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Kurzfassung

Diese Doktorarbeit beschéftigt sich, ausgehend von stochastischen Interaktionsmodellen,
mit der rigorosen Herleitung spezieller nicht-linearer partieller Differentialgleichungen.
Die verwendeten Methoden stiitzen sich auf das mathematische Konzept der sogenannten
;mean-field limits‘, ein Konzept, das sich nicht nur auf dem Gebiet der reinen Mathematik,
sondern auch in der facheriibergreifenden Forschung in den Bereichen Populationsdynamik,
Physik, Neurowissenschaften, Deep Learning und Wirtschaftsforschung steigender Beliebt-
heit erfreut.

Die Grundidee dieser speziellen Partikel-Grenzwerte liegt darin, dass unter bestimmten
Voraussetzungen das Partikelsystem trotz Interaktionen zwischen den Partikeln im Grenz-
wert (Anzahl der Partikel strebt gegen Unendlich) durch eine Dichtefunktion approximiert
werden kann, die wiederum als Losung einer partiellen Differentialgleichung aufgefasst wer-
den kann. Diese Eigenschaft wird in der Fachliteratur auch ,propagation of chaos‘ genannt.
In der vorliegenden Arbeit werden nur sogenannte ,,diffusive Partikelsysteme® betrachtet,
welche im Grenzwert zu partiellen Differentialgleichungen mit positiver Diffusionskonstan-
te fithren. Speziell werden in dieser Doktorarbeit Interaktionssysteme betrachtet (auch
,moderate Interaktionssysteme* genannt), bei denen der Interaktionskern mit der Anzahl
der Partikel skaliert. Im Gegensatz zu klassischen Mean-field-Modellen (auch ,schwache
Mean-field-Modelle“ genannt), fithrt das moderate Regime zu lokalen partiellen Differenti-
algleichungen.

Die Arbeit gliedert sich in drei Teile: Im ersten Teil der Doktorarbeit wird - ausgehend
von einem moderaten stochastischen Teilchenmodell - eine verallgemeinerte Version des
sogenannten SKT-Systems hergeleitet, welches ein Mehr-Spezies-Modell mit Kreuzdiffusi-
onsstruktur in der Populationsdynamik darstellt. Ebenso enthélt auch der folgende zweite
Teil der Arbeit eine rigorose Herleitung einer fraktionellen Porose-Mediums-Gleichung mit
moderat interagierenden Partikeln. Aufgrund der verwendeten Techniken im moderaten Re-
gime enthalten diese beiden ersten Teile der Arbeit auch Abschétzungen von nicht-lokalen
Approximationsmodellen der eben genannten lokalen partiellen Differentialgleichungen. Der
dritte Teil der vorliegenden Doktorarbeit enthilt eine neue mathematische Technik, um -
ausgehend von diffusiven Partikeln unter dem Einfluss von Aggregation - ein bedingtes
Konvergenzresultat in L?-Norm herzuleiten. Dieses Resultat kann als erster Schritt zu ei-
nem Fluktuations-Resultat im Kontext von aggregierenden Mean-field-Partikelsystemen
gesehen werden.
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Abstract

This thesis is concerned with the derivation of certain types of nonlinear partial differential
equations from stochastic interacting particle systems. The underlying methods are within
the framework of mean-field limits, a well-known mathematical concept which has become
an emerging tool of interdisciplinary research due to the increasing number of applications
in population dynamics, physics, neuroscience, deep learning and others.

The basic idea of these types of particle limits is to show that even though the particles
are interacting with each other — under certain conditions — in the large particle limit,
the system can be approximated by a density function which solves a partial differential
equation: This is also called ‘propagation of chaos’. Throughout this thesis, the case of
diffusive particle systems is considered leading to partial differential equations with positive
diffusion parameters. Special focus in this work is put on moderately interacting particle
systems, a technique where the interaction kernel of the particle system scales with the
number of particles. In contrast to the classical mean-field limit, which is also called weak
mean-field limit, the moderate regime leads to local partial differential equations.

The thesis is split into three parts: In the first part, a rigorous derivation of a generalised
version of the so-called SKT-system — a multi-species model from population dynamics —
from moderately interacting particles is shown. In the second part, the method of mod-
erately interacting particles is used to derive a porous media equation with fractional dif-
fusion. Due to technical issues which occur in the moderate regime, rigorous estimates
of non-local approximations of the particular partial differential equations are shown in
those two chapters, as well. The third part of this work shows a new technique for prov-
ing a conditional quantitative L?-convergence result for diffusive particles under the effect
of aggregation, which can be seen as a step towards the proof of fluctuations around the
mean-field limit in the setting of aggregating particles.
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Das gute Gelingen ist zwar
nichts Kleines, fingt aber mit
Kleinigkeiten an.

— Sokrates!
1 Introduction
Contents
1.1 Notionofchaos . . . . . . . . . . . . . ... . . . ... 3
1.2 Particle systems of mean-field type . . . . . . . . .. ... ... 10
1.3 Outline of this thesis . . . . . . . . . . ... ... .. ...... 20

It is one of the fundamental aims in science to understand the effect of particles or parts
merging together to one quantity, like birds forming a swarm or gas particles forming an
entity. Aristotele once said “the whole is greater than the sum of its parts”?, which raises
questions like

e which properties of the individual parts are inherited by the whole and
e which properties can be only observed if we look at the whole quantity.

In applied mathematics, we speak of microscopic levels if we are talking about the individual
parts (that later form one quantity) and macroscopic levels if we are looking at the whole
quantity.

Usually, in applications coming from natural sciences and economy — this thesis will only
consider such applications — the macroscopic level can be described by a density function,
which, roughly speaking, indicates in which areas there are more particles and in which
areas there are less. Since time is an essential part of most processes arising in science, it is
crucial for understanding the macroscopic level to (mathematically) describe its evolution
in time, i.e. how it changes in time — for instance where is the swarm of birds moving to
or will the gas be equally distributed in a room after we wait a certain amount of time.

In fact, amongst others we are interested whether we can describe the time evolution of the
density function of the particles by a partial differential equation which then allows us to
simulate and study properties of the macroscopic level. In the words of the famous physicist
Paul Dirac (1902-1984), who said “I consider that I understand an equation when I can
predict the properties of its solutions, without actually solving it”?, although in most cases
we lack a concrete formula of the solution, we can describe it by its properties. Additionally,
in modern times numerical simulations of solutions of partial differential equations have
become an essential part of applied mathematical research. This shows an advantage of
studying — from a mathematical but also from an applied point of view — the connection
between microscopic (particle) levels and its corresponding macroscopic equation since
particle systems arising from physics often consider a large number of particles (N ~ 10%°).

! Attributed to Sokrates
?[Das Ganze ist mehr als die Summe seiner Teile] In: Aristoteles, Metaphysik VII,17.
3Quoted in: Frank Wilczek, Betty Devine, Longing for the harmonies (1988).
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1 Introduction

Hence, the numerical simulations of the microscopic level are often too costly (in terms of
computation time) and therefore — due to efficient numerical schemes for partial differential
equations — the macroscopic equations play an important role for simulations. Additionally,
because of the high complexity, interesting questions like long-term clustering of particles
are difficult to answer if we only consider the microscopic dynamics.

Certainly, there are different mathematical approaches used to motivate or rigorously prove
connections between microscopic particle systems and macroscopic equations. In this thesis,
so-called mean-field limits and the associated concept of propagation of chaos is used in or-
der to rigorously show connections between certain particle systems and partial differential
equations. In recent years, mean-field limits have become a growing field of mathematical
research. The reason lies in the fact that those particle limits can be used in a broad
variety of applications, like swarm modelling [18], deep learning [106], neuroscience [2],
evolutionary biology [23] and economy [98], to name a few. The particles can for instance
represent molecules, neurons, bacteria, plants or humans. Caused by this broad variety
of applications, the topic has also become an emerging tool for modern interdisciplinary
research.

The origin lies in the late 19th century, where Boltzmann already proposed that the particle
dynamics of a large class of particle systems can be captured by one macroscopic partial
differential equation (PDE), see [7]. Heuristically, this means that (for the considered cases)
for large systems the particles behave like ‘one’ and become independent in the limit; see
Section 1.1 for a mathematical definition of this intuition. In 1900, at the International
Congress of Mathematicians, David Hilbert (1862-1943) famously addressed this question in
his sixth problem, where he claimed that providing an axiomatic mathematical framework
for Boltzmann’s considerations should be one of the goals in modern mathematics, [57],
[85]. However, caused by a lack of suitable mathematical techniques at that time, like
important results in probability theory, it took more than fifty years until Mark Kac [66]
made significant progress in this matter by mathematically formalising the notion of chaos
for the Boltzmann equation, see Section 1.1.1 for details.

Despite the lack of a mathematical framework at that time, Boltzmann’s idea to consider
particle systems which become ‘independent’ if the number of particles becomes large, still
forms the core motivation of mean-field limits, where the limiting macroscopic equation
(represented by a non-linear PDE) of a large system of interacting particles is studied.
The microscopic particle system is described by a large system of (stochastic) ordinary
differential equations. The interaction between one particle with all other particles is
incorporated into the system by using a weighted sum over all interactions - a mean value -
which motivates the name mean-field limit. Since the particle system in mean-field theory
is usually represented by a stochastic system of interacting particles and the macroscopic
dynamics are represented by deterministic partial differential equations, which model the
typical particle (since the particles behave like ‘one’ in the limit), the topic of mean-field
limits lies on the border between two mathematical disciplines: Stochastics and Partial
Differential Equations (PDEs). The challenge is to take advantage of different techniques
from those two mathematical fields despite those two disciplines often times having different
notations and aims. As a matter of fact, the techniques used in this thesis will cover both
disciplines, however, they strongly rely on analytical techniques like uniform estimates of
solutions of (non-local and local) non-linear partial differential equations, which are crucial
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1.1 Notion of chaos

especially for the results in Chapter 2 and 3. In Chapter 4, a (more technical) result
is shown by proving a connection between two different notions of convergence of particle
systems for a diffusion model with aggregation. However, even if at the first glimpse it looks
like a purely probabilistic result, the new technique used there is inspired by estimates from
classical PDE theory.

1.1 Notion of chaos

There are different notions of chaos and hence propagation of chaos, the standard one being
derived by the framework given by Mark Kac in [66]. Originally, the notion of chaos in [66]
was considered to be suitable for the kinetic Boltzmann theory, however, the lecture notes
of H.P. McKean [82] addressed ten years later that Kac’s concept of chaos and propagation
of chaos can also be used in the framework of a broad class of (nonlinear) diffusion models
of the form

[bi(u)u] on (0,00) x RY, (1.1)

where the diffusion coefficients a;;(u) as well as the drift coefficients b;(u) depend (in a
nonlinear and nonlocal way via an integral formulation) on the solution v and on the spatial
variable z. The precise form of the diffusion and drift coefficients a;; and b; will be discussed
in Section 1.2, where we will illustrate some ideas given in [82] for a simple example. Before
we discuss this toy example, in the following part of the thesis, we introduce the general
concept of chaos and propagation of chaos which form the core idea and motivation of
mean-field limits.

1.1.1 Kac: The introduction of a mathematical framework

The scope of the present thesis lies in the derivation of non-linear partial differential equa-
tions with diffusion (and aggregation) phenomena arising from physics and biology from
stochastic particle systems and not in kinetic theory. However, since the concept of those
particle derivations and mean-field limits strongly relies on the concept of the so-called
Boltzmann property which was first introduced by Kac in [66], in this section we present a
short summary of the seminal work [66], which is not only an important work for kinetic
theory but for particle derivations of partial differential equations in general. This section
is based on [66] and the recent articles [56] and [85]. For more information on Kac’s work
and implications in kinetic theory we refer to the latter two papers.

Based on Boltzmann’s work, [7] and his well-known ‘Stosszahlansatz’, [66, Section 2|, Kac
developed a mathematical framework for Boltzmann’s intuition and ideas for kinetic theory
for dilute gases. In the setting of the spatially homogeneous Boltzmann equation of the
form

of(t,v)=Q(f,f) fort>0 ,veR?

where v denotes the velocity, @@ denotes a so-called collision operator and f(t,v) is a
distribution function of a dilute gas, where we assume that the exchange of energy between
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1 Introduction

the gas molecules only happens through collisions. This spatially homogeneous equation
was derived by Kac in [66] in a simplified setting (i.e. d = 1 and other simplifications
of the model) by using Poisson-like jump processes for the mutual collisions between two
molecules on the microscopic level, see [66, Sections 2-3] for a complete description. In his
BASIC THEOREM, [66, Section 3], Kac showed that the so-called Boltzmann property (see
definition below) propagates in time in the following way:

Let us assume that d = 1 and define V = (vq,...,vyx) € RY the vector of velocities of the
N gas molecules in the system on spheres Sy := {V : v? +...+v% = N}* and let ¢n(V,t)
fulfil the so-called master-equation, which is a PDE that describes the change in time of
the distribution of points V' under the influence of (random) collisions, see [66, Equation
(3.4)]. Additionally, set

k
Aon oty = [ o (V,1)dS,
x%+l+...+m?\,:N—v%—...—vz
where we integrate over spheres which fulfil xzﬂ + ...+ ZL‘?V =N — v% - = v,%. The

distribution functions f](\f ) are called k-th contraction of ¢n in [66]. Then the BASIC THE-
OREM in [66] says that if at time ¢t = 0, the symmetric distribution function ¢x(V,0) with
V € Sy fulfils the Boltzmann property, i.e. for all k € N

k
lim f}v"f)(vl,...,vk,o):HNliinoo M (w;,0),

N—o0

then it also holds at any time ¢ > 0

k
lim fy (o1, t) = [T lim 0 i),

N—oo

@
I
—

For a proof of this statement, we refer the reader to [66, Section 4]. In the upcoming
sections we will see that the observation that the Boltzmann property concerning the
finite ‘contractions’ of the distribution function ¢y propagates in time (under simplifying
assumptions for the Boltzmann equation) forms the basic concept of mean-field limits and
propagation of chaos. Based on [66], McKean [82] made use of this general concept by
applying it to a class of parabolic nonlinear partial differential equations. The definition
stayed close to the original one in [66] — see Definition 1 — however, in modern literature,
the name Boltzmann property changed into u-chaos or Kac’s chaos® .

1.1.2 Propagation of chaos

Based on the well-known framework in [66], the following section contains important defi-
nitions and notions used in every chapter of this thesis. This section follows [62] and [113]
with additional insights into further notions of chaos from [56].

“Later called ‘Kac’s spheres’, [56].
5In this thesis we will use the name wu-chaos, see Definition 1.
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1.1 Notion of chaos

First, we state the definition of chaos used in the classical framework of mean-field limits:

Definition 1 (u-chaotic, Definition 2.1. in [113]). Let u be a probability measure on a
separable metric space M. Then, a sequence fn of symmetric probability measures® on
the product space MY is said to be u-chaotic if for any finite number k € N and bounded,

continuous functions ¢1,..., ¢ € Cy(M) it holds that

k

Jm (v, 1@ 94 @10 01) = [Jué) (1.2)

i=1

Remark 1.1 (Weak convergence of k-marginals). Note that condition (1.2) means that
for all k € N the k-marginal of the sequence fn of symmetric probability measures on MY
converges weakly to the product measure u®*

Before we continue with stating the definition of propagation of chaos, we have to fix some
ideas and the framework of (interacting) particle systems. We will explain more about
the specific form of mean-field particle systems, in the following section (Section 1.2),
however, in order to properly state the definition of propagation of chaos, we need the
following concept of empirical measures: Let Xn(t) := (X1(t),...,Xn(t)) be a sequence
of N (interacting) indistinguishable” particles at a certain time ¢ > 0. Then, we define the
associated empirical measure at time t > 0 as the following random distribution

,U,XN t .CC Z(S)( t) t> 0, (13)

where dx(-) denotes the Dirac delta at point X.

Proposition 1.2 (Equivalent statements to u-chaotic, Proposition 2.2 in [113]).
Under the assumption of Definition 1, the following statements are equivalent

(i) fn is u-chaotic

(i) Condition (1.2) holds for k = 2, which means that it is sufficient to show convergence
of the second marginal of fx towards the product measure u®?; (see Remark 1.1)

(iii) If Xy := (Xq,...,XnN) is distributed according to fn, i.e. Law(Xi,...,Xn) = fn
for all N € N, then the associated empirical measure py, () converges in law towards
the deterministic measure u, where the empirical measure is defined in (1.3).

For a proof of this proposition, we refer to [113]. We note that for showing convergence in
law of the empirical measure p1x, is enough to prove that for any test function c;S € Cp(M),
which is bounded and continuous, it holds that E(|3; SN (X)) [ m @(x)du(z)]) — 0 for
N — oo, see [113] and [83].

Remark 1.3 (Law of large numbers). Since statement (iii) in Proposition 1.2 shows that
the empirical measure py, converges to a deterministic measure u, this can be seen as a
version of ‘Law of large numbers’ for particle systems.

6‘Symmetric’ means invariant under permutations of the coordinates
"The assumption of indistinguishability implies that the joint law is symmetric
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1 Introduction

Now, we have all definitions in hand to define propagation of chaos. Let
An(t) == (X1(t),..., Xn(t))

be a sequence of N interacting indistinguishable particles and ¢ > 0. Additionally, let
u(t) be a solution to a partial differential equation with initial condition wuy (the concrete
form of this PDE will be made explicit in Section 1.2; to understand the concept it is not
important).

Definition 2 (Propagation of chaos for a particle system, Definition 4 in [62]).

If at time t = 0 the joint distribution fn(0) of Xn(0) is wg-chaotic, then we say that
propagation of chaos holds, if at any time t > 0 the joint distribution fy(t) of Xn(t) is
u(t)-chaotic.

Due to Proposition 1.2 this implies that px, (t) — w(t) for N — oo holds true in law at
any time, which shows that in this case the particle dynamics converge at any time to the
deterministic law u(t).

Remark 1.4. Choosing X;(0) = & with independent and identically distributed random
variables on M such that Law(&;) = wg, implies that fn(0) is trivially ug-chaotic.

Heuristically, we can interpret the propagation of chaos property in the setting of interact-
ing particle systems in the following way: Let us start with independent and identically
distributed random variables at time ¢t = 0. At any point ¢ > 0 — since the particles are
interacting (see Section 1.2) — they are not independent any more. However, as the number
of particles N grows, this property of independence (which implies a factorised law) can be
recovered in the large particle limit for any time ¢ > 0.

Multi-species propagation of chaos

In Chapter 2 of this thesis, we show a propagation of chaos result for a multi-species model,
where we use an extended variant of Definition 1 that was already used for instance in [2] in
the framework of a multi-species neural network. Due to the symmetry assumption on the
probability measures in Definition 1 (and therefore the assumption of indistinguishability
of all particles)— which is not true for multi-species models — Definition 1 has to be adapted
for a multi-species case. Let N € N be the total number of particles and n € N the number
of species. We denote the particle dynamics with

An(t) = (X1 (1), ... XR (D)),

where the upper index denotes the species and assume that particles within one species are
indistinguishable. Then, we say that at time ¢t > 0, the sequence of joint laws fy of Xy is
u(t) = (ur(t), ..., un(t))-chaotic, if for any k € N, the law of the k-tuple (X' (¢), ..., X;*(t))
converges weakly to the product measure Hle us,; (t). Here, each species has a different
limiting process, however chaos still propagates in time. In Chapter 2, we show propagation
of chaos for a multi-species model in a different (stronger) sense, by path-wise estimates,
see Section 1.2 for an introduction to this coupling technique.
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1.1 Notion of chaos

Other notions of chaos

Definition 1 and Definition 2 go back to the classical work [66]. However, it might be useful
to also use other notions of chaos. In this section, we give some insight into other notions
of propagation of chaos, which are governed by using different norms of convergence. The
idea however stays the same as in Definition 2. We follow the review paper [62] and the
article [56].

Convergence in Monge-Kantorovich-Wasserstein distance, [62]. In some applica-
tions, propagation of chaos is shown with respect to the p-MKW-distance: Let p1, p2 be
two probability measures with finite p-th moment, then the p-MKW distance for p > 1 is
defined as follows

1/p

W, (p1, p2) i= inf E(|X - Y|P :

p(p1, p2) (X7Y)7L1;1W(X):m< (] | ))
Law(Y)=p2

see [62] for instance. Hence, one can look at propagation of chaos in MK W-distance in the
following way:

Definition 3. Let the assumptions in Definition 2 hold. Let fjlf,(t) denote the distribution
of the k-marginal of fn(t) for anyt > 0 and

Wp(fffz(o),ug)@’“) —0 for N = .
Then, propagation of chaos holds in p-MKW norm if for any time t > 0
W, (f5 (1), u® () = 0 for N — oo.

We refer the reader also to Section 1.2, where we show that convergence in expectation of
the second moment (using so-called coupling techniques) implies propagation of chaos in
2-MKW-distance. See also article [56], where different implications between the notation
of chaos by Kac and propagation of chaos in 1-MKW-distance are shown. In the present
thesis, with regard to the MKW-distance, only the above mentioned implication (1.14)
shown in the next section is of relevance, especially in Chapter 2 and 3.

Another notion of chaoticity worth mentioning in this section is concerned with convergence
of the entropy functional:

Definition 4 (u-entropy-chaotic, [62, 56]). Let all assumptions of Definition 1 hold. By
defining the Boltzmann-entropy for fy as follows

1
N(fNn) = N/ fnlog fydzy .. .dxy,
MN
we say that fn is u-entropy chaotic if Hi(u) < oo and

HN(fN) — Hl(u)
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1 Introduction

Indeed, one can show that the notion of entropic chaos is stronger than the chaoticity
defined in Definition 1:

Proposition 1.5 (Theorem 1.4 (iii) and (iv) in [56]). Let all assumptions of Definition 1
and Definition 4 hold and M = R, If fy is u-entropy chaotic, then it is u-chaotic.

For a proof we refer to [56], where property (1.2) is referred to as Kac-chaotic. We refer the
reader to [62] and [56] and the references therein for further discussions on other notions
of chaos, like Fisher-information-chaotic, which is even stronger than entropy-chaotic, [56,
Theorem 1.4].

1.1.3 OQutlook: Fluctuations around the mean-field limit

As mentioned in Remark 1.3, proving a mean-field limit result and the associated prop-
agation of chaos property can be seen as a law of large numbers result on the level of
the empirical measure of the particle dynamics. However, by approximating a stochastic
interacting particle system by a deterministic measure, some information inherited by the
stochasticity of the system gets lost. This is the reason why the study of fluctuations
around the mean-field limit, which can be seen as next order correction to the mean-field
behaviour, is of high interest. Questions associated with fluctuations in mean-field settings
have already been studied by Braun and Hepp [9], Rost [100], Dawson [39], Sznitman [112],
Oelschlager [90], Lewicki [74] as well as Jourdain and Méléard [65] in the last century and
recently by [105] (in the setting of neural networks) and Wang et al. [117] for instance.

In this section, we give a motivational introduction:

If by denoting with py, ;) empirical measure of the particle dynamics at time ¢ > 0, see
(1.3), ‘propagation of chaos’ means iy, ;) — u(t) in law for a deterministic measure u(t).”
Since this corresponds to the law of large numbers, it is a natural question to ask, whether
the quantity

EN(t) = VN (paey (1) — u(t)) (1.4)

associated with the well-known central limit theorem from standard probability theory con-
verges (in a distributional sense). For mean-field interacting particle systems, the random
measure En(t) is called fluctuation process around the mean-field limit u(t).

Assuming that there exists a limiting distribution of £y, denoted by &, then formally, this
shows why studying the limiting behaviour of {x can be seen as ‘next order correction’:
By writing pryy ) = u(t) + ﬁfN ~ u(t) + \/Lﬁf, the term ﬁg gives us a correction of
the limiting behaviour measured by the deterministic measure u(t) that vanishes at scale
N—1/2. By recalling the classical central limit theorem for independent random variables,
see [69, Theorem 17.10] and [41] for a formulation for empirical measures, we note that in
case of independent particles, the limiting distribution ¢ is Gaussian. However, as already
mentioned in the section before, for interacting particles independence can clearly not be
expected. In the spirit of Definition 2, one could ask a (formal) question like: If at time
t = 0 the limit £5(0) — & for N — oo towards a Gaussian distribution holds, does it hold

81n the next section we will see that in case of mean-field interacting particles u(t) solves a partial differ-
ential equation.
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1.1 Notion of chaos

at any time ¢ > 0 in the limit, i.e. {n(8) — & for N — oo and t > 0, where & is a Gaussian
distribution®?

In general, one can not expect this question to be answered positively for all particle systems
fulfilling the propagation of chaos property, see the work of Dawson [39] where he showed a
phase transition result for the fluctuation process in a specific mean-field setting. However,
for instance in [46] Fernandez and Méléard showed a general result for McKean-Vlasov
dynamics where a central limit theorem holds.

When studying the limiting behaviour of {y defined in (1.4), the convergence rate of the
propagation of chaos property gy, ) — u(t) is of great importance, however, it is a chal-
lenging task to show the optimal rate of convergence. In some situations, changing the
scaling in (1.4) from N'/2 to a sequence ey < N'/2 might be fruitful, see for example [65]
for a result in the moderate regime (see Section 1.2.2 for a definition of moderate regime)
where ey is chosen to be logarithmic in V. In this case, the limiting distribution of the
fluctuation process is deterministic and not Gaussian.

Connection to this thesis:

e In Chapter 2, we derive a cross-diffusion system (multi-species) with linear diffusion
from a mean-field interacting particle system, which implies a propagation of chaos
result. Interestingly, if we set the number of species to one, the limiting partial
differential equation reduces to a porous media equation with additional diffusion
o> 0:

Ou = o Au + éA(uQ) = ocAu + div(uVu). (1.5)

We note that (1.5) was already derived almost 15 years before in [47] by Figalli and
Philipowski with a different particle system. The main difference between the two
derivations can be heuristically explained form an analytical point of view by the
fact that we can write the Laplace-Operator A as div(V) or interpret it as ‘pure
diffusion’.*’

This shows that there exist two different particle dynamics (and hence two different
empirical measures p XL(t) (1) and p X2 (t)(_)) converging in law to the same deterministic
measure u(t), which solves (1.5).

We expect that the fluctuation processes of the two particle systems respectively show
different limiting behaviours, which would help us to understand the difference of the
particle models from a modelling point of view. Partial results have been derived by
Oelschléger in [90], where he was able to prove a central limit theorem for a corrected
fluctuation process'' in the setting of Figalli and Philipowski and by Jourdain and
Méléard [65] who where able to show convergence of the fluctuation process with
a different scaling than N'/2. However, a complete picture is still missing in the
literature.

9We do not specify here what Gaussian means in this context; in fact we are talking about generalized
Ornstein-Uhlenbeck processes, see [58] for a definition.

Tn terms of equation (1.7) of the following section: Vi = 0 in Chapter 2, V> = 0 in [47].

HCorrected means &y = \/N(NXN(t) — u(t) + en), where cy is a deterministic correction which fulfils
cy — 0 for N — oo.
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1 Introduction

e Motivated by the findings in Chapter 2 described above, in Chapter 4, we make a step
towards extending Oelschléger’s technique of [90] for showing a (corrected) fluctuation
result in a more general setting, i.e. we also allow aggregating particles instead of
only repulsive particles in [90]. In terms of the limiting partial differential equation,
we allow both signs + in front of the non-linear term:

Ou = oAu + %A(uz) = ocAu £ div(uVu). (1.6)

However, a complete fluctuation result for aggregating particles in the setting of (1.6)
is still an open question, since the new technique developed in Chapter 4 only gives
a partial result by assuming that at least a propagation of chaos result by coupling
methods holds in probability (see Section 1.2.1 for an introduction to coupling tech-
niques). Nonetheless, the method developed in Chapter 4 is expected to hold also
in models of Keller-Segel-type, see the appendix of Chapter 4 (Section 4.A), and
also forms an important step towards fluctuation results in the framework of cross-
diffusion models. We refer to Chapter 4 and the summary in Section 1.3 for a more
detailed introduction.

1.2 Particle systems of mean-field type

In order to simplify the notation, in this section we will always consider a filtered probability
space (9, F, Fi,P), even when not specifically written.

Throughout this thesis we will consider the particle system to follow a stochastic differential
equation of mean-field type, i.e. the position of the i-th particle changes in time according
to the following system of stochastic differential equations

N
dXN(t) = VU (XN (t))dt + % Z V(XN () — XV (t))dt (1.7)
j=1

L N N 1/2 .
+<U+szlva<xi 0-X W) AW =1,

where (W;(t))X, is a family of independent Brownian motions and X}V (t) € R? denotes

the position of the i-th particle in R? at time ¢ > 0.
e VU : R? = R can be seen as an environmental potential,

e V] :R% 5 RY is considered as interaction kernel of the drift part, whereas V5 : R% —
R? measures the interaction in the diffusion part. We remark that in this thesis the
interaction only depends on the spatial difference of the particles, however, also more
general interactions can be considered, see the lecture notes [113], [83] and the review
papers [21], [22] for discussion on a more general framework.

In this thesis, we will always consider diffusive particle systems, which means that the
diffusion parameter o > 0 is strictly positive. However, one of the interaction kernels

10
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1.2 Particle systems of mean-field type

V1, Vo might vanish: In Chapter 2, we only consider interaction in the diffusion part in
order to show a convergence result in the setting of cross-diffusion models, i.e. V3 =0 in
that chapter. This structure is crucial for deriving the so-called SKT-model. In Chapter
3, which is concerned with the derivation of a fractional porous media equation, we only
consider interaction in the drift part, i.e. Vo = 0. Additionally, we want to remark that
in Chapter 3, we let ¢ — 0 in the end on the level of partial differential equations. On
the level of interacting particles we always consider the case that diffusion is present. In
Chapter 4, which deals with local diffusion-aggregation models, aggregation is incorporated
in the model by mean-field interaction in the drift part by using a gradient structure, see
the following section and equation (1.18) for an introduction.

1.2.1 Coupling and It6’s formula

In the introduction of this thesis, we have mentioned that the general concept of mean-
field limits is to show convergence of a (stochastic) particle system towards a solution of a
deterministic partial differential equation (PDE). In Section 1.1, we gave a mathematical
definition of propagation of chaos which connects the finite-time marginals of a particle
system with the product measure of a limiting distribution, which solves a PDE - in this
section we will discuss the specific form of this PDE in more detail. Additionally, since
often times in the present work, we show convergence of the microscopic dynamics not by
proving the propagation of chaos property (Definition 2) directly, but by using a technique
which we refer to as coupling techniques, we will also provide general information about the
concept of coupling in this section. This technique is based on introducing an additional
particle system, the so-called non-linear process, which is not an interacting particle system
anymore. Instead the particles are independent from each other and have a common density
function, which — under suitable assumptions on the initial data and the interaction kernels
— solves certain PDE. Then, we show convergence of a particle system towards a solution of
this PDE by showing convergence of a particle XZ-N towards its limiting non-linear process
X;. In order to fix this idea, in the following part we summarise the toy example that was
presented in the well-known lecture notes by Alain-Sol Sznitman, [113].

Toy example for coupling techniques

This section mainly follows the lecture notes [113], but also incorporates aspects of the
lecture notes by Sylvie Méléard [83] and the review paper by Jabin and Wang [62]. In the
subsequent we consider (for simplicity) the following particle system of mean-field type:

1 N
dxN (1) NZ:: — XV (1)dt + V20dW;(t), (1.8)
XN0)y=¢, onRY  i=1,...,N, (1.9)

which corresponds to (1.7) with VU, Vo = 0 and where we assume that the initial conditions
& are independent and identically distributed on R¢ with density function ug. Additionally,
we assume that V] : R4 — R? is globally Lipschitz continuous and bounded.

11
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1 Introduction

Next, we introduce the so-called non-linear process associated with (1.8):

dXi(t) = [vl su(t, X;(1) | dt + V2odWi(t), (1.10)
(0)=¢& i=1,...,N, (1.11)

|

where * denotes the convolution in space on R? and wu(t) denotes the law of the non-
linear process X;(t). The existence and uniqueness of the solution to (1.10) is shown
in [113, Theorem 1.1] under the boundedness and Lipschitz assumption on V; stated in
the beginning of this section. However, the boundedness assumption can be weakened by
assuming boundedness of the second moment of ug, see [83, Theorem 2.2]. Interestingly —
and important for this thesis — under suitable assumptions on the initial data, the density
function of the law w(t), which we also denote by u(t), can be written as a solution to the
following PDE

Ou = oAu — div((Vy xu)u), u(0) = uo. (1.12)

This can be (formally) seen by using It6’s formula, which we recall for the reader’s conve-
nience here:

Theorem 1.6 (I1t6’s formula, in Theorem 4.2.1 [95]).
Let the function ¢(t,z) = (¢1(t,x),...,¢p(t,x)) € C%([0,00) x R%: RF) and
X(t) = (X1(t),...,Xq(t)) be an d-dimensional Ité process which fulfils the following SDE

dX () = b(t)dt + s(t)dW (¢).
Then Y (t) = ¢(t, X (t)) is a k-dimensional Ité process which fulfils
d L
dYj = 0 (t, X)dt + > 0,5 (t, X)d X, + 3 D Oy b5t X)dX;d Xy,
i=1 i0=1
where dWldW] == 6ijdt, dtdWZ == szdt = dtdt = 0.

Let C? (R%) denote the space of bounded and twice continuously differentiable functions on
R? taking values in R, where all derivatives up to the second order are bounded. Then,
one sees that It6’s formula implies that for every ¢ € CZ(R?) it holds that

H(Fi(t)) — S(Xi(0)) = /0 Vo(Xi(s))AWi(s)
+ /0 o AP(X;(s)) + Vi *u(s, Xi(s))Vo(X;(s))ds.

Taking the expectation and using the regularity of the test function ¢ and that u(t) is the
law of X;(t) leads to a weak formulation of the PDE (1.12). Sometimes in literature, this
formulation is called very weak formulation, since all derivatives are on the test function.
Note that in order to show the general concept of coupling techniques used in this thesis,
the arguments here are not rigorous since we do not justify that the law of the nonlinear

12
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1.2 Particle systems of mean-field type

process is indeed absolutely continuous with respect to the Lebesgue measure and that we
have sufficient regularity of the density function u, see Chapter 2 where such an argument
is performed (for multi-species models) in a more rigorous way.

For this toy example (1.8) the following convergence result towards the non-linear process
X, holds:

Theorem 1.7 (Convergence to nonlinear process, Theorem 1.4. in [113]). Under the
assumptions on Vi made in the beginning of this section, for any T > 0 it holds that

VIE( sup X7~ Xulo)]) <,
0<t<T

where C' > 0 is a constant not dependent on the number of particles N, but can be dependent
on the Lipschitz constant of V7.

The proof can be done in a straightforward way by exploiting the independence of system
(1.10) and using a Gronwall-type argument, see [113, Theorem 1.1]. In [83, Theorem 2.3]
a similar result is shown by proving convergence of the second moment

IE< sup | X[V (t) —Xi(t)\2> < C/N, (1.13)
0<t<T

where the constant C' > 0 also depends on the Lipschitz bound of Vi under the additional
assumption that uy has finite second moment.

An important implication of Theorem 1.7 and (1.13) is the propagation of chaos property:
First, it is easy to see that (1.13) implies propagation of chaos in 2-Monge-Kantorovich-
Wasserstein distance, since by denoting with f K,(t) the distribution of the k-th marginal of
the common distribution of (Xi¥(¢),..., XY (¢)) if follows

W2(fR @), u® (1) <E((XN = X1,..., XN - X)@0)>) <Ck/N -0 for N — co.
(1.14)

A similar result holds true with W distance for the result in Theorem 1.7.

Second, we can show propagation of chaos in the sense of Definition 2 and Proposition 1.2.
By defining the empirical measure of (1.8) via un(t) := vazl OxN(y), see (1.3), a short
calculation (which is also presented in [62, Section 3.1]), shows that Theorem 1.7 (and
hence (1.13)) already implies the weak convergence of the empirical measure towards the
limiting solution of the nonlinear PDE (1.12):

For any test function ¢ € CL(R?)

13



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1 Introduction

where the first term converges to zero due to Theorem 1.7 and the Lipschitz continuity of
¢ and the second term converges to zero due to the independence of X; (having density
function u) which implies that the law of large numbers holds in that case.

The above calculations show that by using this coupling approach, we do not only show
propagation of chaos in the level of empirical measures and hence according to Definition
2, but a path-wise estimate on the level of particles, which can be seen as a stronger version
of propagation of chaos than in Definition 2 and Definition 3.

Remark 1.8. Following the lecture notes by McKean [82], one can see that this toy example
can be extended for interaction in the diffusion part. Indeed, in Chapter 2 we will use the
coupling method for a model with interaction in the diffusion part in a more complicated
(multi-species) setting.

Other notions of convergences: For the presented toy example we have shown with
Theorem 1.7 and (1.13) two results where the convergence of the particles of the interacting
system (1.8) towards the non-linear system (1.10) is shown with respect to expectation.
However, in some situations it is useful to ‘reduce’ the type of convergence. For example,
instead of showing convergence in expectation, one could show convergence in probability,
i.e. for all a > 0

sup P(IXN () — X;(t) > )2 =0 as N — oo. (1.16)
o<t<T

One advantage of using a different notion of convergence — besides technical reasons — |
might be that by using a weaker notion of convergence one might get better convergence
rates in V. As used for instance in the works by Peter Pickl and co-authors [6, 72, 31] for
Vlasov-type equations, one could also use the cut-off parameter o depending on the number
of particles N € N, such that a(N) — 0 if N — oo. Heuristically, one can interpret this
notion of convergence in the following way: We allow a bad set — where we allow particles
to have a distance «a(N) — with positive probability, however, as the number of particles
increases, the probability of the set converges to zero. For more details, we refer to the
above mentioned articles.

Connection to the present thesis: In Chapter 2 of this thesis, we extend the approach
of classical coupling methods for multi-species cross-diffusion models with interaction in
the diffusion part in the so-called moderate regime (see the following Section 1.2.2 for
an explanation of this concept). In Chapter 3, we use coupling methods for showing
convergence towards a fractional version of the porous media equation, where in contrast
to the cross-diffusion setting, the interaction is only considered in the drift part but we
deal with singularity of the kernel of (—A)™® for 0 < s < 1.

In Chapter 4, we also use the concept of coupling: Inspired by the techniques used by
Pickl and co-workers [6, 72, 31])we show that under the assumption that convergence in
probability holds (similar to (1.16)) with a certain cut-off rate a(NN) > 0 and an algebraic

12For simplicity we use here the euclidian norm as a measure of the difference between the particles; however,
different notions of distance can be used; see [6], [72] and [31]

14
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1.2 Particle systems of mean-field type

convergence rate, also convergence in L?-norm of the smoothed empirical measures holds at
rate N~1/27¢ with e > 0. This result can be seen as a step towards extending Oelschliger’s
techniques for proving a fluctuation result in a more general setting, see Section 1.1.3 for
an introduction of the concept of fluctuations and Chapter 4 for the exact result.

1.2.2 Strength of interactions - The concept of moderately interacting
particles

In the standard mean-field setting, see particle system (1.7), the interaction potentials
V1, Vo do not depend on the number of particles. As motivated in Section 1.2.1, by using
the standard coupling techniques, the limiting PDE structure (1.12) will be of non-local
type since it contains a convolution with the interaction kernel. Nevertheless, many partial
differential equations arising from biology, physics and other applications are of local type,
i.e. the partial differential equation at a point x does not depend on the values of the
solution in a neighbourhood but solely on the point z. In order to derive such equations
- which do not contain convolution or integral terms - one has to extend the classical con-
cept of mean-field limits through introducing the so-called strength of interaction of the
particles. We distinguish between weakly, moderately and strongly interacting particles. In
particular, in order to derive partial differential equations of local type, in this thesis the
concept of moderately interacting particles will be used in all chapters.

For this section, we follow the classification by Karl Oelschldger in [91] and consider the
two different types of particle systems: The classical diffusion setting (1.17) and a particle
system with gradient structure (1.18). Those two settings have to be treated slightly dif-
ferently when it comes to the strength of interaction.

I. Classical Diffusion Process. First, we consider the particle dynamic for N particles
on R?, with d > 1, where the equation for the i-th particle reads as follows

N
1
dxN(t) = v S V(XN () = XY (1)dt + V20dWi(t), i=1,...,N, (1.17)
j=1
J#

where as usual by (W;(¢))¥, we denote a family of independent Brownian motions. We do
not specify the initial condition since it is not important for the classification; the reader
could just think of independent and identically distributed initial data.

However, we want to strongly emphasize that in difference to (1.7), the interaction kernel
Vn can depend on the number of particles N, but we always assume that the scaling is
in such a way that ||[Vy||1rey = 1. We are now interested in the so-called strength of
interaction, i.e. the influence of the interaction term N~1Vy (XN (t) — X]N(t)) between

particle ¢ and j on the dynamics for particle ¢ in terms of V. We consider three cases:

1. Weak Interaction. If Vi does not depend on the number of particles, i.e. Vy =V
for all N € N, then the strength of interaction scales with N~!, since the influence of
the j-th particle on the movement of particle i can be measured by N~V (XN (t) —
XN(@)).

J
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In [91], this case is called regime of weakly interacting particles, which can be moti-
vated by particle physics, [91]. However, one can also simply say that the strength
in terms of the number of particles is lower than in the other two cases (strongly and
moderately interacting particles) discussed below. The regime of weak interaction
has been studied in many different settings. It goes back to the work of McKean
[82], see also works by Braun and Hepp [9] (for Vlasov dynamics), Sznitman [113]
and Méléard [83]. It leads — as shown in the section before — to non-local partial
differential equations of convolution-type.

. Strong Interaction. We speak of strongly interacting particles, if the interaction

potential Vy scales in a way that the scaling N~! cancels out, i.e.
Vi (z) = NV(NY) for all 2 € R?,

for a smooth function V' with |[V'|| 1 (ge) = 1. In this case the strength of interaction
is O(1). In the limit, this then leads to an approximation of Poisson point processes,
see [113, Chapter IL.], which will not be covered in the present thesis.

. Moderate Interaction. Analogous to the setting of strongly interacting particles,

we let V be a smooth and normalised function on R?. Considering the following
scaling for the interaction potential for 0 < 8 < 1/d

Vn(z) = NPIWV(NPz)  for all z € RY,

the strength of interaction for each particle becomes O(N~1*54) which — for 0 <
B < 1/d — is stronger than O(N~—1) but weaker than O(1). Since the strength of
interaction lies ‘between’ weakly and strongly interacting particles, this regime is
called moderately interacting particles. As shown in [113, Chapter I1.],[91] in this
regime the term apy, which can be seen as wvariance of the mean-field force since
VN — 09 in distributional sense, defined as follows

o= ([ fj 0 - X)) - x )] )

converges to 0 if and only if 8 < 1/d, where u(t,-) solves a local PDE!?. This shows
that in this case the mean-field interaction part approaches a local force. For the
critical case § = 1/d we have non-vanishing variance (and hence fluctuations) leading
to a strong regime, as discussed before. The idea of moderate interaction can be
also generalised by using a (not necessarily algebraic) scaling in N: Let n(N) be a
function in N with

Vn(z) = n(N)" WV (n(N)"tz) for all z € RY,

where 7(N) — 0 if N — oo is in such a way that 0 < n(N)~* < O(NY9), see for
example [65] where in comparison to Oelschlidger’s work [91] a logarithmic connection

3The concrete shape of the PDE is discussed at the end of this section; see (1.22).
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1.2 Particle systems of mean-field type

between 7 and N is used. Then, the strength of interaction is O(N ~!n(N)~%), which
also lies ‘between’ weakly and strongly interacting particles and justifies that we
also use the name moderately interacting particles in this case. This concept with
logarithmic connection is used in Chapter 2.

In Chapter 3 and 4, where we connect 1 and N in a logarithmic and an algebraic way
respectively, we use a general version of the following gradient diffusion process:

II. Gradient Diffusion Process. Similar to (1.17) we consider a particle system with
gradient structure:

N

dxM(t) = % S OVVn (XN () - XN (#)dt + V20dWi(t), i=1,...,N. (1.18)
j=1
JFi

As mentioned before, this gradient structure will be used in Chapter 3 (in a more com-
plicated setting) and Chapter 4. In this setting, we will also distinguish between weakly,
strongly and moderately interacting particles. However, due to the gradient structure of the
interaction kernel the classification changes for strongly and hence moderately interacting
particles:

1. Weak Interaction. If Vy does not depend on the number of particles, i.e. Vy =V
for all N € N, then analogously as for the non-gradient structure the influence scales
with N~!, which we refer to as the regime of weakly interacting particles.

2. Strong Interaction. In analogous way as in the setting of classical diffusion pro-
cesses, we use the notation

Vn(z) = NPV(NPz)  for all z € RY,

for some 3 > 0. The regime of strong interaction changes for gradient systems (1.18)
in comparison to (1.17). This is motivated in [91] by the fact that — assuming heuristi-
cally that the particles X ZN (t) are already independent at any time ¢ > 0 with common
density function u — the variance of the ‘force field FN(t,z) := % SN V(-
XN (t)) of the particle system (1.18) has variance of order O(N ~18(@+2)) at any point
r € R% and time t > 0. If 3 = 1/(d + 2), the variance does not vanish for N — oo
leading to a regime of strongly interacting particles and non-trivial fluctuations of the
force in the limit. To the best of the author’s knowledge, the large particle limit has
not yet been determined for this choice of 5 in the gradient case.

3. Moderate Interaction. As mentioned for the case of strongly interacting particles,
the variance of the ‘force field” FN(t,z) := + SN VVi(z — XN (1)) of the particle
system (1.18) at any point z € R? and time ¢ > 0 has variance of order O(N~1+A(d+2)),
From this fact one can see that for any 0 < < 1/(d + 2), the variance of the
force field vanishes for N — oo, which heuristically shows that the particle system
is converging to a system with deterministic ‘force’. This leads to the regime of
moderately interacting particles, which is used in Chapter 4. In a similar way as for

17



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1 Introduction

particle system (1.17), the idea of moderate interaction can be also generalised by
using a not necessarily algebraic scaling in V:

Vn(z) = n(N)" WV (n(N)"tz) forall z € RY,

where n(N) — 0 if N — oo is such a way that 0 < n(N)~! < O(N'/(@+2)), Then, the
strength of interaction is O(N~'n(NN)~9), which lies ‘between’ weakly and strongly
interacting particles. This regime is considered in Chapter 3 of the present thesis.

In the following Table 1.1 we recall the different regimes of weak, moderate and strong
interaction for a interaction kernel scaled in N via Viy(z) = NP9V (NBz) for all z € RY.

Classical Diffusion Process (1.17) | Gradient Diffusion Process (1.18)
Weak Regime 5=0 8=0
Moderate Regime 0<p<1/d 0<p<1/(d+2)
Strong Regime g=1/d g=1/(d+2)

Table 1.1: Classification of the strength of interaction according to [91].

Remark 1.9. Despite the fact that the classification of [91] was done in a framework
where interaction is only present in the drift part of the particle system (this corresponds to
Vo =0 in (1.7)), the term 'moderately interacting particles’ is also used in a more general
situation, where interaction is also part of the diffusion part, see [65] or Chapter 2 of this
thesis.

Moderate interaction and the connection to local partial differential equation

In all three following chapters (Chapter 2, Chapter 3 and Chapter 4) of this thesis, we work
in the regime of moderate interaction (either using a gradient structure similar to (1.18) in
the last two chapters or the classical diffusion model with interaction in the diffusion part
in Chapter 2), since all chapters of this thesis are concerned with the derivation of local
partial differential equations from interacting particle systems. For illustrative reasons, let
us start with the classical diffusion model (1.17): By using a moderate scaling we see that

Vn(x) = do(x) for N — oo  in distributional sense, (1.19)

where we recall that Viy(z) = n(N)~?V (n(N)~'z) for 2 € R? with V a symmetric, non-
negative, smooth function with [p, V(z)dz = 1 and n(N) — 0 for N — oo where 0 <
n(N)~! < O(N'/4). Additionally, for simplicity we assume that V' is compactly supported
on the unit-ball in R? denoted by By (0)'*.

By (1.19), we see (at least formally) that the limiting equation (1.12) becomes local, since
in distributional sense Vi * u — u for N — oo.

'4Tn many applications this assumption can be weakened by assuming bounded moments of V.
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1.2 Particle systems of mean-field type

Intermediate Levels: The proofs given in Chapters 2, 3 and 4 are based on the concept
of a so-called intermediate level:

Note that we illustrate the idea of an intermediate level in a basic setting (particle level
according to (1.18)), see Chapters 2, 3 and 4 for different settings. The underlying idea is
the following:

e For the first step, we ‘ignore’ the dependence of n(N) on N, take n > 0 fixed and
define the interaction kernel as V" (x) := =%V (n~'z). Hence, the interaction kernel
now does not depend on N. By looking at the interacting particle system (1.17)
but with Vy = V" this corresponds to weakly interacting particles with interaction
kernel V7. By coupling methods, we know that (see (1.8) - (1.10)) for fixed n > 0 our

particle system converges to the nonlinear process (which now depends on 1 > 0)

) 2

AXT(t) = [V e uy(t, KT (1) ]t + V20dWi(t)  i=1,..., N, (1.20)

where u,, solves the non-local PDE 0yu, = 0 Au, — div((V" * u,)u,). Here, we want
to remind the reader that particles YZ are independent and identically distributed
with density function wu,,.

System (1.20) will be called intermediate level throughout this thesis. At the end of
this step, we need to establish estimates for the difference between XV () and X (t)
in a suitable norm, like convergence in expectation as in Theorem 1.7. However, the
mathematical difficulty is that in comparison to Theorem 1.7, we have to keep track
of the dependence of 7, since in the last step of this guideline we want to let n — 0.

e Second, we compare the non-linear process (1.20) with the following local non-linear
Process

AXi(t) = [u(t,z(t))}dt FV20dWi(t)  i=1,...,N, (1.21)
where u (formally) solves the local partial differential equation
O = oAu — div(u?)'. (1.22)

Particle system (1.21) corresponds to the macroscopic level and the local partial
differential equation which we want to derive. Note that the macroscopic level (1.21)
as well as intermediate level (1.20) are not interacting particle systems but already
independent from the other particles in the two systems. At the end of this second
step we wish to derive estimates of the differences ]YZ—Y:]] fori =1,..., N depending
on 7. Usually, in this step the main difficulty are analytical error estimates between
the solution u,, to the non-local PDE and wu, the solution to the local PDE.

e Finally, we compare the particle dynamics

N
dxN(t) = % > (N~ W (n(N) XN (1) — X7 (1))dt + V2edWi(t), i=1,...,N.
j=1

5Tn one dimension this is a Burger’s type equation, [113] equation (2.3).
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1 Introduction

with the local macroscopic dynamics (1.21) by using estimates between the particle
dynamics and the intermediate system (by carefully taking track on the dependence
on 1 > 0) and between the intermediate system and the local macroscopic dynamics
(1.21). By letting n — 0 and N — oo at the same time (with a connection between
n and N) the desired propagation of chaos result towards a local partial differential
equation is obtained.

We illustrate the concept with the following Figure 1.2.2:

N — oo,n > 0 fixed

Macroscopic Level

Interacting Particle Level Intermediate Level

n— 0,N — o0

Figure 1.1: Schematic idea of an intermediate level

Interaction radius: We also want to remark by assuming that V' has compact support
on Bj1(0), the scaled interaction potential Vx has support on the ball with radius n(N).
Hence, the parameter 1 can be also interpreted as interaction radius of the particles. In
the limit, as the number of particles converges to infinity, this interaction radius converges
to zero leading to a local macroscopic level.

The idea of using an intermediate level in the moderate regime and hence exploiting well-
known techniques for mean-field limits in the weak regime is not newly invented in this
thesis, see [65] for instance, where the intermediate level is called mollified version. How-
ever, especially in Chapters 2 and 3 careful estimates on the non-local PDE level(s) are
incorporated in the estimates between the intermediate level and the macroscopic level as
well as between the intermediate level and the microscopic level, which shows the value
of classical PDE theory in the context of (stochastic) mean-field limits. To summarise, in
this section we have seen that by using coupling techniques in the moderate regime, on
the PDE level estimates of local and non-local partial differential equations are of great
importance.

1.3 Outline of this thesis

The mathematical results of this thesis are structured in three parts. In the following, we
shortly illustrate the main goal of each of the chapters and provide associated key-words;
a more detailed description is given in the Sections 1.3.1- 1.3.3:

e In Chapter 2, we derive the well-known so-called SKT model — which is a multi-species
cross-diffusion model — from a moderate stochastic interaction model. The results of
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1.3 Outline of this thesis

this chapter have been already published in the Journal of Nonlinear Science; [25].
key-words: cross-diffusion, non-local cross-diffusion models, moderate regime, loga-
rithmic scaling

Declaration of authorship: The topic of this article was brought to me by Ansgar
Jingel, Esther Daus and Li Chen. Determining the shape of the particle model
and writing the proofs was mainly my work which came along together with fruitful
discussions and two research stays with my co-authors who helped me throughout
this project with valuable advice.

Chapter 3 is devoted to the derivation of a fractional porous media equation from a
stochastic interacting particle model. The results of this chapter have been already
published in Communications in Partial Differential Equations; [30].

key words: fractional diffusion, nonlocal porous media equation, moderate regime,
smoothed singular kernel, vanishing diffusion

Declaration of authorship: The topic of this article was brought to me by Li
Chen. My expertise at that time was clearly on designing the particle models and
writing the proofs concerning the mean-field derivation part. This was done by many
discussions during the pandemic via Zoom with Li Chen. Additionally, I contributed
with discussions and did proof-reading of the sections concerning estimates of the so-
lution(s) of the partial differential equation(s) considered in this article and corrected
mistakes within these sections. Finalizing the manuscript was split equally amongst
the authors Li Chen, Ansgar Jiingel, Nicola Zamponi and myself.

In the last chapter of this thesis (Chapter 4), we extend techniques used by K.
Oelschldger [90] for a fluctuation result in the setting of repulsive particles. In Chapter
4 we show that the essential L? convergence with rate N~1/2=¢ used by Oelschliger
also holds in case of aggregating particles, given that propagation of chaos holds in
probability. This is an ongoing work together with Ansgar Jiingel and Li Chen; in
the appendix (Section 4.A) a result concerning propagation of chaos in probability
with a singular kernel of Coulomb-type is presented which is close to submission and
part of a joint work with Li Chen, Veniamin Gvozdik and Yue Li; [28].

key words: aggregating particles, L?-convergence, smoothed empirical densities, con-
vergence in probability

Declaration of authorship: Li Chen and myself already discussed the topic of
fluctuations around the mean-field limit in the beginning of my PhD. The idea of
using convergence results in probability — inspired by Peter Pickl and co-workers —
was brought to me by Li Chen. Writing the proofs of this chapter was my work
which would not have been possible without the fruitful discussions and advice of
my co-workers. The proof of the result in the appendix of this chapter was done by
myself based on many calculations I did together with Li Chen in Mannheim on the
whiteboards in her office.
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1.3.1 Cross-diffusion system of SKT-type, Chapter 2

In this chapter, we give a rigorous proof that the following cross-diffusion system of SKT-
type, which is a well-known model in population dynamics for n interacting species,

Opu; = le(UzVUz) -+ A(O‘ui =+ u; Z f(aijuj-)) on Rd7 1=1,....n, (1.23)
j=1

with u;(0) = ug, 0 > 0,a;; > 0, can be derived in the moderate regime for N — oo from a
particle system of size n/N. In this microscopic system of mean-field type, the interaction
between particles of the same and of different species is modelled via interaction kernels
in the diffusion part of the stochastic differential equation (SDE). Equation (1.23) was
first introduced by Shigesada, Kawasaki and Teramoto [104] in the late 1970s to model
interacting insects under the effects of inter- and intra-species population pressures. The
functions U; model environmental potentials, which are assumed to be ‘dispersive’ and the
non-linearity f > 0 has to be at least locally Lipschitz continuous.

The approach used in this part of the thesis is based on two articles in the regime of
moderately interacting particles - the work [91] by K. Oelschléger for single-species models,
which was later extended by Jourdain and Méléard [65] by also considering interactions in
the diffusion part of the particle system.

As explained in Section 1.2.2, in the regime of moderate interaction, the interaction kernel
depends on the number of particles via the interaction radius n = n(N) (support of the
kernel) and approximates a Dirac distribution for n — 0 for N — oco. In our case, we
choose a logarithmic connection between N and 7, namely 7 ~ Clog(N)~/(24+2) and
show the (strong) convergence of the second moment of the particles towards the solution
of system (1.23), which forms the main result of this chapter:

Let X ,iv im denote the k-th particle of the i-th species of the microscopic level and )?/“ the
k-th pa’rticle of the i-th species of the corresponding macroscopic particle systems (obtained
by coupling methods). Then, the following holds true:

Main Theorem (Chapter 2, Theorem 2.5). Under suitable conditions on the initial datum
ug the convergence

n
sup ]E<Z sup ‘(X]i\;’n - )?k,z)(s)}Q) <C(T,n,01,...,00)" 1 =0 (1.24)
k=1,..N \ {7 0<s<T

holds for n — 0 and N — oo, where o > 0 is an approximation parameter which vanishes
for globally Lipschitz continuous functions f.

In order to prove the mean-field limit rigorously, we use the following non-local system

Opuy; = div(uy; VU;) + A(oium + Uy Z fn(B?j * Un,j)) onRY, i=1,...,n, (1.25)
j=1

for fixed > 0 as an intermediate system, where f, is a suitable approximation of f and
B?]- denotes the interaction kernel with radius n > 0 between species ¢ and j.
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1.3 Outline of this thesis

This non-local system, whose existence and uniqueness analysis is also included in Chapter
2, can be viewed as mean-field approximation for fixed n in the weakly interacting regime.
Crucial to the particle derivation in this chapter are L>((0,T) x R%)-estimates of the PDE
solutions (and their derivatives) to the local system (1.23) and the non-local system (1.25),
which are given in Chapter 2, Theorems 2.2 and 2.3, respectively. Those estimates rely on
the fact that we derive solutions of the PDEs involved in this derivation in L>°(0, T; H*(R?))
with s > d/2 + 1.

The novelty of this derivation is threefold: First, it is — to the best of the author’s knowl-
edge — the first rigorous derivation of the SKT system from stochastic interacting particles
of mean-field type. Second, we extend the concept of moderate interactions for multiple
species by considering interaction in the diffusion part of the particle system. Third, we
allow for non-globally Lipschitz interactions by the non-linearity f. The trade-off of using
a non-globally Lipschitz function f is a slower convergence rate than in [65]. However, for
globally Lipschitz interactions, we gain exactly the same convergence rate as in the single
species case by Jourdain and Méléard [65].

At the end of this chapter, numerical experiments are shown where we compare the results
concerning segregation behaviour with the cross-diffusion particle system used in [26].

Outlook: Interesting follow-up questions to this chapter can be

e Since the convergence rate in (1.24) is only logarithmic in N, it is an interesting ques-
tion whether this can be improved; possibly with a different notion of convergence?

e Similar to the question above: Can we allow for an algebraic scaling of n(N) in N?

e Does a fluctuation theorem (in the spirit of Section 1.1.3) hold for this multi-species
model?

1.3.2 Porous-media equation with fractional diffusion, Chapter 3

In the third chapter of this thesis, the so-called porous-medium equation with fractional
diffusion

dip = div(pVP(p)), Plp) = (~A)"f(p) onR! d>2, (1.26)

where f is a non-decreasing function with f(0) = 0 and for 0 < s < 1 we let (—A) 5u = Kxu
with the singular kernel K(x) = C(d, s)|z|?>*~%, is studied.

It is shown rigorously that (1.26) can be derived from a stochastic interacting particle
system using mean-field limit techniques by showing a propagation of chaos result with
moderately interacting particles. The two main difficulties of the derivation of this non-
local porous medium equation are the singularity of the convolution kernel K and that we
allow for a large class of (possible non-globally Lipschitz continuous) functions f(p). A
guiding example would be f(p) = p® for @ > 1. Both of them can be overcome by using
suitable approximating sequences on the particle level which are specifically tailored for
the structure of equation (1.26). We use the following regularisation parameters
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e 3 > 0 : Using ideas of the general concept of moderately interacting particles, we
define a interaction kernel via Wg(z) = B~4W;(|z|/B) for a smooth, symmetric,
non-negative and normalised function W on R?, where 3 = B(N) depends on the
number of particles in a logarithmic way, i.e. 5 ~ (log(N))™* for some p > 0. At this
point, we want to remark that caused by the special structure of the parabolic-elliptic
system (1.26), 5 > 0 does not take the role of an interaction radius, like 7(N) > 0 in
Section 1.2.2, but still has a similar idea since

Wg—)éo

in distribution for N — oo which implies  — 0. Because of this we still call the
regime used in this chapter moderately interacting regime.

e ( > 0 : On the microscopic and intermediate particle level, we use a combination
between cut-off and convolution techniques in order to approximate K by a sequence
of smooth and compactly supported kernels K¢. In the limit, we let ¢ — 0 where
we connect ¢ with the number of particles IV in an algebraic way, i.e. {( ~ N~¥ for
some 1/4 > v > 0. The concrete value of v depends on the choice of the parameter
s e (0,1).

e 0 > 0: On the one hand, this parameter is used in order to add additional diffusion
to the system (1.26). On the other hand, we also use it in order to approximate the
non-linearity f by a sequence of smooth functions. In contrast to ¢ and 3, we do not
connect o with the number of particles.

Similarly to Chapter 2, we use the concept of intermediate levels represented by non-local
equations, which is important when we deal with moderate interactions. Different to the
cross-diffusion case, equation (1.26) does not contain pure diffusion. Therefore, we need
one additional stochastic level, which leads to the following hierarchy of SDE levels:

I. Microscopic Level: On this level, we consider N € N interacting particles — denoted
by XZ-N — with all regularisation parameters strictly positive, i.e. {( > 0,8 > 0,0 > 0.

II. Intermediate Level: This (technical) level follows the general approach of interme-
diate systems (see Section 1.2.2 for a general introduction), by letting N — oo, but
‘ignoring’ the dependence of ( > 0 and S > 0 and keeping them fixed. This level
is represented by an uncoupled system of SDEs, where all particles have a common
density function, which solves the following non-linear PDE

8tpg,57< = UAPU,@C + div (p0757§V/CC * fa(Wg * p0757g~)) in RY, (1.27)

III. Macroscopic Level (with additional diffusion):
Oipe = 0 Apy + div(pe V(=) (f+(ps))) in RY, (1.28)

where we recall that the approximation of f is denoted by f, and also diffusion is
added to the system.
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1.3 Outline of this thesis

The limit ¢ — 0 is performed on the PDE level and not via coupling methods. We are
able to show that there exists a subsequence such that p, — p strongly in L*(R? x (0, 7)),
where p solves (1.26). We remark that, since we can not show uniqueness of (1.26) - which
is still an open question - the propagation of chaos result only holds up to a subsequence:

Main Theorem (Chapter 3, Theorem 3.2). For suitable scaling of § and ¢ with respect
to N, the following holds: Let P]]fv,a,ﬁ,c(t) be the joint distribution of (X{V(¢),..., X} (?))
for k> 1 and ¢t € (0,7). Then there exists a subsequence in o such that
: : k _ QK
lim  lim PR o.c(t) = p75 (1),
(8,6)—0

where the limit is understood in the weak sense and is locally uniform in time and p solves
the fractional porous media equation (1.26).

In this chapter, we also present existence results to the equations (1.26), (1.28) and (1.27),
including error estimates between the different PDE approximations, see Theorem 3.1,
Proposition 3.14 and Proposition 3.4 .

Outlook: Except for the open question of uniqueness of the fractional diffusion equation,
regarding the particle derivation the following questions can be of interest:

e When it comes to singular kernels for mean-field type derivations of partial differential
equations, a natural question would be whether we can allow the singular kernel to
be used on the particle level, see for instance the recent frameworks developed by
Jabin and Wang [61], [63] and Serfaty and Duerinckx [43]. Is the regularisation K¢
necessary in order to derive a propagation of chaos result?

e Another natural question to ask is whether we are able to derive better rates of
convergence between the particle levels and can we derive a fluctuation result for
singular kernels of Riesz type which are used in this chapter?

1.3.3 Aggregation-diffusion equation, Chapter 4

In the last chapter of this thesis, we consider the following local diffusion model with
aggregation for k = +1

du = oAu — kdiv(uVu) fort >0, u(0)=wup in R% (1.29)

It is well-known [91, 27] that — under suitable assumptions on the initial data and the
interaction kernel — (1.29) can be derived from a system of interacting particles in the
moderate regime:

N
axN(p) = % S OVVIX(E) — X00(8)dt 4+ V20dWi(t), (1.30)
j=1

xN0)=¢ inRY i=1,...,N,

7
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1 Introduction

where the parameter x models the type of the dynamics: k = —1 corresponds to repulsive
interactions and x = 1 to aggregating particles. As usual in the moderate regime V" (z) :=
n~%V (|z|/n), for a smooth, non-negative and normalized function V', where in the limit
N — 00, the parameter 1 > 0 is connected to N € N, such that n — 0 if N — oo.

As mentioned in Section 1.1.3, it is of particular interest to study so-called fluctuations
around the mean-field limit since by approximating a stochastic interacting particle sys-
tem through a deterministic partial differential equation some information induced by the
stochasticity of the interaction system gets lost. In the setting of moderately interacting
particles, we are interested in the intermediate fluctuations, where we do not compare the
empirical measure iy, associated with (1.30) with the local PDE solution (1.29) but with
the intermediate solution %", which solves for fixed n > 0:

" = o AW — kdiv(@'VVT x @), t >0, @"(0) = up in R% (1.31)

Following techniques developed by K. Oelschlager for repulsive particles, in order to study
the limiting behaviour of the intermediate fluctuations, we show an L?(R?) convergence
result for the smoothed empirical measure towards the smoothed intermediate solution

FRUN(t, @) = (png(t) * Z7) (@), g'(t,x) = (u(t) * Z2")(),

where V" is assumed to be ‘convolutional square’, i.e. V" = Z7«x Z". This result holds also
in case of aggregating particles, which are not included in [91]. For more details on the
connection of the L?(R?) convergence result and the limiting behaviour of the intermediate
fluctuations, we refer to Section 4.1.2.

The main result of this chapter is an L?(RY) convergence result of the smoothed empir-
ical measure towards the smoothed intermediate solution with rate N~Y/~¢. The rate of
convergence plays an important role in the study of the fluctuation behaviour; see Section
4.1.2. The theorem reads as follows:

Main Theorem (Chapter 4, Theorem 4.1). Let n = N=%, where 0 < 8 < 1/(10d + 12).
Then, for any T" > 0, there exists ¢ > 0 and a constant C(3,d,T) > 0 such that for
sufficiently large number of particles N > 0,

T
E( sup [|(FN7 — g™ (t)II7 +U/ IV (™ —g")(t)llith> < C(B,d, T)N~/?=
o<t<T 0

This results holds under suitable assumptions on the initial condition u¢ and by assuming
that propagation of chaos holds for n = N7 at least in probability in the following way:
For every v > 0 and T > 0 there exists a constant C(,T') such that

]P’( max [XV(t) - XT(1)] > N*a) < C(7, )N, (1.32)

i=1,....,N

for a suitable cut-off rate @ > 0. In Section 4.A, we discuss this assumption and give
a rigorous proof for convergence in probability for interaction kernels approximating the
singular Coulomb-kernel. Verifying this result rigorously in a more general setting — for
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1.3 Outline of this thesis

instance for interaction kernels approximating a Dirac distribution — is an open research
question.

In order to give a proof of the main theorem of this section, we develop a new technique,
since the result in [91] only works for repulsive particles and can not be extended in a
straightforward way for aggregating particles. The idea is the following:

In comparison to the repulsive case, the following term ((-,-) denotes the dual bracket)

t
M(t) = & /0 (s IV Z7 5 (f7 = gM)2)ds

can not be ignored due to the positive sign in case k = 1 (aggregating case). Hence,
we have to estimate it directly. Since we already know that (un, — @’7) — 0 weakly,
[91, 27], where u" solves the non-local equation (1.31), inspired by PDE techniques a first
attempt would be (similar as for pure PDE estimates) to ‘replace’ uy, with 4" and use
that supgcicr [|[47(t)]| oo (ray < o for small initial data, which would allow us to absorb this
term by diffusion terms.

However, this attempt does not work directly since the remainder supy ;.7 ||puny,(t) —
u"(t)| oo (mey can not be bounded uniformly in w € Q. Therefore, we add and subtract the
empirical measure of the intermediate particle system (where all particles are independent
with common density function 4"(¢)) denoted by 7y ,,. This allows us to split the difference
pNy — u' into

(i) a mean-field estimate pn,, — fy,y, and

(ii) a law of large numbers estimate fiy , —u" (since the intermediate particles are already
independent).

By exploiting our assumption of convergence in probability as well as a law-of-large numbers
estimate in probability (see Chapter 4, Lemma 4.2), we do not estimate supy.; 7 ||tnn(t) —
BNy ()] oo (ray and supgser [y, (1) — @7 () || oo (ray directly, but we allow for a set B C
where the respective difference is ‘large’. By exploiting the mean-field convergence and the
law-of-large numbers estimate we can conclude that the probability of B is small, which
illustrates the main idea of our technique.

Because of an error term we make by manipulating the dual bracket (-,-) and the convo-
lution with Z7, the estimates are very delicate. For more details we refer the reader to
Chapter 4.

Outlook: Inspired by the results of Chapter 4, the following open research questions could
serve as starting points for future research:

e First, to prove the assumed propagation of chaos property for n = N~7 in case
of aggregating particles would provide a more complete picture of the intermediate
fluctuations in case of aggregating particles, we comment on the current technical
challenges in Section 4.A.2.

e Second, it is interesting to note that the L?(R?) convergence shown in Chapter 4 can
be used in order to prove a strong mean-field limit in L'(R?) norm, which has been
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recently shown as a consequence of relative entropy (or modulated free energy) esti-
mates for certain interaction systems of Coulomb-type, [63, 10, 43]. Future research
will be concerned with the connection between the before mentioned convergence

types.

Further investigations on the fluctuation behaviour of particle system (1.30) are still
open. The main theorem of this chapter will serve as an important step towards a
better understanding of the limiting behaviour. Additionally, analysing the limiting
SPDE structure will be of particular interest and a future research goal.

Since Section 4.A.1 provides a convergence result in probability, a natural question
would be whether it is possible to extend the newly developed techniques in this part
of the thesis towards Coulomb interactions in order to show an L?(R?) convergence
result and consequently a fluctuation theorem for Keller-Segel-type equations. This
would fill a significant gap in literature fo the study of Keller-Segel systems.

Prospectively, results on fluctuations around the mean-field limit for cross-diffusion
models are of particular interest. Since aggregation effects play an important role in
cross-diffusion settings, the results of this thesis can serve as an important first step.
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Once we accept our limits, we go
beyond them.

— Albert Einstein!

2 Rigorous derivation of cross-diffusion
systems by a moderate model
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This chapter is taken from the article

[25] Li Chen, Esther S. Daus, Alexandra Holzinger, and Ansgar Jiingel. Rigorous derivation of
population cross-diffusion systems from moderately interacting particle systems. Journal of
Nonlinear Science, 31, 1-38, 2021.

2.1 Problem setting

The aim of this chapter is to derive the population cross-diffusion system of Shigesada,
Kawasaki, and Teramoto [104] from a stochastic, moderately interacting particle system in
a mean-field-type limit. More precisely, we derive the system of equations

Oyu; = le(quUz) + A <O'Z"U,Z' —+ u; Z f(aijuj)>, ul(O) = U, in Rd’ t >0, (2.1)
j=1

where ¢ = 1,...,n is the species index, d > 1 the space dimension, u = (uy,...,uy) is the
vector of population densities, and U; = U;(x) are given environmental potentials. The
parameters o; > 0 are the constant diffusion coefficients in the stochastic system, and
a;j > 0 are limiting values of the interaction potentials. In the linear case f(s) = s, we
obtain the population model in [104]. System (2.1) with nonlinear functions f have also
been studied in the mathematical literature; see, e.g., [32, 40, 73]. Such systems can be

! Attributed to A. Einstein.
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2 Rigorous derivation of cross-diffusion systems by a moderate model

formally derived from random walks on a lattice, where the nonlinearity originates from the
transition rates in the random-walk model [119, Appendix A]. Assuming that the transition
rates depend in a nonlinear way on the densities leads to equations similar to (2.1). We
assume that f is smooth but possibly not globally Lipschitz continuous (including power
functions). Our results are valid for functions f; depending on the species type, but we
choose the same function for all species to simplify the presentation.

This chapter extends the many-particle limit of [26] leading to the cross-diffusion system

n
Oyu; = div <U¢Vui + ZaijuiVuj) nRY t>0,i=1,...,n, (2.2)
j=1
which differs from (2.1) by the drift term, the nonlinear function f, and the diffusion term
n
div Z aijujVui.
j=1

System (2.2) is the mean-field limit of the particle system for N individuals

n N
1
AV ==Y = Y VB - YTt + V2d W),
/=1

j=1 (2.3)
Yooy =¢k, i=1,...,n, k=1,...,N,
where (WF(t));>0 are d-dimensional Brownian motions and &}, ..., &N are independent and

identically distributed (iid) random variables with the common probability density function
ug;. The functions

B}i(x) = n By <‘j;|> z € RY, (2.4)

are interaction potentials regularizing the delta distribution &g, i.e. B?j — @00 as n — 0
in the sense of distributions.

System (2.1) is derived from an interacting particle system for n species with particle
numbers Ni, ..., N,, moving in the whole space R?. To simplify, we set N = N; for all
1 =1,...,n. The key idea in this chapter is to consider interacting diffusion coefficients:

n N 1/2
1
N, N, N, N, k
dXN = —VU(XNdt + (2@ 25, <N S B - ng))) AWk (b),
=1 (=1
’ (£4) A (k)
Xp0)y=¢F, i=1,..,n k=1,...,N,

(2.5)
where f, is a globally Lipschitz continuous approximation of f with a Lipschitz constant
smaller or equal than n~® for some small & > 0. In view of (2.4), we can interpret the
scaling parameter 7 as the interaction radius of each particle.

Equations (2.1) are derived from system (2.5) in the limit N — oo, 7 — 0, with the scaling
relation between n and N given in (2.9) below. First, for fixed n > 0, we perform a classical
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2.1 Problem setting

mean-field limit from (2.5) to the following auxiliary intermediate system:

n 1/2
dX}; = —VU(X} )dt + (201- +2 Z (B un, (YZJ.))) AWk (),

= (2.6)
X 0)=¢, i=1,...,n, k=1,...,N,
where we set um(yzz) = un,j(t,YZi(t)) for j = 1,...,n. The function u, ; satisfies the
nonlocal cross-diffusion system
n
Opt s = div(u,;VU;) + A (aiun,i + Uy i Z fn(B?j * u,m-)>, 27
j=1 :

0 : d .
upi(0) =u; n R i=1,...,n,

and will be later identified as the probability density function of Yzl Note that we consider
N independent copies YZJ-, k=1,...,N, and the intermediate system depends on k only
through the initial datum.

Then, passing to the limit N — oo, n — 0 in (2.5) leads to the macroscopic system

R R n N 1/2
dXp; = —VUi(Xg,)dt + (2@» ~ 2Zf<aijuj<Xk,i>)) AW (1),
= (2.8)

Xp0)=¢, i=1..n k=1...N,

where the functions u; satisfy (2.1) and can be identified as the probability density functions
of Xy ;. In this limit, we assume that there exists § > 0, depending on n, min; o;, and 7',
such that

p2d+1He) < flog N (2.9)

holds, where o > 0 depends on the Lipschitz condition of f, see Assumption (A4) below,
and that the function f and its derivatives or, alternatively the initial data, are sufficiently
small (see Section 2.2 for details). The main result in this chapter is the error estimate

n
N = 2 -
sup E(Z sup_[Xp"(5) = X (s)| ) < O, (2.10)
k=1,..,.N i— 0<s<T
We prove this estimate for the potential U;(z) = —3|2|?, but more general functions are

possible; see Remark 2.1. Note that estimate (2.10) implies propagation of chaos; see
Remark 2.6. In the case a = 0, our scaling (2.9) for the multi-species case recovers the
result in [65], where a single-species, moderately interacting particle system with interac-
tion in the diffusion part was considered. Our strategy is similar to that one of [65] (and
based on ideas of Oelschldger [94]). Since we allow for locally Lipschitz continuous non-
linearities only, we obtain a smaller convergence rate compared to [65], which in fact is
natural, since we approximate the nonlinearity with functions having a Lipschitz constant
of order n~*. A difference to [65] is that the authors assume that the diffusion matrix in
the stochastic part is positive definite. We do not suppose such a condition, but we need
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2 Rigorous derivation of cross-diffusion systems by a moderate model

a smallness condition on the nonlinearity for the existence proofs of systems (2.1) and (2.7).

Since the underlying method of this chapter are moderately interacting particles and inter-
mediate systems obtained through coupling methods, we refer the reader to Section 1.2.2
for an introduction on this matter for single species models.

Next, we present a brief overview on the existing literature concerning mean-field lim-
its and moderately interacting many-particle limits in the context of diffusion equations
which are of particular interest for this chapter. For an introductory overview we refer
the reader to the introduction of this thesis. Mean-field limits from stochastic differential
equations have been investigated since the 1980s; see the reviews [54, 62] and the clas-
sical works by Sznitman [112, 113]. Oelschlédger proved that in the many-particle limit,
weakly interacting stochastic particle systems converge to a deterministic nonlinear pro-
cess [92]. Later, he generalized his approach for systems of reaction-diffusion equations
[94] and porous-medium-type equations with quadratic diffusion [93], by using moderately
interacting particle systems. We also refer to the recent work [27], which also includes
numerical simulations. As already mentioned, moderate interactions in stochastic parti-
cle system with nonlinear diffusion coefficients were investigated for the first time in [65].
Later, Stevens derived the chemotaxis model from a many-particle system [109]. Further
works concern the mean-field limit leading to reaction-diffusion equations with nonlocal
terms [59], the hydrodynamic limit in a two-component system of Brownian motions to
the cross-diffusion Maxwell-Stefan equations [102], and the large population limit of point
measure-valued Markov processes to nonlocal Lotka—Volterra systems with cross diffusion
[51]. The latter model is similar to the nonlocal system (2.7). The limit from the nonlocal
to the local diffusion system was shown in [87] but only for triangular diffusion matrices.
The many-particle limit from a particle system driven by Lévy noise to a fractional cross-
diffusion system related to (2.2) was recently shown in [38]. Furthermore, the population
system (2.1) was derived in [36] from a time-continuous Markov chain model using the
BBGKY hierarchy. The main result of this chapter presents, up to our knowledge, the
first rigorous derivation of the Shigesada-Kawasaki-Teramoto (SKT) model (2.1) from a
stochastic particle system in the moderate many-particle limit.

Porous-medium-type equations can be derived from stochastic interacting particle systems
by assuming interactions in the drift term [47] or in the diffusion term [65]. We allow for
interactions in the diffusion part but in a multi-species setting. The paper [51] is concerned
with a multi-species framework too, but the authors assume bounded Lipschitz continuous
interaction potentials and derive a nonlocal cross-diffusion system only. We are able to
relax the assumptions and derive the local cross-diffusion system (2.1).

Compared to the work [36], we take the limits N — oo, n — 0 simultaneously. However, our
approach also implies the two-step limit. Indeed, we can first perform the limit N — oo for
fixed n > 0 and afterwards the limit  — 0 on the PDE level; see Lemma 2.9 and Theorem
2.3. The simultaneous limit N — oo, n — 0, satisfying the scaling relation (2.9), gives a
more complete picture, since we can prove the convergence in expectation for the difference
of the solutions to the stochastic systems (2.5) and (2.8).

Finally, we remark that the cross-diffusion models (2.1) and (2.2) have quite different struc-
tural properties; also see [12, 13]. First, system (2.2) has a formal gradient-flow structure
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2.2 Assumptions and main results

for each species separately, while system (2.1) can be written, under the detailed-balance
condition [26], only in a vector-valued gradient-flow form. Second, the segregation behavior
of both models is different, i.e., segregation is stronger for the solutions to (2.2) than for
model (2.1); see the numerical experiments in Section 2.7.

This chapter is organized as follows: We present our assumptions and main results in
Section 2.2. The existence of smooth solutions to the cross-diffusion systems (2.1) and
(2.7) and an error estimate for the difference of the corresponding solutions is proved in
Sections 2.3 and 2.4, respectively. The proofs are based on Banach’s fixed-point theorem
and higher-order estimations. We present the full proof since the environmental potential
Ui(z) = —3|z|* is not square-integrable, which requires some care; see the arguments
following (2.22). Section 2.5 is concerned with the identification of the solutions to the
local and nonlocal cross-diffusion systems (2.1) and (2.7), respectively, with the probability
density functions associated to the particle systems (2.8) and (2.6), respectively. Error
estimate (2.10), the main result of this chapter, is proved in Section 2.6. In Section 2.7,
we present Monte—Carlo simulations for an Euler-Maruyama discretization of system (2.5)
and compare them to the numerical results from the particle system associated to (2.2).
In the appendix of this chapter (Section 2.A), we recall some inequalities used within the
proofs of this chapter.

2.2 Assumptions and main results
We impose the following assumptions:

(A1) Data: o; € (0,00) and &},...,&N are independent and identically distributed (iid)
square-integrable random variables with the common density function ug; for ¢ =
1,...,n on the probability space (2, F, P).

(A2) Environmental potential: U;(z) = —%[z|?, i=1,...,n.

(A3) Interaction potential: B;; € C5°(R?) satisfies supp(B;;) C B1(0), where By(0) is
the unit ball in R and 4,5 =1,...,n.

(A4) Nonlinearity: f € Wsljcl’oo(]R; [0,00)) and f, € Wt1o(R,[0,00)) is such that
fn = f on [—ay, ay| and the Lipschitz constant of f, is less than or equal to n~® for
a fixed o € [0,1). Here, s > d/2+ 1 and a,, — oo as n — 0. If f is globally Lipschitz
continuous, we set a = 0 and f, = f.

Remark 2.1 (Discussion). Environmental potential: The sign of U; guarantees that
the populations are dispersed since the drift term becomes —x - Vu; — u;. We have taken a
quadratic potential U; to simplify the presentation. “Dispersive” potentials (i.e. potentials
U; with AU; < 0) are needed in the analysis, since we cannot bound terms including AU; if
AU; > 0. It is possible to choose general (dispersive) potentials U; € C*(R?) such that VU;
is globally Lipschitz continuous, DFU; € LOO(Rd) for k =2,...,5+2, the Hessian D?U;
is negative semidefinite, AU; < 0, and D*U; for k = 3,...,s is sufficiently small in the
L>®(RY) norm. Thus, we may choose U;(z) = —|x|> + g(x) and g is a smooth perturbation.
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2 Rigorous derivation of cross-diffusion systems by a moderate model

Nonlinearity: Since f is not assumed to be globally Lipschitz continuous, we need to
approximate the nonlinearity. The condition on the Lipschitz constant of f, ensures that
we have a control on the growth of the Lipschitz constant of f, in the limit N — oo and
n — 0. This growth condition is needed in the proof of Lemma 2.9; see (2.34) and thereafter.
The condition s > d/2+ 1 ensures that the embedding H®(R?) < W1 (R?) is continuous,
and this embedding is needed to obtain solutions in H*(R?) and to derive the estimates.

We introduce some notation. We set
ai; = / By(lel)de, ij=1,....n,
R4

BZ(CU) = 0 Byj(|x|/n), Aij = | Bijll L1 (may = HBZHLl(Rd) and A = max; j=1,.n Aij. Let
Cs > 0 be the constant of the continuous embedding H*(R?) < L>*(R%) and set

I = [~2AC, | 7+ suay 2AC o | g1+ et (2.11)

Then, for small 7 > 0 such that a; > 2ACs||ug|| s ey, We have f, = f on I.
First, we ensure that the nonlocal and local cross-diffusion systems (2.7) and (2.1), respec-
tively, have global smooth solutions.

Theorem 2.2 (Existence for the nonlocal system). Let Assumptions (A2) and (A4) hold,
ug € H¥(RGR™) for s > d/2 + 1, and let n > 0 be such that a, > 2ACs]|uo || s (ray- There
exists € > 0 depending on ug such that if || fl|cs+1(r) < €, system (2.7) possesses a unique
solution wy = (U1, .., Uyy) satisfying

upi € L(0,00; H*(R?)) N L*(0, 00; H*H(RY)),
1l oe 0115 ety + OVl 20 001115 retyy < N0l sy
where 0 < 0y < Opip i= MiNi—1, 5 0.

The dependence of € on ug can be made more explicit. The proof shows that we need

to choose 0 < ¢ < Ccrrln/-i||u0||;1§(Rd), where C' > 0 is independent of uy and o;. Thus, if

| fllcs+1(ry is finite, the global existence result is valid for small initial data.

Theorem 2.3 (Existence for the local system). Let uy and n satisfy the assumptions of
Theorem 2.2. Then there exists € > 0 depending on ug such that if || f||cs+1(ry) < €, system
(2.1) possesses a unique solution w = (u1,...,u,) satisfying

u; € L0, 00; H¥(RY) N L2(0, 00; HSTY(RY)), i=1,...,n,
1l e 00055 ety + TV L2(0 0s 0ty < 0o et

where 0 < 04 < Opmin. Moreover, with the solution w, from Theorem 2.2, it holds that for
an arbitrary T > 0,

llw = ugll oo 0,752 Ray) + IV (@ = un) || L20,7;2Ray) < C(T)n-

Next, we state an existence result for the stochastic particle systems (2.5), (2.6), and (2.8).
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2.3 Proof of Theorem 2.2

Proposition 2.4. Let Assumptions (A1)-(A4) hold and let n > 0, N € N. Then:

(i) There exist unique square-integrable adapted stochastic processes with continuous paths,
which are strong solutions to systems (2.5), (2.6), and (2.8), respectively.

(i) For eacht > 0, the (nNd)-dimensional random variables X (t) and X (t) possess density
functions T, ()N and (t)®N with respect to the Lebesgue measure on R"™N?, respectively.

The proof follows from [67] and [89]. Indeed, Theorem 2.9 in [67, page 289] shows that
there exist continuous square-integrable stochastic processes, which are strong solutions to
(2.5), (2.6), and (2.8), respectively. Strong uniqueness is guaranteed by Theorem 2.5 in
(67, page 287]. We conclude from [89, Theorem 2.3.1] that X, (¢) and X (¢) are absolutely
continuous with respect to the Lebesgue measure and thus, they possess density functions
Wy (t, 2)®N and u(t, £)®V, respectively. We prove in Section 2.5 that the density functions
Uy, and u can be identified with u, and u, the solutions to (2.7) and (2.1), respectively.
The following theorem is our main result.

Theorem 2.5. Let Xlivf7 and )?;“ be the solutions to (2.5) and (2.8), respectively. Then
there exist parameters 6 > 0, depending on n, Omin, and T, and € > 0, depending on uq,
such that if n~2@+1+9) < §log N and I flles+iny <e,

n
sup E(Z sup |(X]i\’fzz’7 _ Xk,i)(s)|2> < CO(T,n, amm)nz(l_“),
k=1,..N T 0<s<T

where a > 0 is defined in Assumption (A4).

Remark 2.6. It is well-known that this result implies propagation of chaos in the single-

species case; see, e.q., [62, Section 3.1]. In the multi-species case, this generalizes for fived
. L, . N, N,

k to the convergence of the k-marginal distribution Fy(t) of (Xj1,?1 (t),... ,lew?k (t)) at any

time t > 0 towards the product measure ®§:1uie(-, t) as N — 0o, n — 0, i.e.

k
w2 (Fk(t), &) ui (-, t)) < kC(T, 1, O in)) — 0,
/=1

where Wy denotes the 2-Wasserstein distance. We refer to the introduction of this thesis,
i particular Section 1.2.1, where we sketch the connection between a convergence result in
expectation and propagation of chaos in Wasserstein-distance. Additionally, a discussion
of propagation of chaos for multi-species systems is provided in Section 1.1.2.

2.3 Proof of Theorem 2.2

We prove the global existence of smooth solutions to the nonlocal system (2.7). Since 7
is fixed in the proof, we omit it for u, to simplify the notation. We split the proof in
several steps. In the first step, we prove the existence of local-in-time solutions satisfying
[wi ()Nl s (rty < 2[[uoll grs ey for 0 <t < T(n) for some (possibly) small T'(n) > 0. Actually,
we show in the second step, that the factor 2 can be replaced by one. This uniform estimate
allows us in the third step to conclude the global existence.
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2 Rigorous derivation of cross-diffusion systems by a moderate model

Step 1: Local existence of solutions. In this step, the smallness conditions on 1 and f are
not needed. The idea is to apply the Banach fixed-point theorem on the space

Xp = {U € L>(0,T; HS(RdSRn)) : HUHLOO(O,T;HS(Rd)) < 2HUOHHS(Rd)}7

where T > 0 will be determined later in this proof. We define the fixed-point operator
S: Xt — Xr, S(v) = u, where u is the unique solution to the linear problem

Oyu; = div(w; VU;) + A(ui(ai + K,-(v(t,a:)))), u;(0) =wup; in R% ¢t >0, (2.12)

with Kj(v) = 30, fn(BZ- xvj) > 0,7 =1,...,n. We need to show that S is well
defined. We infer from Young’s convolution inequality (Lemma 2.11) and the embedding
H3(RY) < L®(RY) that

sup [|[VK;(v )”LOO(JRd <Z||f [l o R)HVB Al Rd) SUP [[v; (¢ )HLOO(]Rd)
o<t<T j=1 <t<T

<C(n) Z 11l oo (0,7 15 (Ray) < 00, (2.13)
=

ie., K;(v) is globally Lipschitz continuous. Therefore, a Galerkin argument to verify
higher-order regularity shows that, for given v € X, there exists a unique solution
u; € L*(0,T; H*(RY)) N L2(0,T; H*t1(RY)) to (2.12). It remains to show that u =
(uy,...,uy) € Xp for some T' > 0. The estimations are not difficult, but since VU; is
not square integrable, some care is needed.

First, we prove higher-order estimates for K;(v). Let o € Ng be a multi-index with order
|a] =m < 's. By Lemma 2.13 and Young’s convolution inequality,

T T _n
o 2(m—1 [e%
| I K@t <c [ >3l vV (B0 0 et
77)/0 ZHB T (Rd) I JHLoo Rd HDaUJHm(Rd)dt

<C 77) Z/O ijH?{Tz(Rd)dt < 00, (2.14)
j=1

where here and in the following, C' > 0, C(n) > 0, etc. are generic constants with values
changing from line to line. In a similar way, applying Lemmas 2.11 and 2.12,

« a n . n . 2
OiItIETHD VK;(v )||L2(Rd < CoileTZ||D 2(B kv )VB *UJ)HLQ(Rd)

<C sup 3 (1B * 3)l ooy | VB s ey | D™ 051 2 e
0<t<TZ 7 jILoe (R LY(R 71l L2 (R4)

2
D™ (B 5 o) oy IV B o e 03l oy ) < Clm), - (2.15)
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2.3 Proof of Theorem 2.2

since, according to Lemma 2.13, we can bound supo,.p || D™ (f;(Bij*v;))|l 2(ra) in terms of
Iallcs ey, 1B gty and supopor [[05] g rays and it holds that [V B | 11 ey < Cl).
We proceed with the proof of u € Xp for some T' > 0. Applying D® to (2.12), multiplying
the resulting equation by D%u;, and integrating over (0,7) x R? for 7 < T yields

1 1 T
— / |Do‘ui(7)\2dx — / |DaU0’i|2d$ + O'i/ / |VD°‘ui|2dxdt =1+ 1+ I, (216)
2 R4 2 R4 0 Rd

where

I = —/ V D%u; - D*(u; VU;)dzdt,
0 R4

I2 = —/ VDaui . D“(VuiKi(v))dxdt,
0 R4

I3 = —/ VD%, - D*(u; VK;(v))dadt.
0 R4

First, let || = m = 0. Then, integrating by parts in I, using Young’s inequality, and
observing that U;(z) = —3|z[?,

1 T T
I = / / uf AU;dzdt = —d/ / uZdzdt <0,

2 Jo Jrd 2 Jo Jre
I = —/ K;(v)|Vu;2dzdt <0,

0 JRrd

o;i [T 1 T

B[] Vuldedt 4 5 IV gy [ Tl
where we used K;(v) > 0 for 5. It follows from (2.13) that
2 Jo Jrd 0

where C' > 0 depends on the L>(0,T; H*(R%)) norm of v. Inserting this estimate into
(2.16) with & = 0 and applying the Gronwall inequality, we infer that

/ e+ 2 / / (Vg [2dadt < C(ug)e®
Rd

This shows that wu; is bounded in L*°(0, T; L*(R%)) and L?(0,T; H*(R?)).
Now, let |a] = m > 1. Then, integrating by parts, using AU; < 0, and applying Young’s
inequality again,

1 [7 T
I = / / (Dau@')QAUidl‘dt —/ / VD%, - (Da(u@-VUi) _ DanVU@')dxdt

/ /d|VDO‘uZ| dedt+ Y / el D" 22 gy | DPV UL g
k o<lflsle

a; T o

| /\

IN
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2 Rigorous derivation of cross-diffusion systems by a moderate model

where we used the fact that D®VU; is bounded for |3| = 1 and vanishes for |3] > 1. Tt
follows from integration by parts, K;(v) > 0, and Lemma 2.14 that

Iy=- / VD%; - (D*(VuiE;(v)) — VDI (v)) dadt
0 R4
- / K;(v)|V D%y |*dzdt
0 JRd

o [T a T -
< 4/ / IVD u2’2da}dt+0/ (”DKz(U)HLOO(]Rd)HD 1vuiHL2(Rd)
0o Jrd 0
m 2
+ [|D™ K (0) | 2y [ Vi ]| oo (ray) "t
We infer from estimates (2.13) and (2.14) for K;(v) and the embedding
H5(RY) <5 WLoo(RY) that

I < ‘Z/ |VD°‘ui\2dxdt+C/ i | s ey A2
0o Jrd 0

Finally, we use Lemma 2.12 and estimates (2.13) and (2.15) to obtain

o

I < 4/ \VD“ui\dedt—i—C/ / (Il o ety | D™V K ()] 2 e
0 R4 0 R4
m 2
+ | D™ il 2 gy |V K (0) || oo (raty) " ddt

UZ T o T
< 4/ VD ui‘dedt—i—C(n)/ ||ui||%{s(Rd)dt.
0 Rd 0

Inserting these estimates into (2.16) and summing over |a| < s, we arrive at

o T T
||’UJ1(7')||?'{5(Rd) + 4/0 HVU@H?’{s(Rd)dt S ||U0,l||?'{s(]Rd) + C(T])/O ||UZH§{5(Rd)dt

Summing over ¢ = 1,...,n and applying Gronwall’s inequality gives

LT T

2 2 2
HU(T)HHS(Rd) < HUOHHS(RCI) < HUOHHS(]Rd)e
Choosing T' > 0 sufficiently small, we can ensure that [[u(7)| zsgay < 2[uo|l grs(ray for all
0 < 7 < T. This shows that u € X7, i.e., the operator is well-defined.

Next, we prove that S : X7 — X7 is a contraction. Let v, w € X¢ and set v = S(v) and
w = S(w). Taking the difference of equations (2.12) satisfied by v; and w;, respectively,

using the test function v; — w;, and integrating by parts, it follows that

1 T
/ (T}i —wi)(7)2d$+0i/ |V(@Z —@i)|2d$dtzf4+.[5+16, (217)
2 R4 0 Rd
where
1 T _ —\2
I4 = = AUZ(UZ — ’U)Z) dadt S O,
2 0 Rd
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2.3 Proof of Theorem 2.2

Is = — /OT » V((; — ;) K;(v)) - V(0; — w;)dadt,
Is— — /0 [ (@) = Kofw)) - V(o = wi)dad.
Because of K;(v) > 0 and estimate (2.13) for VK;(v), we find that, by Young’s inequality,
—/T y K;(v)|V (0; — w;)|*dadt — / /Rd —w;)VK;(v) - V(0; — w;)dxdt
<% L1900t + C0) [ 101 = 0 [V o

/Hv = 03) 23 gyt + Cn / &1 — i3 gyt

It follows again from Young’s inequality that

| /\

0-1/ T B B T B
T <G [ 190 =0 Byt + o) [ IV ey 1K) = Koo [l
400 [0y [V (K (0) = K)o (2.18)

Since w € X7, we have ||[V;| poo@e) < Cllwillgsray < Cluo) and [|w;]| poo(ray < C(uo).
We use the fact that f, and f{7 are globally Lipschitz continuous:

n
1Ki(v) = Ki(w)l| 2y < Cn) D IB * (0 = w))ll 2 (gay < Cn)l|v — wll 2 gay,
IV(Ki(v) = Ki(w))l 2 (ra) < Z (£ (Bg * vj) = f(B  wi)) B  Vj |l 12 ra)
+ Z 15 (Bl * wi) VB (v — w) | L2 (ray

Z Jvj — wJ”L2(Rd HB |l (R4) HVUJHLOO(Rd)
7j=1

Z VB 1wy lv; — wjll L2 ma)

<Cn )Ilv - wHL2(Rd)-

Inserting these inequalities into (2.18) and summarizing the estimates for Iy, I5, and Ig, we
conclude from (2.17) and summation over i = 1,...,n that

1, o
3= 00y + 3G 196 = et

<0 /0 17— @122 gyt + Corllv — wl| g 1. 2z
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2 Rigorous derivation of cross-diffusion systems by a moderate model

We apply Gronwall’s inequality and the supremum over 0 < 7 < T to find that

2C1TTHU -

_ ) 2
19 = Bl 700 (0,1;12 ey < 2C2€ W[ Z00 0,522 (m))-

Thus, choosing 7' > 0 such that 2C5e?“1TT < 1, we infer that S : X7 — X7 is a contraction.
By Banach’s fixed-point theorem, there exists a unique solution u € L>(0,T; H*(R%)) N
L2(0,T; HSTY(RY)) to (2.7).

Step 2: A priori estimates. Let u = u, be the unique solution to (2.7). We know from
Step 1 that [lu;(t)[| oo rey < Csllwi(t)|| s ray < 2Cs||uoll s (ray for any 0 < ¢ < T Recall
that 7' = T'(n) and hence we do not have uniform estimates in 7 even for small 7" > 0
at this step. We show in this step the estimate [|u;(t)|| gsra) < [[uoll grs(ray, which allows
us to conclude that the end time 7' can be arbitrary and actually does not depend on 7.
We apply D® to (2.7) (with |o] = m < s), multiply the resulting equation by D%u;, and
integrate over (0,7) x R? for 7 < T, similarly to the corresponding estimate in Step 1:

1 1 T
/ | D% (7)|2da — / | D%ug ;| *dx + ai/ / |V D% |*dadt = I + Ig + Iy, (2.19)
2 Rd 2 Rd 0 R4

where
I; = —/ V D%u; - D*(u; VU;)dzdt,
0 JRd
Ig = —/ VDO‘ui . Da(VuiKi(u))dxdt,
0 Jre
Iy = —/ / VD% - D*(u; VK;(u))dzdt,
0 Jre
and we recall that K;(u) = >0 fy(B]} * uj).

First, let m = 0. Arguing similarly as for I; and I3, we find that Iy < 0 and Ig < 0. We
estimate VK;(u) = 37 fi (B * uj) B * Vuj:

”VKz‘(U)HL?(Rd) < AZ Hf1/7(B?j * Uj)”Loo(Rd)HVUJ‘HH(Rd)a (2.20)
j=1
recalling that A = max; j=1, n || Bj;||11(re)- This gives for m = 0:
Iy < ”uiHLOO(O,T;LOO(Rd))/O Vil 2 ey [V K (w) || 2 (aydt

< Clluollgsgray 3 IS (BY #14j)l| o 0 rspoo sty /0 19051132 gt
j=1

From this point on, we will need the smallness condition on f, and f7’7. Because of

1B 5 wj (0) || oo (ray < 1B 1|1 ey Cs [l (0) || s (may < 2AC|uoll grs ey (2.21)
where Cy > 0 is the constant of the embedding H*(R?) — L>(R9), (B * uj(t))(2) lies in
the interval I = [—2ACs||uol| s (ray, 2ZACs ||uo|| s (ray] for 0 < ¢ < T and x € RY. On this
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2.3 Proof of Theorem 2.2

interval, f, = f if n > 0 is sufficiently small. From now on, we use f < e and |f'| <eon I
for a small € > 0. Thus, we have

n T
I < chuOHHs(Rd)Z/O "
j=1
Inserting these estimates into (2.19), we conclude that

i) Bz gy + (0 — Celluall s ey /0 1V uile gyt < ol 2 g,

Choosing ¢ > 0 sufficiently small, this gives an estimate for u; in L°°(0,T; L>(R%)) N
L%(0,T; HY(RY)).

Next, let m > 1. The estimate for I7 is delicate since VU; ¢ L? (]Rd), and the corresponding
estimate for I; cannot be directly used. We split I7 into two parts:

I; = / Do‘uiDo‘(Vui -VU; + ulAUl)d.Tdt
0 JRd
= / D%u;(D*(Vu; - VU;) — D*Vu; - VU;)dadt
0 JRd
+ / Daui (DQ(UZAUZ) - DauiAUi)dxdt, (2.22)
0 JRd

noting that the second terms in both integrals are the same (with different signs) because
of

1 1
— | D*w;D*Vu;-VUdzx = — [ V(D%;)* VUidz = - / (D%u;)>AU;d.
]Rd Rd 2 Rd

Moreover, the last integral in (2.22) vanishes since AU; = —d. In the first integral of the
right-hand side of (2.22), the first-order derivative of U; cancels, while the second-order
derivative equals 0?U;/ O0x;j0xy, = —d; and all higher-order derivatives of U; vanish. Then
a straightforward computation leads to

Iy =—d / / (D%u;)*dadt < 0.
0 R4

For the estimates of Ig and Ig, we need a smallness condition on f and its derivatives. We
apply Young’s inequality and Lemma 2.12 to estimate the (more delicate) term Ig:

oi [T o T pe
I < 4/0 VD uZ-H%Q(Rd)dt—i—C(ai)/o 1D° (s K (1)) 22 g

o; 7 o T "
< 4/0 VD uz-H%Q(Rd)dtJrC/O (i poo (aty | D™V K s (w) | 2 ey

m 2
+ D™ ui| 2 gy |V K (w)]] oo (ray) “dE.

41



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2 Rigorous derivation of cross-diffusion systems by a moderate model

Estimate (2.21) shows that f, = f and |f’| < e on I. Then, by similar arguments leading
0 (2.20),

|V EG (u)]] oo (ray < AZ 1£5(B * wj)|l oo ety | Vit | oo (ma)
j=1
S AEHVuHLoo(Rd) S 5ACsHVU||HS(Rd)-

Moreover, using Lemma 2.13, the embedding H*(RY) < W1>(R?), and m < s,

D™V Ki(u) | ey < A 1Vl oo ey D™ (f( B % i) L2 ra)
j=1

< CZ HVUJHHS R9) 1"l gm—1 I)HB * uj |7 Loo(Rd HB * D" 1 (R4)
7j=1
< eC||Vull oy 1ull 7 oy | D™l 2 may < €IVl oy 0 | 37 eay

recalling definition (2.11) of the interval /. Consequently, the estimate for Iy becomes

I < / IV D% 23 gy + 2o Rd)/ IVl gt

The term Ig is treated in a similar way, resulting in

o % IV D il + Ol ey [T
0

Set omin = min—;__, o; > 0. We conclude from (2.19) after summation over |a| < s and
1=1,...,n that

HU(T)H?_[s(Rd) + (Umin - CEQHU(JH?{s(Rd)) /0 Hvu”%p(Rd)dt < Hu0||2Hs(Rd)-

Thus, for sufficiently small € > 0, we arrive at the desired estimate uniform in 7.

Step 3: Global existence and uniqueness. We have proved that [[u(7)||gsray < [[woll gs(ra)
for 0 < 7 < T for some sufficiently small 7' > 0. The value for T' does not depend on
the solution. Thus, we can use w(7') as an initial datum and solve the equation in [T, 27.
Repeating this argument leads to a global solution. The uniqueness of a solution follows
after standard estimates, based on the global Lipschitz continuity of f, and f,’7 (see the
calculations for Iy, I5, and Ig) and choosing € > 0 sufficiently small.

2.4 Proof of Theorem 2.3

We show the global existence of smooth solutions to the local system (2.1) and an error
estimate for the difference of the solutions to (2.1) and (2.7), respectively. First, we prove
that a solution w, to (2.7) converges to a solution u to (2.1) in a certain sense. Then we
prove the error bound in Theorem 2.3 by estimating the difference u, — u. The key of the
proof is the estimate of the difference f,, (B * uy.;) — fy(aijuy ;).
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2.4 Proof of Theorem 2.3

Step 1. Existence and uniqueness of solutions. Let u, be a smooth solution to (2.7) and
let ¢ € CS°(R?) with supp(¢) C Bg, ¢ € C°([0,T]) be test functions, where B is a ball
around the origin with radius R > 0. Then the weak formulation of (2.7) reads as

T T
/ (Byuyy 5, B)C(H)AE = — / / Uy i VU; - V( (t)dzdt
0 0 JRI (2.23)

T
- / / (aiVuw- + V(quz(un))) . ng)C(t)dl‘dt,
0 R4

where (-, ) is the duality pairing between H~!'(R?%) and H'(R?) and K;(u) = > i fn(Bi"j *
uj). We want to perform the limit 7 — 0. By the uniform estimate of Theorem 2.2, there
exists a subsequence, which is not relabelled, such that u,, — u weakly in L2(0, T; H**1(R%))
and weakly* in L>°(0,T; H*(R%)) ¢ L*°(0,T; L= (R%)) as  — 0. Our aim is to prove that
u is a weak solution to (2.1).

It follows from the proof of Lemma 7 in [26] that

Bl % Vuyj — a;jVu; weakly in L2(0,T; L*(RY)).

We claim that fn(B?j x up ;) — f(au;) strongly in L?(0,T; L?(Bg)). First, we observe
that u € L>(0,T; L>°(R%)). The weak formulation (2.23) gives

HatunyiHLZ(O,T;H*(BR)) < HumiHH(O,T;L?(Rd))HVUZ'HLOO(BR) + Uz‘Hvun,z‘”m(o,T;m(Rd))
+ [IVun,ill 20,702 ey | K i (un) || Loo (0,17, o0 (RaY)

+ Nlun,ill 220,752 ey IV Ki (un)| Loo (0,750 (Ra)) -

Because of

1K (un) || oo 0.7 poo ey < D I Fn(Bl %t )| poo 0.1 100 ey < ClF poe (1)
j=1

HVKi(Un)HLoo(o,T;Loo(Rd)) < Z Hf7/7(B;]j * “n,j)HLoo(o,T;Loo(Rd)) HBZ' * Vuw’”Loo(O,T;Loo(Rd))
j=1

< C|f Nl oo () IVUnl oo (0,710 Ry < Clluol] s ray,

we obtain a uniform bound for dyu,; in L?(0,T; H '(Bg)) (the bound might depend on
R). In particular, up to a subsequence, as n — 0,

Oy — Opu;  weakly in L2(0, T; H_l(BR)).

Since u,, is uniformly bounded in L?(0,T; H'(Bg)), the Aubin-Lions lemma implies the
existence of a subsequence (not relabelled) such that

wyi — u; strongly in L?(0,T; L?(Bg)).
We use the Lipschitz continuity of f = f,, on I to infer that

(B * ugz) — flaiju)llL2o,m2(85)
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2 Rigorous derivation of cross-diffusion systems by a moderate model

< C|IBJ; = (uy; — uj) + B #uj — aijuglln2(0/;2(Br))
< ClIB |z @aylung — ujll 20,2 ) + 183 * wj — aijwjllieo.r;02(Bg)) — 0-

This shows the claim. In a similar way, it follows from the Lipschitz continuity of f{7 that
fo(Bly* up j) — f'(aijuy) strongly in L?(0,T; L*(BR)).
The previous convergences allow us to perform the limit 7 — 0 in (2.23), leading to

T T T
| @uocwiar=- [ [ wvuiVocwdst - [ [ VR Vet
0 0 JRd 0o Jrd

where Fj(u) = ui(o; + 27, f(aijuy)). Moreover, u;(0) = ug; in Bp for any R > 0. Thus,
u is a weak solution to (2.1). Standard estimates show that u is the unique solution, again
choosing € > 0 sufficiently small.

Step 2: Convergence rate. We take the difference of (2.7) and (2.1), multiply the resulting
equation by u,; — u;, integrate over (0,7) x R? for any 7 > 0, and integrate by parts:

1 T 1 /7
/ (un; — ug)(7)*dx + ai/ / IV (i — u;)|Pdadt = / / AU (up; — u;)*dadt
2 Rd ’ 0 Rd ’ 2 0 Rd ’
- /() /Rd v Z (uﬁfif??(anj * un,j) - uif(aijuj)) : V(um - ui)d:cdt. (2.24)
j=1

The first integral on the right-hand side is nonpositive since AU; = —d. We split the second
integral into three parts:

- /0 /Rd DV (unifo (Bl xung) = wif (aijug)) - Viugi = wi)dadt = Jy + Jz + J, (2.25)
j=1

where

Ji = —/0 /Rd E V((un,i — uz)fn(BZ * uw‘)) Y (ty: — ug)dadt,
j=1

Jy = —/O /Rd E V (u; (fn(B?j s uy;) — foaijug))) - V(g — u;)dadt,
=1

ne=| ], DV wUnlaigns) = F(ai)) - Vo = w)dedt.

We start with the estimate of .J;. The families (B * uy,;) and (B]; * Vuy ;) are bounded
in L>°(0, T; L=°(R?)). Using | fallLoe(ry = I fl|Loo(r) < € and Young's inequality, we have

Ji < || fo (B un,j)HLOO(O,T;LOO(Rd))/O IV (i — i) |72 gy At

]
4 /0 Netms — sl 2y | £ (B, # ) e 0.2 200 et

X HBZ * vun,jHLOO(O,T;LOO(Rd)) IV (i — Uz‘)HL2(Rd)dt
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2.4 Proof of Theorem 2.3

o T T
< (4 + E) /0 HV(UW — ui)H%g(Rd)dt + C(O’Z)/O Hum — uiH%Q(Rd)dt. (2.26)

Next, we estimate Jy = Jo1 4+ Joo, where

J21 - / B VUz B * um]) f’l(awurm)) . v(u’ﬂ,i _ uz)d$dt7
R

j:l
Fo(Bil  uy ) B+ Ny — fr(aijuy j)ai Vg ) -V (ug; — u;)dzdt.

J22=—/0 /Rduii(

j=1
It follows that

J21 <[V oo (0,7, 100 (r1)) X

x Z/O 1£n (B * un,3) = Fo(@sun )l p2ea) |V (uns — wi) || p2(raydt
j=1

o T n T
<G ]I = ) Bt €3 [ B 1) = Fylaign ) gt
j=1

Since both B?j * Uy, j and u, ; are uniformly bounded in L(0,7T; L°(R%)), we can choose
n > 0 sufficiently small such that f = f;, on I. On that interval, f is Lipschitz continuous
uniformly in 7. We use this information in

‘/Rd (fo(B * ugj) = folaijugz))g(z)de| < C/Rd | Bl + uy j — aijuyj||g(z)|da,

where g € L*(R?). Recalling that supp(B;;) C B,(0) and a;; = an Bz, we obtain

‘ » (fo (B * uyj) = folaijug,;))g(x)de

e[| [, B e - un,j@:))dy\ 9(a)|dz

<C/Rd/ B0 ([ Funste— ) )vlg(o)faz
= C'n/ / \ij(y)|</Rd |Vun7j(x—Ty)||g(:v)]dx>dydr

<Cn / / DIVt = 7 2z |91 2 oyl

<oy / B ()\dy ||V

n

2@ 19l L2 ey < Cnllgll 2 (wa)-
By duality, we find that

Jo1 < / |V (i —ui)||%2(Rd)dt+C’n2.
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2 Rigorous derivation of cross-diffusion systems by a moderate model

The integral Joo is split into Joo = Jao1 + Jo92, where

Joz1 = _/ /d iy [ (Bi g ) (B % Vg — iV g) - V(uy; — ug)dadt,
0 R .
7j=1

- n
Jogo = —/0 /Rd Uu; Z (fé(BZ * Up ) — f;](aijuw))aijVun’j -V (uy; — ui)dadt.
i—1

We infer from the uniform boundedness of B}, *uy,; in L>(0,T; L™ (R9)) and the fact that
[y, = f" on I for sufficiently small > 0 that

T n T

o

Joo1 < ﬁ ; HV(UTM‘ - UZ')H%Z(Rd)dt + CZ/O ||BZ7] * Vg j — Clz‘jVUij%z(Rd)dt
j=1

ag; T

< 16 J, IV (i — ui)||2L2(Rd)dt+ 07722/0 |’D2u77»j‘|%2(]1{d)dtv
j=1

where we estimated the difference B?j * Vg, j — ai Vg, ; similarly as for Jp;. Furthermore,
the Lipschitz continuity of f; = f’ on I leads to

n T
Ja22 < CZ/@ [ill oo may | B * wn.j — @i jll 2may IV g5l oo ray |V (i — wi) | L2 ey dt
=

o T n T
gmonw%Jum;W@+cﬁZJ”W%ﬂﬁma
j=1

Summarizing these estimates, we infer that

o; T
< /0 19 (i — 05) |22 gyt + Co,

and combining the estimate for Jo; and Jao,

o; 7
h<4AHWWr“MEWW+&ﬂ (2.27)

It remains to estimate Js = J31 4+ J32, where
T n
= _/ /d > (Falasjung) = flaijug)) Vi - ¥ (uy; — u)dadt,
0 JRrd®
7=1

J32 = _/0 /Rd U; Z (f,;(aijunyj)aijVun,j — f’(aijuj)aijVuj) : V(un,i - ul-)dxdt.

j=1
Similar arguments as above yield

or

T < G [ 19 0= ) et + € [ IV 1 = gy
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2.4 Proof of Theorem 2.3

O.Z T T

The second term Js3o is again split into two parts, Jso = J321 + J3929, where

J321 = / /Rd % Z f77 azjun,]) fn(amu]))azyvun] v(unz - ui)dxdta

7j=1

J320 = / / u; Zaw (aiju;) Vg j — f’(aijuj)Vuj) - V(up; — ui)dadt.
Rd

7=1

Using the Lipschitz continuity again, f; = f" on I, and |f’| < e, we deduce that
J3o1 < CHUzHLoo 0,T;L>°(R%) / Z HVUWHLOO Rd)HuT]J o UJHL2 Rd)HV(Um i)HL2(Rd)dt
<G [ 19— ) Bt + € [y =
T n
J22 < C/O Z 1 (@ijui) || oo @aylIV (wn g — wp)ll 2ey IV (i — wi)ll p2raydt

< Cs/ IV (1 — )22 .

This shows that

g; T T
J32 < <8 + C€> /0 HV(UW — Ui)H%Q(Rd)dt + C/O Hun — UH%Q(Rd).

Summarizing the estimate for J3; and J3o, we arrive at

O.l T T
J3 < <4 +C€>/O |V (un.i —ui)H%Q(Rd)dt—i—C/O [|lun —UH%Q(Rd)dt. (2.28)

Finally, putting together the estimates (2.26), (2.27), and (2.28), we infer from (2.25) that

‘ /0 /Rd Zv(uﬂ,an(BZ * UUJ) — uif(aijuj)) . V(unﬂ; _ U@)dl‘dt‘
j=1

3Ui T T

This is the desired estimate for the last integral in (2.24). We conclude for sufficiently small
€ > 0 and after summation over ¢ = 1,...,n that

Ity = )7 e+ uinC |1V ty = 0Bt < C [ g = iyt + O

The proof ends after applying Gronwall’s inequality.
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2 Rigorous derivation of cross-diffusion systems by a moderate model

2.5 Links between the SDEs and PDEs

We show that the density function u from Proposition 2.4 coincides with the unique weak
solution u to (2.1).

Theorem 2.7. Let the assumptions of Theorem 2.3 hold. Let )?Z fori=1,...,n be the
square-integrable process solving (2.8) with density function w; and let u; be the unique weak

solution to (2.1). Then u = (uy,...,Uy,) solves the linear equation
n
Ot = div(u;VU;) + A <aa +0; ) f(aijuj)> mRY i=1,...,n, (2.29)
j=1

in the weak integrable sense, i.e.

/Rdﬂz‘(tW(t)dm — /Rd ug,i(0)da — /Ot /Rd G0y 6dads
— /Ot /Rd w;VU; - Vodadt + /Ot /Rd U <ai +§;f(aijuj)>A¢dxds
=

for all ¢ € C§°([0,00) x R?) and t > 0, where we assume that the initial datum ;(0) = uo
fulfils
/ upi(x)de =1, / g i (7)|z|*dz < co. (2.30)
Rd Rd
Additionally, @ = u in (0,00) x R, u; >0, and (2.30) is fulfilled for u; instead of ug,; for
almost allt >0 and alli =1,...,n.

Proof. Since X k,; depends on k only via the initial data §Zk with the same law ug;, we can
omit the index k. Let ¢ € C5°([0,00) x R?) and set F(u) = o; + > i=1 f(aijuy). By Ito’s
lemma, we obtain

o(t, Xi(t)) = 6(0,6) + /O Brd(s, Xi(s))ds — /0 VUi(s) - Vs, Ki(s))ds

+ / Fi(u(Xi(s))) Ad(s, Xi(s))ds + / Fy(u(X(s))) >V (s, X (s)) - AWi(s).
’ ’ (2.31)

We claim that the density function @; : [0,00) — P2(R?), where P2(R?) is the space of all
density functions with finite second moment, is continuous with respect to the 2-Wasserstein
distance W5. Indeed, since X; is square-integrable, we have @;(t) € Pa(R%) for almost all
t > 0 and the limit s — ¢ in the Wasserstein distance leads to

Wa(@s(t), (s)) = nf { (E(1Y; = Ys")) "+ Law(¥) = (1), Law(¥) = @i(s)}
< (B(Xi(t) — Xi(s)?) > =0,

using the facts that )AQ is continuous in time and has bounded second moments. This shows
the claim. We conclude that the point evaluation u;(t) is well defined.
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2.5 Links between the SDEs and PDEs

The previous argumentation shows that we can apply the expectation to (2.31) to obtain

[ o= [ wowoars [ [ moasaas
//]RazuZ s)VU; - V(s da:ds—l—//RduZ F;(u(s))A¢(s)dzds.

This is the very weak formulation of (2.29), showing the first part of the theorem.

Next, we verify that the solution to (2.29) is unique. More precisely, we take uy = 0 and
show that w;(t) = 0 for almost all £ > 0. The statement is usually proved by a duality
argument. However, the coefficients of the dual problem associated to (2.29) are not regular
enough such that we need to regularize it. As the proof is rather standard but tedious, we
only sketch the arguments. Let y; be a family of mollifiers and consider the regularized
dual backward problem on the ball By around the origin with radius R > 0:

atwk,R—VUi'Vwk’R—l-(Xk*Fi(u))A’wk’R:() in Br, 0 <s<t,
wk,R:O OnaBR, wk,R(t):gngo(BR) inBR.

We extend the unique smooth solution wy g to the whole space by setting wi g = 0 on
R%\ Bg. Since the extension may be not smooth, we choose a cut-off function g € C™(R?)
and use wy YR as an admissible test function in the very weak formulation of (2.29).
Standard estimations give bounds for wy g uniform in k and R. Then, passing to the limit
k — 00, R — oo in the weak formulation shows that [, g(x)t;(s, z)dz = 0, and since g
was arbitrary, we conclude that u;(s) =0 for 0 < s < ¢.

The weak solution u to (2.1) is also a very weak solution to (2.29). Therefore, by the
previous uniqueness result, u = u. O

Similar arguments lead to the following result that relates the solutions w, and wu,,.
Theorem 2.8. Let the assumptions of Theorem 2.2 hold and let n > 0. Let YZZ for

i=1,....,n and k = 1,...,N be the square-integrable process solving (2.6) with density
function @y ;. Then W, = (Uy1,...,Uyy) solves the linear problem

n
Oty ; = div(u,;VU;) + A(O’iun,i + Uy Z fn(B?j * uw)> inRY i=1,...,n,
j=1

with initial datum Ty, ;(0) = ug;, which fulfils (2.30), where u,; is the unique weak solution
0 (2.7). Then Uy, = u, in (0,00) x RY, u,; >0, and

/d Upi(x,t)de =1, /d unyi(x,t)]a:|2d:b < 00
R R

for almost allt >0 and alli=1,...,n
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2 Rigorous derivation of cross-diffusion systems by a moderate model

2.6 Proof of Theorem 2.5

The proof is split into two parts. We estimate first the square mean error of the difference
X ]iv ! —YZJ, where YZZ is the solution to the intermediate system (2.6). In fact, this error
bound is a generalization of a result due to [113]. Essential for this step are the facts that
the Lipschitz constant of B;’j is of order n~%~!, while the Lipschitz constant of fr is of order

n~“. Second, we estimate the square mean error of the difference Yzl - X ki, based on an
estimate of fn(B?j *u;) — fn(ai;uj) in L?, which is of the order of n!=.

Lemma 2.9. Let X,ivz.’" and 721 be the solutions to (2.5) and (2.8), respectively, in the
sense of Proposition 72.4. Under the assumptions of Theorem 2.5, there exists 6 > 0,
depending on n, omin, and T, such that if 24142 < §log N, where o > 0 is fized in
Assumption (A4), we have

n
sup E(Z sup I(XéY;”—YZ,i)(s)\?) < O(T, 1, i) N~ HTHDCOT Tmin)S,
k:]'v"'vN i=1 0<S<T

where C(T,n, omin) > 0 is a positive constant.
Proof. The process D7 := X7 — X7.; solves
D(s) = Br(s) + Eai(s), 0<s<T, (2.32)

where
B = [ (VU (1) — UK (6)dt,

Baits) = | (Ban(t) — Bxnlt))dWH (1),

n N 1/2
1
Ealt) = (201235 X BLO0 - X20))
=1 /=1
’ (€.3) A (k)
n o 1/2
Ega(t) = <20i +2 Z In (BZ * Uy (1, le(t)))> :
j=1

We use the global Lipschitz continuity of VU; and the Fubini theorem to estimate the first
term:

T

~ 2

]E( sup |E17i(3)|2> < CTIE/ ‘(X]i\’fl?”_Xzi)(s)‘ ds
0<s<T 0

T
< C'T/ ]E( sup |(X,ivg"—7"ki)(8)l2>dt-
0 0<s<t ’ '

Summing over ¢ = 1,...,n and taking the supremum over k = 1,..., N leads to

n T
sup E<Z sup |E1,i(5)]2> < CT/ sup E( sup |(X]iv£"—yzi)(s)|2)dt. (2.33)
k=1,...N iz 0<s<T 0 k=1,.,N 0<s<t ’ ’
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2.6 Proof of Theorem 2.5

Next, we apply the Burkholder-Davis—-Gundy inequality [67, Theorem 3.28] to the second
term Ejp; and use the Lipschitz continuity of z — (20; + x)1/2 for x > 0:

E( sup yEQ,i(s)F) < CE / T(Egl(t) — Eno(t))2dt

0<s<T
T n N
< CE/O [an< Z B}, Xm’"(t))>
R i
n 2
- Z fn (an] * “n,j(t»XZ,i(t)))] dt
7j=1

n

T 2
:CIE/O [Z(L}(t)vLL?(t)vLL?(t))} dt

IE/O Z (Li(t)* + L3(t)* + L3(t)*)dt, (2.34)
7j=1
where
N 1 N

o -5y X B X50) - (5 X BELO - X0
(e,ﬁi%k,z) (L3 Ak)
1 Y R

B0 =y X mOLO X)) 55 X BELO-T0)
(m)#k i) (L3 2k )

B0 = h(5 Z BXLA0) = X100 ) = Fo B w0 KL (0).
(&J)#(kﬂ)

We estimate these three terms separately. By construction, the Lipschitz constant of f,
can be estimated by Ly < 7~®. Moreover, the Lipschitz constant of ij (z) = n~9By(|=|/n)
is computed by Lp = max; j—1, » HVBZ-HLoo(Rd) < Cn~%1. This shows that

1 N
N (=

(6,3 )#(k i)

) —a—1— N7 Y

< LiLp|X0;"(6) = Xi,(0)] < Op~ 7o X000 (1) = X(0)]-

L3O < L5 > (BEEG(0) = Xp"(1) = BR(XR() = X3,7(1))

4,3

Therefore, by Fubini’s theorem,

T n T
B [ Y I 0Fd < Cloon R [0 - X0
0 0 ’ '
J=1
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2 Rigorous derivation of cross-diffusion systems by a moderate model

T

< C’(n)n_Q(d“‘l‘*‘a)/ sup IE( sup ‘X )—Yzi(t)‘z)dt.
0 k=1,.,N 0<s<t ’
(2.35)

We can estimate the second term L? (t) in a similar way, leading to

T n T
E/ ZL?(t)th < C(n)n_Q(d+1+o‘)/ sup E( sup Z’X ng( )} )dt.

0 ¢=1,..,N 0<s<t
(2.36)

The third term L;’(t) has to be treated in a different way. First, we use the Lipschitz
continuity of f;, to find that

N 1

C(n _ _ o
) Z (BZ(XZz - X7;) - Bl un i (X13)) — nde'z‘(O)‘~

L) < o

This implies that
C(n,T)
3(4)2
B [ Bwrar < 50
7j=1

+ zaZ / ( (0 (0) YZJ-@))—Bg*un,jagﬂ.))fdt. (237

It remains to estimate the expectation. To this end, we introduce
Dy (0. () = B (X a(1) = X 5(1)) = By % un i (8, X5 :(1), (€,5) # (k. d)-

The processes YZZ and YZ]- are independent, since for i = j, we are considering N inde-
pendent copies of the same process and for ¢ # j, the equation fulfilled by YZZ does not

depend on the process YZ]-. If (k,i) # (¢,7), (k,i) # (m,j), and ¢ # m, the processes
D(1..3),¢,5)(t) and Dy 3 (m jy(t) are orthogonal, since

E(D1,i), (0.5 (E) Dk i) () (1) = / < / y Bl(x —y) B (x — 2)up,j(t, y)un,;(t, 2)dydz
_2/ B = y)un,;(t,y)(Bjj = unj)(t,y)dy
- (B g ) (b 2) (B ) x))un,i(t, )z = 0.

Together with E(D(;,4,(¢,;)) = 0, this shows that the processes Dy ;) (¢,;) are uncorrelated.
However, if (k,i) # (¢,7), (k,i) # (m,j), and £ = m, the expectation does not vanish:

E(D ki), 0.5y (1)) = /

R4

(B a0 )0 (B ) t) + [ (Bl = P 0)

_ ZBZ. (z —y)uy,;(t, y)(BZ * Uy (1, :L“))dy) up,i(t, )dx
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2.6 Proof of Theorem 2.5

— / (((BZ)2 Uy ;) (t, ) — (BZ xup ) (t, 1)) uy i (t, x)da.
Rd

This expression is independent of the particle index k and ¢, it depends only on the
species numbers 7 and j. The case (k,7) = (¢,7) can be treated in a similar way with
the difference that, since Dy (1.0 (t) = n7B;i(0) — B um(yzl(t)), we obtain for
E(D (k,4),(k,5) () Dkiy,(m,j) (t)) an additional term of order n~2e. Hence, we infer from (2.37)
and the previous computation that

n N T

C(n,T)
/ ZL3 2dt_N2 2(d+a) _N2 2azz 0 E (k,1) (&J)()Z)dt

Jj=1/1=1

= N 50 | Unill o< (0,75 10 ()

1
XZ/ (|| ij *UmHLle JF”B *uﬁ]HL2Rd)(1+n2d>>dt

1
< WQZ / (1B ey ey + 1B oy o ey (1 33 ) )

C(T,n)
= NpEdra)”

(2.38)

recalling that || B}}[|;2gaey < Cn~ /2 and 1Bl 1 may = Aij < A and choosing 1 < 1.

Inserting estimates (2.35), (2.36), and (2.38) for L7*(¢) (m = 1,2, 3) into (2.34), we conclude
that

SupNE<§n: sup |Ea(s )\2> . CTn)

k=1,.., ~ 0<s<T Np2d+a)

T
_ <N 2
+ C(n,gmin)n 2(d+1+06)/ Sup E( Sup ‘Xkl ) — Xk:,z(t)‘ )dt
0 k=1,.,N 0<s<t

We infer from (2.32), estimate (2.33), and the previous estimate for Es; that

S(T) := sup (Z sup Dy |2>

k=1,...,.N 0<s<t

C(T,n)

T
R S . —2(d+1+a)

Note that the function S is continuous because of the continuity of the paths of X ,iv i’" and

YZZ Therefore, by Gronwall’s inequality, we have

siry < S

= Np2(d+a) exp (C(n, T, amin)n—Q(d+1+a)T)‘
’]’l (0%
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2 Rigorous derivation of cross-diffusion systems by a moderate model

We choose & > 0 such that C(n, T, omin)T8 < 1 and 5 > 0 such that = 2(@+1+2) < §log N.
Then

1
S(T) < NC(T’ n)exp (C(n, T, omin)Télog N) = C(T, n) N~ 1O Tomn)T5,
This finishes the proof. O
Next, we prove an error estimate for the difference Yzl - X ki

Lemma 2.10. Let Yzl and X';“ be the solutions to (2.6) and (2.8) in the sense of Propo-
sition 2.4. Under the assumptions of Theorem 2.5, it holds for small n > 0 that

n
-~ 9 B
sup E(Z sup ’X,“ X,“)(,s)’ > SO(TaUmm)UQ(l @)
k=1,..,N \ i 0<s<T

Proof. Since we are considering N independent copies, we can omit the particle index k.
Set D(s) := X} ;(s) — Xy,(s). Then, similarly as in the proof of Lemma 2.9, D}(s) =
D1 (s) + Dy(s), where

Di(s) = = [ (VUXY(@) ~ VU(u)
Dy(s) = /03 [(2(7,- + 2]2:]‘,,(3;7]. * uw»(f?))>
_ <2gi £2y° f(aijuj()?i))> 1/2] AWi(t).

Jj=1

1/2

We infer from the Lipschitz continuity of VU; and Fubini’s theorem that

E( sup |D1(5)\2) < C’TIE(/OT X7 (s) —Xi(s)\2d3> < CT/OTIE( sup \Dy(s)y2)dt.

0<s<T 0<s<t
(2.39)

Similarly as in the proof of Lemma 2.9, we use for Dy the Burkholder-Davis—Gundy in-
equality and the Lipschitz continuity of  — (20; + )/ on [0, 00) to obtain

n

5 s 1D2) < CB [ (3 (o R0) ~ (B # s (K20) )

0<s<T j=1
< C(n)(Da1 + Do + Dag + Day), (2.40)
where
n T R N 5
Doy = ZE/O (flasui(Xs)) — folagui(X;))) dt,
Doy = ZE/ fn (lwuj( i) — fn(B *UJ(X ))) dt,
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2.6 Proof of Theorem 2.5

ng—zE / (Fa(BY %y (R0)) — Fu( B s (X7))) 2,

Dm—ZE [ oD = (B s (D)t

The first expression Doy vanishes if > 0 is sufficiently small, since then f = f, on the
range of azju](X ). Using
laiju; — B * will 20,022 rey) < CllVusll 20,002 may) < Cn,

which was shown in the proof of Theorem 2.3, and the Lipschitz continuity of f, with
Lipschitz constant less or equal n~%, we find that

n T
D2z = Z/ (folaijug) — Fo(BY +uy)) usdadt
j=1 0 R4

n
<02 Y uill oo o700 (reay llasgug — B # wjll 20 o2 mayy < Cn)g?0 =)
j=1

Thanks to the uniform boundedness of the family B" * uj, we can choose 77 > 0 suf-
ficiently small, say n < n* for some n* > 0, such that f(BT7 xuj) = fy(Bl *uj) for
0 < n < n*. Then, using Young’s convolution inequality and the unlform estimate
V|| Loo(0,7;00 Ry < Clluoll grs(ray from Theorem 2.3, the third term Das is estimated
as

~

T
Doz < C(n ZHV Lok HLoo(OTLoo(Rd)/O E(\Xi(t)—X?(t)P)dt
T % ~ 1 2
< ch\Vujr\Lw(Ode) | E(R0 -Xlop)a

<C / sup yD;?(s)F)dt.

0<s<t

Finally, it follows from the error estimate for u — u, from Theorem 2.3 that

D24<C’Z/ /d|B *Uj — *Um| Uy jdadt
R

SCZH“UJHLOO(O,T;LOO(RUZ / HB HLle [Juj — “n,j“%?([kd)dt

j=1
< C(T)?
Inserting the estimates for Doy, ..., Doy into (2.40), we conclude that
T
E( sup [Dy(s)?) < C(T,n)n2=) + C(T) / E( sup [D](s)[?)dt.
0<s<T 0 0<s<t
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2 Rigorous derivation of cross-diffusion systems by a moderate model

Together with estimate (2.39) for D;(s) and recalling that D] = Dy + Dy, we arrive at

IE( sup |D;7(s)\2) < O(T,n)n?=%) 1+ o(T) /0 TIE( sup \Dg(s)\2)dt.

0<s<T 0<s<t

The proof is finished after applying Gronwall’s inequality and summing over ¢ = 1,...,n.
O

Theorem 2.5 now follows from Lemmas 2.9 and 2.10 and the triangle inequality:

w53 s X520 - K0

k=1,...,.N 1 0<s<t

<92 sup E(Z sup | X (s )—X:,i(s)\Q)

k=1,....N 0<s<t

n

42 SupNE(Z sup | X, Xf(@ﬁ)

k=1,..., 0<s<t

< ClN—1+CQ5 + 03,'72(1 a)‘
The condition log N > §1p~2(d+1+0) jg equivalent to
N71+Czé < eXp((—(sfl + 02)7772(d+1+a))‘

We choose § > 0 such that —6~ 4+ Cy < 0 and observe that exponential decay is always
faster than algebraic decay to conclude that exp((—d~! 4 Cy)p~2(d+1+e)) < p2(1=a)  Thig
yields

n
sup E(Z sup |3 (s >—f<f<s>\2) < Oy,

k=1,....N 0<s<t

finishing the proof.

2.7 Numerical tests

In this section, we perform some numerical simulations of the particle system (2.5) in one
space dimension, without environmental potential, and with linear function f(z) = 2z. We
are interested in the numerical comparison of the solutions to the particle systems (2.3)
and (2.5) in terms of the segregation behavior. We explore the ability of both systems
to model the segregation of the species. Numerical tests for the associated cross-diffusion
systems (2.1) and (2.2) are work in progress.

We discretize the particle systems (2.3) and (2.5) by the Euler—Maruyama scheme. Let
M € N and introduce the tlme steps 0 < t1 < -+ <ty =T with Aty, =ty 41—ty We
approximate X M(tm) by 2kt and ijz’" (tm) by yr', defined by, respectively,

1/2
xfnzrl = gk (20, + — Z Z B — b )> Aty Wy,

]1(1
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2.7 Numerical tests

n N
y . 1 . .
Ui = Wb = Y~ 2L VBN — ) Dt + /20 Bt 2,
j=1"" r=1

with initial conditions a:é’k = §f and yé’k = 521“, where ff are iid random variables and
wy, and z,, are normally distributed. It is well known that the solutions to the Euler—
Maruyama scheme converge to the associated stochastic processes in the strong sense; see,
e.g., [68, Theorem 9.6.2].

The numerical scheme is implemented in MATLAB using the parallel computing toolbox to
accelerate the simulations. The interaction potential is given by B(x) = exp(—1/(1 — 2?))
for || <1 and B(x) = 0 else. Then Bg(x) = n~'B(x/n). The numerical parameters are
At =1/100, n =2, N = 5000 particles, ng, = 500 simulations.

2.7.1 Two species: nonsymmetric case

We consider a nonsymmetric diffusion matrix with a1; = 0, a12 = 355, ag1 = 25, aze = 0,
and o1 = 1, 09 = 2. The initial data are Gaussian distributions with mean —1 (for species
i = 1) and 1 (for species i = 2) and variance 2. Figure 2.1 shows the approximate densities of
both species (histogram) for systems (2.5) and (2.3) at time ¢ = 2. We observe a segregation
of the densities in both models. In the population system (2.5), species 1 develops two
clusters because of the very different “population pressure” parameters ajo = 355 and
ag1 = 25, while species 2 develops only one cluster around x = 0; see Figure 2.1 left. The
segregation effect is stronger in the particle system (2.3) in the sense that both species
avoid each other as far as possible; see Figure 2.1 right. This is not surprising since the
diffusion of system (2.5) is generally larger than that one of system (2.3). The numerical
results confirm the segregation property defined in [3]. Indeed, this work considers the
cross-diffusion system (2.3) with 01 = 09 = 0 and a1; = a12 = a1 = aze = 1. It was proved
that the two species are segregated for all times if they do so initially. Here, segregation
means that the intersection of the supports of the densities is empty.

0.12 T T T T T T T 0.6

0.1F 0.5F

0.08 -

) S
= 0.06 =03
> >
0.04 - 0.2
0.02f 01l 7T
4 \
4 N\
! \)/L
0 0 " L — "
-20 20 20 15 10 -5 0 5 10 15 20
X X

Figure 2.1: Nonsymmetric case: Densities of particle system (2.5) corresponding to the
SKT population model (left) and particle system (2.3) (right) at time ¢ = 2.
Solid blue line: species 1; Dashed red line: species 2.
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2 Rigorous

derivation of cross-diffusion systems by a moderate model

2.7.2 Two species: symmetric case

We investigate the symmetric case by choosing a11 = age = 0, a1 = as; = 355, and, as
before, o1 = 1, 09 = 2. The initial data are chosen as in the previous example. In this ex-
ample, we expect that cross-diffusion dominates self-diffusion. We present the approximate
densities for different times in Figure 2.2. In both models, the species have the tendency
to segregate. As expected, the segregation in the particle system (2.3) is stronger than in
system (2.5) corresponding to the SKT model.

0.2 0.2 ‘ :
0.15} 0.15¢
[0} (0]
S =] L
3 g1l 2 01
g 0.1 g
0.05} 0.05}
0 L 0 .
-20 10 20 -20 -10 0 10 20
X X
t=0.15
0.14 05 :
012t
041
04t
© 008} 0 038]
=} =}
E E
0.06f 02t
0.04F
01t
0.02}
0
-20 20 -20 20
0.07 ; 1=2 : 0.35
0.06f . 03f
/ \
0.05f P ] 0.25}
/ \
! \
L j o 021
g 0.04 } \\ (_?j
£ 0.03} / \ >0.15
~0 / N
~ /
0.02f / o 0.1
V
Vi N\
001F \ 0.05}
Vi \\
0 : : : - 0
-20 -10 0 10 20 -20 20
X
Figure 2.2: Symmetric case: Densities of particle system (2.5) corresponding to the SKT

o8

population model (left) and particle system (2.3) (right) for different times
t = 0.01, 0.15, 2. Solid blue line: species 1; dashed red line: species 2.
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2.7 Numerical tests

2.7.3 Three species

Our third numerical experiment illustrates the segregation behaviour in case of three in-
teracting species with coefficients o1 = 1, 09 = 2, 03 = 3 and

0 355 355
(aij)=125 0 25
355 0 0

Similar as in the two-species case, the initial data are overlapping normal distributions
with means —1, 2, and —3, respectively, and variance 2. The approximate densities at
t = 2 are shown in Figure 2.3. We observe that the approximate densities of particle model
(2.3) show a much clearer component-wise segregation behavior than the stochastic particle
model (2.5), which corresponds to the SKT system, where the diffusion effects are much
stronger. This may be explained by the fact that, on the PDE level, the gradient-flow
structure of model (2.2) can be written species-wise, whereas the SKT model (2.1) (with
f(x) = z) only possess a vector-valued gradient-flow structure.

0.1 ‘ ‘ ‘ "
1t
0.08}
0.8f
0.06 S
E 206
: g
0.04
0.4f
N
0.02} 02y 4
S AT TS
0 0 N \ [ — —m AN
-20 = " . ; N
. X

Figure 2.3: Three-species case: Densities of particle system (2.5) corresponding to the SKT
population model (left) and particle system (2.3) (right) at time ¢ = 2. Solid
blue line: species 1; dashed red line: species 2; dash-dotted black line: species
3.

2.7.4 Cubic nonlinearity

For our last experiment, we compare the numerical results for the cubic nonlinearity f(s) =
s3 with the linear case imposed in the previous examples. The parameters are the same
as in Section 2.7.2. The numerical simulations are performed without using approximating
functions f,. This may be justified by the fact that the simulations deal with the behavior
for small time scales and with compactly supported initial data. We observe in Figure
2.4 that the cubic nonlinearity causes more clustering than the linear case f(s) = s. The
simulations suggests that in the cubic case, diffusion happens on a faster time scale than
segregation, while in the linear case, the particles diffuse slower and hence they form bigger
but fewer clusters.
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2 Rigorous derivation of cross-diffusion systems by a moderate model

0.05 ; 0.07
0.06
0.041
0.05}
o 0-037 @ 0.04f
=} =}
S )
0.02} 0.03}
0.02}
0.01}
0.01}
0 0
-50 -50 50
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Figure 2.4: Densities of particle system (2.5) corresponding to the SKT population model
with f(s) = s (left) and f(s) = s (right) at time ¢ = 2. Solid blue line: species
1; dashed red line: species 2. The right figure is the same as in Figure 2.2 but
with the range x = —50, ..., 50.

2.A Auxiliary results

For the convenience of the reader, we recall some well-known estimates used in this chapter
of the thesis:

Lemma 2.11 (Young’s convolution inequality, [75, Formula (7), page 107]). Let 1 < p,q,r
< 00 be such that 1/p+1/q=1+1/r and let f € LP(R?), g € LY(R?). Then fxg € L"(R?)
and

1S * gl ray < 1 f1 Lo gay gl Lara-

Lemma 2.12 (Moser-type estimate I, [80, Prop. 2.1(A)]). Let s € N and o € Nj with
|a| = s. Then there exists a constant C > 0 such that for all f, g € H*(R?) N L>®(RY),

HDa(fQ)”H(Rd) < C(HfHLoo(Rd)HDSQHLZ(RCZ) + ”DSfHLQ(Rd)HQHLOO(RGZ))‘

Lemma 2.13 (Moser-type estimate II, [80, Prop. 2.1(C)]). Let s € N and o € Nj with
|| = s. Then there exists a constant C > 0 such that for smooth g : R — R and
u € H*(R%) N L2 (RY),

ID*g(w)ll 2 gy < Cllg' los-1(mllullj o gy I D ull L2 ga)-

Lemma 2.14 (Moser-type commutator inequality, [80, Prop. 2.1(B)]). Let s € N and
o € N with |a| = s. Then there exists C > 0 such that for all f € H*(R%) N Whe(R9)
and g € H*~Y(R?) N L>(RY),

1D*(fg) — fDa(g)HLQ(Rd) < C(HDfHLoo(Rd)HDS_19HL2(Rd) + HDSfHLQ(Rd)”gHLOO(Rd))a

where D* =37,  D*.
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A physical law must possess
mathematical beauty

— Paul Dirac!

3 Mean-field derivation of a porous-medium
equation with fractional diffusion
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This chapter is taken from the article

[30] Li Chen, Alexandra Holzinger, Ansgar Jiingel, and Nicola Zamponi. Analysis and mean-field
derivation of a porous-medium equation with fractional diffusion. Communications in Partial
Differential Equations, 1-53, 2022.

3.1 Introduction and problem setting

The aim of this chapter is to derive and analyze the following nonlocal porous-medium
equation:
hp = div(pVP), P=(=A)"f(p), p(0)=p" inRY, (3.1)

where 0 < s < 1,d > 2, and f € C'([0,00)) is a nondecreasing function satisfying f(0) = 0.
This model describes a particle system that evolves according to a continuity equation for
the density p(z,t) with velocity v = —VP. The velocity is assumed to be the gradient
of a potential, which expresses Darcy’s law. The pressure P is related to the density in a
nonlinear and nonlocal way through P = (—A)~*f(p). The nonlocal operator (—A)™* can
be written as a convolution operator with a singular kernel,

(—A)Pu=Kx*u, Kz)=-cqg_sz/*% zecRY, (3.2)

where cg_, = I'(d/2 — 5)/(4°7%?T(s)) and T denotes the Gamma function [110, Theorem
5].

"Moscow University, 1956.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

If s = 0, we recover the porous-medium equation (for nonnegative solutions), while the
case s = 1 was investigated in [24, 118] with f(u) = wu for the evolution of the vortex
density in a superconductor. Related models (with f(u) = u) appear in the dynamics of
dislocations (line defects) in crystals [5, (1.5)]. Other applications include particle systems
with long-range interactions [116, Sec. 6.2]. The case 0 < s < 1 corresponds to long-
range repulsive interactions. This model, still with f(u) = u, was investigated in [5], but a
mathematical justification is missing. In this chapter, we provide a rigorous derivation from
an interacting particle system for general functions f(u). In this way, we aim to contribute
to the understanding of mean-field limits involving nonquadratic nonlinearities.

Equation (3.1) was first analyzed in [17] with f(u) = u for nonnegative solutions and in [4]
with f(u) = |u|™ 2u (m > 1) for sign-changing solutions. The nonnegative solutions have
the interesting property that they propagate with finite speed, which is not common in other
fractional diffusion models [17, 107]. Equation (3.1) was probabilistically interpreted in [99],
and it was shown that the probability density of a so-called random flight process is given
by a Barenblatt-type profile. Previous mean-field limits leading to (3.1) were concerned
with the linear case f(u) = u only; see [42] (using the technique of [103]) and [96] (including
additional diffusion as in (3.7) below). In [34], equation (3.1) (with f(u) = u) was derived
in the high-force regime from the Euler—Riesz equations, which can be derived in the mean-
field limit from interacting particle systems [43]. A direct derivation from particle systems
with Lévy noise was proved in [38] for cross-diffusion systems, but still with f(u) = u. Up
to our knowledge, a rigorous derivation of (3.1) from stochastic interacting particle systems
for general nonlinearities f(u) like power functions is missing in the literature. With the
main result of this chapter, we fill this gap.

3.1.1 Problem setting

Equation (3.1) is derived from an interacting particle system with N particles, moving in
the whole space R%. Because of the singularity of the integral kernel and the degeneracy of
the nonlinearity, we approximate (3.1) using three levels. First, we introduce a parabolic
regularization adding a Brownian motion to the particle system with diffusivity o € (0, 1)
and replacing f by a smooth approximation f,. Second, we replace the interaction kernel C
by a smooth kernel K¢ with compact support, where ¢ > 0. Third, we consider interaction
functions Ws with 5 € (0,1), which approximate the delta distribution. We refer to
Subsection 3.1.3 for the precise definitions.

The particle positions are represented on the microscopic level by the stochastic processes
XN (t) evolving according to

(3.3)

N
AXN(t) = VK¢ * £, (le > We(XN(t) - X{V(t))>dt +V20dWi(t),
J=1,j7#i
N

xXNo)y=¢, i=1,...,

9

where the convolution has to be understood with respect to z;%, (W;(t))¢>0 are independent
d-dimensional Brownian motions defined on a filtered probability space (€2, F, F;, P), and

2This means that the drift term becomes — [, VK¢ (y) fo (% SV Ws(XN () — XN (t) +y))dy

J=1, j#i
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3.1 Introduction and problem setting

&; are independent identically distributed random variables in R? with the same probability
density function p (defined in (3.12) below).

We remark that in comparison to the classical moderate regime (see Section 1.2.2 for
an introduction), the strength of interaction now depends on ¢ and (3, which are scaled
differently with respect to the number of particles N (see below), which makes the study
more involved.

The mean-field-type limit is performed in three steps. First, for fixed (o, 3, (), system (3.3)
is approximated for N — oo on the intermediate level by

AXN(t) = —VK¢ * fo (W * pop (XN (1), 1)) dt + V20dWi(t),

Xz‘N(O):&', i=1,...,N, (3.4)

where p, g ¢ is the probability density function of XZN and a strong solution to

Orpapc — 0Dpopc = div (popcVKe * fsOWVs % popc)),  Popc(0) =p) in R (3.5)

System (3.4) is uncoupled, since X}V depends on N only through the initial datum.
Second, passing to the limit (3, () — 0 in the intermediate system leads on the macroscopic

level to R R
AXN (t) = —VK * fo(po (XN (1), 1))dt + V20dWi(t),

~ 3.6
xN0)y=¢, i=1,...,N, (36)

where p, is the density function of XZN and a weak solution to
Otps = 0Apy + div(psV(=A) " f5(ps)), po(0) = Pg in R?. (3.7)

We perform the limits N — oo and (f,¢) — 0 simultaneously. In this limit, we use the
logarithmic scaling 5 ~ (log N)™# for some p > 0 between the strength of interaction
and the number of particles N. This can be viewed as a moderately interacting particle
system. For the smoothing parameter ¢ of the singularity from K, we can even allow an
algebraic dependence on N, i.e. { ~ N~ for some v > 0; see Theorem 3.2 for details. Our
approach also implies the two-step limit but leading to weak convergence only, compared
to the convergence in expectation obtained in Theorem 3.3.

Third, the limit ¢ — 0 is performed on the level of the diffusion equation, based on a priori
estimates uniform in ¢ and the div-curl lemma.

The main result of this chapter is that the particles of system (3.3) become independent in
the limit with a common density function that is a weak solution to (3.1)—(3.2).

3.1.2 State of the art

We already mentioned that the existence of weak solutions to (3.1) with f(u) = u was
proved first in [17]. The convergence of the weak solution to a self-similar profile was
shown by the same authors in [16]. The convergence becomes exponential, at least in one
space dimension, when adding a confinement potential [20]. Equation (3.1) with f(u) = u
was identified as the Wasserstein gradient flow of a square fractional Sobolev norm [78],
implying time decay as well as energy and entropy estimates. The Hoélder regularity of
solutions to (3.1) was proved in [15] for f(u) = and in [60] for f(u) = u™ ! and m > 2.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

In the literature, related equations have been analyzed too. Equation (3.1) for f(u) = u
and the limit case s = 1 was shown in [1] to be the Wasserstein gradient flow on the space of
probability measures, leading to the well-posedness of the equation and energy-dissipation
inequalities. The existence of local smooth solutions to the regularized equation (3.7) are
proved in [33]. The solutions d;p = div(p™ 'V P) with P = (—A)~%p in R? propagate with
finite speed if and only if m > 2 [107]. The existence of weak solutions to this equation
with P = (—A)™*(p") and n > 0 is proved in [88] (in bounded domains). While (3.1) has
a parabolic-elliptic structure, parabolic-parabolic systems have been also investigated. For
instance, the global existence of weak solutions to d;p = div(pVP) and 0; P+(—A)*P = p¥,
where 5 > 1, was shown in [14]. In [37], the algebraic decay towards the steady state was
proved in the case § = 2. We also mention that fractional porous-medium equations
of the type dip + (—A)*%f(p) = 0 in R? have been studied in the literature; see, e.g.,
[97]. Compared to (3.1), this problem has infinite speed of propagation. For a review and
comparison of this model and (3.1), we refer to [115].

For an introduction to the general concept of mean-field limit we refer to the introduction
of this thesis, especially Sections 1.2.1 and 1.2.2 for an introduction of coupling techniques
and moderately interacting particles which are used in this chapter.

There is a huge literature concerning mean-field limits leading to diffusion equations. In
the following, we shortly summarise articles which are relevant for this chapter and refer to
the introduction of this thesis as well as reviews [54, 62] and the classical works of Sznitman
[112, 113] for more information. Oelschliger proved the mean-field limit in weakly inter-
acting particle systems [92], leading to deterministic nonlinear processes, and moderately
interacting particle systems [93], giving porous-medium-type equations with quadratic dif-
fusion. First investigations of moderate interactions in stochastic particle systems with
nonlinear diffusion coefficients were performed in [65]. The approach of moderate interac-
tions was extended in [25, 26] to multi-species systems, deriving population cross-diffusion
systems. Reaction-diffusion equations with nonlocal terms were derived in the mean-field
limit in [59]. The large population limit of point measure-valued Markov processes leads to
nonlocal Lotka—Volterra systems with cross diffusion [51]. Further references can be found
in [96, Sec. 1.3].

Compared to previous works, we consider a singular kernel I and derive a partial differential
equation without Laplace diffusion by taking the limit o — 0. The authors of [47] derived
the viscous porous-medium equation by starting from a stochastic particle system with a
double convolution structure in the drift term, similar to (3.4). The main difference to
our work is that (besides different techniques for the existence and regularity of solutions
to the parabolic problems) we consider a singular kernel in one part of the convolution
and a different scaling for the approximating regularized kernel K¢ = Kw¢ * W, where
we is a WHe(R?) cut-off function (see Section 3.1.3 and definition (3.11) for the exact
approximating sequence), in comparison to the interaction scaling Ws * p, 3. The two
different scalings 8 and ¢ allow us to establish a result, for which the kernel regularization
on the particle level does not need to be of logarithmic type but of power-law type only.
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3.1 Introduction and problem setting

3.1.3 Main results and key ideas

We impose the following hypotheses:
(H1) Data: Let 0 < s < 1,d > 2.
(H2) p° € L=(RY) N L*(R?) satisfies p® > 0 in R? and [, P2 (x)|z 2429 dz < oo.

(H3) Nonlinearity: f € C'([0,00)) is nondecreasing, f(0) = 0, and u + uf(u) for u > 0 is
strictly convex.

Let us discuss these assumptions. We assume that d > 2; the case d = 1 can be treated if
s < 1/2; see [17]. Extending the range of s to s < 0 leads to the fractional (higher-order)
thin-film equation, which is studied in [77]. The case 1 < s < d/2 may be considered too,
since it yields better regularity results; we leave the details to the reader. On the other
hand, the case s > d/2 is more delicate since the multiplier in the definition of (—A)™*
using Fourier transforms does not define a tempered distribution. The case s = d/2 for
d < 2 (with a logarithmic Riesz kernel) was analyzed in [42]. We need the moment bound
for the initial datum p° to prove the same moment bound for p,, which in turn is used
several times, for instance to show the entropy balance and the convergence p, — p as
o — 0 in the sense of C?_, ([0, T]; L}(R)). The monotonicity of f and the strict convexity
of u — wuf(u) are needed to prove the strong convergence of (p,), which then allows us
to identify the limit of (fs(ps)). An example of a function satisfying Hypothesis (H3) is
f(u) = v’ with > 1.

Our first result is concerned with the existence analysis of (3.1). This result is needed to
prove the main theorem below. We write |- ||, for the LP(R?) norm and define the so-called
entropy density h : [0,00) — R by

h(u):/ou/lvjwz(uw)dwdv for u > 0.

Theorem 3.1 (Existence of weak solutions to (3.1)). Let Hypotheses (H1)-(H3) hold.
Then there exists a weak solution p > 0 to (3.1) satisfying (i) the regularity

p € L®(0,00; L'(RY) N L¥(R?)),  V(=A)"/?f(p) € L*(0,00; L*(R?)),
Op € L*(0,00; H 1 (RY)),

(ii) the weak formulation
T T
| @o.oes [ [ o9-2)71() Vodudt =0 (3.8)
0 0 Jrd

for all € L?(0,T; H'(RY)) and T > 0, (iii) the initial datum p(0) = p° in the sense of
H=YR?), and (iv) the following properties for t > 0:

e Mass conservation: ||p(t)|l1 = ||0°||1,

e Dissipation of the L norm: ||p(t)]loo < [|0°|lo,
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

o Moment estimate: supgo [pa p(x,t)|z]?*¥(=2)dz < O(T),

e FEntropy inequality:

/Rd hp(t))d + /Ot /R V(=A)"*/2f(p)[2dads < / h(p)d.

R

Note that the Hardy—Littlewood—Sobolev-type inequality (3.68) (see Appendix 3.B) implies
that

1oV (=2)7 £ (p)ll2 = 1o(=2) "2V (=)= f(p)lll2 < Cllplay@s IV (=)= £ (p)ll2,

such that pV(—=A)"*f(p) € L*(R?Y), and the weak formulation (3.8) is well defined.

The main ideas of the proof of Theorem 3.1 are as follows. A priori estimates for strong
solutions p, to the regularized equation (3.7) are derived from mass conservation, the en-
tropy inequality, and energy-type bounds. The energy-type bound allows us to show, for
sufficiently small o > 0, that the L> norm of p, is bounded by the L> norm of p°, up
to some factor depending on the moment bound for p°. The existence of a strong solution
po is proved by regularizing (3.7) in a careful way to deal with the singular kernel. The
regularized equation is solved locally in time by Banach’s fixed-point theorem. Entropy es-
timates allow us to extend this solution globally in time and to pass to the de-regularization
limit. The second step is the limit ¢ — 0 in (3.7). Since the bounds only provide weak con-
vergence of (a subsequence of) p,, the main difficulty is the identification of the nonlinear
limit f,(ps). This is done by applying the div-curl lemma and exploiting the monotonicity
of f and the strict convexity of u +— wf(u) [45].

We already mentioned that the existence of local smooth solutions p, to (3.7) has been
proven in [34]. However, we provide an independent proof that allows for global strong
solutions and that yields a priori estimates needed in the mean-field limit.

Our second and main result is the propagation of chaos, which shows a mean-field-type
convergence of the particle system (3.3) to a solution of (3.1). To define our particle
system properly, we need some definitions. Introduce the smooth approximation

fo(u) = /0 u(ra* (f'1p.00)) (W) E(ow)dw  u € R, (3.9)

where the mollifier I', for o > 0 is given by I'y(z) = 07T (z/0), and I'y € C§°(R) satisfies
't >0, ||T'1|l1 = 1, while the cutoff function =€ C°(R) satisfies 0 < Z < 1in R and
Z(z) = 1 for |z| < 1. Then, thanks to I'y, we have f, € C°(R). The cut-off function
guarantees that the derivatives DF f, are bounded and compactly supported for all & > 1.
Furthermore, it holds that f. >0, f,(0) = 0.

In a similar way, we introduce the mollifier function Ws for 8 > 0 and z € R? by

Ws(z) = B7Wi (B x), Wi € C°(R?) is symmetric, Wy >0, [Wi]i =1.  (3.10)
Let us define the cut-off version of the singular kernel K by

IEC := Kwe, where the cut-off function we € W (R?) is such that
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3.1 Introduction and problem setting

0<we(z) <1forz €RY || Vwe|oo < 2€, (3.11)
we(z) =1 for all [z <¢7', we(z) =0 for all || > 2¢ .

Then the regularized kernel ¢ is given by
Ke(z) := IEC * We(x) for all z € R%,

where ¢ > 0. Let the cutoff function = € C§°(R?) satisfy 0 < = < 1 in R% and Z(z) = 1
for |z| < 1. Then we define the regularized initial datum for z € R? by

0
0 0 = fRd p”(y)dy
() = ke(Wy % p°)(z)Z(0x), where K, = — . (3.12)
o 7 JraWeo = p0) (1) E(oy)dy
This definition guarantees the mass conservation since ||p%||; = ||0°||1; see Section 3.2.1.

Note that our particle system (3.3) depends on 4 parameters: N € N denotes the number of
particles, 8 > 0 models the strength of interaction between the particles, ¢ > 0 describes the
regularization of the singular kernel I, and o > 0 is a measure of the additional diffusion.
The quantities (3, (, o) are regularization parameters needed to overcome the singularity
of the kernel K and the (possible) degeneracy of the nonlinearity f.

In the limit N — oo, (3,¢,0) — 0, we prove the following propagation-of-chaos result.

Theorem 3.2 (Propagation of chaos). Let (~27! < CiNY4 and 7347 < clog N for
some constants C1, € > 0, and let PX; 5.¢(t) be the joint distribution of (XN(), ..., XN()
fork>1andt € (0,T). Then there exists a subsequence in o such that
lim lim pk t) = P®*(t) in the sense of distributions,
il P () = PR f
where the limit is locally uniform in t, and the measure P(t) is absolutely continuous with

respect to the Lebesque measure with the probability density function p(t) that is a weak
solution to (3.1).

It is well known (see, e.g., Proposition 1.1.2 in the introduction of this thesis) that the
result of Theorem 3.2 implies the weak convergence of the empirical measure associated to
the particle system (3.3) towards the deterministic measure p(t), i.e.

N
INopc(t) =D Ox (g — p(b),
i=1

for a subsequence in o. Furthermore, Theorem 3.2 shows that at any time ¢ > 0, in the
limit N — oo, (,(,0) — 0, any finite selection of k particles in (3.3) becomes independent
with limiting distribution p®*(¢).

If equation (3.1) was uniquely solvable, we would obtain the convergence of the whole
sequence in o. Unfortunately, the regularity of the solution p to (3.1) is too weak to
conclude the uniqueness of weak solutions. Up to our knowledge, none of the known
methods, such as [8, 35], seem to be applicable to equation (3.1).

Theorem 3.2 is proved in two steps: First, we show (strong) error estimates between par-
ticles of systems (3.3) and (3.6), respectively; see Proposition 3.3 below. Second, we show
the weak convergence of (a subsequence of) p, to a solution p to (3.1); see Corollary 3.13.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Proposition 3.3 (Error estimate for the stochastic system). Let XV and )?lN be the
solutions to (3.3) and (3.6), respectively. We assume that (%=1 < CyN'Y* for some
constant C1 > 0. Let 0 € (0,1/4) and a := min{l,d — 2s} > 0. Then there exist constants
e > 0, depending on o and 6, and Cy > 0, depending on o and T, such that if f737 <
elog N then

E( sup max_|(XN —fsz)(sn) < Co(B 1) = 0 as (N, C, B) — (00,0,0).
0<s<T =1,....N

The proposition is proved by estimating the differences

Eyt) =E( sup max_ |(X} - XM)(s)] ).
O<s<ti=1,...N

Balt) =B sup ma, (6 - X)) )
o<s<ti=1,...N

and applying the triangle inequality. For the first difference, we estimate expressions like

ID¥KCe * ul|oo for appropriate functions u and |[D¥Wsle for & € N in terms of negative

powers of 3 (here, D* denotes the kth-order partial derivatives). Using properties of Riesz

potentials, in particular Hardy—Littlewood—Sobolev-type inequalities (see Lemmas 3.22 and

3.23), we show that for some p; >0 (i =1,2,3),

Ei(t) < C(o) ™M /0 t Ei(s)ds + C(0)fH2¢ s N=V/2,

By applying the Gronwall lemma and choosing a logarithmic scaling for g and an algebraic
scaling for ¢ with respect to N, we infer that E(t) < C(o)N~#* for some pg € (0,1/4).
For the second difference Ey, we need the estimates ||Wg * u — uljoc < C(0)f (Lemma
3.21), and [[(K¢ = K) * polloc < C(0)C%, ||p0,8,c — Pollos < C(0)(8+¢*) (Proposition 3.14),
recalling that @ = min{l,d — 2s}. The proof of these estimates is very technical. The
idea is to apply several times fractional Gagliardo—Nirenberg inequalities that are proved
in Appendix 3.B and Hardy-Littlewood—Sobolev inequalities that are recalled in Lemmas
3.22-3.23. Then, after suitable computations,

Buft) £ C()(+¢") + C(0) [ Balo)ds,

and we conclude with Gronwall’s lemma that E»(t) < C(o)(8 + ¢%).

The chapter is organized as follows. The existence of global nonnegative weak solutions to
(3.1) is proved in Section 3.2 by establishing an existence analysis for (3.7) and performing
the limit ¢ — 0. Some uniform estimates for the solution p, ¢ to (3.5) and for the
difference py 3¢ — po are shown in Section 3.3. Section 3.4 is devoted to the proof of the
error estimate in Theorem 3.3 and the propagation of chaos in Theorem 3.2. In Appendices
3.A-3.C we recall some auxiliary results and Hardy—Littlewood—Sobolev-type inequalities,
prove new variants of fractional Gagliardo—Nirenberg inequalities, and formulate a result
on parabolic regularity.
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3.2 Analysis of the fractional porous media equation

Notation

We write || - ||, for the LP(R?) or LP(R) norm with 1 < p < oo. The ball around the origin
with radius R > 0 is denoted by Br. The partial derivative 9/0x; is abbreviated as 9; for
i=1,...,d, and D* denotes a partial derivative of order ||, where o € Ng is a multiindex.
The notation DF refers to the kth-order tensor of partial derivatives of order k € N. In this
situation, the norm |[D¥ul|, is the sum of all LP norms of partial derivatives of u of order
k. Finally, C' > 0, C; > 0, etc. denote generic constants with values changing from line to
line.

3.2 Analysis of the fractional porous media equation

In this section, we prove the existence of global nonnegative weak solutions to (3.1). We
first prove the existence of a solution p, to (3.7) by a fixed-point argument and then perform
the limit ¢ — 0. In Section 3.2.1, we prove some basic estimates for a strong solution p,
o (3.7). Entropy and moment estimates as well as higher-order estimates are derived in
Sections 3.2.2 and 3.2.3, respectively. The existence of a unique strong solution to (3.7)
is proved in Section 3.2.4 using a regularized version of (3.7) and Banach’s fixed-point
theorem. The strong L'(R?) limit ¢ — 0 is performed in Section 3.2.5 using the div-curl
lemma. Finally, Section 3.2.6 is concerned with the proof of a time-uniform weak L'(R?)
limit of (p,), which is needed in the proof of Proposition 3.3. Recall definition (3.12) of
the number k., which is stated in (iv) below.

Proposition 3.4. Let Hypotheses (H1)-(H3) hold. Then for all o > 0, there exists a
unique weak solution p, > 0 to (3.7) satisfying (i) the regularity

b € L(0,00; LI (RY) (1 L(R)) 1 C([0, 00); L(RY)),
Vpo € L*(0,00; L*(RY)),  9yps € L*(0,00; HH(R?)),
(ii) the weak formulation of (3.7) with test functions ¢ € L*(0,T; H'(R?)), (iii) the inital

datum p,(0) = p2 in L2(R?), and (vi) the following properties for t > 0, which are uniform
i o for sufficiently small o > 0:

e Mass conservation: ||ps(t)|1 = ||p°|1

e Dissipation of the L> norm: ||ps|| Lo (0,00; 100 (Re)) < /<c(,||p0||Loo(Rd) < CHPOHLOO(Rd).

o Moment estimate: SuPe(y o) Jpa Po(T t)|x|d = do < Cr.

e FEntropy inequality:

/ h(pe (T ))dx+4a/ / F1(p0) |V /g 2dadt
/ /Rd D) alp )|2dxdt§/Rdh(p2)d:v for all T > 0.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Additionally, for anyT >0, 1 < p < 00, and 2 < g < 00, there exists C' > 0, depending on
T, o, p, and q, such that

||P0”LP(0,T;W3’1’(R<1)) + ”8tpa||LP(O,T;W17P(Rd)) + HPUHCO([O,T];W?J(Rd)mWS’q(Rd)) <C,

i.e., py is even a strong solution to (3.7) and p, € C°([0,T]; W*L(RY) N W34(RY)) for
q=2.

3.2.1 Basic estimates for p,

We prove a priori estimates in LP spaces and an energy-type estimate. Let o € (0,1) and let
po be a nonnegative strong solution to (3.7). Integration of (3.7) in R? and the definition
of p2 immediately yield the mass conservation

loe @l = llogll = 6%l for ¢t > 0. (3.13)
Lemma 3.5 (Energy-type estimate). Let F € C?([0,00)) be convex and let F(pl) €
L'(RY). Then

d
— | F(po)dz = —O'/ F"(po)|V po|*da (3.14)
dt Rd d

R
 Cdis (G(po(@)) = Glos (W) (fo (po () = folps()) |
2 /Rd /Rd dedy <0,

|z — y|dt2(1=9)

where G(u) := [ vF" (v)dv for u >0 and cq1—s is defined after (3.2).

Proof. First, we assume that F” is additionally bounded. Then F’(p,) — F’(0) is an ad-
missible test function in the weak formulation of (3.7), since |F'(ps) — F'(0)] < [|[F"]|co|po]-
It follows from definition (3.66) of the fractional Laplacian and integration by parts that

d

— | Flps)dz + ‘7/ F"(pg)|Vpo|*dz = _/ F'(pa)psVpo - V(=A) 7" fo(po)dz
dt Rd R4 Rd

- / VG(ps) - V(=A)* fo(po)dz = - / G(po)(— D) o (po)da
R4 Rd
fcr J(w)_fa cr( )
= —aures [, [ Glro(on A2 Sl gz,

A symmetrization of the last integral yields (3.14).

In the general case, we introduce Fy(u) = F(0) + F'(0)u + [ [y min{F"(w), k}dwdv for
k> 0. Then F}/(u) is bounded and (3.14) follows for F' replaced by F}j. The result follows
after taking the limit £ — oo using monotone convergence. O

We need a bound on #,, defined in (3.12), to derive uniform L (R?) bounds for p,.
Lemma 3.6 (Bound for k,). There exists C > 0 such that, for sufficiently small o > 0,

1

1< < -
_Hg_l—CJE’

1
where E = 0/ (14 |z[2/(4=2)) 0 () dz.
0% Jre
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3.2 Analysis of the fractional porous media equation

Proof. By Young’s convolution inequality (Lemma 3.19), we have
/Rd(Wa « p°) (@)= (0z)da < [ We 2l < IWoll1lloll = 1611,

which shows that x, > 1. To prove the upper bound, we use the triangle inequality
2| < |z —y|+ [yl

[ Ve P a)Eon)de = [ Wz — )/ () dydz
R (le<1/0} JRa
-/ ( wo<x—y>dx>p0<y>dy— / Wiz — 4)o°(y)dydz
Rd \ JRd {|z|>1/0} JRE
> / PO (y)dy — o4/ (d=29) / / 2229, (2 — y)p° (y)dydz
Rd (2|10} Jre
> / PO (y)dy — o4/ (d=29) / / |z — y[PA2IW, (2 — y)p° (y)dyda
R4 R4 JRA
— g?4/(02) / ly PV I2IW, (2 — )0 (y)dyda.
Rd Rd

Using the property [ga |2|°¥@=2W, (2)dz < Co?¥/(@=29) for the second term on the right-
hand side and [|[Wg|| 11 (gay = 1 for the third term, we find that

% p0)(2)Z(oz)dz 0 — O gtd/(d=2s) 0
| s O @Elon)da = [ Py - [ o

R4
o o_2d/(d—2s) /Rd ’y|2d/(d—2s)p0(y)dy.

Because of ¢2%/(d=25) < & for o < 1, we obtain

0
s~ [ v @ eaas > [ Py —Co [ 1+ P gy
Rd R4 R4

Ro
> [ Pwdy-Co [ Py E= (1~ CoB)
R4 R4
which proves the lemma. ]
Lemma 3.7 (Bounds for p,). The following bounds hold:

P ()0 < HU”POHOO < CHP()Hom t>0, (3.15)
\/EHIOUHLQ(O,T;Hl(]Rd)) < [1p°]]2, (3.16)

where (3.15) holds for sufficiently small o > 0.

Lemma 3.7 and mass conservation imply that ||p,(t)|/, is bounded for all £ > 0 and 1 <
p < co. Observe that k, — 1 as 0 — 0. So, if p,(t) — p(t) a.e., the dissipation of the L™
norm follows, as stated in Theorem 3.1 (iv).
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Proof. The convexity of F' shows that G, defined in Lemma 3.5, is nondecreasing. There-
fore, (d/dt) [ga F(po)dz <0 and

0
sup [ Plpol)de < [ Flet)aa.

t>0

We choose a convex function F' € C2([0,00)) such that F(u) = 0 for u < ||p%]|ec, F(u) >0
for u > ||p2||o and satisfying F(u) < Cu for u — 0o. Then

OS/ F(pa(t))dxg/ F(p)dz =0 fort > 0.
Rd Rd

choosing F'(u) = u? in Lemma 3.5, the L?(0,T; H'(R?)) estimate follows. O

Consequently, po (2,t) < [|p2]|co < Ko l|p°]|oo for t > 0, showing the L>°(R?) bound. Finally,

3.2.2 Entropy and moment estimates

We need a fractional derivative estimate for f,(ps), which is not an immediate consequence
of Lemma 3.5. To this end, we define the entropy density

u):/ou/lv ff/ffuw)dwdv, u> 0.

Lemma 3.8 (Entropy balance). It holds for allt > 0 that

a
dt

h (pa)dw+40/ fo(po |Vpl/2|2dx+/ IV (=A)"*" f,(po)Pdz = 0.
R4 R4
In particular, for oll T > 0, there exists C > 0 such that

1 fo (o)l L2 (0,751 -5 (maty) < C. (3.17)

Proof. The idea is to apply Lemma 3.5. Since h, & C?([0,00)), we cannot use the lemma
directly. Instead, we apply it to the regularized function

u v /
Bl (u) = / Jo(w) dwdv, u >0,
o J1 w+o

where § > 0. Choosing F' = h% in Lemma 3.5 gives

d
dt/ hd (pg)d:c+4a/ 1 (po) U+5|Vp1/2|2dx (3.18)
_ Cdi-s (fo(po(2)) = falpo(¥))) (fopo(x)) = folpo(y))
o /Rd Rd |~”’3—y|d+2(1 °) ey,
where f2(u) := [;'(v/(v+6))f2(v)dv for u > 0.

Step 1: Estzmate of h. The pointwise limit A2 (p,) — ho(ps) holds a.e. in R? x (0,T) as
6 — 0. We observe that for all 0 < u <1,

Wy (u)] < sup f'(v / / —dv<Cu(|logu]+1)

0<v<1
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3.2 Analysis of the fractional porous media equation

while for all w > 1, since f, > 0 in [0, c0),

b () " fo(w)
\hg(u)lg/o /U dedv—i—/l W+ 5dwdv

§C+/1u/1vff,(w)dwdv§0—l—/0 fo(v)dv < C + ufs(u).

The last inequality follows after integration of f,(v) < f,(v) +vfl(v) = (vfs(v)) in (0,u).
Therefore, since p, < ||p2]ls a.e. in R? x (0, 00), we find that

10 (po)| < Cpo(|10g po| + 1)1y, <13 + Clyy, 51y < Clph + po),

where 6 € (0,1) is arbitrary, and consequently, because of mass conservation,

/ 108 (po)|dz < C + c/ pldz. (3.19)
R4 R4

Step 2: Estimate of [papldz. Let 0 < o < 1 and d/(d+ ) < 6 < 1. Then, by Young’s
inequality,

[ e = [ (0 P21 o)
Rd Rd
S/ (1+|x|2)°‘/2padm—|—0/ (1+|33|2)_a0/(2(1_0))d$
Rd Rd
g/ (1+ |22)*"2p,dz + C,
Rd

since the choice of  guarantees that —af/(2(1—0)) < —d/2, so [pa(1+|z[?)~20/C0=Ddz <
00. To control the right-hand side, we need to bound a suitable moment of p,.

For this, we use the test function (1 + |z|?)®/2¢, in the weak formulation of (3.7), where
& € C2(RY) is a cut-off function with the properties

&p(x) =1 for |z| <k, & (x)=0 for|z|> 2k,
k|VE(x)| + B2 AL (2)] < O, 0<&(z) <1 for z € RY,

and k > 1 is arbitrary. We find that
t
[+ lePr a0 = [ @+ Pabie o [ [ paga+aP) s
Rd Rd o JRrd
t
+ 0’/ / po (2V[(1 + 2|2)/?] - Ve + (1 + |1‘|2)°‘/2A§k)d:rds
0 JRrd
t
—a [ ol o) V(=) () dads

// o (1+ |22)2/2Ve, - V(=A) 5 f,(po)dads.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Since v < 1 and 0 < & < 1 in R%, the terms involving A(1 + |2[?)®/? and (1 4 ||?)2/?~?
are bounded in R?. Tt follows from the choice of & that

VI A+ )] Vek] + (1 |2)*2A8] < CR72, (1+ [2)*/2|VE | < ko

Thus, taking into account the assumption on p° and mass conservation,
T
swp [ (Ut aP) 2 on(tde CHC [ [ ol A) S IT(-8) 2 o () dact
0<t<T JRA 0 JRd

Next, we apply the Hardy-Littlewood—Sobolev inequality (see Lemma 3.22) and the Holder
inequality and use the fact that p,(t) is bounded in any LP(R?):

sup / (1+]$|2)°‘/2pg(a:,t)§k(:r:)da:
0<t<T JRRA

T
<C+ C/o ||PaH2d/(d+2s)||(*A)_S/Z[V(*A)_S/Qfa(l)a)]||2d/(d—2s)dt
T
<+ /0 00 ll2a s 25) [V (=) /2 fo () |2l
T
<) +n /0 IV (=A) /21, (p,) 3t

for all n > 0. Since &,(x) < &py1 () for x € RY k> 1, and & — 1 a.e. in R? as k — oo, we
deduce from monotone convergence that in the limit & — oo,
T
sup / (14 [2[*)*/?py (@, t)dz < C() +77/ IV (=)~ 5 (po) 5dt
0<t<T JR4 0

for all n > 0. This proves that

T
/ pdz < Cln) +1 / IV (=A) /21, (0, 3.
R4 0

Step 3: A priori estimate. Inserting the previous estimate into (3.19) leads to
5 g 2 2
sup | |hg(po(z,t))|dz < C(n) +?7/ IV (=) f5(ps) |1 3dt.
0<t<T JR4 0

We integrate (3.18) in time and use the previous estimate:

T
4 ! (po) LT |V o Pdadt
0/0 /Rdfa(p)paJré\ Py | "dx

car-s [T (f2(ps () = F2(ps (1)) (5 (po(x)) = fo(po(y))
/0 /Rd /Rd daxdydt

2 |z — y|d+2(1-s)

_l’_

T
< [ Weonmlas+ [ WA < Cl -+ [ IT-A) o (o) B
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3.2 Analysis of the fractional porous media equation

We wish to pass to the limit § — 0 in the previous inequality. We deduce from dominated
convergence that f%(py) — fo(ps) a.e. in R? x [0,00). The integrand of the second term
on the left-hand side is nonnegative, and we obtain from Fatou’s lemma that

2
40_/ / f pa |vp1/2|2d dt+ / / fU 100' fo(pa'( ))) dZEdydt
R4 JRd |9C—y|dJr21 )
(3.20)

T
<Cm)+a /0 IV (=A)"2 1, (p,) 3dt.

By the integral representation of the fractional Laplacian,

2
cuis / Uolpo (@) = JoloaWD)™ 4 — 10 (A2, (p) 2,
R4 JR4 |

T — |d+2 (1—s)

the last term in (3.20) can be absorbed for sufficiently small > 0 by the second term on
the left-hand side. This leads to the estimate

40/ / I (pe) |V pl/?| 2dxdt+/ / A2 f o (po)|Pdadt < C.
R‘i

Thus, we can pass to the limit § — 0 in (3.18) giving the desired entropy balance. Finally,
bound (3.17) follows from the definition of the H'~%(R%) norm and the facts that f,(p,) €
L?(R%) since f, is locally Lipschitz continuous, f,(0) = 0, and p, is bounded both in
L*(R?) and L?*(R%) independently of . O

Lemma 3.9 (Moment estimate). It holds that

sup / po(z, )|z Y @=29dy < O,
0<t<T JR

where C > 0 depends on T and the L' (R?) norms of p° and | - |2%/(4=25) 50,

Proof. For the following computations, we would need to use cut-off functions to make
the calculations rigorous. We leave the details to the reader, as we wish to simplify the
presentation. Let m = 2d/(d —2s). Since |- |"p° € L'(RY) by assumption, we can compute

d ™

G Lpet s = am =24 [ (o™ 2poda = [ pelal™ 2 V(=8)"fo(pr)ia
dt Jpa m Rd

<" 2pollt + 11 ™ oo ll2as a2 IV (=A) 7 fo(po) l2aja—2s)-
(3.21)

By Young’s inequality and mass conservation, we have

111" 2pells < C / (1 + [2]™)poda < C 4+ C / 2™ pod.
Rd Rd

It follows from (3.17) that V(—A)~*f,(p,) is bounded in L2(0,T; H*(R%)). In particular,
because of the Sobolev embedding H*(R%) — L™(R?),

HV(—A)_SfU(pa)HL2(07T;Lm(Rd)) < (.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Furthermore, using p, € L>(0, 00; L= (R%)), Young’s inequality, and the property 2d/(d +
2s) > 1 (recall that d > 2)

Il- ’m—1pgugzﬁﬁsg _ / 2 (d428) | g 2d(m=1)/ (d+25) g

< C+0/ p0|$|2d(m—1)/(d+25)dl“
R4

Thus, we infer from (3.21) and the identity 2d(m — 1)/(d + 2s) = m that

d ™

il M odr < m
G [0 < crc /R ot

and Gronwall’s lemma concludes the proof. O

3.2.3 Higher-order estimate
We need some estimates in higher-order Sobolev spaces.

Proposition 3.10 (Higher-order regularity). Let T'> 0, 1 < p < o0 and 2 < ¢ < 0.
Then there exists C > 0, depending on T, o, p, and q, such that

100 Lo 0, 7;w 30 (RaY) + 10tPo || Lo (0,110 ()Y + [P0 oo, w20(RAY) < C-

Proof. Step 1: Case s > 1/2. If s > 1/2 then w := p,V(—A)"*f,(p,) does not involve
any derivative of p,. Thus w € LP(0,T; LP(R%)) for p < oo and Lemma 3.26 in Appendix
3.C implies that p, € LP(0,T; W'P(R%)). Iterating the argument leads to the conclusion.
Thus, in the following, we can assume that 0 < s < 1/2.

Step 2: Estimate of divw in LP(0,T; W~ 5P(R?)). We claim that w can be estimated in
LP(0,T; LP(R%)) for any p < oo. Then, by Lemma 3.26, Vp, € LP(0,T; LP(R%)). We use
the L> bound for p,, the fractional Gagliardo—Nirenberg inequality (Lemma 3.24), and
Young’s inequality to find that

lwlly < CIV(=A)"*fa(po)llp < CllIo(p) IV o (po)llp > < Cn) + 0l V oo,

where 1 > 0 is arbitrary. By estimate (3.72) in Lemma 3.26,

10eV (=2) " £ () Il = 1wl < C) +1(llpsV (=2)* fo(po)llp + TPV 6°)I).

Choosing n > 0 sufficiently small shows the claim.
Step 3: Estimate of divw in LP(0,T; LP(RY)). We use Hélder’s inequality with 1/p =
2s/(d+ p) + 1/q to obtain

[divwll, < [Vps - V(=A) " fo(po)lp + 00 (=A) ' fo(po) Il
< ”vPJH(der)/(Zs)”v(_A)isfa(pa)”q + C”(_A)lisfo(po)up'

By the fractional Gagliardo—Nirenberg inequality (Lemma 3.25 with @ = 1+d/p—d/q—2s
and Lemma 3.24 with s replaced by 1 — s) and Young’s inequality, it follows that

I divewlly < CIV ool /@) fo(0o)lly IV fo (o)l + Cllfo (o) 151D fo (o) I~

76



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.2 Analysis of the fractional porous media equation

< ClIVpsllaip) /29 IV P |5+ Cll f2(po)D? po + £ (Ps) Ve @ Vel s *

1/(1-0)
<C(n) +CHVPUH(C/HP (2) T ClIVpellp + ClIV o613, + 1lIDpo |,

where 1 > 0 is arbitrary. Taking the LP(0,7T") norm of the previous inequality and observing
that p/(1 —6) = (d+ p)/(2s) (because of 6 = d(1/p —1/q) + 1 — 2s), it follows that

. 1/(1-0
” div wHLP(O,T;LP(Rd)) <C+ CHVPU'HL/(t(iJrP)/)(%)(07T;L(d+z7)/(25)(Rd)) + CHVPUHLP(O,T;LP(Rd))

+ C”VPJH%?p(o,T;L?p(Rd)) +0|D? ol Lo (0,750 (R -
Lemma 3.26 and Step 2 (Vp, € LP(0,T; LP(R%))) show that
HatpoHLP(O,T;LP(Rd)) +(1 - 077)HD2PUHLP(0,T;LP(Rd)) <C.

Choosing 1 > 0 sufficiently small, this yields d;p, € LP(0,T; LP(R%)) and p, € LP(0,T;
W?2P(R?)). We deduce from Lemma 3.20, applied to Vp,, that Vp, € L>(0,T; L9(R%))
for any 2 < g < co. (At this point, we need the restriction ¢ > 2.)

Step 4: Higher-order regularity. To improve the regularity of p,, we differentiate (3.7) in
space. Recall that 9; = 0/0z;, i =1,...,d. Then

d d
ataipg — O'Aaipcr = Z 810] (pgaj( Sfo po Z Z]po fo‘(pa)

+ 8ipaa]2'j(_A)_sfo(pa) + ajpaazzj<_ ) sfcr(pa) + paaf)]]( ) Sfa(pa))- (3-22)

We estimate the right-hand side term by term. Let 0 < s < 1/2. First, by Hoélder’s
inequality with 1/p = 1/¢+1/r, 1 < p < ¢ < 00, max{2,p} < r < oo and the fractional
Gagliardo—Nirenberg inequality (Lemma 3.24),

1020005 (~A)° Fo0) 07010y < / 102 00121105 (~ ) £ (po [Pt
<c / 102 201111 £ (o) |29 fr () 2Pl

< Ol ol IEE 1 i IV (o) B 1o / 320l < C.

The second and third term on the right-hand side of (3.22) can be treated in a similar way,
observing that 8124(—A)_S = 0;(—A)7°0;. The last term is estimated according to

= m( A) " folpa)lp < ClOG(=D) " fo(po)llp < ClIO; o (po) 571V 055 fo (o),
CG5; £ (po)llp + 11V, f (o) s

and the last expression can be absorbed by the corresponding estimate of Ad;p, from the
left-hand side of (3.22). Then we deduce from Lemma 3.26 that 0,0;p,, 8f’jjp,, € LP(0,T;
LP(R%)) for all p > 1 and Lemma 3.20, applied to Gjpa, yields 8]pg € 000, T; L9(R%))
for all ¢ > 2.

Next, if 1/2 < s < 1, we use the second inequality in Lemma 3.24 and argue similarly as
before. This finishes the proof. O
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Lemma 3.11. Under the assumptions of Proposition 3.10, for every q > 2, there exists a
constant C = C(q) > 0, depending on o, such that

100 [l cogo,7pw21 Ry W30 (RAY) < C.

The embedding W34(R%) — W?2>(RY) for ¢ > d yields a bound for p, in C°([0,T7;
WQ,OO(Rd)).

Proof. We first prove the bound in C°([0, T]; W34(R%)). By differentiating (3.7) twice in
space, estimating similarly as in Step 4 of the previous proof, and using the regularity
results of Proposition 3.10, we can show that p, is bounded in L>(0,T; W34(R%)) for any
q=>2.
It remains to show the C°([0, T]; W' (R9)) bound for p,. In view of mass conservation
and Gagliardo-Nirenberg-Sobolev’s inequality, it suffices to show a bound for D?p, in
L0, T; LY(R%)). To this end, we define the weights v, = (1 + |z|?)*/? for n > 0 and test
equation (3.7) for p, with v, := v,p,. Then

ooy, — oAv, = div (vnVlC * fa(pa)) + 1, v,(0)= 'ynpg in R?,

where I,, = =20V, - Vo — 0pc A0 — peVyn - VK % fo(ps).
Arguing as in Step 4 of the previous proof, we can find a bound in L>(0,T; W?P(R%))
for v,. Indeed, we can proceed by induction over n, since the additional terms in I,, can
be controlled by Sobolev norms of v, ...,v, 1. The definition of p implies that 7,2,
1 Vp2 € L®(RY) N LY(R?) for every n > 0. Then choosing n > d yields, for 0 <t < T,
that

[7D%pollp < D> (Yo )lp + 2V %0 - Vollp + [l peD*mlly < C(T).

We conclude from 7,1 € L®°(R?) N L' (R?) that

102001 < 11 o) 0 D06l < C(T).

This proves the desired bound. O

3.2.4 Existence of solutions to (3.7)

We show that the regularized equation (3.7) possesses a unique strong solution p,-.

Step 1: Existence for an approximated system. Let T > 0 arbitrary, define the spaces
Xp := L*0,T; H*(RY)) n HY(0, T; H ' (RY)) — Y7 := C°([0, T]; L*(R%)),
Yrp:={u€Yr:|u-— ngLOO(O,T;L2(Rd)) < R},
and consider the mapping S :v € Yp — u € Yo,

dyu — o Au = div(uVKL « £ (1)) in R? x (0,T),

3.23
u(0) = py inRY, (329
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3.2 Analysis of the fractional porous media equation

where /Cg(s) : R4 — R is a regularized version of K, defined by

K6 — IE(‘S) « 16(5)

s/2 ¥ N/
5 (s — )M ] —8) o fa] <0,
RO(@) = cumaya { ol for § < |e] <47,

6975 + (s = )6 (Ja| = 671)]+ for |2 > 57,

and fé”) is given by
14 n
F(p) = fo(w) min(1, un™")du + 5/)2, pER.
0

The regularization with parameter 7 is needed for the entropy estimates.

Lemma 3.12. For any 0 < s < 1 and a.e. * € R%, the function & IES)Q(J:) is monin-
creasing for 0 € (0,1).

Proof. Let vy = (d—s+1)/((d — s)d). We can write IES)Q(JU) = ¢4,—s/2Ps(|x]) with

654 (s —d)o*~ 0 (r —6)  forr <,

s (r) rs—d for 6 <r <51,
)=
’ 675 4 (s — d)odT=5(r — 671 for 67t <1 <1},
0 for r > r5.

Then @5 € C°([0,00)) N C1(0,7}), and its derivative equals

B (r) = —(d — s)max{r,6}*~4"1  0<r<1,
b —(d — s)min{r,6 1}~ 1<y <7

We show that ®s(r) is nonincreasing in 6 € (0,1) for r > 1. We have for 1 <r <73,

Ds(r) = Bg(1) + /1 Oy(u)du=1—(d— s) /1 minfu, 511 du,

Furthermore, we have ®4(rf) = 0, while min(u, 1) = 6§71 > 0 for u > r}, so it holds that

T
Ds(r) = (1 —(d— s)/ min{u, 51}Sd1du) for r > 1.
E +
At this point, the above representation formula together with elementary monotonicity
considerations show that ®s(r) is nonincreasing in § € (0, 1) for » > 1. It remains to show
that ®5(r) is nonincreasing in 6 € (0,1) for 0 < r < 1. It holds that

1 1
Ds(r) = Os(1) — / Of(u)du =1+ (d — 5)/ max{u, 6} 4 du for 0 <r < 1.

T

Once again, we conclude from the above representation formula together with elementary
monotonicity considerations that ®s(r) is nonincreasing in § € (0,1) for 0 < r < 1. This
finishes the proof. O
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

We derive some estimates for fén). First, we have 0 < fén) (p) < Cpp? for p € R, since

2
190 < (ne sy ) 5 tor ol <
[0.7] 2
19(0) < fo(loD) + 20* < (Ifalloo™ +3) 6 for || > n.

Furthermore,
p : - -
DS (p)] = ‘Mfé(lp\)mm(l, o) +77p‘ e RITANP)

which implies that |D fén)(p)| < C,lp| for p € R. This shows that there exists C'(n) > 0
such that for any p1, p2 € R,

£ (1) = F$(p2)] < C(n)(|p1] + |p2))|p1 — pal.

It follows that f(g") (v) € L>(0,T; LY(R%)) for v € Yr.

Since VK € L>®(RY), a standard argument shows that (3.23) has a unique solution
u € X7 < Y. Therefore, the mapping S is well-defined. Additionally, the nonnegativity
of u follows immediately after by testing (3.23) with min(0,u).

We show now that S is a contraction on Y7 g for sufficiently small 7" > 0. We start with

a preparation. By testing (3.23) with v and taking into account the L> bound for V/Cf;”,

we deduce from Young’s inequality for products and convolutions that

t t
[uwras+ 5 [ [ (VuPdsar < [ pbPdo+Cna) [ fulBeliar,
Rd 0 JRd R4 0

since Hfén) (v)|l1 < Cyllvl|3 for v € Yp. Then, if v € Y1 g, we infer from Gronwall’s lemma
that

t
/ u(t)?dz + 0/ / |Vu|?dzdr < 60(0’5’”)R4t/ 1P012de for 0 <t <T. (3.24)
R4 0 Jrd R4

Let v; € Y7 g and set u; = S(v;), i = 1,2. We compute

[ur VI s £ (01) = ug VKL 5 £§7 (v2) 2
< l(ur = u) VKL 5 £ (01) |2 + ug VL s (£57 (v1) = £ (02))l2
< JJur = ug|l2|[ VKL 5 £ (1) oo + Nuall2[[VEL 5 (£8P (v1) = £§7 (v2)) oo
< JJur = uall2l VKL ool £ (v1) 11 + [z |2l VD oo L £57 (01) = £57 (02) 11
< C,n) (lur — uall2llvr 13 + l[uzll2(lvill2 + f[o2ll2) o1 — vall2).-

Therefore, using (3.24), for vi,v2 € Y7 g,

[ur VICE s £57 (01) = ug VD) 5 57 (w2) |2 < C(6,m, B, T)([|lur —uslla +[[v1 = vall2). (3.25)
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3.2 Analysis of the fractional porous media equation

Next, we write (3.23) for (u;,v;) in place of (u,v), i = 1,2, take the difference between the
two equations, and test the resulting equation with u; — uso:

1 t
Sl —w®F+o [ [ 90 - uw)Pddr
0o Jre
t
= —/ V(up — ua) - (u1VlC§5) * fé") (v1) — qung‘s) * fén) (vg))dxdT
Rd
¢ ¢
< U/ / |V (up — 'LLQ)’dedT + 1/ Hu1VIC£,5) * fé")(vl) — uQVICg‘S) * fé”)(vg)H%dT.
2 0 R4 20’ 0

It follows from (3.25) that

| (ug — uz) (¢ HQ—I_O-/ / (uy — ug)|*dadr
< OO RT,0) [ (s =l + or — i)
and we conclude from Gronwall’s lemma that
(w1 — ug)(t)]|3 < eCEnRT N /OT vy — vg|j3dT for 0< ¢ <T.

This inequality implies that S is a contraction in Y7 g, provided that T is sufficiently small.
Therefore, by Banach’s theorem, S admits a unique fixed point u € Yy gr C Yy for T'> 0
sufficiently small.

It remains to show that the local solution can be extended to a global one. To this end,
we note that the function u € Xp satisfies (3.23) with v = u:

o — oAu = div(uVED « £ () in R? x (0,7),

3.26
u(-,0) = p2 in RY. (3.26)
Then, defining the truncated entropy density
P ru
R (p) :/ / Df" (vyv~tdudu, p >0,
0o Jo

and testing (3.26) with DA (u) yields, in view of the definition of ICgé), that

h(") ))da + o / / D" (u)u | Vu)|?dzdr (3.27)

// |vzc ) 19 (u )|2dxdT:/Rdh<ﬂ>(p2)dx

for 0 < ¢ < T. This inequality and the definitions of £\ and h(™ yield a (3, T)-uniform
bound for w in L2(0,T; H'(RY)), which in turn (together with (3.26)) implies a (4, T)-
uniform bound for v in X7, and a fortiori in Yp. This means that the solution u can be
prolonged to the whole time interval [0, c0) and exists for all times.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Finally, we point out that, since VK € L?*(R%), then v « g (u) € L>(0,T; L?(R%))
and so uVKY) « f(7 ( ) € L>=(0,T; L' (R%)). This fact yields the conservation of mass for
u, ie. [pau(t)dz = [z, phda for t > 0. Indeed, it is sufficient to test (3.26) with a cut-off
YR € C§(RY) satisfying g (x) = 1 for [z| < R, ¢¥gr(z) = 0 for |z| > 2R, |Vir(z)] < CR™!
for z € R%, and then to take the limit R — oo.

Step 2: Limit 6 — 0. Let u(®) be the solution to (3.26). An adaption of the proof of [14,
Lemma 1] shows that the embedding H'(R?) N LY(R%; (1 + |x|?)"/2) < L?*(R%) is compact.
Thus, because of the d-uniform bounds for ¥, the Aubin-Lions Lemma implies that (up
to a subsequence) u(®) — wu strongly in L?(0,T; L>(R%)) for every T' > 0. We wish now to
study the convergence of the nonlinear and nonlocal terms in (3.26)—(3.27) as § — 0.

It follows from (3.27) that (up to a subsequence)

VKO, # [ () = U weakly in L*(R? x (0,T)) as § — 0. (3.28)

In order to identify the limit U, we first notice that, by construction, 0 < IC /‘ Ks/2

a.e. in R%. Furthermore, the Hardy-Littlewood-Sobolev inequality, the bound for fg , and
then the Gagliardo-Nirenberg-Sobolev inequality yield that

1Ksjo # £ (u)l| (a2 /(ds) < CHf(")( M a+2)/ar2s/a) < CODullfoarayaras/a
s (d d—s)/(d
C () ull3* 22 T2,

Therefore, since v € L*(0,T; L2(R?)) N L2(0, T; H'(R%)),
r (d+2)/ (s42)/(d—s) T 2
Ve 1@ < COpel ey [ 19ulBar < c.7),

meaning that ICS/Q*fén) (u) € L4+2)/(d=s)(Rdx (0, T)). Taking into account that Fl (u) >0
and that § — IES;)Q (z) € R is nonincreasing (see Lemma 3.12), we deduce from monotone
convergence that

OV % F () = Kyjp % [ () strongly in L@/ (=9)(RY » (0,T)), (3.29)

Furthermore, arguing as before and using the estimates for D f(gn) leads to

||’CS/2 (50 () — £ W) |2y sa—s) < Isp2 # 1 FP (@) = £ ()] (a42)/(as)
< O @) = £ (u)[l(gv2) ) a2y

< C()|lul + w1 (2d+4 /(d+23/d)||u — u| (9g0) (d+25 /)
s+2)/(d /(d s+2)/(d d—s)/(d
Cn )(H H (s+2)/(d+2) ||V H2 (d+2) + H ”( +2)/( +2)Hvu(6)Hg )/( +2))

52 d2 d2
xuu—u ISR 7 (4 — o) ),

Since u'® is bounded in L(0,T;L*(R%)) N L2(0,T; H'(R)), it follows that (up to a

subsequence) IES)Q s ( fén) (u(®)— ) (1)) converges weakly to some limit in L(4+2)/(d=9)(R? x
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3.2 Analysis of the fractional porous media equation

(0,T)). However, Holder’s inequality and the fact that u(®) — u strongly in L?(0, T; L*(R%))
for every 2 < p < oo, which follows from

T T
/ [u® — w2t < sup [[(@® —w)(6)[52 / [u® —ul3dt =0 as 50,
0 o<t<T 0

imply that
’Ei% * (f(S")(u(‘S)) — fé”) (u)) = 0 strongly in LP(0, T} L(d+2)/(d=s) (]Rd)), p < ?
- S
We conclude that
KO+ (S5 @®) = D (u)) = 0 weakly in L/ x (0, 7). (3.30)
We deduce from (3.29)—(3.30) that
8)
KUY+ £ < D) = Kz # £ (u)
= (KO % £ (w) = Koo 57 () + KL (£ () = f5 ()
— 0 weakly in L(@2/(d=)(R? x (o,T)),
which, together with (3.28), implies that U = VI /9 * fé") (u), that is,
VRO, % ) = VK [ () weakly in L(R? x (0,T)). (3.31)

Let ¢ € C§°(R? x (0,T)). Because of
VKO « £ (40)) = IES)Q * (VIZS)Q * f§”)(u(6))),
we find that
T T s )
/ - VKD « 10 (u®)dedt = / (VRS (0 (w®)) - (RC, « ) dact
0o Jrd

Rd

Our goal is to show that IC( o * 1 — Ky x 1 strongly in L*(R% x (0,T)) as § — 0. We
can assume without loss of generahty that ¢ > 0 a.e. in R? x (0,7). Indeed, for general
functions w, we may erte Y =14 +1_, where ¢, = max{0,¢} and ¢)_ = mln{O ¥}, and
we have IC o ¥ = ICS/2 vy — ICS2 % (—1)_). Once again, since IC(/)2 Ve ICS/2 a.e. in R?,
it is suﬂiment to show that Kg/s * ¢ € L*(R? x (0,7)). The Hardy-Littlewood-Sobolev
inequality (see Appendix 3.B) yields

T T
/0 1Kz % ll5dt < C/O 9150 (426 AL-

It follows from (3.31), the previous argument, and the fact that s x u = (—A) %u =
Ksj2 * Ksya * u that

T
/ Y- VKO s« £ (4,0 dzdt — / / (VKo f ) (4 ) - (K2 * ¢)dadt
0 R4 R4
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

T
= / Y- VI £ (u)dadt
0 R4

for every ¢ € L?(0,T; L?>¥/(4+25)(R9)), which means that
VKO « fM (00 ~ VK, % £ (u)  weakly in L2(0,T; L*¥/(@=25)(R7)). (3.32)

Since u(®) — u strongly in L*(0,T; L>(R%)) and (u(?) is bounded in L>(0,T; L'(R%))
(via mass conservation), it also holds that u(®) — w strongly in L2(0,T; L2/ (d+25)(R9)).
Therefore, the convergence (3.32) is sufficient to pass to the limit § — 0 in (3.26).

Step 3: Limit n — 0 and conclusion. The limit § — 0 in (3.26) shows that the limit u
solves

dyu — oAu = div(uVK, * f7(u)) in R? x (0,7),

3.33
u(-,0) = p? in R% (3.33)

Fatou’s Lemma and the weakly lower semicontinuity of the L? norm allow us to infer from
(3.27) that for ¢ > 0,

t
/ WO (u())dz + o / / D (w)u [Vul2dzdr (3.34)
R4 0 JRd

t
[ 19K S wlPdsdr < [ (8.
0 JRd R4

At this point, all the bounds for u, derived in the previous subsections, and the moment
estimate, contained in Lemma 3.9, can be proved like in Sections 3.2.1-3.2.2. All these
estimates are uniform in n. It is rather straightforward to perform the limit n» — 0 in
(3.33)—(3.34) to obtain a weak solution to (3.7). However, the higher regularity bounds
obtained in Section 3.2.3 imply that u is actually a strong solution to (3.7), which in turn
yields the uniqueness of u as a weak solution to (3.7). This finishes the proof of Theorem
3.4.

3.2.5 Limit 0 — 0

We prove that there exists a subsequence of (p,) that converges strongly in L!'(R? x (0,7))
to a weak solution p to (3.1).

The uniform L>®(R? x (0,7)) bound for p, in Lemma 3.7 implies that, up to a subse-
quence, p, —* p weakly* in L®°(R? x (0,7)) as ¢ — 0. We deduce from the uniform
L>=(0,T; L' (R%)) bound (3.13) and the moment bound for p, in Lemma 3.9 that (p,)
is equi-integrable. Thus, by the Dunford—Pettis theorem, again up to a subsequence,
po — p weakly in LY(R? x (0,T)). Tt follows from the L?(0,T; H'(R%)) estimate (3.16)
that 0Ap, — 0 strongly in L?(0,T; H~'(R%)). The estimates in (3.17) and Lemma 3.7
show that (9;p,) is bounded in L2(0,T; H~'(R%)) and consequently, up to a subsequence,
Oipe — Orp weakly in L2(0,T; H1(RY)). Therefore, the limit o — 0 in (3.7) leads to

Oup = div(psV(=A) " fo(ps)) in L*(0,T; H '(RY)), (3.35)

where the overline denotes the weak limit of the corresponding sequence.
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3.2 Analysis of the fractional porous media equation

We need to identify the weak limit on the right-hand side. The idea is to use the div-curl
lemma [45, Theorem 10.21]. For this, we define the vector fields with d 4+ 1 components

Us := (pa, _pov(_A)_st(pG))a Vo i= (fa(p0)7 0,..., 0)'

Let R > 0 be arbitrary and write Bgr for the ball around the origin with radius R. The
L>®(RY) bound (3.15) for p, and the L2(0,T; H'~*(R%)) bound (3.17) for f,(p,) show that
(U, ) is bounded in LP(Bgrx(0,T)) for some p > 1, while (V) is bounded in L*>*(Bgx(0,T)).
Furthermore, by (3.17),

div( ) Us = 0Apy — 0 strongly in L*(0,T; H ' (Bg)) = H'(Bg x (0,T)),
| Curl(t,m) VUHLQ(O,T;H*S(BR)) < Cvaa(pU)HLQ(O,T;H*S(BR)) <C,

where curl(; )V, is the antisymmetric part of the Jacobian matrix of V. Hence, by the
compact embedding H~*(Bg x (0,T)) < W~L"(Bg x (0,T)) (since L?(0,T; H=*(Bg)) C
H~*(Bg x (0,T))), the sequence (curly ,) Vs) is relatively compact in W~1"(Bg x (0,T))
for some r > 1. Therefore, we can apply the div-curl lemma giving U, - V,, = U, - V,, or

pof+(ps) = pfs(ps) a.e. in Br x (0,T).

By definition (3.9) of f,(ps), it follows for arbitrary p, € [0, L] and sufficiently large L > 0,
that

foloa) = [ o (g @Elrwdu = [ [ o= wip tw)duZ(uan

/pa/ I (u—w)f(w)dw= (au)du—/0 </0 I (u—w)E(au)du>f(w)dw,

We use the properties that (p,) is uniformly bounded and Z = 1 in [—1, 1]. Then, choosing
o > 0 sufficiently small,

oo = [ ([ o= wpan) sy

_ /0 L (e — w) f(w)duw — /0 T (—w) f(w)duw
= [ Tator = wiftw)du ~ [ Tou)fw)de,

setting f := f10,00)- Hence, using f(0) = 0, we find that

fo(ps) = f(po) = /IRFU(U)(JE(U +po) = [ (pe))du — /RFJ(—w)(f(w) — f(0)dw

Taking into account the fundamental theorem of calculus for the function f € CONW(R),
we can estimate as follows:

Fr(pe) = Fpo)l < esssup ('ﬂ“*”“)‘f(”“)u’f(“>|;|f<°)’) [ etwuldu

u€supp(I's)\{0} Jul
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

< max "(&+po) + f )/Fgwwdw.
(o (640004 £0) [ Tatwlul
Then, since I'y(u) = 0T (0~ u), supp(l'y) C By (0) is compact, f € C*(]0,00)), and (p,)
is uniformly bounded, we conclude that

|fo(ps) — fpo)| < Co.

This means that f,(p,) — f(ps) — 0 strongly in L*°(Bgr x (0,7)), and it shows that
pof(ps) = pf(ps) a.e. in B x (0,T). As f is nondecreasing, we can apply [45, Theorem
10.19] to infer that f(p,) = f(p) a.e. in Br x (0,T). Consequently, p,f(ps) = pf(p). As

u — uf(u) is assumed to be strictly convex, we conclude from [45, Theorem 10.20] that
(ps) converges a.e. in Br x (0,T). Since (p,) is bounded in L®(R? x (0,T)), it follows
that p, — p strongly in LP(Bgr x (0,7)) for all p < co. Using the moment estimate from
Lemma 3.9, we infer from

T T
lim sup/ / |pe — p|dzdt = lim sup/ / |poe — pldadt
oc—0 0 R4 oc—0 R4\ Bgr

<R 2d/(d—2s) hmsup/ / th‘ |1,|2d/d 23
o—0 Rd\BR

< R2/E=28)r v 0 as R — 00

that p, — p strongly in LP(R? x (0,7)) for all p < co. The strong convergences of p, and
f+(ps) in LP(R? x (0,T)) for all p < oo allow us to identify the weak limit in (3.35), proving
the weak formulation (3.8).

Finally, we deduce from the uniform L?(0,T; H~'(R%)) bound for d;p, and the fact that
po — p strongly in LP(R?) for any p < oo that p(0) = p® in the sense of H~1(R?).
Properties (iv) of Theorem 3.1 follow from the corresponding expressions satisfied by p, in
the limit o — 0.

3.2.6 Time-uniform convergence of (p,).

The following lemma is needed in the proof of Proposition 3.3. It is essentially a consequence
of the L2(0,T; H~'(R%)) bound of d;p, and the Ascoli-Arzela theorem.

Corollary 3.13. Under the assumptions of Theorem 3.1, it holds for all € L>®(R?) that,
possibly for a subsequence,

/pg¢dx—>/ podx  uniformly in [0,T].
R4 R4

Proof. Let ¢ € C{(R?) and 0 < t; < to < T. The uniform L?(0,7; H '(R%)) bound of
O¢po implies that

to
- \ /t <atpg,¢>dt]

po(t2)¢d$_/ Pa(t1)¢dw
R4 R4

< lta = ta|"210upo || L2051 (may |6 11 ety < Clta = 1] ] 1 ey
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3.3 Analysis of equation of the regularised equation (3.5)

Hence, the sequence of functions t — [p4 po(t)¢pds is bounded and equicontinuous in [0, 77.
By the Ascoli-Arzelé theorem, up to a ¢-depending subsequence, fRd popdr — &y strongly
in C°([0,T]) as ¢ — 0. Since p, —* p weakly* in L>°(0,T; L°°(R?)), we can identify the
limit, £, = fRd ppda. Since H'(R?) is separable, a Cantor diagonal argument together with
a density argument allows us to find a subsequence (which is not relabeled) such that for
all p € HY(R?),

/pggﬁdxﬁ/ poda  strongly in CO([0,T7). (3.36)
Rd R4

Since (po) is bounded in L>°(0, T; L?(R?)), another density argument shows that this limit
also holds for all ¢ € L2(R?).

Now, let ¢ € L(R%). Using @1y, <gy € L*(RY), it follows from (3.36) and the moment
estimate for p, that

limsup sup
o—0 0<t<T

[ pattroda = [ plo)oas
/pa(t)¢1{|x|>R}dm_/ p(t) P12 ryde
Rd ]Rd

< limsup sup
o—0 0<t<T

< R210729) | g|| o limsup sup / (Po(x,t) + pla, ) |2|* =2 dg
oc—=0 0<t<T JR4

< C(T)R™24=29||¢||lo = 0 as R — oo.

This shows that
=0,

lim sup
o=00<t<T

[ pettrda= [ p(o)oas

concluding the proof. O

3.3 Analysis of equation of the regularised equation (3.5)

This section is devoted to the analysis of equation (3.5),

Oipopc — 0Apgsc = div (pop VK * fo(Ws * popc)), >0,

. (3.37)

po.5(0) = pg in R,
where ¢ = IEC * W, and W is defined in (3.10), as well as to an estimate for the difference
Po.8,c — Po, Which is needed in the mean-field analysis. The existence and uniqueness of a
strong solution to (3.37) follows from standard parabolic theory, since we regularized the
singular kernel and smoothed the nonlinearity.

Proposition 3.14 (Uniform estimates). Let Hypotheses (H1)-(H3) hold and let T > 0,
p > d. Set a:=min{l,d — 2s}, let p, be the strong solution to (3.7), and let p, g be the
strong solution to (3.5). Then there exist constants C1 > 0, and 9 > 0, both depending on
o, p, and T, such that if B+ (* < g9 then

1P0,8.¢ = Poll oo, rw2p@ayy < C1(B + (%), (3.38)
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

”PJ,B,CHLOO(O,T;W%p(Rd)) < (1. (3.39)

Furthermore, for every q > 2, there exists Co = Cy(q) > 0, depending on o and T, such
that

1(Ke = K) = Poll Lo 0,100 (ray) < C2C (3.40)
HPU,B,CHLOO(QT;W?J(Rd)mW?»,q(Rd)) < (. (3.41)

The proof is presented in the following subsections. The most difficult part is the proof
of (3.38) in Section 3.3.1. We first prove an estimate for D?(p, ¢ — p,) that depends on
a lower-order estimate of this difference. Second, this lower-order estimate is shown by
testing the equation satisfied by the difference p, 5 — po with a suitable nonlinear test
function. Based on the arguments of this section, estimates (3.39)—(3.41) are then shown
in Sections 3.3.2-3.3.4, respectively.

3.3.1 Proof of (3.38).

We introduce the difference u := p, g — ps, Which satisfies

Ou — oAu = div [(u+ pe) VK¢ * fo(Ws * (u+ po)) — po VK * fo(po)] (3.42)
= D[u] + R[ps,u] + S[pg,u] in R ¢ >0,

and the initial datum u(0) = 0 in RY, where

D[u] = div [uVK * f,(Ws * u)],
Ripo,u) = div [uVK 5 (oW % (u+ po)) — fo(Ws %)
+ pe VK * (fU(WB *(u+pg)) — fo(Wp * PU)) + ps VK * (fa(WB * Po) — fa(pa))]7
Sl ] = div [(u+ po) V(e — K) % foWs % (u + po))].

We show first an estimate for D%« that depends on a lower-order estimate for u.

Lemma 3.15 (Conditional estimate for w). For any p > d, there exists a number T'y, € (0, 1)
such that, if supgciop [[u(t) lw1pmay < T'p then

HDZUHLP(O,T;LP(Rd)) < C(H“”LP(O,T;WLP(Rd)) + B+,

recalling that a = min{1,d — 2s}, and where C > 0 is independent of u, 3, and ¢, but may
depend on o.

Proof. Let I'y € (0,1) be such that supg;r [[u(?)|[y1pway < Tp. We will find a constraint
for I') at the end of the proof. The aim is to derive an estimate for the right-hand side
of (3.42) in LP(0,T; LP(R)). We observe that [[u(t)|1 < |pesclli + polli < 2/0°1 for
t € [0,7]. In the following, we denote by C' > 0 a generic constant that may depend on
o, without making this explicit. Furthermore, we denote by u a generic exponent in (0, 1),

whose value may vary from line to line.
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3.3 Analysis of equation of the regularised equation (3.5)

Step 1: Estimate of D[u]. Let 1/2 < s < 1. Then, by the Hardy-Littlewood—Sobolev-type
inequality (3.68),

ID[ulllp < |V VI fo(Wg x u)llp + [[uVE s+ [£5(Wg x u)Ws  Vull
< ClIVullpll foWs * u)lla/2s—1) + Cllullas2s—1) 1 fo Ws * w)llso [ Vullp-

We use the Young convolution inequality, the Gagliardo—Nirenberg inequality, the smooth-
ness of fo, the property f;(0) =0, and the fact [[Wgl|11(rey = 1 to estimate the terms on
the right-hand side:

Ws *ulloo < Julloo < [lull;™|Vull; < T, < C,
1o s # w)lloo < max | fo] W * ulloo < C,

15OV * w)lloo < 1f5(0)] + max | f7[[Ws * ullo < C,
lllaycas—1y < lluly ™ llullb < Cllullir pgge < CTh < C.

where U := [—[[W3 * |0, || W5 * u]|oc] and X > 0, > 0. Therefore, || D[u]||, < C||Vul,
and

I D[ull| o 0,10 (Re)) < Cllull Loo,rswe (ray)- (3.43)
Next, let 0 < s < 1/2. Then we write

Dlu] = Vu - K [f5(Ws * u)Wp * Vu] + uk * [ (Ws * u) W * Vul’]
+ul * [f2(Wp * u)Ws x Au] =: Dy + Dy + Ds.

By the Hardy-Littlewood—Sobolev-type inequality (Lemma 3.22),
ID1llp < ClIVullay@s)llfoWs * u)Ws  Vully < Cl[Vullay@s) | Vullp-
Next, we apply the Gagliardo—Nirenberg inequality with A = (14+1/d—2s/d)/(1+2/d—1/p):
IVullayzs) < CllullyD?ully < C|ID?ully,

which is possible as long as A > 1/2 or equivalently d > 2s, which is true. Consequently,
using I'), <1,

1D1llp < ClIVullp|D*ully < CTIVull, M ID?ully < C(8)[IVull, + 8] Dull,,

where § > 0 is arbitrary. It follows from the Hardy-Littlewood-Sobolev-type inequality and
the Gagliardo—Nirenberg inequality

IVul3, < ClIID*ullg/? [ Vull3~4? < OT | D2ully/ || Vull, ="

that
ID2lp < CllullaesTpll D*ul| /P ([ ull, P < C(8)[Vull, + 6] D%ull,.

Finally, using similar ideas, we obtain

IDslp < Cllulla@s)llAully < CTHD?ull,.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Summarizing the estimates for D1, Dy, and D3 and integrating in time leads to

DI o (0,710 (ReY) < Clittll oo, 1w 10 ray) + CTEID?ull oo, 7,10 (r1))- (3.44)

Step 2: Estimate of R[py,u]. We write R[p,,u] = R1 + Ra + R3 for the three terms in the
definition of R[p,,u] below (3.42).
Step 2a: Estimate of Ry. If s > 1/2, we can argue similarly as in the derivation of (3.43),
which gives

| Rl oo, 0 ay) < Cllull Lo o,rwe ray)-
If 0 < s <1/2, we write Ry = Ri1 + -+ + Ry, where

Riy = Vu-Kx [fo(Ws * (u+ pg))Ws * Vo],
Ryz = ul* [ff(Ws * (u+ po))Ws * Vpg) - Wp * V(u+ py))],
Rug = ukC # [ £, (W  (u+ po)) Wy  Dpy ],
Ry = Vu-Kx [(fo(Ws * (u+ po)) = fo(Wp *u))Ws * Vul,
Ry5 = ukC * [(fc,r/(wﬁ * (u+ pg))Wp x V(u+ py)
— JdWg xu)(Ws * Vu)) - (Ws * Vu)],
Rag = ukC* [(f5(Wa * (u+ po)) — f5(Ws * u)) W  Aul.
All terms except the last one can be treated by the Hardy-Littlewood—Sobolev and Ga-

gliardo—Nirenberg inequalities as before. For the last term, we use these inequalities and
the L>°(R?) bound for p,:

IRy < Cllullayezs) | (fo(Ws * (u + pa)) = f5(Wa * u))Ws = Aul|,
< Cllullayes) 117100 IWs * pollocl W * Aully < Cllullaas) | Aull, < CTY D ullp.

We infer that (possibly with a different 1 > 0 than before)

HR1HLP(O,T;LP(Rd)) < CHUHLP(O,T;WLP(Rd)) + CrgHD2UHLP(O,T;LP(IR'1))‘

Step 2b: Estimate of Re. Since |f!| is bounded on the interval [—||ullco — ||0 /oo |t]lco +
| polloo), We obtain for s > 1/2,

[ R2ll e 0,750 ®ey) < CllullLoo,rwe@ay)-
For 0 < s < 1/2, we write Ry = Ra1 + - -+ + Ro7, where

Ro1 = Vs - K [fL(Wg * (u+ ps))Ws * Vul,

Rz = poK x [f(Wp * (u+ pg))Wp % V(u+ po) - Wg * Vu)],
Roz = pokCx [[fo(Wp * (u+ po))Ws + Aul,

Roy = Vp, - K * [(fc/r(wﬁ *(u+pg)) — f(/f(Wﬁ * pU))WB * VPJ]7
Ros = pokC [f (W * (u+ po))(Wp * Vu) - (Wp * Vo)),

Ro = poKC % [(f7 (Wp * (u+ po)) = [ (Ws * ps)) W * Vo],
Ror = pokx [(fs(Ws * (u+ po)) — f2(Ws % ps) ) Ws * Apg].
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3.3 Analysis of equation of the regularised equation (3.5)

Similar estimations as before allow us to treat all terms except the third one:

1Rasllp < [| oK * [(f5(Ws  (u+ po)) = F1(Ws % po)) W  Aul |
+ |po K * [fL (W5 * po)Ws * Aull|, =: Q231 + Q232

The first term can be estimated similarly as above by Q231 < CT}||D?ul|,, while

Q232 < [lpo AK = [fo (W % po)Wg * ulllp + [l K [ASG Ws * o)W ul
+2]po K % [V f5(Ws % po) - (Ws * V).

It follows from —AK % v = (—A)' v and the fractional Gagliardo-Nirenberg inequality
(Lemma 3.24) that

Q232 < Cllullwnga) + llpo(=A) " [f5(Ws * po)Wa * u]
< Cllullwragay + Cllpsllsll f0Vs * po)Ws * ullpID*[fo(Ws * po)Ws * u] [,
< Cllullwogey + Cllully (llully™ + 1 Vallp™ + D], ~%)
< Cllullwrp@ay + CTH|ID%ull,.

This shows that || Ras|l, < Cllullyyrega) + CTy[|D?ull,, and we conclude that

HR2HLP(0,T;LP(Rd)) < CHUHLP(O,T;WLP(W)) + CrgHDQUHLP(O,T;LP(Rd))'

Step 2c: Estimate of R3. We write Ry = R31 + - -+ + R37, where

Ra1 = Vo - K [(feOWs * po) = fo(po))Ws * Vo],
R3y = po K * [(f(;,(W/B * Po) — fc,r/(pv))|WB * VPU|2]7
R33 = po K * [fg(po)(wﬁ *Vpe — Vpg) (Wg* Vpa)]a
R34 = Vp, - K * [fc,r(pa)(wﬁ * Vpo — vPU)]a

R35 = po K * [fclr/(pa)vfoa : (WB * Vo — vpﬂ')]a

R3s = po K [ f1(ps) W5 * Aps — Apo)]

R37 = po K * [(f(/,(Wg * pa) - ler(po))wﬁ * Apa]

We start with the estimate of R3;. We use the Hardy-Littlewood—Sobolev inequality
(Lemma 3.22) and Lemma 3.21 to estimate Wg * py — ps:

Ra1 < ClVpollasslfoOVs * ps) = 15 (0o) 1pIWs % Voo las

< ClIVpoliyys odpax 15 HIWs * po = pollp < C(0)B,
also taking into account the L°°(0,T; L(R%)) bound for Vp,; see Proposition 3.10. With
this regularity, we can estimate all other terms except R34 and Rsg. Since they have
similar structures, we only treat Rs4. This term is delicate since the factor f.(p,) cannot
be bounded in LI(R?) for any ¢ < co. Therefore, one might obtain via Hardy-Littlewood -
Sobolev’s inequality factors like |Vps|lq, and |[D?pellq, with either 1 < 2 or g2 < 2.
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However, for such factors, an L> bound in time is currently lacking (Proposition 3.10
provides such a bound only for ¢ > 2). Our idea is to add and subtract the term f(0)
since

| fo(pe) = [2(0)] < po omax |f7| < Cpo

can be controlled. This leads to

[Rsallp < Voo - K [(f5(ps) = £5(0)) (W5 * Vpg — Vpp)llp
+ [f5(0)Vps - K (Ws * Vs = Vo)l
< OB+ 0)IVps - K Ws * Voo = Vpo)llp = CB + Qs

as the first term can be estimated in a standard way. For the estimate of (0341, we need to
distinguish two cases.
If 1/2 < s <1, we infer from the Hardy—Littlewoord—Sobolev-type inequality (3.68) that

Q311 < C||Vpsllass—1)lIWs * po — pollp < ClIVpslla/@s—1y I Vs llpB < CB.

Next, let 0 < s < 1/2. Then we apply the Hardy-Littlewoord—Sobolev-type inequality
(3.67), the standard Gagliardo—Nirenberg inequality for some A > 0, and Lemma 3.21:

Q311 < ClIVpellajee)Ws * Voo = Voellp < Cllpslli ™ ID?pslp (BID? polly) < CB.
We conclude that || R34, < Cf and eventually
1 Rs| Lo (0,71 (mety) < CB.
Summarizing the estimates for Ry, R2, and Rj3 finishes this step:
| R[po, U]HLP(O,T;LP(Rd)) < CHUHLP(O,T;WLP(W)) +CB+ Crg||D2UHLP(0,T;WLP(R«1))- (3.45)
Step 3: Estimate of S[po,u]. We formulate this term as S[py,u] = S1 + - - - + Sy, where

S1=div [uV(K¢ = K) * (fo(Ws * (u+ po)) — foWa * po))],
Sy = div (UV(ICC —K) * fo(Wp = PU))’

S3 = div [PUV(ICC —K) x (fa(WB * (u+ pg)) = fo(Wg * pU))]a
Sy =div (pe V(K¢ = K) % fs(Ws * pg)).

The terms S1, Sz, and S3 can be treated as the terms in R[p,, u|, since they have the same
structure and the techniques used to estimate integrals involving K can be applied to those
involving C¢. This leads to (for some p > 0)

151 + S2 + Sl oo,rizr®ay) < Cllull o, rmremay + CTYID* ul oo rirpay . (3:46)
It remains to estimate Sy. We write Sy = Sy41 + S0 + Su3, where

Si1 = Vpo - (K¢ = K) * [fo(Ws * po)WVs * Vo],
S = PU(KC — K) * [f(/rl(W,B * pU)‘Wﬁ * VPU‘QL
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3.3 Analysis of equation of the regularised equation (3.5)

Saz = po(Ke = K) * [f2(Wg % po)Ws * Apg].

Observe that, because of the definition of K = 1'64 * We with /’64 = Kwe¢ (defined in (3.11)),
we have (IC¢ = K) xv = Kx We xv —v) — (K(1 —we)) * We * v for every function v for
which the convolution is defined, and therefore, by the Hardy-Littlewood—Sobolev-type
inequality (3.67), Young’s convolution inequality, and Lemma 3.21,

1o (Ke = K) % vllp < Cllpollay@s IWe x v —vllp + Clipelpl[(K(1 — we)) * v]loo
< CHPUHd/(Qs)HVUHPC + CHPa||pH’C1Rd\B(o,<—1)HooHU”1
< Cllpsllases) IV [1¢ + CC Moo lIpllv]l1,

Given the regularity properties of p, (see Lemma 3.11) and the assumptions on f,, it
follows that
1S4l Lo 0,70 (Re)) < C¢min{l.d=2s}, (3.47)

We conclude from (3.46) and (3.47) that
1500 W[l Lo 0,710 (ReYy < Cllull Lo, w10may) + CC* + CTHID?ull 1o o 1,1 Ry, (3.48)

where a := min{1,d — 2s}.
Step 4: End of the proof. Summarizing (3.44), (3.45), and (3.48), we infer that the right-
hand side of (3.42) can be bounded (for some u > 0) by

| D[u] + Rlpo,u] + S[po, ulll Lr0,1;0(r))
< Cllull oo, rwromay + C(B 4 ¢*) + CTEID?*ul 1o 01710 (1))
By parabolic regularity (3.71),
ID*ul| o070 @)y < Clitel oo mwrway + C(B +¢*) + CTHID?ull oo, 1,10 (Ra)) -
Choosing I',, > 0 sufficiently small finishes the proof. O

It remains to estimate the LP(0,T;W'P(R?)) norm of w. This is done in the following
lemma.

Lemma 3.16 (Unconditional estimate for w). For any p > d, there exist constants C > 0,
and g9 > 0, both depending on o, p, and T, such that for B+ (% < e,

[ull oo (0,012 (Ray) < C(B+ 7).
recalling that a := min{1,d — 2s}.

Proof. The idea is to test (3.42) with p|u[P~?u — pdiv(|Vu[P~2Vu). Integration by parts
and some elementary computations lead to

/R P (Vup ) Audz = Y /R VUl 20,u0,0% ud
]
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

= p%:/md Bj(|Vu]p*28iu)6i2judx
—p/ VP2 D2uf2dz + P Z/ 0;(|VulP2)0;(|Vul2)da
R‘i 2 " ]Rd

—p/ |VulP~2| D%ul? do:—i—Z/ (p — 2)(9;(|Vul/?))*dz
Consequently, we have

t
POy e+ opo=1) [ [ 21 ufdas (3.49)
t
+ 0/ / (10]Vu|p*2|D2u|2 +4(p — 2)p*1}V(|Vu\p/2)‘2)dxds
0 JRd

= t ulP~2u — div(|VulP~2Vu u U u])dzds
<o [ [ (2= vVl (Dlad + Rlp.u] + Slpg. ) ded

We infer from Lemmas 3.20 and 3.26 that u € C°([0,T]; W5P(R?)). Therefore, since
u(0) = 0, it holds that [|u(t)ly1srey < I'p for all t € [0,7%] and T* := sup{to € (0,7) :
[u()lw1pmay < T'p for 0 < ¢ < to}. Let ¢ € [0,77]. We have shown in the proof of the
previous lemma that

| D[u] + Rpo, u] + S[po, U]HLP(O tLP(RD)) = CHUHLP(O,t;WI»P(Rd)) +C(B+¢").
Hence, we can estimate the right-hand side Q[u] of (3.49) as follows:

Qlu] < C’/ / (Ju[P~ + \Vu]p_z\Dzu\)‘D[u] + Rlpo,u] + S[po, u]|dzds

2—1
IVl 1 o ey V2 1Dl 2o gz )

< C(ul oo
X (llull oo gwre@ay + B8+ ¢%)
< C6p ) (1l gy + (B -+ €) + ST D222 0 2y
where > 0. Choosing ¢ sufficiently small, the last term is absorbed by the corresponding
expression on the left-hand side of (3.49), and we infer from (3.49) that for 0 < ¢ < T,

) By ) < Clpt / ull s + s (B + €.

We assume without loss of generality that C(p,t) is nondecreasing in t. Then Gronwall’s
lemma implies that for 0 <t < T™,

t
)y < ClpTIE + 67 [ CODDs < (314 o),

Choosing g9 = 1T, exp(—C(p,T)T/p) < 1, we find that [w(®)lw1pgay < Tp/2 for B+
(* < eggand 0 <t <T* By definition of T%, it follows that T* = T. In particular,
[u(®)[lwrpmay < C(B+¢?) for 0 <t < T, which finishes the proof. O
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3.3 Analysis of equation of the regularised equation (3.5)

3.3.2 Proof of (3.38) and (3.39).
Combining Lemmas 3.15 and 3.16 leads to
||UHLP(O,T;W2’P(R‘1)) < C(Ua b, T)(B + Ca)a where a = min{la d— 25}7 (350)

as long as 4 (* < g9 and p > d. Next, we differentiate (3.42) with respect to z; (writing
0; for 0/0x;):

O (Oiu) — o A(O;u) = 0;(D[u] + Rlps,u] + S[ps,u]), Ou(0) =0 in RY.

Taking into account estimate (3.50) and arguing as in the proof of Lemma 3.15, we can
show that for § > 0,

10:(D[u] + Rpo,u] + Slpg, ul)ll Lo o,r;10mey)y < C(p;0,0)(8+¢*) + 5||D3uHLP(O,T;LP(Rd))'
We infer from parabolic regularity (Lemma 3.26) for sufficiently small § > 0 that
10:Dul| (0,1, 10 (Re)) + HD3UHLP(O,T;LP(Rd)) < C(p,o)(B+¢%).
Then Lemma 3.20, applied to Du, leads to (3.38), which with Proposition 3.10 implies
(3.39).

3.3.3 Proof of (3.40).
Let 2z € RY. We use the definitions of K¢ and We to find that

06 = K1 pao)l = | [ Welo = ) (06 %)) = (i) ) 1)

(K * po)(x) = (K * ps) (y)]
|z —yl

</ Wz — y)lz -yl dy + (L = we)) * poloo
R

< IIV’C*paloo/Rd We(2)|z]dz + [ Klray p(o,c1)llooll ol
<(lvK *Palloo/Rd Wi()lyldy + ¢ po 1.

Let ¢ € C§°(RY) be such that supp(¢) C By and ¢ = 1 in B;. Then (since we can assume
without loss of generality that ( < 1), by arguing like in the derivation of (3.47), we obtain

(K¢ = K) % po ()] < CCMMEE2 (9 (KG) * polloc + [V (KL = 6)) * polloo + Ilpol1),
A computation shows that for p > max{d/(2s), 2},

IV(K9) * pollco = [(KD) * Vo lloo < 1KSp/ -1y IVPsllp < ClIVPo|lp,
VK1 = ) * polloc < [[VK(L = 0))l[ollpslls < Cllpollr,

where we note that Klp, € LP/?=1 if p > d/(2s). Then, in view of the regularity of p, in
Lemma 3.11, we find that

(K¢ = K) = pUHLOO(O,T;LOO(Rd)) < ¢
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

3.3.4 Proof of (3.41).

The L*(0,T; W2L(RY) N W34(R9)) bound for p, s is shown in a similar way as the
corresponding bound for p, in Lemma 3.11.

3.4 Mean-field analysis

This section is devoted to the proof of Proposition 3.3 and Theorem 3.2. The existence of
solutions to (3.4) and (3.6) as well as the existence of density functions is shown in Section
3.4.1. In Section 3.4.2, we estimate the difference XY — XV of the processes of the original
system (3.3) and the intermediate system (3.4), while the difference X}V — )?ZN of the
processes of the intermediate system (3.4) and the macroscopic system (3.6) is estimated
in Section 3.4.3. These estimates are combined in Section 3.4.4 to conclude with the proof
of Proposition 3.3 and Theorem 3.2.

3.4.1 Existence of density functions for (3.4) and (3.6)

First, we show that the coefficients of the stochastic differential equation (3.6), satisfied by
XN are globally Lipschitz continuous and of at most linear growth. The latter condition
follows from

IV * fo(po(z,t))] < IK %V fo(po)ll Loo (0,700 ()
< CIK =« V fo(po)ll o0 m:wrr@ay < CIV fo(po)ll Lo (0, 1;w1r (ray) < C(0),

where p > d and r = dp/(d + 2s) according to the Hardy-Littlewood—Sobolev inequality,
and we used the regularity bounds for p, from Lemma 3.26. The global Lipschitz continuity
is a consequence of the mean-value theorem, the Hardy—Littlewood—Sobolev inequality, and
the W2°°(R%) regularity of p, from Lemma 3.11:

sup VK * fo(po(2,1)) = VK * fo(pe(y,1))| < sup DK * fo(po (- ))llocla — ]
0<t<T 0<t<T

= Sup HIC * (fz/yl(pv)vpa ® VPU + fé(pU)szU)(‘at)Hoo‘x - y‘ < C(U)‘x - y"
0<t<T

These two conditions yield the existence and uniqueness of solutions to the associated
particle systems [67, Theorems 2.5 and 2.9]. Moreover, by [89, Theorem 2.3.1], the law
of the process )A(ZN is absolutely continuous with respect to the Lebesgue measure. By
Radon-Nikodym’s theorem, there exists a density function %(t) for all ¢ > 0 on R?, which is
measurable and integrable with respect to the Lebesgue measure. (Since all )?ZN are copies
of the same process, their density functions are the same almost everywhere.) The processes
)’sz (t) have continuous paths, which implies the continuity of the distribution function of
X’ZN (t) with respect to time, and this implies in turn the Bochner measurability of w(t).
Clearly, we have supg,cp [|(t)| 11 (rey = 1, which shows that u € L*>(0, 77 LY (R%)).
Similar arguments show that XV (¢) has a density function @ € L(0,T; L'(R%)).

Next, we show that u and @ can be identified with the weak solutions p, and p, g5,
respectively, using It6’s lemma. Indeed, let ¢ € C°(R? x [0,7]). We infer from Itd’s
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3.4 Mean-field analysis

formula that
SRV (1),1) = H(XN(0),0) + /0 0.H(XN (5), 5)ds + o /0 AG(XN(s), 5)ds
t N N t ~
VK Lo K 0).9) - VO (s), s + V27 [ V(RN (5).9) - W)

Taking the expectation, the It6 integral vanishes, and we end up with

oz, t)u(z, t)de = [ é(z,0)p2 (z)dx + t D5 (x, s)u(x, s)dxds
R4 R4 . 0 JRd

+ U/t Ag(x, s)u(z, s)dzds — / VK * fo(po(x,s)) - Vo(z, s)u(x, s)dzds.
0 JRd 0 JRd (3.51)

Hence, 4 is a very weak solution in the space L>°(0, T; L' (R%)) to the linear equation
i = o AT + div(aVK * f,(ps)), u(0) = p% in RY, (3.52)

where p, is the unique solution to (3.7).

It can be shown that (3.52) is uniquely solvable in the class of functions in L>(0,T; L(R?)).
This implies that 4 = p, in R? x (0,7) (and similarly @ = p, ). The proof is technical
but standard; see, e.g., [25, Theorem 7] for a sketch of a proof.

Another approach is as follows. Because of the linearity of (3.51), it is sufficient to
prove that 4 = 0 in R? x (0,7) if p2 = 0. First, we verify that v := VK * f,(p,) €
L>(0,T; Wh*(R9)) and @ € LP(0,T; LP(RY)) for p < d/(d — 1). Then, by density, (3.51)
holds for all ¢ € W4(0, T; LY(R?))NLI(0, T; W24(R4)) with ¢ > d and ¢(T) = 0. Choosing
1) to be the unique strong solution to the dual problem

dh+oAp=v-Vp+g, (T)=0 inR?
in the very weak formulation of (3.51), we find that fOT Jga tgdzdt = 0 for all g € C§°(RY x

(0,7)), which implies that u = 0.

3.4.2 Estimate of XV — XV

We derive an estimate for the expectation of the difference X lN -X ZN . To this end, we need
to estimate the difference of the mi_croscopic average N1 Z;Vﬂ joti We (X jN — XV) and the
macroscopic average Wg * pB’QU(XZ-N ). By a careful choice of 8 and ¢, we show that this
estimate is of the order N~1/4+9 for § > 0.

Lemma 3.17. Let X}V and XY be the solutions to (3.3) and (3.4), respectively, and let
6 € (0,1/4). Under the assumptions of Theorem 3.3 on 3 and (, it holds that

]E( sup max ](XZN—XZN)(S)]) < ONTYAHS,
0<S<T7’:17""N
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Proof. To simplify the presentation, we set
T
U(z,t) ( Z Wi(XN (1) )), U(z,t) = fU(N > Wg(XJN(t)—a:)>,
J=L, 7 J=1, 71

and we write p := p, 3. Taking the difference of equations (3.3) and (3.4) in the integral
formulation leads to

sup (XY~ X)) < / VK (U(XN(5),5) — fo(Ws % p(XN(5),9)))[ds  (3.53)

</ (Ve (T(X](s),s) — U(X]N(s),5))]ds
0

+ ; VK¢ * (\TJ(XZN(S), s) — fe(Wp p(XiN(s),s))”ds =11 + L.

Step 1: Estimate of Iy. To estimate I1, we formulate Iy = I11 + I12 + I13, where

I = /0 ‘VICC * (\I’(XZ-N(S),S) — \I/(va(s),s))‘ds,

We start with the first integral:

t
Illg/ ||D21C§*\Il( $)||oo sUp maXN|(XZN—XiN)(r)]dS.
0

O<r<si=1

We claim that
IDEKCe # U(-, 8) || < C(o)~RFDUEHR—1 0 1 e N (3.54)

For the proof, we introduce
O(z,y) ( Z Ws(y; — ) for v € RY, y = (y1,...,yn—1) € ROV

Then, by definition of K¢,

ID*KC W, t)lloo < sup [P * Keg * DFR (-, ) oo
yeRNfl

We estimate the right-hand side:
W * (Kwe + DPR (-, ) loo < [Welll|Kwe * DE@ (-, y)lloo < CllKw + DPR (-, )l w1.a(ga)

< OlIK D @ (-, )|l + O+ [DFF (-, )|,
< C|D*2(,y)ll; + CID*1D(, y)]|r,
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3.4 Mean-field analysis

where we used the Hardy-Littlewood—Sobolev inequality for r = dp/(d + 2ps) in the last
step. It follows from the Faa di Bruno formula, after an elementary computation, that the
last term is estimated according to

el = [ o (n( ZWB -0))f

<O ) g I IID Wl o [ [D7IWs (o)l do

< C(k,N) {nax Hf Hr —(d+k) krﬁ (d+k+1)r+d < C(k N a)ﬁf(d+k)(k+1)rfr’

dx

since |[DFWs|loo < CB~@HF) and |DIHWg||, < OB~@HIH+D+d/" This verifies (3.54). We
infer from (3.54) with k& = 2 that

¢
I < Cﬂ3d7/ sup max |(XN — XN)(r)|ds.
0 O<r<si=l,..,N
The term I 3 is estimated in a similar way, with ¥ replaced by ¥:
L1z < Cp~3d- 7/ sup max_|(XN — XN)(r)|ds.
0 O<r<si=l,..,N

The estimate of the remaining term I is more involved. Since Wy is assumed to be
symmetric, we find that

ne=| [ [ xctnv fa<]17jIZ’;#iWB(XJ]-V(S)—XfV(S)+y)>
N
-1 3 e -+ ) pands

(3 S - X))

<o [ [ x|,

J#1

x5 TN (5) — X (5) + ) — Wa(X(5) — X(5) + )

J#i

i1 % i1 %
- {fg<N§WB<X;-V ()= XV +9)) - fo(N;Wﬁ(XfV 5 - XY +9)]
X %ZVWB(XJN(S) — XN (s) + y)'dyds

i

< CHféHoo/O sup max |(X;" —X@-N)(S)\;[Z/Rd Ke()ID* Wy (y + &ii(s))|dyds

t
O e / sup max_ |(X — XV )(s)| K % VWsloods,
0 O<S<tl:1,...,N
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

where &;;(s) is a random value. We write K! = K|pg,, K* = Kl|ga\p, and note that IEC <K
for all ¢ > 0. Then

Rd’Cc(y)IDQWB(y + &ij(s))ldy < / (K" W) () ID* Wy + &ij(5))ldy

Bit¢

n / (K2 % W) ()| D* Wy + €55(s)) |y
RNB;_¢

< KT+ Well oro-1 3y, oo ID*Ws - + €5 (Dl o5,
+ 1% % Welloo ID* Wi (- + &i5()) | L2 (R 5, o)
< KM pos0-1 () ID*Wa (- + Eij () |0 (B, 0) + 1K loo ID* W5 (- + € (5)) [ L1 (ma
< O(ID*Wslloo + ID*Wpll1) < OB~
Observe that we did not use the compact support for EC (which depends on (), because a
negative exponent of ¢ at this point would lead to a logarithmic connection between ¢ and
N in the end, which we wish to avoid.
Furthermore, by the convolution, Sobolev, and Hardy-Littlewood-Sobolev inequalities as
well as the fact that |[ICc * VIWg| = |(Kwe) * We x VWg| < K [We| % [VW3],
1 % VWalloo = [[We s K¢ % VWglloo < [[K¢ % VIWplloo < [[K¢ % VWl
< C|K¢ * VWsllwioray < C(IK % [VWgl|[B + ||« | D*Wy||[5)1/?
< C[VWsllwrrgay < cptrdlr,

where we recall that r > d/(2s) and we choose p > d satisfying 1/p = 2s/d — 1/r. The
previous two estimates lead to

t
Ix < C’(U)B_d_Q/ sup max \(XZN — X,L-N)(r)]ds.
0 o<r<s ’L:L...,N

We summarize:

t
I < Clo) =37 / sup max (XN — XN)(r)|ds. (3.55)
0 O<r<si=l,..,N

Step 2: Estimate of Io. We take the expectation of I and use the mean-value theorem:
t 1 B B
5 = [ B [ vxo{n(x Swio -2 +n) 650
J#

— fo(Ws 5 p(X]N(s) — y,5)) }dy ds

~ t
< Nl R+ Wl [ supE(Zrbz-xy,s)r)ds,

d .
0 yeR i
where

bi (0, 5) = Wa(XJ¥(5) = XN (5) 4+ 9) = s Wi # (XN () — 11 5).
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3.4 Mean-field analysis

We deduce from [[VW¢|| 1 ray < CC! that
1K e % VW[ < CCYIKelly < C¢271,

due to the compact support of EC({E) = |2|>dwe (x) < C|x|25—d1‘x|§24—1 and

[ tae= [ cgpeiay = o,
{lzl<2/¢} {lyl<2}

We claim that E(3_;; |bij(y, s)|) < C(0)B3~42N1/? for all y € RY. To show the claim,
we compute the expectation E[(_;; bi;(y, 5))?]. We estimate first the terms with k # j
(omitting the argument (y,s) to simplify the notation). Then an elementary but tedious
computation leads to

E(bjibk;) = /Rd /Rd /Rd (ng(xj -z +y)— %Wg * p(z; — y))

N
X (Wﬂ(xk — T +y) — mwﬁ * p(x; — y))p(:z:i)p(xj)p(xk)dxidwjda:k

= /]Rd <WB *p(a; —y) — %WB * p(@; — y)) QP(fUi)dei

< N72|lpll poe o0 ety Wa * Al o0 0712 )
< C(o)N2|Wsf < Clo)N 2.

The diagonal terms contribute in the following way:

B~ [ [ (Wﬁm i) — W % plai y>)2p<xi>p<xj>dmidxj

2N

= /Rd ((W;% *p)(@i —y) = 5y Ws *p)(zi —y)*

N? 2
+ W(WB * p)(2i — y) )P(%’)dﬁi
< C(0) (IV5 * pll Lo ozt (metyy + W5 * PHQLoo(o,T;Lz(Rd))) < C(o)p™,
since [W3 * pll2 < [W3lillpllz < ClIWsll5 < 87¢C. This shows that
2\ 1/2
E(Z\bﬁ(y,S)O < (E[iji(yas)] ) < C(o)B~ 2N
i i
We infer that (3.56) becomes
I, < C(o)¢271gd2N—1/2, (3.57)

Step 3: End of the proof. We insert (3.55) and (3.57) into (3.53) to infer that

Ei(t):=E( sup max_|(X} — XN)(s)|
0<s<t i=1,,N
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

< C(a)ﬂf?’d*? /t El(s)ds + C(U)CfZSflﬁfd/QNfl/%
0

By Gronwall’s lemma,

Ei(t) < C(o)¢ BB~ 42N" Y2 exp (C(0)73TT), 0<t<T.
We choose ¢ = 6/(C(o)T) for some arbitrary 6 € (0,1/4). Then, since by assumption,
B2 < B734-T < clog N and ¢~2~! < C; N4, we find that

E\(t) < C(0)Crelog(N)N 4 exp (C(0)TelogN) = % 10g(N)N_1/4+5~>
proving the result. O

3.4.3 Estimate of XV — )A(ZN

Next, we compute the expectation of XiN — )?ZN by estimating the difference between VIC¢
and VK as well as the difference between Ws x p(X7¥) and p,(X/). The estimate depends
on 3 and (.

Lemma 3.18. Let X and )?,LN be the solutions to (3.4) and (3.6), respectively. Then

there exists a constant C' > 0, depending on o, such that

E< sup max |[(X — Xﬁ)(t)) < C(B+¢"),
0<t<Ti=L..N

where a := min{1, d — 2s}.

Proof. We compute the difference

(XN = XM)(0) = ‘/0 (VK¢ % foWs % p(X] (5),8)) = VK fo(po( X (s), 5)))ds

< Ji+ Jo + J3,

where p := p, g ¢, the convolution is taken with respect to z;, and

)

= / VK (fo(Wa 5 p(X(5), ) — fo (W5 % p(X (5), 5)))ds

)

Jy = /0 VK (fo W5 5 p(X]Y(5),9)) = fo(po (XY (5), 5)))ds

Jo= | [ V0 = )5 folpa (R (). )]

Step 1: Estimate of Ji. We write VIC¢ * fo(---) = K¢ * Vf, and add and subtract the
expression f2(Wg * p(X — y))VWs * p(XN —y):

_ [ / N N TN
= [ Kelo) (5095 5 6V (5) = ) YW+ [p(XF (5) ) = (£ (5) = )]
0 JRd
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3.4 Mean-field analysis

— (15 Ws 5 p(RN () = ) = F (W 5 (X2 (5) — )] VWi 5 p(R (5) — ) ) dydls

<l [ [ el (o5 ) =) = K (5) = ) s
+ 11 £5 oo [V W * Pl oo (0,7;150 (RaY)
< [ W (R (5) ) = o5 (5) = ) s,
0 JRA

By the mean-value theorem and using [[Ws|[1 = 1, we obtain for some random variable

&ij(s),

t
J1 < HfUHW2»°°(R)HVPHLOO(O,T;LOO(]Rd))/ sup sup (X} — X{V)(r)| (3.58)
0 0<r<si=1,..N

/Rd Z ‘KC D Ws * p(y + &i5(s ‘dyds

We need to estimate the last integral. For this, we write for k = 1,2

/ 1K (5)DF W % ply + &45(s), 5)|dy < KE + KE,  where
Bii¢

K§ ::/ ‘ICQ * We(y )D We * p(y + &ij(s) \dy,
RNB;_¢

where K! = K|p, and K? = Klga\p,- Note that IEC < K. A similar argument as for the
estimate of I5 in the proof of Lemma 3.17 shows that for 8 > max{d/(2s), d},

K} + K3 < C(|ID"Ws Pll Lo 0,7520 (Re)) + IDFWs pll e 0.1 ma)))
< C(||DkPHLoo(0,T;L0(Rd)) + Hka”LOO(O,T;Ll(Rd))) < C(o),

where we used Proposition 3.14 ((3.39) and (3.41)) with p = 6 in the last inequality. We
conclude from (3.58) that

Ji < C(0) /0 sup s (XY — XN (0)lds. (3.59)

O<r<si=1

Step 2: Estimate of Jo. We treat the two cases s < 1/2 and s > 1/2 separately. Let first
s >1/2. Then

_ ] /0 VR We 5 (f2 Wi 5 p(RN (), ) = fo(po(RD (), 5))) ds

< TIVE¢ * (fo(Ws % p) = fo(po))ll Lo (0,110 (1))
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Recalling the definition of IEC = Kw¢ in (3.11) and writing VI%C xu = VCxu—[(1-—
we) VK] x v+ [KVwe| xu for u = fo(Wg * p) — fo(ps), we find that

Jo < C(T)([IVE * ull oo (0,110 ey + I[(1 = we) VA * ul| oo 0,77 L0 (R (3.60)
+ IV we] * ull poo (0,7:1.00 (REY) ) -
We estimate the right-hand side term by term. Because of

CAV-1/2 _
UKk — V(=A)""2v for s =1/2
(VK) *v for s > 1/2,

we use Sobolev’s embedding WP (RY) < L*°(R?) for any p > d and then the boundedness
of the Riesz operator V(—A)~%/2: LP(R%) — LP(RY) [108, Chapter IV, §3.1] in case s = 1/2
or the Hardy-Littlewood—Sobolev inequality for &« = « —1/2 > 0 (see Lemma 3.22) in case
s > 1/2 to control the first norm in (3.60) by

d
IV uHLOO(O,T;LOO(Rd)) < C<”V’C * uHLOO(O,T;LP(]Rd)) + Z IV DJUHLOO(O,T;LP(IRd))>
j=1

< CHUHLOO(O,T;WLT(Rd)) =Cfe(Wp *p) — fa(Po)HLO@(QT;WLT(W))’

where r = pincase s = 1/2 and r = pd/(d+2s—1) in case s > 1/2. Choosing p > d+(2s—1)
guarantees that r > d always holds.

For the second norm in (3.60), Holder’s inequality yields for ¢ > d and 1/g+1/¢' = 1, for
every t > 0,

I[(1 = we) VK] s u(t) || oo (may < 11 = well poo ey I VI Lo (g2 20 -1 1w () | Lo (ray
= ||V’C||Lq’({\x|>2<—1})HU(t)HLQ(Rd)a

which can be bounded by C¢'~274/4|[u(t)|| 14(ray, since

IV a1y < € a2~ o = O¢ [y /¢ dy
FOAE2D = Japs2e1) {lul>2}
< CC—d—l—(l—i—d—Qs)q"
By similar arguments and the fact that |[Vw¢| p~ < C(, we find that
d—2s—d/q'
1RVt (gpagcag 1y < O,
and hence, using ¢ = q/(¢ — 1), we conclude for the second and third term in (3.60) that
(L = we) VKT 5 ()] ooy + VW] * u(t)] oo ety < CC >+ u(t)]] o gy -

The choice d < ¢ < d/(2s — 1) guarantees on the one hand that ¢ > d and on the other
hand that the exponent 1 —2s+d/q is strictly positive (which allows us to use the property
<1725+d/q < 1)
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3.4 Mean-field analysis

Using these estimates in (3.60), we arrive (for s > 1/2) at

Jo < C(T>(Hfa<Wﬁ *p) — fo(pU)HLOO(O,T;WLT(]Rd)) + | fe(Wp x p) — fU(pU)HLOO(O,T;Lq(]Rd)))a

where we recall that r,¢ > d. These norms can be estimated by ||f,(Ws * p(t)) —
fo(po(E)lzamay < [ f5lloclWs * p(t) = po ()]l Lara) and

IV (foWs  p) = fo(pe)) (D)l Lrray < [folloolWs * Vo = Vo) (£)| Lr ()
+ 1f5 ool (Ws  p = po) ()] L 2ty IV P (£)] Loo () -

The L>(R? x (0, 7)) bound for Vp, from Lemma 3.11 and the definition of f, finally show
for s > 1/2 and r,q > d that

Jo < C(o, T)([Ws * p = poll Looorwrr ey + W % p = poll L0, rsnamay) . (3.61)

Now, let s < 1/2. In this case, we cannot estimate VIC and put the gradient to the second
factor of the convolution. Adding and subtracting an appropriate expression as in Step
1, using the embedding W1P(RY) — L°(R?) for p > d, the estimate K¢ < K, and the
Hardy-Littlewood—Sobolev inequality, we find that

J2 = / / ’Cc(y)((fé(Wﬁ x p(XN(5) = 1)) — 12 (pa (XN (5) — ) VW5 % p(X (s) — v)
0 JR4

~ 150 (X () = 1) (VRN (5) = ) = TW3 5 p(XN (5) ) ) dyds

t R ~
Ul Wa # il [ [ Kelloo (K1) =) = W (T (5) = s

t
e [ [ K90 (2 (9) = ) = Wy = Vol £ () = ) s

< maX{HVPHLOO(o,T;LOO(Rd))a HHfé—HleooT(H’C * |(Wg *p— pG)’HLOO(O,T;LOO(]Rd))
+ [Kx |(Ws x Vp = Vpo)| HLoo(o,T;Loo(Rd)))

< (o, T)(||VP||L°°(0,T;L°°(Rd)) + 1) Z [Wg + D% — DaPOHLOO(O,T;L’“(]Rd))v
|af<2

where r > d is such that 1/r = 2s/d + 1/p (this is needed for the Hardy-Littlewood—
Sobolev inequality) and p > d (because of Sobolev’s embedding). Note that r > d can
be only guaranteed if s < 1/2. Together with the fact that [[Vpl| 1,100 ray) < C(0)
(choose ¢ > d in (3.41) and use Sobolev’s embedding), this shows that for s < 1/2,

J2 < C(0,T) Y W5 %D = Do || oo 0,7, (m))- (3.62)
ja]<2

It follows from estimate (3.38) and Lemma 3.21 in Appendix 3.A for p > d that

|(Wg * D%p — Dpo ) (t)| Lo (may < C(ID*Vpll o ey B + B+ ¢*) < C(o, T)(B + (),
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

where we used the L>(0,T; W3P(R?)) estimate for p = p, g in (3.41). Then we deduce
from estimates (3.61) and (3.62) that for all 0 < s < 1,

J2 < C(o, T)(6 + %),

where we recall that @ = min{1,d — 2s}.
Step 3: Estimate of Js and end of the proof. Arguing similarly as in Section 3.3.3, we have

1(K¢ = KC) Vol oo, )y < CCH(ID?poll poo 0.7 Lo (ray) + 1V Poll Lo 0,121 (R2Y)) -

This implies that
I3 < | folloo (K = K) Vol oo (0,100 (ray) < C(0)6" (3.63)

Taking the expectation, we infer from (3.59)-(3.63) that
- N t
Balt) =B sup max, (6 = X)) £ €06+ ¢%)+ o) [ Batoyas,
0<5<t 7,:1,...,N 0

An application of Gronwall’s lemma gives the result. O

3.4.4 Proof of Theorem 3.2 and Proposition 3.3

Lemmas 3.17 and 3.18 show that

E( sup max_ (XN — XN ><s>|> < C(NVAO g 4 cmin{Ld=2s})
0<S<TZ:17"'7N

and this expression converges to zero as N — oo and (3,{) — 0 under the conditions
stated in Theorem 3.3. This result implies the convergence in probability of the k-tuple
(XN ... X ,]CV ) to ()2' N ,X’ ,iv ). Since convergence in probability implies convergence in
distribution, we obtain

11{161 o P?V/B ,(t) = P2%(t) locally uniform in time,
N—o00, (8,)—0 R

where P];:V,,B,a'(t) and P&¥(t) denote the joint distributions of (X, ..., X{¥)(t) and ()?{V, cee
X N)(t), respectively. By Section 3.4.1, P,(t) is absolutely continuous with the density
function p,(t). Using the test function ¢ = 1(_ooqz¢ in Corollary 3.13, we have, up to a
subsequence,

Pott (ool = [ oty = [ oy =Pt (.21

locally uniformly for ¢ > 0. Since the convergence also holds for the initial condition, the
result is shown.
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3.A Auxiliary results

3.A Auxiliary results

We recall some known results. The following result is proved in [11, Theorem 4.33].

Lemma 3.19 (Young’s convolution inequality). Let 1 < p, r < oo, u € LP(R?), v €

LYRY), and 1/p+1/q=1+1/r. Then uxv € L"(R?) and
[ux ol < lullpllvllg-

The following lemma slightly extends [101, Lemma 7.3] from the L? to the LP setting.

Lemma 3.20. Let p > 2 and T > 0. Then the following embedding is continuous:
LP(0, T; WP (RY) n Whe(0, T; W= EP(RY)) — C°([0, T]; LP(RY)).

Proof. Let u € LP(0,T; WIP(R%)) N WP (0, T; W=IP(R?)) and 0 < t; <ty <T. Then

‘/R u(tg)]pda:—/Rd (u(t) Pda

to
= ’/ (atu,p\u|p2u>dt‘ (3.64)
t1

< p”atuHLF(tl,tQ;W*LP(Rd)) | |u|p_2u||Lp/(tht2;W1,p/ (R))>

where p’ = p/(p — 1). Direct computations using Young’s inequality lead to

/ t2 I /
P2 iy =, 219z

1)
<C [ IOt
1

We infer from (3.64) and the continuity of the integrals with respect to the time integration
boundaries that ¢ — ||u(t)]|, is continuous and

sup [u(®)ll < 0)p+ ool a8 + Ol oy (365)

Next, let ¢ € [0, 7] be arbitrary and let 7,, — 0 as n — oo such that ¢+, € [0,7]. Estimate
(3.65) implies that (u(t + 7,,))nen is bounded in LP(RY). Thus, there exists a subsequence
(Tw) of (7,,) such that u(t+7,/) — v(t) weakly in LP(R%) as n’ — oo for some v(t) € LP(R?).
We can show, using estimate (3.65) and dominated convergence for the integral

T
/ / (u(t + T, ) — v(t,2))p(t, 2)dz for ¢ € CO(R? x (0,T))
0 Jrd
that in the limit n’ — oo

/OT /Rd(u(t’x) —v(t,2))(t, x)dz = 0,

which yields v(t) = u(t).

Moreover, since t + ||u(t)|, is continuous, we have ||u(t + 7/)|l, — ||u(t)||p- Since LP(R%)
is uniformly convex, we deduce from [11, Prop. 3.32] that u(t + 7,,/) — u(t) strongly in
LP(R?). Since the limit is unique, the whole sequence converges. Together with (3.65), this
concludes the proof. O

107



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3 Mean-field derivation of a porous-medium equation with fractional diffusion

Let Wi € C5°(R?) be nonnegative with [, Wi (z)dz = 1 and define Wg(z) = =W (87 z)
for z € R% and 8 > 0.

Lemma 3.21. Let 1 <p < oo and u € WHP(RY). Then
Wa s u —ullp < CB[[Vullp.

Proof. We use Holder’s inequality and the fact that [Wgsl|;1®e) = 1 to find that

Ws s u—ulp = [
Rd

< /Rd ( y We(x — y)dy)p_l (/Rd Ws(x — y)|u(z) — u(y)!pdy) da
_ /Rd [ Wa(2)|21? u(y + 2) — u(y) !pdydz

|2|P

p
dx

[ Wste = ) (ute) = ulw)ay

<I9ulp [ Wal2eraz < CoITulf,

which shows the lemma. OJ

3.B Fractional Laplacian

We recall that the fractional Laplacian (—A)® for 0 < s < 1 can be written as the pointwise
formula

45T(d/2 + 5)

s

—AYu(x) = s ———d N where s =
( ) u( ) Cd7 /Rd |],‘ — y|d 25 y T Cd7

u € H*(R?), and the integral is understood as principal value if 1/2 < s < 1 [110, Theorem
2]. The inverse fractional Laplacian (—A)~* is defined in (3.2). The following lemma can
be found in [108, Chapter V, Section 1.2].

Lemma 3.22 (Hardy-Littlewood—Sobolev inequality). Let 0 < s < 1 and 1 < p < oo.
Then there erists a constant C > 0 such that for all u € LP(R?),
1 1 2s
—A)"Pul|lg < Cllullp, where — = — + —.
1(=8) " ullg < Cllullp et
Applying Holder’s and then Hardy—Littlewood—Sobolev’s inequality gives the following re-
sult.

Lemma 3.23. Let0<s<1land1l <p<q<oo. Then there exists C > 0 such that for
all w € LY(RY), v € L"(RY),

s 1
lu(=2)"v]lp < Cllullgllollr,  —+—= (3.67)

[V (=A) "]l < Cllullgl|vl, (3.68)
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3.B Fractional Laplacian

Lemma 3.24 (Fractional Gagliardo-Nirenberg inequality I). Let d > 2 and 1 < p < ©.
Then there exists C > 0 such that for all uw € WHP(RY) or u € W2P(R), respectively,

I(=a)ull, < Clull, > IVul2 #0<s<1/2,
I(~A)ull, < Cllully*ID%uly i 1/2 < s < 1.

Proof. Tt follows from the properties of the Riesz and Bessel potentials [108, Theorem 3,
page 96] that the operator (—A)® : WHP(R?) — LP(RY) is bounded for 0 < s < 1/2, while
the operator (—A)* : W2P(R%) — LP(R?) is bounded for 1/2 < s < 1. Thus, if 0 < s < 1/2,

I(=A)*ully < Clllully + I Vullp)  for uw e WH(RY).
Replacing u by uy(z) = AP~25u(\z) with A > 0 yields
I(=2)*ull, = (=) urll, < Cllually + [Vuxllp) = CA™* ([lully + M Vullp)-

We minimize the right-hand side with respect to A giving the value A\g = 2s(1 — 2s)~!{|u]l,
[Vull, 1 and therefore,
I(=2)ully, < Cllull' = Vullp*.

The case 1/2 < s < 1 is proved in a similar way. O

Lemma 3.25 (Fractional Gagliardo-Nirenberg inequality II). Let d > 2, 0 < s < 1/2,
p € (1,00), and q € [p,00). If p < d/(2s), we assume additionally that ¢ < dp/(d — 2sp).
Then there exists C > 0 such that for all u € WHP(RY),

I(=2)"*Vullg < Cllull,™"[Vull,
where 0 =1+d/p—d/q—2s €[0,1].

Proof. The statement is true for s = 1/2 since the operator (—A)~1/2V : L4(R?) — LI(R%)
is bounded for any ¢ € (1, 00) [108, Theorem 3, page 96]. Then the inequality follows from
the standard Gagliardo—Nirenberg inequality.

Thus, let 0 < s < 1/2. We claim that it is sufficient to prove that (—A)~=*V : WhP(RY) —
L4(R%) is bounded. Indeed, assume that

I(=2)"*Vullg < C(lull, + |Vully)  for ue WHP(RY). (3.69)
Replacing, as in the proof of Lemma 3.24, u by uy(z) = A¥9~ 1425y (\z) with A > 0 yields
1(=2)"*Vullg < A (Jlully + Al Vullp),

where 6 is defined in the statement of the theorem. Minimizing the right-hand side with
respect to A gives the value A\g = 0(1 — )~ !|ul|,||Vul[,; 1 and therefore,

1(=2)"*Vullg < Cllull, *[Vully.

It remains to show (3.69). To this end, we distinguish two cases. First, let p < d/(2s).
By assumption, p < ¢ < r(1) := dp/(d — 2sp). We apply the Hardy-Littlewood—Sobolev
inequality (Lemma 3.22) to find that

I(=A)"*Vullyqy < CIVull, < C((lull, + [Vullp)-
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Furthermore, by using (in this order) the boundedness of (—A)~'/2V : LP(R?) — LP(R?),
Lemma 2 in [108, page 133], equation (40) in [108, page 135|, and Theorem 3 in [108, page
135f],

I(=2)"*Vullp = [V(=A)2(=A) 2|, < Ol[(=A)*ul, (3.70)
< O = 22l < CIU = 2)Pully < Clllullp + [ Vullp).

These inequalities hold for any p € (1,00). Now, it is sufficient to interpolate with 1/q =
u/p+ (L —p)/r(1):
1(=2)"*Vully < [(=2) " Vaulls[[(=A)"*Vul, i} < C(llull, + [ Vull,)-

Second, let p > d/(2s). We choose A € (0,d/(2sp)) C (0,1) and apply the Hardy—
Littlewoord—Sobolev inequality:

1(=2) " Vaull, iy = (=) (=2)" Y Tu, ) < Oll(=2)" Vo Tul,,
where r(\) = dp/(d — 2sAp). Since (1 — \)s < 1/2, we deduce from (3.70) that
1(=2)"*Vul oy < C(llullp + [Vullp)-

Since r(A) — oo as A — d/(2sp), the result follows. O

3.C Parabolic regularity

Lemma 3.26 (Parabolic regularity). Let 1 < p < oo, T' > 0 and let u be the (weak)
solution to the heat equation

du—Au=v, u(0)=u" inR?

where v € LP(0,T; LP(RY)) and u® € W2P(R). Then there exists C > 0, depending on T
and p, such that

10wl oo, Lo gay) + D%l oo 7, Loray) < C Il o(o. 7,00 may) + DUl oray) - (3.71)
Furthermore, if v = divw for some w € LP(0,T; LP(R%; R?)) then
IV ull oo, o rayy < CIwl oo zoqray) + TP VU0 | ogway)- (3.72)
Proof. We use a known result on the parabolic regularity for the equation
oHu—Au=wv, 10)=0 inR% (3.73)
It holds that [76]
1052 ]| o 0,750 rety) + D%l o 0,750 R)) < Clloll o070 (R - (3.74)

We apply this result to 4 = u — e!®u’, where e/®u? is the solution to the homogeneous

heat equation in R? with initial datum u°. Then @ solves (3.73) and satisfies estimate
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3.C Parabolic regularity

(3.74). Inserting the definition of @ and observing that |D?(e!2u%)||, < C|D*u°|,, we
obtain (3.71).

If v = divw for some w € LP(0,T; LP(R% R%)), the uniqueness of solutions to the heat
equation yields u = e'®u® + div U, where U solves

QU — AU =w, U0)=0 inR%
Then we deduce from the regularity result of [76] with & = U and v = w that
ID*U | 1o (0.7, 10ReY) < Cllwll pogo, 1,10 (Ra))-

Since Vu = e!2Vu 4+ V div U, inequality (3.72) follows. O

111



“ayloljqig usip\ ML Te wuld ul ajgejrene si sisay) 210190 Syl JO UoisiaA [eulblio panoidde ay 1 < any a8pajmoust InoA
“regBnjian Yayioljgig UsIpn NL Jap ue 1sI uoneuassiq Jasalp uoisiaAfeulblO aponipab ausiqoidde aiqg v_U:#O__ﬁ—_m



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Dimidium facti qui coepit habet:
sapere aude’

— Horace
4 Quantitative convergence result for a
diffusion model with aggregation
Contents
4.1 Introduction and motivation . . . . . . . .. ... .00 L. 113
4.2 Key steps of the proof of Theorem 4.1 . . . . . . .. ... ... 126
4.3 Results from PDE analysis . . . .. ... ... ......... 130
4.4 Solvability of the particle systems . . . . .. ... .. .. ... 132
4.5 Auxiliary results . . . . .. .00 o 0oL 0oL 132
4.6 Proof of Lemma 4.2 (Law-of-large numbers) . . . .. ... .. 134
4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L2
NOTIN) & o v v v v e e e et e e e e e e 137
4.A Comments on Assumption (C1) . . . . . . .. .. .. ... ... 166

This chapter shows a joint work with Li Chen® and Ansgar Jingel’.

4.1 Introduction and motivation

The aim of this chapter is to prove a quantitative mean-field result in L? (]Rd)—norm associ-
ated to the following interacting stochastic particle system describing the dynamics in time
t > 0 of the spatial position XZ»N’77 of the i-th particle,

N
dx V() = % SOV — X00(1)dt + V20dWi(t), (4.1)
j=1

xN10)y=¢ inRY i=1,...,N,
where N € N denotes the number of particles, the spatial dimension d > 1, V7 > 0
denotes the interaction potential with interaction radius n > 0 and ¢ > 0 the diffusion
coefficient. The parameter x = 41 models the type of the dynamics: x = —1 corre-
sponds to repulsive interactions and x = 1 to aggregating particles. (Wz)f\il denotes

'"Horaz, Epistulae I, 2. 40f; English translation: The one who started has already done half of the work:
dare to know!

2University of Mannheim, Department of Mathematics, 68131 Mannheim, Germany

3Institute of Analysis and Scientific Computing, Technische Universitat Wien, 1040 Wien, Austria
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a family of independent d-dimensional Brownian motions on a filtered probability space
(Q, 7, (F)o<i<r,P) and ()Y, are Fo-measurable i.i.d random variables with common
density function ug € W2 (R?).

For fixed n > 0 the interaction potential V" is defined by

Vi(z) = n_dVC:;‘) for z € R%, (4.2)

where V : R? — R is a non-negative, smooth, normalized, symmetric function with support
on the unit ball B;(0) € R Additionally, we assume that V = Z x Z, see Section 4.1.1 for
discussions of the assumptions.

In order to perform the mean-field limit N — oo, the interaction radius n > 0 is coupled to
the number of particles N, such that = N2 with 0 < 8 < 1/(d + 2), which leads to the
regime of moderately interacting particles, see Section 1.2.2 for an introduction. In order
to show the main result of this chapter, we need additional assumptions on the smallness
of # (depending on the spatial dimension d), see Theorem 4.1.

There already are some results in the literature concerning particle system (4.1): In the
repulsive case k = —1, Oelschlager proved in [91] the convergence in law of the so-called
empirical measures towards a porous-media type equation when n = N7 for some 0 <
B < 1/(d+ 2). Later, he proved in [90] a quantitative mean-square convergence result in
expectation of the “smoothed” empirical measure, still for Kk = —1 and 0 < 8 < 1/(2d +
4). The convergence rate in [90] is of order O(N~'/27¢) for a small ¢ > 0. For the
more delicate aggregating case k = 1, the mean-square convergence in probability of the
smoothed empirical measure under the algebraic scaling n = N~7 for a particle system
similar to (4.1) modelling chemotaxis was shown in [109], while the (stronger) convergence
of the second moments in the path space under the (weaker) logarithmic scaling n >
C(log N)~1/ 4449 for some C' > 0 was derived in [27]. By using the stronger notion of
convergence, the authors in [27] derived a convergence rate which scales logarithmically in
N, whereas the result in [109] does not provide a convergence rate

In this part of the thesis, we present a conditional L? convergence result (Theorem 4.1),
which leads to a generalisation of the results of [27, 90, 109] in the sense that we allow for
the (more difficult) aggregating case k = 1, the (stronger) sense of mean-square convergence
in expectation and the (stronger) algebraic rate n = N=% for some 0 < 8 < 1/(d+2) in the
moderate regime. However, we need to assume that for algebraic scaling of n > 0 at least
convergence in probability holds; see Assumption (C1) and equation (4.16). In Section
4.A, we explain the technical difficulty of proving such a result for interaction potentials
approximating the Dirac measure with current techniques and present a proof for an other
type of singular potential, the Coulomb potential.

4.1.1 Motivation and main results

First, in order to measure the behavior of the stochastic particle systems (4.1), we need to
introduce the so-called empirical measure

N
1
Ny (t,w) = N ZéXiN,n(t’w), for t >0, we Q, (4.3)
i=1
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4.1 Introduction and motivation

where XiN’n(t) solve (4.1) fori=1,..., N.
It is well-known (see e.g. [27, 91]) that the limiting behavior (N — oo, — 0) of the
particle system (4.1) is captured for both cases kK = 1 by the local diffusion equation

du = oAu — kdiv(uVu) fort >0, u(0)=wup in R% (4.4)

In [91], equation (4.4) is derived for kK = —1 from (4.1) withn = N=# with 0 < 8 < 1/(d+2)
by proving convergence of the empirical measure in law towards a (random) Dirac measure
6X(t)’ where X (t) is a process with density function wu(t) (with respect to the Lebesgue
measure).

In contrast to this, in [27] equation (4.4) is derived from system (4.1) for k = 1 with a
different scaling in n > 0: There, the limit

N — oo and 1 > C(log(N))~ V@) 5

is considered in two steps, similar to the results in Chapter 2: First, for fixed n > 0,
which corresponds to weakly interacting particles, the mean-field limit leads to the nonlocal
diffusion equation

" = o AT — kdiv(@?"VVT x @), t >0, @"(0) = up in RY. (4.5)
This equation is connected to the intermediate particle system

A1) = K(VV @) (X () dt + VIadWih), o
X'0)=¢ inRY i=1,...,N, '
where all particles Y?(t) are independent and possess the common density function a"(¢).
Note that (4.5) still depends on the number N of particles via the interaction radius n =
n(N). Second, since V" converges to the Dirac delta distribution in the limit 7 — 0 and
" — u ([27, Lemma 2.1]), we have VV" % 47 — Vu in the sense of distributions, where u
solves (4.4). This fact is used in [27] in order to show convergence of

E( sup max_|[X"(t) — Xi(t)]) =0 (4.7)
o<t<T=1,....N

for N — 00,1 — 0, where all X;(t) possess the common density function u(¢) and solve

dX;(t) = kVu(X;(t)dt + V20dWi(t),

(4.8)
Xi(0)=¢ imRY i=1,...,N
At this point, we want to remark that [27] only considers the case k = 1, however, with
similar arguments, the case kK = —1 can be shown in the logarithmic scaling by using
the concept of the intermediate system (4.6), see [26] where a cross-diffusion system is
considered with similar arguments and logarithmic scaling. Additionally, the main result
in [27] implies that puy,(t) — u(t) in the weak sense for logarithmic scaling of 7 at a rate
O(n?) = O(log(N)~1/(@+2)) " As explained in the introduction of this thesis, this can be
seen as a law of large numbers in the mean-field setting. However, in order to show a central
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4 Quantitative convergence result for a diffusion model with aggregation

limit theorem — which will be the goal of future work — we need algebraic convergence rates
in terms of N. The reason is that we want to apply the convergence result to determine
the limiting behaviour of the so-called fluctuation process

N (1) = VN (v () — (). (4.9)

Heuristically, if this process converges to a limiting process £ in an appropriate sense, it
can be seen as a correction of the mean-field behaviour since

(1) = u(t) + N7V2EN () ~ u(t) + N7V2¢(1). (4.10)

This means that the particle dynamics for sufficiently large N can be captured by the
mean-field limit u(¢) plus some noise term with scaling N 12 1t £ is a Gaussian process,
this corresponds to a central limit theorem in the mean-field setting.

In the setting of moderate interacting particles, we do not expect the convergence of
pny(t) — u(t) to be ‘fast enough’ such that ¢V (t) has a Gaussian limit. The reason
is that for § — 0 the limiting PDE changes from the local model (4.4) to the non-local
PDE (4.5) for n = N° = 1. Hence, from an intuitive point of view we have to expect that
the convergence to u is very slow for small values of 5 > 0 due to the structural change of
the limiting PDE, see [90].

In order to still show a fluctuation theorem, we use a similar approach as K. Oelschlager
in [90], where we do not compare py, with the solution to the local problem u, but to
the non-local intermediate solution @" of (4.5) plus a deterministic correction K, — 0 for
7 — 0. In order to illustrate the main ideas and motivations here, we ignore the determin-
istic correction at the moment, since it is not relevant for the study of the L? convergence,
which is the main part of this chapter.

We define the intermediate fluctuation process as follows
Eimter (8) 7= VN (i (1) — (1)) (4.11)

If &N,..(t) = Einter(t) for N — oo (which implies n(N) — 0) and &ner(t) is a Gaussian
process, then by denoting the PDE error with " (¢) := @"(t) — u(t) in the spirit of (4.10),
we can approximate the particle dynamics by the mean-field solution u plus the limiting

intermediate fluctuations &t and a PDE approximation error:
N (t) = u(t) + N7V2E0 0 (1) + N () ~ u(t) + N7 26mer + 1N (1) (4.12)

Hence, it is an important question to determine the limiting behaviour of the intermediate
fluctuation process f%ter as well as to gain estimates for the PDE error 7V (¢).
First, let us remark that the PDE error estimate has already been done in [27] (k = 1) and

[26] (k = —1):

T
sup [[a7(t) ~u(®)lfe + [ [V@(0) - u@)[fadt < OF =CONF. (413)
o<t<T 0
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Second, let us take a look at the dynamics of the intermediate fluctuations: Indeed, if
V1 = 2" Z" as in [90] be a convolution square and let (-,-) be a dual product, then the

stochastic differential equation for £, reads as

N
(&N er (1), 0) = \% D VX)) AW;(E) + VN(| (i — @)+ 272, Ag)dt + RN (2),
=1

(4.14)

where ¢ is a test function and RY(t) denotes an error term, which determines the test
function space for ¢ and converges to zero for N — oo. For details see Section 4.1.2.

In order to prove Gaussian behaviour in the limit for &Y, (t), we see in (4.14) that the
term (un,, —@") * Z" should converge in the L? norm faster than N ~1/2 if we assume that
A¢ € L>®(RY). This motivates us to define (as in [90]) the “smoothed” empirical measure

and intermediate PDE solution

N
P8, 2) = (uat) = 27)(@) = 3 20 — XN(0)),
i=1 (4.15)

g"(t,x) = (@"(t) x Z2")(x) = /Rd 2"z — y)u"(y)dy.

Assumptions. Our main result is the L?(R?) convergence of fV7— g" in expectation with
rate N~1/2-¢. We impose the following assumptions.

(A1) Parameters: d > 1,0 >0,k >0,T > 0.

(A2) Interaction radius: n = N7 with 0 < 8 < 1/(d+2) (moderate regime); for additional
assumptions on 3, see Theorem 4.1.

(A3) Wh,...,Wy are independent d-dimensional Brownian motions on the filtered proba-
bility space (2, F, (Ft)e>0, P).

(A4) Initial data: (q,...,(n are Fp-measurable independent and identically distributed
(ii.d.) square-integrable random variables with the common density function ug €
W2>(RY) whose (d + 1)st moment is bounded.

(A5) Potential: V = Z x Z, where Z € C3(R?) is symmetric, nonnegative, normalized (i.e.
|Z|| ;1 = 1), and has compact support in the ball By 5(0). Define Z"(z) = n~?Z(x/n)
for z € R%.

The regularity and the boundedness of the (d + 1)st moment of ug are needed to obtain
bounded second derivatives and bounded (d + 1)st moment for the solution @"(t) to (4.5);
see Theorem 4.4 . The moment bound is used to estimate " in the “far field”, where we
need fast decay of the solution; see part 4 (Estimation of L(T')) of the proof in Section
4.7. Due to the assumptions on Z and by the definition V = Z x Z, V is a symmetric,
nonnegative potential with |V||;1 = 1. The assumption of the compact support of Z
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implies that the potential V is compactly supported in the unit ball B1(0).* The definition
of Z" is consistent with (4.2) in the sense that V7 = Z7 % Z":

Vi(z) ="V (z/n) =n"" /Rd Z(x/n—y)Z(y)dy
= gy / Z((x — 2)/n)Z(z/n)dz = 27 % Z7(x),
]Rd

Regularity of the solution to the non-local PDE (4.5). Before we state our main
theorem, we need to impose the following regularity of the solution %" > 0 to the non-local
PDE (4.5) for both cases k = £1:

(B1) Regularity and uniform bounds: u" € L>(0,T; W2°°(R%) N L*(R%)), where

1@l oo (0,752.00 Ry < C
with a constant that is independent of 7.
(B2) Smallness in case of k =1 (aggregating case): If k=1, then [|[u"(t)]| oo (ray < 0.

(B3) Uniformly bounded (d + 1)-st moment:

sup / 2| T @ (¢, x)da < C,
0<t<T JRR4

where C' > 0 does not depend on 7.

In Section 4.3, we state assumptions on wug such that there exists a unique solution which
fulfils (B1)—(B3); see Theorem 4.4. However, we want to remark that there may be weaker
assumptions on the initial condition such that (B1)—(B3) is still satisfied.

Additionally, we need the following (weak) convergence in probability with algebraic rate:

Assumption (C1): Let 0 < 8 < 1/(10d + 12) and the cut-off rate f(d + 3) < a <
1/2 — 8(d+1). Let (XiN’n)i]\i1 and (X])N, be the solutions to systems (4.1) and (4.6),

respectively. Then, we assume that for any v > 0 and T' > 0, there exists C(v,T) > 0 such
that for all 0 <t < T,

P( max [x"(t) = X](0)] > N7*) < C(, )N, (4.16)
In Section 4.A.1, we discuss Assumption (C1) in more detail. In particular, we show that for
interaction potentials approximating singular potentials of Coulomb-type, the equivalent
formulation of (4.16) indeed holds.

Open Problem: It is still an open problem to prove convergence in probability (4.16) to
the intermediate system in the moderate regime with algebraic scaling of the interaction

4This condition can be weakened by assuming boundedness of the first moment of Z instead of a compact
support
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4.1 Introduction and motivation

radius. We comment why current methods fail to handle interaction potentials approxi-
mating the Dirac measure in Section 4.A.2.

With these considerations at hand, the main theorem of this chapter can be stated in the
following way:

Theorem 4.1 (Mean-square convergence with rate N~1/272), Let Assumptions (A1)-(A4)
as well as (B1)-(B3) and (C1) hold and let n = N=%, where 0 < 8 < 1/(10d + 12). Then,
for any T > 0, there exists € > 0 and a constant C(B,d,T) > 0 such that for sufficiently
large number of particles N > 0,

T
E( sup [[(FY7 — g")(8)]122 + 0/ IV (N — g")(t)\lizdt> < C(B,d, T)N~1/27=,
o<t<T 0
(4.17)

Theorem 4.1 can be summarised in the following way: Given that propagation of chaos
with respect to convergence in probability (4.16) holds, even a stronger result holds, which
forms an important step for showing a fluctuation result in the regime of aggregating par-
ticles, see Section 4.1.2 for an introduction why the L?-norm is a natural norm to study
for rigorously showing a fluctuation theorem.

A similar theorem as Theorem 4.1 was proved by Oelschldger in [90]. In this article, the
author showed a fluctuation theorem for the so-called corrected fluctuations (v N (pun,,(t) —
u(t) — en(t)), where ¢y is a deterministic correction) in the repulsive case k = —1, see [90,
Theorem 1] without additional assumption of the convergence in probability. Because of
structural reasons, the aggregating regime x = 1 is much more involved.

There are three main differences of [90] to Theorem 4.1: First, in our case, we consider the
smoothed intermediate solution g”, whereas Oelschldger is using an approximation of g”
instead. Second, we do not need as strict assumptions on V', especially the assumptions on
the Fourier transform of Z (and therefore V') is not needed in the present work. However,
we note that maybe in order to prove (4.16) rigorously, more assumptions on V' might be
needed. Third, [90] only considers the respulsive case kK = —1, which makes the analysis
easier since the negative sign allows to neglect certain terms, which need to be estimated
in a different way in case of aggregation.

Similarly as our estimate (4.17), Stevens [109] showed an L? convergence result for the
smoothed quantities for the chemotaxis equation. Compared to that work, we do not prove
the convergence of the smoothed quantities in probability but the stronger convergence in
expectation, and we are able to derive a convergence rate, which is absent in [109]. How-
ever, our result needs the condition that at least propagation of chaos holds in probability,
see Assumption (C1) and (4.16).

Initial condition. Since we have assumed in Assumption (A3) i.i.d. initial data, (4.17)
holds at time ¢ = 0 in the following way (see the last step Section 4.7 for a proof):

E||(fN7 — gM)(0)]|2, < CN~Y2720 where gy = 1/2 — Bd > 0. (4.18)
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4 Quantitative convergence result for a diffusion model with aggregation

4.1.2 Connection to fluctuations

As mentioned in Section 4.1.1, the main motivation to study the quantitative mean-field
limit in L2 norm (see Theorem 4.1) lies in the fact that this result is needed when studying
fluctuations around the mean-field limit.

For particle systems like (4.1), an interesting question is whether the central limit theorem
holds in the limit N — oo when the particles become approximately independent, i.e. the
question if vV N(pun,(0) —ug) — Gaussian (which is fulfilled if all ¢; are i.i.d) implies

EN(t) = VN (uun () — u(t)) — Gaussian(t)®? (4.19)

As mentioned in the introduction of this chapter, if (4.19) holds, then we can interpret the
limit of the fluctuation process €™V (t) as next order correction of the mean-field behaviour
(1) = u+ =€ () ~ u+ —Gaussian(t) + 0(—=) (4:20)
N =u+—= ~ u + ——=Gaussian —). .
Fnvn VN VN VN
This means that for each particle number N fixed (large enough), the particle dynamics
can be approximately captured by the mean-field limit u plus some Gaussian noise with
scaling N~'/2. This is especially interesting since the particle system leading to a certain
PDE is not unique, see [47] and [25] for two different particle systems leading to the porous
medium equation. We refer the reader also to the end of Section 1.1.3 in the introduction
of this thesis for more details. In case of the viscous porous media equation, we expect
different fluctuation behaviour for those two particle systems, which would help us to un-
derstand the difference between those two systems from a modelling point of view.

Clearly, we can not expect limit (4.19) to hold if the convergence of yin 5, to u (in the weak
sense) is slower than N—'/2. This motivates the introduction of intermediate fluctuations
N _.(t) defined in (4.11). We expect that the intermediate structure captures the limiting

behaviour of jin,(t) in a better way than the local solution wu(t). If
&N, (t) — Gaussian(t) (4.21)

holds (we do not specify the type of convergence here), then we can approximate the particle
dynamics (4.1) by the mean-field limit v plus a deterministic correction

prcalt) = 10+ €l (8) = (u(t) = (D) ~ -+ ——Canssian(t) +0( ). (422)

where the last term also captures the PDE error (4.13).

Since we want to check whether (4.21) holds, we have to study the SDE, which is fulfilled by
gz!Xter (t) for fixed N and n: At this point the author wants to remark that the following lines

®We do not specify what 'Gaussian’ means in this context; In fact we are talking about generalised
Ornstein-Uhlenbeck processes, however, since this is not within the scope of this thesis, we do not go
further into details here.
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give insights into the study of the intermediate fluctuations which relies on the main theorem
of this chapter (Theorem 4.1). However, the arguments will be presented as motivation but
without proof. The rigorous study of the limiting behaviour of the intermediate fluctuations
1s ongoing work and not part of the present thesis.

Using a test function ¢(¢,-) (since we only present ideas here, we do not specify the test
space), applying It6’s formula leads to

d<§%tar(t)a ¢(t)> = _<§iNnt6r(t)7 (L?)*QZ)( ) dt t 0= ZV(b t XNn( )) v 2UdM(t)
(4.23)
L o.N N
+ (N (), YV N, (H)Ve(t))dt
S €D 0. TV € (05 011)
where (£])* denotes the dual formal operator of the linearised version of the non-local PDE
(4.5)

L16 = 86— o A¢ + div (qsvv" « @+ AV % ¢)
(L] = =0 — oA = VVT 5 0"V + VV  (0"Vh).

Motivated by K. Oelschlidger [90], we take a test function which lies in the kernel of (£})*,
which simplifies (4.23) by cancelling the first term on the right-hand side. Additionally,
exploiting the “quadratic” structure V" = Z" x Z" the last term in (4.23) can we written
as

1 1
ﬁ <€%ter (t)7 VT« g%ter (t)v¢(t)> 2\/> <(Z77 * gznter( ))27 A¢(t)>

(V25 (0. (275 (s V) = 27 1V ) ).
The second term on the right-hand side can be viewed as ‘error term’ and hence ignored
for this motivational section. I want to put the spotlight on the first term on the right-
hand side, since it shows the necessity of studying the convergence rate of the smoothed
intermediate fluctuations in L? norm. Assuming that the test function space is such that
Ad¢ is uniformly bounded, we get

<<Z *fznter( ))27A¢> S sup sup ’A(ﬁ(l‘,t)‘ \/}[)Sllp HZ *gznter( )H%?

2V/N 0<t<T zcRd <t<T
VN A t) —a"(t))]?
<C sup || Z7 % (pun,y(t) —a" (1)) ||72-
0<t<T

Thus, in order to get a Gaussian limiting behaviour in equation (4.23), we need to study
the convergence of N supgo,or [|Z7 * (un,(t) — u(t))|[7,. Theorem 4.1 shows that
SUPg<y ot || Z7 % (N (t) — @(1))][2, < CN~1/27¢ for € > 0, which allows us to conclude
that

VN sup || Z7 % (uny(t) — @'(t)||22 — 0 for N — oo.
0<t<T
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This shows that the main theorem of this chapter (Theorem 4.1) is a key step for under-
standing the limiting fluctuation behaviour of the stochastic interacting particle system
(4.1).

Outlook. At the moment of writing this thesis, it is still an open question whether
z!Xter converges to a generalized Ornstein-Uhlenbeck process - which would mean that the
central limit theorem holds for the intermediate fluctuations - or if we need a deterministic
correction, like in [90]. Similar to [90], the correction K, (t) would be purely determined
from the PDE structure of the intermediate non-local and the local diffusion aggregation
equation.

Concerning the limiting structure - based on heuristic consideration - we expect that &;),..
(or &N, + K,) converges to a generalised Ornstein-Uhlenbeck process which can be at
least formally seen as a solution to the following (linear) SPDE of Dean-Kawasaki-type:

dé(t) = Li(&(1))dt + V20V - (Vu(t)é),

where ¢ : L2([0,T] x R4 RY) — L2(Q;RY) is a vector-valued space-time white noise, £
denotes the formal operator of the linearised version of the diffusion aggregation equation
(4.4) and w is the solution to (4.4).

N

4.1.3 State of the art

Quantitative estimates for mean-field limits are of particular importance since they provide
information on the fluctuation process. There are many notions of convergence for showing
a propagation of chaos result, but not all of them can be directly used for fluctuation theory.
For a quantitative estimate on the trajectories for particle system (4.1) in case k = 1 and
n > C(log(N)~1/ (24449 we refer to [27], where a convergence rate of O(log(N)~/(4+2)) is
derived which is too slow for a central limit theorem. Applying classical techniques (see
for instance the lecture notes by Sznitman [113]) mean-field estimates by coupling methods
naturally lead to quantitative results, however, we do not expect to get a convergence rate
of order 1/ VN for the moderately interacting particle system (4.1) by coupling. Thus, we
will focus in this section on estimates on the empirical measure or the joint law (statistical
expressions) in the setting of (4.1) (or related) and refer the reader to the review [21] for
more quantitative results using coupling techniques.

Due to the fact that the study of mean-field limits is a timely topic, there are many
contributions in this direction. Hence, the following summary should be understood in the
sense that we only give a short outline of articles closely related to the present work and it
should not be understood as a complete list of articles concerning (quantitative) mean-field
results, for more detailed reviews on mean-field limits in general we refer to [21], [62] and
[53].

In the regime of weakly interacting particles (np = 1, § = 0) and smooth interaction
kernels, a propagation of chaos result for the finite marginals in L>°((0,7); L'(R9)) norm
at rate 1/v/N is shown by relative entropy techniques in [81] in the early 2000s. Almost
20 years later, also using bounds on the relative entropy norm, Jabin and Wang [63] were
able to derive a quantitative propagation of chaos result for the joint law of interacting
particles for a large class of interaction kernels (with weak assumptions on the regularity)
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in the weakly interacting regime at rate O(1/v/N). Consequently, the authors together
with Bresch were able to even derive a quantitative result (in the weakly interacting case)
for singular attractive interaction kernels, which includes the Patlak-Keller-Segel system,
see [10]. Almost at the same time as [63], a quantitative result concerning Coulomb-type
interaction potentials with respect to a modulated energy norm was shown in [43] which
generalises the result of [42]. To the best of the author’s knowledge, there is no mean-field
result concerning the smoothed empirical measure in the weakly interacting regime with
regard to the L?-norm used in Theorem 4.1.

First results on moderately interacting particle systems with repulsive forces have been
presented by Oelschldger, showing the (non-quantitative) mean-field limit for 8 < 1/(d+2)
in [91], and characterizing some corrected fluctuations as Gaussians for 5 < 1/(2d+4), [90].
In the latter work, he showed a similar result as in Theorem 4.1 for kK = —1 but with stronger
assumptions in the interaction kernel V' and not comparing to the intermediate non-local
solution directly. However, in case of repulsive particles assumption (C1) (see (4.16)) is not
necessary. A (non-quantitative) propagation of chaos result for reaction-diffusion equations
in the regime of moderately interacting particles was shown in [94]. Extending Oelschléger’s
methods developed in [94], Stevens [109] was able to derive a propagation of chaos result
for chemotaxis equations, by showing convergence of the smoothed empirical measure in
the norm supg; 7 || f(£)[|72 + fOT [V f(s)||72ds (non-quantitative), which is the same norm
with respect to time and space as considered in Theorem 4.1. In comparison to the notion of
convergence used in Theorem 4.1, this result only holds in probability. In [84], Méléard and
Roelly generalized the result [91] for moderately interacting particles by showing a (non-
quantitative) propagation of chaos result in the moderate regime by extending the space of
convergence and using probabilistic methods. Sequentially, a non-quantitative propagation
of chaos for a moderate model leading to a diffusion-convection equation, which does not
fulfil the assumptions on the drift coefficient in [84], was shown in [64]. Later, by using
probabilistic methods, a fluctuation theorem for moderately interacting particles (even with
non-linear diffusion part) was derived by Jourdain and Méléard with logarithmic connection
between 1 and N. In this article, the authors compared the empirical measure directly to
the local PDE solution (no deterministic correction) and used a scaling factor different from
VN, [65]. Concerning a particle approximation of a moderate model with aggregating and
repulsive interaction kernels, we refer to [86], where aggregation is modelled by a non-local
interaction kernel, which is different to our model.

More recently, using semigroup techniques, Flandoli and Leocata [48] were able to prove
(non-quantitative) convergence of the smoothed empirical measure for a biological PDE-
ODE system modelling aggregation in the moderate regime. This semigroup approach was
also used in other settings of moderately interacting particles, see [49] and [50] for example.
Convergence of the smoothed empirical measures in the moderate regime with logarithmic
scaling for the regularisation of the (singular) kernel and algebraic scaling in  was recently
shown with respect to L™(2; L>=((0,T); LP N L'(R%))-norm for some m € N and p > 2
in [55] (non-quantitative), where singular drift terms, including repulsive Poisson kernels,
and environmental noise was considered. Summarising, there are many contributions using
moderately interacting particles, however, most of them are not quantitative or consider
only repulsive cases.

Since Theorem 4.1 can be used in fluctuation theory, we already mentioned the contribu-
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tions by Oelschléager [90] as well as Jourdain and Méléard [65] in the moderate setting. In
the classical mean-field setting (weakly interacting particles), we refer to the classical work
by Tanaka [114] and Dawson [39], based on ideas of Braun and Hepp [9]. For additional
treatment of non-linear diffusion terms in the fluctuation setting for weakly interacting
particles, we refer to [74] and [46]. Recently, motivated by the quantitative mean-field esti-
mates of [63], a central limit for singular kernels in the weakly interacting setting has been
studied in [117]. In fact, most results on fluctuations are presented for weakly interacting
particle systems; see also [70, 79, 105]. Up to the author’s knowledge, only the articles [90]
and [65] are concerned with fluctuations for moderately interacting particle systems.

4.1.4 Main idea of the proof of Theorem 4.1

For the proof of Theorem 4.1, we wish to estimate V' — g7 = Z"x (un,, —u") in the L?(R?)
norm. In order to illustrate the idea of the methods used in this work, we exemplary pick
the following two terms which appear in this or similar ways many times in the proof. Let
iy, (t) denote the empirical measure associated with the intermediate system (4.6) at time
t > 0, then let us define

2= B [ 127+ (naea(s) = i (5)): 95 = Vg7 (s,

2 =B [ 12 ey() = (). V50 = Ty (5 ds.

The proof of Theorem 4.1 is mainly based on two considerations. First, the law-of-large-
numbers estimate (see Lemma 4.2)

sup_ (| (s) — @(s), )| > N~7) < Clm, T)[usy [ZENCO2 . (4.24)
0<s<T
valid for any ¢ > 0, m € N, ¥, € L>®(R%), and the mean-field estimate (see Assumption
(C1))
sup IP’( ‘max_|XN(s) — X(s)| > N*Of) < C(7, T)N™, (4.25)
0<s<T Ni=l.,N

for 0 < t < T, valid for « lying in a certain interval and for any v > 0. Note that in both
estimates, the algebraic decay can be arbitrarily fast for large values of v and m, under
the conditions that § < 1/2 and |4,z is growing not too fast in terms of n(NN). Those
estimates in probability are motivated by articles by P. Pickl and co-workers, see [72] for
instance.
Second — in the sprit of [72, Theorem 4.2] — we split  into a set D;, for which we can
apply either (4.24) or (4.25), and its complement, where the integrands of Z; and Z3 (or a
related expression) are small.
To fix some ideas, let us choose D(s) = {w e Q: N1 SNV, ](XZ-N”7 — X (w,s)| > N~}
Then, by the mean-value theorem applied to ¢,(-,y) := Z7(- — y), Gy(-,s) = |[VfN1 —
Vg"|(+,s) and 1 = Ipe + 1p, on

t 1 N J—
22 <B( [ 5 {160 X060 = o KDL T = g0}
=1
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N t
1 —
< Do+ ZE(/ 1G™(s) 1721 = X7 |1 dS)

+ sup sup||G"(s HL2]E(/ ZH¢,, qﬁn(,Y';’)HLoonplds). (4.26)

0<s<T wes

Since |XZ-N”7 —X]|<N“on Dy, by assuming that D¢, is bounded by N" for some r > 0,
the first integral in (4.26) is — by recalling the definition of G,, — bounded by

t
0B [V - V(o) fads.
0

If ¢, and supy,7Sup,eq [|G7(s)[|2, are bounded by N* for some k > 0, the second
integral can be estimated by N* multiplied by the probability of D;, which is bounded by
CN™7 due to the mean-field estimate (4.25). Thus, by choosing « and v sufficiently large,
Z1 can be estimated by

t
Z< g E/ IV £ — Vg(s)[2ds + CN7Y2<,

For Zy, we define Dy(s) = {w : |27« iy, (s,2) — Z"+ 0" (s,x)| > §} for fixed z € R%. Since
|27 % T (8, 2) — Z" % u'(s,x)| is small on D, we find that

t
zng( 02 g = 277 (g + ), 9 = Vg"|2<-,s>>|ds)

/ IV = 9 (8) s + Y1271 5 G 7,10y B(D2()

»MQ

It is important to remark that for illustrative reasons we ignored the dependence on x of
the set Da(s), for a more careful treatment of this (and similar terms) we refer to the proof
of Theorem 4.1. The last term is estimated by using the law-of-large-numbers estimate
(4.24), which gives, if all other expressions can be bounded,

t
2o < S [ V1) - Vg ads + ON
0
by taking m large enough in (4.24). Thus,

210+ 2(0) < 5 B [ IV5¥06) = V(s ads + ON 2

N’\Q

for some £ > 0. The first term can be absorbed by a term which is induced by the diffusion
of (4.1), whereas the second term gives us the desired rate. Many terms appearing in the
analysis of ||fN(s) — ¢"(s)||2 have a similar structure as Z; and Zs. However, due to
an error we make by manipulating the convolution inside the dual bracket, we need more
careful estimates, which are sketched in some detail in Section 4.2.
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4.1.5 OQOutline of the chapter and notation

The chapter is organized as follows. We present more details on the proof in Section 4.2,
where an outline of the proof is given. This can serve the reader as a guideline through
the technical parts of the proof. The existence of solutions to (4.5) (Theorem 4.4) and
the particle systems (4.1) and (4.6) as well as some properties of the solution which are
needed for Theorem 4.1 are investigated in Section 4.3-4.4. Section 4.5 is concerned with
some auxiliary results and estimates needed in the proof of Theorem 4.1. The law-of-large-
number estimate (4.24), precisely stated in Lemma 4.2, is shown in Section 4.6. With these
preparations, the detailed and rigorous proof of Theorem 4.1 is given in Section 4.7. In the
appendix (Section 4.A) we discuss the assumption of propagation of chaos in probability
(4.16) in more details and give a proof for convergence in probability for Coulomb-type
interactions.

The norm of LP(R?) with 1 < p < oo is denoted by || -||». We write (u, f) = [pa f(z)dp(z)
for the dual product between a measure p and an integrable function f. We denote the
inner product on L?(R?) by the same symbol, (u,v) = [psu(z)v(z)dz for u,v € L*(R?).
The m-th derivative of a smooth function ¢ equals D" ¢. As usual, we omit the dependence
of w €  in most of the expressions. We denote by C > 0 a generic constant independent
of N and 7, whose value may change from line to line.

4.2 Key steps of the proof of Theorem 4.1

I. Law of large numbers in probability. As already mentioned in Section 4.1.4, the
first ingredient of the proof is the law-of-large-numbers estimate (4.24). Roughly speaking,
we derive an estimate for the probability that (fiy , —u", ¢y) or (fiy,, —u")* 1, are outside
the ball of radius N~? for an arbitrary 6 > 0.

Lemma 4.2 (Law of large numbers). Let (X )N, be the solution to system (4.6) and let u"

be the density function associated to X, . Given 0 > 0 and ¢, € L>®(R%), 1, € L®(R%;R")
with n € {1,d,d x d}, we define the sets

1 N
Agg, (1) = {w €Q: ‘N > on(Xi(0)) - /R L Oy(x)a’(t,x)da| > N—"}, (4.27)
N 211 N B
Byly, () = {W €q: ‘N D (X7 (1) = X (1)) — (0 un)(YZ(t))‘ > N(’}. (4.28)
=1 j=1

Then, for every m € N and T > 0, there exists C'(m) > 0 such that for all0 <t < T,

P(Ag g, (1)) < C(m)|dy|3m N2mE-1/2),
P (B, (1)) < C(m)||e, |75 N2PO-1/2+1,

Remark 4.3. Choosing 0 < 1/2 and assuming that the dependence of ¢, or 1y is in such
a that the growth of ||oy|| 3% or ||¢y,||¥% is sufficiently ‘slow’ in terms of n (and hence
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N ) leads to an arbitrary algebraic decay of the probabilities. Since all Yj(t) are already
independent at any time t > 0 this might not be surprising, however, the author could not
find a quantitative result like this in literature. Hence, for the readers convenience we also
present a proof in Section 4.6.

Note that the exponent of N for the estimate of the probability of Aé\f én (t) is smaller by

one than the exponent in the estimate for Bé\fwn (t), since we do not take the union over
1=1,...,N. By definition of the empirical measures, we can write

A, (®) {I ((Fin .y —a")(t), &) > N3,

By, (t U{I fing — ") % 9y)(t, X7 ()] > N7}

The proof, detailed in Section 4.6, is rather standard (see, e.g., [44, Sec 2.G] for a similar
proof in a slightly easier setting). To shortly summarize the proof, we exemplary pick

Bé\f% (t) and apply Markov’s inequality to obtain
N 2m
> hij(t) )
j:l

:N2m(9—1)+1 maX ]E(( Z h” > >7

7,k=1

1
P(Bpy, () < N*M0+ maXNE(NQm

i=1,...,

where R (t) = 1, (X} (1) —Y;? (1)) — (b *a")(X} (t)). We show that the expectation vanishes
except for a number of cases which can be bounded by N™ (up to some constant). As each
of the products h;;(t)h;x(t) is bounded by ||¢,||3%, we conclude that

P(Bjy, (1)) < Cm)N>mO=DHN™ |y, |[F2,

proving the claim. The probability of .Aév én (t) is estimated in a similar way, see Section
4.6 for the complete proof.

II. Estimate of the L? norm: We turn to the sketch of the proof of Theorem 4.1. To
compute the expectation of [|(fN7 — ¢7)(t)||2., we use Itd’s formula to find after some
reformulations detailed in Section 4.7:

I = Ol ~ G = DO +20 [ VG =gt (429
= ZTLAVI(0) + K (1) + (1) + M (1),
where
1Lt . N
() =003 3 [ (g = 0) = TV X ()WAG),
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L(t) = 2r /t (N, — @ (VVT @) - (V27 (fN7 — g7)))ds,
0
t
M(t) = 2n/0 (uN g, [V Z7 5 (fN1 — gM)[?)ds.

The term L(t) can be treated in a similar way as the corresponding term in [90, (2.20)]
for k = —1 except that by exploiting convergence in probability we make the analysis also
rigorous for the multidimensional case, while the calculations regarding this term in [90]
are restricted to one space dimension. The expression M (t) for K = —1 in [90, (2.20)] is
negative and can be neglected in that work, but we need to estimate this term.

The idea is to estimate each of the terms on the right-hand side of (4.29) such that they
are either of order N~1/27¢ or can be absorbed by the gradient term on the left-hand side
since o > 0. In view of the scaling of V", the first term on the right-hand side of (4.29) is
bounded from above by CN#(4+2)=1 (see (4.37) below). This expression is of order N~/2-¢
for some € > 0 if we assume that § < 1/(2d + 4). After taking supremum in time and
expectation of the expressions in (4.29), by the Burkholder-Davis—Gundy inequality, the
stochastic integral K (t) can be estimated by C/N +E(supg ;. M (t)), such that it remains
to estimate L(t) and M(t).

IT.a. Estimate of the ‘quadratic term’ M (¢) for k = 1: The term M (t) (we refer to it
as 'quadratic term’), is (for £ = 1) the most involved one and shows the strength of our new
method. The reason lies in the fact that in contrast to the repulsive case (k = —1) in the
aggregation case (k = 1), this term has a positive sign and can therefore not be neglected or
used in order to absorb other terms on the left-hand side at a later stage of the estimates,
like in [90]. Hence, we have to establish a different strategy in order to estimate it in a

proper way such that we can indeed show estimate (4.17) with rate N—1/27¢.
Using Lemma 4.10, we first observe that
t
M) %20 [ (2% [T = 7)), (4.30)
0

which only holds up to an error term since the convolution with Z" is inside the absolute
value. However, since we want to illustrate the idea of the proof here, we ignore this error
in this section; for details of the proof see Section 4.7.

Unfortunately, we cannot absorb M () by the last term on the left-hand side of (4.29), since
a naive estimate gives || 2" % iy p||Le < CNP?, which diverges as N — oo. Hence, we have
to estimate it directly. The idea is to add and subtract a", leading to M (t) = M (t)+Ma(t),
where

t
M (t) = 2/ (v — |27 5 V(N7 — gm)[2)ds,
0
t
Ma(t) =2 [ (1275 V(5 - g
0
For a sufficiently small initial datum, the norm ||a"||p~ is small too (see Theorem 4.4).

Moreover, by assumption, ||Z"||;1 = ||Z| ;1 = 1. Thus, after an application of Young’s
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convolution inequality, My can be absorbed by the last term on the left-hand side of (4.29).
The smallness of the initial data is only needed in the aggregating case x = 1, for the re-
pulsive case, the term M (t) can be treated as in [90] by absorbing it on the left-hand side
of (4.29).

The estimation of M; is more delicate. Motivated by PDE techniques, a naive approach
would be to estimate M () similar to My(t). Unfortunately, || Z" * (un,, — @")||L~ cannot
be bounded uniformly in w and hence, this naive approach is not applicable. In order to
gain estimates for E(supg_,r |Mi(t)|), we use the convergence in probability (Lemma 4.2
and Assumption (C1); (4.16)), since it allows us to divide 2 in a subset where the distance
between the particle dynamics and the mean-field equation is large and its complement.
Lemma 4.2 and Assumption (4.16) respectively show that this set has a small probability.
Hence, we add and subtract the intermediate empirical measure iy, = N~ ! ZZ 1 Xn (tw)"
Then E(supg;7 |Mi(t)|) can be estimated by the sum of Mj;, Mja, and an error term
(due to the error we make in (4.30)), where

t
MH_E< sup / (27 % (i — MN,n,erNﬂ—g")r%ds),

o<t<T

Mz =& ( s / (27 iy~ [T = 7)) ).
0<t<T

The idea for My; and Mjo has already been explained in Section 4.1.4, since it forms the

core element of our idea. Summarizing, we use a combination of the law of large numbers

and mean-field estimates in probability ((4.24) and (4.25)) and exploit the diffusion struc-

ture of the model.

Finally, we have to estimate the error term M; — My, — Mi2. The strategy is inspired by
the one in [90], where a Taylor expansion is used. However, by exploiting the idea devel-
oped for My; and Mio, we see that a first-order expansion is sufficient. Still, the rigorous
estimate of the error term is very technical and more complicated than the estimate for the
one-dimensional situation of [90]; see estimates of M3 starting in (4.68) and (4.69).

IL.b. Estimate of L(t): For the term L(t) in (4.29), we also add and subtract fiy, to split
the estimate in a mean-field part involving un, — iy, and a law-of-large-numbers part for
fy, — u'. Again, the idea is to estimate both terms such that we obtain one contribution
of the type || V(" — g")|| 12 and another contribution, which can be bounded by N~/2~¢,
to split further the differences un; — iy, and fy, — u”’, and to apply Lemma 4.2 and
(4.16) several times. Additionally, this term is the reason why we need the assumption of
bounded (d + 1)-st moment of the initial data; see calculations starting in (4.91).
Combining these estimates, we infer from (4.29) that

E( sup [(F7 — g (B) 22 — (PN — g’7><o>|\%2)

o<t<T

T
L C(O)E / V(£ — g)|22ds < C(o, T)N Y22,
0
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Observing that [|(fN7 — ¢7)(0)]]2, < CN~1/2=%0 see (4.18), we conclude the proof for
0<e<eg.

4.3 Results from PDE analysis

The main purpose of this chapter is to show an improved mean-field convergence result in
L?(R%) norm of the smoothed quantities V7 and ¢” with convergence rate N —1/2-¢ gee
Theorem 4.1. This result will be essential in the study of the corresponding fluctuations of
the particle system. However, since by definition g7 = Z"7x 4", where u" is the unique weak
solution to (4.5), also existence, uniqueness and some bounds from classical non-linear PDE
analysis for non-local equations are needed.

The analysis of equation (4.5) in the repulsive case (k = —1) is already included in [26],
where a mean-field limit to a cross-diffusion system is shown. However, due the fact that
[26] holds for cross-diffusion systems, smallness assumptions on ug are needed which are
not necessary for the non-local viscous porous media equation (4.5) in case kK = —1. The
aggregating case of (4.5) (k = 1) was already studied in [27]. For the reader’s convenience
and due to the fact that the assumptions in [26] and [27] on the initial condition are slightly
different, we present the result here with combined assumptions:

4.3.1 Assumptions on the initial data ug

Let in the following s > d/2 +2. We denote with C; the embedding constant of H*(R%) —
W2>2(R9). Note that for this choice of s > 0, it holds that H*(R?) < W2 (R9) continu-
ously, see [75, Theorem 8.8].

Then, we impose the following condition on the initial datum:

ug € W2 (RN LYRY), up >0, |uollp =1, / || g (z)de < oo (4.31)
Rd

Additionally, we assume in case k = 1 (aggregating case) that ||ug| s < C% for some ¢ > 0,
where we recall that Cy is the embedding constant H*(R%) < W2 (RY).

4.3.2 Existence and uniqueness of the non-local equation (4.5)

We use the following well-posedness theorem for equation (4.5) which holds for repulsive
and aggregating potentials.

Theorem 4.4 (Well-posedness of the non-local PDE (4.5) for k = £1). Let 6 >0, n > 0,
s>d/2+2, and let ug satisfy (4.31) and

if kK =1: |Jup||lgs < C% orif k = —1: ||ug||pe < 9.
Then there exists a unique strong solution @ € L>(0,00; W*>®(R%)) to (4.5) such that
a'(t) >0 in R, ||a"(t)||p = 1, [|a"(t)||z < 0 for t >0 and the moment bound

sup / |lz| T a" (t, 2)dz < oo and 1@ oo (0,72.00 (Ra)) < C (4.32)
0<t<T JR
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hold uniformly in 7.
For the stronger assumptions on ug in case k = 1 the reqularity 4" € L>=(0, 00; H*(R?)) N
L? (0,00; H¥*1(RY)) holds and there exists C > 0 such that for all p > 0 and T > 0,

loc
1@ | oo (0,755 ety + V@[ L20,7; 15 () < C- (4.33)

Proof. As mentioned in the introduction of this section, the proof builds on results of [27]
(k = 1) and [26] (k = —1). However, it is important to remark that [26] deals with
cross-diffusion systems and hence there stronger assumptions on ug are needed there. We
separate the proof in those two cases for existence, uniqueness and uniform bounds. Since
the results in [27] and [26] do not include moment bounds of the solution @”, those will be
shown as last step of the proof for both cases.

k = 1: Applying [27, Theorem 1] provides a unique weak solution to (4.5), which is nonneg-
ative, normalized, and satisfies the stated regularity. The proof of Theorem 1 in [27] shows
that if ||ug||pe < M then also ||a"(t)||p~ < M for any M > 0 and ¢ > 0. Furthermore, @"
is uniformly bounded in the L>°(0,T; L2(R%)) norm and Da" is uniformly bounded in the
L%(0,T; L*(R?)) norm. The higher-order estimates (4.33) are proved in [27, Theorem 2.2]
for s > d/2 + 1, but estimates for s > d/2 4 2 can be achieved in the same way.

Next, let K = —1. The result in [26, Propsition 1] for n = 1 implies (under stronger
assumptions on ug) existence of a unique, nonnegative, normalized strong solution u" to
(4.5) with the regularity u” € L°(0, 00; H¥(RY)) N L2, (0, 00; HTH(RY)) for s > d/2 + 1.
However, since for k = —1, we do not need smallness of the L>(R%) norm (and we are in
an easier setting since no cross-diffusion is present), the assumptions stated in (4.31) are
sufficient to derive the desired regularity in Theorem 4.4. We refer the reader to the proof

of [26, Propsition 1] for details.

Moment estimates: It remains to derive the moment bound (4.33) for k = +1. We
present here only the idea since the calculations follow standard arguments. Multiplying
(4.5) by |z|*! and integrating over R? yields

d
4 / @t 2)de = —o / Va(t, z) - V]z|* da (4.34)
dt R4 Rd

+ 2/{/ a"(t, z)Va' (t,z) - V|z|* e = Hy(t) + Ho(t).
Rd

Clearly, this formulation is only formal as a rigorous argument needs a cut-off function; we
leave the details to the reader. Since V|z|™*! = (d + 1)|z|" 'z, we obtain from Holder’s
inequality and the Sobolev embedding H*(R?) «— W1I+1(RY) with s > d/2 +1/(d + 1):

_ _ _ d d _
Ha(t) < O - 1% (¢, )| peasny/al V& (0] s < C(I] - 197 (8 ) SEEDL + 197 (1)) 441,
_ d d
< O(lIl- 14t ) + 1),

where we have used (4.33) in the last step. As by Sobolev’s embedding @ is also uniformly
bounded in L>(0, oo; L>(R?)), we find that

_ d+1)/d _ _
-1 @SR = [l an i) Ve < © [ el ae,a)d
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4 Quantitative convergence result for a diffusion model with aggregation

and consequently,
Hy(t) < C+ C’/ 2|8 (2, ) da.
Rd

We integrate by parts and apply Young’s inequality |z|?~1 < C(1+]z|?*!) to the remaining
term:

Hy(1) = J/Rd @t 1) Alz| "z = o (d + 1)(2d — 1) /Rd 21t 2)da
< C/ (1 + |z|*Ha(t, z)de < C + C/ || T (¢, o) d.
R4 R4

Inserting the estimates for Hi(t) and Ha(t) into (4.34) shows

d
S el @t a)de < O 4 C / 2@, ) de
dt Rd R4

Gronwall’s lemma and the fact that C' does not depend on 7 > 0 then concludes the
proof. O

4.4 Solvability of the particle systems

The solvability of the particle systems (4.1) and (4.6) was proved in [26]. For the conve-
nience of the reader, we recall the results.

Lemma 4.5 (Solvability of the particle systems). There ezists a unique strong solution
XiN’77 to system (4.1) on (0,T). Moreover, if the solution u" to (4.5) satisfies u" €

L0, T; W2°(R%)) then system (4.6) has a unique strong solution X, with probability
density function u".

A strong solution means that (XZ-N’"(t))tZO and (X} (t))¢0 are P-a.s. continuous, R%valued,
Fi-adapted processes satisfying (4.1) and (4.6), respectively, in the sense of It6. Note that
the condition s > 2+ d/2 in Theorem 4.4 implies that H*(RY) < W2°°(R%) which yields a
unique solution @7 € L>(0,T; W2 (R%)) if the assumptions on ug stated in Theorem 4.4

are fulfilled.

4.5 Auxiliary results

We collect some inequalities which are used several times in the following sections. First,
we remark that for continuous functions F' : R — R” for n € N,

N
> F(X(1)), (4.35)

2=

(v (8), F) =

@
Il
,_.

F(z — X;"(t)) fort>0, z€R% (4.36)

=

I
—

(kg * F) (¢ x) =

Clearly, this also holds for the empirical measure of the intermediate measure fiy ,. The
scaling of V" and Z", see (4.2) with n = N—#, implies the following bounds.
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4.5 Auxiliary results

Lemma 4.6. It holds for m € Ng that

D7V + [ D720 < CNPEM, D™V 1z 4 D7 27| < N2,
(4.37)

L 2wl <on?, [ 202y < onee. (4.39)

These bounds imply the following result.

Lemma 4.7. It holds uniformly in Q that for any m € Ny

sup |[D™V7 s (fiy,(s) — @' (s)) [ e < ONPEH™),
0<s<T

Proof. It follows from the definition of 77y ,, Young’s convolution inequality, and estimate
(4.37) that

N
_ _ 1 _
D™V (i, — @")(s)|[Le < HN ZDmvn(m — X(s)) + [|ID™V| oo || @[ 11
i=1 Lee
< 2|ID"V| e < C NP,
Since all estimates are uniform in w, this finishes the proof. O

We also need some bounds for fN1 — g = (uy,, — a") * Z".

Lemma 4.8. It holds uniformly in £ that

sup [ V(fN7(s) = g"(5))llee < CNHD sup [ V(fN(s) = g"(s))l| 2 < ONPEFD/2,
0<s<T 0<s<T
(4.39)

Proof. The first inequality is shown as in the proof of Lemma 4.7. For the second one, we
compute by substitution

N
> [ V2= (X)) = X)) - 9 2y

7/7]:1
< ||V 21|V 27 12 < CNPE+2)

1
9l = |5

where we have used Lemma 4.7 and the fact that V27| = NA@HD [ |VZ(2NP)|dz =
NO\VZ| 1.
For ¢g" = 4"« Z", we see by Young’s convolution inequality

IVg"(s)122 = V27 x@(s)22 < V231177 ()22 = NPV Z|[ 1. @ (s)I[F. < ONP,

due to the uniform bounds of u"; see Theorem 4.4. By triangle inequality, this concludes
the proof. O
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4 Quantitative convergence result for a diffusion model with aggregation

Lemma 4.9. It holds that, uniformly in €2,

S (127 % vy ()l 22 + 127 % Ty ()| 2) < ONPY2, (4.40)
<s<

Proof. The proof is similar to that one of (4.39) (since Z" % un, = fV7):

Z /Rd 2 (x N(s)) 2 (x — va’n(s))dx

i,j=1
<121 27 1 < CNPY,

127 o) = | 7

using (4.37) and [|[Z"||;n = [|Z]|p1 in the last step. The estimate for Z" * fiy , is very
similar. O

The final result is concerned with the “shift” of the convolution in the inner product of
L2(RY).

Lemma 4.10. Let W € LY(RY) be symmetric and let u, v € L?>(RY). Then

(W s u,v) = (u, W v).

4.6 Proof of Lemma 4.2 (Law-of-large numbers)
To estimate the probability of By, (t), defined in (4.28), we set
hl] (ta W) = 1/}77 (Y?(t, W) - Yy(tu (,U)) - (1/}77 * ’[LTI)(Y?(t, w))

fort >0,weQ,and i,j =1,...,N. Note that depending on the choice of 1),, h;; can be
a matrix, a vector or a scalar. Then ngn (t) = UN., BN (t), where

ST LS ST )

j=1

and P(Bé\fwn (t)) < Nmax;—1,_nP(BN(t)). By the Markov inequality for m € N, we have
foranyi=1,...,N

2m> (4.41)

<<i;w o)

Looking at the summands of E((Z;szl hi;j(t) - hik(t))™) separately, we distinguish two
cases: First, we look at summands such that there exists an index j € {1,..., N} so that
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4.6 Proof of Lemma 4.2 (Law-of-large numbers)

hij appears only once in the product, i.e. terms of the form E(h;;(t) Hi”:zl_lkn#] hik, (1))
We claim that the fact that Y? and Yg are i.i.d. for i # j implies that

E<hij(t) Qﬁl hikn(t)>:0.

n=1, kn#j

To prove the claim, we assume that v, is scalar. In fact, this case can be extended to
vector-valued and matrix-valued functions by taking the sum over its components. Let K
denote the set of different indices k,, appearing in the product Hkn# hik, , and for each
¢e{l,...,N}, let ay denote its multiplicity in this product. Then, by Fubini’s theorem,

2m—1

B (10 I #hikn@)) [ [ =) = ) aantayyas; )
T (@i = o) = (w0 () 0" () 0" (25 )daz; (K) dae.

leK leK

Since ||@"||z1 = 1, the inner integral with respect to x; vanishes for all x; € RY,

/ (i = 25) = (g ) (@2) ) 0" () day = () (i) = (%ﬁn*ﬂ")(l‘z‘)/ u'(zj)dz; =0,
R4 Rd

which proves the claim.
Next, we consider products of terms h;;, where each factor h;; appears at least twice. Those
are the terms which might not have vanishing expectation. We collect them in the set

2m
N; = { H hij, : all indices j,, appear at least twice}.

n=1

We claim that the cardinality |A;| of this set is, up to some factor, bounded by N™. Indeed,
it holds that if [ 4 hia € N, then the cardinality of A fulfils |A| < m since all appearing
indices have to appear at least twice.

To estimate the cardinality of N;, we write N = UT_ N7 where

N ::{Hhiaéj\/i:M\:mn}.

a€cA

> We first look at ./\/;-O: It contains all products, where we have m different indices,

i.e. each index appears exactly twice. We can choose (% ) such sets of indices.
Since N is large in comparison to m, we roughly estimate (fX) < C(m)N™. By
taking into account all permutations of one such selection of indices, we get |NP| <

2m)IC(m)N™ = C(m)N™, where C(m) is a generic constant depending on m.

> For N and n > 0 with the same argumentation, we get |N| < C(m)N™™"
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4 Quantitative convergence result for a diffusion model with aggregation

Hence (since all NJ* are disjoint),

IN;| < C(m) (N™ 4+ N™ 1 ... N) < C(m)N™. (4.42)

m summands

The expectation of | Eévzl hi;|*™ can be written as the sum of expectations of products of
the form [[™, hij,, which is bounded from above by C (|40 |7 . This leads to

“(

We infer from (4.41) that

N

> his

J=1

2m
) < O[22 < Clm)N™|[osy 122

P(Bjy, (1) < Cm)N?MO=DHNT gy |72 = C(m) N2mO=2H |y, |2

It remains to show the estimate for Aé\j n (t), which is done in an analogous way as the one

for Bévwn. For the reader’s convenience we recall the main steps: By Markov’s inequality,

1 N 2m
PAY,, (1) < NWEQN S (K10~ [ o] )
N m
< NQm (06— 1 ( ) — N2m(9—1)E< Z hzh] ))
=1 ij=1
where h;(t) := ¢,(X; ( fRd ¢n(z)u(t, z)dz. Similarly as before, by a short computation
the expectation of all terms in the sum such that one index ¢ € {1,..., N} appears only

once vanish, i.e.

2m—1
E(hi > hkn>:O.

n=1, kn#i

To estimate the remaining terms, we introduce
2m
= { H h;, :all indices i,, appear at least twice}.

Its size can be estimated as before, leading to |N| < C(m)(N™ + N™ 1 +... 4+ N) <
C(m)N™. Then we deduce from E([]>™, hi,) < C||¢y |72 that

P(Als, (1)) < Cm)N>™O=12| ¢, || 72

This finishes the proof.
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L? norm)

4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in
L? norm)

The proof is split into several steps. The main idea is discussed in Section 4.1.4 and the
key steps are presented in Section 4.2.

Proof. 1. First reformulation. We first reformulate the L?(R?) norm of (fN:7 — ¢")(t)
in terms of V", uy,, and 4". For this, we expand

1T = gD (OI72 = 1Y = g (0|72 = Ji + J2 + J5,  where (4.43)
T = O Zgay — 1Y (0))172,

T2 = 19" ()17 2 ey — 19" (0122

Tz = =2((fN(8), g"(1)) = (F¥7(0), g"(0)))-

Step 1: Reformulation of Jy. By definition (4.15) of fN1, V7 = Z" % Z", the symmetry of
Z" and the change of variable y =  — X Non (t), we have

/(ZZ” - x( ))>2dx

2

102 —HNZZ" - x)

L2
- N2 Z/ 2"y +X;7(8) = X;V(1) Z7(y)dy (4.44)
i,j=1
N2 ;1 (275 ZM) (XN — XN N2 ;lvn X)),

To reformulate the last expression, we apply It6’s formula. For this, we rewrite the particle
system (4.1). In the following, we omit the argument ¢t whenever this simplifies the notation.
Using (4.36),

N
(v * VV)( Z - X,
system (4.1) can be written as
AXN = Ky« VVD(XNT) + V20d W,

and consequently, for the vector X;; = (XZ}N’"7 X]]-V’n)T € R? for some i,j € {1,...,N},

(v = WV (XN (0) awi)
aslt) = (wig VXY ”(t))) v (o)

We introduce ¢(X) = V7(X; — X3) for X = (X1, X5)” € R??. The derivatives are

_( IVI(X) - X) _( DVI(Xy - Xp)  —D2VI(X, — Xp)
I = <—vvn(§1 —)f'z)) D(X) = (—DQV"@ X DRVICK, - X2§>
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4 Quantitative convergence result for a diffusion model with aggregation

Abbreviating Y;; = X, N X]N’" , [t6’s formula gives

dg(Xij) = kVVI(Yi) - ((ng * VVIX) = (g = VV)(XNT) ) dt (4.45)
+ V20 VV(Yy) (AW; — AW;) + 20 AV (Y;)dt.

After summation over 4,5 = 1,...,N with ¢ # j and using the property VV"(Yj;)
—VV(Y};) in the first term on the right-hand side, the integral formulation of (4.45)
becomes

3™ (0K (1)) — 9(Xi5(0))) =26 S / VVI(Yi(5)) - (v = TV (5))ds
i#] 7]
+2f§:/ V(Y5 (5))dIWi(s +2a§j/ AVI(Y(
1#] i#]

where we have used for the Ito integral the definition of Y;; and

Z/ vV — XV dw; — Z/ vV — X dw;
4,j=1 i,j=1

1#£] i#£]

_2Z/VV’7 X0 — x Nmydw;,

i,)=1

]
due to anti-symmetry of VV.
The definition of g and Jy, the fact that the difference V"(Y;;(t)) — V" (Y;;(0)) vanishes for
i =j (since Y“(t) =0 for all ¢ > 0), and formulation (4.44) imply that

= 3 3 (VI (0) — VI(Y5(0))) = 30 D (90Ki5(6) — 9(X35(0))
iF#] i#]
=5 / TVI(Yig(s) - (e * TVD(X () ds
i#]
2\/%2/ VV(Yij(s))dWi(s +22/ AV(Y4(
1#£] i#]
It follows from (4.36) that N1 Zjvzl VV1(Yi;) = (uny * VV")(XiN’n) and hence,
N
-x > [ Vg TV ) s (4.46)
2\/%

Z/ (v TV (X7 () AW (s)

“ZN: (N AV (X - AV”
N
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L? norm)

Note that we have written the sum over ¢ # j as the sums over ¢ and j minus the sum of the
diagonal ¢ = j. In the sum over i = j, we need to evaluate VV"(Y;;(s)) = VV"(0), which
vanishes due to anti-symmetry of VV". However, the expression AV"(Y;;(s)) = AV"(0)
does generally not vanish, explaining the last term.

Step 2: Reformulation of Jo. Since Z" is symmetric, we infer from Lemma 4.10 that

lg" (D172 = (27 % a"(t), 27« @'(t)) = (@"(t), 2"« Z" + a(t)) = (@"(t), V" @"(1)).

Thus, considering V" @ as a test function in the weak formulation of equation (4.5) for
u'l,

t
lg" ()72 = (a"(0), V" % @"(0)) + / (@", V" Opu)ds
0
t t
+ a/ (Au", V' xul)ds — KJ/ (Vs a" div(a"VVT xa'))ds,
0 0
and, after integrating by parts in the third term on the right-hand side,

t
o = "2 — lg"(0)]25 = / (@, V7 % Oy ds (4.47)
0
t t
+ 0/ (@ Vs« Auyds — /4,/ (Vs u", div(a"VV"T xu'))ds.
0 0

Step 3: Reformulation of J3. We determine J3 by first calculating the mixed term
), g7(8)) = (nn(t) % 27,07 5 Z7) = (g (8), 27 % Z7 5 (1))

— (v (1) V7 5 (1)) = %ZV" @, X2(1)),
=1

where we have again used Lemma 4.10 and the symmetry of Z7. By It6’s lemma applied
to every summand V' % @ (¢, X" (£)), as in (4.45),

9 N

Jy == D0 (Ve X (1) = Va0, X.V(0))
2 N
=N Z/O [0V ) + 5(VVT 5 0" (VVT 5 iy )
=1

242
+ oAV 5 a7 (s, XV (s))ds — 22

Z/ YV @ (s, XV (s))dWi(s).

Since we have a factor 2 in front of the time derivative, 0,(V" x u") = V" x 9;u"!, inserting
equation (4.5) for u” yields

t t
2 [ BV a") (s, XV (s))ds = / V7 8y (s, X, (s))ds
0 0
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4 Quantitative convergence result for a diffusion model with aggregation

t
+ / [oV7 5 AT (s, XN(5)) — kVV 5 (@IVV7 5 @(s, X (5))) ] ds,
0

which allows us to write J3 as
1N
_ =~ N.n
Jg = N ;—1 /0 VT 0" (s, X; " (s))ds (4.48)

N
- ;Z/ [oV" « Aﬂ"(s,XiN’"(s)) — kKVV % (@"VVT % 0 (s, va’n(s)))}ds

- — Z/ VVTsa) - (VVT 5 pny) + oAV @] (S,XiN’n(S))dS

2\/ 20

Z/ YV s (s, XV (s))dWi(s).

We combine estimates (4.46)—(4.48) to find from (4.44) for Jy, Jo, and J3 that
[IFRRES )( iz = 17 = gM(O)]72 = (i + -+ + Ko)(t), where (4.49)

20t
AV(0)ds = — 2L AV(0
/ o= -7 A0,

= % zzj [ (2w = AV + (@0, (V7))
— 3AVT % @"(s, X,V (s)))ds,
Ks(t) = /:(ﬁ"(s),vn x Opu'l(s))ds — — Z/ Vs 0pa" (s, X "(s))ds,
Ky(t) = —n/tﬂ/n s u'l, div(a"VVTxa"))ds
/@O Nt
+ N Z/o VVTx (u"VV % ﬂ")(s,XiN’"(s))ds,

N
2K
Ko(t) = 5 30 [ (V7 iyl = (V7 27) - (VW ) (KL (5) s,
=1

N
V8
Ko(t) = 57 [ 9V G = )5 () AW,
N i=1 70 ’
In the next subsection, we rewrite Ko, ..., K5 and directly estimate K; and Kg at the end.

2. Second Reformulation. We reformulate the terms Ko, ..., K5 in (4.49) in such a way
that some terms can be combined or cancel. We start with K»(t). Using (4.36), we write

t
Ks(t) = 20/0 ((np(s), AV s (uny — @")(s))ds
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L? norm)

+ 0/ (@ — pny)(s), AV« @"(s))ds.
0

Because of VT = Z" x Z" and Lemma 4.10, the first term in Ky becomes

¢ ¢
20/ </LN77], AV x (N, — ﬂ”)>ds = 20/ <,LLN777 %« 2", ANZ" * (N, — ﬂ”)>ds
0 0

t t
_p / AN~ gM)ds = —20 / (V£ (N~ gh)ds.
0 0

In a similar way, the second term of K (t) can be written as

t t
O'/ (W — pn gy, AV a")ds = —0/ (V(g" — V1), VgTds.
0 0
This shows that
t t
Ks(t) = —20/0 (VN1 — gM), v Nds + a/o (V (N1 — g"), VgT)ds.

Next, we consider K3(t). Using the definition V7 = Z" x Z" property (4.35), Lemma 4.10,
and equation (4.5), we infer that

t t
Ks(t) = / (", Z" % Z" x Oyu)ds — / (N, 2" % Z7 % Oyu")ds
0 0
t t
= / <(ﬂn - //“Nﬂ?) * va AL 8tan>d5 = / <g77 - fN’n7 Z" % 8tﬂn>d8
0 0
t t
= a/ (g" — fNn 2 % Aa")ds — Ii/ (g" — N Z0 s div(@"V VT x a"))ds
0 0

t t
= U/ (V{7 —g"),Vg")ds — KJ/ (V275 (fN1 — g, @V % @) ds,
0 0

where we integrated by parts in the last step. The first term on the right-hand side is the
same as the last term in Ks(t), which shows

t
Ka(t) + Ka(t) = 20 /0 (VN = g, V(N gn)ds
- Ii/t (VZ" % (FN — gM), @™V a)ds. (4.50)
0

We turn to K4(t). Using the symmetry of Z"7 and Lemma 4.10 again, the first term becomes
—k (VT @ div(a"VVT s a')) = —k(Z"« Z" x u", div(a"V Z" x "))
= —k(Z"xu", Z" % div(a"VVT s u")) = —k(g",VZT % (a"VV" % u")).

For the second term in Ky4(t), we take into account (4.35):

N N
1 — — N,?’] _ 1 — .l Nﬂ?
N i; VVTs5 (@"VVT«a™)(X; ") = N ;:1 2"« NZ"x (u"VVTxa) (X
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4 Quantitative convergence result for a diffusion model with aggregation

N
1
=~ Z/ ZN(x — XZ-N’77)VZ77 x (@'VZ"* u")(z)dz
i=1 R

— (g * 27,V 275 (@IVVT @) = (N V20 % @IV« al)).

It follows from the antisymmetry of VZ" that
Ka(t) = 5 /O N g1 20 s (@Y ) ds
S—— /Ot<vz77 s (fNI— g™, @'V s @")ds,
which equals the second term of K3(t). Hence, by (4.50)
Ko (t) + K3(t) + Ku(t) = =20 Ot (VN7 =g, V(¥ —g"))ds
— 2k /Ot (VZT % (fN1 — g"), a"V VT % @) ds. (4.51)

Finally, we consider K5(t). We use VV" = Z" % VZ", the definitions of fV and ¢", as
well as (4.35):

N ot
2
Ks(t) = ﬁ“ > / (VV 5 i) (X - (27 5V 27 5 (v (X07) — @?(X]V7))) ds
i=1"0
2K Nt
=S [TV )N (27 D) - () ds
=170
t
= 2/1/ <,uN,,7, (VV" % uny) - (27 V(fN’?7 — g”))>ds.
0
We add the expressions for Ko, ..., Ks:
t
(ot o4 Ka)lt) = =20 [ (VY= g, W(F50 - g7))ds (452)
0
t
— 2/1/ (VZ7 « (fNT— gM), a"vVV x a)ds
0

t
" 2”/0 (s (VYT ) - (V27 (fY7 = 7)) )ds.

We rewrite the second term on the right-hand side by adding and subtracting some terms
in the second argument of the dual bracket,

a"VVT sl = (@ — pn ) VVT 50" 4 pun y VVT 5 (U7 = pn ) + pngVVT x iy (4.53)

Then the last integral in (4.52) cancels due to the last expression of (4.53) and, because of
VV s (W — pn ) = V2% Z7% (0" — puny,) = VZ7* (g7 — fN7), we see that

¢
— 2/@/ <VZ’7 * (fN’77 —g"),(@" = puny)VVT 0@ 4+ uy , VVT 5 (0" — MN,n)>d5
0
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L? norm)

o /ot (@ = g, (VVT 5 @7) - (V275 (fN7 = g)))ds

t
+ 2&/ <[LN77], |V Z" (fN’” — g")]2>ds,
0

and end up with
(Ka+ -+ Ks)(t) = —20/ IV — g)[2ads
— 2K /Ot (A" = Ny, (VVT @) - (VZ7 5 (FN — g")))ds
+ 2k /Ot (N, [V Z7 5 (fN1 — g )ds.

In the repulsive case kK = —1, the last term is nonpositive and can be not only discarded but
also used in order to absorb other terms, see [90]. However, in the attractive case k = 1,
we need to estimate this expression, which complicates the proof considerably.

We insert the previous formulation for Ks + - -- + K5 into (4.49) and take the supremum
over 0 < t < T and then the expectation:

T
B( w107 = )(013) + 208 [ V(Y g7)(s) ads (4.54)

0<t<

< | - ")) + B sup K (t) + Ko(t)]) + L(T) + M(T),
o<t<T

where

L(T) = 2/£IE< sup /t <,uN,,, —al (VVTxa) - (VZ" x (fN’" — g”))>ds>, (4.55)

0<t<T JO

t
M(T) = Mﬁ( sup / (N, [V Z7 % (fN — g”)|2>ds>. (4.56)
o<t<T JO

The term K () can be estimated directly by using (4.37):

Ki(t) = —@Avn( 0) < C(T)NPUE+2)~1, (4.57)

To estimate Kg(t), we use the Burkholder-Davis—Gundy inequality and Jensen’s inequality:

E( sup [Ko(t)]) < CE((Kg)}?) < C(E(K)r)"/2
o<t<T

where (Kg)7 is the quadratic variation process of Kg at time 7' > 0. Since for different
particles, the Brownian motions W; are independent, the quadratic variation becomes

1/2
(E(Kq)7)"/? = < ZE / YV (v (5. X (s >>—a”<s,XfV’"<s>>)!2d5>
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4 Quantitative convergence result for a diffusion model with aggregation

o 1/2
— (%VE/O <HN,77(8)7 IVVT s (N, — ﬂ")(s)]2>ds)

i . 1/2
:GVE / <MN,n<s>,wz"*<fN’"—g”><S>‘2>dS> |

We infer from Young’s inequality, definition (4.56) of M (¢), and |k| = 1 that for any § > 0
small

C(o,6 T C(o,6
E( sup \Kﬁ(m) < (7\7) +6IE/ (i [V 27 5 (FY1 — gM)2)ds < (;) 48| M(T)).
0

o<t<T
(4.58)
It remains to estimate L(7") and M (T"). We start with the estimate of M (T") before turning
to the slightly easier (and similar) calculation of L(T).

3. Estimation of M (T). Before we start with estimates for M(7T"), which contain the
main novelty of our method, we want to remark that the following calculations hold in both
cases k = +1. However — as mentioned before — by using the negative sign of M (7T') in case
k = —1, this tedious estimate is not necessary (see [90]). Indeed the following calculations
rely on smallness of ||u"(t)||r in comparison to the diffusion parameter o, which is not
needed for K = —1.

By adding and subtracting ", we use || = 1 and write M < M; + My, where

t
Ml(T) = 2E< sup / <MN,7] - ﬂn: ‘VZW * (me - gn)’2>d8>,
0<t<T JO

My(T) = 2E< sup /t (", |V Z7 s (fN1 — g”)|2>ds>.

0<t<T JO

We infer from Young’s convolution inequality and || Z"|;1 = 1 that
2 [ N 2
My(T) < QHU"HLoo(o,T;Loo(Rd))HZ"HLI/0 IV = gM)72ds (4.59)

t
<% / IV (¥ — g7)|2ads,
0

if [|@"| oo (0,750 (Rey) < 6, where ¢ > 0 is some arbitrary number. This smallness condition
is possible, due to Theorem 4.4, if the initial datum is small enough. The idea is to absorb
the right-hand side of (4.59) by the left-hand side of (4.54), which requires that § < o.
The estimate of M is more involved, and we split this expression as My < My1+ Mo+ M3
by adding and subtracting suitable expressions, where

t
M11=2E< sup / <Z”*<uN,n—uN,n>,|V<fN’”g”>|2>ds>, (4.60)
0<t<T JO

t
Mip — zE( sup / (27 (i, — A7), [V (FN g">12>ds),
0<t<T JO
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L? norm)

t
Mz = 2E< sup / (<,UN,77 —a,|VZ" % (fNﬂ? _ gn|2>
0<t<T JO

(2 (g = DIV ) s ).

where Ty, (t) = Z «) denotes the empirical measure of the intermediate sys-
tem (4.6).

The term M is estimated by the mean-field assumption (4.16), while M3 is treated by
the law-of-large-numbers estimate of Lemma 4.2. The last term Mj3 can be seen as an
error term, whose estimation is delicate and which needs a very careful analysis.

Step 1. Estimation of My, (Mean-field estimate). To apply the mean-field result in prob-
ability (4.16), which we assumed in Theorem 4.1, we introduce the set

Calt) :== {w €eQ: _max \XiN’n(t) - X (1) > N_a}, (4.61)

where a € (B(d + 3),1/2 — B(d + 1)). By (4.16), for any v > 0 and T > 0, there exists
C(v,T) > 0 such that

sup P(Co(t)) < C(v,T)N. (4.62)
0<t<T

The idea is to split © into the set C,(s) and its complement C¢(s) with s € (0,¢) and to
estimate Mj1 on these two sets separately. For this, we write M1, < Mi11 + Mi12, where

¢
M1 = 2E< sup / (Z" % (N — ANm)s 11(304(5)’V(f]\]’77 - g”)|2>ds),
0<t<T Jo

¢
WP 2E< sup / (Z" % (N — BNy ﬂca(s)w(fN’n - gn)|2>d3>-
0<t<T Jo

Going back to the particle formulation and using \XZ-N’"(S) — X/ (s)] < N~ on C%(s) as
well as [|[VZ7|| 0 < CNAEHY from (4.37), we find that

My12(T)

§2E(0235T/< Z\Z" — Z"(x — ?)!]lc;;(s),IV(fN’”—9’7)!2>d8>
<2HvznuLm—ZE / (XN(5) — 0(8) Les (. [TV — g7)(5)P)dls
T
< ONAEHD-og / IV — g7)(s)|2ads < OE / V(Y1 — gn)(s) |2ads,
0 0

choosing N sufficiently large such that CNA@+D=a < § This is possible since

a>fB(d+1).

145



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4 Quantitative convergence result for a diffusion model with aggregation

On the remaining set M1, we use || 27| e < CNP,

sup sup [|[V(fV7 — g")(s)]|2. < CNPEHD
wEN 0<s<T

from (4.39), and estimate (4.62). Fubini’s theorem then gives

N T
1
M (T) < 4|27 pe— ) E N _ gn 2/11 d
m(T) <4125 3 (OEBET”W P | Teeds

<ATN sup [ sup V(Y7 = g7)(5)|32P(Cals)|
0<s<T “wen

< C(T)NﬁdNB(d—i-Q)N—’Y — C(T>N2,B(d+1)—»y < C(T)N_l/Q_a,

where the last step follows after choosing v > 1/2 4 25(d 4+ 1) and where € > 0 denotes
here and in the following a small number with values changing in the proof (here, we can
choose ¢ := vy —1/2—28(d+ 1) > 0). We conclude that

T
M) < CON 4 68 [ V(= ()]s, (4.63)
0
for N sufficiently large and § > 0 arbitrary small.
Step 2. Estimation of Mia (Law-of-large numbers). The term Mo is treated by the law-

of-large-numbers estimate of Lemma 4.2. For this, we introduce for fixed § > 0 (will be
chosen later)

1 & -
5(S, )  =<qwel: |— T —X;(s))— *u'(s,xr))l > , .
Dafsn)i= {w € s | 32w = XU(e) - (27 xasa))| =) (ao)
i=1

and we split €2 into the sets Ds(s,-) and D§(s, ). Then Mo < Mioy + Migo, where

T 1 N o
Min() =28 [ (|5 327 = K16 = (205 00)(0)| g [T = )6 s,
=1

T 1 N
Misa() =28 [ (|5 5029 = X6 = (274 6) | Lo [T = )0 .
0 i=1
In Ds(s, )¢, we have [IN“L SN Z01(« = X[(5)) — (27 % @")(s,+)| < & and therefore,

T
Mo (T) < 251@/0 V(N — gM)(s)]7 2ds.

For the second term Mjag, we have to be careful with the z-dependence of the set Ds(s, x).
First, we use || Z7 * @"||po < || 27|/ < CNP? from (4.37) and Fubini’s theorem

T
M (T) < 2IIZ’7||L<><>1E/0 (Lpy(s,95 V(YT = g")(s)*)ds (4.65)
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L? norm)

T
< oN# /0 (B(L,(s,) 519 V(77 = g)(s) ) ds
we

T
< ON# / sup E(Lp (s.00)l| sup V(N7 — g7)(s)[2ds
0 xeRd weN

< C(T)NPINPUT2) sup sup P(Ds(s, 2)),
0<s<T zcRd

where we used (analogous to (4.39)) that

N

1 N N

12 S /Rd N2 > f}lelngn(Xi (s) = X5 () + y)V 2 (y)|dy
ij=1

<|VZ| 1|V 27|12 < CNBE+2) (4.66)

| sup V£
we

in the last step.
Now, we apply for fixed x € R? Lemma 4.2 with ¢,(y) = Z"(x — y), § = 0, and m > 0:

P(Ds(s,x)) < C(8)l|¢yll7E N~ < C(S)N*¥IN—™ = C(5)N~! =200,

where we note that the right-hand side now depends on ¢ > 0 if we choose Ds(s, x) depend-
ing on 0. This is slightly different than in Lemma 4.2, but does not change the computation
of the proof.

By assumption, § < 1/2d such that 1 — 23d > 0. Thus, if we choose m large enough,

Mipa(T) < C(T)N?PUHD=U20m < () N—1/27,

Summarizing the estimates for My91 and M99, we infer that
T
Mao(T) = CDN /24 258 [ [9(£%7 = g7)(5) s, (467)
0
which finishes Step 2.

Step 3. Estimation of M3 (error estimate). We turn to the error term M;3(T") defined in
(4.60), which is the last and most technical one to estimate for M (T"). We add and subtract
an expression involving Z" x (MN,n — ') to the error term M3, giving M3 < M3y + Misg,
where

¢
Mz = 2E< sup / <<MN,77 —a, |V 27 (fN - Qn)’2> (4.68)
0<t<T.Jo

(7 g = ), )2 (£ ) ) s
t
Misa =28 sup [ (274 Qo = ), 9050 = )92 (Y- ) (469)
0<t<T JO

—(Z" % (uny — @), V(N — g")|2>>ds>.
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4 Quantitative convergence result for a diffusion model with aggregation

We start with M3, which is estimated in a similar way as in [90], but we use the estimates
(4.16) (Assumption (C1)) and Lemma 4.2 instead of a Taylor expansion as in [90], where
the calculations for one space-dimension is done in case k = —1.

We split Mi3; into several terms and the technical proof into several sub-steps. We abbre-
viate w™" := Z" % (fNm — g"). The mean-value theorem for Vw™" then gives

0
V¥ (z) = Vo (z — y) = D*w™N (- + (=1 + c*)y) -y = / D™ (4 ry)dr -y,
-1

for some c* € (0,1), where D?w¥"" = (31'2ij’77)ng1 denotes the Hessian matrix of w!¥+7.
The symmetry of Z" allows us to apply Lemma 4.10:

t
Mi31(T) = 2E< sup / (g =", |27V (FY — g")?
0<t<T JO

— 2" % (V (N1 — g7 - VwN’")>ds>

=2E( sup ! [N — 1—/7’ Z”(y)V(fN’" _ g'n)(. _ y)dy . vam(.)
(o o= f,

0<t<T

— [ 20y V(T =g (- —y) - V(- —y)dy )ds
/. )
—oa( s [ (g, [ 29— g

o<t<r

X {/_01 D?w™(. 4 ry)dr}ydy>ds>,

where we used the mean-value theorem in the last step. We expand 8%wN 1 by adding and
subtracting the empirical measure 7y, of the intermediate system (4.6):
81-2ij’” = 8%-V77 * (uny —u'l) = 8i2jV’7 * (UNy — BN y) + 8i2jV77 * (uny —a'l).
Then Mi3; < P + P», where
t
) =28( sw [y - [ 26)904 ()
0 R

0<t<T

X { /O DV (. — vy (- + Ty)dr}ydy>ds),

-1

) =28 sup [ (v —at [ 20V T- -0 @0

0<t<T
0
X { / D2V « (B —uh)(-+ ry)dr}ydy>ds>.
-1

Step 3.1: Estimation of Pi. We use the mean-field estimate in probability (4.16), which is
assumed to hold for this theorem. Since 4" is nonnegative by Theorem 4.4 and U"(zx) :=
Z"(z)|x| is symmetric, by Lemma 4.10

t
PI(T) < 2E< sup. [ 1DV (e — o
o<t<T JO
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L? norm)

X (g +a" [ U )|V = g") (- — y)|dy )ds (4.71)
(vt [ )a)

t
< 2E(Osng D2V < Gy = i Dl (U7 G + 0, (9157~ g">\>ds)
<t<

T
= 2E/o ID2V7 5 (v — i) 2o IV (N = g2
% (v * Ul g2 + @ % U] 2) ds,

and the last step follows from the Cauchy—Schwarz inequality. We claim that the con-
volutions with U” are bounded by CN?(@=2)  Indeed, by (4.38) and Cauchy-Schwarz
(CN 2)? < NN a? for any z; € R)

N 2
v UT)(s)IIZ2 = /R ) (}V g 27w = X;(s)) | - Xi“"<s>|) da (4.72)

< / 2(2)%)de < CNPE-2),
R4
I 5 UMY < 1071 e,y N0 < N2,

Inserting these estimates into (4.71) and splitting €2 into C,(s) and C5(s) (defined in (4.61))
yields P; < Pi1 + Pia, where

T
P(T) = ON““VQE( /0 Lex () [DV7 % iy — i) 20w [ V(7 — g">||des),

T
PialT) = cNﬁ<d-2>/2E< /0 Lo D2V 5 (i — T loe [ (£ gn>||des).

Step 3.1a: Estimation of P11. We compute

HDQV77 * (N — ENJ])HLOO = ess sup
z€R4

N
1
N Z D2V (x — Xl-N’n(s)) — D2V (zx — Y?(s))‘
i=1
| X
N7
< DAVl 7 D17 (5) = X (5)].
i=1

Together with D3V < CNP@H3) from (4.37), the definition of CS(s), and Young’s
inequality, this shows that

T
Py (T) < NP "oR / V(N7 = g (s) 2ds
0
t
< 5IE/ IV (fNn — g")(s)H%gds +C(s, T)Nﬁ(3d+4)—2a
0

t
< 6B / IV (Y — g1)(s) |22ds + C(6, T)N -2,
0
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4 Quantitative convergence result for a diffusion model with aggregation

if we choose o > 1/4 + 5(3d + 4)/2 which is equivalent to f(3d + 4) — 2a < —1/2. The
choice aw > 1/4 4+ 3(3d + 4)/2 is compatible with the assumptions of (4.16) since

—+§(3d+4)<a<%—ﬁ(d+1) (4.73)

is non-empty. This is guaranteed if (%d +3) < % which can be written as

1 1

_ , 4.74
10d+ 12 2(5d+6) (474)

8 <

Since we choose § in this way, there exists an a > 0, that fulfils (4.73), and we can apply
(4.16) and get for such an « that for any v > 0 and 7' > 0 there exists a constant C(v,T)
such that

P(Cal(s)) < C(3, TIN7, (4.75)
which helps us in the next estimate:

Step 3.1b: FEstimation of Pio. To estimate Pj, we apply the assumed convergence in
probability (4.16). The assumptions are satisfied since 1/4 + (3d +4)/2 < a < 1/2 —
B(d+ 1) is fulfilled. Therefore, because of P(Cy(s)) < C(v,T)N~7 for any v > 0, estimate
D2V e < CNPAH2) from (4.37), and (4.39), we can estimate by Fubini’s theorem

T
Pis(T) < ONPU-2/2 N8+ / Lo oIV (Y7 — g7)]]2ds
0

< C(T)N6(3d+2)/2Nﬂ(d+2)/2 sup P(Ca(s)) < C(%T)NQB(d-&-l)—'y < C(T)N_l/g_g’

0<s<T

where the last step follows if we choose 7 > 26(d + 1) 4+ 1/2. Collecting the estimates for
P11 and Pjo gives

PA(T) < CETIN 2+ 08 | IV - ) )l (4.76)

Step 3.2: Estimation of P,. We continue by estimating P»(7"), defined in (4.70). We add
and subtract N s giving Py < P51 4+ Pao, where

t
Py (T) = 2E<021§T/ <,UN77 — N> /Rd ZMy)V (N1 = gN) (- —y)
X D2V  ( Ny — ") (- + Ty)dr}ydy>ds),

0<t<T

X

{/
Pa() = 25 s <uNn [ ZGVET -y @
{/,

DZV" * (I, — ) (- + 7‘y)dr}ydy>ds>.
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L? norm)

Step 3.2a: Estimation of Pa;. Using (4.35), we write out the dual bracket, and add and
subtract a suitable expression in the second step:

/ Z/Rd Z1(y)V(fV — gy (X — y)
X { / D2V (Fiy, — @)X, + ry)dr}ydyds
-+ Z [ 2V - -y

X { / DV s (fiy,, — 0")(X7 + ry)dr}ydyds
1

< P11 (T) + Por2(T),

Py (T) < QE( sup
0<t<T

)

where
T
Py (T —QE/ 12/ 2" )|V (N = gD (X =) = V(N = g (X = )

0
/ D2V « (BN, — TL”)(XZ-N’?7 +ry)dr - y‘dyds,

r . N
o) =28 [ 53 [ 2|V - ) (X )

0
/ D2V x (fiy,, — @")(X]"" + ry) (4.78)

— D2V % (BN, — ") (X! + ry))dr . y‘dyds.

Splitting €2 again into the sets C,(s) and CS(s), defined in (4.61), the first term Ps1; can
be estimated as

T
Pant0) < 48 [ [ e, oIV ) D2V ¢ i — )= 2700 s
+2E(/ Z/ Lo (0 Z7()| V(YT — g (XN — ) TN — g0y (XD — )|

| [ 2 i 05 4 rypar y\dyds> — QUT) + Qa(T).
-1

For the first term, we estimate supweg supgeser V(YT — g")(s)||z < CNBUEFD by
using (4.39), sup,cq SUpg<ser D2V * Ty, — uh)(s)|lpe < CNPAUE+2) by using (4.37),
Jga Z(y)|yldy < CN—F from (4.38), and finally, we choose v > 23(d + 1) — 1/2:

Q.(T) < C(T)Nﬁ(d+1)+ﬁ(d+2)—ﬁ sup P(Ca(s))
0<s<T
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4 Quantitative convergence result for a diffusion model with aggregation

< C(T)N?PE+HD=7 < o(T)N /27, (4.79)
Next, we set

V' (y) = VN = g (G —y) = VN - g")(X — )

(2 (2

and add and subtract D*V"  (fiy, — ") (X + ry) to the integrand of Qo, leading to
Q2 < Q21 + Q22, where

T q N 0
Qu(T) = 28 /0 w2/ ﬂcg<s>2"<y>|w£“"<y>r' | OV i = )X+ 1)
i=1 -

- D2V77 * (ﬁN,n - an)(yy + Ty))d’l" : y‘dyd$7

0

T q N
QRn(T) = 2]E/ NZ/Rd Lee (52" ()| V2" (y)]
=1

0
X / (D*V7 « (B — a") (X! + ry)dr - y‘dyds.

-1

By definition (4.61) of C%(s), the estimate |[D3V"||po < CNA@+3)| the mean-value theorem
applied to D2V « (fiy,, — "), |[a"|| ;1 = 1 and recalling the definition U"(y) = Z"(y)|yl,
we have

TN B B
Q) < CE |1 55 [ e IV WD i — 0
x | XN — X |dyds

T
< ON—°E / (U (i + i)y [ (T — gD ID3V|| poodls
T
< C(T)NPED= ([l 5 U 12 + [y * U7 2) E /0 IV (N — g pads
t
< O(T)NH@+8)=a NB-2/2g / IV — g7)] 2,
0

where in the last step we used the bound (4.72), which is uniform in w € €, for the estimates
for pny, * U™ and u' + U". Hence, by Young’s inequality,

T
Q1) <G [ V(50— g7 Fads + O TINO 20 (4.80)
0
t
<GB [ V(Y g [fads + CTINV,
0

after choosing a > 1/4 + 3/2(3d + 4), which is equivalent to §(3d +4) — 2a < —1/2. This
choice of « is admissible, see (4.73).
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L? norm)

For the term (D22, we introduce the set
1 & _
o101 r9) = {w € 0|4 S DAVICKI(S) 4 vy = X))
i=1

— D2V % @) (s, X} (s) + ry)‘ > N_e}
={w e Q: DV x (ay, — a")(X](s) +ry)| > N},
which corresponds to Bé\;j)(s) with ¢, (z) = DV (2 + ry) in Lemma 4.2. As we integrate

in Q22 over CS(s), we can use max;—i, N \Xl-N’n(s) — X/ (s)| < N=®. Therefore, applying

the mean-value theorem to VZZN’" and using sup,cq supgcsp [ID2(FN7 — g")(s)|| L= <

CNAU2) sup,,cq supggor [[D*V7  (fiy,, — 07)(s)]| Lo < CNP@H2) which can be proved
similarly as (4.39), we find that

ol [T 1 &
Qu(t) < N 2B ( [0 e 3 [ 2700l
0 N = Jre
0
X /1 DV x (i, — 0" (X7 + 1) (Le, 7 (5) ) T 155<X?(5),y7r75))drdyds>

N T 0
<oy S [0 [ 2P (T (s) ., 5)drdyds
—Jo JriJ1
+ C(T)N—Oé-‘rﬁ(d-i-?)—ﬁ—e’

where we also used [pq Z7(y)|y|dy < CN~7 from (4.38) in the second term and Fubini’s
theorem in the first one. We deduce from Lemma 4.2 that for any m € N

P(Ey(X(s), y, 7, 5)) < C(m)HD2V’7H%@2N2’”(9*1/2)H < ON2mO=1/2+8(d+2)+1
where we note that the constant C' > 0 is independent of y,r and s. This leads to
Qaa(t) < O N —0+28(d+2)=5 N2m(0-1/2+(d+2)+1 | C’(T)Nﬁ(dﬂ)’o"e
To bound the above right-hand side by N~%/27¢, we need the following conditions on «
and 6:

(i) 0 <1/2 - 3(d+2): Then 0 — 1/2 4 (d + 2) is negative and we can choose m large
enough to obtain 2m(f —1/2+ B(d+2)) +1 < —1/2 — (B(2d + 1) — «). Note that
we choose m € N after choosing a.

(i) a+60>1/2+4 B(d+2): Then B(d+2) —a—0 < —1/2.

We need to ensure that both conditions are compatible with the conditions on « (imposted
in the estimation of Pj1, see (4.73)) and § (imposed in the theorem):

1 1 8 1
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4 Quantitative convergence result for a diffusion model with aggregation

We infer from (i), (ii), and o < 1/2 — B(d + 1) that
1
§+ﬁ(d+1)<a+9<1—6(2d+3).

This chain of inequalities is non-empty under the constraint 5 < 1/(6d 4+ 8). Choosing «
close to 1/4 + B(3d + 4)/2 and taking into account the smallness condition on /3, we can
always find an admissible value for § > 0. Hence, conditions (i) and (ii) can be fulfilled
under the given condition on .

We combine the inequality Qq2(T) < C(T)N~1/27¢ with estimate (4.80) for Qo1 and esti-
mate (4.79) for Qq:

T
Pout(T) = (Q1 + Qa1 + Qu0)(T) < C(T)N~V/>¢ 1 6E /0 IV (N — g)|2ads.  (4.81)

We turn to the term Pa12(T), defined in (4.78), and split © in Cy(s) and CS(s), defined in
(4.61). First, we observe the following two estimates: First, we obtain from the mean-value
theorem and Lemma 4.7:

_ _ N, _ o\
D>V s (fiy,, — @")(X; "+ ry) — D2V (i, — @")(X] + ry)]

1
< |XM(s) = X (s)| sup sup D3V (fiy,, — 0")]| s
weN 0<s<T
< ONPER| X (5) — X (s)).

This estimate is used on the set CS(s). Furthermore, we use on the set C,(s):

sup sup D2V x (fiy,, — @) (s)| L < CNAH2),
weN 0<s<T

Recalling the definition U"(y) = Z"(y)|y|, this yields
T
Po1a(T) < CNﬂ(dH)E(/ Lc,()(U" HN V(N — gn)|>d5>
0

T
+ CN,@(d+3)—OzE</ 1C5(8)<U77 * EN,?W IV(fNW — g")|>ds>
0

T
< ONPURR([UT % Ty, | 2|V (£ —g”)HLz/O L, (s)ds)

T
n GNWHME(HU" “Tgliz [ 190 - g’wnmds).
0

In view of [[U" iy, |2 < CNPUE=2/2 and | V(N1 — g")|| 2 < CNBE+2)/2 yniformly in
[0,7] and €2 (see (4.72) and (4.39), respectively) and using the Cauchy-Schwarz inequality,

Payp(T) < C(T)NPEFHHA22HBEEI2 gup P(Cy(s))
0<s<T

T
. CNB(d+3)+ﬂ(d—2)/2_aE/0 IV (N — g p2ds
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L? norm)

T
< CONPID T 4 CENSD 2 5 [ V(50— g7) B ads
0
T
< CON 468 [ V(- gn)fads,
0

choosing as before a > 1/4 + 5(3d + 4)/2 and ~ > 0 sufficiently large.
We combine the estimates for Pa;; and Pojo (see (4.81)):

T
Pur(T) < OV 420 [ V(£ g7)|fads, (4.82)
0

which finishes Step 3.2a.

Step 3.2b: Estimation of Py. To estimate Pag, defined in (4.77), we split € into the sets
Fo(-,y,r,s) and F§(-,y,r,s), where

— 2
Fo(x,y,r,8) = {w eN: ‘NZD V(x4 ry — X, (s))
— (D2 *ﬂn)(s,x+ry)‘ > N_e}.
= {w c0: ‘DQV” * (HNJ7 —u')(x +7‘y)‘ > Ne}
Then Psy < Pooy + Pooo, where

Py (T) = 2E( sup <MN17 —a" /]Rd Z"(y)V (N = g") (- —y)

0<t<T

X { D2V (BN, —a") (- + ry)]l;g(,,yms)dr}ydy>ds>,

Pya(T) =2E| sup <MNn a', /d Z"(y)V (N — g") (- —y)
R

0<t<T
X { /1 D2V « (BN, —a") (- + ry)]lfg(,yyms)dr}ydy>ds).
We estimate similarly as before, using the definition of Fg(-,y,r,s) and U"(y) = Z"(y)|y|:
Poan(r) < N8 [ (i, v, [ 20V - lay)as 0ss)
< CON™’E /OT (I Byl + 1075 @ 22) [V (FY7 = g7l 2ds
< ONOU270 /O I = g ads

T
< C(8, T)NPE=2=20 | 5IE/O IV (7 = g (s)lI72ds,
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4 Quantitative convergence result for a diffusion model with aggregation

where we used (4.72) and Young’s inequality. Furthermore, recalling that [[D*V" x (fiy ,, —
a")|| g < CNPAE+2) yniformly in [0, 7] and Q (see Lemma 4.7),

T
Pan®) < 28 [ (i 40, [ 2GS - )= )

0
X / D2V « (ﬁN’77 —am(-+ ry)]lfe(.,y’rvs)dr . y‘dy>d5

-1

T
<o [ <uN,n+u", [ 219 = g )
0 R4

0
X /1 ]l;e(.’y,r’s)drdy>ds.

We apply Fubini’s theorem and use the definition of ziy , as well as the uniform bound
V(N1 — gM)||pee < CONPUEHD from (4.39). Writing out the dual bracket then leads with
ul >0 to

T
Py (T) < CNPHIE (/ / Z/ Z' WYz, & (5)9.m,5) (4.84)

X [T(FN — g\ (X (s) — y>\dydsda~)

0 T
+0Nﬁ(d+2)E< / / / a"(z) / Z" YL Fy (2 y.rs)
-1Jo JRrd R4

X V(N1 — gy — y)Idydxdsdr>
0 T 1 N
<o [ [T S 1) R (X))
-1J0 Ni:l

0 T
+ ONBEiE) / / / @ (z) / Z(3y) [y |P(Fo(,, 7, 5))dydzdsdr.
-1Jo JR R4

Again, we wish to apply Lemma 4.2 to estimate the probability of Fy(-,y,r,s). For fixed
x € RY, the set Fy(z,vy,r,s) corresponds to Aé\j% (s) with ¢,,(2) = D2V (x + ry — z), while
Fo(X!(s),y,r,s)) corresponds to Bé\fd)n with 1, (z) = D?*V"(z + ry). By Lemma 4.2, for
any m € N, there exists C'(m,T) > 0 such that

P(Fo(X](5),y,7,8)) < ID2V7(- + ry)||2 N2m(6-1/2)+1

N2Zm(6=1/24+5(d+2))+1

)

N 94 85 S

)
)
DV (z + 7y — )| 72 N2 012
)

C(m

<C(m
P(Fo(z,y,r,s)) < C(m,
< C(m N2m(071/2+,3(d+2))'

)

Then, in view of (4.38) and ||u"(s)||;1 = 1, we deduce from (4.84) that

P222 (T) S C(m, T)Nﬁ(2d+3) N—ﬁNQm(9—1/2+,3(d+2))+1
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L? norm)

Together with estimate (4.83) for Paa;, we obtain
P22 (T) S C(m, T)NQm(G—1/2)+ﬂ(d+2))+2ﬂ(d+1)+1

T
L O(5, T)NPE2-2 | 5p / IV (¥ — g7)|2ads.
0

To finish the estimate for Py, we need to choose 6 for the set Fy(-,y,r,s): We choose 6 in
this step such that
1/448(d—-2)/2< 0 <1/2—p(d+2).

This is possible since 1/4+5(d—2)/2 < 1/2—[(d+2) is equivalent to # < 1/(6d+4), and this
is fulfilled by our assumptions. With this choice, (d—2)—20 < —1/2 and 0—1/2+5(d+2) is
negative such that, for sufficiently large m € N, 2m(0—1/2+5(d+2))+28(d+1)+1 < —1/2.
We infer that

T
Pu(T) £ COTINTY2 45 [ 909 = ) ads,
0
which finishes Step 3.2b.

It remains to add estimate (4.82) for P51 and the previous estimate to conclude that
T
Py(T) = P (T) + Ppa(T) < C(8,T)N~V*75 + 35E/ IV (Y — g™ 72ds,
0

this finishes Step 3.2.
Conclusion of Step 3.1 and 3.2. Combining estimate (4.76) for P; and the previous estimate
for P», we obtain for Mjs;, defined in (4.68):

T
Mi31(T) = P(T) + Py(T) < C(6, T)N~V/?7¢ + 46]E/0 IV (N7 —gM)|2.ds.  (4.85)

Step 3.3. Estimation of Mjsa. We consider the term Mi32(T'), defined in (4.69). The
estimation of this expression is similar to the previous steps 3.1 and 3.2, but the estimates
are simpler. First, we add and subtract ﬁNm(s) in Mi3o to split the expression in a mean-
field part and a law-of-large-numbers part. Then Mj3o < Ry + Ro, where

t
ro(r) =28 sup [ (27 (g =T VN = g
0<t<T JO

(V276 (£9 = ) = T = )i ).
t
ra(r) = 28 s [ (21 i~ .~ g7
0<t<T Jo
x (V275 (f¥1 — g) = V(N — g">)>ds)-
We start with R;. By Young’s convolution inequality,
IV 275 (F57 = gz < N2 IV = g2 = V(Y = g7z, (4.86)
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4 Quantitative convergence result for a diffusion model with aggregation

and splitting © into C,(s) and CS(s) (see (4.61) for the definition), we arrive at
T
Ry(T) < 4]E</0 127 5 (v = B ) 2o IV (P = g 122 (L o) + HCg(s))d8>
T 1
< 4]E</ IVZ7 e D 1K (s) = XTIV (N7 — g")||%2]1Cg(s)d8>
0 NI

T
+4sup sup (|27 (unag — Tin ) L= [V (7 —977)||%2)E/ le, (s)ds;,
weN 0<s<T 0

where we used in the last step the mean-value theorem in the first integral on the right-hand
side. Tt follows from [|[VZ7||p < CNAUEHD | (4.39), and sup,,cq Supgeser |27 * (iny —
ﬁN,?’l)(S)HLOO < CNBd that

T
R(T) £ CONPDg [ [9(% = )]s + CONPED sup PC(s),
0 0<s<T

We choose « such that the assumptions of (4.16) are fulfilled. This implies that oo > 5(d+1).
Therefore, we have C(T)NP(@+2)-« < § for sufficiently large N € N. Moreover, by (4.16),
P(Ca(s)) < CN~7 for any v > 0. Choosing v sufficiently large then leads to

T
R\(T) < C(T)N~'/2== 4 5IE/ [V (N1 — gM)|3,ds. (4.87)
0
For Ry(T), we need the law-of-large-numbers estimate. We split €2 into the sets Ds(s, x)

and Dj§(s, r), where we recall from definition (4.64) that Ds(s,z) = {w € Q1 [Z7 x (fiy,, —
a)(s,x)| > 6}. We write Ry = Ro1 + Raa, where

t
Fn(T) = 2E< sup / (275 (T — 0" g (s, VI = g")
0<t<T JO

< (275 V(FN — gy — V(N — gn>>>ds),

t
R (T) = 2E< sup / (Z7 5 (i g = @)y (5,0, VYT = g7)
0<t<T Jo
2T ) T )i )
We infer from the definition of the set D§(s,-) and (4.86) that

T
Rot(T) < 40F / IV — gn)|2ds. (4.88)
0
The second term Roo(T) is estimated similarly as Mjo2(7) in Step 2 of the estimation of
M (T) (Law-of-large numbers estimate), see (4.65). We use || Z"«u"|| oo < ||@"]| 11 ]| Z"]| e <
CNP?? and Fubini’s theorem:
T
Raa(T) < ON [ [ sup V(£ = ") sup P(Dy(s,))ds.
weN

0 zeRd
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L? norm)

Using Lemma 4.2 with § = 0 and v, (y) = Z"(x — y), for any m € N

sup sup P(Ds(s,z)) < C(m)||Z"(x — .)H%@o -m o< C(m)N—m(l—Q,Bd).
0<5<TSCERd

Using (4.66), we find that Ryo(T) < C(T)NPINA+2) N—m(1-28d) — ¢ N2B(d+1)—m(1-25d)
Since 1 — 28d < 0, we can choose m sufficiently large to obtain Rgy(T) < CN—1/27¢,
Together with estimate (4.88) of Ray, it follows that

T
Ro(T) < Ron(T) + Raa(T) < ON™V2 5 4 458 [ [0 — 7).
0
In view of estimate (4.87) of Ry, this finishes our estimate for My3s:
T
Maa(T) < Ra(T) + Ra(T) < ON™V25 153 [ V(¥ - g7)[3.ds.
0
Finally, we conclude from (4.85) that
T
My3(T) < M1 (T) + Miso(T) < CN7V27¢ 4 96K / V(N —gM)|3ads.  (4.89)
0

Finishing the estimate of M(T'). We collect estimate (4.63) of M1, estimate (4.67) of Mo
and estimate (4.89) of Mjs:

T
My(T) < (Myy + My + Mys)(T) < CN7V275 4 125[E/ IV (N1 — g")[|72ds.
0
Adding this inequality to estimate (4.59) for Ms, we conclude that
T
M(T) < My(T) 4+ My(T) < CN~Y?7¢ 4 145 / [V (N1 — gM)||2,ds. (4.90)
0

4. Estimation of L(T'). An expression like L(7T'), defined in (4.55), has been estimated
in [90] using a Taylor approximation and Fourier estimates in one space dimension. This
approach is feasible also in higher space dimensions but it would become very tedious in
notation. Additionally, we could reduce the assumption on the potential V" in comparison
to [90] since we do not need any assumption on the Fourier transform of the potential.
Our idea is, as above, to split the integral over {2 in a mean-field part and a law-of-large-
numbers part.

We add and subtract the empirical measure iy, (s) of the intermediate problem (4.6) to
L(T), defined in (4.55). Then |L(T)| < Li(T) + L2(T), where

). (4.91)

Li(T) = QE( sup
0<t<T

/ (v = Ty (VY2 07) - (V275 (7 = g7)))ds

Ly(T) = 2E< sup
0<t<T

/ (T — @ (TVT 5 7) - (V27 % (51 — g)))ds
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4 Quantitative convergence result for a diffusion model with aggregation

The term L can be considered as the mean-field part, while Ls is the law-of-large-numbers
part.

Step 1. Estimation of L1. We start with Lq(7T") and add and subtract the term

(VV 5 @) (XN (V275 (N1 — g1)(X7)), leading to Ly(T) < Ly1(T) + L1a(T), where

_ ! - U Ny U] X
Ly (T) = 2E /0 = 2 (V) (s, X)) = (VY7 5 @) (5, X (5)))
i=1

X (V275 (f1 — g")) (s, X7 (5))|ds,

N

D (VT an)(s, X (s))

=1

X (V275 (PN = g")(s, X[(5)) = (V275 (Y7 = g")) (s, X7 (5)))

1

T
L1o(T) = 2E —
12(7T) /0 N

ds.

For L11(T), we split 2 for each time 0 < s < T into the sets C5(s) and C,(s), defined in
(4.61), use the definition of C¢(s) in the first term (leading to the factor N~%) and Lemma
4.2 in the second term (leading to the factor N=7 for any v > 0). Then, by the mean-value
theorem applied to VV" x 4",

1

L1 (T) < CN~Y| V" « D21177||L00E (Z7 % V(N — gM)(s, X7 (5))|ds

+ C(T)sup sup HZn*V(me—g Moo IV % V|| o010y sup P(Ca(s))-
weN 0<s<T 0<s<T

We infer from Young’s convolution inequality and Theorem 4.4 that for k = 1,2,
V75 DEa" || oo < ||V 12 |DFE?|| 1 < C, (4.92)

since H*(R%) «— W1*(R%). Moreover, by definition of By, and the symmetry of Z" > 0,
we have
N
1
N2
< (Fn (), 27 [V (FY = g")(8)]) = (27 * Fy (), [V (7 = ") (s)])
<N 2" fin )2V Y = g") ()] g2 < COINPYRV (N = g7)(s)]] 2
uniformly in s € [0,7], where we used (4.40) in the last step. Therefore, in view of the
uniform bound |V (N — g")||Le < CNPUEHD (see (4.39)) and Young’s inequality,

(Z" =V (f7 = gM)(5, X7 (5))| = (Anp(5), |27+ V(7 = g")(5)])

~.

T
Lu(T) < C(T)N~+B41°E / IV — 7)) 2ds
0

+C(T)N "V sup sup [|Z7]| 1 [V (fN" = g")||
weN 0<s<T

T
< C(T)N—a+,8d/2]E/ Hv(fN,n — g")||2ds + C(T)Nﬁ(d+1)_7
0
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L? norm)

T
< IR / IV (N — gM)|2.ds + C(T, §)N =254 1 o(T) NP,
0

Now, we choose a > 1/4 + 3d/2 (which is consistent with the assumptions made in (4.16))
and v > 0 sufficiently large to arrive at

T
Lu(T) < CT.ON 468 [ V(Y = )]s, (1.93)
0

For the term Li2(T"), we split Q again into C,(s) and C&(s) and we estimate similarly as
above. Using the mean-value theorem, estimate ||V % Vu'||fo < C from (4.92),

sup sup [ V275 (N — g7)(8)]| e < sup sup V(¥ - g)(s)1= < ONTD
weN 0<s<T weN 0<s<T

d+1)

due to Young’s convolution inequality and (4.39), as well as [|[VZ7|| 2 < CNPEHD/2 from

(4.37), we see that
T
Lia(T) € NV V0 pgrgoeuap [ D227 5 (£50 = 7)1
0
+ C(T)|| V"« vanHLoo(o,T;Loo(Rd))Nﬁ(dH)*”
T
: C(T)N_Q]E/ IVZ7| 2|V (fN = gM)|| pods + C(T)Nﬁ(d“)_V
0
T
< OE / IV (N7 — gM)|22ds + O(T, )N 208D o () NAED =,
0

Again, choosing a > 1/4 + (d + 1)/2 (which is a possible choice in (4.16)) and v > 0
sufficiently large, we infer that

Lia(T) < C(T)N~V*7¢ 4+ 6E /0 ' IV (N7 = g7 ds.
Together with estimate (4.93) for L11(t), we conclude that
Ly(T) = Lua(T) + Lua(T) < C(T)N/27% 4 261 /OT IV (N7 = g")|[72ds. (4.94)
Step 2. Estimation of La. The last step for estimating L(T') is to derive suitable estimates

for Lo(T) defined in (4.91). To simplify the presentation, we abuse the notation by using
an integral notation instead of the dual product in

/ ZNx —y)pny(y)VV(y — 2)dy = /
Rd

o ZNx —y)VVT(y — z)dpn 5 (y)

1 & _
= > 2 - X))VVIX] - 2).
=1

In this way, we can easier keep track of the variables. With this notation, we can re-write
the integrand of Lo by exploiting the symmetry of Z":

(i = 0 (V275 V(Y = g )TV )
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4 Quantitative convergence result for a diffusion model with aggregation

= <Z7l * (VVW * ﬂn(ﬁN,n - ,U'n))a v(me - g77)>
where in integral-notation
(27 (VVT 50Ty, — "), V(7 — ")

- / (V) - V() / Z7(y — )TV 5 @ (y) (i () — @"(y))dydl.
Rd Rd

Writing out the convolution VV7x 4" and applying the Cauchy—Schwarz inequality for the
integral in z, we find that
[
Rd

Ly(T) < 2E(/0T IV =gz (/Rd

< [ 2@ =)~ )TV =)y

2 1/2
dx) ds).

Guta ) = {05 [ 20 =)y~ @) TV (0~ )| > N7

To estimate Lo further, we define for some 6 > 0 the set

which corresponds to the set Aévén(s) from Lemma 4.2 with ¢, (y) = Z"(x —y)VV"(y — 2).
We infer from this lemma that for any m € N, there exists C'(m) > 0 such that

P(Go(x,2,5)) < C(m)||VVI||F2| 27|72 N*™CO=H2) < C(m)N>mO-1/2H0RED) - (4.95)
where the last inequality follows from (4.37), and this bound is uniform in (z,z,s). We

split the z-integral in B(0) and B1(0)° and the expectation in Gy, (z, z, s) and Gg (, 2, s)
for two different choices of 0y, where k = 1,2. Then Lo(T") < Loi(T') + Loao(T), where

L (T) = 2E</OT IV (T = g™ 2 (/Rd

< [ 20— )iy, @)V 2y
Rd

Lon(T) = 2E</OT IV (%7 =gl 12 (/Rd

< [ 20— )iy, — @)V )y
Rd

u'(z)(1ge T,z,8 +1 Tz,

/BI(O) (2)(Lg5, (2,29) T+ Ly, (2,2,5))

2 1/2

dx) ds)
u'(z)(1ge T,z,8 +1 T,z

/BI(O)C (2)(Lg5, (2,29) + g, (@,2,5))

2 1/2
dx) ds) .

We start with the term Loi(T), stressing the fact that we integrate over z € B;(0). Since
V" and Z" have compact support in a ball of radius n = N~ < 1, it is sufficient to integrate
in y over |y| < 2, as otherwise |y — z| > 1 and consequently, VV"(y — z) = 0. Then it is
sufficient to integrate in x over |z| < 3, as otherwise |z — y| > 1 and thus Z"(z — y) = 0.
Hence, with the definition of G§ (z, 2, s), we have Lai(T') < Lo11(T) + Lo12(T), where

Loy (T) = CNQIE(/OTHV(]"N’” _gn)HL2</Bg(O) </Bl(0) u"(z)dz>2dx> 1/2ds>,
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L? norm)

T
Lo1a(T) = CIM"HLooIIVV”IILwE(/O IV (N = ")l

2 1/2
X (/ (/ u"(z)1g, (x,z’s)dz> dx) ds).
Bs(0) \JB1(0) '

For the first term, we simply use Young’s inequality:
T
Lan(T) < CBTINT 43 [ [V(F¥7 - g7)[ads
0
T
<CEDINTEE 48 [ V(Y - ) ads,
0

choosing #; > 1/4 (which is possible; see below). For the second term Loj2, we use estimate
(4.37) for Z" and VV", Holder’s inequality, estimate (4.39) for V(fN7 — g"), the bound
||| < C from Theorem 4.4, and Lemma 4.2:

1/2
Lo1a(T) < CNPANAH) NBd+2)/2 / < / / (2)1g,, (“s))dedx> ds
B3(0) Y B1(0
< C(m, T)Nﬁ(5d+4)/2N2m(91 1/2+5(2d+1) < C(m T)N- 1/2,57

where we used the uniform probability estimate (4.95) for Gy, (x, 2, s), ||a"(s)||2 < C from
Theorem 4.4 as well as the fact that we integrate over a bounded domain in the z-variable.
The last inequality is possible since we can choose #; > 0 such that #; —1/243(2d+1) < 0.
and m € N large enough.

Remember that for Lo;; we need to choose 67 > 1/4. Both conditions 1/4 < 6; < 1/2 —
B(2d + 1) can be satisfied since 5 < 1/(8d + 4). This shows that

T
Lr(T) £ CDINTV2% 458 [ [9(%7 — g7 [fds (4.96)
0

which finishes the estimate for Lo (7).

Next, we estimate Los. To control the integrals over the far-field By (0)¢, we take advantage
of the boundedness of the (d 4+ 1)th moment of @", stated in Theorem 4.4. Since V" and
Z" have compact support in a ball of radius N~ which is arbitrarily small for sufficiently
large N — with similar arguments as for Lo; — if |z| > 1 we can integrate in y over |y| > 1/2,
as otherwise |y — z| > 1/2 and VV"(y — z) = 0 for sufficiently large N. Moreover, we can
integrate in x over |x| > 1/3, as otherwise |z —y| > 1/6 and Z"(x —y) = 0 for N large
enough.

Additionally, due to the compact support Z7(x — y)VV"(y — 2) = 0 if |z —y| > N7 or
ly — z| > N~ for sufficiently large N. Thus, it is sufficient to integrate over |z — z| <
|z —y|+ |y — 2| <2NP.

With these considerations, we can write Lo (1) < Lo21(T') + Lago(T'), where

T
Lo (T) = CE(/O V(N = g™l 2 (/B o
1/3

) ) )
/Bl(o)cu (2) (gg, (2,29 L {ja—sl<an-5}
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4 Quantitative convergence result for a diffusion model with aggregation

2 1/2
dx> ds>,

/]3’1(0)C ﬂn(z)(]1g92(:z:,z,s)]1{\gc—z|<2N—B}

2 1/2
da;) ds).

< [ 27 = ), — )TV — 2)dyds
Rd

T
L) = ([ 196 -l (f,
1/3

x / 27 — ) (i — W) H)VV(y — 2)dyda
Rd

It follows from the definition of Gy, (z, z, s) that

Looi (T')

T
<ong [ v —9")HL2< /
0 By /3(0)¢

Since @ is a probability density function, for fixed z € R?, the inner integral can be

estimated as
2
< </ ﬂ"(z)dz> </ an(z)]l{|m—z|<2N5}dz>
B (0)¢ B1(0)¢

< / u"(2) 1y, <on-sydz.
B1 (O)C

2 1/2
dx> ds.

/ u"(2)Lyp—zj<con-5ydz
By (0)¢

/ u(2)1g, s <on-sydz
Bl(O)C

In view of |z|/|z| < (Jx — 2| + |2])/|z| <2NP +1 < C for |z — 2| < 2N~7 and |z| > 1, we
have

/]31/3(0)C

2
/ u"(s, 2) 15— s)<on-5yd2 de/ / u"(s, 2) 1|y sj<con-pydzdz
B1(0)¢ By 3(0)¢ /By (0)°

dx

<C / |z|d+1a’7(s,z)dz < C(d),
By 1217V, 0)e

since 4" has a bounded (d + 1)st moment and fB1/3(O)C |z|~(“Ddz < co. This estimate

allows us to conclude for Lgo;(T') as follows by Young’s inequality, choosing 6 > 1/4:
T
Lan(T) £ CUNE [ [V = )]s
0
T
< CEIINTYEE 48 [ (Y- g)ads.
0

The remaining term Logo(7T) is treated in a similar way. First, we notice that for fixed
z,z € R?

[ 2 = 9~ TV - 2| < |29V a0

and hence by using (4.37) and the uniform estimate (4.39):

Logo(T) < CZ"| 1o ||V V| poo NBE+2)/2

164



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L? norm)

T 2 1/2
><IE</ </ (/ T_ﬂ(z)ﬂggZ(x,z,s)1{|x_z|<2]v6}d2> dx) ds)
0 B1/3(0)¢ B1(0)c
2d+1) A7B(d+2)/2 g dx
< C(T)NB( +1) N B(d+2) /2 —_—
0 By 3(0)¢ |9+

1/2
X / |Z|d+1ﬂ77(8, Z)]lgGZ (x’z’s)dz> d8> .
Bl(O)C

Thus, Fubini’s theorem, Jensen’s inequality for /- and using the probability estimate (4.95)
for Gy, (x, 2z, s), which is uniform in (z, 2, s), gives for any m € N

LQQQ(T) < C(T)N,@(5d+4)/2Nm(92—1/2+B(2d+1)) < C(T)N_l/Q_E,

choosing 1/4 < 6 < 1/2 — f(2d + 1) (such that 62 — 1/2 + §(2d + 1) < 0) and sufficiently
large m € N. Combining the estimates for Lso; and Logs leads to

T
Loo(T) < Looi (T) + Laoa(T) < C(6, T)N~Y/27¢ 1 6K / IV (N7 —gM)|2.ds.  (4.97)
0
Finally, we collect estimate (4.96) for Loy and estimate (4.97) for Lo,
T
La(T) £ In(T) + Ln(T) £ CO.TINY2 4 288 [ [ V(Y = )
0
and add this inequality to estimate (4.94) for Li:
T
L(T) < Li(T) + Ly(T) < C(6, )N~ /275 4 451@/ [V (N — gM)||2.ds. (4.98)
0

5. Conclusion. We insert estimates (4.57) for K, (4.58) for Kg, (4.90) for M, and (4.98)
for L into (4.29) to obtain

T
E( sup [|(f7 — 9")(?5)!\%2) +2(0 - 145)E/0 IV (A = g")(s) 1 72ds

0<t<T
C(o)
N

Since 8 < 1/(10d + 12) < 1/(2d + 4), we have S(d +2) — 1 < —1/2. If (4.18) holds, i.e.
E[[(fN1 — gM)(0)]|2, < CN~1/2=20 we obtain, after taking § < o/28,

< ]EH(fNﬂ? - g”)(O)Hig + C(T)N’B(d+2)_1 + + C(T, 5)N—1/2—5.

T
(s, 17970) = 032 ) + B [ 190 = 7))l < O N
o<t<T 0

for some £ > 0 which proves the desired estimate.
It remains to verify (4.18). For this, we can argue similarly as in the beginning of the proof,
see (4.44) and below. We write

I = g O)72 = 1FYO) 72 — 2(£77(0), 9"(0)) + 9" (0) 7
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4 Quantitative convergence result for a diffusion model with aggregation

N N
1 2
=z 2 VIO = X00) = 5 D (V7 o) (X0)) + o, V).
ij=1 i=1
Since XiN "1(0) = ¢; and since (1, ...,y are independent with common density function g,

we infer that

N
BIGY -0 =5z Y [ [ Ve - puu)dady

ij=1,i#j
1 2 &
+ NNﬁdV(O) % ; /W(V77 x ug)(z)uo(z)de + /}Rd(V77 *ug) (z)uo(x)dx
MO [ v @untalde + NVO) - [ (07w @

< CNPEL L N7V s ug)| oo [|uo)| 21
< ONP1 L NV pafuol poe |uol| 1 < CNT220,

where we used Young’s convolution inequality, ||[V"||;1 = 1, |Jug||r < C, and we have set
g0 = 1/2 — Bd > 0. This finishes the proof of Theorem 4.1. O

4.A Comments on Assumption (C1)

In the appendix of this chapter we discuss Assumption (C1) and show a proof of convergence
in probability for interaction kernels approximating Coulomb interactions, which is partly
done in a joint work with Li Chen, Veniamin Gvozdik and Yue Li, [28]. This shows that
Assumption (C1) can be met by approximations of singular potentials. In Section 4.A.2
we point out what technical difficulties which occur if one wants to adapt the techniques
used for Coulomb interactions in order to give a rigorous proof of Assumption (C1).

4.A.1 Convergence in probability for Coulomb interactions

In order to discuss Assumption (C1) (see (4.16)), we show a convergence result in probabil-
ity, see Theorem 4.12 below, for a diffusion-aggregation model with Coulomb-type kernels:

For d > 3, we consider the following diffusion system on R¢ with Coulomb-type aggregation
(k = 1) or Coulomb-type repulsion (k = —1)

dp =0cAp— rdiv (pV® * p), (4.99)

where ® = mcﬁ, denotes the fundamental solution of the Laplace equation in dimension
d > 3 with a constant Cy > 0. Additionally, we assume p(0) = pp for a probability density
function pg € L>®°(R?) N L'(R?). Since the aim of this appendix is to illustrate ideas in
order to show a mean-field convergence result in probability, we additionally assume that

po € C*(R%), which can be reduced by using suitable approximating sequences, [29].
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4.A Comments on Assumption (C1)

For approximating the Keller-Segel-type model (4.99) by a system of interacting particles,
we first introduce an approximating sequence

V7= Tk B (4.100)

coul *

where x7 = n~(|z|/n) for a normalized x € C?(R?) which fulfils x = ¢ * £ for some
£ e Cf(Rd) and ®" is a sequence of approximating kernels such that &7 — & point-wise for
1n — 0; we comment on the choice of approximating kernels after introducing the particle
systems:

The mean-field particle system for /N interacting particles reads as follows

coul\ "1

N
Ay V() = % SOV ) = YN()dE 4 V2odWi(t), (4.101)
j=1

YM0)=¢G imRY i=1,...,N,

where (; are i.i.d. random variables with common density function py and (W;)X; denotes
a family of independent d-dimensional Brownian motions.
Using standard ideas for moderately interacting particles, for fixed n > 0, we introduce an
intermediate system of size N starting with the same initial condition as the mean-field
particle system:

A7 (t) = k(VVD )YV (t))dt + vV20dW(t), (4.102)

(2 O

Y)0)=¢ imRY i=1,...,N,

1

where the particles 7;7 are already independent with common density function p”, which
is the solution to the smoothed version of the Keller-Segel model (4.99)
op" = o Ap" — kdiv(p"VV]! % p7) (4.103)
p"(0) = po.

This can be seen by using It6’s formula, which has been pointed out several times in this
thesis. For a complete existence theory of (4.99) and (4.103) we refer to the work [29].

In this section of the thesis — for proving a mean-field result with respect to convergence in
probability — we need the following regularity of the solution of the intermediate system:

Lemma 4.11. For any T > 0, there exists a unique solution p" € L>(0,T; H*(RY)) with
s> d/2+2 to (4.103) such that ||p"(t)||pr =1 for all0 <t < T.

For a proof of Lemma 4.11 we refer to [29, Theorem 2] where even a more general setting
is considered.

The approximating sequence ®" of the Coulomb-type kernel @ is chosen according to the
work of Lazarovici and Pickl [72] such that the Lipschitz® constant of the mean-field force
only diverges logarithmically in n~', i.e.

IID*V20 il # 87| oo (07320 ety < Clog(n™ ) (19" lloo + 1771 11)- (4.104)

SWith the absolute value inside it is not exactly the Lipschitz constant, but of same order
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4 Quantitative convergence result for a diffusion model with aggregation

This can be assured by taking the sequence ®" according to [72] with additional cut-off in
a ball around the origin, see [72, Lemma 6.1].

In the following, we prove a mean-field result in probability for particle system (4.101) to
the intermediate system (4.102) for the choice n = N 7. This corresponds to Assumption
(C1) and (4.16) but with interaction potentials approximating the singular Coulomb kernel
instead of a Dirac distribution. It follows mainly techniques developed in [71] and [72].

Theorem 4.12 (Convergence in probability for Coulomb potential). Let n = N=5. We
assume that 0 < 8 < 1/4d and f(d+1) < a < 1/2—p(d—1). Let (YZ»N’”)ZZ\L1 and (V)N be
the solutions to systems (4.101) and (4.102), respectively. Then, for any v >0 and T > 0,
there exists C(v,T) > 0 such that for all0 <t <T,

]P’( ‘max_ [YV() — V()] > N—a) < O(y, T)N . (4.105)

i=1,....N
In order to prove Theorem 4.12, we need an equivalent result to Lemma 4.2 in the case
that the interaction potentials approximate the Coulomb potential:
Lemma 4.13 (Law of large numbers). Let (Y])N, be the solution to system (4.102) and

let " be the density function associated to Y. Given 6 > 0 and oy € L®(R%), vy €
L®(R%R™) with n € {1,d,d x d}, we define the sets

1L
Apo, (1) = {w €q: ‘N >_ oY) - /Rd Gy (2)p" (¢, x)dz| > Ng}, (4.106)
N 111 N - -
By, (t) = {w SR ‘N > g (Yi() =Y (1) — (b * ﬁ”)(??(t))‘ > N—G}. (4.107)
i=1 j=1

Then, for every m € N and T > 0, there exists C'(m) > 0 such that for all0 <t < T,
P(Agg, () < C(m)||gy||7m N>mO=1/2),
P(Bg,y, (1)) < C () ||y || NZPO=1/2)+1,

Since all ?;7 are already independent, the proof can be done in an analogous way as the
proof of Lemma 4.2.

Idea of the proof of Theorem 4.12: For the proof of Theorem 4.12, we use a combination
of Markov inequality and a stopping time argument. First, we estimate the probability
using Markov’s inequality according to
P(,max [¥() = Y7 ()] > N) < E(S5(1),

where S¥(t) = (N 10[18@(1-:1,,,,,1\/(YiN’T7 —Y)(t A7a)|)¥, T is a suitable stopping time such
that S¥(t) is bounded, and k € N is an arbitrary number. To bound the expectation of
SE(t) by N~ (up to a constant), we make use Lemma of 4.13 (law-of-large numbers),
Taylor’s expansion and a Gronwall argument. As mentioned in the introduction of this
appendix, the main ideas follow techniques developed in [71] and [72]. Furthermore, for
the proof of Theorem 4.12 we need the following auxiliary lemma:
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4.A Comments on Assumption (C1)

Lemma 4.14 (Estimates for V. ). For V!  defined in (4.100) withn = NP, there exists

a constant C' > 0 such that for k =1,2,3 and f € L'(R?) N L>®(RY)
DRV llpee < CNPUZ2ER) iy s £l < C (4.108)

coul

Additionally, if p" denotes the weak solution to (4.103), then the following estimate holds
D2V, % 07 oo 0,710 (mety) < Cs (4.109)
for a constant C > 0 which does not depend on N.

Proof. For fixed z € R?, we get by recalling that n = N9 and by the fact that the cut-off
fulfils ®7 < ®

DMV @) < [ 1D = )@+ [ D = )0 )
< [IDMX o |11y <ll s+ IDFX |yl e < ONAE2H),
since a simple computation shows
ID*7l o < ONPER, By l0 < O = ON27,
and
IDFX[ g = N*¥, [zl < Oy (72 = NP2,

This shows the first claim in (4.108), where we remark that we do not need the cut-off in
the definition of ®" for this part of the proof.
In order to show the second claim in (4.108), we see that for fixed z € RY, we have

Vi @)= [ X107 o - y)dy

Rd

< / X1 @"(y) f(z —y)dy + / X7 x @"(y) f(z — y)dy
ly|<1 ly|>1

< O l[®ll gy 1 f lzee + ClIX @1 oo vy [l 1 < C

For the proof of (4.109) we need to be a bit more careful, since D?® is not integrable in a
ball around zero.

First, for |[D*V , « P"|| oo (0,150 (may) We can put one derivative on the solution p” and
arrive at

ID2V,2 % 07| oo 0,520 (Rt)) = IV Vo * V0" | Lo 0,750 ()
< CIVV D % V" Lo o,mws 1 (me))

for the choice p = 2d/(d+2), where we used the Sobolev embedding for p(s—1) > d, which
is possible if we take s > d/24 2. Young’s convolutional inequality with ¢ = d/(d+1) then
implies
IVt * V0| oo 0,010 may) < ClX 21 @) [V | oo (0,155 -1 ()
< Clp"| oo 0,71 (R < C

where we have used the Hardy-Littlewood-Sobolev inequality, ||x"||;1 = 1 and the fact that
1P7[| oo (0,7; 115 (Rey) is uniformly bounded, see Lemma 4.11. This finishes the proof. O
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4 Quantitative convergence result for a diffusion model with aggregation

Proof of Theorem 4.12
Proof. 1. Preparations. We start with some definitions. Let a > 0 be given as in the
theorem and let k£ € N. We define the stopping time

Ta(w) := inf {t € (0,7): max |[(YN" —Y7)(t)] > N—a}

i
i=1,...,

and the random variable

k
Sk(t) = (N max | = V])(EAT)]) <1

Additionally, we define the set
B,(t) == {weQ: St =1},

which includes for fixed t > 0 all w € € such that the first time s > 0 of max;—1,_ N |(Y¢N7n—
Y (s,w)| > N~ fulfils that s <, i.e. To(w) < t.

Note that this set does not depend on k, since S¥(t) = 1 is equivalent to S(t)'/% =1, and
SE(t)1/* does not depend on k.

It follows from the continuity of the paths of YiN’n and Y and the fact that if

max;—1,. N |(YiN’n —Y)(t,w)| > N~ for a fixed t > 0 then t > 7,(w) that
Nﬂ? _4"7 —« 'Nv’r] _777 — —«
P( max |7 = V)(0)] > N7*) < B max (7 - V(A7) = N7
= P(Ba(t)) = P(Sx(t) = 1) < E(S4(t)),

where the last estimate follows from Markov’s inequality.
Now, if we show that for every v > 0 and 7' > 0, there exists k € Nand C = C(v,k,T) > 0
such that

E(S5(t)) <CN77,

the proof is finished.
To prove this claim, we insert the integral formulations of (4.1) and (4.6) and add

VUV (Yi(s) = Y] (s))

in the last step: For every ¢ =1,..., N it holds that

[CARES AN (4.110)
tATa 1 N o k
<Ce 1) [ S IV ) V) — (T, (s, T ds
0 e
< Ok, T)(11,:(t) + I2,(1)),
where
tATa 1 N N N - k
R = [ 1 2 9V =3 9) = TV (V) = V()] s
j=1
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4.A Comments on Assumption (C1)

k
Zv coul l Yn( )) (v‘/cZul )(87?17(5)) ds.

tATa
L(t) = /
0

In the following, we estimate both terms.

2. Estimate for I5;(t). The term I3;(t) can be estimated by a law-of-large numbers
argument. We wish to apply Lemma 4.13 with ¢, = VV.!  and > 0 which will be chosen

cou,
later in the proof. In order to shorten notation, we abbreviate the integrand of I5;(t) as

~s>—\NZv 2 (FU(5) = TU6) — (VW= ) (s, T80 |

We have, with the notation of Lemma 4.13, B} v (8) = Uf\[:l{fl(s) > N9}, Keeping in

mind that we want to estimate E(S¥(¢)), we Compute the expectation of

No* max Tp,(t)
i N

1=1,...

by splitting £ into the two sets 30 v (s) and its complement Be T (s)¢. First, we

coul coul

observe that I;(s) < N~ foralli=1,...,N on BG vV ( )¢. This yields

t
ak . ak ’i
E<N Z.:III{??’(NIZZ(’&)) < E(N . i:Hllf’.“i(NIz( ) ]lBéVvvn (s)cd5>

coul

t
ak T
+E <N ; i:I?f.lXN Li(s)® ]lBéVVVg,ul (S)ds>

coul

§TNakN_9k+C( )No‘kHV CoulHLoo OsupTP(BQVV” (s)).

Then, because of [|[VV. /||pe < CNP@=D (see (4.108)) and after an application of Lemma
4.13, for any m € N

E<Nak: max Igi(t)) < O(k,m T)Nak(N—Ok +N,B(d—l)kNQm,B(d—l)N2m(0—1/2)+1)
i=1,..N = - Y
(4.111)
_ C'(k,m,T) (N(a—a)k + Nozk+ﬁ(d7l)(k+2m)+m(2071)+1).

This finishes the estimate for I ;.
3. Estimate for I; ;(¢). Similar as for I5;(¢), in order to shorten notation, we define

- ‘N ZV cout (Y )_YjNW(S)) V‘/;Zuz( ( )_?}7(5)) .

The estimate for I; ;(¢) is more technical than the law-of-large numbers estimate for I5 ().
We perform a Taylor expansion of VV! = around Y] - Y?)(s) with a linear term and a
quadratic remainder:

tATo R
E(No‘k max Ilyi(t)) gE(NO‘k / max Ii(s)kds> (4.112)
i=1,.... 0 i=1,...N
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N

DA (VT (s)  V(s)

j=1
k
ds)

tATo
C(k) DAV, I E (Nak [ fz\ F7)(s A )

i=1,....,N

tATo
< C(k)E (Nak / max
0 1

=1,...N

< (O —y ) — (V] =Y))) (s)

— WY (s A ) \2’%13) < C(R)(Iu1 + o + L1a) (1),

where

k
ds> ,
k
ds> ,

tATo —
Ill(t) - E<Nak/ max ‘N Z D2 Coul Yn)(y - Y:))(S)
0

Iio(t) = E<N"‘k /O o _max ’ ZD2 =YD =Y (s)

t
N, 2%k
Lslt) = DV, [l (Na’f [ |07 - VD6 8 7)),

We start with I13(t). It follows from Fubini’s theorem, |[D3V |1 < CNAU@+D (see
(4.108)), the definition of S%(s) and S¥(s)? < S%(s) (since S¥(s) < 1) that

t t
L3(t) < C(k)NPUTDE / E(N°kS%(5)%)ds < C(k)NPAHDk-ok / E(S¥(s))ds. (4.113)
0 0

Note that we need the definition of the stopping time 7, which guarantees that S¥(t) é 1.
Next, we estimate I11(t) < I111(t) + I112(t) by adding and subtracting (D?V!  x (Y

cou,

I (t) :E</0Mm SE(s) _max ‘NZDQ Y Y(s) — Yn( )

k
ds) ,

tATa
Lio(t) = E</ S¥(s) max ‘(D v (s, Y(s ‘ ds>
0 7

Ly

— (D*Vih 0 x p")(5, Y7 (5))

For I111(t), we apply Lemma 4.13 for m € N (which will be chosen later in the proof) with
Yy =D?V!  and 6 = 0 and split Q into B D2V ( ) and By paym l(s)c. Fubini’s theorem
then leads to

tATo
I11(2) SE(/O SE(s) ,max ‘NZDQ Y T(s) — Yn( )

k
]lBO D2y ( )cdS)

coul

— DV, % p")(5, Y7 (5))
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+C(T)HD2 coul”LooosupTP(BODzvn ( ))
t
S/ ]E(Sg(s))ds_|_C(m’T)NﬂdeQmﬁdNQm(Ofl/2)+l7
0

using again [[D?V.! ||z < CNP4 (see (4.108)) and the construction of By pzy» Z(3).
The estimate for I112(¢) simply follows from Fubini’s theorem and (4.108):

Tia(t) < [D2V,, 5 57 / E(S%(s))ds < C(k) / E(S%(s))ds

0

where we used estimate (4.109). We conclude that
t
L) < C(k) / E(Sk(s))ds + C(k, m, T) NAd0+2m)=m+1 (4.114)
0

where the constant C(k) > 0 depends on the L>°(0,7; W?2°(R%)) norm of p", which is
bounded uniformly in 7.

Finally, we estimate I12(t) by similar techniques as for I;1(t), however, since we sum over
j=1,...,N, we have to put the modulus inside the sum in order to put S¥(s) out of the
expression. First, we put the modulus inside the sum:

o < B (v [ s (4 Z!n 14710~ V) [700) - 70| ) )

< [ sk max (1 i D22, (V) - ??<s>>\)kds>,

j=1

where we used the definition of S¥(s) for s < 7,. Similarly as in the estimate for Iy (),
we add and subtract D2V [ p"(s, Y7 (s)), which yields I1a(t) < C(k)(I121(t) + T122(t)),

where

tATa 1 N
_ k 201 (Y %
Lo (t) = E(/o Sals) 12Xy ’N El: ID*V,],(Yi(s) = Y;(s))]

J
k
ds) ,

tATo
Iin(t) = E( /O S4(6) o ((ID2V2 7).V (s1) s ).

30y

By Lemma 4.13 with ¢, = [D?V” | and @ = 0, using S¥(s) < 1 yields for any m € N

(s))

coul'

t
Fin(®) < [ E(Sh(6)ds + COIDVh e sup BB gy

t
< / E(S(s))ds + C(m, T) A% N2mbd py2m(0-1/2)+1 (4.115)
0
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where the estimates follow the ones for I111(t).
We obtain for I195(t):

t
Liaa(t) < C|[ID*V | P"”’Zoo(o,T;Loo(Rd))/O E(Sa(s))ds
t
< C(k) log(N) / E(Sk(s))ds, (4.116)
0

where we used that our approximating sequence fulfils (4.104).
Together with (4.115), we infer that

La(t) < C(k)(1 + log(N)) /O tE(sg(s))ds + C(k,m, T)NPk+2m)=m+1, (4.117)

We insert the estimates for I7;(¢) in (4.114), I12(t) in (4.117), and I;3(¢) in (4.113) into
(4.112):

t
E(Nak _max I1,z‘(t)) < O(k) (1 + log(N) + NAdTDk=aky / E(Sk(s))ds
1=1,..., 0
+ C(k, m, T)N,Bd(k—‘er)—m—‘,—l.
Combining this estimate with (4.111), we conclude from (4.110) that

E(S5(1) = B(N* max [V (¢ A7) = VI A 7))

< Ck)(1+ NBd+Dk—ak | log(N)) /t E(S%(s))ds
0

+ C(k), m, T) (Nk(a—O) + Nalc+6(d—1)(k+2m)+m(20—1)+1 + N,Bd(k+2m)—m+1).

Since @ > (d + 1) by assumption, the factor N (d+3)k—ak i hounded for all N. We claim
that for any given 7 > 0 and (8, «) chosen according to the theorem, we can choose k,
and m such that the remaining terms are bounded by N77.

Indeed, let 0 € (a,1/2 — B(d — 1)). Then we choose k € N so large that k(o — 0) < —~.
Furthermore, we choose m € N sufficiently large such that

> Bd(k 4+ 2m) —m + 1 < —~ (which is possible because of 8 < 1/4d) and
> ak+5(d—1)(k+2m)+m(20—1)+1 < —v (which is possible since § < 1/2—(d—1)).

We infer that
E(SE(t)) < C(k)(1 + log(N)) / t E(S%(s))ds + C(k,m,T)N 7,
0

and an application of Gronwall’s lemma implies that E(S%(t)) < C(k,m, T)N~"*!. Since
v > 0 was arbitrary, this concludes the proof. O
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4.A.2 Comments on the proof in the moderate regime

An interesting and natural question is whether we can adapt the proof of Theorem 4.12
for moderately interacting particles such that we do not need to assume Assumption (C1);
see (4.16). If we perform the proof of Theorem 4.12 with V" defined in (4.2) for n = N—#
instead of V! /. two terms are of particular interest (with @"7 we denote the weak solution

to the intermediate PDE (4.5)):
(i) [|ID2V7 x || oo (0,7; 1.0 (rey) used for estimates of term I112, and
(ii) [||D2V7] * || oo (0,1 100 (R)) used for estimates of term I19.
For the first term, we can use the regularity of @" in order to estimate
DV s || oo (0.7, Lo (ma)) < IV 11 Ry ID?@7|| oo < C.

The situation becomes more delicate for [D2V7| x @”: Due to the absolute value, we can
not put the derivate on the solution of the intermediate partial differential equation u".
Choosing a purely convex (or concave) potential V' is also not possible, since we need
at least integrability on the whole space R?. Interestingly, in [93] Oelschliger showed a
mean-field convergence result for the porous media equation without additional diffusion
in one dimension by using a singular potential V' such that V”(z) > 0 for x # 0, see [93,
Forumla (2.8)]. It is still an open problem whether we can do a similar trick since the case
x = 0, which corresponds to particles being exactly at the same place, has to be treated in
a careful way. Another way to treat the difficulties could be to use a different strategy in
the proof in order to avoid the absolute value inside the convolution. Future work will go
in those two directions.

At the end of this appendix, the author wants to remark that for logarithmic scaling of
n > 0 with respect to the number of particles, the proof of Assumption (C1) can be done
exactly as for Theorem 4.12. The main reason lies in the fact that for =1 ~ log(N) the
norm of |D2V"| % @" scales only logarithmically in N, which is the same situation as in the
case of Coulomb interaction in Theorem 4.12. However — in terms of fluctuations around
the mean-field limit — we are interested in an algebraic rate of n > 0, i.e. n = N7 for
some [ > 0.
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