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Abstract

We conduct classical statistical simulations for SU(2) gauge theories in a 2+1 dimensional Bjorken
expanding space-time with a particular interest in the dynamical behaviour at large time scales.
Motivated by the early stages of ultra-relativistic heavy-ion collisions, we compare boost invariant
Glasma initial conditions with Gaussian initial conditions using the same Bjorken expanding me-
tric, and study general late-time features of the gluonic plasmas. Particular emphasis is put on the
dynamics of the energy stress-tensor and its components, on the dynamics of correlation functions
of gauge and chromo-electric fields in momentum space, and on the computation of distribution
functions. We find that systems with these different sets of initial conditions show different proper-
ties at late times of their dynamical evolution, which is imposed by the late-time properties of the
scalar sector for 2+1 dimensional gauge systems undergoing Bjorken expansion. We observe that
in contrast to the Gaussian initial conditions the Glasma reaches a state of linear scalar particle
production. We collect evidence that the differences in the dynamics for both systems stem from
higher-order contributions of connected n-point correlation functions. This linear growth of the
average scalar particle numbers is responsible for a linear increase of the energy density contributi-
on from the longitudinal chromo-electric field when compared to other contributions to the energy
density. We further observe a rapid freezing of the gluonic distribution function, and a nontrivial
evolution of the scalar distribution function even at late times which substantiate the argument for
the scalar sector being responsible for the changes in the late-time dynamics. Our results further
suggest that the Glasma does not approach a clear quasi-particle picture which implies that the
transition to a kinetic theory has to be treated with caution.
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Zusammenfassung

Wir führen klassisch statistische Simulationen für SU(2) Eichtheorien in einer 2+1 dimensionalen
Bjorken expandierenden Raumzeit mit besonderem Interesse am dynamischen Verhalten auf großen
Zeitskalen durch. Motiviert durch die frühen Stadien ultrarelativistischer Schwerionenkollisionen
vergleichen wir die Boost-invarianten Glasma-Anfangsbedingungen mit Gauß’schen Anfangsbedin-
gungen unter Verwendung derselben expandierenden Bjorken-Metrik und untersuchen allgemeine
spätzeitliche Merkmale der gluonischen Plasmen. Besonderes Augenmerk wird auf die Dynamik des
Energie-Impuls-Tensors und seiner Komponenten, auf die Dynamik von Korrelationsfunktionen von
Eich- und chromo-elektrischen Feldern im Impulsraum sowie auf die Berechnung von Verteilungs-
funktionen gelegt. Wir stellen fest, dass Systeme mit diesen unterschiedlichen Anfangsbedingungen
zu späten Zeiten ihrer dynamischen Entwicklung unterschiedliche Eigenschaften aufweisen, was
durch die spätzeitlichen Eigenschaften des skalaren Sektors für 2+1-dimensionale Eichsysteme,
die eine Björken-Expansion durchlaufen, erklärt weden kann. Wir beobachteten, dass das Glasma
im Gegensatz zu den Gauß’schen Anfangsbedingungen einen Zustand der linearen skalaren Teil-
chenproduktion erreicht. Wir sammeln Indizien dafür, dass die Unterschiede in der Dynamik beider
Systeme von Beiträgen höherer Ordnung von zusammenhängender n-Punkt-Korrelationsfunktionen
herrühren. Dieses lineare Wachstum der durchschnittlichen skalaren Teilchenzahlen ist für einen
linearen Anstieg des Energiedichtebeitrags aus dem longitudinalen chromo-elektrischen Feld im
Vergleich zu anderen Beiträgen zur Energiedichte verantwortlich. Wir beobachten weiterhin ein
schnelles Einfrieren der gluonischen Verteilungsfunktion und eine nichttriviale Entwicklung der
skalaren Verteilungsfunktion selbst zu späten Zeiten, was das Argument dafür erhärtet, dass der
skalare Sektor für die Änderungen in der spätzeitlichen Dynamik verantwortlich ist. Unsere Er-
gebnisse legen außerdem nahe, dass sich das Glasma keinem klaren Quasiteilchen Bild nähert, was
bedeutet, dass der Übergang zu einer kinetischen Theorie kritisch zu hinterfragen ist.
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Chapter 1

Introduction

In this thesis we are interested in the dynamical behavior of 2+1 dimensional gauge systems in
a Bjorken-expanding space-time. For our analysis we conduct classical statistical simulations of
two different types of initial conditions for non-thermal gauge systems and employ a quasi-particle
picture for some observables to compare the systems and interpret our results. In this chapter we
want to give a motivation for this investigation and give a brief outline of this work.

1.1 Motivation

Strongly interacting matter is described by quantum chromo-dynamics (QCD), which is a non-
Abelian gauge theory with the symmetry group SU(3). In this theory the gauge boson is introduced
as an exchange particle between quarks, which are the fundamental building blocks of atomic
nuclei. In particular, the non-Abelian symmetry group introduces various interesting physical and
mathematical features. Two of them are known as asymptotic freedom and self-interacting gluons.

Self-interacting gluons render pure gauge systems physically meaningful as they describe in-
teracting systems consisting only of gluons. This is particularly interesting for states where the
dynamical behavior is governed by gluons and therefore allows us to drop the quark contribu-
tions. These theories are known as Yang-Mills theories. Pure gauge theories therefore also help to
understand the full theory of interacting quarks and gluons better.

Asymptotic freedom is known as the behavior of the running coupling constant of QCD, which
gets large at small momentum regimes. This behavior appears counter intuitive since despite many
similarities to quantum electrodynamics (QED), which is the gauge theory with the symmetry
group U(1), we cannot observe asymptotic freedom for QED. More importantly, because of the
increasing coupling constant at low momenta perturbative approaches fail at these regimes. A
possible solution to circumvent this problem is to use a non-perturbative description of QCD by
discretizing the fields on a lattice [1, 2]. We refer to this formulation of the theory as Lattice QCD
throughout this thesis.

In this work we are interested in the dynamical behavior of gluonic systems created in heavy-ion
collisions. In such collisions a state of quarks and gluons is created which is known as quark gluon
plasma (QGP). These collisions could be produced in experiments at the Large Hadron Collider
(LHC) and the Relativistic Heavy Ion Collider (RHIC) and therefore present a viable test to the
QCD description of the phenomena observed in these experiments. Further, heavy-ion collisions
can be used to model the very early stages of our universe and therefore have implications relevant
to cosmology. Astonishingly the QGP behaves similar to ideal fluids for sufficiently late times and
can therefore be described by hydrodynamics [3, 4, 5].

At the earliest stages, immediately after the ultra-relativistic heavy-ion collision, the created
gluonic system is in a non-thermal state which means that the gluons do not follow the Bose-
Einstein statistic. Since the high collision energy leads to a near boost invariance in the collision
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Chapter 1. Introduction

direction this stage is described in a longitudinally expanding coordinate system which is imposed by
the Bjorken metric. In this space-time the description of this symmetry renders in an independence
of the so-called rapidity direction. The hydrodynamic approach only describes the evolution of the
QGP close-to-equilibrium and therefore does not provide a viable description for the earliest times
after the heavy-ion collision. The state directly after an ultra-relativistic heavy-ion collision is often
modeled as the Glasma [6, 7, 8]. After a short transient time a kinetic description is used that
smoothly transitions into a hydrodynamic description. [9, 10, 11]. The Glasma can therefore be
seen as a pre-hydrodynamic and pre-kinetic phase of the QGP.

The Glasma is derived with the framework of the color glass condensate (CGC), which describes a
classical effective theory of QCD at high energy regimes [12, 13, 14]. In this model the valence quarks
carry most of the momentum and are described by Lorentz-contracted sheets of color charges. These
high momentum charges create a highly occupied color field which is predominantly governed by
low momentum gluons. In the CGC a momentum cutoff is introduced to separate both constituents,
i.e., the hard scales (high momentum valence quarks) and soft scales (low momentum gluons). The
CGC yields an effective description for high energy nuclei of which the dynamics for the color fields
and color charges is governed by Yang-Mills theories. A combination of the CGC with kinetic
theory and a hydro-dynamical description of the QGP provides a modern approach for the analysis
of heavy-ion collisions known as IP-Glasma and extensions thereof [15, 16, 17, 18, 19, 20, 21, 10].

In the ultra-relativistic limit the color sheet which describes the color charge density of the nuclei
gets infinitesimally thin because of the Lorentz contraction. We therefore obtain an effective 2+1
dimensional system with boost invariant fields in the rapidity direction. The dependence of the
rapidity of this system can be analyzed in 3+1 dimensional Glasma simulations [8, 22, 23, 24,
25]. Alternatively, the rapidity dependence can be analyzed by conducting simulations for different
rapidity values [26, 27]. In this work we use the McLerran-Venugopalan model (MV-model) to
describe the Glasma in 2+1 dimensions as it is built on simple physical assumptions and enables a
straightforward implementation of the initial conditions [8, 28, 29].

In recent years many interesting features of the dynamical behaviour of non-thermal gauge
theories have been found, such as universal and self-similar attractors for the evolution of the
distribution function and non-thermal fixed points [30, 31, 32, 33, 34]. For these observations
a quasi-particle picture was employed which is imposed by the definition of a single-particle dis-
tribution function. Kinetic theories are based on a quasi-particle description. We use Gaussian
initial conditions as they use a quasi-particle picture in the initialization of the fields and therefore
simplify the interpretation of the dynamics in terms of quasi-particles.

In this thesis we are interested in the dynamical behavior of non-thermal gauge systems described
by Gaussian and Glasma initial conditions at large times scales. Moreover, distribution functions are
important observables since they are also based on a quasi-particle picture. This is also the reason
why we compare simulations with Glasma and Gaussian initial conditions: We want to understand
the commonalities and differences between simulations that are dominated by classical fields and
by large occupation numbers. We analyze an effectively 2+1 dimensional gauge system where the
fields have three spatial components. We interpret the additional third component as a scalar
field in adjoint representation and differentiate between the distribution for scalars and gluons.
We will study their evolution by conducting classical-statistical simulations of the described gauge
systems that are applicable due to the high occupation numbers and large fields of the considered
systems [31, 33, 35, 34]. Additionally, a crucial difference of the two types of initial conditions is
the consideration of the higher-order n-point correlation functions. The Gaussian initial conditions
neglect all higher-order contributions by initializing the fields by solely considering the 2-point
correlation function. On the other hand the Glasma initial conditions given by the MV-model
describe the color-field and the chromo-electric field directly and therefore take all connected n-
point correlation functions into account. This enables assessing the importance of higher-order
contributions for simulated systems. In order to make both types of initial conditions comparable
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1.2. Outline

we approximate the gluon distribution function at some observation time τ0 and initialize the fields
for the Gaussian initial condition according to this distribution by using the mode vector expansion
of the fields [34, 33, 32].

1.2 Outline

In Chapter 2 we introduce the theoretic framework to describe the Glasma and Gaussian initial
conditions. In particular, we give a brief introduction to the Bjorken space-time in Section 2.1 and
discuss the most essential features of QCD and Lattice QCD in Sections 2.2 and 2.3. We further
introduce the classical approximation and its range of validity for the gauge theories we investigate
in Section 2.4. In the conducted simulations we are especially interested in the energy density and
the 2-point correlation and distribution functions. These observables are introduced in Section 2.5.

We introduce the Glasma and Gaussian initial conditions and derive a lattice formulation for a
Bjorken space-time in Sections 3.1 and 3.2. For our simulations we implement a leap-frog algorithm
of which the update rules follow the discretized equations of motion which are described in Section
3.3.

Our simulations are implemented as a numerical framework written in the programming language
C++. We present our results for small simulation times in Chapter 4. Parts of these results were
obtained in the course of a bench-marking procedure to ensure a valid implementation that delivers
results comparable to the literature. Furthermore, we discuss the parameters of the MV-model
which describe the Glasma in Section 4.1.

In Chapter 5 we present and discuss our results for the long-time behavior of the dynamics for
Gaussian and Glasma initial conditions. We compare both systems and find evidence for possible
explanations for the different types of initial conditions.

Finally, we conclude our discussion in Chapter 6 where we also briefly recapitulate our results
and give a short outlook for possible future work and open questions.
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Chapter 2

Theoretical Background

In the following chapter we introduce the most important definitions and notions for the remainder
of this thesis. In Section 2.1 we derive the coordinate system which is used for the conducted
simulations. These coordinates are defined by the expanding Bjorken metric and are especially
relevant for ultra-relativistic heavy-ion collision because they yield a near boost invariant gauge
system in rapidity direction. Thereafter in Section 2.2 we give a brief overview of the most im-
portant aspects of quantum chromodynamics (QCD) and then introduce a discretized version of
the continuum theory which is most often referred to as Lattice QCD in Section 2.3. This allows
us to run classical statistical simulations on a lattice and further conduct a detailed analysis of
the dynamical behavior of gauge systems. In this work we focus on pure gauge theories without
any quark contributions. Nevertheless in the following subsections we will discuss the full QCD
including fermions in order to get a clearer picture of the theory itself but also motivate certain
steps and definitions in the realm of this theory.

2.1 Bjorken expanding space-times

We compare results for 2+1 dimensional gauge systems for SU(2) gauge theories from a Minkowski
metric with in a longitudinally expanding space-time, which is imposed by the Bjorken metric. The
Minkowski metric is given by

gµν = diag(1,−1,−1,−1). (2.1.1)

We can perform a coordinate transformation defined by

τ =
*

t2 + z2, η = tanh−1
�z
t

 
(2.1.2)

to obtain the Bjorken metric

gµν = diag
�
1,−1,−1,−τ2

"
, (2.1.3)

and its inverse

gµν = diag

�
1,−1,−1,− 1

τ2

#
. (2.1.4)

Here we call τ proper time and η (spatial) rapidity. Since throughout this text we will discuss
results for both metric, we choose a formulation where the metric explicitly occurs and is time
dependent. Further we use a covariant formulation where we write

Minkowski: xµ =

��
x0

x1

x2

x3

%% =

��
t
x
y
z

%%
µ

, Bjorken: xµ =

��
x0

x1

x2

x3

%% =

��
τ
x
y
η

%%
µ

(2.1.5)
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2.2. Introduction to QCD in the continuum

for our coordinate systems and imply Einsteins summation convention whenever two indices occur
twice unless stated differently. Note that throughout this text we use natural units, hence c = 1
and � = 1. With this notation we write g(x0) for the (proper) time dependent determinant, where
we have

gMinkowski(x
0) = −1, gBjorken(x

0) = −τ2. (2.1.6)

We will always write the dependence of x0 explicitly in order to distinguish the determinant from
the coupling constant g which is introduced in the next section. Further we want to emphasize
that the discussion above seems inadequate for 2+1 dimensional systems since all the metrics are
given in 3+1 dimensions. This viewpoint is resolved by interpreting the space-times, in which we
conduct our analysis, to be completely homogeneous in the longitudinal direction and therefore
should not be seen as an independent spatial dimension. Also, the space-time geometry is the same
in the expanding case as in the flat Minkowski space-time since we merely performed a coordinate
transformation. We introduced a singularity at τ = 0, which is harmless because it stems from
the coordinate transformation itself but needs to be taken into account when simulating systems
in these coordinates. These two facts make it even more interesting that we will see different
dynamical behaviors for the non-expanding and expanding case.

The reason why we impose the expanding metric is that ultra-relativistic heavy-ion collisions are
almost boost invariant which renders in an independence in the rapidity direction. This originates
from the fact that the colliding nuclei are Lorentz contracted onto a transverse plane. Therefore
the introduction of a proper time and rapidity coordinate system will prove very useful. In addition
large nuclei can be approximated as being homogeneous in transverse directions. This means that
central heavy-ion collisions can be described by homogeneous systems in all spatial directions using
the Bjorken metric.

2.2 Introduction to QCD in the continuum

We introduce the QCD action, which can be separated in the fermion and the gluon (gauge) part

S[ψ, ψ̄, A] = SG[A] + SF [ψ, ψ̄, A]. (2.2.1)

The fermionic part will be mainly used to motivate certain steps taken and is not discussed in
detail as in the rest of the text we are focusing on the gauge sector.

The fermionic part of the action is given by

SF [ψ, ψ̄, A] =

Nf/
f=1

�
d4x

*
−g(x0)

ψ(f)(x)α,c

�
(γµ)α,β(δc,d∂µ + igAµ(x)c,d) +m(f)δαβδcd

�
ψ(f)(x)β,d,

(2.2.2)

where ψ(f) denote the fermion fields with mass m(f) which are represented by Dirac spinors with
four components. In the expression above α, β = 1, 2, 3, 4 and c, d = 1, . . . , Nc enumerate the Dirac
indices and the color indices of the fermion fields respectively. In addition, the contribution of the
action of different fermion flavors f = 1, . . . , Nf is summed over. Aµ(x)c,d denote hermitian and
traceless gauge fields, also called gluon or color fields in the context of QCD. These gauge fields are
introduced to the fermionic part of the action in order to satisfy gauge invariance. For convenience
we drop almost all indices above and only explicitly write them if they are of relevance. Lastly, the
matrices γ are mixing different components of the Dirac spinors. A construction of these matrices
can be found in almost any text book about particle physics or quantum field theories, e.g. [36].
In QCD we require the action to be invariant under local rotations of the color indices of the

5



Chapter 2. Theoretical Background

fermions. Hence, the action (2.2.2) is invariant when the fields are rotated by a unitary matrix
Ω(x) with det(Ω(x)) = 1, in each point x. It is well-known that these matrices form the special
linear group often denoted as SU(Nc). To be more precise this group is the defining representation of
the Lie algebra su(Nc). A more detailed discussion can be found in Appendix A. We will abbreviate
the transformation of the fields by

ψ(x) → ψ�(x) = Ω(x)ψ(x), Aµ(x) → A�
µ(x), (2.2.3)

and further the transformed action is given by

SF [ψ
�, ψ̄�, A] = −

�
d4x

*
−g(x0)ψ̄(x)Ω(x)†


γµ(∂µ + igA�

µ(x)) +m
�
Ω(x)ψ(x). (2.2.4)

Gauge invariance for the fermionic part of the action translates into

SF [ψ, ψ̄, A] = SF [ψ
�, ψ̄�, A�], (2.2.5)

which yields the transformation rule for the gauge fields

Aµ(x) → A�
µ(x) = Ω(x)Aµ(x)Ω(x)

† +
i

g
(∂µΩ(x))Ω(x)

†. (2.2.6)

It can be shown that A�
µ(x) is hermitian and traceless as required, for a more detailed discussion

see [36].
We now transition to the gluonic part of the QCD action for which we first define the covariant

derivative and its corresponding transformation behavior

Dµ(x) = ∂µ + igAµ(x), (2.2.7)

Dµ(x) → D�
µ(x) = ∂µ + igA�

µ(x) = Ω(x)Dµ(x)Ω(x)
†. (2.2.8)

This yields the expected transformation behavior for Dµ(x)ψ(x)

Dµ(x)ψ(x) → Ω(x)Dµ(x)Ω(x)
†Ω(x)ψ(x) = Ω(x)Dµ(x)ψ(x). (2.2.9)

We have seen above that the color fields are no proper observables because they are not gauge
invariant. Therefore in analogy to electrodynamics we define the field strength tensor as the
commutator of the covariant derivative

Fµν(x) = − i

g
[Dµ(x), Dν(x)] = ∂µAν(x)− ∂νAµ(x) + ig[Aµ(x), Aν(x)], (2.2.10)

and its transformation behavior is given by

Fµν(x) → F �
µν(x) = Ω(x)Fµν(x)Ω(x)

†. (2.2.11)

The gauge part of QCD is now defined by

SG[A] = −1

2

�
d4x

*
−g(x0) tr(Fµν(x)Fµν(x)), (2.2.12)

which is gauge invariant, because the trace is invariant under cyclic permutation of the matrices in
the argument

tr(Fµν(x)Fµν(x)) → tr(Fµν�(x)F �
µν(x)) = tr(Ω(x)Fµν(x)Ω(x)†Ω(x)Fµν(x)Ω(x)

†)

= tr(Ω(x)†Ω(x)Fµν(x)Ω(x)†Ω(x)Fµν(x))

= tr(Fµν(x)Fµν(x)).

(2.2.13)
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2.3. Introduction to Lattice QCD

We now can define the chromo-electric and chromo-magnetic fields in terms of the field strength
tensor

Ej
a(x) = −

*
−g(x0)F 0j

a (x), Bj
a(x) = −1

2

*
−g(x0)"jklF a

kl(x). (2.2.14)

with the totally anti-symmetric Levi-Civita symbol "jkl.
Since the gauge fields Aµ(x) are (in fundamental representation) hermitian and traceless matrices

they are elements of su(Nc). We can decompose them with the hermitian traceless generators ta of
the Lie group SU(Nc)

Aµ = Aa
µ(x)t

a, (2.2.15)

where Aa
µ(x) is the corresponding adjoint representation with its color components. These genera-

tors ta satisfy the following properties�
ta, tb

�
= ifabctc, tr

�
tatb

 
=

1

2
δab (2.2.16)

where fabc can be interpreted as a totally anti-symmetric tensor and its entries are called structure
constants of the given Lie algebra. The gluon action and the field strength tensor in terms of the
generators can be restated as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν ,

SG[A] = −1

4

�
d4x

*
−g(x0)Fµν

a (x)F a
µν(x).

(2.2.17)

using the properties in (2.2.16).
This representation for the gauge fields will also be used when discussing initial conditions for

the observed systems. More specific information about the SU(Nc) and su(Nc) and the generators
ta can be found in Appendix A.

2.3 Introduction to Lattice QCD

Lattice QCD in Minkowski space-times
We now focus on defining fermion and gauge fields on a discretized spacetime, which is described by
a hyper-cubic lattice. More precisely we discretize the space-time in temporal and spatial direction
in a hyper-rectangular lattice

Λ = {x : x = nµâ
µ, nµ ∈ N}, (2.3.1)

defined by spatial lattice distances ai and temporal lattices distance a0. âµ are scaled unit vectors
aµêµ (no summation implied) and will be abbreviated for the rest of the work by µ̂. Note that
this discretization is done for Minkowski space and not appropriate for the expanding case, which
will be discussed afterwards. We will first define the most important aspects and later adapt it for
longitudinally expanding space-times.

We further define the fermion fields on these lattice sites and define the discretized derivative as
finite differences

∂µψ(x) → ψx+µ̂ − ψx−µ̂

2a
, (2.3.2)

where we write the location of the fermion field in the subscript to distinguish it from the continuous
field. We will do the same for all other quantities as well. The discretization for the derivative
above leads to the so called “naive” discretization of the fermion action. This gives rise to the
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Chapter 2. Theoretical Background

problem of the fermion doubling (see [37]) which appears because there are additional symmetries
added when this discretization is added. We do not discuss this problem in detail because we
are solely interested in the dynamic of pure gauge systems without any fermions but want to
emphasize that this discretization is not unique and can be improved. Nevertheless we will use this
discretization to motivate the introduction of link fields. Another problem, which is independent
of the discretization, is that the action is no longer gauge invariant. This is due to the fact that
when inserting (2.3.2) into (2.2.4) we get terms of the form

ψxψx+µ̂ → ψ�
xψ

�
x+µ̂ = ψxΩ

†
xΩx+µ̂ψx+µ̂ (2.3.3)

and since Ω†
xΩx+µ̂ does not cancel identically we have destroyed the gauge invariance by introducing

the discretization of the fermion field. As announced this motivates the introduction of link fields
Uxµ which are defined on the connection of two lattice sites x and x + µ. The index x specifies
the starting site of the link and the index µ gives the direction to which neighboring site the link
points to. Figure 2.1 shows an illustration of the link field at a certain lattice site.

Figure 2.1: Illustration of link variables on a lattice.

The link variables are defined as elements of SU(Nc) and we require the following transformation
behavior and that the hermitian conjugate has the reversed direction of the link

Uxµ → ΩxUxµΩ
†
x+µ̂, U †

(x−µ̂)µ = Ux(−µ). (2.3.4)

Substituting the derivative in (2.2.4) with

∂µψ(x) → Uxµψx+µ̂ − U †
xµψx−µ̂

2a
, (2.3.5)

yields a gauge invariant version of the naively discretized fermion action. We will now justify the
introduction of link variables and give them a physical interpretation.

Since the lattice formulation of QCD is built up by discretization of the continuum theory, it is
natural that we want to find an analogous object in the continuum theory. In fact, we can identify
a link variable Uxµ with the parallel transporter from the site x to the site y along some curve Cxy

U(Cx,y) = P exp

�
−i

�
Cx,y

dxµAµ(x)

�
(2.3.6)

where P is the path ordering operator which corresponds to the path Cxy. It can be shown that
this parallel transporter satisfies

U(Cx,y) → U(Cx,y)
� = Ω(x)U(Cx,y)Ω(y) (2.3.7)

under gauge transformation and therefore has the same transformation behavior as the link variables
on the lattice. We therefore define the link variables as

Ux,µ = exp

�
iaµAµ

�
x+

1

2
µ̂

#
+O(aµ)

�
. (2.3.8)

8



2.3. Introduction to Lattice QCD

Since we are mostly interested in the continuum limit or observing small lattice distances in our
simulations we drop the O(aµ) terms from now on and take the obtained expression as definition
of our link fields.

We will now focus on the gauge action. The simplest gauge-invariant object we can build with
the link variables is the trace of a plaquette, which is a rectangle on the lattice that contains one
link variable on each side as depicted in Figure 2.2. Mathematically they are given by

Ux,νµ = Ux,νUx+ν̂,µU
†
x+µ̂,νU

†
x,µ, (2.3.9)

where x in the subscript indicates the starting site of the plaquette and the Greek index pair
distinguish the object from ordinary link variables and specify the orientation of the plaquette.

Figure 2.2: Illustration of a plaquette on a lattice.

We can now introduce the Wilson gauge action [38] as a sum of all positively oriented plaquettes.
This action is given by

SG[U ] =
2

g2

/
x

/
µ<ν

Re tr [1 − Ux,µν ] (2.3.10)

and it can be shown that it approaches the continuum gauge action for a → 0 [36].

Lattice QCD in the Bjorken space-time
We will now turn to the lattice formulation in the boost invariant (τ, η)-frame. It will prove useful
for numerical simulations to impose temporal gauge A0 = 0. Starting from (2.2.17) we get

SG[A] =

�
d4x

*
−g(x0)

�
−1

2
gjk(x0)∂0A

a
j∂0A

a
k −

1

4
F jk
a F a

jk

�
. (2.3.11)

For the boost invariant case, we specify the Bjorken metric and split the integrand into transverse
and non-transverse parts yielding

SG[A] =

�
dτdηd2xT

�
τ

2

/
i=1,2

∂τA
a
i ∂τA

a
i +

1

2τ
∂τA

a
η∂τA

a
η

− τ

4

/
i,j=1,2

F a
ijF

a
ij −

1

2τ

/
i=1,2

F a
iηF

a
iη

�
,

(2.3.12)

9



Chapter 2. Theoretical Background

where in the last term we used the anti-symmetry of the field strength tensor. Furthermore, since
we impose boost invariance in rapidity direction we have

F a
iη = ∂iA

a
η − ∂ηA

a
i + gfabcAb

iA
c
η = Dab

i Ab
η, (2.3.13)

where the covariant derivative in adjoint representation is given by

Dab
µ = δab∂µ − gfabcAc

µ. (2.3.14)

We therefore obtain the following form of the boost invariant gauge action

SG[A] =

�
dτdηd2xT

�
τ

2

/
i=1,2

∂τA
a
i ∂τA

a
i +

1

2τ
∂τA

a
η∂τA

a
η

− τ

4

/
i,j=1,2

F a
ijF

a
ij −

1

2τ

/
i=1,2

Dab
i Ab

ηD
ac
i Ac

η

�
.

(2.3.15)

We now discretize the integral in transverse plane by replacing the gauge fields Ai(τ, x
T ), where

xT denotes the transverse coordinates, by the transverse gauge links

Ux,i(τ) = exp

iaiA

a
i

�
τ, xT

"
ta
�
, i = 1, 2. (2.3.16)

To emphasize that we discuss the rapidity boost invariant case the arguments of the fields are
written explicitly and the rapidity dependence is neglected. The plaquettes in the traverse plane
are given by

Ux,ij = exp

iaiajFij,x +O((aiaj)2)

�
, i = 1, 2 (2.3.17)

which is obtained by using the Baker-Campbell-Hausdorff-Formula

exp[X] exp[Y ] = exp

�
X + Y +

1

2
[X,Y ] + . . .

�
. (2.3.18)

Expanding the matrix exponential yields

Ux,ij = 1 − (aiaj)2F 2
ij,x +O((aiaj)3) (2.3.19)

with which we get

F 2
ij,x =

2

(aiaj)2

�
1 − 1

2
Ux,ij − 1

2
U †
x,ij

#
+O((aiaj)3). (2.3.20)

The last piece that we need to discretize is the covariant derivative in transverse direction, which
is achieved by replacing it with

DB
i Aη,x =

1

ai

�
Aη,x − U †

x,iAη,x−îUx−î,i

 
. (2.3.21)

It is also called backward derivative because of the direction of the step in the argument. Analo-
gously we can define the forward derivative by going the reverse step. Finally we insert equations
(2.3.20) and (2.3.21) into (2.3.15) and use

∂τUx,i(τ) = iai∂τAi(τ)Ux,i(τ) (2.3.22)

10



2.4. Classical-statistical simulations

to obtain an expression for the semi-discretized, boost invariant gauge action given by

SG,latt[A] =

�
dτdη

/
x1,x2

a1a2 tr

�
τ
/
i=1,2

1

(ai)2

�
∂τUx,i(τ)∂τU

†
x,i(τ)

 1

τ
(∂τAη(τ))

2

−
/

i,j=1,2

τ

(aiaj)2

�
1 − 1

2
Ux,ij(τ)− 1

2
U †
x,ij(τ)

#

− 1

τ

/
i=1,2

DB
i Aη,xD

B
i Aη,x

�
.

(2.3.23)

We identify the conjugate momentum with the chromo-electric field and obtain

Ei
x(τ) = ∂τAx,i(τ) = − iτ

ai
(∂τUx,i(τ))U

†
x,i(τ),

Eη
x(τ) =

1

τ
∂τAx,η(τ).

(2.3.24)

We now also derive an expression for the Hamiltonian an a lattice. For this it is practical to start
with non-discretized action 2.3.11 and insert the identifications of the conjugate momenta with the
chromo-electric fields, and obtain

SG[A,E] =

�
dx0d3x

�
− 1

2
*−g(x0)

gjk(τ)E
j
aE

k
a − 1

4
F a
jkF

jk
a

�
, (2.3.25)

where the summation over j, k = 1, 2, 3 is implied. The identification of the conjugate momenta
also yields the effective Hamiltonian

HG[A,E] =

�
d3x

�
− 1

2
*−g(x0)

gjk(τ)E
j
aE

k
a − 1

4
F a
jkF

jk
a

�
. (2.3.26)

This Hamiltonian can be discretized by approximating the integral with the sum over all spatial
lattice sites and insert expression (2.3.20) for the field strength tensor

HG,latt[U,E] =
/
xi

a3
�
− 1

2
*−g(x0)

gjk(x
0)Ej

x,cE
k
x,c

+
2Nc

g2

3/
j=1

/
k>j

Cjk

�
1− 1

2Nc
trUx,jk − 1

2Nc
trU †

x,jk

#�
.

(2.3.27)

With this result we will derive the equations of motion on the lattice in Section 3.3.

2.4 Classical-statistical simulations

In this section our goal is to describe the classical statistical approximation we use for developing
our numerical framework to simulate gauge systems. In similarity to [35] and [33] we will first give
a short motivation starting from quantum mechanics and further expand the introduced concepts
to quantum field theory.

A quantum system with the Hamilton operator H(t) given in the Schrödinger picture can by
fully described be the evolution of the density operator ρ(t) which is given by

i
∂ρ

∂t
= [H(t), ρ(t)]. (2.4.1)

11



Chapter 2. Theoretical Background

This is known as the Liouville–von Neumann equation. Solving this equation yields

ρ(t) = U(t0, t)ρ0U(t0, t), (2.4.2)

U(t, t�) =
t�

t�

dt��H(t��). (2.4.3)

The density operator at initial time ρ0 is normalized such that tr(ρ0) = 1 and represents all
information about the system at initial time. Next, we can write the expectation value of any
observable O in terms of the initial density

�O�(t) = tr (ρ(t)O) = tr (ρ0U(t, t0)OU(t0, t)) . (2.4.4)

Note that the observables O are time independent as we are still in the Schrödinger picture formu-
lation. Since the time dependent observables in the Heisenberg picture are given by

O(t) = U(t, t0)OU(t0, t) (2.4.5)

we can equivalently analyze those systems in the Heisenberg formulation. However, equation (2.4.4)
makes it clear that the real time evolution of the expectation value of an observable O can be
described by a closed time-path C starting at t0 leading to t and back to t0 again on the real
axis as illustrated in Figure 2.3. Figure 2.3 shows that we distinguish between the forward and

Figure 2.3: Illustration of a closed path on the real time axis.

subsequently backward branch of the contour C, which we denote by C+ and C− respectively. C is
often referred to as the Schwinger-Keyldysh time contour.

We generalize this concept to quantum field theory by studying the generating functional

Z[J,R; ρ0] = tr

�
ρ0TC exp

�
i

�
C
dx0

�
ddx

*
−g(x0)Ja(x)Φa(x)

+ i

�
C
dx0

*
−g(x0)

�
ddx

�
C
dy0

*
−g(y0)

�
ddyRab(x, y)Φa(x)Φb(y)

�!
.

(2.4.6)

Thereby we can express all n-point correlation functions in terms of functional derivatives with

12



2.4. Classical-statistical simulations

respect to the source terms Ja(x). The 1- and 2-point correlation functions are given by

φa(x) = �Φa(x)� = 1*−g(x0)

δZ[J,R; ρ0]

δJa(x)

00
J=R=0

, (condensate)

Gab(x, y) = �TCΦa(x)Φb(y)� − φa(x)φb(x) (propagator)

= − 1*
g(x0)g(y0)

δ2Z[J,R; ρ0]

δJa(x)δJb(y)

00
J=R=0

− φa(x)φb(x).

(2.4.7)

The propagator can be decomposed into two terms

Gab(x, y) = Fab(x, y)− i

2
ρab(x, y) sgnC(x

0 − y0) (2.4.8)

where sgnC yields 1 if x0 is “later” on the contour C than y0 and otherwise −1. F and ρ are called
statistical and spectral correlation functions respectively. They are given by

Fab(x, y) =
1

2
�{Φa(x)Φb(y)}� − φa(x)φb(y), (2.4.9)

ρab(x, y) = i�[Φa(x),Φb(y)]�. (2.4.10)

The statistical correlation function is governed by how often states in the system are occupied.
Information about the structure of the excitations is given by the spectral correlation function.

We will first discuss classical statistical simulations for scalar fields Φa(x) and later discuss the
more complicated case of non-Abelian quantum fields.

Ja and Rab denote linear and bi-linear source terms respectively. The time ordering operator TC
orders a product of operators it acts on such that they follow the forward time direction along the
contour C. It can be defined by its action on the product of two operators O1, O2

TCO1(x)O2(y) =

��������
O1(x)O2(y), for x ∈ C+, y ∈ C−

O2(y)O1(x), for x ∈ C−, y ∈ C+

O1(x)O2(y), for x0 ≤ y0 ∧ x, y ∈ C+

O2(y)O1(x), for x0 ≤ y0 ∧ x, y ∈ C−.

(2.4.11)

We now introduce eigenstates and eigenvectors of the field operators Φ±(t0) on the start and
end of the respective branches C±

Φ±(x0 = t0, x
i)|ϕ±� = ϕ±

0 (x
0 = t0, x

i)|ϕ±�. (2.4.12)

With these definitions we can rewrite the generating functional (2.4.6) as

Z[J,R; ρ0] =�
[dϕ+

0 ][dϕ
−
0 ]�ϕ+|ρ0|ϕ−� ×

� ϕ+
0

ϕ−
0

D�ϕ
�
e
i
�
SC+

�
x,C Ja(x)Φa(x)+

1
2

�
xy,C RabΦa(x)Φb(y)

�#
(2.4.13)

which was shown in [35]. Here we have introduced the shorthand notation�
x,C

=

�
dx0

*
g(x0)

�
ddx,

�
xy,C

=

�
dx0

*
g(x0)

�
ddx

�
dy0

*
g(y0)

�
ddy. (2.4.14)

We successfully factorized the generating functional in two factors of which the first is determined
by the initial conditions of the scalar system. The (pseudo) integration measures are given by�

[dϕ±
0 ] =

� N'
a=1

'
xi

dϕa,0(x
i). (2.4.15)
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Chapter 2. Theoretical Background

The second factor in (2.4.13) is determined by the classical action SC on the forward and backward
branch of the contour given by

SC = S[ϕ+]− S[ϕ−],

S[ϕ] =

�
d4x

*
−g(x0)

�
1

2
gµν(x0)(∂µϕa)(∂νϕa)− λ

24N
(ϕaϕa)

2

#
(2.4.16)

and the source terms. It is therefore governed by the quantum dynamics of the system. N denotes
the number of scalar components a of the field and λ represents the coupling constant. For this

part the path integral
� ϕ+

0

ϕ−
0

D� excludes the endpoints x of the time contour C with x0 = t±0 and

implicitly imposes ϕ(x0 = t±0 ) = ϕ±
0 .

We now split the classical action S by introducing the scalar fields

ϕ =
ϕ+ + ϕ−

2
, ϕ̃ = ϕ+ − ϕ− (2.4.17)

such that the classical action can be written as

S[ϕ, ϕ̃] = S0[ϕ, ϕ̃] + Sint
cl [ϕ, ϕ̃] + Sint

qu [ϕ, ϕ̃]. (2.4.18)

They denote the non-interacting, the classical interaction and the quantum interaction contributions
respectively. The terms are obtained by substituting

ϕ+ =
2ϕ+ ϕ̃

2
, ϕ− =

2ϕ− ϕ̃

2
(2.4.19)

into (2.4.16) and separating the expression such that

S0[ϕ, ϕ̃] =

�
C+

d4x
*
−g(x0)gµν∂µϕ̃a(x)∂νϕ̃a(x),

Sint
cl [ϕ, ϕ̃] = − λ

6N

�
C+

d4x
*

−g(x0)ϕ̃a(x)ϕa(x)ϕb(x)ϕb(x),

Sint
qu [ϕ, ϕ̃] = − λ

24N

�
C+

d4x
*

−g(x0)gµνϕ̃a(x)ϕ̃a(x)ϕ̃b(x)ϕb(x).

(2.4.20)

Using the inverse product rule on S0[ϕ, ϕ̃] we obtain

S0[ϕ, ϕ̃] =

�
C+

d4x
*

−g(x0)gµν∂µ(ϕ̃a(x)∂νϕ̃a(x))

+

�
C+

d4x
*
−g(x0)gµνϕ̃a(x)∂µ∂νϕa(x).

(2.4.21)

With this result we can now define the classical action

Scl[ϕ, ϕ̃] =

�
C+

d4x
*
−g(x0)ϕ̃a(x)

�
gµν∂µ∂νϕa(x)− λ

6N
ϕa(x)ϕb(x)ϕb(x)

#
. (2.4.22)

Since the explicit expression for (2.4.21) is metric dependent we will proceed by sticking to the
Minkowski metric for the rest of the discussion of classical-statistical simulations. In the above
expression we introduced the canonical momentum field given by

π0,a =
*
−g(x0)ϕ0,a. (2.4.23)
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2.4. Classical-statistical simulations

We can now easily rewrite the non-interaction part of the action by

S0[ϕ, ϕ̃] = −
�

d3xπ0,aϕ̃0,a(x)−
�
C+

d4xϕ̃a(x)∂
µ∂νϕa(x) (2.4.24)

and write the classical action as

Scl[ϕ, ϕ̃] =

�
d3xπ0,aϕ̃0,a(x) + S0[ϕ, ϕ̃] + Sint

cl [ϕ, ϕ̃]. (2.4.25)

We can further introduce the substitutions of the scalar fields above in the initial condition term
in the generating functional (2.4.13) and obtain�

[dϕ+
0 ][dϕ

−
0 ]�ϕ+|ρ0|ϕ−� =

�
[dϕ̃0][dϕ̃0]

�
ϕ0 +

ϕ̃0

2

000ρ0000ϕ0 − ϕ̃0

2

�
=

�
[dϕ̃0][dϕ̃0][dπ0]W [φ0, π0] exp

�
i

�
d3xπ0,aϕ̃0,a(x)

# (2.4.26)

where W [φ0, π0] is the Wigner transformation of the initial density matrix. Combining the results
of (2.4.25) and (2.4.26) by plugging them into (2.4.13) leads to

Z[J,R; ρ0] =

�
[dϕ̃0][dπ0]W [φ0, π0]

�
D�ϕDϕ̃ exp

�
iScl[ϕ, ϕ̃] + Sint

qu [ϕ, ϕ̃] + source terms
"
.

(2.4.27)

The source terms are given by substituting ϕ and ϕ̃ in the linear and bilinear source terms of
(2.4.13).

When we rewrite the classical action Scl[ϕ, ϕ̃] in terms of the original scalar action we obtain

Scl[ϕ, ϕ̃] =

�
C+

d4xϕ̃a(x)
δS[ϕ]

δϕa
. (2.4.28)

Finally, we can introduce the classical approximation of the above generating functional by sim-
ply dropping the quantum interaction term Sint

qu [ϕ, ϕ̃]. We observe that the classical part of the
generating functional�

Dϕ̃ exp (iScl[ϕ, ϕ̃]) =

�
Dϕ̃ exp

i

�
C+

d4xϕ̃a(x)
δS[ϕ]

δϕa

 = δ

�
δS[ϕ]

δϕ

�
(2.4.29)

yields a Delta functional. Hence, with the classical equation of motion given by

δS[ϕ]

δϕ
= 0 (2.4.30)

this justifies the term classical approximation.

Range of validity of the classical approximation
We now discuss the range of validity for the classical approximation presented above. We restate
the generating functional by inserting a Delta functional and obtain

Z[J,R; ρ0] =

�
[dϕ0][dπ0]W [ϕ0, π0]

�
D�ϕDϕ̃ exp (iScl[ϕ, ϕ̃])

=

�
[dϕ0][dπ0]W [ϕ0, π0]

�
D�ϕδ[ϕcl = ϕ]

=

�
[dϕ0][dπ0]W [ϕ0, π0]|ϕcl=ϕ.

(2.4.31)
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Chapter 2. Theoretical Background

Note, that rewriting the Delta functional as δ[ϕcl = ϕ] holds only up to a Jacobian which is
neglected since it only represents physically irrelevant normalization constant [35]. We dropped all
source terms in order to make the presentation more clear.

As can be seen in (2.4.20) the contributions to the full action can be categorized into two types
of vertices as depicted in Figure 2.4. Note that the only difference in the vertices are the types

(a) Classical vertex (b) Quantum vertex

Figure 2.4: Illustration of 4-point vertices diagrams contributing to the full action.

of legs (scalar fields) connected by these vertices. Hence, in order to understand the contributions
we need to introduce the correlation functions which connect those legs. In essence the classical
statistical approximation neglects all Feynman diagrams which include quantum vertices in Figure
2.4b. The generating functional for connected correlation functions is defined by

W [J,R] = −i lnZ[J,R]

The functional derivatives yield the correlation functions

Stastistical correlation function: Fab(x, y) =
δ2iW [J,R]

δiJ̃a(x)δiJ̃b(y)

0000
J=J̃=0

,

Retarded propagator: − iGR
ab(x, y) =

δ2iW [J,R]

δiJ̃a(x)δiJb(y)

0000
J=J̃=0

= Θ(x0 − y0)ρab(x, y),

Advanced propagator: − iGA
ab(x, y) =

δ2iW [J,R]

δiJa(x)δiJ̃b(y)

0000
J=J̃=0

= Θ(y0 − x0)ρab(x, y),

Anomalous propagator: F̃ab(x, y) =
δ2iW [J,R]

δiJa(x)δiJb(y)

0000
J=J̃=0

= 0.

(2.4.32)

In Figure 2.5 an illustration of the correlation functions in terms of Feynman sub-diagrams is
given. It shows that the spectral correlation function F connects to a ϕ leg whereas the retarded
correlation function GR connects a ϕ leg to an ϕ̃ leg and vice versa for the advanced correlation
function GA. All Feynman diagrams which include one of sub-diagrams depicted in Figures 2.5b
and 2.5c have to be dropped in the classical approximation because they include quantum vertices.
Therefore we need to characterize systems where the contributions of those diagrams is negligible.

All 4-point vertices are either classical or quantum type vertices, therefore we have in fact
constructed all one-loop Feynman sub-diagrams in Figure 2.5. We need to sum over all of their
contributions in order to get there relative contributions to the action. Hence, we find that the
condition for the validity of the classical approximation is given by�

GA
"2

(x, y) +
�
GR

"2
(x, y) � F 2(x, y). (2.4.33)
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(a) Spectral correlator (b) Retarded correlator

(c) Advanced correlator

Figure 2.5: Illustration of Feynman diagrams contributing to the full action.

We can further rewrite this condition by using (2.4.32) to obtain

ρab(x, y) = GR
ab(x, y)−GA

ab(x, y), GR
ab(x, y)G

A
ab(x, y) = 0 (2.4.34)

which yields

ρ2(x, y) � F 2(x, y). (2.4.35)

Next, we will continue by restating this condition using the distribution function of the system.

Spectral function and 1- and 2-point correlation functions
We will now derive a single-particle distribution function in momentum space. With this function
we can reformulate the validity condition (2.4.35) with the advantage of the clearer interpretation
of occupancy numbers.

For homogeneous systems we denote the expectation value of Φa(x) and the canonical momentum
Πa(x) by

φa(x
0) = �Φa(x)�, πa(x

0) = �Πa(x)�. (2.4.36)

Writing the spatial and temporal dependencies explicitly gives us

Fab(x
0, x0�, xi − xi�) =

1

2
�{Φa(x

0, xi),Φa(x
0�, xi�)}� − φa(x

0)φb(x
0�). (2.4.37)

We can Wigner transform this expression at equal time in order to obtain

F (x0, pi) =
1

N

N/
a=1

Faa(x
0, x0, pi). (2.4.38)

Note that in case of the longitudinally expanding Bjorken metric we identify the longitudinal
component of the momentum by p3 = ν/τ , where ν is the rapidity wave number [33]. The transverse
momentum components pT stay the same as with the Minkowski metric.

Before we give a definition for a distribution function we want to emphasize that this definition is
not unique. We introduce the distribution function as a decomposing of the statistical correlation
function. We can write the statistical and spectral correlation function in Wigner coordinates

Xµ =
xµ + yµ

2
, sµ = xµ − yµ (2.4.39)
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Chapter 2. Theoretical Background

and Fourier transform them with respect to the coordinates sµ. Since we are considering spatially
homogeneous systems we can drop the Xi dependence and arrive at

F (pµ, X0) = −i

�
f(pµ, X0) +

1

2

#
ρ(pµ, X0). (2.4.40)

We further assume that the system has a free spectral function

ρ(pµ, X0) = −2π sgn(p0)δ
�
(p0)2 − ω2(pi)

"
(2.4.41)

where ω(pi) is given by the dispersion relation. Integrating over p0 > 0 of (2.4.40) yields

f(x0, pi) +
1

2
=

∞�
0

dp0

2π
2p0F (pµ, x0). (2.4.42)

It can be shown that all definitions assuming free spectral functions (2.4.41) are equivalent [33].
Yet another equivalent approach for defining the distribution function over so-called mode vectors
will be discussed in Section 2.5 for non-Abelian gauge theories.

With the definition of the distribution function in (2.4.42) and its relation with the statistical
correlator function (2.4.40) we can reformulate the validity condition (2.4.35) as

f(x0, pi) � 1

2
. (2.4.43)

Hence, we see that the classical approximation is only valid for high occupation numbers. This also
means that the range of validity is also restricted to weakly coupled systems with λ � 1 because
otherwise the occupancy numbers become too small after a short duration and the system does not
satisfy the validity condition anymore.

Similar to the discussion above we can define a single-particle distribution function and introduce
the classical approximation for gauge systems; a comprehensive discussion is given in [33]. In the
following section we will introduce observables including a distribution function for pure gauge
theories also known as Yang Mills theories.

2.5 Observables

In this chapter we introduce observables we will later calculate in the conducted classical-statistical
simulations. We express the stress-energy tensor in terms of the field strength tensor, which yields

Tµν(x
µ) = −gρσ(x0)F a

µρF
a
νσ +

1

4
gµν(x

0)F a
σρF

σρ
a (2.5.1)

in the adjoint representation.

Energy density and pressure
We express the energy density and the transverse and longitudinal pressure in terms of stress-energy
tensor components and obtain

ε(x0) = �T 0
0 �,

PT (x
0) = −1

2
�T 1

1 + T 2
2 �,

PL(x
0) = −�T 3

3 �.
(2.5.2)
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We separate the energy density in the contributions of the chromo-electric and chromo-magnetic
fields and obtain

ε(x0) = εET
(x0) + εEL

(x0) + εBT
(x0) + εBL

(x0), (2.5.3)

which are given by

F 2
ij,x =

2

(aiaj)2

�
1 − 1

2
Ux,ij − 1

2
U †
x,ij

#
+O((aiaj)3). (2.5.4)

εET
(x0) =

1

2

�
Ei

aE
i
a

� ≈ 1

2N2

/
x

F 0i
x,aF

0i
x,a,

εEL
(x0) =

1

2

�
E3

aE
3
a

� ≈ − 1

2N2g(x0)

/
x

F 03
x,aF

03
x,a,

εBT
(x0) =

1

2

�
Bi

aB
i
a

� ≈ − 1

2N2g(x0)

/
x

F i3
x,aF

i3
x,a,

εBL
(x0) =

1

2

�
B3

aB
3
a

� ≈ 1

4N2

/
x

F ij
x,aF

ij
x,a,

(2.5.5)

where the summation over i, j = 1, 2 and a = 1, . . . , N2
c − 1 is implied. The expectation value on

the lattice is calculated by the ensemble average over all lattice sites. Inserting expression (2.3.20)
for the discretized field strength tensor yields the the energy density components in terms of the
link fields. Rewriting the pressure components yields

PT (x
0) = εEL

(x0) + εBL
(x0)

PL(x
0) = εEL

(x0) + εBL
(x0)− εET

(x0)− εBT
(x0).

(2.5.6)

Note that the expressions of the energy density and pressure components are gauge invariant
quantities and therefore are physical meaningful observables.

Occupation numbers and correlation functions
We will now turn to the definition of particle numbers in weakly interacting 2+1 dimensional gauge
theories. In order to motivate a quasi-free particle picture we expand the gauge fields in terms of

mode vectors ξ
(λ)

j,pi
which are solutions of the free equations of motion DµF

µν = 0 with vanishing
coupling constant g = 0. We will present a brief summary for the solution of these equation and
refer to the technical calculation to [34] and [32].

Imposing temporal gauge aτ = 0 yields the following form for the free equations of motion

∂τ∂τai + τ

�
p2⊥ +

ν2

τ2

#
ai − τpipjaj − ν

τ
piaη = 0, i, j = 1, 2

∂ττ
−1∂τaη + τ−1p2Taη −

ν

τ
piai = 0, i = 1, 2

(2.5.7)

as shown in [39, 40]. We denote the free solutions of these equations by a lower case aµ to distinguish
them from the general gauge fields. Further, we abbreviate the transverse momentum by p2T =
p21 + p22 and require the solution to fulfill the Gauss constraint

piτ∂τai +
ν

τ
∂τaη = 0 (2.5.8)

and fix the remaining gauge freedom with the Coulomb type gauge given by

τpiai +
ν

τ
aη = 0. (2.5.9)
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We can write the free solution in terms of polarization vectors which yields

a
(λ)
j,pT ,ν(x) = ξ

(λ)
j,pT ,ν(τ)e

i(pixi+νη) (2.5.10)

where λ = 1, 2, 3 denote different polarizations. The polarizations λ = 1, 2 denote two transversal
polarization while λ = 3 denotes the longitudinal polarization direction. Inserting the longitudinal
mode vector

ξ
(3)
j,pT ,ν(τ) =

p1
p2
ν

 ξ(3)pT ,ν(τ) (2.5.11)

into the Gauss constraint yields ∂τξ
(3)
pT ,ν(τ) = 0. We therefore obtain a vanishing longitudinal mode

vectors ξ
(3)
pT ,ν(τ) = 0 when employing the Coulomb gauge. The other polarizations which specify

the directions of the mode-vectors can be formulated in terms of Hankel function - for an explicit

form for the mode vectors ξ
(λ)
j,pT ,ν(τ) we refer to [32], [34].

The first transversal mode vector

ξ
(1)
j,pT ,ν(τ) =

−p2
p1
ν

 ξ(1)pT ,ν(τ) (2.5.12)

yields a
(1)
η,pT ,ν(τ) = 0. When inserting this solution into the free equations of motion (2.5.7) we

obtain �
∂2
τ +

1

τ
∂τ + p2T +

�ν
τ

 2
+m2(τ)

#
ξ(1)p⊥,ν(τ) = 0. (2.5.13)

This equation corresponds to the free dispersion relation for the longitudinally expanding case given
by

ω(pT , ν, τ)
2 = p2T +

�ν
τ

 2
+m2(τ). (2.5.14)

where a vanishing mass term m2(τ) = 0 is assumed. We identify this mode-vector ξ
(1)
j,pT ,ν with the

gluonic part of the color-fields and the mode vector ξ
(2)
j,pT ,ν = (0, 0, ξ

(2)
η,pT ,ν)T with the scalar part.

We assume the expansion of gauge fields Aa
j in terms of the mode vectors and obtain

Aa
j (t0, x

i) =

�
d3p̃

(2π)3

�
α
(λ)
a,p̃i

ξ
(λ)
j,p̃i

(t0)eip̃
ixi

+ α
(λ)∗
a,p̃i

ξ
(λ)∗
j,p̃i

(t0)e−ip̃ixi

#
. (2.5.15)

Assuming the expansion of the chromo-electric field in terms of the mode vectors yields

Ej
a(t0, x

i) =
*

−g(t0)gjk(t0)

�
d3p̃

(2π)3

�
α
(λ)

a,p̃i
∂0ξ

(λ)

j,p̃i
(t0)eip̃

ixi
(2.5.16)

+ α
(λ)∗
a,p̃i

∂0ξ
(λ)∗
j,p̃i

(t0)e−ip̃ixi

#
.

Note, that the mode vectors above satisfy the normalization condition

ξ
(λ)
j,p̃i

(x0)
↔
∂0 ξ

(λ)∗
j,p̃i

(x0) =
i*−g(x0)

, (2.5.17)
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where we have written p̃i to emphasize that the third component of the momentum depends on the
imposed metric. With this expansion we can further define the analogous objects to annihilation
and creation operators in quantum mechanics

α
(λ)
a,p̃i

(x0) = i
*
−g(x0)

�
d3xe−ixip̃igjk(x0)

�
ξ
(λ)∗
j,p̃i

(x0)
↔
∂0 A

a
k(x

µ)

#
. (2.5.18)

Indeed, the condition (2.5.17) is chosen such that the generalizations of the fields A and E to
quantum fields satisfy suitable commutation relations.

In Section 3.2 we will impose the Gauss constraint and the Coulomb gauge which read

DjE
j = 0, −gij∂iAj = 0. (2.5.19)

Note that since we impose the temporal gauge A0 = 0 in our simulations the Coulomb gauge
condition is not conserved during the simulation and has to be restored at each time we calculate
the observables which are not gauge invariant. With these conditions the third polarization, which

is the polarization parallel to the pi direction, vanishes α
(3)

a,pi
= 0 and can therefore be neglected.

In analogy to the quantum theory we can now define occupation numbers as

fgluon(x
0, p̃i) =

1

(N2
c − 1)

N2
c−1/
a=1

�00α(1)
a,p̃i

(x0)
002� , (2.5.20)

fscalar(x
0, p̃i) =

1

(N2
c − 1)

N2
c−1/
a=1

�00α(2)

a,p̃i
(x0)

002� , (2.5.21)

where we distinguish between scalar and gluonic distributions. We emphasize that this definition
is gauge dependent and not unique. As already discussed we impose the Coulomb gauge in order
to make this quantity physically meaningful.

For the definition above we have assumed that the observed system is weakly interacting g → 0
and that the mass is vanishing m = 0. These assumptions were imposed in order to use Hankel
functions for the solution of the free equations of motion in the expanding space-time. We make
clear that this definition is not ideal because it is known that gluons create an effective mass which
should be taken into account in the particle definition since this mass contributes to the dispersion
relation. We will use this definition despite its complications since we use the mode vector expan-
sion in order to initialize the fields according to a specified distribution function. For more details
about the initial conditions see Section 3.2. Furthermore we are focusing on the large momentum
occupancy numbers for our analysis which is expected to not to be disturbed by the creation of
effective gluon and scalar masses.

A different definition is motivated by the Hamilton formalism of scalar field theory and assuming
the free dispersion relation [41]. It is suggested to define the occupation numbers as

f(τ, pT ) =
2

N2pT

 1

2τ

/
i=1,2

Ea
i (pT )E

a
i (−pT ) +

τ

2
Ea

3 (pT )E
a
3 (−pT )

 (2.5.22)

for the expanding case on the lattice. With this definition it was shown that ω(pT ) ≈ pT which
justifies using the free dispersion relation ω(pT )

2 = p2T +m2 and neglecting the mass term.
This definition motivates the separation of the total occupation numbers in a purely gluonic

contribution given by the transversal field components and a scalar part

f(τ, pT ) = fgluons(τ, p) + fscalars(τ, p). (2.5.23)
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The approach in (2.5.22) amounts to the following definitions of the respective occupation numbers

fgluon(τ, pT ) =
1

ω(pT )

/
i=1,2

�Ea
i E

a∗
i � ,

fscalar(τ, pT ) =
1

ω(pT )
�Ea

3E
a∗
3 � ,

(2.5.24)

where we assume ω(pT ) ≈ pT . A similar definition was also used in [31]. We therefore also include
equal time correlation functions in our analysis.

Using mode vectors to define the occupation numbers yields the possibility of projecting out
the polarization components to distinguish between the gluonic and the scalar particle numbers.
This enables us to use our original occupancy definitions (2.5.20), (2.5.21) and distinguish both
contributions during the simulation.

Another single-particle number definition which does not rely on the free dispersion relation was
suggested in [41]. By interpreting the longitudinal field components as scalar fields we can translate
the suggested definition to

fgluon(τ, pT ) =
1

τ

+
�Ea

i E
a∗
i �

�
Aa

jA
a∗
j

�
, fscalar(τ, pT ) = τ

(
�Ea

3E
a∗
3 � �Aa

3A
a∗
3 �. (2.5.25)

The dispersion relations for gluonic and scalar contributions can be approximated by

ωgluon(τ, pT ) =
1

τ

-.., �Ea
i E

a∗
i ��

Aa
jA

a∗
j

� , ωscalar(τ, pT ) = τ

)
�Ea

3E
a∗
3 �

�Aa
3A

a∗
3 � , (2.5.26)

where the summations over i = 1, 2 and j = 1, 2 is implied.
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Chapter 3

Initial Conditions

In this section we introduce two types of initial conditions for 2+1 dimensional gauge systems which
provide examples for gauge systems that are far from equilibrium. We discuss the so-called Glasma
which is described by the McLerran-Venugopalan model. This model is motivated by two colliding
ultra-relativistic nuclei and describes the first (very short) period of the gluonic system after the
collision where boost invariance can be assumed. Thereafter we discuss Gaussian initial conditions
which pose a second example of a gauge system far from equilibrium. Both systems are analyzed
by conducting classical-statistical simulations. In Section 3.1 and Section 3.2 we will provide a
description of both initial conditions and afterwards restate them in the lattice formulation. Next,
in Section 3.3 we discuss the equations of motions given by the classical statistical approximation
discussed in Section 2.4 and formulate the update rules we use in our lattice simulations.

3.1 Glasma Initial Conditions

Continuum formulation of the McLerran-Venugopalan model
We introduce initial conditions which describe two nuclei colliding in an ultra relativistic heavy-ion
collision. Specifically we adopt the McLerran-Venugopalan model often referred to as the MV-
model which was introduced in [28]. Since we assume the energy in this collision to be very high
the Lorentz contraction justifies the assumption of a peaked charged density distribution in di-
rection of the collision trajectory. Additionally, we assume that the nuclei collide head on and
therefore the so-called color sheets, which describe the charge distributions of the nuclei, are par-
allel to each other. Importantly the high energy nuclei translate to large number gluons which
means that the MV-model describes a highly occupied system. Hence, as it was shown in Section
2.4 the contribution from quantum vertices in the gauge action can be neglected and the classical
approximation is justified.

We first employ light cone coordinates in order to solve the classical Yang-Mills equation

DµF
µν = Jν , (3.1.1)

where Jν denotes the color charge current. Light cone coordinates are given by

x± =
x0 ± x3√

2
, t = x0, z = x3, (3.1.2)

and yield the following form of the Minkowski metric

gµνLC =

��
0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

%%
µν

. (3.1.3)
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We consider a nucleus moving in longitudinal direction which gives us the following form for the
color current

Jµ = δµ+ρa(x
−, xT )ta, (3.1.4)

where we neglect the x+-dependency because we assume the valence quarks to be static in this
direction. Next, we impose the covariant gauge condition

∂µA
µ = 0 (3.1.5)

and use the Ansatz

Aµ = δµ+A+
a (x

+, x−, xT )ta (3.1.6)

for the color fields. Inserting the Ansatz in the gauge condition yields

∂+A
+ = 0. (3.1.7)

Hence, the color fields are independent of x+. This justifies the choice of light cone coordinates.
Further, lowering the index by using the derived form of the metric yields

A+ = g+νA
ν = g+νδ

ν+A+
a ta = 0 (3.1.8)

and therefore the color charge is conserved

DµJ
µ = ∂µJ

µ + iAµJ
µ

= ∂+J
+ + iA+J

+ = 0.
(3.1.9)

Since, Ai = Ai = 0 for i = 1, 2 we have Di = ∂i and obtain

∂i∂
iA+(x−, xT ) = ∂iF

i+ = J+ = ρa(x
−, xT ). (3.1.10)

This Poisson equation can be solved by partially Fourier transforming it with respect to the trans-
verse coordinates. Equation (3.1.10) in transverse momentum space is given by

k2T Ã
+(x−, kT ) = ρ̃a(x

−, kT ). (3.1.11)

Transforming the charge density into this space can be used to obtain an explicit expression for
the color fields. Applying an inverse Fourier transformation back to the normal space yields

A+(x−, xT ) =
�

d2kT
1

(2π)2k2T
ρ̃a(x

−, kT ) exp
�
ikjTx

j
T

�
, (3.1.12)

where the summation of the transverse directions j = 1, 2 is implied.
In prospect of initializing the color field of two nuclei which are moving in opposite directions

it will prove useful to switch to another gauge given by A+ = 0. This gauge condition is called
light cone gauge. We keep discussing the color fields for only one nucleus in the continuum as they
are equivalent for the second nucleus with swapped +-and −-components. For a more detailed
discussion see [8]. In the lattice formulation of the MV-model we will take the second nucleus into
account.

We employ the light cone gauge condition by finding a gauge transformation V (x) such that

Aµ(x) → V
�
x−, xT

"
(Aµ − i∂µ)V

† �x−, xT " (3.1.13)

yields A+ = 0. By rewriting this gauge condition for the transformed field we obtain

∂−V † �x−, xT " = −iA+
�
x̃−, xT

"
V † �x−, xT " , (3.1.14)
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where the gauge field in the integrand is denotes the gauge field before the transformation in
covariant gauge. This represents an ordinary differential equation and thus is solved by

V † �x−, xT " = P exp

�−i

x−�
−∞

dx̃−A+
�
x̃−, xT

"% . (3.1.15)

We assume that the gauge transformation is independent of x+. Otherwise we would introduce
a x+-dependence for the color fields by imposing the light cone gauge. Hence, we assume that
∂+V

† �x−, xT " = 0. Taking into account that the transverse components of the gauge fields are
vanishing in the covariant gauge yields the following expressions for the other components of the
color fields

A− = 0, Ai = −iV
�
x−, xT

"
∂iV

† �x−, xT " (3.1.16)

in light cone gauge.
In the ultra relativistic limit of the system we can derive expressions for the gauge fields in

covariant gauge. In this limit the charge density is given by

ρa
�
x−, xT

"
= δ(x−)ρa(xT ) (3.1.17)

which can be plugged into (3.1.12) and since we only Fourier transformed the transverse coordinates
this translates into

A+
�
x−, xT

"
= δ(x−)A+

�
xT

"
(3.1.18)

in covariant gauge. Since the longitudinal support of the charge density remains unchanged in the
Fourier transformation we find an explicit expression for the gauge transformation (3.1.15) because
the delta function in the integrand yields a Heaviside step-function. We obtain

A+ = A− = 0, Ai = Θ(x−)V
�
xT

"
∂iV † �xT " , (3.1.19)

with the continuous Wilson lines

V (xT ) = lim
x−→∞

V (x−, xT ). (3.1.20)

As pointed out in [8] the extent of the color field in transverse directions is merely a result of the
gauge we used to formulate the relations above. In fact, the physical chromo-electric and chromo-
magnetic fields are still concentrated at x− = 0 at initial time. These physical fields are given
by

∂iF
i+ = J+

LC

�
x−, xT

"
, (3.1.21)

where

J+
LC

�
x−, xT

"
= ρLC

�
x−xT

"
, ρLC

�
x−, xT

"
= δ(x−)V

�
xT

"
ρ
�
xT

"
V † �xT " (3.1.22)

are the color-charge density and current in light cone gauge.
We now introduce the color charge density, which can be defined by a Gaussian distribution. We

can define the charge density by specifying the 1- and 2-point correlation functions, employing the
following properties [29, 28]

Color charge neutrality:
�
ρa

�
xT

"�
= 0,

Color charge fluctuation:
�
ρa

�
xT

"
ρb

�
yT

"�
= µ2δabδ

�
xT − yT

"
.

(3.1.23)
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The parameter µ is known as the MV-parameter and is of phenomenological nature. We will discuss
the magnitude and units of all given parameters in Section 5. A generalization of the above color
density is given by �

ρa
�
x−, xT

"�
= 0,�

ρa
�
x−, xT

"
ρb

�
y−, yT

"�
= µ2δabδ(x− − y−)δ

�
xT − yT

"
,

(3.1.24)

which yields the generalized MV-model [42]. Here the additional x−-dependence is introduced
because we do not assume the ultra relativistic limit for the color charge density (3.1.17). This
leads to the additional longitudinal dependence. In Section 5 we will see that this adaption will
have a big effect on the dynamics of the gauge system.

Lattice formulation of the McLerran-Venugopalan model
We will now formulate the initial conditions described by the MV-model on a hyper cubic lattice
as introduced in Section 2.3. We will do this in the reverse chronology compared to the continuum.
First we will define the charge density on the lattice, which can be written as [8, 6, 43]�

ρaxT ,n

�
= 0, (3.1.25)�

ρaxT ,nρ
b
xT ,m

�
=

µ2

Nηa1a2
δabδmnδ

�
xT − yT

"
. (3.1.26)

Here we discretized the longitudinal direction by introducing Nη so-called color-sheets which can
be described by parallel transverse planes. Note that we the 3 dimensional support of the charge
density (3.1.25) is taken into account by introducing the color sheets which discretize the charge
density in longitudinal direction. Since the gauge transformations which yield the color fields in
light cone gauge are defined by light-like Wilson lines, we can describe this system effectively in 2+1
dimensions. Each site in the transverse lattice slice is visited by exactly one of those Wilson lines
and therefore the gauge transformations are independent in the longitudinal direction. We neglect
the longitudinal support of the color field can therefore describe the system in 2+1 dimensions.
Figure 3.1 shows a visualization of the color-sheet approximation. The next step is to discretize

Figure 3.1: Illustration of the color-sheet approximation on a lattice. The label z represents the
longitudinal direction whereas xT denotes the transverse directions.

the relation of the color fields with the color-charge density given by the Poisson equation (3.1.10).
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This is achieved in a straight forward manner by approximation the transverse Laplacian by finite
differences which yields [44, 8]

∂i∂
iA+(x−, xT ) =

/
i,a

1

(ai)2

�
Aa,+

x+î,n
−Aa,+

x−î,n
+ 2Aa,+

x,n

 
= ρax,n(x

−, xT ). (3.1.27)

Solving this equation can be done with the same strategy as in the continuum formulation. We
first Fourier transform the equation to momentum space and after initializing it with the trans-
formed charge density transforming it back to normal space. This is done using the fast Fourier
transformation algorithm. We obtain

k2T Ã
a,+
k,n = ρ̃ak,n (3.1.28)

with

k2T =
/
i=1,2

�
2

ai

#2

sin

�
kia

i

2

#
. (3.1.29)

In momentum space the discretization of the transverse plane is defined by the momentum lattice
spacing Δk = 2π/(Nia), where Ni is the number of lattice points in direction xi, for i = 1, 2. For
the remainder of this work we will assume a = a1 = a2 and N = N1 = N2 in order to avoid
any distinction of cases depending on the lattice spacings. An important aspect of these initial
conditions is that they are very sensitive to the granularity of the discretization. This means that
the system will suffer from infrared divergences by choosing small (transverse) lattice volume VT

because the smallest non-zero momentum is given by

kmin =
2π

Na
=

2π√
VT

. (3.1.30)

We also have to deal with ultra violet divergences because the largest momentum is given by

kmax =
2

a
, (3.1.31)

which poses a problem for sufficiently small lattice spacings. These divergences need to be taken
into account since the lattice volume is dictated by the physical volume of the gauge system and
the lattice spacing needs to be assumed sufficiently small in order to keep numerical errors small.
We emphasize that it is not possible to get rid of both divergences by rescaling the lattice distances
since both divergences are proportional to the reciprocal of a.

In order to deal with both types of divergences we introduce the screening mass m and the ultra
violet regulator ΛUV . For regularizing the system the solution for color fields (3.1.28) in momentum
space is very useful because we introduce the regularized color fields

Ãa,+
k,n =

1

k2T +m2
Θ(Λ2

UV − k2T )ρ̃
a
k,n (3.1.32)

in momentum space [44, 8]. Additionally, we introduced set the zero-momentum modes of the color
fields to 0 in order to ensure color neutrality.

In order to obtain the color-fields for the nucleus moving in the x+-direction we can repeat all
of the steps above and swap the +- and −-components.

As we have discussed in Section 2.3 we can identify the parallel transporter with the link variables
Ux,µ. We can enhance this identification by introducing Wilson lines, which are products of link
variables connecting consecutive lattice sites. These objects can therefore be seen as the analogous
object to the parallel transporter along a path Cxy, where x and y are not necessarily neighboring
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Chapter 3. Initial Conditions

lattice sites. Therefore the discretization of the integral in (3.1.20) can be rewritten in terms of
light-like Wilson lines [44, 8]

VA,x =

Nη'
n=1

exp

iAa,+

x,n t
a
�
, VB,x =

Nη'
n=1

exp

iAa,−

x,n t
a
�
. (3.1.33)

The letters A, B denote the x−-moving and x+-moving nucleus respectively. Note, that the path
ordering in (3.1.15) represents a very important aspect in this step, because the calculation of the
light-like Wilson lines is neither linear, nor is it commutative. However, in practice we sample
the color density from a Gaussian distribution where the ordering which component we sample
first is not relevant due to the stochastic nature of the process. At this point it makes sense to
justify the construction of this Wilson loop because this step reduces the 3 + 1 dimensional gauge
system to an effectively 2 + 1 dimensional system. The longitudinal direction of the lattice which
was occupied by the color-sheets is collapsed onto the transverse plane. As given in (3.1.20) the
light-like Wilson lines would span from negative light-like infinity to positive light-like infinity in
x−- and x+-direction respectively.

In practice we cannot realize an infinitely long lattice because of finite computational resources.
Nevertheless the description of the Wilson lines in (3.1.33) is correct because we assumed that the
charge density vanishes outside of the color-sheets and therefore does not contribute to the Wilson
lines. Multiple color-sheets are used in order not to assume the full boost invariant form of the
system where the charge distribution is concentrated in a transverse plan. Multiple color-sheets
impose a non-vanishing longitudinal support of the charge density.

Next, we introduce the transverse link variables. Because in the covariant gauge formulation
the transverse color-fields Ai, i = 1, 2 vanish the link variables are given by identity matrices. We
obtain the expressions for the transverse link fields in light-cone gauge by transforming identity
matrices

UA
x,i = VA,xV

†
A,x+î

, UB
x,i = VB,xV

†
B,x+î

. (3.1.34)

In [8] the gauge fields at initial time τ0 in the MV-model for two colliding nuclei are discussed in
more detail.

We emphasize that UA and UB are the link fields which replace the transverse continuous color
fields of the nuclei A and B respectively in the lattice formulation. These color fields are given in
light-cone gauge. The Minkowski diagram depicted in Figure 3.2 shows that the collision between
the nuclei cannot effect the regions II-IV since these regions are not causally connected to the
event. However, region I (the future light-cone) is affected by the collision and a non-trivial color
field, which is referred to as Glasma, is created in this process [43]. For the color currents which
describe each of the nuclei we assume that they do not lose any momentum and that they stay on
their light-like trajectories despite the collision. From these properties we can follow that the color
charges are conserved for both currents [8]. This causal separation enables us to derive the color
field in region I by the separate, independent solutions for the color fields of the colliding nuclei. In
order to take into account that the presence of the fields can lead to color rotations of the charge
densities for the nuclei we employ the Fock-Schwinger gauge condition

x+A− + x−A+ = 0, x+, x− > 0, (3.1.35)

in light-cone coordinates for region I. In the other regions II-IV we fix A− = A+ = 0 which can be
analytically connected to the gauge condition in the future light-cone. The boost invariance of the
color current is inherited from the color currents to all other observables of this system as it is the
only quantity that the Yang-Mills equation depends on. We therefore transform the Glasma color
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3.1. Glasma Initial Conditions

Figure 3.2: Minkowski diagram which illustrates the separation of the space-time into four different
regions by the color currents. ρA and ρB denote the color current for the colliding nuclei on their
light-like trajectories in opposite directions. Region I is the only causally connected region for the
collision at τ → 0. The color field created in this region due to the collision of the nuclei is called
Glasma. II and III are the regions of the color fields for the nuclei B and A respectively.

field to (τ ,η)-coordinates (2.1.2) with which the boost invariance translates into an independence
of the η-coordinate. In these coordinates the Fock-Schwinger gauge yields the temporal gauge

Aτ = 0. (3.1.36)

In the continuum we can express the color field of the Glasma in terms of the solutions for each
of the nuclei by

Ai(τ0, xT ) = − �
αi
A(xT ) + αi

B(xT )
"
, i = 1, 2 (3.1.37)

Aη(τ0, xT ) = 0, (3.1.38)

in the (τ ,η)-coordinates at initial time τ0 → 0 [8]. We write αA and αB for the color fields of each
nuclei in the continuum to distinguish them from the Glasma color field Aµ(τ, xT ).

In [45] a lattice formulation for the transverse link fields of the total color fields for both nuclei
is derived, they are given implicitly by��

UA
x,i + UB

x,i

"
(1 + Ux,i(τ0))

†
�
ah

= 0, (3.1.39)

at initial time τ0. The subscript in above expression denotes the anti-hermitian and traceless part
of a matrix in the brackets. For an arbitrary element M of SU(Nc) this is given by

[M ]ah =
1

2i

��
M −M †

 
− 1

Nc
tr
�
M −M †

 #
. (3.1.40)

In Appendix B we discuss how to obtain an explicit solution for SU(2) theories. For SU(3) the
equation has to be solved numerically. The longitudinal components of the link variables are given
by identity matrices.
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Chapter 3. Initial Conditions

In order to avoid boundary effects due to the finite lattice volume we impose periodic boundary
conditions. We can realize these for the transverse link field Ux,i by requiring

Ux0,i = Ux1+ĵ,i for i, j = 1, 2, (3.1.41)

with

xj0 = 0, xj1 = Na. (3.1.42)

The chromo-electric and chromo-magnetic fields can be identified using the interpretation of the
field strength tensor components in analogy to classical electrodynamics. Note that since we are
using the temporal gauge and assume that the color fields are boost invariant in rapidity direction
we have

Dτ = ∂τ ,

∂ηA
µ = 0.

(3.1.43)

The chromo-electric fields are therefore given by

Ei = gτµgiνF
µν = ∂τAi for i = +,−, (3.1.44)

Eη = gτµgηνF
µν =

1

τ
∂τAη (3.1.45)

and the chromo-magnetic field can be written as

Bi = −1

2
gilgmgkn"

ljkFmn = −"ijDjAη, (3.1.46)

Bη = −1

2
gηlgmgkn"

ljkFmn = −F12. (3.1.47)

Additionally, we can relate the components of the chromo-electric fields to the canonical momenta

Ei =
1

τ
P i, Eη = P η. (3.1.48)

It therefore suffices to initialize the chromo-electric field in our simulations next to the link fields
in order to fully describe the gauge system at an initial time τ0 > 0. We can write the longitudinal
chromo-electric field in the lattice formulation as [8]

Ex,η(τ0) =
1

2a2

/
i=1,2

�
(Ux,i − 1)

�
UB†
x,i − UA†

x,i

 
+

�
U †
x−î,i

− 1
 �

UB†
x−î,i

− UA†
x−î,i

 �
ah

. (3.1.49)

The transverse chromo-electric fields vanish at initial time.

3.2 Gaussian Initial Conditions

We now introduce a second type of initial conditions, which are known as Gaussian initial conditions
[35], [33]. Before we come to a detailed discussion of these conditions we introduce an expression for

the distribution function in terms of so-called mode vectors, which we denote by ξ
(λ)
j,pi

. We require
that these vectors satisfy �

∂0ξ
(λ)
j,pi

(x0)
 ∗

= ∂0ξ
(λ)∗
j,pi

(x0) (3.2.1)

and the normalization condition

gjk(x0)

�
ξ
(λ)
j,pi

(x0)
↔
∂0 ξ

(λ�)
k,pi

(x0)

#
= δλ,λ�

i*−g(x0)
(3.2.2)
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3.2. Gaussian Initial Conditions

as well as free classical equations of motion. The superscript λ = 1, 2 denote the polarization
directions. We assume two polarizations because our goal is to employ Glasma-like initial conditions
which yield that number of polarizations [31]. Note, that for the expanding case we identify the
longitudinal component of the momentum by the rapidity wave number divided by the proper time
p3 = ν

τ . The double-sided arrow over the derivative is a short hand notation for

A
↔
∂µ B = A∂µB − (∂µA)B (3.2.3)

for arbitrary fields A and B. For the explicit form of the mode vectors see [32], [34].

We introduce operators α
(λ)

a,pi
as classical analogous objects to annihilation and creation operators

given by

α
(λ)

a,pi
(x0) = i

*
−g(x0)

�
d3x exp

�−ixipi
"
gjk(x0)

�
ξ
(λ)∗
j,pi

(x0)
↔
∂0 A

a
k(x

µ)

#
, (3.2.4)

where V denotes the volume of the observed system. We require that these operators satisfy�
α
(λ)

a,pi
α
(λ�)∗
a,pi�

�
=

�
f(t0, p

i) +
1

2

#
(2π)3δabδλλ�δ(3)(pi − pi�), (3.2.5)�

α
(λ)

a,pi
α
(λ�)
b,pi�

�
=

�
α
(λ)∗
a,pi

α
(λ�)∗
b,pi�

�
= 0. (3.2.6)

This enables us to define the distribution function in terms of mode vectors

fgluon(x
0, p̃i) =

1

(N2
c − 1)

N2
c−1/
a=1

�00α(1)
a,p̃i

(x0)
002� , (3.2.7)

fscalar(x
0, p̃i) =

1

(N2
c − 1)

N2
c−1/
a=1

�00α(2)

a,p̃i
(x0)

002� , (3.2.8)

We dropped the 1
2 factor since we require high occupancy numbers (2.4.43). Furthermore, it can be

shown that this definition of the distribution is equivalent to (2.4.42) [33]. Hence, the interpretation
in terms of occupation numbers is thereby justified.

We can see that the operators α
(λ)

a,pi
are dependent on the gauge fields A. Therefore the distri-

bution function is not a gauge independent quantity. As in the discussion about the MV-model it
proves useful to chose the temporal gauge Aτ = 0. However, this gauge condition leaves residual
gauge freedoms which we fix by choosing the Coulomb gauge

−gij(x0)∂iA
a
j (x

µ) = 0 (3.2.9)

at a fixed time in order to make the distribution function comparable.
The temporal gauge enables us to neglect the A0

a component of the gauge field completely in our
simulation. Hence, implicitly this gauge condition is fulfilled at all times of the simulation. The
downside of this approach is that the Coulomb gauge gets destroyed during the simulation and has
to be reestablished each time when calculating gauge dependent quantities such as the distribution
function. We use the Fourier acceleration method presented in [46] to restore this gauge condition.

In order to describe the system completely we have to initialize the gauge field and the chromo-
electric field at initial time t0. These are given by their mode expansions

Aa
j (τ0, x

i) =

�
d3p

(2π)3

�
α
(λ)
a,pi

ξ
(λ)

j,pi
(τ0)e

ipixi
+ α

(λ)∗
a,pi

ξ
(λ)∗
j,pi

(τ0)e
−ipixi

#
, (3.2.10)

Ej
a(τ0, x

i) =
*

−g(τ0)g
jk(t0)

�
d3p

(2π)3

�
α
(λ)

a,pi
∂0ξ

(λ)

j,pi
(τ0)e

ipixi
+ α

(λ)∗
a,pi

∂0ξ
(λ)∗
j,pi

(τ0)e
−ipixi

#
. (3.2.11)
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Chapter 3. Initial Conditions

The chromo-electric and color field can be discretized by approximating the above integral with a
finite sum and by defining the fields and mode vectors on the lattice sites. The link fields Ux,j on
the lattice are given by

Ux,µ = exp [iaµAx,µ] . (3.2.12)

In the conducted simulations we assume that the distribution function is of the form

f(x0 = τ0, p
i) = n0

Q

g2

�
p

Q

#−κ

e
− p2

2p20 , (3.2.13)

which fulfills the high occupancy property for small couplings g � 1 and therefore we can use the
classical approximation discussed in Section 2.4. We refer to n0 and Q as the initial amplitude and
the conserved momentum scale respectively.

The energy density of the system is given by

ε = 2(N2
c − 1)

�
d2p

(2π)2
p
�
fgluon(x

0, pi) + fscalar(x
0, pi)

"
. (3.2.14)

The factor (N2
c − 1) is introduced because we assume that all color components are governed by

the distribution functions fgluon and fscalar. Note that unlike the non-expanding case the energy
density is expected to decrease over time, due to the expansion in longitudinal direction. Using
polar coordinates for the evaluation of this integral yields the following expression for the energy
density

ε =
2(N2

c − 1)Qκ+1n0

2πg2
2−(κ−1)/2Γ

�
3− κ

2

#
p3−κ
0 . (3.2.15)

We assumed κ < 3 to ensure that the integral is finite. We can now use this equation to define the
conserved momentum as

Q4 =
C(κ)g2ε

2(N2
c − 1)

=
2−(κ−1)/2

2π
Γ

�
3− κ

2

#
C(κ)n0Q

κ+1p3−κ
0 (3.2.16)

where C(κ) denotes a constant which relates p0 and Q. As suggested in [31] we choose this constant
such that for n0 = 0.1 we have Q = p0. For κ = 0 and Nc = 2 this gives C(0) = 20

√
2π.

Finally, we have to take into account that for that the equations of motion derived in Section 3.3
include the Gauss constraint. Therefore the fields defined by the Gaussian initial conditions have
to satisfy this condition. In the lattice formulation the Gauss constrain reads

/
j>0

Ej
x − U †

x−ĵ,j
Ej

x−ĵ
Ux−ĵ,j

aj
= 0. (3.2.17)

We have approximated the covariant derivative with a backward derivative defined in terms of the
links as discussed in Section 2.3. Since the equations of motion preserve this constraint we only
need to restore it at the beginning of the simulation. We use an adapted version of the Gauss
restoration algorithm presented in [47] in order to restore the Gauss constraint. Note that the
Gauss constraint is automatically satisfied for the Glasma initial conditions since the transverse
chromo-electric field components vanish at initial time t0 and the fields are assumed to be boost
invariant.
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3.3. Equations of motion

3.3 Equations of motion

In this section we introduce the equations of motion for the continuum theory and discretize them.
Starting from the gauge action

SG[A] = −1

2

�
d4x

*
−g(x0)Fµν

a (x)F a
µν(x) (3.3.1)

we impose the temporal gauge A0 = 0 which yields an expression for the effective action

SG,eff [A] = −1

2

�
d4x

*
−g(x0)

�
gjk(x0)∂0A

a
j∂0A

a
j +

1

2
gjk(x0)gmn(x0)F a

jmF a
kn

#
. (3.3.2)

Identifying the chromo-electric field with the conjugate momentum fields

Ej
a(x

µ) =
δSG,eff

δ(∂0Aa
j (x

µ))
=

*
−g(x0)Aa

0(x
µ) (3.3.3)

the effective Hamiltonian can be written as

HG,eff [A,E] = −1

2

�
d3x

�
1*−g(x0)

gjk(x
0)Ej

aE
k
a − 1

2
gjk(x0)gmn(x0)F a

jmF a
kn

!
. (3.3.4)

We can now state the equations of motion as functional derivatives of the effective Hamiltonian

∂0E
j
a(x) = −δHG,eff

δAj
a(x)

=
*

−g(x0)Dab
k (x)F kj(x),

∂0A
a
j (x) =

δHG,eff

δEj
a(x)

= − 1*−g(x0)
gjk(x

0)Ek
a(x).

(3.3.5)

These equations are equivalent to the classical equation of motion given by the functional derivatives
of the gauge action with respect to spatial components of the color fields

δSG

δAa
j (x

µ)
= 0. (3.3.6)

Imposing the temporal gauge and deriving the effective action we implicitly neglected the functional
derivative with respect to the temporal gauge field component. In order to be consistent with the
full classical equations of motions we additionally require

δSG

δAa
0(x

µ)
= 0 ⇒ DjE

j(x) = 0, (3.3.7)

which is also known as the Gauss constraint. This property is preserved by the equations (3.3.5).
Hence, we only need to ensure that this constraint is satisfied at initial time of our simulation.

Equations of motion on a lattice
We now discretize the Hamiltonian (3.3.4) with the formalism developed in Section 2.3 and approx-
imate the integral with the finite sum over all lattice sites. The lattice regularized Hamiltonian is
given by

HG,latt[U,E] =
/
xi

a3
�
− 1

2
*−g(x0)

gjk(x
0)Ej

x,cE
k
x,c+

2Nc

g2

3/
j=1

/
k>j

Cjk

�
1− 1

2Nc
trUx,jk − 1

2Nc
trU †

x,jk

#�
,

(3.3.8)
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where the summation over the color components c is implied. We assume that all spatial lat-
tice distances are equal ai = a, i = 1, 2, 3 and distinguish between the Minkowski and Bjorken
(longitudinally) expanding system with the symmetric coefficients Cjk given by

Cjk =
1

a4

*
−g(x0)gjj(x0)gkk(x0). (3.3.9)

We can show that the above expression matches the effective Hamiltonian (3.3.4) in the continuum
limit a → 0. This can be shown using the expansion of the plaquettes and expressing the field
strength tensor in terms of the plaquettes as given in (2.3.20).

In order to find explicit expressions for the equations of motion we vary the Hamiltonian in
analogy to the continuous case

∂0E
k
x,a =

δHG,latt

δAa
x,k

. (3.3.10)

Since the plaquettes in the equation (3.3.8) are composed of four link fields we first calculate the
variation of the link fields with respect to the color fields at equal time x0 = y0

δUx,j

δAc
y,k

= δjkδ
(3)(x− y)

1

a3
∂

∂α


eigaαt

c
Ux,j

�
α=0

=
ig

a2
δjkδ

(3)(x− y)tcUy,k,

δU †
x,j

δAc
y,k

= δjkδ
(3)(x− y)

1

a3
∂

∂α

�
U †
x,je

−igaαtc
�
α=0

= − ig

a2
δjkδ

(3)(x− y)tcUy,−k.

(3.3.11)

This yields the variation of the trace of a plaquette

δ trUx,jk

δAc
y,l

=
g

a2
δ(3)(x− y)δ

/
k 	=0,l

Re

itc

�
Uy,lk + Uy,l(−k)

"�
. (3.3.12)

Inserting this result into (3.3.10) we obtain

∂0E
j
x,c = −a

g

/
k 	=0,j

CjkRe
−2itc

�
Ux,jk + Ux,j(−k)

"�
. (3.3.13)

We find the equations of motion for the link field by calculating

∂0Ux,j =
δHG,latt

δEj
x,a

, (3.3.14)

and obtain

∂0Ux,j = a3
i/
y

∂Aa
y,k

δUx,j

δAa
y,k

= −iga
gjj(x

0)*−g(x0)

N2
c−1/
c=1

Ej
x,ct

cUx,j . (3.3.15)

We have now derived the classical equations of motion in the lattice formulation (3.3.13) and
(3.3.15). They define the way how the color and the chromo-electric fields evolve over time and are
therefore a crucial part of our simulations.

Specifically at starting time x0 = t0 we initialize the fields as discussed in Section 3.1 and 3.2. We
offset the chromo-electric field by a half time step a0/2 in forward time direction. During the simu-
lation the link and the chromo-electric fields are updated in an alternatingly. This process is known
as the leapfrog algorithm and is illustrated in Figure 3.3. For each time step the chromo-electric
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3.3. Equations of motion

Figure 3.3: Illustration of the leapfrog algorithm for the link fields U and chromo-electric fields E.

and the link fields are updated using the forward Euler scheme. This is done by approximating the
temporal derivative with a finite difference

∂0E
j
x,a ≈

Ej

x+0̂,a
− Ej

x,a

a0
. (3.3.16)

Inserting the equation of motion (3.3.13) and rewriting the approximation above yields

Ej

x+0̂,a
≈ a0∂0E

j
x,a + Ej

x,a

= −aa0
g

/
k 	=0,j

CjkRe
−2itc

�
Ux,jk + Ux,j(−k)

"�
+ Ej

x,a.
(3.3.17)

Similarly we can deduce an update step for the link field, where the forward Euler scheme gives

∂0Ux,j ≈
Ux+0̂,j − Ux,j

a0
, (3.3.18)

which yields

Ux+0̂,j ≈ a0∂0Ux,j + Ux,j

= −igaa0
gjj(x

0)*−g(x0)

N2
c−1/
c=1

Ej
x,ct

cUx,j

=

�
1 − igaa0

gjj(x
0)*−g(x0)

Ej
x,ct

c

!
Ux,j .

(3.3.19)

The summation of the color components is implied. For sufficiently small time steps a0 we can
rewrite the update rule for the link fields as

Ux+0̂,j ≈ exp

�
−igaa0

gjj(x
0)*−g(x0)

Ej
x,ct

c

�
Ux,j . (3.3.20)

Note that in order to ensure the stability of the described procedure we have to use sufficiently
small time steps a0 such that the update rules (3.3.17) and (3.3.20) are justified. In particular, we
require

a0 � a (3.3.21)

to ensure the approximation in (3.3.20) is justified. In practice we initialize the time step size by
specifying the ratio to the lattice distance. We also want to emphasize that the Bjorken metric is
singular for the initial time t0 = 0 and we therefore require t0 > 0 for the expanding case.
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Lattice simulations in a nutshell
We now want to recapitulate the steps taken in simulations on a two dimensional lattice:

1. Initialize color fields Aa
x,j according to the Glasma or Gaussian initial conditions given in

equation (3.1.32) or (3.2.10) respectively at initial time t0.

2. Calculate link and chromo-electric fields given by (3.1.39) and (3.1.49) for Glasma initial
conditions and (3.2.12) and (3.2.11) for Gaussian initial conditions.

3. Employ periodic boundary conditions for both fields given by

Ux,i = Uy+ĵ,i, Ei
x,a = Ey+ĵ,i, i = 1, 2 (3.3.22)

where we assume xj = 0, yj = Na for fixed j = 1, 2.

4. For Gaussian initial conditions we need to ensure that the Gauss constraint (3.2.17) is fulfilled.
This is done via a modified version of the Gauss restoration algorithm presented in [47].

5. Introduce an offset in the time of the chromo-electric field

Ej
x,a �→ Ej

x+0̂/2,a
(3.3.23)

by applying the update rule (3.3.17) for a half time step a0/2.

6. Run update rules (3.3.20) and (3.3.17) for the link and the chromo-electric fields alternatingly

Ux,j �→ Ex+0̂/2,j

Ej

x+0̂/2,a
�→ Ej

x+0̂/2+0̂,a

(3.3.24)

until the end of the simulation.

Note that in practice we will re-scale the gauge fields and the chromo-electric fields according to

Aa
x,j �→

1

g
Aa

x,j , (3.3.25)

Ej
x,a �→ 1

g
Ej

x,a (3.3.26)

in order to get rid of the coupling constants in the update rules (3.3.20) and (3.3.17). Furthermore,
we rescale all dimensional quantities in the simulation with a scaling constant denoted Qlatt. For
more details about this rescaling to lattice units see Appendix C.
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Energy densities for expanding
space-times

In order to ensure that the initial conditions described in Section 3.1 and 3.2 as well as the sim-
ulation procedure discussed in Section 3.3 are implemented correctly we will present the most
important results for the evolution of the energy density in this chapter and compare them with
the literature. In addition, we will compare the MV-model with the Gaussian initial conditions
by choosing the parameters of the distribution function (3.2.13) such that they approximate the
occupation numbers obtained for the Glasma simulations at τ = 0.1 fm/c. This observation time
is chosen because at initial time the MV-model imposes no longitudinal chromo-electric field com-
ponent [6]. Furthermore this set of initial conditions are known to suffer from UV-divergences [48],
[49] and therefore are hardly comparable to Gaussian initial condition for the same initial time.

4.1 Energy densities for Glasma initial conditions

In this subsection we present the results achieved by our numerical framework using initial condi-
tions imposed by the MV-model as presented in Section 3.1. We especially focus on a time scale
were the boost invariance may still hold and hence the description of the gauge system motivated
by the MV-model is valid.

MV-model parameters
Following common choices in the literature, we derive and motivate our choice of MV-model pa-
rameters which are used to define the initial conditions. As this model was motivated by a central
ultra-relativistic collision of two nuclei we choose the lattice volume according to the size of a gold
nucleus projected onto a plane. We assume an atomic number A = 197 and estimate the radius of
the nucleus by RA = 1.2A1/3 fm. This yields the width of the two dimensional lattice

L ≈
(

R2
Aπ ≈ 12.4 fm (4.1.1)

in transverse direction. We further choose the granularity of the lattice by the number of lattice
points in each direction. This yields the transverse lattice spacing

a = L/N. (4.1.2)

Throughout this work we will use different lattice spacings since the number of lattice sites influ-
ences the computing time of the simulations drastically. It has been shown that the MV-model
is dependent on the lattice spacing but the qualitative behavior for sufficiently small lattice dis-
tances is not influenced [44]. We therefore choose the number of lattice sites such that we minimize
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Chapter 4. Energy densities for expanding space-times

unphysical effects due to the discretization while keeping the computation time low. We further
choose a lattice scaling parameter given by

Qlatt = 0.197326
N

L
GeV (4.1.3)

to rescale the lattice spacing to alatt = 1Qlatt.
The MV-parameter µ is estimated by

µ2 ≈ 1.1A1/3 fm−2 (4.1.4)

as it yields the color-charge squared per unit area in a nucleus with an atomic number A [28].
This approximation yields µ ≈ 0.5 GeV for the gold nucleus and we adopt this parameter as it is
often used in the literature. Also, it can be shown that this parameter relates to the saturation
momentum Qs ≈ Q = g2µ, which was shown in [50]. Additionally, it is estimated that an Au-
Au-collision at the Relativistic Heavy Ion Collider (RHIC) results in a saturation momentum of
Qs = 2 GeV [51]. We therefore assume that the coupling constant is given by g = 2.

In Section 3.1 we introduced the screening mass m and the parameter ΛUV in order to regularize
infra-red and ultra-violet divergences respectively. We emphasize that the finite lattice already
implicitly regularizes the system because the finite lattice spacing translates into minimal and
maximal momentum modes (the zero-momentum node is neglected in the MV-model). However
we introduce both parameters since the Glasma initial conditions are known to suffer from ultra-
violet divergences [43] and the screening mass relates to the scale ΛQCD in the continuum theory.
Throughout this work we adopt the value ΛUV = 20 GeV. Note, that the most dominant modes
are the non-vanishing yet small momentum modes. Hence, the UV regularization does not disturb
our results but reduces artifacts from the UV-divergences at early times τ < 0.1fm/c.

As mentioned above we expect that the screening mass is assumed to be related to the QCD scale
ΛQCD. In the classical treatment of the Glasma we cannot find an exact relation since we would need
the full description including quantum effects. We motivate our choice of m = 0.2 GeV ≈ 1 fm−1

by pointing out that this is approximately the inverse length scale of a proton which is assumed to
be color neutral. A detailed discussion about the dependency of the screening mass can be found
in [44].

Energy densities of gauge systems with Glasma initial conditions
We now discuss the results we obtained by using our numerical framework which implements
the leapfrog algorithm following the equations of motion as derived in Section 3.3. Throughout
this presentation we will fix the screening mass m = 0.2 GeV and UV-cutoff ΛUV = 20 GeV.
We show simulation results for two different color-sheet approximations in order to ensure that the
qualitative dynamical behavior is independent of the number of color-sheets and observe differences
in the quantitative dynamical behavior for both discretizations. A detailed discussion about the
behavior of the energy densities for the MV-model with respect to a change of lattice spacings
and the regulator parameters can be found in [44]. We can reproduce the described dynamics to
good accuracy and will show the most essential results in this section by distinguishing between
the single color-sheet approximation and the generalized MV-model with Nη = 30.

Figure 4.1 shows the energy density for gauge systems simulated using the original MV-model
and with the generalized version with 30 color-sheets for 0.0001−0.5 fm/c. At τ = Q−1 = 0.1 fm/c
it is observed that the energy densities behave as 1/τ . This behavior is expected since the system is
expanding in longitudinal direction at this rate. We also observe that for earlier times the behavior
of the energy density changes dramatically. This change can be explained with the fact that in the
ultra-relativistic limit the transverse chromo-electric fields are created immediately after the initial
time. In practice, the creation of the so-called flux tubes takes a certain amount of time. This
creation leads the circular pattern in the energy density distribution [8, Figure 2.4]. These field
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4.1. Energy densities for Glasma initial conditions

components contribute to the total energy density of the system as will be discussed in Figure 4.3
which results in the 1/τ -behavior.

(a) (b)

Figure 4.1: Total energy density simulated on a 10242 lattice with L = 12.9 fm averaged over 25
events plotted on a linear (left) and on logarithmic (right) grid. A screening mass m = 0.2 GeV
and a UV-cutoff ΛUV = 20 GeV were chosen. The results for the single color-sheet approximation
are compared with the generalized MV-model using Nη = 30 color-sheets.

Since the MV-model suffers from UV-divergences at early times and thus is strongly lattice
spacing dependent we do not compare the energy densities for initial times. Instead these values
are compared at τ = Q−1 = 0.1 fm/c with [8], [44]. This observation time is chosen since the
near boost invariance of the Glasma is expected to hold at this time and the UV-divergences are
no longer dominant. At this observation time we achieved an energy density for the single color-
sheet approximation of 50.3 GeV/fm3. For 30 color-sheets we calculated an energy density of
162.3 GeV/fm3. These values agree with the ones stated in [8] and [44] to good accuracy1. As
shown in Figure 4.1 the energy densities for Nη = 30 differ very much, however the qualitative
behavior remains the same. It can be observed that the energy densities increases with the number
of color-sheets. This increase slows down at approximately Nη ≈ 100 since the sampling from the
Gaussian distribution for the color charge density leads to a convergences towards the expectation
value of the distribution [45].

The nature of the Glasma initial condition introduces another feature when investigating the
behavior of the pressure components. The longitudinal and transversal pressure relative to the
total energy density show that at initial time we have a fully anisotropic system in the sense that
pT /ε = 1 and pL/ε = −1 [8]. For later times the expansion of the flux tubes is advanced due to the
creation of transverse chromo-electric and chromo-magnetic fields which results in a decrease in the
anisotropy of the system. Figure 4.2 shows that the isotropization phase ends at τ ≈ 0.1 fm/c and
the system appears to settle in an (an-)isotropic state with pT /ε = 0.5 and vanishing longitudinal
pressure pL/ε = 0. This feature can be observed independent of the number of color-sheets as it is
dictated by structure of the initial conditions.

We separate the total energy density as described in Section 2.5 in its contributions of the trans-
verse and longitudinal field components. In Figure 4.3 we see that the transverse field components
are created shortly after the initialization and during the isotropization phase. This behavior was
also shown in [43]. Further, we show the rescaled components in the second row of Figure 4.3

1These values serve as a validation of the Glasma initial conditions that were implemented as part of the thesis.
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Chapter 4. Energy densities for expanding space-times

since the absolute behavior creates the misleading impression of converging field contributions. In
fact, we see in Figure 4.3c and 4.3d that the energy density components do not converge and show
distinct dynamical behavior after the initialization. We will discuss these contribution in more
detail in Section 5.

Figure 4.2: Transverse and longitudinal pressure components relative to the total energy on a 10242

lattice with L = 12.9 fm averaged over 25 events. A screening mass m = 0.2 GeV and a UV-cutoff
ΛUV = 20 GeV were chosen. The results for the single color-sheet approximation are compared
with the generalized MV-model using Nη = 30 color-sheets.
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(a) (b)

(c) (d)

Figure 4.3: Energy density components on a 10242 lattice with L = 12.9 fm averaged over 25
events with a screening mass m = 0.2 GeV, UV-cutoff ΛUV = 20 GeV and Q = µg2 = 2 GeV. The
results for the single color-sheet approximation (left column) and with Nη = 30 color-sheets (right
column) are shown. The first row shows the absolute behavior for the energy density components,
the second row shows the rescaled values for a more comprehensive comparison of the components.
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4.2 Energy densities of gauge systems with Gaussian initial con-
ditions

In this section we conduct an analogous discussion of the energy density as in Section 4.1 for
Gaussian initial conditions and present a comparison between the expanding and the non-expanding
case. Furthermore, we choose the conserved momentum Q, the initial amplitude n0 and power law
exponent κ such that the distribution function matches the computed occupancy numbers for the
MV-model. In order to make this comparison physically meaningful we calculate the distribution
at τ = 0.1 fm/c. We do not use the initialization time τ = 0.0001 fm/c for the MV-model because
at this time the flux tubes are purely longitudinal and therefore no transverse fields have yet been
created at that time. Table 4.1 shows the obtained parameters for the distribution function. Figure
4.4 shows a comparison between the distribution function of the Glasma at τ = 0.1 fm/c and an
approximation which we initialize for the Gaussian initial conditions of the form (3.2.13). Note,
that we only approximate the gluonic distribution of the Glasma.

We emphasize that the Glasma initial conditions take all contributions from higher-order cor-
relation function into account. In contrast, the Gaussian initial condition neglect these higher-
order contributions and only initialize the 2-point correlation function. This means that the ob-
served differences in the results for both types of condition (with similar distribution functions at
τ = 0.1 fm/c) can be used to assess the importance of higher-order contribution for 2+1 dimensional
gauge systems in longitudinally expanding space-times.

Table 4.1: Parameters used for the comparison of the Glasma with the Gaussian initial conditions,
obtained by fitting a curve at τ = 0.1 fm/c with the computed distribution function for the MV-
model. Both types of conditions were run on a 5122 lattice with L = 12.9 fm.

Glasma IC Gaussian IC

Nη m ΛUV n0 Q κ

1 0.2 20 0.0036 6.1 1
30 0.2 20 0.0072 6.35 0.87

In Figure 4.5 we show the behavior of the energy densities for the expanding and non-expanding
case where we used the parameters of Table 4.1 for the different color-sheet approximations with
Nη = 1, 30. As expected we observe that the energy density in Minkowski space-times stay con-
stant whereas the energy density for the Bjorken-expanding case shows a 1/τ -behavior due to the
longitudinal expansion.

At the observation time τ = 0.1 fm/c the Glasma yields energy densities of 50.3 GeV/fm3 and
162.3 GeV/fm3 for Nη = 1, 30 respectively. For Gaussian initial conditions with the corresponding
approximated distribution functions we obtained a smaller energy densities of 30.5 GeV/fm3 and
61.1 GeV/fm3.

However, one would expect that the Glasma and the Gaussian systems have the same energy
densities as they are simulated on lattices of the same volume and have similar distribution func-
tions. We emphasize that a possible explanation for this discrepancy is the fact that we neglected all
higher-order connected correlation functions for the initialization with Gaussian initial conditions
and only initialized the 2-point correlator. This would mean that we have to take higher-order
contributions into account for expanding 2+1 dimensional gauge systems as they clearly are of
significant importance.

Another possible source of the deviation of the energy densities for both types of initial conditions
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4.2. Energy densities of gauge systems with Gaussian initial conditions

(a) Nη = 1 (b) Nη = 30

(c) Nη = 1 (d) Nη = 30

Figure 4.4: Comparison of distribution functions of simulated gauge systems at τ = 0.1 fm/c for
Gaussian and Glasma initial conditions for Nη = 1, 30. The gluonic distribution function for the
Gaussian initial conditions was fitted such that it approximates the gluonic distribution function
of the Glasma initial conditions at the observation time τ = 0.1 fm/c and has the form (3.2.13).
The obtained parameters a given in Table 4.1.
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(a) (b)

Figure 4.5: Energy density for Gaussian initial conditions. "M1 and "M30 denote the energy density
for the non-expanding case using the parameter sets calculated for the distribution function of
the MV-model at τ = 0.1 fm/c for Nη = 1, 30 respectively. Similarly, "Bj

1 and "Bj
30 denote the

energy densities for the expanding case. See Table 4.1 for the parameters of the initial distribution
functions. The simulations were run for τ = 0.1− 5 fm/c on a 5122 lattice with L = 12.9 fm.

yields the approach we used to approximate the distribution function. We approximated only the
gluonic part of the distribution function which yields a deviation for the scalar distribution at the
low momentum range as shown in Figure 4.4. The perturbative approximation of the energy density
in Equation (3.2.14) suggests that this yields a deviation for the total energy densities, however it
does not give a quantitative estimate of this deviation.

Furthermore, no initial isotropization phase as for the MV-model is observed. This can be
explained by emphasizing that an essential difference between the MV-model and the Gaussian
initial conditions are the non-vanishing transverse field components at initial time. Figure 4.6
shows the relative longitudinal and transverse pressure of the gauge system. The non-expanding
system remains in the same (an-)isotropic state over the whole observation period with pT /" ≈ 0.5
and pL/" ≈ 0. In contrast to the MV-model we observe that the system experiences a phase where
the system becomes less isotropic but settles at the same state as the static case. It is also observed
that this behavior is independent of the parameter set calculated for the different approximations
Nη = 1, 30.

For a better comparison between the expanding and the non-expanding systems we rescale the
energy densities according to

Minkowski: ε �→ τε

Q3
, (4.2.1)

Bjorken: ε �→ ε

Q4
. (4.2.2)

This yields dimensionless quantities and compensates the expansion rate with the multiplication
of the proper time τ . In Figure 4.5b we observe that the rescaled quantities for the expanding and
non-expanding case are converging.

Figure 4.7 shows the field contributions for the energy densities. We observe in Figure 4.7a and
4.7b that the longitudinal field components are increasing in the non-expanding case. Although
the Bjorken space-time is longitudinally expanding this behavior appears to be reinforced by the
expansion of the system. On the other hand, the fall-off behavior of the transverse field contributions
is increased for the expanding case compared to the system in Minkowski space-time. Note that
we refer to the rescaled quantities in this discussion in order to compare the non-expanding with
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(a) (b)

Figure 4.6: Transverse and longitudinal pressure components relative to the total energy density
on a 5122 lattice with L = 12.9 fm averaged over 50 events. Figure 4.6a shows the non-expanding
case while Figure 4.6b shows the longitudinally expanding case for Gaussian initial conditions.

the expanding systems. For the absolute values of the energy density contributions the described
behavior translates to the fact that the longitudinal energy densities decrease slower then 1/τ while
the transverse components are decreasing faster. This means that the dynamics of the expanding
systems changes compared to the non-expanding system. Additionally, the system appears to
converge to an isotropic system where all field components contribute the same to the total energy
density. We will resume this discussion in Section 5.1 where we discuss the dynamics of these
systems for a larger time scale.
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(a) (b)

(c) (d)

Figure 4.7: Energy density components for Gaussian initial conditions. Figures 4.7a and 4.7c show
the energy density components in the Minkowski space-time for the parameter set for Nη = 1 and
Nη = 30 respectively according to Table 4.1. The same is shown in Figures 4.7b and 4.7d for the
expanding case. The simulations were run for τ = 0.1− 5 fm/c on a 5122 lattice with L = 12.9 fm.
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Results for large time scales

In this section we discuss the dynamical behavior for Bjorken-expanding gauge systems in 2+1
dimensions on a large time scale and investigate the differences between Glasma and Gaussian
initial conditions. Furthermore, we provide evidence that the longitudinal contribution of chromo-
electric fields to the energy density grows linearly at late times for Glasma initial conditions when
compared to the other contributions, while for Gaussian IC this is not the case. This marks an
important difference between both sets of initial conditions, and we also give an explanation for
this late-time property of Glasma initial conditions.

In Section 5.1 we observe the evolution of the energy density for Glasma initial conditions and its
contributions. Next, in Section 5.2 we present the results obtained for the 2-point correlation func-
tion for the chromo-electric fields E and the color fields A and analyze the behavior for distribution
functions introduced in Section 2.5. In order to underpin our understanding of the results we in-
troduce four additional observables: hard momentum scales and characteristic occupancy numbers
for gluons and scalars in Section 5.3. In Section 5.4 we discuss the dependence of the simulation
results with respect to the lattice spacings and find that the granularity of the discretization does
not have an effect on the observed dynamics. Finally, we discuss the most important differences to
Gaussian initial conditions in Section 5.5.

5.1 Energy densities at large time scales of the Glasma

We now investigate the long-time behavior of the energy densities of gauge systems with Glasma
initial conditions. Throughout this section all simulation results are shown for a screening mass
m = 0.2 GeV and a UV-cutoff ΛUV = 20 GeV. The coupling constant and the MV-parameter are
chosen such that Q = g2µ = 2 GeV which we motivated in Section 4.1. For short simulation times
we have already shown in Figure 4.1 that the energy density of the system evolves according to
"(τ) ∝ 1/τ after τ = 0.1 fm/c.

In Figure 5.1, we show the total energy density over an extended time window 0.0001 ≤ τ ≤
100 fm/c forNη = 1 andNη = 30. We observe that at τ ≈ 2 fm/c the evolution of the energy density
slows down. This change in behavior can be explained by computing the field contributions of the
energy density, as shown in Figure 5.2. There we plot the rescaled energy density contributions
τεα, where α denote the respective component of the chromo-electric and chromo-magnetic field.
We see that the change of behavior for the total energy density is imposed by the longitudinal
contribution of the chromo-electric field, which seems to grow linearly at late times and dominates
the total energy density.

Further, in Figure 5.2, we observe that the transverse chromo-electric and the longitudinal
chromo-magnetic contributions are converging and settle at a 1/τ -behavior. We will give an
interpretation of these observation by introducing a quasi-particle picture using the introduced
single-particle distribution functions in Section 5.2. The transverse chromo-magnetic field on the
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other hand is decreasing at a faster rate than the expansion.

Figure 5.1: Total energy density of gauge systems with Glasma initial conditions simulated on
a 5122 lattice with L = 12.9 fm averaged over 50 events. The results for the single color-sheet
approximation are compared with the approximation using Nη = 30 color-sheets. The simulations
were run for 0.0001− 100 fm/c.

(a) Nη = 1 (b) Nη = 30

Figure 5.2: Rescaled energy density components τε of gauge systems with Glasma initial conditions
simulated on a 5122 lattice with L = 12.9 fm averaged over 50 events. The evolution for the single
color-sheet approximation (left) and with Nη = 30 (right) color-sheets are shown. Both graphs
show the results for τ = 0.0001 fm/c− 5 fm/c.
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Another feature of the dynamics at late times can be observed by focusing on the transverse and
longitudinal pressure relative to the total energy density. As we already discussed in Section 4.1,
the Glasma initial condition at initialization time are maximally anisotropic with pT /" = 1 and
pL/" = −1 since the chromo-electric fields in transverse direction are not yet created. In Figure 4.2
it was shown that the system appears to transition into a system with pT /" = 0.5 and pL/" = 0
and settles there. However, after the isotropization phase we observe that the system returns into a
maximally anisotropic state. This is shown in Figures 5.3a and 5.3b where we plot the longitudinal
and transverse pressure of the Glasma relative to the total energy density for 0.0001− 5 fm/c and
0.0001 − 100 fm/c respectively. Each of the figures compares the relative pressure component for
the color-sheet approximation Nη = 1, 30.

One not only finds that the system starts to become more anisotropic after τ � 1 fm/c, but this
transition is also faster for an increasing number of color sheets.1 This evolution of the pressure
components can be explained by taking into account that the longitudinal component of the chromo-
electric field dominates the other contributions in the expression for both pressure components
(2.5.6) at late times.

(a) (b)

Figure 5.3: Transverse and longitudinal pressure components relative to the total energy density
of gauge systems with Glasma initial conditions simulated on a 5122 lattice with L = 12.9 fm
averaged over 50 events. The results for the single color-sheet approximation are compared with
the generalized MV-model using Nη = 30 color-sheets. The left figure shows the results for 0.0001−
5 fm/c where an almost constant behavior is observed for all shown quantities at 0.1−1 fm/c. The
right figure shows a larger time interval of 0.0001− 100 fm/c.

5.2 Distribution function and correlations at late-times of the
Glasma

In this section we present the dynamical behavior of the 2-point correlation functions of the color
field A and the chromo-electric field E at equal time of the conducted simulation for gauge systems
described by the MV-model at initial time. We will continue to distinguish between the single-color
sheet approximation and the generalized MV-model using 30 color-sheets because we have seen in

1We have checked that for large Nη > 100 the behavior of the pressure evolution does not change with respect to
the number of color sheets which is consistent with the dependency of the total energy density with respect to the
color sheets.
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Section 5.1 that they show different dynamical behavior. Throughout this section we assume a
screening mass m = 0.2 GeV, a UV-regulator ΛUV = 20 GeV and Q = g2µ = 2 GeV. We motivate
the analysis of the dynamical behavior for these correlation functions by emphasizing that we can
define a particle distribution function in terms of these function as given in Section 2.5.

In Figure 5.4 we show the total correlation function of the color field A in the sense that we sum
over all 2-point correlation functions of the components of the gauge field A. We distinguish the
components parallel to the momentum A� and orthogonal to the momentum A⊥. As discussed in
Section 2.5 we interpret the third component of the color-field as a scalar field and therefore denote
this component with ASc. We observe no change in the evolution speed of the total correlation
function for the color field A. Due to the expansion of the system we see that the amplitudes of
this correlation function fall-off for increasing times independent on the number of color-sheets.
For late times at Qτ = 625 we see that the a steep decline with increasing momentum stops which
indicates that quantities we observe diverge for large times since the integral over the momentum
space will diverge.

Note that before we calculate the correlation functions we apply the Fourier acceleration method
in order to impose the Coulomb gauge to make the results comparable and physically meaningful.
The Coulomb gauge condition

∂iA
i = 0, (5.2.1)

translates to A� = piA
i/p → 0.

We plot the 2-point correlation function of each component of the color field in Figure 5.5. We
can see that our implementation of the gauge fixing algorithm worked correctly Figures 5.5c and
5.5d, since the components parallel to the momentum are orders of magnitude smaller than the
other components.

(a) Nη = 1 (b) Nη = 30

Figure 5.4: Total 2-point correlation function of the color field A at equal time for gauge systems
described by Glasma initial conditions simulated on a 5122 lattice with L = 12.9 fm averaged over
25 events. The results for the single color-sheet approximation are compared with the generalized
MV-model using Nη = 30 color-sheets.

We set the relative numerical precision of 10−10 for the gauge-fixing algorithm in order to ensure
that observation are not disturbed by a deviation of the gauge condition. However we point out the
gauge fixing algorithm we used did not converge for all configurations following the MV-model. We
therefore sampled the simulation runs were this was not the case and reached the desired precision.
It is expected that the cause for this divergences are statistical outliers due to the stochastic nature
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(a) Nη = 1 (b) Nη = 30

(c) Nη = 1 (d) Nη = 30

(e) Nη = 1 (f) Nη = 30

Figure 5.5: 2-point correlation functions for different color field components at equal time for gauge
systems described by Glasma initial conditions on a 5122 lattice with L = 12.9 fm averaged over
25 events. A⊥ and A� denote the field component perpendicular and parallel to the momentum
respectively while ASc denotes the third color component which we interpret as a scalar field. The
results for the single color-sheet approximation are compared with the generalized MV-model using
Nη = 30 color-sheets.
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of Glasma initial conditions but we did not investigate this further since no physically relevant
information is expected to be obtained from such an analysis.

We further see in Figures 5.5a, 5.5b, 5.5e and 5.5f that both the transverse and the scalar parts
of the 2-point correlation function do not change their dynamical behavior with respect to their
velocity of the evolution. As expected both components decrease due to the longitudinal expansion
of the system. In Figure 5.5a and 5.5b we see that the a steep fall-off behavior with respect to
the momentum is also given for later times whereas the scalar field components given in Figure
5.5e and 5.5f start flatting out with respect to the momentum at late times. Hence, the scalar
component is responsible for the flatting out of total 2-point correlation function of the color field
for large momenta.

Although we employed a different particle definition in this work the gluon and scalar occu-
pancy defined in (2.5.25) and the fact that we observe that the longitudinal chromo-electric field
contribution dominates the energy density at late times motivate the analysis of the correlation
function of the chromo-electric field components. In Figure 5.6 we show the total chromo-electric
field correlation function for Nη = 1, 30 and observe that it increases over time at the same rate
regardless of the number of color-sheets. Similarly to the color field we see that for late times this
correlation function does not decrease exponentially at late times for increasing momenta. This fact
is interesting since it indicates that the occupation numbers for late times increase when employing
the particle definition

f(τ, p) =
�Ei

aE
i
a�(τ, p)
p

(5.2.2)

introduced in Section 2.5. Note, that the depicted behavior needs to be multiplied by τ in order
to account for the expanding Bjorken metric. Similar to the gauge fields we see that the described
behavior is more pronounced for increasing numbers of color-sheets.

Figure 5.7 shows the components of the 2-point correlation function for the chromo-electric field.
The parallel component appears static for large momenta. On the other hand Figures 5.7e and
5.7f show that the fall-off behavior with respect of the momenta flattens at late times for the scalar
contribution. This suggests that specifically the occupation numbers for scalars increase at late
times.

(a) Nη = 1 (b) Nη = 30

Figure 5.6: Total 2-point correlation function of the chromo-electric field E at equal time for gauge
systems described by Glasma initial conditions simulated on a 5122 lattice with L = 12.9 fm
averaged over 25 events. The results for the single color-sheet approximation are compared with
the generalized MV-model using Nη = 30 color-sheets.
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(a) Nη = 1 (b) Nη = 30

(c) Nη = 1 (d) Nη = 30

(e) Nη = 1 (f) Nη = 30

Figure 5.7: 2-point correlation functions for different color field E at equal time for gauge systems
described by Glasma initial conditions simulated on a 5122 lattice with L = 12.9 fm averaged over
25 events. E⊥ and E� denote the field component perpendicular and parallel to the momentum
respectively while ESc denotes the third color component which we interpret as a scalar conjugate
momentum field. The results for the single color-sheet approximation are compared with the
generalized MV-model using Nη = 30 color-sheets.
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In order to investigate the occupancy numbers for gluons and scalars we calculate the distribution
functions for gluons and scalars introduced in Equations (2.5.20), (2.5.21). We plot these functions
in Figure 5.8 for times growing by a factor five in order to get a clearer picture with regards to
the relative growth in the logarithmic plot. We observe that the gluonic particle numbers show no
dynamic for sufficiently large momenta. On the other hand Figures 5.8c and 5.8d show that the
evolution of the scalar occupation number increases for late times and eventually shows the same
flattening of the fall-off behavior as we already observed for the correlation functions.

We could find indicators for the unexpected blow-up for the contribution of the longitudi-
nal chromo-electric field to the energy density at sufficiently late times which leads to an an-
isotropization phase yielding a maximally an-isotropic system. However, the correlation and dis-
tribution function do not give a full explanation of the dynamics observed on large time scales
because the influence of higher-order contributions is not taken into account.

For a clearer picture we introduce a hard momentum scale which shall give a characteristic
particle momentum of the system. Additionally, we introduce characteristic occupancy numbers in
the next section.

(a) Nη = 1, gluon distribution (b) Nη = 30, gluon distribution

(c) Nη = 1, scalar distribution (d) Nη = 30, scalar distribution

Figure 5.8: Distribution function for gluons fG and scalars fSc for gauge systems described by
Glasma initial conditions simulated on a 5122 lattice with L = 12.9 fm averaged over 25 events.
The results for the single color-sheet approximation are compared with the generalized MV-model
using Nη = 30 color-sheets.
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5.3 Hard momentum scales and characteristic occupancy of the
Glasma

In order to get a better understanding of the dynamics of the observed systems we introduce the
hard momentum scale given by2

ΛG(τ) =

�
d2p p2fG(τ, p)�
d2p pfG(τ, p)

, ΛSc(τ) =

�
d2p p2fSc(τ, p)�
d2p pfSc(τ, p)

. (5.3.1)

This quantity yields a scale for the characteristic momentum of the gluons and scalar particles
respectively. Figure 5.9 shows the simulation results of these scales and compares them for the
single color-sheet approximation and the generalized MV-model with Nη = 30. We observe, that
although the energy density contribution of the longitudinal chromo-electric component and the
occupation for scalar fields change dramatically, the hard momentum scale of the scalars remains
approximately constant. It only changes by 10% over the observation time of 0.0001− 5 fm/c3 and
therefore does not provide an explanation for the dynamics of the system.

We further introduce the characteristic occupancy numbers for gluons and scalars, given by

NG(τ) =

�
d2p f2

G(τ, p)�
d2p fG(τ, p)

, NSc(τ) =

�
d2p f2

Sc(τ, p)�
d2p fSc(τ, p)

. (5.3.2)

This scale can be interpreted as the average number of gluons and scalars in the observed gauge
systems. Figure 5.10 shows that the characteristic occupancy for gluons at early time for 0.0001−
1 fm/c grows which can be explained with the creation of the transverse chromo-electric fields after
the initialization. For later times we observe that the gluon occupancy only changes marginally.
The characteristic particle number of the scalars however stays constant until 1 fm/c and grows
linearly from that point on. Hence, for late times the gauge system settles in a state of significant
scalar particle production. We can therefore conclude that not an increase of the momentum of
the scalar particles is responsible for the change in the behavior of the energy density but rather
the production of scalar particles.

2In the simulation we approximate the integrals with a finite sum over all lattice sites in momentum space.
3We observe the described behavior for a larger time scale of 0.0001 − 100 fm/c. The computational resources

needed for these calculations are very high since at we have to restore the Coulomb gauge condition at each output
time.
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(a) (b)

Figure 5.9: Hard momentum scales for gluons (left) and scalars (right) simulated for 0.0001−5 fm/c
for gauge systems described by Glasma initial conditions simulated on a 5122 lattice with L =
12.9 fm averaged over 25 events. The results for the single color-sheet approximation are compared
with the generalized MV-model using Nη = 30 color-sheets in each figure.

(a) (b)

Figure 5.10: Characteristic occupancy numbers for gluons (left) and scalars (right) simulated for
0.0001−5fm/c for gauge systems described by Glasma initial conditions simulated on a 5122 lattice
with L = 12.9 fm averaged over 25 events. The results for the single color-sheet approximation are
compared with the generalized MV-model using Nη = 30 color-sheets in each figure.
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5.4 Lattice spacing (in-)dependence of Glasma initial conditions

In order to ensure that the observed behavior is not an artifact from the discretization we discuss
the differences we see in the dynamics depending on the lattice spacing. In Figure 5.11 we see
that the total energy density remains unchanged for a sufficiently fine lattice with N ≥ 512 and
constant L = 12.9 fm. The total energy density shows the same deviation from 1/τ -behavior at
late times for all depicted discretizations. We further observe that the energy density in the initial
phase of 0.0001− 0.1 fm/c for a = 12.9/256 ≈ 0.05 fm deviates from the finer discretizations. This
quantitative deviation can be explained by calculating the maximum momentum given by

pmax ≈ 2

a
=

2N

L
. (5.4.1)

For fewer lattice sites N in each direction and with constant lattice volume it is clear that the
maximal momentum decreases. Therefore the UV cutoff, which was chosen as ΛUV = 20 GeV in
all results shown in Figure 5.11, has a greater effect on coarser discretized systems because it cuts
off more modes relative to the total spectrum. However, the behavior after τ ≈ 0.1 fm/c aligns with
the other discretization. For completeness we show the results for the energy density contribution

(a) Nη = 1 (b) Nη = 30

Figure 5.11: Total energy density simulated for gauge systems simulated on different lattice dis-
cretizations with L = 12.9 fm averaged over 25 events. The single color-sheet approximation (right)
is shown next to the generalized MV-model using Nη = 30 color-sheets. The simulations were run
for 0.0001−5 fm/c. The results for the discretization N = 512, 768, 1024 yield near identical results
which leads to indistinguishable curves for both approximations.

of the field components in Figures 5.12 and 5.13 for different discretizations. As for the total energy
densities we observe that the dynamical behavior shows independence of the lattice discretization
when taking the effect of the UV-cutoff into account. We emphasize that the rate of the increase
for the longitudinal chromo-electric field contribution is independent of the lattice spacing.
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(a) Nη = 1 (b) Nη = 30

(c) Nη = 1 (d) Nη = 30

Figure 5.12: Energy density components of the chromo-electric field for gauge systems described
by Glasma initial conditions and simulated on different lattice discretizations with L = 12.9 fm
averaged over 25 events. The evolution for the single color-sheet approximation (top row) and with
Nη = 30 (bottom row) color-sheets are shown. The results are shown for τ = 0.0001− 5 fm/c.

In Figures 5.14 and 5.15 we observe that the characteristic momentum scale and characteristic
particle number show the same behavior for different lattice discretization. From these quantities
we derived the physical interpretation of increasing scalar particle numbers which explains the
increase of the longitudinal chromo-electric field and the correlated an-isotropization phase. We
therefore conclude that the features of dynamical behavior described in the previous section do not
originate from lattice artifacts.

We conducted similar analysis of the dependence with respect to the lattice spacing for the
Gaussian initial condition and found no significant change for any of the computed observables.
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(a) Nη = 1 (b) Nη = 30

(c) Nη = 1 (d) Nη = 30

Figure 5.13: Energy density components of the chromo-magnetic field for gauge systems described
by Glasma initial conditions and simulated on different lattice discretizations with L = 12.9 fm
averaged over 25 events. The evolution for the single color-sheet approximation (top row) and with
Nη = 30 (bottom row) color-sheets are shown. The results are shown for τ = 0.0001− 5 fm/c.
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(a) Nη = 1 (b) Nη = 30

(c) Nη = 1 (d) Nη = 30

Figure 5.14: Hard momentum of gluons and scalars for gauge systems described by Glasma initial
conditions and simulated on different lattice discretizations with L = 12.9 fm averaged over 25
events. The evolution for the single color-sheet approximation (top row) and with Nη = 30 (bottom
row) color-sheets are presented. The results are shown for τ = 0.0001− 5 fm/c.
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(a) Nη = 1 (b) Nη = 30

(c) Nη = 1 (d) Nη = 30

Figure 5.15: Characteristic occupancy numbers of gluons and scalars for gauge systems described
by Glasma initial conditions and simulated on different lattice discretizations with L = 12.9 fm
averaged over 25 events. The evolution for the single color-sheet approximation (top row) and with
Nη = 30 (bottom row) color-sheets are presented. The results are shown for τ = 0.0001− 5 fm/c.
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5.5 Gaussian initial conditions for large time scales

In this section we conduct a similar discussion as in Sections 5.1-5.3 for Gaussian initial conditions.
In Figures 5.16 and 5.17 we show the energy densities for Gaussian initial condition given by the
parameter sets which emulate the distribution function given by the MV-model for Nη = 1 and
Nη = 30 respectively at initial time τ = 0.1 fm/c.

In Figure 5.16a we see that unlike for the MV-model the simulations show that there is no
deviation from the 1/τ -behavior for the total energy density at late times. Additionally, we observe
in Figure 5.16b that the system undergoes no an-isotropization phase that we have seen for the
Glasma initial conditions because the relative pressure components stay constant after a short
initial phase.

Furthermore, in Figure 5.17 we see that the field contributions for the rescaled energy density
settle at a constant level. This behavior is consistent with the relative pressure components shown
above. The parameters for each approximation are given in Table 4.1. We can see that the former
parameter set yields identical energy density components after an initial phase. The parameters
given for Nη = 30 on the other-hand show distinguishable but almost congruent behavior of the
energy density components at late times.

(a) (b)

Figure 5.16: Total energy density (left) and relative pressure components (right) for Gaussian initial
conditions simulated on a 5122 lattice with L = 12.9 fm/c. The late time dynamics for each of the
quantities are shown where we denote the Gaussian initial conditions with the parameters given
in Table 4.1 by ε1 and ε30 which specify the distribution function at τ = 0.1 fm/c for the two
color-sheet approximations used for the Glasma initial conditions.

The evolution of single-particle distribution functions of gluons and scalars for the Gaussian
initial conditions is depicted in Figure 5.18. We observe that the gluonic occupancy numbers are
completely frozen and do not change over time. We saw a very similar behavior for hard momenta
of the gluon distribution function for Glasma initial condition, see Figure 5.8. However the scalar
distribution function shows a very behavior. While for Glasma initial conditions the characteristic
momentum scale changes slowly and mainly the occupation numbers grow, for Gaussian initial
conditions the situation is completely different. The characteristic occupation numbers barely
change while the main dynamics proceeds at hard momenta but changes characteristic momentum
scales only slowly.

Hence, in contrast to the results we obtained for the characteristic occupancy numbers for Glasma
initial conditions given in Figure 5.10 we do not observe a production of scalar particles for late
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(a) Nη = 1 (b) Nη = 30

Figure 5.17: Energy density contribution for Gaussian initial conditions simulated on a 5122 lattice
with L = 12.9 fm/c. The right figure shows the system using the parameters obtained for distri-
bution function of the single-color-sheet approximation for the Glasma at τ = 0.1 fm/c. Similarly
the parameters for Nη = 30 were used for the right figure.

times when simulating gauge systems described by Gaussian initial conditions. This is further
detailed in Figures 5.19c and 5.19d where we show that the characteristic scalar particle number
decreases in a short initial phase while gluon particle numbers increase. After this phase we observe
almost constant characteristic particle numbers. The hard momentum scales stay almost constant
during the whole simulation period as depicted in Figures 5.19a and 5.19b. Hence, the comparison
between Glasma and Gaussian initial conditions gives a consistent picture with regards to the
relation between the introduced scales and the energy density.
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(a) Nη = 1, gluon distribution (b) Nη = 30, gluon distribution

(c) Nη = 1, scalar distribution (d) Nη = 30, scalar distribution

Figure 5.18: Single-particle distribution function of gluons and scalars for Gaussian initial condi-
tions simulated on a 5122 lattice with L = 12.9 fm/c. The figures in the top row show the system
using the parameters obtained for distribution function from the single-color-sheet approximation
for the Glasma at τ = 0.1 fm/c. Similarly, the parameters for Nη = 30 were used for the bottom
figures.
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(a) (b)

(c) (d)

Figure 5.19: Hard momentum scales (top) and characteristic occupancy (bottom) for gluons (left)
and scalars (right) for Gaussian initial conditions simulated on a 5122 lattice with L = 12.9 fm/c.
The figures show systems using the parameters obtained for distribution function using the single-
color-sheet approximation and Nη = 30 for the Glasma at τ = 0.1 fm/c.
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Chapter 6

Conclusion

In this chapter we want to summarize the observations discussed in Chapter 4 and Chapter 5.
We give an interpretation for the presented results and discuss the most important similarities
and differences between Gaussian and Glasma initial conditions. Finally, we critically review our
obtained results and approaches taken.

In this work we compared the dynamical behavior of Glasma initial conditions described by the
MV-model [29, 28, 8] and the Gaussian initial conditions [35, 33] extended to large times scales. In
particular, we conducted classical-statistical simulations of 2+1 dimensional gauge systems which
are described by the single-color sheet approximation and the generalized MV-model [42] using
Nη = 30 color-sheets. For the comparison with the Gaussian initial conditions we approximated
the obtained distribution function for the Glasma at τ = 0.1 fm/c and initialized the fields according
to their mode-vector expansion [32].

In Chapter 4 we focused on the early stages of the simulation for τ < 1 fm/c. We found that
after short transient times the energy density of Glasma initial conditions shows a 1/τ -behavior
which is imposed by the longitudinal expansion of the system. Consistently with this observation
the Gaussian initial conditions show the same qualitative behavior but without any initial transient
phase. The difference in the behavior of the energy density at the early stage after the initialization
can be explained with the structural difference of the initial conditions, as there are no transverse
chromo-electric fields at initialization time for the Glasma.

Another commonality of the two types of initial conditions is that after a short phase after the
initialization, both systems appear to settle in a state with the same degree of (an-)isotropy in the
sense that the relative longitudinal and transverse pressure components are given by pL/ε = 0 and
pT /ε = 0.5. Again, the difference between both with respect to the isotropy was observed right
after the initialization where the Glasma undergoes a phase of isotropization whereas the Gaussian
initial condition undergoes a phase of an-isotropization. This difference can be explained with the
structural differences of both types of initial conditions.

Furthermore, we found that the values for the total energy density at the initialization phase of
the Gaussian initial conditions at τ = 0.1 fm/c differs from the value we calculated for the Glasma
at the same time. This observation is surprising since at this observation time both systems are
described by nearly the same distribution function. This represents evidence that for the Glasma
the higher-order contributions of n-point correlation functions are of crucial importance because
the Gaussian initial condition only initialize the fields according to the 2-point correlation and
therefore might yield a smaller energy density. Other possible sources of this discrepancy are the
approach to only approximate the gluon distribution while using the same distribution for scalars
and that we conduct a Gauss restoration step after the initialization. Both of these sources can
lead to further deviation of the distribution functions and therefore also of the energy densities of
the systems. However, the effect of these deviations is not expected to justify the magnitude of the
difference in the energy densities.
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In Chapter 5 we discussed the dynamical behavior of the two types of initial conditions for a
larger time scale. We observe for Glasma initial conditions that the longitudinal chromo-electric
field dominates the other field contributions for τ > 1 fm/c. These dynamics impose an an-
isotropization phase after the initial isotropization of the system. In Sections 5.2 and 5.3 we argued
that this change in behavior results from the dynamical behavior of the scalar sector for the Glasma
initial condition. The Glasma was observed to reach a state of linear scalar particle production
after τ = 1 fm/c which leads to a deviation of the total energy density from the 1/τ -decrease. We
further observed that the scalar distribution function grows over the whole momentum spectrum
while the gluon distribution only shows dynamics for small momenta. This observation underpins
the argument that the scalar sector is responsible for the dynamical behavior of the energy density.
In Section 5.4 we argued that the dynamical behavior is independent of the lattice spacing and it
is therefore ensured that the observations are not artifacts resulting from the discretization.

Interestingly, despite the similarity of the distribution functions for both types of initial con-
ditions we could not observe the effects described above for the Gaussian initial conditions. The
energy density evolves according to 1/τ also at late times. Also the distribution functions evolve
differently from the Glasma. We observed that the gluon distribution function is static while the
scalar distribution grows slowly at high momenta at late times. This comparison is especially
remarkable when taking into account that for Minkowski space-time it has been shown that the
occupation numbers approach a universal self-similar attractor after some transient evolution [31,
33]. Evidently this is not the case for the expanding case. This is surprising since one might expect
that at late times, at which the longitudinal expansion slows down, we will reach a state where we
find similar features for the expanding plasma. This raises the expectation that for both types of
initial conditions we would find similar dynamical behaviors at late times since they have the same
distribution function at τ = 0.1 fm/c. The discrepancy of the qualitative behavior substantiates
the argument that the connected n-point correlation functions might have a large effect large effect
for Glasma simulations.

We want to point out that throughout our analysis of the dynamical behavior for the distribution
function we have used a definition using mode-vectors which assumes a vanishing effective mass.
However, it is known that the effective gluon and scalar masses are created during the evolution
which renders this definition as not ideal. We have shown that also other definitions of the distribu-
tion function lead to similar conclusions and can explain the dynamical behavior that we observed
for the different components of the energy density.

We briefly summarize the commonalities between the dynamical behavior of Gaussian and
Glasma initial conditions. We that both initial conditions yield a 1/τ -behavior after τ = 0.1 fm/c
and also show the same isotropization level at this stage until τ ≈ 1 fm/c. Furthermore we observe
that gluon distributions show no dynamical evolution for both systems and also find that the char-
acteristic momenta are constant at late times. These commonalities further further substantiate
the argument that the scalar sector is responsible for the differences in the dynamical behaviors
described above.

Further future work might include an analysis of the dependence of the features for both types
of initial conditions with respect to the initial time which determines the rate of expansion. Also
a more accurate approximation of the Glasma distribution function as well as an assessment of
the importance of higher-order n-point correlation functions pose interesting questions to better
understand the dynamics of the observed systems. Another possibility to assess the underlying
microscopic excitations and their differences among the initial conditions is provided by the analysis
of spectral functions [52, 53, 54, 30].

Finally, our results suggest that the Glasma does not approach a clear quasi-particle picture,
which would be the case if it showed the same qualitative behavior as for Gaussian initial conditions.
For the theoretical description of heavy-ion collisions this implies that one needs to be very cautious
when trying to describe the transition from the Glasma phase to a kinetic theory. In contrast, in
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recent studies, a matching via the components of the energy-stress tensor was used instead to model
the transition [10, 55, 21, 56, 57]. There are also many effects that we did not take into account,
like plasma instabilities [58, 51, 59, 4, 60], which should be important to obtain a theoretically
consistent dynamical picture of the initial states in heavy-ion collisions.
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Appendices

A Properties of SU(Nc) and su(Nc)

In this section we discuss the most important properties and aspects of Lie groups and their
correspondence to Lie algebras. For this purpose we will restrict the discussion to matrix Lie
groups which play a central role in quantum field theory.

Lie groups and Lie algebras
A Lie group is a finite-dimensional smooth manifold which forms a group with smooth group
operations. For non-Abelian groups these operations are most often referred to as multiplication
and inverse map. Very prominent examples for such groups are given by the matrix groups SU(2)
and SU(3) which are discussed later in this chapter. The closed sub-group theorem [61] states that
every closed sub-group of the general linear group GL(n;C) forms a Lie group. Hence, it shows that
the examples mentioned before represent proper Lie groups. Every matrix Lie group defines a Lie
algebra which is a vectorspace over some field (in our case the real numbers R) with an additional
bilinear operation [., .], called the Lie bracket. This operation satisfies

[x, [y, z]] + [y, [z, x]] = −[z, [x, y]], (Bianchi identity) (A.1)

[x, y] = −[y, x], (anti-commutativity) (A.2)

for all x, y, z ∈ g.
The Lie algebra corresponding to a matrix Lie group G is given by

g = {X ∈ M(n;C) : ∀t ∈ R etX ∈ G}, (A.3)

where the Lie bracket is defined as the commutator.

Representations of Lie groups and Lie algebras
Lie groups in particle physics are used to describe certain symmetries of physical systems. This
picture is very clear when discussing matrix Lie groups. However, in order to classify the action of
a Lie group G on a more abstract level it is useful to define representations which are given by the
homomorphism

Π : G → GL(V ), (A.4)

where V is some n-dimensional vectorspace. GL(V ) denotes the group of all invertable linear
transformation on V . Since all matrix Lie groups are already subsets of GL(n;C) and Cn is
isomorphic to V , we follow that the identity map is a trivial representation, often referred to as the
defining representation. In this work we do not distinguish or analyze further group representations.

We also introduce the concept of Lie algebra representations. A representation of a Lie algebra
g is given be a Lie algebra homomorphism

π : g → gl(V ) (A.5)
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where gl(V ) is the Lie algebra defined by the linear space of all endomorphisms on the vector space
V with the Lie bracket

[ρ, σ] = ρ ◦ σ − σ ◦ ρ (A.6)

for all ρ, σ ∈ gl(V ). For a given representation Π of a Lie group G we can find a representation π
defined by

Π(X) = eπ(X), X ∈ G (A.7)

of the corresponding Lie algebra g. In particular, we are interested in two representation of Lie
algebras, the fundamental representation which is given by the identity map and the adjoint rep-
resentation

ad : g → gl(g), X �→ ad(X) = [X, .]g. (A.8)

Note that by referring to Lie algebra elements “given in a certain representation” we mean the
image of the element under the representation map.

SU(Nc) and su(Nc)
We now want to introduce the most important properties of the special unitary groups SU(Nc) as
a matrix Lie group and its connection to the Lie algebra su(Nc). Abstractly this structure forms
a N2

c − 1 dimensional real manifold which forms a topological group. In particle physics a more
concrete point of view is taken by using specific representations. The special unitary group in the
defining representation can be identified by the group of Nc ×Nc matrices M with

det(M) = 1, M−1 = M †. (A.9)

The corresponding Lie algebra su(Nc) can be identified with the traceless Hermitian matrices.
Furthermore, we can find traceless Hermitian matrices ta, a = 1, . . . , N2

c −1 which generate SU(Nc)
and form a basis of su(Nc). In the fundamental representation of su(Nc) the connection between
those structures are given by �

ta, tb
�
= ifabctc, tr

�
tatb

 
=

1

2
δab, (A.10)

where the coefficients fabc can be interpreted as a tensor of type (3, 0). They are known as the
totally anti-symmetric structure constants. Those coefficients characterize the Lie algebra uniquely
by defining the Lie bracket. We give the generators for the number of colors Nc = 2, 3 below.
We can write an algebra elements A,B in terms of generators ta in the following way

A = Aata, B = Bata (A.11)

where the some over the color index a is implied. It can be shown that “representing” the Lie
algebra elements in this way amounts to the adjoint representation of su(Nc). The generators t

a in
the adjoint representation can be given in terms of the structure constants

(ta)jk = −ifajk. (A.12)

We further can rewrite the trace of the product of two algebra elements using (A.10) and obtain

tr[AB] = tr

N2
c−1/
a=1

Aata
N2

c−1/
b=1

Bbtb

 =

N2
c−1/
a=1

N2
c−1/
b=1

AaBb tr
�
tatb

�
(A.13)

=

N2
c−1/
a=1

N2
c−1/
b=1

1

2
AaBbδab =

1

2

N2
c−1/
a=1

AaBa =
1

2
AaBa (A.14)
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In SU(2) the generators are defined in terms of the Pauli matrices

σ1 =

�
0 1
1 0

#
, σ2 =

�
0 −i
i 0

#
, σ3 =

�
1 0
0 −1

#
, (A.15)

and are given by tk = 1
2σk. Similarly, for SU(3) the Gellman matrices are used

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 ,

λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 ,

(A.16)

to define the generators tk = 1
2λk.
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B Algorithm for SU(2) theories

In equation (3.1.39) we stated an implicit definition for the transverse link fields. We restate this
equation in a more general way for given matrices A,B of the group SU(Nc) which reads�

(A+B) (1 + U)†
�
ah

= 0. (B.1)

In this section we discuss algorithms to find U ∈ SU(Nc). The subscript “ah” in above equation
denotes that the anti-hermitian and traceless part of the given matrix. The anti-hermitian and
traceless part of a group element M is given by

[M ]ah =
1

2i

�
M −M †

 
− 1

Nc
tr

�
1

2i

�
M −M †

 #
1. (B.2)

In this work we focus on the case Nc = 2. The main difficulty is to find a solution U which is
element of the group SU(2). For Nc > 2 this equation can only be solved numerically [8].

Algorithm for SU(2)
Assuming Nc = 2 we can find a solution for (B.1) explicitly. We start by the more general problem
of finding a matrix U ∈ SU(2) such that�

(A+B) (1 + U)†
�
−

�
(A+B) (1 + U)†

�†
= 0, (B.3)

hence the matrix (A+B) (1 + U)† has a vanishing anti-hermitian part which is therefore trivially
also traceless. Rewriting (B.3) yields

1 − (A+B)
�
A† +B†

 −1
= (A+B)U †

�
A† +B†

 
− U. (B.4)

Note that in general it holds that �
X†

 −1
=

�
X−1

"†
(B.5)

for any non-singular matrix X. Above equation is therefore solved by

U = (A+B)
�
A† +B†

 −1
. (B.6)

It remains to show that U is unitary and has satisfies det(U) = 1. Again, using (B.5) and funda-
mental properties of the determinant we follow

det(U) = det

�
(A+B)

�
A† +B†

 −1
#

(B.7)

= det (A+B) det

��
A† +B†

 −1
#

(B.8)

= det (A+B) det
�
(A+B)−1

 
= 1. (B.9)

Next, we check if U is a unitary matrix and therefore satisfies

UU † = (A+B)
�
A† +B†

 −1
(A+B)−1 (A+B)† = 1. (B.10)

Using the properties of SU(2) matrices it can be shown that above property is equivalent to

B†A+A†B = BA† +AB†, (B.11)

which can be checked explicitly. Hence, we have proven that U is a group element and therefore
we have found an explicit expression solving (B.1) for Nc = 2.

72



Appendix C

C Conversion to lattice units

In this section we discuss how to convert dimensional quantities to lattice units such that their
relative magnitude remains unchanged. We do this in order to avoid the need of a dimension
analysis for the algorithms used during the simulation process. Furthermore, this allows us to
overcome certain numerical issues such as rounding error or loss of significance which result from
the finite machine accuracy.

Throughout this work we derived all physical quantities in natural units by setting

� = 1, c = 1, (C.1)

and express all dimensional quantities in units of

1 GeV = 109 eV = 1.602× 10−10 J,

1 fm = 10−15 m.
(C.2)

Using the values for the speed of light and Planck’s constant

� = 1.0546× 10−34 Js,

c = 299792458
m

s

(C.3)

we obtain

�c = 0.197326 GeV fm, (C.4)

which is a practical relation for expressing all dimensional quantities in terms of GeV.

We introduce lattice units by defining a scaling constant Qlatt with [Qlatt] = GeV. We rescale all
dimensional quantities such as lattice spacing a, screening mass m or the UV-regulator ΛUV with
powers of Qlatt such that the resulting quantity is dimensionless. For this conversion assume some
quantity X with physical dimensions [X] = GeVa fmb. We first express X in terms of GeV, which
yields

X GeVa fmb = (0.197326)−bX GeVa−b. (C.5)

We now obtain X in lattice units Xlatt by rescaling with Qa−b
latt and obtain

Xlatt =
(0.197326)−bX GeVa−b

Qa−b
latt GeVa−b

=

�
Qlatt

0.197326

#b X

Qa
latt

(C.6)

with [Xlatt] = 1. Note that for all quantities and observables which are calculated during the
simulation the reverse conversion has to be applied in order to obtain their magnitudes in physical
dimensions.
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