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A B S T R A C T

Cathodoluminescence (CL) is a developing analytical method in electron microscopy, because of its excellent
energy resolution. Usually a Czerny–Turner type spectrometer is employed, having a blazed grating as analyzer.
Unlike a prism analyzer, where the dispersion depends on the refractive index of the prism itself leading to a
non-linear spectral distribution, the grating has the advantage that the spectral distribution depends linearly
on the wavelength. As a draw-back, higher-order refraction alters the measured optical spectrum at larger
wavelengths. In general, blazed gratings are used in order to minimize this effect in a certain spectral range.
Nevertheless, the higher-order intensities can be still significant. In the present study we present a method for
correcting the acquired optical spectra with respect to higher order diffraction intensities and apply it to CaO
and GaN CL-spectra.
1. Introduction

There are manifold ways of how an electron beam may interact
with a specimen. One of those is the excitation of valence electrons
into the conduction band of the probed material. The subsequent
de-excitation process results in the emission of a characteristic electro-
magnetic radiation, which can be in the range of infra-red to visible
light, or to ultraviolet radiation [1,2]. The energies of the emitted
photons depend on the material, its purity and the presence of defects
and is independent of the initial electron energy. Additionally, the de-
excitation process itself is independent of the prior valence electron
excitation [3]. Such a process is therefore called an incoherent light
emission process. In opposite, when a swift electron passes through
a dielectric medium it first has to adopt its electric field components
to the altered dielectric environment directly at the entrance surface.
This causes also the emission of radiation [4] being called Transition
Radiation (TR). Second, if the velocity of the fast probe electron exceeds
the phase velocity of light inside the dielectric medium, another effect
causes emission of radiation, too, which is described within the frame-
work of the Čerenkov effect [5]. The latter two emission processes are
directly related to the probe electron and its energy and are therefore
called coherent light emission processes [3]. Anyhow, all of them emit
light in the IR–VIS–UV range, dependent on the materials properties.

The goal of any CL measurement is to record the true spectrum
being emitted from the sample and in most cases the incoherent part
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of the spectrum is the one being aimed for. Whereas in the beginning
photographic plates were used [6], nowadays optical spectrometers are
applied (see for example [7,8]). Some of which are prism spectrom-
eters and others are Czerny-type spectrometers employing analyzing
gratings. In order to get the real signal stemming from the specimen,
the way the light has to travel until it reaches the detector has to be
known exactly. All optical components passed through by the light need
to be characterized with high precision. Additionally, the wavelengths
dependent properties of the detector have to be known well, which
is given by the wavelength dependent detection quantum efficiency
(DQE(𝜆)).

In general a CL system consists of a high-grade polished Aluminum
mirror, a focusing lens or a light guide with a certain length being
responsible for ensuring that the light beam hits the analyzer as parallel
as possible, thus having an influence on the final spectral resolution.
The analyzer itself can be an optical prism with a certain refractive
index n(𝜆), or it is a blazed grating with a certain lattice parameter
and blazing angle. Finally the light is somehow guided towards the
detector, where the dispersion of the wavelength strongly depends on
the distance from the grating to the detector. When a grating is utilized,
higher order diffraction appears and an overlap between the spectral
dispersion of the first and second order will appear. The detector is not
able to distinguish between different diffraction orders.
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The following chapters are structured in such a way that first
the experimental setup is described. Then the diffraction grating is
considered in a close-up, especially with regard to its function as an
analyzer. Finally, a software routine that removes the higher diffraction
orders is discussed using the example of GaN and the most prominent
emission line of Sulfur doped CaO.

2. Experimental set-up

In the present manuscript we make use of a GATAN VULCAN CL
detection system consisting of a dedicated sample holder with cooling
capabilities, which is designed such, that two mirrors above and below
the specimen reflect the light into two light guides. The light then
is guided out of the microscope by two connectors mounted on the
dedicated holder. At the connectors two optical fibers are mounted
guiding the light into the spectrometer, which itself is placed beside
the transmission electron microscope (TEM). Two sets of light-guides
are available. One is optimized for VIS-nearIR at 400 nm–1380 nm, and
the second one covers the nearUV–VIS region being 360 nm–920 nm,
respectively. The spectrometer is a Czerny–Turner type spectrometer
with an entrance slit being responsible for the size of the illuminated
spot on the reflecting diffraction grating and thus being responsible
for the resolution of the spectrum. Inside the spectrometer the light
is further focused by a concave mirror onto the grating position. One
can select between two different gratings, which are in the present case
one with 150 lines/mm and a second one with 1200 lines/mm. Both of
them have a blazing wavelength of 500 nm. Finally, the dispersed beam
is deflected via some collection optics onto a CCD detector.

The grating causes also higher order diffraction maxima of short
wavelength light, which partially overlap with lower order but longer
wavelength diffraction maxima. Hence, the grating is discussed here in
a very detailed close-up in the theory section.

3. Theory

For better illustration, let us first consider the reflection of a parallel
beam on a grid of point reflectors at a distance d. Since this case is
nalogous to diffraction at a transmission grating, the angles under
hich positive interference occurs and thus result in maxima in the

ntensity distribution are given by

⋅ sin(𝜗𝑚) = 𝑚 ⋅ 𝜆. (1)

here 𝑚 ∈ N describes the order of diffraction. Here, 𝜗0 is the angle
nto which the largest part of the intensity of the incident beam is
irected and results from the reflection law of a plane mirror. If the
ndividual reflectors are tilted by the angle 𝛾 against the normal of their
rrangement axis, the angle into which the greatest part of the incident
ntensity is directed also changes by the value of 𝛾. Accordingly, most
f the intensity can be directed into the first diffraction order. Instead
f Eq. (1), the criterion for positive interference is now

(sin(𝛼) + sin(𝛽)) = 𝑚 ⋅ 𝜆 (2)

here 𝛼 is the angle against the grating normal of the incoming light
eam and 𝛽 is the one of the outgoing beam [8]. The distance that can
e evaluated at the detector is proportional to the sine of the angle
. It is thus clearly visible that the difference between the distances
f two diffraction orders 𝑚1 and 𝑚2, at the detector is proportional
o 𝛥𝑚, (𝛥𝑚 = 𝑚2 − 𝑚1). Furthermore, there is a linear dependence
f the product of the sine of the angle of incidence and the distance
in(𝛽) ⋅ 𝑑, i.e. the position of the incidence at the detector (at a fixed
ngle of incidence 𝛼) depends on the product of the wavelength and
he diffraction order 𝜆 ⋅𝑚 leading to a dispersion of 𝑥(𝜆). The dispersed
ight is then be projected to the detector via some optics. Thus, in the
2

easurement setup being used, it is actually the intensity at a location
n the detector, which we will refer to here as 𝜉(𝜆) = 𝑥(𝜆) ⋅ 𝑑∕𝑧, rather
than the wavelength 𝜆 which is detected by the CCD.

𝜉(𝜆) = 𝑧
𝑑
⋅ 𝑚 ⋅ 𝜆, (3)

where 𝑑 is the lattice constant of the grating and 𝑧 denotes the focal
length of the coupling optical element between the grating to the detec-
tor. The wavelength of higher diffraction orders 𝑚 > 1 thus corresponds
to that of the first diffraction order, but is incorrectly recognized as
𝜆𝑚 = 𝑚 ⋅ 𝜆. In a classical blazed grating, the ideal intensity distribution
of a monochromatic signal corresponds to the product of a normalized
sinc2 function and the sum of scaled delta comb (X =

∑𝑛
𝑘=1 𝛿(𝑥−𝑘 ⋅𝑥0);

,n ∈ N) [8]

(𝜆, 𝜉) = sinc2
(

𝜉(𝜆) − 𝑛𝐵𝜆𝐵
𝜆

)

⋅
1
𝜆
⋅X

(

𝜉(𝜆)
𝜆

)

, (4)

Using a grating being blazed for 𝜆𝐵 = 500 nm means and such
that the first order diffraction maximum is the strongest one (𝑛𝐵 = 1)
causes that higher order diffraction for monochromatic light is totally
suppressed, because the sinc2-function equals zero at 𝜆 = 𝑛⋅500 nm, with
𝑛 ∈ {Z ⧵ 1}. Incoming light having a wavelength of 𝜆 = 𝜆𝐵 = 500 nm
is found with its full intensity in the first order diffraction maximum.
Higher orders do not show up at all. But for light with 𝜆 = (500 ±
𝜀) nm higher diffraction orders still contribute to the overall signal.
The smaller being 𝜀, the better is the suppression of the intensities in
higher order peaks. Still they are not zero. For better understanding we
simulated the spectra of monochromatic light falling onto our grating
for various wavelengths. We see, that also the envelope function –
which is the sinc2-function – is effected by the chosen wavelength (see
Fig. 1).

The 𝑥-axis in Fig. 1 is describing the wavelength but in the ex-
perimental set-up it is the spatial coordinate 𝜉 of the detector. The
wavelength interval in the calculations was chosen such, that it is
slightly larger as can be detected with our set-up. In the experiment
the limitations are given by the light guide directing the CL-intensities
out of the TEM and guiding the light onto the grating and are prior to
the analyzer. Their absorption coefficient is such, that we are limited
to a range from 380 nm to 1200 nm. Below and above much too much
intensity is absorbed by the material of the optical fibers.

Anyhow, light having a wavelength of 380 nm can pass through
and has its second-order maximum at 760 nm. Consequently, this is
in a range where the first diffraction order of red light also hits the
detector. Therefore, there is a mixing of signals of the first and second
diffraction order. Fig. 2 shows a calculation for different wavelengths
and several diffraction orders. The attenuation for the higher orders is
in the range of 80%–98%.

In order to calculate the wavelength dependent efficiency of the
grating, we make use of the scalar Kirchhoff diffraction theory. It
ignores the vectorial aspect of light but provides results comparable
to those obtained by rigorous theory derived directly from Maxwell’s
equations. The scalar theory is much simpler but is valid only under the
limits of 𝑑 > 5 ⋅ 𝜆 [9–11]. When using the grating with 150 lines/mm,
the lattice constant of the analyzer is 6667 nm and thus fulfilling these
limitations. The efficiency 𝜂 of a periodic grating under the scalar
approximation is given by

𝜂(𝜆) =
|

|

|

|

|

1
𝑑 ∫

𝑑

0
𝑟(𝑥)𝑒2𝜋𝑖𝑚𝑥∕𝑑𝑑𝑥

|

|

|

|

|

2

, (5)

where 𝑟(𝑥) is the reflection function of the blazed grating 𝑟(𝑥) =
∑∞

𝑚=−∞ 𝛿(𝑥 − 𝑚𝑑)⊗ 𝑒𝑥𝑝{2𝜋𝑖 ℎ
𝜆𝑑 ⋅ 𝑥}, with ℎ → 𝜆𝐵 . The amplitude of the

reflected light of 𝑚th order is therefore given by its Fourier transform.
Consequently, the efficiency 𝜂𝑚 is given by the square of the respective
far-field amplitude of the dispersed light [10,12]. For the 𝑚th order we
find

𝜂𝑚(𝜆) = sinc2
(

𝜆𝐵 − 𝑚
)

. (6)

𝜆
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Fig. 1. Monochromatic intensities of various wavelength and their higher order diffraction peaks at the n-fold wavelength in the range between 200 nm and 1500 nm.
Fig. 2. Left: Attenuation and second diffraction order for light in the range of 380 nm to 1200 nm. Right: First order maxima (empty peaks) and higher order maxima at the
n-fold wavelength (full peaks) for various wavelengths.
As an instructive example for the above discussed problem, we
measured the emission spectrum of an UV-lamp shown in Fig. 3.
Multiples of the main peak at 402 nm can be easily identified. In
the present case, the real spectral distribution is not of interest. It
would depend also on the absorption of the light guides and on the
wavelength dependent detection quantum efficiency of the CCD. We
can now normalize the intensity of the spectrum such, that the 402 nm
peak touches the calculated envelope function.

As a consequence, the peaks at multiples of 402 nm are touching
the calculated envelope function, too. Therefore, these intensities are
identified as being higher order diffraction intensities and do not
represent emission lines. Therefore, the measured spectrum must be
corrected for higher order diffraction prior to the correction for the
system response of the detection system (including absorption of the
light guides, grating correction and DQE of the CCD detector) in order
to retrieve the true emission spectrum of the UV-lamp.

In order to find a correction function for considering multiple
diffraction maxima, the amplitude distribution of 𝑚 diffraction orders
in the far-field [9,10] has to be considered. It is the sum over all far-
field amplitudes, as shown already in the definition of the reflection
3

function. Consequently, the intensity distribution is the square of the
Fig. 3. Emission spectrum of a UV lamp neither with correction for higher diffraction
orders nor with absorption correction.
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Fig. 4. Experimentally determined system response function (SRF) including reflectivity
of the mirrors, the absorption of the light guides and the DQE of the CCD detector. It
was measured by using transition radiation of an Al-specimen as light source. It does
not consider higher scattering orders.

amplitudes. Thus, a correction for higher order diffraction has to in-
clude the sum over the detectable orders, which in our case is up to
the third order diffraction.

4. The system response function and a correction function for
higher-order diffraction

The detected signal intensity 𝐼𝑑 (𝑥) at the position 𝑥 of the detector
is the emitted intensity 𝐼0(𝜆) altered by the system response function
(SRF(𝜆)) shown in Fig. 4. It was determined by comparing the theoret-
ical spectrum of transition radiation emitted from a thin Al foil with the
experimental counterpart [13,14]. The SRF(𝜆) itself consists of several
functions describing each part of the optical system separately. It
therefore contains the reflectivity of the high-grade polished Aluminum
mirrors 𝑅(𝜆), the optical absorption of the light guiding optical fibers
𝑒−𝛼(𝜆)⋅𝑙 – with 𝛼(𝜆) being the absorption coefficient and 𝑙 being the
length of the light guides –, the detection quantum efficiency of the CCD
array 𝐷𝑄𝐸(𝜆) and the grating correction function 𝑘1(𝜆) of the blazed
grating, respectively. It can be written as

𝐼𝑑 (𝜆) = 𝐼0 ⋅ 𝑆𝑅𝐹 (𝜆) = 𝐼0 ⋅ 𝑅(𝜆) ⋅ 𝑒−𝛼(𝜆)⋅𝑙 ⋅𝐷𝑄𝐸(𝜆) ⋅ 𝑘1(𝜆) (7)

and should read zero at 𝜆𝐵 . But due to the fact that there is a grating
loss [15] to be considered a reduction of intensity even at the blazing
wavelength is observed.

One property of the blazed grating can already be seen in Fig. 3. All
wavelengths except of the blazed wavelength are somewhat attenuated.
This attenuation can be corrected with the blazing response function
𝑘1(𝜆), which from now on will be defined as the correction function for
the first-order diffraction efficiency of a blazed grating.

𝑘1(𝜆) = 1 − 𝜂1(𝜆) = 1 − sinc2
(

𝜆𝐵
𝜆

− 1
)

(8)

The only problem is that 𝑘1 only applies in cases where the higher
diffraction orders lie outside the detected spectral range. Wide bandgap
materials that emit blue or ultraviolet light require a correction func-
tion for higher order diffraction because their second and third order
diffraction might be in the observed spectral range. If this is not taken
into account, the second and third order diffraction maxima of a blue
emission could be misinterpreted as red and infrared band emissions,
respectively. In order to remove higher diffraction orders from the
spectrum, a grating response including the intensities 𝐼𝑚 of diffraction
order 𝑚 has to be identified. There are no orders of 𝑚 ≥ 4 detected
4

Fig. 5. Correction functions for 2nd- and 3rd-order scattering.

by the system, since it is limited in detectable wavelength by the
absorption of the optical fibers. Eq. (7) has to be corrected for the effect
of the refraction function of the blazed grating (see also Eq. (5)). Thus,
the detected spectrum has be written as

𝐼𝑑 (𝜆) = 𝑅(𝜆) ⋅ 𝑒−𝛼(𝜆)⋅𝑙 ⋅𝐷𝑄𝐸(𝜆) ⋅

[ 3
∑

𝑚=1
𝐼𝑚(𝜆) ⋅ sinc

2
(

𝜆𝐵
𝜆

− 𝑚
)

]

(9)

The last term in Eq. (9) is the new grating response substituting
1(𝜆) from Eq. (7). It contains additive terms. Therefore, the single
cattering distribution has to be found prior to the correction of the
RF(𝜆). Thus, the general procedure for carrying out the correction is
s follows:

(1) the spectrum of the first diffraction order (𝑚 = 1) is stretched by
multiplying the wavelength axis by the diffraction order m to be
corrected.

(2) the stretched spectrum is multiplied by a correction function
𝑓𝑚(𝑚 ⋅ 𝜆), which is described in detail below.

(3) the stretched spectrum multiplied by the correction function is
subtracted from the spectral range of the 𝑚th diffraction order.

(4) the standard correction routine correcting for R(𝜆), 𝑒−𝛼(𝜆)⋅𝑙, and
DQE(𝜆) is applied finally.

We define the correction function 𝑓𝑚(𝑚 ⋅ 𝜆) as the intensity ratio of
𝑚th diffraction order to the first diffraction order

𝑓𝑚(𝑚 ⋅ 𝜆) =
𝜂𝑚(𝜆)
𝜂1(𝜆)

=
sinc2

(

𝜆𝐵
𝜆 − 𝑚

)

sinc2
(

𝜆𝐵
𝜆 − 1

) . (10)

Due to the fact that only second- and third-order scattering in-
fluences the overall shape of the CL spectrum in the experimentally
accessible spectral range, only the correction functions 𝑓2, and 𝑓3 need
to be considered and are plotted in Fig. 5.

These functions have to be applied to the first order scattering
intensities and subsequently rescaled in wavelength by the factor 𝑚
before being subtracted from the original spectrum. Thereafter the
original SRF(𝜆) is applied to the spectrum.

5. Application to CaO and GaN

Beside measuring interband transitions in phosphorous materials CL
is also frequently used for characterizing defect levels in semiconduc-
tors and insulators. The correction function for higher-order scattering
is applied to CL spectra of CaO and of GaN, respectively. Common
to both materials is the high defect density leading to numerous gap
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Fig. 6. 40 keV VEELS spectrum of CaO0.98S0.02. Gap states at 2.95 eV can be identified.
The CL spectrum also shows a strong peak at the respective energy.

states. Consequently, signal being non-zero is expected in the mid- and
infra-red emission bands, too. Ignoring higher-order scattering of the
analyzing grating would lead to intensities at multiples of the original
wavelength.

CaO has a band gap of 6.25 eV [16] which was confirmed by means
of valence electron energy loss spectrometry (VEELS) and CL performed
at 40 keV. The low beam energy was chosen in order to suppress
the excitation of Čerenkov radiation and to avoid their corresponding
Čerenkov losses. Thus neither in the VEELS spectrum nor in the CL
spectrum the Čerenkov effect has to be taken into account [5,17,18].
Additionally, CaO is well known to attract Sulfur. Thus it is used in
the production of iron and steel. The specimen used was contaminated
with 1% sulfur, which was determined using electron energy loss spec-
trometry (EELS) and energy dispersive X-ray spectroscopy (EDX). This
contamination leads to gap-states being found at 2.95 eV being clearly
visible in the VEELS spectrum shown in Fig. 6. For better visibility the
CL spectrum is also shown at the base line of the VEELS spectrum.
The VEELS spectrum consists of 460 single acquisitions subsequently
aligned and summed up in order to reduce noise. There was no further
data treatment applied.

Since the gap-states were found at 2.95 eV, a main peak at 421.5 nm
is expected in the CL spectrum. Consequently, the second diffraction
maximum is therefore found at 843 nm. There is another faint peak
at 3.3 eV in the VEELS spectrum, which already out of range for our
optical set-up. The absorption coefficient of the light guides damps
this wavelength totally. Fig. 7 shows the CL measurements on the
CaO0.98S0.02 crystal. If the standard correction of the SRF(𝜆) would
be applied, the higher order diffraction peak would be still present in
the resulting spectrum. But if the proposed 𝑓2𝑓3-correction function is
applied prior to the standard SRF(𝜆), this artifact can be successfully
removed.

In the case of CaO, there are no intensities emitted having a wave-
length of 840 nm. Therefore, the interpretation of the CL spectrum is
relatively simple. However, this is not the case for GaN. Due to the
defect density, GaN also shows emission in the red region. This is then
superimposed with the higher diffraction orders of the blue interband
transition. However, the standard routine amplifies signals in the red
range because the blazing function 𝑓𝑘 requires this. In addition, the
DQE correction also requires amplification of the red signal. If only
applying the standard correction, the red signal is amplified much
too much and the impression is created that there is an additional
and particularly strong interband transition there. Fig. 8 shows the CL
measurements on a GaN crystal. In order to prevent the sample from
5

Fig. 7. CL spectrum of CaO0.98S0.02 as acquired (bottom), after the 𝑓2𝑓3-correction
rior to the SRF(𝜆) correction (shifted by 1 for better visibility), and for comparison
fter the standard correction routine (SRF(𝜆) only) (shifted by 2 for better visibility).

Fig. 8. CL spectrum of GaN as acquired (bottom), after the 𝑓2𝑓3-correction prior to
the SRF(𝜆) correction (shifted by 1 for better visibility), and for comparison after the
standard correction routine (SRF(𝜆) only) (shifted by 2 for better visibility).

emitting Čerenkov light, the beam energy was chosen to be 45 keV
which is well below the Čerenkov limit [19]. Again, the 𝑓2𝑓3-corrected
CL spectrum is shown in the center. The 2nd-order peak at 740 nm is
completely removed. Furthermore, no erroneous amplification of the
signal is observed above 860 nm. This would be present if only the
standard SRF(𝜆) correction routine would be applied.

6. Conclusion

The 𝑓2𝑓3 correction presented to remove higher order diffraction
artifacts from the measured spectrum is necessary if maxima in the
CL spectrum are expected to lie at the lower end of the wavelength
scale detectable with the CL system. Such transitions can arise in
particular due to the presence of defect states or dopants. Otherwise,
the superposition of the higher diffraction orders with signals of longer
wavelengths would make the interpretability of CL spectra questionable
when using a grating as analyzer.

In general, higher order diffraction appears, as soon as a grating
is used for the analysis of any optical spectrum. Consequently, the
proposed correction is not limited to CL spectra only, but might have



Ultramicroscopy 251 (2023) 113770M. Stöger-Pollach et al.
a much larger field of applications. Higher order diffraction can be
avoided when using an optical prism instead. But this would have the
draw back of wavelength dependent dispersion leading to a non-linear
wavelength-axis of the recorded spectrum.
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