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Kurzfassung
Diese Arbeit widmet sich der Herleitung makroskopischer Modelle von Elektronenensembles
und deren Eigenschaften, insbesondere Energie und Spin und der Untersuchung von Lang-
zeitverhalten. Da das Thema breit gefächert ist, werden drei ausgewählte Themen behandelt,
die jedoch in einer gewissen Art miteinander verbunden sind.

Ziel des ersten Teils ist es ein makroskopisches Modell der Teilchendichte und Energiedichte
von ultrakalten Fermionenwolken rigoros herzuleiten, startend von einer Halbleitergleichung
des Boltzmann-Typs. Außerdem wird gezeigt, dass das System exponentiell zu einem Fermi-
Dirac-Gleichgewicht konvergiert und dass die Dichten gegen ihre Mittelwerte konvergieren.

Der zweite Teil konzentriert sich auf die Herleitung eines Modells für alle Richtungen
des Spins, ausgehend von der Von-Neumann-Gleichung. Der Hamilton-Operator in dieser
Gleichung enthält eine Beschreibung einer bestimmten Spin-Orbit-Wechselwirkung, der soge-
nannte Rashba-Effekt. Von dort aus entwickeln wir das System in den Wigner-Formalismus
(ähnlich zum Phasenraum), ausgestattet mit einer Relaxation zum lokalen Equilibrium, mit
Hilfe des Quantenentropieprinzips. Das volle Quantenmodell wird erreicht, indem wir den
Linien des klassischen Chapman-Enskog-Verfahrens folgen. Um ein praktischeres Modell
zu erhalten, entwickeln wir das Equilibrium semiklassisch, was zu einem approximierten
makroskopischen Modell der Spindichten führt.

Ein bereits vorhandenes makroskopisches Modell eines Elektronenensembles und ihrer
Spins, auf einen beschränkten Bereich, ist der Ausgangspunkt des letzten Teils. Wenn
man annimmt, dass der mittlere Spin am Rand verschwindet und dass sich das System
bereits nahe des Gleichgewichtszustands befindet, führt das zu einem exponentiellen Abfall
der Spindichten in Richtung des stationären Zustands des Systems.
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Abstract
The thesis is dedicated to derive macroscopic descriptions of electron ensembles and their
properties, in particular energy and spin, and to study their long-time behaviour. Since it is
a topic with a wide range of fields, three selected topics are chosen, which are connected but
still different.

The goal of the first part is the rigorous derivation of a macroscopic description for the
particle density and energy density of an ultracold cloud of fermions, starting form a semi-
conductor Boltzmann-type equation. Additionally it is shown that the system converges
exponentially to a Fermi-Dirac equilibrium, as well as the densities converge to their mean
values respectively.

The second part focuses on the search of a model for all directions of the spin. To obtain
this the chosen starting equation is the von Neumann equation. The Hamiltonian occurring
in this equation includes a description of a particular spin-orbit interaction, the so called
Rashba-effect. From there the system is transformed into the Wigner picture, endowed with
a relaxation to the local equilibrium obtained by the quantum entropy principle. Following
the lines of the classical Chapman-Enskog procedure, the full quantum drift diffusion model
is derived. To obtain a more practical model, the semiclassical expansion of the equilibrium
leads to an approximated macroscopic description of the spin densities.

Another already derived macroscopic description of an electron ensemble and their spins
on a bounded domain is the starting point of the last part. Considering that the average spin
vanishes on the boundary and that the system is close to the equilibrium state, leads to the
exponential decay of the spin densities towards the steady state of the system.
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lang betreut hat und mir diese Arbeit ermöglicht hat. Durch ihn konnte ich mein Wissen
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guten Freund Dr. Amit Einav richten, da er mir in den Anfängen meines Doktorats sehr
unter die Arme gegriffen hat, indem er mir das Grundverständnis für die Materie legte und
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1. Introduction

1.1. Motivation

Technology has become indispensable in our modern way of life, the advances seem unlimited
and electronic devices get smaller and faster every year. Therefore it is nearly unimaginable
that the basic language of such electronic devices is binary, meaning that still everything is
encoded with zeros and ones (or ”on” and ”off”). One of the basic tools in modern electronics
are transistors, which are used as switches for electrical power and implement that language
in electric circuits. These transistors are usually built from semiconductors (such as silicon,
germanium or graphene) and have the ability to become either a conductor or an insulator,
depending on the purpose and as such the transistor controls if there is an electron flow (= 1)
or if there is no current at all (= 0).
Moore’s law [Moo65] predicted in 1965 that the number of transistors packed into integrated
circuits will increase, and in 1975 the rate was estimated to double every two years. This
is evident in the fact that manufacturing technology has gone from 6µm in 1976 to 7nm
in 2019, making the same chip roughly 850 times smaller. As an example, a smartphone
like the Samsung Galaxy S8, has about 460 billion transistors (an idea how many that is, 1
million seconds are roughly 11 days, but 1 billion seconds are roughly 31 years). This progress
has slowed down since the year 2000, due to the limits of engineering and because quantum
mechanical effects occur. Electrons have a remarkable ability called tunnelling: If there is
a thin ”wall” (e.g. created by a potential energy barrier), it is possible for the electrons to
”tunnel” to the other side. Hence, if a semiconductor is too small, the electrons can tunnel
through the device, making it hard to distinguish if there is a current or not.

A solution to resolve this issue could be using the spin of electrons. Spin is an intrinsic
form of angular momentum carried by elementary particles, discovered by the Stern-Gerlach
experiment in 1922. The study of spin transport electronics (short: Spintronics) emerged
from discoveries in the 1980s revolving around spin-dependent electron transport phenomena
in solid-state devices, for details see [Ban08, WAB+01, WCT06]. The simplified idea behind
spintronics is to control the spin and use it as information transport. For example if we take
a single electron and look in which direction its spin points, let it pass the device and check
the spin again at the end. If it remains the same, no information is passed (= 0), and if
the spin changes it gives us information (=1). This idea is easier said than done, since it is
already quite a challenge to check in which direction the spin points in the beginning. Less
troublesome is to check if the spin looks ”upwards” (has positive component in the z-axis)
or ”downwards” (has negative component in the z-axis), which we will call spin-up and spin-
down respectively for short. Going a step further, we could gain much more information from
a single electron, if we know how the spin behaves in each direction. Controlling the spin at
this level, could open plenty more opportunities for new devices. Using each direction of the
spin as another information could tremendously increase calculation speed, and tunnelling
would pose no problem, since we want the electrons to pass the device.

Before we go into details we would like to mention what kind of models exist. Roughly
speaking there are three types of models, namely the microscopic, the mesoscopic and the
macroscopic one. The microscopic models are based on the investigation of the individual
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1. Introduction

elements of the system using equations such as the Schrödinger equation, and give a very
detailed description of the model. This is the maximal possible ”zoom” level, and in most
cases these models are too detailed. Comparing it with a river, it is as if we are trying to
describe the evolution of every particle in the river separately, having the information of
where they are and in which direction they go for all times. For academic purposes this is
indeed interesting but for practical use it is way too complicated to compute. The usual
”zoom factor” we want to work with is the macroscopic one, where in most cases the starting
model is averaged over the momentum. Comparing it again with a river, we notice that all
particles in the river, move on average in the same direction, which coincides with our actual
observation. Hence it is our main goal to derive such models. A scaling that is in between
the micro- and macroscopic is the mesoscopic scaling, which is grounded in mathematics and
introduces a more statistical point of view. This type is closer to a microscopic model, but
it does not treat every particle on its own. An interpretation of the mesoscopic type is that
all particles are identical and behave similarly, and its description gives us the distribution
of these identical particles. One famous example for a mesoscopic equation is the Boltzmann
equation.
Why did we use a river as comparison, when we are talking about electrons in a semicon-
ductor? The answer is quite simple: We are interested in a macroscopic description of an
electron ensemble, and in some sense we can interpret their movement as a motion of a fluid,
see for example the picture below taken from [TDB+17].

Figure 1.1.: The electron flow looks similar to water flowing through a canal.

As much as we mathematicians love details and theory, we are also interested in practical
use of our achievements. One of the most interesting processes to study is diffusion, because
this phenomenon is well observed for long times in many situations (short observation times
for us). The usual procedure to derive a macroscopic diffusion model, simplified for now, is
to start at either the microscopic or the mesoscopic level, use the right scaling, average over
the momentum and pass formally to the diffusive limit (which will be explained in the next
section). So what is the right level to start?
Using the microscopic level gives us a lot of information and details from which we can derive
intricate models. These are in most cases highly non-local, complex and contain many quan-
tum terms. Since such models are hard to understand and most of the find no applications
in numerics, it makes sense to approximate these with some similar objects from classical
physics, and ”add” some quantum terms. This procedure is known as the semiclassical ap-
proximation (and will be treated in Section 3.6). Deeper into the thesis we will see that

2



1.2. Details on the chapters

starting from the microscopic level is complicated and requires much background knowledge,
but is then rewarded with a more detailed model, which can be then approximated with as
much accuracy as we wish.
Alternatively one can start with the mesoscopic one. The idea in this case would be to com-
pare quantum particles with larger particles that behave classically, like gas molecules. Using
such a classical approach to describe a quantum setting, already assumes a semiclassical ap-
proximation. The advantage of this choice is that the calculations that follow are simpler
and will not need to be approximated any further.

Our goal in this thesis is to derive equations which model electrons and their quantum
properties, and explore their long time behaviour. Before we go into details of the sepa-
rate chapters let us mention, that this is a mathematical thesis, which is highly connected to
physics. Since we are interested to also give motivation for our choices and provide the reader
some background knowledge, it is possible that some physical statements will not be very
accurate and could be very naive from a physicists point of view. We apologize in advance
and ask for understanding.

1.2. Details on the chapters
Chapter 2 revolves around the behaviour of an ultracold cloud of fermions (particles with 1/2
spin, e.g. electrons), which appear in quantum information processing and quantum optics,
where we focus on the latter. Due to low temperatures (close to 0), the fermions behave
similar to particles in condensed matter and are therefore also used as quantum simulation
for solid state physics. The advantage of optical lattices is that atoms can be imaged directly,
which in comparison is difficult in solids, and all parameters of the quantum system can be
controlled.
Our aim here is to derive rigorously moment equations for the particle density and the
total energy of the system. This chapter relies on the work of Marcel Braukhoff [Bra17]
and the paper of Golse and Poupaud [GP92]. Starting from the semiconductor Boltzmann
equation (mesoscopic level), where we in particular assume that the spatial variable x and
the momentum variable p lie both in the d−dimensional Torus Td. We assume zero potential
energy, we study the entropy functional, the Fermi-Dirac distribution and state an appropriate
H-Theorem. Let us point out that the Fermi-Dirac distribution is introduced here as the
minimizer of the entropy under the condition of having the same particle density and total
energy as that of the solution of the semiconductor Boltzmann equation.

Formal derivations of associated macroscopic diffusive models have already been done,
see for instance [JKP11] and [Bra17], but we are interested in a rigorous derivation. The
question for us is therefore, in which sense the diffusive limit and solutions exist. Similar
theories exist, as in [GP92] and [BADG96]. Our work however has two main differences:
Firstly, we consider a spatial variable that lies in the d-dimensional torus instead of Rd,
which is similar to assuming that the Bravais lattice is of primitive cubic type (CUB, see
[AM76]). Secondly, we consider different type of collisions, namely a collision operator of
Barthnagar-Gross-Krook (BGK) type ([BGK54]), instead of an electron-electron scattering
operator. As far as we know, this is the first time that this setting was chosen for such a
derivation.

The idea to achieve the rigorous diffusive limit relies on a boundedness result of [GP92]
and Fermi-Dirac analysis from [Bra17]. We adapt the boundedness result for our purposes

3



1. Introduction

which leads together with the Aubin Lions Lemma, to a convergence result for our desired
densities. The well known Chapman-Enskog expansion (e.g. [J0̈9]) is also introduced here,
which will not only prepare the path for our derivation, but will also be used in the following
chapter. Even tough the Fermi-Dirac distribution is well known [DF26, J0̈9, AM76], with the
analysis of [Bra17], we are able to extend the theory a bit further, which will be an important
ingredient of our convergence result. Besides the appealing mathematics, the advantages of
the rigorous derivation is that it provides solutions for the limit equations, as long as the
starting equation has already one. Due to the desire to keep the chapter as comprehensible
as possible, this existence was stated as a hypothesis, so that we are able to focus on the
derivation itself.

In the end of this chapter we will check the long time behaviour of the system and intro-
duce the relative entropy of it as well as some apriori estimates to this entropy. The adapted
version of the boundedness result of Golse and Poupaud will serve as useful tool here, along
with the H-Theorem. Finally, we will use a Gronwall argument to show that our rigorously
derived weak solution converges in norm towards equilibrium, with an exponential decay rate.

A second purpose of Chapter 2 is to introduce the reader to the concepts of deriving macro-
scopic models and studying long time behaviour of a system. We will see that in Chapter
3, which deals with the derivation of a full spin model, it is already at a formal level quite
challenging and not easy to understand. In addition, the last chapter, where we study the
long time behaviour of the spin, will need a different trick to bypass issues with the limit of
t going to infinity.

Chapter 3 of this thesis is devoted to the derivation of quantum diffusive equations for a
bidimensional gas of spinors with spin-orbit interaction. The physical situation that we have
in mind is that of electrons that are confined in a two-dimensional potential well and are
subject to the so-called Rashba effect. Such a system is often used for interesting applications
to spintronics [icvacFDS04].

In the literature two kinds of spin drift-diffusion models are usually considered. In one
approach, the dynamical variables of the model are the densities of spin-up and spin-down
electrons (with respect to a given direction) or, equivalently, the total density and the polar-
ization. In turn, such models can be either semiclassical [EH14], i.e. derived from a spinorial
Boltzmann equation, or quantum. The quantum model is derived from the von Neumann
equation (statistical Schrödinger) together with a quantum version of the Maximum Entropy
Principle (Q-MEP) [DR03, DMR05, J0̈9]. The fully-quantum model obtained in this way
can be semiclassically expanded (i.e. in powers of ), up to a desired order. Typically the
second order is enough to observe important quantum features, such as the Bohm potential.
Examples of semiclassical bipolar drift-diffusion models are given in [EH14, PN11], while a
quantum bipolar drift-diffusion model is treated in [BM10, BMNP15].

The second approach to such models considers the complete spin vectors, and not only
their projection on a given direction. Such models, therefore, have four dynamical variables:
the particle density and the densities of the three spin components. A semiclassical model of
this kind has also been developed in [EH14] starting from the spinorial Boltzmann equation.
However, to our knowledge, no quantum drift-diffusion model for the full spin structure has
been considered in literature so far. The presented work aims exactly to fill this gap, with
the derivation of quantum drift-diffusion equations for fully-structured spinors.

We consider a two-dimensional electron gas of electrons confined in an asymmetric two-
dimensional potential well. In such conditions, electrons experience a spin-orbit interaction of
Rashba type [BR84, icvacFDS04]. This is a small effect due to the relativistic conversion of the
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1.2. Details on the chapters

electrostatic field into a magnetic one. The resulting effective magnetic field is perpendicular
to both the electron motion and the confinement direction, see Figure 1.2. At a kinetic level

A

B

2DEG x = (x1, x2, 0)

p = (p1, p2, 0)

αR(p× e3)

e3

Figure 1.2.: (left): The two different semiconductors, A and B, provide an asymmetric, planar potential
well where a two-dimensional electron gas (2DEG) is confined; (right): the electrons of the
2DEG experience the Rashba effect i.e. an effective magnetic field αR(p × e3) orthogonal to
both the electron momentum p and the confinement direction e3.

we shall work in the framework of phase-space formulation of quantum mechanics (Wigner).
The Wigner formalism is a “classical looking” version of the density operator formalism (von
Neumann). Although the two versions are equivalent, the former has the advantage of making
the derivation of the model and its semiclassical expansion more intuitive.

The purely Hamiltonian dynamics described by the spinor Wigner equation is endowed
with a collisional term of Bhatnagar-Gross-Krook (BGK) type [BGK54, Arn96], describing
the relaxation of the system to the equilibrium state. Such equilibrium state is provided by the
Q-MEP, and is represented by a matrix-valued Wigner function that minimizes the quantum
free-energy functional under the constraint of given position and spin densities. Then, the
formal asymptotic analysis, with respect to the scaled relaxation time, is performed on basis
of the usual techniques in kinetic theory, namely the already mentioned Chapman-Enskog
expansion [Cer69, J0̈9]. However, differently to the standard classical and quantum cases
[BM10, Cer69, DMR05, J0̈9], it turns out that the leading order of the expansion does carry
a current, so that the usual diffusive scaling must be replaced by a hydrodynamic one (even
though the collisions do not conserve the particle momentum but only the particle number
and spin). This analysis leads to spinorial quantum drift-diffusion equations for the position
and spin densities. Such equations are non-local, since they contain a functional dependence
on the unknown densities.

In order to be able to compute an explicit semiclassical expansion, i.e. an expansion in
powers of the scaled Planck constant ε, we make the assumption that the system is in a regime
of small polarization. More precisely, we assume that the spin densities are of order ε, which
amounts to assume that the macroscopic polarization of the electron gas is small. Then, the
quantum non-local model is semiclassically expanded up to the order εmαl, where m + l = 2
and α is the scaled Rashba constant (measuring the intensity of the spin-orbit interaction).
We obtain in this way a system of four local equations having the form of semiclassical
drift-diffusion equations with “quantum corrections”, including the Bohm potential and their
spinorial counterparts.

The structure of Chapter 3 is the following: We start with some background from physics,
by presenting the Rashba spin-orbit Hamiltonian, together with the corresponding von Neu-
mann equation. Afterwards we introduce mathematical tools, such as the Wigner-Weyl trans-
formation, the Moyal product and the Pauli algebra, which allow us to transform the von
Neumann equation into a four-component Wigner equation. The Wigner equation is then
scaled into non-dimensional form, where we will introduce the scaled Planck constant ε. Then
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1. Introduction

we use the Q-MEP to define the local-equilibrium Wigner function (“quantum Maxwellian”)
and the corresponding BGK collisional operator in the Wigner equation, and present our as-
sumption of small polarization with a short discussion there. We will see that issues related
to the diffusive time-scaling arise, where we give a general characterization of all systems
that show a non-vanishing current in the equilibrium state, thus requiring a hydrodynamic
scaling instead of the usual diffusive one. With the previous preparation we use the hydrody-
namic scaling on our Wigner equation, where a new non-dimensional parameter, the scaled
collisional time τ , appears. The first main result of this chapter will be the full quantum
drift-diffusion model which appears in Section 3.5, where an adapted version of Chapman-
Enskog expansion will be introduced and applied. Afterwards we introduce in Section 3.6 the
quadratic semiclassical approximation, and its connection to semiclassical expansions of the
quantum Maxwellian and the Lagrange multiplier, and achieve our desired model. Finally,
in the last part of the chapter we draw several conclusions and show that our model can be
seen as a generalization of the other models mentioned in this Introduction.

Let us finally remark that some of the results about this non-local model have been antic-
ipated, without proofs, in [BHJ].

In the very last chapter (Chapter 4), which is mostly cited from our paper [HJ20], we are
interested in what happens to the spin in a bounded domain, if the spin on the boundary is
on average zero.

Semiconductor lasers and transistor devices may be improved by taking into account spin-
polarized electron injection. We choose a different model than our derived model in Chapter
3, but the corresponding semiconductor models should include the spin effects in an accurate
way. A widely used model is the two-component spin drift-diffusion model which can be
derived for strong spin-orbit coupling from the spinorial Boltzmann equation in the diffusion
limit [EH14]. When the spin-orbit coupling is only moderate, the diffusion limit in the
spinorial Boltzmann equation leads to a matrix spin drift-diffusion model for the electron
density matrix [EH14, PN11]. This model contains much more information than the two-
component model, but the strong coupling between the four spin components makes the
mathematical analysis very challenging. The driving force to consider this model ([EH14,
PN11]), rather than one of the models derived in Chapter 3, was that our models have
more involved terms and are more complicated to investigate (even the approximated one).
Another reason for this choice is the fact that the existence of global weak solutions for
[EH14, PN11] was already shown in [JNS15]. After some investigation, we are able to show
the large-time asymptotics of the density matrix towards a near-equilibrium steady state.

Our idea is to decompose the matrix equation into two equations modelling the spin up
and spin down densities and a third equation regarding a perpendicular direction of the spin.
Interestingly these three equations do still contain all the information needed for the spin.
Simply put we will see that the spin up and spin down densities will cancel themselves out
(in the sense they converge to a steady state) and the perpendicular direction will vanish for
long times. Details are given in Section 4.2.

1.3. Scaling and Performing Limits
This section is designed to give intuition and ideas, why and how we want to scale equations.
Since in this work different settings are considered, we will keep everything as general and
easy as possible. This means that no details about existence and spaces are given, and the
specific choices will be given in the appropriate chapters.
Let f = f(t, x, p) be the distribution function of a cloud of indistinguishable particles in
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1.3. Scaling and Performing Limits

a force field F (x, t), then these particles can be modelled by a semiconductor Boltzmann
equation (SBE), (see [CIP94, J0̈9, J0̈1, MRS90]), namely

∂tf(t, x, p) + v(p) · ∇xf(t, x, p) + F (t, x) · ∇pf(t, x, p) = Q(f(t, x, .))(p). (1.1)

with v(p) being the velocity. To keep it simple, we consider the case where the velocity is
proportional to the momentum. For free particles for example, the dispersive relation is given
by ε(p) = |p|2/2m, where m is the mass of each particle. Therefore we have

v(p) = ∇pEkinetic = ∇pε(p) = p

m
.

We also restrict ourselves to the case where the force field F (t, x) comes from a potential
V (t, x), i.e. F (t, x) = ∇xV (t, x). The right hand side Q in (1.1) is in general non-local in p
and describes short ranged collisions of the particles.
Scaling is a tool of simplification and better understanding. It puts everything in relation.
For example it is easier to say on a road trip that we are half way through, rather to tell
the exact amount of meters travelled. Therefore it is useful to look at reference quantities
and define them. In many cases we consider the reference length x0 (the device diameter
for example), and the reference time t0 (the time how long we want to observe the system).
Next let us denote the reference energy, reference temperature and reference momentum by
E0, T0 and p0 respectively, where only one of these needs to be given, since they are related:

kBT0 = E0, E0 = p2
0

m
, (1.2)

where kB is the Boltzmann constant. Now we are able to define the dimensionless variables

t̃ := t

t0
, x̃ := x

x0
, p̃ := p

p0
.

Further we introduce the scaled functions

f̃(t̃, x̃, p̃) := f(t0t̃, x0x̃, p0p̃), Ṽ (t̃, x̃) := 1
E0

V (t0t̃, x0x̃).

Looking for example at the time derivative of f , and using the fact that t = t0t̃(t), we have
that

∂tf(t, x, p) = ∂tf(t0t̃(t), x0x̃(x), p0p̃(p)) = 1
t0

∂t̃f(t0t̃(t), x0x̃(x), p0p̃(p)) = 1
t0

∂t̃f̃(t̃, x̃, p̃).

It is rare to use the scaled variables as functions, due to the tendency for confusion, and
hence we will also drop this. In the literature the notation t → t0t̃, x → x0x̃, p → p0p̃,
V → E0Ṽ is much more common. Using this transformation in SBE (1.1), we obtain the
following equation

1
t0

∂t̃f̃(t̃, x̃, p̃) + p0p̃

mx0
· ∇x̃f̃(t̃, x̃, p̃) + E0

x0p0
∇x̃Ṽ (t̃, x̃) · ∇p̃f̃(t̃, x̃, p̃) = Q(f̃(t̃, x̃, .))(p̃). (1.3)

One may notice that the above equation is not totally dimensionless, since the left hand
side depends on ”seconds−1”. Before we describe the time scaling , we briefly discuss our
collision operator Q on the right side. For the interested reader we suggest [J0̈9] for more
information about collision operators. In this work the main collision operator that will be
used is of Bhatnagar-Gross-Krook-type (BGK-type) ([BGK54]), which drives the relaxation
of the system to a local equilibrium F . Closely connected to it is the measure of disorder,
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1. Introduction

known as the entropy functional, which minimized over given constraints provides exactly this
local equilibrium. These constraints depend on the conserved quantities of the system. For
example: Equation (1.3) conserves the zeroth moment, the macroscopic density n := fdp.
The minimizer F is therefore the distribution with the lowest measure of disorder that has
the same macroscopic density F dp = n. That the particle density n should be conserved, is
the least we expect (in Chapter 2 and Chapter 3 additionally the total energy or all directions
of the spin are conserved). Since the constraints depend on the solution f , we will denote
this dependence in the minimizer by writing F (f ; p) in this introduction.
Let tc be the typical collision time (describes the ”average time” between two collisions),
which in this work will be assumed to be constant for the sake of simplicity, and define the
collision operator for a distribution f as

Q(f(t, x, .))(p) = 1
tc

(F (f ; p) − f(t, x, p)) . (1.4)

If we now drop the tilde notation and substitute the definition for Q in (1.3), we obtain

1
t0

∂tf + p0p

mx0
· ∇xf + E0

x0p0
∇xV · ∇pf = 1

tc
(F (f ; p) − f(t, x, p)) .

With the typical collision time we can now introduce the mean free path xc, which is the
distance an electron travels between two consecutive collisions. As a basic example, a possible
way to calculate it would be to multiply the reference velocity v0 = p0/m by the typical
collision time tc, giving us xc = p0tc/m. The ratio between the mean free path xc and the
reference length x0 is then called the Knudsen number τ = xc/x0. This ratio details if our
system has many collisions (i.e.τ 1) or not.
The time an electron with reference energy E0 needs to pass through the device is called in
the literature the energy time scale (cf. [BFM14]) , which we will denote by tE . The formula
for the energy time scale tE is given by dividing the reference length x0 by the reference
velocity, which is tE = x0m/p0. An immediate consequence is then that the ratio between
the typical collision time and the energy time scale, needs to equal the ratio between the
mean free path and the reference length. Indeed we see

tc

tE
= tcp0

mx0
= xc

x0
.

Therefore the Knudsen number is also given by τ = tc/tE . With this we obtain the non
dimensional semiconductor Boltzmann equation (NDSBE)

tc

t0
∂tf + τ (p · ∇xf + ∇xV · ∇pf) = F (f ; p) − f. (1.5)

We are left with choosing the observing time t0. For our purposes we will have two possibil-
ities.

• The hydrodynamic regime: This regime has the shorter time scale of the two, and
it appears when we are interested in the current of the electrons. In that case the
right choice as observation time would be t0 = tE , leading to the hydrodynamic scaled
semiconductor Boltzmann equation (HSBE)

τ∂tf + τ (p · ∇xf + ∇xV · ∇pf) = F (f ; p) − f. (1.6)

• The diffusive regime: The longer timescale of this regime provides the possibility to
observe diffusion of the particles in the device. In this regime we want to maintain
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1.3. Scaling and Performing Limits

the ratio given by the Knudsen number. The choice here would be t0 = tE/τ , because
then the ratio between the energy time scale and observation time coincides with the
Knudsen number. Substituting this in (1.5) gives us the diffusive scaled Boltzmann
equation (DSBE)

τ2∂tf + τ (p · ∇xf + ∇xV · ∇pf) = F (f ; p) − f. (1.7)

As the DSBE will be our main focus in attaining the macroscopic models in the Chapters 2
and 3, hence we will use it to continue our motivation. As mentioned in the introduction, in
the macroscopic scaling we want to see ”the motion of the river” and not how every particle
behaves. Applying this idea to the DSBE (1.7) we want to average the equation over the
momentum, which is achieved by integrating with respect to p. If fτ is the solution of (1.7),
then the macroscopic particle density nτ is given via nτ (t, x) = fτ (t, x, p)dp. Since F (fτ ; p)
has the same particle density as fτ we obtain formally

∂tnτ + 1
τ

(p · ∇x + ∇xV · ∇p) fτ dp = 0, (1.8)

a potentially simpler equation.
When one considers many collisions, the Knudsen number τ is really small (∼ O(10−2)).
Since this is close to zero, we expect a good approximation of passing to the limit τ → 0.
Moreover, we notice that if τ goes to zero, t0 has to go to infinity, which means that we
investigate the system for long times. Looking at (1.8), we notice that taking τ to zero seems
like a trivial task, but we expect that the family (nτ )τ>0 has a limit function n and that the
equation (1.8) converges to a parabolic equation like

∂tn − divx(J(n, V )) = 0, (1.9)

where J describes the flux of the system, the term divx(J) contains second order derivatives
and as well as the diffusion. Notice that equation (1.9) is still time dependent. For long time
behaviour we will study therefore the limit

lim
t→∞ n(t, x).

Here we expect that the particle density will converge to a steady state, but what this means
depends on the system we are looking at. The derivation of equations in form of (1.9) and
the study of long times regarding the macroscopic densities is exactly what we will focus on
in this thesis.
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2. Effective Energy Transport Model and
Longtime Behaviour

2.1. Setting and Scaling
As mentioned before we want to study the behaviour of an ultracold cloud of fermions (par-
ticles with 1/2 spin, e.g. electrons), in an optical lattice. Such a lattice is generated by lasers
and their standing waves, which create a periodic structure, similar to the ones that can be
found in crystals and semiconductors. For our purposes we assume that the spatial variable
lies in a cube [0, x0]d, where opposite sides are identified, i.e. a d-dimensional Torus x ∈ Td

x0
and x0 is defined as the typical length, i.e. the lattice constant. Further we assume that
the momentum variable p lies in a d-dimensional torus p ∈ Td

p0 as well, where p0 denotes the
periodicity of the energy.
It was shown in [KZPH18] that a laser generated rectangular square lattice with a hole in
the middle can be turned into the surface of a torus, which justifies our first assumption on
the spatial variable. Since we are looking at optical lattices, electrons are assumed to be in
potential wells with periodic potentials. In that case, a connected bounded subset B ⊂ Rd,
the so called first Brillouin zone, describes the momentum space well enough. In the theory
of semiconductors this is a well-known fact, since it is a consequence of the Bloch Theorem
[Blo29]. One of the simplest forms is to assume B = Td

p0 , similar as in [BADG96].
We choose a semiclassical approach to describe the behaviour of these particles, given by the
semiconductor Boltzmann equation

∂tf(t, x, p) + v(p) · ∇xf(t, x, p) + F (t, x) · ∇pf(t, x, p) = Q(f(t, x, .))(p), (2.1)

where the spatial variable x and the momentum variable p lie in the d-dimensional torus Td
x0

and Td
p0 respectively, and the time variable t lies in R.

For this work we specifically chose that there is no external force F = 0, to keep it simpler
and the velocity v(p) is given by the gradient of the dispersion relation ε(p) which in turn is
given by

ε : Td → R, p = (p1, . . . , pd) → −ε0

d

i=1
cos 2π

pi

p0
, for ε0 > 0. (2.2)

The factor p0 is the reference momentum, which describes the periodicity of the energy and
ε0 represents the amplitude. The function ε(p) represents a particular kinetic energy, where
tunnelling is considered and for example finds usage in the so called Hubbard Model, see
[SHR+12]. As in the Introduction mentioned the collision operator Q on the right hand
side of (2.1) is considered to be of BGK-type (see [BGK54]), which describes the relaxation
towards equilibrium. Let therefore F (f ; p) be a nonlinear function of f and p, representing
the local equilibrium, and let tc denote the typical collision time, assuming to be constant,
then we can write

Q(f(t, x, .))(p) = 1
tc

(F (f ; p) − f) .
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At this point we also mention that we want to describe a closed system with elastic collisions,
which means that the total amount of particles and the mean Energy remain the same.
Details about that and discussion of the local equilibrium F requires more work and is
therefore postponed to Section 2.2. With all these adjustments our model equation reads as
follows

∂tf(t, x, p) + ∇pε(p) · ∇xf(t, x, p) = 1
tc

(F (f ; p) − f(t, x, p)). (2.3)

For the derivation of a macroscopic model, the right choice to observe long time behaviour
of the system, is the diffusive one. Starting with putting (2.3) in its non-dimensional form,
we introduce the scaled quantities

t → t0t̃, x → x0x̃, p → p0p̃,

where t0, x0 are the reference time and space. The scaled variables x̃ and p̃ lie both now in
Td = [0, 1]d and t̃ still lies in R. As reference velocity, denoted by v0, we choose the maximal
possible velocity, which is the same in every direction pi,

v0 := sup
p∈Td

|∂piε(p)| = 2π
ε0
p0

, ∀i ∈ {1, . . . , d}

Using the above we can introduce the scaled dispersion relation with

ε̃(p̃) := 1
2πε0

ε(p0p̃) = − 1
2π

d

i=1
cos(2πp̃i). (2.4)

If we look at the partial derivative of ε(p), with the above scaling we see

∂piε(p) = −∂piε0

d

i=1
cos 2π

pi

p0
= 2π

ε0
p0

sin 2π
pi

p0
= −ε0

p0
∂p̃i cos(2πp̃i) = 2π

ε0
p0

∂p̃i ε̃(p̃)

and hence

∇pε(p) = v0∇p̃ε̃(p̃). (2.5)

Let the energy time scale tE of an electron be defined as the minimum time an electron needs
through the device with diameter x0, given by

tE := x0
v0

.

We obtain the non dimensional semiconductor Boltzmann equation

1
t0

∂t̃f̃(t̃, x̃, p̃) + 1
tE

∇p̃ε̃(p̃) · ∇x̃f̃(t̃, x̃, p̃) = 1
tc

(F̃ (f̃ ; p̃) − f̃(t̃, x̃, p̃)).

Applying the diffusive scaling means that the relation of the energy time scale and the
reference time coincide with the Knudsen number τ , such that tE/t0 = τ , where τ = tc/tE .
Dropping the tilde notation, this leads us to the diffusive scaled semiconductor Boltzmann
equation (DSSBE)

τ∂tf + ∇pε(p) · ∇xf = 1
τ

(F (f ; p) − f). (2.6)
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Remark 2.1.1. In this particular case we could have chosen another way of scaling to obtain
the DSSBE. First assume that the given momentum is already scaled. Furthermore define
the average collision distance xc = tcv0. Then we can define the Knudsen number as usual,
namely as τ = xc/x0. Then the scaling could be quicken up by choosing the transformation

t → t̃

τ2 , x → x̃

τ

which would lead to the exact same equation as in (2.6), see [Bra17, J0̈9].

Notation 2.1.2. From now on ε(p) will always denote the scaled dispersion relation given
in (2.4), which we recall

ε(p) = − 1
2π

d

i=1
cos(2πpi). (2.7)

Also notice that the scaled spatial variable x and the scaled momentum variable p lie both in
Td, which is from now on the cube [0, 1]d with opposite sides identified.

In the end we define even and odd functions on the torus.

Definition 2.1.3. We call a function g ∈ L1(Td) even on Td in pi for i ∈ {1, . . . , d} if

g(p1, . . . , (1/2) + pi, . . . , pd) = g(p1, . . . , (1/2) − pi, . . . , pd) ∀pi ∈ [0, (1/2)],

and we call the function g odd on Td in pi for i ∈ {1, . . . , d}, if

−g(p1, . . . , (1/2) + pi, . . . , pd) = g(p1, . . . , (1/2) − pi, . . . , pd) ∀pi ∈ [0, (1/2)],

The function g ∈ L1(Td) is called even or odd, if it is even in pi for all i ∈ {1, . . . , d} or odd
in pi for all i ∈ {1, . . . , d}.

Example 2.1.4. The function ε(p) is thanks to the cosine an even function on Td. If we
derive ε(p) partially we obtain that ∂pj ε(p) is odd on Td, due to the properties of the sine.
Moreover for an even function g ∈ L2(Td) we obtain the following

1

0
∂pj ε(p)g(p)dpj =

1
2

0
∂pj ε(p)g(p)dpj +

1

1
2

∂pj ε(p)g(p)dpj = 0,

and hence

Td
∂pj ε(p)g(p) dp =

1

0
· · ·

1

0
∂pj ε(p)g(p) dp1 · · · dpd = 0

2.2. Entropy and Equilibrium
2.2.1. The Mean Particle Density, the Mean Energy, and their Relation
The equation DSSBE (2.6) requires an initial value f0 to be well stated. At the moment it
is enough to choose f0 in L1(Td × Td) with 0 ≤ f0 ≤ 1. The initial condition f0 provides the
mean particle density and mean energy by

n̄ :=
Td Td

f0(x, p)dpdx Ē :=
Td Td

ε(p)f0(x, p)dpdx. (2.8)
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Considering that our system is closed and having elastic collisions, the quantities n̄, Ē are
both conserved at all times. In particular if f(t, x, p) describes the system, i.e. is the solution
to the DSSBE (2.6) with initial condition f0, then the macroscopic densities nf := fdp and
Ef := εfdp should fulfill at any time t ≥ 0

Td
nf (t, x)dx = n̄,

Td
Ef (t, x)dx = Ē. (2.9)

The energy of a system relies totally on the particle density. If for example there are no
particles in the system (n̄ = 0) there cannot be energy due to the lack of motion. If conversely,
the system has full density, (n̄ = 1), there is no movement and therefore the mean energy is
again zero, which is reflected in the dispersion relation by

Td
ε(p)dp = 0.

In the upcoming lemma, we will show that the possible range for the energy depends on the
particle density of the system.

Lemma 2.2.1. Let f0 ∈ L1(Td × Td) be given with 0 ≤ f0(x, p) ≤ 1 for all x and p in Td

and define n̄ and Ē as in (2.8). Let C ∈ R be such that

meas p ∈ Td : ε(p) ≥ C = n̄,

where meas (.) denotes the d-dimensional Lebesgue measure, then we have the following in-
equality

Ē ≤
{p∈Td:ε(p)≥C}

ε(p)dp.

Proof. From [Bra17] Remark 5.1.3 we deduce, due to Td being a connected set and ε(p) being
continuous, that the image of ε(Td) equals an interval I and that the function

h : Ī → R; C → meas p ∈ Td : ε(p) ≥ C ,

is continuous and decreases strict monotonically. The interval Ī is given by [−d/(2π), d/(2π)].
If C = −d/(2π) we get that h(C) = meas Td = 1 and for C = d/(2π) we have that h(C) =
meas ({((1/2), . . . , (1/2))}) = 0. Since h decreases strict monotonically and is continuous, we
obtain that h(Ī) = [0, 1] and therefore exists a unique C for every n̄ ∈ [0, 1].
Let C be now the unique solution for n̄ = p ∈ Td : ε(p) ≥ C and define the short notation

C := p ∈ Td : ε(p) ≥ C .

Additionally we have for f̄(p) := Td f0(x, p)dx the following identity

C
1dp =

Td
✶C(p)dp =

Td
f̄(p)dp =

C
f̄(p)dp +

Cc
f̄(p).dp (2.10)

For f̄ the inequalities 0 ≤ f̄(p) ≤ 1 still hold for all p in Td, as well as Ē = Td ε(p)f̄(p)dp.
We have

Ē =
Td

ε(p)f̄(p)dp =
C

ε(p)f̄(p)dp +
Cc

ε(p)f̄(p)dp ≤
C

ε(p)f̄(p)dp + C
Cc

f̄(p)dp.

14



2.2. Entropy and Equilibrium

From (2.10) we deduce that

C
(1 − f̄(p))dp =

Cc
f̄(p)dp.

Since 0 ≤ f̄ ≤ 1 and ε(p) ≥ C on C we have that for all p ∈ C that
0 ≤ (ε(p) − C)f̄(p) ≤ ε(p) − C,

which yields the estimate

Ē ≤
C
(ε(p) − C)f̄(p)dp +

C
Cdp ≤

{p∈Td:ε(p)≥C}
ε(p)dp. (2.11)

For the lower bound we first notice that the integral over the torus Td is translation invariant,
meaning that for any a ∈ Rd and all f ∈ L1(Td) that

Td
f(p)dp =

Td
f(p + a)dp,

see for example [Gra08]. Additionally for the cosine we know that cos(y + π) = − cos(y) for
any y ∈ R. Defining the vector a := (1/2)(1, 1, ...1) ∈ Td provides ε(p + a) = −ε(p). The
function g(p) := f̄(p + a) fulfills, due to the properties of Td, that

n̄ =
Td

f̄(p)dp =
Td

f̄(p + a)dp =
Td

g(p)dp,

Ē =
Td

ε(p)f̄(p)dp =
Td

ε(p + a)f(p + a)dp = −
Td

ε(p)g(p) =: −Eg.

Applying the first part of the proof to g and Eg, gives us Eg ≤ C ε(p)dp, and therefore

−Ē = −
Td

ε(p)f̄(p)dp =
Td

ε(p)g(p)dp = Eg ≤
{p∈Td:ε(p)≥C}

ε(p)dp,

which concludes the proof.

Motivated from Lemma 2.2.1 we give the following
Definition 2.2.2. Let us define therefore the energy bound for given n ∈ [0, 1]:

emax(n) :=
{p∈Td:ε(p)≥C}

ε(p)dp, where meas p ∈ Td : ε(p) ≥ C = n, (2.12)

and define the set of all admissible particle and energy densities as

D := (n, E) ∈ R2 : 0 ≤ n ≤ 1; − emax(n) ≤ E ≤ emax(n) . (2.13)

Example 2.2.3. Interesting is the depiction of D. For d = 1 we have that the dispersion
relation is given by ε(p) = −(1/2π) cos(2πp) with the graph

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

0

0.1
ε(p) = − 1

2π
cos(2πp)

Momentum p

Figure 2.1.: The dispersion relation ε(p) for d = 1.
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2. Effective Energy Transport Model and Longtime Behaviour

Using similar notation as in the proof of Lemma 2.2.1 we have

Cn = p ∈ Td : ε(p) ≥ C(n) , where C(n) is implicit given, such that meas (Cn) = n.

From Figure 2.1 we read of that the set Cn has to be an interval with centre 1/2, which in the
particular 1D case we expect to be given by Cn = [(1−n)/2, (1+n)/2]. To prove this we need
an explicit formula for C(n), hence we take a closer look onto the condition ε(p) ≥ C(n).
The intersection ε(p) = C(n) has two solutions, namely

p1 = 1
2π

arccos(−2πC(n)) and p2 = 1
2 + 1

2π
arccos(2πC(n)). (2.14)

Using that arccos(−x) = 1/2 − arccos(x) we obtain for

p1 = 1
2 − 1

2π
arccos(2πC(n))

Notice that for all p ∈ [p1, p2] the condition ε(p) ≥ C(n) is always fulfilled and for p /∈ [p1, p2]
we have that ε(p) < C(n) and hence Cn = [p1, p2]. Since meas (Cn) = n has to hold for all n
in [0, 1], we obtain the equation

meas (Cn) = n ⇔
1
2 + 1

2π
arccos(2πC(n))

1
2 − 1

2π
arccos(2πC(n))

dp = n.

Resolving the integral on the right side and using again arccos(−x) = 1/2 − arccos(x), yields
1
π

arccos(2πC(n)) = n ⇔ C(n) = 1
2π

cos(πn).

Substituting the formula for C(n) into (2.14), we really obtain Cn = [(1 − n)/2, (1 + n)/2].
Since C(n) = (1/2π) cos(πn) we deduce that the range of C(n) is the intervall [−1/2π, 1/2π]
and that it is monotonically decreasing for n from zero to one. Next we evaluate the maximal
energy for a given density n:

emax (n) =
Cn

ε(p)dp = − 1
2π

1
2 + n

2

1
2 − n

2

cos(2πp)dp = − 1
4π2 (sin(π(1 + n)) − sin(π(1 − n))).

Using the identities sin(π + x) = − sin(x) and sin(x) = sin(π − x), leads us then to

emax (n) = − 1
4π2 (sin(π(1 + n)) − sin(π(1 − n))) = 1

4π2 (sin(πn) + sin(πn)) = 1
2π2 sin(πn).

Plotting the above yields

0.5 1

−1
2π2

1
2π2

emax(n)

emin(n)

Density n

Energy E

Figure 2.2.: The set D for d = 1.
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2.2. Entropy and Equilibrium

For d > 1 the treatment is much more difficult, due to the fact that C(n) and Cn are harder
to determine. We expect that D should, up to some constants, always have the same shape
as in Figure 2.2

Remark 2.2.4. For any given particle density n ∈ [0, 1], the interval [−emax(n), emax(n)]
is the possible range for the energy of the system. The function emax (n) is only zero if
n ∈ {0, 1}, which coincides with the fact mentioned in the beginning of this section. Moreover
the integral of ε(p) is at maximum, if we integrate over the set where ε(p) > 0, which coincides
with C(n) = 0 and n = (1/2) for all dimensions d ∈ N. Therefore we obtain for any n ∈ [0, 1]

emax(n) ≤ emax
1
2 = − d

(2π)2 sin 2π
3
4 − sin 2π

1
4 = d

2π2 =: emax. (2.15)

This can be interpreted as achieving the highest possible energy when the system is ”half
full” (is also reflected in our picture of D, see Figure 2.2).

The Fermi Dirac distribution

The set D defined in (2.13) will be important for our diffusive limit, hence it is worth to have
a closer look on it. With the help of the so called Fermi Dirac distribution we will be able
to find for every pair (n, E) in D a function f from L1(Td), which integrated with respect to
the zeroth and second momentum equals that pair. The next Lemma is cited from [Bra17]
and justifies that assumption.

Lemma 2.2.5. Let D be the set given in (2.13), then

D = (n, E) ∈ R2 : 0 ≤ n ≤ 1; − emax(n) ≤ E ≤ emax(n)

=
Td

(1, ε(p))f(p)dp : f ∈ L1(Td); 0 ≤ f ≤ 1

Proof. We give here a short sketch and for details we refer to [Bra17], Lemma 5.1.14., where
η has to be chosen as one.
The first equality is the definition of the set D and the second equality is a standard set
comparison, where we give a rough idea. With Lemma (2.2.1), we obtain the inclusion ”⊇”.
For the other direction ”⊆, let (n, E) be given, then the key point is to construct a function
of the form

ξs(p) := s✶{p∈Td:ε(p)≥C}(p)+(1−s)✶{p∈Td:ε(p)≤−C}(p), with meas p ∈ Td : ε(p) ≥ C = n

for s ∈ [0, 1]. Then it is possible to find a suitable s0 such, that Td(1, ε(p))ξs0(p)dp =
(n, E).

The next definition will give us a clue, what the local equilibrium of the system will be.

Definition 2.2.6. For (λ0, λ1, p) ∈ R2 × Td define the generalized Fermi Dirac distribution

F (λ0, λ1; p) := 1
1 + exp(−λ0 − λ1ε(p)) . (2.16)

Not trivial is the upcoming proposition, which we also cite from [Bra17]. It shows the
relation between the set D and the Fermi Dirac distribution, given in the above Definition.
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2. Effective Energy Transport Model and Longtime Behaviour

Proposition 2.2.7. Let D be the set defined in (2.13) and denote by D◦ the interior of it,
then the mapping

b : R2 → D◦, (λ0, λ1) →
Td

(1, ε(p))F (λ0, λ1; p)dp,

is bijective and smooth. Moreover, its inverse is smooth as well.

Proof. This is proven in [Bra17], where we set η = 1. Notice that the author made in his
Proposition a typing mistake and that he meant exactly what we have written in Proposition
2.2.7. We give a short sketch of the proof here and refer for details to [Bra17] Proposition
5.1.8 in Chapter 5. First define the functions

ñ(λ0, λ1) :=
Td

F (λ0, λ1; p)dp, Ẽ(λ0, λ1) :=
Td

ε(p)F (λ0, λ1; p)dp.

Then it possible to show that the Jacobian determinant det ∂λ0,λ1(ñ, Ẽ) is positive. This
just proves that (λ0, λ1) → (ñ(λ0, λ1), Ẽ(λ0, λ1)) is just a local isomorphism. To proof that
this isomorphism is indeed global, it is possible to show the existence of a unique function
φ : R → R, such that for every (n, E) given in D◦ there exists a unique λ1 ∈ R such that

(n, E) =
Td

(1, ε(p))F (φ(λ1), λ1; p)dp.

The fact that det ∂λ0,λ1(ñ, Ẽ) is positive ensures that the Jacobian of b is invertible and the
implicit function theorem ensures therefore the smoothness of the inverse b−1.

The upcoming statement is deduced from the above and gives a detailed insight on the
interior of D.

Corollary 2.2.8. Let D be the set defined in (2.13), then the interior of D is given by

D◦ = (n, E) ∈ R2 : 0 < n < 1; − emax(n) < E < emax(n)

=
Td

(1, ε(p))f(p)dp : f ∈ L1(Td); 0 < f < 1

Proof. The first equality comes from basic topology, therefore we focus on the second equality.
Starting with ”⊇” we deduce from Lemma 2.2.5 that for every f ∈ L1(Td) with 0 < f < 1
there exist a representative (nf , Ef ) in D, which is given by

(nf , Ef ) =
Td

(1, ε(p))f(p)dp.

Hence it is enough to show that (nf , Ef ) lies in the interior of D. Since 0 < f(p) < 1 we have
clearly that 0 < nf < 1. For Ef we look into the estimate (2.11) in proof of Lemma 2.2.1.
At that point we can estimate with a strict ”<” since f is strict smaller than one. Therefore
we obtain that Ef < emax (nf ). Following the same proof further we also obtain for the same
reason the strict estimate −emax (nf ) < Ef , which proves the first inclusion.
For the other direction let (n, E) ∈ D◦ be given. Recalling Definition 2.2.6 we obtain with
Proposition 2.2.7, since n /∈ {0, 1}, that for (n, E) there exist unique (λ(0,n,E), λ(1,n,E)) ∈ R2

such that

Td
(1, ε(p))F (λ(0,n,E), λ(1,n,E), p)dp = (n, E).

Looking at the definition of F we see immediately that it has to be in L1(Td) and that the
function fulfills 0 < F (λ(0,n,E), λ(1,n,E), p) < 1 for all p ∈ Td, which concludes the proof.
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2.2. Entropy and Equilibrium

Remark 2.2.9. Before we pass to the next section, we state facts about the Fermi Dirac
distribution and give for our purposes important results about the bijection b coming from
[Bra17]. F can be rewritten as composition of two functions

F (λ0, λ1; p) = G (λ0 + λ1ε(p)), where G : R → R, s → log(1 + exp(s).

An immediate consequence is that the Fermi-Dirac distribution is even on the Td in the sense
of Definition 2.1.3, for all (λ0, λ1) ∈ R×R, since ε(p) is even on Td. The derivatives of G are

G (s) = exp(s)
1 + exp(s) = 1

1 + exp(−s) , G (s) = exp(s)
(1 + exp(s))2 , ∀s ∈ R.

They have the following properties for all s ∈ R and r ∈ (0, 1)

G (s) ∈ (0, 1), G (s) = G (s)(1 − G (s)), (G )−1(r) = log r

1 − r
.

We introduce the notation

λ := (λ0, λ1), b(λ)= ñ(λ)
Ẽ(λ) b−1(n, E)= λ0(n, E)

λ1(n, E) .

Using the properties of G we see that for i, j ∈ {0, 1}

∂λi
bj(λ) = ∂λi

Td
ε(p)jF (λ; p)dp =

Td
ε(p)i+jF (λ; p)(1 − F (λ; p))dp.

From the above we deduce immediately that ∂λ0 ñ(λ) has to be positive and in [Bra17] was
shown that the Jacobian matrix Dλ0,λ1b(λ) has a positive determinant (see Lemma 5.1.10 in
[Bra17]). Hence we can conclude with the main minors that Dλ0,λ1b (=Dλ0,λ1(ñ(λ), Ẽ(λ)))
is a symmetric and positive definite matrix. Moreover with the inverse function theorem
and the fact that ∂λ1Ẽ(λ) > 0, we also obtain for the inverse b−1, that its Jacobian matrix
Dn,E(λ) is symmetric and positive definite.

2.2.2. The Local Equilibrium and the H-Theorem
As mentioned in the beginning, the DSSBE (2.6) is not fully described yet, since we have
not given an explicit form of F (f ; p). The local equilibrium of our system is defined as the
minimizer of the measure of disorder, the entropy functional, under the constraints having
the same particle density and total energy as that of the distribution describing the system
at the moment (coming from the elastic collisions). We will show in this section that the
Fermi Dirac distribution is exactly this minimizer we are looking for. The entropy functional
for an ultracold cloud of fermions comes from degenerate Fermi statistics and is defined by

H (f) :=
Td Td

h(f)dpdx, where h(f) := f log(f) + (1 − f) log(1 − f), (2.17)

see as examples [J0̈9, Hug83, Dol94, Lu08a, Lu01]. We see that the above functional is well
defined for all functions f in L1(Td × Td) with 0 ≤ f ≤ 1.

Remark 2.2.10. Since the function H will be of great value for this chapter, we give here
some facts about it.

• Looking at the function h(y) = y log(y) + (1 − y) log(1 − y) for y ∈ (0, 1), we have the
derivatives

h(y) = y log y

1 − y
+ log(1 − y), h (y) = log y

1 − y
, h (y) = 1

y(1 − y) .
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2. Effective Energy Transport Model and Longtime Behaviour

• The function h(y) has a minimum at y = 2−1 and hence h(y) > log(1/2), ∀y ∈ (0, 1).

• Looking at the first derivative we see that h is the inverse function of

g : R → (0, 1), s → 1
1 + exp(−s) .

• Observe that h > 0 and therefore h is a convex function. Additionally h (y) has a
minimum at y = 1/2, hence h (y) ≥ 4 for all y ∈ (0, 1).

• The Taylor expansion of h(y) at the point y0 ∈ (0, 1) is given by

h(y) = h(y0) + h (y0)(y − y0) + 1
2h (ξ)(y − y0)2

for some ξ ∈ (0, 1). Since h (y) has a minimum at y = 1/2 we have the estimate

h(y) ≥ h(y0) + h (y0)(y − y0) + 2(y − y0)2 (2.18)

Theorem 2.2.11. Let (n, E) be given in D◦, then the solution to

min
f∈L1(Td)

H (f) 0 < f < 1,
Td

f(p)dp = n,
Td

ε(p)f(p)dp = E (2.19)

is given by the Fermi Dirac distribution

F (n, E; p) = 1
1 + exp(−λ0(n, E) − λ1(n, E)ε(p)) , (2.20)

where λ0, λ1 are given by the bijection in Proposition 2.2.7.

Proof. Notice that we have for now no dependence on the spatial variable x, hence the entropy
functional H reduces to

H (f) =
Td Td

h(f(p))dxdp =
Td

h(f(p))dp.

Also observe that the set over we minimize is due to Corollary 2.2.8 not empty. Proposition
2.2.7 provides for (n, E) ∈ D◦ the existence of unique λ0(n, E), λ1(n, E) such that

Td
(1, ε(p))F (λ0(n, E), λ1(n, E); p)dp = (n, E),

and with F being clearly a function in L1(Td), it is a valid candidate. The remaining part
is to prove that F is really a minimizer, and let therefore f ∈ L1(Td) with f = F fulfill the
constraints given in (2.19). Using the Taylor series of h around F , we obtain with (2.18) that

h(f(p)) ≥ h(F (p)) + h (F (p))(f(p) − F (p)) + 2(f(p) − F (p))2, ∀p ∈ Td. (2.21)

From Remark 2.2.10 we deduce that h (F (p)) = λ0(n, E) + λ1(n, E)ε(p), and since f and F
fulfill the constraints in (2.19), we get

Td
h (F (p))(f(p) − F (p))dp = λ0

Td
(f(p) − F (p))dp + λ1

Td
ε(p)(f(p) − F (p))dp = 0.

20



2.2. Entropy and Equilibrium

Integrating the previous estimate (2.21) with respect to the momentum p, we obtain with
the above identity that

H (f) ≥ H (F ) + 2
Td

(f(p) − F (p))2dp.

Since (f − F )2 ≥ 0 we obtain that for given (n, E) ∈ D◦ and for all f ∈ L1(Td), fulfilling the
constraints given in (2.19), that

H (F ) ≤ H (f).

Remark 2.2.12. To avoid over-notation we will denote the Fermi Dirac distribution with
F (n, E; p) (instead of F (λ0(n, E), λ1(n, E); p)), to show the dependence on the constraints
given in (2.19).
Looking at a distribution function f ∈ L1(R×Td ×Td) with 0 < f(t, x, p) < 1 for all (t, x, p)
in R × Td × Td and defining

(n(t, x), E(t, x)) :=
Td

(1, ε(p))f(t, x, p)dp ∈ D◦, ∀(t, x) ∈ R × Td,

we see that the Fermi Dirac distribution F (n(t, x), E(t, x); p) is well defined and depends
through f on the variables t and x.

Finally with all the prework we have done so far, we are able to give the definition for the
collision operator of BGK-type.

Definition 2.2.13. Let f be a function in L1(R × Td × Td) with 0 < f(t, x, p) < 1 for all
(t, x, p) ∈ R × Td × Td, then we define the collision operator as follows:

Qτ (f) := 1
τ

F
Td

f(t, x, p̃)dp̃,
Td

ε(p̃)f(t, x, p̃)dp̃; p − f(t, x, p) (2.22)

Since we want to lay our focus on the rigorous derivation of a macroscopic model and the
long time behaviour of it, we state for further progress a hypothesis about the existence of a
solution to our model equation with a sufficiently smooth initial condition.

Hypothesis 2.2.14. Let f0 be a function in C1(Td × Td) with 0 < f0(x, p) < 1 for all
(x, p) ∈ Td ×Td, let F be the Fermi-Dirac distribution as defined in (2.20) and let Qτ be the
collision operator defined in (2.22). Then the equation

τ∂tfτ + ∇pε · ∇xfτ = Qτ (fτ ), fτ (0, x, p) = f0(x, p) (2.23)

has a unique solution fτ in C1(R+ × Td × Td) for all τ > 0.

Remark 2.2.15. First we point out that some decisions about the above conditions could
have been chosen less restrictive, but for the purpose of keeping an good overview we decided
to choose them specifically as they are. To show that the equation (2.23) has under specific
conditions a solution can be found in the literature. For example one of our main reference
paper [GP92] has shown that the solution fτ lies in L∞(R × R3 × B) where B is the first
Brillouin zone. There a more general setting was considerd.
Another approach was performed by Xuguang [Lu08b], where the right side of (2.23) was
chosen differently and very soft collision kernels were an condition.
Mustieles [Mus90] and the follow up work with Francisco [Mus91], found global existance
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2. Effective Energy Transport Model and Longtime Behaviour

of classical (for d = 1, 2) and weak solutions (d = 3), and also uniqueness under certain
assumptions, where again the right hand side differs from our choice. Also the velocity was
considered of linear dependence regarding the momentum, which is in our setting not the
case.
We think that it is possible to show the existence of a solution of (2.23), which is at least L∞

(comparing with the above results), but due to time issues and the desire to keep it simple,
we did not prove the hypothesis here.

Definition 2.2.16. Let fτ be the solution to the diffusive scaled semiconductor Boltzmann
equation (2.23), then we define the macroscopic particle density nτ and energy density Eτ of
the system by

nτ (t, x) :=
Td

fτ (t, x, p)dp, Eτ (t, x) :=
Td

ε(p)fτ (t, x, p)dp. (2.24)

Remark 2.2.17. If the solution fτ lies in C1(R+ ×Td ×Td), then we have clearly that also its
moments nτ and Eτ (see (2.24)) lie in C1(R+×Td) for every τ > 0. With Proposition 2.2.7 we
obtain then that also the functions λ0(nτ , Eτ ) : R+ ×Td → R2 and λ1(nτ , Eτ ) : R+ ×Td → R2

are at least in C1(R+ × Td) and hence we conclude that then the Fermi-Dirac distribution
F (nτ , Eτ ; p) is a composition of C1-functions and therefore itself in C1(R+ ×Td ×Td) for all
τ > 0.

The starting distribution f0 defines the mean particle density n̄ and mean energy Ē (see
(2.8)) of the system which should be the same at all times. Now the function with the lowest
measure of disorder, with the same mean particle density and mean energy, is the equilibrium
of our system. Explicit we have the following.

Definition 2.2.18. For given f0 ∈ L1(Td × Td), with 0 < f0 < 1, let n̄ and Ē be the mean
particle density and mean energy given by (2.8). Then we define the equilibrium of the system

Feq(p) := F (n̄, Ē; p). (2.25)

Remark 2.2.19. Feq(p) in Definition 2.2.18 is well defined due to the fact, that if 0 < f0 < 1
we also have that (n̄, Ē) ∈ D◦, see Corollary 2.2.8.
Moreover if the system is already at equilibrium from the start, i.e. if we set in our model
equation (2.23) for any (n̄, Ē) ∈ D◦

f0(x, p) := F (n̄, Ē, p),

the solution is given by the equilibrium state Feq. The left hand side of (2.23) vanishes,
because Feq is constant in time and space. For the right hand side we notice that

F
Td

Feq(p)dp,
Td

ε(p)Feq(p)dp; p = F (n̄, Ē; p) = Feq(p),

and therefore Qτ (F (n̄, Ē, p)) = 0. This reflects the natural behaviour we would expect, if
the system is in equilibrium from the start, it remains in this state.

We state now an appropriate H-Theorem, which will play a major role in the diffusive limit
and studying the long time behaviour.

Theorem 2.2.20 (H-Theorem). Let fτ be the solution to the semiconductor Boltzmann
equation (2.23), and define the functions

nτ :=
Td

fτ (t, x, p)dp, Eτ :=
Td

ε(p)fτ (t, x, p)dp, Pτ (t) := Qτ (fτ (t)) 2
L2(Td×Td) ,
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2.2. Entropy and Equilibrium

where Qτ is defined in (2.22) and F (nτ , Eτ ; p) denotes the Fermi Dirac distribution defined
in (2.20). Then the time derivative of the entropy functional decays

d

dt
H (fτ (t)) ≤ 0 ∀τ > 0.

Moreover the following estimate holds for all s, t ∈ R+
0 with s ≤ t:

H (fτ (t)) + 2
t

s
Pτ (σ)dσ ≤ H (fτ (s)), ∀τ > 0. (2.26)

Proof. For the sake of simplicity we fix τ > 0 and drop the lower index notation on fτ , nτ ,
Eτ , F (nτ , Eτ ; p), Qτ and will just write f , n, E, F , Q respectively instead. Now since f is
a solution of (2.23), we have that f ∈ C1(R+ ×Td ×Td) and 0 < f < 1. The time derivative
of H (f(t)) is given by

d

dt
H (f) =

Td Td

d

dt
h(f)dxdp =

Td Td
(∂tf)h (f) dxdp.

Using that f is a solution to (2.23) provides

d

dt
H (f) =

Td Td

1
τ2 (F − f) − 1

τ
∇pε(p) · ∇xf h (f)dxdp

=
Td Td

1
τ2 (F − f) h (f)dxdp −

Td Td

1
τ

(∇pε(p) · ∇xf)h (f)dxdp

=
Td Td

1
τ2 (F − f) h (f)dxdp −

Td Td

1
τ

∇pε(p) · ∇xh(f)dxdp

=
Td Td

1
τ2 (F − f) h (f)dxdp.

Through the convexity of h (see Remark 2.2.10) we have that the tangent on every point
h(f) evaluated at F is smaller than h(F )

h (f)(F − f) + h(f) ≤ h(F ), (2.27)

which leads us to
d

dt
H (f) =

Td Td

1
τ2 (F − f) h (f)dxdp ≤ 1

τ2 Td Td
(h(F ) − h(f))dxdp

= 1
τ2 H (F ) − H (f) . (2.28)

Since (n, E) lies in D◦ for all (t, x) ∈ R+ × Td and F being a minimizer of H (Theorem
2.2.11), we deduce

d

dt
H (fτ (t)) ≤ 0 ∀τ > 0.

For estimate (2.26) we use the Taylor expansion of h(f) at F (see Remark 2.2.10) and obtain

(f − F )2 ≤ 1
2(h(f) − h(F ) − h (F )(f − F )).

Integrating left and right hand side with respect to x and p leads to

Td Td
(f − F )2dxdp ≤ 1

2(H (f) − H (F )) − 1
2 Td Td

h (F )(f − F )dxdp. (2.29)
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2. Effective Energy Transport Model and Longtime Behaviour

From Remark 2.2.10 we deduce that h (F ) = λ0(n, E) + λ1(n, E)ε(p), and since f and F
fulfill the constraints in (2.19), we get for all (t, x) in R+ × Td that

Td
h (F )(f − F )dp = λ0

Td
(f − F )dp + λ1

Td
ε(p)(f − F )dp = 0.

Hence the integral over Td with respect to the spatial variable x is also zero. Using the
previous estimates (2.28) and (2.29), we obtain for the time derivative of H

d

dt
H (f) ≤ 1

τ2 (H (F ) − H (f)) ≤ − 2
τ2 Td Td

(f − F )2dxdp.

Integrating both sides from s to t for 0 ≤ s ≤ t, we get the desired estimate for all τ > 0

H (fτ (t)) + 2
t

s
Pτ (σ)dσ ≤ H (fτ (s)).

As last result of this section we apply the H-Theorem, and show that the family (Qτ )τ>0
is uniformly bounded.

Corollary 2.2.21. Let for all τ > 0, fτ be the solution to (2.23), let f0 be the initial value for
all τ > 0 and let Qτ the belonging collision operator, see (2.22). Then the family (Q(fτ ))τ>0
is uniformly bounded for all intervals I ⊆ R+

0 , i.e.

Qτ (fτ ) 2
L2(I;L2(Td×Td)) ≤ H (f0) − log(1/2). (2.30)

Proof. Let t0, t1 such that Ī = [t0, t1] and recall from the H-theorem the definition

Pτ (t) := Qτ (fτ (t)) 2
L2(Td×Td) .

From Remark 2.2.10 we have that h(fτ (t)) > log(1/2) for all t ∈ R+ and all τ > 0. With
that and the fact that Pτ (t) is positive for all τ > 0, we deduce

∀t ∈ R+ : log(1/2) ≤ H (fτ (t)) ≤ H (fτ (0)) = H (f0).

Therefore we conclude from the H-theorem that

Qτ (fτ ) 2
L2(I;L2(Td×Td)) =

t1

t0
Qτ (fτ (t)) 2

L2(Td×Td) dt =
t1

t0
Pτ (t)dt ≤ H (f0) − log(1/2).

Since the above holds for all t0, t1 in R+
0 we have that it holds for all intervals IN := [0, N ],

N ∈ N. Passing to the limit N to infinity, we obtain that the estimate holds also for R+
0 .

2.3. The Diffusive Limit
Recalling that our main goal is to derive rigorously a macroscopic description of the ultracold
cold cloud of fermions. To prepare the path we want to follow, we look first at the formal
limit. For the convenience of the reader we recall the starting equation (diffusive scaled
semiconductor Boltzmann equation (DSSBE)):

(2.23) : τ∂tfτ + ∇pε · ∇xfτ = Qτ (fτ ), fτ (0, x, p) = f0(x, p), ∀τ > 0.

and the definitions of the macroscopic densities

nτ (t, x) :=
Td

fτ (t, x, p)dp, Eτ (t, x) :=
Td

ε(p)fτ (t, x, p)dp. (2.31)

The formal diffusive limit is given by:
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2.3. The Diffusive Limit

Theorem 2.3.1 (Formal Limit). Let fτ be the solution to the DSSBE (2.23) and let nτ and
Eτ be defined as in (2.31), and let them be sufficiently smooth with

(nτ (t, x), Eτ (t, x)) ∈ D◦ ∀(t, x) ∈ R+ × Td.

If the the family of collision operators (Qτ )τ>0 is bounded and if the families (nτ )τ>0 and
(Eτ )τ>0 converge towards limit functions n and E such that

∀(t, x) ∈ R+ × Td : (n(t, x), E(t, x)) ∈ D◦,

then the limit functions n and E solve the following equations:

∂tn − divx
Td

(∇pε(p) · ∇xF (n, E; p))∇pε(p)dp = 0 (2.32)

∂tE − divx
Td

ε(p)(∇pε(p) · ∇xF (n, E; p))∇pε(p)dp = 0. (2.33)

The proof of Theorem 2.3.1 is given in Subsection 2.3.1, where we also introduce the
Chapman-Enskog expansion, which is the main idea of the formal derivation. In the end of
Subsection 2.3.1 we take a closer look the formal limit equations, see the belonging remark.

For the rigorous derivation we cannot expect that the limit functions n and E exist and
that their range lies in D◦. Therefore the Fermi-Dirac distribution, as given in (2.20), would
not be enough and would not be well defined. Starting with the definition of the Fermi energy
F we will be able to extend the Fermi-Dirac distribution onto D.

Definition 2.3.2. For n ∈ [0, 1] define F (n) ∈ ε(Td) = [−d/(2π), d/(2π)] as the unique
solution of

meas p ∈ Td : ε(p) < F (n) = n, (2.34)

The parameter F (n) is called the Fermi Energy.

That the Fermi energy is well defined follows from the proof of Lemma 2.2.1, where we
defined a similar function. Let us now introduce the extension of the Fermi-Dirac distribution:

Definition 2.3.3. Let F be the Fermi-Dirac distribution, as given in (2.20). The extension
F̄ of F from D◦ to D is then defined by

F̄ (n, E; p) :=




n if n ∈ {0, 1},

F (n, E; p) if (n, E) ∈ D◦,

✶{∓ε(p)< F (n)}(p) if E = ±emax (n) .

We see that F̄ is now defined for all pairs (n, E) ∈ D and another immediate observation
is, that F̄ also fulfills

Td
(1, ε(p))F̄ (n, E; p)dp = (n, E), ∀(n, E) ∈ D.

In Section 2.3.4 we treat the extension F̄ in more detail and show for sequences (n, E) in D,
that there exists a subsequence (nkj , Ekj )j∈N such that

lim
j→∞

F̄ (nkj , Ekj ; .) − F̄ (n, E; .)
Lq(I;Lq(Td×Td))

= 0, (2.35)

for any compact I ⊂ R+
0 and q ∈ [1, ∞). This convergence result will be an important tool for

the upcoming Main Theorem. Next we give the definition of the weak formulation regarding
the diffusive equations (2.32)- (2.33).
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2. Effective Energy Transport Model and Longtime Behaviour

Definition 2.3.4. We call functions ñ and Ẽ weak solutions of (2.32)- (2.33) if
(i) ñ, Ẽ are in L2

loc(R+
0 ; L2(Td)) and ∂tñ, ∂tẼ are in L2(R+

0 ; H−1(Td))

(ii) Define the space of functions that have a weak divergence with respect to the spatial
variable as

Hdivx(Td × Td) := g ∈ (L2(Td × Td))d : divx g ∈ L2(Td × Td) . (2.36)

The functions ñ and Ẽ have to fulfill

(∇pε)F̄ (ñ, Ẽ; .), ε(∇pε)F̄ (ñ, Ẽ; .) ∈ L2
loc(R+

0 ; Hdivx(Td × Td)).

(iii) For all ϕ in H1
0(R+

0 × Td) the following equations hold:

R+
∂tn, ϕ H−1(Td) −

R+ Td×Td
divx(∇pε(p)F̄ (n, E; p))(∇pε(p) · ∇xϕ) = 0,

(2.37)

R+
∂tE, ϕ H−1(Td) −

R+ Td×Td
ε(p) divx(∇pε(p)F̄ (n, E; p))(∇pε(p) · ∇xϕ) = 0.

(2.38)

With the above we are now able to state the first main result of this thesis, which gives us
the macroscopic model equation for our system.
Main Theorem 2.3.5 (Rigorous Limit). Let f0 ∈ C1(Td × Td) with 0 < f0(x, p) < 1 for
all (x, p) in Td × Td and for all τ > 0 denote by fτ the solution to the DSSBE (2.23) in the
sense of Hypothesis 2.2.14 and define the macroscopic densities (nτ )τ>0 and (Eτ )τ>0 as in
(2.31). Then there exist functions n and E in L2

loc(R+,Td × Td) and a subsequence of the
families (nτ )τ>0 and (Eτ )τ>0 such that

lim
τk→0

nτk
= n, lim

τk→0
Eτk

= E, in L2
loc(R+

0 ; L2(Td × Td)). (2.39)

and the functions n and E are weak solutions in the sense of Definition 2.3.4. As additional
consequence we have that

lim
τk→0

fτk
= F̄ (n, E; p), in L2

loc(R+
0 ; L2(Td × Td)),

The proof of Main Theorem 2.3.5 is split into three parts. First we need to show that
there exists a converging subsequence of the family (nτ , Eτ )τ>0. Even tough we have quite
strong conditions, it is not an easy undertaking. The functions fτ , nτ and Eτ are at all times
bounded, but that does not ensure that the integrals over R+ with respect to time, are also
bounded. One of the main tools to obtain these bounds comes from the work of Golse and
Poupaud [GP92], which will be introduced in Subsection 2.3.2. This is still too less to apply
the Aubin Lions Lemma, because we need estimates for compact intervals I ⊂ R+. Therefore
we adapted the result from Golse and Poupand and obtained such estimates, which are stated
and proven in Subsection 2.3.2. The Subsection 2.3.3 will then deal with the proof regarding
the existence of a converging subsequence, where we check the requirements for the Aubin
Lions Lemma and apply then a diagonal argument.

Then Subsection 2.3.4 is reserved for the treatment of the Fermi-Dirac extension. For
the L1-convergence (2.35) we follow first [Bra17], by doing some variable changes for the
Lagrange multiplicands λ0, λ1 and study their behavior if (Eτ )τ>0 converges towards a limit
on the boundary ∂D. After that it is classic analysis.

The proof of Main Theorem 2.3.5 is presented in Section 2.3, where we follow the lines of the
formal limit (Theorem 2.3.1) and look closely in which sense everything exists or converges.
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2.3. The Diffusive Limit

2.3.1. Formal Derivation
The major tool used for the proof of Theorem 2.3.1 is the already mentioned Chapman-
Enskog expansion, which is frequently used for formal derivations of macroscopic models (see
[J0̈9, BF10, EH14, CC70]). This method will be applied in an adapted version in Chapter 3,
hence we introduce it here.

1. It exists a bounded family of functions (gτ )τ>0 such that we can express the solution
fτ of the DSSBE (2.23) with

fτ (t, x, p) = F (nτ (t, x), Eτ (t, x); p) + τgτ (t, x, p). (2.40)

Passing to the limit τ → 0 should then lead to limτ→0 fτ = F (n, E; p).

2. Next step is to evaluate the limit (if it exists) of the family (gτ )τ>0 for τ going to zero.
This comes from substituting the Ansatz (2.40) into the model equation and passing
there to the limit τ to zero. Denote the limit with g.

3. As last step we substitute the Ansatz (2.40), with the explicit forms from step 1 and
step 2 into the model equation (in our case the DSSBE), integrate with respect to the
moments (in this chapter we are interested into the zeroth moment and the second
moment) and pass to the limit τ → 0. In the end we expect to obtain equations for n
and E that are dependent on F and g.

We state here just a formal proof, since the equations (2.32)-(2.33) only exist, if the limit
functions (n, E) lie in D◦. Also just for this proof let us assume that every appearing function
is sufficiently smooth.

Proof of Theorem 2.3.1. We will divide the proof into the steps of the Chapman-Enskog
expansion. Also to keep it simple we will introduce the short notations Fτ =̂F (nτ , Eτ ; p) and
Qτ =̂Qτ (fτ )

Step 1: Our candidate for the family (gτ )τ>0 is the family of collision operators (Qτ )τ>0, since

Fτ − τQτ = Fτ + fτ − Fτ = fτ .

Due to the smoothness of nτ , Eτ and Fτ and the boundedness of (Qτ )τ>0, we can pass
to the limit for τ to zero and obtain that

lim
τ→0

fτ = F (n, E; p)

Step 2: We take the Ansatz fτ = Fτ − τQτ and substitute it into the DSSBE (2.23) and obtain

τ∂tFτ − τ2∂tQτ + ∇pε · ∇xFτ − τ∇pε · ∇xQτ = Qτ (2.41)

Passing to the limit τ to zero, yields

Q0 = ∇pε · ∇xF (n, E; .).

Step 3: Last step is the derivation of the equations for the densities n and E. To obtain the first
equation, integrate (2.41) with respect to p. For the second equation multiply (2.41)
first with ε(p) and then integrate it with respect to p. This gives us

∂tnτ − τ
Td

∂tQτ dp + 1
τ Td

∇pε · ∇xFτ dp −
Td

∇pε · ∇xQτ dp =
Td

Qτ dp

∂tEτ − τ
Td

ε∂tQτ dp + 1
τ Td

ε∇pε · ∇xFτ dp −
Td

ε∇pε · ∇xQτ dp =
Td

εQτ dp
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2. Effective Energy Transport Model and Longtime Behaviour

After exchanging derivation and integral in the first integral on the left side, we obtain
through the definition of the collision operator, that it vanishes. This holds also for the
integral on the right hand side. The second integrator on the left hand side is odd with
respect to p,see Remark 2.3.18, hence it vanishes too. Passing to the limit τ to zero
gives us then the formal equations for the limits n and E

∂tn − divx
Td

(∇pε(p) · ∇xF (n, E; p))∇pε(p)dp = 0

∂tE − divx
Td

ε(p)(∇pε(p) · ∇xF (n, E; p))∇pε(p)dp = 0.

Another way to obtain existence theory for the model (2.32)-(2.33) is to study directly
these formal derived equations (e.g [Mar86, MRS90]). This would exceed our purposes, but
we give a short analysis of the obtained formal limit.

Remark 2.3.6. The formal derived limit equations (2.32)-(2.33) have an alternative form
which we will derive here with some comments. Let us first recall that

F (n, E; p)=F (λ0(n, E), λ1(n, E); p),

where λ0 and λ1 are the two components of the inverse b−1 given in Proposition 2.2.7 (for
each (t, x) ∈ R+

0 × Td). By using Remark 2.2.9, denoting Dn,E(λ) as Jacobi matrix, we are
able to evaluate the gradient of F :

∇xF (n, E; p) =F (n, E; p)(1 − F (n, E; p))(1, ε(p))∇x(λ0(n, E), λ1(n, E))
=F (n, E; p)(1 − F (n, E; p))(1, ε(p))(Dn,E(λ)(n, E))∇x(n, E)
=F (n, E; p)(1 − F (n, E; p))((∂nλ0 + ε(p)∂nλ1)∇xn + (∂Eλ0 + ε(p)∂Eλ1)∇xE),

where ∂n,Eλk are evaluated at (n, E) for k ∈ {0, 1}. Next we can rewrite the integrator as

(∇pε(p) · ∇xF (n, E; p))∇pε(p) = (∇pε(p) ⊗ ∇pε(p)) · ∇xF (n, E; p),

where ”⊗” describes the Tensor product such that (∇pε(p) ⊗ ∇pε(p))ij = ∂piε(p)∂pj ε(p)
for i, j ∈ {1, . . . , d}. Hence we have for the j−th component

((∇pε ⊗ ∇pε) · ∇xF )j =
d

i=1
F (1 − F )∂pj ε∂piε((∂nλ0 + ε∂nλ1)∂xin + (∂Eλ0 + ε∂Eλ1)∂xiE)

Define now the following block matrix A(n, E) ∈ R2d×2d

A(n, E) := A00(n, E) A01(n, E)
A10(n, E) A11(n, E) , Akl(n, E) ∈ Rd×d, for k, l ∈ {0, 1},

A00
ij (n, E) :=

Td
F (1 − F )∂pj ε∂piε((∂nλ0(n, E) + ε∂nλ1(n, E))dp, for i, j ∈ {1, . . . , d},

A01
ij (n, E) :=

Td
F (1 − F )∂pj ε∂piε(∂Eλ0(n, E) + ε∂Eλ1)(n, E))dp, for i, j ∈ {1, . . . , d},

A10
ij (n, E) :=

Td
εF (1 − F )∂pj ε∂piε(∂nλ0(n, E) + ε∂nλ1(n, E))dp, for i, j ∈ {1, . . . , d},

A11
ij (n, E) :=

Td
εF (1 − F )∂pj ε∂piε(∂Eλ0(n, E) + ε∂Eλ1(n, E))dp for i, j ∈ {1, . . . , d},
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2.3. The Diffusive Limit

which gives us a matrix written form of (2.32)-(2.33):

∂t
n
E

− divx A(n, E) · ∇x
n
E

= 0 (2.42)

The above divergence is to understand as the sum over the i−th derivative of the i−th column
with respect to x. Interesting for further investigations is the question, if matrix A has a
particular structure.
We notice that all blocks Akl for k, l ∈ {0, 1} are diagonal matrices. This comes from the fact
that F and ε(p) are even functions in p over Td, in the sense of Definition 2.1.3, and that
∂pj ε∂piε is odd for i = j. If we interpret the functions n and E as functions of λ = (λ0, λ1)
(recall notation from Remark 2.2.9) we can rewrite the equations (2.32)-(2.33) in the way
that

∂t
ñ(λ(t, x))
Ẽ(λ(t, x)) − divx (D(λ(t, x))∇xλ(t, x)) = 0

where D(λ) ∈ R2d×2d is defined as

D(λ) := D00(λ) D01(λ)
D10(λ) D11(λ) , Dkl(λ) ∈ Rd×d, for k, l ∈ {0, 1},

D00
ij (λ) :=

Td
F (λ; p)(1 − F (λ; p))∂pj ε(p)∂piε(p)dp, for i, j ∈ {1, . . . , d},

D01
ij (λ) :=

Td
ε(p)F (λ; p)(1 − F (λ; p))∂pj ε(p)∂piε(p)dp, for i, j ∈ {1, . . . , d},

D10
ij (λ) :=

Td
ε(p)F (λ; p)(1 − F (λ; p))∂pj ε(p)∂piε(p)dp, for i, j ∈ {1, . . . , d},

D11
ij (λ) :=

Td
ε(p)2F (λ; p)(1 − F (λ; p))∂pj ε(p)∂piε(p)dp for i, j ∈ {1, . . . , d},

First we observe that D(λ(n, E)) · Dn,Eλ(n, E) = A(n, E) and that D01 = D10. Since
(Dkl)k,l∈{0,1} are obviously all symmetric, we get that D(λ) is also symmetric. Moreover
we also see, as before, that due to the oddness of ∂pj ε(p)∂piε(p) for i = j we also have that
(Dkl)k,l∈{0,1} are all diagonal matrices. Hence we obtain for z = (ξ, ζ) = 0 and ξ, ζ ∈ Rd that

zT D(λ)z =
d

i=1 Td
(ξi + ε(p)ζi)2(∂piε(p))2F (λ; p)(1 − F (λ; p))dp > 0

and therefore we have that D(λ) is also a positive definite matrix.

2.3.2. Boundedness with Fourier
Since we need Fourier transformation on the Torus, we post for the convenience of the reader
the most important statements that will be used As reference and for further content we refer
to basic literature like [Gra08]. Starting simple by defining the Fourier transformation.

Definition 2.3.7. Let g be a complex valued function in L1(Td) and l ∈ Zd, then we define
the l-th Fourier coefficient of g as

Fx (g) (l) :=
Td

g(x)e−2πil·xdx.
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2. Effective Energy Transport Model and Longtime Behaviour

The properties of the Fourier transformation on Rd can be directly applied to the Fourier
coefficients. Using Fx (.) is unconventional, but for our purposes more convenient. One of
the most important properties for this work, is the Plancherel’s identity, which is given on
the torus as the following.

Proposition 2.3.8. Let g be a function in L2(Td), then the Plancherel’s identity holds

g 2
L2(Td) =

l∈Zd

|Fx (g) (l)|2. (2.43)

Proof. See Proposition 3.1.16. in [Gra08].

Next we define the Hs(Td)-space which can be identified with the fractional Sobolev spaces,
see [DPV12], but we do not need this identification.

Definition 2.3.9. Let s ∈ (0, 1) and g be a function in L2(Td). We define the semi-norm

[g]2Hs(Td) :=
l∈Zd

|l|2s|Fx (g) (l)|2. (2.44)

The space Hs(Td) is then defined as all functions g in L2(Td) such that the semi-norm is
bounded

Hs(Td) := g ∈ L2(Td) : [g]Hs(Td) < ∞ (2.45)

Remark 2.3.10. For g ∈ Hs(Td) the norm is defined as

g Hs(Td) := g L2(Td) + [g]Hs(Td) (2.46)

Since |l|2s ≥ 1 for all l ∈ Zd \ {0} and s ∈ (0, 1) and thanks to Plancherel’s identity (2.43) we
can estimate the above norm with

g 2
Hs(Td) ≤ 2 g 2

L2(Td) + [g]2Hs(Td) ≤ 2 2[g]2Hs(Td) +
Td

g(x)dx
2

, (2.47)

which will be used to study the long time behaviour.

As given in [GP92] we state a geometric result, which seems first out of context, but will
be needed for the proof of the upcoming Proposition. It is already in the one dimensional
case quite troublesome to prove, hence we will not show the proof here.

Hypothesis 2.3.11. There exist constants C ∈ R and β > 0 such that for all (a1, a2) ∈
Rd × R with |(a1, a2)| = 1 we have that

meas p ∈ Td : |a1 · ∇pε(p) + a2| < δ̃ ≤ Cδ̃β,

where ε(p) is the scaled dispersion relation defined in (2.4) and meas (.) denotes the d-
dimensional Lebesgue measure.

We come to one of our key elements of this chapter, which is an adapted version of Propo-
sition 3.2 in [GP92]. In [GP92] the statement is given with the spatial variable x lying in Rd,
whereas in our version we have that x ∈ Td. Since the theory of Fourier analysis on Rd is
similar to the the Fourier analysis on the torus Td, we can adapt the proof of [GP92].
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2.3. The Diffusive Limit

Proposition 2.3.12. Let the families (fτ )τ>0 and (Qτ )τ>0 be bounded in L2(R; L2(Td ×Td))
such that the following holds a.e. for all τ > 0

τ∂tfτ + ∇pε · ∇xfτ = Qτ , (2.48)

with ε(p) being the scaled dispersion relation (2.4). Then the families (nτ )τ>0 and (Eτ )τ>0,
given by

nτ (t, x) =
Td

fτ (t, x, p)dp, Eτ (t, x) =
Td

ε(p)fτ (t, x, p)dp, ∀τ > 0,

are bounded in L2(R; Hs(Td)) for s = β/(4 + β), and β being the constant from Hypothesis
2.3.11. Moreover the following estimates hold for arbitrary δ > 0 and a constant Dδ > 0,

[nτ ]Hs(Td)
2

L2(R)
≤ Dδ Qτ

2
L2(R;L2(Td×Td)) + δ fτ

2
L2(R;L2(Td×Td)) (2.49)

[Eτ ]Hs(Td)
2

L2(R)
≤ Dδε∞ Qτ

2
L2(R;L2(Td×Td)) + δε∞ fτ

2
L2(R;L2(Td×Td)) (2.50)

where ε∞ := ε 2
L∞(Td).

Proof. It is enough to prove all the statements for the family (nτ )τ>0, because the statements
for the family (Eτ )τ>0 are then direct consequences and will be therefore postponed to the end
of the proof. Let us follow the proof of Proposition 3.2 from [GP92]. Denote by Ft (nτ ) (µ, x)
the Fourier transform of nτ with respect to the time variable t. Then we have with Plancherel’s
identity (on R) that

[nτ ]Hs(Td)
2

L2(R)
= [Ft (nτ )]Hs(Td)

2

L2(R)
. (2.51)

Applying the Fourier transformation with respect to time and space (not. Ft,x (.)) to identity
(2.48), gives us, due to the properties of the Fourier transformation, for all µ ∈ R and l ∈ Zd:

Ft,x (τ∂tfτ + ∇pε(p) · ∇xfτ ) (µ, l, p) = Ft,x (Qτ ) (µ, l, p),
i(τµ + ∇pε(p) · l)Ft,x (fτ ) (µ, l, p) = Ft,x (Qτ ) (µ, l, p). (2.52)

We define z(µ, l, p) := (τµ + ∇pε(p) · l) and will denote it shortly with z. The reader should
notice that z ∈ R for all (µ, l, p) ∈ R × Zd × Td. Thanks to Plancherel’s identity (2.51) we
obtain further

[Ft (nτ )]Hs(Td)
2

L2(R)
=

R
l∈Zd

|l|2s|Fx (Ft (nτ )) (µ, l)|2dµ

=
R

l∈Zd

|l|2s

Td
Ft,x (fτ ) (µ, l, p)dp

2
dµ.

Next we introduce the bump function χδ̃(r) : R → [0, 1], with

χδ̃(r) = 0 for |r| < δ̃,

1 for |r| > 2δ̃.

where χδ̃ in C∞(R) and there exist a constant C independent from δ̃, such that rχ
δ̃
(r) ≤

Cχδ̃(r) for all r ∈ R. For more details we refer to standard literature like [Lee13]. We will
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2. Effective Energy Transport Model and Longtime Behaviour

use the bump functions and (2.52) to estimate the absolute value of the integral of Ft,x (fτ )
with respect to p.

Td
Ft,x (fτ ) dp

2
=

Td
1 − χδ̃(z) + χδ̃(z)

z
z Ft,x (fτ ) (µ, l, p)dp

2

=
Td

1 − χδ̃(z) Ft,x (fτ ) (µ, l, p) + χδ̃(z)
z

1
i Ft,x (Qτ ) (µ, l, p)dp

2

≤ 2
Td

1 − χδ̃(z) Ft,x (fτ ) (µ, l, p)dp
2

=:I1

+2
Td

χδ̃(z)
z

Ft,x (Qτ ) (µ, l, p)dp
2

=:I2

.

The two above integrals will be treated separately. For the first integral I1, we use Hölder
inequality, the fact that (1 − χδ̃(z))2 ≤ 1 and Hypothesis 2.3.11 to get

I1 ≤
Td

(1 − χδ̃(z))2dp Ft,x (fτ ) (µ, l, .) 2
L2(Td)

=
{|z|<2δ̃}∩Td

(1 − χδ̃(z))2dp Ft,x (fτ ) (µ, l, .) 2
L2(Td)

= meas p ∈ Td : |τµ + ∇pε(p) · l| < 2δ̃ Ft,x (fτ ) (µ, l, .) 2
L2(Td)

= meas p ∈ Td : 1
|(τµ, l)| |τµ + ∇pε(p) · l| <

2
|(τµ, l)| δ̃ Ft,x (fτ ) (µ, l, .) 2

L2(Td)

≤ C τ2µ2 + |l|2 − β
2 δ̃β Ft,x (fτ ) (µ, l, .) 2

L2(Td)

≤ C|l|−β δ̃β Ft,x (fτ ) (µ, l, .) 2
L2(Td) .

The integral I2 needs less effort to estimate. We obtain again with Hölder and meas Td = 1

I2 ≤
Td

χδ̃(z)
z

2
dp Ft,x (Qτ ) (µ, l, .) 2

L2(Td)

≤
{|z|>δ̃}∩Td

χδ̃(z)
z

2
dp Ft,x (Qτ ) (µ, l, .) 2

L2(Td)

≤
{|z|>δ̃}∩Td

1
z2 dp Ft,x (Qτ ) (µ, l, .) 2

L2(Td)

≤ 1
δ̃2 Ft,x (Qτ ) (µ, l, .) 2

L2(Td) .

Using the estimates for I1 and I2, leads us to

[Ft (nτ )]Hs(Td)
2

L2(R)
≤

≤ 2
R

l∈Zd

C|l|(2s−β)δ̃β Ft,x (fτ ) (µ, l, .) 2
L2(Td) + |l|2s 1

δ̃2 Ft,x (Qτ ) (µ, l, .) 2
L2(Td) dµ.

Setting s = β/(4 + β) and δ̃ = 2− 1
β C

− 1
β δ

1
β |l|(s+1)/2, for some δ > 0, gives us

[Ft (nτ )]Hs(Td)
2

L2(R)
≤

≤
R

l∈Zd

δ Ft,x (fτ ) (µ, l, .) 2
L2(Td) + 2

2+β
β |l|(s−1)C

2
β δ

− 2
β Ft,x (Qτ ) (µ, l, .) 2

L2(Td) dµ.
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2.3. The Diffusive Limit

Since |l|s−1 ≤ 1 holds for all l ∈ Zd, l = 0 and s − 1 < 0, we can estimate it with one. The
case where l = 0 needs no estimate, since everything is zero then. Using Plancherel’s identity
in space and time and defining Dδ := 2

2+β
β C

2
β δ

− 2
β we obtain

[nτ ]Hs(Td)
2

L2(R)
≤

R
l∈Zd

δ Ft,x (fτ ) (µ, l, .) 2
L2(Td) + Dδ Ft,x (Qτ ) (µ, l, .) 2

L2(Td) dµ

= δ fτ
2
L2(R×Td×Td) + Dδ Qτ

2
L2(R×Td×Td) .

The family (nτ )τ>0 is bounded in L2(R; Hs(Td)) since the families (fτ )τ>0 and (Qτ )τ>0 are
bounded in L2(R; L2(Td × Td)). More detailed, we see this by using the definition of the
Hs(Td)-norm (2.46) combined with the previously derived estimate for the semi-norm (2.49):

nτ L2(R;Hs(Td)) ≤ nτ L2(R;L2(Td)) + [nτ ]Hs(Td) L2(R)

= fτ L2(R;L2(Td×Td)) + [nτ ]Hs(Td) L2(R)
.

Last we look onto the family (Eτ )τ>0. We have the estimate

|Eτ | =
Td

ε(p)fτ (t, x, p)dp ≤ √
ε∞|nτ |,

and therefore

[Eτ ]Hs(Td)
2

L2(R)
= [Ft (Eτ )]Hs(Td)

2

L2(R)
≤ ε∞

R
l∈Zd

|l|2s

Td
Ft,x (fτ ) (µ, l, p)dp

2
dµ.

The integral on the right is the same we estimated with I1 and I2, hence we can conclude
the statements for (Eτ )τ>0 directly from the results regarding the family (nτ )τ>0 and obtain
the estimate (2.50). The boundedness of (Eτ )τ>0 in L2(R; Hs(Td)) follows in the same way
as for the family (nτ )τ>0.

We will need the results from Proposition 2.3.12 restricted to compact intervals in R+
0

instead of the whole space R. The problem is that we cannot conclude this directly from the
above results, or adapt the proof, since the Fourier transformation is not defined on compact
intervals. We remind the reader, that we are interested for the limit τ going to zero, hence
all indices τ are considered small or at least smaller than some constant in R+

0 .

Proposition 2.3.13. If (fτ )τ>0 is bounded in L∞(R+
0 × Td × Td), if (Qτ )τ>0 is bounded in

L2(R+
0 ; L2(Td × Td)) and if

a.e. τ > 0 : τ∂tfτ + ∇pε · ∇xfτ = Qτ , a.e. on R+
0 × Td × Td,

then we have for every compact interval I ⊆ R+
0 that the families (nτ )τ>0 and (Eτ )τ>0

(defined as in Proposition 2.3.12) fulfill the estimates

[nτ ]Hs(Td)
2

L2(I)
≤ Dδ Qτ

2
L2(I×Td×Td) + δ fτ

2
L2(I×Td×Td) + τC2(δ + Dδ),

[Eτ ]Hs(Td)
2

L2(I)
≤ ε∞Dδ Qτ

2
L2(I×Td×Td) + ε∞δ fτ

2
L2(I×Td×Td) + τε∞C2(δ + Dδ),

where ε∞, s, δ, Dδ are the same as in Proposition 2.3.12.
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2. Effective Energy Transport Model and Longtime Behaviour

Proof. The main idea is to construct two families of functions, which are extensions of fτ

and Qτ onto the whole space, such that the requirements of Proposition 2.3.12 are met, and
then apply the latter. We need to choose the extensions cleverly, such that we obtain the
desired estimates on the compact interval I ⊂ R+

0 . Let C > 0 be the constant that bounds
the family (fτ )τ>0 in L∞(R+

0 × Td × Td) and let I = [t0, t1] for some t0, t1 ∈ R+
0 . Define for

τ > 0 the function gτ : R × Td × Td → R:

gτ (t, x, p) =




fτ (t0, x − t−t0
τ ∇pε(p), p) for t < t0,

fτ (t, x, p) for t ∈ [t0, t1],
fτ (t1, x − t−t1

τ ∇pε(p), p) for t > t0.

Since we are on the torus Td, the x coordinate in our above definition is well defined, due to
the equivalence classes. We also have that the family (gτ )τ>0 is bounded in L∞(R×Td ×Td)
with the same constant C as the family (fτ )τ>0. Furthermore we have for t /∈ [t0, t1] that

τ∂tgτ + ∇pε · ∇xgτ = τ −1
τ

∇xgτ · ∇pε + ∇pε · ∇xgτ = 0.

Therefore the following equation holds a.e. on R × Td × Td

τ∂tgτ + ∇pε(p) · ∇xgτ = Rτ , where Rτ =




0 for t < t0,

Qτ for t ∈ [t0, t1],
0 for t > t1.

At this point we cannot assure that g is in any Lq-space for q ∈ [1, ∞), hence we have to
adjust g. We introduce for α > 0 the functions

fτ,α(t, x, p) := ϕαgτ (t, x, p), where ϕα(t) =




eα(t−t0) for t < t0

1 t ∈ [t0, t1],
e−α(t−t1) for t > 0.

We show that the family (fτ,α)τ>0 is bounded in Lq(R; Lq(Td × Td)) for 1 ≤ q < ∞ and
α > 0. Since there exists a constant C > 0, such that gτ L∞ ≤ C a.e. for all τ > 0, we get

fτ,α
q
Lq(R;Lq(Td×Td)) =

R
ϕα(t)gτ (t) q

Lq(Td×Td) dt

≤Cq
t0

−∞
|ϕα|qdt +

t1

t0
ϕα(t)gτ (t) q

Lq(Td×Td) dt + Cq
∞

t1
|ϕα|qdt

≤Cq
t0

−∞
eqα(t−t0)dt + Cq

∞

t1
e−qα(t−t1)dt + fτ

q
Lq(I;Lq(Td×Td))

=Cq 2
qα

+ fτ
q
Lq(I;Lq(Td×Td)) . (2.53)

Recall that the constant C is also a bound of the family (fτ )τ>0, hence f q
Lq(I;Lq(Td×Td))

is bounded by Cq meas (I) for all q ∈ [0, ∞). So we deduce from (2.53), that the family
(fτ,α)τ>0 is in particular bounded in L2(R; L2(Td ×Td)) for all α > 0. Next we define another
family of functions, namely

Φτ,α(t, x, p) :=




ταϕα(t)gτ (t, x, p) for t < t0,

Qτ (t, x, p) for t ∈ [t0, t1],
ταϕα(t)gτ (t, x, p) for t > t1.
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2.3. The Diffusive Limit

To prove that the family (Φτ,α)τ>0 is bounded in L2(R; L2(Td ×Td)) for all α > 0 we estimate
firstly

Φτ,α L2(R;L2(Td×Td)) ≤
t0

−∞
(ταC)2|ϕα|2dt +

t1

t0
Qτ

2
L2(Td×Td) dt +

∞

t1
(ταC)2|ϕα|2dt

=C2τ2α + Qτ
2
L2(I;L2(Td×Td)) . (2.54)

Since τ can be considered to be bounded by some constant in R+ and since the family (Qτ )τ>0
is bounded in L2(R+

0 ; L2(Td × Td)), we see that the family (Φτ,α)τ>0 is indeed bounded in
L2(R; L2(Td × Td)) for all α > 0. Moreover we have that fτ,α and Φτ,α fulfill for all τ, α > 0
and a.e. in R × Td × Td the equation

τ∂tfτ,α + ∇pε · ∇xfτ,α = Φτ,α, (2.55)

due to the fact that

τ∂tfα + ∇pε(p) · ∇xfα = τ(∂tϕα)g + ϕα(τ∂tg + ∇pε · ∇xg).

Therefore the families (fτ,α)τ,α>0 and (Φτ,α)τ,α>0 satisfy the requirements of Proposition
2.3.12. Hence we obtain for the families (nτ,α)τ,α>0 and (Eτ,α)τ,α>0, given by

nτ,α :=
Td

fτ,αdp, Eτ,α :=
Td

εfτ,αdp,

by using Proposition 2.3.12 the estimates

[nτ,α]Hs(Td)
2

L2(R)
≤ Dδ Φτ,α

2
L2(R;L2(Td×Td)) + δ fτ,α

2
L2(R;L2(Td×Td)) ,

[Eτ,α]Hs(Td)
2

L2(R)
≤ Dδε∞ Φτ,α

2
L2(R;L2(Td×Td)) + δε∞ fτ,α

2
L2(R;L2(Td×Td)) .

That fτ (t) coincides with fτ,α(t) for all t in [t0, t1] and all τ, α > 0, implies the same for nτ

and nτ,α, and Eτ and Eτ,α. Hence

[nτ ]Hs(Td)
2

L2(I)
= [nτ,α]Hs(Td)

2

L2(I)
≤ [nτ,α]Hs(Td)

2

L2(R)
. (2.56)

[Eτ ]Hs(Td)
2

L2(I)
= [Eτ,α]Hs(Td)

2

L2(I)
≤ [Eτ,α]Hs(Td)

2

L2(R)
. (2.57)

Using the estimates we obtained from Proposition 2.3.12, the estimates we obtained for
(fτ,α)τ,α>0 and (Φτ,α)τ,α>0 in (2.53) and (2.54) respectively, and the inequalities above (2.56)-
(2.57), yields for all α > 0

[nτ ]Hs(Td)
2

L2(I)
≤ Dδ C2τ2α + Qτ

2
L2(I;L2(Td×Td)) + δ

C2

α
+ fτ

2
L2(I;L2(Td×Td)) ,

[Eτ ]Hs(Td)
2

L2(I)
≤ Dδε∞ C2τ2α + Qτ

2
L2(I;L2(Td×Td)) + δε∞

C2

α
+ fτ

2
L2(I;L2(Td×Td)) .

Choosing now α−1 = τ , provides the desired estimates.

Remark 2.3.14. What is not immediately apparent, is that in Proposition 2.3.12 and in
the bounded version (Proposition 2.3.13) the families (fτ )τ>0 and (Qτ )τ>0 are arbitrary and
only connected over the equation (2.48). We also notice that an initial value is not necessary
to fulfill the requirements of those propositions. This will be important later, when we want
to show the long time behaviour.

35



2. Effective Energy Transport Model and Longtime Behaviour

2.3.3. Existence of a Converging Subsequence
Recalling from our Hypothesis 2.2.14, let fτ be the solution to our model equation (2.23) for
τ > 0 and recall also the definitions for the macroscopic particle density nτ and macroscopic
energy density Eτ

(2.31) : nτ (t, x) =
Td

fτ (t, x, p)dp, Eτ (t, x) =
Td

ε(p)fτ (t, x, p)dp.

In this section we will prove that these families have converging subsequences. One of the
tools for the proof will be the Aubin Lions Lemma, where the original version can be found
in [Aub63], and the version we use is from Showalter [Sho97]:

Lemma 2.3.15 (Aubin-Lions-Lemma). Let the spaces X, Y, B be Banach-spaces and let X
be compactly embedded in B (not.: X ⊂⊂ B), and let B continuously be embedded in Y (not.:
B → Y ). If for p ∈ (1, ∞) and r > 1 the subsets U ⊆ Lp(I; X) and {∂tu : u ∈ U} ⊆ Lr(I, Y )
are bounded on a compact interval I, then the set U is relatively compact in Lp(I; B).

Proof. See [Sho97] p.106.

Remark 2.3.16. We recall here some standard facts, which can be found in basic literature
for PDEs or Sobolev spaces. The embedding H1

0(Td) → L2(Td) is dense and continuous.
Since L2(Td) is a Hilbert space, it can be identified with its dual space and therefore the
embedding L2(Td) → H−1(Td) := (H1

0(Td)) is also dense and continuous. Moreover it holds

u, ϕ H−1(Td) = (u, ϕ)L2(Td) for u ∈ L2(Td), ϕ ∈ H1
0(Td). (2.58)

This will be important for the operator norm in H−1(Td) and the weak formulation. In
particular

u H−1(Td) = sup
ϕ H1

0(Td)=1
u, ϕ H−1(Td) = sup

ϕ H1
0(Td)=1

(u, ϕ)L2(Td).

The next proposition will be crucial for the use of Aubin’s Lemma, and the proof is post-
poned to the appendix

Proposition 2.3.17. For all s ∈ (0, 1) the embedding Hs(Td) → L2(Td) is compact for all
dimensions d ∈ N (not.: Hs(Td) ⊂⊂ L2(Td)).

Proof. See Appendix A.1.

Remark 2.3.18. Recall the Definition 2.1.3 when a function is even or odd on the torus.
We have seen in the Example 2.1.4 that the function ε(p) is even in p and that ∂piε(p) is odd
on the torus. Also recall from Remark 2.2.9 that the Fermi Dirac distribution also is even in
p for all (n, E) ∈ D◦. Hence we see that the following integrals vanish:

Td
∇pε(p)∇xF(nτ , Eτ , p)dp = 0 =

Td
ε(p)∇pε(p)∇xF(nτ , Eτ , p)dp, τ > 0.

Theorem 2.3.19. Let (nτ )τ>0 and (Eτ )τ>0 be the families defined in (2.31). Then there
exists subsequences (nτk

)k∈N and (Eτk
)k∈N that converge in L2

loc([0, ∞); L2(Td)) towards limit
functions n and E respectively.
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2.3. The Diffusive Limit

Proof. The proof is split into two parts. First we show that for arbitrary compact intervals
in R+

0 , we find converging subsequences. The second part concludes through a diagonal
argument that we can find limit functions n(t, x) and E(t, x), that are defined for all t ∈ R+

0 .
Let I ⊂ R+ be a compact interval and since we want to apply the Aubin-Lions-Lemma

(Lemma 2.3.15), we need that the families (nτ )τ>0, (Eτ )τ>0, and (∂tnτ )τ>0, (∂tEτ )τ>0 are
bounded in L2(I; Hs(Td)) and L2(I, H−1(Td)) respectively. Then we are able to conclude
that these families (nτ )τ>0, (Eτ )τ>0 are relatively compact in L2(I, L2(Td)), since we have
the embeddings Hs(Td) ⊂⊂ L2(Td) → H−1(Td), thanks to Proposition 2.3.17.
Introducing the short notations for the Fermi Dirac distribution Fτ := F(nτ , Eτ , p) and for
the collision operator Qτ := Q(fτ ) = (τ−1)(Fτ −fτ ). Due to our assumption on the solutions
fτ (see Hypothesis 2.2.14) we have that the family (fτ )τ>0 is bounded in L∞(R+

0 ×Td×Td) by
the constant 1 (this holds also for fτ (0) = f0 and f0, since the initial condition has range in
(0, 1)). Then we recall that the family (Qτ )τ>0 is due to Corollary 2.2.21 uniformly bounded
for all τ > 0 by

Qτ L2(R+
0 ;L2(Td×Td)) ≤ H(f0) − log(1/2).

Therefore the requirements of Proposition 2.3.13 are satisfied, which implies that the families
(nτ )τ>0 and (Eτ )τ>0 fulfill the estimates:

[nτ ]Hs(Td)
2

L2(I)
≤ Dδ Qτ

2
L2(I×Td×Td) + δ fτ

2
L2(I×Td×Td) + τ(δ + Dδ)

[Eτ ]Hs(Td)
2

L2(I)
≤ ε∞Dδ Qτ

2
L2(I×Td×Td) + ε∞δ fτ

2
L2(I×Td×Td) + τε∞(δ + Dδ)

Recalling the definition of n̄ and Ē we have for all τ > 0

(n̄, Ē) =
Td

(nτ (t, x), Eτ (t, x))dx.

With the estimate (2.47) in Remark 2.3.10 we obtain then for the family (nτ )τ>0

nτ
2
L2(I;Hs(Td)) =

I
nτ (t) 2

Hs(Td) dt

≤
I

2 2[nτ ]2Hs(Td) + n̄2

=4 [nτ ]Hs(Td)
2

L2(I)
+ 2 meas (I) n̄2

≤4 Dδ Qτ
2
L2(I×Td×Td) + δ fτ

2
L2(I×Td×Td) + τ(δ + Dδ) + 2 meas (I) n̄2.

Since the family (Qτ )τ>0 is uniformly bounded (Corollary 2.2.21) and |fτ | < 1 for all τ > 0
we get

nτ
2
L2(I;Hs(Td)) ≤ 4 Dδ H (f0) − log 1

2 + δ meas (I) + τ(δ + Dδ) + 2 meas (I) n̄2.

(2.59)

The same argumentation provides for the family (Eτ )τ>0

Eτ
2
L2(I;Hs(Td)) ≤ 4ε∞ Dδ H (f0) − log 1

2 + δ meas (I) + τ(δ + Dδ) + 2 meas (I) Ē2.

(2.60)
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2. Effective Energy Transport Model and Longtime Behaviour

If we choose the subfamilies, where τ ∈ (0, C) for any constant C ∈ R, we see that the
estimates (2.59)-(2.60), give a uniform bound for those subfamilies and therefore we have
that these families are bounded in L2(I; Hs(Td)).
Next to check for the Aubin Lions Lemma, is that the families (∂tnτ )τ>0 and (∂tEτ )τ>0 are
bounded in L2(I; H−1(Td)). For this express our function fτ also as

fτ = Fτ − τQτ . (2.61)

Substituting the above (2.61) into our semiconductor Boltzmann equation and in the same
equation multiplicated by ε(p) we get

τ∂t(Fτ − τQτ ) + ∇pε · ∇xFτ − τ∇pε · ∇xQτ = Qτ , (2.62)
τ∂t(εFτ − τεQτ ) + ε∇pε · ∇xFτ − ετ∇pε · ∇xQτ = εQτ . (2.63)

Dividing equations (2.62)-(2.63) through τ and integrating them over the momentum p leads
to

∂tnτ + 1
τ Td

∇pε · ∇xFτ dp −
Td

∇pε · ∇xQτ dp = 0, (2.64)

∂tEτ + 1
τ Td

ε∇pε · ∇xFτ dp −
Td

ε∇pε · ∇xQτ dp = 0, (2.65)

where the integrals of Qτ , and εQτ vanish. The terms with the factor τ−1 also vanish, thanks
to Remark 2.3.18, hence

∂tnτ =
Td

∇pε · ∇xQτ dp (2.66)

∂tEτ =
Td

ε∇pε · ∇xQτ dp (2.67)

We notice that all the above equations are well stated due to Remark 2.2.17 and therefore nτ

and Eτ solve (2.66) and (2.67). Integrating (ϕ(2.66)) with respect to p, where ϕ ∈ H1
0(Td),

yields for all t > 0

Td
∂tnτ (t, x)ϕ(x)dx =

Td Td
(∇pε(p) · ∇xQτ (t, x, p))dp ϕ(x)dx

=
Td Td

divx(Qτ (t, x, p)∇pε(p))ϕ(x) dpdx

= −
Td Td

Qτ (t, x, p)∇pε(p) · ∇xϕ(x) dpdx

≤ Qτ (t) L2(Td×Td) ∇pε L∞(Td) ϕ H1
0(Td) .

As already mentioned, the family (Qτ )τ>0 is uniformly bounded in R+
0 , which provides the

estimate

∂tnτ
2
L2(I;H−1(Td)) =

I
sup
ϕ =1

(∂tnτ (t), ϕ)L2(Td)
2
dt ≤

I
Qτ (t) 2

L2(Td×Td) ∇pε 2
L∞(Td) dt

≤(H(f0) − log(1/2)) ∇pε 2
L∞(Td) ,

and hence the family (∂tnτ )τ>0 is uniformly bounded in L2(I; H−1(Td)). For (∂tEτ )τ>0 we
obtain similarly from (2.67) that

Td
∂tEτ (t, x)ϕ(x)dx =

Td Td
(ε(p)∇pε(p) · ∇xQτ (t, x, p))dp ϕ(x)dx

≤ d

2π
Qτ (t) 2

L2(Td×Td) ∇pε 2
L∞(Td) ϕ 2

H1
0(Td) ,
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2.3. The Diffusive Limit

and then we see that the family (∂tEτ )τ>0 is also uniformly bounded in L2(I; H−1(Td)), since

∂tEτ
2
L2(I;H−1(Td)) =

I
sup
ϕ =1

(∂tEτ (t), ϕ)L2(Td)
2
dt ≤ d

2π I
Qτ (t) 2

L2(Td×Td) ∇pε 2
L∞(Td) dt

≤ d

2π
(H(f0) − log(1/2)) ∇pε 2

L∞(Td) .

Therefore we can apply Aubin-Lions Lemma to the families (nτ )τ∈(0,C) and (Eτ )τ∈(0,C), and
find n(I), E(I) ∈ L2(I; L2(Td)) such that there are subsequences which converge in the sense
that

nτk
−−−→
k→∞

n(I), Eτk
−−−→
k→∞

E(I), in L2(I; L2(Td)).

For the general limit we first define the intervals IN := [0, N ] for N ∈ N, and define for the
first interval I1 the subsequences (n(τk,1))k∈N, and (E(τk,1))k∈N, which converge towards the
limits n(1), and E(1), i.e.

n(τk,1) −−−→
k→∞

n(1), E(τk,1) −−−→
k→∞

E(1), in L2(I1; L2(Td))

Now these sequences (n(τk,1))k∈N, and (E(τk,1))k∈N also fulfill, as subsequences of the families
(nτ )τ∈(0,C) and (Eτ )τ∈(0,C), the criteria of the Aubin Lions Lemma for any compact interval
I ⊂ R+

0 . Hence there exist for the interval I2 converging subsequences (n(τk,2))k∈N and
(E(τk,2))k∈N from the sequences (n(τk,1))k∈N, and (E(τk,1))k∈N, with limits n(2) and E(2), in
the sense that

n(τk,2) −−−→
k→∞

n(2), E(τk,2) −−−→
k→∞

E(2) in L2(I2; L2(Td)).

We notice that the functions n(2) and E(2), restricted to I1, coincide with n(1) and E(1) re-
spectively, since (n(τk,2))k∈N and (E(τk,2))k∈N are subsequences of (n(τk,1))k∈N and (E(τk,1))k∈N.
Proceeding iteratively now for N ∈ N, N ≥ 1, playing the same game, we obtain a family of
sequences ((n(τk,N))k∈N; (E(τk,N))k∈N)N∈N that fulfill the following:

1. (n(τk,N))k∈N ⊇ (n(τk,N+1))k∈N, and (E(τk,N))k∈N ⊇ (E(τk,N+1))k∈N, ∀N ∈ N

2. (n(τk,N))k∈N; (E(τk,N))k∈N converge towards n(N); E(N) in L2(IN ; L2(Td)), ∀N ∈ N

3. n(N)|IJ
=n(J), E(N)|IJ

=E(J) for all N ∈ N and for J ≤ N, J ∈ N.

Define the functions n and E on R+
0 × Td → D, with the mapping rule

n(t, x) := n(N)(t, x), E(t, x) := E(N)(t, x) for t ∈ [N − 1, N ], N ∈ N, x ∈ Td. (2.68)

Due to the fact that n(N)|IN−1= n(N−1) and E(N)|IN−1= E(N−1), the above functions n
and E are well defined on R+

0 × Td. Looking at the diagonal sequences (n(τN ,N))N∈N and
(E(τN ,N))N∈N, we observe that for every compact interval I ⊆ R+

0 , there exists a J ∈ N such
that I ⊆ IJ and therefore

lim
N→∞

n(τN ,N) = n(J) = n|IJ
, lim

N→∞
E(τN ,N) = E(J) = E|IJ

, in L2(IJ ; L2(Td)).

Finally we obtain, that

lim
N→∞

n(τN ,N) = n, lim
N→∞

E(τN ,N) = E, in L2
loc(R+

0 ; L2(Td)).
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2. Effective Energy Transport Model and Longtime Behaviour

Corollary 2.3.20. For the families (nτ )τ>0 and (Eτ )τ>0, defined in (2.31), exist subse-
quences (nτk

)k∈N and (Eτk
)k∈N that converge in L2

loc(R+
0 ; L2(Td)) towards the limits n and E,

such that these limits have a weak derivative ∂tn and ∂tE that lie in L2(R+
0 ; H−1(Td)).

Proof. From the previous Theorem 2.3.19 we obtain converging subsequences (nτk
)k∈N and

(Eτk
)k∈N that converge in L2

loc(R+
0 ; L2(Td)) towards the limits n and E. In the proof of

Theorem 2.3.19 we also derived the estimates for all intervals I ⊆ R+
0 and τ > 0

∂tnτ
2
L2(I;H−1(Td)) ≤(H(f0) − log(1/2)) ∇pε 2

L∞(Td) ,

∂tEτ
2
L2(I;H−1(Td)) ≤ d

2π
(H(f0) − log(1/2)) ∇pε 2

L∞(Td) .

These estimates hold also for the subsequences (∂tnτk
)k∈N and (∂tEτk

)k∈N and I = R+
0 .

Since L2(R+
0 ; H−1(Td)) is reflexive, Theorem of Eberlein-Šmuljan (see [Zei90a] Theorem 21.D)

provides weak converging subsequences (denoting with the same indices) (∂tnτk
)k∈N and

(∂tEτk
)k∈N. Let us denote these weak limits with gn, and gE , then we have for all ϕ in

C∞
c (R+

0 × Td)

R+
0 Td

n∂tϕdxdt = lim
k→∞ R+

0 Td
nτk

∂tϕdxdt = lim
k→∞

−
R+

0 Td
∂tnτk

ϕdxdt

= −
R+

0 Td
gnϕdxdt

Therefore gn is the weak derivative of n, and with the same argumentation we have that gE

is the weak derivative of E. Since gn, gE are elements of L2(R+
0 ; H−1(Td)) we have that the

weak derivatives ∂tn and ∂tE are in L2(R+
0 ; H−1(Td)) as well.

2.3.4. A Convergence Result for the Fermi Dirac Distribution
As already mentioned in the beginning of Section 2.3, we want to prove the convergence result

(2.35) : lim
j→∞

F̄ (nkj , Ekj ; .) − F̄ (n, E; .)
Lq(I;Lq(Td×Td))

= 0,

which should hold for all compact intervals I ⊂ R+
0 , for all q ∈ [1, ∞), and all sequences in D◦

with limit in D. Recall that F̄ is the extension of F from D◦ to D, given by (2.3.3), where
we do not need the definition for now. The start of this subsection will be some results taken
from the thesis of Braukoff [Bra17], since in his work a lot has already been done regarding
the treatment of F and its extension. Then we state in Theorem 2.3.27 the first convergence
result, and in the end we will prove the convergence result we are looking for. We recall for
n ∈ [0, 1] the definition of the Fermi energy F (n) ∈ ε(Td) , which is defined being the unique
solution of

meas p ∈ Td : ε(p) < F (n) = n.

Remark 2.3.21. (Taken from [Bra17]) The Fermi Energy F describes the energy level below
which every state is occupied at zero temperature and is well defined, since it is similar to
the function h defined in Lemma 2.2.1 and we have, thanks to the symmetry of ε(p), that

meas p ∈ Td : ε(p) > − F (n) = n.

With its relation to h in Lemma 2.2.1, we notice that F (n) is a continuous and strict
increasing function. At this point we mention also that for every C ∈ R we have that

meas p ∈ Td : ε(p) = C = 0,
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2.3. The Diffusive Limit

Let us further recall that actually the Fermi Dirac distribution depends on the two param-
eters (λ0, λ1), which in turn depend on the densities (n, E) ∈ D◦. In Proposition 2.2.7, we
stated that the mapping (λ0, λ1) → (n, E) is bijective and smooth, as well as the inverse (see
also Remark 2.2.9).

Notation 2.3.22. To avoid confusion we will for this section be more precise on the depen-
dences. When we are talking about the bijection from R2 → D◦ we will denote it via the tilde
notation

(λ0, λ1) → (ñ(λ0, λ1), Ẽ(λ0, λ1)) or vice versa (n, E) → (λ̃0(n, E), λ̃1(n, E)).

The mentioned bijection is one way to describe the dependence. Next we introduce anal-
ogous representations of elements in D◦ and cite the next two Lemmas and the following
Remark from [Bra17].

Lemma 2.3.23. Let n ∈ (0, 1), then there exists a unique smooth function φ : R → R such
that

n =
Td

F (φ(λ1), λ1; p)dp. (2.69)

In particular, it holds φ(0) = log n
1−n and we have

φ(λ1) ∓ F (n)λ1 = o(λ1) as λ1 → ±∞.

Proof. We give here only the idea of the proof and for details we suggest the reader to see
Lemma 5.1.11 in [Bra17]. It can be shown that for fixed λ1 ∈ R the function

λ0 →
Td

F (λ0, λ1; p)dp

is strictly monotone and continuous in λ0. Therefore with the mean-value theorem it is
possible to show that there exists a unique function φ as in (2.69).
For the convergence rate we look at the function r±(λ1) := φ(λ1) ∓ F (n)λ1. First assume
that r±(λ1)/λ1 is bounded as λ1 → ±∞, then it is possible to show that this holds only if
r±(λ1)/λ1 goes to zero. Assuming that r±(λ1)/λ1 diverges for λ1 → ±∞, then we find that
this is only the case if n = 0, which this is a contradiction to our requirement n ∈ (0, 1).

Lemma 2.3.24. Let n ∈ (0, 1) and φ be given by Lemma 2.3.23. Then for every −emax (n) <
E < emax (n), there exists a unique λ1 ∈ R such that

E =
Td

ε(p)F (φ(λ1), λ1; p)dp. (2.70)

Proof. Again we only provide the idea, and refer for details to Lemma 5.1.15 in [Bra17]. The
key elements are to prove that the function Ẽ(φ(λ1), λ1) fulfills two requirements:

d

dλ1
Ẽ(φ(λ1), λ1) > 0, and lim

λ1→±∞
Ẽ(φ(λ1), λ1) = ±emax (n) .

If these two properties are met, by the mean-value theorem it holds that there exists a unique
λ1 ∈ R, such that (2.70) is fulfilled.

Remark 2.3.25. The parameters λ0, λ1 are sometimes called the entropy parameters. Note
that λ1 has the same sign as Ẽ(φ(λ1), λ1), since the energy increases in λ1 and we may
observe that E(φ(0), 0) vanishes.
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2. Effective Energy Transport Model and Longtime Behaviour

To show our convergence result, we need these analogous representations. The last im-
portant result we need is what happens to λ̃1 if the sequence of energies (Ek)k∈N converges
towards the boundary ∂D. This will be an important case in the upcoming Theorem 2.3.27.

Lemma 2.3.26. Let (nk, Ek)k∈N be a sequence in D◦. If the sequence converges such that

(nk, Ek) → (n, ±emax (n)), n ∈ (0, 1)

then we have that λ̃1(nk, Ek) → ±∞.

Proof. Without loss of generality we take first Ek → emax (n) and then we assume that

lim
k→∞

λ̃1(nk, Ek) = λ1 < ∞ and lim
k→∞

λ̃0(nk, Ek) = λ0 < ∞.

The pair (λ0, λ1) would be the representative in R2 such that

(n, emax (n)) =
Td

(1, ε(p))F (λ0, λ1; p)dp.

If (λ0, λ1) ∈ R2, Proposition 2.2.7 states that then (n, emax (n)) ∈ D◦, which is a contradic-
tion. Next assume that

lim
k→∞

λ̃1(nk, Ek) = λ1 < ∞ and lim
k→∞

λ̃0(nk, Ek) = ∞.

So if λ̃0 diverges either to +∞ or −∞ we have

lim
k→∞

F (λ̃0(nk, Ek), λ̃1(nk, Ek); p) = 1 if λ̃0 → +∞
0 if λ̃0 → −∞.

Now that is again a contradiction to n ∈ (0, 1), and therefore it must hold that

lim
k→∞

(nk, Ek) = (n, ±emax (n)), with n ∈ (0, 1), =⇒ lim
k→∞

λ̃1(nk, Ek) = ∞.

What remains to show is that the signs of the limits coincide. We refer here to Lemma 2.3.24
and Remark 2.3.25. Since (nk, Ek)k∈N is in D◦, there exists for every Ek a λ1,k such that

Ek =
Td

ε(p)F (φ(λ1,k), λ1,k; p)dp.

Because of uniqueness we have that λ̃1(nk, Ek) = λ1,k and that Ek = Ẽ(φ(λ1,k), λ1,k). Now
if Ek → emax (n) there exists an index k0 ∈ N such that for all k > k0 we have that
Ek > 0 and therefore we have also that Ẽ(φ(λ1,k), λ1,k) > 0 for all k > k0. Since the sign of
Ẽ(φ(λ1,k), λ1,k) coincides with λ1,k (see Remark 2.3.25), we get that λ1,k > 0 for all k > k0.
With this we conclude that λ1(nk, Ek) > 0 for all k > k0 which gives us the implication

lim
k→∞

(nk, Ek) = (n, emax (n)) =⇒ lim
k→∞

λ1(nk, Ek) = ∞.

With the same argumentation we obtain that if (Ek)k∈N converges to −emax (n) we have that
(λ̃1(nk, Ek))k∈N diverges to −∞.

Now we come to our first convergence result, where we need all the previous preparation.
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2.3. The Diffusive Limit

Theorem 2.3.27. If the sequence (nk, Ek)k∈N ⊂ D◦ converges to a limit (n, E) ∈ D, then

lim
k→∞

F (nk, Ek; p) =




n if n ∈ {0, 1},

F (n, E; p) if (n, E) ∈ D◦,

✶{∓ε(p)< F (n)}(p) if E = ±emax (n) ,

where the above convergence is to understand in the L1(Td) norm.

Proof. First let (nk)k∈N converge to n ∈ {0, 1}. Then clearly we have that emax (n) =
−emax (n) = 0 and therefore (Ek)k∈N has to converge to zero. We have for all k ∈ N and for
all p ∈ Td, that 0 < F (λ̃0(nk, Ek), λ̃1(nk, Ek); p) < 1. In the case where the limit is n = 1 we
see

1 − F (λ̃0(nk, Ek), λ̃1(nk, Ek); p)
L1(Td)

=
Td

1 − F (λ̃0(nk, Ek), λ̃1(nk, Ek); p) dp

=1 −
Td

F (λ̃0(nk, Ek), λ̃1(nk, Ek); p)dp

=1 − nk,

which converges to 0 for k to infinity. In the other case, where the limit is n = 0 we have

F (λ̃0(nk, Ek), λ̃1(nk, Ek); p)
L1(Td)

=
Td

F (λ̃0(nk, Ek), λ̃1(nk, Ek); p) dp = nk,

which also converges for k to infinity to zero. Therefore the first convergence is proven.
Now if the sequence (nk, Ek)k∈N converges to an element (n, E) in D◦, we have that thanks
to Proposition 2.2.7 the mappings λ̃0 and λ̃1 are continuous on D◦. Therefore we obtain as
composition of continuous mappings

lim
k→∞

F (λ̃0(nk, Ek), λ̃1(nk, Ek); p) = F (λ̃0(n, E), λ̃1(n, E); p).

which is the Fermi Dirac distribution of the densities (n, E). Now since it converges point
wise for all p ∈ Td we can use the dominated convergence theorem and obtain the convergence
in L1(Td) such that

lim
k→∞

F (n, E; p) − F (λ̃0(nk, Ek), λ̃1(nk, Ek); p)
L1(Td)

= 0.

The last case where n ∈ (0, 1) and (Ek)k∈N converges to either emax (n) or −emax (n), needs
slightly more treatment. For this we define the functions

ωj(λ0, λ1) :=
Td

ε(p)jF (λ0, λ1; p)(1 − F (λ0, λ1; p))dp j ∈ N.

Now from Lemma 2.3.23 we recall that for every n in (0, 1) there exists a unique smooth
function φ : R → R that depends on λ1, such that

n =
Td

F (φ(λ1), λ1; p)dp.

Now it makes sense to choose φ also dependent on n, such that the above holds for all (n, λ1)
in (0, 1) × R, (not.: φ(n, λ1)). Next we define the function g : (0, 1) × R → (0, 1) with

g(n, λ1) :=
Td

F (φ(n, λ1), λ1; p)dp.
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2. Effective Energy Transport Model and Longtime Behaviour

This is may a bit be an exaggeration since g(n, λ1) = n for all λ1 ∈ R, but it will help us to
make the next step more vivid. We have for the partial derivative with respect to λ1 on one
hand ∂λ1g = 0 (since g(n, λ1) = n) and on the other hand (compare with Remark 2.2.9)

∂λ1g =
Td

∂λ1F (φ(n, λ1), λ1; p)dp

=
Td

F (φ(n, λ1), λ1; p)(1 − F (φ(n, λ1), λ1; p))(∂λ1φ(n, λ1) + ε(p))dp

=ω1(φ(n, λ1), λ1) + ω0(φ(n, λ1), λ1)∂λ1φ(n, λ1).

This together leads us to the ODE

0 = ω1 + ω0∂λ1φ, with φ(n, 0) = log n

1 − n
,

which has the implicit form

φ(n, λ1) = log n

1 − n
−

λ1

0

ω1(φ(n, µ), µ)
ω0(φ(n, µ), µ)dµ.

Now Braukhoff has proven in [Bra17] (see Remark 5.2.8) that

1
λ1

λ1

0

ω1(φ(n, µ), µ)
ω0(φ(n, µ), µ)dµ

λ1→±∞−−−−−→ ∓ F (n) uniformly in n, (2.71)

where F (n) is the Fermi energy defined in Definition 2.3.2. From Lemma 2.3.26 we have that
for (nk, Ek) → (n, ±emax (n)) that λ̃1(nk, Ek) diverges to ±∞. With the uniform convergence
(2.71) we obtain then

lim
k→∞

1
λ̃1(nk, Ek)

φ(nk, λ̃1(nk, Ek)) = F (n) for Ek → emax (n) ,

− F (n) for Ek → −emax (n) .
(2.72)

We introduce the short notation λ̃1,k=̂λ̃1(nk, Ek) and φk=̂φ(nk, λ̃1,k) and without loss of
generality we choose that (Ek)k∈N converges to emax (n). Since n ∈ (0, 1) we have that
F (n) ∈ (−d/2π, d/2π) (the cases where F (n) ∈ {−d/2π, d/2π} is given when n ∈ {0, 1}

respectively). Therefore there exists a γ0 > 0 such that

Bγ0(− F (n)) ⊂ (−d/2π, d/2π) and Bγ0( F (n)) ⊂ (−d/2π, d/2π).

From Remark 2.3.21 we deduce that

meas p ∈ Td : ε(p) ∈ Bγ0(− F (n)) γ→0−−−→ 0.

Hence for δ > 0 exists a γ1 ∈ (0, γ0] (that depends on δ) such that

Bγ1(− F (n)) ⊂ (−d/2π, d/2π) and meas p ∈ Td : ε(p) ∈ Bγ1(− F (n)) <
δ

4 .

Since |− F (n) ± γ1| < d/2π, we also obtain for our choice of γ1 that

meas p ∈ Td : ε(p) > (− F (n) + γ1) > 0,

meas p ∈ Td : ε(p) < (− F (n) − γ1) > 0.
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We define the sets

D+ := p ∈ Td : ε(p) > (− F (n) + γ1) ,

D− := p ∈ Td : ε(p) < (− F (n) − γ1) ,

D0 := p ∈ Td : ε(p) ∈ Bγ1(− F (n)) .

Obviously we have D+ ∪ D− ∪ D0 = Td. Since we are in the case Ek → emax (n), there exists
an index k̃ ∈ N, such that Ek > 0 for all k > k̃. This implies that λ̃1,k > 0 for all k > k̃ (see
Remark 2.3.25). Furthermore, thanks to (2.72), there exists a k0 ∈ N, with k0 > k̃ such that

∀k > k0 : λ̃−1
1,kφk ∈ Bγ( F (n)) and λ̃1,k > 0.

We observe that

∀k > k0, ∀p ∈ D+ : λ̃−1
1,kφk + ε(p) > F (n) − γ + ε(p) > 0,

∀k > k0, ∀p ∈ D− : λ̃−1
1,kφk + ε(p) < F (n) + γ + ε(p) < 0.

This and λ̃1,k > 0 for all k > k0 imply

∀k > k0, ∀p ∈ D+ : − λ̃1,k λ̃−1
1,kφk + ε(p) < 0,

∀k > k0, ∀p ∈ D− : − λ̃1,k λ̃−1
1,kφk + ε(p) > 0,

and hence with Lemma 2.3.26 (λ̃1,k → ∞)

∀p ∈ D+ : lim
k→∞

F (φk, λ̃1,k; p) = lim
k→∞

1
1 + exp −λ̃1,k λ̃−1

1,kφk + ε(p)
= 1,

∀p ∈ D− : lim
k→∞

F (φk, λ̃1,k; p) = lim
k→∞

1
1 + exp −λ̃1,k λ̃−1

1,kφk + ε(p)
= 0.

With the above we find k1 ≥ k0 such that

∀k > k1, ∀p ∈ D+ : 1 − F (φk, λ̃1,k; p) ≤ δ

4 ,

∀k > k1, ∀p ∈ D− : F (φk, λ̃1,k; p) ≤ δ

4 .

Since ✶{−ε(p)< F (n)}(p) = ✶{ε(p)>− F (n)}(p) (see Remark 2.3.21), we have for all k ≥ k1 that

✶{ε(p)>− F (n)} − F (φk, λ̃1,k; .)
L1(Td)

=
Td

✶{ε(p)>− F (n)}(p) − F (φk, λ̃1,k; p) dp

=
D+

1 − F (φk, λ̃1,k; p) dp

+
D0

✶{ε(p)>− F (n)}(p) − F (φk, λ̃1,k; p) dp

+
D−

F (φk, λ̃1,k; p) dp

For the integral over D0, we chose γ1 such that meas (D0) < δ/4, and estimate the integrator
with just one, and obtain for all k ≥ k1

✶{ε(p)>− F (n)} − F (φk, λ̃1,k; .)
L1(Td)

≤ δ

4 + δ

4 + δ

4 < δ.
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2. Effective Energy Transport Model and Longtime Behaviour

Since δ > 0 was chosen arbitrary we conclude that for (Ek)k∈N converging to emax (n) we
have that

lim
k→∞

F (nk, Ek; .) = lim
k→∞

F (λ̃0(nk, Ek), λ̃1(nk, Ek); .) = lim
k→∞

F (φk, λ̃1,k; .) = ✶{−ε(p)< F (n)}

in L1(Td). For limk→∞ Ek = −emax (n) we obtain with the same calculations, except we have
to change the signs of F (n), that

lim
k→∞

✶{ε(p)< F (n)} − F (nk, Ek; .)
L1(Td)

= 0.

With Theorem 2.3.27 we can finally prove the convergence result we will use in the end.
Recall therefore the definition of the extension F̄ of the Fermi Dirac distribution

F̄ (n, E; p) =




n if n ∈ {0, 1},

F (n, E; p) if (n, E) ∈ D◦,

✶{∓ε(p)< F (n)}(p) if E = ±emax (n) .

Corollary 2.3.28. Let (nk)k∈N and (Ek)k∈N be converging sequences in L2
loc(R+

0 ; L2(Td))
with limit functions n, E ∈ L2

loc(R+
0 ; L2(Td)), such that

∀(t, x) ∈ R+
0 × Td, ∀k ∈ N : (nk(t, x), Ek(t, x)) ∈ D◦.

Then there exist subsequences (nkj )j∈N and (Ekj )j∈N such that for all compact intervals I ⊂
R+

0 and all q ∈ [1, ∞)

lim
j→∞

F (nkj , Ekj ; .) − F̄ (n, E; .)
Lq(I;Lq(Td×Td))

= 0.

Proof. Let I be a compact interval in R+
0 , then the sequences (nk)k∈N and (Ek)k∈N converge to

n and E in L2(I; L2(Td)) and there exists subsequences (nkj )j∈N and (Ekj )j∈N that converge
point wise a.e. on I × Td (see for example Brezis [Bre11], Theorem 4.9.). With Theorem
2.3.27 we obtain for almost all (t, x) ∈ I × Td:

lim
j→∞

F (nkj (t, x), Ekj (t, x); .) − F̄ (n(t, x), E(t, x); .)
L1(Td)

= 0.

Since we have L1(Td) convergence, there exists subsequences (using again the same indexing)
(nkj )j∈N and (Ekj )j∈N such that

lim
j→∞

F (nkj
(t, x), Ekj

(t, x); p) = F̄ (n(t, x), E(t, x); p), a.e. on I × Td × Td.

Now since F (nkj , Ekj ; p) ≤ 1 for all j ∈ N and obviously 1 ∈ Lq(I; Lq(Td × Td)) for all
q ∈ [1, ∞), we can apply the dominated convergence theorem and get

lim
j→∞

F (nkj , Ekj ; .) − F̄ (n, E; .)
Lq(I;Lq(Td×Td))

= 0.

With the similar diagonal argument as in the proof of Theorem 2.3.27 we find subsequences
of (nkj

)j∈N and (Ekj
)j∈N (using again the same indexing) such that these subsequences fulfill

for all compact intervals I in R+
0 the desired convergence.

Since F coincides with F̄ on D◦, (2.35) is clearly fulfilled.
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2.3. The Diffusive Limit

2.3.5. The Rigorous Limit
In this section we give the proof of Main Theorem 2.3.5 and show, under the assumptions of
Hypothesis 2.2.14, the existence of a weak solution in the sense of Definition 2.3.4. The idea
is to follow the Chapman-Enskog expansion, presented in Section 2.3.1, and check in what
sense the limits exist.

Proof of Main Theorem 2.3.5. The existence of converging subsequences of the families (nτ )τ>0
and (Eτ )τ>0 is deduced directly from Theorem 2.3.19. Let us denote this converging subse-
quences and their limits with

nτk

k→∞−−−→ n, Eτk

k→∞−−−→ E, in L2
loc(R+

0 ; L2(Td)),

where τk converges to 0. We now go through the steps of the Chapman-Enskog expansion

Step 1: We make the ansatz

fτ = F (nτ , Eτ ; p) − τQτ (fτ ). (2.73)

It is clear from the definition of the collision operators (see Definition 2.22) that this
expression is well defined for all τ > 0. Recall that the family (Qτ (fτ ))τ>0 is, thanks
to Corollary 2.2.21, bounded in L2(R+

0 ; L2(Td × Td)), with the estimate (2.30)

Qτ (fτ ) 2
L2(R+

0 ;L2(Td×Td)) ≤ H (f0) − log(1/2).

This boundedness provides

lim
τ→0

τQτ (fτ ) = 0, in L2(R+
0 ; L2(Td × Td)).

From Corollary 2.3.28 we know that there exists subsequences of (nτk
)k∈N and (Eτk

)k∈N
(using again the same indices) such that for all compact intervals I ⊂ R+

0 and q ∈ [1, ∞)

lim
k→∞

F (nτk
, Eτk

; .) − F̄ (n, E; .)
Lq(I;Lq(Td×Td))

= 0.

For the subsequence (fτk
)k∈N of the family of solutions (fτ )τ>0 we have for every com-

pact interval I ⊂ R+
0 and q ∈ [1, ∞) that

fτk
− F̄ (n, E; .)

Lq(I;Lq(Td×Td))
≤

≤ F (nτk
, Eτk

; .) − F̄ (n, E; .)
Lq(I;Lq(Td×Td))

+ τk Qτk
(fτk

) Lq(I;Lq(Td×Td)) ,

and therefore we obtain especially for q = 2, that

lim
k→∞

fτk
= F̄ (n, E; .) in L2

loc(R+
0 ; L2(Td × Td)).

Step 2: Following the second step of the Chapman-Enskog Expansion we want to find out if
and in which way the family of collision operators (Qτ (fτ ))τ>0 converges for τ going to
zero. Recall the model equation

(2.23) : τ∂tfτ + ∇pε · ∇xfτ = Qτ (fτ ), fτ (0, x, p) = f0(x, p).
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2. Effective Energy Transport Model and Longtime Behaviour

Thanks to Remark 2.2.17, we know that F (nτ , Eτ ; .) and Qτ (fτ ) are both in C1(R+ ×
Td × Td) for all τ > 0, and hence we are able to substitute our ansatz (2.73) into the
DSSBE (2.23) and obtain (using the short notation Fτ =̂F (nτ , Eτ ; p) and Qτ =̂Qτ (fτ ))

τ∂tFτ − τ2∂tQτ + ∇pε · ∇xFτ − τ∇pε · ∇xQτ = Qτ . (2.74)

As mentioned above, the subsequence (Fτk
)k∈N converges in L2

loc(R+
0 ; L2(Td × Td)) to-

wards F̄ (n, E; p). Since the family (Qτ (fτ ))τ>0 is bounded in L2(R+
0 ; L2(Td × Td)) we

have with the Theorem of Eberlein-Šmuljan (see [Zei90a] Theorem 21.D) at least that
there exists a weak converging subsequence (using the same indices) (Qτk

(fτk
))k∈N and

a function Q(0) in L2(R+
0 ; L2(Td × Td)), such that

Qτk
(fτk

) k→∞−−− Q(0) in L2(R+
0 ; L2(Td × Td)). (2.75)

Multiply equation (2.74) with a a test function ϕ ∈ C∞
c (R+

0 × Td × Td) and integrate
it with respect to all variables we get

∞

0 Td×Td
τ∂tFτ ϕ − τ2∂tQτ ϕ + ∇pε · ∇xFτ ϕ − τ∇pε · ∇xQτ ϕ =

∞

0 Td×Td
Qτ ϕ.

(2.76)

For the left hand side, denoting with supp ϕ the support of ϕ, it follows from the
Cauchy-Schwarz inequality and partial integration that

τ |(∂tFτ , ϕ)L2 | ≤ τ meas (supp ϕ) ∂tϕ L2(R+×Td×Td) ,

τ2|(∂tQτ , ϕ)L2 | ≤ τ2(H (f0) − log(1/2)) ∂tϕ L2(R+×Td×Td) ,

τ |(∇pε · ∇xQτ , ϕ)L2 | ≤ τ ∇pε L∞(Td) (H (f0) − log(1/2)) ∇xϕ L2(R+×Td×Td) .

Therefore all the above terms vanish if we pass to the limit τ to zero. For the last term,
that is not multiplied by τ , we have with partial integration.

∞

0 Td×Td
(∇pε · ∇xFτ )ϕ =

∞

0 Td×Td
divx ((∇pε)Fτ )ϕ

= −
∞

0 Td×Td
((∇pε)Fτ ) · ∇xϕ.

All results above, starting from (2.76), hold for all τ > 0 and therefore in particular for
the subsequence (τk)k∈N. Since the sequence (Fτk

)k∈N converges in L2
loc(R+

0 ) towards
F̄ (n, E; p) and since (2.75) holds, passing to the limit τk → 0 in (2.76) then provides
for all ϕ ∈ C∞

c (R+
0 × Td × Td)

∞

0 Td×Td
Q(0)(t, x, p)ϕ(t, x, p) =

= −
∞

0 Td×Td
((∇pε(p))F̄ (n(t, x), E(t, x); p)) · ∇xϕ(t, x, p)

Hence we get two outputs from the above
a) Since the above equality holds for all ϕ ∈ C∞

c (R+
0 × Td × Td) we have that

(∇pε)F̄ ∈ L2
loc(R+

0 ; Hdivx(Td × Td)),

where we defined Hdivx(Td × Td) as the space of weak divergences with respect to
the spatial variable x (see (2.36)).
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2.3. The Diffusive Limit

b) Additionally we have for the sequence (Qτk
)k∈N the weak convergence

Qτk
(fτk

) k→∞−−− divx F̄ (n, E; .)∇pε in L2(R+
0 ; L2(Td × Td)).

Step 3: Last step is now to derive the drift diffusion equations for the functions n and E in the
sense of Definition 2.3.4. and to achieve this, we follow the third step of the Chapman
Enskog expansion. For the first equation we divide (2.74) through τ and integrate it
with respect to the momentum p, which gives us

∂tnτ − τ
Td

∂tQτ dp + 1
τ Td

∇pε · ∇xFτ dp −
Td

∇pε · ∇xQτ dp =
Td

Qτ dp. (2.77)

The integral on the right hand side vanishes, due to the definition of the collision
operator

Td
Qτ dp = 1

τ Td
fτ − F (nτ , Eτ ; p)dp = n − n = 0

In the first integral of (2.77) we can exchange integration and the derivative, and see
that the integral vanishes for all τ > 0 due to the same reason as above. Also the
second integral in (2.77) vanishes, since ∇pε · ∇xFτ is an odd function in p in the sense
of Definition 2.1.3 (see Remark 2.3.18). Therefore from (2.77) remains

∂tnτ (t, x) −
Td

∇pε(p) · ∇xQτ (t, x, p)dp = 0. (2.78)

We multiply equation (2.78) with a test function ϕ ∈ C∞
c (R+

0 × Td), integrate it respect
to the time- and space variables, and obtain with partial integration

∞

0 Td
nτ ∂tϕdxdt −

∞

0 Td×Td
Qτ (∇pε · ∇xϕ)dxdpdt = 0.

Now we know that there exists subsequences (nτk
)k∈N and (Qτk

)k∈N such that (nτk
)k∈N

converges in L2
loc(R+

0 ; L2(Td)) and (Qτk
)k∈N converges weakly in L2(R+

0 ; L2(Td × Td)).
The function ∇pε · ∇xϕ lies obviously in C∞

c (R+
0 × Td × Td) for all ϕ ∈ C∞

c (R+
0 × Td),

hence we obtain that for all ϕ ∈ C∞
c (R+

0 × Td)

lim
k→∞

∞

0 Td
nτk

∂tϕdxdt−
∞

0 Td×Td
Qτk

(∇pε · ∇xϕ)dtdxdp

=
∞

0 Td
n∂tϕdtdx −

∞

0 Td×Td
Q(0)(∇pε · ∇xϕ)dxdpdt.

It was shown that Q(0) is the weak divergence with respect to the spatial variable of
(∇pε)F̄ and in Corollary 2.3.20 we have proven that n has also a weak derivative ∂tn
in L2(R+

0 ; H−1(Td)), hence we obtain for all ϕ ∈ C∞
c (R+

0 × Td) that
∞

0
∂tn, ϕ H−1(Td) dt −

∞

0 Td×Td
divx(∇pε(p)F̄ (n, E; p))(∇pε(p) · ∇xϕ)dxdpdt = 0

(2.79)

The second equation of our macroscopic model, is achieved in a similar way. Going
back to equation (2.74), we multiply it with ε(p), divide it through τ and integrate it
with respect to the momentum p. With Remark 2.3.18, the fact that the integral of
εQτ with respect to the momentum vanishes for all τ > 0, we get for all τ > 0 that

∂tEτ (t, x) −
Td

ε(p)∇pε(p) · ∇xQτ (t, x, p)dp = 0.

49



2. Effective Energy Transport Model and Longtime Behaviour

We have that the subsequence (Eτk
)k∈N converges in L2

loc(R+
0 ; L2(Td)) towards E and

the subsequence (Qτk
)k∈N converges as mentioned weakly towards divx(∇pεF̄ (n, E; .)).

The function E has, thanks to Corollary 2.3.20 a weak derivative ∂tE that lies in
L2(R+

0 ; H−1(Td)). The function ε(∇pε · ∇xϕ) is an element of C∞
c (R+

0 × Td × Td) for
all ϕ ∈ C∞

c (R+
0 × Td) and passing to the limit for k to infinity we obtain for all ϕ in

C∞
c (R+

0 × Td)
∞

0
∂tE, ϕ H−1(Td) dt =

∞

0 Td×Td
ε(p) divx(∇pε(p)F̄ (n, E; p))(∇pε(p) · ∇xϕ)dxdpdt

(2.80)

With the standard density argument (see for example [Eva10]), we obtain that functions
n and E solve equations (2.79) - (2.80) for all ϕ in H1

0(R+
0 ×Td) and are therefore weak

solutions in the sense of Definition 2.3.4.

2.4. Long Time Behaviour
The second main result revolves around the weak solutions n,E and the limit function
F̄ (n, E; p) and their behaviour for time going to infinity. Now from physics we expect that
the limit function converges towards the equilibrium Feq (see Definition 2.2.18) and that
the macroscopic limit densities will distribute equally, i.e. converge towards the mean val-
ues n̄ and Ē respectively. We are able to show this converges with even exponential decay.
The most important quantities to recall are the definitions of the mean densities and the
equilibrium (see Subsection 2.2), which are given by

n̄ =
Td Td

f0(x, p)dpdx, Ē =
Td Td

ε(p)f0(x, p)dpdx, Feq(p) = F (n̄, Ē; p),

where f0 is the initial value of the system (in our case given via Hypothesis 2.2.14).

Main Theorem 2.4.1 (Long Time Behavior). As in Main Theorem 2.3.5 let (fτ )τ>0 be the
family of solutions to the model equation (2.23), and let n and E be the weak solutions in the
sense of Definition 2.3.4, then there exists constants C, K > 0 such that

F̄ (n(t, .), E(t, .); .) − Feq

2

L2(Td×Td)
≤ Ke−Ct.

With the same constants as above we also have exponential decay for the solutions n and E
towards their means,

n(t, .) − n̄ 2
L2(Td) ≤ Ke−Ct, E(t, .) − Ē

2

L2(Td)
≤ ε∞Ke−Ct, for a.e. t ∈ R+

0 , (2.81)

where ε∞ = ε L∞(Td).

We postpone the proof of Main Theorem 2.4.1 to Subsection 2.4.2, since we need some
preparation. The main tools for the proof are the so called ”relative Entropy” and the H-
Theorem (Theorem 2.2.20). We split this section into two subsections, where the first one
introduces the relative entropy and its properties. There we obtain lower and upper estimates
and we will see that the relative entropy differs only by a constant to the entropy functional
H (see (2.17)). To finally get the exponential decay, we use estimates obtained from the
previous Section 2.3, show some kind of Lipschitz continuity of F̄ and use then a Gronwall
argument. For details we refer to Subsection 2.4.2.
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2.4.1. The Relative Entropy

The relative entropy describes the measure of the distance from a given state to the equilib-
rium. Using the relative entropy to estimate the decay of a solution towards the equilibrium
is a quite common idea, like in [CJM+01, J1̈6]. New is the combination of the relative entropy
and the estimates obtained for (nτ )τ>0 and (Eτ )τ in L2(I; Hs(Td)) from Subsection 2.3.2 to
achieve the desired decay.

Definition 2.4.2. Define the function

S∞ : [0, 1] × (0, 1) → R, S∞(r|s) =




− log(1 − s) r = 0,

r log r
s + (1 − r) log 1−r

1−s r ∈ (0, 1),
− log(s) r = 1,

then we call for f ∈ L2(R+
0 ; L2(Td × Td)), with 0 ≤ f ≤ 1, the function

H f
Feq

(t) :=
Td Td

S∞(f(t)|Feq)dpdx

the relative entropy of the system.

Remark 2.4.3. We point out that since (n̄, Ē) ∈ D◦ we have that Feq only takes values in
(0, 1) for all p ∈ Td and hence the relative entropy is well defined. Moreover we can show
that there exists a constant a ∈ (0, (1/2)] such that Feq(n̄, Ē; p) ∈ [a, 1 − a] for all p ∈ Td.
First notice that (n̄, Ē) is fixed and hence are the values λ0(n̄, Ē) (=λ0) and λ1(n̄, Ē) (=λ1)
which are both in R. If λ0 = 0 = λ1 then we have that Feq = 1/2 and therefore a = 1/2.
Without loss of generality assume λ1 > 0 and λ0 ∈ R (the case where λ1 < 0 goes similarly).
Then we have for all p ∈ Td:

− d

2π
≤ ε(p) ≤ d

2π
,

λ1
d

2π
≥ −λ1ε(p) ≥ −λ1

d

2π
,

− λ0 − λ1
d

2π
≥ −(λ0 + λ1ε(p)) ≥ − λ0 + λ1

d

2π
,

1 + exp − λ0 − λ1
d

2π
≥ 1 + exp(−(λ0 + λ1ε(p))) ≥ 1 + exp − λ0 + λ1

d

2π
,

a1 := 1
1 + exp − λ0 − λ1

d
2π

≤ F (n̄, Ē; p) ≤ 1
1 + exp − λ0 + λ1

d
2π

=: 1 − a2.

Define now a := min{a1, a2}. We see immediately that a ∈ (0, (1/2)] and therefore we have
that a ≤ Feq ≤ 1 − a.

The next Lemma is crucial for the L2- estimates of the limit functions n, E and F̄ (n, E; p)
and it also provides the beginning for the estimate regarding the exponential decay.

Lemma 2.4.4. For any a ∈ (0, (1/2)], there exists a constant Ca, such that the function S∞,
defined in Definition 2.4.2, fulfills the estimate

|r − s|2 ≤ S∞(r|s) ≤ Ca|r − s|2 ∀(r, s) ∈ [0, 1] × [a, 1 − a]. (2.82)
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Proof. Let us recall the function h from the definition of the entropy functional H in (2.17),

h : (0, 1) → R, h(r) = r log r

1 − r
+ log(1 − r).

with the derivatives

h (r) = log r

1 − r
, h (r) = 1

r(1 − r) .

As in Remark 2.2.10 we develop h around s ∈ [a, 1 − a] and obtain

h(r) = h(s) + h (s)(r − s) + 1
2h (ξs)(r − s)2 for some ξs ∈ [a, 1 − a].

With rewriting S∞ we see that for all (r, s) ∈ (0, 1) × [a, 1 − a]

S∞(r|s) =r log r

s
+ (1 − r) log 1 − r

1 − s

=r log r

1 − r
− log s

1 − s
+ log(1 − r) − log(1 − s)

=h(r) − r log s

1 − s
− s log s

1 − s
+ log(1 − s) + s log s

1 − s

=h(r) − h(s) − h (s)(r − s)

=1
2h (ξs)(r − s)2.

In Remark 2.2.10 we showed that h has a minimum at 1/2 and that h (r) ≥ 4 for all
r ∈ (0, 1). Hence we obtain the lower estimate for all (r, s) ∈ (0, 1) × [a, 1 − a]

(r − s)2 ≤ 4(r − s)2 ≤ 1
2h (ξs)(r − s)2 = S∞(r|s).

Next we go to the upper estimate. Since a ∈ (0, (1/2)], the interval [a, 1 − a] has as middle
point (1/2). Additionally we have that h (a) = h(1 − a) and moreover h (a) > h(s) for all
s in [a, 1 − a]. Defining Ca := (1/2)h (a), we obtain for all (r, s) ∈ (0, 1) × [a, 1 − a]

S∞(r|s) = 1
2h (ξs)(r − s)2 ≤ Ca(r − s)2.

Passing to the limits r to zero or one, we obtain (2.82).

As already mentioned, we show that the relative entropy and the entropy functional are
related, in particular they just differ by a constant independent of time.

Lemma 2.4.5. Let fτ be the solution of the model equation (2.23), in the sense of Hypothesis
2.2.14. Then the time derivative of the entropy functional (see (2.17)) coincides with the time
derivative of the relative entropy, i.e.

d

dt
H fτ

Feq
= d

dt
H (fτ ) ∀τ > 0. (2.83)

Proof. Recall that for all τ > 0 the range of fτ lies in (0, 1) and that fτ solves (2.23)

τ∂tfτ + ∇pε(p) · ∇xfτ = Qτ (fτ ), ∀τ > 0.
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We calculate first the derivative of H fτ

Feq
. For this we will use the alternative Form of S∞ on

(0, 1) × (0, 1), which is given by

S∞(fτ |Feq) = fτ log fτ

1 − fτ
− log Feq

1 − Feq
+ log(1 − fτ ) − log(1 − Feq).

We remember that the equilibrium is independent of space and time, that λ0(n̄, Ē) (=λ0)
and λ1(n̄, Ē) (=λ1) are constants in R, and observe that

− log Feq

1 − Feq
= log exp(−(λ0 + λ1ε(p)))

1 + exp(−(λ0 + λ1ε(p)))(1 + exp(−(λ0 + λ1ε(p))))

= − (λ0 + λ1ε(p)).

Since we can exchange integration and differentiation we calculate first the time derivative
of S∞(fτ |Feq) and get

d

dt
fτ log fτ

1 − fτ
− (λ0 + λ1ε(p)) = (∂tfτ ) log fτ

1 − fτ
− (λ0 + λ1ε(p)) + ∂tfτ

1 − fτ
,

d

dt
log(1 − fτ ) = − ∂tfτ

1 − fτ
.

This and the fact that fτ solves equation (2.23), gives us for the derivative of H fτ

Feq

d

dt
H fτ

Feq
=

Td Td

d

dt
S∞(fτ |Feq)dxdp

=
Td Td

(∂tfτ ) log fτ

1 − fτ
− (λ0 + λ1ε(p)) dxdp

=
Td Td

(∂tfτ ) log fτ

1 − fτ
− (Qτ (fτ ) − ∇pε(p) · ∇xfτ )(λ0 + λ1ε(p))dxdp

Due to the definition of Qτ (fτ ) we obtain that

Td Td
Qτ (fτ )(λ0 + λ1ε(p))dxdp = 0,

and since (λ0 + λ1ε(p)) is independent of the spatial variable x we get

Td Td
(−∇pε(p) · ∇xfτ )(λ0 + λ1ε(p))dxdp = −

Td Td
divx(fτ ∇pε(p))(λ0 + λ1ε(p))dxdp

=
Td Td

fτ ∇pε(p) · ∇x(λ0 + λ1ε(p))dxdp

=0.

Therefore we obtain
d

dt
H fτ

Feq
=

Td Td
(∂tfτ ) log fτ

1 − fτ
dxdp. (2.84)

The time derivative of the entropy functional H is quicker derived. Let us recall the function
h from the definition of the entropy functional in (2.17),

h : (0, 1) → R, h(r) = r log r

1 − r
+ log(1 − r).
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The time derivative of h is given by

d

dt
h(fτ ) = (∂tfτ )h (fτ ) = (∂tfτ ) log fτ

1 − fτ
,

and hence we obtain for the entropy functional

d

dt
H (fτ ) = d

dt Td Td
h(fτ )dxdp =

Td Td
(∂tfτ ) log fτ

1 − fτ
dxdp.

Comparing the above with (2.84) shows that the time derivatives of the relative entropy and
the entropy functional coincide for the family (fτ )τ>0.

2.4.2. Exponential Decay
For the proof of Main Theorem 2.4.1, we use an interesting form of Gronwall’s Theorem as
stated in [Bee75], which we cite from [FL16]. To save the reader time looking up the proof,
we will also cite it from [FL16].

Lemma 2.4.6. Let ψ(t) be an integrate-able function over [0, T ] for T ∈ R+. If there exists
a constant K > 0 such that

ψ(t1) + K
t1

t0
ψ(s)ds ≤ ψ(t0), for a.e. 0 ≤ t0 ≤ t1 ≤ T, (2.85)

then

ψ(t1) ≤ ψ(t0)e−K(t1−t0), for a.e. 0 ≤ t0 ≤ t1 ≤ T. (2.86)

Proof. As mentioned we cite here the proof of [FL16]: First, we perform in (2.85) the change
of variables t = −r and ψ(−r) = ψ̃(r) and obtain

ψ(t1) + K
r0

−t1
ψ̃(r)dr ≤ ψ̃(r0), for a.e. − T ≤ −t1 ≤ r0 ≤ 0. (2.87)

Then, we define Ψ(r) = r
−t1

ψ̃(ω)dω and calculate with Ψ̇(r) = ψ̃(r) ≥ ψ(t1) + KΨ(r) the
well defined derivative

d

dr
Ψ(r)e−K(r+t1) ≥(ψ(t1) + KΨ(r))e−K(r+t1) − KΨ(r)e−K(r+t1)

≥ψ(t1)e−K(r+t1).

Then integration over [−t1, r0] and division by e−K(r0+t1) yields

Ψ(r0) ≥ ψ(t1)
K

eK(r0+t1) − 1 ,

and further with (2.87) and r0
−t1

ψ̃(r) = Ψ(r0)

ψ̃(r0) ≥ ψ(t1)eK(r0+t1).

Then returning to the original variables t0 = −r0 and ψ(−r0) = ψ̃(r0), yields (2.86).

Before we go to the proof of exponential decay, we need one last property. The distance
between the function F̄ (n, E; p) and the equilibrium is always smaller than the distance
between (n, E) ∈ D and the mean values (n̄, Ē), times a constant that only depends on the
latter.
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2.4. Long Time Behaviour

Lemma 2.4.7. Let (n̄, Ē) be in D◦ fixed, then there exists a constant L > 0 such that

sup
p∈Td

F̄ (n, E; p) − F (n̄, Ē; p) ≤ L̃ (n, E) − (n̄, Ē)

for all (n, E) in D, where |.| denotes the euclidean norm.

Proof. Since (n̄, Ē) lies in the open set D◦ ⊂ R2, we can find a γ > 0 such that the closed ball
Kγ((n̄, Ē)) with radius γ lies completely in D◦. Since F̄ coincides with F on Kγ((n̄, Ē)),
both functions are smooth, as compositions of smooth functions. The derivatives of those
functions are bounded on the compact set Kγ((n̄, Ē)) and hence there exists a Lipschitz
constant Lγ on Kγ((n̄, Ē)) such that

sup
p∈Td

F̄ (n, E; p) − F (n̄, Ē; p) ≤ Lγ (n, E) − (n̄, Ē) , ∀(n, E) ∈ Kγ((n̄, Ē)).

If now (n, E) lies not in Kγ((n̄, Ē)) then we have, since F̄ and F are smaller or equal one,
that

sup
p∈Td

F̄ (n, E; p) − F (n̄, Ē; p) ≤ 1
γ

γ ≤ 1
γ

(n, E) − (n̄, Ē) , ∀(n, E) /∈ Kγ((n̄, Ē)).

Choosing now L̃ := max{Lγ , (1/γ)} provides the desired estimate.

Corollary 2.4.8. Let (n̄, Ē) be in D◦ fixed, then there exists a constant L > 0 such that

F̄ (n(t, .), E(t, .); .) − F (n̄, Ē; .)
L2(Td×Td)

≤ L nk(t, .) − n̄ 2
L2(Td) + Ek(t, .) − Ē

2

L2(Td)
,

for all n and E in L2
loc(R+

0 , L2(Td)) with n(t, x), E(t, x) ∈ D for all (t, x) ∈ R+
0 × Td.

Proof. With Lemma 2.4.7 we have for all (t, x) ∈ R+
0 × Td:

F̄ (n(t, x), E(t, x); p) − F (n̄, Ē; p)
2 ≤ L̃2 |n(t, x) − n̄|2 + E(t, x) − Ē

2
.

Since meas Td = 1, we can integrate both sides with respect to p and then over x and set
L := L̃2, which finishes the proof.

Proof of Theorem 2.4.1:

Proof. We introduce for this proof the short notation for the index τk=̂k. Let (fk)k∈N, (nk)k∈N
and (Ek)k∈N (where ) be the subsequences of the families (fτ )τ>0, (nτ )τ>0 and (Eτ )τ>0 such
that

lim
k→∞

nk − n L2
loc(R+

0 ;L2(Td)) + Ek − E L2
loc(R+

0 ;L2(Td)) + fk − F̄ (n, E; .)
L2

loc(R+
0 ;L2(Td))

= 0.

where n and E are weak solutions in the sense of Definition 2.3.4. From Remark 2.4.3
we obtain a constant a ∈ (0, (1/2)] such that Feq(p) ∈ [a, 1 − a] for all p ∈ Td. Since
fk only takes values in (0, 1) we can apply Lemma 2.4.4 and obtain for all k ∈ N and all
(t, x, p) ∈ R+

0 × Td × Td

(fk(t, x, p) − Feq(p))2 ≤ S∞(fk(t, x, p)|Feq(p)) ≤ Ca(fk(t, x, p) − Feq(p))2. (2.88)
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2. Effective Energy Transport Model and Longtime Behaviour

The lower estimate will be important for the final conclusion. For now we make use of the
upper estimate and obtain by integrating (2.88) with respect to p and x

H fk

Feq
(t) ≤Ca fk(t) − Feq

2
L2(Td×Td)

≤2Ca fk(t) − F (nk(t), Ek(t)) 2
L2(Td×Td) + F (nk(t), Ek(t)) − Feq

2
L2(Td×Td) ,

where F (nk, Ek) is the Fermi Dirac distribution (2.20). For the last term we have with
Corollary 2.4.8 the following estimate for all t ∈ R+

0

F (nk(t, .), Ek(t, .)) − Feq
2
L2(Td×Td) ≤ L nk(t) − n̄ 2

L2(Td) + Ek(t) − Ē
2

L2(Td)
.

Next we want to apply Proposition 2.3.13 onto the families (fk − Feq)k∈N and (Qk(fk))k∈N.
Notice that |fk − Feq| ≤ 1 for all k ∈ N, which gives us that the family (fk − Feq)k∈N is
bounded in L∞(R+

0 × Td × Td), and the boundedness of (Qk(fk))k∈N in L2(R+
0 , L2(Td × Td))

is given by Corollary 2.2.21. Then we see that the families fulfill the equation

τk∂t(fk − Feq) + ∇pε · ∇x(fk − Feq) = Qk(fk),

because the equilibrium Feq is independent of time and space and Qτ (Feq) = 0. Hence the
families meet the requirements of Proposition 2.3.13, and therefore we obtain for the families
(nk − n̄)k∈N and (Ek − Ē)k∈N the estimates for any compact interval I ⊂ R+

0

[nk − n̄]Hs(Td)
2

L2(I)
≤ Dδ Qk

2
L2(I×Td×Td) + δ fk − Feq

2
L2(I×Td×Td) + τk(δ + Dδ),

[Ek − Ē]Hs(Td)
2

L2(I)
≤ ε∞ Dδ Qk

2
L2(I×Td×Td) + δ fk − Feq

2
L2(I×Td×Td) + τk(δ + Dδ) .

The Hs(Td) - norm can be estimated by its semi norm and the average (for details see
inequality (2.47) in Remark 2.3.10 ), which gives us for all times t ∈ R+

0 :

nk(t) − n̄ 2
Hs(Td) ≤ 2 2[nk(t) − n̄]2Hs(Td) +

Td
nk(t, x) − n̄dx

2
= 4[nk(t) − n̄]2Hs(Td),

Ek(t) − Ē
2

Hs(Td)
≤ 2 2[Ek(t) − Ē]2Hs(Td) +

Td
Ek(t, x) − Ēdx

2
= 4[Ek(t) − Ē]2Hs(Td),

where we used the fact that nk and Ek integrated with respect to x at any time t has to
coincide with n̄ and Ē, due to our conservation assumption (see (2.9)). This gives us for any
compact interval I ⊂ R+

0

nk − n̄ 2
L2(I;L2(Td)) ≤ nk − n̄ 2

L2(I;Hs(Td)) ≤ 4 [nk − n̄]Hs(Td)
2

L2(I)
,

Ek − Ē
2

L2(I;L2(Td))
≤ Ek − Ē

2

L2(I;Hs(Td))
≤ 4 [Ek − Ē]Hs(Td)

2

L2(I)
.

And together with the estimates obtained from Proposition 2.3.13 we get

nk − n̄ 2
L2(I;L2(Td)) ≤4 Dδ Qk

2
L2(I×Td×Td) + δ fk − Feq

2
L2(I×Td×Td) + τk(δ + Dδ) ,

Ek − Ē
2

L2(I;L2(Td))
≤4ε∞ Dδ Qk

2
L2(I×Td×Td) + δ fk − Feq

2
L2(I×Td×Td) + τk(δ + Dδ) .
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2.4. Long Time Behaviour

Let us take a closer look on the term δ fk − Feq
2
L2(I×Td×Td) in the above estimates. We can

rewrite fk as in the Chapman- Enskog expansion, i.e. fk = F (nk, Ek; .) − τkQk, and apply
again Corollary 2.4.8, (short notation L2 for the space L2(I, L2(Td × Td))):

fk − Feq
2
L2 ≤2 τkQk

2
L2 + F (nk, Ek; .) − Feq

2
L2

≤2 τ2
k Qk

2
L2 + L nk − n̄ 2

L2 + Ek − Ē
2

L2 .

The estimates we obtained from Proposition 2.3.13, include a constant δ > 0, which can
be chosen arbitrarily. Indeed we can choose it separately for the families (nk − n̄)k∈N and
(Ek − Ē)k∈N. For the first family we choose δ1 = (1/32L) and for the second family δ2 =
(1/32Lε∞), then we obtain (not.: L2 = L2(I, L2(Td ×Td)) or L2 = L2(I, L2(Td)), which should
be clear from the contex):

nk − n̄ 2
L2 ≤
≤ 4 (Dδ1 + 2τ2

k ) Qk
2
L2 + 1

16 nk − n̄ 2
L2 + Ek − Ē

2

L2 + τk(δ1 + Dδ1) ,

Ek − Ē
2

L2 ≤

≤ 4ε∞ (Dδ2 + 2τ2
k ) Qk

2
L2 + 1

16ε∞
nk − n̄ 2

L2 + Ek − Ē
2

L2 + τk(δ2 + Dδ2) .

Adding together both estimates provides

nk − n̄ 2
L2 + Ek − Ē

2

L2 ≤ 4 (Dδ1 + 2τ2
k + ε∞(Dδ2 + 2τ2

k )) Qk
2
L2 +

+ 1
2 nk − n̄ 2

L2 + Ek − Ē
2

L2 +

+ 4τk (δ1 + Dδ1 + ε∞(δ2 + Dδ2)) .

Define Cτk
:= 8(Dδ1 + ε∞Dδ2 + 2τ2

k (1 + ε∞)) and C̃ := 8(δ1 + Dδ1 + ε∞(δ2 + Dδ2)), then the
above becomes

nk − n̄ 2
L2 + Ek − Ē

2

L2 ≤ Cτk
Qk

2
L2 + τ2

k C̃.

Putting everything together that came after (2.88), using again the Chapman-Enskog ansatz
(2.61), and integrating over t0, t in R+

0 yields

t

t0
H fk

Feq
(r)dr ≤ 2Ca fk − F (nk, Ek) 2

L2([t0,t];L2) + F (nk, Ek) − Feq
2
L2([t0,t];L2)

≤ 2Ca τ2
k Qk

2
L2([t0,t];L2) + L nk − n̄ 2

L2([t0,t];L2) + Ek − Ē
2

L2([t0,t];L2)

≤ 2Ca τ2
k Qk

2
L2([t0,t];L2) + L Cτk

Qk
2
L2([t0,t];L2) + τ2

k C̃

= 2Ca(τ2
k + LCτk

) Qk
2
L2([t0,t];L2) + τ2

k 2CaLC̃.

Recall the result of the H-Theorem (see Theorem 2.2.20)

Qk
2
L2([t0,t];L2) ≤ 1

2(H (fk(t0)) − H (fk(t))), ∀t, t0 ∈ R+
0 .
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2. Effective Energy Transport Model and Longtime Behaviour

In Lemma 2.4.5 we have shown that the time derivatives of the entropy functional and the
relative entropy coincide and hence we have

Qk
2
L2([t0,t];L2) ≤ 1

2(H fk

Feq
(t0) − H fk

Feq
(t)), ∀t, t0 ∈ R+

0 .

which gives us in turn the estimate (C(τk,a) := Ca(τ2
k + LCτk

) and C̃a := 2CaLC̃)

t

t0
H fk

Feq
(r)dr ≤ C(τk,a)(H fk

Feq
(t0) − H fk

Feq
(t)) + τ2

k C̃a, ∀t, t0 ∈ R+
0 . (2.89)

There exists now a subsequence of (fk)k∈N (using the same indices) such that it converges
towards F̄ (n, E; .) point wise a.e. on R+

0 × Td × Td. With the continuity of S∞ we obtain

lim
k→∞

H fk

Feq
(t) = H F̄ (n,E)

Feq
(t), for a.e. t ∈ R+

0 .

Since limk→∞ τk = 0, we have limk→∞ C(τk,a) = 8LCa(Dδ1 + ε∞Dδ2) =: C−1. By taking the
limit k to infinity on both sides in (2.89) and using the dominated convergence theorem, we
obtain

t

t0
H F̄ (n,E)

Feq
(r)dr ≤ C−1(H F̄ (n,E)

Feq
(t0) − H F̄ (n,E)

Feq
(t)), for a.e. t, t0 ∈ R+

0 .

The constant C is greater than zero and therefore the above becomes

H F̄ (n,E)
Feq

(t) + C
t

t0
H F̄ (n,E)

Feq
(r)dr ≤ H F̄ (n,E)

Feq
(t0), for a.e. t, t0 ∈ R+

0 .

With the Gronwall argument we stated before (see Lemma 2.4.6) and setting t0 = 0 we get

H F̄ (n,E)
Feq

(t) ≤ H F̄ (n,E)
Feq

(0)e−Ct, for a.e. t ∈ R+
0 . (2.90)

The estimate given in Lemma 2.4.4 can now be applied, since 0 ≤ F̄ (n, E) ≤ 1 and 0 < a ≤
Feq ≤ 1 − a, and defining K := H F̄ (n,E)

Feq
(0) provides

F̄ (n(t, .), E(t, .); .) − Feq

2

L2(Td×Td)
≤ Ke−Ct, for a.e. t ∈ R+

0 .

The exponential decay of the macroscopic densities n and E towards the steady states n̄ and
Ē, is now a direct consequence from the above. For the convenience of the reader we carry
this out, starting with the density n. We have that

n(t, x) − n̄ =
Td

F̄ (n(t, x), E(t, x); p) − Feq(p)dp, ∀(t, x) ∈ R+
0 × Td.

Taking the absolute value from the above and use Jensen’s inequality we get (notice that
meas Td = 1)

|n(t, x) − n̄|2 ≤
Td

F̄ (n(t, x), E(t, x); p) − Feq(p)
2
dp, ∀(t, x) ∈ R+

0 × Td,

and hence we obtain

n(t, .) − n̄ 2
L2(Td) ≤ Ke−Ct, for a.e. t ∈ R+

0 .
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For the energy density E we have that

E(t, x) − Ē =
Td

ε(p)F̄ (n(t, x), E(t, x); p) − ε(p)Feq(p)dp, ∀(t, x) ∈ R+
0 × Td.

Recalling the definition ε∞ = ε 2
L∞(Td), estimate the above with √

ε∞ times the integral,
then we get with the same steps as before

E(t, .) − Ē
2

L2(Td)
≤ ε∞Ke−Ct, for a.e. t ∈ R+

0 .

Last we state the exponential decay that holds for every Lq- norm, where q ∈ [1, ∞).

Corollary 2.4.9. Let the functions n, E, F̄ (n, E; p) and the constants C, K be the same as
in Main Theorem 2.4.1, then for almost every t in R+

0 we have for all q ∈ [1, ∞):

F̄ (n(t, .), E(t, .); .) − Feq Lq(Td×Td)
≤ K

1
2 e− C

2 t,

and

n(t, .) − n̄ Lq(Td) ≤ K
1
2 e− C

2 t, E(t, .) − Ē
Lq(Td)

≤ (ε∞K)
1
2 e− C

2 t.

Proof. It is enough to prove the above for F̄ since the estimates for n and E are then direct
consequences, as in the proof before. The case q = 2 comes from Theorem 2.4.1.
For q ∈ [1, 2) we obtain with Hölder inequality, by defining r := 2q(2 − q)−1, since 1 ∈
Lr(Td × Td) and q−1 = 2−1 + r−1, that (using the short notation F̄ (t)=F̄ (n(t, .), E(t, .); .) )

F̄ (t) − Feq Lq(Td×Td)
≤ F̄ (t) − Feq L2(Td×Td)

For q ∈ (2, ∞) we see immediately that, since fτ (t) − F (n̄0, Ē0) ≤ 1,

F̄ (t) − Feq

q

Lq(Td×Td)
≤ F̄ (t) − Feq

q

L2(Td×Td)
F̄ (t) − Feq

q

L∞(Td×Td)

≤ F̄ (t) − Feq

q

L2(Td×Td)
.
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3. Spin Drift Diffusion Model

The goal of this chapter is to derive a quantum description of electrons and their spin in
spintronic devices. If we pack all the information into one density matrix N (details follow
later), we expect a model of the form

∂tN = div(J(N)) + S(N),

where div(J(N)) describes the current and S(N) represents quantum effects regarding spin.
As mentioned in the introduction we rely mainly on two works, namely [EH14] and [BM10].
Since the first starts from a semiclassical approach, it cannot be considered as ”full quantum”
model, but it derives equations for all components and that rigorously. The second derives
”full quantum” models for the ”spin up” and ”spin down” densities. We look here, for a
combination of both. Since we are in a different setting than in the previous chapter and we
want to focus completely on the spin of the electrons, we dismiss the total energy.

3.1. General Description and the Microscopic Picture
Spintronics aims at controlling the electron spins by means of electrostatic fields and, there-
fore, tame it with the same technology of electronics. A prototypical spintronic device consists
of four main components: the source, the channel region, the gate and the collector. The
electrons start in the source, pass through the channel region and are the collected in the
collector. The spin of the electrons is only affected in the channel, if the gate is switched on,
which we then see as passing information (=1).

InAlAs

InGaAs

S
ou

rc
e

Gate: off D
ra
in

InAlAs

InGaAs

S
ou

rc
e

Gate: on D
ra
in

Figure 3.1.: A spintronic device with electrons passing through the channel region (here grey part). After activating
the gate the average spin is changing the direction, which does not have to be the opposite.

Since the interesting effects happen in the channel region, it will be our target of modelling.
Therefore we consider a two dimensional electron gas (2DEG) in the (x1, x2) plane as our
ground setting for the channel region. The fact that the 2DEG is nearly a plane (see Figure
3.2), we mention at that point that the space variable x is 2 dimensional in R3 and will
always be of the form x = (x1, x2, 0). The same holds for the momentum p, since the
electrons cannot move into the x3 direction,therefore the momentum p, will always be of the
form p = (p1, p2, 0). Even tough the spin is still a vector in R3. The 2DEG is in between
two layers of materials A,B (for example Indium aluminium arsenide (InAlAs) and Indium
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3. Spin Drift Diffusion Model

gallium arsenide (InGaAs) respectively) with different potentials. If the channel region is
surrounded by suitable layers of semiconductors (e.g. InAlAs and InGaAs), so that to obtain
an electron confinement into an asymmetric potential well, then the electrons experience the
Rashba (or Bychkov-Rashba) spin-orbit effect. This effect manifests itself as an effective
magnetic field orthogonal to the confinement direction and to the electron motion. Then, the
spin orientation can be indirectly controlled by a gate voltage, which deviates the electrons,
thus changing the direction of the effective magnetic field into the channel region. It is then
possible to observe that the spin vector staggers around the direction of the effective field
(see Figure 3.2). For a more detailed explanation of the Rashba effect at its application to
spintronics we refer the reader to the work of Žutić and Fabian [icvacFDS04].

A

B

trapped electrons

Position x = (x1, x2, 0)

Momentum p = (p1, p2, 0)

Effective Field Ω = αR(p× e3)
e3

p

Ω

Spinvector

Figure 3.2.: (left): Passage between two layers; (middle): The passage (2DEG) presented as a plane, with an
effective field; (right): Staggering of the spin vector, due to the Rashba effect.

A two-dimensional electron gas in the (x1, x2)-plane with a Rashba spin-orbit interaction is
described by the following Hamiltonian:

H = −
2

2m
Δx1,x2 + V (x) Id − αR

0 i∂x2 − ∂x1

i∂x2 + ∂x1 0 , (3.1)

where x = (x1, x2, 0), Id is the 2 × 2 identity matrix, is the reduced Planck constant, m
is the electron effective mass, V is a given electric potential, and αR is the Rashba constant
[icvacFDS04].
The evolution equation for the density operator = (t), representing the quantum statistical
(“mixed”) state of the system, is the von Neumann equation

i ∂t = [H, ], (3.2)

where [., .] denotes the commutator. We will consider also collisions in our system, but for
the sake of simplicity they will be added later. The solution for the von Neumann equation
is a (time-dependent) density operator on the space of the two-component wave functions
L2(R,C2). Therefore we have for every instant of time, that is a self-adjoint and positive
definite ( ψ, ψ ≥ 0, ∀ψ ∈ L2(R,C2)) operator, with unitary trace. This implies that is a
Hilbert-Schmidt operator.

Definition 3.1.1. An operator on L2(R2,C2) is called a Hilbert-Schmidt operator, if it is an
self-adjoint and positive definite (in the sense that ψ, ψ ≥ 0 for all ψ in L2(R,C2)) operator
with unitary trace. Additionally it has an unique integral kernel ρ in L2(R2 ×R2,C2×2) such
that

( ψ)(x) =
R2

ρ(x, y)ψ(y)dy, ∀ψ ∈ L2(R2,C2),
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where the integral is to understand component wise. We define the space of all Hilbert-Schmidt
operators on L2(R2,C2) as HS(L2(R2,C2)).

For detailed theory on Hilbert-Schmidt operators we refer to [RS80].

Remark 3.1.2. Let us roughly discuss the idea what a density operator describes. First we
know that a wave function ψ ∈ L2(R2,C2) has every information about a particle encoded.
Let us notice that wave functions encode information differently, than a distribution function
f , like the one from the Boltzmann picture. For example if we look at the following for
Ω ⊂ R3

Ω
f(t, x, p)dx,

Ω
|ψ(x)|2dx,

we obtain from the left the density of the particles in Ω at the current time t and given
momentum p, whereas the right hand side will only give the probability to find a particle in
Ω at the current state. There is a way to transform f into a probability density, but we are
not going to delve into that.
To obtain information from a wave function ψ, we need an observable, which is an operator
on the space of the wave functions. For example the position operator x̂ applied to ψ reflects
the expected density value of the particle in the state ψ, i.e.

x̂(ψ) =
R2

x|ψ(x)|2dx.

Having another wave function φ ∈ L2(R2,C2), the L2- scalar product of φ and ψ, gives us
the probability of a particle to change from one state ψ to the other state φ. The density
operator in (3.2) is an operator on the space of wave functions and can therefore be seen as
an observable itself. Let (φk)k∈N be an orthonormal basis of L2(R2,C2), then we can describe

through

(ψ) =
∞

k=1
pkφk(φk, ψ)L2 , where pk ∈ [0, 1], and

∞

k=0
pk = 1.

Such a density operator is also called a mixed state. If we have pj = 1 and pk = 0 for all
k ∈ N, k = j, then we call a pure state. Now (t), can be interpreted as the observable of
being in the mixed state at the time t. In other words the quantity (ψ, (t)ψ)L2 gives us the
probability to get from the state ψ into the mixed state at the time t. This looks at first
hand quite complicated, but describing the system with operators has one big advantage:
The Wigner formalism.

3.2. Transformation into Phase-Space
3.2.1. The Wigner Transformation
In view of the diffusive and semiclassical asymptotic analysis, that will be treated in the
next sections, it is more handy to work with phase-space functions than with operators.
For this reason we introduce at this point the common used Wigner transformation, which
transforms a density operator, such as the occurring in the von Neumann equation (3.2), into
a phase-space like distribution, named Wigner function. Of course, due to the Heisenberg’s
uncertainty relation, it is impossible to have the existence of a phase-space distribution in
quantum mechanics and this means that the Wigner function is only formally similar to a
phase-space distribution. The Wigner transformation is to be considered as a tool to simplify
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3. Spin Drift Diffusion Model

the calculations and to have a classical-like intuition of the physics behind the mathematical
manipulations. Indeed, we shall use it for transforming the von Neumann equation into a
kinetic Boltzmann equation. The Wigner formalism is treated detailed in the literature, as
for example in the books [Fol89, J0̈9, ZFC05] or in the review paper [BFM14], but we will
give here a short overview.
We start with the scalar valued Wigner transformation, which means that we look at wave
functions that do not consider spin and lie therefore in L2(R2,C). The definition for Hilbert-
Schmidt operators on L2(R2,C) is the same as in Definition 3.1.1, with the difference that
we replace every appearing vector space over C, with its field C.

Definition 3.2.1. Let be a Hilbert-Schmidt Operator on L2(R2,C2) and ρ be its unique
integral kernel. Then the Wigner transformation W is an operator from HS(L2(R2,C)) to
L2(R2 × R2,C) with

W( )(x, p) =
R2

ρ(x + 1
2η, x − 1

2η)e−iη·p/ dη, ∀ ∈ HS(L2(R2,C)). (3.3)

The inverse of the Wigner transformation is given by the Weyl-quantization (will be proven
later, see Remark 3.2.16).

Definition 3.2.2. Let w = W( ) be a Wigner function (alias Wigner transform of a Hilbert-
Schmidt operator ∈ HS(L2(R2,C)) with values in C, then the Weyl-quantization or inverse
Wigner transformation is given by

W−1(w)(x, y) = 1
(2π )2 R2

w
x + y

2 , p ei(x−y)·p/ dp, (3.4)

where W−1(w) can be interpreted as the integral kernel of the Hilbert-Schmidt operator .

Remark 3.2.3. Let us stress again the fact that we are modelling in the 2DEG, which means
that we are in a two dimensional setting regarding space and momentum. This is reflected
by the fact that in the definition of Wigner/Weyl transformation we integrate over R2 and
the factor in front of the integral in (3.4) is of power two. In literature, the standard case is
that a three dimensional setting is considered, hence the other definitions slightly differ from
our.

In Definition 3.2.1 we looked on operators that are defined on L2(R2,C), whereas the latter
space is the space for wave functions without the spin information. Wave functions that have
also the spin encoded, ”live” in L2(R2,C2). Therefore the integral kernels of the Hilbert-
Schmidt operators are 2 × 2 matrices, see Definition 3.1.1. Hence we have to extend the
definition of the Wigner transformation for our purposes and we will use the same notation
for it.

Definition 3.2.4. Let be a Hilbert-Schmidt Operator on L2(R2,C2) and ρ be its unique
integral kernel. Then the Wigner transformation W is an operator from HS(L2(R2,C2)) to
L2(R2 × R2,C2×2) with

W( )(x, p) =
R2

ρ(x + 1
2η, x − 1

2η)e−iη·p/ dη, ∀ ∈ HS(L2(R2,C2)), (3.5)

where the integral is to be understand component wise, in the sense that

(W( )(x, p))kl =
R2

ρ(x + 1
2η, x − 1

2η)kl e−iη·p/ dη, for k, l ∈ {1, 2}.
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3.2. Transformation into Phase-Space

Remark 3.2.5. We see that the Wigner transformation in Definition 3.2.1 and 3.2.4 are
barely distinguishable, hence we will use the same notation W for both, but use lowercase
letters to denote scalar valued symbols (e.g. w) and capital letters for matrix valued symbols
(e.g. W ). The Weyl quantization of the matrix Wigner transformation is then to understand
component wise.

Since we want to apply the Wigner transformation to the von Neumann equation (3.2), we
need to extent the Wigner transformation to a greater variety of operators, due to the fact
that the Hamiltonian (3.1) is definitely not a Hilbert-Schmidt operator. In fact the Wigner
theory can be extended to such a wider class of distributional phase space functions [Fol89].
In such an extended setting, the Wigner transformation is still the inverse transformation of
the Weyl quantization, which assigns to a phase-space function (or distribution) a quantum
operator. The expression symbols for phase-space functions (or distributions) associated to
operators via Wigner-Weyl transforms is often used in the literature, while the expression
Wigner function will be reserved to the symbols that are the Wigner transforms of den-
sity operators. Also worth to mention is that in literature sometimes the notation Op is
used for the Weyl quantization and Op−1 for the Wigner transformation. The Wigner-Weyl
correspondence is summarized in Figure 3.3 cited from our work [BHJ].

a

A ρA

WOp

Figure 3.3.: The Wigner-Weyl correspondence: A = Op (a) is the operator associated to the
phase-space function a, ρA is the integral kernel of A, and a = W(ρA) is the
Wigner transform of A.

For a more detailed introduction to Weyl quantization and Wigner transform we refer the
reader to Refs. [Fol89, ZFC05].

Remark 3.2.6. Furthermore for the sake of simplicity we drop from now any references on
specific spaces and will just give formal definitions.

Example 3.2.7. The corresponding symbol to the Hamiltonian (3.1) is given by

W(H)(x, p) =

 |p|2
2m + V (x) αR(p2 + ip1)

αR(p2 − ip1) |p|2
2m + V (x)

 . (3.6)

Applying the Wigner transformation to the von Neumann equation (3.2), the question
arises what happens to the term W([H, ]) and the next two subsections are dedicated to
answer this question.

3.2.2. The Pauli Algebra
An very important fact is, that all the matrices we obtain from the Wigner-transform are
hermitian (A ∈ C2×2 : Aij = Āji) . The Pauli algebra will simplify upcoming matrix-matrix
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3. Spin Drift Diffusion Model

multiplications and matrix-representation. The basis of hermitian matrices in C2×2 is given
by the Pauli matrices:

σ0 = 1 0
0 1 , σ1 = 0 1

1 0 , σ2 = 0 −i
i 0 , σ3 = 1 0

0 −1 ,

with the multiplication table

Table 3.1.: Multiplication table for Pauli-matrices
· σ0 σ1 σ2 σ3
σ0 σ0 σ1 σ2 σ3
σ1 σ1 σ0 iσ3 −iσ2
σ2 σ2 −iσ3 σ0 iσ1
σ3 σ3 iσ2 −iσ1 σ0

With respect to such basis, each hermitian matrix in C2x2 has a representation with real
scalar coefficients. Therefore for a general hermitian matrix A ∈ C2×2 exists unique Pauli-
components a0, a1, a2, a3 ∈ R such that

A = A11 A12
A21 A22

=
3

j=0
ajσj

with the relations

A11 = a0 + a3, a0 = 1
2 (A11 + A22) ,

A12 = a1 − ia2, a1 = 1
2 (A12 + A21) ,

A21 = a1 + ia2, a2 = 1
2 (A12 − A21) ,

A22 = a0 − a3, a3 = 1
2 (A11 − A22) .

This is also true, in particular, for the symbols associated to self-adjoint operators. Let
W := W( ) be a symbol associated to a density operator, i.e. a matrix-valued Wigner
function. Then, we have that

W (x, p) =
3

j=0
wj(x, p)σj = w0(x, p)σ0 + w(x, p) · σ,

with

w(x, p) :=


w1(x, p)

w2(x, p)
w3(x, p)


 , σ :=


σ1

σ2
σ3


 ,

and
wj(x, p) = 1

2 tr(W (x, p)σj), wj ∈ L2(R2 × R2,R), j ∈ {0, 1, 2, 3},

where ”tr” denotes the matrix trace.
Notation 3.2.8. From now on we will drop the dependence on t if it is clear from the
context. Matrix valued functions will be written in capital letters, vector valued functions will
be denoted with bold small letters, and scalar functions will be denoted lowercase letters. For
example we have for all x, p ∈ R3:

W (x, p) ∈ C2×2, w(x, p) ∈ R3, w0(x, p) ∈ R.
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3.2. Transformation into Phase-Space

Example 3.2.9. A good example for the usage of the Pauli-components is the transformed
Hamiltonian (3.6). Defining H := W(H), the representation of H is given by:

H(x, p) = |p|2
2m

+ V (x) σ0 + αRp⊥ · σ, (3.7)

where we define p⊥ := p × e3 = (p2, −p1, 0) , with e3 = (0, 0, 1). We also call H the
Hamiltonian symbol.

Example 3.2.10. For this example let A, B ∈ C2×2 be hermitian matrices and aj , bj their
Pauli-components for j ∈ {0, 1, 2, 3}. With the given relations between the matrix entries
and the Pauli-components we see immediately that the trace of a hermitian matrix stands in
direct relation to the zeroth Pauli component, i.e.

tr(A) = 2a0.

With tabular 3.1 we can easily calculate the Pauli-components of the product AB:

AB =(a0σ0 + a · σ)(b0σ0 + b · σ)
=(a0b0 + a · b)σ0 + (a0b + ab0 + a × b) · σ, (3.8)

where ”·” is the euclidean scalar product and ”×” is the cross product in R3. The repre-
sentation (3.8) comes in quite handy calculating the trace of the product AB, because we
obtain

tr(AB) = 2(a0b0 + a · b).

3.2.3. The Moyal Product
The Moyal product (also called Weyl-Moyal or twisted product), introduced by Groenewold
in 1946, will be one of our main tools for deriving the desired equations. The books
[ZFC05, icvacFDS04, Fol89] cover the theory in detail, but their notation is different to
ours. Therefore we introduce the most important theorems and statements which we will
use, and prove them formally. Will also prove it for operators that have a unique integral
kernel and are self adjoint. The extension to a greater class can then be done as same as
mentioned in section 3.2.1.

Definition 3.2.11. For two symbols f, g in L2(R2 × R2,C) we define the Moyal product

f#g(x, p) := 1
( π)4 R2(×4)

f(u1, v1)g(u2, v2)e
2i ((x−u2)v1+(u1−x)v2−(u1−u2)p)du1du2dv1dv2,

where R2(×4) := R2 × R2 × R2 × R2 .

With the definition of the Moyal product and the Wigner/Weyl formalism, we are able to
start answering the question, what happens to the term W[H, ]. We start with the scalar
case.

Lemma 3.2.12. Let 1, 2 be two density operators on L2(R2,C), with unique integral kernels
ρ1, ρ2. Furthermore define w1 := W( 1) and w2 := W( 2), then

W( 1 2) = w1#w2, (3.9)
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3. Spin Drift Diffusion Model

Proof. For ψ in L2(R2,C), the operator product 1 2 applied on ψ can be rewritten with the
help of the integral kernels:

1( 2(ψ))(x) =
R2 R2

ρ1(x, y)ρ2(y, z)ψ(z)dydz.

Using the Weyl quantization W−1 we obtain

W( 1 2) =W(W−1(w1)(W−1(w2)))

=
R2 R2

W−1(w1) x + η

2 , y W−1(w2) y, x − η

2 e−iη·p/ dydη

= 1
(2π )4 R2(×4)

w1
x + y

2 + η

4 , v1 e
i ((x−y+ 1

2 η)·v1)

w2
x + y

2 − η

4 , v2 e
i ((y−x+ 1

2 η)·v2)e−iη·p/ dv1dv2dydη.

The transformation

Φ(y, η) = (1
2(x + y) + 1

4η, 1
2(x + y) − 1

4η), |det dΦ| = 2−4,

with the inverse

Φ−1(u1, u2) = (u1 + u2 − x, 2(u1 − u2)),

provides

W( 1 2) = 1
(π )4 R2(×4)

w1(u1, v1)w2(u2, v2)e
2i ((x−u2)·v1+(u1−x)·v2−(u1−u2)·p)du1du2dv1dv2

=w1#w2.

Definition 3.2.13. Let A and B be two symbols on R2 × R2 with values in C2×2. Then the
matrix-Moyal product (not.: A#B) between those symbols is defined as

(A#B(x, p))kl := Ak1#B1l(x, p) + Ak2#B2l(x, p) for k, l ∈ {1, 2}. (3.10)

Since it is clear from the context, we will use the same notation for the Moyal product of
either scalar-valued- or matrix-valued- symbols. Using Pauli components, the Moyal product
of two hermitian matrix-valued symbols A and B can be also written as

A#B = (a0#b0 + a ·# b) σ0 + (a0#b + a#b0 + ia ×# b) · σ, (3.11)

where ·# and ×# are to be understood as the scalar product and cross product, respectively,
between two vectors in R3 where the multiplication is replaced by the Moyal product. The
latter formula (3.11) will be used more frequently than (3.10), because we will work mostly
with Pauli components.

Corollary 3.2.14. Let 1, 2 be two density operators on L2(R2,C2), then we have the fol-
lowing:

W( 1 2) = W( 1)#W( 2). (3.12)
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Proof. We will show the proof just for Hilbert-Schmidt operators. The extension follows then
as mentioned in Section 3.2.4 from [Fol89]. Therefore let ρ1 and ρ2 be the unique integral
kernels in L2(R2 ×R2,C2×2) for 1 and 2 respectively. Furthermore define the operators on
L2(R2,C)

( m)kl(ψ)(x) :=
R2

(ρm)kl(x, y)ψ(y)dy, for m, k, l ∈ {1, 2}, and ∀ψ ∈ L2(R2,C).

We have

W( 1 2) =
R2 R2

ρ1 x + η

2 , y ρ2 y, x − η

2 e−iη·p/ dydη,

and therefore for k, l ∈ {1, 2} we obtain

(W( 1 2))kl =
R2 R2

ρ1 x + η

2 , y ρ2 y, x − η

2 kl
e−iη·p/ dydη,

=
R2 R2

2

m=1
ρ1 x + η

2 , y
km

ρ2 y, x − η

2 ml
e−iη·p/ dydη,

=
2

m=1
W (( 1)km( 2)ml)

=
2

m=1
W( 1)km#W( 2)ml.

For further progression we need a small ex-curse into the theory of distributions. Let
therefore f be a symbol from R2 with values in C. Recalling the definition of the Fourier-
transform .̂ on R2

f̂(ξ) := 1
2π R2

f(x) exp(−ix · ξ)dx. (3.13)

Further recall also the definitions of the delta-distribution and the distribution generated
from the constant one function

δ(f) := f(0), T1(f) :=
R2

f(x)dx. (3.14)

From the theory of distributions we know that we can define for every distribution φ the
Fourier transform via φ̂(f) := φ(f̂). The distributions defined in (3.14) have a special relation,
namely that

δ̂(f) = δ(f̂) = f̂(0) = 1
2π R2

f(x)dx = 1
2π

T1(f) (3.15)

With the above we can show the following identity.

Lemma 3.2.15. If f is a symbol, then we have for arbitrary z in R2:

1
(2π)2 R2

f(x) exp(iy · (x − z))dxdy = f(z). (3.16)
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Proof. Define for simplicity the function g(x) := f(z − x), then we have

1
(2π)2 R2

f(x) exp(−iy · (z − x))dxdy = 1
(2π)2 R2

g(u) exp(−iy · (u))dudy = 1
2π R2

ĝ(y)dy.

Using the definitions of δ, T1, see (3.14), their relation 2πδ̂(f) = T1(f), see (3.15), and that
ˆ̂g(u) = g(−u), we conclude

1
2π R2

ĝ(y)dy = 1
2π

T1(ĝ) = δ̂(ĝ) = δ ˆ̂g = g(0) = f(z).

Remark 3.2.16. An immediate consequence of Lemma 3.2.15 is that we can formally proof
now that the Weyl quantization is the inverse of the Wigner transformation and vice versa.
Let therefore ∈ HS, W = W( ) and let ρ be the integral kernel of . then using the
transformation rule and (3.16), we obtain for a wave function ψ ∈ L2(R2,C2)

R2
W−1(W( ))(x, y)ψ(y)dy =

R2
W−1

R2
ρ(x + 1

2η, x − 1
2η)e−iη·p/ dη (x, y)ψ(y)dy

= 1
(2π )2 R2 R2

ρ
x + y

2 − 1
2η,

x + y

2 + 1
2η ei(η−(y−x))·p/ dηdpψ(y)dy

=
R2

ρ(x, y)ψ(y)dy,

which coincides with (ψ)(x) since ρ is the integral kernel of . For the other direction we
obtain with similar argumentation:

W(W−1(W ))(x, p) =W 1
(2π )2 R2

W
x + y

2 , p ei(x−y)·p / dp (x, p)

= 1
(2π )2 R2 R2

W (x, p )eiη·p / e−iη·p/ dp dη

=W (x, p).

Coming back to the Moyal product, the next Proposition state two for us important proper-
ties.

Proposition 3.2.17. Let f, g be two symbols with values in C, then the following identity
holds

R2 R2
f#g(x, p)dxdp =

R2 R2
f(x, p)g(x, p)dxdp. (3.17)

In particular if one of the functions is independent of one variable, e.g. g(x, p) = g(x), then

R2
f#g(x, p)dp =

R2
f(x, p)dp g(x). (3.18)
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Proof. To show our first equality (3.17) we will use identity (3.16) and use the shortcuts
du = du1du2 and dv = dv1dv2:

R2(×2)
f#g(x, p)dxdp =

= 1
( π)4 R2(×6)

f(u1, v1)g(u2, v2)e
2i ((x−u2)·v1+(u1−x)·v2−(u1−u2)·p)dudvdxdp

= 1
( π)4 R2(×6)

f(u1, v1)g(u2, v2)e
2i (u1·v2−u2·v1)e

2i (v1−v2)·xdv1dx e
2i (u2−u1)·pdudv2dp

= 1
( π)2 R2(×4)

f(u1, v2)g(u2, v2)e
2i (u1·v2−u2·v2)e

2i (u2−u1)·pdu2dpdu1dv2

=
R2 R2

f(u1, v2)g(u1, v2)du1dv2.

To show the second equality (3.18), we proceed the same as for the first equality:

R2
f(x, p)#g(x)dp =

= 1
( π)4 R2(×5)

f(u1, v1)g(u2)e
2i ((x−u2)·v1+(u1−x)·v2−(u1−u2)·p)dudvdp

= 1
( π)4 R2(×5)

f(u1, v1)g(u2)e
2i ((x−u2)·v1+(u1−x)·v2)e

2i (u2−u1)·pdu2dpdu1dv

= 1
( π)2 R2(×3)

f(u1, v1)g(u1)e
2i ((x−u1)v1)e

2i ((u1−x)·v2)du1dv2dv1

=
R2

f(x, v1)dv1 g(x).

From the scalar case we obtain as a direct consequence

Corollary 3.2.18. For two matrix-valued symbols A, B we have

R2 R2
A#B(x, p)dxdp =

R2 R2
A(x, p)B(x, p)dxdp, (3.19)

and if one function only depends on x, i.e. A(x, p) = A(x), or i.e. B(x, p) = B(x) then

R2
A#B(x, p)dp = A(x)

R2
B(x, p)dp, or

R2
A#B(x, p)dp =

R2
A(x, p)dpB(x), (3.20)

respectively.

Proof. Follows immediately from the definition of the matrix Moyal product (Definition 3.10)
and Proposition 3.2.17.

It is possible to develop the Moyal product into a special series, also called the semiclassical
expansion (the concept will be introduced in more detail in Section 3.6).

Notation 3.2.19. Recalling the definition of the multi-index. For a sufficiently smooth
function f on Rn and n ∈ N, we define the multi-index as r = (r1, . . . , rn), with rj ∈ N0 and
the absolute value |r| = n

j=1 rj. Additionally we define

∂r
xf := ∂|r|

∂r1
x1∂r2

x2 · · · ∂rn
xn

f.
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Lemma 3.2.20. For two scalar valued symbols f, g the semiclassical expansion with respect
to of their Moyal-product is given by:

f#g(x, p) =
∞

j=0

jf#(j)g (3.21)

where the j-th order of the Moyal product equals

f#(j)g = 1
(2i)j

|r|+|s|=j

(−1)|r|

r!s! ∂r
x∂s

pf(x, p)∂r
p∂s

xg(x, p). (3.22)

Proof. See [Zwo12] on Page 68, Theorem 4.12..

Remark 3.2.21. The first two orders in the Moyal product are quite interesting. Looking
at the zeroth order we see that it becomes the usual product between two symbols, i.e. for
scalar valued f and g we have

f#(0)g(x, p) = f(x, p)g(x, p).

For matrix valued symbols A, B we then clearly have A#(0)B = A(x, p)B(x, p). The first
order of the Moyal product gives for two scalar valued symbols f, g:

2if#(1)g = ∇pf · ∇xg − ∇xf · ∇pg, (3.23)

which is also known as the Poisson bracket .

Remark 3.2.22. At this point we want to take the time and explain what it means to take
the sum over a multi index. For example we have the sum

|r|=j

1
r!∂

r
xf(x, p),

where we assume that x ∈ Rn, r ∈ Nn
0 . So we are looking at all n-tuples (r1, r2, . . . , rn) such

that the sum n
i=1 ri equals j, which would be counted as combination with repetition, since

the order does not play a role. In comparison if we would sort all the possible configurations
of partial derivatives and if we differ ∂xi1

∂xi2
and ∂xi2

∂xi1
, then all possible configurations

would be a variation with repetition. The factor 1
r! = 1

r1!r2!···rn! represents the ratio between
a multi index r and all possible configurations of such belonging partial derivatives.
For example the multi index with ri1 = j − 1 and ri2 = 1 for i1, i2 ∈ {1, 2, . . . , n} appears
only once, but the mixed derivatives appear j times

∂(j−1)
xi1

∂xi2
f = ∂(j−2)

xi1
∂xi2

∂xi1
f = ∂(j−3)

xi1
∂xi2

∂2
xi1

f = · · · = ∂xi2
∂(j−1)

xi1
f

j configurations

.

In that case we have 1
r! = 1

(j−1)!1! = j
j! . Therefore we could rewrite the sum over the multi

index into

|r|=j

1
r!∂

r
xf(x, p) = 1

j!

n

i1,i2,...,ij=1
∂xi1

∂xi2
· · · ∂xij

f(x, p). (3.24)
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3.2. Transformation into Phase-Space

Example 3.2.23. We set in the formula (3.24) j=3 and n = 3. Therefore we obtain the
formula

|r|=3

1
r!∂

r
xf(x, p) = 1

6

3

i1=1

3

i2=1

3

i3=1
∂xi1

∂xi2
∂xi3

f(x, p).

Definition 3.2.24. Let f and g be two scalar valued symbols, then the odd and even Moyal
product are defined by

f#(odd)g := 1
2(f#g − g#f), f#(even)g := 1

2(f#g + g#f). (3.25)

Remark 3.2.25. The definition of the odd and even Moyal product make sense if we calculate
these. We see with the expansion given in (3.21) and their orders (3.22) that by definition
only either the odd or even orders remain.

3.2.4. The Pseudo Differential Operator
Applying the Wigner transformation to the von Neumann equation should make the prob-
lem more vivid. As already mentioned we cannot expect a classical equation, due to the
Heißenberg uncertainty. This will be reflected in the transformed problem, by the pseudo
differential.

Definition 3.2.26. For two scalar valued symbols f and g on R2 ×R2, where f only depends
on the space variable, i.e. f(x, p) = f(x), we define the pseudo differential as

(Θ [f ]g)(x, p) := 1
(2π)2 R2×R2

(δ [f ])(x, η)g(x, p )e−i(p−p )·ηdηdp ,

where

(δ [f ])(x, η) := 1
i f(x + 2η) − f(x − 2η)

The above definition is the one that appears most frequently in the literature, but we will
introduce another description of the pseudo-differential.

Lemma 3.2.27. Let f ,g and Θ [f ]g be the same as in Definition 3.2.26 then

i (Θ [f ]g) = 2f#(odd)g (3.26)

Proof. We go from the right side to the left side using the definition of the Moyal product (see
Definition 3.2.11) and the identity (3.16). The trick here is just to use a clever transformation
to obtain the pseudo differential. Since the odd Moyal product is given by 2f#(odd)g =
(f#g − g#f), see (3.25), we start with

f#g(x, p) = 1
( π)4 R2(×4)

f(u1)g(u2, v2)e
2i ((x−u2)v1+(u1−x)v2−(u1−u2)p)du1du2dv1dv2

= 1
( π)4 R2(×4)

f(u1)g(u2, v2)e
2i ((u1−x)v2−(u1−u2)p)e

2i (x−u2)v1du2dv1du1dv2

= 1
( π)2 R2(×2)

f(u1)g(x, v2)e
2i (u1−x)(v2−p)du1dv2.
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3. Spin Drift Diffusion Model

The transformation Φ(η) = x + 2−1η with determinant |det dΦ| = 22−2 and inverse
Φ−1(u1) = 2 −1(u1 − x), provides

f#g(x, p) = 1
(2π)2 R2×R2

f x + 2η g(x, v2)eiη·(v2−p)dηdv2.

Looking at the second term g#f , we obtain with similar arguments the following

g#f(x, p) = 1
( π)4 R2(×4)

g(u1, v1)f(u2)e
2i ((x−u2)v1+(u1−x)v2−(u1−u2)p)du1du2dv1dv2

= 1
( π)4 R2(×4)

g(u1, v1)f(u2)e
2i ((x−u2)v1−(u1−u2)p)e

2i (u1−x)v2dv2du1du2dv1

= 1
( π)2 R2(×2)

g(x, v1)f(u2)e
2i (x−u2)(v1−p)du2dv1.

Choosing now the transformation Φ(η) = x − 2η, with the determinant |det dΦ| = 22−2 and
inverse Φ−1(u1) = 2 −1(x − u2), we obtain

g#f(x, p) = 1
(2π)2 R2×R2

g(x, v1)f x − 2η eiη·(v1−p)dηdv1.

Putting both calculations together we find

(f#g − g#f)(x, p) = 1
(2π)2 R2×R2

f x + 2η − f x − 2η g(x, p )eiη·(p −p)dηdp

= i 1
(2π)2 R2×R2

(δ [f ])(x, η)g(x, p )eiη·(p −p)dηdp

= i (Θ [f ]g)(x, p)

Remark 3.2.28. Setting f(x) = V (x), where V is the potential energy from the Hamiltonian
H, and let g be any symbol. Applying now Lemma 3.2.27 provides

(Θ [V ]g) = 2
i V #(odd)g = ∇xV · ∇pg + O( 2).

Comparing the above expression with the dimensionless semiconductor Boltzmann equation
(1.5), we see the analogue. At zero order ( 0) the pseudo differential coincides with the
potential part of the ”classical” picture. The operator is one of the reasons why we only
speak formally of phase-space as mentioned in the beginning of this section.

3.2.5. The Wigner Picture

Finally we have everything at hand to apply the Wigner transform to the von Neumann
equation (3.2). In the literature often we just see the result of this transformation, but in this
thesis we think it is the right place to show the calculations to obtain the Wigner-Boltzmann
equation.
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3.2. Transformation into Phase-Space

Theorem 3.2.29. Let be the solution for the von Neumann equation (3.2) and W := W( )
its Wigner transform. Then the Pauli components of W (x, p) = w0(x, p)σ0 + w(x, p) · σ solve
the Wigner-Boltzmann equation :

∂tw0 + p

m
· ∇xw0 + αR∇⊥

x · w − (Θ [V ]w0) = 0 (3.27)

∂tw + (∇xw) p

m
+ αR∇⊥

x w0 − (Θ [V ]w) − 2
αRp⊥ × w = 0, (3.28)

where we define the planar gradient as ∇x := (∂x1 , ∂x2 , 0), its orthogonal as

∇⊥
x := ∇x × e3 = (∂x2 , −∂x1 , 0)

(so that ∇⊥
x · w = ∂x2w1 − ∂x1w2), p⊥ = p × e3 and Θ [V ] is the pseudo differential.

Proof. By applying the Wigner transform to the von Neumann equation we obtain, due to
the fact that W is linear,

W(i ∂t ) = W ([H, ])
i ∂tW = W(H ) − W( H)
i ∂tW = H#W − W#H, (3.29)

where H = W(H) is the Wigner transformed Hamiltonian, given by (3.6). The main part of
this proof is to calculate the right hand side of the last equation. To achieve this we will make
use of the Pauli algebra and the semiclassical expansion of the Moyal product, see Lemma
3.2.20. Referring to Example 3.2.9 we define

h0(x, p) := |p|2
2m

+ V (x), h(x, p) := αRp⊥.

Using the Pauli algebra combined with the Moyal product (see (3.11)) and the definition of
the odd and even Moyal product (Def. 3.2.24) we obtain

H#W − W#H =

2 h0#(odd)w0 + h ·#(odd) w σ0 + 2 h0#(odd)w + h#(odd)w0 + ih ×#(even) w · σ.

The last factor comes from h ×# w − w ×# h = 2(h ×#(even) w), which is shown by just
evaluating the cross products and putting it back together. Comparing now the Pauli com-
ponents of the left hand side with them on the right hand side in equation (3.29) we look at
four equations which can be written as

i ∂tw0 = 2 h0#(odd)w0 + h ·#(odd) w , (3.30)

i ∂tw = 2 h0#(odd)w + h#(odd)w0 + ih ×#(even) w . (3.31)

The special structure of h0 and h simplifies calculations by far. Splitting h0 into |p|2(2m)−1

and V (x), we see immediately, due to Lemma 3.2.27, that

2V #(odd)w0 = i (Θ [V ]w0).

Since ∂α
p |p|2 vanishes for every multi-index α with |α| ≥ 3 and ∂α

x |p|2 = 0 for all |α| > 0, we
obtain with the Poisson bracket (formula (3.23))

2 (2m)−1 |p|2#(odd)w0 = 1
m 2i |p|2#(1)w0 = −i p

m
· ∇xw0.

75



3. Spin Drift Diffusion Model

This leads to h0#w0 = i ((Θ [V ]w0) − p
m · ∇xw0). For the next term, we take a closer

look onto h = αRp⊥. The derivative with respect to the momentum is clearly ∂β
p h = 0 for

every multi-index β with |β| ≥ 2 and the derivative with respect to x vanishes. Hence the
only contributing term here is ∇phj = αR(−δ2j , δ1j , 0) for j ∈ {1, 2, 3} where δkj being the
Kronecker delta symbol. We have

2h ·#(odd) w =2
3

j=1
hj#(odd)wj = −i αR

3

j=1
∇phj · ∇xwj = −i αR(∂x2w1 − ∂1w2)

= − i αR∇⊥
x · w.

With all terms for (3.30) at hand, dividing by i yields

∂tw0 = − p

m
· ∇xw0 − αR∇⊥

x · w + Θ [V ]w0,

which proves the first equation (3.27). To obtain the second equation (3.28), we need to
calculate the terms in (3.31). Looking at the first term in (3.31) we clarify that (h0#w)j =
h0#wj for j ∈ {1, 2, 3}, and the calculations for those terms are the same as for h0#w0.
Therefore we can write directly

2h0#w = i (Θ [V ]w) − (∇xw) p

m
,

where (Θ [V ]w)j = (Θ [V ]wj) and (∇xw) p is simply a matrix-vector product. Same argu-
ments as for h ·#(odd) w, yields for the second term in (3.31)

2h#(odd)w0 = −i αR(∂x2w0, −∂x1w0, 0) = −i αR∇⊥
x w0.

The last term in (3.31) needs a bit more treatment. Recall that ×# denotes the R3 cross
product, where we replace the product with the Moyal product. For h = αRp⊥ higher
derivatives vanish (∂β

x h = 0 = ∂β
p h, |β| ≥ 2) and therefore only the zeroth order of the Moyal

cross product remains. Hence

2ih ×#(even) w = 2ih ×#(0) w = 2ih × w = 2iαRp⊥ × w.

Substituting our results into (3.31) and divide through i we obtain

∂tw = − (∇xw) p

m
+ (Θ [V ]w) − αR∇⊥

x w0 + 2
αRp⊥ × w,

which proves (3.28).

3.2.6. The Non-Dimensional Form
In order to identify small parameters and to perform the asymptotic limits leading to the
macroscopic models, we want to scale the Wigner-Boltzmann equation (3.27)-(3.28). This
procedure can be found in similar works like in [BM10] and [BFM14] but we will show it here
for the sake of completeness. Different is that we postpone the discussion of time scaling to
Section 3.4, due to a problem that has not occurred in other works yet.

Let x0 be the reference length, t0 the reference time and T0 the reference temperature (e.g.,
the temperature of a phonon bath). The reference momentum and energy are then defined
as the thermal ones:

p0 = mkBT0, E0 = p2
0

m
,

76



3.2. Transformation into Phase-Space

where kB is the Boltzmann constant. Introducing the dimensionless variables

t → t0t̃, x → x0x̃, p → p0p̃.

Just for this brisk moment we will write the Wigner Boltzmann equation in the new vari-
ables after the first scaling. For this define w̃0(t̃, x̃, p̃) := w0(t0t̃, x0x̃, p0p̃), w̃(t̃, x̃, p̃) :=
w(t0t̃, x0x̃, p0p̃) and E0Ṽ (t̃, x̃) := V (t0t̃, x0x̃), then we obtain (compare with Section 1.3)

1
t0

∂t̃w̃0 = − p0p̃

mx0
· ∇x̃w̃0 − αR

x0
∇⊥

x̃ · w̃ + p0
mx0

Θ
p0x0

[Ṽ ]w̃0

1
t0

∂t̃w̃ = − (∇x̃w̃) p0p̃

mx0
− αR

x0
∇⊥

x̃ w̃0 + p0
mx0

Θ
p0x0

[Ṽ ]w̃ + 2
αRp0p̃⊥ × w̃.

Before we go on, we explain what happened to the pseudo differential and how the scaling af-
fected it. We recall the representation from Lemma 3.2.27, where Θ [V ]wj = (2/i )(V #(odd)wj)
for j ∈ {0, 1, 2, 3}. Therefore the index in Θ comes from the factor (1/ ) in front of the
Moyal product. Using the above scaling, we have for j ∈ {0, 1, 2, 3}

Θ [V ]wj = 2
i (V #(odd)wj) = 2E0

i (Ṽ #(odd)w̃j) = 2p2
0x0

i mx0
(Ṽ #(odd)w̃j) = p0

mx0
Θ

p0x0
[Ṽ ]w̃j .

From now we will drop the tilde notation again and identify the tilde variables with their
original variables. Furthermore we introduce the Energy time scale tE , which states how long
an electron with Energy E needs to pass a device with length x0. Further we introduce the
scaled Planck constant ε , and the scaled Rashba constant α

tE = mx0
p0

, ε =
x0p0

, α = mx0αR
. (3.32)

Substituting the above into the Wigner Boltzmann equation (3.27)-(3.28), leads us to the
non dimensional Wigner Boltzmann equation

tE

t0
∂tw0 = − p · ∇xw0 − αε∇⊥

x · w + Θε[V ]w0, (3.33)

tE

t0
∂tw = − (∇xw)p − αε∇⊥

x w0 + Θε[V ]w + 2αp⊥ × w. (3.34)

For later use, we rewrite the above in a more concise form

tE

t0
∂tW + T W = 0, (3.35)

where the transport operator T is defined as

T W := (∇xw0)p + αε∇⊥
x · w − Θε[V ]w0 σ0

+ (∇xw)p + αε∇⊥
x w0 − Θε[V ]w − 2αp⊥ × w · σ.

(3.36)

Notice that we changed the notation of p · ∇xw0=̂(∇xw0)p. Since the representation of the
Pauli components are unique for each hermitian matrix, the operator T is well defined. In
particular, the chosen scaling of the Rashba constant proves necessary to obtain the correct
behaviour in the semiclassical limit [BM10, BHJ]. For more detailed values of the physical
quantities we refer to [KNAT02] and for the calculated non-dimensional variables in different
spintronic devices table 1 in [BM10].
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3. Spin Drift Diffusion Model

The scaling we have done so far, has also an effect on the operators, where the Planck
constant appears. This will be important for our further work, since we need to remain
dimensionless. The next examples deal with this scaling regarding the scaled Moyal product,
the scaled transformed Hamiltonian, and the scaled Wigner-Weyl transformation. These
calculations are standard and usually not present in literature, since its ”simply” substituting

with ε, but we do it for the sake of completeness. For the scaling itself we use the same
reference quantities as already introduced.

Example 3.2.30. (Scaled Moyal product) Let f and g be two scalar valued symbols, and
define f̃(t̃, x̃, p̃) := f(t0t̃, x0x̃, p0p̃) and g̃(t̃, x̃, p̃) := g(t0t̃, x0x̃, p0p̃). Starting with the j-th
order of the Moyal product, see (3.22), we obtain

(f̃#(j)g̃)(x̃, p̃) = 1
(2i)j(x0p0)j

|r|+|s|=j

(−1)|r|

r!s! ∂r
x̃∂s

p̃f(x0x̃, p0p̃)∂r
p̃∂s

x̃g(x0x̃, p0p̃)

= 1
(2i)j(x0p0)j

|r|+|s|=j

(−1)|r|

r!s! ∂r
x̃∂s

p̃f̃(x̃, p̃)∂r
p̃∂s

x̃g̃(x̃, p̃).

Dropping the tilde notation, using the definition of ε = /(x0p0) we have the semiclassical
expansion of the Moyal product with respect to the scaled Planck constant ε

f#g =
∞

j=0
εjf#(j)g (3.37)

where the j-th order of the Moyal product equals

f#(j)g = 1
(2i)j

|r|+|s|=j

(−1)|r|

r!s! ∂r
x∂s

pf(x, p)∂r
p∂s

xg(x, p). (3.38)

Example 3.2.31. (Scaled Hamiltonian, Hε) Applying the scaling to the Wigner transformed
Hamiltonian H given in Example 3.2.7 or Example 3.2.9 (using again the tilde notation to
see the difference), we obtain

H(x, p) = H(x0x̃, p0p̃) = p2
0

m

|p̃|2
2 + V (x0x̃) σ0 + αRp0p̃⊥ · σ

Thanks to the definitions of E0, Ṽ , ε, α we define the scaled transformed Hamiltonian Hε

H(x0x̃, p0p̃) = E0
|p̃|2
2 + E0Ṽ (x̃) σ0 + E0αεp̃⊥ · σ =: E0Hε(x̃, p̃)

The scaled transformed Hamiltonian is explicit given by (without tilde notation)

Hε(x, p) = |p|2
2 + V (x) σ0 + αεp⊥ · σ (3.39)

Example 3.2.32. (Scaled Wigner Transformation) Before we can go to scaling the trans-
formation, we need to put the cart before the horse, because a scaled argument is needed.
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3.2. Transformation into Phase-Space

Let therefore be a density operator on L2(R2,C2) with unique integral kernel ρ ∈ L2(R2 ×
R2,C2×2). Define the scaled wave function ψ̃(x̃) := ψ(x0x̃) for ψ ∈ L2(R2,C2), then we get

(ψ)(x0x̃) =
R2

ρ x0x̃, x0
y

x0
ψ x0

y

x0
dy =

R2
x2

0ρ (x0x̃, x0ỹ) ψ (x0ỹ) dỹ.

Hence it makes sense to define the scaled integral kernel as ρ̃(x̃, ỹ) := x2
0ρ(x0x̃, x0ỹ) and with

that we define the scaled density operator

(ψ)(x0x̃) =
R2

x2
0ρ (x0x̃, x0ỹ) ψ (x0ỹ) dỹ =

R2
ρ̃(x̃, ỹ)ψ̃(ỹ)dỹ =: (̃ψ̃)(x̃).

Let W (x, p) = W( )(x, p) and recall the scaled Wigner function W̃ (x̃, p̃) := W (x0x̃, p0p̃).
Looking at the latter, we obtain with the definition of W, see (3.5),

W̃ (x̃, p̃) = W (x0x̃, p0p̃) =
R2

ρ x0 x̃ + η

2x0
, x0 x̃ − η

2x0
e−i((η/x0)·p̃)x0p0/ dη

Using the transformation rule and the definition of ρ̃ and ε, see (3.32), we obtain

W̃ (x̃, p̃) =
R2

x2
0ρ x0 x̃ + η̃

2 , x0 x̃ − η̃

2 e−i(η̃·p̃)/εdη̃

=
R2

ρ̃ x̃ + η̃

2 , x̃ − η̃

2 e−i(η̃·p̃)/εdη̃.

Therefore we see that the scaled Wigner transformation of a scaled density operator ˜ is given
by

W̃( )̃(x̃, p̃) =
R2

ρ̃ x̃ + η̃

2 , x̃ − η̃

2 e−i(η̃·p̃)/εdη̃. (3.40)

With similar calculations we obtain that the scaled Weyl quantization is given by

W̃−1(W̃ )(x̃, ỹ) = 1
(2πε)2 R2

W̃
x̃ + ỹ

2 , p̃ ei(x̃−ỹ)·p̃/εdp̃. (3.41)

Remark 3.2.33. With the above examples we make clear that we could have scaled at any
point. For example we see in [BM10] that scaling first the von Neumann equation (with our
notation, without the time scaling and collision operator) and dropping the tilde notation,
yields non dimensional von Neumann equation

iεtE

t0
∂t = [Hε, ] . (3.42)

Hε is the scaled Hamiltonian such that H = E0Hε, and is given by

Hε = −ε2

2 Δx1,x2 + V (x) Id − ε2α
0 i∂x2 − ∂x1

i∂x2 + ∂x1 0 . (3.43)

Applying the scaled Wigner transformation (3.40) to the non dimensional von Neumann
equation (3.42), results into

iεtE

t0
∂tW = [Hε, W ]# ,

where in the above we have the scaled Wigner function W , the scaled transformed Hamil-
tonian Hε and the commutator with respect to the scaled Moyal product. Revolving the
above equation as in Section 3.2.5 using the scaled versions, will lead us to the same non
dimensional Wigner equation as obtained in (3.33)-(3.34).
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3. Spin Drift Diffusion Model

3.3. The Quantum Maximum Entropy Principle and Quantum
Maxwellian

Before specifying the equilibrium we discuss roughly which quantities collisions should con-
serve. First of all we want that the number of particles in the system remains the same
and since we want to observe spin, we assume that collisions do not affect the spin of the
electrons. Since the collisions we are considering are in a thermal bath at a given tempera-
ture (e.g. with a phonon bath), we cannot expect that they conserve momentum nor energy.
Hence we expect that collisions only conserve the particle density and the spin densities. To
get there we take a small digression for better understanding.

3.3.1. Operator Trace and Definition of the Macroscopic Densities
The interpreted expected value of a physical observable, represented by the operator A, when
the system is in the state , is given by Tr(A ) (for details see [DR03], [WZ14], [Cas08]). We
explain briefly the idea of the operator trace applied to a density operator and we consider
for the beginning the scalar case. Let therefore (φk)k∈N be an orthonormal basis (ONB) of
L2(R2,C), recall that the operator trace of an operator A on L2(R2,C) is given by

Tr( ) =
∞

k=1
(φk, A(φk))L2(R2,C) ,

where (., .)L2(R2,C) denotes the scalar product in L2(R2,C). Let be a density operator on
L2(R2,C), describing a mixed state, it can be written as

(ψ)(x) =
∞

k=1
pkφk(x) (φk, ψ)L2(R2,C) , ∀ψ ∈ L2(R2,C),

where pk ∈ [0, 1] for all k ∈ N, and ∞
k=1 pk = 1. The values pk can be interpreted as the

possibility for a state ψ to change into the state φk and if depends on time, all pk depend
on time as well. If would be a pure state, the above would reduce to (ψ)(x)=φk(x)(φk, ψ).
With the previous work, we see why has trace one

Tr( ) =
∞

k=1
(φk, (φk))L2(R2,C) =

∞

k=1
pk (φk, φk)L2(R2,C) =

∞

k=1
pk = 1.

Now if has an integral kernel ρ(x, y) as representative, it should have the form

ρ(x, y) =
∞

k=1
pkφ(x)φ(y), such that (ψ)(x) =

R2
ρ(x, y)ψ(y)dy, ∀ψ ∈ L2(R2,C).

Looking back at the operator trace of , since (φk)k∈N is an ONB, we obtain formally

Tr( ) =
∞

k=1
pk

R2
|φk(x)|2dx =

R2

∞

k=1
pkφ(x)φ(x)dx =

R2
ρ(x, x)dx.

Now let w(x, p) = W( )(x, p) be the corresponding Wigner function (3.5) in the scalar case,
then we obtain with the Weyl-quantization, W−1 given in (3.4), that the operator trace is
also given by

Tr( ) =
R2

ρ(x, x)dx = 1
(2π )2 R2 R2

w(x, p)dpdx.
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3.3. The Quantum Maximum Entropy Principle and Quantum Maxwellian

Looking at two density operators 1, 2 with two integral kernels ρ1, ρ2 and corresponding
Wigner functions w1, w2, we recall that the Wigner transform of the operator product 1 2
is given by W( 1 2) = w1#w2 (see Lemma 3.2.12). Since the Moyal product integrated with
respect to space and momentum equals the integral of the product (see identity (3.17)), we
have that

Tr( 1 2) =
R2 R2

ρ1(x, y)ρ2(y, x)dydx = 1
(2π )2 R2 R2

(w1#w2)(x, p)dpdx =

= 1
(2π )2 R2 R2

w1(x, p)w2(x, p)dpdx

Next step is to understand what happens, if we apply the trace to density operators on
L2(R2,C2). Define therefore the set

B := {elφk : l ∈ {1, 2}, k ∈ N} ,

which is an ONB of L2(R2,C2). Let A = (Aij)i,j∈{1,2} be an operator on L2(R2,C2) with Aij

being an operator on L2(R2,C). Then formally we have

Tr(L2(R2,C2))(A) =
2

l=1

∞

k=1
(elφk, A(elφk))L2(R2,C2) =

∞

k=1
φk,

2

l=1
eT

l Ael(φk)
L2(R2,C2)

=
∞

k=1
(φk, tr(A)(φk))L2(R2,C) = Tr(L2(R2,C))(tr(A)),

where the lower indices indicates in which space we are taking the operator trace (will be
dropped from now on) and ”tr” denotes the usual matrix trace. For a density operator on
L2(R2,C2) with integral kernel ρ(x, y) and Wigner function W (x, p) = W( )(x, p), we obtain
with using the definition of the Weyl quantization (see (3.4))

Tr( ) =
R2

tr(ρ)(x, x)dx = 1
(2π )2 tr

R2 R2
W (x, p)dpdx. (3.44)

Looking especially at two density operators 1, 2 on L2(R2,C2) and their corresponding
Wigner functions W1, W2, we obtain thanks again to the integral identity of the Moyal product
(see (3.17))

Tr( 1 2) = 1
(2π )2 tr

R2 R2
W1(x, p)W2(x, p)dpdx. (3.45)

Next we introduce the macroscopic particle density of our electron ensemble and let therefore
be again the solution to the von Neumann equation (3.2). As mentioned in Remark 3.1.2

we cannot obtain a function which gives us direct information about the distribution of the
particles. Looking at

Tr(✶Ω ) = tr
Ω

ρ(x, x)dx

gives us the expected value of the electron density in Ω. Hence (not rigorous) we can interpret
this as the ”macroscopic particle density” or ”charge density” and define therefore

n0(t, x) := tr(ρ)(t, x, x). (3.46)
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3. Spin Drift Diffusion Model

This is one point where we see why the Wigner formalism gives the impression of phase-space
behaviour. Using the Pauli algebra and the trace identity (3.44) we obtain

n0(t, x) = tr( )(t, x, x) = 1
(2π )2 tr

R2
W (t, x, p)dp = 1

(2π )2 R2
tr(σ0W (t, x, p))dp =

= 2
(2π )2 R2

w0(t, x, p)dp.

The above looks familiar, up to the constant, to the common definition of the particle density
from the Boltzmann picture (see for comparison Section 1.3 or Chapter 2).

Next we need the macroscopic description of the spin. Measuring spin, when we are in the
state , is represented by the spin operators Sx1 , Sx2 , Sx3 which are given (up to a constant)
by the Pauli matrices σ1, σ2, σ3 respectively. Similarly as for the charge density n0 we can
define the macroscopic spin densities

nj(t, x) := Tr(Sxj ) = tr(σjρ)(t, x, x) = 2
(2π )2 R2

wj(x, p)dp, for j ∈ {1, 2, 3}.

To have a better overview we pack the achieved into the following definition.
Definition 3.3.1. Let be the solution to the von Neumann equation (3.2) and σ0, σ1, σ2, σ3
denote the Pauli matrices. Then we define as the macroscopic charge density n0 and the
macroscopic spin densities nj in direction of xj

nj(t, x) = tr(σjρ)(t, x, x), for j ∈ {0, 1, 2, 3}.

Let W = W( ) be the Wigner transform of the solutio , then we define the belonging Wigner
macroscopic charge density n0 and the Wigner macroscopic spin densities nj in direction xj

as

nj(t, x) :=
R2

wj(t, x, p)dp, for j ∈ {0, 1, 2, 3},

where wk is given by the matrix trace (1/2) tr(σjW ). The scaled macroscopic densities are
given via the scaled integral kernels/Wigner functions respectively.
Remark 3.3.2. At this point we mention that we will focus on the Wigner macroscopic
densities, since we also work mostly with the Wigner formalism. Therefore we drop the
term ”Wigner” and will just refer to them as macroscopic densities. Also for the sake of
simplicity we drop the notation on the time dependence and only mention it, when we think
its necessary.
Remark 3.3.3. We can interpret that the quantities n1, n2, n3 represent the local averages
of the spin components with respect to p in the x1, x2, x3-directions, respectively (see Figure
3.4).

n1

n2

n3

x2

x3

x1

Figure 3.4.: (Blue): Spin of the electron, (Red): Projections on the xj directions.
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3.3. The Quantum Maximum Entropy Principle and Quantum Maxwellian

3.3.2. Entropy, Equilibrium and a Smallness Assumption

The local equilibrium state of our system is assumed to be the solution to the minimization
of an entropy functional, with the constraint of given macroscopic densities (i.e. nk, k =
0, 1, 2, 3). This is called (quantum) maximum entropy principle (not.:QMEP) and can be
interpreted as follows: the collisions drive the system towards the most probable microscopic
state compatible with the observed macroscopic densities. The convenient entropy functional
to be used in the diffusion regime (no momentum nor energy conservation) is the quantum
free energy, see [BM10, DMR05]. It is given by

G( ) = Tr{kBT0 ln( ) − + H },

where ”Tr” denotes the operator trace, kB the Boltzmann constant, T0 the reference tem-
perature, ln is the operator logarithm and H is the Hamiltonian (see (3.1)). The quan-
tum free energy in its non-dimensional form (again using tilde notation to differ), such that
E0G̃( )̃ = G( ), is then

G̃( )̃ = Tr{˜ln( )̃ − ˜ + Hε ˜},

where ε is the scaled Planck constant and Hε is the non-dimensional form of the Hamil-
tonian H, see (3.43). Note that the operator logarithm is well-defined for a positive-definite
density operator.
Fur further progress we need now the definitions of the Wigner counterparts of the operator-
exponential and logarithm.

Definition 3.3.4. Let be a positive-definite density operator, define W := W( ) the Wigner
transform of and denote the Weyl-quantization with W−1, then we can define the quantum
exponential and quantum logarithm by

Exp(W ) := W(exp(W−1(W ))), Log(W ) := W(log(W−1(W ))) (3.47)

where “exp” and “log” are the operator exponential and operator logarithm respectively. The
scaled versions are defined in the same way by using the scaled versions of W, W−1, see
(3.40), on the scaled Wigner function.

To obtain the quantum free energy in the Wigner picture, we apply the Trace-Product
identity (3.45) and Definition 3.3.4 to G( )

G( ) = 1
(2π )2 tr

R2 R2
E0(W (x, p)Log(W )(x, p) − W (x, p)) + H(x, p)W (x, p)dpdx

=:E(W ).

Scaling E(W ) or using the scaled Weyl-quantization, see (3.41) on G̃( )̃ would lead to the
same result, ergo the scaled entropy for the scaled Wigner function is given by

E(W )
E0

= 1
E0(2π )2 tr

R2 R2
E0(W (x, p)Log(W )(x, p) − W (x, p)) + H(x, p)W (x, p)dpdx

= 1
(2πε)2 tr

R2 R2
W̃ (x̃, p̃)L̃og(W̃ )(x̃, p̃) − W̃ (x̃, p̃) + Hε(x̃, p̃)W̃ (x̃, p̃)dp̃dx̃

=:Ẽ(W̃ )

83



3. Spin Drift Diffusion Model

From now on we will only use the scaled entropy and scaled quantities, and drop therefore
the tilde notation. Recalling the definition of the macroscopic densities (see Definition 3.3.1),
we see the following relation between them (in the scaled version now)

nk = 2
(2πε)2 nk, for k ∈ {0, 1, 2, 3}.

As mentioned in the beginning, we want to minimize the entropy E under the condition that
the macroscopic densities are conserved. Hence for given densities n0, n1, n2, n3 a symbol M
is a minimizer, if it fulfills for all symbols W and for k ∈ {0, 1, 2, 3}

E(M) ≤ E(W ), 2
(2πε)2 R2

tr(σkM(x, p))dp = nk(x) = 2
(2πε)2 nk,

Since minimizing is independent of constants, we can drop the constant in E and redefine the
entropy

E(W ) := tr
R2 R2

W (x, p)Log(W (x, p)) − W (x, p) + Hε(x, p)W (x, p)dxdp. (3.48)

Since minimizing the above with the constraints turns out to be extremely difficult to solve
(even formally), but we found a way to reduce the amount of work by adjusting them a bit
(which will be discussed in the remark below). For the sake of simplicity we will use only the
Wigner macroscopic densities and state now precisely the constrained minimization problem
corresponding to the quantum maximum entropy principle.

Problem 3.3.5 (Quantum Maximum Entropy Principle). Let n0, n1, n2, n3 be assigned, with

n0 > 0, n1, n2, n3 ∈ R, ε2(n2
1 + n2

2 + n2
3) < n2

0, n := (n1, n2, n3)T . (3.49)

Find a Wigner function W such that E(W ) is minimal among all symbols W = w0σ0 + w · σ
satisfying W−1(W ) > 0 and

w0 = n0, w = εn, (3.50)

where . denotes the integral with respect to p over R2.

Remark 3.3.6. The assumptions of Problem 3.3.5 need some explanations.

1. The assumption W−1(W ) > 0 ensures that the quantum logarithm is well-defined.
Since W−1(W ) > 0 implies that n0 > 0, the latter must be implied as compatibility
constraint on n0.

2. Primarily the conditions (3.49) are of mathematical nature. Recalling that a hermitian
matrix is positive definite if and only if its principal minors are positive. Looking at
the determinant of N := n0σ0 + εn · σ (n0, n from (3.49), Pauli-algebra yields

det N = det n0 + εn3 ε(n1 − in2)
ε(n1 + in2) n0 − εn3

= n0
2 − ε2|n|2

and hence det N > 0 if and only if ε2|n|2 < n02. We obtain also

ε2|n|2 < n0
2 =⇒ ε2|n3|2 < n0

2,

which implies together with n0 > 0 that 0 < εn3 + n0. Therefore the conditions (3.49)
ensure the assigned matrix is positive definite such that Problem 3.3.6 is well stated.
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3.3. The Quantum Maximum Entropy Principle and Quantum Maxwellian

3. Let be the solution to the non dimensional von Neumann equation (3.42) and let
W := W( ) be the corresponding Wigner function and solution to the non dimensional
Wigner Boltzmann equation (3.35). The macroscopic density matrix N is then given via
the integral of W , i.e. W = N . For now let n0, ñ1, ñ2, ñ3 be the corresponding Pauli-
components of N and define ñ := (ñ1, ñ2, ñ3) such that we can write N = n0σ0 + ñ · σ.
If the system is in a well mixed state, we obtain that n02 > ñ2

1 + ñ2
2 + ñ2

3 and equality
holds for pure states ( is the projection one the one-dimensional space spanned by the
wave function of the system).
From now on we will assume, as in Problem 3.3.5, that the spin densities are of order one
with respect to ε, which means there exists densities n1, n2, n3 with n := (n1, n2, n3),
such that ñ = εn. This assumption provides two effects:

• The condition ε2|n|2 < n0, ensures that we are in a well mixed state, i.e. |ñ|2 =
ε2|n|2 < |n0|2. The physical meaning of such assumption is that the spin direction
of the electron is random and a small polarisation emerges from the average.

• Our assumption on N will allow us to perform a more practical approximation of
the quantum Maxwellian, see Section 3.6, than the more general, see for compari-
son Section 3.3.3. To avoid confusion we will only use the spin densities n, which
means that we shall write N = n0σ0 + εn · σ.

Quick note here: The assumption affects only the macroscopic density matrix N , which
means that W is still of the form W = w0σ0 + w · σ and that w = εn.

4. Notice that in the dynamical system the macroscopic densities n0 and n are also de-
pendent on the space variable x and time variable t. Since the notation is quite heavy
we drop for the sake of simplicity the notation of the dependence on t.

Notation 3.3.7. According to the notation introduced above, the integral over R2 with respect
to the momentum p will be denoted from now on as . .

To show the existence of a solution to Problem 3.3.5 is, already in the 1D case, a very
difficult task [MP10, MP11] and would exceed the capacity of this thesis, therefore we assume
that the solution exists and show that it must have a particular form. We shall call the solution
to Problem 3.3.5 the quantum Maxwellian of the system, and denote it as M .

Theorem 3.3.8. If Problem 3.3.5 has a solution then it is necessarily of the form

M (x, p) = Exp

−Hε(x, p) + ã0(x)σ0 + ε

 3

j=1
aj(x)σj

 , (3.51)

where ã0, a1, a2, a3 are suitable, real, Lagrange multipliers. The function M (x, p) also fulfills
the constraints

n0(x) = 1
2 tr (M (x, ·)σ0) , εnj(x) = 1

2 tr (M (x, ·)σj) , for j ∈ {1, 2, 3}, (3.52)

where we recall that tr (.) is the matrix trace.

The proof to this theorem is quite long and will be split up into three parts, but before we
prove it, we make some small statements.
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Remark 3.3.9. Notice that M is also a function time, t, in the dynamical problem, through
the quantities n0(t, x) and n(t, x) To avoid over-notation and to show the dependence on the
constraints we will denote the quantum Maxwellian simply with M (N). Also notice that
M (N) is a hermitian matrix and possesses real Pauli components

m j(N) = 1
2 tr (M (N)σj), for j ∈ {0, 1, 2, 3}, where we define m := (m1, m2, m3).

We define the hermitian matrix of Lagrange multipliers

Ã(x) := ã0(x)σ0 + εa(x) · σ, where a(x) := (a1(x), a2(x), a3(x))T (3.53)

The matrix of Lagrange multipliers Ã and its Pauli components will also depend in the
dynamical problem on the time variable t. Again we will drop this dependence and the
dependence on x, and mention it when we think it is important.
Adding the Pauli components of the Hamiltonian Hε and the Lagrangian multiplier, we
introduce a handy notation:

−Hε(x, p) + Ã(x) = h0(x, p)σ0 + εh1(x, p) · σ, (3.54)

where we define and redefine the following

a0(x) := ã0(x) − V (x), h0(x, p) := −|p|2
2 + a0(x), h1(x, p) := a(x) − αp⊥. (3.55)

As already mentioned it is unknown if a solution to Problem 3.3.5 exists and in which sense
it is a solution, and therefore it makes sense to only give a formal proof to Theorem 3.3.8.
Doing this proof formally is already an tremendous work and we will see that the appearance
of the scaled Planck constant ε in the quantum Maxwellian (3.51) is not clear at all, but can
be seen as a more or less direct consequence of our smallness assumption on the polarization
of N = n0σ0 + εn · σ.

3.3.3. Formal Proof of Theorem 3.3.8
This proof will be divided in three parts. First we prove a weaker result, where we show that
the Lagrangian multiplier Ã in the Maxwellian M (N) has no constant ε in front of the σ
part.

Theorem 3.3.10. If Problem 3.3.5 has a solution then it has to be of the form

M (N) = Exp −Hε(x, p) + Ã(x) (3.56)

where Ã(x) = ã0(x)σ0 + a(x) · σ. The solution also fulfils the constraints

m0(N) = n0, m j(N) = εnj , j ∈ {1, 2, 3} (3.57)

where . denotes the integration over R2 with respect to p.

In the second part we roughly introduce the concept of the semiclassical expansion (details
follow in Section 3.6) and calculate the general zeroth order of the quantum Maxwellian.
The last part will be used to proof that the Lagrange matrix is actually of the form Ã(x) =
ã0(x)σ0 + εa(x) · σ, by using the constraints m (N) = εn. If clear from the context we will
drop from now on the dependence on various variables, to avoid over-notation.
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3.3. The Quantum Maximum Entropy Principle and Quantum Maxwellian

Part One: Proof of Theorem 3.3.10:

This part follows the lines of analogous proofs in literature, see for example [DMR05, DR03]
and [BF10]), where we mostly rely on the latter. Let us provisionally define the matrix of
Lagrange multipliers

Ã(t, x) = ã0(t, x)σ0 + a(t, x) · σ, (3.58)

where ã0, a1, a2, a3 are real valued functions , therefore Ã is a hermitian matrix. Consider
the functional

L(W, Ã) := tr
R2 R2

(WLog(W ) − W + HεW ) dxdp − tr
R2

Ã(x) ( W − N) dx (3.59)

where “tr” is the matrix trace. We note that L is composed of a free-energy part

E(W ) = tr
R2 R2

(WLog(W ) − W + HεW ) dxdp, (3.60)

and a Lagrange multiplier part, coming from the constraints

tr
R2

Ã(x) ( W − N) dx = 2
R2

[ã0( w0 − n0) + a · ( w − εn)] dx.

By standard variational methods, the constrained minimization Problem 3.3.5 is equivalent
to the saddle point problem for the functional (3.59), which means that the constrained
minimizer M (N) must satisfy

E(M (N)) = min
W

max
Ã

L(W, Ã) = max
Ã

min
W

L(W, Ã). (3.61)

To avoid misunderstanding in the upcoming notation we stress the fact that “Tr” denotes
the operator trace and “tr” the matrix trace and that δν denotes the Gâteaux derivative at
the point ν. We now cite [BF10] page 304, where we decided to substitute the operator S
with .

Lemma 3.3.11. Let be a density operator. Putting f( ) = ln( ) − , the Gâteaux
derivative δ of → Tr{f( )} at the point is given by

δ Tr{f}(ξ) = Tr{f ( )ξ} = Tr{ln( )ξ}, (3.62)

for all perturbation ξ of the density operator.

Proof. We refer to [DR03] Lemma 3.3, where the proof is in the appendix, and mention that
the notation is changed to f=H, ξ=δ and the operator δ Tr{f}= δH

δ .

From the correspondence W → W between Wigner functions and density operators, and
using the scaled identities (3.44)-(3.45)

Tr{ W } = 1
(2πε)2 tr

R2 R2
W dxdp, Tr{ W1 W2} = 1

(2πε)2 tr
R2 R2

W1W2 dxdp,

it is straightforward to prove the following lemma, which is a rephrasing of Lemma 3.3.11 in
terms of Wigner functions. We recall that our Wigner functions are matrix-valued, and so
the products have to be understood as matrix-products.
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Lemma 3.3.12. Putting f(W ) = WLog(W ) − W , the Gâteaux derivative of the functional

F(W ) = tr
R2 R2

f(W )dxdp,

evaluated at W0, is given by

δW0F(ξ) = tr
R2 R2

f (W0)ξdxdp = tr
R2 R2

Log(W0)ξdxdp, (3.63)

for all perturbation ξ of the Wigner matrix.

Proof. We obtain with Lemma 3.3.11 and W−1(Log(W )) = ln W the following

δW0F(ξ) = δW0 tr
R3 R3

WLog(W ) − Wdxdp (ξ) = δW0((2πε)2 Tr{ W ln( W ) − W })(ξ)

= (2πε)2 Tr{(ln W0)ξ} = tr
R2 R2

Log(W0)ξdxdp.

We now prove that the minimizer has necessarily the form of a quantum exponential, which
would pe the first part of proving Theorem 3.3.10.

Lemma 3.3.13. A necessary condition for M (N) to be solution to the unconstrained mini-
mization problem

L(M (N), Ã) = min
W

L(W, Ã) (3.64)

is that it is of the form

M (N) = Exp −Hε + Ã . (3.65)

Proof. Let Ã be fixed, and define for symbols W the functional

K(W, Ã) := tr
R2

Ã(x) W (x, ·) dx = 2
R2

(ã0 w0 + a · w ) dx,

Since Ã and N are independent of W , we have clearly

δW tr
R2

ÃNdx = 0.

With the above we can rewrite the Gâteuax derivative of L at the point W as

δW L = δW E − δW K,

and therefore the Euler-Lagrange equation associated to the unconstrained minimization
problem (3.64) is given by

δW E − δW K = 0. (3.66)

From Lemma 3.3.12 and the linearity of tr HεW dxdp we obtain

δW E(ξ) = tr
R2 R2

[Log(W (x, p))ξ(x, p) + Hε(x, p)ξ(x, p)] dxdp.
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By linearity, we immediately obtain for the functional K
δW K(ξ) = tr

R2
Ã ξ dx

Therefore the Euler Lagrange (3.66) becomes

tr
R2 R2

Log(W (x, p))ξ(x, p) + Hε(x, p)ξ(x, p)dxdp −
R2

Ã ξ dx = 0, (3.67)

for all perturbations ξ. The arbitrariness of ξ implies that the solution W has to be of the
form M (N) as in (3.65).

With the preparation so far, we are able now to prove Theorem 3.3.10 and bring the first
part to a conclusion.

Proof of Theorem 3.3.10. Provided Problem 3.3.5 has a solution G, we show that G = M (N)
and that it fulfills the constrains (3.57). As mentioned in the beginning of this subsection,
that problem is equivalent to the saddle point problem for the functional L, recalling (3.61).
Therefore if there exists a solution G, there must also exist Ã0 such that

L(G, Ã0) = max
Ã

min
W

L(W, Ã).

From Lemma 3.3.13 we deduce that for any given Ã, the solution M (N) to the minimization
problem (3.64) has to be of the form M (N) = Exp(−Hε + Ã) and fulfills

L(M (N), Ã) = min
W

L(W, Ã).

Therefore G has to be of the same form as M (N) and hence the solution to the saddle point
problem (3.61) is given by (M (N), Ã0). The last remaining statement to prove of Theorem
3.3.10 is, that M (N) = m0(N)σ0 + m (N) · σ also fulfills the constraints m0(N) = n0 and
m (N) = εn. Knowing that (M (N), Ã0) is a solution to (3.61), we have that Ã0 solves the

maximization problem

L(M (N), Ã0) = max
Ã

L(M (N), Ã). (3.68)

and solves therefore the belonging Euler-Lagrange equation

δÃ0
(L(M (N), .)) = 0. (3.69)

Since M (N) is dependent on Ã, we denote it with M (N, Ã) for the rest of the proof. The
Gâteuax derivative at the point Ã0 of L is then given by

δÃ0
L = δW L|(M (N,Ã0),Ã0)(δÃM |Ã0

) + δÃL|(M (N,Ã0),Ã0).

M (N) being a minimizer of (3.66) we have that δW L|(M (N,Ã0),Ã0) = 0. Since L is linear with
respect to (the Pauli components of) Ã and E is independent of Ã, we immediately obtain
for perturbations ξ = 3

j=0 ξjσj :

δÃL|(M (N,Ã0),Ã0)(ξ) = δÃ (E − K) |(M (N,Ã0),Ã0)(ξ) + δÃ tr
R2

ÃN
(M (N,Ã0),Ã0)

(ξ)

= tr
R2

N − M (N, Ã0) ξdx

= 2
R2

n0 − m0(N, Ã0) ξ0 + 2
3

j=1
εnj − m j(N, Ã0) ξjdx
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Since δÃ0
L(ξ) must equal zero for all perturbations ξ, we conclude that M (N, Ã0) must

satisfy the constraints (3.57).

Part Two: A General Zeroth Order Approximation of M (N):

The Maxwellian is a quantum object, which is hard to describe explicitly. Therefore we
assume that there exists a power series, the so called semiclassical expansion, such that

M (N) =
∞

k=0
εkM (k)(N), (3.70)

where M (k)(N) depends implicitly on the density matrix N and is called the k−th order with
respect to the scaled Planck constant ε . In principle the existence of such a power series, such
as (3.70) (or earlier (3.21)), is the concept of the semiclassical expansion. More motivation
is given in Section (3.6). Furthermore assume that the matrix of Lagrange multipliers also
has such an expansion:

Ã(x) =
∞

k=0
εkÃ(k)(x), with Ã(k)(x) = ã

(k)
0 (x)σ0 + a(k)(x) · σ. (3.71)

From the previous subsection (Theorem 3.3.10) we obtained that

(3.56) : M (N) = Exp −Hε(x, p) + Ã(x)

At the moment interesting for us, is the zeroth order of the quantum Maxwellian. We will see
that it depends only on the zeroth order of the Lagrange multipliers instead of all orders. Since
ε is usually smaller than one, the dominant order of the above expansions is the zeroth order,
consequently we will call it the leading order . Motivation and details for the semiclassical
expansion, also regarding the quantum Maxwellian, will follow later in Section 3.6.

Lemma 3.3.14. Let M (N) = Exp(−Hε + Ã) be a solution to Problem 3.3.5 and Ã =
ã0σ0 + a · σ be the matrix of Lagrange multipliers. Furthermore let Ã(0) = ã

(0)
0 σ0 + a(0) · σ

be the leading order of the semiclassical expansion of Ã with respect to ε. Then the leading
order of the quantum Maxwellian is given by

M (N)(0) = eh
(0)
0 cosh a(0) σ0 + sinh a(0) a(0)

a(0) · σ (3.72)

where h
(0)
0 := −|p|2/2 − a

(0)
0 (x) and a

(0)
0 (x) := ã

(0)
0 (x) − V (x). Note that, by continuity, we

can assume that
M (N)(0) = exp h

(0)
0 ,

if a(0) = 0.

Proof. Let us introduce the following function

g(β) = Exp(β(−Hε + Ã)), β ∈ R+
0 , (3.73)

We immediately deduce g(1) = M (N) and thanks to function calculus and the properties of
the Wigner transformation, we have

∂βg(β) = ∂βW( eq(β)) = W(∂β eq(β)) = W((−Hε + Ã) exp(β(−Hε + Ã))
= W(−Hε + Ã)#W(exp(β(−Hε + Ã))) = (−Hε + Ã)#Exp(β(−Hε + Ã))
=(−Hε + Ã)#g(β)
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Introducing the semiclassical expansion g(β) = ∞
k=0 εkg(k)(β) on the left hand side, using

the Pauli components of Hε (3.55) and the semiclassical expansion of the Moyal product (see
Lemma 3.2.20) on the right side, yields

∞

k=0
εk∂βg(k)(β) =

∞

k=0
εk (h0σ0 + h1 · σ) #(k)g

(k)(β). (3.74)

Since we are only interested in the leading orders we can simplify the above. Let us recall
the structure of h1 = a + εαp⊥ and the semiclassical expansion of the Lagrange multipliers
(3.71), then we introduce the zeroth orders

h
(0)
0 := −|p|2

2 + a
(0)
0 , h

(0)
1 := a(0).

Notice that the term εαp⊥ does not give any contribution to the leading order with respect
to ε, hence the above definition makes sense. Using these and the previous equation (3.74),
we obtain by comparing the leading orders

∂βg(0)(β) = h
(0)
0 σ0 + a(0)σ #g(0)(β)

The zeroth order of the Moyal product coincides with the standard product, and the fact
that g(0) = σ0 (the exponential operator is the identity operator for β = 0 and therefore
Exp(0) = σ0), which provides the ordinary differential equation

∂βg(0)(β) = h
(0)
0 σ0 + a(0) · σ g(0)(β), g(0)(0) = σ0. (3.75)

From here we could calculate directly the ODE above, which is standard, but still plenty of
work, and therefore postponed to the Appendix B.3. We want to take the more indirect but
shorter route here. If we set

g(0)(β) = exp βh
(0)
0 f(β), (3.76)

then it is readily seen that the unknown matrix f(β) satisfies

∂βf(β) = a(0) · σf(β), f(0) = σ0.

The solution to this ODE is the matrix exponential

f(β) = exp(β a(0) · σ) =
∞

k=0

βk

k! (a(0) · σ)k.

Recalling that

a(0) · σ = a
(0)
3 a

(0)
1 − ia

(0)
2

a
(0)
1 + ia

(0)
2 −a

(0)
3

,

it can be easily seen by a direct calculation that

(a(0) · σ)2k = a(0) 2k
σ0, (a(0) · σ)2k+1 = a(0) 2k

a(0) · σ,

for k ∈ N. Then, f(β) = σ0, if a(0) = 0, and if a(0) = 0

f(β) =
∞

k=0

β a(0) 2k

(2k)! σ0 +
∞

k=0

β a(0) 2k+1

(2k + 1)!
a(0)

a(0) · σ

= cosh β a(0) σ0 + sinh β a(0) a(0)

a(0) · σ,

Substituting in (3.76) and recalling that M (0)(N) = g(0)(1), we obtain (3.72).
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Part Three: The Final Form

To finish the proof of Theorem 3.3.8, we have to show that the zeroth order of the matrix Ã
only depends on ã0. We state this in the upcoming Proposition.

Proposition 3.3.15. Let M (N) be a solution to Problem 3.3.5 and be of the form

M (N) = Exp(−Hε(x, p) + Ã(x)).

Then, the leading order of the Lagrange multiplier Ã is Ã(0) = ã0(x)σ0.

Proof. Recalling our assumption N = n0σ0 + εn · σ, we have that the leading order of N

is N (0) = n
(0)
0 σ0. From Theorem 3.3.10 we know that the quantum Maxwellian satisfies the

constraints (3.57), which at leading order read as follows

M (0)
0 (N) = n

(0)
0 , m (0)(N) = 0. (3.77)

Assume now that a(0) = 0, then from Lemma 3.3.14 we know that

m (0)(N) = eh
(0)
0 sinh a(0) a(0)

a(0) · σ.

Since m (0)(N) has to be zero, this is equivalent to m (0)(N) = 0 and therefore

m (0)(N) = eh
(0)
0 sinh a(0) a(0)

a(0) = eh
(0)
0 sinh a(0) = 0.

Since eh
(0)
0 = 2π exp a

(0)
0 = 0, we necessarily have

a(0)(x) = 0, ∀x ∈ R2.

3.3.4. The Collision Operator
The definition of the equilibrium state via entropy maximization allows us to adopt a relatively
simple way to add collisions in the transport model (3.35). Similar as in Section 1.3 and in
Chapter 2, we introduce a relaxation-time (BGK-like) collision operator of the form

Q(W ) = 1
tc

(M ( W ) − W ), (3.78)

where tc is the typical collision time of the system, which is for the sake of simplicity assumed
to be constant. We recall that W denotes the integral of W over R2 with respect to the
momentum p. Additionally we recall that our density matrix N is given as exactly that
integral, i.e.

N = W , where n0 = w0 , and εn = w .

Since our goal is to derive a diffusive model for N , we only need very general properties
of the collision operator, above all the conservation of the particle number and spin, and,
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consequently, of the densities nk, k = 0, 1, 2, 3. Our relaxation-time operator provides it
because

N = W = M ( W ) , (3.79)

which of course implies

Q(W ) = 0. (3.80)

We then add the collision operator (3.78) to the non-dimensional Wigner Boltzmann equation
(3.35) and obtain

tE

t0
∂tW + T W = Q(W ), (3.81)

which completes our quantum transport model.

Remark 3.3.16. It may seem strange to add the collision term so late to the equation, but
we decided to go this path to keep it as simple as possible. We could already add the collision
operator in the von Neumann equation (3.2) (see [BM10]), and then go along the same path
we followed, with that additional term, which would result in the same equation (3.81).

3.4. Time Scaling
The standard procedure for the diffusive regime would be to define the diffusive time scale
(for details check Section 1.3, where the typical collision time would be much smaller than
the energy time scale and the system would be observed longer than the energy time scale

τ = tc

tE
1,

tE

t0
= τ, such that t0 = t2

E

tc
.

This leads to the diffusive scaled Wigner Boltzmann equation (compare with Section 1.3)

τ2∂tW + τT W = M (N) − W. (3.82)

From here the common path to obtain a macroscopic model would be the Chapman Enskog
expansion, which we introduced in Section 2.3.1. In our quantum setting, there are two
major obstacles that will not appear in the standard case. First the transport term T is
more difficult to handle, due the quantum quantities, like the quantum Maxwellian and the
pseudo differential operator. The other obstacle occurs later in the expansion, which is easier
to understand if we follow the three steps introduces in Section 2.3.1 and stumble over that
difficulty.

1. Let Wτ be a solution to (3.82) and assume the existence of two functions W0, Uτ such
that

Wτ = W0 + τUτ .

Letting τ formally going to 0 in (3.82) shows that W0 = M (N).

2. Dividing equation (3.82) through τ and pass to the formal limit of τ going to 0, we
obtain that

U := lim
τ→0

Uτ = −T M (N).
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3. Last step is to turn to the momentum equation, which is (3.82) integrated

∂t Wτ + 1
τ

T M (N) + T Uτ = 0, (3.83)

and pass finally to the limit τ → 0 to obtain the diffusive equation.

We see here that Step 3 is only possible if the term τ−1 T M (N) also converges to zero.
Until now the standard argument has been that the term in front of τ−1 (in our case T M (N))
is odd in p and therefore the integral over it vanishes leading to an equation of the form

∂tN − T T M (N) = 0, (3.84)

where T T M (N) represents the diffusive part. This would fit into the expected form of
the Chapman Enskog procedure. We state our first observation.

Proposition 3.4.1. Let W be the solution to the WBE (3.82), where M (N) is the quantum
Maxwellian of the system, given by (3.51), Ã(x) is the matrix of Lagrange multiplier, defined
in (3.53) let N the moment operator (in our case N (.) = . ). Then, N (T M (N)) = 0 if and
only if N ([Ã, M (N)]#) = 0. In our particular setting if Ã commutes with N = N (W ).

Proof. We recall that the hamiltonian part of the WBE is the Wigner transform of the von
Neumann equation (3.2), and then

T W = − 1
iε [Hε, W ]#,

where Hε is the scaled Hamiltonian (3.39) and [Hε, W ]# := Hε#W −W#Hε. From Theorem
3.3.8 we know that the quantum Maxwellian has to be of the form M (N) = Exp(−Hε + Ã),
which is an operator exponentiation in the Wigner picture. By functional calculus we know
that any operator commutes with its exponentiation (like with any other of its functions),
and this implies

−Hε + Ã #M (N) − M (N)# −Hε + Ã = 0.

This leads us to

−iεT M (N) = [Hε, M (N)]# = −[−Hε + Ã, M (N)]# + [Ã, M (N)]# = [Ã, M (N)]#, (3.85)

which proves the first statement. Using identity (3.20), which gives us Ã#W = ÃW , and
also W #Ã = W Ã , yields

−iε T M (N) = [Ã, M (N)] = Ã, M (N) = [Ã, N ],

which immediately proves the second statement.

Remark 3.4.2. Proposition 3.4.1 applies in general to models where a given set of densities
is fixed and it helps us to understand why in other studies the condition T M (N) = 0 was
never met. For example in Ref. [BM10] the focus is on the spin-up and spin-down densities
n± := w0 ± w3 . Since they worked mostly in the von Neumann picture, we reformulate
their definitions. Let therefore be the solution to the von Neumann equation (3.2) and
W = W( ) the corresponding Wigner function (also solution to the WBE). The following
moment operators are used in [BM10]

N1( ) := w11 , N2( ) := w22 ,
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and let us define
N±(W ) := (1/2) tr(Wσ0) ± (1/2) tr(Wσ3) ,

such that
N1 = N+ ◦ W , N2 = N− ◦ W

Since only the densities n+ and n− are conserved in [BM10], the quantum Maxwellian M̃
from [BM10] depends on a matrix of given densities N such that

N1(M̃ ) = N11, N2(M̃ ) = N22.

Therefore only two constraints in the quantum maximum entropy principle (QMEP) are
needed, leading to matrix of Lagrange multipliers Ã that is diagonal. Clearly, in such case
we get again with identity (3.20) that

N1([Ã, M̃ ]) = N+([Ã, W(M̃ )]#) = Ã11N11 − N11Ã11 = 0,

N2([Ã, M̃ ]) = N−([Ã, W(M̃ )]#) = Ã22N22 − N22Ã22 = 0.

As another example, in the semiclassical full-spin model introduced in Ref. [EH14] the equi-
librium state is of the form cN exp(−|p|2/2) (where N is the full matrix of densities, exp is
the classical exponential, and c is a normalization factor) and the moment operator coincides
with ours. This means that N = exp(Ã) and, therefore, ÃN = NÃ.

When, as in our case, T M (N) = 0, the Chapman-Enskog procedure is inconsistent
with the diffusive scaling, which has a huge impact on our work and stays in contrast to all
previous existing derivations. Therefore we have to consider hydrodynamic scaling (which is
suitable for local equilibria with no-vanishing current). However, we stress that the collisions
we considering do not conserve the current: the residual current at equilibrium is of quantum
mechanical nature (and in fact such current is of order ε2, see (3.97) and (3.143)) As mentioned
in Section 1.3, in the hydrodynamic regime we choose the reference time t0 equal to the energy
time scale tE (which means that it is of order τ with respect to the diffusive t0)

τ = tc

tE
1, t0 = tE .

Applying this to equation (3.81) gives us the hydrodynamic scaled Wigner Boltzmann (HWB)
equation

τ∂tW + τT W = M (N) − W, (3.86)

that is

τ∂tw0 + τ (∇xw0)p + αε∇⊥
x · w − Θε[V ]w0 =m0(N) − w0, (3.87)

τ∂tw + τ (∇xw)p + αε∇⊥
x w0 − Θε[V ]w − 2αp⊥ × w =m (N) − w. (3.88)

3.5. The Full Quantum Model
The first derived model is the ”full quantum model”, which is correct to all orders in the scaled
Planck constant ε. It provides quantum drift-diffusion equations for the macroscopic density
n0 and the spin densities n1, n2, n3. When we were talking about semiclassical parameters
, we meant the scaled Planck constant. It is also possible to use the Knudsen number τ as
semiclassical parameter.

95



3. Spin Drift Diffusion Model

Main Theorem 3.5.1 (Full Quantum Model). Let W be the solution to the Wigner Boltz-
mann equation (3.86), N = W with N = n0σ0 + εn · σ, M (N) the quantum Maxwellian
given in (3.51), Ã = ã0σ0 + εa · σ the matrix of Lagrange multipliers, and Jj := pm j(N)
the matrix of the first momentum. Then, at first order in τ , the Pauli components of N solve
the following equations:

∂tn0 =τ div n0∇a0 + n0∇V + ε2 (n · (∇a)) + 2ταε2 (∇⊥) · (n × a) , (3.89)

∂tn = − 2(n × a) + τ div n0∇a + n∇a0 + n∇V + 2
ε

JT × a (3.90)

− 2τα n0(∇⊥ × a) + ∇⊥(a0 + V ) × n − 2
ε

a p⊥ · m (N) + JT a⊥

− 2τ 2ε(n × a) × a − n × ∂
(0)
t a

where a0 := ã0 − V , and ∂
(0)
t means that the time-derivatives of n0 and n are given by the

zeroth-order equations ∂
(0)
t n0 = 0 and ∂

(0)
t n = −2(n × a), and recall that the planar gradient

is defined as ∇ := (∂x1 , ∂x2 , 0).

The proof for Main Theorem 3.5.1 is postponed to the next section, since we need some
preparation. Also there we introduce how we use τ as semiclassical parameter.

Remark 3.5.2. The Lagrange multipliers a0 and a are non-local functions of the densities
n0 and n, via the constraint M (N) = N = W . Then, the system (3.89)-(3.90) is formally
closed. However, this relation is very implicit and strongly non-local. In literature numerical
methods have been proposed for solving problems of this kind in the scalar [GM05] and
bipolar [BMNP15] cases.

3.5.1. Derivation of the Full Quantum Model
To obtain the model equations (3.89)-(3.90) we are going to apply a Chapman-Enskog
method, to the Wigner-Boltzmann equation in hydrodynamic scaling (HWBE from now on).
Recall

τ∂tW + τT W = M (N) − W, (3.91)

and assume that there exists a function G, that depends on τ , such that

W = M (N) + τG.

and G is of order one with respect to τ . This is already similar to the Chapman-Enskog
ansatz in Section 2.3.1, but we will not pass to the limit τ → 0. Since the transport operator
T is linear we compute from the HWBE (3.91) that

G = −1
τ

M (N) − W = − ∂tW − T W = −∂tM (N) − T M (N) − τ (∂tG + T G)

= − ∂tM (N) − T M (N) + O(τ).

Integrating (3.91) with respect to p, and taking into account that W = N and that M (N)−
W = 0, yields

∂tN = − T W = − T M (N) − τ T G

= − T M (N) + τ T T M (N) + T ∂tM (N) + O(τ2). (3.92)
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which, when explicitly computed, yields the full quantum model (3.89)-(3.90). Since we are
interested in a diffusive equation, it second order terms with respect to τ can be disregarded.
The reader should notice that the above equation ∂tM (N) depends through the chain rule
on ∂tN (however, because of the non-local dependence of M (N) on N , the chain rule must
be interpreted in functional sense): this will allow us to replace approximate, at first-order
in τ , ∂tN with ∂

(0)
t N . The latter is given by (3.95), making the equation self-consistent.

Remark 3.5.3. Another method, which yields the same result is coming from a more physical
point of view and was introduced in [Cer69]. We mention this here, because we used that
method also in [BHJ]. This method differs a bit to the one we introduced in Section 2.3.1,
since we similarly will expand the HWBE semiclassical in time. Therefore assume that the
solution W has an expansion of the form

W (x, p) =
∞

k=0
τkW (k)(x, p). (3.93)

Dividing the HWBE by τ and integrating it with respect to p (recalling that M (N) − W =
0), we obtain

∂tN = − T W . (3.94)

We get directly the semiclassical expansion of the time derivative of N from the above, using
the fact that the transport operator T is linear,

∂tN =
∞

k=0
τ∂

(k)
t N, where ∂

(k)
t N = − T W (k) . (3.95)

We remark that, in the spirit of the Chapman-Enskog approach, it is only the equation for N
that is expanded, and not N itself, which is an O(1) quantity with respect to τ . This means
that we assume that the semiclassical expansion of N is just the leading order, i.e.

N =
∞

k=0
τkN (k)

τ = N (0)
τ ,

N
(k)
τ is the k-th order with respect to τ and equals zero for all k ≥ 1. Inserting the expansion

(3.93) into the HWBE (3.91) and letting formally τ go to zero gives us

W (0) = M (N).

Substituting W (0) with M (N) in the expansion (3.93) and comparing the first order of τ in
equation (3.91) gives also the first order of W with respect to τ which is

τW (1) = −τ∂tM (N) − τT M (N)

Putting these results in (3.94) we obtain the equation for N

∂tN = − T M (N) + τ T T M (N) + τ T ∂tM (N) + O(τ2)

Remark 3.5.4. As discussed in Section 3.4, T M (N) is the zeroth-order current, that
vanishes in other models, and T T M (N) is the diffusive part. The term T ∂tM (N) is
a new term, which typically arises from the Chapman-Enskog procedure in hydrodynamic
scaling [Cer69].
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To get the desired model we need now to calculate every term occurring in the right side
of (3.92). Therefore we recall the definitions of the odd and even Moyal product

(3.25) : f1#(odd)f2 = 1
2(f1#f2 − f2#f1), f1#(even)f2 = 1

2(f1#f2 + f2#f1).

Furthermore using the lowercase ”#” under a mathematical operation means that the prod-
ucts in that operations are replaced by the Moyal product. The next proposition will have
all the needed tools to obtain the final equations, where some of them are just scaled versions
of previous statements.

Proposition 3.5.5. Let f and ξ be two arbitrary scalar valued symbols, such that f only
depends on x, i.e. f(x, p) = f(x), and let Θε[f ] be the pseudo differential operator defined in
Definition 3.2.26. Then we have for j ∈ {1, 2} the following identities:

1. 2f#(odd)ξ = iεΘ[f ](ξ),

2. pj(f#ξ) = f#(pjξ) + (ε/2i)(∂xj f)ξ,

3. pj(ξ#f) = (pjξ)#f − (ε/2i)(∂xj f)ξ,

4. Θε[f ](ξ) = 0,

5. pjΘε[f ](ξ) = −(∂xj f) ξ ,

6. f#(even)ξ = f ξ ,

7. pj(f#(even)ξ) = f pjξ ,

where we recall that . denotes the integration over p ∈ R2.

Proof. We want to mention that for the points 4-7, the proofs can be found in the literature,
but we will prove these points in a, for us, more elegant way. Our idea is to use the first
three points 1-3, to prove the other points, This differs to the common procedure, where the
Fourier transformation and the δ-distribution are used as tool.

1. This follows directly from Lemma 3.2.27 by using the scaled versions.

2. The key idea is to use the semiclassical expansion of the Moyal product, see Lemma
3.2.20. Due to the fact that f only depends on the spatial variable x, the expansion
reduces to

f#ξ =
∞

k=0
εk 1

(2i)k
|r|=k

(−1)|r|

r! ∂r
xf ∂r

pξ

Since ∂r
ppj vanishes for |r| > 1 we have with the product rule that

f#(k)(pjξ) = pj(f#(k)ξ), for j ∈ {1, 2}, ∀k > 1,

and hence

f#(pjξ) = pjfξ − ε

2i(∂xj f)ξ − ε

2i(∇xf · ∇pξ) + pj

∞

k=2
εkf#(k)ξ

= pj(f#ξ) − ε

2i(∂xj f)ξ.
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3. This is pretty similar to the previous point where we point out that

ξ#(k)f = 1
(2i)k

|s|=k

1
s!∂

s
pξ ∂s

xf, (pjξ)#(k)f = 1
(2i)k

|s|=k

1
s!∂

s
p(pjξ) ∂s

xf,

and hence

(pjξ)#f = pjξf + ε

2iξ∂xj f + ε

2i(∇pξ · ∇xf) + pj

∞

k=2
εkξ#(k)f

= pj(ξ#f) + ε

2iξ∂xj f.

4. By using the first point and the integral identity for the Moyal product f#g = f g
(see (3.18) in Proposition 3.2.17), we have

Θε[f ](ξ) = 2
iε f#(odd)ξ = 1

iε ( f#ξ − ξ#f ) = 1
iε (f ξ − ξ f) = 0.

5. From the first three points we get

pjΘε[f ](ξ) = 2
iε pj(f#(odd)ξ) = 1

iε
ε

i (∂xj f)ξ = −(∂xj f) ξ .

6. The first point and Proposition 3.2.17 provide

f#(even)ξ = 1
2 f#ξ + ξ#f = 1

2 ( f#ξ + ξ#f ) = 1
2(f ξ + ξ f) = f ξ .

7. Again using the first three points, the integral identity for the Moyal product (see (3.18)
as used for point 4) and the previous point 6, yields

pj(f#(even)ξ) = 1
2 f#(pjξ) + (pjξ)#f = f#(even)(pjξ) = f pjξ .

Proof of Main Theorem 3.5.1:

Recalling our so far derived equation, where we omit from now on to write the dependence
on N to keep the notation as simple as possible,

∂tN = − T M + τ T T M + τ T ∂tM . (3.96)

Let us start with with the first term at the right-hand side of (3.96). We have seen in
Proposition 3.4.1 that iε T M = −[Ã, N ]. Using this, the representations N = n0σ0 +εn ·σ,
Ã = ã0σ0 + εa · σ, and the Pauli algebra (see (3.8)), we obtain

T M = 1
iε ((n0σ0 + εn · σ)(ã0σ0 + εa · σ) − (ã0σ0 + εa · σ)(n0σ0 + εn · σ))

= 1
iε (εn0a + εã0n + iε2(n × a)) − ε(ã0n + εn0a + iε2(a × n))

= 2ε(n × a) · σ. (3.97)
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Passing to the second term, T T M , we first compute T M by using the representation
−iεT M = [Ã, M ]# (see (3.85)). Notice that f#(odd)ξ = −(ξ#(odd)f) for two scalar valued
symbols. This combined with Proposition 3.5.5 and the decomposition M = m0σ0 + m · σ
provides

T M = 1
iε M #Ã − Ã#M

= 2
iε m0#(odd)ã0 + ε

3

j=1
m j#(odd)aj σ0 + 2

iε εm0#(odd)a + m#(odd)ã0 + iε m ×#(even) a · σ

= −Θε[ã0](m0) − ε

3

j=1
Θε[aj ](m j) σ0 + −εΘε[a](m0) − Θε[ã0](m) + 2 m ×#(even) a · σ.

Next, to calculate T T M we use the above Pauli representation of T M = (T M )0σ0+T M ·σ
and the definition of the transport operator T (see (3.36)), which gives us

T T M = p · ∇x(T M )0 + αε(∇⊥
x ) · T M − Θε[V ](T M )0 σ0

+ p · ∇xT M + αε∇⊥
x (T M )0 − 2αp⊥ × T M − Θε[V ]T M · σ.

We now take the integral with respect to p. By using Proposition 3.5.5, and recalling that
a0 = ã0 − V , we obtain for the zeroth-component

(T T M )0 = −
R2

p · ∇x

Θε[ã0](m0) + ε
3

j=1
Θε[aj ](m j)

 dp (3.98)

+
R2

αε(∇⊥
x ) · −εΘε[a](m0) − Θε[ã0](m ) + 2(m ×#(even) a) dp (3.99)

+
R2

Θε[V ]

Θε[ã0](m0) + ε
3

j=1
Θε[aj ](m j)

 dp. (3.100)

The integrals (3.98) to (3.100) will be treated separately. Using that ã0 = a0 + V combined
with Proposition 3.5.5, yields

−(3.98) =
2

k=1
pk∂xk

(Θε[ã0](m0)) +
3

j=1
εpk∂xk

(Θε[aj ](m j))

=
2

k=1

3

j=1
∂xk

pkΘε[ã0](m0) + ε∂xk
pkΘε[aj ](m j)

=
2

k=1

3

j=1
−∂xk

((∂xk
ã0) m0 ) − ε∂xk

((∂xk
aj) m j )

=
2

k=1

3

j=1
−∂xk

(n0∂xk
a0 + n0∂xk

V ) − ε∂xk
((∂xk

aj)εnj)

= −∇x · n0∇xa0 + n0∇xV + ε2(n · (∇xa)) .

The expression ∇x · (n · (∇xa)) is equal to 2
k=1 ∂xk

(n · ∂xk
a). For the next integral (3.99)

we mainly use Proposition 3.5.5:

(3.99) =αε(∇⊥
x ) · −εΘε[a](m0) − Θε[ã0](m ) + αε(∇⊥

x ) · m ×#(even) a = m ×#(even) a

=αε2((∇⊥
x ) · (n × a))
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In the last integral (3.100) we can interpret Θε[ã0](m0) + ε 3
j=1 Θε[aj ](m j) as scalar valued

symbol that depends on x and p. Hence we obtain, again thanks to Proposition 3.5.5, that
(3.100)= 0. Adding (3.98) and (3.99) together leads us to

(T T M )0 = ∇x · n0∇xa0 + n0∇xV + ε2n · (∇xa) + 2αε2 (∇⊥) · (n × a) .

For the σ-components we obtain

T T M =
R2

p · ∇x −εΘε[a](m0) − Θε[ã0](m ) + 2(m ×#(even) a) dp (3.101)

−
R2

αε(∇⊥
x ) Θε[ã0](m0) + ε

3

j=1
Θε[aj ](m j) dp (3.102)

−
R2

2α(p⊥) × −εΘε[a](m0) − Θε[ã0](m ) + 2(m ×#(even) a) dp (3.103)

+
R2

Θε[V ] εΘε[a](m0) + Θε[ã0](m ) + 2(m ×#(even) a) dp. (3.104)

As we did it before we will calculate (3.101)-(3.104) separately, where the main tool will be
again Proposition 3.5.5. For the first integral we get

(3.101) =
2

k=1
∂xk

ε −pkΘε[a](m0) − pkΘε[ã0](m) + 2 pk(m ×#(even) a)

=
2

k=1
∂xk

(εn0∂xk
a + (∂xk

ã0)εn + 2 pkm × a)

= ε∇x · (n0∇xa + (∇xa0)n + (∇xV )n) + 2∇x · (JT × a),

where (JT )k = pkm , the cross product in (JT × a) is to understand column wise and
∇x · (JT × a) = 2

j=1 ∂xj ((JT )j × a). The next integral is dealt with quickly, since

(3.102) = αε(∇⊥
x )

 Θε[ã0](m0) + ε
3

j=1
Θε[aj ](m j)

 = 0.

For the third integral we mention that the cross product refers always to the vector parts,
hence we obtain

−(3.103) =2α −ε p⊥ × Θε[a](m0) − p⊥ × Θε[ã0](m ) + 2 p⊥ × (m ×#(even) a)

=2α εn0∇⊥
x × a + ∇⊥

x ã0 × εn + 2 p⊥ × (m ×#(even) a)

The term where we build the cross product twice needs comparatively extra treatment. First
we use the Graßmann-identity v1 × (v2 × v3) = (v1 · v3)v2 − (v1 · v2)v3 for any vectors
v1, v2, v3 ∈ R3, where we need to be careful with the Moyal product. In particular we have

p⊥ × (m ×#(even) a) = p2(a1#(even)m ) − p1(a2#(even)m )

− p2(m1#(even)a) − p1(m2#(even)a)

=(a1 p2m − a2 p1m ) − ( p2m1 a − p1m2 a)

= − JT a⊥ − p⊥ · m a
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Substituting this into the previous result yields

(3.103) = −2εα n0∇⊥
x × a + ∇⊥

x (a0 + V ) × n + 4α p⊥ · m a + JT a⊥ .

In (3.104) we integrate the pseudo differential applied to some symbol with respect to the
momentum and hence (3.104) = 0. Adding (3.101) and (3.103) gives us

T T M =ε∇x · (n0∇xa + (∇xa0)n + (∇xV )n) + 2∇x · JT × a

− 2αε n0(∇⊥
x × a) + ∇⊥

x (a0 + V ) × n + 4α a p⊥ · m + JT a⊥ .

We now turn to the last term T ∂tM . Using (3.97) and the linearity of T , we have that

T ∂tM = ∂t T M = 2ε(∂tn × a + n × ∂ta) · σ.

The time derivatives appearing here have to be discussed. Since we are approximating at
first-order in τ and the above term is already at first order, we are interested here in only the
zeroth order of the time derivative of the density. Recalling the expansion (3.95), ∂

(k)
t N =

− T W (k) , we have from (3.97) that ∂
(0)
t n = −2ε(n × a). As already remarked, the time

dependence of each aj for j ∈ {0, 1, 2, 3} comes from the macroscopic densities n0, n1, n2, n3,
since the Lagrange multipliers depend non-locally from the densities through the constraint
M (N) = N . Hence, we can write

∂ta =
3

i=0

δa

δni
∂tni ≈

3

i=0

δa

δni
∂

(0)
t ni + O(τ) = −2ε

3

i=1

δa

δni
(n × a)i + O(τ),

where we stress the fact that the derivative of aj with respect to ni is a functional derivative.
The right hand side is already the expansion in τ and therefore we can write

∂
(0)
t a = −2ε

3

i=1

∂a

∂ni
(n × a)i.

Together we have for the very last term

T ∂tM = −2ε(2ε(n × a) × a − n × ∂
(0)
t a) · σ + O(τ).

It remains to compare the Pauli-components on both sides in our starting equation (3.96).
Recalling the structure of the macroscopic density N = n0σ0 + εn · σ, we have

∂tn0σ0 + ε∂tn · σ = − 2ε(n × a) · σ

+ τ ∇x · n0∇xa0 + n0∇xV + ε2n · (∇xa) + 2αε2 ∇⊥
x · (n × a) σ0

+ τε∇x · n0∇xa + (∇xa0)n + (∇xV )n + 2JT × a · σ

− 2αετ n0(∇⊥
x × a) + ∇⊥

x (a0 + V ) × n · σ

+ 4τα a p⊥ · m + JT a⊥ · σ

− 2τε(2ε(n × a) × a − n × ∂
(0)
t a) · σ,

which gives us (3.89)-(3.90).
.
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Remark 3.5.6. Comparing the obtained results here with our results in [BHJ], we see two
differences. The first difference is that in the full quantum model (3.89)-(3.90) the variable ε
appears with power one and two, which comes from our smallness assumption that the spin
components are of order ε (see Remark 3.3.6).
The second difference is, that the term 4τα(a p⊥ · m + JT a⊥) from the above calculations
differs slightly from the term 4αε−1 p⊥ × (a × m ) obtained in [BHJ] (see formula (24)).
These two terms actually coincide, since using the Graßmann identity, as in the proof before,
yields

a p⊥ · m + JT a⊥ = − p⊥ × (m × a) = p⊥ × (a × m ) .

The representation we chose here, will come more handy in the upcoming calculations.

3.6. The Semiclassical Full Spin Model
What does semiclassical mean? Since this expression already dropped several times we want
to take the time and motivate the idea behind it. Quantum objects are complicated and are
hard to understand. Classical physics behaves differently than quantum physics and hence it
feels quite unnatural to work in the quantum setting. A good example for this would be the
quantum Maxwellian M (N) defined in (3.3.8). We see that this operator has no explicit form
due to the dependence on the matrix of Lagrange multipliers and the combination with the
Wigner-Weyl formalism. Its classical counterpart, the Maxwellian from Maxwell-Boltzmann
statistics, is better explored, since it is the exponential applied to some function depending
on the momentum (see for example [EH14], [J0̈9]).
The idea to understand a quantum object better, is to compare it with some kind of ”classical
counterpart” and add approximated quantum effects, which leads us to the term ”semiclas-
sical”. Since we want to look at the system on a ”macroscopic” scale, quantum effects are
expected to be small. The scaled Planck constant ε (or in the unscaled setting ) represents
these quantum effects, which implies that it is small (ε ∼ O(10−2)) and together with the
assumption that the dependence on ε is regular, leads to the ”semiclassical expansion” as a
power series in epsilon. To give more insight, assume that A is a quantum object and let ε
be the scaled Planck constant (see (3.32)). Then we expect that it is possible to express A as

A =
∞

k=0
εkA(k),

where A(k) could be interpreted as the k−th zoom factor into the quantum level and in
particular the zeroth zoom factor A represents then the classical level.

The concept was already in some sense introduced with Lemma 3.2.20. We see now that
the leading orders in the expansion usually can be interpreted in terms of classical physics.
For example the zeroth order of the Moyal product is just the ”standard multiplication”,
i.e for two symbols f, g we have f#(0)g = fg. Comparatively more tangible is maybe the
pseudo differential Θε[V ](f) of a symbol f . We have shown in Lemma 3.2.27 (now in the
scaled version), that Θε[V ](f) = 1

iεV #(odd)f , and therefore the zeroth order (the ”classical
counterpart”, see i.e. (1.6) or (1.7)), is given by

(Θε[V ](f))(0) = 1
iε

V #(1)f = ∇xV · ∇pf.

which coincides with the potential part from the classical Boltzmann picture.
The difficulty with the semiclassical approach is that there exists no standard procedure
and deriving it is highly technical. Our goal of this section is to derive the semiclassical
approximation for the change in time of the macroscopic density matrix N .
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3.6.1. The Model Equations for N :
As already remarked, the full quantum model (3.89)-(3.90) is a very involved and non-local
problem. On the other hand, in most applications, we expect the semiclassical parameter ε to
be small [BM10]. Moreover, we see from Lemma 3.2.20 that the Moyal product becomes local
if its semiclassical expansion is truncated at some order. Then, it is natural to approximate
the equations (3.89)-(3.90) by assuming the semiclassical parameter ε to be small. This is
typically done in quantum drift-diffusion and quantum hydrodynamics models [BM10, DR03,
DMR05, J0̈9], where it turns out that interesting terms, such as the Bohm potential, appear
in the semiclassical expansion already at second-order in ε.

In the present case, the semiclassical expansion leads to a proliferation of terms, already at
lower orders, and therefore, in order to end up with a reasonably compact model, we decided
to neglect terms that are more than second order in ε and α. In fact, in usual applications, ε
and α could be both small (e.g. of order O(10−2), see Ref. [KNAT02] for detailed values of all
physical quantities and Table I in Ref. [BM10] for the calculated non-dimensional variables),
which makes reasonable a second order approximation with respect to both parameters. The
model we get is summarized in the following theorem.
Main Theorem 3.6.1 (Semiclassical model). Let N = n0σ0 + εn · σ be the solution to
the non-local quantum spin drift diffusion model (3.89)-(3.90) from Theorem 3.5.1. Then,
neglecting terms of order εkαl, with k, l ∈ N and k + l > 2, N formally satisfies the following
semiclassical drift diffusion equations:

∂tn0 =τ div ∇n0 + n0∇V − ε2

6 n0∇ Δ√
n0√

n0
(3.105)

∂tn =τ div (∇n + n∇V ) − 2τα(2∇⊥ + ∇V ⊥) × n − 4τα2(2n + (n⊥)⊥) (3.106)

+ ε2

6
n

n0
× B(N) + τ

ε2

12 div nA(N) − ∇(Δn) + (∇n)C(N) + B(N)∇n0 + D(N)

+ τ
ε2

3 n × n

n0
× B(N) − B(N) ,

where we recall that the planar gradient is defined as ∇ := (∂x1 , ∂x2 , 0), and we define

A(N) := 2 ∇n0
n0

2 ∇n0
n0

− 4 n

n0
· ∇n

n0
− ∇n0

n0

Δn0
n0

− ∇n0
n0

(∇ ⊗ ∇)n0
n0

,

B(N) := Δn

n0
− ∇n

n0
· ∇n0

n0
,

C(N) := Δn0
n0

− ∇n0
n0

2
+ 4 n

n0

2
σ0 + ∇ ⊗ ∇n0

n0
,

D(N) := (∇n0(∇ ⊗ ∇))
n0

n − ∇n · ∇n0
n0

∇n0
n0

,

where (∇n0(∇ ⊗ ∇n))j = ∇n0(∇ ⊗ ∇nj) for j ∈ {1, 2, 3}.
Note that the equation for n0 is the usual quantum drift-diffusion equation, also obtained

in Refs. [BF10, DMR05, J0̈9] and others, and this is decoupled from the equation for n.
To obtain the semiclassical model we need to expand the quantum Maxwellian M (N) and

the matrix of Lagrange multipliers Ã in powers of the semiclassical parameter ε, assumed now
to be small. These expansions, truncated at the desired order will provide approximations
of the non-local terms in the full quantum model (3.89)-(3.90), yielding the approximated,
local model (3.105)-(3.106). These calculations will be provided in the next two sections.

104



3.6. The Semiclassical Full Spin Model

3.6.2. Semiclassical Expansion of the Quantum Maxwellian
This topic was already broached in Section 3.3.3 and will be now treated more in detail as
promised. First let us recall some definitions and then we state our result, which we want to
prove for this section.

h0(x, p) = −|p|
2

2
+ a0 , a0(x) = ã0(x) − V (x), h1(x, p) = (a − αp⊥).

Theorem 3.6.2 ((Semiclassical Expansion - Quantum Maxwellian)). Let M (N) = m0(N)σ0+
m (N) · σ be the solution to the QMEP (Problem 3.3.5), given by the expression (3.51). Then
the quantum Maxwellian can be expressed by

M (N) = exp(h0)σ0 + ε exp(h0)h1 · σ

+ ε2 1
8 exp (h0) Δa0 + 1

3 |∇a0|2 − pT (∇ ⊗ ∇a0)p + 4|h1|2 σ0

+ ε3 1
24 exp (h0) 3Δa0 + |∇a0|2 − pT (∇ ⊗ ∇a0)p + 4|h1|2 h1+

+ 3Δa − 12α∇⊥ × a + 2∇a · ∇a0 − pT (∇ ⊗ ∇a)p + 2α∇⊥(∇a0 · p)

+ 4 (∇a)p − α(∇a0)⊥ × h1 · σ + O(ε4),

where the Lagrange multiplier aj for j ∈ {0, 1, 2, 3} are dependent on N and recall that the
planar gradient is defined as ∇ := (∂x1 , ∂x2 , 0).

Before we proof the above we want to give some remarks. We mentioned that we are
only interested in an expansion of our model up to the second order with respect to ε, so
why do we expand here up to the third order? The reason is the appearance of the term
ε−1(JT ×a) in the non-local model (3.89)-(3.90), since J is dependent on m . Next we observe
that the leading order of the quantum Maxwellian looks familiar to the classical Maxwellian,
which we expected from the start. As last fact we see another consequence of our smallness
assumption on the spin polarization (see Remark 3.3.6). In the first four orders, the even
ones only contribute to the σ0-component and the odd ones consist only of σ-components.
The upcoming calculations will clarify that this happens because of the smallness assumption
and will show that the special structure of N reduces the work tremendously.

Let us take a closer look on the quantum Maxwellian itself. Theorem 3.3.8 proved the
particular form of M (N), where we already were in the non dimensional setting (recall
our scaling from Section 3.2.6). Recall the quantities E0 = kBT0 (the reference energy), the
unscaled Hamiltonian E0Hε = H (see Example 3.2.31) and Ã, which is the matrix of Lagrange
multiplier appearing in M (N). Using this, we rewrite the scaled quantum Maxwellian in the
sense that

M (N) = Exp 1
E0

H + E0Ã .

Defining the quantity β(T ) := (kBT )−1, T representing the variable temperature, we can
express the above also as

M (N) = Exp β(T0) H + E0Ã .

The quantity β is well defined for every temperature T > 0, we have β(T ) ∈ R+ and
β(T ) converges for T to infinity towards zero. Additionally we see that the newly introduced
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variable has again units, hence we need to scale it. The reference unit for β(T ) is β0 = (E0)−1,
which implies that the corresponding non-dimensional parameter is given by β̃ := β/β0.
Scaling β → β0β̃ provides then

M (N)(β̃) := M (N)(β0β̃) = Exp β0β̃ H + E0Ã = Exp β̃ Hε + Ã .

Due to the choice of the reference energy E0 as the thermal one, we have constant temperature
T = T0, yielding

β̃(T0) = β(T0)
β0

= 1
kBT0

E0 = 1.

This leads us back to our quantum Maxwellian

M (N)(β̃(T0)) = M (N)(1) = Exp Hε + Ã = M (N).

Motivated from the above we define the general quantum Maxwellian

g(β) := Exp β Hε + Ã β ∈ R+
0 . (3.107)

The reader should notice, that g(1) = M (N), and that g(β) is still a function of time, space
and momentum, but for simplicity we drop the regarding notation. The above function
g(β) already appeared in the proof of Theorem 3.3.8, see (3.73), and there we derived the
differential equation

∂βg(β) = (−Hε + Ã)#Exp β Hε + Ã , (3.108)

with the initial condition

g(0) = σ0,

which corresponds to the fact that the exponential operator is the identity operator for β = 0.

Proof of Theorem 3.6.2:

The main idea is to use equation (3.108) and the semiclassical expansion of the Moyal product
(see Lemma 3.2.20), to obtain the semiclassical orders of g and then use the relation g(1) =
M (N). First let us rewrite (3.108) in a more compact form, with the variables introduced in
the beginning of the section:

∂βg(β) = (h0σ0 + εh1 · σ) #g(β), g(0) = σ0. (3.109)

Using the approach of the semiclassical expansion g(β) = ∞
k=0 εkg(k)(β) and the semiclassical

representation of the Moyal product from Lemma 3.2.20 in the differential equation (3.109),
we obtain

∞

k=0
εk∂βg(k)(β) =

∞

l=0
εl(h0σ0 + εh1 · σ)#(l)

∞

k=0
εkg(k)(β) .

Comparing the orders of ε leads us to the formula for g(k):

∂βg(k)(β) =
k

l=0
h0σ0#(l)g

(k−l)(β) +
k−1

l=0
(h1 · σ)#(l)g

(k−1−l)(β), ∀k, l ∈ N0. (3.110)
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Since the zero order Moyal product is just multiplication between matrices, we obtain for
every k ∈ N an ODE, with the noise that depends on g(l), l < k and with the initial condition
g(0) = σ0. This initiates for all orders the initial conditions, which means that g(0)(0) = σ0
and g(k)(0) = 0 for all k > 0. For example we obtain for k = 0 the simple ODE:

∂βg(0)(β) = h0g(0)(β), g(0)(0) = σ0,

with the solution

g(0)(β) = exp (βh0) σ0. (3.111)

This gives us also the zeroth order of M (N), since g(0)(1) = M (0)(N). For k > 1 we have
always to solve a differential equation of the form

∂βg(k)(β) = h0σ0g(k) +
k−1

l=0
h0σ0#(l)g

(k−l) + (h1 · σ)#(l)g
(k−1−l), g(k)(0) = 0. (3.112)

Formula (3.112) shows us that we have to proceed iteratively to determine g(k)(β). The
exhausting part is to calculate the different Moyal products occurring in (3.112), since none
of these terms appear twice. After evaluating these terms, we have to solve a simple ODE,
which is simply done by applying Duhamel’s formula, and is therefore postponed to the
Appendix B.3. To help us out, with the Moyal product - terms, we add the notations

H0 = h0σ0, H1 = h1 · σ

(h0 and h1 being given by (3.55)) and, if clear from the context, we omit writing the de-
pendence of g on β. The upcoming Lemma will be used to shorten some of the forthcoming
calculations and is readily proven by applying the chain rule. We recall that the k-th order
Moyal product #(k) is defined in (3.22), which coincides with the scaled version in (3.38).

Lemma 3.6.3. Let ζ, ξ be two symbols and and if ξ is in particular a function of ζ, i.e.
ξ(x, p) = ξ(ζ(x, p)), then we have that ζ#(1)ξ = 0.

Proof. Since ξ is a function depended of ζ, we have that ∂xjξ(ζ) = ξ ∂xjζ, and that ∂pjξ(ζ) =
ξ ∂pjζ, therefore we obtain

∇pζ∇xξ(ζ) − ∇xζ∇pξ(ζ) = ξ (∇pζ∇xζ − ∇xζ∇pζ) = 0.

The derivation of g(0) was already discussed before, see formula (3.111), and even more
detailed in Section 3.3.3. To keep the notation as simple as possible we will identify the zero
order with its σ0-component:

g(0) ≡ exp(βh0). (3.113)

The calculated derivatives of h0 and g(0) that will be needed for the rest of the proof are
calculated in the Appendix B.2.
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Order one of g(β)

Formula (3.112) gives us here
∂βg(1) = H0g(1) + h0#(1)g

(0)σ0 + g(0)h1 · σ

Using Lemma 3.6.3 we deduce immediately that h0#(1)g
(0) = 0, and we obtain the initial

value problem
∂βg(1)(β) =H0g(1)(β) + g(0)h1 · σ, g(1)(0) = 0, (3.114)

having the solution (see Appendix B.3)
g(1)(β) = β exp(βh0)h1 · σ, (3.115)

Order two of g(β)

Formula (3.112) gives us here
∂βg(2) =H0#(0)g

(2) + H0#(1)g
(1) + H0#(2)g

(0) + H1#(0)g
(1) + H1#(1)g

(0)

The first term H0#(0)g
(2)(β) is the one that contains the unknown, while the others are

known from the preceding orders. For the j-th Pauli component (for j ∈ {1, 2, 3}) of the
second term we can write

2ih0#(1)g
(1)
j =∇ph0∇x(βg(0)(aj − αp⊥

j )) − ∇xh0∇p(βg(0)(aj − αp⊥
j ))

=(−p)βg(0)∇xaj − ∇xa0(∇pp⊥
j )αβg(0)

=∇x(h1)j∇pg(0)(β) − ∇p(h1)j∇xg(0)(β)
= − 2i(h1)j#(1)g

(0).

Therefore the terms H0#(1)g
(1) and H1#(1)g

(0) cancel out. For the remaining terms we only
have the σ0-component. Since ∂r

x∂s
ph0 equals zero for |r|, |s| ≥ 1, we obtain

h0#(2)g
(0)
0 = − 1

4 |r|+|s|=2

(−1)|r|

r!s! ∂r
x∂s

ph0 ∂r
p∂s

xg(0)

= − 1
8

2

i,k=1
∂xi∂xk

h0 ∂pi∂pk
g(0) − δik∂xi∂xk

g(0)

= − 1
8

2

i,k=1
∂xi∂xk

a0βg(0)(−δik + βpipk) − δikβg(0)(∂xi∂xk
a0 + β(∂xia0)(∂xk

a0))

=β

8 g(0) 2Δa0 − β pT (∇ ⊗ ∇a0)p − |∇a0|2 .

The last remaining term is H1#(0)g
(1)(β), where the zero-order Moyal product is just the or-

dinary multiplication. We stress furthermore that we are multiplying two hermitian matrices,
where one of them is a multiple of H1 and therefore

H1#(0)g
(1) = (h1 · σ)(βg(0)h1 · σ) = βg(0)|h1|2σ0

The above leads us now to the ODE

∂βg(2)(β) = H0g(2)(β) + βg(0) 1
4Δa0 − β

8 pT (∇ ⊗ ∇a0)p − |∇a0|2 + |h1|2 σ0,

with initial value g(2)(0) = 0. The solution is then given by (see Appendix B.3.2)

g(2)(β) = β

8
2

exp (βh0) Δa0 + β

3 |∇a0|2 − pT (∇ ⊗ ∇a0)p + 4|h1|2 σ0, (3.116)
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Order three of g(β)

Formula (3.112) gives us here

∂βg(3) =H0g(3) + H0#(1)g
(2) + H0#(2)g

(1) + H0#(3)g
(0) + H1g(2) + H1#(1)g

(1) + H1#(2)g
(0).

(3.117)

Skipping the first term on the right-side, containing the unknown, let us consider the second
term, which only contributes to the σ0 component. To facilitate the calculations we write
g(2) = λ1λ2σ0, where

λ1 := β

8
2
g(0), λ2 := Δa0 + β

3 |∇a0|2 − pT (∇ ⊗ ∇a0)p + 4|h1|2. (3.118)

We see that λ1 is a function of h0, hence we deduce with the product rule from Lemma 3.6.3

2ih0#(1)g
(2) = 2i(h0#(1)λ1)λ2σ0 + 2iλ1(h0#(1)λ2)σ0 = 2iλ1(h0#(1)λ2)σ0

= β2

8 g(0) β

3 p · ∇x(pT (∇x ⊗ ∇xa0)p) − p · ∇x(Δxa0) + 8(α(∇⊥
x a0) − (∇xa)p) · h1 σ0.

The last equality is not so fast calculated and is therefore postponed to the Appendix B.3.3.
Since the next term H0#(2)g

(1) reduces to h0#(2)g
(1) · σ, we have to calculate h0#(2)g

(1).
Using again the fact that ∂r

x∂s
ph0 equals zero for |r|, |s| ≥ 1 and ∂pi∂pk

h0 = −δik, we have

h0#(2)g
(1) = −1

4 |r|+|s|=2

(−1)|r|

r!s! ∂r
x∂s

ph0 ∂r
p∂s

xg(1)

= −1
8

2

i,k=1
∂xi∂xk

h0 ∂pi∂pk
g(1) + 1

8

2

k=1
∂2

xk
g(1),

where the derivatives of g(1) are given by

∂pk
g(1) = − β exp (βh0) βpkh1 + α∂pk

p⊥ ,

∂pi∂pk
g(1) =β2 exp (βh0) (βpipk − δik) h1 + α pi∂pk

p⊥ + pk∂pip
⊥ ,

∂xk
g(1) =β exp (βh0) β(∂xk

a0)h1 + ∂xk
a ,

∂2
xk

g(1) =β exp (βh0) β2(∂xk
a0)2 + β∂2

xk
a0 h1 + 2β(∂xk

a0)∂xk
a + ∂2

xk
a .

Substituting the derivatives into the previous gives us

2

i,k=1
∂xi∂xk

h0 ∂pi∂pk
g(1) =

2

i,k=1
(∂xi∂xk

a0)β2g(0) (βpipk − δik) h1 + α pi∂pk
p⊥ + pk∂pip

⊥

= β2g(0) (βpT (∇x ⊗ ∇xa0)p − Δa0)h1 + 2αpT ((∇x ⊗ ∇x)a0)∇pp⊥ ,

and
2

i=1
∂2

xi
g(1) =

2

i=1
βg(0) β2(∂xia0)2 + β∂2

xi
a0 h1 + 2β(∂xia0)∂xia + ∂2

xi
a

=βg(0) β2|∇xa0|2 + βΔxa0 h1 + 2β∇xa · ∇xa0 + Δxa .
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Using the identity pT (∇x ⊗ ∇xa0)∇pp⊥ = −∇⊥
x (∇xa0 · p) (see Appendix B.3.3), we obtain

h0#(2)g
(1) = β

8 g(0) β 2Δxa0 + β |∇xa0|2 − pT (∇x ⊗ ∇xa0)p h1

+ 2β(α∇⊥
x (∇xa0 · p) + ∇xa · ∇xa0) + Δxa .

We calculate the next term H0#(3)g
(0) which only gives contribution to the σ0 component,

hence can be reduced to (h0#(3)g
(0))σ0. Using ∂r

x∂s
ph0 = 0 for |s| = 3 − |r|, |r| ≤ 2, yields

h0#(3)g
(0) = − 1

2i
3

|r|+|s|=3

(−1)|r|

r!s! ∂r
x∂s

ph0 ∂r
p∂s

xg(0) = 1
8i |r|=3

1
r! ∂r

xh0 ∂r
pg(0).

For the derivative of h0 we have ∂r
xh0 = ∂r

xa0, and for the derivatives of g(0) we have

∂pk
g(0) =(−pk)β exp (βh0) ,

∂pi∂pk
g(0) =β exp (βh0) (βpipk − δik),

∂pi∂pk
∂pl

g(0) =β2 exp (βh0) (piδkl + plδik + pkδil − βpipkpl),

which leads us to (see for comparison Example 3.2.23)

H0#(3)g
(0) = 1

8i
1
6

2

i=1

2

k=1

2

l=1
(∂xi∂xk

∂xl
a0) β2g(0)(piδkl + plδik + pkδil − βpipkpl)

= β2

16ig
(0) p · ∇x(Δxa0) − β

3 p · ∇x pT (∇x ⊗ ∇xa0)p σ0.

The fact that we found an imaginary quantity need not worry us, since we will see that this
cancels out with the other-σ0 components.

Next term is just a ordinary multiplication between σ- and σ0- components, hence

h1#(0)g
(2) = β

8
2
g(0) Δxa0 + β

3 |∇xa0|2 − pT (∇x ⊗ ∇xa0)p + 4|h1|2 h1 · σ.

The following term needs a bit more attention, since it is the first time we multiplicate two
σ-components. The Pauli algebra gives us here (see (3.8))

H1#(1)g
(1) = (h1 · σ) #(1) g(1) · σ = h1 ·#1 g(1) σ0 + h1 ×#1 g(1) · iσ,

where we understand ·#1 and ×#1 as the usual vector operations where the multiplication
is replaced by the order-1 Moyal product. Recalling that g(1)(β) = β exp(βh0)h1 · σ (see
(3.115)), we obtain for the first term at the right-hand side, by using Lemma 3.6.3

2ih1 ·#1 g(1) = ∇ph1 · ∇x(βg(0)h1) − ∇xh1 · ∇p(βg(0)h1)

=βg(0) (∇ph1 · ∇xh1 − ∇xh1 · ∇ph1) + ∇ph1 · ∇xβg(0) − ∇xh1 · ∇pβg(0) · h1

= ∇ph1 · ∇xβg(0) − ∇xh1 · ∇pβg(0) · h1

= −α∇pp⊥ · (β2g(0)∇xa0) − ∇xa · (−pβ2g(0))

=β2g(0) −α(∇xa0)⊥ + (∇xa)p · h1.
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The second term obtained from the Pauli algebra is 2ih1 ×#1 g(1) = ∇ph1 ×∇xg(1) −∇xh1 ×
∇pg(1), where the cross product refers to the components of h1 and g(1) and not to the
gradients, see Appendix B.3.3. We get for this part

2iβ−1h1 ×#1 g(1) =∇ph1 × (∇xg(0)h1) − ∇xh1 × (∇pg(0)h1)
=∇ph1 × (∇xg(0))h1 + g(0)∇xh1 − ∇xh1 × (∇pg(0))h1 + g(0)∇ph1

= ∇ph1∇xg(0) − ∇xh1∇pg(0) × h1 + 2g(0)∇ph1 × ∇xh1

=g(0) β(−α(∇xa0)⊥ + (∇xa)p) × h1 − 2α(∇⊥
x × a) .

Therefore,

H1#(1)g
(1) = βg(0) 1

2i β((∇xa)p − α(∇xa0)⊥) · h1 σ0

+1
2 β((∇xa)p − α(∇xa0)⊥) × h1 − 2α(∇⊥

x × a) · σ .

The last term of (3.117), i.e. H1#(2)g
(0), will only give a contribution to the σ-components,

and we have again that ∂r
p∂s

xh1 = 0 for |r| ≥ 2 and also for |r| ≥ 1 ∧ |s| ≥ 1. Here the Moyal
product of the Pauli components is to understand as (h1#(2)g

(0))j = (h1)j#(2)g
(0) and we

obtain

h1#(2)g
(0) = − 1

8

2

k=1

2

l=1
∂xk

∂xl
h1∂pk

∂pl
g(0)

= − 1
8

2

k=1

2

l=1
(∂xk

∂xl
a)βg(0) (pkplβ − δkl)

= − 1
8βg(0) βpT (∇x ⊗ ∇xa)p − Δxa .

By substituting in (3.117) all the explicitly computed terms, we see that all the σ0-components
cancel themselves out. Since only derivatives with respect to x remain, we drop the notation
again and obtain the ODE

∂βg(3) =H0g(3) + β

8 g(0) β 3Δa0 + 4
3β |∇a0|2 − pT (∇ ⊗ ∇a0)p + 4|h1|2 h1

+ 2Δa − 8α(∇⊥ × a) + β 2∇a · ∇a0 − pT (∇ ⊗ ∇a)p + 2α∇⊥(∇a0 · p)

+ 4β(∇ap − α(∇a0)⊥) × h1 · σ,

with initial datum g(3)(0) = 0. Solving the ODE (see Appendix B.3.3) yields

g(3)(β) =β2

24 exp (βh0) 3βΔa0 + β2(|∇a0|2 − pT (∇ ⊗ ∇a0)p) + 4β|h1|2 h1

+ 3Δa − 12α(∇⊥) × a + β 2∇a · ∇a0 − pT (∇ ⊗ ∇a)p + 2α(∇⊥)(∇a0 · p)

+ 4β (∇a)p − α(∇a0)⊥ × h1 · σ.

(3.119)
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3. Spin Drift Diffusion Model

Adding the orders (3.111),(3.115), (3.116) and (3.119) we obtain the semiclassical expansion
of g(β) up to the third order

g(β) = exp(βh0)σ0 + εβ exp(βh0)h1 · σ+

+ ε2 β

8
2

exp (βh0) Δa0 + β

3 |∇a0|2 − pT (∇ ⊗ ∇a0)p + 4|h1|2 σ0+

+ ε3 β2

24 exp (βh0) 3βΔa0 + β2(|∇a0|2 − pT (∇ ⊗ ∇a0)p) + 4β|h1|2 h1

+ 3Δa − 12α(∇⊥) × a + β 2∇a · ∇a0 − pT (∇ ⊗ ∇a)p + 2α(∇⊥)(∇a0 · p)

+ 4β (∇a)p − α(∇a0)⊥ × h1 · σ + O(ε4).

Setting in the above β = 1 we obtain the semiclassical expansion of M (N) up to the third
order.
.

3.6.3. Semiclassical Expansion of the Lagrange Multiplier

In the previous section we derived the semiclassical expansion of the quantum Maxwellian,
but we did hide an important fact. We expanded M (dropping from now on the dependence
on N , for the sake of simplicity) under the consideration that M is an explicit function of
the semiclassical parameter ε, which is equivalent to assuming that the Lagrange multipliers
are of order 1 (or that the Lagrange multipliers are not quantum objects). In fact we have
seen in Section 3.3.3 that a0 and a also have a semiclassical expansion, and that for example
the zeroth order of the quantum Maxwellian depends only on the zeroth order of a0. This
means that M also depends on ε through its dependence on Ã. In order to stress this fact
we provisionally write the quantum Maxwellian as a function of ε and Ã(ε), i.e. M (ε, Ã(ε)).
With the Taylor expansion at = 0 we obtain at first hand the semiclassical expansion of
the Lagrange multipliers

aj(ε) =
∞

k=0
εka

(k)
j , where a

(k)
j = 1

k!
∂kaj

∂εk
ε=0

, for j ∈ {0, 1, 2, 3} (3.120)

where we recall that a0 = ã0 − V , and at second hand we obtain the complete expansion of
the quantum Maxwellian

M (ε) =
∞

k=0
εkM (k), where M (k) = 1

k!
dk

dεk
M (ε, Ã(ε))

ε=0
.

The previous work was not in vain, since the relation between the general quantum Maxwellian
g(β) (see (3.107)) and M is still important. We have that the explicit dependence on ε of
M comes from the semiclassical expansion of g, which means that

∂mM
∂εm

ε=0
= ∂mg(1)

∂εm
ε=0

= m!g(m)(1),

where g(m) is the m-th order of the semiclassical expansion g(β) = ∞
m=0 εmg(m)(β) we

calculated in Section 3.6.2. Since the Pauli representatives are unique, we identify the matrix
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Ã(ε) with the four dimensional vector (a0(ε), a1(ε), a2(ε), a3(ε)) and obtain for the first four
orders the equations (detailed calculations in the Appendix B.4.1)

M (0) =M
ε=0, (3.121)

M (1) =∂M
∂ε ε=0

+
3

j=0

∂M
∂aj ε=0

a
(1)
j , (3.122)

2M (2) =∂2M
∂ε2

ε=0
+

3

j=0
2 ∂2M

∂ε∂aj ε=0
a

(1)
j (3.123)

+
3

j=0

3

k=0

∂2M
∂aj∂ak ε=0

a
(1)
j a

(1)
k + 2∂M

∂aj ε=0
a

(2)
j ,

6M (3) =∂3M
∂ε3

ε=0
+

3

j=0
3 ∂3M

∂ε2∂aj ε=0
a

(1)
j + 6 ∂2M

∂ε∂aj ε=0
a

(2)
j + 6∂M

∂aj ε=0
a

(3)
j (3.124)

+
3

j=0

3

k=0
3 ∂3M

∂ε∂aj∂ak ε=0
a

(1)
j a

(1)
k + ∂2M

∂aj∂ak ε=0
4a

(2)
j a

(1)
k + 2a

(2)
k a

(1)
j

+
3

j=0

3

k=0

3

i=0

∂3M
∂aj∂ak∂ai ε=0

a
(1)
j a

(1)
k a

(1)
i ,

How do we now obtain from the above the various orders of our Lagrange multipliers? The
answer is the constraint M = n0σ0 + εn · σ given in Problem 3.3.5, which gives us through
comparison of the the orders of ε the following four equations

1. M (0) = n0σ0, 2. M (1) = n · σ, 3. M (2) = 0, 4. M (3) = 0. (3.125)

With the above it will be possible to evaluate the orders of a0 and a, and write them as
functions of ε and N . Before we do that, let us state a basic result from measure theory.

Proposition 3.6.4. Let u ∈ R, then

R
e

−u2
2 du =

√
2π,

R
ue

−u2
2 du = 0,

R
u2e

−u2
2 du =

√
2π,

R
u3e

−u2
2 du = 0.

Proof. The first integrand is a Gaussian density function with expectation value one and
variation zero. Since the function F (A) = 1√

2π A exp(−u2/2)du is a probability on R, means
that F (R) = 1, we get immediately the first result. That the third integral vanishes, is
obtained by partial integration and the first result. In the second and fourth integral, odd
functions are integrated over the whole space, and therefore their integrals are zero.

Theorem 3.6.5. Let ã0 and a be the Lagrange multiplier, given through Theorem 3.3.8, and
recall a0 = ã0 − V . Then the semiclassical expansions of the Pauli components are given by:

a0 = log 1
2π

n0 − ε2 1
12

Δn0
n0

− 1
2

|∇n0|2
n02 + 1

2
n

n0

2
+ α2 + O(ε4),

a = 1
n0

n + ε2 1
12n0

Δn0
n0

− ∇n0
n0

2
+ 4 n

n0

2
+ 8α2 n + 4α2 n⊥ ⊥ −

− 1
12

Δn

n0
− ∇n

n0
· ∇n0

n0
+ α

6n0
4∇ + ∇n0

n0

⊥
× n + O(ε3),

where (n⊥)⊥ = (−n1, −n2, 0)T and 4∇ + ∇n0
n0

⊥
= 4∇⊥ + ∇⊥n0

n0
.
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Remark 3.6.6. Again we observe here a consequence of our smallness assumption on the
macroscopic density N (see Remark 3.3.6). Apparently the odd orders (up to the third at
least) vanish, which makes the calculations less tedious. Furthermore we recall that in Section
3.3.3 the zeroth order of the matrix of Lagrange multiplier was calculated, where we obtained
the special structure Ã = ã0σ0 + εa · σ. So the above semiclassical expansion of a is the right
one, but to obtain the m-th order of Ã we have the relation

Ã(0) = (a(0)
0 − V )σ0, Ã(m) = a0

(m)σ0 + a(m−1) · σ, m ≥ 1.

Proof of Theorem 3.6.5:

As already mentioned we have to combine the constraint equations (3.125) with the relations
given in (3.121)-(3.124) to obtain the different orders. From the first equation in (3.125) and
(3.121) we get with Proposition 3.6.4

n0 = m (0)
0

ε=0
= g

(0)
0 (1)

ε=0
= exp −|p|

2

2
+ a0 = 2π exp a

(0)
0 ,

which allows us to identify the leading order Lagrange multiplier by

a
(0)
0 = log 1

2π
n0 .

From now on we will denote

h
(0)
0 := −|p|2

2 + a
(0)
0 , h

(0)
1 := a(0) − αp⊥. (3.126)

To solve the higher-order constraint equations in (3.125), we shall need the following deriva-
tives of M :

∂kM
∂εk

ε=0
= k!g(k)(1)

ε=0, (3.127)

∂M
∂aj ε=0

=

exp h
(0)
0 σ0, for j = 0,

0, else,
(3.128)

∂2M
∂aj∂ak ε=0

=

exp h
(0)
0 σ0, for j = k = 0,

0, else,
(3.129)

∂2M
∂ε∂aj ε=0

=

exp h
(0)
0 h

(0)
1 · σ, for j = 0,

exp h
(0)
0 σj , else.

(3.130)

From the second constraint equation in (3.125) we get again with Proposition 3.6.4

n · σ = exp h
(0)
0 h

(0)
1 · σ + exp h

(0)
0 a

(1)
0 σ0

= exp −|p|2
2 + a

(0)
0 a(0) · σ + α exp −|p|2

2 p⊥ exp a
(0)
0 · σ + n0a

(1)
0 σ0

=n0a(0) · σ + n0a
(1)
0 σ0,
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which, by comparison of the Pauli components, leads to

a
(1)
0 = 0, a(0) = 1

n0
n. (3.131)

For the next orders we look at the third equation of (3.125) and obtain with (3.123), the
derivatives (3.127)-(3.130) and the already calculated orders that

0 = ∂2M
∂ε2

ε=0
+

3

j=0
2 ∂2M

∂ε∂aj ε=0
a

(1)
j +

3

j=0

3

k=0

∂2M
∂aj∂ak ε=0

a
(1)
j a

(1)
k + 2∂M

∂aj ε=0
a

(2)
j

= 2g(2)(1)
ε=0

+ 2 exp h
(0)
0

 3

j=1
a

(1)
j σj

 + 2 exp h
(0)
0 a

(2)
0 σ0 .

Since g(2) only consists of a σ0-component, the only Paul components regarding σ appearing
on the right hand side are a(1), hence we can deduce

a(1) = 0.

So what we obtain from the above is that

a
(2)
0 = − 1

n0
g

(2)
0 (1)

ε=0

The right hand side can be integrated with basic techniques and is therefore put into the
Appendix B.4.2. The result is then

a
(2)
0 = − 1

12Δ log (n0) − 1
24 |∇ log (n0)|2 − 1

2
n

n0

2
− α2, (3.132)

or after resolving the derivatives of the logarithm (see also Appendix B.4.2)

a
(2)
0 = − 1

12
Δn0
n0

− 1
2

|∇n0|2
n02 − 1

2
n

n0

2
− α2.

For the last needed orders, a(2) and a
(3)
0 , we need the last constraint equation given in (3.125).

Looking at (3.124), the equation reduces drastically, due to the fact that the first orders of
a0 and a vanish, and hence we have to solve

0 = 1
6

∂3M
∂ε3

ε=0
+

3

j=0

∂2M
∂ε∂aj ε=0

a
(2)
j + ∂M

∂a0 ε=0
a

(3)
0 (3.133)

The first two terms have only the spinorial part while the third one has only the trace part
(see (3.119) and eqs. (3.127)–(3.130)), which immediately leads to

a
(3)
0 = 0. (3.134)

What remains is given by

0 = g(3)(1)
ε=0

+ a
(2)
0 exp h

(0)
0 h

(0)
1 + exp h

(0)
0 a(2) · σ (3.135)

= g(3)(1)
ε=0

· σ + a
(2)
0 n · σ + n0a(2) · σ, (3.136)
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and therefore for the last needed component we have to calculate

a(2) = − 1
n0

g(3)(1)
ε=0

− 1
n0

a
(2)
0 n.

The computations are cumbersome, but straightforward and are therefore put into the Ap-
pendix B.4.3. The result for the integral is

g(3)(1)
ε=0

= n0
12 Δa

(0)
0 + 1

2 ∇a
(0)
0

2
+ 2 a(0) 2

+ 2α2 a(0) − 4α2 a(0)⊥ ⊥

+ n0
12 Δa(0) + ∇a(0) · ∇a

(0)
0 − α 8∇ + 2∇a

(0)
0

⊥ × a(0) , (3.137)

where a(0)⊥ ⊥ = − a
(0)
1 , −a

(0)
2 , 0 T and

8∇ + 2∇a
(0)
0

⊥ × a(0) = 8∇⊥ × a(0) + 2(∇a
(0)
0 )⊥ × a(0).

Moreover, since a(0) = 1
n0

n, we have

∇a(0) = 1
n0

∇n − 1
n0

n∇n0 ,

Δa(0) = 1
n0

Δn − 2
n0

∇n · ∇n0 − 1
n0

Δn0n + 2 ∇n0
n0

2
n .

Substituting the known orders, the integral of g(3)(1) and the above derivatives into the
equation for a(2) (see (3.137) and for the detailed calculations Appendix B.4.3) yields

a(2) = 1
12n0

Δn0
n0

− ∇n0
n0

2
+ 4 n

n0

2
+ 8α2 n + 4α2 n⊥ ⊥

− 1
12

Δn

n0
− ∇n

n0
· ∇n0

n0
+ α

6n0
4∇ + ∇n0

n0

⊥
× n, (3.138)

where (n⊥)⊥ = (−n1, −n2, 0)T and 4∇ + ∇n0
n0

⊥
= 4∇⊥ + ∇⊥n0

n0
. .

.

3.6.4. Derivation of the Semiclassical Model (Proof of Main Theorem 3.6.1)
Before substituting the semiclassical expansions of M , a0 and a into the full quantum model
(3.89)-(3.90), we recall (see Theorem 3.6.1) that we will only expand up to the order O(αkεl)
with k, l ∈ N, k + l ≤ 2. Hence it will be enough to work with already approximated versions
of the last calculated orders of g (eq. (3.119)) and a (eq. (3.138)), namely

g(3)(1) = 1
24 exp(h0) 3Δa0 + (|∇a0|2 − pT (∇ ⊗ ∇a0)p) + 4 a − αp⊥ 2

a (3.139)

+ 3Δa + 2∇a · ∇a0 − pT (∇ ⊗ ∇a)p + 4 (∇a)p × a + O(α),

a(2) = 1
3

n

n0

2
+ 1

12
Δn0
n0

− 1
12

∇n0
n0

2 n

n0
− 1

12
Δn

n0
+ 1

12
∇n

n0
· ∇n0

n0
+ O(α). (3.140)

116



3.6. The Semiclassical Full Spin Model

The reason why we did this not earlier was for the sake of completeness. If the reader is
interested in a more detailed model we invite to calculate it with the full orders.
Now, we substitute all calculated expansions into the full quantum model (3.89)-(3.90) and
disregard the terms where the product of the powers of α and ε exceeds two.

The semiclassical equation for n0:

Beginning from the first quantity, which would be the charge density, we derive its semiclas-
sical equation. Recall the non-local equation for n0 (3.89):

∂tn0 =τ div n0∇a0 + n0∇V + ε2 (n · (∇a)) + 2ταε2 (∇⊥) · (n × a) .

The order of the last term is already out of our interest and can be therefore disregarded.
Hence we need only to determine the gradient of a0 and a. Taking a closer look onto the
first one we get

∇a0 =∇(a(0)
0 + ε2a

(2)
0 + O(ε3))

=∇ log 1
2π

n0 − ε2 1
12

Δn0
n0

− 1
2

|∇n0|2
n02 + 1

2
n

n0

2
+ α2 + O(ε3)

=∇n0
n0

− ε2∇ 1
12

Δn0
n0

− 1
2

|∇n0|2
n02 + 1

2
n

n0

2
+ α2 + O(ε3).

Before we take the gradient we rewrite one particular term of a
(2)
0 , namely

Δn0
n0

− 1
2

|∇n0|2
n02 = 2 Δ√

n0√
n0

. (3.141)

This term is called the Bohm potential and is quite of interest among physicists and one of
the reasons why the semiclassical expansion is mostly expanded up to the second order. For
more details on this topic we refer to [Boh52a, Boh52b, DMR05, DT09, J0̈9]. Since the Bohm
potential is already in a ”nice form” we pass to the next term:

∇ |n|2
|n0|2 = 1

|n0|4 (2|n0|2n · ∇n − 2|n|2n0∇n0) = 2 1
n02 n · ∇n − |n|2

n03 ∇n0 ,

where we understand (n · ∇n)j = n · ∂xj n. So we obtain

n0∇a0 = ∇n0 − ε2 1
6n0∇ Δ√

n0√
n0

+ 1
n0

n · ∇n − |n|2
n02 ∇n0 + O(ε3).

For ∇a we only need the zeroth order, since it is already multiplied with ε2. Here we get:

∇a = ∇(a(0) + O(ε2)) = ∇ n

n0
+ O(ε2) = 1

n0
∇n − 1

n02 n∇n0 + O(ε2).

Let us point out that ∇n and n∇n0 are matrices with the rows ∇nj and nj∇n0 respectively,
for j ∈ {1, 2, 3}. Hence we obtain for the last term

n · ∇a =
3

j=1

nj

n0
∇nj − n2

j

n02 ∇n0 + O(ε2) = 1
n0

n · ∇n − |n|2
n02 ∇n0 + O(ε2).
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3. Spin Drift Diffusion Model

Substituting the results into the non-local equation for n0 we get

∂tn0 =τ div n0∇a0 + n0∇V + ε2 (n · (∇a)) + O(αε2)

=τ div n0∇n0 − ε2 1
6n0∇ Δ√

n0√
n0

+ 1
n0

n · ∇n − |n|2
n02 ∇n0

+n0∇V + ε2 1
n0

n · ∇n − |n|2
n02 ∇n0 + O(ε3)

=τ div n0∇n0 + n0∇V − ε2

6 n0∇ Δ√
n0√

n0
+ O(ε3),

where we also used that α is of the same order as ε.

The Semiclassical Equations for the Spin Components:

We now derive the semiclassical equation (3.106) for the ”spin part” n, by substituting the
semiclassical approximations of M , a0 and a in the full quantum model (3.90), that we recall
here for convenience:

∂tn = − 2(n × a) + τ div n0∇a + n∇a0 + n∇V + 2
ε

JT × a

− 2τα n0(∇⊥ × a) + ∇⊥(a0 + V ) × n − 2
ε

a p⊥ · m + JT a⊥

− 2τ 2ε(n × a) × a − n × ∂
(0)
t a .

(3.142)

And to have everything at one point we recall also the semiclassical expansions, where we
use the approximated versions of the last orders (3.139) -(3.140) introduced in the beginning
of the proof:

M (N) = exp(h0)σ0 + ε exp(h0)h1 · σ

+ ε2

8 exp (h0) Δa0 + 1
3 |∇a0|2 − pT (∇ ⊗ ∇a0)p + 4|h1|2 σ0

+ ε3

24 exp(h0) 3Δa0 + (|∇a0|2 − pT (∇ ⊗ ∇a0)p) + 4 a − αp⊥ 2
a

+ 3Δa + 2∇a · ∇a0 − pT (∇ ⊗ ∇a)p + 4 (∇a)p × a · σ + O(ε4),

and

a0 = log 1
2π

n0 − ε2 1
12

Δn0
n0

− 1
2

|∇n0|2
n02 + 1

2
n

n0

2
+ α2 + O(ε4),

a = 1
n0

n + ε2 1
3

n

n0

2
+ 1

12
Δn0
n0

− 1
12

∇n0
n0

2 n

n0
− 1

12
Δn

n0
+ 1

12
∇n

n0
· ∇n0

n0
+ O(ε3).

Next we recall the already calculated derivatives from various orders (for the calculations see
Appendix B.4.2 and Appendix B.4.3)

∇a
(0)
0 =∇n0

n0
, ∇a(0) = 1

n02 (n0∇n − n∇n0) ,

Δa
(0)
0 =Δn0

n0
− ∇n0

n0

2
, Δa(0) = 1

n0
Δn − 2

n0
∇n · ∇n0 − 1

n0
Δn0n + 2 ∇n0

n0

2
n .
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3.6. The Semiclassical Full Spin Model

Let us for the start calculate the remaining derivatives that are needed for our substitution,
where we put the lengthy but straightforward calculations into Appendix B.4.4. They are
given by

∇a
(2)
0 = − 1

12
∇(Δn0)

n0
− ∇n0

n0

Δn0
n0

− ∇n0
n0

(∇ ⊗ ∇)n0
n0

+ ∇n0
n0

2 ∇n0
n0

− n

n0
· ∇n

n0
− n

n0

2 ∇n0
n0

,

∇a(2) = n

n0

2
3

n

n0
· ∇n

n0
− n

n0

2 ∇n0
n0

+ 1
12

∇(Δn0)
n0

− 1
6

∇n0
n0

Δn0
n0

− 1
6

∇n0
n0

(∇ ⊗ ∇)n0
n0

+ n

n0

1
4

∇n0
n0

2 ∇n0
n0

+ 1
12

∇n

n0

(∇ ⊗ ∇)n0
n0

+ 4 n

n0

2
+ Δn0

n0
− ∇n0

n0

2
σ0

+ 1
12

Δn

n0
− 2 ∇n

n0
· ∇n0

n0

∇n0
n0

+ 1
12

∇n0
n0

(∇ ⊗ ∇)n
n0

− 1
12

∇(Δn)
n0

,

where ((∇n0(∇ ⊗ ∇))n)j = ∇n0(∇ ⊗ ∇)nj , and ∇a(2) is a 3 × 3 matrix, where the last
column equals zero.
With the above derivations we are able to substitute everything in the equation for the spin
components (3.90). Due to the multilinearity of the cross product we are able to split the
first term into two parts.

n × a = n × a(0) + ε2n × a(2) + O(ε3)

Both terms a(0) and a(2) have at least one term, multiplied with n and therefore the cross
product with those vanish. We obtain

−2n × a = ε2

6
n

n0
× Δn

n0
− ∇n

n0
· ∇n0

n0
+ O(ε3). (3.143)

Next term we look at is div(n0∇a+n∇a0 +n∇V ), where we will not evaluate the divergence.
Since we have already everything at hand that we need, we obtain

n0∇a + n∇a0 = n0∇ a(0) + ε2a(2) + n ∇a
(0)
0 + ε2∇a

(2)
0 + O(ε3) =

= ∇n − n
∇n0
n0

+ n
∇n0
n0

+ ε2

12n 8 n

n0
· ∇n

n0
− 12 n

n0

2 ∇n0
n0

+ ∇(Δn0)
n0

− 2∇n0
n0

Δn0
n0

− 2∇n0
n0

(∇ ⊗ ∇)n0
n0

+ ε2n
1
4

∇n0
n0

2 ∇n0
n0

+ ε2

12∇n
(∇ ⊗ ∇)n0

n0
+ 4 n

n0

2
+ Δn0

n0
− ∇n0

n0

2
σ0

+ ε2

12 Δn − 2 ∇n · ∇n0
n0

∇n0
n0

+ ∇n0(∇ ⊗ ∇)
n0

(n) − ∇(Δn)

− ε2

12n
∇(Δn0)

n0
− ∇n0

n0

Δn0
n0

− ∇n0
n0

(∇ ⊗ ∇)n0
n0

+ ∇n0
n0

2 ∇n0
n0

− ε2n
n

n0
· ∇n

n0
− n

n0

2 ∇n0
n0

+ O(ε3)
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Summarizing yields

n0∇a + n∇a0 =∇n + ε2

12n 2 ∇n0
n0

2 ∇n0
n0

− 4 n

n0
· ∇n

n0
− ∇n0

n0

Δn0
n0

− ∇n0
n0

(∇ ⊗ ∇)n0
n0

− ε2

12∇(Δn) + ε2

12∇n
(∇ ⊗ ∇)n0

n0
+ 4 n

n0

2
+ Δn0

n0
− ∇n0

n0

2
σ0

+ ε2

12 Δn − 2 ∇n · ∇n0
n0

∇n0
n0

+ (∇n0(∇ ⊗ ∇))
n0

n + O(ε3).

For better understanding of the last line, ∇n (∇⊗∇)n0
n0

is a simple matrix-matrix multiplication
and for j ∈ {1, 2, 3} we have

(Δn∇n0 + (∇n · ∇n0)∇n0 + (∇n0(∇ ⊗ ∇))n)j =
= Δnj∇n0 + (∇nj · ∇n0)∇n0 + ∇n0(∇ ⊗ ∇)nj . (3.144)

Since we cannot simplify it any further, we leave the upper expression as it is for now and
continue with the next term, namely div 1

ε JT × a . Recall that JT = p1m |p2m |0 is a
3 × 3 matrix and that the cross product is to understand as

JT × a = ( p1m × a | p2m × a | 0) .

Further recall that m = εm (1) + ε3m (3) + O(ε4) and since JT × a is multiplied by ε−1 we
have to expand JT × a up to order three:

1
ε

pkm × a = pkm (1) × a(0) + ε2 pkm (1) × a(2) + ε2 pkm (3) × a(0) + O(ε3), for k ∈ {1, 2}.

The factors m (1) and m (3) are both dependent on a0 and a. Difficulties arise from the
term exp(h0) and can be solved by using the Taylor expansion of the exponential (exp(x) =
1 + x + O(x2)), in the sense that

exp(a0) = exp a
(0)
0 + ε2a

(2)
0 + O(ε3) = n0

2π
exp ε2a

(2)
0 + O(ε3)

= n0
2π

1 + ε2a
(2)
0 + O(ε3) . (3.145)

Using the integral values of Proposition 3.6.4 and the above expansion (3.145), we obtain

pkm (1) = pk exp (h0) (h1) = exp(a0) pk exp −|p|2
2 −αp⊥

= αn0e2 + O(αε2) k = 1,

−αn0e1 + O(αε2) k = 2,
(3.146)

JT
(1)

= αn0 (e2| − e1|0) + O(αε2). (3.147)

With the previous calculations we get for our first two expressions of 1
ε JT × a:

pT m (1) × a(0) = αn0 (e2| − e1|0) × 1
n0

n = α


 n3 0 0

0 n3 0
−n1 −n2 0


 + O(αε2),

ε2 pT m (1) × a(2) = αε2n0 (e2| − e1|0) × a(2) = O(αε2).
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3.6. The Semiclassical Full Spin Model

Taking a closer look on the last term in the semi classical expansion of JT × a and using
again that all odd terms with respect to p vanish, we have

pkm (3) = 1
24 pk exp (h0) 4|h1|2 − pT (∇ ⊗ ∇a0)p a − pT (∇ ⊗ ∇a)p + 4 (∇a)p × a .

(3.148)

The integrals pk exp(h0)pT (∇ ⊗ ∇a0)pa and pk exp(h0)pT (∇ ⊗ ∇a)p equal zero, because
in each line exists at least one expression, that is odd with respect to either p1 or p2 . Therefore
the above (3.148) reduces to

pkm (3) = 1
6 pk exp (h0) |h1|2a + (∇a)p × a .

Recalling that we are already at second order with respect to ε, we lay our focus on the zero
orders with respect to ε and α in the next calculations, and obtain

pk exp (h0) |h1|2 a(0) = pk exp (h0) |a|2 + α2 p⊥ 2 − 2α(a · p⊥) a(0)

= O(α),

The term (∇a)p is a matrix-vector multiplication, where p multiplies with the gradient, hence

(∇a)p × a = ∇a(0) p × a(0) + O(ε2)

= ∇ 1
n0

n p × 1
n0

n + O(ε2)

= 1
n0

(∇n)p − 1
n02 (∇n0 · p)n × 1

n0
n

= 1
n02 (∇np) × n.

This and (3.145) gives us

pk exp (h0) ∇a(0)p × a(0) = exp(a0) pk exp −|p|2
2

1
n0

(∇np) × n

n0

= 1
n0

∂xk
n × n.

Therefore we obtain for the last term in (3.148):

ε2 pT m (3) × a(0) = ε2 1
6n0

∇n × n + O(αε2).

In total we get

1
ε

JT × a = α


 n3 0 0

0 n3 0
−n1 −n2 0


 + ε2 1

6n0
∇n × n + O(αε2 + ε3).

Since we take the divergence of the above, and the latter has a nicer form, we evaluate the
divergence and obtain with using the product rule for the cross product

div 1
ε

JT × a = −α(∇⊥) × n + ε2

6
Δn

n0
− ∇n0

n0
· ∇n

n0
× n + O(αε2 + ε3).
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Next term to resolve is −2τα(n0(∇⊥ × a) + ∇⊥(a0 + V ) × n). Since this term is of order one
with respect to α, we only need to expand it until the first order with respect to ε. Therefore,
up to an error O(αε2) we approximate it with

− 2τα n0 ∇⊥ × a(0) + ∇⊥ a
(0)
0 + V × n =

= −2τα ∇⊥ − ∇⊥n0
n0

× n + ∇⊥n0
n0

+ ∇⊥V × n = −2τα(∇⊥ + ∇V ⊥) × n.

For the last term in line two of the spin equation (3.142) we use that p⊥ · h1 = p⊥ · a−α|p⊥|2
and that JT a⊥ = −εα(n⊥)⊥ +O(αε2), see formula (3.147). This yields together with (3.145)

4τ
α

ε
a p⊥ · m + JT a⊥ = 4τ

α

ε

n

n0
ε exp (h0) p⊥ · h1 − εα(n⊥)⊥ + O(αε2)

= 4τα2 − n

n0
exp(a0) exp −|p|2

2 p⊥ 2 − (n⊥)⊥ + O(αε2)

= − 4τα2 2n + (n⊥)⊥ + O(αε2).

We now focus our attention on the expansion of the last terms of eq. (3.90),

−2ε(n × a) × a + n × ∂
(0)
t a,

where the unusual operator ∂
(0)
t appears. Recalling that a(0) = 1

n0
n, and since the cross

product of two parallel vectors vanish, we observe for the first term

εn × a = ε
1
n0

n × n + O(ε3) = O(ε3). (3.149)

The second term needs slightly more treatment. We first approximate it at relevant orders:

∂
(0)
t a = ∂

(0)
t a(0) + ε2∂

(0)
t a(2) + O(ε3).

Starting with the zero-order we have to calculate

∂
(0)
t a(0) = ∂

(0)
t

1
n0

n = 1
n0

∂
(0)
t n − 1

n02 n ∂
(0)
t n0.

We see in the full quantum model, namely eq. (3.90), that the zero-order time derivative of
n0 equals zero and ∂

(0)
t n = −2(n × a). Hence

∂
(0)
t a(0) = 1

n0
∂

(0)
t n = − 2

n0
(n × a) = − 2

n0
(n × a(0)) − ε2 2

n0
(n × a(2)) + O(ε3)

= − 2
n02 (n × n) − ε2 2

n0
(n × a(2)) + O(ε3) = − ε2 2

n0
(n × a(2)) + O(ε3).

Recalling that a(2) is given by (3.138), it will be convenient to define

f(n0, n) := 1
3

n

n0

2
+ 1

12
Δn0
n0

− 1
12

∇n0
n0

2
,

so that

a(2) = f(n0, n) n

n0
− 1

12
Δn

n0
+ 1

12
∇n

n0
· ∇n0

n0
. (3.150)
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Observe that the function f takes values in R, and the vector f(n0, n)n is parallel to n,
which gives us that n × (f(n0, n)n) = 0. Using this and the form (3.150), yields

∂
(0)
t a(0) = −ε2 2

n0
(n × a(2)) + O(ε3) = ε2 1

6n0
n × Δn

n0
− ∇n

n0
· ∇n0

n0
+ O(ε3)

Lastly, we have to calculate ∂
(0)
t a(2). Using the product rule and again the fact that ∂

(0)
t n0 = 0

we can write

∂
(0)
t a(2) = ∂

(0)
t f(n0, n) n

n0
+ f(n0, n) 1

n0
∂

(0)
t n − 1

12∂
(0)
t

Δn

n0
− ∇n

n0
· ∇n0

n0
(3.151)

Eventually we shall only need n × ∂
(0)
t a(2) and it is not necessary to calculate the derivative

of f on the right-hand side, because the term (∂(0)
t f(n0, n))n is parallel to n and therefore

vanishes after evaluating the cross product. Since ∂
(0)
t a(2) is already a second-order term, all

occurring orders higher than zero in the above expression can be disregarded. In particular,

∂
(0)
t n = −2(n × a) = −2(n × a(0)) + O(ε2) = −2 1

n0
(n × n) + O(ε2) = O(ε2)

and therefore the second term at the right-hand side of (3.151) can be disregarded. So, the
only non-negligible contribution can only come from the last term. Using again ∂

(0)
t n0 = 0

and ∂
(0)
t n = −2(n × a), we obtain for such term

∂
(0)
t

Δn

n0
− ∇n

n0
· ∇n0

n0
= 1

n0
(Δ∂

(0)
t n) − 1

n0
∇∂

(0)
t n − (Δn − ∇n + n0∇ − ∇n0) ∂

(0)
t n0
n02

= − 2
n0

Δ n × a(0) + 2
n0

∇ n × a(0) + O(ε2) = O(ε2).

Hence

∂
(0)
t a(2) = ∂

(0)
t f(n0, n) n

n0
+ O(ε2),

yielding finally into

n × ∂
(0)
t a = n × ∂

(0)
t a(0) + ε2 n × ∂

(0)
t a(2) + O(ε3)

= ε2 1
6n0

n × n × Δn

n0
− ∇n

n0
· ∇n0

n0
+ O(ε3).

(3.152)
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Substituting all obtained approximations into the full spin equation (3.142) and then sum-
marizing them, yields

∂tn =ε2

6
n

n0
× Δn

n0
− ∇n

n0
· ∇n0

n0
+ τ div (∇n + n∇V )

+ τ
ε2

12 div n 2 ∇n0
n0

2 ∇n0
n0

− 4 n

n0
· ∇n

n0
− ∇n0

n0

Δn0
n0

− ∇n0
n0

(∇ ⊗ ∇)n0
n0

− ∇(Δn)

+ τ
ε2

12 div ∇n
(∇ ⊗ ∇)n0

n0
+ 4 n

n0

2
+ Δn0

n0
− ∇n0

n0

2
σ0

+ τ
ε2

12 div Δn − 2 ∇n · ∇n0
n0

∇n0
n0

+ (∇n0(∇ ⊗ ∇))
n0

n

− 2τα(∇⊥) × n + τ
ε2

3
Δn

n0
− ∇n0

n0
· ∇n

n0
× n

− 2τα(∇⊥ + ∇⊥V ) × n − 4τα2(2n + (n⊥)⊥)

+ τ
ε2

3
n

n0
× n × Δn

n0
− ∇n

n0
· ∇n0

n0
+ O(αε2 + ε3)

= τ div (∇n + n∇V ) − 2τα(2∇⊥ + ∇V ⊥) × n − 4τα2(2n + (n⊥)⊥) + ε2

6
n

n0
× B(N)

+ τ
ε2

12 div nA(N) − ∇(Δn) + ∇nC(N) + B(N)∇n0 + D(N)

+ τ
ε2

3 n × n

n0
× B(N) − B(N) + O(αε2 + ε3)

where

A(N) := 2 ∇n0
n0

2 ∇n0
n0

− 4 n

n0
· ∇n

n0
− ∇n0

n0

Δn0
n0

− ∇n0
n0

(∇ ⊗ ∇)n0
n0

B(N) := Δn

n0
− ∇n

n0
· ∇n0

n0

C(N) := Δn0
n0

− ∇n0
n0

2
+ 4 n

n0

2
σ0 + ∇ ⊗ ∇n0

n0

D(N) := (∇n0(∇ ⊗ ∇))
n0

n − ∇n · ∇n0
n0

∇n0
n0

and Main Theorem 3.6.1 is therefore proved. .
.

The spin model (3.105)-(3.106) obtained in Main Theorem 3.6.1 is for us the nicest and the
most vivid form of the equations. For the interested reader we also did the work to resolve
the divergence in the second line of (3.106) from Main Theorem 3.6.1. The calculations are
tedious and the result does not give more insight than the model obtained in Main Theorem
3.6.1, and is therefore put into the Appendix B.5. A bit more interesting could be the single
component equations, but we also decided to put them just into the Appendix B.6.

3.7. Conclusion & Comparison with other Models
The first fact that is interesting to see, is that the the semiclassical model (3.105) - (3.106)
is semi coupled and at the leading orders regarding to ε, like when ε → 0, we even have a
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3.7. Conclusion & Comparison with other Models

decoupled system. First we want to focus on the spin equations (3.106) and present under
certain conditions that we can get an explicit expression for the spin density n3. Looking on
the leading order with respect to ε we have

∂tn =τ div (∇n + n∇V ) − 2τα(2∇⊥ + ∇V ⊥) × n − 4τα2(2n + (n⊥)⊥) (3.153)

After rescaling equation (3.153) in time to a diffusive timescale, we obtain the same equation
as in [BHJ], hence our model also coincides with the work of El Hajj [EH14].
Furthermore if we consider for sake of simplicity, that the densities n1, n2 are constant with
respect to time and space, we obtain out of equation (3.153) the following equations

0 =2∂x1n3 + ∂x1V n3 − 2αn1, (3.154)
0 =2∂x2n3 + ∂x2V n3 − 2αn2, (3.155)

∂tn3 =τ(div(∇n3 + n3∇V )) − 2τα(∇V · n) − 8τα2n3. (3.156)

Recall that the planar gradient is given by ∇ = (∂x1 , ∂x2 , 0) and therefore ∇V ·n = n1∂x1V +
n2∂x2V . From the first two equations (3.154) - (3.155) we obtain an equation for the gradient
of n3, namely

∇n3 = −1
2n3∇V − α(n⊥)⊥. (3.157)

Assuming in this particular case, for sake of simplicity, that ∇V is a constant force F , we
can substitute the equation (3.157) into the equation for the time derivative of n3, (3.156),
and obtain with a second substitution the following

∂tn3 =τ(div(∇n3 + ∇V n3)) − 2τα(∇V · n) − 8τα2n3

=τ div 2−1n3∇V − α(n⊥)⊥ − 2τα(∇V · n) − 8τα2n3

=τ 2−1∇n3 · ∇V − 2τα(∇V · n) − 8τα2n3

=τ −4−1n3|∇V |2 − 2−1α(n⊥)⊥ · ∇V − 2τα(∇V · n) − 8τα2n3

= − τ
F

2
2

+ 8α2 n3 − τα
1
2(n⊥)⊥ + 2n · F,

which is now simply an ODE with the solution

n3(t, x) = C exp −τ
F

2
2

+ 8α2 t + α

2
(n⊥)⊥ + 4n · F

F
2

2
+ 8α2

.

The reader should notice that the last component of F is zero and that (n⊥)⊥ does only
depend on n1, n2, which were assumed to be constant, therefore the term that is added to
the exponential depends only on the space variable and is independent of time. Looking at
the long time behaviour of the solution we obtain the convergence to a steady state which
relies on the potential energy

lim
t→∞ n3(t, x) = −3α

2
n1F1 + n2F2

F
2

2
+ 8α2

.

At last we want to show that our model can be really seen as a generalization of other
models. As mentioned in the beginning of this section we already had a comparison with
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3. Spin Drift Diffusion Model

the model of El Hajj [EH14]. Since other models are mostly in diffusive time regime and are
focused on the spin up and spin down densities (usually defined as ñ± := ñ0 ± ñ3), we define
the spin up and spin down densities as n± := n0 ± εn3 and will rescale properly. Our second
reference model from the start comes from [BM10], where a model for the spin up and spin
down densities was considered. To compare our model with the one derived in Theorem 2
from [BM10], we need to set in our model n1 and n2 equal zero. Therefore the respective
equations from our semiclassical model (3.105)-(3.106) are given by

∂tn0 =τ div(∇n0 + n0∇V ) − τ
ε2

6 div n0∇ Δ√
n0√

n0
, (3.158)

∂tn3 =τ div (∇n3 + n3∇V ) − 8τα2n3 + O(ε2). (3.159)

where we only took the leading order equation of n3 with respect to ε and set n1 = n2 = 0.
Rescaling the above into a diffusive regime, where collisions are still assumed to act on a
time-scale much shorter than tE . The system is observed on a time-scale much larger than
t0 = tE . Assuming that the relaxation time equals the collision time, e.g. tp = tc (tp is the
constant used in [BM10]) and looking at a larger reference time t0 = t2

E/tc, see Section 3.4,
we get the diffusive scaled equations (notice that τ cancels in the equations)

∂tn0 = div(∇n0 + n0∇V ) − ε2

6 div n0∇ Δ√
n0√

n0
, (3.160)

∂tn3 = div (∇n3 + n3∇V ) − 8α2n3 + O(ε2). (3.161)

As first consequence of this we see that equation (3.160) is the typical semiclassical quantum
model for the charge density, compare for example [BF10], [DMR05], [J0̈9].

Next adding (3.160) to (3.161), subtracting (3.161) from (3.160), and using also the iden-
tities n0 = 1

2(n+ + n−) and n3 = 1
2ε(n+ − n−), leads us to the spin up and spin down

equations,

∂tn+ − div(∇n+ + n+∇V ) + ε2

6 div n0∇ Δ√
n0√

n0
=4α2(n− − n+), (3.162)

∂tn− − div(∇n− + n−∇V ) + ε2

6 div n0∇ Δ√
n0√

n0
=4α2(n+ − n−). (3.163)

With the general binomial formula we have, since n0 = n± ∓ εn3, that

√
n0 = √

n± 1 ∓ ε
n3
n±

= √
n± 1 ∓

∞

k=1

1
2k

εk n3
n±

k

= √
n± + O(ε),

and therefore we obtain

∂tn+ − div(∇n+ + n+∇V ) + ε2

6 div n+∇ Δ√
n+√

n+
=4α2(n− − n+), (3.164)

∂tn− − div(∇n− + n−∇V ) + ε2

6 div n−∇ Δ√
n−√

n−
=4α2(n+ − n−). (3.165)

We see that the model equations (3.164)-(3.165) coincide with the derived equations for the
same quantities in [BM10] Theorem 2.
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4. Large-Time Asymptotics for a Matrix Spin
Drift-Diffusion Model

As last chapter we present some long time behaviour of spin in a bounded domain, under the
assumption that on the boundary the average spin is zero. This means we expect that if we
”add” all spins together they cancel themself out. As an example we could say that if we let
time pass to infinity we await that half of the electrons have spin up and the other half has
spin down. This is not very precise, but gives a rough idea what we are looking for.

4.1. The Setting

As we have seen in the previous chapter, the derivation of a spin model takes a lot of effort.
Since the full quantum model (3.89)-(3.90) is highly non local, it is difficult to deal with. To
study the long time behaviour of that model would exceed the purpose of this work. Also
the semiclassical approximation (3.105)-(3.106) is too connected to proceed at that level.
The most suitable, for our purpose, would be either the model appearing in [EH14] or the
model derived in [PN11]. In these papers the macroscopic models where derived from the
spinor Boltzmann equation (copied from [PN11] and also called generalized matrix Boltzmann
equation)

∂tF + 1(∇kh0 · ∇xF − ∇xh0 · ∇kF ) + i [F, h · σ] = 1
τc

Qij(F ) + 1
τsf

Qsf (F ),

where k denotes the momentum, H = h0σ0 + h · σ is the Hamiltonian of the system, the
Planck constant, Qij is a spin conserving collision operator and Qsf denotes the effect spin
flip happing also sometimes during collisions. For explicit depiction, further details and the
derivation of the macroscopic model (4.1)-(4.2) we suggest to read [PN11].

One of the tools to obtain the exponential decay will be the study of the relative free
energy, which is from the idea similar to the relative entropy presented in Definition 2.4.2.
The proof of the long time behaviour is therefore similar, though very different from the
one we did already, where details will be provided later. Since this chapter relies on our
already published paper [HJ20] the sections and texts will be almost everywhere the same.
Let us also stress that the occurring densities (e.g. n0, n) in this chapter are different to the
ones appearing in the other chapters, but the overall meaning remains the same (e.g. n still
denotes the macroscopic spin densities, hence we keep the notation.

4.1.1. Model Equations

We assume that the dynamics of the (Hermitian) density matrix N(x, t) ∈ C2×2, the current
density matrix J(x, t) ∈ C2×2, and the electric potential V (x, t) is given by the (scaled)
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4. Large-Time Asymptotics for a Matrix Spin Drift-Diffusion Model

matrix equations

∂tN − div J + iγ[N, µ · σ] =1
τ

1
2 tr(N)σ0 − N , (4.1)

J =DP −1/2(∇N + N∇V )P −1/2, (4.2)
−λ2ΔV = tr(N) − g(x) in Ω, t > 0, (4.3)

where [A, B] = AB − BA is the commutator for matrices A and B. The (scaled) physical
parameters are the strength of the pseudo-exchange field γ > 0, the normalized precession
vector µ = (µ1, µ2, µ3) ∈ R3, the spin-flip relaxation time τ > 0, the diffusion constant
D > 0, the Debye length λ > 0, and the doping concentration g(x). Equation (4.3) is the
Poisson equation for the electric potential [J0̈9]. The precession vector plays the role of the
local direction of the magnetization in the ferromagnet, and we assume that it is constant.
This assumption is crucial for our analysis. Furthermore, P = σ0 + pµ · σ = σ0 + p(µ1σ1 +
µ2σ2 + µ3σ3) is the matrix of spin polarization of the scattering rates, p ∈ [0, 1) represents
the spin polarization, σ0 is the unit matrix in R2×2, and we recall that σ = (σ1, σ2, σ3) is the
vector of Pauli matrices, defined by

σ1 = 0 1
1 0 , σ2 = 0 −i

i 0 , σ3 = 1 0
0 −1 .

Recall also that the number i is the complex unit, and tr(N) denotes the trace of the matrix
N . Since the Pauli matrices are traceless, tr(N) only contains the σ0-component of N ,
which is the charge density. The commutator [N, µ · σ] models the precession of the spin
polarization. The right-hand side in (4.1) describes the spin-flip relaxation of the spin density
to the (spinless) equilibrium state.

Equations (4.1)–(4.3) are solved in the bounded domain Ω ⊂ R3 with time t > 0 and are
supplemented with the boundary and initial conditions

N = 1
2nDσ0, V = VD on ∂Ω, t > 0, N(0) = N0 in Ω. (4.4)

This means that no spin effects occur on the boundary. For simplicity, we choose time-
independent boundary data; see [ZJ13] for boundary data depending on time. Mixed Diri-
chlet–Neumann boundary conditions may be also considered as long as they allow for W 2,q0(Ω)
elliptic regularity results, which restricts the geometry of ∂Ω. Therefore, we have chosen pure
Dirichlet boundary data as in [JNS15].

The density matrix N can be expressed in terms of the Pauli matrix according to N =
1
2n0σ0 +n ·σ and n = (n1, n2, n3) is called the spin-vector density. Model (4.1)–(4.2), written
in the four variables n0, . . . , n3, is a cross-diffusion system with the constant diffusion matrix

D

1 − p2
1 −pµ

−pµ ηI + (1 − η)µ ⊗ µ
∈ R4×4,

where I is the unit matrix in R3×3. Although this matrix is symmetric and positive defi-
nite, the strong coupling complicates the analysis of system (4.1)–(4.2), because maximum
principle arguments and other standard tools cannot be (easily) applied.

The spin polarization matrix couples the charge and spin components of the electrons. If
p = 0 we obtain by comparison of coefficients of the matrix σ0 in (4.1), see also [PN11],

∂tn0 −Dp div j0 = 0, j0 = ∇n0 +n0∇V −2p(∇n+n∇V ) ·µ, −λ2ΔV = n0 −g(x), (4.5)
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where Dp = D/(1 − p2).
If p = 0, we recover the classical Van-Roosbroeck drift-diffusion equations for the electron
charge density n0 [Mar86, Roo50],

∂tn0 − D div j0 = 0, j0 = ∇n0 + n0∇V, −λ2ΔV = n0 − g(x), (4.6)

The boundary conditions are n0 = nD and V = VD on ∂Ω and the initial condition is
n0(0) = n0

0 in Ω, where N0 = 1
2n0

0σ0 + n0 · σ. Another special case is given by the two-
component spin drift-diffusion model. The spin-up and spin-down densities n± = 1

2n0 ±n ·µ,
respectively, satisfy the equations

∂tn+ − div D+(∇n+ + n+∇V ) = 1
2τ

(n− − n+), (4.7)

∂tn− − div D−(∇n− + n−∇V ) = 1
2τ

(n+ − n−), (4.8)

n± = nD

2 , V = VD on ∂Ω, n±(0) = 1
2n0

0 ± n0 · µ in Ω, (4.9)

where D± = D/(1 ± p). These equations are weakly coupled through the relaxation term.
As already mentioned model (4.1)–(4.2) was derived in [PN11] from a matrix Boltzmann

equation in the diffusion limit. The scattering operator in the Boltzmann model is assumed
to consist of a dominant collision operator from the Stone model and a spin-flip relaxation op-
erator. When the scattering rate in the Stone model is smooth and invariant under isometric
transformations, the diffusion D can be identified with a positive number [Pou91, Prop. 1].

Remark 4.1.1. The reader may has noticed the appearance of the factor 1/2 in front of
some quantities, especially in N = (1/2)n0 + n · σ. This comes from the fact that we use
here a slightly different definition (e.g n0 = tr(N)) in comparison to the previous chapter (in
Chapter 3 we used n0 = (1/2) tr(N)).

4.1.2. State of the Art
The first result on the global existence of solutions to the Van-Roosbroeck equations (4.6) (for
electrons and positively charged holes) was proved by Mock [Moc74]. He showed in [Moc75]
that the solution decays exponentially fast to the equilibrium state provided that the initial
data is sufficiently close to the equilibrium. These results were generalized under physically
more realistic assumptions on the boundary by Gajewski [Gaj85] and Gajewski and Gröger
[GG86, GG89]. Further large-time asymptotics can be found in [AMT00] for the whole-space
problem and in [BAMV04], where the diffusion constant was replaced by a diffusion matrix.
Moreover, in [DFW08], the stability of the solutions in Wasserstein spaces was investigated.

Convergence rates of the whole-space solutions to their self-similar profile were investigated
intensively in the literature. In [BP00], the relative free energy allowed the authors to prove
the self-similar asymptotics in the L1(Rd) norm. The results were improved in [KK08],
showing optimal Lp(Rd) decay estimates. The asymptotic profile to drift-diffusion-Poisson
equations with fractional diffusion was analyzed in [OY09, Yam12].

Concerning drift-diffusion models for the spin-polarized electron transport, there are only
few mathematical results. The stationary two-component drift-diffusion model (4.7)–(4.8)
was analyzed in [GG10], while the transient equations were investigated in [Gli08]. In partic-
ular, Glitzky proved in [Gli08] the exponential decay to equilibrium. An existence analysis
for a diffusion model for the spin accumulation with fixed electron current but non-constant
magnetization was proved in [PG10] in one space dimension and in [GCW07, GCW15] for
three space dimensions.
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4. Large-Time Asymptotics for a Matrix Spin Drift-Diffusion Model

Also quantum spin diffusion models have been considered. For instance, in [ZJ13], the
large-time asymptotics for a simple spin drift-diffusion system for quantum electron transport
in graphene was studied. A more general quantum spin drift-diffusion model was derived
in [BM10], with numerical experiments in [BMNP15]. Numerical simulations for diffusion
models for the spin accumulation, coupled with the Landau–Lifshitz–Gilbert equation, can
be found in [CAS15, RAH+16]. For spin transport models in superlattices, we refer, for
instance, to [BBA10].

The existence of global weak solutions to the matrix spin drift-diffusion model (4.1)–(4.4)
was shown in [JNS15] with constant precession vector and in [Zam14] with non-constant
precession vector but assuming velocity saturation. Under the condition that the (thermal)
equilibrium density is sufficiently small, the exponential decay to equilibrium was proved in
[Zam14]. An implicit Euler finite-volume scheme that preserves some of the features of the
continuous model was analyzed in [CHJS16]. The numerical results of [CHJS16] indicate that
the relative free energy is decaying with exponential rate, but no analytical proof was given.

4.1.3. The Steady State and the Stationary Equations
As in the paper [HJ20], we prove in this thesis that the solution (N(t), V (t)) to (4.1)–(4.4)
converges exponentially fast to a steady state (1

2n∞σ0, V∞), solving the stationary spinless
drift-diffusion-Poisson equations

div(∇n∞ + n∞∇V∞) = 0, −λ2ΔV∞ = n∞ − g(x) in Ω, (4.10)
n∞ = nD, V∞ = VD on ∂Ω (4.11)

under the condition that the boundary data is close to the (thermal) equilibrium state, defined
by log nD + VD = 0 on ∂Ω. Compared to [Zam14], where n∞ L∞(Ω) 1 is needed, our
smallness assumption is physically reasonable; see the discussion below Main Theorem 4.2.1.

The existence of weak solutions to the stationary drift-diffusion problem with data close to
the equilibrium state (especially satisfying the assumptions in the upcoming Main Theorem
4.2.1) is well known; see [Mar86, Theorem 3.2.1]. The solution satisfies n∞, V∞ ∈ H1(Ω) ∩
L∞(Ω) and

0 < m∞ ≤ n∞ ≤ M∞ in Ω (4.12)

for some m∞, M∞ > 0. Note that we cannot expect uniqueness of weak solutions in general,
since there are devices (thyristors) that allow for multiple physical stationary solutions. How-
ever, uniqueness can be expected for data sufficiently close to the (thermal) equilibrium state
[Ala95, Moc82]. We call a solution to (4.10)–(4.11) a (thermal) equilibrium state if the elec-
trochemical potential φ∞ := log n∞ + V∞ vanishes in Ω. This state needs the compatibility
condition φD := log nD + VD = 0 on ∂Ω.

The following lemma provides some a priori estimates for (n∞, V∞) and shows that the
current density J∞ := n∞∇φ∞ is arbitrarily small in the L∞(Ω) norm if the boundary data
is sufficiently close to the equilibrium state φD = 0 in the W 2,q0(Ω) sense.

Lemma 4.1.2 (A priori estimates). Let Ω ⊂ R3 be a bounded domain with ∂Ω ∈ C1,1 and
let 0 < m∗ < 1, λ > 0. Furthermore, let the data satisfies g ∈ L∞(Ω), g ≥ 0 in Ω, and

nD, VD ∈ W 2,q0(Ω), nD ≥ m∗ > 0 on ∂Ω,

Define φD := log nD +VD, then there exists a constant C∞ > 0 independent of (n∞, V∞) such
that

∇φ∞ L∞(Ω) ≤ C∞ φD W 2,q0 (Ω).
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Proof. Since n∞ − g(x) ∈ L∞(Ω), elliptic regularity yields V∞ ∈ W 2,q0(Ω), and the W 2,q0(Ω)
norm of V∞ depends on M∞, VD W 2,q0 (Ω), and g L∞(Ω). Using the test function n∞ − nD

in the weak formulation of the first equation in (4.10), we find that

Ω
|∇(n∞ − nD)|2dx = −

Ω
∇nD · ∇(n∞ − nD)dx −

Ω
n∞∇V∞ · ∇(n∞ − nD)dx

≤ ∇nD L2(Ω) + M∞ ∇V∞ L2(Ω) ∇(n∞ − nD) L2(Ω).

This implies that

∇n∞ L2(Ω) ≤ 2 ∇nD L2(Ω) + M∞ ∇V∞ L2(Ω)

≤ C 1 + ∇nD L2(Ω) + ∇VD L2(Ω) .

Since q0 > 3, we have W 2,q0(Ω) → W 1,∞(Ω). Thus, b := ∇V∞ ∈ L∞(Ω) and elliptic regularity
for

Δn∞ + b · ∇n∞ = λ−2n∞(n∞ − g(x)) ∈ L∞(Ω)
shows that n∞ ∈ W 2,q0(Ω) with an a priori bound depending on the norms nD W 2,q0 (Ω) and
n∞ H1(Ω). Summarizing,

n∞ W 2,q0 (Ω) + V∞ W 2,q0 (Ω) ≤ C.

It holds that W 2,q0(Ω) → C0,α(Ω) for all 0 < α < 1. Hence, n∞ ∈ C0,α(Ω). The first
equation in (4.10) can be formulated as

div n∞∇(φ∞ − φD) = − div(n∞∇φD) ∈ Lq0(Ω),

which shows that, by elliptic regularity again,

φ∞ − φD W 2,q0 (Ω) ≤ C(m∞, M∞) φD W 2,q0 (Ω)

and, in view of the continuous embedding W 2,q0(Ω) → W 1,∞(Ω),

∇φ∞ L∞(Ω) ≤ C φ∞ W 2,q0 (Ω) ≤ C φD W 2,q0 (Ω).

This finishes the proof.

4.2. Long Time Behaviour of the Full Spin Matrix N

Our main result is as follows.
Main Theorem 4.2.1 (Exponential time decay). Let T > 0 and let Ω ⊂ R3 be a bounded
domain with ∂Ω ∈ C1,1. Furthermore, let 0 < m∗ < 1, λ > 0, γ > 0, D > 0, 0 ≤ p < 1,
q0 > 3, and µ ∈ R3 with |µ| = 1. The data satisfies g ∈ L∞(Ω), g ≥ 0 in Ω, and

nD, VD ∈ W 2,q0(Ω), nD ≥ m∗ > 0 on ∂Ω,

n0
0, n0 · µ ∈ L∞(Ω), 1

2n0
0 ± n0 · µ ≥ m∗

2 > 0.

Let φD := log nD +VD. Then there exist κ > 0, C0 > 0, and δ > 0 such that if φD W 2,q0 (Ω) ≤
δ,

n±(t) − 1
2n∞ L2(Ω) + V (t) − V∞ H1(Ω) ≤ C0e−κt, t > 0,

where n± are solutions to (4.7)–(4.9) and (n∞, V∞) is the weak solution to (4.10)–(4.11).
Furthermore, there exists τ0 > 0 such that if 0 < τ ≤ τ0 then

N(t) − 1
2n∞σ0 L2(Ω;C2×2) ≤ C∗

0e−κ∗t, t > 0,

and C0, C∗
0 > 0 depend on the initial relative free energy H(0) (see (4.14) below).
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The smallness condition on φD means that the system is close to equilibrium, as φD = 0
characterizes the (thermal) equilibrium state. Since the stationary drift-diffusion equations
(4.10) may possess multiple solutions if φD is large in a certain sense [Ala95, Moc75], the
condition on φD is not surprising. The smallness condition on the relaxation time, however,
seems to be purely technical. It is needed to estimate the drift part when we derive L2(Ω)
bounds for the perpendicular component of n. If an entropy structure exists for the equation
for n, we expect that this condition can be avoided but currently, such a structure is not clear;
see [JNS15, Remarks 3.1–3.2]. If the initial spin-vector density is parallel to the precession
vector, we are able to remove the smallness condition on τ ; see Remark 4.2.9. We show in
Remark 4.2.10 that, independently of the initial spin-vector density, the smallness condition
is satisfied in a certain physical regime.

The analysis of the asymptotic behavior of the solutions to the Van-Roosbroeck drift-
diffusion system (4.6) and the two-component system (4.7)–(4.8) is based on the observation
that the relative free energy, consisting of the internal and electric energies, is a Lyapunov
functional along the solutions and that the energy dissipation can be bounded from below
in terms of the relative free energy itself. The strong coupling of (4.1)-(4.2) prohibits this
approach. Indeed, it is shown in [JNS15, Section 3] that the relative free energy associated
to (4.1)-(4.2), consisting of the von Neumann energy and the electric energy, is nonincreasing
in time only in very particular cases.

Our idea is the observation that the matrix system (4.1)–(4.2) can be reformulated as
drift-diffusion-type equations in terms of certain projections of the density matrix relative to
the precession vector. This idea was already used in [JNS15] for the existence analysis. The
reformulation removes the cross-diffusion terms, which allows us to apply the techniques of
Gajewski and Gröger [GG89] used for the Van-Roosbroeck model. This idea only works if
the precession vector µ is constant. A non-constant vector µ (solving the Landau–Lifshitz–
Gilbert equation) was considered in [ZJ16], but this spin model is simplified and no large-time
asymptotics was proved.

More precisely, we decompose the density matrix N = 1
2n0σ0 + n · σ and N0 = 1

2n0
0σ0 +

n0 · σ. Then the spin-up and spin-down densities n± = 1
2n0 ± n · µ solve (4.7)–(4.9). The

information on n± is not sufficient to recover the density matrix. Therefore, we also consider
the perpendicular component of n with respect to µ, n⊥ = n − (n · µ)µ, which solves

∂tn⊥ − div D

η
(∇n⊥ + n⊥∇V ) − 2γ(n⊥ × µ) = −n⊥

τ
, (4.13)

where η = 1 − p2, with the boundary and initial conditions n⊥ = 0 on ∂Ω and n⊥ =
n0 − (n0 · µ)µ. The density matrix can be reconstructed from (n+, n−, n⊥) by setting
n0 = n+ + n− and n = n⊥ + (n · µ)µ = n⊥ + 1

2(n+ − n−)µ.
A key element of the proof is the derivation of a uniform positive lower bound for n±. This

is shown by using the De Giorgi–Moser iteration method inspired by the proof of [GG89,
Lemma 3.6]. More precisely, we choose the test functions etwq−1

± /n± in (4.7) and (4.8),
respectively, where w± = − min{0, log n± + m} with m > 0, q ∈ N, and pass to the limit
q → ∞, leading to w±(t) L∞(Ω) ≤ K and consequently to the desired bound w±(t) ≥ e−m−K

in Ω. Second, we calculate the time derivative of the free energy

H(t) =
Ω

h(n+|n∞) + h(n−|n∞) + λ2

2 |∇(V − V∞)|2 (t)dx, (4.14)
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where h(n±|n∞) = n± log(2n±/n∞) − n± + 1
2n∞, leading to the free energy inequality

dH

dt
+ C1

Ω
n+|∇(φ+ − φD)|2 + n−|∇(φ− − φD)|2

≤ C2 ∇φD
2
L∞(Ω)

Ω
(n+ − 1

2n∞)2 + (n− − 1
2n∞)2 dx, (4.15)

where φ± = log n± + V are the electrochemical potentials and C1 > 0 and C2 > 0 are
some constants independent of the solution and independent of time. The right-hand side
can be estimated, up to a factor, by the free energy H times ∇φD

2
L∞(Ω). Furthermore,

using the time-uniform positive lower bound for n±, the energy dissipation (the second term
on the left-hand side of (4.15)) is bounded from below by H, up to a factor. Therefore, if
∇φD L∞(Ω) ≤ δ, (4.15) becomes, for some time-independent constants C3 > 0 and C4 > 0,

dH

dt
+ (C3 − C4δ2)H ≤ 0.

Choosing δ2 < C3/C4, the Gronwall inequality implies the exponential decay with respect
to the free energy and, as a consequence, in the L2(Ω) norm of n± − n∞ with rate κ :=
C3 − C4δ2 > 0.

Third, we prove the time decay of n⊥. Since we are not aware of an entropy structure
for (4.13), we rely on L2(Ω) estimates. This means that we use the test function n⊥ in the
weak formulation of (4.13) such that the term (n⊥ × µ) · n⊥ vanishes. However, in order to
handle the term coming from the doping concentration, we need a smallness condition on the
relaxation time τ > 0. Such a condition is not needed in the Van-Rooosbroeck model.

Remark 4.2.2. We see a surprising behaviour of the spin in our particular setting. It
seems that it converges in the same amount to either the upwards- or either the downwards
direction (whatever now up and down means), due to the fact that the average spin is zero
on the boundary. So the spin seems to adapt to the behaviour on the boundary, which is
indeed an interesting fact.

The path to the exponential decay is organized as follows. The stationary equations were
already studied in Section 4.1.3. In Section 4.2.1, we prove the lower and upper uniform
bounds for n±, the entropy inequality, and some bounds for the free energy and energy
dissipation. Theorem 4.2.1 is proved in Section 4.2.2. In the appendix, we prove a uniform
L∞ bound for any function that satisfies an iterative inequality using the De Giorgi–Moser
method.

4.2.1. Uniform Estimates
In this section, we prove some a priori estimates that are uniform in time. A uniform upper
bound for n± was already shown in [JNS15, Theorem 1.1]. For the convenience of the reader,
we present the proof.

Lemma 4.2.3 (Uniform upper bound for n±). Introduce

M = max 1
2 sup

∂Ω
nD, sup

Ω

1
2n0

0 + |n0 · µ| , sup
Ω

g .

Then
n±(t) ≤ M in Ω, t > 0.
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Proof. We use the test functions (n+ − M)+ in (4.7) and (n− − M)+ in (4.8), where
z+ = max{0, z}, and add both equations. Observing that (n± − M)+ = 0 on ∂Ω and
(n±(0) − M)+ = 0 in Ω, we find after standard manipulations that

1
2 Ω

|(n+(t) − M)+|2 + |(n−(t) − M)+|2 dx

+
t

0 Ω
D+|∇(n+ − M)+|2 + D−|∇(n− − M)+|2 dxds

= − 1
2τ

t

0 Ω
(n+ − n−) (n+ − M)+ − (n− − M)+ dxds

− D+
t

0 Ω
(n+ − M)+∇V · ∇(n+ − M)+dxds

− D−
t

0 Ω
(n− − M)+∇V · ∇(n− − M)+dxds

− D+M
t

0 Ω
∇V · ∇(n+ − M)+dxds − D−M

t

0 Ω
∇V · ∇(n− − M)+dxds.

Since z → (z − M)+ is monotone, the first integral on the right-hand side is nonnegative.
Then, writing (n± − M)∇V · ∇(n± − M)+ = ∇V · 1

2∇[(n± − M)+]2, integrating by parts,
and using the Poisson equation leads to

1
2 Ω

|(n+(t) − M)+|2 + |(n−(t) − M)+|2 dx

+
t

0 Ω
D+|∇(n+ − M)+|2 + D−|∇(n− − M)+|2 dxds

≤ −D+
2λ2

t

0 Ω
|(n+ − M)+|2(n+ + n− − g(x))dxds

− D−
2λ2

t

0 Ω
|(n− − M)+|2(n+ + n− − g(x))dxds

− D+M

λ2

t

0 Ω
(n+ − M)+(n+ + n− − g(x))dxds

− D−M

λ2

t

0 Ω
(n− − M)+(n+ + n− − g(x))dxds.

As M ≥ g L∞(Ω) and we integrate only over {n± > M}, we have n+ +n− −g(x) ≥ 0 on this
set. Therefore, all integrals on the right-hand side are nonnegative, and we conclude that

1
2 Ω

|(n+(t) − M)+|2 + |(n−(t) − M)+|2 dx

+
t

0 Ω
D+|∇(n+ − M)+|2 + D−|∇(n− − M)+|2 dxds ≤ 0.

This shows that (n±(t) − M)+ = 0 and hence n±(t) ≤ M in Ω, t > 0.

Lemma 4.2.4 (Uniform positive lower bound for n±). There exists m > 0 such that for all
t > 0,

n±(t) ≥ m > 0 in Ω.

Proof. We show first that n± is strictly positive with a lower bound that depends on time. For
this, we use the test functions (n± − m∗(t))− = min{0, n± − m∗(t)}, where m∗(t) = m0e−µt,
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µ = 2λ−2D−M , and

m0 = min inf
∂Ω

nD

2 , inf
Ω

1
2n0

0 + n0 · µ > 0,

in (4.7), (4.8), respectively, and add both equations. Proceeding similarly as in the proof of
Lemma 4.2.3, we obtain

1
2 Ω

(n+ − m∗)−(t)2 + (n− − m∗)−(t)2 dx

+ D+
t

0 Ω
|∇(n+ − m∗)−|2dxds + D−

t

0 Ω
|∇(n− − m∗)−|2dxds

= − 1
2τ

t

0 Ω
(n+ − n−) (n+ − m∗)− − (n− − m∗)− dxds

− D+
2

t

0 Ω
∇[(n+ − m∗)−]2 · ∇V dxds − D−

2
t

0 Ω
∇[(n− − m∗)−]2 · ∇V dxds

− D+
t

0
m∗(s)

Ω
∇(n+ − m∗)− · ∇V dxds

− D−
t

0
m∗(s)

Ω
∇(n− − m∗)− · ∇V dxds

+ µ
t

0
m∗(s)

Ω
(n+ − m∗)− + (n− − m∗)− dxds.

The first term on the right-hand side is nonpositive since z → (z − m∗)− is monotone. For
the remaining terms, we use the Poisson equation and the estimate n0 = n+ + n− ≤ 2M :

1
2 Ω

(n+ − m∗)−(t)2 + (n− − m∗)−(t)2 dx

≤ −D+
2λ2

t

0 Ω
|(n+ − m∗)−|2(n0 − g(x))dxds

− D−
2λ2

t

0 Ω
|(n− − m∗)−|2(n0 − g(x))dxds

− D+
λ2

t

0
m∗(s)

Ω
(n+ − m∗)−(n0 − g(x))dxds

− D−
λ2

t

0
m∗(s)

Ω
(n− − m∗)−(n0 − g(x))dxds

+ µ
t

0
m∗(s)

Ω
(n+ − m∗)− + (n− − m∗)− dxds

≤ D−
2λ2 g L∞(Ω)

t

0 Ω
|(n+ − m∗)−|2 + |(n− − m∗)−|2 dxds

− D+
λ2

t

0
m∗(s)

Ω
(n+ − m∗)− 2M − λ2

D+
µ dxds

− D−
λ2

t

0
m∗(s)

Ω
(n− − m∗)− 2M − λ2

D−
µ dxds

≤ D−
2λ2 g L∞(Ω)

t

0 Ω
|(n+ − m∗)−|2 + |(n− − m∗)−|2 dxds.

In the last inequality, we used 2M − λ2D−1
± µ ≤ 0. By Gronwall’s lemma, this shows that

n± ≥ m∗(t) > 0 in Ω.
In the second step, we prove that n± is strictly positive uniformly in time. The idea is to

use the Di Giorgi–Moser iteration method similarly as in the proof of Lemma 3.6 in [GG89].
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We set w± = −(log n± + m)− ∈ L2(0, T ; H1(Ω)) and take the test function etwq−1
± /n± in

(4.7), (4.8), respectively, where 0 < − log(m∗/2) < m < 1 and q ∈ N, q ≥ 2. Because of
the previous step, which ensures that n± > 0, this test function is well defined. Moreover,
log(nD/2) + m ≥ log(m∗/2) + m ≥ 0 and log(n0

0/2 ± n0 · µ) + m ≥ log(m∗/2) + m ≥ 0
such that w± = 0 on ∂Ω and w±(0) = 0 in Ω. Formally, we compute ∂t(etwq

±) − etwq
± =

−qetwq−1
± n−1

± ∂tn±. Therefore, integrating this identity formally over Ω and (0, t) and using
(4.7)–(4.8),

Ω
et(wq

+(t) + wq
−(t))dx −

t

0 Ω
es(wq

+ + wq
−)dxds

= −q
t

0
es ∂tn+,

wq−1
+
n+

+ ∂tn−,
wq−1

−
n−

ds

= q

2τ

t

0
es

Ω
(n+ − n−) wq−1

+
n+

− wq−1
−
n−

dxds

− D+q
t

0
es

Ω
(∇n+ + n+∇V ) · ((q − 1)wq−2

+ + wq−1
+ )∇n+

n2
+

dxds

− D−q
t

0
es

Ω
(∇n− + n−∇V ) · ((q − 1)wq−2

− + wq−1
− )∇n−

n2−
dxds,

where ·, · is the duality product of H−1(Ω) and H1
0 (Ω). The computation can be made

rigorous by a density argument; see [J9̈5, (5.18)] for a similar statement. Since z → (−(log z+
m)−)q−1/z is nonincreasing for z > 0, the first term on the right-hand side is nonpositive,
giving

Ω
et(wq

+(t) + wq
−(t))dx −

t

0 Ω
es(wq

+ + wq
−)dxds

≤ −D+q
t

0
es

Ω
((q − 1)wq−2

+ + wq−1
+ ) |∇w+|2 − ∇V · ∇w+ dxds

− D−q
t

0
es

Ω
((q − 1)wq−2

− + wq−1
− ) |∇w−|2 − ∇V · ∇w− dxds.

Taking into account the Poisson equation and the inequalities D+ ≤ D−, w± ≥ 0, and
n0 ≤ 2M , this becomes

Ω
et(wq

+(t) + wq
−(t))dx −

t

0 Ω
es(wq

+ + wq
−)dxds

+ 4D+(q − 1)
q

t

0
es

Ω
|∇w

q/2
+ |2 + |∇w

q/2
− |2 dxds

+ 4D+q

(q + 1)2

t

0
es

Ω
|∇w

(q+1)/2
+ |2 + |∇w

(q+1)/2
− |2 dxds

≤ D+q

λ2

t

0
es

Ω
wq−1

+ + 1
q

wq
+ (n0 − g(x))dxds

+ D−q

λ2

t

0
es

Ω
wq−1

− + 1
q

wq
− (n0 − g(x))dxds

≤ 2D+M

λ2

t

0
es

Ω
(qwq−1

+ + wq
+)dxds + 2D−M

λ2

t

0
es

Ω
(qwq−1

− + wq
−)dxds

≤ 2D−Mq

λ2

t

0
es

Ω
(wq

+ + wq
−)dxds + 4D−M

λ2

t

0
es

Ω
dxds. (4.16)
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In the last inequality, we used Young’s inequality: qwq−1
± ≤ (q − 1)wq

± + 1. We infer that

Ω
et(wq

+(t) + wq
−(t))dx + K0

t

0 Ω
es |∇w

q/2
+ |2 + |∇w

q/2
− |2 dxds

≤ K1q
t

0 Ω
es(wq

+ + wq
−)dxds + K2et

for some constants K0, K1, K2 > 0 which are independent of q and time.
Lemma C.1.1 in the appendix shows that w± is bounded in L∞ with a constant which

depends on the L∞(0, T ; L1(Ω)) norm of w±. Therefore, it remains to estimate w± in this
norm. To this end, we take q = 2 in (4.16):

Ω
et(w2

+(t) + w2
−(t))dx −

t

0
es

Ω
(w2

+ + w2
−)dxds

+ 8
9D+

t

0
es

Ω
|∇w

3/2
+ |2 + |∇w

3/2
− |2 dxds

≤ 4D−M

λ2

t

0
es

Ω
(w2

+ + w2
−)dxds + 4D−M

λ2

t

0
es

Ω
dxds.

By the Poincaré inequality, for some constants Ci > 0, we obtain

Ω
et(w2

+(t) + w2
−(t))dx ≤

t

0
es

Ω
− C1(w3

+ + w3
−) + C2(w2

+ + w2
−) dxds + C3et.

Since f(x) = −C1x3 + C2x2 = (−C1x + C2)x2 has a maximum C4 > 0 for x ≥ 0, we can
estimate the right-hand side by et(C4 meas(Ω) + C3). Division by et leads to

Ω
(w2

+(t) + w2
−(t))dx ≤ C4 := C4 meas(Ω) + C3,

which does not depend on time. In particular, this shows that w± is bounded in L∞(0, T ;
L1(Ω)) uniformly in time. Thus, by Lemma C.1.1, w±(t) L∞(Ω) ≤ K for some constant
K > 0 and n±(t) ≥ exp(−K − m) in Ω, t > 0. This finishes the proof.

Remark 4.2.5. The factor et is necessary to derive time-uniform bounds. Indeed, without
this factor, the last term on the right-hand side of (4.16) becomes 4D−Mλ−2 t

0 Ω dsdx which
is unbounded as t → ∞.

We introduce the relative free energy

H(t) =
Ω

h(n+|n∞) + h(n−|n∞) + λ2

2 |∇(V − V∞)|2 (t)dx,

where h(n±|n∞) = n± log(2n±/n∞) − n± + 1
2n∞, and the electrochemical potentials φ± =

log n± + V .

Lemma 4.2.6 (Relative free energy estimate). It holds that

dH

dt
≤ −D+

2 Ω
n+|∇(φ+ − φ∞)|2 + n−|∇(φ− − φ∞)|2 dx

+ D−
2 Ω

(n+ − 1
2n∞)2 + (n− − 1

2n∞)2 |∇φ∞|2dx

− 1
8τ Ω

√
n+ − √

n−
2
dx.
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Proof. Using the Poisson equation and the definitions φ± = log n±+V and φ∞ = log n∞+V∞,
it follows that

dH

dt
= ∂tn+, log 2n+

n∞
+ ∂tn−, log 2n−

n∞
− λ2 ∂tΔ(V − V∞), V − V∞

= ∂tn+, log n+
n∞

+ log 2 + ∂tn−, log n−
n∞

+ log 2 + ∂t(n+ + n−), V − V∞

= ∂tn+, φ+ − φ∞ + log 2 + ∂tn−, φ− − φ∞ + log 2 (4.17)

This can be made rigorous similarly as in [J9̈5, formula (5.18)], together with the techniques
in [Eva10, Theorem 3, p. 287].

Next, we subtract 1
2D±×(4.10) from (4.7) and (4.8), respectively:

∂tn+ − D+ div n+∇(φ+ − φ∞) + (n+ − 1
2n∞)∇φ∞ = − 1

2τ
(n+ − n−),

∂tn− − D− div n−∇(φ− − φ∞) + (n− − 1
2n∞)∇φ∞ = − 1

2τ
(n− − n+).

Inserting these equations into (4.17), we find that

dH

dt
= −D+

Ω
n+|∇(φ+ − φ∞)|2dx − D−

Ω
n−|∇(φ− − φ∞)|2dx

− D+
Ω

(n+ − 1
2n∞)∇φ∞ · ∇(φ+ − φ∞)dx

− D−
Ω

(n− − 1
2n∞)∇φ∞ · ∇(φ− − φ∞)dx

− 1
2τ Ω

(n+ − n−)(log n+ − log n−)dx.

We use the elementary inequality

(y − z)(log y − log z) ≥ 1
4

√
y − √

z
2 for y, z > 0 (4.18)

to estimate the last term. Then the Young inequality and the lower bound n± ≥ m lead to

dH

dt
≤ −D+

2 Ω
n+|∇(φ+ − φ∞)|2dx − D−

2 Ω
n−|∇(φ− − φ∞)|2dx

+ D+
2m Ω

(n+ − 1
2n∞)2|∇φ∞|2dx + D−

2m Ω
(n− − 1

2n∞)2|∇φ∞|2dx

− 1
8τ Ω

√
n+ − √

n−
2
dx,

finishing the proof.

Lemma 4.2.7 (Lower bound for the chemical potentials). It holds that

∇(φ+ − φ∞) 2
L2(Ω) + ∇(φ− − φ∞) 2

L2(Ω)

≥ C n+ − 1
2n∞ 2

L2(Ω) + n− − 1
2n∞ 2

L2(Ω) + ∇(V − V∞) 2
L2(Ω) ,

where C > 0 depends only on M , M∞, λ, and Ω.

Recall that M is the upper bound for n± (see Lemma 4.2.3) and M∞ is the upper bound
for n∞ (see (4.12)).
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Proof. It holds that φ± − φ∞ + log 2 = 0 on ∂Ω. Thus, the Young and Poincaré inequalities
yield for any ε > 0,

Ω
(n± − 1

2n∞)(φ± − φ∞ + log 2)dx ≤ ε n± − 1
2n∞ 2

L2(Ω) + C(ε) φ± − φ∞ + log 2 2
L2(Ω)

≤ ε n± − 1
2n∞ 2

L2(Ω) + C(ε, Ω) ∇(φ± − φ∞) 2
L2(Ω).

(4.19)

Inserting the definitions of φ± and φ∞, taking into account the Poisson equation −λ2Δ(V −
V∞) = n0 − n∞ and inequality (4.18), and finally using the bounds m ≤ n± ≤ M and
m∞ ≤ n∞ ≤ M∞, we obtain

Ω
(n+ − 1

2n∞)(φ+ − φ∞ + log 2)dx +
Ω

(n− − 1
2n∞)(φ− − φ∞ + log 2)dx

=
Ω

(n+ − 1
2n∞)(log n+ − log(1

2n∞))dx +
Ω

(n− − 1
2n∞)(log n− − log(1

2n∞))dx

+
Ω

(n0 − n∞)(V − V∞)dx

≥ 1
4 Ω

√
n+ − 1

2n∞
2
dx + 1

4 Ω

√
n− − 1

2n∞
2
dx + λ2

Ω
|∇(V − V∞)|2dx

= 1
4 Ω

(n+ − n∞/2)2

√
n+ + n∞/2 2 dx + 1

4 Ω

(n− − n∞/2)2

√
n− + n∞/2 2 dx + λ2

Ω
|∇(V − V∞)|2dx

≥ C2
Ω

(n+ − 1
2n∞)2dx + C2

Ω
(n− − 1

2n∞)2dx + λ2
Ω

|∇(V − V∞)|2dx,

where C2 = 1
4(

√
M + M∞/2)−2. Combining this estimate with (4.19) and taking ε < C1,

we conclude the proof.

Lemma 4.2.8 (Bounds for the relative free energy). There exist constants Cφ, CH > 0
independent of the solution and time such that

H ≤ Cφ ∇(φ+ − φ∞) 2
L2(Ω) + ∇(φ− − φ∞) 2

L2(Ω) ,

H ≥ CH n+ − 1
2n∞ 2

L2(Ω) + n− − 1
2n∞ 2

L2(Ω) .

Proof. Set f(y) = y log(y/z) − y + z for some fixed z > 0. A Taylor expansion shows that

y log y

z
− y + z = f(y) = f(z) + f (z)(y − z) + 1

2f (ξ)(y − z)2 = (y − z)2

2ξ
,

where ξ is between y and z. Consequently, since n± ≥ m and n∞ ≥ m∞,

n± log 2n±
n∞

− n± + 1
2n∞ ≤ 1

2C1
(n± − 1

2n∞)2,

where C1 = min{m, m∞/2}, and, using Lemma 4.2.7, we find that

H ≤ max 1
2C1

,
λ2

2 n+ − 1
2n∞ 2

L2(Ω) + n− − 1
2n∞ 2

L2(Ω) + ∇(V − V∞) 2
L2(Ω)

≤ max 1
2C1

,
λ2

2 C ∇(φ+ − φ∞) 2
L2(Ω) + ∇(φ− − φ∞) 2

L2(Ω) .

For the second estimate, we use

n± log 2n±
n∞

− n± + 1
2n∞ ≥ (n± − 1

2n∞)2

2C2
, where 2C2 = max{M, M∞/2},
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to conclude that
H ≥ 1

2C2 Ω
(n+ − 1

2n∞)2 + (n− − 1
2n∞)2 dx.

This finishes the proof.

4.2.2. Proof of Main Theorem 4.2.1
The starting point is the free-energy inequality in Lemma 4.2.6. We need to estimate the
integral containing ∇φ∞. In view of Lemmas 4.1.2 and 4.2.8,

Ω
(n± − 1

2n∞)2|∇φ∞|2dx ≤ ∇φ∞ 2
L∞(Ω) n± − 1

2n∞ 2
L2(Ω)

≤ C2
∞ φD

2
W 2,q0 (Ω) n± − 1

2n∞ 2
L2(Ω) ≤ C2

∞C−1
H φD

2
W 2,q0 (Ω)H. (4.20)

By the lower bound of n± and Lemma 4.2.7, the free-energy inequality in Lemma 4.2.6
becomes

dH

dt
+ D+m

2Cφ
− D−C2∞

CH
φD

2
W 2,q0 (Ω) H + 1

8τ

√
n+ − √

n− 2
L2(Ω) ≤ 0.

Let δ > 0 satisfy 2κ := D+m/(2Cφ) − D−(C2∞/CH)δ2 > 0 and choose nD and VD such
that φD W 2,q0 (Ω) ≤ δ. Then Gronwall’s lemma implies that H(t) ≤ H(0) exp(−2κt) for
t > 0. By Lemma 4.2.8,

n+(t) − 1
2n∞ L2(Ω) + n−(t) − 1

2n∞ L2(Ω) ≤ C
−1/2
H H(0)1/2e−κt, t > 0.

The H1(Ω) elliptic estimate for the Poisson problem −λ2Δ(V − V∞) = (n+ − 1
2n∞) + (n− −

1
2n∞) in Ω, V − V∞ = 0 on ∂Ω gives

V (t) − V∞ H1(Ω) ≤ C n+(t) − 1
2n∞ L2(Ω) + C n−(t) − 1

2n∞ L2(Ω) ≤ Ce−κt,

which proves the first estimate. For the second result, recall that we can decompose N(t) as
N(t) = 1

2(n+ + n−)σ0 + (n⊥ + 1
2(n+ − n−)µ) · σ. We use n⊥ as a test function in (4.13):

1
2

d

dt Ω
|n⊥|2dx + D

η Ω
|∇n⊥|2dx + 1

τ Ω
|n⊥|2dx

= − D

2η Ω
∇|n⊥|2 · ∇V dx = − D

2ηλ2 Ω
|n⊥|2(n0 − g(x))dx

≤ D

2ηλ2 g L∞(Ω)
Ω

|n⊥|2dx.

Thus, if τ ≤ 2ηλ2/(D g L∞(Ω)), the Poincaré inequality shows that

d

dt Ω
|n⊥|2dx + 2C(D, η, Ω)

Ω
|n⊥|2dx ≤ 0.

By Gronwall’s lemma,

n⊥(t) L2(Ω) ≤ n⊥(0) L2(Ω)e
−C(D,η,Ω)t, t > 0.

Therefore, we find that

N(t) − 1
2n∞σ0 L2(Ω;C2×2) ≤ (1

2(n+ − 1
2n∞) + 1

2(n− − 1
2n∞))σ0 L2(Ω;C2×2)

+ n⊥ + 1
2(n+ − n−)µ) · σ

L2(Ω;C2×2)

≤ C
−1/2
H H(0)1/2e−κt + n⊥(0) L2(Ω)e

−C(D,η,Ω)t ≤ C∗
0e−κ∗t,
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where C∗
0 = max(2C

−1/2
H H(0)1/2, n⊥(0) L2(Ω)) and κ∗ = min(κ, C(D, η, Ω)t). This con-

cludes the proof of Theorem 4.2.1. .
.

Remark 4.2.9. Let µ = (0, 0, 1) and n0 = (0, 0, n0
3). Then the components n1 and n2 of

the spin-vector density satisfy the equation

∂tni = div D

η2 (∇ni + ni∇V ) , i = 1, 2,

with boundary conditions ni = 0 on ∂Ω and initial conditions ni(0) = 0 in Ω. The unique
solution is given by ni(t) = 0 for all t > 0 and i = 1, 2. Since n = n⊥ + (n · µ)µ = n⊥ + n3µ,
the perpendicular component vanishes, n⊥(t) = 0. We conclude that the dynamics of the
system is completely determined by n±, and the proof of Theorem 4.2.1 gives the exponential
decay without any condition on τ . In particular, the density matrix N(t) = 1

2(n+ + n−)σ0 +
1
2(n+ − n−)σ3 converges exponentially fast towards 1

2n∞σ0 as t → ∞.

Remark 4.2.10. We discuss the physical relevance of the smallness condition of the scaled
relaxation time τ ≤ 2ηλ2/(D g L∞(Ω)). In scaled variables, we may assume that D = 1 and
g L∞(Ω) = 1. The scaled Debye length is given by λ2 = εsUT /(qL2g∗) = 2.7 · 10−1, where

the physical parameters are explained in Table 4.1. We have assumed that the semiconductor
material is lowly doped. The scaled relaxation time is τ = τ0/t∗, where the typical time is
defined by t∗ = L2/(µ0UT ) = 1.5 · 10−11 s. The spin-flip relaxation time is assumed to be
τ0 = 1 ps. This value is realistic in GaAs quantum wells at temperature T = 50 K; see [BF92,
Figure 1]. It follows that τ = 6 ·10−2. Thus, the inequality τ ≤ 2ηλ2/(D g L∞(Ω)) is satisfied
if η ≥ 0.11 or p ≤ 0.99. This covers almost the full range of p ∈ [0, 1).

Parameter physical meaning numerical value
q elementary charge 1.6 · 10−19 As
εs permittivity constant 10−12 As/(Vcm)
µ0 (low field) mobility constant 1.5 · 103 cm2/(Vs)
UT thermal voltage at T = 50 K 4.3 · 10−3 V
g∗ maximal doping concentration 1015/cm3

τ0 spin-flip relaxation time 10−12 s
L length of the device 10−5 cm

Table 4.1.: Physical parameters.
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A. Addendum Effective Energy Transport
Model

A.1. Compact Embedding of Hs(Td) in L2(Td)
We add here the proof for Proposition 2.3.17, where we prove that the space Hs(Td), given
through Definition 2.3.9, embeds compactly into L2(Td). A similar compactness result is
given in [Amb20], which is slightly more specific than ours. If we would replace Td with Rd,
the compact embedding Hs(Rd) ⊂⊂ L2(Rd) is proven in [DPV12].
Since we do not prove the equivalence to the fractional Sobolev space, we did not find in
literature a fitting result, hence we prove it on our own. The proof relies on basic functional
analysis, which can be found for example in [Rud91].

Proposition A.1.1. For all s ∈ (0, 1) the embedding Hs(Td) → L2(Td) is compact for all
dimensions d ∈ N (not.: Hs(Td) ⊂⊂ L2(Td)).

Proof. Fix s ∈ (0, 1), and notice that the embedding

ι : Hs(Td) → L2(Td), g → g

is linear and continuous, hence bounded. Therefore it is enough to show that ι is a compact
operator. Define the family (ιN )N∈N of operators

ιN : Hs(Td) → L2(Td), g →
l∈Zd

|l|≤N

Fx (g) (l) e2πil·x,

where Fx (.) denotes the Fourier transformation on the torus (see Definition 2.3.7) and F−1

its inverse. Since g ∈ L2(Td) we have (for details see [Gra08] Proposition 3.1.16)

g(x) = F−1(Fx (g))(x) :=
l∈Zd

Fx (g) (l) e2πil·x for a.e. x ∈ Td.

From that and Plancherel’s identity (see (2.43)) we deduce for all g ∈ Hs(Td)

(ι − ιN )(g) 2
L2(Td) =

l∈Zd,|l|>N

Fx (g) (l) e2πil·x 2

L2(Td)
= F−1 Fx (g)✶|l|>N

2

L2(Td)
=

=
l∈Zd,|l|>N

|Fx (g) (l)|2 ≤ 1
|N |2s

l∈Zd,|l|>N

|l|2s|Fx (g) (l)|2 ≤

≤ 1
|N |2s g 2

Hs(Td)

Hence we obtain the convergence

lim
N→∞

sup
g∈Hs(Td)
g Hs(Td)=1

(ι − ιN )(g) L2(Td) ≤ lim
N→∞

1
N s

= 0,
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which gives us that ιN convergences towards ι with respect to the operator norm.
Second step is to show that ιN is a compact operator for all N ∈ N. To prove this we will
see that the range of each ιN has finite dimension. Obviously we have

Fx (ιN (g)) (l) = Fx (g) (l), for |l| ≤ N,

0 for |l| > N.

Define the cardinality Ñ := # l ∈ Zd : |l| ≤ N and the subspace of 2 with finite non zero
entries

2
N (Zd) := span (al)l∈Zd ∈ 2(Zd) : al = 0 ∀|l| > N .

Clearly dim 2
N (Zd) = Ñ and we see also that Fx ιN (Hs(Td)) ⊆ 2

N (Zd). Since Fx (.) is an
injective isometry from L2(Td) to 2(Zd) (consequence of Plancherel’s identity), we have that
dimFx ιN (Hs(Td)) ≤ Ñ . From basic functional analysis we know that bounded operators
with finite range are compact and that the space of compact operators is a closed subspace of
the bounded operators with respect to the operator norm (see [Rud91] Theorem 4.18). Hence
ιN is compact for all N ∈ N and since ι is the limit of (ιN )N∈N we finally conclude that for
all s ∈ (0, 1) the embedding ι : Hs(Td) → L2(Td) is compact.
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B.1. Calculations for the General Zeroth Order of the Maxwellian
This section is devoted to the calculations for the ODE (3.75):

∂βg(0)(β) = h
(0)
0 σ0 + a(0) · σ #(0)g

(0)(β), g(0)(0) = σ0. (B.1)

where we recall h
(0)
0 = −1

2 |p|2 + a0(0), a0(0)(x) = ã
(0)
0 (x) − V (x) and #(0) equals the normal

product (see Lemma (3.2.20)). If we write (3.75) explicit, we have

∂β
g

(0)
11 (β) g

(0)
12 (β)

g
(0)
21 (β) g

(0)
22 (β)

= h
(0)
0 + a

(0)
3 a

(0)
1 − ia(0)

2
a

(0)
1 + ia(0)

2 h
(0)
0 − a

(0)
3

g
(0)
11 (β) g

(0)
12 (β)

g
(0)
21 (β) g

(0)
22 (β)

,

with the starting condition

g
(0)
11 (0) g

(0)
12 (0)

g
(0)
21 (0) g

(0)
22 (0)

= 1 0
0 1 .

If a(0)(x) would be constant zero, the differential equation would reduce to a single one of
the form

∂βg(0)(β) = h
(0)
0 + a0

(0) g(0)(β)

with the solution

g(0)(β) = exp β h
(0)
0 + a0

(0) σ0.

The next important case is that when a
(0)
1 (x) = 0 = a

(0)
2 (x) for some x ∈ R3. The differential

equation to solve would be

∂β
g

(0)
11 (β) g

(0)
12 (β)

g
(0)
21 (β) g

(0)
22 (β)

=

 h
(0)
0 + a

(0)
3 g

(0)
11 (β) h

(0)
0 + a

(0)
3 g

(0)
12 (β)

h
(0)
0 − a

(0)
3 g

(0)
21 (β) h

(0)
0 − a

(0)
3 g

(0)
22 (β)

 ,

g
(0)
11 (0) g

(0)
12 (0)

g
(0)
21 (0) g

(0)
22 (0)

= 1 0
0 1 .

Here we obtain the solution

g(0)(β) =

exp β h
(0)
0 + a

(0)
3 0

0 exp β h
(0)
0 − a

(0)
3

 (B.2)

Last we solve the equation (3.75) for each x and p, where we assume that a
(0)
1 (x) = 0 = a

(0)
2 (x).

This leads us to solving two linear differential equations of the form

ẏ1(β) = By1(β) with y1(0) = 1
0 , (B.3)

ẏ2(β) = By2(β) with y2(0) = 0
1 , (B.4)
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where y1, y2 are functions of β ∈ R+
0 with two components and where B := h

(0)
0 σ0 +a(0) ·σ is

a 2×2 matrix. Equations (B.3) and (B.4) represent the equations for the columns g
(0)
.1 (β) and

g
(0)
.2 (β) respectively. We will not give all calculations but we go through the most important

steps. The eigenvalues of B are

λ1,2 = h
(0)
0 ± a(0) .

The belonging eigenvectors have the following equationsa
(0)
3 − a(0) a

(0)
1 − ia(0)

2

a
(0)
1 + ia(0)

2 −a
(0)
3 − a(0)


=B−λ1Id

v1
v2

= 0,

a
(0)
3 + a(0) a

(0)
1 − ia(0)

2

a
(0)
1 + ia(0)

2 −a
(0)
3 + a(0)


=B−λ2Id

γ1
γ2

= 0. (B.5)

For equation (B.3) we look at the second line, which provides the condition

v2 = − a
(0)
1 + ia(0)

2

−a
(0)
3 − a(0)

v1, γ2 = − a
(0)
1 + ia(0)

2

−a
(0)
3 + a(0)

γ1

Then we choose for equation (B.3) the following eigenvectors

v =

a
(0)
3 +|a(0)|

a
(0)
1 +ia(0)

2
1

 , γ =

a
(0)
3 −|a(0)|

a
(0)
1 +ia(0)

2
1

 ,

and obtain the general solution

y1(β) = C11 exp β h
(0)
0 + a(0) v + C21 exp β h

(0)
0 − a(0) γ.

With the starting condition of (B.3) we obtain as solution for the ODE (B.3)

g
(0)
.1 (β) = y1(β) = e

β h
(0)
0

2 a(0)

eβ|a(0)| a
(0)
3 + a(0) − e−β|a(0)| a

(0)
3 − a(0)

eβ|a(0)| − e−β|a(0)| a
(0)
1 + ia(0)

2

 .

For the second differential equation (B.4) we choose different eigenvectors ṽ, γ̃ of the solution
space, to simplify the calculations. Looking in (B.5) at the first line, we obtain the relations

ṽ2 =
−a

(0)
3 + a(0)

a
(0)
1 − ia(0)

2
ṽ1, γ̃2 =

−a
(0)
3 − a(0)

a
(0)
1 − ia(0)

2
γ̃1

The new chosen eigenvectors are

ṽ =

 1
−a

(0)
3 +|a(0)|

a
(0)
1 −ia(0)

2

 , γ̃ =

 1
−a

(0)
3 −|a(0)|

a
(0)
1 −ia(0)

2

 ,

leading us to the general solution of (B.4):

y2(β) = C12 exp β h
(0)
0 + a(0) ṽ + C22 exp β h

(0)
0 − a(0) γ̃.
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The starting condition of (B.4) provides us the solution of (B.4)

g
(0)
.2 (β) = y2(β) = e

β h
(0)
0

2 a(0)

 eβ|a(0)| − e−β|a(0)| a
(0)
1 − ia(0)

2

eβ|a(0)| a(0) − a
(0)
3 + e−β|a(0)| a

(0)
3 + a(0)

 .

Recalling the identities cosh(x) = 1
2(exp(x)+exp(−x)), sinh(x) = 1

2(exp(x)−exp(−x)), and
introducing the short notation e± := e±β|a(0)|, leads us to the zero order of g(β):

g(0)(β) =e
β h

(0)
0

2 a(0)

 a(0) (e+ + e−) + a
(0)
3 (e+ − e−) (e+ − e−)(a(0)

1 − ia(0)
2 )

(e+ − e−)(a(0)
1 + ia(0)

2 ) a(0) (e+ + e−) − a
(0)
3 (e+ − e−)


=e

β h
(0)
0 cosh β a(0) σ0 + sinh β a(0) a(0)

a(0) · σ (B.6)

Since M (N) = g(1), we obtain the zero order of M (N)

M (0)(N) = e
h

(0)
0 cosh a(0) σ0 + sinh a(0) a(0)

a(0) · σ ,

Remark B.1.1. If we take a closer look on g(0)(β), we see that if we let a(0) go to zero we
have that, since sinh(x)/x converges to one for x going to zero,

lim
a(0)→0

g(0)(β) = e
β h

(0)
0 σ0.

Also if we let a
(0)
1 , a

(0)
2 → 0 in (B.6) we see that g(0)(β) converges to the same solution as in

(B.2).

B.2. Needed derivatives of g(0)

For the sake of completeness we give here the derivatives we need for the calculations, starting
with h0:

∂xk
h0 = ∂xk

−|p|
2

2
+ a0 = ∂xk

a0, ∂pk
h0 = ∂pk

−|p|
2

2
+ a0 = −pk,

∂xj ∂xk
h0 = ∂xj ∂xk

−|p|
2

2
+ a0 = ∂xj ∂xk

a0, ∂xj ∂pk
h0 = ∂xj ∂pk

−|p|
2

2
+ a0 = 0,

∂pj ∂pk
h0 = ∂pj ∂pk

−|p|
2

2
+ a0 = −δjk ∂pj ∂xk

h0 = ∂pj ∂xk
−|p|

2

2
+ a0 = 0.

Recall that g(0) = exp(βh0)σ0, we have that g
(0)
0 = exp(βh0), then we get for the x-derivatives

of g
(0)
0 :

∂xk
g

(0)
0 (β) = β(∂xk

a0) exp (βh0)

∂xj ∂xk
g

(0)
0 (β) = ∂xj (β(∂xk

a0) exp (βh0))
= β(∂xj ∂xk

a0) exp (βh0) + β2(∂xj a0)(∂xk
a0) exp (βh0)

= β exp (βh0) (∂xj ∂xk
a0 + β(∂xj a0)(∂xk

a0)).
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The derivatives for g
(0)
0 (β) with respect to the momentum p are given by:

∂pk
g

(0)
0 (β) =(−pk)β exp (βh0)

∂pj ∂pk
g

(0)
0 (β) = − δjkβ exp (βh0) + pjpkβ2 exp (βh0)

=β exp (βh0) (βpjpk − δjk)
∂pi∂pj ∂pk

g(0)(β) =(−pi)β2 exp (βh0) (βpjpk − δjk) + β exp (βh0) (βδijpk + βpjδik)
=β2 exp (βh0) (piδjk + pkδij + pjδik − βpipjpk)

B.3. Calculations and Solving the ODEs for the Orders of g(β)

This part of the appendix is devoted to solve the ODEs appearing in the proof of Theorem
3.6.2. First we state a well known formula, without the proof.

Theorem B.3.1 (Duhamels formula). Let u, ζ, ξ be three functions from R to R sufficiently
smooth. Then we have for the following differential equation

u =ζu + ξ,

the following solution

u =C exp
β

0
ζ(s)ds +

β

0
exp

β

s
ζ(τ)dτ ξ(s)ds.

Recall the definitions:

h0 = −|p|
2

2
+ a0 , a0 = ã0 − V, h1 = (a − αp⊥), H0 = h0σ0, H1 = h1 · σ.

B.3.1. The ODE for the first order

We want to solve

∂βg(1)(β) =H0g(1)(β) + g(0)h1 · σ, g(1)(0) = 0,

With Duhamel’s formula we obtain

g(1)(β) =C exp (βh0) +
β

0
exp ((β − s)h0) exp (sh0) h1ds

=C exp (βh0) +
β

0
exp (βh0) h1ds.

Since our initial condition demands that g(1)(0) = 0 we have that C has to be zero and
therefore:

g(1)(β) = β exp β −|p|
2

2
+ a0 a − αp⊥ · σ.
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B.3.2. The ODE for the Second Order

Next ODE is to solve is

∂βg(2)(β) = H0g(2)(β) + βg(0) 1
4Δa0 − β

8 pT (∇ ⊗ ∇a0)p − |∇a0|2 + |h1|2 σ0,

g(2)(0) = 0

which means that we have four equations to solve. The ODEs corresponding to the off
diagonal, have the simple solutions

(g(2)(β))12 = C exp (βh0) = (g(2)(β))21.

The initial value g(2)(0) = 0 implies that the constant C has to be zero and hence

(g(2)(β))12 = 0 = (g(2)(β))21.

For the diagonal terms of g(2)(β) we apply Duhamel’s formula (see Theorem B.3.1). Both
equations are equal, hence have the same solution:

(g(2)(β))jj =C exp (βh0) +
β

0
exp ((β − s)h0) s exp (sh0) ·

· 1
4Δa0 + s

8 |∇a0|2 − pT (∇ ⊗ ∇a0)p + |h1|2 ds

=C exp (βh0) + exp (βh0)
β

0
s

1
4Δa0 + s

8 |∇a0|2 − pT (∇ ⊗ ∇a0)p + |h1|2 ds

= exp (βh0) C + β

2
2 1

4Δa0 + β

12 |∇a0|2 − pT (∇ ⊗ ∇a0)p + |h1|2

The initial condition is (g(2)(0))jj = 0 provides again that C has to be zero. Therefore we
obtain for the second order term the following expression:

g(2)(β) = β

8
2
exp β −|p|

2

2
+ a0 Δa0 + β

3 |∇a0|2 − pT (∇ ⊗ ∇a0)p + 4 a − αp⊥ 2
σ0.

B.3.3. Calculations for the Third Order

Here we add some calculations, that are basic, to give slightly more insight what happens
in between. We mark with small boxes to which term we add calculations. In addition we
mention that a vector valued function f , with dependence on the space variable x, multiplied
with ∇pp⊥ is the same as crossing f with the third canonical basis vector of R2, meaning
(∇pp⊥)f = f⊥ and fT (∇pp⊥) = (∇pp⊥)T f = −f⊥

h0#(2)g
(1)(β):

First we give here the calculations for h0#(1)λ2, where we defined λ2 in the Proof of
Theorem 3.6.2

λ2 := Δa0 + β

3 |∇a0|2 − pT (∇ ⊗ ∇a0)p + 4|h1|2.
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Starting with the x derivative we have

∂xi |∇xa0|2 = ∂xi

3

j=1
(∂xj a0)2 =

3

j=1
2∂xj a0(∂xi∂xj a0) = 2(∇xa0(∇x ⊗ ∇xa0))i,

∇x|∇xa0|2 = 2(∇xa0(∇x ⊗ ∇xa0)),

∂xi a − αp⊥ 2
= ∂xi((a1 − αp2)2 + (a2 + αp1)2 + a2

3)

= ∂xi(a2
1 + a2

2 + a2
3 − 2α(p2a1 − p1a2) + α2(p2

1 + p2
2))

= 2(a1∂xia1 + a2∂xia2 + a3∂xia3 − 2α(p2∂xia1 − p1∂xia2))
= 2a · ∂xia − 2αp⊥ · ∂xia

= 2(a − αp⊥) · ∂xia

∇x|h1|2 = 2(a − αp⊥)T ∇xa = 2(∇xa)T (a − αp⊥).

Therefore we have for λ2 the following gradient with respect to x

∇xλ2 = ∇x(Δxa0) + β

3 (2(∇xa0)(∇x ⊗ ∇xa0) − ∇x(pT (∇x ⊗ ∇xa0)p) + 8(∇xa)T h1.

For the derivatives with respect to p we prepare:

∂pi(pT (∇x ⊗ ∇xa0)p) = ∂pi

2

j=1

2

k=1
∂xj ∂xk

a0pjpk =
2

j,k=1
∂xk

∂xj a0δijpk + ∂xj ∂xk
a0δikpj

=
2

k=1
∂xj ∂xia0pk +

2

j=1
∂xi∂xj a0pj = 2

2

j=1
∂xj ∂xia0pi,

= 2∂xi(∇xa0 · p),

∇p(pT (∇x ⊗ ∇xa0)p) = 2((∇x ⊗ ∇x)a0)p,

∂pi a − αp⊥ 2
= ∂pi(a2

1 + a2
2 + a2

3 − 2α(p2a1 − p1a2) + α2(p2
1 + p2

2))

= −2α(δi2a1 − δi1a2) + α22pi,

∇p |h1|2 = 2α(αp + a⊥) = 2α(α(e3 × p) × e3 + a × e3)

= 2α(α(e3 × p) + a) × e3 = 2α(−α(p × e3) + a) × e3

= 2α(a − αp⊥) × e3 = 2α(∇pp⊥)(a − αp⊥).

and therefore we obtain

∇pλ2 = −2β

3 ((∇x ⊗ ∇x)a0)p + 8α(∇pp⊥)h1.

Since the matrix (∇x ⊗ ∇x)a0 is symmetric we have that

p · ((∇xa0)(∇x ⊗ ∇xa0)) = (∇xa0)(∇x ⊗ ∇xa0)p,
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which leads us to

∇ph0 · ∇xλ2 − ∇xh0 · ∇pλ2 =

= − p · ∇x(Δxa0) + β

3 (2(∇xa0)(∇x ⊗ ∇xa0) − ∇x(pT (∇x ⊗ ∇xa0)p)) + 8(∇xa)T h1

− (∇xa0) · −2β

3 ((∇x ⊗ ∇x)a0)p + 8α(∇pp⊥)h1

=β

3 p · ∇x(pT (∇x ⊗ ∇xa0)p) − p · ∇x(Δxa0) − 8p · (∇xa)T h1 − 8α∇xa0 · (∇pp⊥)h1

=β

3 p · ∇x(pT (∇x ⊗ ∇xa0)p) − p · ∇x(Δxa0) − 8(∇xa)p · h1 + 8α(∇xa0 × e3) · h1

=β

3 p · ∇x(pT (∇x ⊗ ∇xa0)p) − p · ∇x(Δxa0) + 8(α(∇⊥
x a0) − (∇xa)p) · h1.

The final result is then

h0#(1)g
(2) = 1

2i
β2

8 g(0) (∇ph0 · ∇xλ2 − ∇xh0 · ∇pλ2) σ0 =

= β2

16i exp (βh0) β

3 p · ∇x(pT (∇x ⊗ ∇xa0)p) − p · ∇x(Δxa0) − 8(α(∇⊥
x a0) + (∇xa)p) · h1 σ0.

pT (∇x ⊗ ∇xa0)∇pp⊥ = −∇⊥
x (∇xa0 · p):

With the behaviour of ∇pp⊥ mentioned in the beginning we get

pT (∇x ⊗ ∇xa0)∇pp⊥ = − ((∇x ⊗ ∇xa0)p) × e3 = −∇⊥
x (∇xa0 · p).

2ih1 ×#1 g(1) = ∇ph1 × ∇xg(1) − ∇xh1 × ∇pg(1):

h1 ×#(1) g(1) =

= 1
2i


 ∇p(h1)2 · ∇xg

(1)
3 − ∇x(h1)2 · ∇pg

(1)
3 − ∇p(h1)3 · ∇xg

(1)
2 + ∇x(h1)3 · ∇pg

(1)
2

−[∇p(h1)1 · ∇xg
(1)
3 − ∇x(h1)1 · ∇pg

(1)
3 − ∇p(h1)3 · ∇xg

(1)
1 + ∇x(h1)3 · ∇pg

(1)
1 ]

∇p(h1)1 · ∇xg
(1)
2 − ∇x(h1)1 · ∇pg

(1)
2 − ∇p(h1)2 · ∇xg

(1)
1 + ∇x(h1)2 · ∇pg

(1)
1




= 1
2i


 ∇p(h1)2 · ∇xg

(1)
3 − ∇p(h1)3 · ∇xg

(1)
2 + ∇x(h1)3 · ∇pg

(1)
2 − ∇x(h1)2 · ∇pg

(1)
3

−[∇p(h1)1 · ∇xg
(1)
3 − ∇p(h1)3 · ∇xg

(1)
1 + ∇x(h1)3 · ∇pg

(1)
1 − ∇x(h1)1 · ∇pg

(1)
3 ]

∇p(h1)1 · ∇xg
(1)
2 − ∇p(h1)2 · ∇xg

(1)
1 + ∇x(h1)2 · ∇pg

(1)
1 − ∇x(h1)1 · ∇pg

(1)
2




= 1
2i ∇ph1 ×· ∇xg(1) − ∇xh1 ×· ∇pg(1) .

The notation ×· just specifies that the cross product multiplication is actually the euclidean
scalar product, which was dropped in the proof of Theorem 3.6.2.

Substituting the terms to obtain the ODE:
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∂βg(3) =H0g(3) + H0#(1)g
(2) + H0#(2)g

(1) + H0#(3)g
(0) + H1g(2) + H1#(1)g

(1) + H1#(2)g
(0)

=H0g(3)+

+ β2

16ig
(0) β

3 p · ∇x(pT (∇x ⊗ ∇xa0)p) − p · ∇x(Δxa0) + 8(α(∇⊥
x a0) − (∇xa)p) · h1 σ0

+ β2

8 g(0) 2Δxa0 + β |∇xa0|2 − pT (∇x ⊗ ∇xa0)p h1 · σ

+ β

8 g(0) 2β(α∇⊥
x (∇xa0 · p) + ∇xa · ∇xa0) + Δxa · σ

+ β2

16ig
(0) p · ∇x(Δxa0) − β

3 p · ∇x pT (∇x ⊗ ∇xa0)p σ0

+ β

8
2
g(0) Δxa0 + β

3 |∇xa0|2 − p(∇x ⊗ ∇xa0)p + 4|h1|2 h1 · σ

+ β

2i β((∇xa)p − α(∇xa0)⊥) · h1 σ0

+ β

2 g(0) β (∇xa)p − α(∇xa0)⊥ × h1 − 2α(∇⊥
x × a) · σ

− 1
8βg(0) βpT (∇x ⊗ ∇xa)p − Δxa · σ =

=H0g(3) + β

8 g(0) β 3Δxa0 + 4
3β |∇xa0|2 − pT (∇x ⊗ ∇xa0)p + 4|h1|2 h1+

+ 2Δxa − 8α(∇⊥
x × a) + β 2∇xa · ∇xa0 − pT (∇x ⊗ ∇xa)p + 2α∇⊥

x (∇xa0 · p) +

+ 4β (∇xa)p − α(∇xa0)⊥ × h1 · σ

Solving the ODE:

Recalling the initial condition is g(3)(0) = 0, we want to solve the above differential equa-
tion. An immediate consequence is, after comparing the Pauli components, that the zero
component has to be zero, i.e.

g
(3)
0 = 0.

For the σ components we can apply Duhamel’s formular (Theorem B.3.1) simultaneously
and therefore

g(3)(β) =C exp (βh0) +
β

0
exp ((β − s)h0) exp (sh0) ·

· s

8 s 3Δxa0 + 4s

3 (|∇xa0|2 − pT (∇ ⊗ ∇a0)p) + 4|h1|2 h1+

+ 2Δxa − 8α(∇⊥
x × a) + s 2∇xa∇xa0 − pT (∇x ⊗ ∇xa)p + 2α∇⊥

x (∇xa0 · p) +

+ 4s (∇xa)p − α(∇xa0)⊥ × h1 ds.

With the starting condition g(3)(0) = 0 we have that the constant C equals zero and therefore
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we obtain as result, after simple integration,

g(3)(β) =β2

24 exp (βh0) 3βΔa0 + β2(|∇a0|2 − pT (∇ ⊗ ∇a0)p) + 4β|h1|2 h1

+ 3Δa − 12α(∇⊥ × a) + β 2∇a · ∇a0 − pT (∇ ⊗ ∇a)p + 2α(∇⊥)(∇a0 · p)

+ 4β (∇a)p − α(∇a0)⊥ × h1 · σ.

B.4. Calculations for the Semiclassical Expansion of the Lagrange
Multipliers

B.4.1. The Total Derivatives of M with respect to ε

To obtain the equaions (3.121)-(3.124) we need to calculate the total derivatives of the quan-
tum Maxwellian. It is just applying the chainrule and to save time for the reader, we do it
here.

dM
dε

=∂M
∂ε

+
3

j=0

∂M
∂aj

∂aj

∂ε
,

d2M
dε2 = d

dε

∂M
∂ε

+
3

j=0

∂M
∂aj

∂aj

∂ε


=∂2M

∂ε2 + 2
3

j=0

∂2M
∂ε∂aj

∂aj

∂ε
+

3

j=0

3

k=0

∂2M
∂aj∂ak

∂aj

∂ε

∂ak

∂ε
+ ∂M

∂aj

∂2aj

∂ε2 ,

d3M
dε3 = d

dε

∂2M
∂ε2 + 2

3

j=0

∂2M
∂ε∂aj

∂aj

∂ε
+

3

j=0

3

k=0

∂2M
∂aj∂ak

∂aj

∂ε

∂ak

∂ε
+ ∂M

∂aj

∂2aj

∂ε2


=∂3M

∂ε3 +
3

j=0

∂3M
∂ε2∂aj

∂aj

∂ε
+ 2

3

j=0

∂3M
∂ε2∂aj

∂aj

∂ε
+ 2

3

j=0

3

k=0

∂2M
∂ε∂aj

∂2aj

∂ε2 + ∂3M
∂ε∂aj∂ak

∂aj

∂ε

∂ak

∂ε

+
3

k=0

3

j=0

∂2M
∂aj∂ε

∂2aj

∂ε2 + ∂M
∂aj

∂3aj

∂ε3 + ∂2M
∂aj∂ak

∂ak

∂ε

∂2aj

∂ε2

+
3

j=0

3

k=0

∂3M
∂aj∂ak∂ε

∂aj

∂ε

∂ak

∂ε
+ ∂2M

∂aj∂ak

∂2aj

∂ε2
∂ak

∂ε
+ ∂2ak

∂ε2
∂aj

∂ε

+
3

j=0

3

k=0

3

i=0

∂3M
∂aj∂ak∂ai

∂aj

∂ε

∂ak

∂ε

∂ai

∂ε

=∂3M
∂ε3 + 3

3

j=0

∂3M
∂ε2∂aj

∂aj

∂ε
+ 3

3

j=0

∂2M
∂ε∂aj

∂2aj

∂ε2 + 3
3

j=0

3

k=0

∂3M
∂ε∂aj∂ak

∂aj

∂ε

∂ak

∂ε

+
3

j=0

∂M
∂aj

∂3aj

∂ε3 +
3

j=0

3

k=0

∂2M
∂aj∂ak

2∂2aj

∂ε2
∂ak

∂ε
+ ∂2ak

∂ε2
∂aj

∂ε

+
3

j=0

3

k=0

3

i=0

∂3M
∂aj∂ak∂ai

∂aj

∂ε

∂ak

∂ε

∂ai

∂ε
.

Now we need to evaluate these derivatives at ε = 0 and by replacing the partial derivatives
of aj with the respective order (see (3.120)) we obtain the desired equations.
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B.4.2. Calculations for a
(2)
0

In this section we want to calculate the second order of a0 where we have derived in the proof
of Theorem 3.6.5 that

a
(2)
0 = − 1

n0
g

(2)
0 (1)

ε=0
. (B.7)

We recall the already calculated orders

a
(0)
0 = log n0

2π
, a

(1)
0 = 0, a(0) = n

n0
, a(1) = 0, h

(0)
0 = −|p|2

2 + a
(0)
0 , h

(0)
1 = a(0) + αp⊥

Looking at the integral in (B.7) we get with Proposition 3.6.4 and that exp(h(0)
0 ) = n0:

g
(2)
0 (1)

ε=0
= 1

8 exp h
(0)
0 Δa

(0)
0 + 1

3 ∇a
(0)
0

2 − pT ∇ ⊗ ∇a
(0)
0 p + 4 h

(0)
1

2

=1
8 n0 Δa

(0)
0 + 1

3 ∇a
(0)
0

2
+ exp h

(0)
0 4 h

(0)
1

2 − 1
3p(∇ ⊗ ∇a

(0)
0 )p .

We integrate the last two terms on the right hand side. Notice in the upcoming calculations
that exp(h0) is even in p and so multiplying it with pj makes it odd. Therefore exp(h0)pjpk

equals zero if j = k and that exp(h(0)
0 )p2

j = exp(a(0)
0 )2π = n0 for j ∈ {1, 2}. We get

exp h
(0)
0 pT ∇ ⊗ ∇a

(0)
0 p =

2

j,k=1
exp h

(0)
0 ∂xj ∂xk

a
(0)
0 pjpk =

2

j=1
exp h

(0)
0 ∂2

xj
a

(0)
0 p2

j

=
2

j=1
exp a

(0)
0 ∂2

xj
a

(0)
0 exp −|p|2/2 p2

j = 1
2π

n0

3

j=1
∂2

xj
a

(0)
0 2π

=n0Δa
(0)
0 .

For the second integral, with similar argumentations we get

exp h
(0)
0 h

(0)
1

2
= exp h

(0)
0 a(0) 2

+ α2 p⊥ 2 − 2αp2a
(0)
1 + 2αp1a

(0)
2

= 1
2π

n0 2π a(0) 2
+ 4πα2 = n0 a(0) 2

+ 2α2 .

Substituting our results and the various orders into (B.7), and using the fact that the deriva-
tive of the logarithm can also be rewritten as ∂xj log (n0/2π) = ∂xj log (n0) , provides

a
(2)
0 = − 1

8n0
n0 Δa

(0)
0 + 1

3 ∇a
(0)
0

2
+ 4n0 a(0) 2

+ 2α2 − 1
3n0Δa

(0)
0

= − 1
12Δa

(0)
0 − 1

24 ∇a
(0)
0

2 − 1
2 a(0) 2 − α2

= − 1
12Δ log(n0) − 1

24 |∇ log(n0)|2 − 1
2

n

n0

2
− α2.

Additionally we add the needed derivatives of log(n0) for j ∈ {1, 2} to obtain a more handy
form of a

(2)
0 :

∂xj log(n0) = 1
n0

∂xj n0, ∂xj ∂xj log(n0) = ∂xj

1
n0

∂xj n0 = 1
n02 (∂2

xj
n0)n0 − ∂xj n0

2
,

∇ log(n0) =∇n0
n0

, Δ log(n0) = Δn0
n0

− |∇n0|2
n02 ,
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and hence

a
(2)
0 = − 1

12
Δn0
n0

− |∇n0|2
n02 − 1

24
∇n0
n0

2
− 1

2
n

n0

2
− α2

= − 1
12

Δn0
n0

− 1
2

|∇n0|2
n02 − 1

2
n

n0

2
− α2.

B.4.3. Calculations for a(2)

Starting point here is the equation

a(2) = − 1
n0

g(3)(1)
ε=0

− 1
n0

a
(2)
0 n. (B.8)

The integral on the right hand side is given by

g(3)(1)
ε=0

= 1
24 exp h

(0)
0 3Δa

(0)
0 + ∇a

(0)
0

2 − pT (∇ ⊗ ∇a
(0)
0 )p + 4 h

(0)
1

2
h

(0)
1 +

+ 2∇a(0) · ∇a
(0)
0 − pT (∇ ⊗ ∇a(0))p + 2α∇⊥(∇a

(0)
0 · p)

+3Δa(0) − 12α∇⊥ × a(0) + 4 (∇a(0))p − α(∇a
(0)
0 )⊥ × h

(0)
1

=n0
24 3Δa

(0)
0 + ∇a

(0)
0

2
a(0) + 2∇a(0) · ∇a

(0)
0 + 3Δa(0) − 12α∇⊥ × a(0)

+ 1
24 exp h

(0)
0 −pT (∇ ⊗ ∇a

(0)
0 )p + 4 h

(0)
1

2
h

(0)
1 − pT (∇ ⊗ ∇a(0))p

+ 2α∇⊥(∇a
(0)
0 · p) + 4 ∇a(0) p − α ∇a

(0)
0

⊥ × h
(0)
1 .

In the previous Section (see Appendix B.4.2) we already dealt with some integrals of the
same kind and additionally with Proposition 3.6.4 we deduce that

exp h
(0)
0 pT ∇ ⊗ ∇a

(0)
0 p h

(0)
1 = exp h

(0)
0 pT (∇ ⊗ ∇a

(0)
0 )p a(0)

+ α exp h
(0)
0 pT (∇ ⊗ ∇a

(0)
0 )p p⊥

=n0 Δa
(0)
0 a(0),

and

exp h
(0)
0 h

(0)
1

2
h

(0)
1 = exp h

(0)
0 h

(0)
1

2
a(0) − α exp h

(0)
0 h

(0)
1

2
p⊥

=n0 a(0) 2
+ 2α2 a(0) + 2α2 exp h

(0)
0 a(0) · p⊥ p⊥

=n0 a(0) 2
+ 2α2 a(0) − 2α2n0 a(0)⊥ ⊥

,

and

exp h
(0)
0 pT ∇ ⊗ ∇a(0) p = n0Δa(0), 2α∇⊥ ∇a

(0)
0 · p = 0.
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Now we take a look onto the terms where the cross product with h
(0)
1 appears. The first two

upcoming integrals vanish because odd functions with respect to p are integrated and the
third follows from Proposition 3.6.4:

exp h
(0)
0 ∇a(0) p × a(0) =0,

α2 exp h
(0)
0 ∇a

(0)
0

⊥ × p⊥ =0,

α exp h
(0)
0 ∇a

(0)
0

⊥ × a(0) =αn0 ∇a
(0)
0

⊥ × a(0).

The very last integral gets a bit more attention (notice that in the second equality the odd
terms disappear after integration):

exp h
(0)
0 ∇a(0) p × p⊥ = exp h

(0)
0


∂x1a

(0)
1 p1 + ∂x2a

(0)
1 p2

∂x1a
(0)
2 p1 + ∂x2a

(0)
2 p2

∂x1a
(0)
3 p1 + ∂x2a

(0)
3 p2


 ×


 p2

−p1
0




= exp h
(0)
0


 ∂x1a

(0)
3 p2

1
∂x2a

(0)
3 p2

2
−∂x1a

(0)
1 p2

1 − ∂x2a
(0)
2 p2

2




= − n0(∇ × e3) × a(0).

Hence we obtain for the integration of g(3)(1) at ε = 0 the following

g(3)(1)
ε=0

=n0
24 3Δa

(0)
0 + ∇a

(0)
0

2
a(0) + 2∇a(0) · ∇a

(0)
0 + 3Δa(0) − 12α∇⊥ × a(0)

+ n0
24 4 a(0) 2

+ 2α2 a(0) − 8α2 a(0)⊥ ⊥
− Δa

(0)
0 a(0) − Δa(0)

− 4 α ∇⊥ × a(0) + α ∇a
(0)
0

⊥ × a(0)

=n0
24 2Δa

(0)
0 + ∇a

(0)
0

2
+ 4 a(0) 2

+ 2α2 a(0) − 8α2 a(0)⊥ ⊥

+ 2∇a(0) · ∇a
(0)
0 + 2Δa(0) − 16α∇⊥ × a(0) − 4α ∇a

(0)
0

⊥ × a(0)

=n0
12 Δa

(0)
0 + 1

2 ∇a
(0)
0

2
+ 2 a(0) 2

+ 2α2 a(0) − 4α2 a(0)⊥ ⊥

+ n0
12 Δa(0) + ∇a(0) · ∇a

(0)
0 − α 8∇ + 2∇a

(0)
0

⊥ × a(0) .

Before we substitute into equation (B.8) we want to calculate the needed derivatives of
a(0) = n/n0:

∂xia
(0) = 1

n0
∂xin − 1

n02 (∂xin0)n

∂2
xi

a(0) = ∂xi

1
n0

∂xin − 1
n02 (∂xin0)n

= 1
n02 (∂2

xi
n)n0 − ∂xin ∂xin0 − 1

n04 ((∂2
xi

n0)n + ∂xin0 ∂xin)n0
2 − 2n0(∂xin0)2n

= 1
n0

∂2
xi

n − 2 1
n02 (∂xin0)∂xin − 1

n02 (∂2
xi

n0)n + 2 1
n03 (∂xin0)2n.
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With the above we can calculate easy the gradient and the Laplacian of a(2):

∇a(0) = 1
n0

∇n − 1
n0

n∇n0 ,

Δa(0) = 1
n0

Δn − 2
n0

∇n · ∇n0 − 1
n0

(Δn0)n + 2 ∇n0
n0

2
n .

Finally substituting everything together into (B.8) we obtain

a(2) = − 1
n0

g(3)(1)
ε=0

− 1
n0

a
(2)
0 n

= − 1
12 Δa

(0)
0 + 1

2 ∇a
(0)
0

2
+ 2 a(0) 2

+ 2α2 a(0) − 4α2 a(0)⊥ ⊥

− 1
12 Δa(0) + ∇a(0) · ∇a

(0)
0 − α 8∇ + 2∇a

(0)
0

⊥ × a(0)

− 1
n0

− 1
12

Δn0
n0

− |∇n0|2
n02 − 1

24
∇n0
n0

2
− 1

2
n

n0

2
− α2 n

= 1
12n0

Δn0
n0

− 2 ∇n0
n0

2
+ 4 n

n0

2
+ 8α2 n + 4α2 n⊥ ⊥ − Δn + 2∇n · ∇n0

n0

− 1
12n0

∇n − 1
n0

n∇n0 · ∇n0
n0

− α 8∇ + 2∇n0
n0

⊥
× n

= 1
12n0

Δn0
n0

− ∇n0
n0

2
+ 4 n

n0

2
+ 8α2 n + 4α2 n⊥ ⊥

− 1
12

Δn

n0
− ∇n

n0
· ∇n0

n0
+ α

6n0
4∇ + ∇n0

n0

⊥
× n.

B.4.4. Gradients of the Second Order Lagrange Multiplier

We give here the calculations for ∇a(2) and we will see that then the explicit form of ∇a
(2)
0

follows directly. For the second order we start with applying the product rule

∇a(2) = ∇ 1
3

n

n0

2
+ 1

12
Δn0
n0

− 1
12

∇n0
n0

2 n

n0
− 1

12
Δn

n0
+ 1

12
∇n

n0
· ∇n0

n0

= n

n0
∇ 1

3
n

n0

2
+ 1

12
Δn0
n0

− 1
12

∇n0
n0

2
+ 1

3
n

n0

2
+ 1

12
Δn0
n0

− 1
12

∇n0
n0

2
∇ n

n0

− 1
12∇ Δn

n0
+ 1

12∇ ∇n

n0
· ∇n0

n0
.

Looking at the expressions separately gives us

∂xk

n

n0

2
= ∂xk

 1
n02

3

j=1
n2

j

 = 1
n04

2
3

j=1
nj(∂xk

nj)n0
2 − 2n0(∂xk

n0)
3

j=1
n2

j


= 2 1

n02 n · ∂xk
n − 1

n03 |n|2∂xk
n0 ,

∇ n

n0

2
= 2 n

n0
· ∇n

n0
− n

n0

2 ∇n0
n0

. (B.9)
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Here the j−th row of the matrix ∇ n
n0

2
n reads as follows

∇ n

n0

2
n

j.

= 2 n

n0
· ∇n

n0
− n

n0

2 ∇n0
n0

nj .

Next term on the list is ∇|(∇n0)/n0|2. The calculations are similar to the previous ones
where we only need to replace n with ∇n0. The gradient of the gradient equals the tensor
product of the derivatives (or just the hessian) and will be denoted with ∇ ⊗ ∇.

∂xk

∇n0
n0

2
= 2 1

n02 ∇n0 · ∂xk
∇n0 − 1

n03 |∇n0|2∂xk
n0 ,

∇ ∇n0
n0

2
= 2 ∇n0

n0

(∇ ⊗ ∇)n0
n0

− ∇n0
n0

2 ∇n0
n0

. (B.10)

Next term is quite straight forward where we only apply the quotient rule.

∇ Δn0
n0

= ∇(Δn0)
n0

− ∇n0
n0

Δn0
n0

, ∇ Δn

n0
= ∇(Δn)

n0
− Δn

n0

∇n0
n0

. (B.11)

The last derivative that will be calculated, needs do be done more in detail, to avoid confusion.
Let for j ∈ {1, 2, 3} and for k ∈ {1, 2}

∂xk

∇n

n0
· ∇n0

n0 j
= ∂xk

1
n02

2

i=1
(∂xinj)∂xin0 =

= 1
n02

2

i=1
(∂xk

∂xinj)∂xin0 + (∂xinj)∂xk
∂xin0 − 2

n03

2

i=1
(∂xinj)(∂xin0)∂xk

n0 ,

which means for the gradient of the j−component

∇ ∇n

n0
· ∇n0

n0 j
= ∇n0

n0

(∇ ⊗ ∇)nj

n0
+ ∇nj

n0

(∇ ⊗ ∇)n0
n0

− 2 ∇nj

n0
· ∇n0

n0

∇n0
n0

.

In general we have

∇ ∇n

n0
· ∇n0

n0
= ∇n0

n0

(∇ ⊗ ∇)n
n0

+ ∇n

n0

(∇ ⊗ ∇)n0
n0

− 2 ∇n

n0
· ∇n0

n0

∇n0
n0

.

160



B.5. Another Depiction of the Semiclassical Model (3.106)

Therefore we obtain for the gradient of the second order of a the following result

∇a(2) = n

n0
∇ 1

3
n

n0

2
+ 1

12
Δn0
n0

− 1
12

∇n0
n0

2

+ 1
3

n

n0

2
+ 1

12
Δn0
n0

− 1
12

∇n0
n0

2
∇ n

n0
− 1

12∇ Δn

n0
+ 1

12∇ ∇n

n0
· ∇n0

n0

= n

n0

2
3

n

n0
· ∇n

n0
− 2

3
n

n0

2 ∇n0
n0

+ 1
12

∇(Δn0)
n0

− 1
12

∇n0
n0

Δn0
n0

− 1
6

n

n0

∇n0
n0

(∇ ⊗ ∇)n0
n0

− ∇n0
n0

2 ∇n0
n0

+ 1
3

n

n0

2
+ 1

12
Δn0
n0

− 1
12

∇n0
n0

2 ∇n

n0
− n

n0

∇n0
n0

− 1
12

∇(Δn)
n0

+ 1
12

Δn

n0

∇n0
n0

+ 1
12

∇n0
n0

(∇ ⊗ ∇)n
n0

+ 1
12

∇n

n0

(∇ ⊗ ∇)n0
n0

− 1
6

∇n

n0
· ∇n0

n0

∇n0
n0

= n

n0

2
3

n

n0
· ∇n

n0
− n

n0

2 ∇n0
n0

+ 1
12

∇(Δn0)
n0

− 1
6

∇n0
n0

Δn0
n0

− 1
6

∇n0
n0

(∇ ⊗ ∇)n0
n0

+ n

n0

1
4

∇n0
n0

2 ∇n0
n0

+ 1
12

∇n

n0

(∇ ⊗ ∇)n0
n0

+ 4 n

n0

2
+ Δn0

n0
− ∇n0

n0

2
σ0

+ 1
12

Δn

n0
− 2 ∇n

n0
· ∇n0

n0

∇n0
n0

+ 1
12

∇n0
n0

(∇ ⊗ ∇)n
n0

− 1
12

∇(Δn)
n0

where ((∇n0(∇ ⊗ ∇))n)j = ∇n0(∇ ⊗ ∇)nj , and we point out that ∇a(2) is a 3 × 3 matrix,
where the last column equals zero. For the gradient of a

(2)
0 we need only (B.9), (B.10) and

(B.11), which gives us

∇a0
(2) = − 1

12∇ Δn0
n0

− 1
2

|∇n0|2
n02 − ∇1

2
n

n0

2

= − 1
12

∇(Δn0)
n0

− ∇n0
n0

Δn0
n0

− ∇n0
n0

(∇ ⊗ ∇)n0
n0

+ ∇n0
n0

2 ∇n0
n0

− n

n0
· ∇n

n0
− n

n0

2 ∇n0
n0

B.5. Another Depiction of the Semiclassical Model (3.106)

For a better overview we give here again the semiclassical model for the spin components:

∂tn =τ div (∇n + n∇V ) − 2τα(2∇⊥ + ∇V ⊥) × n − 4τα2(2n + (n⊥)⊥)

+ ε2

6
n

n0
× B(N) + τ

ε2

12 div nA(N) − ∇(Δn) + (∇n)C(N) + B(N)∇n0 + D(N)

+ τ
ε2

3 n × n

n0
× B(N) − B(N) ,
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where

A(N) := 2 ∇n0
n0

2 ∇n0
n0

− 4 n

n0
· ∇n

n0
− ∇n0

n0

Δn0
n0

− ∇n0
n0

(∇ ⊗ ∇)n0
n0

,

B(N) := Δn

n0
− ∇n

n0
· ∇n0

n0
,

C(N) := Δn0
n0

− ∇n0
n0

2
+ 4 n

n0

2
σ0 + ∇ ⊗ ∇n0

n0
,

D(N) := (∇n0(∇ ⊗ ∇))
n0

n − ∇n · ∇n0
n0

∇n0
n0

.

We are interested in the divergence that appears in the second line and we want to resolve
it. Recalling that the gradient is a row vector, ∇ = (∂x1 , ∂x2 , 0) and that for a matrix
valued function B(x) the divergence is defined as div B(x) := 2

k=1 ∂xk
B. k(x), where B. k(x)

represents the k-th column of B. For better understanding we recall some done calculations:

∂xk

n

n0

2
= 2 n · ∂xk

n

n02 − |n|2∂xk
n0

n03 , (B.12)

∂xk

∇n0
n0

2
= 2 ∇n0 · ∂xk

∇n0
n02 − |∇n0|2∂xk

n0
n03 . (B.13)

The plan is to calculate each term separately so that it is easier to follow.
First term:

div n
∇n0
n0

2 ∇n0
n0

=
2

k=1
∂xk

n
∇n0
n0

2 ∂xk
n0

n0
=

=
2

k=1
n∂xk

∇n0
n0

2 ∂xk
n0

n0
+ ∇n0

n0

2
∂xk

n
∂xk

n0
n0

=
2

k=1
2n

∇n0 · ∂xk
∇n0

n02 − |∇n0|2∂xk
n0

n03
∂xk

n0
n0

+ ∇n0
n0

2
n

∂2
xk

n0
n0

− n
(∂xk

n0)2

n02 + (∂xk
n)∂xk

n0
n0

= 2 ∇n0
n0

∇ ⊗ ∇n0
n0

· ∇n0
n0

n − 2 ∇n0
n0

4
n + ∇n0

n0

Δn0
n0

n − ∇n0
n0

4
n + ∇n0

n0

2 ∇n0
n0

· ∇n

= 2∇n0
n0

∇ ⊗ ∇n0
n0

· ∇n0
n0

− 3 ∇n0
n0

4
+ ∇n0

n0

2 Δn0
n0

n + ∇n0
n0

2 ∇n0
n0

· ∇n.

Second term:

div n
n

n0
· ∇n

n0
=

2

k=1
n∂xk

 3

j=1

nj

n0

∂xk
nj

n0

 + ∂xk
n

n

n0
· ∂xk

n

n0

=
2

k=1

3

j=1
n

(∂xk
nj)2 + nj∂2

xk
nj

n02 − 2nj(∂xk
nj)∂xk

n0
n03 + ∂xk

n
nj

n0

∂xk
nj

n0

=
3

j=1

∇nj

n0

2
n + njΔnj

n02 n − 2nj∇nj · ∇n0
n03 n + nj∇nj

n02 · ∇n

= ∇n

n0

2
+ n

n0
· Δn

n0
− 2 n

n0
· ∇n

n0
· ∇n0

n0
n + n

n0
· ∇n

n0
· ∇n.
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Third term:

div n
∇n0
n0

Δn0
n0

=
2

k=1
∂xk

n
∂xk

n0
n0

Δn0
n0

=

=
2

k=1

∂2
xk

n0Δn0 + ∂xk
n0∂xk

Δn0
n02 n − 2(∂xk

n0)2Δn0
n03 n + ∂xk

n0Δn0
n02 ∂xk

n

= Δn0
n0

2
+ ∇n0

n0
· ∇Δn0

n0
− 2 ∇n0

n0

2 Δn0
n0

n + Δn0
n0

∇n0
n0

· ∇n.

Fourth term:

div n
∇n0
n0

(∇ ⊗ ∇)n0
n0

=
2

k=1
∂xk

n
∇n0
n0

· ∇∂xk
n0

n0

=
2

k=1

2

l=1
n

(∂xk
∂xl

n0)2 + ∂xl
n0∂xl

∂2
xl

n0
n02 − 2∂xk

n0∂xk
∂xl

n0∂xl
n0

n03 n + ∂xl
n0∂xl

∂xk
n0

n02 ∂xk
n

= ∇ ⊗ ∇n0
n0

2
+ ∇n0

n0
· ∇Δn0

n0
− 2∇n0

n0

∇ ⊗ ∇n0
n0

· ∇n0
n0

n + ∇n0
n0

∇ ⊗ ∇n0
n0

· ∇n.

Fifth term:

div (∇Δn) = Δ(Δn).

For the upcoming calculations we use formulas (B.12) - (B.13) and the product rule of the
divergence of a scalar function f times vector field −→

F , which would be div f
−→
F = ∇f · −→

F +
f div −→

F .
Sixth term:

div Δn0
n0

∇n = ∇Δn0
n0

− Δn0
n0

∇n0
n0

· ∇n + Δn0
n0

Δn.

Seventh term:

div ∇n0
n0

2
∇n = ∇ ∇n0

n0

2
· ∇n + ∇n0

n0

2
Δn

= 2 ∇n0
n0

∇ ⊗ ∇n0
n0

− ∇n0
n0

2 ∇n0
n0

· ∇n + ∇n0
n0

2
Δn.

Eighth term:

div n

n0

2
∇n = ∇ n

n0

2
· ∇n + n

n0

2
Δn

= 2 n

n0
· ∇n

n0
− n

n0

2 ∇n0
n0

· ∇n + n

n0

2
Δn.

Ninth term:

div ∇n
(∇ ⊗ ∇)n0

n0
=

2

k=1
∂xk

∇n · ∇∂xk
n0

n0

=
2

k=1
∇∂xk

n · ∇∂xk
n0

n0
+ ∇n · ∇∂2

xk
n0

n0
− ∇∂xk

n0∂xk
n0

n02

= ∇ ⊗ ∇n · ∇ ⊗ ∇n0
n0

+ ∇Δn0
n0

− ∇n0
n0

∇ ⊗ ∇n0
n0

· ∇n.
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Tenth term:

div (Δn)∇n0
n0

= Δn0
n0

− ∇n0
n0

2
Δn + ∇n0

n0
· ∇Δn.

Eleventh and thirteenth term:

div ∇n · ∇n0
n0

∇n0
n0

=
2

k=1
∂xk

∇n · ∇n0
n0

∂xk
n0

n0
=

=
2

k=1

2

l=1
∂xk

∂xl
n

∂xl
n0

n0

∂xk
n0

n0
+ ∂xl

n
∂xk

∂xl
n0

n0

∂xk
n0

n0
− ∂xl

n0(∂xk
n0)2

n03

+ ∂xl
n

∂xl
n0

n0

∂2
xk

n0
n0

− (∂xk
n0)2

n02

= ∇n0
n0

(∇ ⊗ ∇n) · ∇n0
n0

+ ∇n0
n0

∇ ⊗ ∇n0
n0

− 2 ∇n0
n0

2 ∇n0
n0

+ Δn0
n0

∇n0
n0

· ∇n.

Twelfth term:

div ∇n0
n0

(∇ ⊗ ∇)n =
2

k=1
∂xk

∇n0
n0

· ∇∂xk
n

=
2

k=1

2

l=1

∂xl
∂xk

n0
n0

∂xl
∂xk

n − ∂xl
n0∂xk

n0
n02 ∂xl

∂xk
n + ∂xl

n0
n0

∂xl
∂2

xk
n

= ∇ ⊗ ∇n0
n0

· (∇ ⊗ ∇)n − ∇n0
n0

(∇ ⊗ ∇n) · ∇n0
n0

+ ∇n0
n0

· ∇Δn.

Now every term was calculated and now everything can be put together. For a better overview
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we colorize n, ∇n and Δn, leading us to

div nA(N) − ∇(Δn) + (∇n)C(N) + B(N)∇n0 + D(N) =

=2 2∇n0
n0

∇ ⊗ ∇n0
n0

· ∇n0
n0

− 3 ∇n0
n0

4
+ ∇n0

n0

2 Δn0
n0

n + ∇n0
n0

2 ∇n0
n0

· ∇n

− 4 ∇n

n0

2
+ n

n0
· Δn

n0
− 2 n

n0
· ∇n

n0
· ∇n0

n0
n + n

n0
· ∇n

n0
· ∇n

− Δn0
n0

2
+ ∇n0

n0
· ∇Δn0

n0
− 2 ∇n0

n0

2 Δn0
n0

n + Δn0
n0

∇n0
n0

· ∇n

− ∇ ⊗ ∇n0
n0

2
+ ∇n0

n0
· ∇Δn0

n0
− 2∇n0

n0

∇ ⊗ ∇n0
n0

· ∇n0
n0

n + ∇n0
n0

∇ ⊗ ∇n0
n0

· ∇n

+ Δ(Δn) − 2 ∇n0
n0

∇ ⊗ ∇n0
n0

− ∇n0
n0

2 ∇n0
n0

· ∇n + ∇n0
n0

2
Δn

+ 4 2 n

n0
· ∇n

n0
− n

n0

2 ∇n0
n0

· ∇n + n

n0

2
Δn + ∇ ⊗ ∇n · ∇ ⊗ ∇n0

n0

+ ∇Δn0
n0

− ∇n0
n0

∇ ⊗ ∇n0
n0

· ∇n + ∇Δn0
n0

− Δn0
n0

∇n0
n0

· ∇n + Δn0
n0

Δn

+ Δn0
n0

− ∇n0
n0

2
Δn + ∇n0

n0
· ∇Δn

+ ∇ ⊗ ∇n0
n0

· (∇ ⊗ ∇)n − ∇n0
n0

(∇ ⊗ ∇n) · ∇n0
n0

+ ∇n0
n0

· ∇Δn

− 2 ∇n0
n0

(∇ ⊗ ∇n) · ∇n0
n0

+ ∇n0
n0

∇ ⊗ ∇n0
n0

− 2 ∇n0
n0

2 ∇n0
n0

+ Δn0
n0

∇n0
n0

· ∇n

Putting everything together provides

div nA(N) − ∇(Δn) + (∇n)C(N) + B(N)∇n0 + D(N) =

= 6∇n0
n0

∇ ⊗ ∇n0
n0

· ∇n0
n0

− 6 ∇n0
n0

4
+ 4 ∇n0

n0

2 Δn0
n0

− 4 ∇n

n0

2
− 4 n

n0
· Δn

n0

+ 8 n

n0
· ∇n

n0
· ∇n0

n0
− Δn0

n0

2
− 2∇n0

n0
· ∇Δn0

n0
− ∇ ⊗ ∇n0

n0

2
n

+ 8 ∇n0
n0

2 ∇n0
n0

− 4 n

n0
· ∇n

n0
− 4Δn0

n0

∇n0
n0

− 6∇n0
n0

∇ ⊗ ∇n0
n0

+ 2∇Δn0
n0

− 8 n

n0

2 ∇n0
n0

· ∇n

+ 4 n

n0

2
+ 2Δn0

n0
− 2 ∇n0

n0

2
Δn + 2∇n0

n0
· ∇Δn + 2∇ ⊗ ∇n0

n0
· (∇ ⊗ ∇)n

− 3 ∇n0
n0

(∇ ⊗ ∇n) · ∇n0
n0

+ Δ(Δn).
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Hence we can rewrite the equations for the spin components and obtain:

∂tn =τ div (∇n + n∇V ) − 2τα(2∇⊥ + ∇V ⊥) × n − 4τα2(2n + (n⊥)⊥)

+ ε2

6
n

n0
× B(N) + τ

ε2

12 A(N)n + B(N) · ∇n + C(N)Δn

+ τ
ε2

12 Δ(Δn) + 2∇n0
n0

· ∇Δn + 2∇ ⊗ ∇n0
n0

· (∇ ⊗ ∇)n − 3 ∇n0
n0

(∇ ⊗ ∇n) · ∇n0
n0

+ τ
ε2

3 n × n

n0
× B(N) − B(N) + O(ε3),

where

A(N) :=6∇n0
n0

∇ ⊗ ∇n0
n0

· ∇n0
n0

− 6 ∇n0
n0

4
+ 4 ∇n0

n0

2 Δn0
n0

− 4 ∇n

n0

2
− 4 n

n0
· Δn

n0

+ 8 n

n0
· ∇n

n0
· ∇n0

n0
− Δn0

n0

2
− 2∇n0

n0
· ∇Δn0

n0
− ∇ ⊗ ∇n0

n0

2

B(N) :=8 ∇n0
n0

2 ∇n0
n0

− 4 n

n0
· ∇n

n0
− 4Δn0

n0

∇n0
n0

− 6∇n0
n0

∇ ⊗ ∇n0
n0

+ 2∇Δn0
n0

− 8 n

n0

2 ∇n0
n0

C(N) :=4 n

n0

2
+ 2Δn0

n0
− 2 ∇n0

n0

2
.

For the double cross product we use the formula (b × c) × d = (b · d) c − (c · d) b for b, c, d
in R3, where in our case we have that b = B(N), c = n/n0, d = n. Therefore

B(N) × n

n0
× n = B(N) · n

n0
n − |n|2

n0
B(N)

We see, that these terms above also appear in either A, B and C, which leads us to a simpler
version for our model:

Equation for the spin components:

∂tn =τ div (∇n + n∇V ) − 2τα(2∇⊥ + ∇V ⊥) × n − 4τα2(2n + (n⊥)⊥)

+ ε2

6
n

n0
× B(N) + τ

ε2

12 A(N)n + B(N) · ∇n + C(n0)Δn + 4B(N) × n

+ τ
ε2

12 Δ(Δn) + 2∇n0
n0

· ∇Δn + 2∇ ⊗ ∇n0
n0

· (∇ ⊗ ∇)n − 3 ∇n0
n0

(∇ ⊗ ∇n) · ∇n0
n0

where

A(N) :=6∇n0
n0

∇ ⊗ ∇n0
n0

· ∇n0
n0

− 6 ∇n0
n0

4
+ 4 ∇n0

n0

2 Δn0
n0

− 4 ∇n

n0

2
+ 4 n

n0
· ∇n

n0
· ∇n0

n0

− Δn0
n0

2
− 2∇n0

n0
· ∇Δn0

n0
− ∇ ⊗ ∇n0

n0

2

B(N) :=8 ∇n0
n0

2 ∇n0
n0

− 4 n

n0
· ∇n

n0
− 4Δn0

n0

∇n0
n0

− 6∇n0
n0

∇ ⊗ ∇n0
n0

+ 2∇Δn0
n0

− 4 n

n0

2 ∇n0
n0

C(n0) :=2Δn0
n0

− 2 ∇n0
n0

2
, B(N) = Δn

n0
− ∇n

n0
· ∇n0

n0
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B.6. Separate Equations for the Spin Components

B.6. Separate Equations for the Spin Components
The advantage we obtain from the second depiction of the semiclassical model for the spin
components, derived in Appendix B.5, is that it is then much easier to separate them into
the single equations for n1, n2 and n3, which are still connected. For the single component
equations we have some twisted cross products, which we unravel here:

Δn × n =


 (Δn2)n3 − (Δn3)n2

−(Δn1)n3 + (Δn3)n1
(Δn1)n2 − (Δn2)n1


 , (∇n · ∇n0) × n =


 (∇n2 · ∇n0)n3 − (∇n3 · ∇n0)n2

−(∇n1 · ∇n0)n3 + (∇n3 · ∇n0)n1
(∇n1 · ∇n0)n2 − (∇n2 · ∇n0)n1


 ,

∇⊥ × n =


 −∂x1n3

−∂x2n3
∂x1n1 + ∂x2n2


 , ∇⊥V × n =


 −∂x1V n3

−∂x2V n3
∂x1V n1 + ∂x2V n2


 .

Using A(N),B(N) and C(n0) from the previous section (Appendix B.5), we obtain for the
single components :

∂tn1 = τ div ∇n1 + ∇V n1 + 4τα∂x1n3 + 2τα∂x1V n3 − 4τα2n1+

+ ε2

6n03 ((∇n2 · ∇n0 − (n0Δn2))n3 − (∇n3 · ∇n0 + (n0Δn3))n2)

+ τ
ε2

12 A(N)n1 + B(N) · ∇n1 + C(n0)Δn1 − 4
n02 (∇n2 · ∇n0 − (n0Δn2))n3 − (∇n3 · ∇n0 + (n0Δn3))n2

+ τ
ε2

12 Δ(Δn1) + 2∇n0
n0

· ∇Δn1 + 2∇ ⊗ ∇n0
n0

· (∇ ⊗ ∇n1) − 3 ∇n0
n0

(∇ ⊗ ∇n1) · ∇n0
n0

,

∂tn2 = τ div ∇n2 + ∇V n2 + 4τα∂x2n3 + 2τα∂x2V n3 − 4τα2n2

+ ε2

6n03 ((∇n3 · ∇n0 − (n0Δn3))n1 − (∇n1 · ∇n0 − (n0Δn1))n3) +

+ τ
ε2

12 A(N)n2 + B(N) · ∇n2 + C(n0)Δn2 − 4
n02 (∇n3 · ∇n0 − (n0Δn3))n1 − (∇n1 · ∇n0 − (n0Δn1))n3

+ τ
ε2

12 Δ(Δn2) + 2∇n0
n0

· ∇Δn2 + 2∇ ⊗ ∇n0
n0

· (∇ ⊗ ∇n2) − 3 ∇n0
n0

(∇ ⊗ ∇n2) · ∇n0
n0

,

∂tn3 = τ div ∇n3 + ∇V n3 − 4τα(∂x1n1 + ∂x2n2) − 2τα(∂x1V n1 + ∂x2V n2) − 8τα2n3

+ ε2

6n03 ((∇n1 · ∇n0 − (n0Δn1))n2 − (∇n2 · ∇n0 − (n0Δn2))n1) +

+ τ
ε2

12 A(N)n3 + B(N) · ∇n3 + C(n0)Δn3 − 4
n02 (∇n1 · ∇n0 − (n0Δn1))n2 − (∇n2 · ∇n0 − (n0Δn2))n1

+ τ
ε2

12 Δ(Δn3) + 2∇n0
n0

· ∇Δn3 + 2∇ ⊗ ∇n0
n0

· (∇ ⊗ ∇n3) − 3 ∇n0
n0

(∇ ⊗ ∇n3) · ∇n0
n0

.
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C. Addendum Large Time Asymptotics

C.1. A boundedness result
The following lemma is an extension of a result due to Kowalczyk [Kow05], based on an
iteration technique [Ali79]. It slightly generalizes [JNS15, Lemma A.1]. Although the result
should be known to experts, we present a proof for completeness.
Lemma C.1.1 (Boundedness from iteration). Let Ω ⊂ Rd (d ≥ 1) be a bounded domain and
let w

q/2
i ∈ L2(0, T ; H1(Ω))∩C0([0, T ]; L2(Ω)) for all q ∈ N with q ≥ 2 with wi ≥ 0, wi = 0 on

∂Ω, and wi(0) = 0 in Ω for i = 1, . . . , n. Assume that there are constants K0, K1, K2 > 0
and α, β ≥ 0 such that for all q ≥ 2, t > 0,

Ω
et

n

i=1
wi(t)qdx + K0

t

0 Ω
es

n

i=1
|∇w

q/2
i |2dxds

≤ K1qα
t

0 Ω
es

n

i=1
wq

i dxds + K2qβet. (C.1)

Then
wi(t) ≤ K = K3

n

i=1
wi L∞(0,∞;L1(Ω)) + 1 in Ω, t > 0,

where K3 depends only on α, β, d, Ω, K0, K1, and K2.
Proof. We apply the Gagliardo–Nirenberg inequality [Zei90b, p. 1034] with θ = d/(d+2) < 1
and the Poincaré inequality to deal with the integral over wq

i on the right-hand side of (C.1):

Ω
wq

i dx = w
q/2
i

2
L2(Ω) ≤ C1 ∇w

q/2
i

2θ
L2(Ω) w

q/2
i

2(1−θ)
L1(Ω)

≤ ε ∇w
q/2
i

2
L2(Ω) + C

1+d/2
1 ε−d/2 w

q/2
i

2
L1(Ω)

for any ε > 0. Choosing ε = K0/(2qαK1), which is equivalent to K1qαε = K0/2, (C.1)
becomes

Ω
et

n

i=1
wi(t)qdx + K0

2
t

0 Ω
es

n

i=1
|∇w

q/2
i |2dxds

≤ C2qα(1+d/2)
t

0
es

n

i=1
wi

q

Lq/2(Ω)ds + K2qβet,

where C2 depends on d, K0, and K1. We obtain
n

i=1
wi(t) q

Lq(Ω) ≤ C2qα(1+d/2)
t

0
e−(t−s)

n

i=1
wi(s) q

Lq/2(Ω)ds + K2qβ

and, taking the supremum over time,

sup
0<s<t

n

i=1
wi(s) q

Lq(Ω) ≤ C2qα(1+d/2)(1 − e−t) sup
0<s<t

n

i=1
wi(s) q

Lq/2(Ω) + K2qβ

≤ C2qα(1+d/2) sup
0<s<t

n

i=1
wi(s) q

Lq/2(Ω) + K2qβ .
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C. Addendum Large Time Asymptotics

We choose q = 2k for k ≥ 0 and set bk = n
i=1 wi

2k

L∞(0,T ;L2k (Ω))
+ 1. Then

bk ≤ C22α(1+d/2)k
n

i=1
wi

2k

L∞(0,T ;L2k−1 (Ω)) + (K2 + 1)2βk

≤ max C22α(1+d/2), (K2 + 1)1/k2β k
n

i=1
wi

2k

L∞(0,T ;L2k−1 (Ω)) + 1

≤ max C22α(1+d/2), (K2 + 1)2β k
n

i=1
wi

2k−1

L∞(0,T ;L2k−1 (Ω)) + 1
2

= γkb2
k−1,

where
γ = max C22α(1+d/2), (K2 + 1)2β .

To solve this recursion, we set ck = γk+2bk. Then

ck ≤ γ2(k+1)b2
k−1 = (γk+1bk−1)2 = c2

k−1,

which gives ck ≤ c2k

0 ≤ γ2k+1
b2k

0 . Consequently, bk = γ−k−2ck ≤ γ2k+1−k−2b2k

0 and, after
taking the 2kth root,

wi L∞(0,T ;L2k (Ω)) ≤ b2−k

k ≤ γ2−2−k(k+2)
n

i=1
wi L∞(0,T ;L1(Ω)) + 1 .

The limit k → ∞ concludes the proof.
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Verlag, Basel, 2001.

[J0̈9] A. Jüngel. Transport equations for semiconductors, volume 773 of Lecture Notes
in Physics. Springer-Verlag, Berlin, 2009.
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