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Abstract
Aboveground biomass (AGB) plays an important role in the Earth’s carbon cycle, both as a source
and sink of carbon, and therefore its monitoring is critical in the fight against climate change.
In the past, several AGB maps on global and regional scales have been created to provide an
estimate of stocks at a certain point in time. However, most of these maps are static and thus do
not allow for monitoring the change in biomass.

As an alternative to current approaches, vegetation optical depth (VOD) could be used to monitor
global AGB dynamically. VOD is a measure of the attenuation of microwave signals traveling
through the vegetation canopy. It has a linear relationship with vegetation water content, which in
turn is related to biomass and vegetation water status. Previous studies have already proven the
feasibility of AGB estimation based on L-band VOD (L-VOD) using nonlinear univariate parametric
regression approaches. However, due to the high complexity of the global AGB-VOD relationship,
this approach might be better suited for regional AGB estimation.
To overcome this problem, a novel approach for global AGB estimation relying on multivariate
non-parametric random forest regression (RF) was developed and tested. For this purpose, RF
models were trained on an annual reference AGB product, and predictions were compared with a
hold-out test set as well as an independent AGB map. The RF models rely on a set of different
feature combinations, including data from VOD, leaf area index (LAI), land cover (LC) and sun
induced fluorescence (SIF). The prediction accuracy was assessed via R2 scores, with results
ranging from 0.79 to 0.96 %. The largest increase in model performance was observed when land
cover information was used in combination with VOD. Prediction accuracy was the lowest over
dense and high vegetation, such as broadleaf evergreen forests, and conversely, the best results
were achieved for sparse and low vegetation, like crops and shrubs, which is in line with previous
studies. Overall, the thesis showed promising results for the future application of AGB estimation
based on VOD and random forest regression.
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1. Introduction
Monitoring of vegetation properties is vital for the understanding of water, carbon, and energy
cycles (Rodrı́guez-Fernández et al., 2018). According to Denman et al. (2007), about 20 % of total
anthropogenic carbon dioxide emissions in the 1990s were caused by land use change, mostly
tropical deforestation. More recent estimates of relative carbon emissions from deforestation and
forest degradation are lower (12 % of total emissions) (Werf et al., 2009). The reason for this is an
increase in overall emissions due to increased fossil fuel combustion, while emissions from
deforestation and forest degradation have remained relatively constant (Werf et al., 2009). Tropical
forests alone are expected to emit 87 to 130 PgC between 2000 and 2100 under the assumption that
the current rate of deforestation stays constant (Moutinho and Schwartzman, 2005). Land use and
land cover change (LULCC) contributed approximately 1.4 (range: 0.4 to 2.3) PgC yr−1 and 1.6 (0.5
to 2.7) PgC yr−1 to the CO2 emissions for the 1980s and 1990s, respectively (Denman et al., 2007).
In the past two decades, the emissions declined slightly to 1.1 ± 0.7 PgC yr−1 for the period from
2011 to 2020 (Friedlingstein et al., 2010). As one can see from the above numbers, the uncertainty
in the LULCC emissions is quite high, in fact, LULCC is the component with the highest
uncertainty within the global carbon budget (Houghton et al., 2012). This uncertainty originates
from ambiguities in the rates of deforestation and reforestation, as well as ambiguities in the
carbon density of the land area affected by LULCC (Houghton et al., 2012).

Another source of uncertainty in the carbon budget is the possible positive effect of CO2

fertilization. Increased atmospheric CO2 concentrations can lead to increased levels of
photosynthesis and plant growth, removing carbon from the atmosphere and storing it in
terrestrial ecosystems (Walker et al., 2021). There is evidence for a positive carbon sink as a result
of increased CO2 concentrations (Walker et al., 2021). The magnitude of this carbon sink is
however unclear (Walker et al., 2021).

To better assess the impact of the above-mentioned effects on the carbon budget, it is important to
have a good overview of the carbon stored in vegetation. An important parameter in this regard is
aboveground biomass (AGB), which is the biomass above ground consisting of stems, stumps,
branches, seeds, bark and foliage (Liang and Wang, 2020a). AGB can be monitored through the use
of remote sensing data (Baccini et al. (2012), Bouvet et al. (2018), Saatchi et al. (2011), Xu et al.
(2021), Avitabile et al. (2016)).

Several AGB maps with varying spatial and temporal resolutions have been created using a set of
different methods. Saatchi et al. (2011) used a combination of in-situ and satellite ”Light Detection
and Ranging” (LiDAR) data in conjunction with microwave and optical satellite imagery to create a
”benchmark” map of biomass carbon stocks for the early 2000s.
Other maps using a combination of in-situ data, LiDAR and satellite imagery are the maps created
by Baccini et al. (2012), Xu et al. (2021), and Avitabile et al. (2016), where the latter is a combination
of the maps from Baccini et al. (2012) and Saatchi et al. (2011).
A different approach concerning the mentioned studies was taken by Bouvet et al. (2018) for the
mapping of AGB in the savannas and woodlands of Africa. Contrary to the previously mentioned
approaches, Bouvet et al. (2018) did not use optical LiDAR data and instead used a combination of
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AGB estimates from field measurements and the 2010 L-band PALSAR mosaic created by JAXA.
The AGB estimates were derived by relating radar backscatter to AGB, using a forward model, and
subsequently inverting the model to get AGB estimates.

A common trait of the above-mentioned maps is their static nature, which makes dynamic AGB
monitoring impossible. The only study that created a time series of AGB maps was Xu et al. (2021).
Xu et al. (2021) proposed the application of a self-improving machine learning algorithm together
with forest inventory, airborne laser scanning (ALS), and optical and microwave satellite data to
create global AGB maps for the years 2000 to 2019. Even though the maps from Xu et al. (2021)
already cover a longer time period and thus allow for dynamic AGB monitoring, alternative
simpler approaches might be of interest.

A possible alternative to the maps of Xu et al. (2021) could be offered by AGB datasets based on
vegetation optical depth (VOD), due to its high temporal resolution and the fact that it is almost
unaffected by cloud cover (Moesinger et al., 2020). Previous studies have already achieved good
results for VOD-based AGB estimation using ”nonlinear univariate parametric regression” (Liu
et al. (2015), Fan et al. (2019)). However, due to the complex global non-linear relationship between
VOD and AGB, caused by different land cover types (Rodrı́guez-Fernández et al., 2018), other
multivariate approaches might be better suited.
A commonly used multivariate nonlinear and nonparametric method is random forest regression
(RF). A random forest is an ensemble method that fits a quantity of decision tree classifiers on
different sub-samples of the dataset and applies averaging to increase the predictive accuracy and
manage overfitting (Pedregosa et al., 2011). Results from previous studies indicate that RF is better
suited to capture the complex global VOD-AGB relationship than simpler regression approaches
(Schmidt et al., 2023).

1.1. Objective of this thesis
This thesis seeks to develop a novel approach for global AGB estimation by applying random forest
regression models in combination with VOD and other remote sensing data. Furthermore, this
work aims to compare the new approach to older already existing approaches relying on nonlinear
univariate parametric regression.

Considering this, this thesis aims to answer the following questions: What is the relationship
between individual VOD bands and different AGB reference datasets? How does the prediction
performance of the univariate regression approach compare to the performance of the RF models?
Which input features have the largest influence on the prediction performance? What are the
strengths and weaknesses of the models depending on different land cover types?
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2. Data
In this thesis, different types of data, including VOD, LAI, LC, SIF and AGB data were used (Table 1,
Figure 1, 2, 3). LC was selected because it is related to the amount of AGB present in a given area,
whereas LAI and SIF were used to include information about vegetation structure and function. The
datasets were all resampled to a common resolution of 0.25° x 0.25° using averaging. All datasets
except for Baccini and Avitabile-AGB (Baccini et al. (2012), Avitabile et al. (2016)) consist of yearly
time series with varying temporal coverage (Table 1).

Dataset Datatype Spatial coverage Temporal coverage Data source Temporal resolution Parameter
VODCA Microwave Global 1987-2020 Moesinger et al. (2020) Yearly Vegetation optical depth (VOD)

VODCA v2: L-band Microwave Global 2010-2020 Zotta et al. (2023, in preparation) Yearly Vegetation optical depth (VOD)
Xu-AGB Optical Global 2000-2019 Xu et al. (2021) Yearly Aboveground biomass (AGB)

MODIS LAI Optical Global 2000-2020 Myneni, Knyazikhin, and Park (2015) Yearly Leaf area index (LAI)
ESA CCI LC Optical Global 2000-2020 ESA (2017) Yearly Plant functional types (PFTs)

SIF (SCIAMACHY, GOME-2) Optical Global 2002-2018 Wen et al. (2021) Yearly Sun induced fluorescence (SIF)
Baccini-AGB Optical Tropics+Subtropics 2002-2010 Baccini et al. (2012) static Aboveground biomass (AGB)
Avitabile-AGB Optical Tropics+Subtropics 1995-2010 Avitabile et al. (2016) static Aboveground biomass (AGB)

Table 1: Overview of the datasets used in this thesis.

2.1. Vegetation optical depth - VOD
Vegetation optical depth (VOD) is a measure of the attenuation of microwave signals while they
travel through the vegetation canopy (Frappart et al., 2020). It can be retrieved from microwave
measurements using both active and passive methods (Frappart et al., 2020) and has a linear
relationship with vegetation water content (VWC, kg × m−2), which is linked to biomass and
vegetation water status (Frappart et al., 2020).

In the past, L-band VOD (L-VOD) was used as input to regression models predicting AGB from
VOD retrievals (Liu et al., 2015; Frappart et al., 2020). However, based on findings from Dou et al.
(2023), multiple frequencies might be better suited for predicting AGB. The reason for using VOD
products with multiple frequencies is the different interactions between vegetation and microwave
radiation, depending on the frequency and vegetation type (Dou et al., 2023). L-band, for example,
shows higher reliability for tree-dominated vegetation types, while the shorter X-band is better
suited for shrublands (Dou et al., 2023).

Vegetation Optical Depth Climate Archive - VODCA

The Vegetation Optical Depth Climate Archive (VODCA) is a series of VOD products distinguished
by their respective spectral bands (C-, X- and Ku-band) and temporal coverage (Moesinger et al.,
2020). The products are created by combining VOD retrievals from different satellite sensors (TMI,
SSM/I, AMSR-E, AMSR2 and Windsat) using the Land Parameter Retrieval Model (Schalie et al.,
2017), which results in a VOD product with reduced noise compared to the input datasets
(Moesinger et al., 2020). VODCA has a spatial resolution of 0.25° x 0.25° (Moesinger et al., 2020) and
daily temporal resolution (Moesinger et al., 2019). For this thesis, the yearly average of VODCA
was used as input for the models.

In addition to Ku, X, and C-band, a preliminary L-VOD product based on observations from the
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”Soil Moisture Active Passive” (SMAP) and ”Soil Moisture and Ocean Salinity” (SMOS) mission was
used (Zotta et al., 2023, in preparation). This L-VOD is however not yet publicly available.

Furthermore, the yearly standard deviation, the 25% and 75% quantiles, and the variance of the
VODCA products were also used as additional information for the models.

2.2. Aboveground biomass - AGB
Aboveground biomass (AGB) is the biomass consisting of stems, stumps, branches, seeds, bark, and
foliage and is typically expressed in mass per unit area (like Mgha−1 or kgm−2) (Liang and Wang,
2020b).

For this thesis, AGB data from Xu et al. (2021), Baccini et al. (2012), and Avitabile et al. (2016) was
used:

2.2.1. Xu-AGB

The dataset created by Xu et al. (2021) consists of yearly AGB maps spanning the period from 2000
to 2019. The maps were created using a self-improving machine learning algorithm (SIMLA) in
conjunction with input data from forest inventories (mainly from the temperate and boreal regions),
airborne laser scanning (ALS) data for tropical forests around the globe, satellite LiDAR inventory
data containing the height structure of global vegetation and time series of microwave and optical
satellite images for the years 2000 to 2019 (Xu et al., 2021). The ALS and forest inventory data
were converted to above and belowground biomass by applying allometric models, which then were
employed as training data for the SIMLA algorithm, to create biomass estimates from the microwave
and optical satellite data (Xu et al., 2021). The method used by Xu et al. (2021) is in agreement with
an Intergovernmental Panel on Climate Change (IPCC) Tier 3 approach for the estimation of carbon
stock change (Xu et al., 2021).

2.2.2. Baccini-AGB

Baccini et al. (2012) predicted the carbon density (in Mg C ha−1) of AGB across the tropics (tropical
America, Africa and Asia) with a spatial resolution of 500 m. The maps were created using a
combination of field data, spaceborne LiDAR data and multispectral satellite imagery (Baccini
et al., 2012). According to Baccini et al. (2012), the overall mass of aboveground carbon in live
woody vegetation across tropical Africa, America, and Asia is 64.5 (± 8.4), 117.7 (± 8.4), and 46.5 (±
3.0) Pg C, respectively. The confidence interval of the estimates is 95% (Baccini et al., 2012). On a
national level Brazil, the Democratic Republic of Congo and Indonesia have the highest AGB
estimates with 53.2, 22.0 and 18.6 Pg C, respectively (Baccini et al., 2012).
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2.2.3. Avitabile-AGB

Avitabile et al. (2016) created a pan-tropical AGB map by combining the two AGB maps of Baccini
et al. (2012) and Saatchi et al. (2011).
Saatchi et al. (2011) created a ”benchmark” map of biomass carbon stocks, including all tropical
forests, using a mix of field data, satellite LiDAR samples, and additional optical and microwave
satellite images (Saatchi et al., 2011).
The fusion model used to create the combined map is buildt on bias removal and weighted linear
averaging of the original two maps (Baccini-AGB, Saatchi-AGB), aiming to create an output map
with higher accuracy than each of the respective input maps (Avitabile et al., 2016). The validation
of the fused map showed a decrease of the root mean square error (RMSE) of 15-21% compared to
the input maps (Avitabile et al., 2016), and even more important, almost unbiased estimates with a
mean bias of 5 Mg dry mass per ha, compared to the bias of 21 and 28 Mg dry mass per ha of the
Saatchi and Baccini maps, respectively (Avitabile et al., 2016).

2.3. Leaf area index - LAI
LAI is a measure for the quantity of leaf area per unit ground area (Chen and Cihlar, 1996). It
gives information on the ground area covered with plants and is a crucial structural vegetation
property (Liang andWang, 2020a). Processes like canopy interception, evapotranspiration, and gross
photosynthesis are proportional to it (Liang and Wang, 2020a).

MODIS-LAI

The LAI data for this thesis is obtained from the Moderate Resolution Imaging Spectroradiometer
(MODIS) on board the Terra and Aqua satellites and consists of 8-day composite LAI images with a
500-meter pixel size (Myneni, Knyazikhin, and Park, 2015). However, for this thesis, the resolution
was upscaled to 0.25° x 0.25° using averaging, and the yearly average was used subsequently. The
LAI data fromMODIS is created by making use of the information about vegetation structural types,
sun-sensor geometry, as well as spectral information of MODIS red (648 nm) and near-infrared (NIR,
858 nm) (Myneni, Knyazikhin, and Park, 2015).

2.4. Plant functional types - PFTs
The PFT concept involves combining various characteristics of multiple plant species into a few
functional groups, usually less than 15 (Poulter et al., 2011). These functional groups are identified
based on their physiognomy, phenology type, climate zone, and photosynthetic pathway (Poulter
et al., 2011). Each PFT is defined as a combination of growth form and leaf characteristics such as type
(needle-leaved or broadleaved) and longevity (deciduous or evergreen) (Forkel et al., 2019). It allows
for a fractional representation of plant coverage, for example, the PFT class Tree-BD represents the
fractional coverage of broadleaf deciduous trees in a given pixel (Forkel et al., 2019).
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ESA CCI-LC

The ESA CCI land cover product is part of the European Space Agency’s Climate Change Initiative
(ESA, 2017). The purpose of the ESA CCI project is to provide the next generation of geophysical
parameters obtained from satellite observations, in conjunction with quantified uncertainties, in
order to provide the possibility to check each parameter against the requirements of the Global
Climate Observing System (GCOS) and the Climate Modelling Community (CMC) (ESA, 2017). A
vital property of the ESA CCI LC maps is their consistency in time (ESA, 2017). To achieve this
consistency, the annual LC maps are not created independently, but are obtained from a basis land
cover map that is made with the help of the Medium Resolution Imaging Spectrometer (MERIS) FR
and RR archive from 2003 to 2012 (ESA, 2017). FR stands for full resolution and RR for reduced
resolution. The ESA CCI LC maps are most accurate for broadleaved evergreen forest, rainfed
cropland, bare areas, permanent snow and ice, water bodies, and urban areas (Li et al., 2018).
Classes like mosses and lichens, forests flooded with fresh water, and sparse vegetation have the
lowest accuracies, as well as mosaic classes of natural vegetation (Li et al., 2018). One of the key
priorities of the ESA CCI LC maps was the improved description of LC characteristics regarding
PFT model requirements (ESA, 2017). For this purpose, LC-PFT conversion tables were generated
for different climate zones (ESA, 2017).

2.5. Sun Induced Fluorescence - SIF
Sun induced fluorescence is the part of the solar radiation that is re-emitted by vegetation
(Schlau-Cohen and Berry, 2015). The effect of fluorescence is caused by excitation effects and has
emission peaks located at 685 and 730 nm (Joiner et al., 2013). The remaining fractions of the
incoming radiation are either used for photosynthesis or dispersed as heat (Schlau-Cohen and
Berry, 2015). Measuring fluorescence across wide areas can give information about the gross
primary production (GPP) of vegetation (Schlau-Cohen and Berry, 2015).

SIF from SCIAMACHY and GOME-2

The sun induced fluorescence (SIF) data from Wen et al. (2021) is a monthly global dataset with a
pixel size of 0.05° x 0.05°. The SIF (740 nm) data is obtained from the Global Ozone Monitoring
Experiment 2 (GOME-2) instruments on the Metop-A satellite and the Scanning Imaging
Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY)(Wen et al., 2021). The
initial data retrieved from the GOME-2 instruments and SCIAMACHY is downscaled to the 0.05° x
0.05° pixel size by applying a random forest algorithm, and subsequently, a harmonization of the
data was performed using a cumulative distribution function (CDF) (Wen et al., 2021). The product
has high spatial and temporal consistency with the original 740 nm SIF data from SCIAMACHY
and GOME-2 (Wen et al., 2021). For this thesis, the SIF data were downsampled to a 0.25° x 0.25°
pixel size and the yearly average was used subsequently.
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(a) (b)

(c) (d)

Figure 1: Yearly means of the different frequency bands of the VODCA dataset (Moesinger et al.,
2020) for the year 2016. a) Ku-band, b) X-band, c) C-band, d) L-band.
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(a) (b)

(c) (d)

Figure 2: Yearly means of optical auxiliary data for the year 2016: a) LAI (Myneni, Knyazikhin, and
Park, 2015), b) Land Cover (ESA, 2017), c) SIF (Wen et al., 2021) and AGB reference data: d)
Xu-AGB (Xu et al., 2021).
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(a) (b)

Figure 3: Static AGB reference maps: a) Baccini-AGB (Baccini et al., 2012), b) Avitabile-AGB
(Avitabile et al., 2016). The red line indicates the border of the study area used for the
analysis in this thesis.
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3. Methods

3.1. Correlation analysis between VODCA and AGB
Just like in the study by Rodrı́guez-Fernández et al. (2018), the first step was to create
2D-Histogramms and calculate correlation coefficients (Pearson’s r, Spearman’s ρ and Kendall’s τ )
between the different VODCA products and the AGB maps from Baccini et al. (2012), Avitabile
et al. (2016) and Xu et al. (2021). Additionally, the temporal per-pixel correlation between the
different VOD bands and Xu-AGB was also calculated to get information about the
location-dependent relationship between VOD and AGB.

Pearson correlation

The Pearson correlation coefficient is a measure of the linear relationship among two sets of data
and has a value between -1 and 1, where 1 means perfect positive linear relationship, 0 means no
linear relationship, and -1 means perfect negative linear relationship (Virtanen et al., 2020). It
assumes a normal distribution of the data (Virtanen et al., 2020). The Pearson correlation
coefficient is calculated as follows (Virtanen et al., 2020):

r =
(xi −mx)(yi −my)

(xi −mx)2 (yi −my)2
(1)

wheremx andmy are the mean values of the two variables.

Spearman correlation

The Spearman’s rank correlation coefficient expresses the correlation between the ranks of two sets
of data and is computed by using ranks instead of actual values in the formula for the Pearson
correlation coefficient (Kokoska and Zwillinger, 2000). The formula for the Spearman correlation
coefficient can therefore be written as follows:

ρ =
(dx −mdx)(dy −mdy)

(dx −mdx)
2 (dy −mdy)

2
(2)

where dx and dy are the respective ranks of the two datasets andmdx andmdy are the mean values
of the respective ranks.

Kendall correlation

The Kendall correlation is used to describe the correlation between ordinal data (Virtanen et al.,
2020). It gives information about the degree of agreement between rankings of two datasets, where
values near 1 demonstrate good agreement and values near -1 show strong disagreement (Virtanen
et al., 2020). The definition according to Virtanen et al. (2020) of Kendall’s τ is:

τ =
2× (P −Q)

n2 × (m− 1)/m
(3)

P represents the number of concordant pairs and Q is the number of discordant pairs (Virtanen
et al., 2020). The variable n refers to the overall number of samples, whereasm represents the count
of unique values in dataset 1 or 2, depending on which one is smaller (Virtanen et al., 2020).
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3.2. Application of the univariate parametric regression approach by
Rodrı́guez-Fernández et al. (2018)

To predict AGB as a function VOD, the VOD bands were binned using a bin-width of 0.05 and
subsequently the mean, the 5th and 95th percentile of the AGB distribution were calculated for each
bin, resulting in three AGB point curves per VOD band. The points from these curves were then
used to fit two functions per curve, predicting AGB as a function of VOD. This curve-fitting was
done using the function applied by Liu et al. (2015):

AGB = a× arcatan(b(V OD − c))− arctan(−bc)

(arcatan(∞)− arcatan(−bc))
+ d (4)

and a logistic function from Rodrı́guez-Fernández et al. (2018):

AGB =
a

1 + e( − b(V OD − c))
+ d (5)

where a, b, c and d are the function parameters adjusted to fit the data.
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3.3. Predicting AGB from VOD using random forest and univariate
parametric regression

To compare the random forest approach to the univariate parametric regression approach from
previous studies (Liu et al. (2015), Fan et al. (2019)), several different models were developed. Models
were created both for the prediction of unknown locations and unknown time periods, relying on
different input data. An overview of the model configurations is given in Table 2.

Model name Model features Train/Test Mask Years:Train Years:Test Prediction Type
Liu-UL VOD YES 2010-2019 2010-2019 unknown locations
Log-UL VOD YES 2010-2019 2010-2019 unknown locations
RF-UL(VOD) VOD YES 2010-2019 2010-2019 unknown locations
RF-UL(VOD, LAI) VOD, LAI YES 2010-2019 2010-2019 unknown locations
RF-UL(VOD, LAI, LC) VOD, LAI, LC YES 2010-2019 2010-2019 unknown locations
RF-UL(VOD, LAI, LC, SIF) VOD, LAI, LC, SIF YES 2010-2018 2010-2018 unknown locations
RF-UL(VOD, VOD-statistics) VOD, VOD-statistics YES 2010-2019 2010-2019 unknown locations
RF-UL(VOD, VOD-statistics, LAI) VOD, VOD-statistics, LAI YES 2010-2019 2010-2019 unknown locations
RF-UL(VOD, VOD-statistics, LAI, LC) VOD, VOD-statistics, LAI, LC YES 2010-2019 2010-2019 unknown locations
RF-UL(VOD, VOD-statistics, LAI, LC, SIF) VOD, VOD-statistics, LAI, LC, SIF YES 2010-2018 2010-2019 unknown locations
Liu-UT VOD NO 2010, 2017, 2018 2011-2016, 2019 unknown time periods
Log-UT VOD NO 2010, 2017, 2018 2011-2016, 2019 unknown time periods
RF-UT(VOD) VOD NO 2010, 2017, 2018 2011-2016, 2019 unknown time periods
RF-UT(VOD, LAI) VOD, LAI NO 2010, 2017, 2018 2011-2016, 2019 unknown time periods
RF-UT(VOD, LAI, LC) VOD, LAI, LC NO 2010, 2017, 2018 2011-2016, 2019 unknown time periods
RF-UT(VOD, LAI, LC, SIF) VOD, LAI, LC, SIF NO 2010, 2017, 2018 2011-2016 unknown time periods
RF-UT(VOD, VOD-statistics) VOD, VOD-statistics NO 2010, 2017, 2018 2011-2016, 2019 unknown time periods
RF-UT(VOD, VOD-statistics, LAI) VOD, VOD-statistics, LAI NO 2010, 2017, 2018 2011-2016, 2019 unknown time periods
RF-UT(VOD, VOD-statistics, LAI, LC) VOD, VOD-statistics, LAI, LC NO 2010, 2017, 2018 2011-2016, 2019 unknown time periods
RF-UT(VOD, VOD-statistics, LAI, LC, SIF) VOD, VOD-statistics, LAI, LC, SIF NO 2010, 2017, 2018 2011-2016 unknown time periods

Table 2: Overview of the different model configurations used for the prediction of unknown
locations (UL) and time periods (UT).

3.3.1. Random forest approach

Definition

A random forest is an ensemble method that fits a quantity of decision tree classifiers on different
sub-samples of the dataset and applies averaging to increase the predictive accuracy and manage
overfitting (Pedregosa et al., 2011). The behavior of the generalization error of a random forest is
such that it converges to a limit when the quantity of trees in the forest gets large (Breiman, 2001).
The generalization error of a random forest is dependent on the power of each tree it contains and
the correlation between the trees (Breiman, 2001).

Hyperparameter Optimization

The hyperparameter optimization of the random forest regressor was done using the GridSearchCV
function from the scikit-learn package (Pedregosa et al., 2011), with the following parameters:

• estimator: RandomForestRegressor(n estimators = 100)

• param grid: {min samples split: [10, 20, 50, 100]}
• cv: cv split train
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A random forest regressor with 100 trees was used as the estimator and the cross-validation
parameter (cv) was created using a custom function that creates 5 folds containing train and test
indices for cross-validation.

Subsequently, different models were trained to predict AGB with different sets of input variables
(Table 2), by using the reference datasets from Xu et al. (2021) in both testing and training.

3.3.2. Univariate parametric regression approach

Just as in section 3.1, functions were fitted (Equation 4, 5) to predict AGB (Xu et al., 2021) from
L-VOD (Moesinger et al., 2020), except that this time the curve fitting was not done on single years
but on the entire training datasets of the respective model configurations.

3.3.3. Train/Test split

For the models predicting unknown locations, the train/test split of the model input datasets was
done with a static train/test mask (Figure 4a, 4b) of randomly distributed boxes, splitting each
dataset into 75% training and 25% testing data for each available year (Table 2).
The distribution of the different dominant land cover classes in the training and testing data was
checked to ensure that the models are not overfitting to a specific class. This assessment was done
for each RF model by plotting the percentages of the different land cover classes in the training and
testing data (Figure 5).

For models predicting unknown time periods, on the other hand, the train/test split was simply
done by arbitrarily selecting certain years for training and testing. The years 2010, 2017 and 2018
were selected for training and the years 2011-2016 and 2019 for testing (Table 2).

(a) (b)

Figure 4: Train (a) and test (b) areas used for the training and testing of the RF models making
predictions for unknown locations. The blue area represents the selected areas used for
training and testing, respectively. The boxes are randomly distributed over the global grid.
The training area accounts for ca. 75% and the test area for ca. 25% of land pixels.
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Figure 5: Normalized distribution of dominant land cover classes in the training and testing data for
the RF models making predictions for unknown locations.

3.4. Model evaluation
3.4.1. Performance

The prediction accuracy of the models was assessed by calculating R2 scores between the predicted
AGB values and the reference AGB values from Xu-AGB.TheR2 score, also known as the coefficient
of determination, is defined as the fraction of variance that is explained by the individual predictors
in the model (Pedregosa et al., 2011). The best possible score that can be achieved is 1.0, and the score
can also be negative if the model is arbitrarily worse (Pedregosa et al., 2011). The R2 score, used by
Pedregosa et al. (2011), for a set of predicted values ŷi and corresponding true reference values yi is
calculated as follows:

R2(y, ŷ) = 1−
n
i=1(yi − ŷi)

2

n
i=1(yi − ȳ)2

(6)

where n is the number of samples and ȳ = 1
n

n
i=1 yi.

Furthermore, in addition to the R2 scores, correlation coefficients between predicted AGB and
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Baccini-AGB were calculated to assess the performance against an independent reference dataset.

3.4.2. Predictor contribution

To find the most important input variables of the models, partial dependence plots (PDP) and
feature importance plots were generated.
Using the scikit-learn package from Pedregosa et al. (2011), feature importances were expressed as
the mean decrease in impurity (MDI), which is calculated as the weighted average of the single
tree’s enhancement inside the splitting criterion generated by every single variable for each model
feature (Loecher, 2022).
The partial dependence plots (PDP) are calculated with the help of the scikit-learn package
(Pedregosa et al., 2011), which bases its calculation of the PDPs on Molnar (2022), Goldstein et al.
(2013) and Hastie, Tibshirani, and Friedman (2009). The partial dependence can be described as the
anticipated target response as a function of the respective input features in the model (Hastie,
Tibshirani, and Friedman, 2009).
If Xs is a set of input features that we are interested in, and Xc is its complement (all features that
are not in Xs), then the partial dependence (by Pedregosa et al. (2011)) at a point xs in Xs is
defined as:

pdXs(xs)
def
= EXc [f(xs, Xc)] = f(xs, xc)p(xc)dxc (7)

with f(xs, xc) being the response function for a specific sample that has its values defined by xc for
the features in Xc, and by xs for the features in Xs.

3.4.3. Spatiotemporal patterns

Additionally, to analyze the location-dependent model performance, annual residual maps were
calculated between the predicted AGB maps for unknown time periods and Xu-AGB.

3.5. Assessment of change patterns in predicted AGB
For the model predictions of unknown time periods, global AGB time series per land cover class
were computed for each model and compared to a reference time series from Xu-AGB. The time
series was only calculated for map locations where data was available for all years, leading to
smaller spatial coverage because of the missing data in some years. Furthermore, per-pixel
changes of AGB were calculated for the Amazon basin between the first and last year of the time
series and compared to per-pixel changes of the reference data from Xu-AGB. This was done to
assess the ability of the models to capture the AGB changes for individual pixels.
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4. Results

4.1. VODCA-AGB relationship

Figure 6: Relationship between individual VODCA bands (Moesinger et al., 2020) and AGB from Xu
et al. (2021) for the year 2012.
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R ρ τ
Ku X C L Ku X C L Ku X C L

Xu-AGB 2011 0.67 0.63 0.66 0.87 0.79 0.80 0.82 0.87 0.59 0.60 0.62 0.69
Xu-AGB Africa 2011 0.71 0.64 0.67 0.91 0.87 0.88 0.88 0.91 0.67 0.68 0.69 0.73
Xu-AGB 2012 0.68 0.63 0.67 0.84 0.80 0.81 0.83 0.88 0.60 0.61 0.63 0.70
Xu-AGB Africa 2012 0.72 0.65 0.68 0.90 0.88 0.88 0.89 0.91 0.68 0.69 0.70 0.73
Avitabile-AGB 2011 0.62 0.54 0.57 0.85 0.81 0.82 0.82 0.82 0.63 0.63 0.64 0.63
Avitabile-AGB 2012 0.63 0.55 0.57 0.85 0.81 0.82 0.81 0.82 0.63 0.63 0.62 0.63
Baccini-AGB 2011 0.82 0.75 0.78 0.91 0.90 0.90 0.91 0.86 0.73 0.74 0.74 0.69
Baccini-AGB 2012 0.82 0.75 0.77 0.90 0.89 0.90 0.90 0.86 0.72 0.73 0.72 0.68

Table 3: Correlation coefficients between VODCA bands (Moesinger et al., 2020) and the AGB maps
from Avitabile et al. (2016), Baccini et al. (2012), and Xu et al. (2021). The term Xu-AGB
Africa refers to the African subset of Xu et al. (2021) that was used for the comparison
against Baccini-AGB and Avitabile-AGB. Results L-VOD are highlighted in yellow.

Globally, the highest correlation values (Pearson, Spearman, Kendall) between VODCA and
Xu-AGB are observed for L-VOD (Table 3, Figure 6, A.1), which was expected based on results from
Dou et al. (2023). When Baccini-AGB is compared to VODCA for Africa, Spearman and Kendall
correlation values of the higher frequency bands (Ku, X, C) are slightly higher compared to L-VOD.
For the other AGB-Products (Xu-AGB, Avitabile-AGB), this is not the case. Ku-VOD shows higher
Pearson correlation values than X and C-VOD, which is surprising since generally the sensitivity
of VOD to AGB decreases with increasing frequency (Chaparro et al., 2018).

The correlation results are quite similar to the results of Rodrı́guez-Fernández et al. (2018) for the
SMOS L-VOD products (Table 5). For the African continent, the Pearson correlation between
L-VOD and Xu-AGB is slightly lower compared to the Pearson correlation in Rodrı́guez-Fernández
et al. (2018) between SMOS-IC and Baccini-AGB. However, if the Pearson correlation between
L-VOD and Avitabile-AGB is compared to the Pearson correlation between Xu-AGB and L-VOD,
the Pearson correlation between L-VOD and Avitabile-AGB is lower. The rest of the Pearson
correlation coefficients in Rodrı́guez-Fernández et al. (2018) between other SMOS L-VOD products
(SMOS LEVEL 2 and 3) and the respective AGB-Maps (Baccini-AGB, Avitabile-AGB) are also lower.
The same pattern is also visible when comparing Spearman and Kendall correlation coefficients.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: AGB-functions fitted to themean, 5th and 95th percentile AGB values inside the bins (width
0.05) for different combinations of AGB-data (Baccini et al. (2012), Avitabile et al. (2016),
Xu et al. (2021)) and L-VOD (Moesinger et al., 2020). Additionally, the correlation values
between the functions and the respective points are displayed. Note: Xu-AGB has a global
extent, whereas Baccini and Avitabile-AGB are limited to Africa.
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The correlation coefficients (Pearson, Spearman, Kendall) between the lines of the fitted mean
functions and respective mean points (Figure 7, section 3.2), used to fit the functions, are very
similar to the study by Rodrı́guez-Fernández et al. (2018). The Pearson correlation is the highest,
followed by Spearman and Kendall (Figure 7). The correlation coefficients (Figure 7) between
L-VOD and AGB are slightly higher for Baccini and Avitabile-AGB compared to Xu-AGB. The
reason for this might be the smaller extent of Baccini and Avitabile-AGB, which might lead to less
variability in the AGB-VOD relationship.

(a) Temporal correlation (Pearson’s r) between Ku-
VOD and Xu-AGB for the years 2000-2019.

(b) Temporal correlation (Pearson’s r) between X-
VOD and Xu-AGB for the years 2000-2019.

(c) Temporal correlation (Pearson’s r) between C-
VOD and Xu-AGB for the years 2002-2019.

(d) Temporal correlation (Pearson’s r) between L-
VOD and Xu-AGB for the years 2010-2019.
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The temporal correlation between VODCA and Xu-AGB shows mostly negative correlation for
densely vegetated areas like forests, while sparse vegetation types like shrubs exhibit positive
correlation (Figure 8a, 8b, 8c, 8d).
If we look at the per-pixel correlation (Figure 8a, 8b, 8c, 8d) between VODCA and Xu-AGB we can
detect different patterns. For rainforests, correlation patterns are quite mixed throughout the globe
(Figure 8a, 8b, 8c, 8d). Regarding rainforests, Ku-VOD shows the clearest pattern (Figure 8a), with
the majority of rainforests exhibiting negative correlation, except for Asian rainforests. The
negative correlation found mostly in densely vegetated areas like forests seems to decrease with
decreasing band frequency. For the positive correlation in sparse vegetation types, the same holds.
Correlation patterns of L-VOD (Figure 8d) are much noisier compared to the other VODCA
products, which is likely due to the shorter time series. However, patches of positive correlation
can be seen for areas with sparse vegetation, with the largest of these patches located in Australia,
Africa and South America.
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4.2. Model evaluation
4.2.1. Performance

Model name R2[%] Model name R2[%]
Liu-UL 71.87 Liu-UT 69.61
Log-UL 71.82 Log-UT 69.81
RF-UL(VOD) 79.95 RF-UT(VOD) 79.48
RF-UL(VOD, LAI) 83.28 RF-UT(VOD, LAI) 84.50
RF-UL(VOD, LAI, LC) 89.80 RF-UT(VOD, LAI, LC) 96.16
RF-UL(VOD, LAI, LC, SIF) 90.54 RF-UT(VOD, LAI, LC, SIF) 96.03
RF-UL(VOD, VOD-statistics) 82.80 RF-UT(VOD, VOD-statistics) 83.21
RF-UL(VOD, VOD-statistics, LAI) 85.50 RF-UT(VOD, VOD-statistics, LAI) 87.26
RF-UL(VOD, VOD-statistics, LAI, LC) 90.43 RF-UT(VOD, VOD-statistics, LAI, LC) 95.88
RF-UL(VOD, VOD-statistics, LAI, LC, SIF) 91.04 RF-UT(VOD, VOD-statistics, LAI, LC, SIF) 95.90

Table 4: R2 scores for different RF models for predictions of unknown locations (UL) and unknown
time periods (UT).

Overall, the best prediction performance was achieved by the RF models using land cover
information (Table 4). All the RF models, using only VOD, outperformed the univariate regression
approach applied by Rodrı́guez-Fernández et al. (2018). Both for model predictions of unknown
locations and model predictions of new time periods, the prediction performance of the univariate
regression approaches (Table 4) is very similar. The same is the case for the base RF model using
only VOD data.

Once the other model features are added, we can see that those models predicting unknown time
periods show a stronger improvement than models predicting unknown locations, with the
strongest increase in prediction performance, for both model types, being achieved by adding land
cover information (Table 4). The addition of VODCA statistics to the models also results in a
significant increase in prediction performance in most cases. However, the models making
predictions for unknown time periods that use LC have almost identical prediction performance
with or without VODCA statistics.
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Figure 9: Correlation between AGB from Baccini et al. (2012) and predicted AGB from the different
RF models making predictions for unknown locations.

The spatial correlation between the AGB values from Baccini-AGB and the predicted AGB
estimates from the different models making predictions for unknown locations is almost identical
for all models (Figure 9). In general, the Pearson correlation coefficient is the highest, followed
closely by the Spearman correlation coefficient. The Kendall correlation values are much lower
than the other two.

4.2.2. Predictor contribution

Regarding the feature importances (FI) of the RFmodels for the predictions of unknown time periods
(Figure 10, 11), we can see that mean L-VOD is most important for the base model, relying only
on the 4 VOD bands (Figure 10a). However, once statistical VOD information is added, the 75th
percentile of L-VOD (L-VOD75) is the most important feature, while other statistics have only a
small effect (Figure 11a). When LAI is used without LC, LAI is the most important feature before
L-VOD (Figure 10b, 11b). However, once LC is added, mean L-VOD is again more important than
LAI (Figure 10c, 11c, 10d, 11d). Overall the broadleaf evergreen forest LC class is the most important
feature, followed by L-VOD75, mean L-VOD, LAI, and the bare soil LC class(Figure 10d, 11d). Higher
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frequency VOD bands (Ku, X, C) showed only an impact as long as LC was not added to the model.
SIF showed a moderate impact on the model, much larger than the higher frequency bands, but still
much lower than the above-mentioned LC, LAI and mean L-VOD feature (Figure 10d, 11d).
The feature importances of the models for the predictions of unknown locations show a very similar
pattern (Figure A.10, A.11).

(a) (b)

(c) (d)

Figure 10: Feature importances of RF models making predictions for unknown time periods (RF-
UT) in terms of mean decrease in impurity: a) RF-UT(VOD), b) RF-UT(VOD, LAI), c) RF-
UT(VOD, LAI, LC) and d) RF-UT(VOD, LAI, LC, SIF)
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(a) (b)

(c) (d)

Figure 11: Feature importances of RF models making predictions for unknown time periods (RF-UT)
in terms of mean decrease in impurity: a) RF-UT(VOD, VOD-statistics), b) RF-UT(VOD,
VOD-statistics, LAI), c) RF-UT(VOD, VOD-statistics, LAI, LC) and d) RF-UT(VOD, VOD-
statistics, LAI, LC, SIF)
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The partial dependencies of the RF models making predictions for unknown time periods exhibit a
similar pattern as the feature importance plots. Just like in the feature importance plots, mean
L-VOD shows the highest partial dependence for the base model that uses only VODCA bands
(Figure 12). After the addition of LAI to the model, the partial dependence of LAI is the highest
(Figure 13), but only as long as LC is not added to the model (Figure 14, 15 - partial dependence of
mean L-VOD again higher than LAI). Similar to the feature importance plots, the broad leaf
evergreen LC class shows the highest partial dependence. The addition of VODCA statistics seems
to result in a strong reduction of the partial dependence of mean L-VOD, and L-VOD75 takes up
the role of the latter (Figure 16).

The partial dependencies of the models making predictions for unknown locations show a similar
pattern as the partial dependencies of the models making predictions for unknown time periods
(Figure A.12, A.13, A.14, A.15, A.16).

Figure 12: Partial dependencies of the model features used for RF-UT(VOD).
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Figure 13: Partial dependencies of the model features used for RF-UT(VOD, LAI).
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Figure 14: Partial dependencies of the model features used for RF-UT(VOD, LAI, LC).
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Figure 15: Partial dependencies of the model features used for RF-UT(VOD, LAI, LC, SIF).
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Figure 16: Partial dependencies of the model features used for RF-UT(VOD, VOD-statistics).
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4.2.3. Spatiotemporal patterns

Models for the prediction of unknown time periods that rely only on VODCA bands exhibit a
strong bias against the reference data from Xu-AGB, especially for the Amazon and the African
rainforests. Inside the Amazon rainforest, it is even possible to see the Amazon River in the form
of a strong negative bias (Figure 17a, 18a). AGB in general is underpredicted in forested areas
throughout the globe. Adding LAI to the model only seems to reduce the magnitude of the bias,
while the distribution of the bias remains similar (Figure 17b, 18b). The addition of LC information
to the models results in significant bias reduction in all regions (Figure 17c, 18c), however, patches
of land in the Amazon and African rainforest still exhibit considerable negative and positive bias.
Including SIF doesn’t seem to reduce the bias significantly (Figure 17d, 18d). The usage of VODCA
statistics together with the 4 VODCA bands results in visible bias reduction, especially in North
American forests (Figure 17a, 18a), and also in the Amazon and African rainforests, the bias is
reduced in some areas. The same pattern can be seen if we compare the models RF-UT(VOD, LAI)
and RF-UT(VOD, VODCA-statistics, LAI) (Figure 17b, 18b). However, once LC is added to the
model features, no significant difference between the models with and without VODCA statistics is
observable in terms of residuals (Figure 17c, 18c).

The RF models making predictions for unknown locations strongly underestimate AGB for all
tropical rainforests and also for deciduous broadleaf forests when compared to Baccini-AGB. For
deciduous broadleaf forests, the bias is not as pronounced as for the rainforests (Figure 19, 20).
AGB estimates for low vegetation classes (crops, herbs, shrubs), on the other hand, show much
lower underestimation against Baccini-AGB, and below the Horn of Africa, there is even a patch of
land that is slightly overestimated.
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(a) (b)

(c) (d)

Figure 17: Residuals between AGB predictions and reference data from Xu-AGB (Xu et al., 2021) for
the year 2016: The models used were RF models for the predictions of unknown time
periods (RF-UT) with different model feature combinations: a) VOD, b) VOD+LAI, c)
VOD+LAI+LC, d) VOD+LAI+LC+SIF.
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(a) (b)

(c) (d)

Figure 18: Residuals between AGB predictions and reference data from Xu-AGB (Xu et al.,
2021) for the year 2016: The models used were RF models for the predictions of
unknown time periods (RF-UT)with differentmodel feature combinations: a) VOD+VOD-
statistics, b) VOD+VOD-statistics+LAI, c) VOD+VOD-statistics+LAI+LC, d) VOD+VOD-
statistics+LAI+LC+SIF.

41



(a) (b)

(c) (d)

Figure 19: Residuals between AGB predictions and reference data from Baccini-AGB (Baccini et al.,
2012) for the year 2016: The models used were RF models for the predictions of unknown
locations (RF-UL) with different model feature combinations: a) VOD, b) VOD+LAI, c)
VOD+LAI+LC, d) VOD+LAI+LC+SIF.
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(a) (b)

(c) (d)

Figure 20: Residuals between model AGB predictions and reference data from Baccini-AGB (Baccini
et al., 2012) for the year 2016: The models used were RF models for the predictions of
unknown time periods (RF-UL) with different model feature combinations: a) VOD+VOD-
statistics, b) VOD+VOD-statistics+LAI, c) VOD+VOD-statistics+LAI+LC, d) VOD+VOD-
statistics+LAI+LC+SIF.
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4.3. Assessment of change patterns in predicted AGB
In general, AGB estimates for low vegetation show a much better agreement with the reference
data than estimates for high and dense vegetation (Figure 21, 22). The best agreement can be
observed for crops, closely followed by shrubs. Conversely, the lowest agreement between
predictions and reference data exists for forests, especially for the broadleaf evergreen class.

If we look at the AGB change within the broadleaf evergreen class, we can see that the curves for
the base models are quite far from the reference both in terms of pattern and magnitude of change
(Figure 21, 22). Both the model using VODCA statistics and the model using only VODCA get very
similar results. By adding extra variables, the magnitude step by step approaches similar levels as
the reference, and also the pattern becomes more similar. The models that get closest to the
reference are the models relying on a combination of VOD, VOD statistics, LAI and LC.
The broad leaf evergreen class has a strong jump in the predicted AGB change in 2015 (Figure 21).
A possible explanation for this could be flood events (Espinoza et al., 2022) since no correction was
done for them in the VOD data. Therefore, this anomaly is likely the result of artifacts in the VOD
data and not caused by real AGB change.
For the deciduous broadleaf class, the best match is again found for the models using LC
information. The pattern and magnitude are quite similar for this class. The agreement of the
magnitude of the AGB change between predictions and reference is however visibly lower
compared to the broadleaf evergreen class.
For needle leaf forests, the best agreement both for total AGB and yearly AGB change can be found
for the models using LC without SIF.
The same is the case for shrubs and crops. The agreement both for total AGB and yearly AGB
change is good for both of these classes. The bare soil class shows very good agreement for both
total AGB and yearly AGB change for the models using LC.

Overall, the models using additional LC information show the best results. Models relying only on
VOD or VOD+VOD statistics show the largest differences between predictions and reference data.
Overall we have some classes with a good agreement (bare soil, needle leaf, shrubs, crops), decent
agreement (broadleaf deciduous), and low agreement (broadleaf evergreen).
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Figure 21: Comparison of yearly the AGB change per dominant land cover class from model
predictions of unknown time periods and reference data from Xu et al. (2021).
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Figure 22: Comparison of yearly the total AGB per dominant land cover class frommodel predictions
of unknown time periods and reference data from Xu et al. (2021).

The per-pixel AGB changes for the Amazon region (Figure 23, 24, 25) show large differences
between reference data and the model predictions made for unknown time periods, both in terms
of magnitude and the spatial distribution of changes. The agreement is lowest for the simpler
models using a combination of VOD, VOD statistics, and LAI (Figure 23a, 24a, 23b, 24b), and even
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though the other models using additional (Figure 23c, 25a, 24c, 25b) features show slightly better
agreement, they are still far from the reference data.

(a) (b)

(c) (d)

Figure 23: Comparison of temporal per-pixel AGB changes in the Amazon region between Xu-AGB
(Xu et al., 2021) and model predictions: a) RF-UT(VOD), b) RF-UT(VOD, LAI), c) RF-
UT(VOD, LAI, LC). The AGB change for Xu-AGB can be seen in d).
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(a) (b)

(c) (d)

Figure 24: Comparison of temporal per-pixel AGB changes in the Amazon region between Xu-AGB
(Xu et al., 2021) and model predictions: a) RF-UT(VOD, VOD-statistics), b) RF-UT(VOD,
VOD-statistics, LAI), c) RF-UT(VOD, VOD-statistics, LAI, LC). The AGB change for Xu-
AGB can be seen in d).
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(a) (b)

(c)

Figure 25: Comparison of temporal per-pixel AGB changes in the Amazon region between Xu-AGB
(Xu et al., 2021) andmodel predictions: a)RF-UT(VOD, LAI, LC, SIF), b) RF-UT(VOD, VOD-
statistics, LAI, LC, SIF). The AGB change for Xu-AGB can be seen in d).
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5. Discussion

5.1. Univariate regression approach vs. random forest approach
If we compare the R2 scores (Table 4), the non-parametric RF approach clearly outperforms the
univariate parametric regression approach by Rodrı́guez-Fernández et al. (2018), even in the
univariate setup using only L-VOD as a predictor variable.
Global linear, monotonic, and bivariate regressions have difficulties to capture the relationship
between VOD and AGB (Schmidt et al., 2023). In order to capture the relationship, non-linear
interactions among different ecosystem properties have to be considered (Schmidt et al., 2023).
Therefore, this might explain why the RF approach outperformed the univariate regression
approach by Rodrı́guez-Fernández et al. (2018). Furthermore, some RF models also rely on
additional predictor variables, thus increasing the prediction accuracy even more. In particular,
land cover information proves to be very beneficial for the prediction, as can be seen in Table 4.

Fan et al. (2019) conducted a similar study to Rodrı́guez-Fernández et al. (2018) by calculating R2

scores between predictions from univariate regression models and reference AGB values for the
tropics. The R2 scores achieved by Fan et al. (2019) are similar to the performance of some RF
models (using only VOD, LAI) in this work, but lower than the more complex models used here.
The results are however much better compared to the univariate regression approach in this thesis.
The better results obtained by Fan et al. (2019) might be explained by the fact that Fan et al. (2019)
used a smaller study area, which could result in less land cover variation. This is important because
the VOD-AGB relationship per LC class is linear, but nonlinear on a global scale
(Rodrı́guez-Fernández et al., 2018). This is consistent with the fact that LC is the most important
feature for the models using LC information (Figure A.10, 10, A.11, 11).
The fact that RF models with less complex feature constellations (only VOD, LAI, VOD statistics)
already achieve similar R2 scores globally as Fan et al. (2019) for the tropics shows strong support
for the random forest approach.

Liu et al. (2015) also used a univariate regression approach to predict total AGB values for different
biomes globally. Their results are comparable to the results achieved in this thesis for the AGB
time series per land cover (Figure 22), although the calibration and evaluation of the models were
done on different AGB datasets. In this study, the same dataset was used for both calibration and
evaluation. Moreover, Liu et al. (2015) relied on an alternative approach to establish the VOD-AGB
relationship by only using low-uncertainty locations on the reference AGB map.
The similar performance of the univariate regression approach and the RF models might be
explained by averaging effects when calculating total AGB over a certain biome. It is therefore
plausible that RF models and univariate regression models can achieve similar results for the
estimation of total AGB over large areas. In fact, Liu et al. (2015) analyzed the effect of aggregation
on random errors and found the latter to be reduced when aggregation was applied.
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5.2. Residuals between predicted and reference AGB
The residual maps (Figure 17, 18) show a strong underestimation of AGB in the tropics, especially
in the Amazon and Congo basins. This is in line with findings from previous studies (Fan et al.
(2019), Avitabile et al. (2016)), which identified the tropics as the area with the highest prediction
uncertainties, with an RMSE up to 60 MgCha−1 for some areas (Fan et al., 2019). These high
uncertainty areas (Congo basin, Eastern Amazon basin, Borneo), described by Avitabile et al.
(2016), overlap with the low-performance areas in our results (Figure 17, 18). The low performance
areas in the models also largely overlap with high-uncertainty areas in Xu-AGB (Xu et al., 2021),
especially for the RF models not using land cover information.

In addition to dense vegetation, the presence of water bodies in the VOD observation footprint and
residual atmospheric effects might also reduce the model performance. Water bodies in the
observation footprint can lead to an underestimation of VOD (Liu et al., 2013), which subsequently
could compromise the AGB estimation. Historical flood records (Espinoza et al., 2022) for the port
of Manaus (Amazon basin) show pronounced flood events during the time period of interest. The
effect of these flood events can possibly be seen in the Amazon region, where it is possible to see
parts of the stream in the form of strong underestimation on some residual maps (Figure 17a, 18a).

Another reason for reduced performance in tropical areas might be the complete saturation of
higher frequency VOD bands due to high vegetation density, thus limiting the information that can
be extracted from these bands. This effect might be the reason why the best model performance
could be observed for low vegetation types, like shrubs and crops. Conversely, L-VOD does not
reach saturation until AGB values of approximately 350 Mg ha−1 for Africa and South America
(Vittucci et al., 2019).

5.3. Predictor Contribution
The feature importances plots showed that LAI is more important than L-VOD if LC information is
not included in the model. This is valid both for the AGB prediction of unknown time periods and
unknown locations. A possible reason for this could be that LAI is better at representing different
land cover differences in the models than L-VOD. In fact, LAI seems to make a clearer distinction
between areas with broadleaf evergreen forests and other land cover types compared to L-VOD
(Figure 1d, 2a). Since the broad leaf evergreen LC class was identified as the most important model
feature, this might explain why LAI is more important than L-VOD for some models. Interestingly,
for the models making predictions for unknown time periods, the addition of VODCA statistics
only improves models without LC information, which is not the case for the models making
predictions for unknown locations, where all models are improved by the addition of VODCA
statistics. A reason for this could be uncertainties in the LC layers of the models making
predictions for unknown time periods.

In general, differences in reliability exist for VOD-based biomass estimation depending on
geographic location and band frequency (Dou et al., 2023). A global assessment regarding this was
made by Dou et al. (2023), who found that while VOD is reliable for approximately two-thirds of

51



the global land surface, there are reliability issues in the Amazon region. Additionally, they found
big differences in reliability between different VOD bands, depending on the vegetation type.
While L-VOD is best suited for broadleaf evergreen forests, deciduous broadleaf forests, woody
savannas and savannas, higher frequency X-VOD is superior for shrublands. On top of this, Dou
et al. (2023) also tested the reliability of different VOD aggregation methods and found that the 95%
percentile of nighttime VOD is best suited for capturing inter-annual biomass change, regardless of
the VOD band (L-VOD, X-VOD). Considering that in this thesis, this was not done for the VOD
data, there might be potential to improve the model performance by using the 95% percentile of
VOD instead of the 75% percentile.

5.4. Model Validation
The results of the model validation are quite good, considering that only a time span between 9
and 10 years was available to train and test the models (Figure 21-9).
The time series comparison (Figure 22) of total AGB between the model predictions for unknown
time periods and the reference data shows different results depending on the prominent land cover
type. Low vegetation classes perform better, just like for the bias maps (Figure 17a, 18a), which
was expected from previous studies (Dou et al. (2023), Avitabile et al. (2016), Liu et al. (2015)).
One possible problem regarding the models predicting unknown time periods might be that the
models were trained on a total of 3 years, of which only 2 years had global coverage. It is therefore
possible that the dominant land cover distribution between training and testing data is different for
the models making predictions for unknown time periods, which could lead to overfitting for
certain land cover types, thus distorting the results. More consistent spatial coverage was however
not possible due to missing data for L-VOD before 2015.
Incomplete spatial coverage for certain years might also affect the time series comparison since
only areas with consistent coverage could be used. Since this is dependent on the data availability,
there are differences for the individual models regarding the land area that was used to calculate
the time series. This inconsistent spatial coverage is likely the reason why there are multiple
graphs for the reference data time series (Figure 22), depending on the model input features. This is
because the spatial extent for the time series calculation had to be adapted to the different spatial
coverage of the individual model features.
Furthermore, this is probably the reason why the agreement between reference data and
prediction is so far off for the years that were used for the model training (2017, 2018).

Considering the validation of the model predictions for unknown locations, we can say that all the
models show an equally good correlation with the reference map from Baccini et al. (2012).
Interestingly, the simpler RF models (VOD, VOD+VOD-statistics, VOD+LAI,
VODCA+LAI+VOD-statistics) show slightly better results than the models with more complex
feature constellations, however, the difference is not significantly large.

5.5. Future Improvements and Challenges
One of the main shortcomings of this work is the missing uncertainties for the AGB maps, which
allow the reliability assessment of the AGB predictions. Xu et al. (2021) already calculated
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uncertainty maps in their study, which could be used for this purpose.
In general, uncertainties in AGB estimation can be assessed in different ways. Liu et al. (2015)
expressed the uncertainties per biome as the ratio between half the range of the 90% confidence
interval (5th percentile - 95th percentile) and the mean AGB value per biome. Other studies have
calculated the uncertainties as cross-validated root mean square error (RMSE) (Brandt et al. (2018),
Fan et al. (2019)) or correlation coefficients (Fan et al., 2019).
A possible source for uncertainties is error propagation from the reference AGB map (Brandt et al.
(2018), Fan et al. (2019)), an issue that can be avoided by using field surveys, LiDAR data, and very
high-resolution satellite imagery to establish the VOD-AGB relationship (Brandt et al. (2018)). This
was not possible in this study because of missing data. Other sources of uncertainties might also
be the VOD retrieval algorithm itself (Brandt et al., 2018).
It is possible to assess the total uncertainties as the combination of internal and external
uncertainties (Fan et al., 2019). Internal uncertainties can be associated with sampling and
calibration errors (Fan et al., 2019), while external uncertainties are associated with the reference
AGB maps (Fan et al., 2019).
In general, uncertainties are higher for individual pixels and are significantly reduced when a
larger spatial extent is considered (Avitabile et al., 2016). For example, the uncertainties at the pixel
level averaged over all continental regions were estimated to be ±30%, while at national levels, the
uncertainties were reduced to ±1% (Avitabile et al., 2016). This effect might also explain why it
was impossible to reproduce per-pixel AGB changes from Xu et al. (2021) with our model estimates
(Figure 23, 24, 25).

Other problems are the small temporal coverage of L-VOD, which creates limits for model training
and testing. Furthermore, the spatial coverage of L-VOD is inconsistent throughout the
observation period because of the different spatiotemporal coverage of SMOS and SMAP.

Another possible impact might come from water bodies in the VOD observation footprints. Even
though an effort was made to correct for this by using a static water mask, flood events were not
masked out and could therefore impact the VOD signal.

The coarse resolution of the VOD data leads to a lot of different influences on the VOD signal for
single pixels (Brandt et al., 2018). VOD is generally better suited to capture large-scale temporal
variations in AGB than to capture changes for individual pixels (Brandt et al., 2018). This could
however change with the introduction of new Sensors.

Since a lot of the used model features are quite highly correlated with each other, multicollinearity
between the different model features is also something that should be dealt with in future studies.
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6. Conclusions and outlook
In this thesis, a new approach for global annual AGB estimates, based on random forest regression,
was developed. The approach was tested against AGB reference data both for model predictions of
unknown locations and model predictions of unknown time periods. The newly developed AGB
models were compared to an older approach for AGB estimation based on nonlinear univariate
parametric regression, showing the superiority of the new approach.

Analysis of global residual distributions and time series comparison showed that the best
prediction results are achieved for areas with low and sparse vegetation, like shrubs and crops.
Conversely, the lowest performance was observed for high and dense vegetation like broadleaf
evergreen forests. The model predictions showed some very promising results when compared to
reference data, with maximum R2 scores of ca. 90 % for models making predictions for unknown
locations and ca. 96 % for models making predictions for unknown time periods. The evaluation of
the individual predictor contributions identified L-VOD and land cover information as the most
important features for AGB prediction, consistent with previous studies. In fact, land cover
information has such a strong impact that it should be included in future models when available.

Overall the new approach shows good potential for the monitoring of global AGB stocks, however,
there are still some steps to be taken to improve the models. These steps include the extension of
the L-VOD observation period, as well as the inclusion of new sensors with higher spatial
resolution to improve the estimation of AGB changes for individual pixels. The correction for flood
events should also be implemented since only static water masks were used in this thesis.
Additionally, uncertainties of the AGB estimates have to be calculated to increase the
comparability of the approach to other methods.
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A. Appendix

VODCA-AGB relationship

Figure A.1: Relationship between individual VODCA bands (Moesinger et al., 2020) and AGB from
Xu et al. (2021) for the year 2011.
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Figure A.2: Relationship between individual VODCA bands (Moesinger et al., 2020) and AGB from
Xu et al. (2021) for the year 2011 on the African continent.
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Figure A.3: Relationship between individual VODCA bands (Moesinger et al., 2020) and AGB from
Xu et al. (2021) for the year 2012 on the African continent.
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Figure A.4: Relationship between individual VODCA bands (Moesinger et al., 2020) and AGB from
Avitabile et al. (2016) for the year 2011 on the African continent.
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Figure A.5: Relationship between individual VODCA bands (Moesinger et al., 2020) and AGB from
Avitabile et al. (2016) for the year 2012 on the African continent.
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Figure A.6: Relationship between individual VODCA bands (Moesinger et al., 2020) and AGB from
Baccini et al. (2012) for the year 2011 on the African continent.
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Figure A.7: Relationship between individual VODCA bands (Moesinger et al., 2020) and AGB from
Baccini et al. (2012) for the year 2012 on the African continent.
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(a) (b) 2012

(c) 2011 (d) 2012

Figure A.8: 2D-Histogramm from Rodrı́guez-Fernández et al. (2018)(Figure 3) showing the
relationship between SMOS-IC L-VOD and the AGB maps from Baccini et al., 2012,
Avitabile et al., 2016, Saatchi et al., 2011 and Bouvet et al., 2018.

R ρ τ
IC iL2 L3 IC iL2 L3 IC iL2 L3

Avitabile 0.85 0.78 0.78 0.84 0.73 0.72 0.65 0.54 0.53
Baccini 0.94 0.87 0.87 0.90 0.80 0.77 0.74 0.62 0.60

Table 5: Correlation coefficients from Table 1 in Rodrı́guez-Fernández et al. (2018) between L-VOD
products from SMOS and AGB maps from Avitabile et al. (2016) and Baccini et al. (2012).
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Figure A.9: Figure 5 from Rodrı́guez-Fernández et al. (2018) showing the fitted mean, 5th and 95th
percentile curves (5) for the scatterplot between AGB (Baccini et al. (2012), Avitabile et al.
(2016)) and SMOS-IC L-VOD for the years 2011-2012.
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Predictor contribution

(a) (b)

(c) (d)

Figure A.10: Feature importances of RF models making predictions for unknown locations (RF-UL)
in terms of mean decrease in impurity: a) RF-UL(VOD, VOD-statistics), b) RF-UL(VOD,
VOD-statistics, LAI), c) RF-UL(VOD, VOD-statistics, LAI, LC) and d) RF-UL(VOD, VOD-
statistics, LAI, LC, SIF)
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(a) (b)

(c) (d)

Figure A.11: Feature importances of RF models making predictions for unknown locations (RF-UL)
in terms of mean decrease in impurity: a) RF-UL(VOD, VOD-statistics), b) RF-UL(VOD,
VOD-statistics, LAI), c) RF-UL(VOD, VOD-statistics, LAI, LC) and d) RF-UL(VOD, VOD-
statistics, LAI, LC, SIF)
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Figure A.12: Partial dependencies of the model features used for RF-UL(VOD).

Figure A.13: Partial dependencies of the model features used for RF-UL(VOD, LAI).
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Figure A.14: Partial dependencies of the model features used for RF-UL(VOD, LAI, LC).
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Figure A.15: Partial dependencies of the model features used for RF-UL(VOD, LAI, LC, SIF).
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Figure A.16: Partial dependencies of the model features used for RF-UL(VOD, VOD-statistics).
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Figure A.17: Partial dependencies of the model features used for RF-UL(VOD, VOD-statistics, LAI).
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Figure A.18: Partial dependencies of the model features used for RF-UT(VOD, VOD-statistics, LAI).
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Figure A.19: Partial dependencies of the model features used for RF-UL(VOD, VOD-statistics, LAI,
LC).
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Figure A.20: Partial dependencies of the model features used for RF-UT(VOD, VOD-statistics, LAI,
LC).
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Figure A.21: Partial dependencies of the model features used for RF-UL(VOD, VOD-statistics, LAI,
LC, SIF).
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Figure A.22: Partial dependencies of the model features used for RF-UT(VOD, VOD-statistics, LAI,
LC, SIF).
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