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Abstract

Foehn  has  a  climatological  impact  on  vegetation  in  Western  Austria  due  to  the  

drying  effect  caused  by  stronger  windspeeds  and  rising  temperatures.  As  there  are  

regions,  where  foehn  occurs  on  10-20  %  of  the  days,  it  is  advisable  to  analyse  pos-  

sible  changes  in  foehn  behaviour  in  the  wake  of  climate  change  to  better  estimate,  

which  trees  to  cultivate  on  foehn-affected  slopes.  

To  analyse  foehn  occurrence  in  the  future  and  therefore  independent  from  sta-  

tion  data,  gradient  boosted  tree  models  were  used  to  link  historic  weather  station  

data  and  synoptic  patterns  of  reanalysis  data  over  the  Alpine  area.  A  train-  

ing  data  set  for  daily  foehn  occurrence  was  created  from  eleven  years  of  selected  

semi-automatic  weather  station  data  by  applying  Objective  Foehn  Classification.  

By  counting  affected  valley  stations,  foehn  events  were  divided  into  local  and  

widespread  events.  To  allow an  application  on  climate  change  projections,  the  se-  

lection  of  physically  meaningful  features  was  limited  by  the  availability  of  variables  

in  EURO-CORDEX  models.  With  this  approach,  two  XGBoost  models  per  region  

were  trained  with  accuracies  of  over  95  %  for  classifying  between  no  foehn  and  

foehn  and  over  84  %  for  deciding  between  localised  and  widespread  foehn  during  

the  training  period  (2011-2021).  These  algorithms  were  then  applied  on  ERA5  re-  

analysis  data  and  on  three  models  of  the  OEKS-15  ensemble  of  EURO-CORDEX  

climate  scenarios  to  be  able  to  analyse  possible  changes  in  foehn  behaviour  until  

2100.  

For  every  detected  foehn  day  in  the  past  and  future,  ground  wind  fields  generated  

from  interpolated  stations  were  replaced  with  a  wind  field  representing  foehn  in  the  

affected  regions.  For  that  purpose,  WRF  simulations  of  selected,  suitable  foehn  

events  which  occurred  during  the  training  period  were  used  as  base  fingerprints.  

The  WRF  wind  fields  were  additionally  scaled  using  a  regression  of  the  500  hPa  

model  and  the  fingerprint  wind  speed  on  the  specific  days  and  statistical  noise.  

The  replacements  yielded  wind  climatologies  with  stronger  winds  on  foehn-affected  

slopes  and  in  valley  elevations.



Zusammenfassung

Föhn  hat  durch  stärkere  Windgeschwindigkeiten  und  steigende  Temperaturen  kli-  

matologische  Auswirkungen  auf  den  Austrocknungseffekt  der  Vegetation  in  West-  

österreich.  Mit  einer  jährlichen  Häufigkeit  von  10  -  20  %  in  einigen  Regionen  ist  

es  notwendig,  die  Änderung  der  Föhnhäufigkeit  und  -intensität  aufgrund  des  Kli-  

mawandels  zu  analysieren,  um  bessere  Einschätzungen  über  die  Baumarten  bei  

der  Kultivierung  von  föhnbetroffenen  Hängen  machen  zu  können.  

Um  Föhn  in  der  Zukunft  und  damit  unabhängig  von  Stationsdaten  analysieren  

zu  können,  wurden  Gradient  Boosted  Tree  Models  verwendet,  um  historische  Sta-  

tionsdaten  mit  synoptischen  Wettermustern  von  Reanalysedaten  in  der  Alpenre-  

gion  mitenander  zu  verknüpfen.  Ein  Traningsdatenset  mit  täglichen  Information  

über  Föhnauftreten  wurde  aus  elf  Jahren  an  Daten  von  ausgewählten  teilautoma-  

tischen  Wetterstationen  mittels  Objective  Foehn  Classification  generiert.  Föhn  

kann  durch  das  Zählen  der  betroffenen  Talstationen  als  lokales  oder  großräumiges  

Ereignis  klassifiziert  werden.  Um  diese  Methodik  auch  auf  Klimaszenarien  an-  

wenden  zu  können,  wurde  die  Auswahl  der  physikalisch  relevanten  Features  durch  

deren  Verfügbarkeit  in  EURO-CORDEX-Modellen  limitiert.  Mit  dieser  Methodik  

wurden  zwei  XGBoost  Modelle  pro  Region  trainiert,  welche  eine  Genauig-keit  von  

über  95  %  bei  der  Klassifkation  zwischen  Föhn  und  kein  Föhn  und  über  84  %  bei  

der  Klassifikation  zwischen  lokalisiertem  und  großflächigem  Ereignis  innerhalb  des  

Traningszeitraums  (2011-2021)  erzielten.  Diese  Algorithmen  wurden  anschließend  

auf  die  ERA5-Reanalyse  und  auf  drei  Klimaszenarien  des  ÖKS-15  Ensembles  der  

EURO-CORDEX-Modelle  angewandt,  um  eine  mögliche  Änderung  der  Föhnhäu-  

figkeit  und  -intensität  bis  2100  analysieren  zu  können.  

Für  jeden  detektierten  Föhntag  in  der  Vergangenheit  und  Zukunft  wurden  Bo-  

denwindfelder,  die  durch  flächig  interpolierte  Wetterstationen  generiert  wurden,  

mit  einem  für  Föhn  repräsentativen  Windfeld  ersetzt.  Zu  diesem  Zweck  wurden  

WRF-simulierte  Bodenwindfelder  von  ausgewählten  Föhnereignissen,  die  inner-  

halb  der  Traningsperiode  auftraten,  als  Fingerprint  verwendet.  Zusätzlich  wur-  

den  diese  WRF-Windfelder  mittels  einer  Regression  der  500  hPa  Model-  und  Fin-  

gerprintwindgeschwindigkeit  und  statistischem  Rauschen  skaliert.  Diese  ersetzten  

Windfelder  lieferten  Windklimatologien  mit  stärkeren  Winden  an  föhnbetroffenen  

Hängen  und  auf  Talböden.
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1.  Introduction

By  the  definition  of  the  World  Meteorological  Organisation  (WMO),  foehn  is  a  

wind,  which  is  warmed  and  dried  by  descent  on  the  lee  sides  of  mountains  [1].  

Driven  by  synoptic  flows  and  cross-mountain  pressure  gradients,  it  replaces  valley  

air  masses,  rapidly  changing  air  temperatures,  air  pressures  and  humidity  on  a  

mesoscale  level  [2].  In  fig.  1.1  a  schematic  of  the  foehn  phenomenon  is  visible.  

Wind  perpendicular  to  the  mountain  ridge  descends  dry-adiabatically  from  upper  

layers,  conserving  potential  temperature 𝜃 along  streamlines.  The  air  mass  gains  

speed  during  the  descent  into  the  valley.  Amongst  other  effects  such  as  endangering  

transportation,  increasing  risk  of  fire  and  improving  air  quality,  foehn  directly  

affects  vegetation-growth  due  to  its  drying  effect  caused  by  higher  wind  speeds,  

increased  temperatures  and  decreased  humidity  [2,  3,  4].  The  strongest  foehn  

events  primarily  occur  in  winter  and  last  for  several  days  but  usually  produce  severe  

gusts  within  hours.  These  gusts  are  able  to  damage  forests  and  constructions  and  

the  resulting  turbulent  flows  are  a  serious  hazard  for  aircraft  [2].

Figure  1.1.: Schematic  of  the  foehn  mechanism.  The  foehn  flow,  which  descends  

from  the  crest  (C)  to  the  valley  (V)  is  coloured  in  dark-grey.  Arrows  show  the  

average  direction  of  the  wind,  where  the  arrow  sizes  indicate  the  wind  speed.  Curved  

arrows  mark  turbulent  flows.  Lines  describe  streamlines  with  conserved  potential  

temperature 𝜃.  [5]
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With  a  climatological  foehn  occurrence  of  10  -  20  %  in  certain  regions  of  Western  

Austria,  realistic  input  wind  fields  representing  foehn  to  study  vegetation  are  re-  

quired  [5].  In  fig.  1.2  two  daily  mean  wind  speeds  of  the  3rd of  March  2017  over  

Western  Austria  of  already  available  products  can  be  seen.  While  the  upper  wind  

field  was  provided  by  the  Integrated  Nowcasting  through  Comprehensive  Anal-  

ysis  (INCA)  project  by  the  Central  Institute  for  Meteorology  and  Geodynamics  

(ZAMG),  the  lower  wind  field  was  created  by  interpolating  stations  spatially  by  

contributors  of  the  same  project,  of  which  this  thesis  originated  [6,  7,  8].  Both  

wind  fields  show a  clear  dependency  on  elevation  and  low wind  speeds  in  valleys.

Figure  1.2.: Comparison  of  daily  mean  wind  speeds  on  the  3rd of  March  2017  of  two  

already  available  products  for  the  project  domain  Western  Austria.  The  colourbar  

describes  wind  speed  values  in m/s.  Stations  used  to  create  the  interpolated  wind  

field  in  the  bottom  plot  are  marked  with  black  crosses.  Mean,  maximum  and  min-  

imum  values  are  calculated  over  the  whole  area.
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A  south  foehn  breakthrough  occurred  on  the  same  day.  In  fig.  1.3  a  simulated,  

physically  consistent  mean  wind  field  of  the  same  day  is  displayed  [9].  Higher  

windspeeds  in  valleys  are  observed  compared  to  the  other  wind  fields  and  no  clear  

dependency  on  elevation  is  visible.  The  washed  out  patterns  indicate,  that  air  

layers  are  mixed.  By  comparing  foehn  patterns  like  the  example  below with  the  

mean  wind  fields  above,  other  experts  decided,  that  INCA  and  our  station  inter-  

polated  wind  field  fail  in  interpolating  station  wind  into  ground  wind  fields  in  a  

realistic  way  during  foehn  days  due  to  large  distances  between  stations  [8].  As  

both  wind  fields  were  interpolated  from  stations,  they  match  the  observations  at  

measurement  sites.  But  the  available  data  sets  over  Western  Austria  are  not  able  

to  produce  realistic  foehn  wind  patterns  with  high  resolution  outside  of  station  

locations  and  fail  to  describe  the  mixing  of  air  layers  [8].

Figure  1.3.: WRF  simulated  mean  wind  field  on  the  3rd of  March  2017.  The  colour-  

bar  describes  wind  speed  values  in m/s.  Mean,  maximum  and  minimum  values  are  

calculated  over  the  whole  area.
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Wind  climatologies  and  therefore  wind  fields  representing  foehn  events  have  to  

be  generated  in  locations  with  absent  station  data  for  providing  a  meteorological  

base  to  study  the  impact  of  foehn  on  vegetation.  So  far,  no  method  is  available  

to  accomplish  the  task  of  considering  foehn  directly  in  wind  fields.  Foehn  is  only  

indirectly  present  through  station  data,  yielding  no  information  about  spatial  dis-  

tribution  of  air  flows.  For  the  purpose  of  producing  a  method  which  considers  

foehn  directly,  the  following  research  questions  have  to  be  answered:

• Can  a  detection  algorithm  be  established  to  detect  foehn  events  in  reanalysis  

data  as  well  as  in  climate  projections,  thereby  being  independent  of  station  

data?

• Does  foehn  show similar  patterns  over  the  Alps  and  can  the  patterns  be  

separated  by  the  algorithm  into  different  intensities  and  affected  regions?

• Are  climate  projections  able  to  produce  similar  weather  patterns,  allowing  

foehn  to  occur?

• How would  a  fingerprint  approach  for  distinguishing  foehn  in  different  regions  

and  for  different  intensities  be  simulated  and  scaled  to  generate  diverse  wind  

fields  with  fine  resolution?  

To  answer  those  questions,  chapter  2  introduces  the  theoretical  background  of  

foehn  as  well  as  explains  the  basics  of  weather  and  climate  models  and  the  used  

machine  learning  approach.  Chapter  3  lists  the  used  data,  describes  how a  training  

data  set  was  created  and  how the  machine  learning  algorithm  was  applied  to  extract  

days  with  foehn  occurrence  of  different  strength.  It  also  shows,  how physically  

consistent,  simulated  foehn  wind  fields  are  scaled  to  produce  foehn  climatologies.  

Chapter  4  displays  results  and  discusses,  if  our  approach  was  able  to  answer  the  

research  questions.  Finally,  chapter  5  concludes  the  thesis  and  gives  an  outlook,  

how the  methodology  can  be  improved  in  the  future.
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2.  Theoretical  Background

2.1.  The  Effect  of  Topography  on  Wind  Systems

Terrain-forced  winds  like  foehn  occur  when  synoptic  wind  is  modified  by  underly-  

ing  terrain  [3].  In  contrary,  diurnal  winds  are  caused  by  temperature  differences  

on  mountain  slopes  [3].  When  approaching  a  barrier,  the  behaviour  of  an  air  mass  

is  strongly  dependent  on  the  air’s  stability,  wind  speed  and  the  underlying  terrain  

itself  [10].  The  more  stable,  the  more  resilient  the  air  is  to  being  lifted.  Strong  

pressure  gradients  are  required  for  stable  air  to  be  lifted  over  a  barrier  [10].  Moun-  

tain  barriers  are  able  to  block  incoming  air  flows,  which  most  often  occurs  when  

stable  air  masses  in  winter  form  a  local  high  pressure  centre,  which  counteracts  

synoptic  pressure  gradients  [3].  The  air  mass  then  builds  cold  pools  of  dead  air  on  

the  windward  side  of  the  mountain.  

Especially  on  isolated  peaks,  the  air  is  more  likely  to  flow around,  split  or  flow 

through  gaps,  yielding  strong  wind  zones  on  the  edges  of  the  mountain  [3].  Forced  

channelling  of  wind  aloft  often  occurs  during  strong  winds,  especially  in  mountain  

passes  like  the  Brenner  pass,  the  south  end  of  the  Wipp  Valley.  The  wind  is  then  

accelerated  due  to  the  Bernoulli-effect  caused  by  smaller  diameters  of  the  gaps,  

channels  and  passes.  Those  terrain  induced  effects  accelerate  air  masses  [3].
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2.2.  The  Foehn  Phenomenon

Foehn  research  has  a  long  history,  started  by  Julius  von  Hann  in  1885  [11].  The  ori-  

gin  of  foehn  air  masses  was  long  debated  with  several  theories,  where  one  proposed  

explanation  was,  that  foehn  air  masses  originate  in  the  Caribbean  and  Sahara  due  

to  its  dry  properties  [12].  Hann  was  the  first  to  state,  that  foehn  has  thermody-  

namical  reasons,  where  air  masses  are  moist  in  upper  layers  and  dried  by  descent  

[12].The  theory  was  underpinned  by  the  recording  of  north  foehn  in  the  alpine  area  

and  the  fact,  that  foehn  was  observed  on  several  mountain  ranges,  counteracting  

the  idea  of  the  origin  of  air  masses  in  dry  regions.  Hann  and  Ficker  subsequently  

became  known  as  the  developers  of  the  Thermodynamic  Foehn  Theory,  which  is  

still  present  in  textbooks  today  in  modified  form  [11,  12,  13].

2.2.1.  Thermodynamic  Foehn  Theory

In  the  Thermodynamic  Foehn  Theory,  synoptic  pressure  gradients  force  humid  air  

towards  a  barrier  on  the  luv  side  of  the  mountain.  Because  of  the  forced  lifting,  

the  air  cools  dry-adiabatically  with  a  lapse  rate  of 9.8 ∘C/km until  it  reaches  satu-  

ration.  From  the  point  of  saturation  it  continues  to  cool  with  a  saturated  adiabatic  

lapse  rate  of  approximately  5-6 ∘C/km [3].  Heat  is  gained  by  wet-adiabatic  lifting  

until  the  air  reaches  the  crest.  Latent  heat  is  released  in  the  luv,  clouds  form  and  

precipitation  occurs  [3].  The  wind  then  descends  on  the  barrier’s  leeward  side.  The  

adiabatic  compression  of  the  air  causes  the  wind  to  warm  up  and  dry  out  with  the  

dry-adiabatic  lapse  rate  of 9.8 ∘C/km [3].  Because  molecules  have  higher  kinetic  

energy,  warmer  air  is  able  to  store  more  water  than  colder  air  [14].  The  amount  of  

water  bound  in  the  air  is  constant.  In  consequence,  relative  humidity  decreases.  

The  descending  warm  air  penetrates  and  replaces  cold  valley  air  masses,  having  

an  effect  on  several  meteorological  variables.  Temperature  increases,  humidity  de-  

creases  and  potential  temperature  (see  section  2.3.3)  is  higher  compared  to  the  air  

on  the  luv  side  [15].  Visibility  and  air  quality  improves.  A  so  called  foehn  window 

is  present,  which  can  prevent  nocturnal  temperature  inversions  from  forming  [15].
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While  Thermodynamic  Foehn  Theory  is  an  elegant  way  of  displaying  thermody-  

namical  weather  systems,  the  process  described  above  marks  an  extreme  situation  

of  foehn.  Foehn  was  also  observed,  when  upwind  air  in  the  luv  was  partially  or  

completely  blocked,  forming  dead  air  pools  without  precipitation  [15].  Strong  in-  

versions  are  therefore  able  to  separate  cold  air  pools  from  the  upper,  warmer  air.  

Precipitation  is  no  proof  for  the  gain  of  latent  heat,  because  it  can  occur  from  

clouds  not  part  of  the  foehn  flow [15].  An  illustrative  example  with  separated  air  

masses  is  the  so  called  century  foehn  in  November  1982  in  the  Wipp  Valley,  which  

was  the  strongest  foehn  ever  recorded  up  to  that  point  in  time  [15,  16].  

Foehn  therefore  also  occurs  without  wet-adiabatic  heat  gain  and  latent  heat  release,  

making  precipitation  a  feature  of  foehn  and  not  a  requirement  [16].  Precipitation  

further  has  no  major  influence  on  the  temperature  increase  in  the  lee  [16].  Hann  

predicted  the  subordinate  role  of  latent  heat  release  as  well,  which  resulted  in  a  

correction  of  his  own  theory  [11].  In  fig.  2.1  the  original  theory  of  foehn  formation  

is  compared  to  the  corrected  one,  where  the  foehn  air  masses  originate  from  upper  

layers.  Separation  of  air  masses  and  stability  in  the  figure  is  shown  through  the  

potential  temperature  relations,  which  is  described  in  section  2.3.3.

(a) Original  foehn  theory (b) Corrected  foehn  theory

Figure  2.1.: Comparison  of  traditional  and  corrected  foehn  theory.  In  the  original  

theory,  the  latent  heat  release  during  precipitation  was  described  to  be  a  requirement  

for  foehn  to  build  as  shown  in  (a).  The  corrected,  today  still  valid  theory  is  shown  

in  (b).  It  states  that  foehn  winds  (can)  come  from  upper  layers  and  a  separated  

pool  of  dead  air  is  present  in  the  valley  in  the  luv.  This  dead  air  pool  may  or  may  

not  form  precipitation.  Stability  information  is  given  by  the  vertical  gradient  of  

the  potential  temperature ∂  𝜃
∂  z

.[17]
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Fig.  2.2  shows  a  typical  south  foehn  condition  over  Austria.  In  valleys  on  the  

Alps’  northern  side  significantly  higher  temperatures  are  visible  across  all  regions,  

which  is  one  of  the  indicators  for  foehn  air  masses  in  the  valley  [6].  Warm  air  flows  

are  also  visible  in  the  Alps’  outlets.

Figure  2.2.: Typical  south  foehn  condition  in  Austria,  obtained  with  INCA  on  the  

21st of  October  2020  at  1  a.m  [6].  The  colourbar  indicates  values  in ∘C.  In  the  

valleys  on  the  Alps’  northern  side,  values  above 20 ∘C can  be  observed.

2.2.2.  Theories  on  the  Descending  of Foehn

Why  foehn  is  able  to  penetrate  valley  air  pools  is  a  highly  studied  subject  of  the  

foehn’s  flow dynamic.  The  vertical  structure  of  air  masses  in  valleys  is  crucial  

while  moist  processes  play  no  significant  role  in  the  descent  of  foehn  [18].  Other  

effects  influencing  the  descent  are  heating  by  convection  and  solar  radiation,  static  

and  dynamic  displacement  and  erosion  of  the  top  by  mixing  and  entrainment  [19].  

These  effects  vary  from  valley  to  valley.  Therefore,  no  theory  is  applicable  in  all  

situations  [15].  For  example,  foehn  in  the  Inn  valley  strongly  correlates  with  the  

sun  cycle  and  therefore  has  more  thermodynamic  influences,  while  foehn  in  the  

Wipp  Valley  relies  more  on  dynamics  [19].  

Several  theories  on  the  descending  of  foehn  were  proposed,  which  are  summarised  

in  [13,  15,  17]  and  recited  below.
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• Vertical  Aspiration  Theory  (Streiff-Becker,  1933): Turbulent  erosion  

of  warm  air  scours  away  cold  air  pools  in  the  valley.  The  potentially  warmer  

air  from  above  then  sinks  gradually  into  the  valley,  replacing  the  cold  air.

• Horizontal  Aspiration  Theory  (Ficker,  1912): An  approaching  At-  

lantic  low drags  the  cold  air  masses  away  through  the  valley’s  outlets.  The  

warmer  air  aloft  functions  as  replacement  flow,  which  is  why  the  theory  is  

also  called  Passive  Replacement  Theory.

• Lee  Wave  Theory  (Lyra,  1940  and  Queney,  1948): Lee  or  gravity  

waves  describe  a  phenomenon,  where  stable  air  flows  over  a  barrier  and  

begins  to  fluctuate  around  the  equilibrium  level  of  the  cooling  air  in  its  new 

leeward  environment  [3,  10].  The  air  overshoots  during  cooling,  causing  the  

air  parcel  to  go  back  up  the  atmosphere,  where  it  overshoots  again  [10].  

Perpendicular  or  even  concave  massifs  of  high  mountains  and  decreasing  

vertical  stability  favour  the  formation  of  lee  waves  [10].  When  winds  become  

stronger  and  still  show an  increase  with  height,  deeper  waves  tend  to  form,  

which  then  propagate  further  downward  where  strong  rotors  form  [10].  These  

high  amplitude  lee  waves  force  foehn  to  penetrate  the  valley  by  depressing  

the  surface  near  the  edge  of  the  cold  valley  air.  Under  certain,  sharply  defined  

stability,  flow and  orographic  conditions,  a  large-scale  instability  can  cause  

the  entire  mountain  wave  to  flow down  the  lee  side  with  high  wind  speeds  

[10].

• Solonoid  Theory  (Frey,  1944): Rotational  accelerators  called  solonoids  

build  because  of  different  orientations  of  pressure  and  temperature  gradients  

on  the  lee  side  of  the  mountain.  They  enhance  the  acceleration  of  air  masses  

imposed  by  the  pressure  gradient,  giving  the  air  enough  kinetic  energy  to  

penetrate  cold  air  pools.

• Waterfall  Theory  (Rossmann,  1950): Precipitation  in  the  luv  causes  a  

cloud  wall  on  the  crest,  the  so  called  foehn  wall  to  build.  These  clouds  are  

colder  and  denser  than  its  surrounding  air,  causing  it  to  accelerate  downward.  

With  sufficient  kinetic  energy,  it  penetrates  cold  air  pools.  This  theory  is  

only  applicable  in  classical  thermodynamic  foehn  events.
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• Hydraulic  Theory  (Schweitzer,  1953): The  Hydraulic  Theory  can  be  

used  to  describe  gap  flows,  which  satisfy  foehn  criteria  because  the  flow 

is  compressed  and  warmed  by  gaps  within  the  barrier.  Hydraulic  Theory  

is  also  used  for  shallow foehn,  where  no  dominant  flow perpendicular  to  

the  mountain  ridge  occurs  in  higher  altitudes  [18,  20,  21].  During  shallow 

foehn,  upper  and  lower  flow patterns  are  completely  distinct  and  the  foehn  

is  considered  as  compensation  flow between  air  masses  on  both  sides  of  the  

mountain,  where  the  valleys  have  different  temperatures  [16].  A  famous  

foehn  location  with  properties  of  a  gap  is  the  Brenner  Pass,  which  reaches  

into  the  Wipp  Valley  [20].  Using  shallow water  theory,  the  foehn  flow is  

modelled  using  the  Froude  number

Fr  =
u

𝑔  𝐿  

, (2.1)  

where u is  the  local  flow velocity, 𝑔 is  the  gravitational  acceleration  and 𝐿 is  

the  characteristic  length  of  the  problem,  in  this  case  the  length  of  the  slope.
Fr is  an  indicator  for  the  state  of  the  fluid.  For Fr < 1 the  velocity  is  less  

than  the  speed  of  gravitational  waves  and  is  subcritical.  For Fr > 1 the  flow 

velocity  exceeds  the  wave  speed  and  is  not  able  to  respond  to  changes  in  

surrounding  parameters  like  temperature,  air  movement  and  pressure  [20].  

In  consequence,  the  high  speed  fluid  can  only  propagate  downstream  and  

breaks  into  regions  with  significantly  lower  flow speeds,  causing  an  abrupt  

speed  rise  of  the  slower  moving  fluid  and  turbulence.  This  transition  with
Fr ≈ 1 is  called  a  hydraulic  jump  and  is  normally  observed  in  rivers  [20].  

The  flow points  in  the  direction  with Fr < 1,  transitioning  back  into  a  sub-  

critical  state  [20].  Hydraulic  jumps  are  associated  with  rotors  and  strong  

turbulence  by  transforming  kinetic  energy  of  the  flow into  turbulent  motion  

[10].  A  prominent  location  for  hydraulic  jumps  is  in  the  Wipp  Valley  between  

Ellbögen  and  Innsbruck  [20].
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2.3.  Classification  of  Foehn

A  fall  wind  is  classified  as  foehn  if  the  wind  has  a  pronounced  direction  and  speed  

perpendicular  to  the  mountain  ridge  and  if  the  potential  temperature  between  ridge  

and  valley  are  similar  indicating  the  same  air  mass.  This  method  is  called  Objective  

Foehn  Classification  (OFC)  [18,  19].  For  using  OFC,  at  least  two  reference  points,  

one  on  the  mountain  crest  and  one  in  the  valley  are  required.  The  foehn  is  forced  by  

synoptic  cross-alpine  surface  pressure  gradients  [15].  In  the  following  subsections,  

variables  possibly  implying  foehn  are  described  briefly.  Afterwards,  the  history  of  

foehn  classification  is  stated.

2.3.1.  Cross-Barrier  Mean  Sea  Level  Pressure

Air  masses  with  different  temperature  on  different  sides  of  barriers  cause  large  

pressure  gradients.  These  gradients  produce  strong  ground  winds  [18].  To  remove  

the  effects  of  underlying  orography  the  Mean  Sea  Level  Pressure  (MSLP),  which  is  

the  surface  pressure  normalised  to  the  mean  sea  level,  is  used  in  weather  maps  [14].  

Pressure  gradients  are  an  indicator  for  the  strength  of  the  foehn  event,  because  

pressure  and  wind  speed  are  directly  connected  through  the  flow dynamics  [19].  

The  pressure  gradient  is  also  partly  a  consequence  of  foehn  itself,  because  it  brings  

warmer  and  less  dense  air  into  valleys  [18].  In  fig.  2.3  a  characteristic  MSLP field  

over  the  Alps,  which  is  often  called  foehn  nose  or  foehn  knee,  is  visible.  Strong  

cross-barrier  gradients  are  visible.  In  Eastern  Austria,  where  the  topography  is  

flatter  and  pose  a  weaker  barrier,  the  high  pressure  field  mitigates  towards  the  

north,  yielding  the  foehn  nose.  Still,  without  information  about  the  stability  and  

layering  of  the  atmosphere,  the  MSLP is  not  enough  to  forecast  foehn  because  of  

the  lack  of  wind  speeds  aloft.
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Figure  2.3.: Typical  foehn  MSLP  field  on  the  3rd of  March  2017.  The  colourbar  

describes  pressure  values  in hPa.  Mean,  maximum  and  minimum  values  are  cal-  

culated  over  the  whole  area.  A  high  pressure  gradient  is  visible  over  the  main  ridge  

of  the  Alps.  [22]

2.3.2.  Wind  Direction  and  Wind  Speed  on  the  Crest  and  in  

Valleys

Foehn  is  characterised  by  a  rapid  change  towards  high  wind  speeds  and  a  constant  

wind  direction  perpendicular  to  the  crest  [15].  Likewise,  the  breakdown  of  foehn  is  

determined  by  deviating  wind  directions.  The  intensity  of  foehn  correlates  with  the  

ridge  wind  speed  [2].  Observing  wind  at  a  mountain  station  therefore  is  suitable  for  

getting  information  about  the  foehn  strength.  Foehn  winds  are  generally  stronger  

in  valleys  perpendicular  to  the  mountain  ridge  due  to  less  obstructions  and  flow 

channelling  [15].  Wind  speeds  can  be  higher  on  the  ground  compared  to  aloft  as  

well  as  shifted  in  direction  due  to  forced  channelling  along  the  valley  axis  [15].  

Along  with  the  pressure  gradient,  crest-level  flow and  pressure  gradient  have  the  

main  impact  on  downslope  winds  [2].  

In  spatially  coarse  numeric  weather  prediction  models  (NWPs),  the  700  hPa  level,  

which  is  in  approximately 3000m in  altitude,  marks  an  ideal  height  for  observing  

wind  at  the  Alps’  crest  as  the  models’  main  ridge  have  an  elevation  of  approxi-  

mately 2300m.  With  this  height  difference,  air  flows  across  and  above  crests  can  be  

simulated  similar  to  reality  [23].  When  observing  higher  levels  like  500  hPa,  which  

is  available  in  many  climate  scenario  products,  winds  during  foehn  events  tend  to  

be  stronger  and  shifted  towards  directions  away  from  the  axis  perpendicular  to  the  

ridge.
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2.3.3.  Potential  Temperature

The  potential  temperature  is  a  concept  to  describe  the  potential  and  thermal  

energy  of  a  dry  air  parcel.  It  is  used  to  compare  the  temperature  of  air  masses  in  

different  heights  and  pressure  levels.  The  first  law of  thermodynamics  describes  

the  relation  of  thermal  energy 𝑈 ,  work 𝑊 and  heat 𝑄

d𝑈 = 𝛿  𝑄+  d𝑊  . (2.2)  

For  an  adiabatic  process,  no  heat  is  exchanged  (𝛿  𝑄 =  0)  and  the  first  law reduces  

to

d𝑈 =  d𝑊  . (2.3)  

By  Legendre-transforming  the  equation  above,  the  adiabatic  equation  for  an  ideal  

gas  with  constant  volume 𝑉 ,  Temperature 𝑇 and  specific  heat  capacity  under  

constant  pressure  for  dry  air 𝑐p =  1005 J kg−1 K−1,  is  described  with  the  enthalpy
𝐻 [14]:

d𝐻 = 𝑐pd𝑇 = 𝑉 dp  . (2.4)  

By  inserting  the  ideal  gas  equation  for  air

p𝑉 = 𝑅air𝑇  , (2.5)  

where 𝑅air =  287 J kg−1 K−1 is  the  gas  constant  for  air,  equation  2.4  yields  [14]:

d𝑇

𝑇
=

𝑅air

𝑐p

dp

p  

. (2.6)  

Integration  to  a  certain  height z by  using  the  standard  pressure  at  sea  level p0 =  

1013.25 hPa yields  the  definition  of  the  potential  temperature  in  Kelvin  [14]:

𝜃(z)  = 𝑇 (z)(
p0
pz
)
𝑅air
𝑐p . (2.7)  

The  potential  temperature 𝜃(z) therefore  describes  the  temperature  of  a  dry  air  

parcel  at  height z with 𝑇 (z) and p(z),  when  it  is  dry-adiabatically  reduced  to p0.
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Potential  temperature  is  one  of  the  quantities,  which  is  conserved  along  streamlines  

when  foehn  is  descending  into  valleys  without  precipitation  occurring  in  the  lee.  

That  makes  potential  temperature  a  possible  tracer  for  foehn,  where  small  differ-  

ences  indicate  same  air  masses.  While  temperature  measurements  and  simulations  

have  to  be  accurate  for  good  tracing,  pressure  inaccuracies  have  less  impact  [18].  

The  usage  of  potential  temperature  as  tracer  is  limited  by  wet-adiabatic  effects  

and  temperature  advection  during  the  travel  time  of  the  air.  Solar  radiation  and  

turbulent  mixing  can  also  be  other  limiting  factors  [18].  

Ideally,  vertical  air  masses  are  dry-adiabatically  mixed  during  foehn  events.  The  

potential  temperature  difference  between  the  crest  and  the  valley  during  foehn  

is  therefore  close  to  zero.  While  positive  values  of  the  difference  between  ridge  

and  valley  indicate  no  or  only  weak  descent,  neutral  or  slightly  negative  values  

indicate  strong  descents  [2].  In  fig.  2.4  vertical  profiles  of  potential  tempera-  

tures  during  cold  seasons  are  visible.  It  displays  different  foehn  related  weather  

situations,  showing  the  same  potential  temperature  at  the  crest  and  valley  dur-  

ing  foehn  events  with  breakthrough.  A  breakthrough  is  indicated  by  matching  

potential  temperatures  in  valley  and  crest  elevations.

Figure  2.4.: Cold  season  vertical  profiles  of  potential  temperature 𝜃 with  height
z during  no  foehn  (left),  a  foehn  case  without  breakthrough  (middle)  and  with  

breakthrough  (right).  Solid  lines  describe  morning  hours,  dashed  lines  afternoon  

hours.  [2]

On  the  windward  side,  potential  temperature  is  cooler  compared  to  the  lee  side.  

An  increasing  potential  temperature  on  the  windward  side  implies  thermodynamic  

foehn  conditions  [15].  The  potential  temperature  difference  between  blocked  air  

and  the  actual  foehn  flow in  the  luv  hereby  is  a  parameter  for  distinguishing  be-  

tween  foehn  with  and  without  precipitation  [15].  For  foehn  involving  precipitation  

the  difference  would  be  zero  ideally.
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North  foehn  events  have  less  pronounced  warming  characteristics  because  the  flow 

moves  in  the  direction  of  the  positive  north-south  temperature  gradient  [15].  North  

foehn  occurrence  is  dependent  on  where  low pressure  centres  pass  the  Alps.  The  

closer  to  the  Alps,  the  higher  the  chance  of  north  foehn  will  be  because  of  the  more  

frequent  occurrence  of  north  wind  components  [24].  Therefore,  north  foehn  can  

occur  as  post-frontal  phenomenon  of  any  low pressure  centre,  which  yields  north  

components  in  wind  speed  [23].  

Potential  temperature  is  also  a  measure  for  the  atmosphere’s  stability.  For ∂  𝜃
∂  z

< 0,  

the  layers  are  unstable.  An  air  parcel  will  continue  to  rise  in  this  condition.  For
∂  𝜃
∂  z

> 0 the  air  is  stable,  an  air  parcel  will  sink  down  again  under  this  condition.
∂  𝜃
∂  z

=  0 marks  a  neutral  atmosphere  [14].

2.3.4.  Humidity

Any  humidity  parameter  could  suffice  to  detect  a  rapid  change  in  moisture,  when  

dry  foehn  air  descends  onto  a  specific  valley  station.  In  this  thesis,  the  relative  

humidity

rh  =
pw

pw  ,s𝑎t

=
𝜌w

𝜌w  ,s𝑎t

(2.8)  

where pw (𝜌w)  is  the  actual  water  pressure  (density)  and pw  ,s𝑎t (𝜌w  ,s𝑎t)  is  the  

saturated  water  pressure  (density),  was  the  parameter  of  choice  [14].  Water  content  

stays  the  same  during  a  dry  descent  of  foehn.  Warm  air  is  able  to  store  more  

water  because  of  the  higher  kinetic  energy  collisions  of  the  air’s  molecules,  allowing  

the  water  to  stay  in  a  gaseous  state  more  often  [14].  As  a  consequence,  relative  

humidity  decreases  on  the  lee  of  the  mountains  to  at  least  60  %  in  typical  cases  

[15].  

An  absolute  parameter  of  humidity,  often  available  in  climate  models  is  the  specific  

humidity q,  which  is  the  mass  of  water  vapour  in  a  unit  mass  of  moist  air,  usually  

stated  in g/kg.  An  approximation  of  how to  convert  specific  humidity q of  an  air  

parcel  in g/kg with  the  pressure p in Pa and  Temperature 𝑇 in K in  is  given  by

rh  =  0.263pq[𝑒
17.67(𝑇−𝑇0)

𝑇−29.65 ]−1 (2.9)  

where 𝑇0 =  273.15K is  the  reference  temperature  [25].  Absolute  humidity  pa-  

rameters  are  another  possible  choice  for  tracing  foehn,  as  these  variables  are  also  

conserved  along  streamlines.
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2.3.5.  History of Classification  Methods

The  traditional  way  of  classifying  foehn  using  a  single  valley  station  was  a  three-  

criteria  definition.  It  requires  wind  speed  and  direction  coming  from  the  mountain,  

temperature  increase  and  humidity  decrease,  solely  at  the  valley  station  [19].  The  

thresholds  of  these  criteria  are  highly  subjective  and  dependent  on  the  user.  In  

summer,  foehn  air  masses  may  be  colder  compared  to  the  pool  in  the  valley,  vi-  

olating  the  temperature  and  relative  humidity  criteria  [19].  These  criteria  are  

therefore  only  valid,  when  the  air  masses  between  crest  and  valley  are  dry-stable.  

The  three-criteria  also  makes  it  difficult  to  distinguish  foehn  occurrences  from  

strong  thermally  driven  winds  or  outflows.  

Synoptic  surface  pressure  patterns  are  one  of  the  most  useful  tools  for  classifying  

foehn  [15].  To  judge,  which  valleys  are  affected,  a  forecaster’s  rule  states  without  

proof  yet,  that  foehn  typically  descends  within 200m of  the  mountain  ridges  over  

which  it  streamed  in  [15].  Adding  mesoscale  surface  pressure  patterns  and  upper  

air  flows  to  the  three-criteria  definition  improves  classification,  but  it  makes  it  still  

difficult  to  decide  if  foehn  occurs  at  given  locations  [18].  

Over  the  course  of  the  Mesoscale  Alpine  Program  in  1999,  an  objective,  physically  

based  foehn  classification  using  station  data  of  one  mountain  station  and  one  valley  

station  was  presented.  It  uses  wind  direction  and  speed  at  the  crest  and  potential  

temperature  difference  between  those  two  references  for  classifying.  This  is  the  

classification  scheme  still  valid  today,  the  aforementioned  OFC [18].  Since  then  

potential  temperature  is  a  variable  commonly  used  for  automatic  foehn  detection  

[2,  5,  19,  26].  Statistical  mixture  models,  which  use  the  same  variables  to  give  

a  likelihood  of  foehn  occurrence  rather  than  absolute  thresholds  for  classifying,  

further  improve  OFC [5].  

Most  foehn  classification  tools  are  using  data  from  stations  and  not  from  NWPs  

[5,  26].  With  increasing  spatial  resolution,  there  is  hope  that  models  will  provide  

sufficiently  accurate  weather  patterns  that  result  in  foehn.  Progress  was  made  

using  probabilistic  and  machine  learning  approaches.  For  example,  the  authors  in  

[2]  use  synoptic  pressure  and  potential  temperature  differences  in  a  coarse  NWP 

to  apply  a  probabilistic  algorithm  for  foehn  forecasting.  Machine  learning  with  

station  data  as  training  data  is  used  to  connect  NWPs  with  foehn  events.  The  

trained  machine  learning  algorithms  are  able  to  generalise,  extending  foehn  pre-  

dictions  into  future  and  past  scenarios,  where  no  station  data  is  available  [27,  28,  

29].  This  thesis  takes  a  similar  machine  learning  approach.
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2.4.  XGBoost

XGBoost  is  a  scalable  tree  boosting  system,  which  uses  fewer  resources  than  ex-  

isting  systems  [30].  It  is  used  in  a  wide  variety  of  problems  including  store  sales  

predictions,  malware  classification  and  high  energy  physics  classification  due  to  

its  scalability  made  possible  by  system  and  algorithmic  optimisations  [30].  These  

optimisations  are  sparsity-aware  algorithm  design  for  parallel  tree  learning,  a  the-  

oretically  justified  weighted  quantile  sketch  for  efficient  proposal  calculation  and  

an  effective  cache-aware  block  structure  for  out-of-core  tree  learning,  all  combined  

in  an  end-to-end  tree  boosting  system  [30].  

The  basis  of  this  method  builds  the  ensemble  learning  method  called  random  forest  

approach.  Random  forests  are  a  set  of  individual  decision  trees,  which  classify  or  

apply  a  regression  independently  from  each  other  [31].  Each  node  of  a  decision  

tree,  poses  a  question  regarding  one  of  the  features  it  obtains.  Features  are  a  set  

of  variables  describing  each  data  point.  The  resulting  decision  is  then  passed  to  a  

child  node,  which  does  the  same  procedure  with  a  different  question  for  a  different  

feature  [32].  Decisions  either  could  be  made  by  applying  hard  thresholds  or  simple  

regressions.  This  process  is  repeated  until  a  so  called  leaf  node  is  reached  and  the  

data  is  categorised  [32].  Each  tree  gets  a  random  subset  of  features,  which  can  

be  e.g.  meteorological  input  variables.  The  trees  are  trained  on  different  random  

sets  of  the  training  data  to  reduce  correlation,  using  the  same  training  data  pair  

multiple  times  as  replacement,  which  is  called  bootstrapping  [31].  When  shown  

new features,  each  decision  tree  decides  on  its  own  how to  classify.  The  final  

prediction  is  the  classification  with  the  most  aggregated  votes  [31].  An  example  of  

this  procedure  using  regression  is  visible  in  fig.  2.5.  One  drawback  of  the  random  

forest  approach  is,  that  it  is  less  interpretable  than  a  single  decision  tree.  However,  

the  averaged  feature  importance  can  be  extracted  out  of  random  forest  approaches,  

yielding  the  features  with  the  highest  weights  [31].  

A  drawback  of  training  individual  decision  trees  not  influencing  each  other  is,  

that  they  are  not  able  to  learn  from  each  other.  Boosted  tree  models  use  an  

ensemble  method  called  boosting,  where  new trees  are  formed  by  considering  the  

errors  of  trees  from  previous  training  rounds  [32].  New trees  are  therefore  created  

sequentially,  in  an  iterative  way,  and  not  independent  of  each  other,  transforming  

weak  decision  trees  into  strong  learners  [32].  Parallelizing  the  training  is  therefore  

difficult.  As  a  result,  training  time  is  usually  higher  [30].  Boosted  trees  are  a  useful  

tool  for  classifying  non  linear  data  [30].
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Figure  2.5.: Example  of  the  random  forest  approach.  Each  node  gets  a  different  

feature  from  which  to  classify.  The  result  then  is  the  aggregation  of  all  individual  

trees,  yielding  either  a  certain  regression  value  like  in  the  figure  or  a  class  affilia-  

tion.  [30]

XGBoost  is  one  of  these  boosted  tree  approaches.  The  formal  goal  of  a  supervised  

machine  learning  approach  like  XGBoost  is  to  make  predictions ŷi using  a  number  

of m features xi ∈ ℝm from n events  and  their  corresponding  true  labels yi.  In  

case  of  a  regression  problem,  labels  mark  a  regression  value: yi ∈ ℝ.  In  case  of  

a  classification,  labels  are  class  affiliations: yi ∈  {0, 1}.  To  validate  a  prediction,  

convex  loss  functions l are  used,  which  should  be  minimised  along  the  training  of  

the  algorithm.  Typical  loss  functions  for  classification  can  be  the ℒ2 norm

l(ŷi,  yi)  =  (ŷi − yi)
2 , (2.10)  

or  the  logistic  loss

l(ŷi,  p)  = −(ŷi log(p)  +  (1− ŷi) log(1− p)) , (2.11)  

where p =  Pr(y =  1) is  the  probability  for  a  label y to  be  attributed  to  the  positive  

class  [33].
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A  properly  minimised  loss  function  typically  results  in  high  accuracy acc in  clas-  

sification  problems

acc  =  

TP  +  TN

TP  +  TN +  FA +  ME
, (2.12)  

where TP are  the  true  positive, TN the  true  negative, FA the  false  alarm  and ME
the  missed  event  predictions.  

The  approach  of  the  XGBoost  algorithm  to  perform  this  task  is

ŷi = 𝜑(xi)  =
𝐾∑︁
k=1

𝑓k(xi) , (2.13)  

where 𝑓k ∈  ℱ = {𝑓(x)  = 𝜔q(x)} describes  the  space  of  classification  (or  regression)  

trees, 𝑓k being  one  of 𝐾 additive  corresponding  functions  predicting  the  output  

of  an  independent  tree  structure q with  leaf  weights 𝜔 [30].  XGBoost  uses  a  

regularised  objective  to  its  regression  or  classification.  In  the  XGboost  algorithm,  

the  regularised  objective  reads  as

ℒ(𝜑)  =
∑︁
i

l(ŷi,  yi)  +
∑︁
k

Ω(𝑓k) , (2.14)  

where

Ω(𝑓)  = 𝛾  𝑇 +  

1

2
𝜆+ ‖𝜔‖2 , (2.15)  

is  a  term  which  penalises  model  complexity  and  prevents  overfitting  to  the  training  

data  [30]. 𝑇 is  the  number  of  leaves  in  a  decision  tree  with 𝛾 being  its  weighting  

to  the  loss  function.  The  more  leaves,  the  more  complex  a  decision  tree  is. 𝜆 is  the  

regularisation  parameter,  and 𝜔 describes  the  vector  of  leaf  weightings.  The  model  

will  therefore  tend  to  train  simple  and  predictive  functions  [30].  To  iteratively  train  

the  model,  this  function  is  modified  for  iteration  step t to

ℒ(t) =
n∑︁

i=1

l(yi,  ŷ
(t−1)
i + 𝑓t(xi))  +  Ω(𝑓t) , (2.16)
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and  afterwards  approximated  by  second-order  gradient  building,  hence  the  name  

gradient  boosting  [30].  For  a  fixed  structure q(x),  this  yields  the  optimal  weight  

on  leaf j using  by  summing  over  its  instance  set 𝐼j = {i|q(xi)  = j}:

𝜔*
j = −

∑︀
i∈𝐼j 𝑔i∑︀

i∈𝐼j ℎi + 𝜆  

, (2.17)  

where 𝑔i and ℎi are  the  first  and  second  order  gradient  on  the  loss  function.  This  

yields  the  optimal  value  of  the  regularisation  objective

ℒ̃(q)  = −1

2

𝑇∑︁
j=1

(
∑︀

i∈𝐼j 𝑔i)
2∑︀

i∈𝐼j ℎi + 𝜆
+ 𝛾  𝑇  , (2.18)  

which  can  be  interpreted  as  a  scoring  function  to  measure  the  quality  of  a  tree  

structure q [30].
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2.5.  Numerical  Weather  Predictions  and  Climate  

Models

General  Circulation  Models  (GCMs)  are  dynamic,  three  dimensional  models,  which  

are  the  most  complex  weather  and  climate  models  to  this  day.  To  study  local  vari-  

ations  of  the  climate,  the  Earth’s  atmosphere  is  divided  into  grid  boxes.  Most  

recent  GCMs  use  a  horizontal  grid  sized  about 100 km and  between  30  and  40  

vertical  atmospheric  layers  [34].  GCMs  use  a  wide  range  of  equations  including  

the  Navier-Stokes  Equations  for  the  air’s  circulation,  coupling  of  radiative  and  

non-radiative  energy,  interaction  between  the  biosphere,  cryosphere,  hydrosphere  

and  atmosphere  and  even  chemical  processes  and  aerosol  formation  [34].  An  ad-  

ditional,  coupled  GCM is  used  for  the  ocean’s  circulation  [34].  Fig.  2.6  shows  a  

schematic  of  how the  Earth  is  divided  into  grid  cells  and  how the  aforementioned  

physical  interactions  are  part  of  GCMs.  They  produce  output  in  form  meteorolog-  

ical  variables  such  as  temperature  in  different  layers  of  the  atmosphere  and  ocean,  

wind  speed  and  wind  direction,  precipitation  and  snow cover.  Fig.  2.7  shows  how 

the  complexity  of  GCMs  has  evolved  over  the  past  decades  [35].  Since  the  mid-  

1970s,  new physical  effects  have  been  incorporated  into  the  models,  ranging  from  

clouds,  oceanic  circulation,  volcanic  activity  and  aerosols  to  interactive  vegetation  

[35].  Because  some  of  these  equations  are  non-linear  differential  equations,  the  

models  have  to  be  solved  numerically  [34].  To  prevent  possible  instabilities,  time  

steps  have  to  be  sufficiently  low,  ranging  from  ten  to  30  minutes  [34].  GCMs  are  

therefore  computationally  expensive  to  calculate.  

To  run  GCMs,  input  data  on  the  absorption  of  radiation  is  required.  This  includes  

changes  in  the  sun’s  radiation  output  as  well  as  concentration  of  green  house  gases  

and  aerosols  and  is  called  radiative  forcing  [36].  Using  different  assumptions  and  

estimations  about  anthropogenic  green  house  gas  emissions  enables  GCMs  to  act  

as  climate  models  with  different  projections.  In  this  thesis,  climate  scenarios  with  

Representative  Concentration  Pathways  (RCPs)  as  a  measure  for  radiative  forcing  

were  used.  RCPs  are  used  to  describe  additional  radiative  forcing  caused  by  an-  

thropogenic  emissions  till  the  year  2100  compared  to  the  pre-industrial  level  [37].  

The  RCPs  range  from  2.6  to 8.5W/m2 [37].  For  example,  RCP 4.5  represents
4.5W/m2 radiative  forcing  in  2100  compared  to  the  pre-industrial  level.  Differ-  

ent  GCMs  forced  with  identical  emission  scenarios  form  an  ensemble  for  different  

RCPs.  To  get  a  grasp  of  model  uncertainty  and  performance,  a  single  model  is  

run  with  different  experiment  settings  where  one  boundary  condition  or  feedback  

strength  is  varied  and  the  simulation  is  done  again  [34].  Which  experiments  to  

run  is  defined  by  the  guidelines  of  the  Coupled  Model  Intercomparison  Projects  

(CMIP)  [38].  Models  with  requirements  from  the  fifth  CMIP assessment  report  

were  used  in  this  thesis.
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Figure  2.6.: Schematic  of  a  GCM.  The  Earth’s  atmosphere  and  ocean  are  divided  

into  horizontal  latitude-longitude  grid  cells.  The  atmosphere’s  vertical  layers  are  

gridded  into  height  or  pressure  levels.  GCMs  include  a  number  of  physical  pro-  

cesses  including  ocean-land-atmosphere  interaction,  heat  and  energy  transfer  and  

radiation  budgets.  Which  of  these  processes  are  considered  is  visible  in  the  boxed  

image,  where  the  arrows  indicated  possible  interactions  and  exchanges.  [39]
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Figure  2.7.: Development  of  GCM  complexity.  Different  physical  effects  were  incor-  

porated  since  the  mid-1970s,  visible  by  black  and  white  texts  within  the  respective  

images.  The  abbreviations  in  the  pictures  describe  different  IPCC  assessment  re-  

ports,  with  FAR  being  from  1990,  SAR  from  1996,  TAR  from  2001  and  AR4  from  

2007.  [35]
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The 100 km horizontal  mesh  grid  is  not  enough  for  presenting  local  patterns.  

Therefore,  one  grid  cell  only  describes  the  average  characteristic  of  the  covered  

area.  Parametrization  has  to  be  used  for  processes  like  cloud  formation,  which  oc-  

cur  within  smaller  horizontal  distances  than  a 100 km grid  cell  [34].  Increasing  the  

resolution  would  result  in  a  multiple  of  required  computation  power  as  the  under-  

lying  equations  have  to  be  applied  to  each  grid  cell.  For  the  purpose  of  displaying  

smaller  scale  processes,  statistical  downscaling  can  be  applied,  where  historical  

observational  data  is  used  to  calculate  a  relationship  between  the  local  and  global  

climate  [40].  Dynamical  downscaling  using  Regional  Climate  Models  (RCMs)  can  

be  used  as  an  alternative  to  statistical  downscaling.  RCMs  are  GCMs  as  well,  

but  for  specific  regions  using  parameters  from  a  global  GCM as  lateral  bound-  

ary  conditions.  The  nested  RCM are  therefore  heavily  dependent  on  the  global  

GCM [34].  The  same  RCM will  produce  different  outputs  when  forced  with  a  

different  global  GCM.  Typically  RCMs  have  no  coupled  ocean  GCM.  Values  from  

the  global  ocean  GCM are  used  for  regions  near  oceans  if  they  are  required  [34].  

RCMs  provide  finer  grids  in  the  range  of  tens  of  kilometres  or  even  lower.  Due  

to  its  dynamical  approach,  it  can  provide  sub-daily  temporal  resolution,  which  

cannot  be  reached  with  statistical  downscaling  [41].  They  improve  representation  

of  topography,  land-sea  contrast  and  soil  characteristics  [41].  

Projects  which  use  a  GCM and  force  it  to  coincide  with  existing  observations  

during  running  the  experiment  are  called  reanalysis.  High  quality  observational  

data  is  required  for  running  a  reanalysis  [22].
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3.  Material  and  Methods

3.1.  Data  Sources

• ERA5:  The  fifth  generation  of  the  European  Centre  of  Medium-Range  

Weather  Forecast’s  (ECMWF)  reanalysis  model  of  the  atmosphere  is  called  

ECMWF  Reanalysis  5th Generation  (ERA5)  [42,  43].  This  global  GCM has  

several  variables  available  on  surface  and  pressure  levels,  an  hourly  time  scale  

and  a  horizontal  mesh  size  of 0.25∘,  which  translates  to  roughly 30 km in  the  

European  latitudes.  The  data  was  generated  by  assimilating  climate  mod-  

els  to  existing  observations  [22].  Starting  from  1951,  it  includes  parameters  

of  the  atmosphere,  land  surface,  ocean,  sea  ice  and  carbon  cycle.  For  the  

feature  matrix  of  the  machine  learning  algorithm,  temperature  and  specific  

humidity  converted  to  relative  humidity  at 850 hPa,  mean  sea  level  pressure  

and  wind  components  and  geopotential  at 500 hPa were  used.

• EURO-CORDEX:  EURO-CORDEX  models  are  high-resolution  climate  

change  GCM ensembles,  down-scaled  to 12.5 km horizontal  grid  size  [44].  

Different  RCPs  are  implemented,  from  RCP 2.6,  roughly  agreeing  to  the  

Paris  agreement,  RCP 4.5,  where  some  climate  protection  measures  are  un-  

dertaken  and  RCP 8.5,  which  is  often  described  as  the  business  as  usual  

scenario  [37].  The  models  were  created  by  downscaling  global  GCMs  us-  

ing  different  RCMs  [44].  The  OEKS-15  ensemble  represents  a  selection  of  

EURO-CORDEX  models  suitable  for  Austria,  covering  a  variety  of  possi-  

ble  scenarios  [45].  The  same  variables  as  in  ERA5  of  three  of  these  models  

were  selected  and  patch-regridded  on  the  ERA5  grid  to  analyse  change  in  

foehn  behaviour  over  different  climate  scenarios.  The  model  names  are  de-  

scriptively  stated  in  the  form  of  GCM_RCP_ensemble_institute-RCM and  

were:
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– MPI-M-MPI-ESM-LR_rcp45_r1i1p1_CLMcom-CCLM4-8-17  

(short:  MPI  rcp45)

– MPI-M-MPI-ESM-LR_rcp85_r1i1p1_CLMcom-CCLM4-8-17  

(short:  MPI  rcp85)

– ICHEC-EC-EARTH_rcp85_r12i1p1_SMHI-RCA4  

(short:  ICHEC rcp85)

• WRF:  The  open-source  Weather  Research  and  Forecasting  Model  (WRF)  

is  a  NWP,  which  is  used  for  operational  forecasting  and  research  alike  [9].  

When  provided  with  a  domain  and  boundary  conditions,  which  either  can  

be  real  observations  or  idealised  atmospheric  conditions,  it  simulates  fields  

with  physical  consistency.  For  research  purposes,  the  Advanced  Research  

WRF  (ARW)  configuration  is  used,  which  in  addition  to  a  specific  solver,  

encompasses  physics  schemes,  numeric  and  dynamics  options,  initialisation  

routines,  and  a  data  assimilation  package  [9].  WRF  was  used  to  simulate  

foehn  wind  fields,  which  then  were  used  as  fingerprint  for  other  detected  foehn  

cases.  The  WRF  model  was  driven  with  the  ECMWF-Integrated  Forecasting  

System  (ECMWF-IFS)  at 9 km resolution.

• TAWES  weather  stations:  The  semi-automatic weather  stations  (TAWES)  

are  a  dense  network  of  meteorological  measurement  sites  operated  by  ZAMG  

[46].  Hourly  values  of  pressure,  temperature  and  wind  as  well  as  location  

information  of  several  stations  in  Western  Austria  were  used  to  create  a  

machine  learning  training  data  set  using  OFC.

• INCA:  ZAMG’s  Integrated  Nowcasting  through  Comprehensive  Anaylsis  

(INCA)  is  an  analysis  and  nowcasting  system,  which  uses  all  available  model  

and  observation  data  in  Austria  to  supply  a  reliable  analysis  to  forecast  

hourly  instantaneous  variables  [6,  7].  The  projected  horizontal  grid  size  is
1 km for  the  whole  of  Austria  and  the  surrounding  Alpine  area.  The  ground  

wind  field  of  INCA  is  generated  by  interpolating  from  a  larger  scale  weather  

model  and  subsequent  correction  with  observations,  and  afterwards  adjusting  

the  wind  to  the  topography  [7].  INCA’s  ground  wind  speed  was  compared  

to  the  foehn  climatologies  created  within  this  thesis.  The  INCA  wind  speed  

has  its  flaws  at  mountain  tops  and  in  valleys,  where  unrealistic  values  are  

generated,  which  are  too  high  on  mountains  and  too  low in  valleys.
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• Station-interpolated  wind  field:  In  the  course  of  the  same  project  this  

thesis  originated  from,  daily  wind  fields  generated  from  spatially  interpolated  

station  data  for  the  historic  time  starting  from  1961  were  created  by  Tatiana  

Klisho  MSc  using  Ridge  Regression  [8,  47].  The  projected  horizontal  grid  

size  is 250m.  The  historic  data  set  was  then  projected  into  the  future  by  

bias  correcting  EURO-CORDEX  surface  wind  with  the  historic  period  using  

quantile  delta  mapping  [48].  Like  INCA,  this  wind  field  was  used  to  compare  

wind  speeds  on  foehn  days.  This  station-interpolated  wind  field  with  replaced  

foehn  days  using  WRF  simulated  fingerprints  was  the  desired  data  outcome  

of  this  thesis.

3.2.  Method  Overview

An  overview of  how the  wind  climatologies  including  foehn  occurrences  were  pro-  

duced  is  given  in  fig.  3.1.  A  training  data  set  yielding  region-separated,  daily  

information  about  foehn  occurrence  was  created  using  weather  station  data  from  

ZAMG’s  TAWES  stations.  An  XGBoost  algorithm  was  then  applied  on  this  train-  

ing  data  for  supervised  learning  [30].  Selected  ERA5  reanalysis  variables  were  used  

as  input  data.  The  trained  algorithm  was  further  applied  on  three  selected  EURO-  

CORDEX  models  to  analyse  foehn  occurrence  in  the  future.  Simulated,  physically  

consistent  WRF  ground  wind  fields  were  used  to  replace  the  station-interpolated  

wind  field  on  detected  foehn  days,  yielding  the  output  wind  field  on  a 250m spatial  

grid.  In  the  following  sections,  the  the  individual  processes  are  described  in  more  

depth.

Figure  3.1.: Overview  flowchart  of  the  methodology  used  to  create  foehn  climatolo-  

gies.  Input  data  is  displayed  in  green  shapes,  while  processes  are  blue  and  the  final  

output  data  is  coloured  yellow.
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3.3.  Training  Data  Set

To  be  able  to  train  a  supervised  machine  learning  algorithm  like  XGBoost,  which  

detects  foehn  by  analysing  synoptic  weather  patterns,  the  creation  of  a  training  

data  set  was  required.  For  that  purpose,  Western  Austria  was  divided  into  four  

regions,  as  can  be  seen  in  fig.  3.2.  Selected  stations  within  one  region  of  the  

plot  were  attributed  together  and  are  listed  in  table  3.1.  The  regions  Vorarlberg,  

Tiroler  Oberland  and  Tiroler  Unterland  are  prone  to  south  foehn,  whereas  Osttirol  

is  affected  by  north  foehn.  The  training  data  was  constructed  to  contain  region-  

wise  and  daily  information,  if  foehn  occurred  and  if  it  was  a  localised  or  widespread  

event  within  a  region.

Figure  3.2.: Foehn  regions.  Regions  are  coloured  differently  and  their  names  are  

displayed  in  the  legend.  Crest  (valley)  stations  are  marked  with  black  dots  (crosses)  

and  are  listed  in  table  3.1.  Osttirol’s  selected  mountain  station,  visible  on  the  the  

right  edge  of  the  plot  is  geographically  located  in  Carinthia.

Eleven  years  of  consistent,  hourly  data  TAWES  weather  station  data  from  2011-  

2021  were  used  to  apply  OFC on  [18,  19,  46].  The  stations  were  selected  by  data  

availability  in  the  training  period  and  their  location  close  to  known  foehn  slopes  

or  in  the  typical  outlet  of  foehn  air  masses.  As  Patscherkofel  is  a  famous  foehn  

affected  station  and  close  to  the  border  between  Tiroler  Oberland  and  Unterland,  

it  was  used  as  crest  station  for  both.  Sonnblick,  the  only  available  crest  station  

suitable  for  Osttirol  is  geographically  located  in  Carinthia.  Because  of  the  lack  

of  alternatives  for  crest  stations  in  Vorarlberg,  pressure  values  for  Valluga  were  

calculated  from  Galzig,  which  is  in  close  proximity  about 700m below Valluga  

by  applying  the  barometric  height  formula  and  considering  a  linear  temperature  

gradient  [14]:
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p𝑉 (t)  = p𝐺(t) · (1− 𝑎(t) · ℎ𝑉 − ℎ𝐺

𝑇𝐺(t)  

)
𝑀  𝑔

𝑅  𝑎(t) , (3.1)  

where

• 𝑇𝑉 (t),  ℎ𝑉 =  2805m,  p𝑉 (t) are  temperature  in  K,  station  elevation  in  m  and  

pressure  in  hPa  at  the  Valluga  station,

• 𝑇𝐺(t),  ℎ𝑉 =  2079m,  p𝐺(t) are  the  temperature  in  K,  station  elevation  in  m  

and  pressure  in  hPa  at  the  Galzig  station,

• 𝑎(t)  = −𝑇𝑉 (t)−𝑇𝐺(t)
ℎ𝑉 −ℎ𝐺

is  the  vertical  temperature  gradient,

• 𝑀 =  0.028 96 kgmol−1 is  the  molar  mass  of  air,

• 𝑔 =  9.807m s−2 is  the  gravitational  acceleration  and

• 𝑅 =  8.314 JK−1 mol−1 is  the  universal  gas  constant.  

To  prevent  the  potential  temperature  criteria  of  OFC to  be  fulfilled  unrealistically  

often,  Galzig  was  removed  as  valley  station  as  a  consequence.

Table  3.1.: Selected  TAWES  stations  [46].  These  stations  were  selected  based  on  

their  location  close  to  known  foehn  slopes  or  in  the  typical  outlet  of  foehn  air  masses  

and  data  availability  within  the  training  period  2011-2021.  Valluga  pressure  values  

where  calculated  using  the  pressure  values  from  Galzig  and  the  barometric  height  

formula  with  a  linear  temperature  gradient.

Location Vorarlberg Tiroler  Oberland Tiroler  Unterland Osttirol

Crest
Valluga

(pressure  calculated Patscherkofel Patscherkofel Sonnblick
from  Galzig)

Valley

Brand Galtuer Innsbruck  Uni Virgen
Gaschurn St.  Anton/Arlberg Jenbach Silian
Bludenz Landeck Achenkirch St.  Jakob/Def.
Feldkirch Imst Kufstein Lienz
Dornbirn Reutte Alpbach Kals

Schoppernau Umhausen Mayrhofen
St.  Leonhard/Pitztal Steinach
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The  thresholds  for  OFC were  mainly  derived  from  [5],  where  the  authors  used  a  

statistical  mixture  model  to  predict  a  probability  for  foehn  in  the  Wipp  Valley.  

Potential  temperature  and  wind  speed  values  yielding  high  probabilities  for  foehn  

in  the  statistic  mixture  model  were  used  as  hard  thresholds  for  OFC.  The  aim  

was  to  achieve  similar  annual  occurrence  for  Tiroler  Unterland  compared  to  this  

paper.  In  table  3.2  the  thresholds  for  OFC are  stated.  The  percentiles  of  the  

windspeed  are  translated  to  the  wind  speeds  seen  in  table  3.3  in  the  eleven  years  

of  training  data  (2011-2021).  While  Sonnblick  shows  higher  median  wind  speeds,  

Patscherkofel  yields  the  highest  90th percentile,  implying  a  larger  spread  of  values.

Table  3.2.: OFC  thresholds.  The  thresholds  were  derived  in  comparison  to  a  statis-  

tic  mixture  model  in  [5].  Values  yielding  high  probability  of  foehn  in  this  model  

were  selected  as  hard  thresholds.

Threshold Value
Crest  wind  speed  percentile  for  local  events 50th

Crest  wind  speed  percentile  for  widespread  events 90th

Valley  wind  speed  [m/s] 3  

Potential  temperature  difference  (crest  minus  valley)  [K] [-1,3]  

Wind  direction  on  the  crest  [∘] ±45  S  (N  for  Osttirol)

Table  3.3.: Wind  speed  interpretation  of  threshold  percentiles  for  the  crest  stations  

of  the  four  regions  in  the  training  period  2011-2021.

Localised  limit Widespread  limit  

Mountain  Station (50th percentile) (90th percentile)
m/s m/s

Valluga 4.6 8.4  

Patscherkofel 5.3 14.8  

Sonnblick 7.2 14.0

For  distinguishing  between  localised  and  widespread  events,  the  number  of  affected  

valley  stations  per  event  was  taken  into  account,  as  can  be  seen  in  table  3.4.  

Roughly  half  of  the  stations  were  expected  to  respond  for  a  widespread  event.

Table  3.4.: Required  number  of  affected  stations  for  distinguishing  foehn  occurrence.  

More  stations  were  used  in  Tirol,  therefore  the  numbers  are  higher  in  those  regions.

Foehn  Occurrence Vorarlberg Tiroler  Oberland Tiroler  Unterland Osttirol
localised 1 2 2 1  

widespread 3 4 4 2
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After  analysing  the  hourly  station  data  with  OFC,  the  daily  data  was  built  by  

taking  the  strongest  event  within  24  hours,  yielding  daily  information  with  three  

classes:  no  foehn,  localised  foehn  and  widespread  foehn.

3.4.  Feature  Matrix

To  train  an  XGBoost  algorithm,  a  feature  matrix  is  required  besides  the  training  

data  set.  For  that  purpose,  the  ERA5  variable  fields  of  the  same  days  as  the  

training  data  set  were  used  over  the  Alpine  area  with  the  domain  reaching  from
44∘ - 50∘ latitude  and 8∘ - 17∘ longitude  in 0.25∘ steps.  This  resulted  in  37  x  25  

pixels.  

Physical  variables  describing  foehn,  which  are  also  stated  in  section  2.3  were  used.  

Further  information  including  their  abbreviations,  pressure  levels  and  number  of  

data  points  are  listed  in  table  3.5.  The  day  of  the  year  was  also  considered  to  

account  for  seasonality.  To  ensure  cyclic  behaviour,  the  cosine  of  the  day  of  year  

was  built.  Cross-alpine  pressure  gradients  were  used  as  they  are  the  strongest  

drivers  for  foehn  [15].  As  surface  potential  temperature  is  not  reliable  in  coarse  

models  due  to  the  flattened  topography  and  resulting  effects  like  cold  air  pools,  

the  potential  temperature  at 850 hPa was  chosen  as  a  tracer  for  foehn.  To  prevent  

unrealistic  values  when  the  pressure  level  occasionally  lies  below the  topography,  

the  surface  potential  temperature  was  used  below 1200m.  Both  variables  were  

taken  as  cross-alpine  gradient  using ±1.0∘ latitude  as  references  to  account  for  

model  peculiarities  in  the  lower  pressure  levels.  One  gradient  was  calculated  for  

every  pixel  in  longitude,  which  means,  for  every  main  ridge  pixel.  Wind  speed  and  

wind  direction  at 500 hPa were  used  on  every  available  pixel  by  flattening  the  two  

dimensional  fields  to  a  single  array.  Wind  resulting  from  foehn  is  having  a  strong  

component  perpendicular  to  the  ridge,  which  is  northward  and  southward  for  the  

Alps  in  the  domain  longitudes.  The 500 hPa geopotential  difference  between  every  

pixel  and  the  main  ridge  pixel  on  the  same  longitude  was  also  used.  Geopotential  

differences  typically  describe  wind  flow and  synoptic  weather  patterns  in  general.  

Because  foehn  replaces  cold  air  masses  in  the  valleys  with  a  warmed  and  dried  

air  mass,  relative  humidity  decreases  [15].  To  display  that,  the 850 hPa relative  

humidity  difference  compared  to  the  monthly  mean  for  every  pixel  above 1200m
was  used.
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To  use  the  same  pixels  for  every  model  (ERA5  and  the  three  EURO-CORDEX  

models),  a  maximum  topography  of  all  the  four  models  was  built  and  used  for  

filtering  the  valid  relative  humidity  pixels.  The  selection  of  variables  was  also  

constrained  by  their  availability  in  EURO-CORDEX  models.  That  is  why  the
700 hPa level,  which  would  have  been  more  suitable  for  wind  variables,  was  not  

considered.  

In  total,  this  yielded  a  feature  matrix  of  the  size  4018  days  x  3646  variables  for  

ERA5  during  the  training  period.  The  feature  matrices  of  the  whole  historic  

period  or  the  future  scenarios  in  EURO-CORDEX  models  have  the  same  amount  

of  variables  but  more  data  points.

Table  3.5.: Feature  matrix  input  variable  summary.  Variables,  which  physically  

describe  foehn  were  selected.  The  second  column  describes,  at  which  pressure  level  

the  variables  were  used.  Surface  potential  temperature  was  used  only  below 1200m.  

While  the  cross-alpine  pressure  and  potential  temperature  gradient  were  taken  once  

for  every  longitude,  the  other  variables  were  taken  on  every  valid  pixel.

Variable Pressure Description Number  of  data  pointslevel  [hPa]
𝑑oy [0...1] - Cosine  of  day  of  year 1

∆p [Pa] sfc Cross-alpine  pressure  gradient 37  (length  of  main  ridge)±1.0∘ latitude  from  main  ridge

∆𝜃850 [K] 850  (sfc) Cross-alpine  potential  temperature  gradient 37  (length  of  main  ridge)±1.0∘ latitude  from  main  ridge
w  s500 [m/s] 500 Total  wind  speed 925  (every  pixel)

w  𝑑500 [v/w  s] 500 Wind  direction  in  fraction  of  north 925  (every  pixel)wind  speed  component  to  total

∆𝑍500 [m2/s2] 500 Horizontal  geopotential  difference  to 925  (every  pixel)main  ridge  on  same  longitude

∆r  ℎ850 [%] 850 Relative  humidity 796
difference  to  monthly  mean (every  pixel  above 1200m)

32



3.5.  Preparation  of  the  XGBoost  Algorithm

With  the  training  data  generated  from  station  data  and  the  feature  matrix  cre-  

ated  from  synoptic  ERA5  weather  patterns  using  physically  relevant  variables,  an  

XGBoost  algorithm  was  used  to  link  the  training  data  with  synoptic  patterns.  

Two  algorithms  per  region  were  trained,  one  deciding  between  no  foehn  and  foehn  

and  one  distinguishing  localised  from  widespread  foehn.  Therefore,  in  total  eight  

XGBoost  algorithms  were  trained.  A  hyperparameter  grid  search  using  cross  val-  

idation  of  five  random  sets  of  the  feature  matrix  was  performed  to  achieve  the  

highest  accuracy.  Early  stopping  and  balanced  class  weightings  were  used.  The  

hyper  parameters  yielding  the  algorithms  with  the  best  accuracy  are  given  in  ap-  

pendix  A.2.

3.6.  WRF  Simulated  Fingerprints

For  the  WRF  simulated  foehn  cases,  the  settings  shown  in  table  3.6  were  used.  

Three  one-way  nested  domains  of  the  grid  size 3 km, 1 km and 300m were  used  

to  save  calculation  time  as  can  be  seen  in  fig.  3.3.  The  domain  with  the  finest  

resolution  covers  all  four  foehn  regions  and  was  regridded  bilinearly  to  the  desired  

output  grid  with  a  grid  size  of 250m after  simulation.  Runs  were  always  started  

at  the  beginning  of  the  first  day  to  ensure  a  proper  up-cycling  phase.  The  WRF  

simulations  were  conducted  by  Katharina  Perny  MSc.  

For  simulating  base  wind  field  fingerprints  during  foehn  events,  the  dates  visible  

in  table  3.7  were  chosen.  These  foehn  events  occurred  within  the  training  period  

and  appeared  in  the  results  of  the  training  data  set.  For  every  region  one  local  and  

one  widespread  foehn  was  simulated  to  cover  a  variety  of  physically  possible  foehn  

scenarios.  One  instantaneous  ground  wind  field  was  selected  as  base  fingerprint  

for  every  physically  possible  combination,  for  example  foehn  being  widespread  in  

Vorarlberg,  localised  in  Tiroler  Oberland  and  Tiroler  Unterland  and  not  occurring  

in  Osttirol.  Instantaneous  and  not  daily  mean  wind  fields  were  chosen  because  the  

required  calculation  time  to  generate  one  mean  field  for  every  possible  combina-  

tion  was  not  feasible  within  the  project’s  time  span.  By  simulating  selected  cases  

and  afterwards  using  different  time  steps  for  diverse  stages  of  foehn  build-up  with  

altering  affected  regions  and  intensities,  the  calculation  time  was  reduced  dramat-  

ically.  As  a  drawback,  a  conversion  from  instantaneous  to  daily  mean  had  to  be  

performed  afterwards,  which  is  described  in  the  next  section.  The  table  yielding  

information,  which  instantaneous  hour  for  which  combination  of  foehn  occurrence  

was  selected,  is  visible  in  appendix  A.1.
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Table  3.6.: WRF  settings  and  parameterization  schemes  used  to  run  the  foehn  

events.  [9]

Physical  parameterization Scheme
Shortwave/longwave  radiation Rapid  Radiative  Transfer  Model  for  GCM application  (RRTMG)  

Microphysics WRF  Single-Moment  6-Class  Microphysics  (WSM6)  

Planetary  Boundary  Layer  (PBL) Mellor-Yamada-Janjic  (MYJ)  

Land-Surface  Model  (LSM) Noah  

Cumulus None

Figure  3.3.: WRF  domains.  Three  one-way  nested  domains  with  a  pixel  size  of
3 km (D01), 1 km (D02)  and 300m (D03)  were  used.  The  finest  domain  covers  

all  four  foehn  regions.  The  colourbar  describes  the  terrain  height  of  the  model  in  

metres.
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Table  3.7.: Selected  dates  for  WRF  simulation.  Events,  which  also  were  detected  

within  the  training  period  using  OFC  were  chosen  and  selected  in  a  way,  that  every  

region  had  at  least  one  local  and  one  widespread  event.

Region Localised Widespread

Vorarlberg
2017-02-27  10:00 2017-03-03  07:00

- -
2017-02-28  23:00 2017-03-04  23:00

Tiroler  Oberland
2020-10-21  12:00 2017-12-10  22:00

- -
2020-10-21  17:00 2017-12-12  15:00

Tiroler  Unterland
2016-09-15  08:00 2020-10-02  00:00

- -
2016-09-16  14:00 2020-10-03  15:00

Osttirol
2018-11-26  23:00 2017-10-28  07:00

- -
2018-11-28  05:00 207-10-30  16:00
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3.7.  Fingerprint  Scaling

After  generating  the  base  fingerprints  using  selected  WRF  simulated  foehn  ground  

wind  fields,  scaling  was  applied  for  covering  a  variety  of  foehn  events  with  indi-  

vidual  intensities.  First,  the  hourly  training  data  was  compared  to  the  full  hours  

of  the  WRF  simulations.  The  hours  on  which  a  region  was  affected  by  foehn  ac-  

cording  to  the  training  data  were  used  to  generate  a  pixelwise  linear  regression  

between  the 500 hPa WRF  wind  speed w500,FP and  the  ground  wind  speed wg,FP:

wg,FP,reg = k · w500,FP + 𝑑  , (3.2)  

where  the  slope k was  calculated  and 𝑑 =  0 was  set  as  condition  for  the  intercept.  

Afterwards  the  relative  root  mean  square  error  (relative  RMSE)

𝜀 =

√︃∑︁
1− k · w500,FP

wg,FP

(3.3)  

was  calculated  for  very  pixel.  Fig.  3.4  shows  the  results  for  the  regression.  In  

the  top  plot,  the  slope k is  displayed,  showing  a  trend  of  steeper  slopes  in  higher  

elevations.  The  relative  RMSE 𝜀 is  shown  in  the  middle,  following  the  trend  of
k.  An  analysis  of  how linear  dependent  the  two  wind  speeds  are  to  each  other  is  

given  by  the  Pearson  correlation  coefficient  in  the  bottom  plot  [49].  The  closer  to  

1  (-1),  the  higher  is  the  positive  (negative)  linear  correlation  of  two  variables.  

To  convert  the  instantaneous  WRF  simulated  fingerprint  into  daily  wind  fields,  a  

conversion  factor 𝑓 was  calculated.  For  every  fingerprint  the  relation  between  the  

instantaneous  wind  speed  of  the  corresponding  pixel  and  the  daily  mean  of  every  

active  TAWES  station  was  built.  Only  values  smaller  than  two  were  considered  to  

assure,  that  model  and  station  were  in  the  same  foehn  regime.  The  calculated  fac-  

tors  per  fingerprint  are  displayed  in  fig.  3.5.  The  individual  factors  per  fingerprint  

were  averaged  to  account  for  different  foehn  event  lengths,  yielding

𝑓 =  0.570± 0.127 , (3.4)  

as  conversion  factor  between  instantaneous  and  daily  wind  fields.
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Figure  3.4.: Regression  between 500 hPa wind  speed  and  ground  wind  speed  of  the  

fingerprints  during  foehn  hours.  Regression  was  performed  pixelwise  with  no  in-  

tercept,  yielding  the  dimensionless  slope k (top),  the  dimensionless  relative  RMSE
𝜀 (middle)  and  the  Pearson  correlation  coefficient r (bottom).
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Figure  3.5.: Instantaneous  WRF  simulated  windspeed  to  daily  station  mean  wind  

speed  relations  for  every  fingerprint.  The  horizontal  axis  describes  the  data  points  

of  active  stations  during  the  foehn  event.  The  vertical  axis  describe  the  fraction  of  

instantaneous  WRF  simulated  windspeed  to  daily  station  mean  wind  speed  (limited  

to  2).  Mean  of  individual  fingerprints  are  visible  in  the  subplot  title  and  indicated  

by  black  lines.  To  account  for  different  foehn  event  lengths,  the  factor  was  averaged  

across  all  fingerprints  to  the  value  visible  in  the  header.
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The  slope k was  used  together  with  the  relation 𝜅 between  the 500 hPa model  

and  fingerprint  wind  speed  to  scale  the  fingerprint.  The  relative  RMSE 𝜀 was  

used  to  put  a  statistical  noise  on  the  fingerprint  by  generating  a  random  number
r ∈ [−1, 1].  The  instant  to  daily  factor 𝑓 was  used  to  convert  the  instantaneous  

fingerprint  into  daily  wind  speed  replacements.  Combined  this  reads  as  follows:

wg = wg,FP · 𝑓 · (1  + r · 𝜀+ 𝜅 · k) , (3.5)  

where  a  description  the  variables  is  given  in  table  3.8.  Hereby wg,FP and wg were  

limited  by  a  cutoff at 50m/s. 𝜅 was  restricted  to  3  and  the  product 𝜅 · k to −1 in  

the  negative  range  to  prevent  negative  wind  speed  values.

Table  3.8.: Scaling  variables  used  to  convert  the  WRF-simulated  fingerprint  into  a  

daily  wind  field  during  foehn  days.  Variables  were  applied  either  for  every  pixel  of  

the  project  domain  or  as  one  value  for  the  whole  domain.

Variable Description Location
wg [m/s] Resulting  ground  wind  speed pixelwise

wg,FP [m/s] Initial  WRF  simulated  ground  wind  speed  of  the  fingerprint pixelwise

r ∈ [−1, 1] [-] A  random,  gaussian  distributed  number domain-wide
(𝜇 =  0,  𝜎 = 1

3
)  determined  once  per  fingerprint

𝜀 [-] Relative  RMSE pixelwise

𝜅 =  max( w500,m

w500,FO
, 3) [-]

Fraction  between 500 hPa windspeed  of  the  models
pixelwise(ERA5,  EURO-CORDEX,  daily  mean)  and  the

WRF-fingerprint  (instantaneous),  maximum  of  3

k [-] Slope  of  linear  regression y = k · x+ 𝑑 with  intercept 𝑑 =  0 pixelwisebetween  WRF 500 hPa and  ground  wind  speed

𝑓 =  0.570 [-] Factor  describing  relation  between  instantaneous domain-widefingerprint  wind  speed  and  daily  station  mean

Similar  patterns  for  foehn  with  different  absolute  wind  speeds  were  generated  with  

this  scaling  procedure.
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3.8.  Applying  the  XGBoost  Algorithm  and  

Fingerprints

The  XGBoost  algorithms  trained  with  eleven  years  of  ERA5  variables  and  data  

generated  from  OFC were  afterwards  applied  to  the  full  time  range  of  ERA5  and  

the  three  EURO-CORDEX  models.  For  every  detected  foehn  day,  a  fingerprint  

corresponding  to  the  affected  regions  was  selected,  scaled  and  used  as  replacement  

for  existing  station-interpolated  wind  fields.  For  determining  if  a  pixel  was  affected  

by  a  foehn  event,  a  wind  speed  condition  was  applied,  where  the  OFC threshold  

for  valley  winds  was  multiplied  by  the  instant-to-daily  factor 𝑓 :

cond  =  3m/s · 𝑓 =  1.71m/s . (3.6)  

The  station-interpolated  wind  field  containing  replaced  foehn  patterns  and  the  

affected  pixels  per  foehn  day  marked  the  desired  outcome  of  the  project  [8].
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4.  Results  and  Discussion

4.1.  Training  Data  Set  Results

By  applying  OFC to  hourly  TAWES  stations  and  afterwards  taking  the  strongest  

event  per  day,  a  daily  foehn  training  data  set  was  created.  The  results  of  the  

training  data  set  are  given  in  table  4.1.  The  seasonality  of  the  occurring  foehn  days  

for  the  eleven  training  years  is  visible  in  fig.  4.1.  In  midsummer  and  midwinter,  

where  air  flows  are  predominantly  static,  less  foehn  is  observed  while  in  spring  

foehn  occurrences  are  peaking  in  all  four  regions.  Osttirol  has  a  less  pronounced  

seasonality  trend  than  the  other,  south  foehn  affected  regions.  

The  regions  have  a  foehn  occurrence  of  11  -  18  %.  Tiroler  Unterland  yields  the  

highest  foehn  occurrence  as  well  as  the  highest  percentage  of  widespread  events.  

One  explanation  could  be,  that  the  Wipp  Valley  displays  an  ideal  valley  for  foehn  

events,  with  pronounced  foehn  occurrences,  which  are  centre  of  several  studies  [19,  

20,  21].  The  results  in  Tiroler  Unterland  are  in  good  agreement  with  [5].  The  

rest  of  the  percentages  were  validated  by  foehn  experts  from  Innsbruck,  Austria  

[50].  Stations  in  close  vicinity  of  the  Alps’  main  ridge  responded  most  frequent,  

which  was  expected  because  foehn  has  the  highest  probability  of  descending  in  

these  locations.

Table  4.1.: Foehn  occurrence  in  the  training  data  set.  The  results  are  given  in  

percent  of  one  year’s  days  (an  average  of  365.25)  as  well  as  average  days  per  year  

and  are  divided  between  localised  and  widespread  foehn.  These  two  categories  differ  

in  the  number  of  affected  stations  and  wind  speed  at  the  mountain  station.

Vorarlberg Tiroler  Oberland Tiroler  Unterland Osttirol
localised  foehn

[%] 10.6 14.2 13.4 13.1  

[avg.  days  per  year] 38.7 51.9 49.1 48.0
widespread  foehn

[%] 1.2 1.0 4.5 1.0  

[avg.  days  per  year] 4.4 3.5 16.6 3.7
sum
[%] 11.8 15.2 17.9 14.1  

[avg.  days  per  year] 43.1 55.4 65.7 51.7
most  responding  station Brand Galtuer Steinach Kals
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Figure  4.1.: Seasonality  of  foehn  days  in  the  training  data  set.  Regions  are  colour-  

coded  and  visible  in  the  legend.  The  horizontal  axis  describes  the  months  of  the  

year,  the  vertical  axis  the  accumulated  average  foehn  days  on  monthly  basis.

4.2.  XGBoost  Algorithm  Performance

In  total  eight  XGBoost  algorithms  were  trained,  two  for  every  region,  one  clas-  

sifying  between  foehn  and  no  foehn  and  one  deciding  if  the  event  is  localised  or  

widespread.  The  hyperparameters  yielding  the  best  predictions  per  algorithm  are  

displayed  in  appendix  A.2.  The  training  accuracies  of  the  algorithms  are  displayed  

in  table  4.2  and  table  4.3.  

For  deciding  between  foehn  and  no  foehn,  the  accuracy  exceeds  95  %  in  all  re-  

gions.  Besides  Osttirol,  where  the  false  alarms  outweigh  the  missed  events  by  nine  

days,  all  other  false  alarms  are  within  two  days  compared  to  the  missed  events.  

This  indicates  that  the  synoptic  patterns  for  north  foehn  Osttirol  are  difficult  to  

distinguish  from  other  weather  pattern.  

When  classifying,  if  an  event  is  localised  or  widespread,  the  accuracies  are  also  

above  95  %  for  Vorarlberg,  Tiroler  Oberland  and  Osttirol.  The  algorithm  in  Tiroler  

Unterland  fails  to  be  as  accurate  and  misses  37.7  %  of  the  widespread  events.  This  

indicates  that  the  events  in  Tiroler  Oberland  are  harder  to  distinguish  from  one  

another,  meaning  that  either  the  synoptic  patterns  are  similar  or  the  training  data  

thresholds  in  Tiroler  Unterland  were  set  insufficiently  restrictive.
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Table  4.2.: Accuracy  of  the  XGBoost  Algorithms  deciding  between  foehn  or  no  foehn  

occurrence.  The  values  in  percent  and  average  days  per  year  are  given  in  relation  

to  the  total  members  of  the  respective  class.  The  positive  class  hereby  indicates  

foehn,  the  negative  no  foehn.

YES/NO Vorarlberg Tiroler  Oberland Tiroler  Unterland Osttirol
Accuracy

[%] 97.7 97.6 98.3 95.7  

[avg.  days  per  year] 356.8/365.25 356.5/365.25 359.0/365.25 349.5/365.25
True  Positives

[%] 90.9 92.0 96.7 93.5  

[avg.  days  per  year] 39.2/43.1 51.00/55.4 63.5/65.7 48.4/51.7
True  Negatives

[%] 98.6 98.6 98.7 96.1  

[avg.  days  per  year] 317.5/322.2 305.4/309.8 295.6/299.5 301.2/313.5
Missed  Events

[%] 9.1 8.0 3.3 6.5  

[avg.  days  per  year] 3.9/43.1 4.4/55.4 2.2/65.7 3.4/51.7
False  Alarms

[%] 1.4 1.4 1.3 3.9  

[avg.  days  per  year] 4.6/322.2 4.4/309.8 3.9/299.5 12.4/313.5

Table  4.3.: Accuracy  of  the  XGBoost  Algorithms  deciding  between  localised  and  

widespread  foehn.  The  values  in  percent  and  average  days  per  year  are  given  in  

relation  to  the  total  members  of  the  respective  class.  The  positive  class  hereby  

indicates  widespread,  the  negative  localised  foehn.

LOCALISED/WIDESPREAD Vorarlberg Tiroler  Oberland Tiroler  Unterland Osttirol
Accuracy

[%] 96.4 99.0 84.1 96.8  

[avg.  days  per  year] 352.1/365.25 361.6/365.25 307.2/365.25 353.6/365.25
True  Positives

[%] 95.8 87.2 62.3 92.7  

[avg.  days  per  year] 4.2/4.4 3.1/3.5 10.4/16.6 3.4/3.7
True  Negatives

[%] 96.5 99.8 91.5 97.2  

[avg.  days  per  year] 37.4/38.7 51.8/51.9 44.9/49.1 46.6/48.0
Missed  Events

[%] 4.2 12.8 37.7 7.3  

[avg.  days  per  year] 0.2/4.4 0.4/3.5 6.3/16.6 0.3/3.7
False  Alarms

[%] 3.5 0.2 8.5 2.8  

[avg.  days  per  year] 1.4/38.7 0.1/51.9 4.2/49.1 1.4/48.00
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To  assess  if  the  algorithms  learned  to  take  into  account  physical  meaningful  vari-  

ables  during  training,  the  importance  of  a  feature  for  a  classification  was  observed.  

Fig.  4.2  and  4.3  show two  examples  of  the  top  20  important  features  for  Tiroler  

Unterland  for  classifying  between  foehn  and  no  foehn  and  between  localised  and  

widespread  foehn.  As  the  relative  feature  importance  sums  up  to  one,  values  close  

to  0.1  impose  a  significant  part  of  the  decision.  In  the  bar  graphs,  it  can  be  seen  

that  the  importance  rapidly  decreases  after  the  first  several  features.  In  table  4.4  

the  most  important  features  for  every  XGBoost  algorithm  are  listed.

Table  4.4.: Most  important  XGBoost  features  of  every  algorithm.  Loc  and  wide  are  

short  forms  of  localised  and  widespread.  Features  are  given  in  abbreviations  visible  

in  table  3.5  and  are  attributed  to  a  location  using  the  pressure  level  (plev),  latitude  

(lat)  and  longitude  (lon).  Relative  importance  sums  up  to  one  for  all  features.

Algorithm Feature  [var,  plev,lat,lon] Relative  Importance  [-]
Vorarlberg  yes/no ∆p,  sfc  ,  47.00,  12.75 0.24  

Vorarlberg  loc/wide ∆p,  sfc  ,  47.00,  13.75 0.10  

Tiroler  Oberland  yes/no ∆p,  sfc,  47.00,  13.75 0.11  

Tiroler  Oberland  loc/wide w  𝑑,  500,  48.00,  11.75 0.22  

Tiroler  Unterland  yes/no ∆p,  sfc,  47.00,  11.75 0.06  

Tiroler  Unterland  loc/wide ∆p,  sfc,  47.25,  14.00 0.08  

Osttirol  yes/no w  𝑑,  500,  47.75,  8.00 0.07  

Osttirol  loc/wide ∆𝜃,  850,  46.50,  8.5 0.14

The  most  important  features  either  are  cross-alpine  pressure  gradients,  potential  

temperature  gradients  or  wind  directions.  It  is  reasonable,  that  cross-alpine  pres-  

sure  gradients  would  be  the  most  important  features  in  most  cases  as  they  are  

drivers  of  foehn.  Noteable  is  the  dislocation  of  the  features  -  all  most  important  

features  except  in  the  algorithm  of  Tiroler  Unterland  distinguishing  between  no  

foehn  and  foehn  are  not  located  in  the  corresponding  regions.  The  cross-alpine  

gradient  in  the  area  of  Salzburg  and  Carinthia  gives  the  most  prominent  informa-  

tion  about  foehn  in  Vorarlberg,  while  the  wind  direction  and  potential  temperature  

gradient  in  Switzerland  indicates  north  foehn  in  Osttirol.
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Figure  4.2.: Feature  importance  of  Tiroler  Unterland’s  XGBoost  algorithm  for  clas-  

sifying  between  foehn  and  no  foehn.  The  relative  importance  visible  in  the  horizon-  

tal  axis  sums  up  to  one.  Variables  are  stated  in  the  vertical  axis  with  the  variable  

name,  followed  by  the  pressure  level  (plev),  latitude  (lat)  and  longitude  (lon).  The  

variables  are  either  describing  a  cross-alpine  gradient  in  the  case  of ∆p and ∆𝜃850
or  a  value  at  a  single  latitude-longitude  pixel.  For  a  variable  description  refer  to  

table  3.5.

Figure  4.3.: Feature  importance  of  Tiroler  Unterland’s  XGBoost  algorithm  for  clas-  

sifying  between  localised  and  widespread  foehn.  The  relative  importance  visible  in  

the  horizontal  axis  sums  up  to  one.  Variables  are  stated  in  the  vertical  axis  with  

the  variable  name,  followed  by  the  pressure  level  (plev),  latitude  (lat)  and  longi-  

tude  (lon).  The  variables  are  either  describing  a  cross-alpine  gradient  in  the  case  

of ∆p and ∆𝜃850 or  a  value  at  a  single  latitude-longitude  pixel.  For  a  variable  

description  refer  to  table  3.5.
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4.3.  Application  on  Climate  Models

The  algorithms  were  applied  on  the  historic  period  (1991-2020)  of  the  ERA5  reanal-  

ysis  and  the  three  EURO-CORDEX  climate  models  after  analysing  the  accuracy  

during  the  training  period.  The  climate  models’  ability  to  produce  similar  synoptic  

patterns  representing  possible  foehn  days  can  be  assessed  by  comparing  the  foehn  

occurrence  and  distribution  of  localised  and  widespread  events  in  table  4.5  as  well  

as  foehn  seasonality  in  the  historic  period  in  fig.  4.4.  

The  ERA5  reanalysis  shows  good  agreement  with  the  training  data  set  in  the  

south  foehn  regions.  While  the  EURO-CORDEX  models  tend  to  underestimate  

foehn  days  in  general  by  up  to  two  days  per  month  yielding  smaller  occurrences  

by  up  to  2.5  %.  In  the  three  south  foehn  regions,  the  foehn  occurrences  are  

therefore  more  alike  compared  to  the  training  data  set  than  for  the  north  foehn  

region  Osttirol.  The  seasonal  trend  is  also  conserved  in  all  south  foehn  regions.  

North  foehn  in  Osttirol  does  not  have  a  pronounced  seasonality  in  the  climate  

models  as  well.  North  foehn  occurs  more  often  during  summer  in  the  MPI  models  

indicating,  that  the  XGBoost  algorithms  have  difficulty  to  separate  north  foehn  

from  other  phenomena  like  Atlantic  storms  in  these  models.  The  missing  seasonal  

trend  for  Osttirol  is  an  indicator,  that  south  foehn  as  a  pre-frontal  phenomenon  

is  better  recognisable  in  synoptic  pattern  than  the  post-frontal  north  foehn  in  the  

EURO-CORDEX  models.  The  less  pronounced  seasonality  of  ERA5  and  EURO-  

CORDEX  models  for  north  foehn  in  Osttirol  therefore  suggest,  that  the  models  

fail  to  predict  the  correct  trace  of  low pressure  centres.  Distinguishing  between  

localised  and  widespread  foehn  is  yielding  satisfying  results,  only  exceeding  1  %  

difference  for  Tiroler  Unterland.
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Figure  4.4.: Comparison  of  foehn  seasonality  between  models.  Regions  are  colour-  

coded  and  visible  in  the  legend.  The  horizontal  axis  describes  the  months  of  the  

year,  the  vertical  axis  the  accumulated  average  foehn  days  on  monthly  basis.  Model  

names  are  stated  in  the  title  of  the  subplots.  While  the  training  period  is  2011-2021,  

model  seasonality  is  displayed  over  the  whole  historic  reference  period  (1990-2020)  

for  more  statistic  relevance.
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Table  4.5.: Comparison  of  foehn  occurrence  in  the  models.  The  results  are  separated  

for  the  specific  regions  and  are  given  in  percent  of  one  year’s  days  (an  average  

of  365.25)  as  well  as  average  days  per  year.  Detected  occurrences  are  divided  

between  localised  and  widespread  foehn.  While  the  training  data  occurrences  are  

given  within  the  training  period  (2011-2021,  first  column),  model  occurrences  are  

displayed  over  the  whole  historic  reference  period  (1990-2020)  for  more  statistic  

relevance,  visible  in  column  two  to  five.

Training  Data ERA5 MPI  rcp45 MPI  rcp85 ICHEC  rcp85
(2011-2021) (1990-2020) (1990-2020) (1990-2020) (1990-2020)

Vorarlberg
localised  foehn

[%] 10.6 10.1 9.2 9.1 9.1  

[avg.  days  per  year] 38.7 36.8 33.7 33.2 33.1
widespread  foehn

[%] 1.2 1.4 2.0 2.1 1.1  

[avg.  days  per  year] 4.4 5.0 7.2 7.6 4.2
sum
[%] 11.8 11.5 11.2 11.2 10.2  

[avg.  days  per  year] 43.1 41.8 40.9 40.8 37.3
Tiroler  Oberland

localised  foehn
[%] 14.2 14.1 12.0 11.9 12.4  

[avg.  days  per  year] 51.9 51.5 43.8 43.4 45.5
widespread  foehn

[%] 1.0 0.8 0.7 0.9 1.0  

[avg.  days  per  year] 3.5 2.8 2.7 3.3 3.5
sum
[%] 15.2 14.9 12.7 12.8 13.4  

[avg.  days  per  year] 55.4 54.3 46.5 46.7 49.0
Tiroler  Unterland

localised  foehn
[%] 13.4 14.8 13.4 13.7 15.8  

[avg.  days  per  year] 49.1 54.1 49.1 50.2 57.8
widespread  foehn

[%] 4.5 3.6 3.2 3.3 2.0  

[avg.  days  per  year] 16.6 13.2 11.5 12.0 7.2
sum
[%] 17.9 18.4 16.6 17.0 17.8  

[avg.  days  per  year] 65.7 67.3 60.6 62.2 65.0
Osttirol

localised  foehn
[%] 13.1 15.6 14.5 13.7 13.1  

[avg.  days  per  year] 48.0 57.0 53.1 50.0 47.7
widespread  foehn

[%] 1.0 1.3 1.7 1.5 0.9  

[avg.  days  per  year] 3.7 4.6 6.1 5.4 3.4
sum
[%] 14.1 16.9 16.2 15.2 14.0  

[avg.  days  per  year] 51.7 61.6 59.2 55.4 51.1
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4.4.  Replacement  Wind  Field  Analysis

Fig.  4.6  shows  the  scaling  process  for  the  3rd of  March  2017,  the  date  also  shown  

in  chapter  1.  The  original  fingerprint  occurred  one  day  afterwards,  visible  in  the  

top  plot.  By  applying  the  scaling  process  from  section  3.7  to  the  instantaneous  

WRF  fingerprint,  the  replacement  wind  field  in  the  middle  with  the  pixels  on  the  

bottom  satisfying  the  wind  speed  condition  in  equation  3.6  was  obtained.  The  

majority  of  pixels  in  the  south  foehn  regions  are  affected  by  foehn.  While  not  the  

exact  same  wind  speed  pattern  as  in  fig.  1.3  is  generated,  a  similar  wind  field  

with  less  elevation  dependency  is  produced.  Fig.  4.5  shows  the  difference  of  the  

scaled  replacement  and  the  WRF  simulated  mean  wind  field.  Especially  the  wind  

speeds  on  mountains  are  not  coinciding  with  each  other.  High  wind  speeds  can  be  

observed  on  different  mountains.  Valley  wind  speeds  and  the  total  spatial  mean  

are  similar  to  each  other.  Patterns  of  a  single  foehn  event  cannot  be  reproduced.

Figure  4.5.: Difference  of  WRF  simulated  mean  wind  field  and  scaled  replacements  

on  the  3rd of  March  2017.  The  colourbar  describes  differences  (mean  wind  minus  

scaled  replacement)  of  wind  speed  in m/s.  Several  locations  are  displayed  with  black  

crosses  and  their  name  for  better  orientation.  The  rivers  Inn  and  Sill  are  drawn  

in  grey  lines.  Mean,  maximum  and  minimum  values  are  calculated  over  the  whole  

area.
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Figure  4.6.: Scaling  process  for  the  foehn  event  on  the  3rd of  March  2017.  The  

original  fingerprint  from  the  4th of  March  2017  (top)  is  scaled  with  the  formula  from  

section  3.7,  to  obtain  the  daily  wind  field  replacement  (middle).  Both  colourbars  

describe  the  same  range  of  wind  speed  values  in m/s.  The  pixels  marked  in  black  

(bottom)  are  affected  by  foehn  by  satisfying  the  condition  of  having  wind  speeds  

above 1.71m/s.

Fig.  4.7  shows  the  wind  climatology  comparison  during  south  foehn  days  of  the  

period  where  INCA  is  available  (2003-2020).  The  first  column  describes  the  abso-  

lute  wind  speed  climatologies  of  the  scaled  replacements,  the  wind  field  generated  

from  interpolated  stations  and  ZAMG’s  INCA.  The  second  column  displays  the  

difference  of  individual  climatologies.  More  washed  out,  less  elevation  dependent  

patterns  with  more  pronounced  wind  speeds  in  typical  foehn  valleys  are  observed  

for  the  replacements.  INCA  wind  speed  on  mountains  exceeds  the  wind  speeds  of  

the  other  climatologies  by  several m/s.
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Figure  4.7.: Spatial  comparison  of  climatologies  of  south  foehn  days  within  the  

INCA  period  (2003-2020).  The  first  column  shows  absolute  values  of  wind  speed  

climatologies  in m/s while  the  second  shows  the  difference  of  the  individual  clima-  

tologies  in m/s.  The  thin  grey  lines  in  the  first  column  show,  where  the  wind  speed  

condition  for  counting  as  foehn  affected  is  satisfied.  Several  locations  are  displayed  

with  black  crosses  and  their  name  for  better  orientation.  The  rivers  Inn  and  Sill  

are  drawn  in  grey  lines.  Mean,  maximum  and  minimum  values  are  calculated  over  

the  whole  area.
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Different  behaviour  on  slopes  is  visible  when  analysing  wind  speeds  on  slopes  with  

an  inclination  of  over 8∘ during  south  foehn  at  affected  pixels  (fig.  4.8  and  4.9)  

and  at  foehn  free  pixels  (fig.  4.10  and  4.11).  As  the  Alps  are  almost  horizontally  

going  from  west  to  east  in  Western  Austria,  slopes  with  aspects  towards  the  north  

are  locations,  where  foehn  typically  penetrates  the  valley.  Higher  wind  speeds  are  

observed  on  foehn  affected  pixels  during  south  foehn  for  the  scaled  WRF  replace-  

ments  while  the  wind  field  generated  out  of  interpolated  stations  and  in  INCA  

have  similar  magnitudes.  Wind  speeds  are  also  higher  on  bulging  slopes.  Foehn  

free  pixels  show no  distinguished  direction  in  any  of  the  three  wind  fields.  Abso-  

lute  values  of  wind  speeds  on  foehn  free  pixels  are  the  lowest  for  the  scaled  WRF  

replacements.  Therefore,  a  redistribution  of  wind  speed  occurs  during  scaling.

Figure  4.8.: Wind  speed  climatologies  at  affected  pixels  during  south  foehn  days,  

aspect  binned  wind  roses  in m/s.  The  compass  directions  describe  where  the  aspect  

of  the  slopes  point.  One  aspect  covers  a  range  of 45∘.  Matching  colours  are  used  

for  matching  integer  ranges.  A  total  area  of  38.3  %  is  affected  by  south  foehn  when  

considering  slopes  with  inclination  above 8∘.
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Figure  4.9.: Wind  speed  climatologies  at  affected  pixels  during  south  foehn  days,  

aspect  binned  boxplots.  The  compass  directions  on  the  horizontal  axis  describe  

where  the  aspect  of  the  slopes  point.  One  aspect  covers  a  range  of 45∘.  The  vertical  

axis  describes  wind  speeds  in m/s.  The  whiskers  cover  the  5th and  95th percentile.  

The  maxima  are  displayed  as  numbers  above.  A  total  area  of  38.3  %  is  affected  by  

south  foehn  when  considering  slopes  with  inclination  above 8∘.
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Figure  4.10.: Wind  speed  climatologies  at  foehn  free  pixels  during  south  foehn  days,  

aspect  binned  wind  roses  in m/s.  The  compass  directions  describe  where  the  aspect  

of  the  slopes  point.  One  aspect  covers  a  range  of 45∘.  Matching  colours  are  used  

for  matching  integer  ranges.  A  total  area  of  61.7  %  is  not  affected  by  south  foehn  

when  considering  slopes  with  inclination  above 8∘.
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Figure  4.11.: Wind  speed  climatologies  at  foehn  free  pixels  during  south  foehn  days,  

aspect  binned  boxplots.  The  compass  directions  on  the  horizontal  axis  describe  

where  the  aspect  of  the  slopes  point.  One  aspect  covers  a  range  of 45∘.  The  vertical  

axis  describes  wind  speeds  in m/s.  The  whiskers  cover  the  5th and  95th percentile.  

The  maxima  are  displayed  as  numbers  above.  A  total  area  of  61.7  %  is  not  affected  

by  south  foehn  when  considering  slopes  with  inclination  above 8∘.

The  wind  speeds  at  affected  pixels  (fig.  4.12)  and  at  foehn  free  pixels  (fig.  4.13)  

are  observed  binned  by  elevation  to  analyse  if  foehn  reaches  the  valley  during  

south  foehn  days.  Clear  elevation  dependencies  can  be  detected  for  the  wind  fields  

generated  from  interpolated  stations  and  INCA.  On  affected  pixels  higher  wind  

speeds  are  observed  in  the  scaled  WRF  replacements  for  all  elevations,  with  the  

highest  difference  in  the  valley  elevations  compared  to  the  other  wind  fields.  It  can  

be  concluded,  that  foehn  reaches  the  valleys  with  higher  wind  speeds  more  often  

in  replacement  climatologies,  although  individual  events  differ  from  reality.  On  

foehn  free  pixels  a  similar  elevation  dependency  compared  to  the  other  wind  fields  

is  visible.  This  is  the  behaviour  other  experts  desired  at  the  start  of  the  project  

[8].  The  same  analysis  for  north  foehn  days  can  be  found  in  appendix  A.3.
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Figure  4.12.: Wind  speed  climatologies  at  affected  pixels  during  south  foehn  days,  

elevation  binned  boxplots.  The  horizontal  axis  describes  elevation  bins  in m.  The  

vertical  axis  describes  wind  speeds  in m/s.  The  whiskers  cover  the  5th and  95th

percentile.  The  maxima  are  displayed  as  numbers  above.  A  total  area  of  38.3  %  is  

affected  by  south  foehn  when  considering  slopes  with  inclination  above 8∘.

56



Figure  4.13.: Wind  speed  climatologies  at  foehn  free  pixels  during  south  foehn  days,  

elevation  binned  boxplots.  The  horizontal  axis  describes  elevation  bins  in m.  The  

vertical  axis  describes  wind  speeds  in m/s.  The  whiskers  cover  the  5th and  95th

percentile.  The  maxima  are  displayed  as  numbers  above.  A  total  area  of  61.7  %  is  

not  affected  by  south  foehn  when  considering  slopes  with  inclination  above 8∘.
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4.5.  Development  of  Foehn  Occurrence  and  

Affected  Pixels  in  Climate  Models

The  development  of  foehn  occurrence  in  the  MPI  rcp85  model  is  analysed  here,  

while  the  other  two  can  be  found  in  appendix  A.4  and  A.5.  For  more  statistical  

relevance,  more  models  of  the  same  RCP scenario  have  to  be  analysed  and  set  in  

relation  to  each  other  as  described  in  chapter  5.  In  fig.  4.14  the  development  of  

foehn  occurrence  until  2100  for  the  MPI  rcp85  climate  model  is  visible.  A  rolling  

mean  of  30  years  is  applied  to  smooth  the  curves.  In  this  model  a  small  negative  

trend  in  foehn  occurrence  is  detectable  towards  the  end  of  the  century  for  all  

regions  except  Vorarlberg.  The  proportion  of  widespread  events  is  expected  to  be  

higher  except  in  Osttirol,  where  the  trend  is  the  opposite.

Figure  4.14.: MPI  rcp85  foehn  occurrence  development  until  2086.  The  horizontal  

axis  describes  the  years,  while  the  vertical  axis  states  average  foehn  days  per  year.  

The  regions  are  colour-coded  and  visible  in  the  legend.  A  rolling  mean  of  30  years  

is  applied  to  smooth  the  curve.  Because  of  that  the  last  available  year  is  2086  as  

the  climate  models  reach  until  2100.

The  seasonality  of  the  MPI  rcp85  scenario  visible  in  fig.  4.15  shows  an  increase  

in  winter  for  the  end  of  the  century  (2071-2100)  in  south  foehn  regions  except  

Tiroler  Oberland.  Summer  months  tend  to  have  less  foehn  than  in  the  historic  

period  indicating  more  stable  weather  patterns.  Especially  in  Vorarlberg  higher  

amplitudes  in  both  directions  occur  by  the  end  of  the  century.  No  clear  trend  for  

Osttirol  is  visible.
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Figure  4.15.: MPI  rcp85  foehn  seasonality  development  until  2100.  Compared  are  

the  historic  period  (1991-2020)  and  the  end  of  the  century  (2071-2100)  of  the  

specific  model.  Regions  are  colour-coded  and  visible  in  the  legend.  The  horizontal  

axis  describes  the  months  of  the  year,  the  vertical  axis  the  accumulated  average  

foehn  days  on  monthly  basis.

In  fig.  4.16  the  average  yearly  foehn  days  per  pixel  are  displayed.  The  difference  in  

foehn  occurrence  per  region  is  clearly  visible.  Especially  the  split  of  Tiroler  Ober-  

land  and  Tiroler  Unterland  produces  a  pronounced  cut  between  the  two  regions.  

As  this  artefact  is  not  realistic,  foehn  days  on  the  border  of  the  regions  have  to  

be  treated  with  caution.  The  pixels  in  Osttirol  show a  similar  number  as  the  ones  

in  Tiroler  Unterland.  This  is  not  observed  in  reality  and  can  be  attributed  to  the  

following  reasons:

• The  worse  performance  of  the  XGBoost  algorithms  over  Osttirol  predict  

higher  foehn  occurrence  compared  to  the  training  data  set.

• Osttirol  is  smaller  compared  to  the  other  regions  and  also  more  elevated.  

Foehn  occurrence  results  in  an  higher  likeliness  for  an  individual  pixel  to  be  

affected,  resulting  in  higher  numbers.

• The  fingerprints  in  Osttirol  tend  to  produce  higher  wind  speeds,  increasing  

the  number  of  affected  pixels.
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• Warm  air  typically  penetrates  cold  valley  air  pools  for  south  foehn.  The  

penetration  requires  a  certain  amount  of  kinetic  energy.  In  consequence,  not  

every  wind  blowing  on  the  crest  will  be  classified  as  foehn  in  the  valleys  be-  

cause  it  does  not  advect  into  it.  For  north  foehn  wind  points  in  the  direction  

of  the  temperature  gradient.  The  temperature  between  foehn  air  masses  and  

the  cold  air  in  the  pools  is  smaller  compared  to  north  foehn,  causing  north  

foehn  to  advect  into  valleys  more  frequently.

Figure  4.16.: Average  yearly  foehn  days  per  pixel  in  the  historic  ERA5  period.  The  

colourbar  describes  how  often  a  pixel  is  affected  by  foehn  on  yearly  average  in  the  

historic  period  (1991-2020).  Mean,  maximum  and  minimum  values  are  calculated  

over  the  whole  area.

The  historic  period  in  fig.  4.16  does  not  coincide  with  the  climate  models  as  they  

have  different  values  within  this  period  and  therefore,  fig.  4.16  is  only  valid  for  

ERA5,  which  is  closest  to  reality  due  to  its  reanalysis  character.  The  differences  in  

foehn  patterns  over  time  is  distinguished  by  comparing  the  climate  models’  affected  

pixels  in  the  historic  period  to  the  mid  century  and  the  end  of  the  century.  The  

development  of  affected  foehn  pixels  until  2100  is  visible  for  the  MPI  rcp85  model  

in  fig.  4.17.  The  development  for  other  models  are  again  visible  in  appendix  A.4  

and  A.5.  Over  the  years  general  foehn  occurrence  is  decreasing  while  widespread  

events  tend  to  increase,  indicated  by  higher  occurrences  in  the  Alps’  outliers  further  

away  from  the  main  ridge  towards  the  end  of  the  century.  The  opposite  trend  is  

visible  in  Osttirol  confirming  the  results  in  fig.  4.14.
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Figure  4.17.: MPI  rcp85  temporal  evolution  of  pixels  affected  by  foehn.  The  top  

plot  shows  the  absolute  average  values  of  foehn  days  per  year  at  a  pixel  in  the  his-  

toric  period  (1991-2020),  while  the  middle  one  shows  the  difference  to  the  absolute  

numbers  in  the  mid  century  (2036-2065)  and  the  bottom  one  the  difference  towards  

the  end  of  the  century  (2071-2100).  Mean,  maximum  and  minimum  values  are  cal-  

culated  over  the  whole  area.
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5.  Conclusion  and  Outlook

By  applying  OFC a  foehn  training  data  set  for  four  regions  over  Western  Aus-  

tria  was  generated,  yielding  reasonable  foehn  occurrence  percentages  for  all  the  

regions.  The  seasonality  of  the  occurrences  is  in  agreement  with  expert’s  judge-  

ment.  Training  of  XGBoost  algorithms  was  done  with  accuracies  of  over  95  %  for  

every  region  when  classifying  between  foehn  and  no  foehn.  Similar  accuracies  for  

classifying  between  localised  and  widespread  foehn  events  were  achieved,  besides  

Tiroler  Unterland,  where  an  accuracy  of  84.1  %  marked  the  lowest  accuracy.  The  

analysis  of  feature  importance  yielded  the  physically  relevant  cross-alpine  pressure  

gradient  as  dominant  feature  for  most  cases.  The  location  of  the  most  important  

features  was  not  within  the  borders  of  the  regions  for  the  majority  of  the  eight  

algorithms.  The  algorithms  were  able  to  generalise  on  different  time  periods  and  

models  independently  of  station  data.  By  comparing  the  seasonality  of  foehn  oc-  

currence  in  the  historic  period,  it  was  confirmed,  that  the  EURO-CORDEX  models  

were  suitable  for  generating  foehn-producing  synoptic  patterns.  Osttirol  hereby  

did  not  show a  pronounced  seasonal  trend.  By  applying  the  XGBoost  algorithms  

to  EURO-CORDEX  models  and  the  ERA5  reanalysis,  foehn  occurrence  was  pre-  

dicted  within  a  2.5  %  similarity  to  the  training  data.  North  foehn  over  Osttirol  

tended  to  be  overestimated  the  most.  

The  replacement  of  ground  wind  fields  during  foehn  days  has  successfully  produced  

the  desired  higher  wind  speeds  on  foehn  affected  slopes  and  valley  elevations,  

yielding  a  high-resolution  product  with  wind  climatologies  directly  considering  

foehn  with  different  intensities  and  in  different  locations  for  Western  Austria.  The  

temporal  trend  in  the  MPI  rcp85  shows  a  decreasing  trend  for  foehn  except  for  

Vorarlberg  and  a  trend  to  more  widespread  events  in  all  regions  but  Osttirol.
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As  the  study  area  was  Western  Austria,  which  is  to  the  north  of  the  Alps’  crest,  

the  thesis’  work  was  more  focused  on  improving  south  foehn  than  north  foehn  

detection.  The  missing  seasonal  trend  and  higher  overestimation  of  north  foehn  

in  Osttirol  could  be  indicators,  that  south  foehn  as  a  pre-frontal  phenomenon  is  

better  recognisable  in  synoptic  patterns  than  the  post-frontal  north  foehn  in  the  

EURO-CORDEX  models  and  therefore  different  or  more  meteorological  variables  

have  to  be  considered  for  more  accurate  classification  in  Osttirol.  The  study  area  

could  also  be  extended  to  Carinthia  to  provide  more  cases  of  north  foehn  to  improve  

classification  quality.  

To  validate  and  possibly  improve  the  detection  of  foehn  events  out  of  synoptic  

reanalysis  and  climate  projection  data,  the  XGBoost  algorithms  could  be  compared  

to  other  machine  learning  approaches  like  convolutional  neural  networks  (CNNs)  

or  detection  algorithms  with  human-set  hard  thresholds  for  different  variables.  

Furthermore,  bias  correction  could  be  applied  to  the  EURO-CORDEX  models  to  

transform  the  value  range  of  meteorological  variables  closer  to  ERA5.  

The  XGBoost  models  created  in  this  thesis  will  be  applied  on  every  suitable  model  

of  the  OEKS-15  ensemble  of  EURO-CORDEX  climate  scenarios  [45]  to  be  able  to  

make  more  confident  predictions  about  how foehn  seasonality  and  intensity  will  

change  in  the  wake  of  climate  change  until  2100.  By  comparing  the  foehn  season-  

ality  of  the  models  with  reanalysis  data  in  the  historic  period  and  its  statistical  

parameters,  it  will  be  assured  that  all  individual  EURO-CORDEX  models  are  

able  to  reproduce  weather  patterns  representing  foehn.  More  robust  predictions  

of  how foehn  frequency  and  seasonality  will  change  over  the  course  of  different  

RCPs  during  the  21st century  in  Western  Austria  can  be  given  through  applying  

the  algorithms  on  the  suitable  models  of  the  ensemble.  The  representativeness  

for  the  specific  RCPs  of  the  three  models  used  in  this  thesis  could  be  assessed  by  

comparing  them  with  the  whole  ensemble.  

Furthermore,  the  foehn  training  data  set  can  be  published  to  promote  open  access  

science  and  better  reproducibility.
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A.  Appendix

A.1.  Selected  Fingerprints

Table  A.1.: Selected  WRF  simulated  dates  for  physically  possible  fingerprints.  The  

columns  describe,  which  intensity  foehn  has  in  the  stated  region.  A  fingerprint  was  

considered  as  physical  possible  if  adjacent  regions  had  a  foehn  intensity,  which  was  

differing  by  only  one  level  where  levels  are  no,  localised  or  widespread  foehn.

Date Vorarlberg Tiroler  Oberland Tiroler  Unterland Osttirol
2017-03-03  14:40 Localised Localised Localised No  

2017-02-27  17:00 Localised Localised Widespread No  

2017-03-03  09:00 Localised No Localised No  

2017-03-03  07:00 Localised No No No  

2017-12-11  11:00 Localised Widespread Localised No  

2017-12-11  11:00 Localised Widespread Widespread No  

2017-02-28  10:30 No Localised Localised No  

2017-12-12  10:20 No Localised No No  

2016-09-15  10:10 No Localised Widespread No  

2016-09-15  12:00 No No Localised No  

2020-10-03  10:00 No No Widespread No  

2017-12-11  19:30 No Widespread Widespread No  

2017-03-04  01:00 Widespread Localised Localised No  

2017-03-04  01:00 Widespread Localised No No  

2017-03-04  06:30 Widespread Localised Widespread No  

2017-03-04  12:00 Widespread Widespread Localised No  

2017-12-11  11:00 Widespread Widespread Widespread No  

2018-11-27  12:20 No No No Localised  

2017-10-30  00:30 No No No Widespread
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Table  A.2.: Selected  substitution  dates  for  detected  physically  impossible  occur-  

rences.  The  columns  describe,  which  intensity  foehn  has  in  the  stated  region,  

yielding  physically  impossible  behaviour.  Still  only  pixels  in  the  regions,  which  were  

detected,  where  treated  as  foehn  pixels  when  they  exceeded  the  windspeed  limit.

Date Vorarlberg Tiroler  Oberland Tiroler  Unterland Osttirol
2017-12-11  11:00 No Widespread No No  

2017-12-11  11:00 No Widespread Localised No  

2017-12-11  11:00 Localised Widespread No No  

2017-03-04  01:00 Widespread No No Localised  

2017-03-04  01:00 Widespread No Localised No  

2017-03-04  01:00 Widespread No No No  

2017-03-03  14:40 Localised Localised Localised Localised  

2017-03-03  14:40 Localised Localised No No  

2017-02-27  17:00 Localised No Widespread No  

2017-03-04  06:30 Widespread No Widespread No  

2016-09-15  10:10 No No Widespread No  

2017-03-03  07:00 Localised No No Localised  

2017-10-30  00:30 Localised No No Widespread  

2017-02-28  10:30 No Localised Localised Localised  

2017-12-12  10:20 No Localised No Localised  

2017-03-04  12:00 Widespread Widespread No No

A.2.  XGBoost  Hyperparameter  Selection

Table  A.3.: XGBoost  hyperparameter  selection.  After  using  a  grid  search  with  a  

cross-validation  of  five  random  sets  from  the  feature  matrix  for  each  of  the  eight  

algorithms  visible  in  the  first  column,  parameter  values  visible  in  the  other  columns  

yielded  the  best  average  accuracy  of  the  cross-validation.  Loc  and  wide  are  short  

forms  of  localised  and  widespread.

Algorithm eval gamma learning max min  child objective reg
metric rate depth weight lambda

Vorarlberg  yes/no error 1.5 0.3 9 10 binary:logitraw 2.5  

Vorarlberg  loc/wide logloss 1 0.8 7 1 binary:logitraw 2.5  

Tiroler  Oberland  yes/no error 1.5 0.3 9 10 binary:logitraw 2.5  

Tiroler  Oberland  loc/wide logloss 1 0.8 7 1 binary:logitraw 2.5  

Tiroler  Unterland  yes/no error 1 0.3 9 5 binary:logitraw 1.5  

Tiroler  Unterland  loc/wide error 1 0.5 5 10 binary:logitraw 2.5  

Osttirol  yes/no error 1.5 0.1 9 5 binary:logitraw 1.0  

Osttirol  loc/wide error 2 0.3 9 1 binary:logitraw 0.3
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A.3.  North  Foehn  Climatologies

Figure  A.1.: Spatial  comparison  of  climatologies  of  north  foehn  days  within  the  

INCA  period  (2003-2020).  The  first  column  shows  absolute  values  of  wind  speed  

climatologies  in m/s while  the  second  shows  the  difference  of  the  individual  cli-  

matologies  in m/s.  The  thin  grey  lines  in  the  first  column  show,  where  the  wind  

speed  condition  for  counting  as  foehn  affected  is  satisfied.  Several  locations  are  dis-  

played  with  black  crosses  and  their  name  for  better  orientation.  The  rivers  Inn  and  

Sill  are  drawn  in  grey  lines.  Mean,  maximum  and  minimum  values  are  calculated  

over  the  whole  area.  Wind  speeds  in  Osttirol  are  significantly  higher  and  smaller  

in  other  upper  elevations.  The  total  spatial  mean  of  the  differences  is  close  to  0,  

with −0.2m/s compared  to  the  wind  field  generated  from  interpolating  stations  and
0.8m/s compared  to  INCA.
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Figure  A.2.: Wind  speed  climatologies  at  affected  pixels  during  north  foehn  days,  

aspect  binned  wind  roses  in m/s.  The  compass  directions  describe  where  the  aspect  

of  the  slopes  point.  One  aspect  covers  a  range  of 45∘.  Matching  colours  are  used  

for  matching  integer  ranges.  A  total  area  of  12.2  %  is  affected  by  north  foehn  when  

considering  slopes  with  inclination  above 8∘.  Osttirol  is  a  small  region  compared  

to  the  total  area.  Wind  speeds  are  significantly  higher  in  the  south  directed  slopes  

here.
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Figure  A.3.: Wind  speed  climatologies  at  affected  pixels  during  north  foehn  days,  

aspect  binned  boxplots.  The  compass  directions  on  the  horizontal  axis  describe  

where  the  aspect  of  the  slopes  point.  One  aspect  covers  a  range  of 45∘.  The  vertical  

axis  describes  wind  speeds  in m/s.  The  whiskers  cover  the  5th and  95th percentile.  

The  maxima  are  displayed  as  numbers  above.  A  total  area  of  12.2  %  is  affected  by  

north  foehn  when  considering  slopes  with  inclination  above 8∘.  Higher  wind  speeds  

in  Osttirol  are  observed  on  slopes  perpendicular  to  the  Alpine  ridge.
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Figure  A.4.: Wind  speed  climatologies  at  foehn  free  pixels  during  north  foehn,  aspect  

binned  wind  roses  in m/s.  The  compass  directions  describe  where  the  aspect  of  the  

slopes  point.  One  aspect  covers  a  range  of 45∘.  Matching  colours  are  used  for  

matching  integer  ranges.  A  total  area  of  87.8  %  is  not  affected  by  north  foehn  

when  considering  slopes  with  inclination  above 8∘.  The  range  of  wind  speed  values  

of  the  scaled  WRF  replacements  over  the  unaffected  pixels,  which  are  Vorarlberg,  

Tiroler  Oberland  and  Tiroler  Unterland  for  the  most  part,  are  in  a  similar  range  

of  INCA.  The  wind  field  generated  of  interpolated  station  data  yields  higher  values.  

No  clear  direction  trend  is  visible.
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Figure  A.5.: Wind  speed  climatologies  at  foehn  free  pixels  during  north  foehn,  aspect  

binned  boxplots.  The  compass  directions  on  the  horizontal  axis  describe  where  the  

aspect  of  the  slopes  point.  One  aspect  covers  a  range  of 45∘.  The  vertical  axis  

describes  wind  speeds  in m/s.  The  whiskers  cover  the  5th and  95th percentile.  The  

maxima  are  displayed  as  numbers  above.  A  total  area  of  87.8  %  is  not  affected  

by  north  foehn  when  considering  slopes  with  inclination  above 8∘.  The  spread  of  

the  scaled  WRF  replacements  is  larger  while  the  medians  are  close  to  the  ones  of  

INCA.
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Figure  A.6.: Wind  speed  climatologies  at  foehn  affected  pixels  during  north  foehn  

days,  elevation  binned  boxplots.  The  horizontal  axis  describes  elevation  bins  in m.  

The  vertical  axis  describes  wind  speeds  in m/s.  The  whiskers  cover  the  5th and  

95th percentile.  The  maxima  are  displayed  as  numbers  above.  A  total  area  of  12.2  

%  is  affected  by  north  foehn  when  considering  slopes  with  inclination  above 8∘.  A  

high  elevation  dependency  is  visible  in  the  scaled  WRF  replacements.  Wind  speeds  

in  the  valley  regions,  which  are  in  the  500  -  1000  m  class,  are  significantly  higher  

than  in  the  other  wind  fields.
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Figure  A.7.: Wind  speed  climatologies  at  foehn  free  pixels  during  north  foehn,  el-  

evation  binned  boxplots.  The  horizontal  axis  describes  elevation  bins  in m.  The  

vertical  axis  describes  wind  speeds  in m/s.  The  whiskers  cover  the  5th and  95th

percentile.  The  maxima  are  displayed  as  numbers  above.  A  total  area  of  87.8  %  

is  not  affected  by  north  foehn  when  considering  slopes  with  inclination  above 8∘.  

A  strong  elevation  dependency  is  observed  in  all  three  wind  fields.  For  foehn  free  

pixels  the  elevation  dependency  is  more  in  sync  with  each  other  and  wind  speeds  

in  the  valley  elevations  are  lower.

81



A.4.  Temporal  Trends  of  Model  MPI  rcp45

Figure  A.8.: MPI  rcp45  foehn  development  until  2086.  The  horizontal  axis  de-  

scribes  the  years,  while  the  vertical  axis  states  average  foehn  days  per  year.  The  

regions  are  colour-coded  and  visible  in  the  legend.  A  rolling  mean  of  30  years  is  

applied  to  smooth  the  curve.  Because  of  that  the  last  available  year  is  2086  as  the  

climate  models  reach  until  2100.  With  RCP  4.5,  the  less  fossil  fuel  intensive  path-  

way,  weak  trends  are  observable,  with  the  strongest  positive  (negative)  deviations  

in  the  mid  of  the  century  for  south  (north)  foehn.
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Figure  A.9.: MPI  rcp45  foehn  seasonality  development  until  2100.  Compared  are  

the  historic  period  (1991-2020)  and  the  end  of  the  century  (2071-2100)  of  the  

specific  model.  Regions  are  colour-coded  and  visible  in  the  legend.  The  horizontal  

axis  describes  the  months  of  the  year,  the  vertical  axis  the  accumulated  average  

foehn  days  on  monthly  basis.  Most  months  tend  to  have  less  foehn  towards  the  end  

of  the  century,  while  May  is  showing  the  opposite  trend.
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Figure  A.10.: MPI  rcp45  temporal  evolution  of  pixels  affected  by  foehn.  The  top  

plot  shows  the  absolute  average  values  of  foehn  days  per  year  at  a  pixel  in  the  his-  

toric  period  (1991-2020),  while  the  middle  one  shows  the  difference  to  the  absolute  

numbers  in  the  mid  century  (2036-2065)  and  the  bottom  one  the  difference  towards  

the  end  of  the  century  (2071-2100).  Mean,  maximum  and  minimum  values  are  cal-  

culated  over  the  whole  area.  A  positive  trend  for  the  mid  century  can  be  seen  for  

south  foehn,  while  north  foehn  has  the  a  negative  trend.  By  the  end  of  the  century,  

a  negative  trend  is  visible  for  all  regions.
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A.5.  Temporal  Trends  of  Model  ICHEC  rcp85

Figure  A.11.: ICHEC  rcp85  foehn  development  until  2086.  The  horizontal  axis  

describes  the  years,  while  the  vertical  axis  states  average  foehn  days  per  year.  The  

regions  are  colour-coded  and  visible  in  the  legend.  A  rolling  mean  of  30  years  is  

applied  to  smooth  the  curve.  Because  of  that  the  last  available  year  is  2086  as  the  

climate  models  reach  until  2100.  A  slight  negative  trend  is  visible  for  all  south  

foehn  regions  while  Osttirol  has  no  trend.  No  trend  for  widespread  foehn  can  be  

detected.
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Figure  A.12.: ICHEC  rcp85  foehn  seasonality  development  until  2100.  Compared  

are  the  historic  period  (1991-2020)  and  the  end  of  the  century  (2071-2100)  of  the  

specific  model.  Regions  are  colour-coded  and  visible  in  the  legend.  The  horizontal  

axis  describes  the  months  of  the  year,  the  vertical  axis  the  accumulated  average  

foehn  days  on  monthly  basis.  Summer  months  in  this  model  tend  to  have  less  

foehn  by  the  end  of  the  century  while  spring  months  tend  to  have  more,  especially  

May.
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Figure  A.13.: ICHEC  rcp85  temporal  evolution  of  pixels  affected  by  foehn.  The  

top  plot  shows  the  absolute  average  values  of  foehn  days  per  year  at  a  pixel  in  

the  historic  period  (1991-2020),  while  the  middle  one  shows  the  difference  to  the  

absolute  numbers  in  the  mid  century  (2036-2065)  and  the  bottom  one  the  difference  

towards  the  end  of  the  century  (2071-2100).  Mean,  maximum  and  minimum  values  

are  calculated  over  the  whole  area.  A  slight  negative  trend  towards  the  end  of  the  

century  is  visible  for  all  regions.
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