which now only contain coefficients of propagating modes with n ≥ 0. It is important to
note that – in contrast to static scattering systems – the scattering matrix in the time-
periodic case does not only connect states with identical energy but also states with an
energy difference of ΔE = mω, where m is the net number of gained or lost quanta (pho-
tons) during the process. Such processes would be called inelastic in a static scattering
system, since they violate energy conservation. In the framework of Floquet scattering,
however, they can be seen as perfectly elastic since the quasienergy is conserved [20].
Describing multiphoton processes without any approximation is one of the main advan-
tages of Floquet theory. Since the Hamiltonian is Hermitian, the probability(-flux) is
conserved. The conservation of flux implies that the Floquet scattering matrix – con-
necting flux-carrying propagating modes – is a unitary matrix. Furthermore, it holds
that S = ST , which is a consequence of the reciprocity of the potential [21].

Nevertheless, for computational reasons, one has to truncate to a finite number of
modes, i.e., one has to cut the sum in Eq. (33) as

�∞
n=−∞ → �ncut

n=−νcut
, where ncut + 1

is now the truncated number of propagating modes and νcut the number of evanescent
modes. This unavoidably leads to the fact that processes where a mode n ≤ ncut scatters
into a mode n	 > ncut cannot be described by the truncated scattering matrix. To
approximately maintain the above properties (unitarity and transposition symmetry),
one has to be careful in choosing a proper cutoff. Details on the criterion for the cutoff
used for the numerics in this work can be found in Appendix A.
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3. The Generalized Wigner-Smith Operator

In this section, we first review the main ideas of the generalized Wigner-Smith operator for
static scattering systems. There the scattering can be described by a unitary scattering
matrix. Since time-periodic systems also feature a unitary and time-independent Floquet
scattering matrix, a straightforward way of defining a Floquet Wigner-Smith formalism
is presented.

Wigner [4] and Smith [5] first introduced the time delay operator for static scattering

Q̃ = −iS̃† dS̃
dΩ

, (40)

where Ω is the energy (� = 1) of the incoming particle and S̃ is the static scattering
matrix. Note, that we use a tilde in the above expressions corresponding to a static
scattering system in order to distinguish them from their time-periodic counterparts.
Wigner and his student Eisenbud first formulated this idea of a particle’s time-delay
due to scattering off a potential in the framework of nuclear scattering and Smith then
extended this result to multichannel transport. With their works they could answer the
question of how much time a particle spends inside a potential during a scattering process
by observing that the eigenstates of this operator Q̃ – called principal modes – have a well
defined time delay associated with its eigenvalues. This time delay can be understood
as the time an incident wave accumulates during a scattering process compared to a
wave which propagates in free space [21]. One should note, that in the definition of the
time delay operator a derivative with respect to energy (frequency) is connected to a
notion of its conjugate variable time. Following this observation the authors in [3, 6]
generalized the concept of the time delay operator by replacing the frequency derivative
with a derivative with respect to an arbitrary parameter α, which can be a global one or
a local parameter on which the potential depends parametrically. The resulting so-called
generalized Wigner-Smith operator is given by

Q̃α = −iS̃†dS̃
dα

. (41)

Its eigenvalues are connected to the quantity conjugate to α, where it has been shown
that, e.g., choosing α as the spatial position of a scatterer results in eigenvalues which are
related to the applied force, i.e., the momentum transferred to it [6]. One can summarize
the results for the static case in a single equation

�ζ|Q̃α|ζ� = −µ �χζ |dṼ (x, α)

dα
|χζ� , (42)

where |ζ� is an asymptotic state, |χζ� is the wavefunction inside the scattering system,
µ is the mass of the particle and Ṽ (x, α) is the static scattering potential. A sketch of
the derivation of Eq. (42) is given in the Appendix B, a detailed version for the photonic
case based on the scalar Helmholtz equation can be found in [22] or in the supplementary
of [6]. If |ζ� is chosen to be an eigenstate of the GWS operator, one gets the desired
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connection between an eigenvalue θ̃α and local properties inside the scattering region,
i.e.,

θ̃α = −µ �χζ |dṼ (x, α)

dα
|χζ� . (43)

Now, we extend the latter formalism of a static scattering system into the realm of
time-periodic systems. Similar to the static system, using the unitary Floquet scattering
matrix S now allows us to define a Floquet Wigner-Smith (FWS) operator

Qα = −iS†dS
dα

. (44)

The unitarity of S implies that Qα possesses real eigenvalues. Assuming that the effective
Hamiltonian formalism [23] is also valid in time-periodic system and using the inner
product of the Floquet formalism (see Section 2.1) we generalize Eq. (42) as

��ζ|Qα|ζ�� = ��ζ|dV (x, t, α)

dα
|ζ�� (45)

= −µ
1

T

� T

0
dt �χζ |dV (x, t, α)

dα
|χζ� , (46)

which again reduces for the case of |ζ� being an eigenstate of Qα to

θα = −µ
1

T

� T

0
dt �χζ |dV (x, t, α)

dα
|χζ� . (47)

This expression shows that the similar structures of the GWS and FWS operators results
in similar expressions for the eigenvalues of these two operators, where for the time-
periodic case there is an additional time averaging present due to the inner product in
the Floquet formalism [see Eq. (31)].

We want to point out that there exists a structural equivalence between the funda-
mental equations in scattering of quantum matter waves and classical light fields. More
specifically, the former can be described by the stationary Schrödinger equation which
can be mapped onto an equation used extensively in the description of classical waves,
the scalar Helmholtz equation. Altough, there exist essential differences between both
systems [21], the structural similarity allows us to easily transfer the results found in
this thesis for the electronic case to the photonic case studied in [6]. The most notable
difference we have to consider is a relative sign between those two equations. This means
that we have to keep in mind that the most negative FWS eigenvalues in the Schrödinger
picture will correspond to the most positive ones in the Helmholtz description.

Now that we have an analytical expression for the FWS eigenvalue available, we can
test its validity in numerical simulations, examining various systems and parameters α in
the following sections. Additionally, in Appendix C, we present an excellent agreement
of Eq. (47) with numerical simulations for all the considered time-periodic systems 1.

1One of the main assumptions of this thesis is the validity of the effective Hamiltonian formalism in
time-periodic settings. This remains to be proven analytically in the course of future projects, but
the remarkable agreement between the eigenvalues and the analytical relations let little room for
doubt in that regard (cf. Appendix C).

11



4. FWS Operator for Oscillating Dirac Delta Potentials

4.1. Dirac Delta Potential Oscillating in Space

We now want to apply the FWS operator to a specific potential and start with a Dirac
delta potential oscillating in position. In order to do so, we first have to study its
scattering properties and derive the Floquet scattering matrix, where we will closely
follow the derivations presented in [24, 25]. The Hamiltonian of this system is given by

H =
p2

2µ
+ V (x, t), (48)

where the time-dependent potential reads

V (x, t) = V0δ [x− a cos(ωt)] . (49)

Here, p = −i d
dx is the momentum operator, V0 ∈ R is the strength of the potential, and µ

is the mass of the electron. Furthermore, a > 0 is the oscillation amplitude and ω is the
frequency of the oscillation of the potential. Since the Hamiltonian is periodic with period
T = 2π/ω, we can make use of Floquet theory. As an ansatz for the wavefunction we
choose flux normalized plane Floquet-waves [compare to Eq. (35), but since the scattering
region is just a single point in space at x = x0 we only have the two asymptotic regions],
i.e.,

Φ�(x, t) =
∞�

n=−∞
ψn(x)e

−i(�+nω)t, (50)

where

ψn(x, t) =

�
ψL
n (x) =

1√
kn

�
ane

iknx + dne
−iknx

�
x < x0,

ψR
n (x) =

1√
kn

�
cne

iknx + bne
−iknx

�
x > x0.

(51)

We define x0 = x0(t) = a cos(ωt). In order to determine the coefficients we demand
continuity of the wavefunction, which leads to

Φ�(x
−
0 , t) = Φ�(x

+
0 , t). (52)

Furthermore, we integrate the Schrödinger equation

H(x, t)Φ�(x, t) = i
d

dt
Φ�(x, t) (53)

in an interval x ∈ [x0 − �, x0 + �], which in the limit � → 0 leads to

− 1

2µ
lim
�→0

� x0+�

x0−�
dx


d2

dx2
+ V0δ(x− x0)

�
Φ�(x, t) = i

d

dt
lim
�→0

� x0+�

x0−�
dx Φ�(x, t), (54)

− 1

2µ

�
Φ	
�(x

+
0 , t)− Φ	

�(x
−
0 , t)

�
+ V0Φ�(x0) = 0, (55)

Φ	
�(x

+
0 , t)− Φ	

�(x
−
0 , t) = 2V0µΦ�(x0, t), (56)
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where the prime denotes the derivative with respect to x. We insert the ansatz for the
wavefunction Eq. (51) into Eqs. (53) and (56), multiply both equations with e−imωt, and
finally integrate them from time t = 0 to T . There we can make use of the identity� T

0
dt eika cos(ωt)−imωt = T imJm(ka), (57)

where Jm(x) are the Bessel functions of the first kind [25]. After truncating to a finite
number of states one is left with the following set of coupled equations�

d
c

�
=

�−J− J+

M− M+ + 2µV J+

�−1�
J+ −J−

M+ M− − 2µV J−

��
a
b

�
= σ

�
a
b

�
.

(58)

The elements of the submatrices in Eq. (58) are given by

�
J+

�
n,m

=
im+n

√
km

Jm+n(kma), (59)

�
J−�

n,m
=

im+n

√
km

Jm+n(−kma), (60)�
M+

�
n,m

= im+n+1
�
kmJm+n(kma), (61)�

M−�
n,m

= im+n+1
�
kmJm+n(−kma). (62)

Note, that Jm(0) = δm,0 and thus we recover the static uncoupled case for a → 0 as
expected. To get the Floquet matrix we only take entries from σ that connect propagating
modes, i.e. �

dp

cp

�
= S

�
ap

bp

�
. (63)

Having now the unitary Floquet scattering matrix in hands, we can use it to set up
various FWS operators.

We start by examining the FWS operator with respect to the strength V0 of the
potential, i.e.

QV0 = −iS† dS
dV0

. (64)

According to Eq. (47) for an eigenstate Φ�(x, t) with corresponding eigenvalue θV0 it holds
that

θV0 = −µ
1

T

� T

0
dt �Φ�|dV (x, t)

dV0
|Φ��

= −µ
1

T

� T

0
dt |Φ�[a cos(ωt), t]|2.

(65)
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We see that the eigenvalues are connected to the probability density right at the (moving)
position of the delta potential. In the photonic case this would correspond to the intensity
of the light. Therefore, choosing the eigenstate that corresponds to the smallest (most
negative) eigenvalue will maximize the probability of finding the electron at the location
of the potential x0(t). This state is depicted in Fig. 2. The wavefunction clearly follows
the oscillation of the Dirac delta potential (red line) and forms two local maxima in the
immediate vicinity of the delta peak maximizing the probability density at x0(t). These
maxima are separated by a cusp, which is typical for repulsive Dirac delta potentials. This
cusp is induced by the jump of the first derivative of the wavefunction [see Eq. (56)]. A

Figure 2: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to the
smallest eigenvalue of QV0 with V0 > 0. This state maximizes the probability of finding
the electron at the position of the Dirac delta potential. The right panels are cuts
through the contour plot at the specified times. The red line represents the position of
the repulsive Dirac delta potential. In this plot the parameters take the values µ = 1,
ω = 1, a = 1, V0 = 1, � = 0.7 (arb. units).

state corresponding to an eigenvalue close to zero, which is in that case also the maximal
eigenvalue possible [cf. Eq. (65)], avoids exhibiting much probability density at the
position of the Dirac delta potential at all times such that the probability for finding the
electron there is almost zero. For the FWS operator QV0 there exist many eigenstates
corresponding to an eigenvalue close to zero. We show one of these states in Fig. 3.
Clearly, this state exhibits a minimum at x0(t) for all times as expected. In order to
emphasize that all of the degenerate states corresponding to an eigenvalue close to zero
minimize the probability density at the position of the potential, we show in Fig. 4
a incoherent superposition of ten of these eigenstates. As one can see, there is still a
minimum present at the time depended location of the potential as Eq. (65) predicts.
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Figure 3: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to an
eigenvalue close to zero of QV0 with V0 > 0. This state minimizes the probability of
finding the electron at the position of the Dirac delta potential. The right panels are
cuts through the contour plot at the specified times. The red line represents the position
of the repulsive Dirac delta potential. In this plot the parameters take the values µ = 1,
ω = 1, a = 1, V0 = 1, � = 0.7 (arb. units).

Figure 4: Absolute value of the incoherent superposition of ten eigenstate wavefunctions
|Φ�(x, t)|2 corresponding to an eigenvalue close to zero of QV0 with V0 > 0. The incoherent
superposition still minimizes the probability of finding the electron at the position of
the Dirac delta potential. The right panels explicitly show the probability density of
the states contained in the incoherent superposition (thin black lines) and rescaled cuts
through the contour plot (thick black lines) at the specified times. Every state exhibits
a minimum at the position of the repulsive Dirac delta potential (red line). In this plot
the parameters take the values µ = 1, ω = 1, a = 1, V0 = 1, � = 0.7 (arb. units).
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In order to gain further insight, we investigate the behaviour of the eigenstate corre-
sponding to the smallest eigenvalue of QV0 for an attractive Dirac delta potential, i.e.,
V0 < 0. This state is depicted in Fig. 5. In accordance with Eq. (65) this state again
maximizes the probability density at the position of the Dirac delta potential (blue line)
at all times. In contrast to the repulsive case, here a local maximum of the probabil-
ity density is formed right at x0(t) again resulting in a high probability of finding the
electron there.

Figure 5: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to the
smallest eigenvalue of QV0 with V0 < 0. This state maximizes the probability of finding
the electron at the position of the Dirac delta potential. The right panels are cuts
through the contour plot at the specified times. The blue line represents the position of
the attractive Dirac delta potential. In this plot the parameters take the values µ = 1,
ω = 1, a = 1, V0 = −1, � = 0.7 (arb. units).

Furthermore, we want to study the behaviour of eigenstates corresponding to eigen-
values close to zero. Also for an attractive Dirac delta potential Eq. (65) tells us, that
these states will minimize the probability density at the time-depended position of the
potential. One can evidently observe this behaviour for a single state in Fig. 6 and for
an incoherent superposition of ten nearly degenerate eigenstates in Fig. 7.
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Figure 6: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to an
eigenvalue close to zero of QV0 with V0 < 0. This state minimizes the probability of
finding the electron at the position of the Dirac delta potential. The right panels are
cuts through the contour plot at the specified times. The blue line represents the position
of the repulsive Dirac delta potential. In this plot the parameters take the values µ = 1,
ω = 1, a = 1, V0 = 1, � = 0.7 (arb. units).

Figure 7: Absolute value of the incoherent superposition of ten eigenstate wavefunctions
|Φ�(x, t)|2 corresponding to an eigenvalue close to zero of QV0 with V0 > 0. The incoherent
superposition still minimizes the probability of finding the electron at the position of
the Dirac delta potential. The right panels explicitly show the probability density of
the states contained in the incoherent superposition (thin black lines) and rescaled cuts
through the contour plot (thick black lines) at the specified times. Every state exhibits
a minimum at the position of the repulsive Dirac delta potential (blue line). In this plot
the parameters take the values µ = 1, ω = 1, a = 1, V0 = 1, � = 0.7 (arb. units).
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A second FWS operator we want to investigate is the one with a derivative with respect
to the amplitude of the oscillation

Qa = −iS†dS
da

. (66)

Note, that the above derivative can be rewritten as follows

d

da
=

dx0
da

d

dx0
= cos(ωt)

d

dx0
. (67)

Due to the appearance of a spatial derivative in Eq. (67), the eigenvalues of this FWS
operator are therefore connected to a notion of the conjugate quantity – the momentum,
or more specifically the momentum transferred to the potential (this fact was rigorously
proven for the static, photonic case in the supplementary material of [6]). We again apply
Eq. (47), but are left with an ill-defined expression

θa = −µ
1

T

� T

0
dt �Φ�|dV (x, t)

da
|Φ��

= −µ
V0

T

� T

0
dt

d

da
|Φ�[a cos(ωt), t]|2

= −µ
V0

T

� T

0
dt cos(ωt)

d

dx0
|Φ�[a cos(ωt), t]|2,

(68)

since the derivative of the wavefunction at the position of the Dirac delta potential is
discontinuous. However, we can find a proper expression by considering an extended
potential barrier (cf. Section 5.1) and applying the Dirac delta limit, i.e., the spatial
extension of the barrier tends to zero and simultaneously the strength tends to infinity
such that the product of these parameters stays constant. These considerations result in

θa = −µ
1

T

� T

0
dt �Φ�|dV (x, t)

da
|Φ��

= −µ
V0

T

� T

0
dt

1

2


d

da

��Φ�(x
−
0 , t)

��2 + d

da

��ψ(x+0 , t)��2�
= −µ

V0

T

� T

0
dt

1

2
cos(ωt)


d

dx0

��Φ�(x
−
0 , t)

��2 + d

dx0

��Φ�ψ(x
+
0 , t)

��2� .
(69)

A detailed derivation of this formula can be found in Appendix D. An intuitive way of
understanding the action of this FWS operator can be gained by observing the case where
V0 is by far the largest scale of the system. In this case, the strong potential rigorously
divides space into the left hand side x < x0(t) and the right hand side x > x0(t), such
that no information can be transferred between the two parts of the wavefunction –
similar to a hard wall. For this set of parameters the eigenstates that correspond to
the minimal and maximal eigenvalue exhibit a wavepacket, which hits the potential just
at the point of maximal displacement, i.e., at the turning points. More specifically, the
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probability of finding the electron right next to the Dirac delta potential is highest at
the turning points of the potential. Translating these result to the scalar Helmholtz case
would mean that the intensity of the light is highest at the turning points. In Fig. 8 the
eigenstate corresponding to the smallest (most negative) eigenvalue is depicted. Since this
state corresponds to an extremal eigenvalue, a maximal momentum transfer is associated
with it. As can be seen, this state applies a momentum transfer in positive x- direction
at times when the cosine weighting factor is minimal (most negative) and momentum
transfer in negative x- direction when the weighting factor is maximal (most positive).
On the contrary, the eigenstate corresponding to the largest (most positive) eigenvalue
hits the potential just from the other side at the turning points of the potential and
therefore applying maximal momentum transfer in negative x- direction at times when
the cosine weighting factor is minimal and in positive x- direction when the weighting
factor is maximal (cf. Fig. 9).

It is also interesting to mention the behaviour of the state corresponding to the eigen-
value close to zero: This state develops two pulses, which hit the potential simultaneously
from both sides exactly when the potential is located at x = 0 such that almost no mo-
mentum gets transferred (not shown).
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Figure 8: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to the
smallest eigenvalue of Qa. This state hits the potential at the points of maximal dis-
placement, i.e., the turning points, such that there is maximal momentum transfer in
positive x- direction. The right panels are cuts through the contour plot at the specified
times. The red line represents to position of the Dirac delta potential. In this plot the
parameters take the values µ = 1, ω = 1, a = 1, V0 = 30, � = 0.7 (arb. units).

Figure 9: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to the
largest eigenvalue of Qa. This state hits the potential at the points of maximal dis-
placement, i.e., the turning points, such that there is maximal momentum transfer in
negative x- direction. The right panels are cuts through the contour plot at the specified
times. The red line represents to position of the Dirac delta potential. In this plot the
parameters take the values µ = 1, ω = 1, a = 1, V0 = 30, � = 0.7 (arb. units).
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4.2. Dirac Delta Potential Oscillating in Strength

One can also apply the Floquet Wigner-Smith formalism to a Dirac delta potential not
oscillating in position but in strength. In order to derive the Floquet scattering matrix
we closely follow the derivations appearing in [8, 26]. The Hamiltonian for this system
reads

H =
p2

2µ
+ V (x, t)

=− 1

2µ

d2

dx2
+ V0 cos(ωt)δ(x),

(70)

where ω is now the characteristic frequency of the potential’s oscillation in strength. To
calculate the wavefunction we again make the Floquet-ansatz

Φ�(x, t) =
∞�

n=−∞
ψn(x)e

−i(�+nω)t, (71)

where

ψn(x) =

�
ψL
n (x) =

1√
kn

�
ane

iknx + dne
−iknx

�
x < 0

ψR
n (x) =

1√
kn

�
cne

iknx + bne
−iknx

�
x > 0

. (72)

To determine the coefficients, we again demand the continuity of the wavefunction and
the discontinuity of the first derivative [see Eq. (56)]

Φ	
�(0

+, t) = Φ	
�(0

−, t), (73)
Φ	
�(0

+, t)− Φ	
�(0

−, t) = 2µV0 cos(ωt)Φ�(0, t). (74)

After inserting the ansatz of the wavefunction, the above equations turn into

an + dn = cn + bn, (75)
cn + dn − bn − an = −2i [hn−1(an−1 + dn−1) + hn(an+1 + dn+1)] , (76)

where the height of the jump of the first derivative is

hn =
µV0

2
�
knkn+1

. (77)

We use vector notation also for evanescent modes as ce = (c−1, c−2, . . . )
T , where the

subscript e indicates that we deal with evanescent modes only in contrast to vectors with
a subscript p corresponding to propagating modes. One can rewrite Eqs. (75) and (76)
as follows

(1 +Xpp) cp +Xpece = ap −Xppbp, (78)
Xepcp + (1 +Xee) ce = −Xepbp, (79)
(1 +Xpp)dp +Xpede = bp −Xppap, (80)
Xepdp + (1 +Xee)de = −Xepap. (81)
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Using the convention m = 0, 1, . . .∞ and ν = −1,−2, · · · − ∞, the elements of the
matrices appearing in Eqs. (78)- (81) read

(Xpp)m,m� = ihm�δm,m�+1 + ihmδm,m�−1, (82)

(Xee)ν,ν� = ihνδν,ν�−1 + ihν�δν,ν�+1, (83)

(Xpe)m,ν = ih−1δm,0δν,−1, (84)

(Xep)ν,m = ih−1δm,0δν,−1. (85)

Truncating to a finite number of states and rearranging Eqs. (78)- (81), we are able to
identify the Floquet scattering matrix S connecting incoming with outgoing propagating
modes �

dp

cp

�
= S

�
ap

bp

�
. (86)

This enables use to now apply the Floquet Wigner-Smith formalism.
We study the FWS operator with respect to V0

QV0 = −iS† dS
dV0

. (87)

Using Eq. (47), we arrive at the following expression for the FWS eigenvalues

θV0 =− µ
1

T

� T

0
dt �Φ�|dV (x, t)

dV0
|Φ��

=− µ
1

T

� T

0
dt cos(ωt)|Φ�(0, t)|2.

(88)

We see, that the eigenvalues θV0 are connected to the cosine weighted probability density
at the position of the Dirac delta potential. Due to the weighting factor, the eigen-
states exhibit a probability distribution, which noticeably changes during the duration
of one period according to the present value of the weighting factor. To illustrate this
behaviour, the eigenstate corresponding to the most negative eigenvalue is depicted in
Fig. 10. Indeed, according to Eq. (88), this state maximizes the time average of the
cosine weighted probability density at the position of the potential, i.e., cos(ωt)|ψ(0, t)|2.
One can clearly observe that this state exhibits a large probability density at x = 0 about
t = 0 and t = 2π/ω, where the cosine-weight is maximal, i.e., cos(0) = 1. This makes θV0

as large as possible. We can interpret the behaviour of this state as the one where the
probability of finding the electron at the position of the Dirac delta potential is highest
when the strength of the potential is positive. Contrary, for the state corresponding the
most positive eigenvalue the probability of finding the electron at the potential is largest
when the strength is most negative, i.e., at t = π/ω (cf. Fig. 11). It is also interesting
to mention the behaviour of an eigenstate corresponding to an eigenvalue close to zero.
This state tries to minimize the probability density at the position of the Dirac delta
potential at all times by interfering destructively with the input wave from the other
side, making it unlikely to ever find the electron at x = 0 (not shown).
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Figure 10: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to the
smallest eigenvalue of QV0 (black to white). For this state the probability of finding the
electron at the position of the potential is highest when the strength of the potential
is largest. Red to blue color represents the time-dependent strength of the Dirac delta
potential. In this plot the parameters take the values µ = 1, ω = 1 ,V0 = 1, � = 0.7 (arb.
units).

Figure 11: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to the
largest eigenvalue of QV0 (black to white). For this state the probability of finding the
electron at the position of the potential is highest when the strength of the potential is
smallest. Red to blue color represents the time-dependent strength of the Dirac delta
potential. In this plot the parameters take the values µ = 1, ω = 1 ,V0 = 1, � = 0.7 (arb.
units).
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Summarizing, we managed to apply the FWS formalism to a Dirac delta potential oscil-
lating in position or in strength. We studied several FWS operators, derived analytical
expressions for their eigenvalues, and investigated the temporal behaviour of the cor-
responding eigenstates which typically consist of multiple Floquet modes with different
frequencies thus being wavepackets. However, since a Dirac delta potential is intrinsically
singular and therefore non-physical (but can physically be approximated by the limiting
case of a potential whose spatial extent is much smaller than the wavelength [27]), we
also want to study more realistic potentials, which are extended in space. Therefore, in
Section 5 we will apply the FWS formalism to a potential barrier of length L > 0.
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5. FWS Operator for Oscillating Barrier Potentials

5.1. Barrier Potential Oscillating in Space

First, we investigate a barrier potential whose position oscillates in space. In order to
derive the Floquet scattering matrix we again follow the ideas presented in [24, 25]. The
potential reads

V (x, t) = V0Θ(x+ L/2− x0)Θ (L/2 + x0 − x)

=

�
V0 −L/2 + x0 < x < L/2 + x0,

0 else,

(89)

where again x0 = x0(t) = a cos(ωt) and Θ(x) is the Heaviside step function. As an
ansatz, we take

Φ�(x, t) =
∞�

n=−∞
ψn(x, t)e

−i(�+nω)t, (90)

where for the barrier we now have to distinguish three regions

ψn(x, t) =

��
ψ
(I)
n (x) x < −L/2 + x0,

ψ
(II)
n (x) −L/2 + x0 < x < L/2 + x0,

ψ
(III)
n (x) x > L/2 + x0,

(91)

The spatial wavefunctions read

ψ(I)
n (x) =

1√
kn

�
ane

iknx + dne
−iknx

�
, (92)

ψ(II)
n (x) =

1√
qn

�
αne

iqnx + βne
−iqnx

�
, (93)

ψ(III)
n (x) =

1√
kn

�
cne

−iknx + bne
iknx

�
, (94)

where we define the momenta qn inside the scattering region as

qn =
�

2µ (�+ nω − V0). (95)

We demand continuity of the wavefunction and its first derivative at x = ±L/2 + x0,
which leads – after truncation of the sums – to a set of four coupled equations. Note that
we always truncate to the same number of Floquet modes irrespective of the region, i.e.,
there are as much propagating and evanescent Floquet modes in the interaction region
as in the asymptotic regions. From the continuity condition at x = −L/2 + x0 one gets�

n

1√
kn

�
ane

ikn(−L/2)eikna cos(ωt) + dne
−ikn(−L/2)e−ikna cos(ωt)

�
e−inωt

=
�
n

1√
qn

�
αne

iqn(−L/2)eiqna cos(ωt) + βne
−iqn(−L/2)e−iqna cos(ωt)

�
e−inωt.

(96)
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We then multiply both sides with e−iωmt and integrate over one period in order to get rid
of the remaining time-dependence. Here we can again make use of the integral identity
Eq. (57), which leads to

�
n

im+n

√
kn

�
ane

ikn(−L/2)Jm+n(kna) + dne
−ikn(−L/2)Jm+n(−kna)

�
=

�
n

im+n

√
qn

�
αne

iqn(−L/2)Jm+n(qna) + βne
−iqn(−L/2)Jm+n(−qna)

�
.

(97)

Similarly, we can handle the three remaining sets of equations, which all together leads
to

Lk
+a+ Lk

−d = Lq
+α+ Lq

−β, (98)

Rq
+α+Rq

−β = Rk
+c+Rk

−b, (99)

Λk
+a− Λk

−d = Λq
+α− Λq

−β, (100)

ρq+α− ρq−β = ρk+c− ρk−b. (101)

The elements of the appearing matrices are given by

�
Lγ
±
�
n,m

=
im+n

√
γn

e∓iγnL/2Jn+m(±γna), (102)

�
Rγ

±
�
n,m

=
im+n

√
γn

e±iγnL/2Jn+m(±γna), (103)�
Λγ
±
�
n,m

= im+n+1√γne
∓iγnL/2Jn+m(±γna), (104)�

ργ±
�
n,m

= im+n+1√γne
±iγnL/2Jn+m(±γna), (105)

where γ = {k, q}. Just like the coefficient vectors c and d, we also write the coefficients
αn and βn in terms of vectors, i.e., α = (. . . , α−1, α0, α1, . . . )

T . After rearranging Eqs.
(98)-(101) we find the Floquet scattering matrix�

dp

cp

�
= S

�
ap

bp

�
, (106)

connecting the propagating modes. Note that evanescent modes inside the scattering re-
gion, i.e., αn<0 and βn<0, contribute to the Floquet scattering matrix [cf. Eqs. (98)-(101)]
since these modes are coupled to flux-carrying propagating modes in the asymptotic re-
gions.

Having now accomplished that, we can identify different FWS operators. We start by
examining the FWS operator with respect to V0, i.e.

QV0 = −iS† dS
dV0

, (107)
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and derive for its eigenvalues

θV0 = −µ
1

T

� T

0
dt �Φ�|dV (x, t)

dV0
|Φ��

= −µ
1

T

� T

0

� L/2+x0

−L/2+x0

dt dx |Φ�(x, t)|2.
(108)

We see that the eigenvalues are connected to the temporally averaged probability den-
sity inside the barrier. Again transferring this result to the photonic case results in an
eigenvalue which is connected to the intensity of the light stored inside the barrier.

The eigenstate corresponding to the most negative eigenvalue thus features the highest
probability of being inside the barrier. This can also be seen in Fig. 12 in which the
wavefunction exhibits a strong maximum of probability right in the center of the barrier
at all times. In contrast to the Dirac delta counterpart (cf. Fig 2), for the rectangular
barrier this maximum can be stabilized since inside the scattering region there are also
propagating modes present. On the other hand, the state corresponding to the maximal
eigenvalue tries to minimize the probability density inside the barrier. As can be seen
from Fig. 13, this is achieved by exhibiting local maxima at the borders of the potential
such that for a given number of Floquet modes there are as much zeros of the wavefunction
as possible inside the barrier.

Figure 12: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to the
smallest eigenvalue of QV0 . This state maximizes the probability of finding the electron
inside the barrier. The right panels are cuts through the contour plot at the specified
times. The red lines indicate the borders of the barrier potential of length L = 2. In this
plot the parameters take the values µ = 1, a = 0.5, V0 = 1, � = 0.7 (arb. units).
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Figure 13: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to the
largest eigenvalue of QV0 . This state minimizes the probability of finding the electron
inside the barrier. The right panels are cuts through the contour plot at the specified
times. The red lines indicate the borders of the barrier potential of length L = 2. In this
plot the parameters take the values µ = 1, a = 0.5, V0 = 1, � = 0.7 (arb. units).

A further interesting case is the FWS operator with respect to the the amplitude a of
the oscillation

Qa = −iS†dS
da

. (109)

Similar to the case of the Dirac delta potential oscillating in position in Section 4.1, we
expect for the FWS operator Qa that its eigenvalues correspond to a notion of momentum
transfer since a derivative with respect to a spatial coordinate appears in its definition.
Applying Eq. (47) for the present case of α → a leads to

θa = −µ
1

T

� T

0
dt �Φ�|dV (x, t)

da
|Φ��

= −µ
V0

T

� T

0
dt cos(ωt)

�
−|Φ�[−L/2 + a cos(ωt), t]|2 + |Φ�[L/2 + a cos(ωt), t]|2

�
.

(110)

Eq. (110) tells us, that the eigenvalues of the FWS operator correspond to the cosine-
weighted, time averaged difference of the absolute value squared of the wavefunction
at the borders of the barrier. Figure 14 shows the state corresponding to the smallest
eigenvalue. We can clearly see the similarity to the Dirac delta case. Also here for
the extended barrier, the eigenstate hits the potential exactly at that moment in time
at which the potential is maximally displaced, i.e. at the turning points. This state
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therefore is optimal for transferring the maximal amount of momentum to the barrier,
where the direction of the momentum transfer again is connected on the cosine weighting
factor. Contrary, the state corresponding to the maximal eigenvalue hits the potential
also at the turning points just from the other side (not shown). Furthermore, we also
want to mention the behaviour of a state corresponding to an eigenvalue close to zero.
In that case the absolute value of the wavefunction squared is nearly zero at the borders
of the potential at all times and therefore there is nearly no probability of finding the
electron there (not shown).

Figure 14: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to
the smallest eigenvalue of Qa. This state hits the potential at the point of maximal
displacement, i.e. at the turning points, as it is optimal for decelerating it. The right
panels are cuts through the contour plot at the specified times. The red lines indicate
the borders of the barrier potential of length L = 2. In this plot the parameters take the
values µ = 1, a = 0.5, V0 = 1, � = 0.7 (arb. units).
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Last, we also examine the FWS operator with respect to the length of the barrier, i.e.,

QL = −iS†dS
dL

. (111)

We again apply Eq. (47), which results in

θL = −µ
1

T

� T

0
dt �Φ�|dV (x, t)

dL
|Φ��

= −µ
V0

T

� T

0
dt

1

2

�
|Φ�[−L/2 + a cos(ωt), t]|2 + |Φ�[L/2 + a cos(ωt), t]|2

	
.

(112)

This means that the eigenvalues correspond to the time averaged sum of the probability
density at the borders of the potential. In contrast to the FWS operator QV0 , the eigen-
values of this operator are connected to the absolute value squared of the wavefunction
only at the borders of the potential, resulting in an applied force rather than a maxi-
mized probability density (or stored intensity for the photonic case) inside the barrier.
The eigenstate corresponding to the smallest eigenvalue is depicted in Fig. 15. This state

Figure 15: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to the
smallest eigenvalue of QL. This state maximizes the probability of finding the electron
at the borders of the barrier. The right panels are cuts through the contour plot at
the specified times. The red lines indicate the borders of the barrier potential of length
L = 2. In this plot the parameters take the values µ = 1, a = 0.5, V0 = 1, � = 0.7 (arb.
units).

maximizes the probability for finding the electron right next to the barrier. Transferring
this again into a photonic setting means that the light intensity is high at the borders
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of the scatterer which in turn increases the reflection probability at the barrier thus ap-
plying some pressure from the outside. This effect has been observed in the static, 2D
photonic case [6], where the GWS operator with a derivative with respect to the radius
of a circular target yields eigenstates which apply a well-defined radial pressure onto the
target. On the other hand, a state corresponding to an eigenvalue close to zero, which is
in this case also the maximal value of the eigenvalue, minimizes the probability density
at the borders of the potential similar to the state corresponding to an eigenvalue close
to zero of Qa.
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5.2. Barrier Potential Oscillating in Strength

Analogously to Section 4.2, we want to study the problem of scattering off a potential
barrier of height V0 oscillating around V0 with an amplitude of V1. The Floquet scattering
matrix has already been derived in [9, 28]. In the following we summarize the main steps.
The potential reads

V (x, t) = [V0 + V1 cos(ωt)] Θ(|x| − L/2)

=

�
V0 + V1 cos(ωt), −L/2 < x < L/2,

0, else,

(113)

where V0+cos(ωt)V1 ∈ R is the time-dependent strength of the barrier. Again, we make
use of the Floquet formalism using the ansatz

Φ�(x, t) =
∞�

n=−∞
ψn(x)e

−i(�+nω)t (114)

for the wavefunction, where

ψn(x) =

��
ψ
(I)
n (x) x < −L/2,�∞
m=−∞ ψ

(II)
m (x)Jn−m

�
V1
ω

� −L/2 < x < L/2,

ψ
(III)
n (x) x > L/2,

(115)

with Jn being the Bessel function of the first kind. Note, that Jn−m(0) = δm,n causing the
recovery of the static uncoupled case for V1 → 0 since the time-dependence vanishes (to
be rigorous, this is also true for ω → ∞, where the electron cannot resolve the movement
anymore). The ansatz for the spatial wavefunction reads

ψ(I)
n (x) =

1√
kn

�
ane

iknx + dne
−iknx

�
, (116)

ψ(II)
m (x) =

1√
qm

�
αmeiqmx + βme−iqmx

�
, (117)

ψ(III)
n (x) =

1√
kn

�
cne

iknx + bne
−iknx

�
, (118)

where we – in analogy to the previous section – introduced the momentum inside the
barrier as

qn =
�
2µ (�+ nω − V0). (119)

Our goal is now to derive the scattering matrix of this system. For this we demand
continuity of the wavefunction and its first derivative at x = ±L/2 leading to

M+
s (α+ β) = Mr (a+ b) , (120)

M−
s (α− β) = Mr (a− b) , (121)

d = M+
c α+M−

c β −Mia, (122)
c = M−

c α+M+
c β −Mia. (123)
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The elements of the matrices appearing in Eqs. (120)-(123) are then given by

�
M±

s

�
n,m

=
1√
qm

�
(kn + qm) e−iqmL/2 ± (kn ± qm) eiqmL/2

�
Jn−m

�
V1

ω

�
, (124)

�
M±

c

�
n,m

=

�
kn
qm

e−i(kn±qm)L/2Jn−m

�
V1

ω

�
, (125)

(Mr)n,m =
1√
kn

2kne
−iknL/2δn,m, (126)

(Mi)n,m = e−iknL/2δn,m. (127)

Rearranging the above equations then again yields the unitary Floquet scattering matrix,
which is defined by �

dp

cp

�
= S

�
ap

bp

�
. (128)

Since the considered potential is defined by three parameters, namely V0, V1 and L, in
the following we study the FWS operator with a derivative with respect to each of those
parameters. We start by investigating the FWS operator with respect to V0, i.e.

QV0 = −iS† dS
dV0

. (129)

Its eigenvalues are again connected to the probability density inside the scattering region
via

θV0 = −µ
1

T

� T

0
dt �Φ�|dV (x, t)

dV0
|Φ��

= −µ
1

T

� T

0

� L/2

−L/2
dt dx |Φ�(x, t)|2.

(130)

Again, transferring this observation to the photonic case, eigenstates of this operator
store a well-defined amount of intensity inside the barrier.

In Fig. 16 the eigenstate corresponding to the smallest eigenvalue is depicted. One can
clearly see that this maximizes the probability of finding the electron inside the barrier
via creating a pronounced peak of the wavefunction right in the center at all times. A
state corresponding to the maximal eigenvalue minimizes the probability of finding the
electron inside the barrier. As can be seen from Fig. 17 this states exhibits a destructive
interference in general and for a given number of Floquet modes as many zeros of the
wavefunction as possible inside the barrier, yielding an eigenvalue close to zero.
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Figure 16: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to the
smallest eigenvalue of QV0 (black to white). This state maximizes the probability of
finding the electron inside the barrier potential. The right panels are cuts through the
contour plot at the specified times. Red to blue color represents the time-dependent
strength of the barrier potential. In this plot the parameters take the values µ = 1,
V1 = 0.5, V0 = 1, L = 2, ω = 1, � = 0.7 (arb. units).

Figure 17: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to the
largest eigenvalue of QV0 (black to white). This state minimizes the probability of finding
the electron inside the barrier potential. The right panels are cuts through the contour
plot at the specified times. Red to blue color represents the time-dependent strength of
the barrier potential. In this plot the parameters take the values µ = 1, V1 = 0.5, V0 = 1,
L = 2, ω = 1, � = 0.7 (arb. units).
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We move on to the FWS operator concerning the height of the oscillation V1

QV1 = −iS† dS
dV1

. (131)

Contrary to the latter case, this operator is connected to the cosine weighted probability
density inside the barrier as can be seen by using Eq. (47) with α → V1 resulting in

θV1 = −µ
1

T

� T

0
dt �ψ|dV (x, t)

dV1
|ψ�

= −µ
1

T

� T

0

� L/2

−L/2
dtdx cos(ωt)|ψ(x, t)|2.

(132)

Figure 18 shows the state corresponding to the most negative eigenvalue. One can see
that this state avoids storing probability of finding the electron inside the barrier at
times around t = jπ/ω, with j ∈ N, when the cosine term together with the minus sign
in front gives an overall large positive contribution. Instead it exhibits a peak around
the beginning and end of the period making the integral from Eq. (132) as negative as
possible. This means that this state maximizes the probability of finding the electron
inside the barrier at times when the strength of the potential is largest. The opposite
is the case for the eigenstate corresponding to the most positive eigenvalue, i.e., this
state maximizes the electron’s probability at times when the strength of the potential
is smallest at half of the period. This behaviour is equivalent to what we observed for
the respective case for the Dirac delta potential in Section 4.2. It is illustrative to also
discuss the state corresponding to an eigenvalue close to zero which is depicted in Fig.
19 (note the different scale in the right panels). It forms peaks of probability density at
times, when the cosine term is zero, i.e., t = jπ/(2ω), giving no contribution to the time
averaging integral in Eq. (132), thus keeping θV1 as close to zero as possible.
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Figure 18: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to the
smallest eigenvalue of QV1 (black to white). This state maximizes the probability of find-
ing the electron inside the barrier at times, when its strength is largest. The right panels
are cuts through the contour plot at the specified times. Red to blue color represents the
time-dependent strength of the barrier potential. In this plot the parameters take the
values µ = 1, V1 = 0.5, V0 = 1, L = 2, ω = 1, � = 0.7 (arb. units).

Figure 19: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to an
eigenvalue of QV1 close to zero (black to white). This state maximizes the probability
of finding the electron inside the barrier at times, when the weighting factor is zero, i.e.,
cos(ωt) = 0. The right panels are cuts through the contour plot at the specified times.
Red to blue color represents the time-dependent strength of the barrier potential. In this
plot the parameters take the values µ = 1, V1 = 0.5, V0 = 1, L = 2, ω = 1, � = 0.7 (arb.
units).
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Finally, we examine a FWS operator with respect to L, which is given by

QL = −iS†dS
dL

, (133)

where the connection between eigenvalues and wavefunction reads

θL = −µ
1

T

� T

0
dt �Φ�|dV (x, t)

dL
|Φ��

= −µ
1

T

� T

0
dt

V0 + V1 cos(ωt)

2

�
|Φ�(−L/2, t)|2 + |Φ�(L/2, t)|2

�
.

(134)

Just as in the last subsection [compare Eq. (112)] we observe that a derivative with
respect to the length of the barrier is connected to the probability density at the borders
of the potential. In this case, however, there is an additional weighting factor present,
namely the strength of the potential V0 + V1 cos(ωt). As can be seen from Fig. 20, this
has the effect that the eigenstate corresponding to the smallest eigenvalue always exhibits
two peaks at the edges of the potential which are highest at times when the weighting
factor is largest. These peaks can again be thought of as applying pressure from the
outside onto the barrier.

Figure 20: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to
the smallest eigenvalue of QL (black to white). This state maximizes the probability of
finding the electron at the borders of the barrier at times, when its strength is largest.
The right panels are cuts through the contour plot at the specified times. Red to blue
color represents the time-dependent strength of the barrier potential. In this plot the
parameters take the values µ = 1, V1 = 0.5, V0 = 1, L = 2, ω = 1, � = 0.7 (arb. units).

If V0 < V1 there exist also positive eigenvalues θL, where the one corresponding to the
most positive eigenvalue again forms two peaks, but in this case they are highest at times
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when the weighting factor is smallest, i.e., at the beginning an end of the period. It is also
interesting to mention the behaviour of an eigenstate which correspond to an eigenvalue
close to zero, which exists for all configurations of V0 and V1. This state exhibits nearly
no probability density in the vicinity of the borders, such that the probability of finding
the electron at the borders is nearly zero at all times (cf. Fig. 21).

Figure 21: Absolute value of the eigenstate wavefunction |Φ�(x, t)|2 corresponding to the
eigenvalue close to zero of QL (black to white). This state minimizes the probability
of finding the electron at the borders of the barrier at all times. The right panels are
cuts through the contour plot at the specified times. Red to blue color represents the
time-dependent strength of the barrier potential. In this plot the parameters take the
values µ = 1, V1 = 0.5, V0 = 1, L = 2, ω = 1, � = 0.7 (arb. units).
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6. Conclusion and Outlook

In this work, we extended the concept of the static generalized Wigner-Smith operator to
time-periodic 1D systems using Floquet theory. Since for such potentials there exists a
time-independent, unitary Floquet scattering matrix, we were able to define a Hermitian
Floquet Wigner-Smith (FWS) operator featuring real eigenvalues. We formulated the
FWS concept in the field of quantum mechanics since historically the scattering of elec-
trons off time-periodic potentials was studied intensively. We then derived an analytical
relation between the eigenvalues of the FWS operator and the probability distribution
(or intensity distribution for the photonic case) of the wavefunction inside the poten-
tial or at its borders (depending on the considered FWS operator), which enabled us
to give the eigenvalues physical meaning and to interpret the temporal behaviour of the
corresponding eigenstates. More specifically, we applied the new FWS concept to four
different kinds of scattering systems: We investigated a Dirac delta potential oscillating
in position or strength and then a potential barrier also oscillating in strength or in po-
sition. We were able to show that the eigenstates of the corresponding FWS operator
exhibit exiting properties like maximizing the probability density inside the potential or
at its borders.

Due to the structural similarity of the Schrödinger and the scalar Helmholtz equation,
one can easily transfer the presented results to the photonic case. Considering now
the case of classical light fields, the FWS eigenvalues would be a measure for the light
intensity stored inside a dielectric particle or the force applied to a certain target. Thus,
the FWS concept might be useful for the micromanipulation with classical waves similar
to [6], but now in a periodically pulsed manner.

The results found in this thesis indicate that the FWS theory might also be applicable
in order to cool particles. We observed that eigenstates of a FWS operator defined with
respect to the position of the scatterer are connected to a notion of momentum transfer,
which in the end could be used to decelerate or cool particles. Alternatively to using a
frozen scattering matrix approach [7], which is only valid in an adiabatic limit, using the
FWS concept might open up the possibility to cool particles in more general settings,
i.e., without being in a quasi-stationary limit. Similar to cooling, one can of course also
think of using the FWS eigenstates corresponding to eigenvalues with the opposite sign
in order to accelerate and heat up a collective of particles.

In addition, not only the cooling of an ensemble of classical particles but also controlling
and cooling of quantum systems is of great interest, for example, in the field of cavity
optomechanics, where the interaction between light and an oscillating cantilever is studied
[29]. There, concepts for cooling the mechanical oscillator to its quantum ground state
(“ground state cooling”) are of great interest [30]. Therefore, transferring the presented
results of manipulating oscillating potentials to an optomechanical setting with the aim
of controlling a mechanical quantum system might lead to promising ideas.

Moreover, it will also be interesting to study the newly introduced FWS concept in
higher dimensions as they give rise to more parameters, thus adding new operator eigen-
states to a possible micromanipulation toolbox.
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Last, since many real-world settings do not feature any kind of periodicity, which is
essential for the Floquet formalism, a future generalization of the GWS and FWS concept
to non-periodically time-dependent systems could be very beneficial for applications.

40



A. Choosing a Proper Cutoff

As mentioned in the main text, for computational reasons one has to truncate to a
finite number of Floquet modes. Let us first consider the main dependencies one should
be aware of. The cutoff clearly depends critically on the strength of the driving. By
increasing the strength of the driving, multiphoton processes get more likely. On the other
hand, if we increase the driving frequency (for a fixed strength of the driving), the energy
spacing of the Floquet modes increases as well. For multiphoton processes, consequently,
more energy is required to occur, making them less likely. These considerations can be
summed up into various criteria concerning the cutoff. For example the authors in [10]
choose the constrain ���(S)2ncut,ncut

��� = |tncut,ncut | ≈ 1. (135)

This means, one should choose that many propagating modes, such that the highest one
does not experience any effect from the potential and gets (almost) completely transmit-
ted. In this thesis, we take a different approach.

For a fixed number of outgoing, propagating Floquet modes nout
cut we choose an ap-

propriate smaller number of incoming, propagating ones nin
cut < nout

cut . This makes the
Floquet scattering matrix a rectangular matrix of dimension 2(nout

cut + 1) × 2(nin
cut + 1).

It is important to note that the FWS operator is still a quadratic operator with dimen-
sion 2(nin

cut + 1) × 2(nin
cut + 1). This construction allows Floquet modes with a high en-

ergy/frequency close to the cutoff nin
cut to scatter into higher outgoing ones with n < nout

cut .
This reduces the amount of incoming flux being lost and therefore keeping the scattering
matrix flux-conserving. We now choose nin

cut such that the FWS operator is approximately
Hermitian. Since a Hermitian operator possesses real eigenvalues, we can formulate our
cutoff as follows: We decrease the number of incoming modes up to the point where
the imaginary part of every eigenvalue of the FWS operator is smaller than a certain
cut-off value ccut. For the plots of the wavefunctions presented in this thesis we choose
ccut = 10−5.
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To illustrate the advantage of this approach, in Fig. 22 we show the deviation of S†S
from the identity matrix as a measure for the unitarity of the Floquet scattering matrix S.
In this plot S is based on the barrier potential oscillating in position (cf. Section 5.1). As
one can see, for a symmetric cutoff, i.e., nin = nout, the scattering of modes corresponding
to high energies induce a large deviation from the unit matrix. This can be understood
as the scattering of these modes into higher ones with n > nout cannot be described
by the quadratic scattering matrix and therefore probability flux is lost which induces
a non-unitary scattering matrix. On the contrary, if one chooses an asymmetric cutoff,
i.e., nout > nin, the scattering matrix also keeps track of the scattering behaviour of high
incoming modes and thus a unitary Floquet scattering matrix can be achieved.

Figure 22: Deviation of the absolute vale of the real part of S†S from the unit matrix
in a logarithmic scale. The Floquet scattering matrix is based on the barrier potential
oscillating in position (cf. Section 5.1). For the left plot there are as many input modes
as output modes (symmetric cutoff), whereas, for the right plot an asymmetric number
of modes is chosen. In both plots the parameters take the values L = 2, µ = 1, a = 0.8,
V0 = 1, � = 0.7 (arb. units).
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B. Derivation of Eq. (42)

We want to investigate the connection between the eigenvalues of the static GWS operator
and local properties of the wavefunction. Most of the following results have already been
derived for the photonic case, for example in [6, 22]. Here we want to transfer those
into an electronic system described by a Schrödinger equation. For this, we use the
conventions from [23] and follow the discussion in [31].

It is well known that the scattering matrix can be written as

S = U †
�
−1 + 2iw† 1

E −Hin + iwwT
w

�
U †

= U † �−1 + 2iwTGw
�
U †.

(136)

The unitary diagonal matrix U accounts for the position of the scattering region. Here,
E is the energy and µ the mass of the incoming particle and

Hin =
p2

2µ
+ V (137)

is the interaction part of the Hamiltonian of the closed system with the potential V =
V (x, α). G is the Green’s function and the coupling matrix w accounts for the connection
of the scattering region with the asymptotic regions. One should note that w depends
on various system parameters, most notably the energy, but one often can neglect these
dependencies which we will do in the following. From the unitarity of the scattering
matrix it follows that the Green’s function obeys the following relation

G† −G = 2iG†ww†G. (138)

To calculate the derivative of the scattering matrix with respect to a parameter α which
appears in the GWS operator, we use the chain rule for matrices [32] and get

dS

dα
= iU †wT dG

dα
wU † = iU †wTG

dV

dα
GwU †. (139)

Putting the above results together, the GWS operator with respect to α becomes

Qα = −iS†dS
dα

= −2Uw†G†dV
dα

GwU †.
(140)

The relation between an ansymptotic state |ζ� and the wavefunction inside the scattering
region |χζ� reads

|χζ� =
�

2

µ
GwU † |ζ� , (141)

which finally leads to Eq. (42)

�ζ|Qα|ζ� = −µ �χζ |dV
dα

|χζ� . (142)
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C. Numerics concerning Eq. (47)

In this Appendix, we provide numerical data to emphasize the excellent agreement be-
tween the eigenvalues of the FWS operator and the probability density as stated by
Eq. (47). Figure 23 (a) and (b) depict the linear relation between the eigenvalues of the
FWS operators discussed for the spatially oscillating Delta potential in Section 4.1 and
its respective Floquet expectation value of the derivative of the potential [cf. Eqs. (65)
and (69) ]. Figure 23 (c) shows this connection for the FWS operator for the Dirac delta
potential oscillating in height discussed in Section 4.2 [cf. Eq. (88)].

Figure 23: Linear relations between the numerically calculated eigenvalues of different
FWS operators and their analytical expressions given by Eq. (47) with the corresponding
potential (see V (x, t) in the plot titles). In (a) and (b), the eigenvalues θV0 and θa for
a spatially oscillating barrier are shown, respectively. (c) also shows the eigenvalue θV0 ,
but for a delta barrier oscillating in strength.
Black dots are the numerical data points and the blue line is the expected relation
according to Eq. (47). In all of these plots the parameters (in arb. units) take the values
µ = 1, V0 = 1, ω = 1, � = 0.7, and a = 1 for the plots (a) and (b).

We present the validity of Eq. (47) for the potential barrier oscillating in position [see
for Section 5.1, Eqs. (108), (110), and (112)] in Fig. 24 and for the barrier potential
oscillating in strength [see for Section 5.2, Eqs. (130), (132), and (134)] in Fig. 25.
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Figure 24: Linear relations between the numerically calculated eigenvalues of different
FWS operators and their analytical expressions given by Eq. (47) with V (x, t) specified
in the plot title. In (a) eigenvalues θV0 , in (b) the eigenvalues θL, and in (c) the eigenvalues
θa are shown. Black dots are the numerical data points and the blue line is the expected
relation according to Eq. (47). In these plots the parameters take the values µ = 1,
V0 = 1, a = 0.5, L = 2, ω = 1, � = 0.7 (arb. units).

Figure 25: Linear relations between the numerically calculated eigenvalues of different
FWS operators and their analytical expressions given by Eq. (47) with V (x, t) specified
in the plot title. In (a) the eigenvalue θV0 , in (b) the eigenvalue θV1 , and in (c) the
eigenvalue θL is shown. Black dots are the numerical data points and the blue line is
the expected relation according to Eq. (47). In this plots the parameters take the values
µ = 1, V0 = 1, V1 = 0.5, L = 2, ω = 1, � = 0.7 (arb. units).
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D. Derivation of Eq. (68)

We start by considering the well-defined Eq. (110), which connects the eigenvalues θa of
the spatially oscillating potential barrier to the wavefunction inside the barrier

θa = −µ
1

T

� T

0
dt �Φ�|dV (x, t)

da
|Φ��

= −µ
V0

T

� T

0
dt cos(ωt)

�
−|Φ�(−L/2 + a cos(ωt), t)|2 + |Φ�(L/2 + a cos(ωt), t)|2

�
.

(143)

We want to investigate the Dirac delta limit, which means we substitute

V0 → Ṽ0

Δ
, (144)

L → Δ, (145)

where Δ � 1 thus yielding a very short but very high potential. Taking the limit Δ → 0
then causes the potential barrier to transition into a Dirac delta potential. With this
replacement we get

θa = −µ
Ṽ0

T

� T

0
dt cos(ωt)

1

Δ

�
−|ψ(x0 −Δ/2, t)|2 + |ψ(x0 +Δ/2, t)|2

�
, (146)

where x0 = a cos(ωt) as usual. We now expand the probability density around x0, which
leads to

θa = −µ
Ṽ0

T

� T

0
dt cos(ωt)

1

Δ

�
−

��ψ(x−0 , t)��2 − Δ

2

d

dx0

��ψ(x−0 , t)��2 +O(Δ2)

�
+

��ψ(x+0 , t)��2 + Δ

2

d

dx0

��ψ(x+0 , t)��2 +O(Δ2)

�

.

(147)

Since the wavefunction is continuous everywhere it holds that
��ψ(x+0 , t)��2 =

��ψ(x−0 , t)��2
and therefore the zero-order terms cancel out yielding

θa = −µ
Ṽ0

T

� T

0
dt cos(ωt)

1

2


d

dx0

��ψ(x−0 , t)��2 + d

dx0

��ψ(x+0 , t)��2 +O(Δ)

�
. (148)

Finally, we notice that
d

da
=

dx0
da

d

dx0
= cos(ωt)

d

dx0
(149)

and by applying the Dirac delta limit Δ → 0 we arrive at

θa = −µ
Ṽ0

T

� T

0
dt

1

2


d

da

��ψ(x−0 , t)��2 + d

da

��ψ(x+0 , t)��2� . (150)

With the re-substitution Ṽ0 → V0, this coincides exactly with Eq. (69).
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