
Master’s Thesis

submitted by

David Breuss

Vision-Based Anomaly Detection for Railroad
Systems

In partial fulfillment of the requirements for the degree of

Master of Science (M.Sc.)

Vienna, Austria, 2023

Study code: UE 066 504

Field of study: Embedded Systems

Supervisor: Univ.Prof. Dipl.-Ing. Dr.techn. Jantsch Axel

Co-Supervisor: Dipl.-Ing. Dr. Maximilian Götzinger

Copyright (C) 2022 David Breuss

If you find this work useful, please cite it using the following BibTEX entry:

@Thesis{Breuss2023,

type = {Master’s Thesis},

author = {David Breuss},

title = {Vision-Based Anomaly Detection for Railroad Systems},

school = {Vienna University of Technology (TU Wien)},

year = {2023},

address = {Gusshausstrasse 27--29 / 384, 1040 Wien},

month = {November},

}

Contact me:

david.breuss@tuwien.ac.at

This thesis is licensed under the following license: Attribution 4.0 International (CC BY 4.0)

You are free to:

1. Share — Copy and redistribute the material in any medium or format

2. Adapt — Remix, transform, and build upon the material for any purpose, even commercially.

This license is acceptable for Free Cultural Works.

The licensor cannot revoke these freedoms as long as you follow the license terms.

The entire license text is available at: https://creativecommons.org/licenses/by/4.0/legalcode

https://creativecommons.org/licenses/by/4.0/legalcode

Abstract

Railroad systems play an essential role in the transportation of people and goods in today’s society worldwide [1, 2,

3, 4, 5, 6]. The rail sector contributes to society in multiple ways besides transporting, including jobs, innovation, and

industrial growth [3]. Furthermore, combined road and rail transportation can significantly reduce emissions and op-

erating costs compared to road-only transportation [7]. Due to the wear-out of the railroad infrastructure and other

damages, maintenance of the infrastructure is necessary to ensure the safe and reliable transportation of people and

goods [8, 9]. During the last decades, the progress in Neural Network (NN)-based algorithms [10] and increases in

computational power [11] enabled the usage of machine vision systems in several application domains like robotics,

medical application, manufacturing and production, and security surveillance [12, 13, 14, 15]. Anomaly detection refers

to the task of recognizing data and patterns that deviate significantly from some concept of normality or expected be-

havior [16, 17]. In many real-world applications, no or only a small number of labeled anomalous data is available [16].

This thesis aims to develop an image-based anomaly detection algorithm for rail tracks to detect rail damages, foreign

objects, and heavy vegetation on the trackbed without relying on anomalies in training data. For the training and eval-

uation of the proposed algorithm, a dataset consisting of gray-scale images taken from a bird’s-eye view perspective by

a monochrome camera is used. Since this camera system is mountable on regular trains, this could pose a cost-effective

approach for an automated railroad inspection system. The proposed Vision-based Anomaly Detection Algorithm for

Railroads (VADAR) algorithm consists of three Autoencoders (AEs), a rail segmentation network, and a One-Class Clas-

sifier (OCC) to detect anomalies on the trackbed and rails. Utilizing these networks enables VADAR to lower the number

of false positives resulting from the gravel and relatively rare infrastructure elements like switch-frogs or attachments

to the rails and crossties. The experimental results in this thesis show that VADAR can detect trackbed anomalies with

sizes down to roughly 10,000 mm2 with a recall rate of more than 51% while achieving a false positive rate of 4.8%. Rail

damages with sizes down to roughly 100 mm2 were detected with a recall rate of more than 53% while maintaining a

false positive rate of less than 4.2%. The detection method of VADAR allows a tradeoff between the recall rate and false

positive rate to adjust for the needs of a specific task. The experiments also show a strong positive correlation between

the size of anomalies and the recall rate. VADAR can detect certain trackbed anomalies larger than roughly 20,000 mm2

with up to 100% while maintaining a false positive rate of 5.3%. This thesis also includes a comparison of VADAR with

a state-of-the-art approach. VADAR’s recall rate, accuracy, and false positive rate outperform this approach’s results

while also enabling the detection of significantly smaller anomalies like rail damages. This algorithm demonstrates that

a vision-based anomaly detection system utilizing only one camera mounted on regular trains could potentially be used

for an automated railroad inspection system. Since VADAR can detect even small rail damages, further developments

might enable VADAR to be used for the predictive maintenance of rail tracks.

i

Kurzfassung

Eisenbahnsysteme spielen weltweit eine wesentliche Rolle bei der Beförderung von Personen und Gütern [1, 2, 3, 4, 5, 6].

Der Eisenbahnsektor leistet einen vielfältigen Beitrag zur Gesellschaft, u. a. auch in Form von Arbeitsplätzen, Innova-

tion und industriellemWachstum [3]. Außerdem kann der kombinierte Straßen- und Schienentransport die Emissionen

und Betriebskosten im Vergleich zum reinen Straßentransport erheblich senken [7]. Aufgrund der Abnutzung der Eisen-

bahninfrastruktur und auftretenden Schäden ist die Instandhaltung der Infrastruktur notwendig, um den sicheren und

zuverlässigen Transport zu gewährleisten [8, 9]. In den letzten Jahrzehnten haben die Fortschritte bei den auf neuronalen

Netzen basierenden Algorithmen [10] und die Zunahme der Rechenleistung [11] den Einsatz von Bildverarbeitungssys-

temen in Anwendungsbereichen wie Robotik, Medizin, Fertigung sowie Überwachungssystemen ermöglicht [12, 13,

14, 15]. Eine der Anwendung befasst sich mit der Anomaliedetektion, also dem Erkennen von Daten und Mustern, die

von einem Konzept der Normalität abweichen [16, 17]. In vielen Anwendungen sind keine oder nur wenige annotierte

Anomalie-Daten verfügbar [16]. Ziel dieser Arbeit ist es, einen bildbasiertenAlgorithmus zur Erkennung vonAnomalien

im Gleisbereich zu entwickeln, um bspw. Schienenschäden und Fremdkörper zu erkennen, ohne auf Anomalien in den

Trainingsdaten angewiesen zu sein. Für das Training und die Evaluierung des vorgeschlagenen VADAR-Algorithmus

wird ein Datensatz verwendet, der aus Graustufenbildern besteht, die von einer Monochromkamera aus der Vogelper-

spektive aufgenommen wurden. Da dieses Kamerasystem auf regulären Zügen montiert werden kann, könnte dies

einen kosteneffektiven Ansatz für ein automatisiertes Eisenbahninspektionssystem darstellen. VADAR besteht aus drei

Autoencodern, einem Schienensegmentierungsnetzwerk und einem One-Class Classifier zur Erkennung von Anoma-

lien am Gleisbett und auf den Schienen. Diese Netzwerke ermöglichen es VADAR, Fehlalarme zu reduzieren, die durch

Schotter und Infrastrukturelemente wie bspw. Weichenherzen entstehen. Die Ergebnisse in dieser Arbeit zeigen, dass

VADAR Gleisbettanomalien bis zu einer Größe von etwa 10.000 mm2 mit einer Recall-Rate von mehr als 51% und einer

False-Positive-Rate von 4,8% erkennen kann. Schienenschäden bis zu einer Größe von ca. 100 mm2 wurden mit einer

Recall-Rate von mehr als 53% bei einer False-Positive-Rate von weniger als 4,2% erkannt. VADAR ermöglicht den Kom-

promiss zwischen Recall- und False-Positive-Rate, um an Spezifikationen einer Anwendung anzupassen. Die Experi-

mente zeigen eine starke Korrelation zwischen der Größe der Anomalien und der Recall-Rate. VADAR kann bestimmte

Anomalien die größer als ca. 20.000 mm2 sind, mit bis zu 100% erkennen, während die False-Positive-Rate bei 5,3% liegt.

Diese Arbeit zeigt auch einen Vergleich von VADAR mit einem State-of-the-Art Ansatz. Sowohl Accuracy als auch

Recall- und False-Positive-Rate von VADAR übertreffen die Ergebnisse dieses Ansatzes und ermöglichen die Erkennung

von deutlich kleineren Anomalien — wie zum Beispiel Schienenschäden. Diese Arbeit zeigt, dass ein bildbasiertes Sys-

tem zur Anomaliedetektion, mit nur einer an regulären Zügen angebracht Kamera, potenziell für ein automatisiertes

Eisenbahninspektionssystem verwendet werden kann und interessant für Predictive Maintenance sein könnte.

iii

Contents

1 Introduction 1

1.1 Motivation and Problem Description . 1

1.2 Methodology . 3

1.3 Objectives and Research Questions . 3

1.4 Contributions and Organization . 4

2 Background and State of the Art 5

2.1 Artificial Neural Networks . 5

2.1.1 Fully Connected Neural Networks . 5

2.1.2 Convolutional Neural Networks . 6

2.1.3 Features and Subspaces . 8

2.1.4 Training Neural Networks . 8

2.2 Anomaly detection . 11

2.2.1 Unsupervised Anomaly Detection . 12

2.2.2 Semi-Supervised Anomaly Detection . 12

2.2.3 Supervised Anomaly Detection . 12

2.3 Challenges in Anomaly Detection . 13

2.3.1 Challenges for Deep Learning in Anomaly Detection . 13

2.4 Visual Anomaly Detection . 15

2.4.1 Probabilistic Anomaly Detection . 15

2.4.2 Reconstruction-based Anomaly Detection . 16

2.4.3 Variational Autoencoder . 18

2.4.4 GANs . 20

2.5 Anomaly Detection and Inspection for Railroad Systems . 21

2.5.1 Railroad Datasets . 21

2.5.2 State-of-the-Art Anomaly Detection for Railroad Systems . 22

3 Experimental Dataset 25

3.1 Kombi-Dataset . 25

3.1.1 Varying Appearance of the Trackbed . 27

3.1.2 Rail anomalies . 28

v

CONTENTS

3.1.3 Infrastructure elements . 28

3.1.4 Annotations . 29

3.2 Data Augmentation . 31

3.2.1 Synthetic Data . 31

4 Architecture 35

4.1 Anomaly Detection Methods Analysis . 35

4.1.1 Autoencoders . 37

4.1.2 Denoising Autoencoders . 40

4.1.3 Latent Space Analysis . 42

4.1.4 Variational Autoencoder . 48

4.1.5 Deep Convolutional Generative Adversarial Network . 50

4.2 Architecture Decisions . 53

4.3 VADAR . 54

4.3.1 Pre-Processing . 55

4.4 Trackbed Anomaly Detection . 55

4.4.1 Image Reconstruction . 55

4.4.2 Trackbed Anomaly Autoencoder and Infrastructure Autoencoder 56

4.4.3 Infrastructure Detection . 59

4.4.4 Large Coherent Area Detection . 60

4.4.5 One-Class Classifier . 60

4.5 Rail Anomalies . 62

4.5.1 Rail Anomaly Autoencoder . 62

4.5.2 Rail Segmentation . 63

4.5.3 Rail Damage Detection . 64

5 Evaluation, Results, and Comparison 67

5.1 Evaluation Methods . 67

5.1.1 Trackbed Anomaly Detection . 68

5.1.2 Rail Anomaly Detection . 72

5.2 Comparison with State of the Art . 77

5.2.1 Results . 79

6 Conclusion 81

6.1 Outlook . 83

vi

List of Tables

2.1 Comparison of Multiple Railroad Inspection Systems. 24

3.1 The list of annotated infrastructure elements. 28

3.2 The list of annotated anomalies. 28

3.3 The list of annotated varying conditions of the trackbed and lighting. 30

3.4 Encoder architecture of the High Detail Autoencoder (HDAE). 32

3.5 Decoder architecture of the HDAE. 33

4.1 Comparison of multiple Machine-Learning (ML)-based anomaly detection approaches. 36

4.2 Encoder architecture of the ten-layer Autoencoder (AE). 37

4.3 Decoder architecture of the ten-layer AE. 38

4.4 Enoder architecture of the eight-layer AE. 39

4.5 Decoder architecture of the eight-layer AE. 40

4.6 Encoder architecture of the five-layer Denoising Autoencoder (DAE). 42

4.7 Decoder architecture of the five-layer DAE. 42

4.8 The convolutional encoder of the Variational Autoencoder (VAE). 50

4.9 The Convolutional decoder of the VAE. 50

4.10 Generator architecture of the Deep Convolutional Generative Adversarial Network (DCGAN). 51

4.11 Discriminator architecture of the DCGAN. 51

4.12 The One-Class Classifier (OCC)’s architecture. 61

5.1 A state-of-the-art encoder of an AE for rail track inspection. 78

5.2 A state-of-the-art decoder of an AE for rail track inspection. 78

5.3 The architecture of a state-of-the-art binary classifier. 79

vii

List of Figures

1.1 Example images of the Kombi dataset. 3

2.1 A visualization of a fully connected Neural Network (NN). 6

2.2 Convolutional layer and its important parameters. 7

2.3 A simple overview of an Autoencoder (AE). 17

2.4 Example images for reconstruction-based anomaly detection and localization in printed circuit boards. . 18

2.5 A simple overview of an Variational Autoencoder (VAE). 19

2.6 A simple overview of a Generative Adversarial Network (GAN). 20

2.7 Definition of basic track elements. 23

2.8 Overview of an state-of-the-art approach for railroad anomaly detection. 24

3.1 Example images of the Kombi dataset containing anomalies and infrastructure elements. 26

3.2 An overview of the different groups of images the Kombi dataset contains. 29

3.3 The distribution of anomaly’s bounding box sizes. 29

3.4 Example images of the Kombi dataset with bounding boxes. 30

3.5 Rotation and flipping of images. 31

3.6 The effect of applying Contrast Limited Adaptive Histogram Equalization (CLAHE) on example images. 32

3.7 Overview of the synthetic rail damage generation process. 33

3.8 The original and replicated images with indentations on the rail. 33

3.9 The original and replicated images of images containing rails with breakouts. 34

4.1 Images of the ten-layer AE’s reconstruction process. 36

4.2 The ten-layer AE’s reconstruction error distribution. 38

4.3 Images of the eight-layer AE’s reconstruction process. 39

4.4 The eight-layer AE’s reconstruction error distribution. 40

4.5 Different noise added to one example image. 41

4.6 Images of the five-layer Denoising Autoencoder (DAE) reconstruction process. 41

4.7 The five-layer DAE’s reconstruction error distribution. 43

4.8 The ten-layer DAE’s reconstruction error distribution. 43

4.9 Images of the ten-layer DAE’s reconstruction process. 44

4.10 t-distributed Stochastic Neighbor Embedding (t-SNE) applied to the latent representation of the ten-layer

AE and DAE of images with and without anomalies and infrastructure elements. 44

ix

LIST OF FIGURES

4.11 t-SNE applied to the latent representation of the eight-layer AE and five-layer DAE of images with and

without anomalies and infrastructure elements. 45

4.12 t-SNE applied to the latent representation of the two AEs and DAEs of images containing cans, bottles,

and vegetation. 46

4.13 t-SNE applied to the latent representation of the ten-layer AE and DAE of images from one sequence. . . 47

4.14 t-SNE applied to the latent representation of the eight-layer AE and five-layer DAE of images from one

sequence. 48

4.15 Images of the VAE’s reconstruction process. 49

4.16 The VAE’s reconstruction error and KL-divergence loss distributions. 49

4.17 Four synthetic images created by the Deep Convolutional Generative Adversarial Network (DCGAN)’s

generator. 52

4.18 The distribution of output values of the DCGAN’s discriminator. 52

4.19 Overview of Vision-based Anomaly Detection Algorithm for Railroads (VADAR). 55

4.20 Visualization of the infrastructure detection process. 56

4.21 Reconstructions of an example image by two different AE. 58

4.22 Training progress of the Infrastructure Autoencoder (IAE). 59

4.23 Visualization of the detection of Large Coherent Areas (LCAs). 60

4.24 Training progress of the One-Class Classifier (OCC). 61

4.25 Visualization of the rail anomaly detection approach. 62

4.26 Training progress of the Rail Anomaly Autoencoder (RAAE). 63

4.27 Training progress of the rail segmentation model. 64

5.1 Accuracy, recall rate, and false positive rate of the trackbed anomaly detection. 68

5.2 The trackbed anomaly detection’s accuracy and false positive rate for multiple settings. 69

5.3 The trackbed anomaly detection’s recall rates of different anomaly classes for multiple settings. 70

5.4 The trackbed anomaly detection’s recall rates for different object sizes and multiple parameter settings. 71

5.5 The rail anomaly detection’s accuracy, recall rate, and false positive rate for different threshold values. . 72

5.6 Recall rate of synthetic rail damages of different sizes for several parameter settings. 73

5.7 Images of one real and four synthetic indentations on rails. 73

5.8 Images of one real and four synthetic breakouts on rails. 74

5.9 Recall rate of synthetic breakouts of different sizes for several parameter settings. 75

5.10 Recall rate of synthetic indentations of different sizes for several parameter settings. 75

5.11 Recall rate of synthetic rail damages for different background brightness levels and damage sizes. 76

5.12 Detection analysis of synthetic damage pixels. 76

5.13 Comparison of VADAR with a state-of-the-art model. 80

x

Acronyms

AE Autoencoder.

ANA image image containing only anomaly annotations.

ANINA image image containing anomaly and infrastructure annotations.

BRTI Basic Rail Transportation Infrastructure.

CLAHE Contrast Limited Adaptive Histogram Equalization.

CNN Convolutional Neural Network.

DAE Denoising Autoencoder.

DCGAN Deep Convolutional Generative Adversarial Network.

DNN Deep Neural Network.

GAN Generative Adversarial Network.

GPU Graphics Processing Unit.

HDAE High Detail Autoencoder.

IAE Infrastructure Autoencoder.

INA image image containing only infrastructure annotations.

LCA Large Coherent Area.

ML Machine-Learning.

NN Neural Network.

NOA image image containing no annotations.

xi

Acronyms

OCC One-Class Classifier.

PC Principal Component.

PCA Principal Component Analysis.

RAAE Rail Anomaly Autoencoder.

ReLU Rectified Linear Unit.

t-SNE t-distributed Stochastic Neighbor Embedding.

TAAE Trackbed Anomaly Autoencoder.

VADAR Vision-based Anomaly Detection Algorithm for Railroads.

VAE Variational Autoencoder.

xii

Chapter 1

Introduction

Railroad systems have been crucial to the emergence of modernization and progress. The transportation of people and

goods is a central part of today’s urbanized society [1]. For Example, between the years 2018 and 2020, approximately

100 million tons of goods were transported annually by the railroad system in Austria [18, 19, 20]. Nevertheless, also in

the rest of the European Union, the rail sector is a vital contributor to innovation, industrial growth, jobs, and society [3].

The same goes for many countries around the globe. Railroad systems also play an increasingly significant role in the

economic development of other countries like India [5] and countries in Africa [4]. Hong Kong has acknowledged “the

railroad as the backbone of the public transport system” [21], and other Chinese cities such as Beijing, Guangzhou,

and Shanghai identify the railroad as one of the main assets of their transport systems [6]. According to European

development economists, a country’s economic progress can be estimated by the Basic Rail Transportation Infrastructure

(BRTI) index, which informs on the modernity and expansion of its railroad infrastructure [22].

Expanding rail infrastructure is today more important than ever because it allows for more transportation of people

and goods via trains and is an effective way to combat the climate crisis. Studies like that of Torres et al. [7] show that

transitioning from road-only transport to intermodal transport with road and rail significantly reduces emissions, fuel

consumption, and operating costs.

1.1 Motivation and Problem Description

Since wear-out [8], climatic influences, or other damages to the infrastructure lead to the deterioration of the railroad

system [9], maintenance is necessary. In order to secure reliable and safe transportation, maintenance is essential,

and the inspection of rails and the trackbed is necessary to plan and coordinate maintenance. Regular maintenance

is crucial to ensure the safety of transportation, guarantee a reliable railway system, and extend the rail service life.

The maintenance work consists of activities like inspecting the rails and trackbed, grinding, and the power system

maintenance [23]. These necessary activities are resource heavy and expensive. The EIM-EFRTC-CER Working Group

reported an annual 15 to 25 billion EUR budget for European infrastructure managers for the maintenance of their

railroad infrastructure [24]. The inspection of the total track length of 370,000 km in the European Union is responsible

for an estimated cost of 70 million EUR per year [25]. This estimation assumes annual vehicle ultrasonic inspections

and additional manual verification. Today either expensive and slow measuring vehicles infrequently inspect rail tracks

1

CHAPTER 1. INTRODUCTION

or trained personnel continuously inspect the rail infrastructure superficially [26, 27, 28]. Defects and damages to

the rails and other anomalies include cracks [29], head checks [30], squats [31], wheel burns [32], missing or faulty

hardware [33], heavy vegetation [34], or unexpected objects [35]. According to conversations with domain experts

measuring vehicles inspect some parts of the railroad system only up to two times a year. This infrequent measuring

can be problematic if, e.g., a rail is damaged briefly after such an inspection. Since the inspection of railroad systems is

an essential part of the according maintenance process, and several kinds of damages to the system and other anomalies

can be detected visually, this presents an opportunity for automation by a machine vision system. By installing a camera

system on regular trains, an automatic visual inspection of the rails and trackbed could be done more frequently and

cost-effectively.

Over the last decades, increasing computational power [11], advanced algorithms, and the progress in Neural Networks

(NNs) [10] led to the automation of many processes. Nowadays, computer and machine vision systems have a central

role in various application domains like medical imaging, robotics, and surveillance systems [12]. Besides image seg-

mentation, image classification, and object detection, anomaly detection is another task machine vision systems are used

for [36]. The detection of anomalies is an important part of several applications like manufacturing and production [14],

security surveillance [15], inspection-related tasks [37] or medical applications [13].

In general, anomaly detection is a challenging task. Especially the detection of anomaly frames in vision-based appli-

cations is a complex problem. For humans, detecting anomalies often seems like a rather easy task because years of

evolutionary training and adaption allow us to detect patterns and to distinguish between relevant information and

noise easily [38]. Developing an explicitly programmed algorithm to detect anomalies in images for a specific appli-

cation can be very difficult because there might be no simple definition of anomalous and normal data. Furthermore,

changes in contextual information like the background and lighting conditions in images may lead to a larger variety

within normal data [39]. This might introduce even more challenges for an anomaly detection system that must be

considered. Therefore, popular approaches to deal with these problems are NNs. Appropriate training procedures allow

NNs to learn what features and characteristics represent normal data or anomalous data [36].

In the development of many practical applications, anomaly detection algorithms face a common problem: the scarcity

of anomalous data. [16]. Furthermore, often the used dataset is not even labeled. Generally, anomaly detection systems

are designed to find non-conforming patterns with respect to the data set normality. Section 2.2 gives a more precise

definition of anomalies. For example, depending on the application and the used data type, anomalies can include

damages to a product or system, unexpected or missing objects, or simply outlier data points. In general, anomaly

detection poses a challenge to machine vision because there is no easy definition of anomalies for a particular set of

images. However, engineers and researchers were able to take advantage of the potential of machine vision systems,

neural networks, and other algorithms to design anomaly detection systems for a variety of problems like the detection

of cyber attacks in communication networks [40], the detection of anomalous grapevine berries [41], flight anomaly

detection during the take-off phase [42] or even anomaly detection in various medical application domains [43].

This thesis introduces a NN-based anomaly detection system called Vision-based Anomaly Detection Algorithm for

Railroads (VADAR). A camera system allows for analyzing images of the rail tracks to detect anomalies like damages,

foreign objects, and vegetation. Since the camera system can be installed on regular trains, the proposed system may

enable an automatic continuous inspection of the rails and trackbed.

2

1.2. METHODOLOGY

1.2 Methodology

The problem description is approached with different machine learning methods. Machine learning is an interest-

ing approach for anomaly detection problems since it can work with large datasets to learn from past experiences

to apply the learned concepts to new data [44]. Like in many real-world anomaly detection tasks, labeled anoma-

lous samples are rare. Therefore, this work mainly focuses on anomaly detection approaches suitable for unsuper-

vised training. Reconstruction-based anomaly detection approaches, where a model tries to reconstruct given input

images, are particularly interesting for vision-based problems because the pixel-wise comparison of input and output

data enables a straightforward interpretation of the anomaly detectors’ decision. Several anomaly detection systems

utilize reconstruction-based approaches like Autoencoders (AEs) [40], [41], [45]. Therefore, this work mainly focuses

on reconstruction-based methods, and several different architectures are tested and analyzed. Since the dataset this

work is focused on does not contain many anomalous rails, some of these annotated rail damages were extracted and

replicated on rails in other images. In addition to the actual annotated rail damages, the evaluation of VADAR con-

sidered these synthetic rail damages for analysis. This work also presents a performance comparison of VADAR to a

state-of-the-art approach. All neural network models are implemented with CUDA 11.3 [46] within PyTorch [47], which

is an open-source machine learning framework (Version 1.11.0).

(a) Image of trackbed with wooden crossties. (b) Image of trackbed with concrete crossties.

Figure 1.1: This dataset includes images with varying lighting conditions and different crosstie materials.

1.3 Objectives and Research Questions

The main objective of this thesis is to investigate image-based anomaly detection approaches based on deep neural

networks and their applicability to a specific dataset. The dataset consists of grey-scale images of rails and trackbeds of

railroad systems, where the images were taken from a birds-eye perspective. Figure 1.1 shows two example images of

different sequences of the dataset. The dataset contains images from sequences with varying lighting conditions, crosstie

materials, and gravel. Since the dataset consists of images taken by a monochrome camera, the anomaly detection

approach must be robust regarding varying lighting conditions. Anomalies of interest include objects placed on the

3

CHAPTER 1. INTRODUCTION

track bed, damages to the rails and trackbed, or vegetation covering the track bed. Furthermore, the anomaly detection

accuracy for the dataset with varying rails, trackbed, and lighting conditions are investigated, and constraints and

limitations of the approaches and the dataset are analyzed.

This work aims to explore vision-based anomaly detection methods to find an approach that is robust to changes in the

scenery, like varying lighting conditions. Like many other anomaly detection tasks, this work faces common challenges,

such as the lack of knowledge of the anomalies’ nature before encountering them, the diversity of possible anomalies,

the rarity of anomalies, as well as the resulting class imbalance between normal and anomalous data [48].

The main research questions this thesis focuses on are the following:

• What challenges do the rail track images recorded by a monochrome camera from a birds-eye perspective intro-

duce, and how can they be tackled?

• What properties and characteristics of anomalies influence the recall rate?

• Down to what size can anomalies be detected at a reasonable false positive rate?

1.4 Contributions and Organization

The main contribution of this work is VADAR, a vision-based anomaly detection algorithm capable of detecting anoma-

lies like damages, foreign objects, and heavy vegetation on rail tracks. A cost-effective monochrome camera mounted

on regular trains captured images of rail tracks from a birds-eye view perspective to train and evaluate this anomaly de-

tection method. This camera system recorded images of different parts of rail tracks under varying lighting conditions.

VADAR explicitly focuses on these grey-scale birds-eye view images. Therefore, the training and evaluation of VADAR

only include such images. The different camera perspectives and focus on rail damages, foreign objects, and heavy

vegetation on the trackbed while utilizing images of just one monochrome camera differentiates this system from state-

of-the-art. Several experiments demonstrate VADAR’s performance and what anomalies’ properties and characteristics

impact the recall rate. Experiments show that VADAR can detect certain trackbed anomalies larger than roughly 10,000

mm2 with up to 100% recall rate while achieving a false positive rate of 5.3%. Since detecting smaller anomalies like

rail damages is particularly interesting, the influence of anomalies’ sizes upon VADAR’s performance is investigated in

more detail. VADAR achieved a recall rate of 53% for rail damages with sizes down to 50 mm2 while maintaining a false

positive rate of less than 4.2%. This thesis also includes a comparison between VADAR and a state-of-the-art anomaly

detection system. These comparisons show that VADAR outperforms this state-of-the-art system in recall rate, false

positive rate, and accuracy.

Chapter 2 of this thesis overviews the background, state-of-the-art, and related works. Specifically, this chapter intro-

duces NNs, essential aspects and challenges of anomaly detection, multiple anomaly detection approaches, and existing

work on anomaly detection in railroad systems. Then Chapter 3 introduces the dataset this work focuses on, explains

the annotations within the dataset, and the challenges this dataset poses. The introduction to this dataset is followed

by an analysis of various NN-based architectures in Chapter 4. Furthermore, this chapter explains the implementation

of VADAR. Then Chapter 5 demonstrates VADAR’s performance through several experiments. This chapter also com-

pares VADAR to a state-of-the-art anomaly detection system for railroad systems. Finally, the thesis ends with Chapter 6,

which gives a conclusion and an outlook.

4

Chapter 2

Background and State of the Art

Section 2.1 summarizes some Neural Networks (NNs) fundamentals and training methodologies. Then Section 2.2

presents definitions used in the context of anomaly detection and different approaches for anomaly detection. Section 2.3

goes into more detail about the challenges anomaly detection approaches encounter. Section 2.4 gives information about

methods especially interesting for vision-based applications. The chapter closes with Section 2.5, which presents related

work in the field of automatic inspection and anomaly detection systems for railroad systems.

2.1 Artificial Neural Networks

Originally the concept of artificial NNs was inspired by the human brain and was first used for classification tasks to

learn from training data [49]. Nowadays, Convolutional Neural Networks (CNNs), a specific NN-type, is a popular and

well-established tool in image recognition, segmentation, classification, and other computer vision tasks [50, 51, 49, 52].

This section introduces the basic principles of NNs based on the books [53, 54]. A short introduction to the fundamental

ideas behind NNs and an analysis of fully connected NNs is given. Then the focus shifts to CNNs, the layers such

networks are built upon, and how to work with them.

2.1.1 Fully Connected Neural Networks

Since a so-called fully connected NN has a relatively simple architecture, it is an excellent example to discuss the funda-

mental principles of NNs. Such networks consist of many nodes (neurons) with several inputs and outputs. These nodes

are grouped in layers, and the nodes of neighboring layers are connected to each other [55]. These networks’ three dif-

ferent layer types are the input, hidden, and output layers. Networks containing multiple hidden layers are often called

Deep Neural Networks (DNNs) [56]. Figure 2.1 shows the structure of such a network. Every neuron of layer i has a

weighted sum of all the outputs of layer i−1 as its input, where i is a number between 1 and the total number of hidden

layers P . A bias can be added to this weighted sum for every neuron. Each neuron then applies a so-called activation

function, which can be nonlinear, to this value. According to [57], three common examples of activation functions are

the Sigmoid (or Logistic curve) function

f(x) =
1

1 + e−x
, (2.1)

5

CHAPTER 2. BACKGROUND AND STATE OF THE ART

h1,1

h

x1

xN

h1,P

h

y1

yMK1,1 KP,P

=h1,0

=hN,0

h1,i

hKi,i

h1,i+1

hKi+1,i+1

=h1,P+1

=hM,P+1
Figure 2.1: This graphic is a visual representation of a fully connected NN. The input layer includes the nodes x1, . . . , xN

and the P hidden layers each consist of the nodes h1,i, . . . , hKi,i, where Ki refers to the number of neurons for the
layer i. The output layer consists of the neurons y1, . . . , yM [53].

the Tanh (Hyperbolic Tangent) function

f(x) = tanh(x) =
2

1 + e−2x
− 1, (2.2)

and the ReLU (Rectified Linear Units) function

f(x) = max(0, x). (2.3)

For example, the output value of the neuron hk,l for a network, with a structure as in Figure 2.1, can be calculated

as

hk,l = f

 Kl

j=1

(wj,l−1hj,l−1) + bk,l

 , 1 ≤ k ≤ Kl, 1 ≤ l ≤ P (2.4)

where f(·) refers to the activation function of the neuron hk,l, wi,l−1 is the weight for the neuron output of hi,l−1,

and bk,l is the bias of neuron hk,l [58]. The weights and biases of the neurons are learnable parameters. During the

training of a NN model, those parameters are adapted to minimize a loss function, which depends on the specific task

and approach. Usually, the loss function describes the deviation between the output of the model and the expected or

true value [50], which is either given implicitly through the task or explicitly by the labeled data.

2.1.2 Convolutional Neural Networks

In contrast to the beforementioned fully connected NNs, CNNs preserve the locality of the input data, which is especially

important for image processing tasks. The loss of locality of the input data in fully connected NN is a direct consequence

of the idea that each neuron operates on the weighted sum of all neuron outputs of the previous layer. Therefore,

a specific neuron has no information about which part a neuron has contributed to the weighted sum at its input.

However, CNNs use convolutional layers instead of fully connected layers which was heavily inspired by mathematical

operations already used for several computer vision tasks [59, 60, 61]. Every convolutional layer consists of multiple

kernels, where each kernel extracts features by a convolution operation on the so-called feature maps produced by

the previous layer. A visual representation of an input tensor, the kernels of one convolutional layer, and the resulting

6

2.1. ARTIFICIAL NEURAL NETWORKS

KH KW
IC

IC
IH

IW

NO=8

OW
OH

NO=8

Input Tensor Kernels Feature Maps
Figure 2.2: The dimensions of the input tensor, the kernels, and resulting feature maps are visualized for the case of
NO = 8 kernels of a convolutional layer [53].

featuremaps are shown in Figure 2.2. The dimensions of the output feature-mapsOW andOH depend on the dimensions

of the input tensor IW and IH , the dimensions of the kernels KW and KH , the stride, the dilation, and the padding

of the convolutional layer. Stride refers to the number of pixels by which the kernel slides along the height (SH) and

width (SW) of the input tensor. By adjusting dilation, the field of view of the kernel can be increased without adding

additional parameters. Dilation refers to the spacing between the kernel weights in the height (DH) and width (DW)

dimensions. Through padding, dummy pixels can be added to the width (PW) and height (PH) of the output feature

maps. Padding can be helpful if OW and OH should match IW and IH since, without padding, the output dimensions

will be slightly smaller depending on the kernel size and dilation. As described in [53], the dimensions of the output

feature-maps OW and OH can be calculated by using the equations

OH =
IH + 2PH −DH (KH − 1)− 1

SH
+ 1 and (2.5)

OW =
IW + 2PW −DW (KW − 1)− 1

SW
+ 1 . (2.6)

Besides convolutional layers, so-called pooling layers are often used in CNNs. Pooling layers can reduce the size of the

response map or convert spatial response maps to vectors to be compatible with the following linear classifier layers

[53]. In CNNs, max- and average pooling are two of the most commonly used pooling layers. However, there ex-

ist multiple different pooling methods that rely on different pooling techniques and combinations of various pooling

layers [62]. Another type of layer that is commonly used in modern CNNs is the batch normalization layer. In this

context, batches refer to multiple instances of data. Instead of using a single data instance, batches can be fed to a NN

simultaneously. Batch normalization was introduced in [63] and revolves normalizing a layer input for each training

mini-batch. According to [63], this method allows significantly higher learning rates. Additionally, this increases the

robustness regarding the initialization of the model. Furthermore, batch normalization can introduce a regularization

effect and sometimes eliminates the need for dropout as a regularization scheme [63]. Extracting features using convo-

lutional layers is computationally expensive and involves many floating-point operations. Nowadays, CNNs are usually

run on Graphics Processing Units (GPUs) because the convolution operations are performed through multiple matrix

multiplications, which are easily parallelizable through GPUs [64].

7

CHAPTER 2. BACKGROUND AND STATE OF THE ART

2.1.3 Features and Subspaces

Especially in image-based applications, input data may contain a large amount of information. NNs are valuable for

extracting complex information from high-dimensional data for a specific task. Some NNs are using these features for

powerful classification abilities [65, 66]. Typically this classification is accomplished by extracting certain features from

data. These feature-based methods learn during a training procedure which features correspond with a given selection

of classes or try to cluster instances according to the extracted features [67, 66]. Other approaches try to reduce the

dimensionality of the input data to represent it in a lower dimensional space. In this context, this lower dimensional

space is often referred to as subspace or latent space [68, 69]. This transformation of input data to a latent space is

sometimes used to allow for a more efficient way to analyze the data further or simply as a compression mechanism [68,

70]. Section 2.4 discusses these approaches in more detail.

2.1.4 Training Neural Networks

The values of the weights and biases of each neuron in a NN are responsible for the error of a model, which is defined

by the value of a loss function. The calculated loss forms a hyperplane, and the objective of the training is to adapt

the weights and biases to reach a minimal error. This adaptation of the model parameters, specifically the weights and

biases of each neuron, is accomplished by backpropagation. In principle, the weights and biases undergo slight changes

to come closer and closer to a local minimum of the error by analyzing the gradients of the loss function with respect

to weights and biases. A more detailed description of the backpropagation process and optimization techniques can be

found in [53].

Data augmentation

Through the training process, a CNN shall learn useful features representing the training data. In general, the training

data should represent the real-world data the model will encounter during its usage. In many cases, the amount of

available data for training is limited, or the dataset is imbalanced. Typically, the performance of CNNs can be improved

by expanding the training dataset [71]. Expanding a training dataset comes with additional financial costs or delays and

might not be feasible for some applications. Instead, an expansion of the dataset can also be achieved by augmenting

the already available data. Furthermore, the performance of some NN models can be significantly improved when the

input data is augmented or augmented versions of the original data are fed to the network additionally [72]. In several

works, multiple ways of augmenting input data and sometimes combinations of multiple augmentation methods are

applied simultaneously [71, 72, 73]. In the following, a list of data augmentation methods is given. Without a claim of

completeness, this list mainly focuses on methods relevant to gray-scale images.

• Rotation: Applying different rotations to an image. In some applications, multiples of 90◦-rotations are used to

quadruple the number of training data effectively [73], but in general arbitrary angles can also be used in some

applications.

• Flipping: By flipping an image horizontally or vertically, additional data for training is generated.

• Cropping: Using different crops from the original data is another way of generating additional training data. For

some applications, the cropped image might need to be resized to match the specific dimensions.

8

2.1. ARTIFICIAL NEURAL NETWORKS

• Noise: Adding different kinds of noise to images. Popular noise choices are Gaussian or salt and pepper noise,

which alter the values of separate pixels within an image. In some works, the process of masking patches of

images is referred to as adding noise as well [74].

• Blurring: Blurring the input image can lead to a more robust model regarding the camera system. [72].

• Brightness adaptation: The brightness of images can vary due to the lighting conditions. The robustness of NNs

regarding different lighting conditions can be improved by adapting the brightness distribution of the dataset.

One popular method to equalize the brightness distribution is Contrast Limited Adaptive Histogram Equalization

(CLAHE) [75].

• Synthetic Data: Although this method does not augment existing data but is based on the generation of synthetic

data, in literature, this approach is often referred to as a data augmentation strategy [43]. Nowadays NNs, like

Generative Adversarial Networks (GANs), are used to learn from the available dataset to generate synthetic data.

Depending on the application, developers need to consider if a specific type of augmentation potentially changes the

meaning of the data and its consequences. For example, rotating an image of a handwritten number six by roughly 180◦

will look like an image of a number nine.

Regularization

The goal of training any NN model should be to enable the model to perform well on unseen data samples. Usually, a

NN is provided with samples from a training dataset during training. In order to check the performance of the trained

model, a validation dataset is used. The validation dataset only contains samples the model has not encountered during

training. Usually, after the initialization of a model, both the training and validation performances improve. However,

overfitting describes the problem where a model’s performance on training data continues to improve throughout the

training but simultaneously stagnates or declines on unseen data [53]. To ensure this generalization capability, the

problem of overfitting needs to be addressed. The deviation between the training and validation performance is often

referred to as the generalization error. The objective of any regularization mechanism is to reduce this generalization

error. The generalization error is reduced by preventing the network from reaching the absolute minimum of its loss

function because the model might have learned concepts that are fine-tuned to some specific training samples and will

not be beneficial for unseen samples. The most straightforward regularization approach is to stop training when the

validation performance stops increasing. Parameter norm penalties are another form of regularization. Some of the most

commonly used penalty norms are the so-called L1 and L2 norm penalties [76]. The L1 norm penalty induces sparsity

in the weights, while the absolute values of the weights are constrained in the optimization problem. The constraints

on the norm of the model parameters by the L2 norm penalty ensure that the linear transformations are bounded [77].

Another regularization method is dropout. Dropout refers to the idea of randomly selecting some elements of input

tensors and setting them to zero during the training process. Because this random selection of elements changes with

every sample, multiple different network configurations are used, and neurons are trained to performwell in the absence

of surrounding neurons, leading tomore robust features learned [53]. Dropout is most effective for fully connected layers

and is often used for those layers only. However, there also exist specialized dropout implementations for convolutional

layers [78]. As briefly mentioned before, batch normalization also has a regularization effect that enables omitting the

dropout strategy in some cases [63]. In many problems, data augmentation is also used as a regularization method. Some

9

CHAPTER 2. BACKGROUND AND STATE OF THE ART

images may be flipped, rotated, or cropped and still represent valid data that can be used to train the model. Of course,

valid augmentations are dependent on the specific dataset, task, and application. In some applications, adding noise to

the input data may also result in a more robust model.

Optimization algorithms

In NNs, loss functions give a metric for measuring training progression. This loss indicates how well the model can

generate the expected output. The larger the deviation of the output from the target values, the higher the value of the

loss function is. An optimization algorithm is needed to minimize this loss function to guide the model during training to

model parameters that lead to better results. There exist multiple algorithms specifically designed for the optimization of

NNs. The goal of optimization algorithm design for NNs includes fast convergence and the improvement of a particular

metric of interest [79]. We can write the minimization problem as a finite-sum optimization problem, thus

min
θ

F (θ) =
1

B

B

i=1

Fi(θ) (2.7)

where each Fi(θ) is the sum of training loss for a mini-batch of training samples, and B represents the total number of

mini-batches [79]. In practice, B usually is set to powers of two. Stochastic gradient descent (SGD) and its variants are

a prevalent class of optimization methods. SGD performs an update for the parameters

θnew = θold − η∇θ (Fi(θold)) (2.8)

where Fi(θold) refers to the loss function of the i-th minibatch of the model with the old parameter values, and η is

the learning rate [80]. If no mini-batches but rather every single sample of the training dataset is used as a separate

input, B is 1. Some papers distinguish between the cases where B is 1, B is the total number of training samples (i.e.,

there is only one minibatch), or B is some value in between [80], but in this section, all of these cases are referred to

as SGD. With this basic approach, some problems arise. Choosing the optimal learning rate can be challenging since

small learning rates lead to slow convergence, and if it is too large, it can hinder convergence or cause fluctuations in

the loss function. Better results can be accomplished by using learning rate schedules to adjust the learning rate during

training. However, the schedules and necessary thresholds are defined in advance and cannot adapt to the dataset’s

characteristics. Furthermore, the same learning rate is used for all parameter updates. Since the data used can have

features with different frequencies, there might be better solutions [80]. There are multiple variations and adaptations

to this vanilla SGD algorithm to deal with these challenges. One way of improvement is the introduction of a so-called

momentum term γνold, where γ is a value between 0 and 1. This momentum term is a fraction of the update vector of

the past time νold step which is added to the current update vector

νnew = γνold + η∇θFi(θold), θnew = θold − νnew. (2.9)

This momentum increases when the gradients point in the same directions and reduces updates for directions where

the gradients change over multiple iterations. Therefore, faster convergence and reduced oscillations are achieved. The

so-called Adagrad optimizer adapts the learning rate to parameters, making bigger updates for infrequent and smaller

updates for frequent parameters. Adaptive moment estimation (Adam) is a different method that computes adaptive

10

2.2. ANOMALY DETECTION

learning rates for every parameter [81]. Adam stores an exponentially decaying average of past squared gradients νold
and an exponentially decaying average of past gradientsmold similar to momentum, as

mnew = β1mold + (1− β1)∇θFi(θold), νnew = β2νold + (1− β2) (∇θFi(θold))
2
, (2.10)

where β1 and β2 are parameters. m and ν are estimates of the mean and uncentered variance of the gradients, respec-

tively. The Adam update rule is given as

θnew = θold − η√
ν̃new + ϵ

m̃new, (2.11)

where ν̃old and m̃new are bias-corrected versions of νnew andmnew , and ϵ is usually set to 10−8 [81].

2.2 Anomaly detection

An anomaly is a measurement or data that shows significant deviation from some concept of normality [16]. Therefore,

anomaly detection aims to detect patterns or features in data that do not match the expected behavior [17]. In some

cases, this desired behavior is established by an explicit definition, but often it is implicitly given through example

data. To formalize the description of anomalies, a concept of normality and what is considered to be a deviation from

this normality must be specified. In multiple different works on anomaly detection, these definitions are built upon

probability theory [16]. The data space given by a specific application shall be

X ⊆ RD. (2.12)

A concept of normality can be defined as a distribution P+ on X , which is the ground-truth law of normal behavior in
a given task. If an observation significantly deviates from this concept of normality, then this anomaly x̃ ∈ X lies in a

low probability region under P+. Under the assumption that an underlying probability density function p+(x) exists

for distribution P+, the set of anomalies can be defined as

A = x ∈ X | p+(x) ≤ τ , τ ≥ 0, (2.13)

where τ is a threshold defined so that the probability for x ∈ A is sufficiently small [16]. In the context of anomaly detec-
tion, anomalies, novelties, and outliers are interesting groups of data. Although all three refer to instances x ∈ X within

low probability regions of P+, anomalies are often characterized as instances generated by a different process than nor-

mal data. Outliers usually refer to rare instances of P+, and novelties result from new regions of a non-stationary P+.

Following this definition, anomalies are the instances of interest, outliers are usually considered measurement errors

or noise, and novelties are new measurements that require updating the models. In this thesis, normal data refers to

instances without anomalies. In anomaly detection, one basic assumption is that the region where normal instances

occur can be bounded. Therefore, a threshold τ ≥ 0 can be defined such that

X \ A = x ∈ X | p+(x) < τ (2.14)

11

CHAPTER 2. BACKGROUND AND STATE OF THE ART

is dense and not empty. This assumption does not imply that the full support of P+ is bounded, but a dense subset

of this support is. P+ is not explicitly known in many applications, because the underlying process that generates the

data is too complex. Therefore, this distribution P+ needs to be estimated from the data. From this typical concentra-

tion assumption, anomalies are assumed to be not concentrated. Some unsupervised methods, such as kernel density

estimation [82], implicitly assume that the anomaly distribution P− follows a uniform distribution, implying an un-

informative prior to P−. However, in semi-supervised or supervised anomaly detection methods, apriori assumptions

about P− are made to achieve better results. Unsupervised approaches are the only option for such tasks when no

specific information about anomalies is known beforehand. Since this is the case for many applications, it represents

the most common approach in anomaly detection [16].

2.2.1 Unsupervised Anomaly Detection

For unsupervised anomaly detection, there is only unlabeled data available. The data-generating distribution P of this

dataset is often assumed to be the same as the normal distribution P+. However, in practice, P can contain noise or

contamination. In this context, noise refers to some randomness that alters the outcome of the data-generating process,

like measurement errors. On the other hand, unknown anomalies contaminate the set of unlabeled data and represent

another disturbance. Therefore, in an unsupervised setting, P includes contributions of both P+ and P−. One way of

formally describing the data-generating distribution is

P = x+ ϵ, x ∼ (1− η)P+ + ηP−, (2.15)

where x refers to a noise-free data instance, ϵ is the noise distribution, and η represents the contamination rate [16].

Unsupervised anomaly detection approaches are especially interesting since real-world data comes in an unlabeled form,

and the labeling process is expensive. Furthermore, deep learning methods rely on high volumes of data to learn good

generalizations of a concept, and in many applications, anomaly data is rare.

2.2.2 Semi-Supervised Anomaly Detection

In semi-supervised anomaly detection, unlabeled and labeled data are available to train a model. Since the labeling

process often depends on the specific knowledge of experts, which causes high costs, the amount of unlabeled data is

usually more extensive than the labeled data [16, 83]. Including known anomalies can lead to a significant improvement

in detection performance [83]. Generally, semi-supervised approaches can be put into one of two groups. Either the

training data consists of labeled normal data only, and the core idea is to learn patterns of normal data. Alternatively, the

training data contains large-scale unlabeled data and a few annotated anomalies. Then unlabeled data and the labeled

anomalies can be exploited to learn a generalization [83]. In some cases, unsupervised anomaly detection methods allow

for incremental updates when some anomalies are already found. In many real-world anomaly detection applications,

a few labeled data can be collected relatively cheaply [83].

2.2.3 Supervised Anomaly Detection

In supervised anomaly detection, completely labeled data is available for training a model. Under the assumption that

both normal and anomalous data are representative of the normal distribution P+ and the anomalous distribution

P−, this problem can be described as a supervised classification task instead. However, in practice, certain anomalies

12

2.3. CHALLENGES IN ANOMALY DETECTION

might be rare or unknown, and depending on the application, the anomalies can drastically vary. Therefore, the labeled

anomalous example data is usually not fully representative of all possible anomalies, making it difficult for a supervised

learning model to gather sufficient statistical information about anomalous patterns [36].

2.3 Challenges in Anomaly Detection

The challenges of an anomaly detector depend on the application domain and the specific application. In many real-

world scenarios, no or only a few labeled anomalous data samples are available during the development of the anomaly

detection algorithm [38, 16]. Furthermore, even when anomalous sample data is available, an approach relying on

training with those samples will often fail to detect unknown anomalies [36]. The availability of labeled data is a

limiting factor regarding the choice of anomaly detection approach. Sections 2.2.1, 2.2.2, and 2.2.3 highlight the main

characteristics and differences between unsupervised, semi-supervised, and supervised approaches. As described in [38],

the key challenges resulting from the lack of or limited amounts of labeled data can be formulated like this:

• Machine-Learning (ML) methods typically rely on large amounts of data to allow for solid generalizations about

the training data. Therefore, the sparsity of training data, often the sparsity of anomalous instances, poses a

challenge.

• A significant challenge for training NNs is that real-world data usually comes without any annotations. If left

unchanged, this limits the types of approaches. Otherwise, an additional labeling process is necessary.

Nowadays, many anomaly detection approaches are based on different NNs and use ML techniques to solve problems

in various application domains [44, 48, 43]. Many ML solutions, especially more complex models, rely on large training

datasets [84] to encourage the model to learn useful representative features instead of noises. The term big data is

often used to refer to datasets’ large and distributed nature [85]. Although the performance of various ML approaches

improves with larger datasets, big data also poses challenges. The five key challenges that come with big data are

referred to as the five “Vs” in literature [86]:

• Volume: Refers to the amount of data that has been gathered and is often viewed as the product of instance size

and the dimensionality of the data. Therefore, an approach must consider many instances and extract relevant

information from high-dimensional data to take advantage of high-volume datasets.

• Velocity: Refers to the acquisition or update rate of the data. This point is particularly interesting for real-time

problems and needs to be considered in such applications.

• Variety: Refers to different data types like image, audio, or text.

• Veracity: Refers to the range of data quality. Of special interest is incomplete or noisy data.

• Value: Refers to the value and the gained insights that can be extracted from big data analysis and are usually

the primary motivation of the analysis in the first place.

2.3.1 Challenges for Deep Learning in Anomaly Detection

13

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Generally, deep learning approaches based on NNs can work with large amounts of data, and often larger training

datasets lead to better generalization capabilities of the model and prevent overfitting [48, 71]. In [48], the main chal-

lenges tackled by deep learning approaches for anomaly detection are summarized in six points:

• Lowanomaly recall rate: Inmany applications, a critical problem in anomaly detection is the rarity of anomalies.

Typically, a tradeoff must be considered between the number of normal instances that are wrongly identified as

anomalies and the number of rare anomalies that are misinterpreted as normal instances.

• High dimensional and not-independent data: Sometimes anomalous data have abnormal characteristics in

lower dimensional representations hidden in the original higher dimensional space. For example, assume a four-

dimensional point cloud of normal and abnormal data is given. By projecting these points onto a two-dimensional

space, it might be easier to find a line separating these projected points than finding a hyperplane separating the

points in the original four-dimensional space. Performing the anomaly detection task in a lower dimensional

representation has been a popular solution in subspace-based and feature selection-based methods. However, the

complex interactions and couplings between multiple features in high dimensional data might be the potential

for further performance improvements but still poses a key challenge for anomaly detection. Furthermore, for

anomaly detection, the scenarios where instances may depend on each other introduce another source of chal-

lenges.

• Data-efficient learning of normality and abnormality: Because large datasets containing annotated normal

and anomalous data are unavailable for many applications due to high costs, fully-supervised approaches are

often unsuitable for anomaly detection. Therefore, much research has recently focused on unsupervised anomaly

detection. One major drawback of unsupervised anomaly detection is that no true anomaly data is known, and

the models rely entirely on anomaly distribution assumptions. However, in some applications, collecting labeled

normal data and a few labeled anomalous data is not difficult and reasonable to further enhance the anomaly

detection performance utilizing a semi-supervised approach. The remaining significant challenges are learning

normality or abnormalitymodels from a relatively small amount of labeled anomalous data that allow the detection

of novel anomalous instances not included in the labeled data.

• Noise resiliency: Many semi-supervised approaches are vulnerable to wrongly labeled instances due to the

assumption of clean labeled data. Furthermore, large-scale anomaly-contaminated unlabeled data also poses a

problem. In this context, mislabeled or unlabeled anomalous data is called noise. Both pose a challenge to semi-

supervised approaches. The amount of noise can vary significantly within datasets, and noisy instances can be

irregularly distributed in the data space.

• Complex anomalies: Most existing methods only consider point anomalies and do not consider conditional or

group anomalies. Point anomalies refer to single anomalous data points or instances. If specific data points or

instances only are anomalous under certain circumstances, we call them conditional anomalies. Group anomalies

are groups of data not conforming to expected behaviors. Furthermore, most approaches focus on data from one

data source. One main challenge is that some complex anomalies can only be detected when considering multiple

data sources.

• Anomaly explanation: Any model might be biased towards a particular subset of a dataset. There may be

certain risks when an anomaly detection model is directly used as a black-box model in several domains. Anomaly

14

2.4. VISUAL ANOMALY DETECTION

explanation algorithms provide information about why a specific instance was detected as an anomaly. Experts

can then monitor those instances, detect biases and adapt the models accordingly. Developing such explanation

algorithms, especially for complex anomalies, is still challenging.

2.4 Visual Anomaly Detection

Since anomaly detection poses a problem in various applications in different domains, researchers and engineers ana-

lyzed and implemented several anomaly detection algorithms [17, 87, 42]. Especially in image processing tasks, anomaly

detection algorithms are a valuable tool for many applications [88, 89, 45]. Generally, anomaly detection approaches try

to extract, characterize, andmodel patterns from available data. As for all anomaly detection approaches, visual anomaly

detection methods can be grouped into either supervised, semi-supervised, or unsupervised approaches. This work

mainly focuses on unsupervised methods for anomaly detection. Therefore, the following sections present anomaly

detection approaches suitable for unsupervised training. While some of these approaches are exclusively designed for

the detection of anomalies, others additionally enable an effective way of anomaly localization. Some anomaly de-

tection methods relevant to machine vision systems are discussed in the following paragraphs. Even though these

approaches are not only used for vision-based tasks, the following sections discuss their applicability to visual anomaly

detection.

2.4.1 Probabilistic Anomaly Detection

Probabilistic approaches try to estimate the underlying probability density function of the training dataset, where the

training data does not include anomalies. Defining thresholds for the resulting distribution and analyzing data helps to

determine whether the sample data stems from the same underlying distribution [90]. A requirement for applying such

probabilistic approaches is that all training data instances come from the same probability density function. Multiple

techniques utilize various underlying statistical properties of datasets that rely on apriori knowledge or data assump-

tions. One of the main advantages of probabilistic approaches is the statistically justifiable solution of the anomaly

detection algorithm. However, choosing appropriate statistical models for a given application is complex, especially

for high dimensional data [91]. Furthermore, these methods assume that data follows a particular probability distribu-

tion. For many high-dimensional real-world datasets, this premise does not hold [91]. It should be noted that many

vision-based applications work with such high-dimensional data. The following sections provide a brief overview of

such statistical methods.

Parametric Approaches

Parametric approaches are based on the assumption that all data instances without anomalies are generated from the

same probability density function

p(x, θ), (2.16)

where x represents one observation, with parameters θ ∈ Θ, where θ is finite [90]. During training, appropriate

values for the parameters θ are determined. The most popular underlying distribution of continuous variables used

is the Gaussian distribution. Many applications need more complex distributions or mixtures of distributions such as

the Gamma, Poisson, or Weibull distributions [90]. However, some applications utilize the Gaussian Mixture Model, a

combination of multiple normal distributions [92, 93].

15

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Non-Parametric Approaches

Non-Parametric approaches do not rely on assumptions regarding the underlying probability distribution of the training

data. Instead, the model changes during the training process to fit the dataset [90]. A rather simple variation of this

approach is the use of histograms. The kernel density estimator is another probabilistic technique that does not rely on

assumptions of the probability density function. Multiple kernels distributed over the data sample are used to estimate

the probability distribution. This approach was used to estimate background probability density functions as proposed

in [94].

2.4.2 Reconstruction-based Anomaly Detection

Reconstruction-based algorithms compare the original input image with a reconstruction of this image. In ML-based

approaches, the training dataset for such a model ideally only contains normal data or is contaminated by a relatively

small number of anomalous instances [38]. This encourages the model to improve at reconstructing normal data, and

it will struggle with reconstructing anomalous data. The cumulative difference between the original and reconstructed

image usually serves as an indicator of anomalies. This is based on the assumption that the algorithm should struggle

with reconstructing anomalies in the input image; therefore, the difference should be significantly larger than in images

without such anomalies [38]. Since reconstruction-based methods enable the pixel-wise comparison of the input and

output images, regions with large errors indicate an anomaly. Therefore, besides anomaly detection, such approaches

can also accomplish anomaly localization efficiently [95]. Typically, reconstruction-based methods like Autoencoders

(AEs) or Principal Component Analysis (PCA) perform a dimensionality reduction of input data [96]. These approaches

project the input data onto a lower-dimensional space, often called latent space. . This makes them useful for process-

ing high dimensional data and enables the usage of other existing anomaly detection approaches on this latent space

representation [91]. Within this category of anomaly detection methods, approaches applicable to images are discussed

in more detail.

Principal Component Analysis

PCA is another kind of reconstruction-based algorithm that is utilized in several applications for anomaly detection

[97], [98], [99]. It is a data-driven-based approach to anomaly detection, and its basic idea is to eliminate noise and

uncommon features [98]. PCA is used for dimensionality reduction and returns a lower dimensional representation of

the given dataset. This dimensionality reduction is accomplished by projecting the input data onto a predefined lower

dimensional subspace [99]. The new axes, called Principal Component s (PCs), define this lower-dimensional subspace.

Usually, there is a collection of PCs that contribute most of the variance in the input data [99]. The number of PCs within

this collection is an important parameter that must be fine-tuned to accomplish optimal results [99]. Each PC points in

the direction of the maximum variance left in the data after the variance was already accounted for in the preceding

PCs [99]. Traditionally PCA is based on linear transformations and is significantly faster than AE-based approaches for

the same task, although AEs potentially perform better [70].

Autoencoder

An AE is one kind of NN and a popular choice for many applications. Different variations of AEs were specialized

for a wide variety of tasks. Some examples of use cases of AEs are image compression [100], enabling efficient data

transmission [101], or the detection of printed circuit board defects [45]. Figure 2.4 demonstrates how reconstructing

16

2.4. VISUAL ANOMALY DETECTION

input outputcoderepresentationencoder decoder

Figure 2.3: This graphic is a visual representation of an under-complete AE, where the encoder generates a lower
dimensional code representation of the input.

an anomalous image by an AE enables detecting and localizing anomalies [45]. AEs try to extract meaningful content

of the input data without losing essential information [70]. AEs have shown promising results in image anomaly detec-

tion [38]. They compress high dimensional input data to a lower dimensional representation to effectively reconstruct

the input data by focusing on capturing useful information from this low dimensional representation [38]. In this con-

text, dimensionality refers to the number of values representing the data. For an image, the dimension is the number

of pixels, while for a tensor, the dimension refers to the number of elements. AEs consist of an encoder and a decoder.

The encoder generates some sort of code representation of the input image, and the decoder tries to reconstruct the

original image from this code representation. The space where the encoder projects the input into is often referred to

as latent space. Figure 2.3 shows a visualization of such an AE. In general, the encoder and decoder of an AE consist of

several layers. The encoder’s compression level depends on multiple aspects of the architecture, such as the number of

layers. When working with images, usually convolutional layers are utilized, where the number of layers, number of

feature maps, and the stride for each layer impact the number of output neurons of the encoder. In convolutional AEs,

convolutional layers are used in the encoder and decoder. Every convolutional layer utilizes an activation function, its

own weights, and biases. For the most basic convolutional AE, where the encoder and decoder consist of just one layer

each, the reconstructed data and latent representation can be described as

x̃ = σd (h ∗Wd + bd) and (2.17)

h = σe (x ∗We + be) , (2.18)

where x̃ is the reconstructed image, h is the latent vector, x is the input image, ∗ represents the convolution operator, and
σe,We, be, σd,Wd, as well as bd, are the activation function, weight matrix and bias vector of the encoder and decoder

network, respectively [102]. For anomaly detection, so-called under-complete AEs, where the encoder calculates a code

representation with a smaller dimension than the input, are commonly used [41], [35]. Therefore, the encoder of an

under-complete AE performs a dimensionality reduction. However, the encoders of over-complete AEs increase the

dimension of the input data. Some sort of regularization has to be implemented to ensure that the overcomplete AE

does not perform the identity function. Often noise is added to the input data or random input nodes of the encoder are

turned off to accomplish the regularization [45]. For anomaly detection, an AE learns the features and structures of the

relevant dataset, which does not contain any anomalies or usually a relatively small number of anomalous data.

17

CHAPTER 2. BACKGROUND AND STATE OF THE ART

(a) Anomalous input (b) Reconstruction (c) Localization of anomalies

Figure 2.4: Example images for reconstruction-based anomaly detection and localization in printed circuit boards [45].

In contrast to strictly linear methods like PCA, the AE’s ability to learn non-linear feature representations depends on

the activation functions used after each layer of the model. The performance of an AE for a specific task is influenced

by many design choices regarding the architecture of the encoder and decoder networks, such as the number of layers

and the kernel size and stride in convolutional layers. Choosing the optimal architecture is not trivial and is still a topic

of study [70].

Denoising Autoencoder

Denoising Autoencoder (DAE) is a special case of AE. While the architecture of an AE and DAE can be identical, their

training is different. The purpose of DAEs is to remove noise from the input image. During the training of a DAE,

noise is intentionally added to the input images. Like a conventional AE, the DAE is encouraged to reconstruct the

input image through an appropriate loss function. However, the reconstructed image is not compared with the noisy

input image but with the original image without noise. This training methodology encourages the model to extract

meaningful features from the training dataset and to ignore the noise. Typically pixel-based noise like Gaussian- or salt

and pepper noise is added to the images [45, 101, 103]. However, there are other ways of augmenting input data, which

are sometimes referred to as adding some sort of noise. One example is masking certain regions of images to encourage

the DAE model to replace those regions with values from contextual information [74]. A more detailed description of

the noise sources, their purpose, and examples are given in Section 4.1.2.

2.4.3 Variational Autoencoder

Variational Autoencoders (VAEs) also are a special kind of AE. Although the basic structure of the VAE is similar to a

regular AE, the computation of the reconstructed input is non-deterministic. Instead of learning how to construct a latent

representation of the input for the decoder, the encoder of a VAE learns to compute vectors that represent the mean and

variance of a multivariate Gaussian distribution from which the latent vector is sampled. The decoder then transforms

this latent vector back to the original input data space. VAEs are sometimes referred to as both a reconstruction and

probability-based approach since the reconstruction process depends on the learned data’s probability density function.

Because the latent vector is sampled from a probability density function, the VAE is a non-deterministic approach.

Figure 2.5 shows a visual representation of a VAE.

18

2.4. VISUAL ANOMALY DETECTION

input output
latentdistribution

encoder decodersample fromdistribution

Figure 2.5: This graphic is a visual representation of an VAE. The µ and σ blocks represent the extracted mean and
standard deviation vectors.

Diederik P. Kingma andMaxWelling published a detailedmathematical description of Auto-Encoding Variational Bayes,

the basis for VAEs [104]. The basic idea behind this approach is that a dataset

X = x(i)
N

i=1
(2.19)

that consists of N independent and identically distributed samples of a continuous or discrete variable x is assumed to

be generated by a random process dependent on the unobserved random variable z. This random process consists of

two steps. A value z(i) is generated from a prior distribution pθ∗ (z), and a value x(i) is generated from a conditional

distribution pθ∗ (x | z). Both the prior pθ∗ (z) and likelihood pθ∗ (x | z) are instances of parametric families pθ (z) and
pθ (x | z), and their probability density functions are differentiable almost everywhere w.r.t. θ and z. The true param-
eters θ∗ and values of the latent variables z(i) are unknown. The proposed approach solves the possible intractability

of the integrals involved in calculating of the marginal likelihood pθ(x) and the true posterior density pθ(z | x). Fur-
thermore, the approach is applicable to large datasets. A VAE is a generative model that optimizes the lower bound

on the marginal likelihood of each data point in an image [87]. This marginal likelihood consists of the sum over the

marginal likelihoods of all data points log pθ x(1), · · · , x(N) =
N
i=1 log pθ x(i) . In [104], Kingma et al. rewrote

this expression to

log pθ x(i) = DKL qϕ z | x(i) ∥ pθ z | x(i) + L θ, ϕ, x(i) . (2.20)

In their solution, they introduce a recognition model qϕ(z | x), which approximates the intractable true posterior pθ(z |
x). In [104], the authors refer to L θ, ϕ, x(i) as the variational lower bound on the marginal likelihood of datapoint

i. They introduce a method for learning the recognition parameters ϕ jointly with the generative model parameters θ.

The unobserved variable z is comparable to a latent code representation of the input. Therefore, the recognition model

qϕ(z | x) can be interpreted as a probabilistic encoder. Similarly, pθ(x | z) can be viewed as a probabilistic decoder. In a
VAE, the latent variables shall be a centered isotropic multivariate Gaussian pθ(z) = N (z; 0, I). Under the assumption

19

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Generator
Discriminator

Noise vector Real data Real orsyntheticsynthetic data
Figure 2.6: This graphic is a visual representation of the basic structure of a GAN. While the generator generates syn-
thetic data, the discriminator network distinguishes between real and synthetic data samples.

that the true posterior takes on an approximate Gaussian form with an approximately diagonal covariance, we can let

the variational approximate posterior be a multivariate Gaussian with a diagonal covariance structure

log qϕ(z | x(i)) = logN z;µ(i), σ2(i)I , (2.21)

where the mean µ(i) and the standard deviation σ2(i) of the approximate posterior are outputs of an encoding fully con-

nected NN. Now a latent vector can be sampled from the posterior z(i,l) ∼ qϕ z | x(i) using z(i,l) = gϕ x(i), ϵ(l) =

µ(i)+σ(i)⊙ϵ(l) where ϵ(l) ∼ N (0, I) (⊙ represents an element-wise product). This reparameterization is used to rewrite
an expectation w.r.t. qϕ (z | x) such that the estimate of the expectation is differentiable w.r.t. ϕ [104]. Therefore, we
can obtain a differentiable estimator of the variational lower bound

L θ, ϕ, x(i) ≃ 1

2

J

j=1

1 + log σ
(i)
j

2

− µ
(i)
j

2

− σ
(i)
j

2

+
1

L

L

l=1

log pθ x(i) | z(i,l) . (2.22)

Similar to AEs, VAEs are used for anomaly detection in various applications like anomaly detection for solder joints

[87], linear motion guides [105], and the detection of ships in synthetic aperture radar images [106].

2.4.4 GANs

The basic idea behind GANs is two-person zero-sum game theory [107]. There are different specialized versions of

GANs for specific purposes and applications, but generally, a GAN consists of two networks: a generator and a dis-

criminator. Figure 2.6 shows the basic structure of a GAN. The generator generates synthetic data samples to fool the

discriminator, while the latter tries to distinguish this generated from real data. Both of these modules try to improve

their task during the training process. [108]. GANs have been used for a variety of applications, like the segmentation

within brain tumor images [109], face detection applications [110], and a variety of anomaly detection tasks [111, 107].

Depending on the data type, dimensionality, and task at hand, the architectures of the generator and discriminator net-

works vary. For example, Radford et al. proposed a class of CNNs specialized for unsupervised learning for various

image datasets [112]. Since these GAN models are based on deep CNNs, Radford et al. named this class of CNNs Deep

Convolutional Generative Adversarial Network (DCGAN).

Since the generator network is trained to generate data to fool the discriminator, the generator may be used to produce

synthetic data. This ability to generate data may be advantageous for some applications where only insufficient data

is available for training and evaluating a model or when real data should not be used for testing due to security or

privacy risks [113, 114]. There are different approaches to utilizing the models of a GAN for anomaly detection. For

20

2.5. ANOMALY DETECTION AND INSPECTION FOR RAILROAD SYSTEMS

example, inverse GANs for anomaly detection utilize the generator network [115, 116]. In principle, such inverse GAN

approaches fall into the category of reconstruction-based methods. The anomaly detection task is tackled by solving an

optimization problem. An input vector for the generator must be found to minimize the error between a given image

and the generated image. Since the generator learns the distribution of normal data during training, it should struggle

to generate anomalous images. One disadvantage of such approaches is that this optimization task is typically com-

putationally expensive. This disadvantage renders such approaches impractical for applications with high dimensional

data and low inference times. Since Vision-based Anomaly Detection Algorithm for Railroads (VADAR) should run on

an embedded system installed on a moving train and analyze images in real-time such approaches are infeasible for

this task. Another GAN-based anomaly detection approach utilizes the discriminator. Since the discriminator sees only

normal and synthetically generated images that imitate normal data during training, the discriminator might also be

able to detect anomalous images. A big advantage of this method is its relatively fast inference time. However, ac-

cording to [116], this approach typically does not perform well in comparison with approaches utilizing the generator

network.

2.5 Anomaly Detection and Inspection for Railroad Systems

Several research groups have already worked on different methods for automatically inspecting railroad tracks [35, 117,

118, 119]. Most of the reviewed works focus on one specific track element and have specialized sensor systems that

enable the inspection of the relevant regions of the rail tracks. Figure 2.7 shows basic rail track elements and regions of

the trackbed relevant to these systems. First, this section gives a brief overview of railroad datasets. Then the section

closes with comparisons and analysis of several state-of-the-art railroad inspection systems.

2.5.1 Railroad Datasets

For the development of anomaly detection algorithms, datasets are essential. To the best of the author’s knowledge,

several unlabeled and three annotated railroad datasets were already introduced in the literature. In contrast to su-

pervised approaches, unsupervised methods do not rely on annotated data for training. However, annotated data is

necessary to evaluate any anomaly detection algorithm. Therefore, datasets without annotations, like the Nordland-

dataset [120], are unsuitable for developing an anomaly detection system. Therefore, this section focuses on the three

labeled datasets.

• RailSem19: Zendel et al. introduced a publicly available dataset [121]. Its original purpose is semantic scene

understanding for trains and tramways. It consists of 8,500 annotated sequences recorded out of the cabin of

trans. Unfortunately, this dataset does not contain annotations for anomalies but for elements like rails, switches,

traffic signals, trains, and platforms.

• Kaggle Railroad Track Fault Detection: This publicly available dataset contains 384 images of rails and other

railroad infrastructure. Half of the images contain anomalies [122]. However, the images are recorded from several

different perspectives. Because VADAR is supposed to work with images recorded from one fixed perspective, this

dataset is not suitable.

21

CHAPTER 2. BACKGROUND AND STATE OF THE ART

• Vesuvio: For the development of a railroad inspection system, Gasparini et al. recorded the Vesuvio-dataset [35].

A thermal camera, a stereo camera system, and an industrial RGB camera recorded images of rail tracks at night.

Since their anomaly detection system should detect large foreign objects on the rail track, such as pickaxes, traffic

lights, and LPG tanks, these objects were placed on the rail tracks for the recordings. Unfortunately, this dataset

lacks annotations for smaller objects, vegetation, and rail damages. Furthermore, the dataset is not publicly avail-

able and was not provided to us upon request.

Because these datasets are unsuitable for developing VADAR, the Kombi dataset was used. This dataset is the property

of the company Mission Embedded [123]. Section 3 describes this dataset in detail.

2.5.2 State-of-the-Art Anomaly Detection for Railroad Systems

In [117] and [124], methods for inspecting railroad fasteners were introduced. Railroad fasteners are used to fix the

rails to the crossties. Fasteners will loosen, get damaged, or even detach under the long-term effects of vibration and

temperature changes. These changes could potentially result in catastrophic events like derailment accidents. Inspecting

and monitoring railroad fasteners is important to ensure the safety and efficiency of railroad systems. In [124], a system

of six line scan cameras from a top-view perspective with different angles was used to observe the railroad fasteners. A

fastener localization module with an average detection rate of 99.36% and a similarity-based deep CNN for classification

was introduced. Another system introduced in [117] used a 3D camera system. It approached the defect detection task

with a combination of PCA and a histogram-based similarity approach, where the peak difference values of the fastener

images were analyzed and used as an indicator for damages. A system described in [89] focuses on inspecting crossties

and fasteners and utilizes single-view line-scan cameras. A deep CNN was used for detecting good, broken, or missing

fasteners, and semantic segmentation for detecting chips and crumbling concrete ties and other material classes. Du

et al. introduced a system for detecting railroad plug defects [119]. Plugs are important components that are used to

transmit control information signals, and their defects can impact the safety of railroad systems. The hardware part

includes two high-speed digital cameras that capture a series of images. The images are analyzed by a change detection

frameworkwhich consists of an object location, image alignment, and similarity computationmodule. Thework in [118]

focuses on rail damage detection. High-speed or intensive rolling of wheels significantly increases the probability of rail

damage and poses a major safety concern. Therefore, detecting rail rolling contact fatigue cracks is necessary to ensure

the safety of railroad transportation. Instead of conventional cameras, this system relies on dynamic electromagnetic

thermography for the sensor system. While an excitation coil is close to the rail, eddy-current will be induced in the

surface of the rail and generate Joule heat in the process. Since the heat distribution of the surface will be disturbed

by cracks on the rail, an infrared camera is used to record this surface heat distribution. The paper [125] presents a

method for monitoring the vegetation on railroad embankments. The main reason for vegetation control on and along

rail tracks is safety for passengers and staffmembers. A camera was used as a sensor to acquire images of the tracks from

a birds-eye view. The detection method is based on color space transformations and filters applied to separate channels

of the hue-saturation-value space. In [126], a method for the railroad track gauge inspection was introduced. Railroad

track gauge irregularities negatively impact the service life of rails and the vehicles using the rails. Such irregularities

can even result in driving accidents like wheel trapping or derailing. The sensor system consists of four cameras and

two red laser sector lights that are used to obtain spatial information on both sides of the railroad track rails. This

information is then used to determine the gauge parameter. The system introduced in [35] can detect construction

tools lying on the track bed of a railroad system. Obstacles, especially larger ones, placed on the rail tracks could cause

22

2.5. ANOMALY DETECTION AND INSPECTION FOR RAILROAD SYSTEMS

Figure 2.7: Definition of basic track elements [89]. Fasteners connect the rails to the crossties. Ballast refers to the stones
underneath and between the crossties and forms the trackbed.

damage to the infrastructure or even the derailment of trains. The camera system was mounted on a rail drone, and

images were taken from a front-view perspective of the rail tracks. The detection method combines an AE and a CNN-

based classifier. The method was tested with multiple RGB and infrared cameras. Table 2.1 gives an overview of the

before-mentioned railroad inspection systems, the anomalies of interest, and some information regarding the sensor

system and the detection method.

In [35] and [127], Gasparini et al. propose an anomaly detection system for detecting construction tools on the trackbed

of railroad systems. This approach seems to be a promising basis for further improvements because it works with only

one camera, effectively deals with large amounts of data, and allows the analysis of the entire trackbed. Therefore, the

following paragraph explains and discusses this approach in more detail.

RGB and infrared cameras mounted on a rail drone obtain images of the trackbed from a front-view perspective. Fig-

ure 2.8 gives an overview of the proposed anomaly detection algorithm. This approach analyzes the reconstruction

error of an AE. Both the absolute error image and gradient error image between the original input image and the re-

construction image are fed to a binary classification network. This network decides if the image contains an anomaly

or not. They trained the AE using images from the Vesuvio dataset, which is explained in more detail in Section 2.5.1,

specifically created for their use case. This dataset contains more than 30,000 images obtained during the night from

several camera systems, including thermal and RGB cameras. Although the dataset includes anomalous instances, these

anomalies are large objects like construction tools. It does not include annotations for rail damages or smaller objects

on the trackbed. For their RGB camera setup, they achieved an accuracy of 81.1%, a precision of 97.9%, a recall rate of

anomalies of 71.9%, and a resulting F1-score of 82.5% [127]. However, during the night setting, the infrared camera setup

outperforms the RGB camera setup with an achieved accuracy of 96.6%, a precision of 98.9%, a recall rate of anomalies

of 95.7%, and a resulting F1-score of 97.3%.

23

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Table 2.1: Comparison of multiple railroad inspection systems.

Railroad Inspection Systems

Paper Anomalies Sensors Perspective Detection Method

[119] Plug defects Cameras Top view, multiple
angles

Change Detection

[89] Ties and fasteners Cameras Top view Deep CNN

[118] Rail damages Electromagnetic
Thermography

Top view Corner-Net

[124] Fasteners Cameras Top view, multiple
angles

Deep CNN

[125] Vegetation Cameras Top View Colour filtering

[117] Fasteners 3D Camera Angled PCA + DP

[126] Track gauge Cameras + Laser
sector lights

Top view, multiple
angles

Segmentation,
Extraction

[35, 127] Construction tools Cameras (infrared
and RGB)

Front view AE + CNN

Autoencoder

Absolutedifference

Gradientdifference

Stackedimages Classi icationnetwork Anomaly:yes/no

Figure 2.8: For this approach two NNs are used. In the first step, an AE is used to reconstruct the input image. Then the
absolute and gradient error images are fed to a binary classification network. This classification network decides if the
input image is anomalous [35].

24

Chapter 3

Experimental Dataset

This work focuses explicitly on a dataset containing images of rails and the trackbed of railroad systems from a birds-eye

view perspective. The sensor system should be cost-efficient for installation on regular trains and enable the monitoring

of railroad infrastructure. All system parts must satisfy railroad industry standards to be permitted for usage [128].

There are constraints regarding the size of the sensors to be installed on regular trains. Sensors installed on the outside

of the train need to withstand the maximum train speed and simultaneously provide useful data under different lighting

and weather conditions. From now on, the dataset obtained from this camera system is referred to as Kombi dataset.

It should be noted, that the training and evaluation of the algorithm introduced in Section 4.3 only take images of

the Kombi dataset into consideration. The following sections present more information about the Kombi dataset and

applied data augmentation techniques. This chapter closes with some thoughts regarding suitable anomaly detection

approaches.

3.1 Kombi-Dataset

This dataset was collected in the context of a research project in 2019 [129]. The project aimed to determine a cost-

efficient sensor system suitable for installation in regular trains. Since the used camera has a fisheye lens, some regions

of the images far away from the center are distorted or contain black regions. These regions can be cropped and ignored.

Figure 3.4 shows two example images of the dataset before cropping. In a pre-processing step described in Section 4.3.1,

these images are prepared for Vision-based Anomaly Detection Algorithm for Railroads (VADAR). The Kombi dataset

consists of roughly 2,000,000 images and is only partially labeled. Two cameras simultaneously recorded the images

of this dataset. Therefore, half of the images show the same rail tracks but from a slightly different perspective. The

resolution of the uncropped images is 1,600 by 1,200 pixels. A rough estimation for the area one pixel corresponds

with is 2 mm2. Besides anomalies of interest like damages to the rails and crossties, unexpected objects like trash or

animal corpses, and heavy vegetation, infrastructure elements like switch frogs and sensors were also labeled. In total,

roughly 220,000 frames were labeled. More than 55,000 infrastructure elements (Table 3.1) and roughly 22,000 anomalies

(Table 3.2) were annotated within this labeled part of the dataset. Infrastructure elements include any element of the

infrastructure, but elements that are seen in (almost) every image, like the left and right rail, crossties, fasteners, and

25

CHAPTER 3. EXPERIMENTAL DATASET

(a) Rail damages are of particular interest for maintenance. (b) Heavy vegetation on the trackbed and next to the rails.

(c) An animal corpse lies on the trackbed and could attract other
and bigger animals.

(d) Some frames of the dataset include trash, e.g., bottles, on or
next to the trackbed.

(e) At the center of a switch between two tracks is a so-called
switch frog.

(f) In some frames of the dataset boxes are placed next to the
rails.

Figure 3.1: The images 3.1a and 3.1b show examples of rail damages and vegetation on the trackbed. Different kinds of
unexpected objects like trash or dead animals can be found on the trackbed. Two examples of such objects are shown in
the frames 3.1c and 3.1d. Along a railroad track some additional infrastructure elements like switch frogs 3.1e or boxes
3.1f are installed.

cables. Frames can have multiple annotations associated with them. A large portion of the anomalies corresponds to

image errors that are not of interest or small-scale anomalies like small pieces of trash or little vegetation. Tables 3.1

and 3.2 list the number of annotations for each class within the Kombi dataset.

26

3.1. KOMBI-DATASET

The two classes of annotated infrastructure elements are Crosstie- and Rail attachments. These classes include elements

that are permanently fixed to the crossties and rails. Boxes on the left or right side of the trackbed belong to the class Box.

Figure 3.1e shows an image of a Switch frog. Images close to a switch frog, where a second rail track crosses the trackbed,

belong to the class Switch. If a third rail appears on the rail track’s left or right side, this rail is annotated as aDifferent rail.

Spacers are infrastructure elements placed to keep a defined distance from surrounding infrastructure. Sensors mounted

on the side of rails belong to the Sensor class. All other infrastructure elements of interest are annotated as Other. The

differences between normal images and images with infrastructure elements can be considerable. These differences

can be more significant than those between normal and anomalous frames. Therefore, infrastructure elements pose a

challenge to the anomaly detection method in achieving a reasonable balance between the number of false positives and

correctly detected anomalies. Another challenge for anomaly detection is the random nature of the ballast in the track

bed. Since in most frames of this dataset, ballast (gravel) covers the trackbed, the anomaly detection method should be

able to distinguish between gravel and unexpected objects on the trackbed. Since the stones’ shape, size, and brightness

vary, the anomaly detection method needs to consider that.

Figure 3.1 shows some example frames of the dataset: damaged rails, heavy vegetation, and unexpected objects on the

trackbed. Even without any damages, objects, or additional infrastructure, there is a wide variety within frames because

of different lighting conditions, the appearance of ballast, and the crossties’ shapes and material.

The following subsections explain the main challenges this dataset poses to designing VADAR and briefly describe how

anomalies and other image characteristics are annotated.

3.1.1 Varying Appearance of the Trackbed

Since the dataset consists of frames from different railroad tracks, the appearance of the trackbed varies drastically. The

size, shape, and material of crossties do change within the Kombi dataset, and the same is true for the size and color of

the ballast on the trackbed. Therefore, normal data is vast, and the anomaly detection algorithm must be able to deal

with that to avoid an unreasonably high false positive rate. While theKombi dataset holds annotations for anomalies and

infrastructure elements, it also includes annotations for crosstie material, lighting conditions, and the type of ground.

Table 3.3 lists the number of images falling into each category. All images were put into one of three categories for

ambient lighting: Daylight, Dark, or Mixed. The category Mixed contains images at the entrance or exit of a tunnel

where only one part of the image is in bright daylight, and the rest is dark.

Ballast

One big challenge this dataset poses is the gravel. The random nature of each stone’s size, shape, brightness, and

arrangement significantly increases the difficulty of detecting objects placed on the ballast. The size of the separate

stones may limit the size of detectable anomalies. Furthermore, if significantly darker or brighter stones surround

multiple stones of similar brightness, this group of stones could also lead to a false positive of an anomaly detector.

Lighting conditions

In many frames, direct sunlight makes the right or left side next to the trackbed very bright. The partial shadows of the

gravel on those brighter sides lead to irregular patterns of high contrast and, therefore, introduce additional complex

features within the dataset. Furthermore, in some frames lighting artifacts may appear on the rails or the trackbed when

27

CHAPTER 3. EXPERIMENTAL DATASET

light is coming from a specific angle. The ambient lighting conditions of each image were categorized into one of three

groups Daylight, Dark, and Mixed. Information regarding the lighting conditions of frames is listed in Table 3.3. Since

all images were taken during the day, most images fall into the Daylight category. A small portion of images taken

inside tunnels was categorized as Dark. At the entry or exit of a tunnel, frames were annotated with a Mixed lighting

condition.

3.1.2 Rail anomalies

Rail damages are especially interesting for maintenance because they need to be repaired in order to ensure the safety of

transportation, prevent more severe damages, and save maintenance costs [30, 25]. Even small rail damages can lead to

more significant damages over time [30]. In order to detect even small rail anomalies, rails could be analyzed separately

from the rest of the trackbed. Table 3.2 lists the number of annotated rail damages and other anomalies like foreign

objects and vegetation.

3.1.3 Infrastructure elements

Most samples in the dataset are frames of a single rail track where only two rails and the trackbed with the crossties and

ballast are visible. However, a smaller but significant portion of the dataset contains frameswith additional infrastructure

elements. The interpretation of such additional infrastructure elements as anomalies should be prevented when these

elements are not damaged. Table 3.1 lists the annotated infrastructure classes and the corresponding number of instances

labeled in the Kombi dataset.

Class Instances Class Instances
Crosstie attachment 23,965 Switch 13,313
Rail attachment 4,720 Switch positioner 2,123
Different rail 3,468 Switch frog 1,075
Box 2,900 Spacer 674
Other 3,684 Sensor 370

Table 3.1: The classes Crosstie- and Rail attachments include elements that are permanently fixed to the crossties and
rails. Boxes on the left or right side of the trackbed belong to the class Box. Figure 3.1e shows an image of a Switch frog.
Images close to a switch frog, where a second rail track crosses the trackbed, belong to the class Switch. If a third rail
appears on the rail track’s left or right side, this rail is annotated as a Different rail. Spacers are infrastructure elements
placed to keep a defined distance from surrounding infrastructure. Sensors mounted on the side of rails belong to the
Sensor class. All other infrastructure elements of interest are annotated as Other.

Damages Foreign objects
Class Instances Class Instances
Vegetation 11,408 Bottle 242
Image error 4,833 Can 195
Damage to crosstie or ground 1,473 Animal 19
Rail damage 507 Other 3.294
Other 13

Table 3.2: The group of anomalies, like damages and foreign objects, consists of five and four different classes, respec-
tively.

28

3.1. KOMBI-DATASET

3.1.4 Annotations

For each image in this dataset that includes either an infrastructure element of interest or an anomaly like some sort

of damage or an unexpected object on the trackbed an annotation file exists. This file contains the class and location

information of the elements of interest with coordinates and the width and height of the bounding box. Figure 3.4

shows two example images of the Kombi dataset with bounding boxes around a box and a can. Tables 3.1 and 3.2 list

only anomaly annotations(ANA images)

Kombi-dataset
anomalous images(anomalies)

normal images only infrastructure annotations (INA images)
anomaly and infrastructureannotations (ANINA images)

no annotations(NOA images)
Figure 3.2: In case an image of the Kombi dataset contains at least one anomaly annotation the image is considered to
be anomalous and is referred to as an anomaly. If an image does not contain any anomaly annotations it is a normal
image. Within these two groups, we further distinguish between images with and without infrastructure annotations.
Therefore, four additional subgroups are defined.

this dataset’s different infrastructure elements, damages, and foreign objects. Figure 3.3 shows additional information

regarding the sizes of anomalies. The anomaly sizes are defined as the number of pixels within the according bounding

box. This bounding box size can be misleading for a few anomalies, though. Since the Kombi dataset contains a few

sequences of images where hundreds of consecutive images show some vegetation across the whole image, often one

single bounding box was defined to include the entire trackbed. Therefore, the anomaly sizes are just an approximation.

5-
6

6-
7

7-
8

8-
9

9-
10

10
-1
00

Anomaly sizes in 1,000 pixels

10−1

100

101

102

103

104

N
u
m
b
er

o
f
tr
a
ck
b
ed

a
n
o
m
a
li
es

Animals
Cans
Bottles
Others
Vegetation

0.
5-
1.
0

1.
0-
2.
0

2.
0-
3.
0

3.
0-
5.
0

5.
0-
10
.0

Anomaly sizes in 1,000 pixels

0

20

40

60

80

P
er
ce
n
ta
g
e
o
f
ra
il
a
n
o
m
a
li
es

Figure 3.3: The left figure shows the relative numbers of objects and other anomalies on the trackbed with specific sizes.
On the right side, the distribution of rail anomaly sizes is shown.

29

CHAPTER 3. EXPERIMENTAL DATASET

The largest rail damages with anomaly sizes of several thousands of pixels correspond to corrugations–these quasi-

sinusoidal irregularities on the rails with a wavelength of less than one meter [130]. Corrugations are typically visible

on several tens or hundreds of consecutive frames. The bounding box was defined on the entire rail head section in

these cases. The left part of Figure 3.3 shows the size distribution of several anomaly object classes on the trackbed.

By far, most anomaly instances belong to the anomaly class vegetation. As mentioned before, in many cases, only one

bounding box was used to annotate multiple separate instances of vegetation. Therefore, only one large bounding box

was used instead of multiple smaller ones.

(a) Bounding box for an infrastructure element. (b) Bounding box for an anomaly.

Figure 3.4: Figures (a) and (b) show example images from the Kombi dataset with an annotated box and can, respectively.
Due to the fisheye lens of the camera system, some regions on the border of the images are distorted or include black
regions. Therefore, images were cropped to ignore these parts of the images.

Depending on the annotations, an image of the Kombi dataset has it belongs to specific groups of images. Figure 3.2

shows how these groups are defined. Every anomalous image belongs to the group of image containing only anomaly

annotationss (ANA images) or image containing anomaly and infrastructure annotationss (ANINA images). Normal im-

ages are a member of the group image containing no annotationss (NOA images) or image containing only infrastructure

annotationss (INA images).

Furthermore, one additional file stores information regarding the lighting conditions, type of crossties, and the ground

for each frame. The total number of images for each such scenario is listed in Table 3.3. The overwhelming majority of

images show crossties made of concrete or wood on gravel in daylight.

Railroad Crossties Ground Types Ambient Lighting
Class Instances Class Instances Class Instances
Concrete 185,128 Gravel 226,845 Daylight 227,311
Wood 42,552 Railroad Crossing 2,255 Dark 2,324
Mixed 1787 Mixed 466 Mixed 8
Metal 74 Bridge 50
Hardrubber 26 Asphalt 9
None 8 Unknown 18
Unknown 68

Table 3.3: This table lists the number of annotated images within the Kombi dataset that fit the defined categories of
railroad crossties, ground types, and ambient lighting conditions.

30

3.2. DATA AUGMENTATION

3.2 Data Augmentation

(a) Original image. (b) Image rotated by 180◦. (c) Vertically flipped image. (d) Horizontally flipped image.

Figure 3.5: Applying a 180◦ rotation and vertically and horizontally flipping the original image quadruples the available
data for training.

Several different data augmentation methods were applied to expand the training data set and improve the training pro-

cedure’s quality. Images were rotated by 180◦ and added to the training data set to increase training data. Furthermore,

the images were flipped vertically and horizontally. In total, the number of available training data was quadrupled by

these three augmentations. In Figure 3.5, the resulting augmented images obtained from one original image are shown.

Figure 3.5a shows the original unaltered image, while Figures 3.5b to 3.5d show the rotated, vertically flipped, and

horizontally flipped images, respectively.

Because of varying lighting conditions, some parts of images are dark and result in low-contrast regions. Generally, low-

contrast regions pose a challenge and often limit the feature extraction process. Contrast Limited Adaptive Histogram

Equalization (CLAHE) was applied as a preprocessing step to combat these problems. Two images with and without

this preprocessing step are shown in Figure 3.6.

3.2.1 Synthetic Data

Synthetic data can be used to train or validate models and is a valuable option when a given dataset does not contain

enough samples. One method of creating synthetic data is to use the generator network of a Generative Adversarial

Network (GAN). As explained in Section 2.4.4, during training, the generator of a GAN learns how to create samples that

look realistic to fool the discriminator. Therefore, the generator gradually improves in creating synthetic data. The GAN

approach of generating synthetic data seems to work for generating synthetic normal data. However, the generation of

synthetic images with rail damage was not successful. One reason could be that rail damages are typically small and

contained within less than 1% of the image pixels. Furthermore, the training relies on a rather large number of available

real data samples. While the Kombi dataset contains more than 220,000 labeled images, only a few hundred images

contain damaged rails. Rail damages of special interest, like breakouts and indentations, are even rarer. The labeled part

of the Kombi dataset includes roughly 150 such damages. For the validation of an anomaly detection algorithm, the more

anomalous samples available, the better because several aspects of the anomaly most likely influence the algorithm’s

performance. The position, size, and orientation of the anomaly and the surroundings and lighting conditions might

influence the recall rate of an anomaly.

Another option to replicate known rail damages is to copy and paste such damages onto images with rails without dam-

ages. However, due to different lighting conditions and the rails’ conditions, the inserted damages do not look realistic.

To make these patches of rail damage fit in on images of rails, these images are fed to an AE with a high dimensional

31

CHAPTER 3. EXPERIMENTAL DATASET

(a) Unaltered original image. (b) Unaltered original image. (c) Unaltered original image. (d) Unaltered original image.

(e) CLAHE applied on (a). (f) CLAHE applied on (b). (g) CLAHE applied on (c) (h) CLAHE applied on (d).

Figure 3.6: In Subfigures e to h, the results of applying the CLAHE algorithm on the images a to d are shown, respectively.
This preprocessing step helps equalize the image’s brightness and increase the contrast.

Table 3.4: All layers are two-dimensional convolutional layers implemented in PyTorch. A batch normalization layer
follows each convolutional layer. The input image has a width of 1,025 and a height of 769.

Encoder Architecture

Layer Input Channel Output Channel Kernel Size Stride Padding Output Height Output Width

1 1 4 3 1 1 769 1025
2 4 8 3 2 1 385 513
3 8 16 3 2 1 193 257
4 16 32 3 2 1 97 129
5 32 32 3 2 1 49 65

bottleneck. This Autoencoder (AE) reconstructs the given image with high detail. Therefore, this model is named High

Detail Autoencoder (HDAE). Tables 3.4 and 3.5 show the HDAE’s encoder and decoder architectures, respectively. The

damage blends into the surrounding rail better within the output image, and a small patch of this synthetic damage is

copied and inserted into the original image. The resulting output image of this procedure is the original normal image

with synthetic rail damage that looks more realistic than when the real damage is simply copied and directly inserted in

another image. Figure 3.7 visualizes this generation process of synthetic rail damages. Additionally, by rotating, mirror-

ing, resizing, and adapting the brightness values, the original damage patch can be augmented to change the appearance

of the damage.

Figures 3.8 and 3.9 show examples of synthetic images with replicated rail damages. A small rectangular crop around

the original damage in the top left image was inserted in various positions on the rail of normal images. Additionally,

this damage crop was rotated by multiples of 90◦ and mirrored randomly.

32

3.2. DATA AUGMENTATION

Table 3.5: All layers are two-dimensional transposed convolutional layers implemented in PyTorch. A batch normal-
ization layer follows each transposed convolutional layer. The decoder network is symmetric to the encoder network
regarding the layer structure. The latent representation, which is the input of this network, has a width of 49 and a
height of 65.

Decoder Architecture

Layer Input Channel Output Channel Kernel Size Stride Padding Output Height Output Width

1 32 32 3 2 1 97 129
2 32 16 3 2 1 193 257
3 16 8 3 2 1 385 513
4 8 4 3 2 1 769 1025
5 4 1 3 1 1 769 1025

image with real damage normal image withinserted real damage reconstructed imageby HDAE normal image withinserted HDAE damage

High DetailAutoencoder (HDAE)

Figure 3.7: The left-most images show an image with real rail damage. A small patch containing this damage is copied
and inserted on the rail of a normal image. The damage in the output image of an AE looks more realistic than in its
input image. Finally, a small patch, including this reconstructed damage, is inserted at the same position in the normal
image.

Figure 3.8: The images in the top row show indentations on different rail images; the second-row images are close-up
versions of the same damages. The damaged rail displayed on the left-most column is a real image from the Kombi
dataset, while the other four damages are replicated versions of this indentation.

33

CHAPTER 3. EXPERIMENTAL DATASET

Figure 3.9: The images in the top row show breakouts on different images of rails, and the second-row images are close-
up versions of the same damages. Third-row images display the according patch of the reconstruction error images. The
damaged rail displayed on the left-most column is a real image from the Kombi dataset, while the other four damages
are replicated versions of this breakout.

34

Chapter 4

Architecture

This chapter introduces several neural network models for anomaly detection approaches. First, anomaly detection

approaches introduced in Section 2.4 are compared and analyzed regarding their applicability to this thesis’s task. Then,

Autoencoders (AEs), Denoising Autoencoders (DAEs), one Variational Autoencoder (VAE), and one Deep Convolutional

Generative Adversarial Network (DCGAN) are analyzed further. The following sections analyze the applicability and

effectiveness of approaches based on Neural Networks (NNs) for this specific application. Several approaches are ana-

lyzed and compared to find an appropriate detection method. First, the summed-up reconstruction errors of normal and

anomalous images for the different AEs, DAEs, and the VAE are analyzed. Secondly, the latent representations of the

AE and DAE models are analyzed to allow an interpretation of the learned features. Furthermore, the reconstruction-

probability measure of the VAE and the effectiveness of the DCGAN’s discriminator for anomaly detection are investi-

gated. If not otherwise specified, every layer, except the final layer of the decoder networks, utilizes the Rectified Linear

Unit (ReLU) activation function described in Equation 2.3. The sigmoid activation function defined in Equation 2.1

follows the final layers of the decoder networks.

4.1 Anomaly Detection Methods Analysis

AMachine-Learning (ML)-based approach is beneficial to take advantage of the available rather large dataset. Therefore,

within this thesis, the focus lies on these approaches. Although using information about already annotated anomalies

can improve the performance of an anomaly detection algorithm, Vision-based Anomaly Detection Algorithm for Rail-

roads (VADAR) should not rely on this data because there is no guarantee that the low number of known anomalies is

representative of all possible anomalies. Therefore, unsupervised and semi-supervised anomaly detection approaches

are of interest. VADAR must be capable of analyzing image data captured from cameras mounted on a train. Although

the real-time capability of VADAR is not the focus of this thesis, VADAR, potentially with slight adaptions, should allow

for frame rates of roughly ten frames per second on an embedded Graphics Processing Unit (GPU) like a unit from

the NVIDIA Jetson Series [131]. Furthermore, an anomaly detection algorithm giving some explanation for why an in-

stance is considered to be anomalous is valuable. Table 4.1 lists ML-based methods for vision-based anomaly detection

and their learning approaches. Furthermore, this table lists additional information on each approach and if a technique

allows for some anomaly explanation. Since VADAR should be able to detect anomalies without entirely relying on

anomalous instances for training, this table only lists approaches that allow for unsupervised or semi-supervised learn-

35

CHAPTER 4. ARCHITECTURE

Table 4.1: Comparison of multiple ML-based anomaly detection approaches.

Method Learning Approach Anomaly Explanation Additional Information

Probabilistic Unsupervised/Semi-
supervised

Limited Very difficult to design effective prior for
an application, performance heavily de-
pends on this design or model [48]

AE Unsupervised Yes May reduce false positives over traditional
methods if learned representations are
expressive [48]

DAE Unsupervised Yes May reduce false positives over traditional
methods if learned representations are
expressive [48], denoising capabilities [45]

VAE Unsupervised Yes, but limited in latent
space

May reduce false positives over traditional
methods if learned representations are
expressive [48]

AE/DAE with
further analysis
in latent space

Unsupervised/Semi-
supervised

Limited Efficacy of analysis dependent on features
extracted by AE/DAE [48]

GAN discrimina-
tor

Unsupervised Limited According to [116] performance often
worse than generator-based approaches,
but faster

GAN generator Unsupervised Yes Iterative optimization process is computa-
tionally expensive, longer inference [116]

ing approaches. Probabilistic methods rely on the assumption that all data stems from a specific data distribution. For

many high-dimensional real datasets, this assumption does not hold [17]. Furthermore, according to [88], designing

an effective prior for different anomaly detection applications is challenging. Although the generator of a Generative

Adversarial Network (GAN) can be used for anomaly detection, the long inference time due to the involved iterative

optimization process makes the approach not feasible for VADAR. The effectiveness of a given method always depends

on the specific application and data. Therefore, multiple approaches were analyzed to find a suitable method for this

application and dataset. Specifically, this thesis focuses on multiple AEs and DAEs, a VAE, and the discriminator of a

DCGAN. Chapter 4 begins by analyzing these approaches with different underlying architectures.

(a) Original image (b) Reconstructed image (c) Reconstruction error image

Figure 4.1: Subfigure (a) shows the input image of the AE with the architecture described in Tables 4.2 and 4.3. The
reconstructed image of the AE and the resulting reconstruction error image are shown in Figure (b) and Figure (c),
respectively.

36

4.1. ANOMALY DETECTION METHODS ANALYSIS

4.1.1 Autoencoders

This section introduces two different AE architectures; both were inspired by models proposed in previous works of

other research groups [35, 45]. However, the layer count, number of channels, and kernel sizes were modified to adapt

the models to our dataset.

Ten-Layer Autoencoder

Tables 4.2 and 4.3 list the encoder’s and decoder’s layers and parameters of the first model. The encoder consists of ten

convolutional layers, and the decoder contains ten transposed-convolutional layers. Figure 4.1 shows the reconstruction

of an example image containing an anomaly and the resulting reconstruction error image. The reconstruction error

image

IRE = |Iinput − Irecon| (4.1)

represents the pixel-wise absolute difference between the input image Iinput and the reconstructed image Irecon. The AE

can reconstruct the rails and crossties well. Because darker pixels represent smaller reconstruction errors, the crossties

and rails in the reconstruction error image are dark. On the other hand, this AE model struggles with reconstructing

other image details, like the ballast or the anomaly. Parts of the anomaly and some bright stones are visible in the

reconstruction error image due to the higher reconstruction errors.

Table 4.2: All layers are two-dimensional convolutional layers implemented in PyTorch. The input image has a width
of 1,025 and a height of 769.

Encoder Architecture

Layer Input Channel Output Channel Kernel Size Stride Padding Output Height Output Width

1 1 4 7 1 3 769 1025
2 4 8 7 2 3 385 513
3 8 16 7 2 3 193 257
4 16 32 7 2 3 97 129
5 32 64 7 2 3 49 65
6 64 64 7 2 3 25 33
7 64 64 7 2 3 13 17
8 64 64 7 2 3 7 9
9 64 64 7 1 3 7 9
10 64 64 7 1 3 7 9

Figure 4.2 visualizes the distribution of the summed-up absolute reconstruction error

ΣRE = |Iinput − Irecon| (4.2)

of all labeled images. Although the mean value for anomalous images is slightly higher than normal images, both

distributions are very broad and overlap. Therefore, anomalous images can not be separated from normal images by

simply defining a threshold value since this would lead to many false positives.

37

CHAPTER 4. ARCHITECTURE

Table 4.3: All layers are two-dimensional transposed convolutional layers implemented in PyTorch. The decoder net-
work is symmetric to the encoder network regarding layer structure. The latent representation, which is the input of
this network, has a width of 7, a height of 9, and 64 channels.

Decoder Architecture

Layer Input Channel Output Channel Kernel Size Stride Padding Output Height Output Width

1 64 64 7 1 3 7 9
2 64 64 7 1 3 7 9
3 64 64 7 2 3 13 17
4 64 64 7 2 3 25 33
5 64 64 7 2 3 49 65
6 64 32 7 2 3 97 129
7 32 16 7 2 3 193 257
8 16 8 7 2 3 385 513
9 8 4 7 2 3 769 1025
10 4 1 7 1 3 769 1025

Eight-Layer Autoencoder

Tables 4.4 and 4.5 list the encoder’s and decoder’s layers and parameters of the second AE model. The encoder and

decoder have eight convolutional and eight transposed-convolutional layers, respectively. In contrast to the model

described in Tables 4.2 and 4.3, each layer is followed by a batch-normalization layer. Due to the different architectures,

the reconstructions of input images differ in quality and detail. Figure 4.3 shows the reconstruction of an example image

and the resulting reconstruction error image. The reconstruction error represents the pixel-wise absolute difference

20,000 40,000 60,000 80,000 100,000 120,000

Absolute reconstrution error

0

5000

10000

15000

20000

25000

30000

35000

N
u
m
b
er

o
f
im

a
g
es

Normal images

Anomalous images

Figure 4.2: This figure shows the distribution of the summed-up absolute reconstruction error of images with and with-
out anomalies. These reconstruction error values result from the ten-layer AE with the encoder architecture described
in Table 4.2. The mean absolute reconstruction error of samples with and without anomalies is 37,175 and 33,999, re-
spectively.

38

4.1. ANOMALY DETECTION METHODS ANALYSIS

(a) Original image (b) Reconstructed image (c) Reconstruction error image

Figure 4.3: Figure (a) shows the input image of the AE with the architecture described in Tables 4.4 and 4.5. The
reconstructed image of the AE and the resulting reconstruction error image are shown in Figure (b) and Figure (c),
respectively.

between the input and reconstructed image. Compared with the ten-layer AE described in Section 4.1.1, this AE model

can reconstruct more details of the image. Although some brighter stones are now visible in the reconstruction image,

parts of the anomaly are also reconstructed in more detail. One factor influencing the reconstruction capabilities of an

AE is the dimension of the latent representation. The higher the number of channels, width, and height of the latent

vector, the more information about the image can be stored and used by the decoder to reconstruct the input. This

aspect needs to be considered for an anomaly detection task to allow an AE to generate good reconstructions of normal

images while failing to reconstruct anomalies.

The distribution of summed-up absolute reconstruction errors of images with and without anomalies achieved with this

AE architecture can be seen in Figure 4.4. The reconstruction errors are significantly lower compared to the ten-layer

AE analyzed in Section 4.1.1. The mean value of absolute reconstruction errors is roughly 24% smaller. This is also

expected since the reconstructed images show many details of the original images, as demonstrated in Figure 4.3, that

are not visible in Figure 4.1. However, the distributions of absolute reconstruction errors for images with and without

anomalies still overlap. Therefore, the absolute reconstruction error is not a reliable indicator of anomalies for this AE

either.

Table 4.4: All layers are two-dimensional convolutional layers implemented in PyTorch. A batch normalization layer
follows each convolutional layer. The input image has a width of 1025 and a height of 769.

Encoder Architecture

Layer Input Channel Output Channel Kernel Size Stride Padding Output Height Output Width

1 1 16 3 1 1 769 1025
2 16 16 3 2 1 385 513
3 16 32 3 2 1 193 257
4 32 32 3 2 1 97 129
5 32 32 3 2 1 49 65
6 32 32 3 2 1 25 33
7 32 32 3 2 1 13 17
8 32 32 3 2 1 7 9

39

CHAPTER 4. ARCHITECTURE

Table 4.5: All layers are two-dimensional transposed convolutional layers implemented in PyTorch. A batch normaliza-
tion layer follows each convolutional layer. The decoder network is symmetric to the encoder network regarding the
layer structure. The latent representation, which is the input of this network, has a width of 13 and a height of 17.

Decoder Architecture

Layer Input Channel Output Channel Kernel Size Stride Padding Output Height Output Width

1 32 32 3 2 1 13 17
2 32 32 3 2 1 25 33
3 32 32 3 2 1 49 65
4 32 32 3 2 1 97 129
5 32 32 3 2 1 193 257
6 32 16 3 2 1 385 513
7 16 16 3 2 1 769 1025
8 16 1 3 1 1 769 1025

10,000 20,000 30,000 40,000 50,000 60,000

Absolute reconstrution error

0

5000

10000

15000

20000

25000

N
u
m
b
er

o
f
im

a
g
es

Normal images

Anomalous images

Figure 4.4: This figure shows the distribution of the summed-up absolute reconstruction error of images with and with-
out anomalies. These reconstruction error values result from the ten-layer AE with the encoder architecture described
in Table 4.4. The mean absolute reconstruction error of samples with and without anomalies is 25,368 and 25,793, re-
spectively.

4.1.2 Denoising Autoencoders

In principle, DAEs differ from conventional AEs regarding their training procedure. As described in Section 2.4.2, AEs

receive the original images as input during training, and DAEs only get to see augmented versions of the images.

However, DAEs are trained to reconstruct the unaltered images because the loss function is computed between the

reconstructed and original images. Typically, this augmentation of the input data is accomplished by adding noise.

Popular choices of noise sources for DAEs are Gaussian and salt and pepper noise or up-scaled versions of these [45,

103]. Another way of adding noise is to mask patches of the input. This can be accomplished by replacing these patches

with a constant value or with random values [74]. Figure 4.5 demonstrates what salt and pepper noise and masking an

image looks like. These noise sources influence the feature extraction capabilities of a DAE in different ways. Salt and

pepper noise makes a model more robust regarding noise and more resilient against small-scale deviations. This small-

40

4.1. ANOMALY DETECTION METHODS ANALYSIS

(a) Image with salt and pepper noise (b) Image masked with up-scaled noise

Figure 4.5: Figure (a) and Figure (b) show an image with added salt and pepper noise and masked with up-scaled noise,
respectively.

scale noise forces the model to extract meaningful features from the noisy images and ignore small-scale deviations.

However, masking patches of an image forces a DAE to ignore unexpected new features by using contextual information.

This allows the model to ignore larger regions of an image during training that include information unexpected from

surrounding regions and replace it with data more likely for the given context. The next two subsections discuss and

analyze two different DAE architectures with different noise sources inspired by other papers [45, 103, 74]. The layer

count, number of channels, and kernel sizes were changed to adapt the models to our dataset.

(a) Original image (b) Reconstructed image (c) Reconstruction error image

Figure 4.6: Figure (a) shows the input image of the five-layer DAE with the architecture described in Tables 4.6 and 4.7.
The reconstructed image of the DAE and the resulting reconstruction error image are shown in Figure (b) and Figure (c),
respectively.

Five Layer Denoising Autoencoder

Tables 4.6 and 4.7 show the encoder and decoder architectures of the first DAE, respectively. During the training, 10%

of salt and pepper noise was added to all input images. Figure 4.5a illustrates an image with added salt and pepper

noise. In contrast to the before mentioned architectures, the dimensionality reduction of the latent representation is

accomplished by maximum pooling layers while the stride of each convolutional layer is set to 1. Figure 4.3 shows the

reconstruction of an example image and the resulting reconstruction error image. The reconstruction error represents

the pixel-wise absolute difference between the input and reconstructed image. Clearly, this model performs well in the

reconstruction of the image since many details are recognizable in the reconstructed image shown in Figure 4.6b. Most

of the remaining reconstruction errors stem from edges of separate stones on the trackbed, ballast in very bright image

regions, and parts of the anomaly.

41

CHAPTER 4. ARCHITECTURE

Table 4.6: All layers are two-dimensional convolutional or maximum pooling layers implemented in PyTorch. A batch
normalization layer follows each convolutional layer. The input image has a width of 1025 and a height of 769.

Encoder Architecture
Layer Input Channel Output Channel Kernel Size Stride Padding Output Height Output Width
1 1 16 5 1 2 769 1025
MaxPool 1 16 16 5 4 2 193 257
2 16 16 5 1 1 193 257
MaxPool 2 16 32 5 4 2 49 65
3 32 32 5 1 1 49 65
MaxPool 3 32 64 5 4 2 13 17
4 64 64 5 1 1 13 17
MaxPool 4 64 64 5 2 2 7 9
5 64 64 5 1 1 7 9

Table 4.7: All layers are two-dimensional transposed convolutional or maximum unpooling layers implemented in Py-
Torch. Each convolutional layer is followed by a batch normalization layer. The decoder network is symmetric to the
encoder network regarding layer structure. The latent representation, which is the input of this network, has a width
of 9 and a height of 17.

Decoder Architecture
Layer Input Channel Output Channel Kernel Size Stride Padding Output Height Output Width
1 64 64 5 1 2 7 9
MaxUnPool 1 64 64 5 2 2 13 17
2 64 64 5 1 2 13 17
MaxUnPool 2 64 64 5 4 2 49 65
3 64 32 5 1 2 49 65
MaxUnPool 3 32 32 5 4 2 193 257
4 32 16 5 1 2 193 257
MaxUnPool 4 16 16 5 4 2 769 1025
5 16 1 5 1 2 769 1025

Ten-Layer Denoising Autoencoder

For the second DAE, the encoder and decoder architectures of Tables 4.2 and 4.3 were used. However, each image was

segmented into 48 square patches, and 12 were replaced by up-scaled random values. One example of a masked image

is shown in Figure 4.5b. Figure 4.9 shows the reconstruction of an example image and the resulting reconstruction error

image. The reconstruction error represents the pixel-wise absolute difference between the input and reconstructed

image.

The distributions of absolute reconstruction errors for labeled images with and without anomalies obtained from this

ten-layer DAE are shown in Figure 4.8. As for the other AEs and DAE, the summed-up absolute reconstruction er-

ror does not seem to be a good indicator for anomalies since the distributions of images with and without anomalies

overlap.

4.1.3 Latent Space Analysis

The basic principle of AEs and DAEs is to generate a latent space representation of input data and reconstruct the input

from this vector. Analyzing this transformed input may reveal more insight into the features and aspects the models are

focused on. If the extracted features for anomalous images differ significantly from the features of normal images, an

42

4.1. ANOMALY DETECTION METHODS ANALYSIS

10,000 20,000 30,000 40,000 50,000

Absolute reconstrution error

0

5000

10000

15000

20000

25000

30000

35000

N
u
m
b
er

o
f
im

a
g
es

Normal images

Anomalous images

Figure 4.7: This figure shows the distribution of the summed-up absolute reconstruction error of images with and
without anomalies. These reconstruction error values result from the five-layer DAE with the encoder architecture
described in Table 4.6. The mean absolute reconstruction error of samples with and without anomalies is 24,781 and
23,851, respectively.

anomaly detection method applied to this latent representation could also be a promising approach. For this analysis,

t-distributed Stochastic Neighbor Embedding (t-SNE) was used to visualize high-dimensional data by projecting it to a

two-dimensional space [132].

Figures 4.10 to 4.14 show the two-dimensional output of the t-SNE-algorithm applied to the latent representations of

hundreds of example images. Figures 4.10 and 4.11 display this projection for roughly 150 instances of anomalous

20,000 40,000 60,000 80,000

Absolute reconstrution error

0

5000

10000

15000

20000

25000

30000

35000

N
u
m
b
er

o
f
im

a
g
es

Normal images

Anomalous images

Figure 4.8: This figure shows the distribution of the summed-up absolute reconstruction error of normal images and
anomalous images. These reconstruction error values result from the ten-layer DAE with the encoder architecture
described in Table 4.2. The mean absolute reconstruction error of samples with and without anomalies is 40,936 and
40,971, respectively.

43

CHAPTER 4. ARCHITECTURE

(a) Original image (b) Reconstructed image (c) Reconstruction error image

Figure 4.9: Figure (a) shows the input image of the ten-layer DAE with the architecture described in Tables 4.2 and 4.3.
The reconstructed image of the DAE and the resulting reconstruction error image are shown in Figure (b) and Figure (c),
respectively.

-30 -20 -10 0 10 20 30
x

-30

-20

-10

0

10

20

y

NOA images

INA images

Anomalous images

(a) This figure shows a projection of the latent representation ob-
tained from the ten-layer encoder architecture described in Ta-
ble 4.2.

-30 -20 -10 0 10 20 30
x

-30

-20

-10

0

10

20

y

Wood

Concrete

Mixed

(b) This figure shows a projection of the latent representation ob-
tained from the ten-layer encoder architecture described in Ta-
ble 4.2.

-20 -10 0 10 20
x

-30

-20

-10

0

10

20

y

NOA images

INA images

Anomalous images

(c) This figure shows a projection of the latent representation ob-
tained from the ten-layer encoder of the masked DAE listed in
Table 4.2. Since this DAE utilizes the same architecture as in Fig-
ure (a), the plot shows similar results.

-20 -10 0 10 20
x

-30

-20

-10

0

10

20

y

Wood

Concrete

Mixed

(d) This figure shows a projection of the latent representation ob-
tained from the ten-layer encoder of the masked DAE. Since this
AE utilizes the same architecture as in Figure (b), the plot shows
similar results.

Figure 4.10: These figures show the output of the T-SNE algorithm applied to the latent space representations of the ten-
layer AE and DAE with the encoder architecture shown in Table 4.2. Roughly 150 images with anomalies, infrastructure
elements, and normal images without any annotations are plotted. The colors group images according to their type
(normal, infrastructure, and anomaly) or the crosstie material in the image.

44

4.1. ANOMALY DETECTION METHODS ANALYSIS

-30 -20 -10 0 10 20 30
x

-30

-20

-10

0

10

20

30

y
NOA images

INA images

Anomalous images

(a) This figure shows a projection of the latent representation ob-
tained from the eight-layer encoder architecture described in Ta-
ble 4.4.

-30 -20 -10 0 10 20 30
x

-30

-20

-10

0

10

20

30

y

Wood

Concrete

Mixed

(b) This figure shows a projection of the latent representation ob-
tained from the eight-layer encoder architecture described in Ta-
ble 4.4.

-50 -40 -30 -20 -10 0 10 20 30
x

-20

-10

0

10

20

y

NOA images

INA images

Anomalous images

(c) This figure shows a projection of the latent representation ob-
tained from the five-layer encoder of the DAE with the architec-
ture described in Table 4.6.

-50 -40 -30 -20 -10 0 10 20 30
x

-20

-10

0

10

20

y

Wood

Concrete

Mixed

(d) This figure shows a projection of the latent representation ob-
tained from the five-layer encoder of the DAE with the architec-
ture described in Table 4.6.

Figure 4.11: These figures show the output of the T-SNE algorithm applied to the latent space representations of the
AE with the encoder architecture shown in Table 4.4 and Table 4.6. Roughly 150 images with anomalies, infrastructure
elements, and normal images without any annotations are plotted. The colors group images according to their type
(normal, infrastructure, and anomaly) or the crosstie material in the image.

images, image containing only infrastructure annotationss (INA images), and image containing no annotationss (NOA

images) for the proposed AE and DAE models. While Figure 4.10 visualizes the projections of the ten-layer AE’s and

ten-layer DAE’s latent space representations, Figure 4.11 shows the according eight-layer AE’s and five-layer DAE’s

latent space projections. In Figures 4.10a, 4.10c, 4.11a, and 4.11c, points are colored depending on wether they belong to

NOA images, INA images, or anomalous images. The colors in Figures 4.10b, 4.10d, 4.11b, and 4.11d represent the type

of crosstie material. There is no clear clustering of normal, infrastructure, or anomalous images for any of the analyzed

models. However, many images with wooden crossties are clustered together in all models.

Figure 4.12 shows the t-SNE-projection for images of three anomaly classes with 50 instances each for all proposed AE

and DAE models. Although a few instances of the same anomaly class have values close to each other, those instances

come from the same dataset sequences. Therefore, these images share similar crossties and lighting conditions.

45

CHAPTER 4. ARCHITECTURE

-20 -10 0 10 20
x

-30

-20

-10

0

10

20

30
y

Can

Bottle

Vegetation

(a) This figure shows a projection of the latent representation ob-
tained from the ten-layer encoder of the ten-layer AE described
in Table 4.2.

-20 -10 0 10 20
x

-20

-10

0

10

20

y

Can

Bottle

Vegetation

(b) This figure shows a projection of the latent representation ob-
tained from the ten-layer encoder of the masked DAE described
in Table 4.2.

-20 -10 0 10 20
x

-30

-20

-10

0

10

20

30

y

Can

Bottle

Vegetation

(c) This figure shows a projection of the latent representation ob-
tained from the encoder of the eight-layer AE described in Ta-
ble 4.4.

-20 -10 0 10 20
x

-30

-20

-10

0

10

20

y

Can

Bottle

Vegetation

(d) This figure shows a projection of the latent representation ob-
tained from the five-layer encoder of the DAE described in Ta-
ble 4.6.

Figure 4.12: These figures show the output of the T-SNE algorithm applied to the latent space representations of the two
AEs and DAEs. Roughly 150 images with cans, bottles, and vegetation are plotted. The colors group images according
to their anomaly class in the image.

To analyze how this clustering changes for images within the same sequence, Figures 4.13 and 4.14 shows the projections

of all latent representations of images from one sequence of the dataset. While Figure 4.13 shows the projections of the

ten-layer AE and ten-layer DAE latent space representation, Figure 4.14 shows the same for the eight-layer AE and the

five-layer DAE. The lighting conditions for every image in this sequence are similar and should not greatly influence

the clustering. Furthermore, this sequence includes a relatively high number of infrastructure elements and anomalies.

In Figures 4.13b, 4.13d, 4.14b, and 4.14d, points are colored according to the crosstie material. In Figures 4.13a, 4.13c,

4.14a, and 4.14c, points are colored to their corresponding image type (NOA images, INA images, or anomalous images).

Apparently, the clustering is mainly influenced by the crosstie material since points representing wooden and concrete

crossties are separated from each other in Figures 4.13b, 4.13d, 4.14b, and 4.14d. Anomalous instances seem to be spread

across all other points. There is no clear separation of points corresponding to anomalous images from other points in

Figures 4.13a, 4.13c, 4.14a, and 4.14c.

46

4.1. ANOMALY DETECTION METHODS ANALYSIS

-10 0 10 20
x

-20

-10

0

10

y

NOA images

INA images

Anomalous images

(a) This figure shows a projection of the latent representation ob-
tained from the ten-layer encoder architecture described in Ta-
ble 4.2.

-10 0 10 20
x

-20

-10

0

10

y

Wood

Concrete

Mixed

(b) This figure shows a projection of the latent representation ob-
tained from the ten-layer encoder architecture described in Ta-
ble 4.2.

-10 0 10 20
x

-10

0

10

20

y

NOA images

INA images

Anomalous images

(c) This figure shows a projection of the latent representation ob-
tained from the ten-layer encoder of the masked DAE. Since this
DAE utilizes the same architecture as in Figure (a), the plot shows
similar results.

-10 0 10 20
x

-10

0

10

20

y

Wood

Concrete

Mixed

(d) This figure shows a projection of the latent representation ob-
tained from the ten-layer encoder of the masked DAE. Since this
DAE utilizes the same architecture as in Figure (b), the plot shows
similar results.

Figure 4.13: These figures show the output of the T-SNE algorithm applied to the latent space representations of the
ten-layer AE with the encoder architecture shown in Table 4.2. Only images from one sequence of the dataset were
analyzed.

Interestingly, for all AE and DAE models, there are two sub-clusters of images with crossties out of concrete in Fig-

ures 4.13b, 4.13d, 4.14b, and 4.14d. Most likely, this is the case because all of the images belonging to one of the clusters

are in a turn of the track, which leads to a horizontal shift of the rails and trackbed on the images. The points correspond-

ing with instances with wooden crossties are further apart than the points of instances within the crosstie cluster. One

reason for that could be that most infrastructure elements like switches or switch frogs have wooden crossties in this

dataset sequence. Furthermore, there are two main clusters of normal images with wooden crossties since there appear

two different kinds of wooden crossties with different widths. Much anomaly-specific information seems already lost

after the encoder network of each AE and DAE. However, some anomalous instances with large anomalies, like heavy

vegetation, have a relatively large distance to clusters of normal data. This might allow for an additional filter step to

reduce the number of false positives.

47

CHAPTER 4. ARCHITECTURE

-30 -20 -10 0 10 20 30
x

-20

-10

0

10

20

y

NOA images

INA images

Anomalous images

(a) This figure shows a projection of the latent representation ob-
tained from the eight-layer encoder architecture described in Ta-
ble 4.4.

-30 -20 -10 0 10 20 30
x

-20

-10

0

10

20

y

Wood

Concrete

Mixed

(b) This figure shows a projection of the latent representation ob-
tained from the eight-layer encoder architecture described in Ta-
ble 4.4.

-20 -10 0 10
x

-20

-10

0

10

20

y

NOA images

INA images

Anomalous images

(c) This figure shows a projection of the latent representation ob-
tained from the five-layer encoder of the DAE listed in 4.6.

-20 -10 0 10
x

-20

-10

0

10

20

y

Wood

Concrete

Mixed

(d) This figure shows a projection of the latent representation ob-
tained from the five-layer encoder of the DAE listed in 4.6.

Figure 4.14: These figures show the output of the T-SNE algorithm applied to the latent space representations of the
eight-layer AE with the encoder architecture shown in Table 4.4 and the five-layer DAE shown in Table 4.6. Only images
from one sequence of the dataset were analyzed. The influence of the lighting conditions on the output of the t-SNE is
minimal because the lighting conditions barely change throughout this sequence.

4.1.4 Variational Autoencoder

While AEs and DAEs only distinguish themselves by the training procedure and can have identical architectures, the

architecture of a VAE is more complex. Instead of just using an encoder and decoder network, which are used to extract

features from the input data and reconstruct the data from these features, a VAE introduces additional fully connected

layers. These layers are used to give a probabilistic description of observations in the latent space. A random sample

from the observed probability distribution is used and fed to the decoder network for the reconstruction of the data.

Section 2.4.3 explains this process in more detail, and Figure 2.5 visualizes the architecture. The convolutional encoder

and decoder architectures used to extract features from the original image and reconstruct it from a sampled latent

vector are shown in Table 4.8 and Table 4.9, respectively. The output tensor of the encoder network is flattened to

be used as an input for the following fully connected linear layer network. The first linear layer has 4,032 input and

2,048 output neurons and utilizes the hyperbolic tangent activation function. This output is fed to two separate linear

layers with 1,024 output elements. The outputs of these two layers are interpreted as the mean values and logarithmic

standard deviation values of a distribution from which a vector will be sampled and forwarded to the decoder network.

48

4.1. ANOMALY DETECTION METHODS ANALYSIS

(a) Original image (b) Reconstructed image (c) Reconstruction error image

Figure 4.15: Figure (a) shows the input image of the VAE with the convolutional encoder and decoder architectures
described in Tables 4.8 and 4.9. The reconstructed image of the VAE and the resulting reconstruction error image are
shown in Figure (b) and Figure (c), respectively.

20,000 40,000 60,000 80,000 100,000 120,000

Absolute reconstrution error

0

5000

10000

15000

20000

25000

30000

35000

40000

N
u
m
b
er

o
f
im

a
g
es

Normal images

Anomalous images

(a) Histogram of the absolute reconstruction error for imageswith
and without anomalies.

500 1,000 1,500 2,000

KL-Divergence Loss

0

5000

10000

15000

20000

25000

30000

N
u
m
b
er

o
f
im

a
g
es

Normal images

Anomalous images

(b) Histogram of the KL-divergence loss for images with and
without anomalies.

Figure 4.16: Figures 4.16a and 4.16b show the distribution of the reconstruction error and KL-divergence loss. The mean
value of the reconstruction error for images with and without anomalies is 34,781 and 33,852, respectively. For images
with and without anomalies, the mean value of the KL-divergence loss is 438 and 420, respectively.

These two layers used for extracting the mean and logarithmic standard deviation values are visualized in Figure 2.5 by

the µ and σ blocks. This sampled vector is then fed to a two-layer linear network, where the first layer has 1,024 inputs

and 4,032 outputs, and the second one has 4,032 inputs and outputs. After resizing the output tensor, this network is

followed up by the decoder network described in Table 4.9. Although a VAE allows us the calculation of a loss value

from the latent representation and uses this as an indicator for anomalies, it also generates a reconstruction of the input

image. An example image’s reconstruction and reconstruction error is shown in Figure 4.16. At this point, it should be

mentioned that this is just one possible reconstruction. In contrast to AEs and DAE, the reconstruction image of a VAE

is non-deterministic due to the introduced random sampling in the bottleneck.

49

CHAPTER 4. ARCHITECTURE

Table 4.8: The convolutional encoder of the VAE. All layers are two-dimensional convolutional layers implemented in
PyTorch. A batch normalization layer follows each convolutional layer. The input image has a width of 1025 and a
height of 769.

Encoder Architecture

Layer Input Channel Output Channel Kernel Size Stride Padding Output Height Output Width

1 1 4 7 1 3 769 1025
2 4 8 7 2 3 385 513
3 8 16 7 2 3 193 257
4 16 32 7 2 3 97 129
5 32 64 7 2 3 49 65
6 64 64 7 2 3 25 33
7 64 64 7 2 3 13 17
8 64 64 7 2 3 7 9

Table 4.9: The Convolutional decoder of the VAE. All layers are two-dimensional transposed convolutional layers imple-
mented in PyTorch. A batch normalization layer follows each convolutional layer. The decoder network is symmetric
to the encoder network regarding layer structure. The latent representation, which is the input of this network, has a
width of 7 and a height of 9.

Decoder Architecture

Layer Input Channel Output Channel Kernel Size Stride Padding Output Height Output Width

1 64 64 7 2 3 13 17
2 64 64 7 2 3 25 33
3 64 64 7 2 3 49 65
4 64 32 7 2 3 97 129
5 32 16 7 2 3 193 257
6 16 8 7 2 3 385 513
7 8 4 7 2 3 769 1025
8 4 1 7 1 3 769 1025

4.1.5 Deep Convolutional Generative Adversarial Network

While AEs, DAEs, and VAEs are trained to reconstruct given input images, the training of GANs is based on a different

idea. A discriminator is trained to distinguish between real and synthetic data, and a generator network learns how

to generate synthetic data to fool the discriminator. For the analysis of the applicability of GANs to the given problem

description, the architectures for the generator and discriminator network were defined following the guidelines for

stable DCGANs proposed by Radford et al. in [112]:

• Pooling layers in the discriminator and generator should be replaced by strided convolutional and fractional-

strided convolutional layers, respectively.

• In both networks, batch normalization layers should be used.

• Fully connected hidden layers should be replaced for deeper architectures.

• ReLU activation function should be used for all layers of the generator network but the output, which should use

the hyperbolic tangent function.

50

4.1. ANOMALY DETECTION METHODS ANALYSIS

• Leaky ReLU activation should be used for all layers of the discriminator.

According to [112], following these guidelines helps to design stable DCGANs, especially for higher-resolution model-

ing. It should be noted that Radford et al. recommend using the hyperbolic tangent activation function for the output

layer of the generator network because bounded activation functions lead to quicker training of the network. Instead

of the hyperbolic tangent activation function, the sigmoid function was chosen, which allows mapping the output val-

ues in the range between 0 and 1 instead of -1 and 1. Following these guidelines, taking inspiration for the generator

and discriminator network from the already proposed encoder and decoder networks of the various AEs, and varying

hyperparameters of the network, the generator and discriminator architectures listed in Tables 4.10 and 4.11 lead to

reasonable synthetic images. For this GAN training, roughly 10,000 labeled normal images of the dataset without any

anomalies were used.

Table 4.10: All layers are two-dimensional transposed convolutional layers implemented in PyTorch. Each transposed
convolutional layer, except the output layer, is followed by a batch normalization layer and a ReLU activation function.
The output layer utilizes a sigmoid activation function. The input noise vector has 1,000 elements.

Generator Architecture

Layer Input Channel Output Channel Kernel Size Stride Padding Output Height Output Width

1 1000 384 (7,9) 1 - 7 9
2 384 384 3 2 1 13 17
3 384 384 3 2 1 25 33
4 384 192 3 2 1 49 65
5 192 96 3 2 1 97 129
6 96 48 3 2 1 193 257
7 48 48 3 2 1 385 513
8 48 1 3 2 1 769 1025

Table 4.11: All layers are two-dimensional convolutional layers implemented in PyTorch. Each convolutional layer,
except the last one, is followed by a batch normalization layer and uses a leaky ReLU activation function. The last layer
uses a sigmoid activation function. Input images for this network have a height of 769 and a width of 1,025.

Discriminator Architecture

Layer Input Channel Output Channel Kernel Size Stride Padding Output Height Output Width

1 1 48 3 2 1 385 513
2 48 48 3 2 1 193 257
3 48 96 3 2 1 97 129
4 96 192 3 2 1 49 65
5 192 384 3 2 1 25 33
6 384 384 3 2 1 13 17
7 384 384 3 2 1 7 9
8 384 1 (7,9) 1 - 1 1

For the 100 epochs long training, a batch size of 16 and the Adam-optimizer [81] with a learning rate of 10−4 were

chosen. Figure 4.17 shows four generated images of this generator network. Details like repeating gravel patterns or

the edges of some crossties still allow the discriminator to distinguish some of the synthetic images from normal data.

However, the four example images also reveal some interesting aspects and the potential of synthetic image generation.

51

CHAPTER 4. ARCHITECTURE

Figure 4.17: The DCGAN’s generator created these four images from random noise input vectors. Although these four
generated images might look realistic initially, some details reveal their synthetic nature. In some parts of the trackbed,
the same pattern of gravel seems to repeat itself. Furthermore, some edges of crossties are not straight lines like in
normal images.

The overwhelming majority of labeled images in the Kombi dataset show tracks where the left and right sides of the

trackbed are roughly as bright as the middle, or only the right side is very bright due to direct sunlight. The leftmost

image shows a scenario where both the right and left sides seem to be under direct sunlight, which does not occur

except the sun is exactly above the train. Moreover, the second image shows a scenario where only the left side is

bright, which resembles conditions underrepresented in the given dataset. As described in Section 2.4.4, the generator

and discriminator can be exploited for anomaly detection. Approaches based on the generator network try to create a

given image by adapting its input vector through an optimization process. This process is computationally expensive

and is not further investigated in this thesis. On the other hand, the discriminator can be utilized as an One-Class

Classifier (OCC) when the training dataset of the GAN includes no anomalies. This approach leads to significantly

faster inference times. However, according to [116], this approach typically performs poorly compared to approaches

utilizing the generator network. Figure 4.18 shows the distribution of discriminator output values. Even though normal

images tend to lead to discriminator output values closer to 1, many anomalous samples also have a high discriminator

0.0 0.2 0.4 0.6 0.8 1.0

Discriminator output

2,000

4,000

6,000

8,000

10,000

12,000

14,000

N
u
m
b
er

o
f
im

a
g
es

Normal images

Anomalous images

Figure 4.18: This figure shows the distribution of discriminator output values for images with and without anomalies.
Normal images lead to higher discriminator output values than anomalous images, but there are also many anomalous
images with high associated output values. Using a threshold value for the discriminator output to detect anomalies
will inevitably lead to a high number of false positives.

52

4.2. ARCHITECTURE DECISIONS

output value associated with them. It turns out that the discriminator output value for anomalous samples is correlated

with the size of the anomaly. Typically, larger anomalies likewidespread vegetation on the trackbed lead to discriminator

output values close to zero, while the output value is closer to one for smaller anomalies.

4.2 Architecture Decisions

The main goal of the proposed anomaly detection system VADAR is to detect unknown anomalies in images of rail

tracks. Therefore, several NN-based approaches were analyzed, trained, and tested on the Kombi dataset. Since this

dataset includes way more NOA images than anomalous images, the dataset is heavily imbalanced, posing a problem Maxi: Willst du wirklich "images" als Wort in

der Abkürzung haben? Wäre nicht gscheiter nur

"NAO"/"NAOs" oder "NAOI"/"NAOIs"?for binary classification approaches. As described in Section 2.4.2, reconstruction-based anomaly detection methods like

AEs, DAEs, and VAEs are a good choice for anomaly detection approaches on unbalanced datasets and are often used

for completely unsupervised approaches.

Figures 4.2, 4.4, 4.8, and 4.7 show the distributions of absolute reconstruction errors of images with and without anoma-

lies for the proposed AE and DAE models. For all models, both distributions have mean values close to each other, and

the distributions manifest within the same absolute reconstruction error range. One reason for this could be that the ran-

dom nature of the ballast contributes a large portion of the total reconstruction error in an image, regardless of whether

anomalies are included. Furthermore, this background reconstruction error value underlies a rather big variance due to

varying ballast and lighting conditions. Since separate stones of the ballast come in different sizes, shapes, and bright-

ness values, the AEs and DAEs seem to struggle with learning features to represent these stones without simultaneously

improving the reconstruction of anomalies. Therefore, a clear separation of anomalous images from normal ones by in-

troducing a threshold value for the absolute reconstruction error is not feasible. In addition to the sum of the absolute

reconstruction error, the mean squared error loss [133], the structural similarity- and the multiscale structural similarity

index [134] were considered. However, these different loss functions did also not enable an easy separation between

normal and anomalous images. The VAE has the same issues, and neither the absolute reconstruction error nor the KL-

divergence loss seem to be reliable indicators for anomalies. Although the discriminator of the DCGAN tends to output

higher values for normal images, a similar trend for output values of anomalous images was not observed. However, the

ten-layer AE and DAE seem to ignore objects lying on the trackbed and only focus on reconstructing the mean value

of the ballast in the background. This is beneficial for an anomaly detection task since the anomalies lead to unusually

large reconstruction errors in local regions. More sophisticated ways of analyzing reconstruction error images must be

considered to detect and focus on such areas. This should allow VADAR to keep the number of false positives low while

maintaining a high recall rate of anomalies. As an additional feature, AE-based approaches also enable anomaly local-

ization with a relatively small additional effort. Since these regions of large reconstruction errors are the indication of

anomalies, they also hold information about the position of the anomaly. This localization aspect significantly increases

the interpretability of AE-based anomaly detection methods since the regions that were interpreted as anomalous can be

highlighted. The following sections introduce the proposed anomaly detection system, called VADAR, andgive details

about the design decisions, architectures, and training methodologies.

In [35], an AE-based anomaly detection method was introduced for a similar problem description. This paper focused on

the detection and classification of large construction tools that were placed on the tracks of railroad systems. They used

53

CHAPTER 4. ARCHITECTURE

an unsupervised approach to train an autoencoder to specialize in reconstructing normal frames. The reconstruction

error image is then fed to a second neural network to decide if this reconstruction error is the result of an anomalous

data sample. In contrast to the dataset used in this thesis, the researchers in [35] worked with a collection of images

taken from different cameras from a front-view perspective of the rails and trackbed. Besides RGB cameras, they focused

on infrared cameras as well. Although there are significant differences in the problem description, the camera system,

and the perspective of the cameras, they were facing similar challenges, and their approach could be adapted to also

work for smaller anomalies like smaller unexpected objects on the trackbed or damages to the rails and crossties.

4.3 VADAR

Since the Kombi dataset contains close to 2,000,000 images (Section 3.1), the anomaly detection method of choice needs

to be able to work with large quantities of data. The training and evaluation of the proposed algorithm, called VADAR,

is limited to the original and augmented images of the Kombi dataset. Furthermore, parallelization of the computations

should be supported to exploit the computational power of GPUs to reduce the computation time [64]. Machine learning

algorithms, specifically neural networks, allow for high parallelization and can deal with large datasets [88, 64]. The total

number of anomalies in the dataset is expected to be small because anomalies are rare in the labeled part of the dataset.

Although different classes of anomalies like damages, trash, or dead animals were identified, another kind of object or

damage could always appear in the unlabeled part of the dataset or the potential future use case of the system. Therefore,

a binary classification-based approach is not a feasible method because only a small number of labeled anomaly images

are available. Furthermore, there is no guarantee that this limited set of anomalies covers all or even the majority of

interesting anomalies. This suggests an unsupervised or semi-supervised anomaly detection approach. Section 4.1.5

already summarized the analysis of several ML-based anomaly detection approaches for the given task, and AE-based

approaches seem to be a suitable choice for this specific application.

Furthermore, Gasparini et al. described an AE-based approach for railroad inspection in [35, 127]. An AE is used

to reconstruct the input images, and the reconstruction error is analyzed to decide whether the image contains any

anomalies. In [35], a supervised approach was used to train a convolutional neural network that decides whether the

image is anomalous. This work specialized in detecting construction tools that lie on the trackbed, and example images

were available to train this classification network. A supervised approach like this does not lead to satisfying results for

many anomaly detection tasks because not enough anomalous instances are available [17]. Some of the characteristics

and limitations of supervised approaches are summarized in Section 2.2.3. Because of this significant drawback, different

methods of detecting anomalies were explored. An additional rail segmentation network is used to differentiate between

reconstruction errors of the rails and the rest of the image. Setting all pixel values of an image to one if its original value

is at least as big as a threshold and to zero if it is smaller is referred to as thresholding. After thresholding in the rest

of the reconstruction error image, only large coherent error regions within this image are further analyzed by a neural

network. This network distinguishes between the gravel of the trackbed and parts of anomalous example objects. A

block diagram of the proposed anomaly detection approach is shown in Figure 4.19. First, the next subsection discusses

the necessary pre-processing steps for the input images. The following sections explain the separate blocks of this block

diagram in more detail.

54

4.4. TRACKBED ANOMALY DETECTION

Trackbedanomalyautoencoder(TAAE)
Infrastructure autoencoder(IAE)

Infrastructure detection

Rail anomalyautoencoder(RAAE) Rail damagedetection

LCAdetection OCC
Inputimage

Rail damage:yes/no

Anomaly:yes/no

Image reconstruction

Figure 4.19: Three AEs are used for this approach. The Trackbed Anomaly Autoencoder (TAAE) and Infrastructure
Autoencoder (IAE) share the same architecture, while the Rail Anomaly Autoencoder (RAAE) has an architecture with
a wider bottleneck. The TAAE and RAAE are trained with NOA images, and the IAE is exclusively trained with INA
images. To detect damages to the rails, a rail segmentation network is used, and the reconstruction error of the RAAE
is analyzed. Large Coherent Areas (LCAs) within the reconstruction error image are then fed to a One-class classifier
(OCC) to decide if this part of the image is anomalous.

4.3.1 Pre-Processing

Because of the wide view angle of the camera system used to take the images for the dataset, some regions of the

images are distorted and do not include useful information for the anomaly detection algorithm. Therefore, the images

are cropped and only include the relevant parts, specifically the trackbed with the rails and crossties. After cropping,

the images have a height of 769 pixels and a width of 1,025 pixels. Before any further processing, the images were

normalized to values between 0 and 1. It should be noted that VADAR only accepts gray-scale images as input.

4.4 Trackbed Anomaly Detection

Trackbed anomalies are all anomalies except rail anomalies. This includes unexpected objects on the trackbed, like trash

or animals, damage to the fasteners, and heavy vegetation. Unfortunately, a loss function like mean squared error or

the combination of mean squared error and gradient error (described in section 4.4.2) could not be used as a reliable

indication for anomalous frames. The main reason for this is the large contribution to the overall reconstruction error

by the ballast of the trackbed and its large variation, which depends on the size of separate stones, their color, and the

lighting conditions. Instead, only large coherent areas within the reconstruction error are seen as potential anomalies

and analyzed in an additional step to lower the false positive rate of this anomaly detection approach. Another source for

false positives is infrastructure elements. The following sections explain how VADAR detects anomalies on the trackbed

and how the contribution of false positives by the ballast and infrastructure elements is lowered.

4.4.1 Image Reconstruction

The first step of the proposed anomaly detection method is to reconstruct the input image by two AEs. The trackbed

anomaly detection uses the Infrastructure detection block to ignore infrastructure elements. Two AEs with the same

55

CHAPTER 4. ARCHITECTURE

(a) Original image with an infrastructure
element.

(b) Difference of TAAE’s and IAE’s abso-
lute reconstruction error image.

(c) Detected and located infrastructure el-
ement.

Figure 4.20: Defining a threshold for the difference of TAAE’s and IAE’s absolute reconstruction error image enables
the detection and localization of infrastructure elements.

architecture, but different types of training images (see Figure 3.2) are used to detect anomalies on the trackbed. The

reason for two instead of one AE is that the reconstruction of infrastructure elements in INA images typically results

in high reconstruction errors. Therefore, this leads to a larger number of false positives. The Infrastructure detection

block utilizes the reconstruction error images of both AEs, which are called TAAE and IAE, to detect and ignore such

infrastructure elements. The Infrastructure detection block is explained in more detail in 4.4.3.

4.4.2 Trackbed Anomaly Autoencoder and Infrastructure Autoencoder

Within the roughly 220,000 labeled images of the dataset, more than 180,000 images are images without annotations

and are called NOA images, as described in Section 3.1.4. Furthermore, roughly 28,000 frames contain no anomalies but

additional infrastructure elements like switch-frogs, other rails close to a switch-frog, crosstie attachments, or sensors.

Since such infrastructure elements could falsely be identified as anomalous objects besides the TAAE, which is trained

exclusively with NOA images, a second AE called IAE was developed that is specialized in the reconstruction of images

containing infrastructure elements. The training procedure of the IAE only contains INA images. Because this special-

ized IAE performs better on INA images than the TAAE, the reconstruction error images of both AEs show relatively

large differences where the infrastructure element is positioned. Since every infrastructure frame still contains many of

the same fundamental features as normal images, the IAE performs well in reconstructing normal images. Therefore,

the differences in reconstruction errors of the two AEs show only small differences in regions without additional infras-

tructure. This allows for localizing infrastructure elements that could otherwise be interpreted as anomalies.

Architecture

The AE consists of an encoder and decoder network, where the decoder network is symmetric to the encoder network

regarding the layer structure. The AE was implemented in PyTorch, and the architectures of the encoder and decoder

are shown in Tables 4.2 and 4.3, respectively. The architecture of the encoder consists of ten convolutional layers. Every

layer uses a square kernel with a size of seven and zero padding of three on each side. All the layers are defined with a

stride of two except the first and the last two, with a stride of one. Although some aspects of the architecture, like the

number of layers, were inspired by the work [35], some parameters were adapted for this anomaly detection approach.

For any AE design, the output dimensionality of the encoder, equal to the decoder’s input dimensionality, must be

considered. The higher the dimensionality of this latent representation of the input image, the more information is

available for the decoder network to reconstruct the image [135]. Therefore, typically the output of the AE will be a

56

4.4. TRACKBED ANOMALY DETECTION

more detailed reconstruction of the input image the higher the latent dimensionality is. Multiple factors of the chosen

architecture influence this dimensionality. The dimensionality is the product of the number of output channels, width,

and height of the last layer of the encoder. The number of output channels is just a parameter of the last encoder layer

and can be defined directly, but all encoder layers influence the height and width. They can be computed by iteratively

applying equations 2.5 and 2.6 for each layer. The resulting output widths and heights for each layer of the encoder

and decoder are listed in Tables 4.2 and 4.3, respectively. This specific encoder architecture leads to a dimensionality

reduction ϕ computed as

ϕ =
OC,Enc ·OW,Enc ·OH,Enc

IC,Enc · IW,Enc · IH,Enc
=

64 · 9 · 7
1 · 1025 · 769 ≈ 0.0051, (4.3)

where OC,Enc, OW,Enc, and OH,Enc refer to the output number of channels, output width, and height of the encoder,

respectively, and IC,Enc, IW,Enc and IH,Enc represent the number of input channels and the width and height of the

input image respectively. The dimensionality of the latent space representation is an important factor in dealing with the

random nature of the ballast, which covers most of each image. Although the total reconstruction error of a frame can

be reduced by increasing the latent space dimensionality, the reconstruction error is still dominated by the contributions

of the gravel. Both AE models utilize the same architecture. This leads to an almost identical performance on normal

frames.

Figure 4.21 shows the reconstruction and reconstruction error images of a frame of two AEs with different latent space

dimensionalities. The reconstruction of some parts of the trackbed, like the rails, fasteners, and crossties, is far better

than the rest of the trackbed, which is indicated in the reconstruction error images as black regions with minor recon-

struction errors. Notably, the higher the latent space dimensionality, the more detailed the reconstruction image is. The

reconstruction quality of the gravel is better for higher dimensional latent space representations, but this also leads to

a better reconstruction of an anomaly. Since the ballast’s contribution to the overall reconstruction error underlies a

significant variation depending on the size and shape of the gravel and the lighting conditions, the summed-up abso-

lute reconstruction error is not a reliable indicator for anomalies, as already discussed in Section 4.1.5. A more reliable

indicator for anomalies was found in analyzing large coherent error areas within the reconstruction image. By using an

AE with a lower dimensional latent space, the structure and texture of the ballast are entirely lost in the reconstruction

image, but this allows objects to have a significantly larger impact on the reconstruction error image in the form of a

large coherent error area as depicted in Figure 4.21. This indicator limits the threshold for large coherent error areas

and, therefore, the size of anomalous objects to the size of separate gravel stones because unusually bright or dark stones

will also result in similar error areas. Since most objects considered anomalies, like animals, heavy vegetation, or trash,

like bottles, are significantly larger than a separate gravel stone, this limiting factor is not a significant drawback for

this specific use case.

Training

For the TAAE, the utilized part of the dataset contained roughly 7,500 labeled NOA images. By rotating the images by

180◦, mirroring them, and adding Contrast Limited Adaptive Histogram Equalization (CLAHE), the number of training

images was effectively multiplied by 8 (see Section 3.2). This ensures that the TAAE is trained on a small portion of

the available labeled data and still learns useful features for the reconstruction of NOA images only. 80% of this utilized

part of the dataset was used as training data, and the remaining 20% as validation data. Similar splits of training data

57

CHAPTER 4. ARCHITECTURE

Figure 4.21: The two images in the leftmost column are the original input image. All images regarding the AE with a
narrow bottleneck dimension of (64, 7, 9) are shown in the top row. The images were produced by TAAE. The images
in the bottom row correspond to the AE with a wider bottleneck dimension of (64, 13, 17), where the image was recon-
structed by the RAAE. The reconstruction images of both AEs are shown in the middle column, and the reconstruction
error images are in the rightmost column.

are common practice in machine learning applications [35, 136, 137]. The Adam-optimizer was used with a learning

rate of 0.001, and the AE model was trained for 100 epochs since the training and validation loss started stagnating. To

evaluate the current model’s performance, the deviation of the reconstructed image from the input image is considered

by a loss function. Like in [35], a loss function was used that considers both the mean squared error loss LMSE and a

gradient loss LG. The mean squared error loss is defined as

LMSE =
1

MN

M

m=1

N

n=1

∥ I(m,n)−O(m,n) ∥22, (4.4)

where I and O represent the input and output image of the AE, and the gradient loss is

LG =
1

MN

M

m=1

N

n=1

∥ GI(m,n)−GO(m,n) ∥22, (4.5)

where G(·) represents the following gradient computation

Gx(I) = I ∗

1 0 −1

1 0 −1

1 0 −1

 , Gy(I) = I ∗

1 1 1

0 0 0

−1 −1 −1

 , GI = Gx(I)2 +Gy(I)2. (4.6)

Here ” ∗ ” refers to a two-dimensional convolution. The overall loss L was then defined as

L = LMSE + LG. (4.7)

58

4.4. TRACKBED ANOMALY DETECTION

The same optimizer, learning rate, number of epochs, and loss function were used for training the IAE. However, this

AE is trained with INA images. From the available 28,675 labeled INA images, roughly 6,000 were used for training and

split up to 80% training and 20% validation data. In Figure 4.22, the training progress of the TAAE and IAE are shown,

respectively.

0 20 40 60 80 100

Epochs

0.0020

0.0022

0.0024

0.0026

0.0028

0.0030

0.0032

0.0034

0.0036

M
ea
n
lo
ss

o
f
a
n
ep

o
ch

Training loss

Validation loss

(a) Training progress of the TAAE.

0 20 40 60 80 100

Epochs

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
ea
n
lo
ss

o
f
a
n
ep

o
ch

Training loss

Validation loss

(b) Training progress of the IAE.

Figure 4.22: This figure shows the training and validation loss of the IAE during the training. The dashed and dotted
lines show the smoothed training and validation loss.

4.4.3 Infrastructure Detection

Some infrastructure elements are responsible for the anomaly detection approach’s increased false positive rate. There-

fore, two AEs, namely the TAAE and IAE, are used to identify additional infrastructure elements within a frame to

prevent it from being detected as an anomaly. To prevent these false positives, the TAAE is exclusively trained with

NOA images, and the IAE is only trainedwith INA images. Therefore, the TAAE struggles with reconstructing anomalies

and infrastructure elements. However, the IAE was only trained with INA images. Because the infrastructure elements

are just a small part of the otherwise normal images, this IAE can reconstruct images with and without infrastructure

elements. The reconstruction errors of each AE are the absolute difference between the original input image and the

reconstructed image, and Figure 4.21 shows these images for two different AEs. Because there is a wide variety of infras-

tructure elements and only limited training data available, those elements might still be associated with a relatively large

reconstruction error, but this reconstruction error is considerably smaller than when no infrastructure elements were

included in the training. The infrastructure correction block in Figure 4.19 eliminates reconstruction errors resulting

from infrastructure elements that are not damaged. One example of such a detected infrastructure element is shown in

Figure 4.20. Even though the resulting mask does not cover the entire infrastructure element in every case, this still leads

to a significant performance improvement. Section 5.1.1 discusses experiments to quantify this improvement. Looking

at the absolute difference between the reconstruction error images of both AEs, regions with larger errors result from

infrastructure elements that are not damaged and can be ignored for the following steps of anomaly detection.

59

CHAPTER 4. ARCHITECTURE

(a) Original image with an anomaly. (b) Thresholded reconstruction error. (c) Large coherent area found in (b).

Figure 4.23: In the original image (a) an animal is on the trackbed. In (b) the thresholded reconstruction error image
is shown. Only if a large coherent area within the reconstruction error image is found, the image is considered to be
potentially anomalous. If this is the case, the output is the mask shown in (c).

4.4.4 Large Coherent Area Detection

Instead of using the full reconstruction error image, only large coherent areas are considered potentially anomalous

regions. First, the reconstruction error image is thresholded to obtain a binary image. Pixel values smaller than a

predefined threshold are set to zero, and all other pixel values are set to one. This threshold value is calculated using

two parameters, the quantile q, and the minimum threshold value θmin. The threshold value

θ = max (torch.quantile(IRE , q), θmin) , (4.8)

where the torch.quantile-function of the PyTorch-framework [47], which returns the q’th quantile of the reconstruction

error image, is used. Section 5.1.1 includes experiments that demonstrate the impact of these threshold parameters q

and θmin on the performance of VADAR. The label and regionprops functions of the skimage.measure package are used

to obtain the largest areas within this binary image. If an area was found that is larger than a threshold value, this

might be an indication of an anomaly and will be investigated further by an OCC. Figure 4.23 shows the thresholded

reconstruction error image and the detected large coherent area as an example. This visualization demonstrates that

anomalies leading to a coherent area significantly larger than separate stones of the gravel can be successfully detected.

Experiments in Section 5.1.1 demonstrate the effectiveness of this approach.

4.4.5 One-Class Classifier

When the output of LCA detection is used as an anomaly detection approach, the largest contribution to false positives

is gravel regions. Either parts of the gravel are exposed to significantly different lighting conditions than the rest, or

some unusually bright stones are grouped close together on the trackbed. Therefore, an additional neural network is

used as a one-class classifier to decide if the detected large coherent area within the reconstruction error resulted from

gravel or an anomaly. A 64 × 64-pixel patch from the original image that includes the LCA or parts of it is used as the

input for the OCC.

Architecture

A relatively simple convolutional network, consisting of only four convolutional and three pooling layers, is used to

extract features of the image patch. After an adaptive average pooling layer, a small, fully connected network of three

linear layers is used as the head of the classifier. Table 4.12 gives an architectural overview.

60

4.4. TRACKBED ANOMALY DETECTION

Table 4.12: All layers are implemented in PyTorch. The last linear layer uses the sigmoid activation function, and all
other convolutional and linear layers utilize the rectified linear unit as an activation function. Every convolutional and
linear layer, except Linear 3, is followed by a batch-normalization layer.

OCC Architecture

Layer Input Channel Output Channel Kernel Size Stride Padding

Convolutional 1 1 32 3 1 1
Convolutional 2 32 32 3 1 1
MaxPool 32 32 2 2 0
Convolutional 3 32 64 3 2 3
Convolutional 4 64 64 3 2 3
MaxPool 64 64 2 2 0
AdaptiveAveragePool 64 64 - - -
Flatten - - - - -
Linear 1 256 64 - - -
Linear 2 64 32 - - -
Linear 3 32 1 - - -

Training

This classifier network was trained with both patches of anomalies and patches of gravel on the trackbed. Roughly 30%

of the available anomalous samples were used to extract patches. From larger anomalies like animals, multiple patches

were extracted to increase the total amount of anomalous data available for training. For the training procedure, roughly

6, 000 images containing only gravel and 6, 000 images containing anomalies were used. Through the combinations of

mirroring, 0◦, 90◦, 180◦, 270◦, and CLAHE from each original patch 15 additional augmented samples were used for

training. Figure 4.24 shows the training progress of the OCC.

0 20 40 60 80 100

Epochs

0.00

0.05

0.10

0.15

0.20

M
ea
n
lo
ss

o
f
a
n
ep

o
ch

Training loss

Validation loss

Figure 4.24: This figure shows the training and validation loss of the OCC during the training. The dashed and dotted
lines show the smoothed training and validation loss.

61

CHAPTER 4. ARCHITECTURE

Image Reconstruction

Rail Segmentation

Figure 4.25: The original image with rail damage is shown in the upper left corner. Through the image reconstruction
process, the reconstruction error image is obtained. The output of the rail segmentation network allows VADAR to
focus on reconstruction errors of the rails.

4.5 Rail Anomalies

Unlike the detection of trackbed anomalies, the image reconstruction for rail anomaly detection is accomplished by one

AE. This third AE, referred to as RAAE, has a different architecture than the TAAE and IAE and is exclusively used for

the detection of anomalies on the rails. Detecting rail anomalies is of special interest since even small damages to the rail

can lead to larger, more severe damages that can pose problems for safe and reliable transportation. The size of separate

stones of the gravel sets a limit for detectable anomalies. In order to overcome this limitation for the detection of rail

anomalies, an additional NN is used. The output of a rail segmentation network is applied to the reconstruction error of

the RAAE. This network allows analysis of reconstruction errors of the rails. For rail damage detection, the summed-up

rail anomaly pixel values are considered. Figure 4.25 shows an example image of a damaged rail and how it can be

detected. The following sections describe the RAAE, the segmentation network, and rail damage detection.

4.5.1 Rail Anomaly Autoencoder

An AE with a wider bottleneck leads to reconstructed images with smaller reconstruction errors, as discussed in Sec-

tion 4.1.1. However, if the bottleneck of an AE is too wide, even small image details are reconstructed. Since most images

within the Kombi dataset show a trackbed covered in ballast, an AE with a wider bottleneck also learns features dur-

ing the training to reconstruct these random stones (see Figure 4.6). Unfortunately, the features helping to reconstruct

random stones also enable an AE to reconstruct small rail damages better. Therefore, there is also an upper limit for

the bottleneck width of an AE to be useful as an anomaly detection approach. An appropriate AE architecture must be

chosen for optimal performance of rail damage detection. Further experiments discussed in Section 5.1.2 show that the

RAAE with the slightly wider bottleneck outperforms the TAAE in rail damage detection.

62

4.5. RAIL ANOMALIES

Architecture

In Tables 4.4 and 4.5, the architecture of the RAAE is described. Compared to the TAAE and IAE, the dimensionality of

the RAAE’s latent representation is higher. This encoder architecture results in a dimensionality reduction ϕ defined

as

ϕ =
OC,Enc ·OW,Enc ·OH,Enc

IC,Enc · IW,Enc · IH,Enc
=

32 · 13 · 17
1 · 1025 · 769 ≈ 0.0090, (4.9)

which is almost twice as large as for the other autoencoder architecture shown in Equation 4.3. This architecture

allows for a more detailed reconstruction of images. Figure 4.21 shows the reconstructed images and the resulting

reconstruction error images of the TAAE and RAAE.

Training

The training procedure for the RAAE is the same as for the TAAE, which is described in Section 4.4.2. The RAAE

is trained with roughly 7,500 labeled NOA images. Rotating the images by 180◦, mirroring them, and adding CLAHE

multiplied the number of images by a factor of eight. The training procedure utilizes the adam-optimizer with a learning

rate of 0.001, and the training lasts for 100 epochs. Figure 4.26 shows the training progress of the RAAE.

0 20 40 60 80 100

Epochs

0.0016

0.0018

0.0020

0.0022

0.0024

M
ea
n
lo
ss

o
f
a
n
ep

o
ch

Training loss

Validation loss

Figure 4.26: This figure shows the training and validation loss of the RAAE during the training. The dashed and dotted
lines show the smoothed training and validation loss.

4.5.2 Rail Segmentation

A rail segmentation network is used in addition to the RAAEs to detect rail anomalies like damages. Figure 4.25 shows

an output mask for one example image and how it is used to detect damages. The output of this network is a mask of the

rails and is used to focus on the rail sections of an image for rail damage detection. This segmentation network allows

separating the reconstruction errors of the rails from the reconstruction errors in all other areas.

Architecture

The architecture of this segmentation network is identical to the AE architecture discussed in section 4.4.2. Therefore,

it also consists of an encoder and decoder network. Although the same architecture is used, this NN learns different

features through the training process to extract the input image’s rail segments and generate a rail mask instead of

reconstructing the input image.

63

CHAPTER 4. ARCHITECTURE

Training

For the training of this segmentation model, truth masks of the rails are needed for all training images. Since the camera

system is mounted on the train, the rails do not change their positions relative to the camera system, except the train

is turning. Therefore, the rails stay in the same position for multiple, sometimes even hundreds of consecutive images.

The truth masks were obtained for roughly 5,000 frames of the dataset for different lighting conditions and fasteners to

make the segmentation model more robust regarding different scenarios. These masks were defined manually, but a rail

mask is often identical for hundreds of consecutive images. Additionally, the images and corresponding truth masks

were shifted horizontally by a value between −10 and 10 pixels to make the model more robust to minor variations of

the rail positions. These slight variations typically occur in real data during a turn.

Instead of training a completely new model, a transfer model approach was used to benefit from the already learned

features of the trained AE. Unlike the AEs, the output pixel of the rail segmentation model should always be zero or

one to indicate the position of a rail. Therefore, the binary cross-entropy loss was used in contrast to the AE training.

Furthermore, the Adam-optimization algorithm with a learning rate of 0.001 was applied. After 40 epochs, the train-

ing was stopped since the training and validation loss stopped improving further. Figure 4.27 shows the training and

validation loss.

0 5 10 15 20 25 30 35 40

Epochs

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ea
n
lo
ss

o
f
a
n
ep

o
ch

Training loss

Validation loss

Figure 4.27: This figure shows the training and validation loss of the rail segmentation model during the training. The
dashed and dotted lines show the smoothed training and validation loss.

4.5.3 Rail Damage Detection

For rail damage detection, the reconstruction error image of the RAAE and the rail mask generated by the rail seg-

mentation network are used. Only pixels within this rail segmentation mask can contribute to the rail anomaly value.

Although the RAAE reconstructs rails without damage well, small errors do occur. To keep the number of false positives

low, threshold values are introduced to ignore small reconstruction errors of rails without damages. The first threshold

value θrp marks rail pixels as potentially anomalous. Only if the reconstruction error value of a pixel is higher than

θrp, this pixel is considered anomalous. In Figure 4.25, the image on the right bottom side highlights these pixels. Oth-

64

4.5. RAIL ANOMALIES

erwise, the reconstruction error of this rail pixel is ignored. The second threshold value is referred to as threshold due

to its significant role in the experiments presented in Section 5.1.2. If the summed-up reconstruction error value of all

potentially anomalous pixels is above this threshold, the rails within this image are considered anomalous.

65

Chapter 5

Evaluation, Results, and Comparison

In this chapter, results of Vision-based Anomaly Detection Algorithm for Railroads (VADAR) are presented. The influ-

ence of several parameters of the approach upon performance factors like overall accuracy, recall rate, and false positive

rate is analyzed. Furthermore, the influence of certain characteristics of anomalies on the recall rate is investigated. In

the last section, the performance of the approach described in [35] is compared to VADAR. This work from Gasparini et

al. focuses on a similar use case where their system detects anomalies on rail tracks by using cameras. Therefore, this

seems to be a system suitable for a direct comparison. Additionally, the differences in both approaches are analyzed to

explain some performance differences.

5.1 Evaluation Methods

To test the performance of VADAR, the algorithm’s predictions on the whole labeled part of the Kombi dataset were

analyzed. In Section 3 is a detailed description of the more than 220,000 annotated images, their characteristics, and

annotations. Because only a few images are available in the dataset with damaged rails, it is difficult to grasp the char-

acteristics and features of such damages that the algorithm is sensitive to. Therefore, artificial rail anomalies were added

to normal images to analyze what characteristics of rail damage and its surroundings the anomaly detection algorithm

is sensitive to. In conversations with domain experts and by reviewing state-of-the-art (described in Section 2.5.2), the

main performance metrics analyzed are the accuracy

acc =
TP + TN

TP + FP + TN + FN
, (5.1)

the recall rate

rec =
TP

TP + TN
, (5.2)

and the false positive rate

fpr =
FP

FP + TN
, (5.3)

where TP , FP , TN , and FN refer to the true positives, false positives, true negatives, and false negatives, respectively.

Analyzing the recall rate of different types of anomalies separately allows a better understanding of what characteristics

67

CHAPTER 5. EVALUATION, RESULTS, AND COMPARISON

of anomalies VADAR is sensitive to. For anomalies on the trackbed, the areas of their bounding boxes in pixels were

used to estimate the sizes of the according anomalies. Therefore, the influence of the size of anomalies on the recall

rate was analyzed. The replication of rail damages enables a more detailed analysis. Since the proposed replication of

rail damages described in Section 3.2.1 gives complete control over the size and position of these damages, the impact

of damage size and background brightness on the recall rate was analyzed. It should be noted that one pixel in an

image of the Kombi dataset corresponds with a size of roughly 2 mm2 as already mentioned in Chapter 3. The following

Sections present the results of the trackbed and rail anomaly detection algorithms. Besides a performance analysis of the

proposed method, results obtained from only one Autoencoder (AE) are discussed as well to demonstrate the advantages

of utilizing the combination of Trackbed Anomaly Autoencoder (TAAE), Infrastructure Autoencoder (IAE), and Rail

Anomaly Autoencoder (RAAE). Furthermore, results are presented for multiple different parameters (e.g., thresholds)

to demonstrate how these parameters influence the performance metrics. For evaluation, an NVIDIA A100 40GB [138]

Graphics Processing Unit (GPU) was used.

(0.95, 0.05) (0.95, 0.075) (0.96, 0.075) (0.96, 0.100) (0.97, 0.125)
(q, θmin)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
ca
ll
ra
te
s

animal
bottle
can
other
vegetation

two AEs one AE

(0.95, 0.05) (0.95, 0.075) (0.96, 0.075) (0.96, 0.100) (0.97, 0.125)
(q, θmin)

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu
ra
cy

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Fa
lse
po
sit
iv
e
ra
te

Accuracy
False postitive rate

Figure 5.1: The upper plot shows the recall rates for different classes for five different threshold parameters, q, and θmin,
of the trackbed anomaly detection approach. The lower figure visualizes the achieved accuracy and false positive rate
for these five threshold values. Furthermore, both plots also show the achieved results when only one AE and, therefore,
no infrastructure detection is used.

5.1.1 Trackbed Anomaly Detection

Figure 5.1 shows the recall rates for each class of anomalies on the trackbed and the according accuracy and false

positive rate for different threshold parameters q and θmin, where q is the quantile and θmin defines a minimum value

68

5.1. EVALUATION METHODS

(q, θmin)

(0.95, 0.075)
(0.955, 0.075)

(0.96, 0.100)
(0.965, 0.100)

(0.97, 0.125)
σmin

800
1000

1200
1400

1600
Ac
cu
ra
cy

0.75

0.80

0.85

0.90

0.95

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

(a) Achieved overall accuracy.

(q,
θmin

)

(0.95, 0.075)
(0.955, 0.075)

(0.96, 0.100)
(0.965, 0.100)

(0.97, 0.125)
σ
min

800
1000

1200
1400

1600

False
positive

rate

0.05

0.10

0.15

0.20

0.25

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

(b) Achieved false positive rate.

Figure 5.2: While the left figure shows the achieved overall accuracy, the right figure visualizes the false positive rate
for various parameter settings. The black spheres represent the measured recall rates in experiments for the threshold
parameters. Other points on the surfaces do not correspond with measurements but are colored for visualization pur-
poses.

for the threshold θ as described in Equation 4.8. For better illustration, the size threshold σmin was fixed to 1,200 pixels

for these five experiments. The dotted data points represent the achieved results without infrastructure detection.

Although the recall rates are slightly better without the infrastructure detection, the achieved overall accuracy and

false positive rate are significantly worse. Since infrastructure detection aims to lower the number of false positives by

ignoring regions that most likely contain infrastructure elements and no anomaly, a substantially lower false positive

rate and higher accuracy are expected. As a negative side effect, the recall rate might also be lower when certain

anomalies are falsely identified as infrastructure elements and ignored. However, the drop in recall rate seems to be

small compared to an achieved drop in false positive rate, especially for the higher threshold settings. For the experiment

(q, θmin) = (0.97, 0.125), the false positive rate was reduced by a factor of four, while the recall rates for the various

classes were only slightly reduced.

Figure 5.2 shows the dependencies of the overall accuracy and false positive rate on the threshold parameters (q, θmin)

and the size threshold σmin. The higher the size threshold or threshold parameters, the higher the overall accuracy and

the lower the resulting false positive rate. Simultaneously, the recall rates for anomalies decrease with higher threshold

values, as depicted in Figure 5.3. Figures 5.2 and 5.3 visualize the trade-off between the achievable false positive rate and

the anomaly recall rates. Although the recall rates for different anomaly classes vary, the dependencies on the parameters

show the same trend. This trade-off needs to be considered for a specific application. Interestingly, the recall rates for

anomaly classes like animals and cans are significantly higher than for other anomalies like vegetation. There seem to

be particular characteristics about animals and cans the algorithm is more sensitive to. One significant characteristic of

anomalies for the anomaly detector is the size of anomalies. Figure 5.4 visualizes how the minimum object size in pixels,

the threshold parameters q and θmin, and the size threshold σmin influence the recall rate of trackbed anomalies. For

this analysis, all trackbed anomalies except vegetation were considered. Images with vegetation were ignored because

there are many instances where small plants cover large parts but not all of the trackbed. Since such plants are separate

from each other, the bounding boxes are not suitable as a size estimation for the individual plants. For all σmin, the recall

rate for trackbed anomalies rises with the object size. For σmin values up to 1,200 pixels depicted in Figures 5.4a to 5.4c,

there are some parameter settings where all objects larger than 10,000 pixels are successfully detected. For σmin = 800,

69

CHAPTER 5. EVALUATION, RESULTS, AND COMPARISON

(q,
θmin

)

(0.95, 0.075)
(0.955, 0.075)

(0.96, 0.100)
(0.965, 0.100)

(0.97, 0.125)
σ
min

800
1000

1200
1400

1600

Recall rate
(anim

als)

0.4

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

(a) Recall rate for animals.

(q,
θmin

)

(0.95, 0.075)
(0.955, 0.075)

(0.96, 0.100)
(0.965, 0.100)

(0.97, 0.125)
σ
min

800
1000

1200
1400

1600

Recall rate
(bottles)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.3

0.4

0.5

0.6

0.7

(b) Recall rates for bottles.

(q,
θmin

)

(0.95, 0.075)
(0.955, 0.075)

(0.96, 0.100)
(0.965, 0.100)

(0.97, 0.125)
σ
min

800
1000

1200
1400

1600

Recall rate
(cans)

0.4

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

(c) Recall rates for cans.

(q,
θmin

)

(0.95, 0.075)
(0.955, 0.075)

(0.96, 0.100)
(0.965, 0.100)

(0.97, 0.125)
σ
min

800
1000

1200
1400

1600

Recall rate
(others)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2

0.3

0.4

0.5

0.6

0.7

(d) Recall rates for others.

(q,
θmin

)

(0.95, 0.075)
(0.955, 0.075)

(0.96, 0.100)
(0.965, 0.100)

(0.97, 0.125)
σ
min

800
1000

1200
1400

1600

Recall rate
(vegetation)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2

0.3

0.4

0.5

0.6

0.7

(e) Recall rates for vegetation.

Figure 5.3: These five 3D plots show the dependencies of the recall rates for different trackbed anomaly classes on the
size threshold σmin and the threshold parameters (q, θmin). The black spheres represent the measured recall rates for
experiments with the according threshold parameters. Other points on the surfaces do not correspond with measure-
ments but are colored for visualization purposes.

all tested q and θmin pairs led to a recall rate of 100% for objects larger than 10,000 pixels. It should be noted that 10,000

pixels correspond with roughly 20,000 mm2. By raising σmin to 1,000, the only q and θmin pair leading to a recall rate

for objects larger than 10,000 pixels lower than 100% is (q, θmin) = (0.97, 0.125). Setting σmin to 1,200 leads to a 100%

70

5.1. EVALUATION METHODS

(q, θmin)

(0.95, 0.075)
(0.955, 0.075)

(0.96, 0.100)
(0.965, 0.100)

(0.97, 0.125)

Mini
mum

Obje
ct siz

e in p
ixels

5000
6000

7000
8000

9000
10000

Re
ca
ll
ra
te

(σ
m

in
=

80
0)

0.6

0.7

0.8

0.9

1.0

0.8

0.9

1.0

(a) Recall rates for the size threshold σmin = 800 pixel.

(q, θmin)

(0.95, 0.075)
(0.955, 0.075)

(0.96, 0.100)
(0.965, 0.100)

(0.97, 0.125)

Mini
mum

Obje
ct siz

e in p
ixels

5000
6000

7000
8000

9000
10000

Re
ca
ll
ra
te

(σ
m

in
=

1,
00
0)

0.5

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

(b) Recall rates for the size threshold σmin = 1, 000 pixel.

(q, θmin)

(0.95, 0.075)
(0.955, 0.075)

(0.96, 0.100)
(0.965, 0.100)

(0.97, 0.125)

Mini
mum

Obje
ct siz

e in p
ixels

5000
6000

7000
8000

9000
10000

Re
ca
ll
ra
te

(σ
m

in
=

1,
20
0)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

(c) Recall rates for the size threshold σmin = 1, 200 pixel.

(q, θmin)

(0.95, 0.075)
(0.955, 0.075)

(0.96, 0.100)
(0.965, 0.100)

(0.97, 0.125)

Mini
mum

Obje
ct siz

e in p
ixels

5000
6000

7000
8000

9000
10000

Re
ca
ll
ra
te

(σ
m

in
=

1,
40
0)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.4

0.5

0.6

0.7

0.8

(d) Recall rates for the size threshold σmin = 1, 400 pixel.

(q, θmin)

(0.95, 0.075)
(0.955, 0.075)

(0.96, 0.100)
(0.965, 0.100)

(0.97, 0.125)

Mini
mum

Obje
ct siz

e in p
ixels

5000
6000

7000
8000

9000
10000

Re
ca
ll
ra
te

(σ
m

in
=

1,
60
0)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3

0.4

0.5

0.6

0.7

0.8

(e) Recall rates for the size threshold σmin = 1, 600 pixel.

Figure 5.4: These six 3D plots show the dependencies of the recall rates for different minimum object sizes on the size
threshold σmin and the threshold parameters (q, θmin). The pixels within a bounding box are used to estimate the object
size. The black spheres represent the measured recall rates for experiments with the according threshold parameters.
Other points on the surfaces do not correspond with measurements but are colored for visualization purposes.

recall rate of the largest objects for the two parameter pairs (0.95, 0.075) and (0.955, 0.75). Furthermore, VADAR can

detect anomalies on the trackbed with bounding boxes larger than 5,000 pixels, with a recall rate of over 51% and a false

positive rate of 4.8%. This is achieved for a σmin of 1,200 and (q, θmin) = (0.965, 0.100).

71

CHAPTER 5. EVALUATION, RESULTS, AND COMPARISON

(1.0/12) (1.8/35) (4.0/52) (9.0/65) (20.0/100)
(Threshold-RAAE/Threshold-TAAE)

0.0

0.2

0.4

0.6

0.8

1.0
Re
ca
ll
ra
te

Recall rate RAAE
Recall rate TAAE

(1.0/12) (1.8/35) (4.0/52) (9.0/65) (20.0/100)
(Threshold-RAAE/Threshold-TAAE)

0.85

0.88

0.91

0.94

0.97

1.00

Ac
cu
ra
cy

0.00

0.03

0.06

0.09

0.12

0.15

Fa
lse
po
sit
iv
e
ra
te

Accuracy RAAE
Accuracy TAAE
False positive rate RAAE
False positive rate TAAE

Figure 5.5: The upper plot shows the recall rates for rail damages within the labeled part of the Kombi dataset. Results
are shown for the RAAE and TAAE. The lower plot visualizes the according accuracy and false positive rate, again, for
both AEs.

Figure 3.3 shows the number of objects of trackbed anomaly classes with bounding boxes of different sizes. Notably, 15

out of 19 animals have an according bounding box larger than 10,000 pixels. This influences the recall rate and explains

why the recall rate is higher than for the other trackbed anomaly classes. One reason for the higher recall rates of cans

might be the unusually high brightness differences in the background caused by light reflections on the metal cans. On

the other hand, one reason for the lower recall rate of vegetation could be the inaccurate size estimation based on the

bounding boxes. Most annotated vegetation is different kinds of grass that might only fill a small part of the according

bounding box. Since there is a positive correlation between the recall rate of trackbed anomalies and their size, this

might negatively influence the recall rate of thin and sparse vegetation. Additionally, many vegetation instances appear

to have similar brightness levels as the ballast in the background. It should be noted that the parameters q and θmin

determine the threshold value for the pixel reconstruction error. Therefore, they control how sensitive the trackbed

anomaly detection is to brightness differences between the anomalies and the background. Since reconstruction error

pixels are only considered anomalous if their error value is larger than the threshold, the trackbed anomaly detection

struggles with anomalies with smaller brightness differences.

5.1.2 Rail Anomaly Detection

This section presents experiments conducted to demonstrate the performance of the rail anomaly detection of VADAR.

Figure 5.5 shows the recall rates, false positive rates, and accuracies for five different threshold values. Those metrics

72

5.1. EVALUATION METHODS

are plotted for two different AEs, specifically the RAAE and TAAE. To achieve the same recall rates with the TAAE, the

threshold values were increased. This is necessary because the overall reconstruction error of the TAAE is significantly

size in pixels
0

100
200

300
400

th
re
sh
ol
d

1
5

10

15

20

re
ca
ll
ra
te

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Recall rate for different rail damage sizes and several threshold
values.

minimum size in pixels
0

100
200

300
400

thr
esh

old

1
5

10

15

20

re
ca
ll
ra
te

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0

0.2

0.4

0.6

0.8

1.0

(b) Recall rate for differentminimum rail damage sizes and several
threshold values.

Figure 5.6: Figure (a) shows the achieved recall rate for different sizes of damages at various threshold values, and
Figure (b) visualizes the recall rate for givenminimal damage sizes. The recall rates increase with the size of the damages.
Simultaneously, the lower the threshold value, the higher the recall rate.

0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4

Figure 5.7: The images in the top row show indentations on different images of rails, and the second-row images are
close-up versions of the same damages. Third-row images display the according patch of the reconstruction error
images. The damaged rail displayed on the left-most column is a real image from the Kombi dataset, while the other
four damages are replicated versions of this indentation.

larger than that of the RAAE. The accuracy and false positive rate plot in Figure 5.5 shows the significant performance

73

CHAPTER 5. EVALUATION, RESULTS, AND COMPARISON

differences between the two AEs for this specific task. While the RAAE and the TAAE achieve almost identical recall

rates of rail damages, the RAAE outperforms the TAAE for every setting in accuracy and false positive rate. The most

significant performance differences can be observed for smaller threshold values, which correspond with higher recall

rates. The Kombi dataset’s labeled part only includes a low number of rail damages. A higher number of damages of

different sizes, with various surroundings and at multiple positions on the rail, allow amore detailed analysis. Therefore,

some labeled rail damages were extracted, modified, and inserted on other images at different positions on the rails. By

utilizing an AE with a high dimensional bottleneck, the inserted damages were adapted to the new surroundings of the

image. A more detailed description of this synthetic image generation is given in Section 3.2.1.

0.2 0.4 0.6 0.2 0.4 0.1 0.2 0.2 0.4 0.2 0.4

Figure 5.8: The images in the top row show breakouts on different images of rails, and the second-row images are close-
up versions of the same damages. Third-row images display the according patch of the reconstruction error images. The
damaged rail displayed on the left-most column is a real image from the Kombi dataset, while the other four damages
are replicated versions of this breakout.

Experiments with Synthetic Data

Figure 5.6 shows the influence of the damage size and the chosen threshold value on the recall rate of the proposed rail

damage detection method. Larger damages correlate with higher recall rates. Additionally, the influence of the damage

size on the recall rate seems to be the largest for damages of a size up to 100 pixels. The synthetic anomaly instances

can be grouped into two sorts of damages: indentations and breakouts. While indentations are typically small-scale

damages, breakouts are usually larger rail damages. Figures 5.7 and 5.8 show examples of replicated rail damages, and

a patch of the resulting reconstruction error image the anomaly detection is sensitive to. In both Figures, the left-most

column shows images of the original image with a damaged rail. The second-row images show close-up versions of the

damages shown in the first row. Images in the third row show the reconstruction error image and highlight the pixels the

74

5.1. EVALUATION METHODS

anomaly detection algorithm considers to be anomalous. For small damages like indentations shown in Figure 5.7, the

AE-based seems to detect the majority of pixels of the rail damage and ignores all surrounding healthy pixels. In images

of rails with larger-scale damages like breakouts shown in Figure 5.8, some parts of the damage are not fully detected.

One reason for this is that some pixel error values are below the pixel threshold and, therefore, are not considered to

be anomalous. Therefore, by lowering the pixel threshold, the number of anomalous pixels VADAR considers rises.

Although this would increase the recall rate, this would also increase the number of false positives.

size in pixels
0

100
200

300
400

th
re
sh
ol
d

1
5

10

15

20

re
ca
ll
ra
te

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Recall rate for different breakout sizes and several threshold
values.

minimum size in pixels
0

100
200

300
400

thr
esh

old

1
5

10

15

20

re
ca
ll
ra
te

0.4

0.5

0.6

0.7

0.8

0.9

0.0

0.2

0.4

0.6

0.8

1.0

(b) Recall rate for different minimum breakout sizes and several
threshold values.

Figure 5.9: Figure (a) shows the achieved recall rate for different sizes of rail breakouts at various threshold values, and
Figure (b) visualizes the recall rate for given minimal damage sizes. Clearly, the recall rate increase with the size of the
damages. Simultaneously, the lower the threshold value, the higher the recall rate.

size in pixels
020406080100

th
re
sh
ol
d

1
5

10

15

20

re
ca
ll
ra
te

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0

(a) Recall rate for different indentation sizes and several threshold
values.

minimum size in pixels
0

20
40

60
80

100

thr
esh

old

1
5

10

15

20

re
ca
ll
ra
te

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0

(b) Recall rate for differentminimum indentation sizes and several
threshold values.

Figure 5.10: Figure (a) shows the achieved recall rate for different sizes of indentations on rails at various threshold
values, and Figure (b) visualizes the recall rate for given minimal damage sizes. Clearly, the recall rate increases with
the size of the damages. Simultaneously, the lower the threshold value, the higher the recall rate.

Additionally, in some cases, the rail segmentation does not cover the entire head of the rail when rail damage covers

a large area. Furthermore, in some instances, a few pixels corresponding to regions without damage can be treated as

anomalous pixels. This can be seen in the reconstruction error image of the original breakout. Despite these inaccura-

cies in the pixel-level localization of large damages, all the shown damages are still successfully detected. Figures 5.9

75

CHAPTER 5. EVALUATION, RESULTS, AND COMPARISON

size
in pixe

ls

0
100

200
300

400
background brightness in %

30
40

50
60

70
80

90
100

reca
ll
ra
te

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0

(a) Recall rate for different rail damage sizes and several back-
ground brightness values.

minim
um

size
in pixe

ls

0
100

200
300

400
background brightness in %

30
40

50
60

70
80

90
100

reca
ll
ra
te

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0

0.2

0.4

0.6

0.8

1.0

(b) Recall rate for differentminimum rail damage sizes and several
background brightness values.

Figure 5.11: Figure (a) shows the achieved recall rate for different sizes of indentations on rails at positions with various
background brightness values, and Figure (b) visualizes the recall rate for given minimal damage sizes. The recall rate
increases with the size of the damages. Simultaneously, the brighter the background, the higher the recall rate.

and 5.10 visualize the influence of the damage size on the recall rate. As expected, there is a positive correlation be-

tween the size of damages and their recall rates. VADAR can detect rail damages larger than 50 pixels, corresponding

with roughly 100 mm2, with a recall rate of more than 51% while maintaining a false positive rate of roughly 4.2%. By

lowering the threshold value, the recall rate increases even further at the cost of a higher false positive rate. Higher

false positive rates negatively impact the practicality of VADAR because of an increased manual workload of reviewing

VADAR’s decisions to ignore false positives. However, other factors, like the brightness of the background, also impact

the recall rate. Therefore, the mean brightness values of the position where the synthetic damages are inserted were also

considered. Figure 5.11 shows how this background brightness influences the recall rate for various damage sizes. For

0 5 10 15 20
Threshold

10−4

10−3

10−2

10−1

D
et
ec
ti
on

ra
te

Surrounding normal rail pixels of damage

Other normal rail pixels

All normal rail pixels

0 20 40 60 80 100
Proportion of total reconstruction error in %

10−4

10−3

10−2

10−1

100

R
el
at
iv
e
nu
m
b
er

of
im

ag
es

Surrounding normal rail pixels of damage

Other normal rail pixels

All normal rail pixels

Figure 5.12: The left figure visualizes the influence of all types of rail pixels, except the actual damage pixels, on the
detection rate. With larger threshold values, the detection rate drops significantly. At higher threshold values, the
surrounding normal rail pixels of damage seem to lead to higher detection rates than other normal pixels. The right
figure shows the relative number of images whose different regions of normal rail pixels contribute at least a certain
proportion to the total reconstruction error. In only roughly 0.5% of images with synthetic damages, the surrounding
pixels of damages contribute more than 20% of the total reconstruction error.

76

5.2. COMPARISON WITH STATE OF THE ART

this experiment, the threshold value was fixed to a value of 10. There is a positive correlation between the background

brightness and the recall rate. One likely reason for this is that brighter regions allow for larger brightness differences

between the background and an inserted damage. This is the case because all observed damages in the Kombi dataset

are significantly darker their its surrounding region on the rail. The larger the brightness difference between regions in

the input image and its corresponding regions in the reconstructed image, the larger the chance of detection. Within

the synthetic damage images, only a handful of images had a background brightness level lower than 30% and are not

represented in Figure 5.11. For smaller damages, this correlation between the background brightness and the recall rate

is stronger than for larger damages. Probably this is the case because the smaller the damage, the bigger the impact

of the absolute reconstruction error on the anomaly detection decision. Larger damages are more likely to be detected

because there is a larger number of corresponding error pixels. As long as the individual error pixel values are larger

than the pixel threshold, they contribute to the reconstruction error sum. Since for smaller damages, the number of

detectable error pixels is significantly smaller, the individual error pixel values seem to have a bigger impact on the

recall rate.

The proposed rail damage detection method is sensitive to the summed-up reconstruction error of the image regions

covered by the rail segmentation output. For the synthetic rail damages, a more detailed analysis of which pixels the

anomaly detector considers to be anomalous and how much these pixels contribute to this summed-up reconstruction

error is important. The surrounding pixels of synthetic damages are of special interest. If the anomaly detector is sen-

sitive to the surrounding pixels rather than the pixels of the damage, this might indicate low-quality synthetic damage.

Figure 5.12 shows the influence of normal pixels on the detection rate and the contribution of the normal pixel’s recon-

struction error to the total summed-up reconstruction error. The pixels represented by the solid blue line in Figure 5.12

refers to a rectangular region surrounding rail damage, excluding the pixels of the damage. The rectangle’s border is

expanded by five pixels in each direction to include the transition from the damage to the healthy rail. The left plot

in Figure 5.12 shows how often the summed-up reconstruction error of normal rail pixels is larger than the threshold

value, leading to damage detection. The right plot in Figure 5.12 visualizes the relative number of images where different

regions of normal rail pixels contribute at least a certain percentage of the total reconstruction error. Overall, normal

rail pixels other than surrounding rail pixels of damages dominate the total contribution to the reconstruction error.

While in only roughly 0.5% of images with synthetic damages, the surrounding normal rail pixels of damages contribute

more than 20% of the total reconstruction error, in less than 6% of images, all normal rail pixels contribute at least the

same amount. Interestingly, the total reconstruction error stems exclusively from normal rail pixels in roughly 1.5% of

all images with synthetic rail damages. Therefore, these images’ artificial rail damage pixels do not contribute to the

reconstruction error. Either the brightness difference between the damage and the rail head is too small, or the rail

segmentation mask does not include the artificial rail damage pixels.

5.2 Comparison with State of the Art

In [35], Gasparini et al. propose an anomaly detection approach for inspecting railroad systems (see Section 2.5.2).

Their system also analyzes the reconstruction error of an AE. However, their approach utilizes a binary classification

network to decide whether the absolute and gradient error images indicate an anomalous data point. An overview

of this anomaly detection method is shown in Figure 2.8 and is described in more detail in Section 2.5.2 and in [35].

The results Gasparini et al. achieved on their Vesuvio dataset are summarized in Section 5.2.1. Since this dataset is not

77

CHAPTER 5. EVALUATION, RESULTS, AND COMPARISON

publicly available, their models were also implemented and trained on the Kombi dataset. This way, a fair comparison

between the performances of the two approaches on the Kombi dataset can be presented. A slightly different resolution

was chosen to apply their approach to the Kombi dataset. In [35], each image of the Vesuvio dataset was cropped to a

square image with a resolution of 192× 192. However, the crops of the images from the Kombi dataset that still contain

the rails and crossties are rectangular and have a resolution of 768 × 1024. A maximum pooling layer was applied to

adapt the resolution to 192 × 256 without distorting the images. The first stage of this anomaly detection approach

is an AE. Tables 5.1 and 5.2 show the encoder and decoder architectures. The absolute difference between the original

and the reconstructed image and their gradient differences are used as inputs for the last stage of the anomaly detection

algorithm. In Table 5.3, the architecture of this binary classification network is shown.

Table 5.1: All layers are two-dimensional convolutional layers implemented in PyTorch. Each convolutional layer is
followed by a leaky Rectified Linear Unit (ReLU) activation function.

Encoder Architecture

Layer Input Channel Output Channel Kernel Size Stride Padding Output Height Output Width

LAY 1 1 16 3 1 1 192 256

LAY 2 16 32 3 2 1 96 128

LAY 3 32 64 3 2 1 48 64

LAY 4 64 128 3 2 1 24 32

LAY 5 128 256 3 2 1 12 16

LAY 6 256 512 3 2 1 6 8

LAY 7 512 1024 3 2 1 3 4

LAY 8 1024 1024 3 1 1 3 4

LAY 9 1024 1024 3 1 1 3 4

Table 5.2: All layers are two-dimensional transposed convolutional layers implemented in PyTorch. Each convolutional
layer, except the last one, is followed by a leaky rectangular linear unit activation function. A sigmoid activation function
is applied after the last layer. The decoder network is symmetric to the encoder network regarding layer structure.

Decoder Architecture

Layer Input Channel Output Channel Kernel Size Stride Padding Output Height Output Width

LAY 1 1024 1024 3 1 1 3 4

LAY 2 1024 1024 3 1 1 3 4

LAY 3 1024 512 3 2 1 6 8

LAY 4 512 256 3 2 1 12 16

LAY 5 256 128 3 2 1 24 32

LAY 6 128 64 3 2 1 48 64

LAY 7 64 32 3 2 1 96 128

LAY 8 32 16 3 2 1 192 256

LAY 9 16 1 3 1 1 192 256

78

5.2. COMPARISON WITH STATE OF THE ART

Table 5.3: The layers Conv 1 to Conv 8 are two-dimensional convolutional layers, and layers Linear 1 and Linear 2
represent fully connected layers. Each of these layers is followed by a rectangular linear unit activation function except
the last one, which is followed by a sigmoid activation function.

Binary Classifier Architecture

Layer Input Channel Output Channel Kernel Size Stride Padding Output Height Output Width

Conv 1 2 8 3 1 1 192 256

Conv 2 8 16 3 2 1 96 128

Conv 3 16 32 3 2 1 48 64

Conv 4 32 64 3 2 1 24 32

Conv 5 64 128 3 2 1 12 16

Conv 6 128 256 3 2 1 6 8

Conv 7 256 256 3 2 1 3 4

Conv 8 256 256 3 1 1 3 4

Flatten - - - - - - -

Linear 1 3072 48 - - - - -

Linear 2 48 2 - - - - -

5.2.1 Results

In [127], Gasparini et al. executed all of their experiments on the Vesuvio dataset. With an RGB camera setup, they

achieved an overall accuracy of 81.1%, a precision of 97.9%, a recall rate for anomalies of 71.9%, and a resulting F1-score

of 82.5%. Because this dataset is not publicly available, their approach was implemented and tested on the Kombi dataset

to compare the results. Figure 5.13 shows the recall rates for various anomalies and the recall rates for different object

sizes.

The approach described in [35] was developed for the Vesuvio dataset. The proposed approach consisting of an AE and a

binary classification network was implemented, trained, and tested with the Kombi dataset to compare the performance

to the proposed approach of this thesis. However, some significant differences between these two datasets should be

noted. The anomalies in the Vesuvio dataset are large objects placed on the trackbed. Construction tools and objects

common in construction sites near railroad tracks were placed on the trackbed. Although in [35], it is not explicitly

mentioned how many anomalous frames are within this dataset, at least the percentage of true positives, false positives,

true negatives, and false negatives of the total number of outcomes can be calculated from their presented results.

Specifically, from Equations (5.1) to (5.3), the ratio between normal and anomalous images can be calculated. It turns

out that roughly 53% of the dataset contains anomalous images. Since this dataset seems to have an almost equal

number of normal and anomalous images, a binary classification approach seems reasonable and leads to good results.

However, the Kombi dataset is unbalanced since there are far more normal than anomalous images. Therefore, a direct

comparison of precision for the two different datasets is unreasonable. Furthermore, the Kombi dataset contains images

that include additional infrastructure elements like switches that are not considered anomalous. This aspect of railroad

tracks was not considered in [35, 127] and might not be represented in the Vesuvio dataset.

Figure 5.13 shows a comparison of the recall rates of various anomaly classes and object sizes between the state-of-the-

art approach by Gasparini et al. and two settings of the VADAR method are shown. The parameter setting for VADAR

79

CHAPTER 5. EVALUATION, RESULTS, AND COMPARISON

an
im
al

bo
ttle can oth

er

veg
eta
tio
n

Anomaly class

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll
ra
te

VADAR (95.0%)
VADAR (83.5%)
Gasparini (73.5%)

500
0

600
0

700
0

800
0

900
0

100
00

Minimum object size

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca
ll
ra
te

VADAR (95.0%)
VADAR (83.5%)
Gasparini (73.5%)

Figure 5.13: The left and right figures show the recall rates for different anomaly classes and object sizes for the state-
of-the-art approach by Gasparini et al. and two settings of the VADAR method, respectively. The percentages within
the brackets refer to the achieved accuracy of the methods and parameter settings. The recall rates vary for different
anomaly classes and continuously increase with the object size.

that leads to an overall accuracy of 95.0% achieves better or equal recall rates for everyminimum object size and anomaly

class but vegetation. This performance difference is probably due to the supervised approach that the Gasparini method

is based on. Since most anomaly instances belong to the class vegetation (see Table 3.2), the classification network

is best at detecting these anomalies. Simultaneously, this approach performs worst with the instances of the animal

class because this is the anomaly class with the lowest number of instances within the Kombi dataset. By changing

the threshold parameters of VADAR, the overall accuracy decreases to 83.5%, which is still significantly higher than

the accuracy of the state-of-the-art approach of 73.5%, and the recall rates outperform the state-of-the-art approach for

every anomaly class and object size.

80

Chapter 6

Conclusion

Maintenance of the rails and the trackbed of railroad systems is necessary to ensure the safety and reliability of railroad

tracks. Nowadays, rails and the trackbed are inspected thoroughly but infrequently by slow and expensive measurement

vehicles or continuously but superficially by trained personnel. Therefore, the inspection of rail tracks is an expensive

task. Due to the high costs, rail track measurement vehicles check some rail tracks only twice a year. Installing a cost-

effective camera and computing system on regular trains Vision-based Anomaly Detection Algorithm for Railroads

(VADAR) could pose a cost-efficient opportunity for continuous automated inspection of rail tracks. An automated

system for inspecting rail tracks takes on a key challenge and could potentially enable predictive maintenance. Rail

damages are of special interest to maintenance teams because appropriate actions can lead to increased reliability of the

railroad system. Therefore, detecting even small damages, and scheduling maintenance tasks accordingly, can prevent

such damages from getting more severe. This can further increase the safety and reliability of rail tracks. Besides foreign

objects like bottles and dead animals on the trackbed, heavy vegetation can also lead to problems.

The proposed anomaly detection algorithmVADAR analyzes gray-scale images taken from a birds-eye viewmonochrome

cameramounted on the bottom of a regular train. The images taken from this perspective, combinedwith a system based

on three Autoencoders (AEs), allow for detecting foreign objects on the trackbed and even smaller rail damages. Since

this camera system and additional hardware for computations and data transmission can be installed on regular pas-

senger and freight trains, this vision-based anomaly detection system poses a comparably cost-effective solution for

railroad inspection. Furthermore, this system enables inspecting rail tracks on every train ride, which is not feasible

with specialized maintenance trains due to high costs.

Varying lighting conditions, several different crosstie materials, additional infrastructure elements like switches, and the

random nature of ballast on the trackbed pose challenges to an anomaly detection algorithm. In the course of this the-

sis, various AE architectures were tested. Additionally, two Denoising Autoencoders (DAEs) with different architecture

and noise models and a Variational Autoencoder (VAE) were implemented and analyzed. While neither the summed-up

reconstruction error nor the latent space analysis by t-distributed Stochastic Neighbor Embedding (t-SNE) proved to

be suitable indicators for anomalies, the Rail Anomaly Autoencoders (RAAEs) performed well on the reconstruction

of rails, and the Trackbed Anomaly Autoencoder (TAAE) proofed to be useful for the detection of anomalies on the

trackbed. A rail segmentation network helps to separate rails’ reconstruction errors from the trackbed’s reconstruction

81

CHAPTER 6. CONCLUSION

errors. Therefore, the rail segmentation enables an independent analysis of the trackbed and rails for anomalies. Indi-

cators for anomalies on the trackbed are large coherent areas within the thresholded reconstruction error image. An

additional One-Class Classifier (OCC) decides if the input image patch leading to this large coherent area includes an

anomaly or only contains ballast. While the minimum size of detectable anomalies on the trackbed correlates with the

size of separate ballast stones, this limitation does not apply to the rails due to its independent analysis. Since the re-

constructions of rails without damages show only minor reconstruction errors, the summed-up reconstruction error is a

reliable indicator for rail anomalies. Instead of using only one AE, the performance of the anomaly detection algorithm

was improved by introducing two additional AEs. The Infrastructure Autoencoder (IAE) was exclusively trained with

images that include additional infrastructure elements to reduce the reconstruction errors of such elements. Combined

with the TAAE, which was trained with image containing no annotationss (NOA images) only, the differences in the re-

construction error images indicate regions belonging to such infrastructure elements and are ignored. While the RAAE

and TAAE were trained exclusively with images without any annotations, the RAAE led to significant performance

improvements on the rail damage detection task.

Threshold parameters of the trackbed anomaly detection allow for a tradeoff between high recall rates of anomalies

and low false positive rates. Trackbed anomaly detection experiments for accuracy values between roughly 75% and

99% were conducted. While there is a positive correlation between the size of trackbed anomalies and their recall rate,

other characteristics of anomalies also influence the recall rate. Experiments showed that for several threshold settings,

the recall rate for trackbed anomalies with bounding boxes covering more than 1.27% of the input image, which equals

10,000 pixels or roughly 20,000 mm2, exceeds 80% while maintaining an accuracy of more than 95%. Dead animals

and cans are detected more reliably than vegetation and anomalies annotated as other objects. Most likely, VADAR

struggles with vegetation more than with animals or cans because of the sparsity of some vegetation and the low

brightness difference to the background. Generally, VADAR is sensitive to brightness differences between an anomaly

and the background. While achieving an accuracy of more than 95%, trackbed anomalies of particular interest, like dead

animals, were detected with a recall rate of more than 73%, and all objects with a recall rate of more than 51%. False

positive rates larger than 5% are considered less interesting for this specific application because it would require too

much human effort to filter out the high number of false positives. VADAR detects anomalies on the trackbed with a

bounding box size larger than 5,000 pixels, corresponding to the size of roughly 10,000 mm2, with a recall rate of more

than 51% while achieving a false positive rate of 4.8%. The main limiting factor for the size of trackbed anomalies is the

size of the ballast stones.

Similar to trackbed anomaly detection, threshold parameters can be used to define a tradeoff between the recall rate of

rail anomalies and the false positive rate. By varying these parameters, the rail anomaly detection achieved accuracies

between roughly 96% and 99.5% and recall rates for annotated rail damages of up to 83%. While achieving a recall rate

of more than 53% for rail damages larger than 50 pixels, VADAR maintained a false positive rate of 4.2%. In contrast to

trackbed anomalies like foreign objects and vegetation, there is only a small number of annotated rail damages in the

labeled section of the Kombi dataset. Some of these real damages were manually cropped to be automatically changed

in size and orientation and replicated on different positions in healthy images. This procedure allows the generation of

thousands of synthetic images containing rail damages of different types, sizes, orientations, and positions. This enabled

a more detailed analysis of the impact specific characteristics of rail damages have upon the recall rate. While larger

82

6.1. OUTLOOK

damages are clearly associated with higher recall rates, damages on brighter sections of rails are also correlated with

higher recall rates. In contrast to trackbed anomaly detection, the minimum size of rail damages VADAR can detect is

mainly limited by the highest tolerable false positive rate and the camera’s resolution.

A comparison of VADAR with a state-of-the-art anomaly detection system for railway inspection shows that VADAR

achieves better results in every analyzed performance metric. While maintaining a 10pp higher accuracy VADAR simul-

taneously detects every investigated class of anomalywith a higher recall rate than the state-of-the-art algorithm.

6.1 Outlook

In this thesis, VADAR was only applied to the Kombi dataset, which consists of gray-scale images taken from a birds-eye

view perspective. Introducing an RGB instead of a monochrome camera could increase performance. The additional

color information could be exploited to increase the recall rates of anomalies further. Most likely, this would improve

the detection of objects with different colors than the ballast. This could be especially interesting for certain vegetation

types because their RGB representation should be dominated by the green channel, which is unusual for ballast or

other infrastructure elements on the trackbed. Taking control over lighting conditions by introducing different lighting

systems could improve performance. Within the Kombi dataset sequences where the train rides through a tunnel are

very dark. Because of this, most details are not visible, and only small sections of the images are bright enough to allow

anomalies to be detected. Therefore, additional lamps, different lighting systems, or an infrared camera could enable

the detection of anomalies in tunnels or during the night.

The proposed approach could also be adapted to work with images taken from a different perspective. Instead of using

birds-eye view images, a camera could record images from a front-view perspective of the train. This would allow

the images to cover more space around the track and enable the detection of unnoticed anomalies along a rail track,

like heavy vegetation leaning into the structure gauge of a track or signs of vandalism like graffiti. This front-view

perspective would also have the side-effect of different lighting conditions. The whole trackbed, including the areas

on both sides of the rails, would typically have similar brightness levels and should not be overexposed like in many

instances of the Kombi dataset. Furthermore, getting permission from official authorities to mount a camera system

within a train instead of installing it on the outside of a train is less complicated.

While VADAR detects anomalies, a remote analyst still needs to look at the potentially anomalous images and decide

if the anomaly is interesting for maintenance. Although the described experiments aimed at high accuracy and a low

number of false positives, further reducing the number of false positives by an additional algorithm could be beneficial.

Because this algorithm would only analyze the potentially anomalous images reported by VADAR, a remote analyst

could use more powerful computational units. This would enable using algorithms like iterative reconstruction-based

Generative Adversarial Network (GAN) methods that might further reduce the number of false positives. Furthermore,

an analysis of the latent space representation of an AE or a DAE could be used to cluster certain types of anoma-

lies.

83

Bibliography

[1] European Rail Supply Industry Association. “Establishing rail as the backbone of future mobility”. In: 24.5 (2018).

[2] Fresh view on railways. https://www.wko.at/service/aussenwirtschaft/fresh-view.

166-railways.pdf. Accessed: 2023-05-04.

[3] Draft proposal for a European Partnership under Horizon Europe Transforming Europe’s Rail System. https://

rail-research.europa.eu/wp-content/uploads/2020/07/20200705_Partnership_

High-Level-Paper.pdf. Accessed: 2023-05-17.

[4] Rail Infrastructure in Africa Financing Policy Options.https://www.afdb.org/fileadmin/uploads/

afdb/Documents/Events/ATFforum/Rail_Infrastructure_in_Africa_-_Financing_

Policy_Options_-_AfDB.pdf. Accessed: 2023-05-17.

[5] Importance of Railway Intelligent Transportation Systems and Architectural Design Issues of Indian Railway Net-

work Scenario. Vol. 2011 Joint Rail Conference. ASME/IEEE Joint Rail Conference. Mar. 2011, pp. 433–441.

[6] Hua Hu et al. “Effect of integrated multi-modal transit information on modal shift”. In: 13th International IEEE

Conference on Intelligent Transportation Systems. IEEE. 2010, pp. 1753–1757.

[7] Julian Torres de Miranda Pinto et al. “Road-rail intermodal freight transport as a strategy for climate change

mitigation”. In: Environmental development 25 (2018), pp. 100–110.

[8] Mats Andersson. Marginal cost of railway infrastructure wear and tear for freight and passenger trains in Sweden.

2010.

[9] Michael A Rossetti. “Potential impacts of climate change on railroads”. In: The Potential Impacts of Climate Change

on Transportation: Workshop Summary. 2002.

[10] Eralda Nishani and Betim Çiço. “Computer vision approaches based on deep learning and neural networks:

Deep neural networks for video analysis of human pose estimation”. In: 2017 6th Mediterranean Conference on

Embedded Computing (MECO). 2017, pp. 1–4.

[11] Kirtan B. Patel. “A Review: Machine vision and its Applications.” In: IOSR Journal of Electronics and Communi-

cation Engineering 7 (2013), pp. 72–77.

[12] Abdullah Ayub Khan et al. “Machine Learning in Computer Vision: A Review”. In: ICST Transactions on Scalable

Information Systems (Apr. 2021).

[13] Andre Esteva et al. “Deep learning-enabled medical computer vision”. In: npj Digital Medicine 4.1 (Jan. 2021),

p. 5.

[14] Bassem Zohdy et al. “Machine Vision Application on Science and Industry: Machine Vision Trends”. In: (Jan.

2019), pp. 233–254.

85

https://www.wko.at/service/aussenwirtschaft/fresh-view.166-railways.pdf
https://www.wko.at/service/aussenwirtschaft/fresh-view.166-railways.pdf
https://rail-research.europa.eu/wp-content/uploads/2020/07/20200705_Partnership_High-Level-Paper.pdf
https://rail-research.europa.eu/wp-content/uploads/2020/07/20200705_Partnership_High-Level-Paper.pdf
https://rail-research.europa.eu/wp-content/uploads/2020/07/20200705_Partnership_High-Level-Paper.pdf
https://www.afdb.org/fileadmin/uploads/afdb/Documents/Events/ATFforum/Rail_Infrastructure_in_Africa_-_Financing_Policy_Options_-_AfDB.pdf
https://www.afdb.org/fileadmin/uploads/afdb/Documents/Events/ATFforum/Rail_Infrastructure_in_Africa_-_Financing_Policy_Options_-_AfDB.pdf
https://www.afdb.org/fileadmin/uploads/afdb/Documents/Events/ATFforum/Rail_Infrastructure_in_Africa_-_Financing_Policy_Options_-_AfDB.pdf

BIBLIOGRAPHY

[15] AnsamAbdulhussein, Hasanien Kariem, and Alaa Alanssari. “Computer Vision to Improve Security Surveillance

through the Identification of Digital Patterns”. In: May 2020, pp. 1–5.

[16] Lukas Ruff et al. “A Unifying Review of Deep and Shallow Anomaly Detection”. In: CoRR abs/2009.11732 (2020).

[17] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection: A Survey”. In: ACM Comput. Surv.

41.3 (July 2009).

[18] STATISTIK AUSTRIA. “Verkehrsstatistik 2020”. In: (2020).

[19] STATISTIK AUSTRIA. “Verkehrsstatistik 2019”. In: (2019).

[20] STATISTIK AUSTRIA. “Verkehrsstatistik 2018”. In: (2018).

[21] Transport and Housing Bureau. Public Transport Strategy Study. Tech. rep. Government of Hong Kong, 2017.

[22] M Nicolas J Firzli and J Nicola. “Transportation infrastructure and country attractiveness”. In: Revue Analyse

Financière 48 (2013), Q2.

[23] Tomas Lidén. “Railway Infrastructure Maintenance - A Survey of Planning Problems and Conducted Research”.

In: Transportation Research Procedia 10 (2015). 18th Euro Working Group on Transportation, EWGT 2015, 14-16

July 2015, Delft, The Netherlands, pp. 574–583.

[24] EIM-EFRTC-CER Working Group on Market Strategies for Track Maintenance & Renewal. “Report from the

EIM-EFRTC-CER Working Group on Market Strategies for Track Maintenance & Renewal”. In: (2012).

[25] Zdenka Popović et al. “Rail inspection of RCF defects”. In:Metalurgija -Sisak then Zagreb- 52 (Oct. 2013), pp. 537–

540.

[26] Andrew Dow. The railway: British track since 1804. Wharncliffe, 2014.

[27] Guido HANSPACH. “UST 02: Schienenprüfzug der neuen Generation für die europäischen Bahnen”. In: Der

Eisenbahningenieur (Hamburg) 57.1 (2006), pp. 26–28.

[28] HaoyuWang et al. “Study of loaded versus unloadedmeasurements in railway track inspection”. In:Measurement

169 (2021), p. 108556.

[29] Pranav Lad andMansi Pawar. “Evolution of railway track crack detection system”. In: 2016 2nd IEEE International

Symposium on Robotics and Manufacturing Automation (ROMA). 2016, pp. 1–6.

[30] Zdenka Popović, L. Puzavac, and Luka Lazarević. “Rail defects due to rolling contact fatigue”. In: 54 (Apr. 2016),

pp. 17–29.

[31] Maria Molodova et al. “Automatic Detection of Squats in Railway Infrastructure”. In: IEEE Transactions on Intel-

ligent Transportation Systems (Oct. 2014).

[32] Madalina Ciotlaus et al. “Rail-wheel Interaction and Its Influence on Rail and Wheels Wear”. In: Procedia Manu-

facturing 32 (Jan. 2019), pp. 895–900.

[33] Xavier Gibert, Vishal M. Patel, and Rama Chellappa. “Deep Multitask Learning for Railway Track Inspection”.

In: IEEE Transactions on Intelligent Transportation Systems 18.1 (2017), pp. 153–164.

[34] Roger Nyberg et al. “Monitoring Vegetation on Railway Embankments : Supporting Maintenance Decisions”. In:

June 2013.

[35] Riccardo Gasparini et al. “Anomaly Detection for Vision-Based Railway Inspection”. In: EDCC Workshops. 2020.

[36] Jie Yang et al. “Visual Anomaly Detection for Images: A Survey”. In: CoRR abs/2109.13157 (2021).

[37] Ricardo Silva et al. “Machine Vision Systems for Industrial Quality Control Inspections: 15th IFIP WG 5.1 Inter-

national Conference, PLM 2018, Turin, Italy, July 2-4, 2018, Proceedings”. In: July 2018, pp. 631–641.

[38] Vincent Wilmet et al. “A Comparison of Supervised and Unsupervised Deep Learning Methods for Anomaly

Detection in Images”. In: CoRR abs/2107.09204 (2021).

86

BIBLIOGRAPHY

[39] Tri Cao, Jiawen Zhu, and Guansong Pang. Anomaly Detection under Distribution Shift. 2023.

[40] Zhaomin Chen et al. “Autoencoder-based network anomaly detection”. In: 2018 Wireless Telecommunications

Symposium (WTS). 2018, pp. 1–5.

[41] Laurenz Strothmann, Uwe Rascher, and Ribana Roscher. “Detection of Anomalous Grapevine Berries Using

All-Convolutional Autoencoders”. In: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Sym-

posium. 2019, pp. 3701–3704.

[42] Yunpeng Jiang et al. “Research on the Flight Anomaly Detection During Take-off Phase Based on FOQA Data”.

In: 2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS). 2019,

pp. 756–760.

[43] Tharindu Fernando et al. “Deep Learning for Medical Anomaly Detection - A Survey”. In: CoRR abs/2012.02364

(2020).

[44] Sonali B. Wankhede. “Anomaly Detection using Machine Learning Techniques”. In: 2019 IEEE 5th International

Conference for Convergence in Technology (I2CT). 2019, pp. 1–3.

[45] Saeed Khalilian et al. “PCB Defect Detection Using Denoising Convolutional Autoencoders”. In: 2020 Interna-

tional Conference on Machine Vision and Image Processing (MVIP). 2020, pp. 1–5.

[46] PyTorch: Installing previous versions of PyTorch. https://pytorch.org/get-started/previous-

versions/. Accessed: 2022-11-11.

[47] An open source machine learning framework. https://pytorch.org/. Accessed: 2022-11-11.

[48] Guansong Pang et al. “Deep Learning for Anomaly Detection: A Review”. In: CoRR abs/2007.02500 (2020).

[49] Guangxin Lou and Hongzhen Shi. “Face image recognition based on convolutional neural network”. In: China

Communications 17.2 (2020), pp. 117–124.

[50] Divya Arora, Mehak Garg, andMegha Gupta. “Diving deep in Deep Convolutional Neural Network”. In: 2020 2nd

International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). 2020,

pp. 749–751.

[51] S Kaushik, Abhishek Raman, and K.V.S Rajeswara Rao. “Leveraging Computer Vision for Emergency Vehicle

Detection-Implementation and Analysis”. In: 2020 11th International Conference on Computing, Communication

and Networking Technologies (ICCCNT). 2020, pp. 1–6.

[52] Eralda Nishani and Betim Çiço. “Computer vision approaches based on deep learning and neural networks:

Deep neural networks for video analysis of human pose estimation”. In: 2017 6th Mediterranean Conference on

Embedded Computing (MECO). 2017, pp. 1–4.

[53] KC Santosh, Nibaran Das, and Swarnendu Ghosh. “Chapter 2 - Deep learning: a review”. In:Deep LearningModels

for Medical Imaging. Ed. by KC Santosh, Nibaran Das, and Swarnendu Ghosh. Primers in Biomedical Imaging

Devices and Systems. Academic Press, 2022, pp. 29–63.

[54] M.A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

[55] S Agatonovic-Kustrin and R Beresford. “Basic concepts of artificial neural network (ANN) modeling and its ap-

plication in pharmaceutical research”. In: Journal of Pharmaceutical and Biomedical Analysis 22.5 (2000), pp. 717–

727.

[56] Wojciech Samek et al. “Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications”.

In: Proceedings of the IEEE 109.3 (2021), pp. 247–278.

87

https://pytorch.org/get-started/previous-versions/
https://pytorch.org/get-started/previous-versions/
https://pytorch.org/

BIBLIOGRAPHY

[57] John Pomerat, Aviv Segev, and Rituparna Datta. “On Neural Network Activation Functions and Optimizers in

Relation to Polynomial Regression”. In: 2019 IEEE International Conference on Big Data (Big Data). 2019, pp. 6183–

6185.

[58] Clara Catanese et al. “A Survey of Neural Network Applications in Fiber Nonlinearity Mitigation”. In: 2019 21st

International Conference on Transparent Optical Networks (ICTON). 2019, pp. 1–4.

[59] David Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In: International Journal of Computer

Vision 60 (Nov. 2004), pp. 91–.

[60] John Canny. “A Computational Approach to Edge Detection”. In: IEEE Transactions on Pattern Analysis and

Machine Intelligence PAMI-8.6 (1986), pp. 679–698.

[61] L. Seed et al. “A generalised convolver for computer vision”. In: Conference Record of the Thirty-First Asilomar

Conference on Signals, Systems and Computers (Cat. No.97CB36136). Vol. 2. 1997, 1522–1526 vol.2.

[62] Nilakshi Devi and Bhogeswar Borah. “Cascaded pooling for Convolutional Neural Networks”. In: 2018 Fourteenth

International Conference on Information Processing (ICINPRO). 2018, pp. 1–5.

[63] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift”. In: CoRR abs/1502.03167 (2015).

[64] Mohit Pandey et al. “The transformational role of GPU computing and deep learning in drug discovery”. In:

Nature Machine Intelligence 4 (Mar. 2022), pp. 211–221.

[65] Stephen Notley and Malik Magdon-Ismail. “Examining the Use of Neural Networks for Feature Extraction: A

Comparative Analysis using Deep Learning, Support Vector Machines, and K-Nearest Neighbor Classifiers”. In:

CoRR abs/1805.02294 (2018).

[66] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with Deep Convolutional

Neural Networks”. In: Advances in Neural Information Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran

Associates, Inc., 2012.

[67] Liron Bergman and YedidHoshen. “Classification-BasedAnomalyDetection for General Data”. In:CoRR abs/2005.02359

(2020).

[68] Felix Leeb, Stefan Bauer, and Bernhard Schölkopf. “Interventional Assays for the Latent Space of Autoencoders”.

In: CoRR abs/2106.16091 (2021).

[69] Jack Klys, Jake Snell, and Richard S. Zemel. “Learning Latent Subspaces in Variational Autoencoders”. In: CoRR

abs/1812.06190 (2018).

[70] Jasem Almotiri, Khaled Elleithy, and Abdelrahman Elleithy. “Comparison of autoencoder and Principal Com-

ponent Analysis followed by neural network for e-learning using handwritten recognition”. In: 2017 IEEE Long

Island Systems, Applications and Technology Conference (LISAT). 2017, pp. 1–5.

[71] Jia Shijie et al. “Research on data augmentation for image classification based on convolution neural networks”.

In: 2017 Chinese Automation Congress (CAC). 2017, pp. 4165–4170.

[72] Wang Jinyeong and Sanghwan Lee. “Data AugmentationMethods Applying Grayscale Images for Convolutional

Neural Networks in Machine Vision”. In: Applied Sciences 11 (July 2021), p. 6721.

[73] Timofey A. Korzhebin and Alexey D. Egorov. “Comparison of Combinations of Data AugmentationMethods and

Transfer Learning Strategies in Image Classification Used in Convolution Deep Neural Networks”. In: 2021 IEEE

Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). 2021, pp. 479–482.

[74] Kaiming He et al. Masked Autoencoders Are Scalable Vision Learners. 2021.

[75] Karel J. Zuiderveld. “Contrast Limited Adaptive Histogram Equalization”. In: Graphics gems. 1994.

88

BIBLIOGRAPHY

[76] Andrew Y. Ng. “Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance”. In: Proceedings of the

Twenty-First International Conference on Machine Learning. ICML ’04. Banff, Alberta, Canada: Association for

Computing Machinery, 2004, p. 78.

[77] Akshay Badola, Vineet Padmanabhan Nair, and Rajendra Prasad Lal. “An Analysis of Regularization Methods in

Deep Neural Networks”. In: 2020 IEEE 17th India Council International Conference (INDICON). 2020, pp. 1–6.

[78] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. “DropBlock: A regularization method for convolutional networks”.

In: CoRR abs/1810.12890 (2018).

[79] Ruoyu Sun. “Optimization for deep learning: theory and algorithms”. In: CoRR abs/1912.08957 (2019).

[80] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In: CoRR abs/1609.04747 (2016).

[81] Diederik PKingma and JimmyBa. “Adam:Amethod for stochastic optimization”. In: arXiv preprint arXiv:1412.6980

(2014).

[82] JooSeuk Kim and Clayton D. Scott. “Robust Kernel Density Estimation”. In: Journal of Machine Learning Research

13.82 (2012), pp. 2529–2565.

[83] Feng Gao et al. “ConNet: Deep Semi-Supervised Anomaly Detection Based on Sparse Positive Samples”. In: IEEE

Access 9 (2021), pp. 67249–67258.

[84] Xue Ying. “An Overview of Overfitting and its Solutions”. In: Journal of Physics: Conference Series 1168 (Feb.

2019), p. 022022.

[85] Srikanth Thudumu et al. “A comprehensive survey of anomaly detection techniques for high dimensional big

data”. In: Journal of Big Data 7 (July 2020).

[86] Yiteng Zhai, Yew-Soon Ong, and Ivor W. Tsang. “The Emerging "Big Dimensionality"”. In: IEEE Computational

Intelligence Magazine 9.3 (2014), pp. 14–26.

[87] Furkan Ulger, Seniha Esen Yuksel, and Atila Yilmaz. “Anomaly Detection for Solder Joints Using beta-VAE”. In:

IEEE Transactions on Components, Packaging and Manufacturing Technology 11.12 (2021), pp. 2214–2221.

[88] Ahad Alloqmani et al. “Deep Learning based Anomaly Detection in Images: Insights, Challenges and Recom-

mendations”. In: International Journal of Advanced Computer Science and Applications 12 (Jan. 2021).

[89] Xavier Gibert, Vishal M. Patel, and Rama Chellappa. “Deep Multitask Learning for Railway Track Inspection”.

In: IEEE Transactions on Intelligent Transportation Systems 18.1 (2017), pp. 153–164.

[90] Marco A.F. Pimentel et al. “A review of novelty detection”. In: Signal Processing 99 (2014), pp. 215–249.

[91] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection: A Survey”. In: ACM Comput. Surv.

41 (July 2009).

[92] Elnaz Bigdeli et al. “A fast noise resilient anomaly detection using GMM-based collective labelling”. In: 2015

Science and Information Conference (SAI). 2015, pp. 337–344.

[93] Wenbo Liu et al. “Outlier Detection Algorithm Based on Gaussian Mixture Model”. In: 2019 IEEE International

Conference on Power, Intelligent Computing and Systems (ICPICS). 2019, pp. 488–492.

[94] Stefania Matteoli et al. “Background Density Nonparametric Estimation With Data-Adaptive Bandwidths for

the Detection of Anomalies in Multi-Hyperspectral Imagery”. In: IEEE Geoscience and Remote Sensing Letters

11.1 (2014), pp. 163–167.

[95] Kaitai Zhang, Bin Wang, and C.-C. Jay Kuo. “PEDENet: Image Anomaly Localization via Patch Embedding and

Density Estimation”. In: CoRR abs/2110.15525 (2021).

89

BIBLIOGRAPHY

[96] Monica Casella et al. “Autoencoders as an alternative approach to principal component analysis for dimensional-

ity reduction. An application on simulated data from psychometric models”. In: Symposium on Psychology-Based

Technologies. 2021.

[97] I. K. Savvas et al. “Increasing the Quality and Performance of N-Dimensional Point Anomaly Detection in Traffic

Using PCA and DBSCAN”. In: 2018 26th Telecommunications Forum (TELFOR). 2018, pp. 1–4.

[98] Fanwu Chu. “An improved PCA algorithm for anomaly detection of hydropower units”. In: 2017 IEEE 2nd Inter-

national Conference on Cloud Computing and Big Data Analysis (ICCCBDA) (2017), pp. 494–498.

[99] Christian Callegari et al. “A Novel PCA-Based Network Anomaly Detection”. In: 2011 IEEE International Confer-

ence on Communications (ICC). 2011, pp. 1–5.

[100] ZhengxueCheng et al. “DeepConvolutional AutoEncoder-based Lossy ImageCompression”. In:CoRR abs/1804.09535

(2018).

[101] Faisal Nadeem Khan and Alan Pak Tao Lau. “Robust and efficient data transmission over noisy communication

channels using stacked and denoising autoencoders”. In: China Communications 16.8 (2019), pp. 72–82.

[102] Sanyapong Youkachen et al. “Defect Segmentation of Hot-rolled Steel Strip Surface by using Convolutional

Auto-Encoder and Conventional Image processing”. In: 2019 10th International Conference of Information and

Communication Technology for Embedded Systems (IC-ICTES). 2019, pp. 1–5.

[103] Antanas Kascenas, Nicolas Pugeault, and Alison Q O’Neil. “Denoising Autoencoders for Unsupervised Anomaly

Detection in Brain MRI”. In: Medical Imaging with Deep Learning. 2022.

[104] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. 2013.

[105] Min Su Kim et al. “Unsupervised Anomaly detection of LM Guide Using Variational Autoencoder”. In: 2019 11th

International Symposium on Advanced Topics in Electrical Engineering (ATEE). 2019, pp. 1–5.

[106] Nuno Ferreira and Margarida Silveira. “Ship Detection in SAR Images Using Convolutional Variational Autoen-

coders”. In: IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. 2020, pp. 2503–

2506.

[107] Xuan Xia et al. “GAN-based anomaly detection: A review”. In: Neurocomputing 493 (2022), pp. 497–535.

[108] Jie Gui et al. “A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications”. In: CoRR

abs/2001.06937 (2020).

[109] Marco Domenico Cirillo, David Abramian, and Anders Eklund. “Vox2Vox: 3D-GAN for Brain Tumour Segmen-

tation”. In: CoRR abs/2003.13653 (2020).

[110] Alankrita Aggarwal, Mamta Mittal, and Gopi Battineni. “Generative adversarial network: An overview of theory

and applications”. In: International Journal of Information Management Data Insights 1.1 (2021), p. 100004.

[111] Thomas Schlegl et al. “Unsupervised Anomaly Detectionwith Generative Adversarial Networks to GuideMarker

Discovery”. In: Information Processing in Medical Imaging. Ed. by Marc Niethammer et al. Cham: Springer Inter-

national Publishing, 2017, pp. 146–157.

[112] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised Representation Learning with Deep Convolu-

tional Generative Adversarial Networks”. In: (Nov. 2015).

[113] Tero Karras, Samuli Laine, and Timo Aila. “A Style-Based Generator Architecture for Generative Adversarial

Networks”. In: CoRR abs/1812.04948 (2018).

[114] Alvaro Figueira and Bruno Vaz. “Survey on Synthetic Data Generation, Evaluation Methods and GANs”. In:

Mathematics 10.15 (2022).

90

BIBLIOGRAPHY

[115] Dominik Narnhofer et al. “Inverse GANs for accelerated MRI reconstruction”. English. In:Wavelets and Sparsity

XVIII. SPIE Optics+Photonics 2019 ; Conference date: 23-08-2019 Through 27-08-2019. 2019.

[116] Lucas Deecke et al. “Image Anomaly Detection with Generative Adversarial Networks”. In: Machine Learning

and Knowledge Discovery in Databases. Ed. byMichele Berlingerio et al. Cham: Springer International Publishing,

2019, pp. 3–17.

[117] Çağlar Aytekin et al. “Railway Fastener Inspection by Real-Time Machine Vision”. In: IEEE Transactions on Sys-

tems, Man, and Cybernetics: Systems 45.7 (2015), pp. 1101–1107.

[118] Hao-ran Li et al. “Dynamic Electromagnetic Thermography System for Rail Inspection”. In: 2021 IEEE Far East

NDT New Technology And Application Forum (FENDT). 2021, pp. 99–103.

[119] Xinyu Du, Yu Cheng, and Zichen Gu. “Change Detection: The Framework of Visual Inspection System for Rail-

way Plug Defects”. In: IEEE Access 8 (2020), pp. 152161–152172.

[120] Daniel Olid, José M. Fácil, and Javier Civera. “Single-View Place Recognition under Seasonal Changes”. In: CoRR

abs/1808.06516 (2018).

[121] Oliver Zendel et al. “Railsem19: A dataset for semantic rail scene understanding”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops. 2019, pp. 0–0.

[122] Kaggle Railway Track Fault Detection. https://www.kaggle.com/datasets/salmaneunus/

railway-track-fault-detection. Accessed: 2022-10-19.

[123] Mission Embedded. https://mission-embedded.com/. Accessed: 2023-05-17.

[124] Junbo Liu et al. “Learning Visual Similarity for Inspecting Defective Railway Fasteners”. In: IEEE Sensors Journal

19.16 (2019), pp. 6844–6857.

[125] Roger Nyberg et al. “Monitoring Vegetation on Railway Embankments : Supporting Maintenance Decisions”. In:

June 2013.

[126] Shubin Zheng et al. “Railway track gauge inspection method based on computer vision”. In: 2012 IEEE Interna-

tional Conference on Mechatronics and Automation. 2012, pp. 1292–1296.

[127] Riccardo Gasparini et al. “Anomaly Detection for Vision-Based Railway Inspection”. In: Dependable Computing

- EDCC 2020 Workshops. Ed. by Simona Bernardi et al. Cham: Springer International Publishing, 2020, pp. 56–67.

[128] T Hoppe, GMatschke, and RMüller. “Homologation of Trans-European Rolling Stock: An Integrated Approach”.

In: Final Proceedings of the 7th World Congress on Railway Research (WCRR). 2006, pp. 4–8.

[129] Kontinuierliches On-board Monitoring der Bahn Infrastruktur –Technische und ökonomische Analyse. https:

//projekte.ffg.at/projekt/3019460. Accessed: 2023-05-17.

[130] SL Grassie. “Rail corrugation: characteristics, causes, and treatments”. In: Proceedings of the Institution of Me-

chanical Engineers, Part F: Journal of Rail and Rapid Transit 223.6 (2009), pp. 581–596.

[131] NVIDA Jetson. https://www.nvidia.com/de-de/autonomous-machines/embedded-

systems. Accessed: 2023-05-03.

[132] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”. In: Journal of Machine Learning

Research 9.86 (2008), pp. 2579–2605.

[133] MSELoss. https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html.

Accessed: 2023-05-04.

[134] pytorch-msssim. https://github.com/jorge-pessoa/pytorch-msssim. Accessed: 2023-05-

04.

91

https://www.kaggle.com/datasets/salmaneunus/railway-track-fault-detection
https://www.kaggle.com/datasets/salmaneunus/railway-track-fault-detection
https://mission-embedded.com/
https://projekte.ffg.at/projekt/3019460
https://projekte.ffg.at/projekt/3019460
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html
https://github.com/jorge-pessoa/pytorch-msssim

BIBLIOGRAPHY

[135] Yasi Wang, Hongxun Yao, and Sicheng Zhao. “Auto-Encoder Based Dimensionality Reduction”. In: Neurocom-

puting 184 (Nov. 2015).

[136] Qinkun Xiao and Yang Si. “Human action recognition using autoencoder”. In: 2017 3rd IEEE International Con-

ference on Computer and Communications (ICCC). 2017, pp. 1672–1675.

[137] Jimin Tan et al. “A critical look at the current train/test split in machine learning”. In: CoRR abs/2106.04525

(2021).

[138] NVIDA A100 Tensor-Core-GPU. https://www.nvidia.com/de-de/data-center/a100/.

Accessed: 2022-11-11.

92

https://www.nvidia.com/de-de/data-center/a100/

	Introduction
	Motivation and Problem Description
	Methodology
	Objectives and Research Questions
	Contributions and Organization

	Background and State of the Art
	Artificial Neural Networks
	Fully Connected Neural Networks
	Convolutional Neural Networks
	Features and Subspaces
	Training Neural Networks

	Anomaly detection
	blackUnsupervised Anomaly Detection
	blackSemi-Supervised Anomaly Detection
	Supervised Anomaly Detection

	Challenges in Anomaly Detection
	Challenges for Deep Learning in Anomaly Detection

	Visual Anomaly Detection
	Probabilistic Anomaly Detection
	blackReconstruction-based Anomaly Detection
	Variational Autoencoder
	GANs

	Anomaly Detection and Inspection for Railroad Systems
	Railroad Datasets
	State-of-the-Art Anomaly Detection for Railroad Systems

	Experimental Dataset
	Kombi-Dataset
	Varying Appearance of the Trackbed
	Rail anomalies
	Infrastructure elements
	Annotations

	Data Augmentation
	Synthetic Data

	Architecture
	Anomaly Detection Methods Analysis
	Autoencoders
	Denoising Autoencoders
	Latent Space Analysis
	Variational Autoencoder
	Deep Convolutional Generative Adversarial Network

	Architecture Decisions
	VADAR
	Pre-Processing

	Trackbed Anomaly Detection
	Image Reconstruction
	taae and iae
	Infrastructure Detection
	lca Detection
	occ

	Rail Anomalies
	raae
	Rail Segmentation
	Rail Damage Detection

	Evaluation, Results, and Comparison
	Evaluation Methods
	Trackbed Anomaly Detection
	Rail Anomaly Detection

	Comparison with State of the Art
	Results

	Conclusion
	Outlook

