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Abstract

Logical bit operations are an essential part of computer programming. They
involve manipulating individual bits within binary numbers to perform various
tasks, such as bitwise AND, OR, XOR, and NOT operations. This is very similar
to quantum software, where quantum logic gates are the quantum counterparts
of classical logical bit operations and are used to manipulate quantum bits, the
quantum equivalent to a bit and thus, the unit of quantum information.

In order to run a quantum software on a quantum computer, the logical qubits
used in the program have to be assigned to the physical qubits on the hardware.
The act of assigning logical qubits in a quantum program to physical qubits on
a quantum computer is called qubit mapping. It is a vital part of a quantum
program’s compilation as it affects how well the program will run on a quantum
computer.

The qubit mapping problem is the corresponding mathematical problem that
aims to minimize the changes to a quantum program needed in order to make it
executable on a quantum computer. This is a crucial objective since current quan-
tum devices have limited computing power, making it difficult to carry out long
and complex computations. Improving the qubit mapping can thus significantly
enhance the performance of quantum programs.

Because of its great importance, the qubit mapping problem has been studied
and approached in recent years with a wide range of different techniques. This
work aligns itself among these techniques, however, presents a new strategy by
using a type of optimization called quadratic unconstrained binary optimization
in order to improve upon existing results. The evaluation showed, that within some
of the relevant benchmarks, results from this approach are similar to or better than
other existing algorithms.



Zusammenfassung

Logische Bitoperationen sind die Grundbausteine von Computer Software. Hierbei
werden Bits manipuliert, um verschiedene Aufgaben auszuführen, beispielsweise
bitweise AND-, OR-, XOR- und NOT-Operationen. Dies ist der Quantensoftware
sehr ähnlich. Hier werden sogenannte Quantum Gates - die Quantengegenstücke
von klassischen Bitoperationen - zur Manipulation von Quantenbits, der kleinsten
Einheit der Quanteninformation, verwendet.

Die Zuordnung von logischen Qubits in einem Quantenprogramm zu den physi-
schen Qubits eines Quantencomputers wird als Qubit-Mapping bezeichnet. Dieser
Schritt ist Teil der Kompilierung eines Quantenprogramms und daher Vorraus-
setung für die Ausführbarkeit jedes Quantenprogramms auf einem Quantencom-
puter. Während dieses Mapping-Schritts werden zusätzliche Operationen in das
Programm eingebaut, die für die Ausführbarkeit des Programms notwendig sind.
Da Quantencomputer aktuell eine sehr begrenzte Rechenleistung haben, ist das
Ziel so wenig zusätzliche Operationen wie möglich in das Quantenprogramm durch
das Mapping einzubauen. Das Qubit-Mapping Problem beschreibt das Optimie-
rungsproblem, welches diese notwendigen zusätzlichen Operationen minimiert. Es
wird in dieser Arbeit eine neue Methode zur Lösung des Qubit-Mapping Problems
vorgestellt, die auf quadratischer unbeschränkter binärer Optimierung und einem
evolutionären Algorithmus basiert. Der Ansatz erzielt für eine Reihe von Quan-
tenprogrammen signifikant bessere Lösungen zu aktuellen Mapping-Algorithmen.
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Chapter 1

Introduction

As quantum theory became widely accepted in the midst of the last century, physi-
cists and computer scientists started to discuss the idea of simulating a quantum
system with a classical computer. Richard Feynman for example wrote in his 1982’s
article, "Can a quantum system be probabilistically simulated by a classical univer-
sal computer? If you take the computer to be the classical kind and there’re no
changes in any laws, and there’s no hocus-pocus, the answer is certainly, No!" [1].
Thus, a quantum computer needs to be fundamentally different from the classical
one. In 1985 David Deutsch conceptualized the notion of a quantum computer,
and raised the question of whether quantum computers could solve some problems
faster than classical computers [2]. And in fact, a few years later, Peter Shor
introduced a quantum algorithm for factoring numbers [3], which would run in
polynomial time on a quantum computer, while there is no known algorithm for
classical computing with this efficiency. It was the first glimpse at the potential
of quantum computing and has ever since been encouraging physicists, computer
scientists and engineers to put great effort in developing both quantum software
and quantum hardware.

Now - almost 40 years later - the so-called Noisy Intermediate-Scale Quantum
era unfolds. It refers to the current state-of-the-art quantum computers, which
work well enough to produce meaningful results, even though they are suffering
from restricted hardware control and errors from unwanted environmental interac-
tions [4]. Due to the hardware’s proclivity for errors, one major aspect of current
quantum computing is to mitigate these faults. As a consequence a whole new
research field, known as quantum error correction has emerged since 1995 [5, 6].

Another implication of the status quo is that many current quantum computers
are restricted to a set of operations they can perform, referred to as their native
gate set. Before a quantum program can be executed, the program is translated to
the native gate set of the quantum hardware. This is one part of the compilation
procedure of a quantum program in order to execute it on the physical qubits.
Compilation in general refers to the process of adapting a quantum program from

1



CHAPTER 1. INTRODUCTION 2

its abstract, theoretical description, to a description only comprised of native hard-
ware operations. The compilation process encompasses a number of distinct stages,
including optimizing the quantum program prior to assigning operations, known
as gate synthesis ; the initial placement, which allocates the logical qubits of the
program to the physical qubits of the quantum hardware; and the routing, which
entails transferring the placed qubits as required to various locations within the
hardware. Initial placement and routing are typically summarized in the concept
of qubit mapping, on which this study will focus on.

In the recent years, different approaches to qubit mapping have been explored,
ranging from permutation-based search algorithms to machine-learning based so-
lutions [7–15]; They of course vary a lot in their strategy, e.g. exact or heuristic,
where most use some kind of local based search strategy. They oftentimes use simi-
lar optimization metrics; e.g. execution time and number of changes applied to the
quantum program. Most mapping algorithms target hardware constraints; some
of them include noise, and error statistics of the hardware [16]. A typical mapping
heuristic starts out with an initial placement, i.e. assigning the logical qubits in-
volved in the quantum program to the physical qubits in the hardware. Then the
heuristic loops through the quantum operations of the program and applies them
to physical qubits according to the constraints of the quantum hardware.

The introduced method aligns itself among these techniques, however, it utilizes
in contrast to many of the mentioned works a non-local view of the problem.
In other words, many existing works rely on local search strategies, while this
study focuses on a holistic view of the quantum program and its requirements.
This is especially beneficial when it comes to inaccuracies stemming from too
restricted search windows. The latter is not a limitation for the used strategy,
since it captures the quantum program and it’s requirements in one piece. The
contributions can be summarized as follows:

• Algorithm: mapping procedure that considers hardware connectivity con-
straints to reduce the total execution time and thus enhancing the quality
of the output state.

• Holistic strategy: instead of piecewise iterating over gates, the quantum
program’s requirements are captured as a whole by a special kind of op-
timization formulation, termed Quadratic Unconstrained Binary Optimiza-
tion. Further, a simple evolutionary algorithm is utilized to optimize how to
the quantum program is best prepared for the mapping.

• Accessibility: The introduced work provides an open-source alternative to
existing algorithms and is accessible through Github [17].

• Evaluation: The results from this approach are compared to relevant exist-
ing algorithms and show comparable or better results for a set of quantum
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programs that can be run on close-to-mid-term quantum computers.

One could ask, why we choose QUBO as our dedicated problem formulation:
QUBO in itself presents an elegant approach towards qubit mapping, firstly, be-
cause it can represent the problem exactly, while it can be solved heuristically. This
gives rise to two advantages: a) since new and better matrix solving strategies are
developed continuously, the method can always be dynamically adapted with the
best currently available solving algorithm without changing the problem formula-
tion, and b) the exact formulation gives a lower bound to the problem, meaning
that if it is solved exactly, it will always give the best possible solution. Secondly,
QUBO is especially interesting for the quantum computing community, because
it can not only be solved by classical heuristics, but also with adiabatic quantum
computation [18, 19]. Since the construction of the first quantum adiabatic com-
puter (also called quantum annealer; built by D-Wave Systems Inc. in the early
2000s) a lot of effort has been made to formulate QUBOs for different NP-hard
optimization problems, ranging from graph isomorphism [20], Traffic Flow Opti-
mization [21] to training machine-learning models [22]1. Lastly, there have been
only rudimentary experiments with using QUBO for qubit mapping [24], which
makes it an interesting research question, hence there is no proof-of-concept yet.

This work presents an optimization formulation of the qubit mapping problem
using QUBO, and an evolutionary algorithm is utilized to optimize the mapping
in an iterative manner. The thesis is organized as follows: Chapter 2 introduces
some fundamentals of quantum computing, gives insights into two famous quan-
tum algorithms and discusses current quantum technologies. Chapter 3 describes
the qubit mapping problem in its general form, lists related work and outlines
the introduced approach in detail. Chapter 4 explains the implementation in both
pseudocode listings and flow diagrams. Finally, Chapter 5, presents the results ob-
tained and discusses the comparisons to two state-of-the-art mapping algorithms;
Chapter 6 concludes the work with discussion for possible future tasks.

1Even though the computational solving ability of these devices are restricted to small problem
sizes still, the fast development of these systems gives hope to expect that more realistic problems
sizes can be addressed in the near to mid term future [23].



Chapter 2

Background

This chapter presents some background on quantum computing following fun-
damental literature [25]. After delving into the functionality of two well-known
quantum algorithms, Shor’s Algorithm and the quantum Fourier transform, the
chapter explains the concept of a quantum stack and a selection of frameworks
available for software development in quantum computing. The chapter closes
with capabilities and limitations of various current quantum technologies.

2.1 The basic unit of quantum information

The concept of a classical bit is distinct from that of a quantum bit, or qubit in
short. Unlike classical bits which are consistently in a definite state of either 0
or 1 throughout a computation, qubits are only definite when measured, at which
point they collapse into either state. At all other times, a qubit is described by a
more complex state that cannot be captured by binary values, due to the subatomic
nature of the physical system it represents; which follows the principles of quantum
mechanics. This allows a qubit to exist in multiple states simultaneously, referred
to as superposition, which can be described using the mathematical framework of a
vector space, typically represented as the vectors |0⟩ and |1⟩, i.e. the low and high
state, respectively. These basis vectors span the vector space, where all possible
superpositions of the basis states live.

|0⟩ = 1
0

|1⟩ = 0
1

. (2.1)

All superpositions |ψ⟩ are then described as a linear combination of both states,
reading

|ψ⟩ = a |0⟩+ b |1⟩ = a
1
0

+ b
0
1

=
a
b

,where a, b ∈ C. (2.2)

4



CHAPTER 2. BACKGROUND 5

The probability to measure a qubit being in the |0⟩ or |1⟩ is |a|2 or |b|2, re-
spectively. Since a qubit has to decide for either |0⟩ or |1⟩, the probability to
measure |0⟩ or |1⟩ is 100%; as a consequence the coefficients must add up to 1,
i.e. |a|2 + |b|2 = 1. A common way to display the state of a single qubit is the so
called Bloch sphere depicted in 2.1.

Figure 2.1: The Bloch sphere for representing single quantum states [26].

The two basis states lie on ±z axes and all possible superpositions lie in between
on the complex plane described by the coefficients a = cos θ/2 and b = eiϕ sin θ/2,
where ϕ and θ are real values (also called phases).

Example 2.1.1. Let us assume some arbitrary state of a qubit, where θ = π/2
and ϕ = 0.

|x⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ . (2.3)

Then the probability to measure the qubit in |0⟩ is the same as to be in |1⟩ state,
i.e. |a|2 = |b|2 = 0.5. This makes perfect sense, since the vector points in the +x
direction, to the dashed boundary line in Fig. 2.1 which lies right in the middle of
the two basis states.

2.2 How to perform logic with quantum states

A quantum gate is a unitary operation which can be applied to one or more qubits.
A unitary operation U is defined as U †U = I, where U † is the complex conjugated
and transposed version of U .

Gates are typically described by matrices; the general single-qubit gate is called
U-gate, which reads
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U(θ, λ, ϕ) :=
cos( θ

2
) −eiλ sin( θ

2
)

eiϕ sin( θ
2
) ei(ϕ+λ) cos( θ

2
)

.

Configurations of the phase variables θ, λ, ϕ, which are commonly used, have
their own name; a selection of the most prominent single-qubit gates is listed in
Table 2.1.

Pauli X Pauli Y Pauli Z Hadamard S gate Phase Shift

0 1
1 0

0 −i
i 0

1 0
0 −1

1√
2

1 1
1 −1

1√
2

1 0
0 i

1 0

0 e
iπ
4

π rotation
around x-axis

π rotation
around y-axis

π rotation
around z-axis

π rotation
around [1,0,1]1-axis

π/2 rotation
around z-axis

π/4 rotation
around z-axis

Table 2.1: Most relevant single-qubit gates.

1the axis between the x and z

Let us consider a simple sequence of gates applied to one qubit.

Example 2.2.1. Applying the following gates

to a qubit changes its initial |0⟩ state as shown in Figure 2.2.

Figure 2.2: Transformations of qubit state starting from the basis state |0⟩.

2.3 Multiple qubits

We will now look at how we represent multiple qubits, and how these qubits
can interact with each other. Let us start with the simplest case: two qubits
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live in a space spanned by four well-defined states |00⟩ , |01⟩ , |10⟩ and |11⟩, i.e.
four orthogonal vectors are needed. This is mathematically realized with a four-
dimensional vector space, e.g. with the eigenvectors

|00⟩ =


1
0
0
0

 , |01⟩ =


0
1
0
0

 , |10⟩ =


0
0
1
0

 , |11⟩ =


0
0
0
1


and using a linear combination for all possible superpositions

|ϕ⟩ = a |00⟩+ b |01⟩+ c |10⟩+ d |11⟩ ,

where a, b, c, d ∈ C.
The dimension of the vector space thus grows exponentially with the system

size, i.e. for n qubits the dimension is 2n. As such do the gates applied to multiple-
qubit states, i.e. a unitary operation U applied to n qubits has the size 2n × 2n.

Hence, for two qubits, the matrix representation needs to be a 4 × 4 unitary
matrix; a list of the most relevant two-qubit gates is given in Table 2.3.

CNOT CZ SWAP


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


π rotation around

x on the target qubit q1
if the control qubit
is in the state |1⟩,

and leaves it
unchanged otherwise.

π rotation around
z on the target qubit q1

if the control qubit
is in the state |1⟩,

and leaves it
unchanged otherwise.

q0 receives the state
of q1 and
vice versa.

Table 2.2: Most relevant two-qubit gates.

As already mentioned, a native gate is one that can be performed using the
basic control and manipulation operations available on the quantum hardware.
These native gates build up more complex gates, i.e. multi-qubit gates involving
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three or more qubits. The most prominent three-qubit gate with its own name is
the CCX or Toffoli gate, it is represented by a 8× 8 matrix, which is composed of
several one-qubit T- and Hadamard-gates, and six CNOT-gates; it reads

CCX



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


The Toffoli gate is a three-qubit gate with two controls

and one target q2. It performs an X-gate on the target if both
controls are in the state |1⟩.

Table 2.3: The most relevant three-qubit gate.

2.4 Quantum Program Representations

A quantum program, also called quantum circuit describes a sequence of gates
applied to logical qubits. One typical description is graphical, where quantum
gates are represented by the boxed symbols and qubits are represented by lines as
listed above; Figure 2.3 shows an example circuit in its graphical representation.



CHAPTER 2. BACKGROUND 9

Figure 2.3: Graphical representation of a quantum circuit; The horizontal lines
represent the time axes for their respective qubits. The colored boxes and vertically
linked circles mark the gates. Some gates can be executed in parallel, when they
do not involve the same qubits. The number of time steps in total is called the
depth of a quantum program. (The graphic was generated in Python.)

Similar to classical computing, it is practical to define a universal set of gates. It
is a set of quantum logic gates that can be used to perform any unitary operation
on one or more qubits by combining them in different (but finite) ways. A set
example is the Pauli gates (X, Y, Z), plus the phase shift S gate, plus the CNOT
gate [27].

Another important concept is the depth of a quantum circuit; it refers to the
number of time-steps of a quantum circuit, assuming one time-step always covers
all gates that can be executed in parallel.

2.5 Quantum Algorithms

A crucial research endeavour of quantum computing is to discover quantum algo-
rithms to solve classically hard problems, which have equivalent or reduced time
complexity in comparison to their classical counterparts. This section will delve
into Shor’s famous algorithm and the quantum Fourier transform, showing the
elegance of quantum logic and how beneficial they can be when applied to the
appropriate problems.

2.5.1 Shor’s Algorithm

Currently, computer networks rely on RSA encryption to keep communication
over the internet safe. Simply put, the method uses a large1 number N , which is
semi-prime, i.e. the result of multiplying two prime numbers. The encryption is
based on the phenomenon that it is computationally infeasible (non-polynomial
for classical computers) to find the prime factors of N .

1The size of the semi-prime number N is 2048 bits for most systems (612 decimal digits) [28].
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Shor’s Algorithm, however, finds them in polynomial time [3] and on a big enough
quantum computer, it would pose a real threat to RSA encryption.

The overall goal is to find the factors p, q of N . It is however actually enough
to find a number that shares factors with a multiple of N , i.e. m · N = p · q,
where m ∈ N+, since as soon as a shared factor is found, one can find the greatest
common divisor of N and the found number (with the 2000 year old Euclidean
Algorithm) and divide the latter by the divisor to receive the actual factor. It is
also known, that for some even number p and random integer g, gp will always for
some p result in m ·N +1. Ergo, the objective turns into finding (gp/2 ± 1), which
share factors with m · N . The crucial quantum part unfolds with the so called
period p. In classical computing one would have to try for a long time guessing
the right p. With the quantum Fourier transform this period can be found with
only one calculation. This is achieved by combining many different choices for p
via a quantum superposition of states representing the random integer g to the
power of p, i.e. |p1, r1⟩ + |p2, r2⟩ + |p3, r3⟩ . . . , |pn, rn⟩, where r is the remainder
of the calculation gp = m · N + r. If we then measure the remainder part of
the superposition and the outcome happens to be e.g. r3, then the p part of the
superposition will only comprise the elements which also had the remainder of
ri = r3. Since we know from pure mathematics, that then there is a repeating
property between the periods left in the superposition2, we can use the quantum
Fourier transform on the superposition to determine the period p.

Example 2.5.1. Let us assume the measurement of the remainder gave r = 2 and
r3 = r7 = r86 = 2, then superposition after measuring the out the remainder part
would be |p3⟩+ |p7⟩+ |p86⟩. Since we know from pure mathematics, that then there
is a repeating property between the periods, namely p3, p7 and p86 are then some
multiple of p apart from each other, we can use the quantum Fourier transform on
the superposition to determine the period p.

Here is a high level overview of the steps of Shor’s algorithm:

1. Choose a random integer g < N .

2. Generate a superposition of as many periods as possible (restricted by the
numbers of qubits in the quantum computer at hand) and measure it.

3. Use quantum Fourier transform on the superposition generated by the mea-
surement in step 2. to find the period p.

4. Use p to determine the factors gp = m · N + 1, which share factors with N
and determine the actual factors p, q with the Euclidean Algorithm.

2gx −m1 ·N = gx+p −m2 ·N = gx+2p −m3 ·N = · · · = gx+np −mn ·N = r, where mi ∈ N+
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Will RSA technology soon be broken? No. According to quantum cryp-
toanalysis from 2021 [29] resource capabilities to decipher the RSA-2048 below
24 hours would need 8,194 logical qubits, which translates to 8.7 Mio. physical
qubits (reminder: most promising current technologies comprise around 200 phys-
ical qubits). Another more recent survey of the Global Risk Institute [30] asked
50 experts in the field (from the USA, Canada, EU, China and Australia) to give
their estimates when quantum technology will be at this level. On average those
experts find it unlikely (below 30% chance) that the necessary capabilities will
be reached within the next 10 years; however, within the next 20 and 30 years
the experts reasoned a likely-hood of 70% and 96%, respectively on average to
accomplish this technological stage.

2.5.2 The Quantum Fourier Transform (QFT)

As we saw, a very important ingredient to Shor’s agorithm is the QFT. Classically,
a Fourier transform reveals the frequency components of a time-dependent func-
tion. QFT achieves the same within polynomial time. It takes a general quantum
state |x⟩ and transforms it into its Fourier basis |y⟩, which holds the information
of the states frequency components. Given two quantum states |x⟩ and |y⟩ for N
qubits, this mathematically reads

|x⟩ =
N−1

j=0

xj |j⟩ |y⟩ =
N−1

k=0

yk |k⟩ (2.4)

where yk =
1√
N

N−1

n=0

xje
i2πjk/N , (2.5)

where Eq. 2.5 is just the formula for the classical inverse Fourier transform with
the imaginary unit i. To keep things (relatively) simple, we set N = 2n, where
n ∈ N+ and assume |x⟩ is a basis state |x = j⟩ for some j ∈ [0, N − 1]; then

yk =
1√
N
ei2πxk/N . (2.6)

The goal is to find a practical unitary transformation U , yielding

U |x⟩ = |y⟩ . (2.7)

Applying the necessary algebraic transformations to Eq. 2.4 and Eq. 2.6 detailed
in Appendix A leads to the the following expression

U |x⟩ = 1√
2n

(|0⟩+ ei2πx2
−1 |1⟩)⊗ (|0⟩+ ei2πx2

−2 |1⟩ ⊗ ...⊗ (|0⟩+ ei2πx2
−n |1⟩).

(2.8)
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Figure 2.4: QFT for a four qubit quantum state.

where Eq. 2.8 already reveals the quantum program; it can be computed with
Hadamard gates and controlled rotations. The time complexity to do this is poly-
nomial, more precisely it is O(N log2 N) [31].

Example 2.5.2. Figure 2.4 shows the QFT for a 4 qubit system state.

2.6 Quantum Software Development

Similar to programming for classical computation, one can develop quantum soft-
ware at assembly language level (e.g. OpenQL) or on some higher level, in a
oftentimes more user friendly software development kid (e.g. QISKit SDK). This
software is then compiled / translated to the quantum hardware of use. The typi-
cal stack of a quantum computer is listed in Table 2.4. A step downwards from the
SDK level lies the compiler layer, which includes circuit synthesis [32] and qubit
mapping. The next lower level is where quantum error correction is implemented.
This results in the quantum program reaching the lowest level of the stack, where
the instructions contain error-corrected operations that can be executed by the
quantum device´s native controls.

In the last two decades different software has been developed at each of these
abstraction layers. As real quantum hardware is however still scarcely available,
quantum software simulators [33, 34] are commonly used to validate and test the
functionality of the upper layers, as for quantum algorithms, compilation and
quantum error correction. A selection of relevant programming frameworks that
are available for writing and simulating quantum programs are listed below

• OpenQL (Open Quantum Programming Language) is an open-source quan-
tum programming framework that aims to provide a high-level programming
interface for quantum computing. OpenQL allows developers to write quan-
tum programs using a C-like syntax and then translates these programs into
a machine-specific format that can be executed on a variety of quantum
architectures [35].
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• Quipper is a functional programming language for quantum computing de-
veloped by the University of Edinburgh. Quipper is designed to be used with
the Glasgow Haskell Compiler [36].

• QISKit (pronounced "quiskit") is an open-source quantum computing soft-
ware kit developed by IBM. QISKit allows users to write quantum circuits
and programs using Python, and it includes tools for simulating quantum
circuits and running quantum programs on real quantum hardware [37].

• Q# (pronounced "Q sharp") is a programming language developed by Mi-
crosoft for writing quantum programs. Q# is designed to be used with the
Quantum Development Kit of Microsoft [38].

• Cirq provides a Python software library for writing, manipulating, and op-
timizing quantum circuits, and then running them on quantum computers
and quantum simulator, developed by Google. [39].

The list is surely not exhaustive, since there are many other languages and frame-
works that have been developed for this purpose [40], and the field is still rapidly
growing. Also, the described stack picture is simplified and a lot of aspects to
every layer have not been described; for further reading on the topic please refer
to [25, 41].

SDK: code abstract quantum program
Compilation and Optimization: Gate synthesis and translation to native gate set

Quantum Error Correction: correct errors while executing
Quantum chip: physical operation and control

Table 2.4: Typical (simplified) stack of a quantum computer [42].

2.7 Quantum Technologies in the NISQ era

The previous section elaborated on quantum logic and software and how it is finally
executed on a quantum device. In this chapter quantum devices themselves and
their different technological approaches will be outlined. Current Quantum tech-
nologies are called NISQ computers [43]. NISQ stands for "Noisy Intermediate-
Scale Quantum". It refers to a moderate number of qubits (typically between 5 and
100) that can perform some (10-20) quantum operations [44]. Their main purpose
is to demonstrate the capabilities of quantum computing, i.e. performing tasks
that are difficult or impossible for classical computers, such as simulating quan-
tum systems, solving selected optimization problems and quantum algorithms,
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which require a small numbers of qubits. Different promising approaches have
been developed in the past decade; A selection of promising technologies and their
functionality is given below with a summary of their characteristics in Table 2.5.

• Superconducting qubits are typically made from thin films of supercon-
ducting materials, patterned as tiny wire-loops on a silicon wafer. The quan-
tum state of the qubit is encoded in the tiny flow of current through this
loop. The energy levels of the qubit can be manipulated by applying elec-
tromagnetic radiation (such as microwaves) to the loop, which causes tran-
sitions between the energy levels. The energy levels of the qubit can also be
controlled by applying a magnetic flux through the loop. Superconducting
qubits are considered as one of the best-developed physical current qubit
systems [45, 46].

• Trapped ions are qubits held in place via electromagnetic fields (using
lasers). Calcium ions have been used extensively in this research, due to
their relatively simple electronic structure and the availability of efficient
laser cooling techniques. The accuracy of the manipulation and readout
are dependent on the laser-ion interaction rates and the quality of the laser
beams. Next to superconducting qubits this technology is evaluated to be
one of the most promising approaches [47].

• Spin qubits are based on the spin of an electron or the nuclei of certain
atoms, which are controlled by electric fields. They are fabricated in solids
(e.g. silicon or gallium, using existing semiconductor technology or dia-
monds). Typically, spin qubits are more susceptible to decoherence due to
the interactions with the environment, such as the interaction with nuclear
spins or phonons (vibrations of the substrate material) [48]. However, the
negatively charged Nitrogen-Vacancy (NV) center in diamonds is one
of the most promising solid-state qubit platforms in this regard. It uses di-
amond defects to add nitrogen atoms in order to capture electrons. These
qubits are controlled with optics and can operate at room temperature. [49]

• Adiabatic quantum computation is a quantum optimization method
that uses quantum fluctuations to search for the global minimum of the
physical system, which encodes the solution landscape. In contrast to the
other aforementioned technologies, this technology is not a representative
of the quantum gate model. D-Wave Systems is the leading company on
this field and their quantum annealers consist of more than thousands of
qubits [50].

• Topological qubits are realized via quasiparticles. They can exist in cer-
tain materials, such as semiconductors. These tiny particles create multiple
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possible states of lowest energy in the physical system, which can be used to
store quantum information. These states are spread out across the system
in a way that is not limited to a specific location (non-local). This is im-
portant because it means that the quantum information is more resistant to
so called local noise which is noise that is limited to a specific location. By
encoding the information non-locally, it is protected from this type of noise.
Even though the "inherently error corrected" nature of topological qubits is
promising, the technology has not been demonstrated yet [51].

Super-
conducting

Trapped
Ion

Nitrogen
Vagancy

Quantum adiabatic
computation Topological

# Qubits 50-100 50 5 2000 ? 1

Lifetime 0.001s 1000s 100s 100µs ?

C-NOT
Fidelity 99.7% 99.9% 99.2% - 2 100% (error free)

C-Not
Time 60ns 200 µs 1ns - ?

Connectivity Nearest neighbor All-to-all Nearest neighbor All-to-all ?

Modality Gate model Gate model Gate model Adiabatic Gate model

Difficulties Operation at
low Temp (mK)

Complex optics
and slow operation Difficult control Special purpose

solver

Hard to realize,
states necessary
not found yet

Symbolic
Image

Companies Google, IBM,
Rigetti

IonQ, AlpineQT,
Honeywell

QuTech, Intel,
Quantum Brilliance D-Wave, Google Microsoft,

BellLabs

Table 2.5: Different quantum technologies; Data from [45, 51–55], Graphics from
C. Bickel/Science and [56].

1No success of realization yet.
2Adiabatic quantum computing is not gate based.

The list of selected qubit technologies is for sure not exhaustive, and there are
many other developments in the field of quantum technology that are also showing
promise, e.g. photonic qubits [57], electron spin qubits [58] or neutral atoms [59].
Also, the field is dynamic, and new technologies are being developed and explored
every year [60, 61].
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2.7.1 A word on limitations

Despite comprehensive research in the last decades, quantum hardware is still re-
stricted and computations are fragile [44]. In particular decoherence, noise and
fidelity are three of the main limiting factors. Decoherence refers to the loss of co-
herence (=the separation of the quantum state from its classical state). It is caused
by interactions with the environment, and it can make it difficult to maintain the
quantum state long enough to perform useful computations. Another hurdle is
noise, it summarizes different types of unwanted disturbances in a quantum sys-
tem that can cause errors in quantum computations; i.e. the control system, and
the quantum hardware itself. Controlling and manipulating quantum systems is
also a task to be improved; It requires precise control over the parameters of the
system, such as the energy levels, and the interactions between the qubits. It re-
quires the ability to read out the state of the qubits, and to perform operations
on them with high precision, which is referred to as fidelity. According to a recent
study [44] current quantum devices can realistically execute quantum programs
with n logical qubits where

n · depth <<
1

error − rate
. (2.9)

and this will hold for the next five to ten years.

Example 2.7.1. Thus a typical quantum device with error-rates of around 10−3,
the size of a quantum circuit is restricted to being much smaller than depth=50,
given a medium sized quantum hardware of 20 qubits.

Lastly, quantum computing is expensive; both in terms of energy and monetary
costs. Some technologies like superconducting qubits and trapped ions need to
be operated at low temperatures (mK), for which energy expensive cryostats are
necessary. This in turn translates to actual monetary cost [62] - quantum hardware
is currently still expensive to build and operate, even though it is difficult to find
precise numbers and figures in this regard, since energy efficiency of quantum
computing has not been thoroughly addressed yet [63].

2.7.2 Connectivity of quantum hardware

As we saw in the previous chapters, quantum technologies differ a lot and so do
their connectivity constraints. Connectivity describes the ability of the qubits in
the system to interact and communicate with one another. It is commonly repre-
sented by a so called coupling graph, where the physical qubits form the nodes of
the graph and the edges mark the ability to perform an operation. There are dif-
ferent types of connectivity, such as distance-based or programmable connectivity,
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where the physical qubit interactions are introduced during the course of an exe-
cution. This work focuses on fixed connectivity, which is the most common in all
the above mentioned technologies, where the qubits are connected in specific pat-
terns, for example a linear chain or a two-dimensional grid; i.e. nearest neighbour
interaction capability. Further, for some technologies it is only possible to apply
two-qubit gates in one direction even though two physical qubits are connected
on the chip, this is called asymmetric connection. The majority of technologies
however, e.g. all currently built superconducting processors, allow symmetric ap-
plication of gates [8]. For this reason, the work will exclusively focus on the latest
symmetric coupling model with nearest neighbour interaction.



Chapter 3

Qubit Mapping via QUBO

In the following sections the qubit mapping problem will be defined and how it
has been approached by other authors. It will further motivate and introduce this
work’s method to do so.

3.1 The Qubit Mapping Problem in general

Qubit mapping is the process of assigning the logical qubits in a quantum program
to the physical qubits on a quantum computer, while adhering to the connectivity
constraints (Sec. 2.7.2). It is one of the main tasks of a quantum compiler and
the corresponding mathematical problem is proven to be NP-complete [64]. In its
most general form the definition reads:

Definition 3.1.1 (Qubit Mapping Problem). Given a quantum program with n
qubits and a target architecture with n′ qubits, where n ≤ n′, find a function that
1. assigns each qubit in the program to a qubit in the target architecture at each
unit time of the execution and 2. inserts the minimum number of transformation
operations such that the resulting program can be executed using the connectivity
available in the target architecture.

Simply put, the goal is to minimize transformations to the quantum program
required to execute the program on a given quantum hardware. The objective is
to reduce execution overhead in terms of transformation operations and runtime,
as the states of the physical qubits in a quantum computer are fragile and deteri-
orate over time and this is naturally coupled to the success of their operations as
described in Sec. 2.7.1.

Definition 3.1.2 (Transformation Operation). A transformation operation in
quantum computing is a quantum operation, which transfers the state of a set
of physical qubits to another set of physical qubits in the quantum architecture.

18
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Some relevant examples are the familiar SWAP-gate, the MOVE-gate [9], telepor-
tation [65] and emulating gates such as Bridge or Reversal [14].

Remark. As many other mapping methods, the introduced approach will exclu-
sively focus on using SWAP operations to solve the qubit mapping problem, since
it is composed of CX-gates, which is native to the majority of nowadays quantum
technologies.

3.2 Related Work

In recent years, different approaches to qubit mapping have been explored, rang-
ing from permutation-based search algorithms to machine-learning based solu-
tions [8–11, 13, 14, 66]; They of course vary in their strategy, e.g. heuristic or
exact, but also in their optimization metrics, i.e. whether they focus on minimiz-
ing the number of transformations or the number of time steps. In addition to
hardware connectivity some mapping methods include noise, and error statistics
of the hardware [16]. There have been attempts to tackle asymmetric coupling
constraints (Sec. 2.7.2) via transformation operations such as Bridges or Reversal
e.g. [67]. Most solutions however assume symmetric connectivity and therefore
apply exclusively SWAP gates to adapt the quantum program. Two promising
heuristic-mapping methods of common use are SABRE a SWAP-based BidiREc-
tional heuristic-search algorithm [8] and qmap, another search heuristic which uses
look-ahead and an empty initial placement (which is then developed in the course
of the algorithm) [10]; Both are fully integrated with IBM’s Quantum SDK2. A
comprehensive overview of relevant mapping methods and their specifications is
given in Appendix B. The majority of these approaches start out with an initial
placement, i.e. assigning the logical qubits involved in the quantum program to
the physical qubits in the hardware. Then the heuristic loops through the sequence
of gates of the program and applies the gates to physical qubits according to the
constraints of the quantum hardware and inserts transformation operations when
needed.

The introduced method aligns itself among these techniques, however, it utilizes
in contrast to many of the mentioned works a holistic view of the problem. In other
words, many existing works rely on local search strategies, while this study focuses
on a holistic view of the qubit mapping problem. This means our formulation is not
prone to inaccuracies stemming from too restricted search windows, but captures
the quantum program and it’s requirements in one piece.

2https://qiskit.org, 06.01.2023
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3.3 Motivation to use QUBO for qubit mapping

This thesis introduces a new strategy: instead of iterating over gates, the problem
is captured as a whole by a special kind of optimization formulation, which can then
be solved with different standard optimization methods (e.g. simulated annealing,
tabu search, etc.). This optimization formulation is called quadratic unconstrained
binary optimization, or QUBO in short.

QUBO presents an interesting type of optimization formulation for quantum
computing, since it cannot only be solved by classical heuristics but also with adi-
abatic quantum computing [18, 19]. Since the construction of the first adiabatic
quantum computer (built by D-Wave Systems Inc. in the early 2000s, also called
quantum annealer) a lot of effort has been made to formulate QUBOs for differ-
ent NP-hard optimization problems, ranging from graph isomorphism [20], Traffic
Flow Optimization [21] to training machine-learning models [22]. Even though the
computational solving ability of these devices are restricted to small problem sizes
still, the fast development of these systems gives hope to expect that more realistic
problem sizes can be addressed in the near to mid-term future [23].

Furthermore, QUBO can be formulated in an exact manner, and is then solved
with some standard exact or heuristic solving method. This gives rise to two
advantages: a) since new and better solving methods are developed every year,
the method can always be dynamically adapted with the best currently available
algorithm, and b) the exact formulation gives a lower bound to the problem,
meaning that if it is solved exactly, it will always give the best possible solution.

Lastly, there have been only rudimentary experiments with using QUBO for
qubit mapping [24], which makes it an especially interesting research question,
since there is no proof-of-concept yet.

3.4 Preliminaries

The following definitions and the concepts of assignments and transformation op-
erations will be used to explain the details of the introduced approach

3.4.1 Definitions

Definition 3.4.1 (Coupling Graph). The coupling graph is a connected graph
that represents the connectivity of the physical qubits in a quantum device, which
can in general be symmetric or asymmetric. As previously described in Sec. 2.7.2
most technologies allow for a symmetric application of two-qubit gates, i.e. CX-
gates in both directions are possible, which is represented by an undirected graph
G′(V ′, E ′). We will therefore use the symmetric coupling model for this study, as



CHAPTER 3. QUBIT MAPPING VIA QUBO 21

the majority of other references do, too. The physical qubits make up the set of
nodes V ′ in the graph and possible interactions in both directions between physical
qubits form the set of edges E ′.

Definition 3.4.2 (Slice). A slice or time slice k refers to an arbitrary sequence of
gates cut from the quantum program; The slices form a partition of the quantum
program, where every gate belongs to exactly one slice.

Example 3.4.1 (Slice). A time-sliced quantum program is given in Figure 3.1.

Figure 3.1: Example partition of quantum circuit with five time slices.

Definition 3.4.3 (Interaction Graph). The interaction graph Gk(V,Ek) of a time
slice k is in general a directed unconnected graph, which represents the qubits as
nodes Vk of the quantum program and the sequence of two-qubit gates as directed
edges Ek. Since a gate can be executed on a coupling graph edge regardless of its
direction, it is sufficient for the mapping problem to perceive it as an undirected
graph, depicted in a) of Fig. 3.2.

Definition 3.4.4 (Assignment or Subgraph Isomorphism). An assignment is a
subgraph-isomorphic mapping: it refers to an injective function fk : V −→ V ′ of
an interaction graph Gk(V,Ek) to the coupling graph G′(V ′, E ′) of a time slice k,
i.e. fk assigns the set of logical qubits in the interaction graph V to a subset of the
physical qubits in the coupling graph V ′, such that all edges in Ek are preserved
in E ′.

Definition 3.4.5 (Non-Assignment). A non-assignment is every mapping from the
an interaction graph to the coupling graph violating the constraints of a subgraph
isomorphism.

Example 3.4.2 (Assignment to coupling graph). An assignment and a non-
assignment is depicted in b) of Fig. 3.2. In case of an assignment all gates
happening in the time slice are represented by an edge in the coupling graph.

Definition 3.4.6 (Initial Placement). The initial placement refers to the assign-
ment of time slice k = 0.
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a) b)

Figure 3.2: a) Shows the interaction graph of a quantum program’s time slice
k = 0 (Ex. 3.4.1) where qubits are presented as black circles and gates between
logical qubits are represented by solid black edges; b) pictures a non-assignment
on the top and an assignment on the bottom; the interaction graph drawn in
black is mapped to the coupling graph in grey/white where solid grey edges mark
the connectivity of the coupling graph and the bold edges signify where at least
one gate is applied. The top scenario sketches a non-assignment since the edge
(q0, q4) has no representation in the coupling graph; the lower scenario pictures an
assignment, i.e. all logical qubits and edges in the interaction graph have their
representative in the coupling graph.

3.4.2 Assignments and Transformation Operations

Given a quantum circuit sliced in time, the objective is to find an assignment
for each interaction graph Gk(V,Ek) to the coupling graph - assuming at present
that there always exists at least one assignment for each time slice. It is likely
that two assignments of two different time slices are not equivalent; In this case
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transformation operations have to be applied. The overall objective is to minimize
these transformation operations.

Example 3.4.3 (Two Different Assignments). Let us consider two different as-
signments of two adjacent time slices. Fig. 3.3 depicts two assignments, where in
k = 0 the logical qubit q2 is placed on physical qubit 3, i.e. q2 → 3. In the adjacent
slice k = 1 q2 → 0. Hence, q2 needs to be moved from its node 3 to node 0 ...

Figure 3.3: In the picture two assignments for time slices k = 0 (left) and k = 1
(right) are plotted. Each assignment is signified by dotted grey arrows pointing
from the logical qubits in the interaction graph (black) to the physical qubits in
the coupling graph (white/grey). The edges in bold solid grey again signify that
it is used by at least one gate. The red dotted arrows outline the situation for q2,
which is first assigned to node 3 and then to 0 in k = 0, and k = 1, respectively.

In general each logical qubit in time slice k − 1 assigned to a node i′ in the
coupling graph, which is assigned to a coupling graph node j′ ̸= i′ in the adjacent
time slice k, needs to be relocated from its coupling graph node i′ in time slice
k−1 to the target coupling graph node j′ in time slice k. Since we are considering
a connected graph, this can always be achieved by a so called SWAP-chain.
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Definition 3.4.7 (SWAP-chain). A SWAP-chain is a sequence of one or more
SWAP-gates between a logical qubit i starting out at some location i′ and other
logical qubits; in this way qubit i is moved to its target destination j′, where i′ and
j′ denote different physical qubits in the coupling graph in two adjacent time slices
k− 1 and k respectively. Thus, a SWAP-chain happens alongside of an edge-path
in the coupling graph. Performing one or more SWAP-chains according to the
needs of a quantum program is termed routing.

Example 3.4.4 (Simple SWAP-chain with one SWAP). Back to "... q2 needs to be
moved from its node 3 to node 0 ...": The obvious SWAP-chain, which comprises
only one SWAP-gate is SWAP(q0, q2) depicted in Fig. 3.5.

Figure 3.4: In order for the logical qubit q2 starting out from node 3 in k − 1 to
be assigned to node 0 in time slice k, it has to perform a SWAP with the logical
qubit placed on 0, i.e. q0. The coupling graph edge (0,3) alongside of which the
SWAP happens is marked in yellow.

Example 3.4.5 (SWAP-chain with more SWAPs). A more comprehensive SWAP-
chain is required for q1, since it is assigned to node 4 in k− 1 and then assigned to
node 1 in k and these nodes are separated by a 3-edge distance. In order to provide
for the transition q1 → 4 to q1 → 1 we need to take into account the SWAP that
has already happened in Ex. 3.4.4 and thus apply the SWAP-chain: SWAP(q1, q0)
+ SWAP(q1, q3) + SWAP(q1, q4). The coupling graph edges involved in the chain
are marked in yellow in Fig. 3.5. After performing this SWAP-chain q0, q2 (2 out
of 5 qubits) have reached their target nodes. The remaining task is to find SWAP
chains for all other qubits until all qubits are placed on their target nodes.
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Figure 3.5: After the first simple SWAP (marked in light pink) a more compre-
hensive SWAP-chain comprising 3 SWAP-gates is required to transfer q1 to its
target location node 1 in the coupling graph. The coupling graph edges involved
in the chain are marked in yellow. A possible SWAP-chain reads: SWAP(q1, q0) -
SWAP(q1, q3) - SWAP(q1, q4).

Remark. A SWAP-chain needs to take into account the changes that have already
been made by previous SWAP-chains.

We saw that applying SWAP-chains between time slices yields the necessary
transformations between the assignments of time slices, which is equivalent to
adding SWAP-gates in between time slices of the quantum program.

Example 3.4.6 (Add SWAP-gates to quantum program). The SWAP-chains of
our example routing are added between the time slices of the quantum program as
depicted in Fig. 3.6.
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Figure 3.6: SWAP-chains are inserted in the routing section (shaded in yellow)
in between the time slices k = 0 and k = 1. The first SWAP-gate and the three
last SWAP-gates correspond to Ex. 3.4.4 and Ex. 3.4.5, respectively. The dots
represent the remaining SWAP-chains still required for q3, q4 and q5.

The corresponding graph-theoretical problem describing the transition from
one assignment to another is termed the token swapping problem and it has NP-
complexity [68].

Definition 3.4.8 (Token Swapping Problem). Given an undirected connected
graph G(E, V ), where each node has an assigned token, the goal is to swap tokens
between adjacent nodes until a desired distribution of tokens is achieved with the
minimum number of token swaps.

Luckily, there exists an approximate algorithm solving the token swapping
problem, which yields the SWAP-chains necessary with an upper bounded number
of SWAPs [69]; we will utilize this algorithm later.

3.5 The Cost Function

As outlined in the previous section the problem formulation will consist of two
tasks, a) finding an assignment or subgraph isomorphism for each time slice, while
b) solving the token swapping problem between all neighboring pairs of time slices.
Remark. These concepts are certainly not new and have been used in qubit map-
ping, as for example in an exhaustive method developed by [14]. These strategies
utilized for qubit mapping have however so far to our knowledge never been formu-
lated as a quadratic unconstrained binary optimization problem, which this thesis
is all about.
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Before delving into the details of the cost function, we give a general definition
of quadratic unconstrained binary optimization.

Definition 3.5.1 (Quadratic unconstrained binary optimization model). The QUBO
model is in general a NP-complete optimization problem; the minimizing version
which we will use reads

x∗ = min
x

xTQx = min
x

i<j

Qijxixj +
i

Qiixi (3.1)

where x is a vector of binary decision variables of size N , i.e. x = {0, 1}N and Q
is a square matrix of N ×N real valued constants. The matrix’ constants encode
the problem, such that the vector x∗ corresponding to the minimum value is the
solution to the optimization problem.

In what follows, the components of the developed QUBO formulation for qubit
mapping will be thoroughly explored.

3.5.1 Find Assignments

Given a quantum program sliced into m time slices. The objective is to find an
assignment or subgraph isomorphism for each time slice k to the coupling graph
G′(V ′, E ′). In order to encode the problem into a QUBO we need to define the
solution array.

Definition 3.5.2 (Binary Solution Array). All possible assignments for a time
slice k are represented by a binary array xk ∈ {0, 1}n·n′ , where n = |V | denotes
the number of logical qubits and n′ = |V ′| denotes the number of physical qubits
in the coupling graph.

xk := [xk
0,0, x

k
0,1, ..., x

k
0,n′−1, x

k
1,0, ..., x

k
1,n′−1, ...x

k
n−1,n′−1] (3.2)

xk
i,i′ = 1 signifies that logical qubit i is assigned to the physical qubit i′ in time

slice k and xk
i,i′ = 0 signifies that logical qubit i is not assigned to the physical

qubit i′ in time slice k. Thus, the problem size N grows with the number of logical
qubits n, the number of physical qubits n′ and the number of time slices m, i.e.
N = n · n′ ·m.

We will use the following definition to encode an assignment [70]:

Definition 3.5.3 (Assignment QUBO). The function F to be minimized consists
of two quadratic functions J and P ; both functions serve as penalties should the
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solution not be a subgraph isomorphism. The sets Ek and E ′ denote the edge sets
for the interaction graph and the coupling graph, respectively.

min
xk

F (xk) = min
xk

J(xk) + P (xk) (3.3)

where

J(xk) :=
i∈V

(1−
i′∈V ′

xk
ii′)

2 +
i′∈V ′

(
1

2
−

i∈V
xk
ii′)

2 (3.4)

P (xk) :=
(i,j)∈Ek (i′,j′)/∈E′

xk
ii′x

k
jj′ (3.5)

Summing over all time slices k results in the overall cost function to find as-
signments for all time slices.

min
x

k

F (xk) (3.6)

Proof. Since all terms of the sum (3.6) only consist of quadratic functions with a
minimum value greater or equal to zero, it is at its minimum value iff all terms
exhibit their minimum values, i.e. J and P exhibit n′

4
and zero, respectively. The

first sum of J is zero, iff xk assigns each logical qubit i ∈ V exactly once to a
physical qubit i′ ∈ V ′. The second sum of J exhibits its minimum value of n′

4
,

if one or no logical qubit i is assigned to a physical qubit i′. P preserves the
edges, meaning it is greater zero if an edge in the interaction graph is mapped to
a non-edge in the coupling graph. Thus, these conditions are equivalent with the
property that the sum (3.6) penalizes xk should it be a non-assignment.

Example 3.5.1 (Penalties for Non-Assignments). There are four ways to violate
the constraints for an assignment. a) A logical qubit is not mapped to any coupling
graph node, b) a logical qubit is mapped more than once to two or more nodes in
the coupling graph, c) two or more logical qubits are mapped to one node in the
coupling graph and d) an edge in the interaction graph has no representative in the
coupling graph, Fig. 3.7.



CHAPTER 3. QUBIT MAPPING VIA QUBO 29

Figure 3.7: Violations of an assignment, where marks a) a logical qubit is not
mapped to any coupling graph node, b) a logical qubit which is mapped more
than once to the coupling graph, c) two or more logical qubits are mapped to one
node in the coupling graph and d) an edge in the interaction graph which has no
representative in the coupling graph.

The logical qubits "live" on the same set of physical qubits throughout the
course of the program, i.e. in a correct mapping solution all assignments target
the same set of qubits.

Proof. Given an assignment, where i → i′, j → j′, the exchange of locations i′

and j′ on the coupling graph between the logical qubits i and j, is achieved by
a SWAP-chain. Both locations i′ and j′ are necessarily occupied before and after
the SWAP-chain by qubits i → i′, j → j′ and i → j′, j → i′, respectively. Thus,
no SWAP-chain can ever lead to a logical qubit being mapped to a coupling graph
node outside the initial set of occupied physical qubits.

Remark (Set of Occupied Physical Qubits). Given a bigger coupling graph than
interaction graph V < V ′, there is at least one coupling graph node not occupied
by any logical qubit. Since SWAP-gates take place between logical qubits, the
free coupling graph node will always stay free over the course of all time slices, as
presented in Fig. 3.8.

Definition 3.5.4 (Initial Set and Free Set). Given one or more assignments, the
initial set V ′

init comprises all occupied physical qubits in the coupling graph, where
naturally |V ′

init| = |V |, while the free set V ′
f determines the complementary set of

nodes of the coupling graph, i.e. V ′
f = V ′ \ V ′

init.
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Figure 3.8: All pairs of logical qubits mapped to a pair of nodes in the coupling
graph with a connecting edge (marked in yellow) can perform a SWAP. No SWAP
involves a free coupling graph node 6, thus the latter stays free in all assignments.

The goal is to ensure that the initial set is preserved over all assignments.
The function S will serve as penalization function for every logical qubit i being
mapped to a physical qubit i′ ∈ V ′

f .

Definition 3.5.5 (Cost function S). The quadratic term S ensures preservation
of the initial placement, it reads

min
x

S(xk,y) (3.7)

S(xk,y) := (n′ − n−
i′∈V ′

yi′)
2 +

i∈V i′∈V ′
xk
i,i′yi′ (3.8)

where y ∈ {0, 1}n′ are n′ additional binary variables, signifying the occupied and
free set: yi′ = 0 or yi′ = 1 mark that physical qubit i′ is either in the initial set
or in the free set, respectively. Since these variables are chosen once for all time
slices, the first part of S ensures that there are exactly (n′ − n) qubits in the free
set for all time slices. The second sum then penalizes every logical qubit mapped
to one of the free set nodes V ′

f .

Summing over all time slices k results in the overall cost function for qubit
placements, which reads

min
x

k

S(xk,y) (3.9)

Proof. Since all components of the sum only consists of quadratic terms, it is zero
if and only if all components S = 0. Further, since for all slices k, both terms are
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quadratic terms, S = 0 if and only if both terms are equal to zero. The first term
is zero, iff y consists of exactly n zero elements and (n′ − n) non-zero elements.
Fixing the second term of S to an arbitrary logical qubit i, the term is greater than
zero, if and only if qubit i is placed on a physical qubit i′ where yi′ = 1. Since this
naturally holds for all other qubits i and terms of the sum, these conditions with
the previously set definitions are equivalent with the property that penalization is
incurred, if either the initial set held more or less than n physical qubits or if a
logical qubit is placed on a physical qubit outside the initial set.

Example 3.5.2 (Violating S). Given are two assignments x0 and x1 involving
two logical qubits, and a coupling graph with three nodes, outlined in Fig. 3.9.

x0 = [ 100
i=0

; 010
i=1

] (3.10)

x1 = [ 100
i=0

; 001
i=1

] (3.11)

Regardless of what S decides for the variables y it will result in a violation; The
only options satisfying the first sum of S are y = [010], y = [100] or y = [001]
(hence one qubit i′ being in free set |V ′

f | = 1). Let us write S explicitly for option
y = [001], i.e. V ′

f = 2

S(x0) + S(x1) =(3− 2− (0 + 0 + 1))2 (3.12)
+ 1 · 0 + 0 · 0 + 0 · 1

i=0,k=0

+0 · 0 + 1 · 0 + 0 · 1
i=1,k=0

(3.13)

+ 1 · 0 + 0 · 0 + 0 · 1
i=0,k=1

+0 · 0 + 0 · 0 + 1 · 1
i=1,k=1

(3.14)

= 1 (3.15)

It is left to the reader to try it with the other options; S(x0) + S(x1) > 0, which is
equivalent to the solution vectors targeting different sets of physical qubits.

Figure 3.9: Sketch of the two assignments of Eqs. 3.10 and 3.11, where the blue
bounded nodes in the coupling graph mark that they in the initial set y = [001].
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Combining the introduced cost functions F Eq. 3.6 and S Eq. 3.9 yields an
assignment solution for all the time slices m in the quantum program. We thus
write the assignment part Ha of the cost function

min
x

Ha(x) (3.16)

where

Ha(x) :=
m

k=1

F (xk) + S(xk,y) − m · n′

4
. (3.17)

We subtract the theoretical minimum value of minx k F (xk) = m·n′
4

in order
to have an overall minimum value of zero, which does not change the findings of
the cost function and is more convenient to remember.

3.5.2 Minimizing Transformation Operations

Lastly, all pairs of two adjacent assignments should reduce the overall number of
transformations. As described in the previous Sec. 3.4.2 the transition from one
assignment xk−1 to another xk is achieved via SWAP-chains and the corresponding
problem is termed token swapping. Luckily, there always exists a solution for two
assignments which cover the same node set of a connected graph, i.e. the initial
set in our case as discussed by [69]. Further, the same authors developed an
approximate algorithm, which solves the token swapping problem in polynomial
time with a bounded number of SWAPs;

Definition 3.5.6 (Swap bounds approximate algorithm [69]). The number of
swaps ns necessary for a placement transition is proven to be bounded by

L

2
≤ ns ≤ 2L. (3.18)

The bounds are determined by the so called distance measure L.

Definition 3.5.7 (Distance measure L). The distance measure L is the sum over
all shortest distances di′j′ , i.e. the smallest connected path of edges between nodes
i′ and j′ on the coupling graph considering two assignments xk−1 and xk.

L(xk−1,xk) :=
i i′ ̸=j′

di′j′x
k−1
i,i′ x

k
i,j′ . (3.19)

Example 3.5.3. Let us again assume the following two assignments x0 and x1

involving two logical qubits, and a coupling graph with three nodes, outlined in Fig.
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3.10.

x0 = [ 100
i=0

; 010
i=1

] (3.20)

x1 = [ 010
i=0

; 100
i=1

] (3.21)

Hence L = d01x
0
00x

1
01 + d10x

0
11x

1
10 = 2. The obvious solution is the SWAP(q0, q1),

i.e. one transformation counted by the lower bound L/2 = 1.

Figure 3.10: Sketch of the two assignments of Eqs. 3.20 and 3.21, where the edge
in between the target coupling graph nodes (where the colored arrows point to)
already indicates how many SWAPs will be necessary, i.e. one SWAP.

Since L has already the desired quadratic form, it will promptly serve as the
last part of the cost function, which is responsible for minimizing SWAPs and thus
term this part Hs.

min
x

Hs(x) (3.22)

where

Hs(x) :=
k

L(xk,xk−1) (3.23)

3.5.3 The Final Form

Combining Eqs. 3.17 and 3.23 yields the final cost function H for the qubit
mapping problem

min
x

H(x) (3.24)

where

H(x) :=Ha(x) + λ ·Hs(x). (3.25)
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with λ > 0 referred to as SWAP-penalization multiplier, which is necessary
to scale the SWAP cost Hs. In general we want to penalize SWAPs as much as
possible which means we favor a high value of λ. However, according to the proofs
for F (Eq. 3.6) and S (Eq. 3.9), Hs has to be at its minimum value zero in order to
represent an assignment. This means any values greater than zero are equivalent
to at least one wrong assignment, and this in turn means the circuit cannot be
executed. Thus, the mapping solution should always prefer a minimum value of
Ha before a minimum value of Hs.

Example 3.5.4. Let us assume for a solution x1, the components of the cost
function yield Ha(x1) = 1 and Hs(x1) = 1. For another solution x2, the cost
function results in Ha(x2) = 0 and Hs(x2) = 3. In total the cost functions for x1

and x2 yield 2 and 3, respectively. Even though the solution x1 yields obviously a
wrong assignment and x2 yields a correct assignment, the solver would still decide
that x1 to be the minimum solution.

In order to avoid a scenario described in Ex. 3.5.4, i.e. guarantee favoring
assignments over SWAP minimization, we want to enforce

λ ·Hs < 1. (3.26)

In theory, this could be achieved by choosing λ < λmax with

λmax :=
1

maxHs

(3.27)

hence

λ ·Hs < λmax ·Hs =
1

maxHs

·Hs ≤ 1. (3.28)

The maxHs is however not a priori known, since we do not know beforehand which
subset of physical qubits are chosen and hence we do not know which elements of
the distance matrix will be used.
Summa summarum: we cannot set an upper bound for λ. We however should still
choose λ reasonably small, such that

λ ·Hs ≈ 1. (3.29)

As the Hs grows with the size of the quantum program, as well as the size of the
coupling graph, λ is defined as follows

Definition 3.5.8. (SWAP-penalization multiplier λ)

λ :=
f

n · ng

with the number of qubits n and two-qubit gates ng, and a scaling factor f > 0.
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Example 3.5.5. Choosing f = 1, we assume that there are less than n ·ng SWAPs
expected, i.e. λHs <

1
nng

maxHs =
1

nng
nng = 1. This equals a scenario where only

one two-qubit gate is in every time slice and we would have to apply a SWAP to
all n qubit gates for each pair of time slices. Choosing f = 10 or f = 100 equals
expecting 10× or 100× less SWAPs, respectively, which is more realistic.

3.5.4 On the Problem Size and Choice of Solver

The size of the binary solution vector N = m · n · n′ grows with the number of
slices m, the number of logical qubits n and the number of physical qubits n′. In
the maximum case, the number of slices m is equivalent to the number of two-
qubit gates of the quantum program, hence a slice holds then one two-qubit gate.
Thus, the binary vector scales cubically with both the size of the circuit (n and m)
and the quantum hardware (n′). Rapidly increasing solution sizes quickly result
in matrices with dimensions of more than tens to hundreds of thousands (e.g.
N = 104 solving for a quantum circuit with n = 10 qubits on a n′ = 10 qubit
hardware with m = 100 time slices; which is realistic considering the maximum
case when a circuit with m gates also is sliced into m parts).

Studies of exact QUBO solvers typically use instances with hundreds up to
thousands of variables [71, 72]. Thus, the problem sizes we want to consider for
fall in the regime where heuristics are more applicable: the goal is to find near-
optimal solutions within reasonable time limits. For this purpose we use the dwave-
neal [73] simulated annealer [74] as our dedicated solver heuristic, as it comes with
the open source package of D-Wave Systems and can compete with commercial
QUBO solvers [75].

3.6 Slicing with a Genetic Algorithm

In Sec. 3.4.2 we assumed that there exists at least one assignment for each time
slice. This is in general not provided by an arbitrary slicing. In order to ensure
a slicing where for each time slice an assignment exists, a genetic algorithm is
implemented according to literature recommendations [76], which improves on the
slices’ time points in the quantum program.

Definition 3.6.1 (Genetic Algorithms [76]). Genetic Algorithms are optimiza-
tion techniques where the solution to a cost function is encoded as arrays of bits
or character strings, called chromosomes. These chromosomes are manipulated
through genetic operations, such as crossover and mutation, and selected accord-
ing to their fitness to optimize their associated cost. The process involves encoding
the objectives, defining a fitness function, creating a population of individuals, and
evaluating their fitness over multiple generations.
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Figure 3.11: Sliced quantum program with associated time points t =
[0, 3, 9, 10, 11, 12, 15]

Let us define the components of the GA used in more detail:

Definition 3.6.2 (Chromosome). A chromosome t is an array of arbitrary as-
cending circuit time points. We are only interested in two-qubit gates and we
assume for the time count that it is possible to execute one two-qubit gate at a
time. Hence, the number of time points of the program is equivalent to the num-
ber of two-qubit gates in the circuit. In order to be consistent each chromosome
t = [t0, t1, ..., tm+1] starts with t0 = 0 and ends with tm+1 = ng + 1, where m
denotes the number of slices and ng the number of two-qubit gates. Each slice k
thus has two confining time points [tk, tk+1], which contains at least one two-qubit
gate. An example of a sliced circuit with marked time points is shown in Fig. 3.11.

Definition 3.6.3 (Population). A population is a list of np chromosomes.

In the subsequent section, these definitions will be used to explain the code im-
plementation to introduce the used genetic operations and formalise the algorithm
as pseudocode.
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Implementation

The introduced qubit mapping method is implemented in Python 3.8 and publicly
available on Github [17]. In the following, an overview of the modules, their
functionality and respective interaction will be explained.

4.1 Overview Modules

The implementation comprises the following modules

• CouplingGraph.py contains the class CGraph and several lists of edges for
different hardware systems; as the name suggests, it is responsible for the
generation of the target coupling graph.

• InteractionGraph.py comprises the class IGraph, and holds the func-
tionality to import a quantum program, to slice the quantum program into
random time slices and generate the corresponding interaction graphs.

• QUBOmodel.py holds the class QUBO which provides the functionality to
build and solve the quadratic cost function from a sliced quantum pro-
gram and the target coupling graph. Further, it contains the functions
CheckMapping and CountSwaps to verify a mapping-solution and to
count its swaps, respectively.

• GeneticAlgorithm.py comprises the genetic algorithm, with the genetic op-
erations Mutation, Crossover and Create to generate and transform
chromosomes. The module is applied to improve the slicing while ensuring
a valid mapping.

37
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4.2 Functions

In what follows, definitions of class functions and additional functions are given.

4.2.1 Fitness

The fitness value of a chromosome t is an important concept in a genetic algorithm.
In our mapping method, it is defined as follows

Definition 4.2.1 (Fitness function). The fitness function F (t) serves as a measure
of how well a random slicing of the circuit performs compared to another random
slicing. The time-point arrays form the input, which are then used to generate the
respective slice-interaction graphs. These graph properties build the QUBO model.
Subsequently, a built-in simulated annealer of the dwave-neal library is called to
solve the QUBO model H (Eq. 3.25). The result of F (t) is thus the minimum
value found by simulated annealing for the QUBO model for a chromosome t.
Pseud-code listings in Alg. 1.

Algorithm 1: Fitness in QUBOmodel.py

function F(t):
QUBO <quadratic model> ← build model from time points in

chromosome t with corresponding objects defined in InteractionGraph.py
and CouplingGraph.py.

min <int>, x <bool array> ← call neal.SimulatedAnnealing(QUBO).
return min, x

end function

Remark. Since we are interested in the mapping solution of the QUBO, the Fitness
function returns both the fitness value as well as the solution array.

4.2.2 Validation and SWAP Count

In order to ensure a valid mapping, the assignment part of the cost function Ha

Eq. 3.17 needs to be the optimal value. This can easily be checked by inserting
the binary solution array into Ha, listed in Alg. 2. Further in order to calculate
the upper and lower bound of SWAP-gates necessary using a mapping solution,
we calculate the second part of the cost function Hs Eq. 3.23 as listed in Alg. 3.
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Algorithm 2: Validation in QUBOmodel.py

function CheckMapping(x):
ismapping <bool> ← evaluate Ha(x)

?
= 0

return ismapping
end function

Algorithm 3: Number of SWAP-gates in QUBOmodel.py

function CountSwaps(x):
min nswaps <int> ← 1/2 · k L(x

k,xk+1)
max nswaps <int> ← 2 · k L(x

k,xk+1)
return min nswaps, max nswaps

end function

4.2.3 Genetic Operations

The genetic operations Creation, Crossover and Mutation are defined as
follows:

Algorithm 4: Creation in GeneticAlgorithm.py

function creation( ):
tinner <int list>← select a random set of elements ∈ [1, ng]
t <int list> ← [0] + sort(tinner) + [ng + 1]
return t

end function
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Algorithm 5: Crossover in GeneticAlgorithm.py

function crossover(tc, td):
t ← combination of left half of parent tc and right half of parent td.
t ← unique(t) Note: creates unique set in case of duplicates caused by

previous step
return t

end function

Algorithm 6: Mutation in GeneticAlgorithm.py

function mutation(t):
tinner <int list>← select a random set of elements of t

for ti in tinner do
r = random(0,1)
if r < 0.5 then

ti = ti + 1
else

ti = ti − 1
end

end
t <int list> ← [0] + sort(tinner) + [ng + 1]
t ← unique(t) Note: creates unique set in case of duplicates caused by

previous step
return t

end function
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4.3 Program Flow

1. Create initial population, i.e. generation g = 0, of np chromosomes [t1, t2, ..., tnp ],
and evaluate their individual fitness values [F (t1), F (t2), ..., F (tnp)] defined
in Alg. 1.

2. Build population of the next generation g = 1 with genetic operations:

– The fittest p% chromosomes of the initial population are chosen as
parents.

– Further c% chromosomes of the initial population are created by crossover
of two randomly selected parents with the genetic operation Crossover
Alg. 5.

– Another m% chromosomes undergo mutation with the genetic operation
Mutation Alg. 6.

– The remaining r% chromosomes are created anew with the genetic op-
eration Create Alg. 4,

where p, c,m, r ∈ R+ are adjustable and naturally p+ c+m+ r = 100.

3. The generation is complete, the fitness F of all chromosomes is evaluated
and sorted accordingly.

4. Repeat 2.-3. steps gmax times, where gmax ∈ N+ is adjustable.

5. Select the mapping solution of the best chromosome in the gmaxth generation
and

– check if it is a valid mapping by calling the operation CheckMapping
Alg. 2

– count the number of SWAP-gates necessary in the optimal and maxi-
mum case via the function CountSwaps Alg. 3.

6. Return the mapping solution (x), the validation outcome (ismapping)
and respective SWAP counts (min nswaps, max nswaps).

A schematic flow diagram is shown in Figure 4.1.
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Figure 4.1: Opimization flow of the implemented qubit mapping method. The cen-
tral module GeneticAlgorithm.py comprises the genetic algorithm which makes
use of InteractionGraph.py and CouplingGraph.py and QUBOmodel.py. In
GeneticAlgorithm.py the chromosomes are created, sorted according to their
fitness and improved over a set maximum number of generations gmax. The fitness
is calculated via QUBOmodel.py. This module makes use of InteractionGraph.py
and CouplingGraph.py to solve the cost function H for a chromosome t.
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4.4 Additional Functions

Once a solution is found, the functions ListMapping and AnimateMapping
can be used to generate a more comprehensible translation of the binary solution
array.

• ListMapping lists the assignments of two-qubit gates to the coupling graph,
it can also be used as test function; however as it is equipped with boolean
functions which check for valid assignments, an example is depicted in Figure
4.2.

• An animation created with AnimateMapping, shows the coupling graph
with its initial-set, and the course of the execution with one two-qubit gate
per frame. A screenshot is depicted in Figure 4.3.



CHAPTER 4. IMPLEMENTATION 44

Figure 4.2: Mapping solution translated to a list generated by ListMapping. On
the left we can see the solution translated to slice, CX-gate and where on the
coupling graph it is executed. The number -1 in a tuple signifies, that the qubit
is not assigned. Further the last two columns signify, if the edge exists in the
coupling graph and if the qubits of this edge are within the initial set, respectively.

1 2

3 4

Figure 4.3: Example frames 1-4 generated by AnimateMapping.
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Evaluation

In what follows the experimental setup to comprehensively test the introduced
method and the results will be discussed.

5.1 Experimental Setup

System. All tests were run on an Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz
with 256 GB of RAM and 16 cores running Debian GNU/Linux 11.

Quantum Hardware. A selection of benchmark quantum programs is mapped
to the ibmqx20 coupling graph depicted in 5.1 with 20 physical qubits connected
via 43 edges.

Parameter settings. The parameters np (population size) and gmax (max number
of generations) are chosen such that one execution takes less than 3 minutes for the
largest benchmark, np = 20 and gmax = 15. Note, that the parameter settings have
a large impact on the performance and runtime of the method. The penalization
factor λ = f

n·ng
is dynamically set for each circuit depending on the number of

qubits n and the number of two-qubit gates ng with an additional scaling factor
f , in order to dynamically adjust the SWAP-penalization λ ·Hs ≈ 1 as discussed
in Sec. 3.5.3.

Comparison. The introduced method is compared to four qubit mapping meth-
ods, qmap, Qiskit basic, Qiskit stochastic and Qiskit SABRE 1, where for the Qiskit
methods, the trivial built-in method for the initial placement is chosen. All of
them serve as reference mapping methods in many recent publications; a detailed
overview of recently developed mapping methods, their comparing references and
other specifications can be found in the Appendix Table B.1.

1Qiskit integration of SABRE [77]

45
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Figure 5.1: IBM Q20 Tokyo coupling graph

Experiments. Two experiments are conducted to demonstrate significant dif-
ference in the mapping outcomes due to different scaling factors f ; in the first
experiment the scaling factor is set f = 10 and f = 100 in the second as discussed
in Ex. 3.5.5. Each given data point in the following is the mean value of 10 runs.

Performance. Similar to most other mapping methods listed in Tab. B.1, the
performance metrics of interest are the SWAP count and the execution time.

5.2 Benchmark selection

Three commonly evaluated benchmark sets of quantum programs were chosen for
the mapping task, MQT Bench [78], RevLib [79] and QUEKO [80]; they have been
used by many recently developed mapping methods Tab. B.1. In this study we are
mostly interested in quantum programs, which have a realistic chance to run on
a near-term quantum device, i.e quantum programs which comply with the limits
of the inequality constraint (2.9). Applying this filter to the named benchmark
sets yields 261 quantum programs, which are within the thresholds of maximum
20 qubits and 50 two-qubit gates.

Remark. All circuits are decomposed into the native gate set of the chosen hard-
ware, thus there is only one type of two-qubit gate apparent in all quantum pro-
grams, the CX-gate.

The respective distributions of benchmark programs is shown in Figure 5.2.
In order to know, which benchmarks can be located where at the previous

plots, Fig. 5.3 shows the number of qubits involved in the benchmark circuits over
the number of CX-gates.
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Figure 5.2: The graphs on the left and right display the distribution of benchmark
circuits over the number of qubits they comprise, and the distribution of bench-
mark circuits over the number of CX-gates they comprise, respectively. In total,
mqt, queko and revlib make up 51%, 18% and 31%, respectively.
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Figure 5.3: Number of qubits involved in the benchmark circuits over the number
of CX-gates.
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5.3 Results by SWAP Count

5.3.1 Experiment 1

In the first experiment, where we set the scaling factor f = 10, the method could
successfully find assignments for 114 benchmark circuits, i.e. 44% of the total
number of benchmark circuits evaluated.

Fig. 5.4 shows the overall SWAP-count (mean and standard deviation) grouped
by the number of qubits n in a circuit and the three reference mappings of Qiskit
(basic, stochastic and SABRE) in boxplots. Further the plots in Fig. 5.5 display
the SWAP-count difference between the QUBO method and the Qiskit methods.
All of the graphs show clearly that the upper bound of SWAPs for the QUBO
method cannot compete with the Qiskit methods, hence it results in worse out-
comes for almost all benchmark circuits and the difference grows in favor of the
Qiskit methods with the number of qubits. In the worst case, the benchmark cir-
cuit with 19 quits result for the Qiskit methods in 110 to 120 SWAPs less than
in the QUBO mapping. In the best case, the upper bound is about the same or
a little bit better than outcomes of Qiskit basic and sabre for small sized circuits
(2-5 qubits). However, if the approximate algorithm could always find the best so-
lution (which it cannot guarantee of course), the reference method stochastic and
basic perform worse than the introduced method by on average 4 and 8 additional
SWAPs, respectively. Only the SABRE method could outperform the minimum
bound in about 70% of the evaluations.
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Figure 5.4: Number of additional SWAPs resulted from QUBO method (orange
and yellow) and Qiskit basic, stochastic and SABRE mapping (boxplots) over the
number of logical qubits n, in which the 114 successful mappings are grouped in.

Figure 5.5: Left: Difference of average SWAP counts between QUBO MAX and
Qiskit methods. Right: Difference of average SWAP count between QUBO MIN
and Qiskit methods over the number of qubits of the benchmark set; all data points
below the dashed zero-line signify a better outcome of the QUBO method.

When we look at the experiment from the perspective of CX-gates, we can
see in the plots of Fig. 5.6 and Fig. 5.7 the overall same performance outcome.
However, while the difference is clearly growing in favor of the Qiskit methods
with the number of qubits (plot on the left in Fig. 5.5), this is not the case for
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the number of CX-gates. This implies, the number of gates does not have a worse
effect on the QUBO method compared to the reference methods. When we look
at the minimum bound on the right of Fig. 5.5 and Fig. 5.7, we can see that
the difference in SWAP-count does not depend on the number of qubits; however,
the higher the number of CX-gates, the difference grows in favor of the QUBO
method.

Figure 5.6: Number of additional SWAPs resulted from QUBO method (orange
and yellow) and Qiskit basic, stochastic and SABRE mapping (boxplots) over the
number of CX-gates ng, in which the 114 successful mappings are grouped.

The results in figures for the second experiment are listed in the Appendix Sec.
C.1.
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Figure 5.7: Left: Difference of average SWAP counts between QUBO MAX and
Qiskit methods. Right: Difference of average SWAP count between QUBO MIN
and Qiskit methods over the number of CX-gates of the benchmark set; all data
points below the dashed zero-line signify a better outcome of the QUBO method.

5.3.2 Experiment 2

The second experiment, where f = 100, the introduced method found mapping
solutions for 62 benchmark circuits, i.e. 24% of the total benchmark set. In
this experiment an additional fourth reference method qmap [10] is evaluated for
circuits up to 12 qubits (for unknown reasons, qmap could not compile the QUEKO
benchmark set, which makes up all circuits with 13 and 14 qubits in the set).

Again, grouped by the number of qubits n in a circuit, Figure 5.8 shows the
overall results in mean and standard deviation of the QUBO SWAP counts, com-
pared to the four reference mapppings, again Qiskit (basic, stochastic and SABRE)
in boxplots and additionally qmap marked in blue. Further, Figures in 5.9 display
the respective difference between the number of SWAPs of the QUBO method and
the reference methods. The plots show that in almost all evaluated cases the intro-
duced QUBO method yields better results for all circuit sizes. The worst performer
for the Qiskit method were the group with n = 12 qubits. It took the methods
on average 26 SWAPs, while the QUBO maximum bound lies at 8 SWAPs. Even
more striking is the result for the largest circuit size in terms of qubits: the aver-
age SWAP count for the Qiskit method is 15 SWAPs, while the QUBO method
finds the optimal solution with zero SWAPs. Overall the maximum bound for
the QUBO method yields on average 11 SWAPs less than its counterparts, it is
further able to find the optimal solution in 75% of the evaluated circuits, while
the reference methods could find it in only 16% (Qiskit) and 40% (qmap) of the
cases.
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Figure 5.8: The number of SWAPs from the QUBO method plotted as orange line-
plot, qmap as the blue lineplot and Qiskit basic, stochastic and SABRE mapping
displayed as boxplots over the 62 valid mappings grouped in number of logical
qubits n in the circuit.

Figure 5.9: Left: Difference of average SWAP count between QUBO MAX and
Qiskit methods. Right: Difference of average SWAP count between QUBO MIN
and Qiskit methods; all data points below the dashed zero-line signify a better
outcome for the introduced QUBO method.
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Examining the results from the perspective of the number of CX-gates in the
circuits gives an even brighter picture. Fig. 5.10 shows the overall results in
mean and standard deviation of the QUBO SWAP counts, compared to the four
reference mapppings, again Qiskit (basic, stochastic and SABRE) in boxplots and
additionally qmap marked in blue; however this time the benchmark programs
are grouped in the number of CX-gates they contain. Further the plots in Fig.
5.11 display the respective difference between the number of SWAPs of the QUBO
method and the reference methods. The results show clearly that with the numbers
of gates the difference in SWAP-count is in favor of the introcued QUBO method
for both the minimum and the maximum bound case. With the CX-gate grouping,
the best outcome is also the largest circuit in terms of CX-gates: 19 to 30 SWAPs
less are used by QUBO method’s upper bound compared to the reference methods.

Figure 5.10: The number of SWAPs from the QUBO method plotted as orange line-
plot, qmap as the blue lineplot and Qiskit basic, stochastic and SABRE mapping
displayed as boxplots over the 62 valid mappings grouped in number of CX-gates
ng in the circuit.

The results in figures for the second experiment are listed in the Appendix Sec.
C.2.
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Figure 5.11: Left: Difference of average SWAP count between QUBO MAX and
reference methods grouped by the number of CX-gates in a circuit. Right: Dif-
ference of average SWAP count between QUBO MIN and reference methods.; all
data points below the dashed zero-line signify a better outcome for the introduced
QUBO method.

5.4 Results by Execution Time

Turning to the second performance measure, we average over both experiments
(since changing λ does not have an impact on the runtime) and display the execu-
tion times for the introduced QUBO method as well as for the reference methods
in Figures 5.12 and 5.13. The plots clearly show the significant better performance
of the reference methods. While both for Qiskit and qmap the overall average run-
time stays below 0.05 seconds, the QUBO mapping runs 31 seconds on average, i.e.
almost 620 times longer. In the maximum case for the largest circuit, the QUBO
method executes 146 seconds, while Qiskit and qmap only need 0.03 seconds and
0.05 seconds to find a solution, respectively. Further, while the reference method
stay constant over the considered range of qubits, the qubo method’s execution
time grows significantly with the number of qubits (about n1.5). Please refer to
the detailed results in the appendix Sec. C.2.

The reference methods thus have a stable and much better runtime, 700 times
on average; as such, this aspect of the algorithm presented exhibits a weakness in
this regard. However, due to material constraints discussed in Sec. 2.7.1, execution
time on a quantum computer is expected to remain much more expensive than
execution time on classical computer in the near future (which we know, is the main
motivation to think about proper qubit mapping in the first place). At present,
the consensus is still that it is better to spend several seconds on classical hardware
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Figure 5.12: The execution time for the chosen benchmark set for the QUBO
method in orange, and the reference methods qmap and Qiskit in blue and purple,
respectively.

than to use even milliseconds more on a quantum computer [14]. For example, if
one takes the trapped-ion technology specifications from Tab. 2.5, executing five
CX-gates requires about one millisecond. Indeed, taking into account the results of
the second experiment in this thesis, at least 11 CX-gates on average can be spared
using 15 seconds on average more classical runtime; therefore, one can consider the
method still as a relevant improvement.
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Figure 5.13: The execution time fraction for the chosen benchmark set; QUBO
execution time is divided by reference methods’ execution time qmap and Qiskit
in blue and purple, respectively. It answers the question "How much longer does
the QUBO method run compared to the reference methods?" - "[data point] times
longer on average."
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Conclusion

This thesis has introduced a new method for solving the qubit mapping prob-
lem, based on a QUBO formulation incorporating the concepts of subgraph is-
morphismm and token swapping. The mapping involves dividing the circuit into
smaller pieces, and is later improved upon with a genetic algorithm. The naive
approach of putting only one CX-gate in each slice, for which there always exists
a direct mapping to the coupling graph, the QUBO is an exact formulation, for
which a solution always exists. Solving this problem in an exact manner gives the
best possible solution, i.e. it represents a lower bound to the problem. In prac-
tice the QUBO is solved heuristically (classically with simulated annealing in the
present work, or even on a quantum annealer). This is beneficial, since new and
better heuristics are developed continuously; such that the best solving strategy
available can be promptly deployed, since the QUBO itself is not dependent on the
method used to solve it. Solving the QUBO is equivalent to finding the parameter
matrix’s minimum binary eigenvector, which represents the solution and in this
case the mapping for each slice.

The results by execution time reflect the polynomial growth of the problem
size N = n ·n′ ·m, which is not desirable. Other implemented mapping algorithms
have a stable and much better runtime (700 times on average for the references
compared to in the experiments); However, as already mentioned earlier due to
material constraints, execution time on a quantum computer is expected to re-
main much more expensive than execution time on classical computer in the near
future. It is still thus the consensus that it is better to spend several seconds on
classical hardware than to use even milliseconds more on a quantum computer [14].
Therefore, taking into account the significant reduction in SWAP-count outlined
in Sec. 5.3.2, one can consider the method as a relevant improvement, despite
lower runtimes showcased by other reference methods.

In contrast to most other mapping methods, however, the QUBO method in-
troduced is not able to guarantee a mapping solution; hence, the search strategy
is not exact, and therefore finding the minimum of the cost function cannot be

57



CHAPTER 6. CONCLUSION 58

deterministic, even with no penalization for swaps, i.e. λ = 0. The success rate,
i.e. how often the method finds a mapping solution for a given problem divided
by the number of trials, is vitally dependent on the penalization multiplier λ, as
we saw in the experiments in Sec. 5.3.2. A factor of 10 difference in the scaling
factor f diminished the success rate of finding a mapping solution from 44% to
24%. Further investigations have to be made in order to improve λ, such that the
success rate reaches an acceptable level (i.e. over 95%).

Taking stock of the advantages and disadvantages for this QUBO approach
for qubit mapping, one can expect that this method exhibits potential for future
qubit mapping tasks; hence it already demonstrates promising results for found
mapping solutions, which are significantly better than what state-of-the-art meth-
ods achieve. Even though the success rate of finding a solution and runtime are
still hurdles to overcome, there is sufficient reason to hope that matrix solving
heuristics will eventually lead to a higher success rate and less runtime.
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Appendix A

Quantum Fourier Transform

The quantum version of the Fourier transformation takes a quantum state |x⟩ of
N qubits and transforms it into another basis, the Fourier basis |y⟩, which holds
the information of the states frequency components. We follow the calculations
of [27] and write two general quantum states, where one is the Fourier transform
of the other

|x⟩ =
N−1

n=0

xn |n⟩ |y⟩ =
N−1

k=0

yk |k⟩ (A.1)

where yk =
1√
N

N−1

n=0

xne
i2πnk/N . (A.2)

Note, that Eq. A.2 is just the formula for the classical inverse Fourier transform.
To keep things (relatively) simple, we set N = 2n, where n ∈ N+ and assume |x⟩
is a basis state; then

yk =
1√
N
ei2πxk/N where x ∈ [0, N ]. (A.3)

The goal is to find a practical unitary transformation U , yielding

U |x⟩ = |y⟩ . (A.4)

We insert Eq. A.3 into Eq. A.1, which gives

U |x⟩ =
N−1

k=0

yk |k⟩ (A.5)

=
1√
N

N−1

k=0

ei2πxk/N |k⟩ . (A.6)
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The next crucial step is to expand |k⟩ into its binomial basis; which takes the
coefficients k as binomial numbers.

N−1

k=0

|k⟩ −→
1

k1=0

..
1

kN=0

|k1k2...kN⟩ (A.7)

k −→ k12
n−1 + k22

n−2 + ...+ kn2
0. (A.8)

Inserting the above expansion into Eq. A.6 then reads

U |x⟩ = 1√
N

1

k1=0

..
1

kN=0

ei2πx/N l kl2
n−l |k1k2...kN⟩ (A.9)

=
1√
N

n

l=1

1

k1=0

..
1

kN=0

ei2πxkl2
n−l/N |k1k2...kN⟩ (A.10)

=
1√
2n

n

l=1

1

k1=0

..
1

kN=0

ei2πxkl2
−l |k1k2...kN⟩ . (A.11)

Hence |k1k2...kn⟩ are basis states, i.e. kl = 1, then ki = 0 (i ̸= l), we can rewrite
Eq. A.11 to

=
1√
2n

(|0⟩+ ei2πx2
−1 |1⟩)⊗ (|0⟩+ ei2πx2

−2 |1⟩ ⊗ ...⊗ (|0⟩+ ei2πx2
−n |1⟩). (A.12)

From here, we can already determine the circuit. Eq. A.12 can be computed with
Hadamarts and controlled rotations.
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Related Work

In the following Table B.1 a comprehensive overview of recently developed mapping
methods is given, it includes their acronym (if given), strategy, benchmarks used
for evaluation, quantum hardware used for evaluation, programming language,
performance metric and references the authors compared their method to.

Reference Name Strategy Benchmark Quantum Hardware Language Metric Comparison

[11] 2020,
pre-print DQN

Heuristic,
Reinforcement
Learning

MQT, RevLib
ca 150 samples
5-50 qubits
30-40 cxgates

5 different,
incl. IBM Tokyo Python depth

qiskit
stochastic,
tket

[9] 2022,
IEEE Qmap Heuristic, search algorithm

& ILP for init mapping

MQT, QUEKO
ca 50 samples
3-16 qubits
5 to 64,283 gates
(w/ 2-30% cx-gates)

Surface 17,
IBM Tokyo Python #swaps -

[8] 2019
ACM SABRE Heuristic, look-ahead,

w/ heuristic cost function

RevLib
ca 30 samples
5-11 qubits
21-34 000 cxgates

IBM Tokyo Python #swaps,
runtime qmap

[15] 2019
IEEE

Exact, Satisfiability
problem

RevLib
2-8 qubits
4-20 cx-gates

IBM QX 4 C++ #swaps,
runtime SABRE

[81] 2019
Conference paper tket Heuristic, slicing,

look-ahead

MQT
ca 160 samples
6-16 qubits
7-7mio gates
(? cxgates)

5 different,
incl. IBM Tokyo Python #swaps SABRE,

qmap

[82] 2019 ACM BMT

Heuristic,
Subgraph isomorphism
w/ greedy search,
Token swapping w/
approximate algorithm

RevLib, Quipper, ao.
ca 160 sampels

IBM Tokyo,
IBM QX3 C++

depth,
runtime,
memory

Qiskit,
SABRE,
qmap

[77] 2021
IEEE SAHS

Heuristic, subgraph
isomorphism,
depth search

RevLib, MQT
ca 30 samples
5-16 qubits
11-15.000 cxgates

3 different,
including Tokyo Python #swaps,

runtime
SABRE,
qmap

[10] 2019
IEEE qmap Heuristic, slicing,

A*, look-ahead

RevLib, MQT
ca50 samples
2-16 qubits
20-513 000 gates

4 different
IBM Q C++ #swaps,

runtime Qiskit

Table B.1: Specifications of a selection of relevant mapping methods.
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Results

C.1 Experiment 1

QUBO SWAP-count time (s) Qiskit SWAP-count Qiskit time (s)
# qubits n MIN MAX basic sabre stochastic basic sabre stochastic

2 0.00 0.00 0.53 0.00 0.00 0.00 0.00 0.00 0.00
3 0.50 2.50 1.28 7.75 NaN 9.98 0.02 NaN 0.03
4 1.14 4.86 1.56 8.57 2.81 9.96 0.02 0.01 0.03
5 4.69 19.62 6.96 12.78 4.99 16.00 0.02 0.01 0.04
6 4.50 18.33 5.32 10.08 5.52 10.13 0.02 0.01 0.02
7 4.57 19.14 14.81 10.57 4.22 13.88 0.02 0.01 0.04
8 4.25 18.50 11.43 6.25 5.32 11.07 0.02 0.01 0.02
9 8.75 36.50 29.19 7.75 6.83 17.71 0.03 0.01 0.03
10 9.00 36.67 27.06 7.33 4.39 12.49 0.03 0.01 0.02
11 7.67 31.33 26.50 11.33 9.13 16.19 0.02 0.01 0.03
12 11.00 44.80 17.06 19.00 10.88 22.11 0.03 0.01 0.03
13 10.40 43.20 18.19 12.00 8.84 15.77 0.02 0.01 0.02
14 12.38 50.75 11.78 12.50 9.41 17.40 0.02 0.01 0.03
15 15.33 62.00 45.96 15.17 9.93 21.52 0.03 0.01 0.03
16 22.40 90.80 90.67 22.30 15.22 33.17 0.03 0.01 0.04
17 15.50 63.00 44.79 17.00 14.63 22.28 0.03 0.01 0.04
19 34.00 136.00 51.54 22.00 17.12 28.21 0.05 0.02 0.03
20 22.00 88.00 145.57 20.00 16.21 30.56 0.05 0.02 0.04

Table C.1: Mean values of SWAP-count and execution time calculated over the
set of benchmark circuits grouped by the number of qubits n.
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QUBO SWAP-count time (s) Qiskit SWAP-count Qiskit time (s)
# CX-gates ng MIN MAX basic sabre stochastic basic sabre stochastic

3 0.00 0.00 0.53 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 1.39 4.00 2.36 3.53 0.01 0.01 0.01
5 0.86 3.43 1.38 6.29 3.52 5.69 0.01 0.01 0.01
6 1.00 4.67 3.01 4.00 3.89 6.38 0.01 0.01 0.02
7 2.00 10.00 1.39 3.50 3.57 5.60 0.01 0.01 0.02
8 2.33 10.67 2.26 4.00 2.83 4.47 0.01 0.01 0.01
9 5.33 22.00 1.52 4.33 3.74 6.00 0.01 0.01 0.02
10 3.00 12.40 4.49 8.20 5.57 9.78 0.02 0.01 0.02
11 3.50 14.50 1.75 7.75 8.80 11.08 0.02 0.01 0.02
12 5.25 21.50 2.38 11.25 7.99 14.24 0.03 0.01 0.03
13 8.67 36.00 11.20 10.33 8.93 14.70 0.02 0.01 0.03
14 8.50 34.50 8.83 8.25 7.71 13.18 0.02 0.01 0.03
15 9.71 40.00 9.93 10.07 7.08 14.38 0.02 0.01 0.02
16 6.43 26.29 12.41 11.29 11.61 15.94 0.02 0.01 0.03
17 5.40 22.80 11.26 13.20 16.51 15.99 0.02 0.01 0.04
18 4.25 18.00 2.79 12.25 NaN 14.32 0.02 NaN 0.04
19 34.00 136.00 51.54 22.00 17.12 28.21 0.05 0.02 0.03
20 11.67 48.00 70.86 14.67 10.78 19.27 0.03 0.01 0.04
22 6.50 26.00 6.67 18.00 12.09 18.95 0.03 0.02 0.05
23 1.50 8.00 1.68 13.50 NaN 16.21 0.03 NaN 0.04
24 6.00 26.00 15.73 15.00 9.23 19.70 0.03 0.01 0.04
25 7.00 28.00 6.09 15.00 NaN 22.21 0.02 NaN 0.06
26 7.00 30.00 18.55 19.00 10.40 16.73 0.04 0.01 0.04
28 12.00 48.00 74.24 19.00 8.57 20.78 0.04 0.01 0.04
29 25.50 103.50 45.85 20.50 14.02 31.20 0.03 0.01 0.03
30 8.25 33.50 38.30 19.50 12.90 22.94 0.03 0.02 0.06
31 9.00 36.00 25.33 19.50 NaN 22.66 0.03 NaN 0.06
32 12.80 52.40 16.20 17.60 8.31 25.19 0.03 0.02 0.06
33 18.00 72.00 65.26 33.00 14.57 38.53 0.04 0.02 0.04
36 7.00 30.00 65.96 13.00 10.46 28.47 0.04 0.01 0.03
38 7.50 30.00 42.25 19.50 NaN 29.87 0.03 NaN 0.08
39 12.00 50.00 35.26 26.00 12.57 23.51 0.04 0.02 0.05
40 14.00 56.00 61.34 13.00 8.04 27.27 0.05 0.02 0.05
44 15.50 63.00 246.07 28.50 17.50 42.46 0.04 0.02 0.04
46 14.00 58.00 10.95 27.00 NaN 33.14 0.04 NaN 0.07

Table C.2: Mean values of SWAP-count and execution time calculated over the
set of benchmark circuits grouped by the number of CX-gates ng.
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C.2 Experiment 2

QUBO SWAP-count time (s) qmap time(s) Qiskit SWAP-count Qiskit time (s)
# qubits n MIN MAX basic sabre stochastic basic sabre stochastic

2.0 0.00 0.00 0.61 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
3.0 0.00 0.00 1.32 5.25 0.05 7.75 6.93 9.98 0.02 0.01 0.03
4.0 0.00 0.00 1.57 4.00 0.05 8.57 7.72 9.96 0.02 0.01 0.03
5.0 0.04 0.17 26.92 6.57 0.05 12.65 11.42 16.54 0.02 0.01 0.04
6.0 0.00 0.00 9.46 1.89 0.05 9.44 6.18 9.89 0.02 0.01 0.02
7.0 0.60 2.40 10.54 3.80 0.05 9.40 6.96 14.01 0.02 0.01 0.03
8.0 0.00 0.00 16.10 2.00 0.05 6.25 5.32 11.07 0.02 0.01 0.02
9.0 0.00 0.00 12.74 0.00 0.04 3.00 3.20 5.89 0.02 0.01 0.01
11.0 0.00 0.00 5.22 0.00 0.04 8.00 8.06 13.55 0.01 0.01 0.02
12.0 2.00 8.00 52.75 0.00 0.06 28.50 13.33 29.56 0.04 0.02 0.05
13.0 0.50 2.00 8.53 NaN NaN 12.50 9.28 16.56 0.02 0.01 0.02
14.0 0.00 0.00 14.27 NaN NaN 11.00 8.37 18.44 0.01 0.01 0.02

Table C.3: Mean values of SWAP-count and execution time calculated over the
set of benchmark circuits grouped by the number of qubits n.

QUBO SWAP-count time (s) qmap time(s) Qiskit SWAP-count Qiskit time (s)
# qubits n MIN MAX basic sabre stochastic basic sabre stochastic

3.0 0.00 0.00 0.61 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
4.0 0.00 0.00 0.68 0.00 0.05 8.00 4.71 7.06 0.01 0.01 0.01
5.0 0.00 0.00 1.18 0.75 0.04 6.75 4.82 6.04 0.01 0.01 0.01
6.0 0.00 0.00 1.23 1.50 0.04 3.50 3.58 5.95 0.01 0.01 0.02
7.0 0.00 0.00 14.59 1.50 0.05 3.50 3.57 5.60 0.01 0.01 0.02
8.0 0.00 0.00 8.32 0.67 0.05 4.00 2.83 4.47 0.01 0.01 0.01
9.0 0.00 0.00 1.12 3.00 0.05 5.00 3.57 5.50 0.01 0.01 0.02
10.0 0.00 0.00 2.63 1.33 0.05 7.33 5.34 10.08 0.01 0.01 0.02
11.0 0.00 0.00 1.17 2.00 0.05 6.00 4.92 7.30 0.02 0.01 0.02
12.0 0.00 0.00 1.59 2.00 0.05 10.50 6.46 10.73 0.03 0.01 0.03
13.0 0.00 0.00 1.80 4.00 0.05 7.00 8.46 12.98 0.01 0.01 0.03
14.0 0.00 0.00 17.68 0.00 0.05 5.50 5.52 9.75 0.02 0.01 0.03
15.0 0.14 0.57 7.24 0.00 0.05 9.00 5.50 11.37 0.01 0.01 0.02
16.0 0.00 0.00 2.20 4.20 0.05 11.00 10.09 14.00 0.02 0.01 0.03
17.0 0.00 0.00 28.43 6.50 0.05 10.75 9.76 13.61 0.02 0.01 0.04
18.0 0.00 0.00 40.42 7.00 0.05 13.67 10.14 14.98 0.02 0.01 0.04
20.0 0.00 0.00 1.97 0.00 0.05 9.00 6.06 8.42 0.02 0.01 0.02
22.0 0.50 2.00 20.37 3.00 0.05 18.00 12.80 18.95 0.03 0.01 0.05
23.0 0.00 0.00 1.81 7.50 0.05 13.50 12.37 16.21 0.03 0.01 0.04
24.0 0.00 0.00 26.32 6.00 0.05 15.00 12.24 19.70 0.03 0.01 0.04
28.0 0.00 0.00 18.53 3.00 0.05 14.00 4.92 20.58 0.03 0.01 0.03
30.0 0.00 0.00 3.10 13.50 0.06 18.50 18.24 25.82 0.02 0.01 0.06
31.0 0.00 0.00 60.96 7.00 0.06 17.00 18.36 25.47 0.03 0.01 0.06
32.0 0.00 0.00 53.23 8.00 0.06 14.67 15.14 24.57 0.03 0.01 0.06
33.0 3.00 12.00 66.69 0.00 0.06 33.00 14.57 38.53 0.04 0.02 0.04
38.0 1.50 6.00 50.41 14.50 0.06 19.50 19.45 29.87 0.03 0.01 0.08
46.0 1.00 4.00 84.57 23.00 0.07 27.00 22.83 33.14 0.04 0.01 0.07

Table C.4: Mean values of SWAP-count and execution time calculated over the
set of benchmark circuits grouped by the number of CX-gates ng.
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