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Kurzfassung

Diese Doktorarbeit beschäftigt sich, ausgehend von stochastischen Interaktionsmodellen,
mit der rigorosen Herleitung spezieller nicht-linearer partieller Differentialgleichungen.
Die verwendeten Methoden stützen sich auf das mathematische Konzept der sogenannten

’
mean-field limits‘

’
ein Konzept, das sich nicht nur auf dem Gebiet der reinen Mathematik,

sondern auch in der fächerübergreifenden Forschung in den Bereichen Populationsdynamik,
Physik, Neurowissenschaften, Deep Learning und Wirtschaftsforschung steigender Beliebt-
heit erfreut.
Die Grundidee dieser speziellen Partikel-Grenzwerte liegt darin, dass unter bestimmten
Voraussetzungen das Partikelsystem trotz Interaktionen zwischen den Partikeln im Grenz-
wert (Anzahl der Partikel strebt gegen Unendlich) durch eine Dichtefunktion approximiert
werden kann, die wiederum als Lösung einer partiellen Differentialgleichung aufgefasst wer-
den kann. Diese Eigenschaft wird in der Fachliteratur auch

’
propagation of chaos‘ genannt.

In der vorliegenden Arbeit werden nur sogenannte
”
diffusive Partikelsysteme“ betrachtet,

welche im Grenzwert zu partiellen Differentialgleichungen mit positiver Diffusionskonstan-
te führen. Speziell werden in dieser Doktorarbeit Interaktionssysteme betrachtet (auch

”
moderate Interaktionssysteme“ genannt), bei denen der Interaktionskern mit der Anzahl
der Partikel skaliert. Im Gegensatz zu klassischen Mean-field-Modellen (auch

”
schwache

Mean-field-Modelle“ genannt), führt das moderate Regime zu lokalen partiellen Differenti-
algleichungen.
Die Arbeit gliedert sich in drei Teile: Im ersten Teil der Doktorarbeit wird - ausgehend
von einem moderaten stochastischen Teilchenmodell - eine verallgemeinerte Version des
sogenannten SKT-Systems hergeleitet, welches ein Mehr-Spezies-Modell mit Kreuzdiffusi-
onsstruktur in der Populationsdynamik darstellt. Ebenso enthält auch der folgende zweite
Teil der Arbeit eine rigorose Herleitung einer fraktionellen Poröse-Mediums-Gleichung mit
moderat interagierenden Partikeln. Aufgrund der verwendeten Techniken im moderaten Re-
gime enthalten diese beiden ersten Teile der Arbeit auch Abschätzungen von nicht-lokalen
Approximationsmodellen der eben genannten lokalen partiellen Differentialgleichungen. Der
dritte Teil der vorliegenden Doktorarbeit enthält eine neue mathematische Technik, um -
ausgehend von diffusiven Partikeln unter dem Einfluss von Aggregation - ein bedingtes
Konvergenzresultat in L2-Norm herzuleiten. Dieses Resultat kann als erster Schritt zu ei-
nem Fluktuations-Resultat im Kontext von aggregierenden Mean-field-Partikelsystemen
gesehen werden.





Abstract

This thesis is concerned with the derivation of certain types of nonlinear partial differential
equations from stochastic interacting particle systems. The underlying methods are within
the framework of mean-field limits, a well-known mathematical concept which has become
an emerging tool of interdisciplinary research due to the increasing number of applications
in population dynamics, physics, neuroscience, deep learning and others.
The basic idea of these types of particle limits is to show that even though the particles
are interacting with each other – under certain conditions – in the large particle limit,
the system can be approximated by a density function which solves a partial differential
equation: This is also called ‘propagation of chaos’. Throughout this thesis, the case of
diffusive particle systems is considered leading to partial differential equations with positive
diffusion parameters. Special focus in this work is put on moderately interacting particle
systems, a technique where the interaction kernel of the particle system scales with the
number of particles. In contrast to the classical mean-field limit, which is also called weak
mean-field limit, the moderate regime leads to local partial differential equations.
The thesis is split into three parts: In the first part, a rigorous derivation of a generalised
version of the so-called SKT-system – a multi-species model from population dynamics –
from moderately interacting particles is shown. In the second part, the method of mod-
erately interacting particles is used to derive a porous media equation with fractional dif-
fusion. Due to technical issues which occur in the moderate regime, rigorous estimates
of non-local approximations of the particular partial differential equations are shown in
those two chapters, as well. The third part of this work shows a new technique for prov-
ing a conditional quantitative L2-convergence result for diffusive particles under the effect
of aggregation, which can be seen as a step towards the proof of fluctuations around the
mean-field limit in the setting of aggregating particles.
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Das gute Gelingen ist zwar
nichts Kleines, fängt aber mit
Kleinigkeiten an.

— Sokrates1

1 Introduction
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It is one of the fundamental aims in science to understand the effect of particles or parts
merging together to one quantity, like birds forming a swarm or gas particles forming an
entity. Aristotele once said “the whole is greater than the sum of its parts”2, which raises
questions like

• which properties of the individual parts are inherited by the whole and

• which properties can be only observed if we look at the whole quantity.

In applied mathematics, we speak ofmicroscopic levels if we are talking about the individual
parts (that later form one quantity) and macroscopic levels if we are looking at the whole
quantity.
Usually, in applications coming from natural sciences and economy – this thesis will only
consider such applications – the macroscopic level can be described by a density function,
which, roughly speaking, indicates in which areas there are more particles and in which
areas there are less. Since time is an essential part of most processes arising in science, it is
crucial for understanding the macroscopic level to (mathematically) describe its evolution
in time, i.e. how it changes in time – for instance where is the swarm of birds moving to
or will the gas be equally distributed in a room after we wait a certain amount of time.
In fact, amongst others we are interested whether we can describe the time evolution of the
density function of the particles by a partial differential equation which then allows us to
simulate and study properties of the macroscopic level. In the words of the famous physicist
Paul Dirac (1902-1984), who said “I consider that I understand an equation when I can
predict the properties of its solutions, without actually solving it”3, although in most cases
we lack a concrete formula of the solution, we can describe it by its properties. Additionally,
in modern times numerical simulations of solutions of partial differential equations have
become an essential part of applied mathematical research. This shows an advantage of
studying – from a mathematical but also from an applied point of view – the connection
between microscopic (particle) levels and its corresponding macroscopic equation since
particle systems arising from physics often consider a large number of particles (N ∼ 1020).

1Attributed to Sokrates
2[Das Ganze ist mehr als die Summe seiner Teile] In: Aristoteles, Metaphysik VII,17.
3Quoted in: Frank Wilczek, Betty Devine, Longing for the harmonies (1988).
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1 Introduction

Hence, the numerical simulations of the microscopic level are often too costly (in terms of
computation time) and therefore – due to efficient numerical schemes for partial differential
equations – the macroscopic equations play an important role for simulations. Additionally,
because of the high complexity, interesting questions like long-term clustering of particles
are difficult to answer if we only consider the microscopic dynamics.
Certainly, there are different mathematical approaches used to motivate or rigorously prove
connections between microscopic particle systems and macroscopic equations. In this thesis,
so-called mean-field limits and the associated concept of propagation of chaos is used in or-
der to rigorously show connections between certain particle systems and partial differential
equations. In recent years, mean-field limits have become a growing field of mathematical
research. The reason lies in the fact that those particle limits can be used in a broad
variety of applications, like swarm modelling [18], deep learning [106], neuroscience [2],
evolutionary biology [23] and economy [98], to name a few. The particles can for instance
represent molecules, neurons, bacteria, plants or humans. Caused by this broad variety
of applications, the topic has also become an emerging tool for modern interdisciplinary
research.
The origin lies in the late 19th century, where Boltzmann already proposed that the particle
dynamics of a large class of particle systems can be captured by one macroscopic partial
differential equation (PDE), see [7]. Heuristically, this means that (for the considered cases)
for large systems the particles behave like ‘one’ and become independent in the limit; see
Section 1.1 for a mathematical definition of this intuition. In 1900, at the International
Congress of Mathematicians, David Hilbert (1862-1943) famously addressed this question in
his sixth problem, where he claimed that providing an axiomatic mathematical framework
for Boltzmann’s considerations should be one of the goals in modern mathematics, [57],
[85]. However, caused by a lack of suitable mathematical techniques at that time, like
important results in probability theory, it took more than fifty years until Mark Kac [66]
made significant progress in this matter by mathematically formalising the notion of chaos
for the Boltzmann equation, see Section 1.1.1 for details.
Despite the lack of a mathematical framework at that time, Boltzmann’s idea to consider
particle systems which become ‘independent’ if the number of particles becomes large, still
forms the core motivation of mean-field limits, where the limiting macroscopic equation
(represented by a non-linear PDE) of a large system of interacting particles is studied.
The microscopic particle system is described by a large system of (stochastic) ordinary
differential equations. The interaction between one particle with all other particles is
incorporated into the system by using a weighted sum over all interactions - a mean value -
which motivates the name mean-field limit. Since the particle system in mean-field theory
is usually represented by a stochastic system of interacting particles and the macroscopic
dynamics are represented by deterministic partial differential equations, which model the
typical particle (since the particles behave like ‘one’ in the limit), the topic of mean-field
limits lies on the border between two mathematical disciplines: Stochastics and Partial
Differential Equations (PDEs). The challenge is to take advantage of different techniques
from those two mathematical fields despite those two disciplines often times having different
notations and aims. As a matter of fact, the techniques used in this thesis will cover both
disciplines, however, they strongly rely on analytical techniques like uniform estimates of
solutions of (non-local and local) non-linear partial differential equations, which are crucial

2



1.1 Notion of chaos

especially for the results in Chapter 2 and 3. In Chapter 4, a (more technical) result
is shown by proving a connection between two different notions of convergence of particle
systems for a diffusion model with aggregation. However, even if at the first glimpse it looks
like a purely probabilistic result, the new technique used there is inspired by estimates from
classical PDE theory.

1.1 Notion of chaos

There are different notions of chaos and hence propagation of chaos, the standard one being
derived by the framework given by Mark Kac in [66]. Originally, the notion of chaos in [66]
was considered to be suitable for the kinetic Boltzmann theory, however, the lecture notes
of H.P. McKean [82] addressed ten years later that Kac’s concept of chaos and propagation
of chaos can also be used in the framework of a broad class of (nonlinear) diffusion models
of the form

∂tu =
1

2

d

i,j=1

∂2

∂xi∂xj

[aij(u)u]−
d

i=1

∂

∂xi

[bi(u)u] on (0,∞)× Rd, (1.1)

where the diffusion coefficients aij(u) as well as the drift coefficients bi(u) depend (in a
nonlinear and nonlocal way via an integral formulation) on the solution u and on the spatial
variable x. The precise form of the diffusion and drift coefficients aij and bi will be discussed
in Section 1.2, where we will illustrate some ideas given in [82] for a simple example. Before
we discuss this toy example, in the following part of the thesis, we introduce the general
concept of chaos and propagation of chaos which form the core idea and motivation of
mean-field limits.

1.1.1 Kac: The introduction of a mathematical framework

The scope of the present thesis lies in the derivation of non-linear partial differential equa-
tions with diffusion (and aggregation) phenomena arising from physics and biology from
stochastic particle systems and not in kinetic theory. However, since the concept of those
particle derivations and mean-field limits strongly relies on the concept of the so-called
Boltzmann property which was first introduced by Kac in [66], in this section we present a
short summary of the seminal work [66], which is not only an important work for kinetic
theory but for particle derivations of partial differential equations in general. This section
is based on [66] and the recent articles [56] and [85]. For more information on Kac’s work
and implications in kinetic theory we refer to the latter two papers.
Based on Boltzmann’s work, [7] and his well-known ‘Stosszahlansatz ’, [66, Section 2], Kac
developed a mathematical framework for Boltzmann’s intuition and ideas for kinetic theory
for dilute gases. In the setting of the spatially homogeneous Boltzmann equation of the
form

∂tf(t, v) = Q(f, f) for t ≥ 0 , v ∈ Rd,

where v denotes the velocity, Q denotes a so-called collision operator and f(t, v) is a
distribution function of a dilute gas, where we assume that the exchange of energy between

3



1 Introduction

the gas molecules only happens through collisions. This spatially homogeneous equation
was derived by Kac in [66] in a simplified setting (i.e. d = 1 and other simplifications
of the model) by using Poisson-like jump processes for the mutual collisions between two
molecules on the microscopic level, see [66, Sections 2-3] for a complete description. In his
basic theorem, [66, Section 3], Kac showed that the so-called Boltzmann property (see
definition below) propagates in time in the following way:
Let us assume that d = 1 and define V = (v1, . . . , vN ) ∈ RN the vector of velocities of the
N gas molecules in the system on spheres SN := {V : v21 + . . .+ v2N = N}4 and let φN (V, t)
fulfil the so-called master-equation, which is a PDE that describes the change in time of
the distribution of points V under the influence of (random) collisions, see [66, Equation
(3.4)]. Additionally, set

f
(k)
N (v1, . . . , vk, t) :=

x2
k+1+...+x2

N=N−v21−...−v2k

φN (V, t)dS,

where we integrate over spheres which fulfil x2k+1 + . . . + x2N = N − v21 − . . . − v2k. The

distribution functions f
(k)
N are called k-th contraction of φN in [66]. Then the basic the-

orem in [66] says that if at time t = 0, the symmetric distribution function φN (V, 0) with
V ∈ SN fulfils the Boltzmann property, i.e. for all k ∈ N

lim
N→∞

f
(k)
N (v1, . . . , vk, 0) =

k

i=1

lim
N→∞

f
(1)
N (vi, 0),

then it also holds at any time t > 0

lim
N→∞

f
(k)
N (v1, . . . , vk, t) =

k

i=1

lim
N→∞

f
(1)
N (vi, t).

For a proof of this statement, we refer the reader to [66, Section 4]. In the upcoming
sections we will see that the observation that the Boltzmann property concerning the
finite ‘contractions’ of the distribution function φN propagates in time (under simplifying
assumptions for the Boltzmann equation) forms the basic concept of mean-field limits and
propagation of chaos. Based on [66], McKean [82] made use of this general concept by
applying it to a class of parabolic nonlinear partial differential equations. The definition
stayed close to the original one in [66] – see Definition 1 –, however, in modern literature,
the name Boltzmann property changed into u-chaos or Kac’s chaos5 .

1.1.2 Propagation of chaos

Based on the well-known framework in [66], the following section contains important defi-
nitions and notions used in every chapter of this thesis. This section follows [62] and [113]
with additional insights into further notions of chaos from [56].

4Later called ‘Kac’s spheres’, [56].
5In this thesis we will use the name u-chaos, see Definition 1.
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1.1 Notion of chaos

First, we state the definition of chaos used in the classical framework of mean-field limits:

Definition 1 (u-chaotic, Definition 2.1. in [113]). Let u be a probability measure on a
separable metric space M. Then, a sequence fN of symmetric probability measures6 on
the product space MN is said to be u-chaotic if for any finite number k ∈ N and bounded,
continuous functions φ1, . . . , φk ∈ Cb(M) it holds that

lim
N→∞

fN , φ1 ⊗ . . .⊗ φk ⊗ 1⊗ . . .⊗ 1 =
k

i=1

u, φi . (1.2)

Remark 1.1 (Weak convergence of k-marginals). Note that condition (1.2) means that
for all k ∈ N the k-marginal of the sequence fN of symmetric probability measures on MN

converges weakly to the product measure u⊗k.

Before we continue with stating the definition of propagation of chaos, we have to fix some
ideas and the framework of (interacting) particle systems. We will explain more about
the specific form of mean-field particle systems, in the following section (Section 1.2),
however, in order to properly state the definition of propagation of chaos, we need the
following concept of empirical measures: Let XN (t) := (X1(t), . . . , XN (t)) be a sequence
of N (interacting) indistinguishable7 particles at a certain time t ≥ 0. Then, we define the
associated empirical measure at time t ≥ 0 as the following random distribution

µXN
(t, x) :=

1

N

N

i=1

δXi(t)(x), t ≥ 0, (1.3)

where δX(·) denotes the Dirac delta at point X.

Proposition 1.2 (Equivalent statements to u-chaotic, Proposition 2.2 in [113]).
Under the assumption of Definition 1, the following statements are equivalent

(i) fN is u-chaotic

(ii) Condition (1.2) holds for k = 2, which means that it is sufficient to show convergence
of the second marginal of fN towards the product measure u⊗2; (see Remark 1.1)

(iii) If XN := (X1, . . . , XN ) is distributed according to fN , i.e. Law(X1, . . . , XN ) = fN
for all N ∈ N, then the associated empirical measure µXN

(·) converges in law towards
the deterministic measure u, where the empirical measure is defined in (1.3).

For a proof of this proposition, we refer to [113]. We note that for showing convergence in
law of the empirical measure µXN

is enough to prove that for any test function φ ∈ Cb(M),
which is bounded and continuous, it holds that E(| 1N N

i=1 φ(Xi)− M φ(x)du(x)|) → 0 for
N → ∞, see [113] and [83].

Remark 1.3 (Law of large numbers). Since statement (iii) in Proposition 1.2 shows that
the empirical measure µXN

converges to a deterministic measure u, this can be seen as a
version of ’Law of large numbers’ for particle systems.

6‘Symmetric’ means invariant under permutations of the coordinates
7The assumption of indistinguishability implies that the joint law is symmetric
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1 Introduction

Now, we have all definitions in hand to define propagation of chaos. Let

XN (t) := (X1(t), . . . , XN (t))

be a sequence of N interacting indistinguishable particles and t ≥ 0. Additionally, let
u(t) be a solution to a partial differential equation with initial condition u0 (the concrete
form of this PDE will be made explicit in Section 1.2; to understand the concept it is not
important).

Definition 2 (Propagation of chaos for a particle system, Definition 4 in [62]).
If at time t = 0 the joint distribution fN (0) of XN (0) is u0-chaotic, then we say that
propagation of chaos holds, if at any time t > 0 the joint distribution fN (t) of XN (t) is
u(t)-chaotic.

Due to Proposition 1.2 this implies that µXN
(t) → u(t) for N → ∞ holds true in law at

any time, which shows that in this case the particle dynamics converge at any time to the
deterministic law u(t).

Remark 1.4. Choosing Xi(0) = ξi with independent and identically distributed random
variables on M such that Law(ξi) = u0, implies that fN (0) is trivially u0-chaotic.

Heuristically, we can interpret the propagation of chaos property in the setting of interact-
ing particle systems in the following way: Let us start with independent and identically
distributed random variables at time t = 0. At any point t > 0 – since the particles are
interacting (see Section 1.2) – they are not independent any more. However, as the number
of particles N grows, this property of independence (which implies a factorised law) can be
recovered in the large particle limit for any time t > 0.

Multi-species propagation of chaos

In Chapter 2 of this thesis, we show a propagation of chaos result for a multi-species model,
where we use an extended variant of Definition 1 that was already used for instance in [2] in
the framework of a multi-species neural network. Due to the symmetry assumption on the
probability measures in Definition 1 (and therefore the assumption of indistinguishability
of all particles)– which is not true for multi-species models – Definition 1 has to be adapted
for a multi-species case. Let N ∈ N be the total number of particles and n ∈ N the number
of species. We denote the particle dynamics with

XN (t) := (X1
1 (t), . . . , X

n
N (t)),

where the upper index denotes the species and assume that particles within one species are
indistinguishable. Then, we say that at time t ≥ 0, the sequence of joint laws fN of XN is
u(t) = (u1(t), . . . , un(t))-chaotic, if for any k ∈ N, the law of the k-tuple (Xs1

i1
(t), . . . , Xsk

ik
(t))

converges weakly to the product measure k
i=1 usi(t). Here, each species has a different

limiting process, however chaos still propagates in time. In Chapter 2, we show propagation
of chaos for a multi-species model in a different (stronger) sense, by path-wise estimates,
see Section 1.2 for an introduction to this coupling technique.
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1.1 Notion of chaos

Other notions of chaos

Definition 1 and Definition 2 go back to the classical work [66]. However, it might be useful
to also use other notions of chaos. In this section, we give some insight into other notions
of propagation of chaos, which are governed by using different norms of convergence. The
idea however stays the same as in Definition 2. We follow the review paper [62] and the
article [56].

Convergence in Monge-Kantorovich-Wasserstein distance, [62]. In some applica-
tions, propagation of chaos is shown with respect to the p-MKW-distance: Let ρ1, ρ2 be
two probability measures with finite p-th moment, then the p-MKW distance for p ≥ 1 is
defined as follows

Wp(ρ1, ρ2) := inf
(X,Y ),Law(X)=ρ1

Law(Y )=ρ2

E(|X − Y |p)
1/p

,

see [62] for instance. Hence, one can look at propagation of chaos in MKW-distance in the
following way:

Definition 3. Let the assumptions in Definition 2 hold. Let fk
N (t) denote the distribution

of the k-marginal of fN (t) for any t ≥ 0 and

Wp(f
k
N (0), u⊗k

0 ) → 0 for N → ∞.

Then, propagation of chaos holds in p-MKW norm if for any time t > 0

Wp(f
k
N (t), u⊗k(t)) → 0 for N → ∞.

We refer the reader also to Section 1.2, where we show that convergence in expectation of
the second moment (using so-called coupling techniques) implies propagation of chaos in
2-MKW-distance. See also article [56], where different implications between the notation
of chaos by Kac and propagation of chaos in 1-MKW-distance are shown. In the present
thesis, with regard to the MKW-distance, only the above mentioned implication (1.14)
shown in the next section is of relevance, especially in Chapter 2 and 3.

Another notion of chaoticity worth mentioning in this section is concerned with convergence
of the entropy functional:

Definition 4 (u-entropy-chaotic, [62, 56]). Let all assumptions of Definition 1 hold. By
defining the Boltzmann-entropy for fN as follows

HN (fN ) :=
1

N MN

fN log fNdx1 . . . dxN ,

we say that fN is u-entropy chaotic if H1(u) < ∞ and

HN (fN ) → H1(u).

7



1 Introduction

Indeed, one can show that the notion of entropic chaos is stronger than the chaoticity
defined in Definition 1:

Proposition 1.5 (Theorem 1.4 (iii) and (iv) in [56]). Let all assumptions of Definition 1
and Definition 4 hold and M = Rd. If fN is u-entropy chaotic, then it is u-chaotic.

For a proof we refer to [56], where property (1.2) is referred to as Kac-chaotic. We refer the
reader to [62] and [56] and the references therein for further discussions on other notions
of chaos, like Fisher-information-chaotic, which is even stronger than entropy-chaotic, [56,
Theorem 1.4].

1.1.3 Outlook: Fluctuations around the mean-field limit

As mentioned in Remark 1.3, proving a mean-field limit result and the associated prop-
agation of chaos property can be seen as a law of large numbers result on the level of
the empirical measure of the particle dynamics. However, by approximating a stochastic
interacting particle system by a deterministic measure, some information inherited by the
stochasticity of the system gets lost. This is the reason why the study of fluctuations
around the mean-field limit, which can be seen as next order correction to the mean-field
behaviour, is of high interest. Questions associated with fluctuations in mean-field settings
have already been studied by Braun and Hepp [9], Rost [100], Dawson [39], Sznitman [112],
Oelschläger [90], Lewicki [74] as well as Jourdain and Méléard [65] in the last century and
recently by [105] (in the setting of neural networks) and Wang et al. [117] for instance.
In this section, we give a motivational introduction:
If by denoting with µXN (t) empirical measure of the particle dynamics at time t > 0, see
(1.3), ‘propagation of chaos’ means µXN (t) → u(t) in law for a deterministic measure u(t).8

Since this corresponds to the law of large numbers, it is a natural question to ask, whether
the quantity

ξN (t) :=
√
N(µXN (t) − u(t)) (1.4)

associated with the well-known central limit theorem from standard probability theory con-
verges (in a distributional sense). For mean-field interacting particle systems, the random
measure ξN (t) is called fluctuation process around the mean-field limit u(t).
Assuming that there exists a limiting distribution of ξN , denoted by ξ, then formally, this
shows why studying the limiting behaviour of ξN can be seen as ‘next order correction’:
By writing µXN (t) = u(t) + 1√

N
ξN ≈ u(t) + 1√

N
ξ, the term 1√

N
ξ gives us a correction of

the limiting behaviour measured by the deterministic measure u(t) that vanishes at scale
N−1/2. By recalling the classical central limit theorem for independent random variables,
see [69, Theorem 17.10] and [41] for a formulation for empirical measures, we note that in
case of independent particles, the limiting distribution ξ is Gaussian. However, as already
mentioned in the section before, for interacting particles independence can clearly not be
expected. In the spirit of Definition 2, one could ask a (formal) question like: If at time
t = 0 the limit ξN (0) → ξ0 for N → ∞ towards a Gaussian distribution holds, does it hold

8In the next section we will see that in case of mean-field interacting particles u(t) solves a partial differ-
ential equation.
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1.1 Notion of chaos

at any time t > 0 in the limit, i.e. ξN (t) → ξt for N → ∞ and t > 0, where ξt is a Gaussian
distribution9?
In general, one can not expect this question to be answered positively for all particle systems
fulfilling the propagation of chaos property, see the work of Dawson [39] where he showed a
phase transition result for the fluctuation process in a specific mean-field setting. However,
for instance in [46] Fernandez and Méléard showed a general result for McKean-Vlasov
dynamics where a central limit theorem holds.
When studying the limiting behaviour of ξN defined in (1.4), the convergence rate of the
propagation of chaos property µXN (t) → u(t) is of great importance, however, it is a chal-
lenging task to show the optimal rate of convergence. In some situations, changing the
scaling in (1.4) from N1/2 to a sequence eN < N1/2 might be fruitful, see for example [65]
for a result in the moderate regime (see Section 1.2.2 for a definition of moderate regime)
where eN is chosen to be logarithmic in N . In this case, the limiting distribution of the
fluctuation process is deterministic and not Gaussian.

Connection to this thesis:

• In Chapter 2, we derive a cross-diffusion system (multi-species) with linear diffusion
from a mean-field interacting particle system, which implies a propagation of chaos
result. Interestingly, if we set the number of species to one, the limiting partial
differential equation reduces to a porous media equation with additional diffusion
σ > 0:

∂tu = σΔu+
1

2
Δ(u2) = σΔu+ div(u∇u). (1.5)

We note that (1.5) was already derived almost 15 years before in [47] by Figalli and
Philipowski with a different particle system. The main difference between the two
derivations can be heuristically explained form an analytical point of view by the
fact that we can write the Laplace-Operator Δ as div(∇) or interpret it as ‘pure
diffusion’.10

This shows that there exist two different particle dynamics (and hence two different
empirical measures µX 1

N (t)(·) and µX 2
N (t)(·)) converging in law to the same deterministic

measure u(t), which solves (1.5).

We expect that the fluctuation processes of the two particle systems respectively show
different limiting behaviours, which would help us to understand the difference of the
particle models from a modelling point of view. Partial results have been derived by
Oelschläger in [90], where he was able to prove a central limit theorem for a corrected
fluctuation process11 in the setting of Figalli and Philipowski and by Jourdain and
Méléard [65] who where able to show convergence of the fluctuation process with
a different scaling than N1/2. However, a complete picture is still missing in the
literature.

9We do not specify here what Gaussian means in this context; in fact we are talking about generalized
Ornstein-Uhlenbeck processes, see [58] for a definition.

10In terms of equation (1.7) of the following section: V1 = 0 in Chapter 2, V2 = 0 in [47].
11Corrected means ξN =

√
N(µXN (t) − u(t) + cN ), where cN is a deterministic correction which fulfils

cN → 0 for N → ∞.
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• Motivated by the findings in Chapter 2 described above, in Chapter 4, we make a step
towards extending Oelschläger’s technique of [90] for showing a (corrected) fluctuation
result in a more general setting, i.e. we also allow aggregating particles instead of
only repulsive particles in [90]. In terms of the limiting partial differential equation,
we allow both signs ± in front of the non-linear term:

∂tu = σΔu± 1

2
Δ(u2) = σΔu± div(u∇u). (1.6)

However, a complete fluctuation result for aggregating particles in the setting of (1.6)
is still an open question, since the new technique developed in Chapter 4 only gives
a partial result by assuming that at least a propagation of chaos result by coupling
methods holds in probability (see Section 1.2.1 for an introduction to coupling tech-
niques). Nonetheless, the method developed in Chapter 4 is expected to hold also
in models of Keller-Segel-type, see the appendix of Chapter 4 (Section 4.A), and
also forms an important step towards fluctuation results in the framework of cross-
diffusion models. We refer to Chapter 4 and the summary in Section 1.3 for a more
detailed introduction.

1.2 Particle systems of mean-field type

In order to simplify the notation, in this section we will always consider a filtered probability
space (Ω,F ,Ft,P), even when not specifically written.

Throughout this thesis we will consider the particle system to follow a stochastic differential
equation of mean-field type, i.e. the position of the i-th particle changes in time according
to the following system of stochastic differential equations

dXN
i (t) = ∇U(XN

i (t))dt+
1

N

N

j=1

V1(X
N
i (t)−XN

j (t))dt (1.7)

+ σ +
1

N

N

j=1

V2(X
N
i (t)−XN

j (t))
1/2

dWi(t) i = 1, . . . , N,

where (Wi(t))
N
i=1 is a family of independent Brownian motions and XN

i (t) ∈ Rd denotes
the position of the i-th particle in Rd at time t ≥ 0.

• ∇U : Rd → Rd can be seen as an environmental potential,

• V1 : Rd → Rd is considered as interaction kernel of the drift part, whereas V2 : Rd →
Rd measures the interaction in the diffusion part. We remark that in this thesis the
interaction only depends on the spatial difference of the particles, however, also more
general interactions can be considered, see the lecture notes [113], [83] and the review
papers [21], [22] for discussion on a more general framework.

In this thesis, we will always consider diffusive particle systems, which means that the
diffusion parameter σ > 0 is strictly positive. However, one of the interaction kernels
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1.2 Particle systems of mean-field type

V1, V2 might vanish: In Chapter 2, we only consider interaction in the diffusion part in
order to show a convergence result in the setting of cross-diffusion models, i.e. V1 = 0 in
that chapter. This structure is crucial for deriving the so-called SKT -model. In Chapter
3, which is concerned with the derivation of a fractional porous media equation, we only
consider interaction in the drift part, i.e. V2 = 0. Additionally, we want to remark that
in Chapter 3, we let σ → 0 in the end on the level of partial differential equations. On
the level of interacting particles we always consider the case that diffusion is present. In
Chapter 4, which deals with local diffusion-aggregation models, aggregation is incorporated
in the model by mean-field interaction in the drift part by using a gradient structure, see
the following section and equation (1.18) for an introduction.

1.2.1 Coupling and Itô’s formula

In the introduction of this thesis, we have mentioned that the general concept of mean-
field limits is to show convergence of a (stochastic) particle system towards a solution of a
deterministic partial differential equation (PDE). In Section 1.1, we gave a mathematical
definition of propagation of chaos which connects the finite-time marginals of a particle
system with the product measure of a limiting distribution, which solves a PDE - in this
section we will discuss the specific form of this PDE in more detail. Additionally, since
often times in the present work, we show convergence of the microscopic dynamics not by
proving the propagation of chaos property (Definition 2) directly, but by using a technique
which we refer to as coupling techniques, we will also provide general information about the
concept of coupling in this section. This technique is based on introducing an additional
particle system, the so-called non-linear process, which is not an interacting particle system
anymore. Instead the particles are independent from each other and have a common density
function, which – under suitable assumptions on the initial data and the interaction kernels
– solves certain PDE. Then, we show convergence of a particle system towards a solution of
this PDE by showing convergence of a particle XN

i towards its limiting non-linear process
Xi. In order to fix this idea, in the following part we summarise the toy example that was
presented in the well-known lecture notes by Alain-Sol Sznitman, [113].

Toy example for coupling techniques

This section mainly follows the lecture notes [113], but also incorporates aspects of the
lecture notes by Sylvie Méléard [83] and the review paper by Jabin and Wang [62]. In the
subsequent we consider (for simplicity) the following particle system of mean-field type:

dXN
i (t) =

1

N

N

j=1

V1(X
N
i (t)−XN

j (t))dt+
√
2σdWi(t), (1.8)

XN
i (0) = ξi, on Rd i = 1, . . . , N, (1.9)

which corresponds to (1.7) with ∇U, V2 = 0 and where we assume that the initial conditions
ξi are independent and identically distributed on Rd with density function u0. Additionally,
we assume that V1 : Rd → Rd is globally Lipschitz continuous and bounded.
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Next, we introduce the so-called non-linear process associated with (1.8):

dXi(t) = V1 ∗ u(t,Xi(t)) dt+
√
2σdWi(t), (1.10)

Xi(0) = ξi i = 1, . . . , N, (1.11)

where ∗ denotes the convolution in space on Rd and u(t) denotes the law of the non-
linear process Xi(t). The existence and uniqueness of the solution to (1.10) is shown
in [113, Theorem 1.1] under the boundedness and Lipschitz assumption on V1 stated in
the beginning of this section. However, the boundedness assumption can be weakened by
assuming boundedness of the second moment of u0, see [83, Theorem 2.2]. Interestingly –
and important for this thesis – under suitable assumptions on the initial data, the density
function of the law u(t), which we also denote by u(t), can be written as a solution to the
following PDE

∂tu = σΔu− div (V1 ∗ u)u , u(0) = u0. (1.12)

This can be (formally) seen by using Itô’s formula, which we recall for the reader’s conve-
nience here:

Theorem 1.6 (Itô’s formula, in Theorem 4.2.1 [95]).
Let the function φ(t, x) = (φ1(t, x), . . . , φk(t, x)) ∈ C2([0,∞)× Rd;Rk) and
X(t) = (X1(t), . . . , Xd(t)) be an d-dimensional Itô process which fulfils the following SDE

dX(t) = b(t)dt+ s(t)dW (t).

Then Y (t) = φ(t,X(t)) is a k-dimensional Itô process which fulfils

dYj = ∂tφj(t,X)dt+

d

i=1

∂xiφj(t,X)dXi +
1

2

d

i, =1

∂xix φj(t,X)dXidX ,

where dWidWj = δijdt, dtdWi = dWidt = dtdt = 0.

Let C2
b (Rd) denote the space of bounded and twice continuously differentiable functions on

Rd taking values in R, where all derivatives up to the second order are bounded. Then,
one sees that Itô’s formula implies that for every φ ∈ C2

b (Rd) it holds that

φ(Xi(t))− φ(Xi(0)) =
t

0
∇φ(Xi(s))dWi(s)

+
t

0
σΔφ(Xi(s)) + V1 ∗ u(s,Xi(s))∇φ(Xi(s))ds.

Taking the expectation and using the regularity of the test function φ and that u(t) is the
law of Xi(t) leads to a weak formulation of the PDE (1.12). Sometimes in literature, this
formulation is called very weak formulation, since all derivatives are on the test function.
Note that in order to show the general concept of coupling techniques used in this thesis,
the arguments here are not rigorous since we do not justify that the law of the nonlinear
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1.2 Particle systems of mean-field type

process is indeed absolutely continuous with respect to the Lebesgue measure and that we
have sufficient regularity of the density function u, see Chapter 2 where such an argument
is performed (for multi-species models) in a more rigorous way.

For this toy example (1.8) the following convergence result towards the non-linear process
Xi holds:

Theorem 1.7 (Convergence to nonlinear process, Theorem 1.4. in [113]). Under the
assumptions on V1 made in the beginning of this section, for any T > 0 it holds that

√
NE sup

0≤t≤T
XN

i (t)−Xi(t) ≤ C,

where C > 0 is a constant not dependent on the number of particles N , but can be dependent
on the Lipschitz constant of V1.

The proof can be done in a straightforward way by exploiting the independence of system
(1.10) and using a Gronwall-type argument, see [113, Theorem 1.1]. In [83, Theorem 2.3]
a similar result is shown by proving convergence of the second moment

E sup
0≤t≤T

XN
i (t)−Xi(t)

2 ≤ C/N, (1.13)

where the constant C > 0 also depends on the Lipschitz bound of V1 under the additional
assumption that u0 has finite second moment.

An important implication of Theorem 1.7 and (1.13) is the propagation of chaos property:
First, it is easy to see that (1.13) implies propagation of chaos in 2-Monge-Kantorovich-
Wasserstein distance, since by denoting with fk

N (t) the distribution of the k-th marginal of
the common distribution of (XN

1 (t), . . . , XN
N (t)) if follows

W2
2 (f

k
N (t), u⊗k(t)) ≤ E(|(XN

1 −X1, . . . , X
N
k −Xk)(t)|2) ≤ Ck/N → 0 for N → ∞.

(1.14)

A similar result holds true with W1 distance for the result in Theorem 1.7.
Second, we can show propagation of chaos in the sense of Definition 2 and Proposition 1.2.
By defining the empirical measure of (1.8) via µN (t) := N

i=1 δXN
i (t), see (1.3), a short

calculation (which is also presented in [62, Section 3.1]), shows that Theorem 1.7 (and
hence (1.13)) already implies the weak convergence of the empirical measure towards the
limiting solution of the nonlinear PDE (1.12):
For any test function φ ∈ C1

b (Rd)

E
1

N

N

i=1

φ(XN
i (t))−

Rd

φ(x)u(t, x)dx ≤ E
1

N

N

i=1

φ(XN
i (t))− 1

N

N

i=1

φ(Xi(t))

+ E
1

N

N

i=1

φ(Xi(t))−
Rd

φ(x)u(t, x)dx → 0,

(1.15)
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where the first term converges to zero due to Theorem 1.7 and the Lipschitz continuity of
φ and the second term converges to zero due to the independence of Xi (having density
function u) which implies that the law of large numbers holds in that case.
The above calculations show that by using this coupling approach, we do not only show
propagation of chaos in the level of empirical measures and hence according to Definition
2, but a path-wise estimate on the level of particles, which can be seen as a stronger version
of propagation of chaos than in Definition 2 and Definition 3.

Remark 1.8. Following the lecture notes by McKean [82], one can see that this toy example
can be extended for interaction in the diffusion part. Indeed, in Chapter 2 we will use the
coupling method for a model with interaction in the diffusion part in a more complicated
(multi-species) setting.

Other notions of convergences: For the presented toy example we have shown with
Theorem 1.7 and (1.13) two results where the convergence of the particles of the interacting
system (1.8) towards the non-linear system (1.10) is shown with respect to expectation.
However, in some situations it is useful to ‘reduce’ the type of convergence. For example,
instead of showing convergence in expectation, one could show convergence in probability,
i.e. for all α > 0

sup
0<t<T

P |XN
i (t)−Xi(t)| > α 12 → 0 as N → ∞. (1.16)

One advantage of using a different notion of convergence – besides technical reasons – ,
might be that by using a weaker notion of convergence one might get better convergence
rates in N . As used for instance in the works by Peter Pickl and co-authors [6, 72, 31] for
Vlasov-type equations, one could also use the cut-off parameter α depending on the number
of particles N ∈ N, such that α(N) → 0 if N → ∞. Heuristically, one can interpret this
notion of convergence in the following way: We allow a bad set – where we allow particles
to have a distance α(N) – with positive probability, however, as the number of particles
increases, the probability of the set converges to zero. For more details, we refer to the
above mentioned articles.

Connection to the present thesis: In Chapter 2 of this thesis, we extend the approach
of classical coupling methods for multi-species cross-diffusion models with interaction in
the diffusion part in the so-called moderate regime (see the following Section 1.2.2 for
an explanation of this concept). In Chapter 3, we use coupling methods for showing
convergence towards a fractional version of the porous media equation, where in contrast
to the cross-diffusion setting, the interaction is only considered in the drift part but we
deal with singularity of the kernel of (−Δ)−s for 0 < s < 1.
In Chapter 4, we also use the concept of coupling: Inspired by the techniques used by
Pickl and co-workers [6, 72, 31])we show that under the assumption that convergence in
probability holds (similar to (1.16)) with a certain cut-off rate α(N) > 0 and an algebraic

12For simplicity we use here the euclidian norm as a measure of the difference between the particles; however,
different notions of distance can be used; see [6], [72] and [31]
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1.2 Particle systems of mean-field type

convergence rate, also convergence in L2-norm of the smoothed empirical measures holds at
rate N−1/2−ε with ε > 0. This result can be seen as a step towards extending Oelschläger’s
techniques for proving a fluctuation result in a more general setting, see Section 1.1.3 for
an introduction of the concept of fluctuations and Chapter 4 for the exact result.

1.2.2 Strength of interactions - The concept of moderately interacting
particles

In the standard mean-field setting, see particle system (1.7), the interaction potentials
V1, V2 do not depend on the number of particles. As motivated in Section 1.2.1, by using
the standard coupling techniques, the limiting PDE structure (1.12) will be of non-local
type since it contains a convolution with the interaction kernel. Nevertheless, many partial
differential equations arising from biology, physics and other applications are of local type,
i.e. the partial differential equation at a point x does not depend on the values of the
solution in a neighbourhood but solely on the point x. In order to derive such equations
- which do not contain convolution or integral terms - one has to extend the classical con-
cept of mean-field limits through introducing the so-called strength of interaction of the
particles. We distinguish between weakly, moderately and strongly interacting particles. In
particular, in order to derive partial differential equations of local type, in this thesis the
concept of moderately interacting particles will be used in all chapters.

For this section, we follow the classification by Karl Oelschläger in [91] and consider the
two different types of particle systems: The classical diffusion setting (1.17) and a particle
system with gradient structure (1.18). Those two settings have to be treated slightly dif-
ferently when it comes to the strength of interaction.

I. Classical Diffusion Process. First, we consider the particle dynamic for N particles
on Rd, with d ≥ 1, where the equation for the i-th particle reads as follows

dXN
i (t) =

1

N

N

j=1
j=i

VN (XN
i (t)−XN

j (t))dt+
√
2σdWi(t), i = 1, . . . , N, (1.17)

where as usual by (Wi(t))
N
i=1 we denote a family of independent Brownian motions. We do

not specify the initial condition since it is not important for the classification; the reader
could just think of independent and identically distributed initial data.
However, we want to strongly emphasize that in difference to (1.7), the interaction kernel
VN can depend on the number of particles N , but we always assume that the scaling is
in such a way that VN L1(Rd) = 1. We are now interested in the so-called strength of

interaction, i.e. the influence of the interaction term N−1VN (XN
i (t) − XN

j (t)) between
particle i and j on the dynamics for particle i in terms of N . We consider three cases:

1. Weak Interaction. If VN does not depend on the number of particles, i.e. VN = V
for all N ∈ N, then the strength of interaction scales with N−1, since the influence of
the j-th particle on the movement of particle i can be measured by N−1V (XN

i (t)−
XN

j (t)).
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In [91], this case is called regime of weakly interacting particles, which can be moti-
vated by particle physics, [91]. However, one can also simply say that the strength
in terms of the number of particles is lower than in the other two cases (strongly and
moderately interacting particles) discussed below. The regime of weak interaction
has been studied in many different settings. It goes back to the work of McKean
[82], see also works by Braun and Hepp [9] (for Vlasov dynamics), Sznitman [113]
and Méléard [83]. It leads – as shown in the section before – to non-local partial
differential equations of convolution-type.

2. Strong Interaction. We speak of strongly interacting particles, if the interaction
potential VN scales in a way that the scaling N−1 cancels out, i.e.

VN (x) = NV (N1/dx) for all x ∈ Rd,

for a smooth function V with V L1(Rd) = 1. In this case the strength of interaction
is O(1). In the limit, this then leads to an approximation of Poisson point processes,
see [113, Chapter II.], which will not be covered in the present thesis.

3. Moderate Interaction. Analogous to the setting of strongly interacting particles,
we let V be a smooth and normalised function on Rd. Considering the following
scaling for the interaction potential for 0 < β < 1/d

VN (x) = NβdV (Nβx) for all x ∈ Rd,

the strength of interaction for each particle becomes O(N−1+βd) which – for 0 <
β < 1/d – is stronger than O(N−1) but weaker than O(1). Since the strength of
interaction lies ‘between’ weakly and strongly interacting particles, this regime is
called moderately interacting particles. As shown in [113, Chapter II.],[91] in this
regime the term aN , which can be seen as variance of the mean-field force since
VN → δ0 in distributional sense, defined as follows

aN := E
1

N − 1

N

j=2

VN (XN
1 (t)−XN

j (t))− u(t,XN
1 (t))

2

converges to 0 if and only if β < 1/d, where u(t, ·) solves a local PDE13. This shows
that in this case the mean-field interaction part approaches a local force. For the
critical case β = 1/d we have non-vanishing variance (and hence fluctuations) leading
to a strong regime, as discussed before. The idea of moderate interaction can be
also generalised by using a (not necessarily algebraic) scaling in N : Let η(N) be a
function in N with

VN (x) = η(N)−dV (η(N)−1x) for all x ∈ Rd,

where η(N) → 0 if N → ∞ is in such a way that 0 < η(N)−1 < O(N1/d), see for
example [65] where in comparison to Oelschläger’s work [91] a logarithmic connection

13The concrete shape of the PDE is discussed at the end of this section; see (1.22).
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1.2 Particle systems of mean-field type

between η and N is used. Then, the strength of interaction is O(N−1η(N)−d), which
also lies ‘between’ weakly and strongly interacting particles and justifies that we
also use the name moderately interacting particles in this case. This concept with
logarithmic connection is used in Chapter 2.

In Chapter 3 and 4, where we connect η and N in a logarithmic and an algebraic way
respectively, we use a general version of the following gradient diffusion process:

II. Gradient Diffusion Process. Similar to (1.17) we consider a particle system with
gradient structure:

dXN
i (t) =

1

N

N

j=1
j=i

∇VN (XN
i (t)−XN

j (t))dt+
√
2σdWi(t), i = 1, . . . , N. (1.18)

As mentioned before, this gradient structure will be used in Chapter 3 (in a more com-
plicated setting) and Chapter 4. In this setting, we will also distinguish between weakly,
strongly and moderately interacting particles. However, due to the gradient structure of the
interaction kernel the classification changes for strongly and hence moderately interacting
particles:

1. Weak Interaction. If VN does not depend on the number of particles, i.e. VN = V
for all N ∈ N, then analogously as for the non-gradient structure the influence scales
with N−1, which we refer to as the regime of weakly interacting particles.

2. Strong Interaction. In analogous way as in the setting of classical diffusion pro-
cesses, we use the notation

VN (x) = NβdV (Nβx) for all x ∈ Rd,

for some β > 0. The regime of strong interaction changes for gradient systems (1.18)
in comparison to (1.17). This is motivated in [91] by the fact that – assuming heuristi-
cally that the particlesXN

i (t) are already independent at any time t > 0 with common
density function u – the variance of the ‘force field’ FN (t, x) := 1

N
N
i=1∇VN (x −

XN
i (t)) of the particle system (1.18) has variance of order O(N−1+β(d+2)) at any point

x ∈ Rd and time t > 0. If β = 1/(d + 2), the variance does not vanish for N → ∞
leading to a regime of strongly interacting particles and non-trivial fluctuations of the
force in the limit. To the best of the author’s knowledge, the large particle limit has
not yet been determined for this choice of β in the gradient case.

3. Moderate Interaction. As mentioned for the case of strongly interacting particles,
the variance of the ‘force field’ FN (t, x) := 1

N
N
i=1∇VN (x −XN

i (t)) of the particle

system (1.18) at any point x ∈ Rd and time t > 0 has variance of orderO(N−1+β(d+2)).
From this fact one can see that for any 0 ≤ β < 1/(d + 2), the variance of the
force field vanishes for N → ∞, which heuristically shows that the particle system
is converging to a system with deterministic ‘force’. This leads to the regime of
moderately interacting particles, which is used in Chapter 4. In a similar way as for
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particle system (1.17), the idea of moderate interaction can be also generalised by
using a not necessarily algebraic scaling in N :

VN (x) = η(N)−dV (η(N)−1x) for all x ∈ Rd,

where η(N) → 0 if N → ∞ is such a way that 0 < η(N)−1 < O(N1/(d+2)). Then, the
strength of interaction is O(N−1η(N)−d), which lies ‘between’ weakly and strongly
interacting particles. This regime is considered in Chapter 3 of the present thesis.

In the following Table 1.1 we recall the different regimes of weak, moderate and strong
interaction for a interaction kernel scaled in N via VN (x) = NβdV (Nβx) for all x ∈ Rd.

Classical Diffusion Process (1.17) Gradient Diffusion Process (1.18)

Weak Regime β = 0 β = 0

Moderate Regime 0 < β < 1/d 0 < β < 1/(d+ 2)

Strong Regime β = 1/d β = 1/(d+ 2)

Table 1.1: Classification of the strength of interaction according to [91].

Remark 1.9. Despite the fact that the classification of [91] was done in a framework
where interaction is only present in the drift part of the particle system (this corresponds to
V2 = 0 in (1.7)), the term ’moderately interacting particles’ is also used in a more general
situation, where interaction is also part of the diffusion part, see [65] or Chapter 2 of this
thesis.

Moderate interaction and the connection to local partial differential equation

In all three following chapters (Chapter 2, Chapter 3 and Chapter 4) of this thesis, we work
in the regime of moderate interaction (either using a gradient structure similar to (1.18) in
the last two chapters or the classical diffusion model with interaction in the diffusion part
in Chapter 2), since all chapters of this thesis are concerned with the derivation of local
partial differential equations from interacting particle systems. For illustrative reasons, let
us start with the classical diffusion model (1.17): By using a moderate scaling we see that

VN (x) → δ0(x) for N → ∞ in distributional sense, (1.19)

where we recall that VN (x) = η(N)−dV (η(N)−1x) for x ∈ Rd with V a symmetric, non-
negative, smooth function with Rd V (x)dx = 1 and η(N) → 0 for N → ∞ where 0 <

η(N)−1 < O(N1/d). Additionally, for simplicity we assume that V is compactly supported
on the unit-ball in Rd denoted by B1(0)

14.

By (1.19), we see (at least formally) that the limiting equation (1.12) becomes local, since
in distributional sense VN ∗ u → u for N → ∞.

14In many applications this assumption can be weakened by assuming bounded moments of V .
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1.2 Particle systems of mean-field type

Intermediate Levels: The proofs given in Chapters 2, 3 and 4 are based on the concept
of a so-called intermediate level:
Note that we illustrate the idea of an intermediate level in a basic setting (particle level
according to (1.18)), see Chapters 2, 3 and 4 for different settings. The underlying idea is
the following:

• For the first step, we ‘ignore’ the dependence of η(N) on N , take η > 0 fixed and
define the interaction kernel as V η(x) := η−dV (η−1x). Hence, the interaction kernel
now does not depend on N . By looking at the interacting particle system (1.17)
but with VN = V η, this corresponds to weakly interacting particles with interaction
kernel V η. By coupling methods, we know that (see (1.8) - (1.10)) for fixed η > 0 our
particle system converges to the nonlinear process (which now depends on η > 0)

dX
η
i (t) = V η ∗ uη(t,Xη

i (t)) dt+
√
2σdWi(t) i = 1, . . . , N, (1.20)

where uη solves the non-local PDE ∂tuη = σΔuη − div((V η ∗ uη)uη). Here, we want
to remind the reader that particles X

η
i are independent and identically distributed

with density function uη.

System (1.20) will be called intermediate level throughout this thesis. At the end of
this step, we need to establish estimates for the difference between XN

i (t) and X
η
i (t)

in a suitable norm, like convergence in expectation as in Theorem 1.7. However, the
mathematical difficulty is that in comparison to Theorem 1.7, we have to keep track
of the dependence of η, since in the last step of this guideline we want to let η → 0.

• Second, we compare the non-linear process (1.20) with the following local non-linear
process

dXi(t) = u(t,Xi(t)) dt+
√
2σdWi(t) i = 1, . . . , N, (1.21)

where u (formally) solves the local partial differential equation

∂tu = σΔu− div(u2)15. (1.22)

Particle system (1.21) corresponds to the macroscopic level and the local partial
differential equation which we want to derive. Note that the macroscopic level (1.21)
as well as intermediate level (1.20) are not interacting particle systems but already
independent from the other particles in the two systems. At the end of this second
step we wish to derive estimates of the differences |Xi−X

η
i | for i = 1, . . . , N depending

on η. Usually, in this step the main difficulty are analytical error estimates between
the solution uη to the non-local PDE and u, the solution to the local PDE.

• Finally, we compare the particle dynamics

dXN
i (t) =

1

N

N

j=1

η(N)−dV (η(N)−1(XN
i (t)−XN

j (t)))dt+
√
2σdWi(t), i = 1, . . . , N.

15In one dimension this is a Burger’s type equation, [113] equation (2.3).
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with the local macroscopic dynamics (1.21) by using estimates between the particle
dynamics and the intermediate system (by carefully taking track on the dependence
on η > 0) and between the intermediate system and the local macroscopic dynamics
(1.21). By letting η → 0 and N → ∞ at the same time (with a connection between
η and N) the desired propagation of chaos result towards a local partial differential
equation is obtained.

We illustrate the concept with the following Figure 1.2.2:

Interacting Particle Level Intermediate Level Macroscopic Level

N → ∞, η > 0 fixed

η → 0, N → ∞

Figure 1.1: Schematic idea of an intermediate level

Interaction radius: We also want to remark by assuming that V has compact support
on B1(0), the scaled interaction potential VN has support on the ball with radius η(N).
Hence, the parameter η can be also interpreted as interaction radius of the particles. In
the limit, as the number of particles converges to infinity, this interaction radius converges
to zero leading to a local macroscopic level.

The idea of using an intermediate level in the moderate regime and hence exploiting well-
known techniques for mean-field limits in the weak regime is not newly invented in this
thesis, see [65] for instance, where the intermediate level is called mollified version. How-
ever, especially in Chapters 2 and 3 careful estimates on the non-local PDE level(s) are
incorporated in the estimates between the intermediate level and the macroscopic level as
well as between the intermediate level and the microscopic level, which shows the value
of classical PDE theory in the context of (stochastic) mean-field limits. To summarise, in
this section we have seen that by using coupling techniques in the moderate regime, on
the PDE level estimates of local and non-local partial differential equations are of great
importance.

1.3 Outline of this thesis

The mathematical results of this thesis are structured in three parts. In the following, we
shortly illustrate the main goal of each of the chapters and provide associated key-words;
a more detailed description is given in the Sections 1.3.1- 1.3.3:

• In Chapter 2, we derive the well-known so-called SKT model – which is a multi-species
cross-diffusion model – from a moderate stochastic interaction model. The results of
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1.3 Outline of this thesis

this chapter have been already published in the Journal of Nonlinear Science; [25].
key-words: cross-diffusion, non-local cross-diffusion models, moderate regime, loga-
rithmic scaling

Declaration of authorship: The topic of this article was brought to me by Ansgar
Jüngel, Esther Daus and Li Chen. Determining the shape of the particle model
and writing the proofs was mainly my work which came along together with fruitful
discussions and two research stays with my co-authors who helped me throughout
this project with valuable advice.

• Chapter 3 is devoted to the derivation of a fractional porous media equation from a
stochastic interacting particle model. The results of this chapter have been already
published in Communications in Partial Differential Equations; [30].
key words: fractional diffusion, nonlocal porous media equation, moderate regime,
smoothed singular kernel, vanishing diffusion
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lution(s) of the partial differential equation(s) considered in this article and corrected
mistakes within these sections. Finalizing the manuscript was split equally amongst
the authors Li Chen, Ansgar Jüngel, Nicola Zamponi and myself.

• In the last chapter of this thesis (Chapter 4), we extend techniques used by K.
Oelschläger [90] for a fluctuation result in the setting of repulsive particles. In Chapter
4 we show that the essential L2 convergence with rate N−1/2−ε used by Oelschläger
also holds in case of aggregating particles, given that propagation of chaos holds in
probability. This is an ongoing work together with Ansgar Jüngel and Li Chen; in
the appendix (Section 4.A) a result concerning propagation of chaos in probability
with a singular kernel of Coulomb-type is presented which is close to submission and
part of a joint work with Li Chen, Veniamin Gvozdik and Yue Li; [28].
key words: aggregating particles, L2-convergence, smoothed empirical densities, con-
vergence in probability
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using convergence results in probability – inspired by Peter Pickl and co-workers –
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which would not have been possible without the fruitful discussions and advice of
my co-workers. The proof of the result in the appendix of this chapter was done by
myself based on many calculations I did together with Li Chen in Mannheim on the
whiteboards in her office.
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1.3.1 Cross-diffusion system of SKT-type, Chapter 2

In this chapter, we give a rigorous proof that the following cross-diffusion system of SKT-
type, which is a well-known model in population dynamics for n interacting species,

∂tui = div(ui∇Ui) + Δ σui + ui

n

j=1

f(aijuj) on Rd, i = 1, . . . , n, (1.23)

with ui(0) = u0, σ > 0, aij ≥ 0, can be derived in the moderate regime for N → ∞ from a
particle system of size nN . In this microscopic system of mean-field type, the interaction
between particles of the same and of different species is modelled via interaction kernels
in the diffusion part of the stochastic differential equation (SDE). Equation (1.23) was
first introduced by Shigesada, Kawasaki and Teramoto [104] in the late 1970s to model
interacting insects under the effects of inter- and intra-species population pressures. The
functions Ui model environmental potentials, which are assumed to be ‘dispersive’ and the
non-linearity f ≥ 0 has to be at least locally Lipschitz continuous.
The approach used in this part of the thesis is based on two articles in the regime of
moderately interacting particles - the work [91] by K. Oelschläger for single-species models,
which was later extended by Jourdain and Méléard [65] by also considering interactions in
the diffusion part of the particle system.
As explained in Section 1.2.2, in the regime of moderate interaction, the interaction kernel
depends on the number of particles via the interaction radius η = η(N) (support of the
kernel) and approximates a Dirac distribution for η → 0 for N → ∞. In our case, we
choose a logarithmic connection between N and η, namely η ∼ C log(N)−1/(2d+2) , and
show the (strong) convergence of the second moment of the particles towards the solution
of system (1.23), which forms the main result of this chapter:
Let XN,η

k,i denote the k-th particle of the i-th species of the microscopic level and Xk,i the
k-th particle of the i-th species of the corresponding macroscopic particle systems (obtained
by coupling methods). Then, the following holds true:

Main Theorem (Chapter 2, Theorem 2.5). Under suitable conditions on the initial datum
u0 the convergence

sup
k=1,...,N

E
n

i=1

sup
0<s<T

(XN,η
k,i −Xk,i)(s)

2 ≤ C(T, n, σ1, . . . , σn)η
2(1−α) → 0 (1.24)

holds for η → 0 and N → ∞, where α > 0 is an approximation parameter which vanishes
for globally Lipschitz continuous functions f .

In order to prove the mean-field limit rigorously, we use the following non-local system

∂tuη,i = div(uη,i∇Ui) + Δ σiuη,i + uη,i

n

j=1

fη(B
η
ij ∗ uη,j) on Rd, i = 1, . . . , n, (1.25)

for fixed η > 0 as an intermediate system, where fη is a suitable approximation of f and
Bη

ij denotes the interaction kernel with radius η > 0 between species i and j.
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1.3 Outline of this thesis

This non-local system, whose existence and uniqueness analysis is also included in Chapter
2, can be viewed as mean-field approximation for fixed η in the weakly interacting regime.

Crucial to the particle derivation in this chapter are L∞((0, T )×Rd)-estimates of the PDE
solutions (and their derivatives) to the local system (1.23) and the non-local system (1.25),
which are given in Chapter 2, Theorems 2.2 and 2.3, respectively. Those estimates rely on
the fact that we derive solutions of the PDEs involved in this derivation in L∞(0, T ;Hs(Rd))
with s > d/2 + 1.

The novelty of this derivation is threefold: First, it is – to the best of the author’s knowl-
edge – the first rigorous derivation of the SKT system from stochastic interacting particles
of mean-field type. Second, we extend the concept of moderate interactions for multiple
species by considering interaction in the diffusion part of the particle system. Third, we
allow for non-globally Lipschitz interactions by the non-linearity f . The trade-off of using
a non-globally Lipschitz function f is a slower convergence rate than in [65]. However, for
globally Lipschitz interactions, we gain exactly the same convergence rate as in the single
species case by Jourdain and Méléard [65].
At the end of this chapter, numerical experiments are shown where we compare the results
concerning segregation behaviour with the cross-diffusion particle system used in [26].

Outlook: Interesting follow-up questions to this chapter can be

• Since the convergence rate in (1.24) is only logarithmic in N , it is an interesting ques-
tion whether this can be improved; possibly with a different notion of convergence?

• Similar to the question above: Can we allow for an algebraic scaling of η(N) in N?

• Does a fluctuation theorem (in the spirit of Section 1.1.3) hold for this multi-species
model?

1.3.2 Porous-media equation with fractional diffusion, Chapter 3

In the third chapter of this thesis, the so-called porous-medium equation with fractional
diffusion

∂tρ = div(ρ∇P (ρ)), P (ρ) = (−Δ)−sf(ρ) on Rd d ≥ 2, (1.26)

where f is a non-decreasing function with f(0) = 0 and for 0 < s < 1 we let (−Δ)−su = K∗u
with the singular kernel K(x) = C(d, s)|x|2s−d, is studied.
It is shown rigorously that (1.26) can be derived from a stochastic interacting particle
system using mean-field limit techniques by showing a propagation of chaos result with
moderately interacting particles. The two main difficulties of the derivation of this non-
local porous medium equation are the singularity of the convolution kernel K and that we
allow for a large class of (possible non-globally Lipschitz continuous) functions f(ρ). A
guiding example would be f(ρ) = ρα for α ≥ 1. Both of them can be overcome by using
suitable approximating sequences on the particle level which are specifically tailored for
the structure of equation (1.26). We use the following regularisation parameters
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• β > 0 : Using ideas of the general concept of moderately interacting particles, we
define a interaction kernel via Wβ(x) = β−dW1(|x|/β) for a smooth, symmetric,
non-negative and normalised function W1 on Rd, where β = β(N) depends on the
number of particles in a logarithmic way, i.e. β ∼ (log(N))−µ for some µ > 0. At this
point, we want to remark that caused by the special structure of the parabolic-elliptic
system (1.26), β > 0 does not take the role of an interaction radius, like η(N) > 0 in
Section 1.2.2, but still has a similar idea since

Wβ → δ0

in distribution for N → ∞ which implies β → 0. Because of this we still call the
regime used in this chapter moderately interacting regime.

• ζ > 0 : On the microscopic and intermediate particle level, we use a combination
between cut-off and convolution techniques in order to approximate K by a sequence
of smooth and compactly supported kernels Kζ . In the limit, we let ζ → 0 where
we connect ζ with the number of particles N in an algebraic way, i.e. ζ ∼ N−ν for
some 1/4 > ν > 0. The concrete value of ν depends on the choice of the parameter
s ∈ (0, 1).

• σ > 0 : On the one hand, this parameter is used in order to add additional diffusion
to the system (1.26). On the other hand, we also use it in order to approximate the
non-linearity f by a sequence of smooth functions. In contrast to ζ and β, we do not
connect σ with the number of particles.

Similarly to Chapter 2, we use the concept of intermediate levels represented by non-local
equations, which is important when we deal with moderate interactions. Different to the
cross-diffusion case, equation (1.26) does not contain pure diffusion. Therefore, we need
one additional stochastic level, which leads to the following hierarchy of SDE levels:

I. Microscopic Level: On this level, we consider N ∈ N interacting particles – denoted
by XN

i – with all regularisation parameters strictly positive, i.e. ζ > 0, β > 0, σ > 0.

II. Intermediate Level: This (technical) level follows the general approach of interme-
diate systems (see Section 1.2.2 for a general introduction), by letting N → ∞, but
‘ignoring’ the dependence of ζ > 0 and β > 0 and keeping them fixed. This level
is represented by an uncoupled system of SDEs, where all particles have a common
density function, which solves the following non-linear PDE

∂tρσ,β,ζ = σΔρσ,β,ζ + div ρσ,β,ζ∇Kζ ∗ fσ(Wβ ∗ ρσ,β,ζ) in Rd. (1.27)

III. Macroscopic Level (with additional diffusion):

∂tρσ = σΔρσ + div(ρσ∇(−Δ)−s(fσ(ρσ))) in Rd, (1.28)

where we recall that the approximation of f is denoted by fσ and also diffusion is
added to the system.
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1.3 Outline of this thesis

The limit σ → 0 is performed on the PDE level and not via coupling methods. We are
able to show that there exists a subsequence such that ρσ → ρ strongly in L1(Rd × (0, T )),
where ρ solves (1.26). We remark that, since we can not show uniqueness of (1.26) - which
is still an open question - the propagation of chaos result only holds up to a subsequence:

Main Theorem (Chapter 3, Theorem 3.2). For suitable scaling of β and ζ with respect
to N , the following holds: Let Pk

N,σ,β,ζ(t) be the joint distribution of (XN
1 (t), . . . , XN

k (t))
for k ≥ 1 and t ∈ (0, T ). Then there exists a subsequence in σ such that

lim
σ→0

lim
N→∞
(β,ζ)→0

Pk
N,σ,β,ζ(t) = ρ⊗k(t),

where the limit is understood in the weak sense and is locally uniform in time and ρ solves
the fractional porous media equation (1.26).

In this chapter, we also present existence results to the equations (1.26), (1.28) and (1.27),
including error estimates between the different PDE approximations, see Theorem 3.1,
Proposition 3.14 and Proposition 3.4 .

Outlook: Except for the open question of uniqueness of the fractional diffusion equation,
regarding the particle derivation the following questions can be of interest:

• When it comes to singular kernels for mean-field type derivations of partial differential
equations, a natural question would be whether we can allow the singular kernel to
be used on the particle level, see for instance the recent frameworks developed by
Jabin and Wang [61], [63] and Serfaty and Duerinckx [43]. Is the regularisation Kζ

necessary in order to derive a propagation of chaos result?

• Another natural question to ask is whether we are able to derive better rates of
convergence between the particle levels and can we derive a fluctuation result for
singular kernels of Riesz type which are used in this chapter?

1.3.3 Aggregation-diffusion equation, Chapter 4

In the last chapter of this thesis, we consider the following local diffusion model with
aggregation for κ = ±1

∂tu = σΔu− κ div(u∇u) for t > 0, u(0) = u0 in Rd. (1.29)

It is well-known [91, 27] that – under suitable assumptions on the initial data and the
interaction kernel – (1.29) can be derived from a system of interacting particles in the
moderate regime:

dXN,η
i (t) =

κ

N

N

j=1

∇V η(XN,η
i (t)−XN,η

j (t))dt+
√
2σdWi(t), (1.30)

XN,η
i (0) = ζi in Rd, i = 1, . . . , N,
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where the parameter κ models the type of the dynamics: κ = −1 corresponds to repulsive
interactions and κ = 1 to aggregating particles. As usual in the moderate regime V η(x) :=
η−dV (|x|/η), for a smooth, non-negative and normalized function V , where in the limit
N → ∞, the parameter η > 0 is connected to N ∈ N, such that η → 0 if N → ∞.
As mentioned in Section 1.1.3, it is of particular interest to study so-called fluctuations
around the mean-field limit since by approximating a stochastic interacting particle sys-
tem through a deterministic partial differential equation some information induced by the
stochasticity of the interaction system gets lost. In the setting of moderately interacting
particles, we are interested in the intermediate fluctuations, where we do not compare the
empirical measure µN,η associated with (1.30) with the local PDE solution (1.29) but with
the intermediate solution ūη, which solves for fixed η > 0:

∂tū
η = σΔūη − κ div(ūη∇V η ∗ ūη), t > 0, ūη(0) = u0 in Rd. (1.31)

Following techniques developed by K. Oelschläger for repulsive particles, in order to study
the limiting behaviour of the intermediate fluctuations, we show an L2(Rd) convergence
result for the smoothed empirical measure towards the smoothed intermediate solution

fN,η(t, x) := (µN,η(t) ∗ Zη)(x), gη(t, x) := (ūη(t) ∗ Zη)(x),

where V η is assumed to be ‘convolutional square’, i.e. V η = Zη ∗Zη. This result holds also
in case of aggregating particles, which are not included in [91]. For more details on the
connection of the L2(Rd) convergence result and the limiting behaviour of the intermediate
fluctuations, we refer to Section 4.1.2.

The main result of this chapter is an L2(Rd) convergence result of the smoothed empir-
ical measure towards the smoothed intermediate solution with rate N−1/−ε. The rate of
convergence plays an important role in the study of the fluctuation behaviour; see Section
4.1.2. The theorem reads as follows:

Main Theorem (Chapter 4, Theorem 4.1). Let η = N−β , where 0 < β < 1/(10d + 12).
Then, for any T > 0, there exists ε > 0 and a constant C(β, d, T ) > 0 such that for
sufficiently large number of particles N > 0,

E sup
0<t<T

(fN,η − gη)(t) 2
L2 + σ

T

0
∇(fN,η − gη)(t) 2

L2dt ≤ C(β, d, T )N−1/2−ε.

This results holds under suitable assumptions on the initial condition u0 and by assuming
that propagation of chaos holds for η = N−β at least in probability in the following way:
For every γ > 0 and T > 0 there exists a constant C(γ, T ) such that

P max
i=1,...,N

|XN,η
i (t)−X

η
i (t)| > N−α ≤ C(γ, T )N−γ , (1.32)

for a suitable cut-off rate α > 0. In Section 4.A, we discuss this assumption and give
a rigorous proof for convergence in probability for interaction kernels approximating the
singular Coulomb-kernel. Verifying this result rigorously in a more general setting – for
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1.3 Outline of this thesis

instance for interaction kernels approximating a Dirac distribution – is an open research
question.
In order to give a proof of the main theorem of this section, we develop a new technique,
since the result in [91] only works for repulsive particles and can not be extended in a
straightforward way for aggregating particles. The idea is the following:
In comparison to the repulsive case, the following term ( ·, · denotes the dual bracket)

M(t) = κ
t

0
µN,η, |∇Zη ∗ (fN,η − gη)|2 ds

can not be ignored due to the positive sign in case κ = 1 (aggregating case). Hence,
we have to estimate it directly. Since we already know that (µN,η − ūη) → 0 weakly,
[91, 27], where ūη solves the non-local equation (1.31), inspired by PDE techniques a first
attempt would be (similar as for pure PDE estimates) to ‘replace’ µN,η with ūη and use
that sup0<t<T ūη(t) L∞(Rd) < σ for small initial data, which would allow us to absorb this
term by diffusion terms.
However, this attempt does not work directly since the remainder sup0<t<T µN,η(t) −
ūη(t) L∞(Rd) can not be bounded uniformly in ω ∈ Ω. Therefore, we add and subtract the
empirical measure of the intermediate particle system (where all particles are independent
with common density function ūη(t)) denoted by µN,η. This allows us to split the difference
µN,η − ūη into

(i) a mean-field estimate µN,η − µN,η, and

(ii) a law of large numbers estimate µN,η− ūη (since the intermediate particles are already
independent).

By exploiting our assumption of convergence in probability as well as a law-of-large numbers
estimate in probability (see Chapter 4, Lemma 4.2), we do not estimate sup0<t<T µN,η(t)−
µN,η(t) L∞(Rd) and sup0<t<T µN,η(t)− ūη(t) L∞(Rd) directly, but we allow for a set B ⊂ Ω
where the respective difference is ‘large’. By exploiting the mean-field convergence and the
law-of-large numbers estimate we can conclude that the probability of B is small, which
illustrates the main idea of our technique.
Because of an error term we make by manipulating the dual bracket ·, · and the convo-
lution with Zη, the estimates are very delicate. For more details we refer the reader to
Chapter 4.

Outlook: Inspired by the results of Chapter 4, the following open research questions could
serve as starting points for future research:

• First, to prove the assumed propagation of chaos property for η = N−β in case
of aggregating particles would provide a more complete picture of the intermediate
fluctuations in case of aggregating particles, we comment on the current technical
challenges in Section 4.A.2.

• Second, it is interesting to note that the L2(Rd) convergence shown in Chapter 4 can
be used in order to prove a strong mean-field limit in L1(Rd) norm, which has been
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recently shown as a consequence of relative entropy (or modulated free energy) esti-
mates for certain interaction systems of Coulomb-type, [63, 10, 43]. Future research
will be concerned with the connection between the before mentioned convergence
types.

• Further investigations on the fluctuation behaviour of particle system (1.30) are still
open. The main theorem of this chapter will serve as an important step towards a
better understanding of the limiting behaviour. Additionally, analysing the limiting
SPDE structure will be of particular interest and a future research goal.

• Since Section 4.A.1 provides a convergence result in probability, a natural question
would be whether it is possible to extend the newly developed techniques in this part
of the thesis towards Coulomb interactions in order to show an L2(Rd) convergence
result and consequently a fluctuation theorem for Keller-Segel-type equations. This
would fill a significant gap in literature fo the study of Keller-Segel systems.

• Prospectively, results on fluctuations around the mean-field limit for cross-diffusion
models are of particular interest. Since aggregation effects play an important role in
cross-diffusion settings, the results of this thesis can serve as an important first step.
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Once we accept our limits, we go
beyond them.

— Albert Einstein1

2 Rigorous derivation of cross-diffusion
systems by a moderate model
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This chapter is taken from the article

[25] Li Chen, Esther S. Daus, Alexandra Holzinger, and Ansgar Jüngel. Rigorous derivation of
population cross-diffusion systems from moderately interacting particle systems. Journal of
Nonlinear Science, 31, 1-38, 2021.

2.1 Problem setting

The aim of this chapter is to derive the population cross-diffusion system of Shigesada,
Kawasaki, and Teramoto [104] from a stochastic, moderately interacting particle system in
a mean-field-type limit. More precisely, we derive the system of equations

∂tui = div(ui∇Ui) + Δ σiui + ui

n

j=1

f(aijuj) , ui(0) = u0,i in Rd, t > 0, (2.1)

where i = 1, . . . , n is the species index, d ≥ 1 the space dimension, u = (u1, . . . , un) is the
vector of population densities, and Ui = Ui(x) are given environmental potentials. The
parameters σi > 0 are the constant diffusion coefficients in the stochastic system, and
aij ≥ 0 are limiting values of the interaction potentials. In the linear case f(s) = s, we
obtain the population model in [104]. System (2.1) with nonlinear functions f have also
been studied in the mathematical literature; see, e.g., [32, 40, 73]. Such systems can be

1Attributed to A. Einstein.
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2 Rigorous derivation of cross-diffusion systems by a moderate model

formally derived from random walks on a lattice, where the nonlinearity originates from the
transition rates in the random-walk model [119, Appendix A]. Assuming that the transition
rates depend in a nonlinear way on the densities leads to equations similar to (2.1). We
assume that f is smooth but possibly not globally Lipschitz continuous (including power
functions). Our results are valid for functions fi depending on the species type, but we
choose the same function for all species to simplify the presentation.

This chapter extends the many-particle limit of [26] leading to the cross-diffusion system

∂tui = div σi∇ui +
n

j=1

aijui∇uj in Rd, t > 0, i = 1, . . . , n, (2.2)

which differs from (2.1) by the drift term, the nonlinear function f , and the diffusion term

div
n

j=1

aijuj∇ui.

System (2.2) is the mean-field limit of the particle system for N individuals

dY N,η
k,i = −

n

j=1

1

N

N

=1

∇Bη
ij Y N,η

k,i − Y N,η
,j dt+

√
2σidW

k
i (t),

Y N,η
k,i (0) = ξki , i = 1, . . . , n, k = 1, . . . , N,

(2.3)

where (W k
i (t))t≥0 are d-dimensional Brownian motions and ξ1i , . . . , ξ

N
i are independent and

identically distributed (iid) random variables with the common probability density function
u0,i. The functions

Bη
ij(x) = η−dBij

|x|
η

, x ∈ Rd, (2.4)

are interaction potentials regularizing the delta distribution δ0, i.e. B
η
ij → aijδ0 as η → 0

in the sense of distributions.

System (2.1) is derived from an interacting particle system for n species with particle
numbers N1, . . . , Nn, moving in the whole space Rd. To simplify, we set N = Ni for all
i = 1, . . . , n. The key idea in this chapter is to consider interacting diffusion coefficients:

dXN,η
k,i = −∇Ui(X

N,η
k,i )dt+ 2σi + 2

n

j=1

fη
1

N

N

=1
( ,j)=(k,i)

Bη
ij(X

N,η
k,i −XN,η

,j )
1/2

dW k
i (t),

XN,η
k,i (0) = ξki , i = 1, . . . , n, k = 1, . . . , N,

(2.5)
where fη is a globally Lipschitz continuous approximation of f with a Lipschitz constant
smaller or equal than η−α for some small α > 0. In view of (2.4), we can interpret the
scaling parameter η as the interaction radius of each particle.

Equations (2.1) are derived from system (2.5) in the limit N → ∞, η → 0, with the scaling
relation between η and N given in (2.9) below. First, for fixed η > 0, we perform a classical
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mean-field limit from (2.5) to the following auxiliary intermediate system:

dX
η
k,i = −∇Ui(X

η
k,i)dt+ 2σi + 2

n

j=1

fη Bη
ij ∗ uη,j(X

η
k,i)

1/2

dW k
i (t),

X
η
k,i(0) = ξki , i = 1, . . . , n, k = 1, . . . , N,

(2.6)

where we set uη,j(X
η
k,i) = uη,j(t,X

η
k,i(t)) for j = 1, . . . , n. The function uη,j satisfies the

nonlocal cross-diffusion system

∂tuη,i = div(uη,i∇Ui) + Δ σiuη,i + uη,i

n

j=1

fη(B
η
ij ∗ uη,j) ,

uη,i(0) = u0i in Rd, i = 1, . . . , n,

(2.7)

and will be later identified as the probability density function ofX
η
k,i. Note that we consider

N independent copies X
η
k,i, k = 1, . . . , N , and the intermediate system depends on k only

through the initial datum.
Then, passing to the limit N → ∞, η → 0 in (2.5) leads to the macroscopic system

dXk,i = −∇Ui(Xk,i)dt+ 2σi + 2

n

j=1

f(aijuj(Xk,i))
1/2

dW k
i (t),

Xη
k,i(0) = ξki , i = 1, . . . , n, k = 1, . . . , N,

(2.8)

where the functions ui satisfy (2.1) and can be identified as the probability density functions
of Xk,i. In this limit, we assume that there exists δ > 0, depending on n, mini σi, and T ,
such that

η−2(d+1+α) ≤ δ logN (2.9)

holds, where α ≥ 0 depends on the Lipschitz condition of f , see Assumption (A4) below,
and that the function f and its derivatives or, alternatively the initial data, are sufficiently
small (see Section 2.2 for details). The main result in this chapter is the error estimate

sup
k=1,...,N

E
n

i=1

sup
0<s<T

XN,η
k,i (s)−Xk,i(s)

2 ≤ C(T )η2(1−α). (2.10)

We prove this estimate for the potential Ui(x) = −1
2 |x|2, but more general functions are

possible; see Remark 2.1. Note that estimate (2.10) implies propagation of chaos; see
Remark 2.6. In the case α = 0, our scaling (2.9) for the multi-species case recovers the
result in [65], where a single-species, moderately interacting particle system with interac-
tion in the diffusion part was considered. Our strategy is similar to that one of [65] (and
based on ideas of Oelschläger [94]). Since we allow for locally Lipschitz continuous non-
linearities only, we obtain a smaller convergence rate compared to [65], which in fact is
natural, since we approximate the nonlinearity with functions having a Lipschitz constant
of order η−α. A difference to [65] is that the authors assume that the diffusion matrix in
the stochastic part is positive definite. We do not suppose such a condition, but we need
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2 Rigorous derivation of cross-diffusion systems by a moderate model

a smallness condition on the nonlinearity for the existence proofs of systems (2.1) and (2.7).

Since the underlying method of this chapter are moderately interacting particles and inter-
mediate systems obtained through coupling methods, we refer the reader to Section 1.2.2
for an introduction on this matter for single species models.
Next, we present a brief overview on the existing literature concerning mean-field lim-
its and moderately interacting many-particle limits in the context of diffusion equations
which are of particular interest for this chapter. For an introductory overview we refer
the reader to the introduction of this thesis. Mean-field limits from stochastic differential
equations have been investigated since the 1980s; see the reviews [54, 62] and the clas-
sical works by Sznitman [112, 113]. Oelschläger proved that in the many-particle limit,
weakly interacting stochastic particle systems converge to a deterministic nonlinear pro-
cess [92]. Later, he generalized his approach for systems of reaction-diffusion equations
[94] and porous-medium-type equations with quadratic diffusion [93], by using moderately
interacting particle systems. We also refer to the recent work [27], which also includes
numerical simulations. As already mentioned, moderate interactions in stochastic parti-
cle system with nonlinear diffusion coefficients were investigated for the first time in [65].
Later, Stevens derived the chemotaxis model from a many-particle system [109]. Further
works concern the mean-field limit leading to reaction-diffusion equations with nonlocal
terms [59], the hydrodynamic limit in a two-component system of Brownian motions to
the cross-diffusion Maxwell–Stefan equations [102], and the large population limit of point
measure-valued Markov processes to nonlocal Lotka–Volterra systems with cross diffusion
[51]. The latter model is similar to the nonlocal system (2.7). The limit from the nonlocal
to the local diffusion system was shown in [87] but only for triangular diffusion matrices.
The many-particle limit from a particle system driven by Lévy noise to a fractional cross-
diffusion system related to (2.2) was recently shown in [38]. Furthermore, the population
system (2.1) was derived in [36] from a time-continuous Markov chain model using the
BBGKY hierarchy. The main result of this chapter presents, up to our knowledge, the
first rigorous derivation of the Shigesada–Kawasaki–Teramoto (SKT) model (2.1) from a
stochastic particle system in the moderate many-particle limit.
Porous-medium-type equations can be derived from stochastic interacting particle systems
by assuming interactions in the drift term [47] or in the diffusion term [65]. We allow for
interactions in the diffusion part but in a multi-species setting. The paper [51] is concerned
with a multi-species framework too, but the authors assume bounded Lipschitz continuous
interaction potentials and derive a nonlocal cross-diffusion system only. We are able to
relax the assumptions and derive the local cross-diffusion system (2.1).
Compared to the work [36], we take the limits N → ∞, η → 0 simultaneously. However, our
approach also implies the two-step limit. Indeed, we can first perform the limit N → ∞ for
fixed η > 0 and afterwards the limit η → 0 on the PDE level; see Lemma 2.9 and Theorem
2.3. The simultaneous limit N → ∞, η → 0, satisfying the scaling relation (2.9), gives a
more complete picture, since we can prove the convergence in expectation for the difference
of the solutions to the stochastic systems (2.5) and (2.8).

Finally, we remark that the cross-diffusion models (2.1) and (2.2) have quite different struc-
tural properties; also see [12, 13]. First, system (2.2) has a formal gradient-flow structure
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2.2 Assumptions and main results

for each species separately, while system (2.1) can be written, under the detailed-balance
condition [26], only in a vector-valued gradient-flow form. Second, the segregation behavior
of both models is different, i.e., segregation is stronger for the solutions to (2.2) than for
model (2.1); see the numerical experiments in Section 2.7.

This chapter is organized as follows: We present our assumptions and main results in
Section 2.2. The existence of smooth solutions to the cross-diffusion systems (2.1) and
(2.7) and an error estimate for the difference of the corresponding solutions is proved in
Sections 2.3 and 2.4, respectively. The proofs are based on Banach’s fixed-point theorem
and higher-order estimations. We present the full proof since the environmental potential
Ui(x) = −1

2 |x|2 is not square-integrable, which requires some care; see the arguments
following (2.22). Section 2.5 is concerned with the identification of the solutions to the
local and nonlocal cross-diffusion systems (2.1) and (2.7), respectively, with the probability
density functions associated to the particle systems (2.8) and (2.6), respectively. Error
estimate (2.10), the main result of this chapter, is proved in Section 2.6. In Section 2.7,
we present Monte–Carlo simulations for an Euler–Maruyama discretization of system (2.5)
and compare them to the numerical results from the particle system associated to (2.2).
In the appendix of this chapter (Section 2.A), we recall some inequalities used within the
proofs of this chapter.

2.2 Assumptions and main results

We impose the following assumptions:

(A1) Data: σi ∈ (0,∞) and ξ1i , . . . , ξ
N
i are independent and identically distributed (iid)

square-integrable random variables with the common density function u0,i for i =
1, . . . , n on the probability space (Ω,F , P ).

(A2) Environmental potential: Ui(x) = −1
2 |x|2, i = 1, . . . , n.

(A3) Interaction potential: Bij ∈ C∞
0 (Rd) satisfies supp(Bij) ⊂ B1(0), where B1(0) is

the unit ball in Rd and i, j = 1, . . . , n.

(A4) Nonlinearity: f ∈ W s+1,∞
loc (R; [0,∞)) and fη ∈ W s+1,∞(R, [0,∞)) is such that

fη = f on [−aη, aη] and the Lipschitz constant of fη is less than or equal to η−α for
a fixed α ∈ [0, 1). Here, s > d/2 + 1 and aη → ∞ as η → 0. If f is globally Lipschitz
continuous, we set α = 0 and fη = f .

Remark 2.1 (Discussion). Environmental potential: The sign of Ui guarantees that
the populations are dispersed since the drift term becomes −x · ∇ui − ui. We have taken a
quadratic potential Ui to simplify the presentation. “Dispersive” potentials (i.e. potentials
Ui with ΔUi ≤ 0) are needed in the analysis, since we cannot bound terms including ΔUi if
ΔUi ≥ 0. It is possible to choose general (dispersive) potentials Ui ∈ C∞(Rd) such that ∇Ui

is globally Lipschitz continuous, DkUi ∈ L∞(Rd) for k = 2, . . . , s + 2, the Hessian D2Ui

is negative semidefinite, ΔUi < 0, and DkUi for k = 3, . . . , s is sufficiently small in the
L∞(Rd) norm. Thus, we may choose Ui(x) = −|x|2 + g(x) and g is a smooth perturbation.
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2 Rigorous derivation of cross-diffusion systems by a moderate model

Nonlinearity: Since f is not assumed to be globally Lipschitz continuous, we need to
approximate the nonlinearity. The condition on the Lipschitz constant of fη ensures that
we have a control on the growth of the Lipschitz constant of fη in the limit N → ∞ and
η → 0. This growth condition is needed in the proof of Lemma 2.9; see (2.34) and thereafter.
The condition s > d/2+1 ensures that the embedding Hs(Rd) → W 1,∞(Rd) is continuous,
and this embedding is needed to obtain solutions in Hs(Rd) and to derive the estimates.

We introduce some notation. We set

aij =
Rd

Bij(|x|)dx, i, j = 1, . . . , n,

Bη
ij(x) = η−dBij(|x|/η), Aij = Bij L1(Rd) = Bη

ij L1(Rd) and A = maxi,j=1,...,nAij . Let

Cs > 0 be the constant of the continuous embedding Hs(Rd) → L∞(Rd) and set

I = [−2ACs u0 Hs(Rd), 2ACs u0 Hs(Rd)]. (2.11)

Then, for small η > 0 such that aη ≥ 2ACs u0 Hs(Rd), we have fη = f on I.
First, we ensure that the nonlocal and local cross-diffusion systems (2.7) and (2.1), respec-
tively, have global smooth solutions.

Theorem 2.2 (Existence for the nonlocal system). Let Assumptions (A2) and (A4) hold,
u0 ∈ Hs(Rd;Rn) for s > d/2 + 1, and let η > 0 be such that aη ≥ 2ACs u0 Hs(Rd). There
exists ε > 0 depending on u0 such that if f Cs+1(I) ≤ ε, system (2.7) possesses a unique
solution uη = (uη,1, . . . , uη,n) satisfying

uη,i ∈ L∞(0,∞;Hs(Rd)) ∩ L2(0,∞;Hs+1(Rd)),

uη
2
L∞(0,T ;Hs(Rd)) + σ∗ ∇uη

2
L2(0,∞;Hs(Rd)) ≤ u0

2
Hs(Rd),

where 0 < σ∗ < σmin := mini=1,...,n σi.

The dependence of ε on u0 can be made more explicit. The proof shows that we need

to choose 0 < ε < Cσ
1/2
min u0

−s
Hs(Rd)

, where C > 0 is independent of u0 and σi. Thus, if

f Cs+1(I) is finite, the global existence result is valid for small initial data.

Theorem 2.3 (Existence for the local system). Let u0 and η satisfy the assumptions of
Theorem 2.2. Then there exists ε > 0 depending on u0 such that if f Cs+1(I) ≤ ε, system
(2.1) possesses a unique solution u = (u1, . . . , un) satisfying

ui ∈ L∞(0,∞;Hs(Rd)) ∩ L2(0,∞;Hs+1(Rd)), i = 1, . . . , n,

u 2
L∞(0,∞;Hs(Rd)) + σ∗ ∇u 2

L2(0,∞;Hs(Rd)) ≤ u0
2
Hs(Rd),

where 0 < σ∗ < σmin. Moreover, with the solution uη from Theorem 2.2, it holds that for
an arbitrary T > 0,

u− uη L∞(0,T ;L2(Rd)) + ∇(u− uη) L2(0,T ;L2(Rd)) ≤ C(T )η.

Next, we state an existence result for the stochastic particle systems (2.5), (2.6), and (2.8).
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2.3 Proof of Theorem 2.2

Proposition 2.4. Let Assumptions (A1)–(A4) hold and let η > 0, N ∈ N. Then:

(i) There exist unique square-integrable adapted stochastic processes with continuous paths,
which are strong solutions to systems (2.5), (2.6), and (2.8), respectively.

(ii) For each t > 0, the (nNd)-dimensional random variables X
η
(t) and X(t) possess density

functions uη(t)
⊗N and u(t)⊗N with respect to the Lebesgue measure on RnNd, respectively.

The proof follows from [67] and [89]. Indeed, Theorem 2.9 in [67, page 289] shows that
there exist continuous square-integrable stochastic processes, which are strong solutions to
(2.5), (2.6), and (2.8), respectively. Strong uniqueness is guaranteed by Theorem 2.5 in
[67, page 287]. We conclude from [89, Theorem 2.3.1] that Xη(t) and X(t) are absolutely
continuous with respect to the Lebesgue measure and thus, they possess density functions
uη(t, x)

⊗N and u(t, x)⊗N , respectively. We prove in Section 2.5 that the density functions
uη and u can be identified with uη and u, the solutions to (2.7) and (2.1), respectively.

The following theorem is our main result.

Theorem 2.5. Let XN,η
k,i and Xk,i be the solutions to (2.5) and (2.8), respectively. Then

there exist parameters δ > 0, depending on n, σmin, and T , and ε > 0, depending on u0,
such that if η−2(d+1+α) ≤ δ logN and f Cs+1(I) ≤ ε,

sup
k=1,...,N

E
n

i=1

sup
0<s<T

(XN,η
k,i −Xk,i)(s)

2 ≤ C(T, n, σmin)η
2(1−α),

where α ≥ 0 is defined in Assumption (A4).

Remark 2.6. It is well-known that this result implies propagation of chaos in the single-
species case; see, e.g., [62, Section 3.1]. In the multi-species case, this generalizes for fixed
k to the convergence of the k-marginal distribution Fk(t) of (X

N,η
j1,i1

(t), . . . , XN,η
jk,ik

(t)) at any

time t > 0 towards the product measure ⊗k
=1ui (·, t) as N → ∞, η → 0, i.e.

W 2
2 Fk(t),

k

=1

ui (·, t) ≤ kC(T, n, σmin)η → 0,

where W2 denotes the 2-Wasserstein distance. We refer to the introduction of this thesis,
in particular Section 1.2.1, where we sketch the connection between a convergence result in
expectation and propagation of chaos in Wasserstein-distance. Additionally, a discussion
of propagation of chaos for multi-species systems is provided in Section 1.1.2.

2.3 Proof of Theorem 2.2

We prove the global existence of smooth solutions to the nonlocal system (2.7). Since η
is fixed in the proof, we omit it for uη to simplify the notation. We split the proof in
several steps. In the first step, we prove the existence of local-in-time solutions satisfying
ui(t) Hs(Rd) ≤ 2 u0 Hs(Rd) for 0 < t < T (η) for some (possibly) small T (η) > 0. Actually,
we show in the second step, that the factor 2 can be replaced by one. This uniform estimate
allows us in the third step to conclude the global existence.
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2 Rigorous derivation of cross-diffusion systems by a moderate model

Step 1: Local existence of solutions. In this step, the smallness conditions on η and f are
not needed. The idea is to apply the Banach fixed-point theorem on the space

XT := v ∈ L∞(0, T ;Hs(Rd;Rn)) : v L∞(0,T ;Hs(Rd)) ≤ 2 u0 Hs(Rd) ,

where T > 0 will be determined later in this proof. We define the fixed-point operator
S : XT → XT , S(v) = u, where u is the unique solution to the linear problem

∂tui = div(ui∇Ui) + Δ ui(σi +Ki(v(t, x))) , ui(0) = u0,i in Rd, t > 0, (2.12)

with Ki(v) = n
j=1 fη(B

η
ij ∗ vj) ≥ 0, i = 1, . . . , n. We need to show that S is well

defined. We infer from Young’s convolution inequality (Lemma 2.11) and the embedding
Hs(Rd) → L∞(Rd) that

sup
0<t<T

∇Ki(v) L∞(Rd) ≤
n

j=1

fη L∞(R) ∇Bη
ij L1(Rd) sup

0<t<T
vj(t) L∞(Rd)

≤ C(η)
n

j=1

vj L∞(0,T ;Hs(Rd)) < ∞, (2.13)

i.e., Ki(v) is globally Lipschitz continuous. Therefore, a Galerkin argument to verify
higher-order regularity shows that, for given v ∈ XT , there exists a unique solution
ui ∈ L∞(0, T ;Hs(Rd)) ∩ L2(0, T ;Hs+1(Rd)) to (2.12). It remains to show that u =
(u1, . . . , un) ∈ XT for some T > 0. The estimations are not difficult, but since ∇Ui is
not square integrable, some care is needed.
First, we prove higher-order estimates for Ki(v). Let α ∈ Nd

0 be a multi-index with order
|α| = m ≤ s. By Lemma 2.13 and Young’s convolution inequality,

T

0
DαKi(v)

2
L2(Rd)dt ≤ C

T

0

n

j=1

fη
2
Cm−1(R) Bη

ij ∗ vj 2(m−1)

L∞(Rd)
Dα(Bη

ij ∗ vj) 2
L2(Rd)dt

≤ C(η)
T

0

n

j=1

Bη
ij

2m
L1(Rd) vj

2(m−1)

L∞(Rd)
Dαvj

2
L2(Rd)dt

≤ C(η)

n

j=1

T

0
vj

2m
Hs(Rd)dt < ∞, (2.14)

where here and in the following, C > 0, C(η) > 0, etc. are generic constants with values
changing from line to line. In a similar way, applying Lemmas 2.11 and 2.12,

sup
0<t<T

Dα∇Ki(v)
2
L2(Rd) ≤ C sup

0<t<T

n

j=1

Dα fη(B
η
ij ∗ vj)∇Bη

ij ∗ vj 2

L2(Rd)

≤ C sup
0<t<T

n

j=1

fη(B
η
ij ∗ vj) L∞(Rd) ∇Bη

ij L1(Rd) Dmvj L2(Rd)

+ Dm(fη(B
η
ij ∗ vj)) L2(Rd) ∇Bη

ij L1(Rd) vj L∞(Rd)

2 ≤ C(η), (2.15)
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2.3 Proof of Theorem 2.2

since, according to Lemma 2.13, we can bound sup0<t<T Dm(fη(Bij∗vj)) L2(Rd) in terms of
fη Cs+1(R), Bη

ij L1(Rd), and sup0<t<T vj Hs(Rd), and it holds that ∇Bη
ij L1(Rd) ≤ C(η).

We proceed with the proof of u ∈ XT for some T > 0. Applying Dα to (2.12), multiplying
the resulting equation by Dαui, and integrating over (0, τ)× Rd for τ < T yields

1

2 Rd

|Dαui(τ)|2dx− 1

2 Rd

|Dαu0,i|2dx+ σi
τ

0 Rd

|∇Dαui|2dxdt = I1 + I2 + I3, (2.16)

where

I1 = −
τ

0 Rd

∇Dαui ·Dα(ui∇Ui)dxdt,

I2 = −
τ

0 Rd

∇Dαui ·Dα(∇uiKi(v))dxdt,

I3 = −
τ

0 Rd

∇Dαui ·Dα(ui∇Ki(v))dxdt.

First, let |α| = m = 0. Then, integrating by parts in I1, using Young’s inequality, and
observing that Ui(x) = −1

2 |x|2,

I1 =
1

2

τ

0 Rd

u2iΔUidxdt = −d

2

τ

0 Rd

u2i dxdt ≤ 0,

I2 = −
τ

0 Rd

Ki(v)|∇ui|2dxdt ≤ 0,

I3 ≤ σi
2

τ

0 Rd

|∇ui|2dxdt+ 1

2σi
∇Ki(v)

2
L∞(0,T ;L∞(Rd))

τ

0
ui

2
L2(Rd)dt,

where we used Ki(v) ≥ 0 for I2. It follows from (2.13) that

I1 + I2 + I3 ≤ σi
2

τ

0 Rd

|∇ui|2dxdt+ C
τ

0
ui

2
L2(Rd)dt,

where C > 0 depends on the L∞(0, T ;Hs(Rd)) norm of v. Inserting this estimate into
(2.16) with α = 0 and applying the Gronwall inequality, we infer that

Rd

ui(τ)
2dx+

σi
2

τ

0 Rd

|∇ui|2dxdt ≤ C(u0)e
Cτ .

This shows that ui is bounded in L∞(0, T ;L2(Rd)) and L2(0, T ;H1(Rd)).
Now, let |α| = m ≥ 1. Then, integrating by parts, using ΔUi ≤ 0, and applying Young’s
inequality again,

I1 =
1

2

τ

0 Rd

(Dαui)
2ΔUidxdt−

τ

0 Rd

∇Dαui · Dα(ui∇Ui)−Dαui∇Ui dxdt

≤ σi
4

τ

0 Rd

|∇Dαui|2dxdt+
0<|β|≤|α|

τ

0
cβ Dα−βui

2
L2(Rd) Dβ∇Ui

2
L∞(Rd)dt

≤ σi
4

τ

0 Rd

|∇Dαui|2dxdt+ C
τ

0
ui

2
Hm−1(Rd)dt,
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2 Rigorous derivation of cross-diffusion systems by a moderate model

where we used the fact that Dβ∇Ui is bounded for |β| = 1 and vanishes for |β| > 1. It
follows from integration by parts, Ki(v) ≥ 0, and Lemma 2.14 that

I2 = −
τ

0 Rd

∇Dαui · Dα(∇uiKi(v))−∇DαuiKi(v) dxdt

−
τ

0 Rd

Ki(v)|∇Dαui|2dxdt

≤ σi
4

τ

0 Rd

|∇Dαui|2dxdt+ C
τ

0
DKi(v) L∞(Rd) Dm−1∇ui L2(Rd)

+ DmKi(v) L2(Rd) ∇ui L∞(Rd)
2
dxdt.

We infer from estimates (2.13) and (2.14) for Ki(v) and the embedding
Hs(Rd) → W 1,∞(Rd) that

I2 ≤ σi
4

τ

0 Rd

|∇Dαui|2dxdt+ C
τ

0
ui

2
Hs(Rd)dt.

Finally, we use Lemma 2.12 and estimates (2.13) and (2.15) to obtain

I3 ≤ σi
4

τ

0 Rd

|∇Dαui|2dxdt+ C
τ

0 Rd

ui L∞(Rd) Dm∇Ki(v) L2(Rd)

+ Dmui L2(Rd) ∇Ki(v) L∞(Rd)
2
dxdt

≤ σi
4

τ

0 Rd

|∇Dαui|2dxdt+ C(η)
τ

0
ui

2
Hs(Rd)dt.

Inserting these estimates into (2.16) and summing over |α| ≤ s, we arrive at

ui(τ)
2
Hs(Rd) +

σi
4

τ

0
∇ui

2
Hs(Rd)dt ≤ u0,i

2
Hs(Rd) + C(η)

τ

0
ui

2
Hs(Rd)dt.

Summing over i = 1, . . . , n and applying Gronwall’s inequality gives

u(τ) 2
Hs(Rd) ≤ u0

2
Hs(Rd)e

C(η)τ ≤ u0
2
Hs(Rd)e

C(η)T .

Choosing T > 0 sufficiently small, we can ensure that u(τ) Hs(Rd) ≤ 2 u0 Hs(Rd) for all
0 < τ < T . This shows that u ∈ XT , i.e., the operator is well-defined.

Next, we prove that S : XT → XT is a contraction. Let v, w ∈ XT and set v̄ = S(v) and
w̄ = S(w). Taking the difference of equations (2.12) satisfied by v̄i and w̄i, respectively,
using the test function v̄i − w̄i, and integrating by parts, it follows that

1

2 Rd

(v̄i − w̄i)(τ)
2dx+ σi

τ

0 Rd

|∇(v̄i − w̄i)|2dxdt = I4 + I5 + I6, (2.17)

where

I4 =
1

2

τ

0 Rd

ΔUi(v̄i − w̄i)
2dxdt ≤ 0,
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2.3 Proof of Theorem 2.2

I5 = −
τ

0 Rd

∇ (v̄i − w̄i)Ki(v) · ∇(v̄i − w̄i)dxdt,

I6 = −
τ

0 Rd

∇ w̄i(Ki(v)−Ki(w)) · ∇(v̄i − w̄i)dxdt.

Because of Ki(v) ≥ 0 and estimate (2.13) for ∇Ki(v), we find that, by Young’s inequality,

I5 = −
τ

0 Rd

Ki(v)|∇(v̄i − w̄i)|2dxdt−
τ

0 Rd

(v̄i − w̄i)∇Ki(v) · ∇(v̄i − w̄i)dxdt

≤ σi
4

τ

0
∇(v̄i − w̄i)

2
L2(Rd)dt+ C(σi)

τ

0
v̄i − w̄i

2
L2(Rd) ∇Ki(v)

2
L∞(Rd)dt

≤ σi
4

τ

0
∇(v̄i − w̄i)

2
L2(Rd)dt+ C(η)

τ

0
v̄i − w̄i

2
L2(Rd)dt.

It follows again from Young’s inequality that

I6 ≤ σi
4

τ

0
∇(v̄i − w̄i)

2
L2(Rd)dt+ C(σi)

τ

0
∇w̄i

2
L∞(Rd) Ki(v)−Ki(w)

2
L2(Rd)dt

+ C(σi)
τ

0
w̄i

2
L∞(Rd) ∇(Ki(v)−Ki(w))

2
L2(Rd)dt. (2.18)

Since w̄ ∈ XT , we have ∇w̄i L∞(Rd) ≤ C w̄i Hs(Rd) ≤ C(u0) and w̄i L∞(Rd) ≤ C(u0).
We use the fact that fη and fη are globally Lipschitz continuous:

Ki(v)−Ki(w) L2(Rd) ≤ C(η)
n

j=1

Bη
ij ∗ (vj − wj) L2(Rd) ≤ C(η) v − w L2(Rd),

∇(Ki(v)−Ki(w)) L2(Rd) ≤
n

j=1

(fη(B
η
ij ∗ vj)− fη(B

η
ij ∗ wj))B

η
ij ∗ ∇vj L2(Rd)

+
n

j=1

fη(B
η
ij ∗ wj)∇Bη

ij ∗ (vj − wj) L2(Rd)

≤ C(η)

n

j=1

vj − wj L2(Rd) Bη
ij L1(Rd) ∇vj L∞(Rd)

+ C(η)

n

j=1

∇Bη
ij L1(Rd) vj − wj L2(Rd)

≤ C(η) v − w L2(Rd).

Inserting these inequalities into (2.18) and summarizing the estimates for I4, I5, and I6, we
conclude from (2.17) and summation over i = 1, . . . , n that

1

2
(v̄ − w̄)(τ) 2

L2(Rd) +

n

i=1

σi
4

τ

0
∇(v̄i − w̄i)

2
L2(Rd)dt

≤ C1

τ

0
v̄ − w̄ 2

L2(Rd)dt+ C2τ v − w 2
L∞(0,τ ;L2(Rd)).
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2 Rigorous derivation of cross-diffusion systems by a moderate model

We apply Gronwall’s inequality and the supremum over 0 < τ < T to find that

v̄ − w̄ 2
L∞(0,T ;L2(Rd)) ≤ 2C2e

2C1TT v − w 2
L∞(0,T ;L2(Rd)).

Thus, choosing T > 0 such that 2C2e
2C1TT < 1, we infer that S : XT → XT is a contraction.

By Banach’s fixed-point theorem, there exists a unique solution u ∈ L∞(0, T ;Hs(Rd)) ∩
L2(0, T ;Hs+1(Rd)) to (2.7).
Step 2: A priori estimates. Let u = uη be the unique solution to (2.7). We know from
Step 1 that ui(t) L∞(Rd) ≤ Cs ui(t) Hs(Rd) ≤ 2Cs u0 Hs(Rd) for any 0 < t < T . Recall
that T = T (η) and hence we do not have uniform estimates in η even for small T > 0
at this step. We show in this step the estimate ui(t) Hs(Rd) ≤ u0 Hs(Rd), which allows
us to conclude that the end time T can be arbitrary and actually does not depend on η.
We apply Dα to (2.7) (with |α| = m ≤ s), multiply the resulting equation by Dαui, and
integrate over (0, τ)× Rd for τ < T , similarly to the corresponding estimate in Step 1:

1

2 Rd

|Dαui(τ)|2dx− 1

2 Rd

|Dαu0,i|2dx+ σi
τ

0 Rd

|∇Dαui|2dxdt = I7 + I8 + I9, (2.19)

where

I7 = −
τ

0 Rd

∇Dαui ·Dα(ui∇Ui)dxdt,

I8 = −
τ

0 Rd

∇Dαui ·Dα(∇uiKi(u))dxdt,

I9 = −
τ

0 Rd

∇Dαui ·Dα(ui∇Ki(u))dxdt,

and we recall that Ki(u) =
n
j=1 fη(B

η
ij ∗ uj).

First, let m = 0. Arguing similarly as for I1 and I2, we find that I7 ≤ 0 and I8 ≤ 0. We
estimate ∇Ki(u) =

n
j=1 fη(B

η
ij ∗ uj)Bη

ij ∗ ∇uj :

∇Ki(u) L2(Rd) ≤ A

n

j=1

fη(B
η
ij ∗ uj) L∞(Rd) ∇uj L2(Rd), (2.20)

recalling that A = maxi,j=1,...,n Bη
ij L1(Rd). This gives for m = 0:

I9 ≤ ui L∞(0,τ ;L∞(Rd))

τ

0
∇ui L2(Rd) ∇Ki(u) L2(Rd)dt

≤ C u0 Hs(Rd)

n

j=1

fη(B
η
ij ∗ uj) L∞(0,τ ;L∞(Rd))

τ

0
∇uj

2
L2(Rd)dt.

From this point on, we will need the smallness condition on fη and fη. Because of

Bη
ij ∗ uj(t) L∞(Rd) ≤ Bη

ij L1(Rd)Cs uj(t) Hs(Rd) ≤ 2ACs u0 Hs(Rd), (2.21)

where Cs > 0 is the constant of the embedding Hs(Rd) → L∞(Rd), (Bη
ij ∗ uj(t))(x) lies in

the interval I = [−2ACs u0 Hs(Rd), 2ACs u0 Hs(Rd)] for 0 < t < T and x ∈ Rd. On this
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2.3 Proof of Theorem 2.2

interval, fη = f if η > 0 is sufficiently small. From now on, we use f ≤ ε and |f | ≤ ε on I
for a small ε > 0. Thus, we have

I9 ≤ Cε u0 Hs(Rd)

n

j=1

τ

0
∇uj

2
L2(Rd)dt.

Inserting these estimates into (2.19), we conclude that

ui(τ)
2
L2(Rd) + σi − Cε u0 Hs(Rd)

τ

0
∇ui

2
L2(Rd)dt ≤ u0,i

2
L2(Rd).

Choosing ε > 0 sufficiently small, this gives an estimate for ui in L∞(0, T ;L2(Rd)) ∩
L2(0, T ;H1(Rd)).

Next, let m ≥ 1. The estimate for I7 is delicate since ∇Ui ∈ L2(Rd), and the corresponding
estimate for I1 cannot be directly used. We split I7 into two parts:

I7 =
τ

0 Rd

DαuiD
α(∇ui · ∇Ui + uiΔUi)dxdt

=
τ

0 Rd

Dαui Dα(∇ui · ∇Ui)−Dα∇ui · ∇Ui dxdt

+
τ

0 Rd

Dαui Dα(uiΔUi)−DαuiΔUi dxdt, (2.22)

noting that the second terms in both integrals are the same (with different signs) because
of

−
Rd

DαuiD
α∇ui · ∇Uidx = −1

2 Rd

∇(Dαui)
2 · ∇Uidx =

1

2 Rd

(Dαui)
2ΔUidx.

Moreover, the last integral in (2.22) vanishes since ΔUi = −d. In the first integral of the
right-hand side of (2.22), the first-order derivative of Ui cancels, while the second-order
derivative equals ∂2Ui/∂xj∂xk = −δjk and all higher-order derivatives of Ui vanish. Then
a straightforward computation leads to

I7 = −d
τ

0 Rd

(Dαui)
2dxdt ≤ 0.

For the estimates of I8 and I9, we need a smallness condition on f and its derivatives. We
apply Young’s inequality and Lemma 2.12 to estimate the (more delicate) term I9:

I9 ≤ σi
4

τ

0
∇Dαui

2
L2(Rd)dt+ C(σi)

τ

0
Dα(ui∇Ki(u))

2
L2(Rd)dt

≤ σi
4

τ

0
∇Dαui

2
L2(Rd)dt+ C

τ

0
ui L∞(Rd) Dm∇Ki(u) L2(Rd)

+ Dmui L2(Rd) ∇Ki(u) L∞(Rd)
2
dt.
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2 Rigorous derivation of cross-diffusion systems by a moderate model

Estimate (2.21) shows that fη = f and |f | ≤ ε on I. Then, by similar arguments leading
to (2.20),

∇Ki(u) L∞(Rd) ≤ A
n

j=1

fη(B
η
ij ∗ uj) L∞(Rd) ∇uj L∞(Rd)

≤ Aε ∇u L∞(Rd) ≤ εACs ∇u Hs(Rd).

Moreover, using Lemma 2.13, the embedding Hs(Rd) → W 1,∞(Rd), and m ≤ s,

Dm∇Ki(u) L2(Rd) ≤ A
n

j=1

∇uj L∞(Rd) Dm(fη(B
η
ij ∗ uj)) L2(Rd)

≤ C
n

j=1

∇uj Hs(Rd) f Cm−1(I) Bη
ij ∗ uj m−1

L∞(Rd)
Bη

ij ∗Dmuj L2(Rd)

≤ εC ∇u Hs(Rd) u m−1
L∞(Rd)

Dmu L2(Rd) ≤ εC ∇u Hs(Rd) u0
s
Hs(Rd),

recalling definition (2.11) of the interval I. Consequently, the estimate for I9 becomes

I9 ≤ σi
4

τ

0
∇Dαui

2
L2(Rd)dt+ Cε2 u0

2s
Hs(Rd)

τ

0
∇u 2

Hs(Rd)dt.

The term I8 is treated in a similar way, resulting in

I8 ≤ σi
4

τ

0
∇Dαui

2
L2(Rd)dt+ Cε2 u0

2s
Hs(Rd)

τ

0
∇u 2

Hs(Rd)dt.

Set σmin = mini=1,...,n σi > 0. We conclude from (2.19) after summation over |α| ≤ s and
i = 1, . . . , n that

u(τ) 2
Hs(Rd) + σmin − Cε2 u0

s
Hs(Rd)

τ

0
∇u 2

Hs(Rd)dt ≤ u0
2
Hs(Rd).

Thus, for sufficiently small ε > 0, we arrive at the desired estimate uniform in η.
Step 3: Global existence and uniqueness. We have proved that u(τ) Hs(Rd) ≤ u0 Hs(Rd)

for 0 < τ ≤ T for some sufficiently small T > 0. The value for T does not depend on
the solution. Thus, we can use u(T ) as an initial datum and solve the equation in [T, 2T ].
Repeating this argument leads to a global solution. The uniqueness of a solution follows
after standard estimates, based on the global Lipschitz continuity of fη and fη (see the
calculations for I4, I5, and I6) and choosing ε > 0 sufficiently small.

2.4 Proof of Theorem 2.3

We show the global existence of smooth solutions to the local system (2.1) and an error
estimate for the difference of the solutions to (2.1) and (2.7), respectively. First, we prove
that a solution uη to (2.7) converges to a solution u to (2.1) in a certain sense. Then we
prove the error bound in Theorem 2.3 by estimating the difference uη − u. The key of the
proof is the estimate of the difference fη(B

η
ij ∗ uη,j)− fη(aijuη,j).
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2.4 Proof of Theorem 2.3

Step 1. Existence and uniqueness of solutions. Let uη be a smooth solution to (2.7) and
let φ ∈ C∞

0 (Rd) with supp(φ) ⊂ BR, ζ ∈ C0([0, T ]) be test functions, where BR is a ball
around the origin with radius R > 0. Then the weak formulation of (2.7) reads as

T

0
∂tuη.i, φ ζ(t)dt = −

T

0 Rd

uη,i∇Ui · ∇φζ(t)dxdt

−
T

0 Rd

σi∇uη,i +∇(uη,iKi(uη)) · ∇φζ(t)dxdt,

(2.23)

where ·, · is the duality pairing between H−1(Rd) and H1(Rd) and Ki(u) =
n
j=1 fη(B

η
ij ∗

uj). We want to perform the limit η → 0. By the uniform estimate of Theorem 2.2, there
exists a subsequence, which is not relabelled, such that uη u weakly in L2(0, T ;Hs+1(Rd))
and weakly* in L∞(0, T ;Hs(Rd)) ⊂ L∞(0, T ;L∞(Rd)) as η → 0. Our aim is to prove that
u is a weak solution to (2.1).
It follows from the proof of Lemma 7 in [26] that

Bη
ij ∗ ∇uη,j aij∇uj weakly in L2(0, T ;L2(Rd)).

We claim that fη(B
η
ij ∗ uη,j) → f(aijuj) strongly in L2(0, T ;L2(BR)). First, we observe

that u ∈ L∞(0, T ;L∞(Rd)). The weak formulation (2.23) gives

∂tuη,i L2(0,T ;H−1(BR)) ≤ uη,i L2(0,T ;L2(Rd)) ∇Ui L∞(BR) + σi ∇uη,i L2(0,T ;L2(Rd))

+ ∇uη,i L2(0,T ;L2(Rd)) Ki(uη) L∞(0,T ;L∞(Rd))

+ uη,i L2(0,T ;L2(Rd)) ∇Ki(uη) L∞(0,T ;L∞(Rd)).

Because of

Ki(uη) L∞(0,T ;L∞(Rd)) ≤
n

j=1

fη(B
η
ij ∗ uη,j) L∞(0,T ;L∞(Rd)) ≤ C f L∞(I),

∇Ki(uη) L∞(0,T ;L∞(Rd)) ≤
n

j=1

fη(B
η
ij ∗ uη,j) L∞(0,T ;L∞(Rd)) Bη

ij ∗ ∇uη,j L∞(0,T ;L∞(Rd))

≤ C f L∞(I) ∇uη L∞(0,T ;L∞(Rd)) ≤ C u0 Hs(Rd),

we obtain a uniform bound for ∂tuη,i in L2(0, T ;H−1(BR)) (the bound might depend on
R). In particular, up to a subsequence, as η → 0,

∂tuη,i ∂tui weakly in L2(0, T ;H−1(BR)).

Since uη is uniformly bounded in L2(0, T ;H1(BR)), the Aubin–Lions lemma implies the
existence of a subsequence (not relabelled) such that

uη,i → ui strongly in L2(0, T ;L2(BR)).

We use the Lipschitz continuity of f = fη on I to infer that

fη(B
η
ij ∗ uη,j)− f(aijuj) L2(0,T ;L2(BR))
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2 Rigorous derivation of cross-diffusion systems by a moderate model

≤ C Bη
ij ∗ (uη,j − uj) +Bη

ij ∗ uj − aijuj L2(0,T ;L2(BR))

≤ C Bη
ij L1(Rd) uη,j − uj L2(0,T ;L2(BR)) + Bη

ij ∗ uj − aijuj L2(0,T ;L2(BR)) → 0.

This shows the claim. In a similar way, it follows from the Lipschitz continuity of fη that
fη(B

η
ij ∗ uη,j) → f (aijuj) strongly in L2(0, T ;L2(BR)).

The previous convergences allow us to perform the limit η → 0 in (2.23), leading to

T

0
∂tui, φ ζ(t)dt = −

T

0 Rd

ui∇Ui · ∇φζ(t)dxdt−
T

0 Rd

∇Fi(u) · ∇φζ(t)dxdt,

where Fi(u) = ui(σi +
n
j=1 f(aijuj)). Moreover, ui(0) = u0,i in BR for any R > 0. Thus,

u is a weak solution to (2.1). Standard estimates show that u is the unique solution, again
choosing ε > 0 sufficiently small.
Step 2: Convergence rate. We take the difference of (2.7) and (2.1), multiply the resulting
equation by uη,i − ui, integrate over (0, τ)× Rd for any τ > 0, and integrate by parts:

1

2 Rd

(uη,i − ui)(τ)
2dx+ σi

τ

0 Rd

|∇(uη,i − ui)|2dxdt = 1

2

τ

0 Rd

ΔUi(uη,i − ui)
2dxdt

−
τ

0 Rd

∇
n

j=1

uη,ifη(B
η
ij ∗ uη,j)− uif(aijuj) · ∇(uη,i − ui)dxdt. (2.24)

The first integral on the right-hand side is nonpositive since ΔUi = −d. We split the second
integral into three parts:

−
τ

0 Rd

n

j=1

∇ uη,ifη(B
η
ij ∗ uη,j)− uif(aijuj) · ∇(uη,i − ui)dxdt = J1 + J2 + J3, (2.25)

where

J1 = −
τ

0 Rd

n

j=1

∇ (uη,i − ui)fη(B
η
ij ∗ uη,j) · ∇(uη,i − ui)dxdt,

J2 = −
τ

0 Rd

n

j=1

∇ ui fη(B
η
ij ∗ uη,j)− fη(aijuη,j) · ∇(uη,i − ui)dxdt,

J3 = −
τ

0 Rd

n

j=1

∇ ui fη(aijuη,j)− f(aijuj) · ∇(uη,i − ui)dxdt.

We start with the estimate of J1. The families (Bη
ij ∗ uη,j) and (Bη

ij ∗ ∇uη,j) are bounded

in L∞(0, T ;L∞(Rd)). Using fη L∞(I) = f L∞(I) ≤ ε and Young’s inequality, we have

J1 ≤ fη(B
η
ij ∗ uη,j) L∞(0,T ;L∞(Rd))

τ

0
∇(uη,i − ui)

2
L2(Rd)dt

+
τ

0
uη,i − ui L2(Rd) fη(B

η
ij ∗ uη,j) L∞(0,T ;L∞(Rd))

× Bη
ij ∗ ∇uη,j L∞(0,T ;L∞(Rd)) ∇(uη,i − ui) L2(Rd)dt
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≤ σi
4

+ ε
τ

0
∇(uη,i − ui)

2
L2(Rd)dt+ C(σi)

τ

0
uη,i − ui

2
L2(Rd)dt. (2.26)

Next, we estimate J2 = J21 + J22, where

J21 = −
τ

0 Rd

∇ui

n

j=1

fη(B
η
ij ∗ uη,j)− fη(aijuη,j) · ∇(uη,i − ui)dxdt,

J22 = −
τ

0 Rd

ui

n

j=1

fη(B
η
ij ∗ uη,j)Bη

ij ∗ ∇uη,j − fη(aijuη,j)aij∇uη,j · ∇(uη,i − ui)dxdt.

It follows that

J21 ≤ ∇ui L∞(0,T ;L∞(Rd))×

×
n

j=1

τ

0
fη(B

η
ij ∗ uη,j)− fη(aijuη,j) L2(Rd) ∇(uη,i − ui) L2(Rd)dt

≤ σi
8

τ

0
∇(uη,i − ui)

2
L2(Rd)dt+ C

n

j=1

τ

0
fη(B

η
ij ∗ uη,j)− fη(aijuη,j)

2
L2(Rd)dt.

Since both Bη
ij ∗ uη,j and uη,j are uniformly bounded in L∞(0, T ;L∞(Rd)), we can choose

η > 0 sufficiently small such that f = fη on I. On that interval, f is Lipschitz continuous
uniformly in η. We use this information in

Rd

fη(B
η
ij ∗ uη,j)− fη(aijuη,j) g(x)dx ≤ C

Rd

Bη
ij ∗ uη,j − aijuη,j |g(x)|dx,

where g ∈ L2(Rd). Recalling that supp(Bη
ij) ⊂ Bη(0) and aij = Bη

Bη
ijdx, we obtain

Rd

fη(B
η
ij ∗ uη,j)− fη(aijuη,j) g(x)dx

≤ C
Rd Bη

Bη
ij(y) uη,j(x− y)− uη,j(x) dy |g(x)|dx

≤ C
Rd Bη

|Bη
ij(y)|

1

0
|∇uη,j(x− ry)|ηdr dy|g(x)|dx

= Cη
1

0 Bη

|Bη
ij(y)|

Rd

|∇uη,j(x− ry)||g(x)|dx dydr

≤ Cη
1

0 Bη

|Bη
ij(y)| ∇uη,j(· − ry) L2(Rd) g L2(Rd)dydr

≤ Cη
Bη

|Bη
ij(y)|dy ∇uη,j L2(Rd) g L2(Rd) ≤ Cη g L2(Rd).

By duality, we find that

J21 ≤ σi
8

τ

0
∇(uη,i − ui)

2
L2(Rd)dt+ Cη2.
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2 Rigorous derivation of cross-diffusion systems by a moderate model

The integral J22 is split into J22 = J221 + J222, where

J221 = −
τ

0 Rd

ui

n

j=1

fη(B
η
ij ∗ uη,j) Bη

ij ∗ ∇uη,j − aij∇uη,j · ∇(uη,i − ui)dxdt,

J222 = −
τ

0 Rd

ui

n

j=1

fη(B
η
ij ∗ uη,j)− fη(aijuη,j) aij∇uη,j · ∇(uη,i − ui)dxdt.

We infer from the uniform boundedness of Bη
ij ∗uη,j in L∞(0, T ;L∞(Rd)) and the fact that

fη = f on I for sufficiently small η > 0 that

J221 ≤ σi
16

τ

0
∇(uη,i − ui)

2
L2(Rd)dt+ C

n

j=1

T

0
Bη

ij ∗ ∇uη,j − aij∇uη,j
2
L2(Rd)dt

≤ σi
16

τ

0
∇(uη,i − ui)

2
L2(Rd)dt+ Cη2

n

j=1

τ

0
D2uη,j

2
L2(Rd)dt,

where we estimated the difference Bη
ij ∗∇uη,j − aij∇uη,j similarly as for J21. Furthermore,

the Lipschitz continuity of fη = f on I leads to

J222 ≤ C

n

j=1

τ

0
ui L∞(Rd) Bη

ij ∗ uη,j − aijuη,j L2(Rd) ∇uη,j L∞(Rd) ∇(uη,i − ui) L2(Rd)dt

≤ σi
16

τ

0
∇(uη,i − ui)

2
L2(Rd)dt+ Cη2

n

j=1

τ

0
∇uη,j

2
L2(Rd)dt.

Summarizing these estimates, we infer that

J22 ≤ σi
8

τ

0
∇(uη,i − ui)

2
L2(Rd)dt+ Cη2,

and combining the estimate for J21 and J22,

J2 ≤ σi
4

τ

0
∇(uη,i − ui)

2
L2(Rd)dt+ Cη2. (2.27)

It remains to estimate J3 = J31 + J32, where

J31 = −
τ

0 Rd

n

j=1

fη(aijuη,j)− f(aijuj) ∇ui · ∇(uη,i − ui)dxdt,

J32 = −
τ

0 Rd

ui

n

j=1

fη(aijuη,j)aij∇uη,j − f (aijuj)aij∇uj · ∇(uη,i − ui)dxdt.

Similar arguments as above yield

J31 ≤ σi
8

τ

0
∇(uη,i − ui)

2
L2(Rd)dt+ C

τ

0
∇ui

2
L∞(Rd) uη − u 2

L2(Rd)dt
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≤ σi
8

τ

0
∇(uη,i − ui)

2
L2(Rd)dt+ C

τ

0
uη − u 2

L2(Rd)dt.

The second term J32 is again split into two parts, J32 = J321 + J322, where

J321 = −
τ

0 Rd

ui

n

j=1

fη(aijuη,j)− fη(aijuj) aij∇uη,j · ∇(uη,i − ui)dxdt,

J322 = −
τ

0 Rd

ui

n

j=1

aij fη(aijuj)∇uη,j − f (aijuj)∇uj · ∇(uη,i − ui)dxdt.

Using the Lipschitz continuity again, fη = f on I, and |f | ≤ ε, we deduce that

J321 ≤ C ui L∞(0,T ;L∞(Rd)

τ

0

n

j=1

∇uη,j L∞(Rd) uη,j − uj L2(Rd) ∇(uη,i − ui) L2(Rd)dt

≤ σi
8

τ

0
∇(uη,i − ui)

2
L2(Rd)dt+ C

τ

0
uη − u 2

L2(Rd),

J322 ≤ C
τ

0

n

j=1

f (aijuj) L∞(Rd) ∇(uη,j − uj) L2(Rd) ∇(uη,i − ui) L2(Rd)dt

≤ Cε
τ

0
∇(uη − u) 2

L2(Rd)dt.

This shows that

J32 ≤ σi
8

+ Cε
τ

0
∇(uη,i − ui)

2
L2(Rd)dt+ C

τ

0
uη − u 2

L2(Rd).

Summarizing the estimate for J31 and J32, we arrive at

J3 ≤ σi
4

+ Cε
τ

0
∇(uη,i − ui)

2
L2(Rd)dt+ C

τ

0
uη − u 2

L2(Rd)dt. (2.28)

Finally, putting together the estimates (2.26), (2.27), and (2.28), we infer from (2.25) that

τ

0 Rd

n

j=1

∇ uη,ifη(B
η
ij ∗ uη,j)− uif(aijuj) · ∇(uη,i − ui)dxdt

≤ 3σi
4

+ Cε
τ

0
∇(uη,j − uj)

2
L2(Rd)dt+ C

τ

0
uη − u 2

L2(Rd)dt+ Cη2.

This is the desired estimate for the last integral in (2.24). We conclude for sufficiently small
ε > 0 and after summation over i = 1, . . . , n that

(uη − u)(τ) 2
L2(Rd) + σminC

τ

0
∇(uη − u) 2

L2(Rd)dt ≤ C
τ

0
uη − u 2

L2(Rd)dt+ Cη2.

The proof ends after applying Gronwall’s inequality.
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2 Rigorous derivation of cross-diffusion systems by a moderate model

2.5 Links between the SDEs and PDEs

We show that the density function u from Proposition 2.4 coincides with the unique weak
solution u to (2.1).

Theorem 2.7. Let the assumptions of Theorem 2.3 hold. Let Xi for i = 1, . . . , n be the
square-integrable process solving (2.8) with density function ui and let ui be the unique weak
solution to (2.1). Then u = (u1, . . . , un) solves the linear equation

∂tui = div(ui∇Ui) + Δ σiui + ui

n

j=1

f(aijuj) in Rd, i = 1, . . . , n, (2.29)

in the weak integrable sense, i.e.

Rd

ui(t)φ(t)dx−
Rd

u0,iφ(0)dx−
t

0 Rd

ui∂tφdxds

= −
t

0 Rd

ui∇Ui · ∇φdxdt+
t

0 Rd

ui σi +

n

j=1

f(aijuj) Δφdxds

for all φ ∈ C∞
0 ([0,∞)×Rd) and t > 0, where we assume that the initial datum ui(0) = u0,i

fulfils

Rd

u0,i(x)dx = 1,
Rd

u0,i(x)|x|2dx < ∞. (2.30)

Additionally, u = u in (0,∞)× Rd, ui ≥ 0, and (2.30) is fulfilled for ui instead of u0,i for
almost all t > 0 and all i = 1, . . . , n.

Proof. Since Xk,i depends on k only via the initial data ξki with the same law u0,i, we can
omit the index k. Let φ ∈ C∞

0 ([0,∞) × Rd) and set Fi(u) = σi +
n
j=1 f(aijuj). By Itô’s

lemma, we obtain

φ(t,Xi(t)) = φ(0, ξi) +
t

0
∂tφ(s,Xi(s))ds−

t

0
∇Ui(s) · ∇φ(s,Xi(s))ds

+
t

0
Fi u(Xi(s)) Δφ(s,Xi(s))ds+

t

0
Fi u(Xi(s))

1/2∇φ(s,X(s)) · dWi(s).

(2.31)

We claim that the density function ui : [0,∞) → P2(Rd), where P2(Rd) is the space of all
density functions with finite second moment, is continuous with respect to the 2-Wasserstein
distance W2. Indeed, since Xi is square-integrable, we have ui(t) ∈ P2(Rd) for almost all
t > 0 and the limit s → t in the Wasserstein distance leads to

W2(ui(t), ui(s)) = inf E(|Yt − Ys|2) 1/2
: Law(Yt) = ui(t), Law(Ys) = ui(s)

≤ E(|Xi(t)−Xi(s)|2) 1/2 → 0,

using the facts that Xi is continuous in time and has bounded second moments. This shows
the claim. We conclude that the point evaluation ui(t) is well defined.
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The previous argumentation shows that we can apply the expectation to (2.31) to obtain

Rd

ui(t)φ(t)dx =
Rd

u0,iφ(0)dx+
t

0 Rd

ui(s)∂tφ(s)dxds

−
t

0 Rd

ui(s)∇Ui · ∇φ(s)dxds+
t

0 Rd

ui(s)Fi(u(s))Δφ(s)dxds.

This is the very weak formulation of (2.29), showing the first part of the theorem.

Next, we verify that the solution to (2.29) is unique. More precisely, we take u0 = 0 and
show that ui(t) = 0 for almost all t > 0. The statement is usually proved by a duality
argument. However, the coefficients of the dual problem associated to (2.29) are not regular
enough such that we need to regularize it. As the proof is rather standard but tedious, we
only sketch the arguments. Let χk be a family of mollifiers and consider the regularized
dual backward problem on the ball BR around the origin with radius R > 0:

∂twk,R −∇Ui · ∇wk,R + (χk ∗ Fi(u))Δwk,R = 0 in BR, 0 < s < t,

wk,R = 0 on ∂BR, wk,R(t) = g ∈ C∞
0 (BR) in BR.

We extend the unique smooth solution wk,R to the whole space by setting wk,R = 0 on
Rd\BR. Since the extension may be not smooth, we choose a cut-off function ψR ∈ C∞(Rd)
and use wk,RψR as an admissible test function in the very weak formulation of (2.29).
Standard estimations give bounds for wk,R uniform in k and R. Then, passing to the limit
k → ∞, R → ∞ in the weak formulation shows that Rd g(x)ui(s, x)dx = 0, and since g
was arbitrary, we conclude that ui(s) = 0 for 0 < s < t.

The weak solution u to (2.1) is also a very weak solution to (2.29). Therefore, by the
previous uniqueness result, u = u.

Similar arguments lead to the following result that relates the solutions uη and uη.

Theorem 2.8. Let the assumptions of Theorem 2.2 hold and let η > 0. Let X
η
k,i for

i = 1, . . . , n and k = 1, . . . , N be the square-integrable process solving (2.6) with density
function uη,i. Then uη = (uη,1, . . . , uη,n) solves the linear problem

∂tuη,i = div(uη,i∇Ui) + Δ σiuη,i + uη,i

n

j=1

fη(B
η
ij ∗ uη,j) in Rd, i = 1, . . . , n,

with initial datum uη,i(0) = u0,i, which fulfils (2.30), where uη,i is the unique weak solution
to (2.7). Then uη = uη in (0,∞)× Rd, uη,i ≥ 0, and

Rd

uη,i(x, t)dx = 1,
Rd

uη,i(x, t)|x|2dx < ∞

for almost all t > 0 and all i = 1, . . . , n.
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2 Rigorous derivation of cross-diffusion systems by a moderate model

2.6 Proof of Theorem 2.5

The proof is split into two parts. We estimate first the square mean error of the difference
XN,η

k,i −X
η
k,i, where X

η
k,i is the solution to the intermediate system (2.6). In fact, this error

bound is a generalization of a result due to [113]. Essential for this step are the facts that
the Lipschitz constant of Bη

ij is of order η
−d−1, while the Lipschitz constant of fη is of order

η−α. Second, we estimate the square mean error of the difference X
η
k,i −Xk,i, based on an

estimate of fη(B
η
ij ∗ uj)− fη(aijuj) in L2, which is of the order of η1−α.

Lemma 2.9. Let XN,η
k,i and X

η
k,i be the solutions to (2.5) and (2.8), respectively, in the

sense of Proposition 2.4. Under the assumptions of Theorem 2.5, there exists δ > 0,
depending on n, σmin, and T , such that if η−2(d+1+α) ≤ δ logN , where α ≥ 0 is fixed in
Assumption (A4), we have

sup
k=1,...,N

E
n

i=1

sup
0<s<T

(XN,η
k,i −X

η
k,i)(s)

2 ≤ C(T, n, σmin)N
−1+(T+1)C(n,T,σmin)δ,

where C(T, n, σmin) > 0 is a positive constant.

Proof. The process DN,η
k,i := XN,η

k,i −X
η
k,i solves

DN,η
k,i (s) = E1,i(s) + E2,i(s), 0 ≤ s ≤ T, (2.32)

where

E1,i(s) = −
s

0
∇Ui(X

N,η
k,i (t))−∇Ui(X

η
k,i(t)) dt,

E2,i(s) =
s

0
(E21(t)− E22(t))dW

k
i (t),

E21(t) = 2σi + 2
n

j=1

fη
1

N

N

=1
( ,j)=(k,i)

Bη
ij(X

N,η
k,i (t)−XN,η

,j (t))
1/2

,

E22(t) = 2σi + 2
n

j=1

fη Bη
ij ∗ uη,j(t,X

η
k,i(t))

1/2

.

We use the global Lipschitz continuity of ∇Ui and the Fubini theorem to estimate the first
term:

E sup
0<s<T

|E1,i(s)|2 ≤ CTE
T

0
(XN,η

k,i −X
η
k,i)(s)

2
ds

≤ CT
T

0
E sup

0<s<t
|(XN,η

k,i −X
η
k,i)(s)|2 dt.

Summing over i = 1, . . . , n and taking the supremum over k = 1, . . . , N leads to

sup
k=1,...,N

E
n

i=1

sup
0<s<T

|E1,i(s)|2 ≤ CT
T

0
sup

k=1,...,N
E sup

0<s<t
|(XN,η

k,i −X
η
k,i)(s)|2 dt. (2.33)
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Next, we apply the Burkholder–Davis–Gundy inequality [67, Theorem 3.28] to the second
term E2,i and use the Lipschitz continuity of x → (2σi + x)1/2 for x ≥ 0:

E sup
0<s<T

|E2,i(s)|2 ≤ CE
T

0
(E21(t)− E22(t))

2dt

≤ CE
T

0

n

j=1

fη
1

N

N

=1
( ,j)=(k,i)

Bη
ij(X

N,η
k,i (t)−XN,η

,j (t))

−
n

j=1

fη Bη
ij ∗ uη,j(t,X

η
k,i(t))

2

dt

= CE
T

0

n

j=1

(L1
j (t) + L2

j (t) + L3
j (t))

2

dt

≤ C(n)E
T

0

n

j=1

L1
j (t)

2 + L2
j (t)

2 + L3
j (t)

2 dt, (2.34)

where

L1
j (t) = fη

1

N

N

=1
( ,j)=(k,i)

Bη
ij(X

N,η
k,i (t)−XN,η

,j (t)) − fη
1

N

N

=1
( ,j)=(k,i)

Bη
ij(X

η
k,i(t)−XN,η

,j (t)) ,

L2
j (t) = fη

1

N

N

=1
( ,j)=(k,i)

Bη
ij(X

η
k,i(t)−XN,η

,j (t)) − fη
1

N

N

=1
( ,j)=(k,i)

Bη
ij(X

η
k,i(t)−X

η
,j(t)) ,

L3
j (t) = fη

1

N

N

=1
( ,j)=(k,i)

Bη
ij(X

η
k,i(t)−X

η
,j(t)) − fη Bη

ij ∗ uη,j(t,X
η
k,i(t)) .

We estimate these three terms separately. By construction, the Lipschitz constant of fη
can be estimated by Lf ≤ η−α. Moreover, the Lipschitz constant of Bη

ij(x) = η−dBij(|x|/η)
is computed by LB = maxi,j=1,...,n ∇Bη

ij L∞(Rd) ≤ Cη−d−1. This shows that

|L1
j (t)| ≤ Lf

1

N

N

=1
( ,j)=(k,i)

Bη
ij(X

N,η
k,i (t)−XN,η

,j (t))−Bη
ij(X

η
k,i(t)−XN,η

,j (t))

≤ LfLB XN,η
k,i (t)−X

η
k,i(t) ≤ Cη−d−1−α XN,η

k,i (t)−X
η
k,i(t) .

Therefore, by Fubini’s theorem,

E
T

0

n

j=1

|L1
j (t)|2dt ≤ C(n)η−2(d+1+α)E

T

0
XN,η

k,i (t)−X
η
k,i(t)

2
dt
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≤ C(n)η−2(d+1+α)
T

0
sup

k=1,...,N
E sup

0<s<t
XN,η

k,i (t)−X
η
k,i(t)

2
dt.

(2.35)

We can estimate the second term L2
j (t) in a similar way, leading to

E
T

0

n

j=1

L2
j (t)

2dt ≤ C(n)η−2(d+1+α)
T

0
sup

=1,...,N
E sup

0<s<t

n

j=1

XN,η
,j (t)−X

η
,j(t)

2
dt.

(2.36)
The third term L3

j (t) has to be treated in a different way. First, we use the Lipschitz
continuity of fη to find that

L3
j (t) ≤

C(n)

Nηα

N

=1

Bη
ij(X

η
k,i −X

η
,j)−Bη

ij ∗ uη,j(X
η
k,i) − 1

ηd
Bii(0) .

This implies that

E
T

0

n

j=1

L3
j (t)

2dt ≤ C(n, T )

N2η2(d+α)

+
C(n)

N2η2α

n

j=1

T

0
E

N

=1

Bη
ij X

η
k,i(t)−X

η
,j(t) −Bη

ij ∗ uη,j(X
η
k,i)

2

dt. (2.37)

It remains to estimate the expectation. To this end, we introduce

D(k,i),( ,j)(t) := Bη
ij(X

η
k,i(t)−X

η
,j(t))−Bη

ij ∗ uη,j(t,X
η
k,i(t)), ( , j) = (k, i).

The processes X
η
k,i and X

η
,j are independent, since for i = j, we are considering N inde-

pendent copies of the same process and for i = j, the equation fulfilled by X
η
k,i does not

depend on the process X
η
,j . If (k, i) = ( , j), (k, i) = (m, j), and = m, the processes

D(k,i),( ,j)(t) and D(k,i),(m,j)(t) are orthogonal, since

E D(k,i),( ,j)(t)D(k,i),(m,j)(t) =
Rd Rd Rd

Bη
ij(x− y)Bη

ij(x− z)uη,j(t, y)uη,j(t, z)dydz

− 2
Rd

Bη
ij(x− y)uη,j(t, y)(B

η
ij ∗ uη,j)(t, y)dy

+ (Bη
ij ∗ uη,j)(t, x)(Bη

ij ∗ uη,j)(t, x) uη,i(t, x)dx = 0.

Together with E(D(k,i),( ,j)) = 0, this shows that the processes D(k,i),( ,j) are uncorrelated.
However, if (k, i) = ( , j), (k, i) = (m, j), and = m, the expectation does not vanish:

E D(k,i),( ,j)(t)
2 =

Rd

(Bη
ij ∗ uη,j)(t, x)(Bη

ij ∗ uη,j)(t, x) +
Rd

Bη
ij(x− y)2uη,j(t, y)

− 2Bη
ij(x− y)uη,j(t, y)(B

η
ij ∗ uη,j(t, x) dy uη,i(t, x)dx
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=
Rd

((Bη
ij)

2 ∗ uη,j)(t, x)− (Bη
ij ∗ uη,j)(t, x)2 uη,i(t, x)dx.

This expression is independent of the particle index k and , it depends only on the
species numbers i and j. The case (k, i) = ( , j) can be treated in a similar way with
the difference that, since D(k,i),(k,i)(t) = η−dBii(0) − Bη

ii ∗ ui,η(X
η
k,i(t)), we obtain for

E(D(k,i),(k,i)(t)D(k,i),(m,j)(t)) an additional term of order η−2d. Hence, we infer from (2.37)
and the previous computation that

E
T

0

n

j=1

L3
j (t)

2dt− C(n, T )

N2η2(d+α)
=

C(n)

N2η2α

n

j=1

N

=1

T

0
E D(k,i),( ,j)(t)

2 dt

≤ C(n)

Nη2α
uη,i L∞(0,T ;L∞(Rd))

×
n

j=1

T

0
(Bη

ij)
2 ∗ uη,j L1(Rd) + Bη

ij ∗ uη,j 2
L2(Rd) 1 +

1

η2d
dt

≤ C(n)

Nη2α

n

j=1

T

0
Bη

ij
2
L2(Rd) uη,j L∞(Rd) + Bη

ij
2
L1(Rd) uη,j

2
L2(Rd) 1 +

1

η2d
dt

≤ C(T, n)

Nη2(d+α)
, (2.38)

recalling that Bη
ij L2(Rd) ≤ Cη−d/2 and Bη

ij L1(Rd) = Aij ≤ A and choosing η < 1.

Inserting estimates (2.35), (2.36), and (2.38) for Lm
j (t) (m = 1, 2, 3) into (2.34), we conclude

that

sup
k=1,...,N

E
n

i=1

sup
0<s<T

|E2,i(s)|2 ≤ C(T, n)

Nη2(d+α)

+ C(n, σmin)η
−2(d+1+α)

T

0
sup

k=1,...,N
E sup

0<s<t
XN,η

k,i (t)−X
η
k,i(t)

2
dt.

We infer from (2.32), estimate (2.33), and the previous estimate for E2,i that

S(T ) := sup
k=1,...,N

E
n

i=1

sup
0<s<t

|DN,η
k,i (s)|2

≤ C(T, n)

Nη2(d+α)
+ C(n, σmin)(η

−2(d+1+α) + T )
T

0
S(t)dt.

Note that the function S is continuous because of the continuity of the paths of XN,η
k,i and

X
η
k,i. Therefore, by Gronwall’s inequality, we have

S(T ) ≤ C(T, n)

Nη2(d+α)
exp C(n, T, σmin)η

−2(d+1+α)T .
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We choose δ > 0 such that C(n, T, σmin)Tδ < 1 and η > 0 such that η−2(d+1+α) ≤ δ logN .
Then

S(T ) ≤ 1

N
C(T, n) exp C(n, T, σmin)Tδ logN = C(T, n)N−1+C(n,T,σmin)Tδ.

This finishes the proof.

Next, we prove an error estimate for the difference X
η
k,i −Xk,i.

Lemma 2.10. Let X
η
k,i and Xk,i be the solutions to (2.6) and (2.8) in the sense of Propo-

sition 2.4. Under the assumptions of Theorem 2.5, it holds for small η > 0 that

sup
k=1,...,N

E
n

i=1

sup
0<s<T

(X
η
k,i −Xk,i)(s)

2 ≤ C(T, σ min)η
2(1−α).

Proof. Since we are considering N independent copies, we can omit the particle index k.
Set Dη

i (s) := X
η
k,i(s) − Xk,i(s). Then, similarly as in the proof of Lemma 2.9, Dη

i (s) =
D1(s) +D2(s), where

D1(s) = −
s

0
∇Ui(X

η
i (t))−∇Ui(Xi(t)) dt,

D2(s) =
s

0
2σi + 2

n

j=1

fη Bη
ij ∗ uη,j(X

η
i )

1/2

− 2σi + 2
n

j=1

f aijuj(Xi)
1/2

dWi(t).

We infer from the Lipschitz continuity of ∇Ui and Fubini’s theorem that

E sup
0<s<T

|D1(s)|2 ≤ CTE
T

0
X

η
i (s)−Xi(s)

2
ds ≤ CT

T

0
E sup

0<s<t
|Dη

i (s)|2 dt.

(2.39)

Similarly as in the proof of Lemma 2.9, we use for D2 the Burkholder–Davis–Gundy in-
equality and the Lipschitz continuity of x → (2σi + x)1/2 on [0,∞) to obtain

E sup
0<s<T

|D2(s)|2 ≤ CE
T

0

n

j=1

f(aijuj(Xi))− fη(B
η
ij ∗ uη,j(X

η
i ))

2

dt

≤ C(n)(D21 +D22 +D23 +D24), (2.40)

where

D21 =
n

j=1

E
T

0
f(aijuj(Xi))− fη(aijuj(Xi))

2
dt,

D22 =
n

j=1

E
T

0
fη(aijuj(Xi))− fη(B

η
ij ∗ uj(Xi))

2
dt,
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D23 =

n

j=1

E
T

0
fη(B

η
ij ∗ uj(Xi))− fη(B

η
ij ∗ uj(X

η
i ))

2
dt,

D24 =

n

j=1

E
T

0
fη(B

η
ij ∗ uj(X

η
i ))− fη(B

η
ij ∗ uη,j(X

η
i ))

2
dt.

The first expression D21 vanishes if η > 0 is sufficiently small, since then f = fη on the

range of aijuj(Xi). Using

aijuj −Bη
ij ∗ uj L2(0,T ;L2(Rd)) ≤ Cη ∇uj L2(0,T ;L2(Rd)) ≤ Cη,

which was shown in the proof of Theorem 2.3, and the Lipschitz continuity of fη with
Lipschitz constant less or equal η−α, we find that

D22 =
n

j=1

T

0 Rd

fη(aijuj)− fη(B
η
ij ∗ uj) 2

uidxdt

≤ η−2α
n

j=1

ui L∞(0,T ;L∞(Rd)) aijuj −Bη
ij ∗ uj 2

L2(0,T ;L2(Rd)) ≤ C(n)η2(1−α).

Thanks to the uniform boundedness of the family Bη
ij ∗ uj , we can choose η > 0 suf-

ficiently small, say η ≤ η∗ for some η∗ > 0, such that f(Bη
ij ∗ uj) = fη(B

η
ij ∗ uj) for

0 < η ≤ η∗. Then, using Young’s convolution inequality and the uniform estimate
∇uj L∞(0,T ;L∞(Rd)) ≤ C u0 Hs(Rd) from Theorem 2.3, the third term D23 is estimated
as

D23 ≤ C(η∗)
n

j=1

∇(Bη
ij ∗ uj) L∞(0,T ;L∞(Rd)

T

0
E |Xi(t)−X

η
i (t)|2 dt

≤ C
n

j=1

∇uj L∞(0,T ;L∞(Rd)

T

0
E |Xi(t)−X

η
i (t)|2 dt

≤ C
T

0
E sup

0<s<t
|Dη

i (s)|2 dt.

Finally, it follows from the error estimate for u− uη from Theorem 2.3 that

D24 ≤ C

n

j=1

T

0 Rd

|Bη
ij ∗ uj −Bη

ij ∗ uη,j |2uη,idxdt

≤ C

n

j=1

uη,i L∞(0,T ;L∞(Rd))

T

0
Bη

ij
2
L1(Rd) uj − uη,j

2
L2(Rd)dt

≤ C(T )η2.

Inserting the estimates for D21, . . . , D24 into (2.40), we conclude that

E sup
0<s<T

|D2(s)|2 ≤ C(T, n)η2(1−α) + C(T )
T

0
E sup

0<s<t
|Dη

i (s)|2 dt.
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2 Rigorous derivation of cross-diffusion systems by a moderate model

Together with estimate (2.39) for D1(s) and recalling that Dη
i = D1 +D2, we arrive at

E sup
0<s<T

|Dη
i (s)|2 ≤ C(T, n)η2(1−α) + C(T )

T

0
E sup

0<s<t
|Dη

i (s)|2 dt.

The proof is finished after applying Gronwall’s inequality and summing over i = 1, . . . , n.

Theorem 2.5 now follows from Lemmas 2.9 and 2.10 and the triangle inequality:

sup
k=1,...,N

E
n

i=1

sup
0<s<t

Xk,N
η,i (s)−Xk

i (s)
2

≤ 2 sup
k=1,...,N

E
n

i=1

sup
0<s<t

Xk,N
η,i (s)−X

k
η,i(s)

2

+ 2 sup
k=1,...,N

E
n

i=1

sup
0<s<t

X
k
η,i(s)−Xk

i (s)
2

≤ C1N
−1+C2δ + C3η

2(1−α).

The condition logN ≥ δ−1η−2(d+1+α) is equivalent to

N−1+C2δ ≤ exp((−δ−1 + C2)η
−2(d+1+α)).

We choose δ > 0 such that −δ−1 + C2 < 0 and observe that exponential decay is always
faster than algebraic decay to conclude that exp((−δ−1 + C2)η

−2(d+1+α)) ≤ η2(1−α). This
yields

sup
k=1,...,N

E
n

i=1

sup
0<s<t

Xk,N
η,i (s)−Xk

i (s)
2 ≤ C4η

2(1−α),

finishing the proof.

2.7 Numerical tests

In this section, we perform some numerical simulations of the particle system (2.5) in one
space dimension, without environmental potential, and with linear function f(x) = x. We
are interested in the numerical comparison of the solutions to the particle systems (2.3)
and (2.5) in terms of the segregation behavior. We explore the ability of both systems
to model the segregation of the species. Numerical tests for the associated cross-diffusion
systems (2.1) and (2.2) are work in progress.
We discretize the particle systems (2.3) and (2.5) by the Euler–Maruyama scheme. Let
M ∈ N and introduce the time steps 0 < t1 < · · · < tM = T with tm = tm+1 − tm. We
approximate XN,η

k,i (tm) by xk,im and Y N,η
k,i (tm) by yk,im , defined by, respectively,

xk,im+1 = xk,im + 2σi +
2

N

n

j=1

N

=1

Bη
ij(x

k,i
m − x ,j

m )
1/2

tmwm,
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yk,im+1 = yk,im −
n

j=1

1

N

N

=1

∇Bη
ij(y

k,i
m − ym,j) tm + 2σi tmzm,

with initial conditions xi,k0 = ξki and yi,k0 = ξki , where ξki are iid random variables and
wm and zm are normally distributed. It is well known that the solutions to the Euler–
Maruyama scheme converge to the associated stochastic processes in the strong sense; see,
e.g., [68, Theorem 9.6.2].
The numerical scheme is implemented in MATLAB using the parallel computing toolbox to
accelerate the simulations. The interaction potential is given by B(x) = exp(−1/(1− x2))
for |x| ≤ 1 and B(x) = 0 else. Then Bη

ij(x) = η−1B(x/η). The numerical parameters are
t = 1/100, η = 2, N = 5000 particles, nsim = 500 simulations.

2.7.1 Two species: nonsymmetric case

We consider a nonsymmetric diffusion matrix with a11 = 0, a12 = 355, a21 = 25, a22 = 0,
and σ1 = 1, σ2 = 2. The initial data are Gaussian distributions with mean −1 (for species
i = 1) and 1 (for species i = 2) and variance 2. Figure 2.1 shows the approximate densities of
both species (histogram) for systems (2.5) and (2.3) at time t = 2. We observe a segregation
of the densities in both models. In the population system (2.5), species 1 develops two
clusters because of the very different “population pressure” parameters a12 = 355 and
a21 = 25, while species 2 develops only one cluster around x = 0; see Figure 2.1 left. The
segregation effect is stronger in the particle system (2.3) in the sense that both species
avoid each other as far as possible; see Figure 2.1 right. This is not surprising since the
diffusion of system (2.5) is generally larger than that one of system (2.3). The numerical
results confirm the segregation property defined in [3]. Indeed, this work considers the
cross-diffusion system (2.3) with σ1 = σ2 = 0 and a11 = a12 = a21 = a22 = 1. It was proved
that the two species are segregated for all times if they do so initially. Here, segregation
means that the intersection of the supports of the densities is empty.
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Figure 2.1: Nonsymmetric case: Densities of particle system (2.5) corresponding to the
SKT population model (left) and particle system (2.3) (right) at time t = 2.
Solid blue line: species 1; Dashed red line: species 2.
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2 Rigorous derivation of cross-diffusion systems by a moderate model

2.7.2 Two species: symmetric case

We investigate the symmetric case by choosing a11 = a22 = 0, a12 = a21 = 355, and, as
before, σ1 = 1, σ2 = 2. The initial data are chosen as in the previous example. In this ex-
ample, we expect that cross-diffusion dominates self-diffusion. We present the approximate
densities for different times in Figure 2.2. In both models, the species have the tendency
to segregate. As expected, the segregation in the particle system (2.3) is stronger than in
system (2.5) corresponding to the SKT model.
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Figure 2.2: Symmetric case: Densities of particle system (2.5) corresponding to the SKT
population model (left) and particle system (2.3) (right) for different times
t = 0.01, 0.15, 2. Solid blue line: species 1; dashed red line: species 2.
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2.7 Numerical tests

2.7.3 Three species

Our third numerical experiment illustrates the segregation behaviour in case of three in-
teracting species with coefficients σ1 = 1, σ2 = 2, σ3 = 3 and

(aij) =

 0 355 355
25 0 25
355 0 0

 .

Similar as in the two-species case, the initial data are overlapping normal distributions
with means −1, 2, and −3, respectively, and variance 2. The approximate densities at
t = 2 are shown in Figure 2.3. We observe that the approximate densities of particle model
(2.3) show a much clearer component-wise segregation behavior than the stochastic particle
model (2.5), which corresponds to the SKT system, where the diffusion effects are much
stronger. This may be explained by the fact that, on the PDE level, the gradient-flow
structure of model (2.2) can be written species-wise, whereas the SKT model (2.1) (with
f(x) = x) only possess a vector-valued gradient-flow structure.
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Figure 2.3: Three-species case: Densities of particle system (2.5) corresponding to the SKT
population model (left) and particle system (2.3) (right) at time t = 2. Solid
blue line: species 1; dashed red line: species 2; dash-dotted black line: species
3.

2.7.4 Cubic nonlinearity

For our last experiment, we compare the numerical results for the cubic nonlinearity f(s) =
s3 with the linear case imposed in the previous examples. The parameters are the same
as in Section 2.7.2. The numerical simulations are performed without using approximating
functions fη. This may be justified by the fact that the simulations deal with the behavior
for small time scales and with compactly supported initial data. We observe in Figure
2.4 that the cubic nonlinearity causes more clustering than the linear case f(s) = s. The
simulations suggests that in the cubic case, diffusion happens on a faster time scale than
segregation, while in the linear case, the particles diffuse slower and hence they form bigger
but fewer clusters.
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Figure 2.4: Densities of particle system (2.5) corresponding to the SKT population model
with f(s) = s3 (left) and f(s) = s (right) at time t = 2. Solid blue line: species
1; dashed red line: species 2. The right figure is the same as in Figure 2.2 but
with the range x = −50, . . . , 50.

2.A Auxiliary results

For the convenience of the reader, we recall some well-known estimates used in this chapter
of the thesis:

Lemma 2.11 (Young’s convolution inequality, [75, Formula (7), page 107]). Let 1 ≤ p, q, r
≤ ∞ be such that 1/p+1/q = 1+1/r and let f ∈ Lp(Rd), g ∈ Lq(Rd). Then f ∗g ∈ Lr(Rd)
and

f ∗ g Lr(Rd) ≤ f Lp(Rd) g Lq(Rd).

Lemma 2.12 (Moser-type estimate I, [80, Prop. 2.1(A)]). Let s ∈ N and α ∈ Nn
0 with

|α| = s. Then there exists a constant C > 0 such that for all f , g ∈ Hs(Rd) ∩ L∞(Rd),

Dα(fg) L2(Rd) ≤ C f L∞(Rd) Dsg L2(Rd) + Dsf L2(Rd) g L∞(Rd) .

Lemma 2.13 (Moser-type estimate II, [80, Prop. 2.1(C)]). Let s ∈ N and α ∈ Nn
0 with

|α| = s. Then there exists a constant C > 0 such that for smooth g : R → R and
u ∈ Hs(Rd) ∩ L∞(Rd),

Dαg(u) L2(Rd) ≤ C g Cs−1(R) u s−1
L∞(Rd)

Dαu L2(Rd).

Lemma 2.14 (Moser-type commutator inequality, [80, Prop. 2.1(B)]). Let s ∈ N and
α ∈ Nn

0 with |α| = s. Then there exists C > 0 such that for all f ∈ Hs(Rd) ∩ W 1,∞(Rd)
and g ∈ Hs−1(Rd) ∩ L∞(Rd),

Dα(fg)− fDα(g) L2(Rd) ≤ C Df L∞(Rd) Ds−1g L2(Rd) + Dsf L2(Rd) g L∞(Rd) ,

where Ds = |α|=sD
α.
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A physical law must possess
mathematical beauty

— Paul Dirac1
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This chapter is taken from the article

[30] Li Chen, Alexandra Holzinger, Ansgar Jüngel, and Nicola Zamponi. Analysis and mean-field
derivation of a porous-medium equation with fractional diffusion. Communications in Partial
Differential Equations, 1-53, 2022.

3.1 Introduction and problem setting

The aim of this chapter is to derive and analyze the following nonlocal porous-medium
equation:

∂tρ = div(ρ∇P ), P = (−Δ)−sf(ρ), ρ(0) = ρ0 in Rd, (3.1)

where 0 < s < 1, d ≥ 2, and f ∈ C1([0,∞)) is a nondecreasing function satisfying f(0) = 0.
This model describes a particle system that evolves according to a continuity equation for
the density ρ(x, t) with velocity v = −∇P . The velocity is assumed to be the gradient
of a potential, which expresses Darcy’s law. The pressure P is related to the density in a
nonlinear and nonlocal way through P = (−Δ)−sf(ρ). The nonlocal operator (−Δ)−s can
be written as a convolution operator with a singular kernel,

(−Δ)−su = K ∗ u, K(x) = cd,−s|x|2s−d, x ∈ Rd, (3.2)

where cd,−s = Γ(d/2− s)/(4sπd/2Γ(s)) and Γ denotes the Gamma function [110, Theorem
5].

1Moscow University, 1956.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

If s = 0, we recover the porous-medium equation (for nonnegative solutions), while the
case s = 1 was investigated in [24, 118] with f(u) = u for the evolution of the vortex
density in a superconductor. Related models (with f(u) = u) appear in the dynamics of
dislocations (line defects) in crystals [5, (1.5)]. Other applications include particle systems
with long-range interactions [116, Sec. 6.2]. The case 0 < s < 1 corresponds to long-
range repulsive interactions. This model, still with f(u) = u, was investigated in [5], but a
mathematical justification is missing. In this chapter, we provide a rigorous derivation from
an interacting particle system for general functions f(u). In this way, we aim to contribute
to the understanding of mean-field limits involving nonquadratic nonlinearities.
Equation (3.1) was first analyzed in [17] with f(u) = u for nonnegative solutions and in [4]
with f(u) = |u|m−2u (m > 1) for sign-changing solutions. The nonnegative solutions have
the interesting property that they propagate with finite speed, which is not common in other
fractional diffusion models [17, 107]. Equation (3.1) was probabilistically interpreted in [99],
and it was shown that the probability density of a so-called random flight process is given
by a Barenblatt-type profile. Previous mean-field limits leading to (3.1) were concerned
with the linear case f(u) = u only; see [42] (using the technique of [103]) and [96] (including
additional diffusion as in (3.7) below). In [34], equation (3.1) (with f(u) = u) was derived
in the high-force regime from the Euler–Riesz equations, which can be derived in the mean-
field limit from interacting particle systems [43]. A direct derivation from particle systems
with Lévy noise was proved in [38] for cross-diffusion systems, but still with f(u) = u. Up
to our knowledge, a rigorous derivation of (3.1) from stochastic interacting particle systems
for general nonlinearities f(u) like power functions is missing in the literature. With the
main result of this chapter, we fill this gap.

3.1.1 Problem setting

Equation (3.1) is derived from an interacting particle system with N particles, moving in
the whole space Rd. Because of the singularity of the integral kernel and the degeneracy of
the nonlinearity, we approximate (3.1) using three levels. First, we introduce a parabolic
regularization adding a Brownian motion to the particle system with diffusivity σ ∈ (0, 1)
and replacing f by a smooth approximation fσ. Second, we replace the interaction kernel K
by a smooth kernel Kζ with compact support, where ζ > 0. Third, we consider interaction
functions Wβ with β ∈ (0, 1), which approximate the delta distribution. We refer to
Subsection 3.1.3 for the precise definitions.
The particle positions are represented on the microscopic level by the stochastic processes
XN

i (t) evolving according to

dXN
i (t) = −∇Kζ ∗ fσ 1

N

N

j=1, j=i

Wβ(X
N
j (t)−XN

i (t)) dt+
√
2σdWi(t),

XN
i (0) = ξi, i = 1, . . . , N,

(3.3)

where the convolution has to be understood with respect to xi
2, (Wi(t))t≥0 are independent

d-dimensional Brownian motions defined on a filtered probability space (Ω,F ,Ft,P), and
2This means that the drift term becomes − Rd ∇Kζ(y)fσ

1
N

N
j=1, j=i Wβ(X

N
j (t)−XN

i (t) + y) dy
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3.1 Introduction and problem setting

ξi are independent identically distributed random variables in Rd with the same probability
density function ρ0σ (defined in (3.12) below).
We remark that in comparison to the classical moderate regime (see Section 1.2.2 for
an introduction), the strength of interaction now depends on ζ and β, which are scaled
differently with respect to the number of particles N (see below), which makes the study
more involved.
The mean-field-type limit is performed in three steps. First, for fixed (σ, β, ζ), system (3.3)
is approximated for N → ∞ on the intermediate level by

dX̄N
i (t) = −∇Kζ ∗ fσ Wβ ∗ ρσ,β,ζ(X̄N

i (t), t) dt+
√
2σdWi(t),

X̄N
i (0) = ξi, i = 1, . . . , N,

(3.4)

where ρσ,β,ζ is the probability density function of X̄N
i and a strong solution to

∂tρσ,β,ζ − σΔρσ,β,ζ = div ρσ,β,ζ∇Kζ ∗ fσ(Wβ ∗ ρσ,β,ζ) , ρσ,β,ζ(0) = ρ0σ in Rd. (3.5)

System (3.4) is uncoupled, since X̄N
i depends on N only through the initial datum.

Second, passing to the limit (β, ζ) → 0 in the intermediate system leads on the macroscopic
level to

dXN
i (t) = −∇K ∗ fσ(ρσ(XN

i (t), t))dt+
√
2σdWi(t),

XN
i (0) = ξi, i = 1, . . . , N,

(3.6)

where ρσ is the density function of XN
i and a weak solution to

∂tρσ = σΔρσ + div(ρσ∇(−Δ)−sfσ(ρσ)), ρσ(0) = ρ0σ in Rd. (3.7)

We perform the limits N → ∞ and (β, ζ) → 0 simultaneously. In this limit, we use the
logarithmic scaling β ∼ (logN)−µ for some µ > 0 between the strength of interaction β
and the number of particles N . This can be viewed as a moderately interacting particle
system. For the smoothing parameter ζ of the singularity from K, we can even allow an
algebraic dependence on N , i.e. ζ ∼ N−ν for some ν > 0; see Theorem 3.2 for details. Our
approach also implies the two-step limit but leading to weak convergence only, compared
to the convergence in expectation obtained in Theorem 3.3.
Third, the limit σ → 0 is performed on the level of the diffusion equation, based on a priori
estimates uniform in σ and the div-curl lemma.
The main result of this chapter is that the particles of system (3.3) become independent in
the limit with a common density function that is a weak solution to (3.1)–(3.2).

3.1.2 State of the art

We already mentioned that the existence of weak solutions to (3.1) with f(u) = u was
proved first in [17]. The convergence of the weak solution to a self-similar profile was
shown by the same authors in [16]. The convergence becomes exponential, at least in one
space dimension, when adding a confinement potential [20]. Equation (3.1) with f(u) = u
was identified as the Wasserstein gradient flow of a square fractional Sobolev norm [78],
implying time decay as well as energy and entropy estimates. The Hölder regularity of
solutions to (3.1) was proved in [15] for f(u) = u and in [60] for f(u) = um−1 and m ≥ 2.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

In the literature, related equations have been analyzed too. Equation (3.1) for f(u) = u
and the limit case s = 1 was shown in [1] to be the Wasserstein gradient flow on the space of
probability measures, leading to the well-posedness of the equation and energy-dissipation
inequalities. The existence of local smooth solutions to the regularized equation (3.7) are
proved in [33]. The solutions ∂tρ = div(ρm−1∇P ) with P = (−Δ)−sρ in Rd propagate with
finite speed if and only if m ≥ 2 [107]. The existence of weak solutions to this equation
with P = (−Δ)−s(ρn) and n > 0 is proved in [88] (in bounded domains). While (3.1) has
a parabolic-elliptic structure, parabolic-parabolic systems have been also investigated. For
instance, the global existence of weak solutions to ∂tρ = div(ρ∇P ) and ∂tP+(−Δ)sP = ρβ ,
where β > 1, was shown in [14]. In [37], the algebraic decay towards the steady state was
proved in the case β = 2. We also mention that fractional porous-medium equations
of the type ∂tρ + (−Δ)s/2f(ρ) = 0 in Rd have been studied in the literature; see, e.g.,
[97]. Compared to (3.1), this problem has infinite speed of propagation. For a review and
comparison of this model and (3.1), we refer to [115].
For an introduction to the general concept of mean-field limit we refer to the introduction
of this thesis, especially Sections 1.2.1 and 1.2.2 for an introduction of coupling techniques
and moderately interacting particles which are used in this chapter.
There is a huge literature concerning mean-field limits leading to diffusion equations. In
the following, we shortly summarise articles which are relevant for this chapter and refer to
the introduction of this thesis as well as reviews [54, 62] and the classical works of Sznitman
[112, 113] for more information. Oelschläger proved the mean-field limit in weakly inter-
acting particle systems [92], leading to deterministic nonlinear processes, and moderately
interacting particle systems [93], giving porous-medium-type equations with quadratic dif-
fusion. First investigations of moderate interactions in stochastic particle systems with
nonlinear diffusion coefficients were performed in [65]. The approach of moderate interac-
tions was extended in [25, 26] to multi-species systems, deriving population cross-diffusion
systems. Reaction-diffusion equations with nonlocal terms were derived in the mean-field
limit in [59]. The large population limit of point measure-valued Markov processes leads to
nonlocal Lotka–Volterra systems with cross diffusion [51]. Further references can be found
in [96, Sec. 1.3].
Compared to previous works, we consider a singular kernel K and derive a partial differential
equation without Laplace diffusion by taking the limit σ → 0. The authors of [47] derived
the viscous porous-medium equation by starting from a stochastic particle system with a
double convolution structure in the drift term, similar to (3.4). The main difference to
our work is that (besides different techniques for the existence and regularity of solutions
to the parabolic problems) we consider a singular kernel in one part of the convolution
and a different scaling for the approximating regularized kernel Kζ = Kωζ ∗ Wζ , where
ωζ is a W 1,∞(Rd) cut-off function (see Section 3.1.3 and definition (3.11) for the exact
approximating sequence), in comparison to the interaction scaling Wβ ∗ ρσ,β,ζ . The two
different scalings β and ζ allow us to establish a result, for which the kernel regularization
on the particle level does not need to be of logarithmic type but of power-law type only.
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3.1 Introduction and problem setting

3.1.3 Main results and key ideas

We impose the following hypotheses:

(H1) Data: Let 0 < s < 1, d ≥ 2.

(H2) ρ0 ∈ L∞(Rd) ∩ L1(Rd) satisfies ρ0 ≥ 0 in Rd and Rd ρ
0(x)|x|2d/(d−2s)dx < ∞.

(H3) Nonlinearity: f ∈ C1([0,∞)) is nondecreasing, f(0) = 0, and u → uf(u) for u > 0 is
strictly convex.

Let us discuss these assumptions. We assume that d ≥ 2; the case d = 1 can be treated if
s < 1/2; see [17]. Extending the range of s to s < 0 leads to the fractional (higher-order)
thin-film equation, which is studied in [77]. The case 1 < s < d/2 may be considered too,
since it yields better regularity results; we leave the details to the reader. On the other
hand, the case s ≥ d/2 is more delicate since the multiplier in the definition of (−Δ)−s

using Fourier transforms does not define a tempered distribution. The case s = d/2 for
d ≤ 2 (with a logarithmic Riesz kernel) was analyzed in [42]. We need the moment bound
for the initial datum ρ0 to prove the same moment bound for ρσ, which in turn is used
several times, for instance to show the entropy balance and the convergence ρσ → ρ as
σ → 0 in the sense of C0

weak([0, T ];L
1(Rd)). The monotonicity of f and the strict convexity

of u → uf(u) are needed to prove the strong convergence of (ρσ), which then allows us
to identify the limit of (fσ(ρσ)). An example of a function satisfying Hypothesis (H3) is
f(u) = uβ with β ≥ 1.

Our first result is concerned with the existence analysis of (3.1). This result is needed to
prove the main theorem below. We write · p for the L

p(Rd) norm and define the so-called
entropy density h : [0,∞) → R by

h(u) =
u

0

v

1

f (w)

w
dwdv for u ≥ 0.

Theorem 3.1 (Existence of weak solutions to (3.1)). Let Hypotheses (H1)–(H3) hold.
Then there exists a weak solution ρ ≥ 0 to (3.1) satisfying (i) the regularity

ρ ∈ L∞(0,∞;L1(Rd) ∩ L∞(Rd)), ∇(−Δ)−s/2f(ρ) ∈ L2(0,∞;L2(Rd)),

∂tρ ∈ L2(0,∞;H−1(Rd)),

(ii) the weak formulation

T

0
∂tρ, φ dt+

T

0 Rd

ρ∇(−Δ)−sf(ρ) · ∇φdxdt = 0 (3.8)

for all φ ∈ L2(0, T ;H1(Rd)) and T > 0, (iii) the initial datum ρ(0) = ρ0 in the sense of
H−1(Rd), and (iv) the following properties for t > 0:

• Mass conservation: ρ(t) 1 = ρ0 1,

• Dissipation of the L∞ norm: ρ(t) ∞ ≤ ρ0 ∞,
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

• Moment estimate: sup0<t<T Rd ρ(x, t)|x|2d/(d−2s)dx ≤ C(T ),

• Entropy inequality:

Rd

h(ρ(t))dx+
t

0 Rd

|∇(−Δ)−s/2f(ρ)|2dxds ≤
Rd

h(ρ0)dx.

Note that the Hardy–Littlewood–Sobolev-type inequality (3.68) (see Appendix 3.B) implies
that

ρ∇(−Δ)−sf(ρ) 2 = ρ(−Δ)−s/2[∇(−Δ)−s/2f(ρ)] 2 ≤ C ρ d/(2s) ∇(−Δ)−s/2f(ρ) 2,

such that ρ∇(−Δ)−sf(ρ) ∈ L2(Rd), and the weak formulation (3.8) is well defined.
The main ideas of the proof of Theorem 3.1 are as follows. A priori estimates for strong
solutions ρσ to the regularized equation (3.7) are derived from mass conservation, the en-
tropy inequality, and energy-type bounds. The energy-type bound allows us to show, for
sufficiently small σ > 0, that the L∞ norm of ρσ is bounded by the L∞ norm of ρ0, up
to some factor depending on the moment bound for ρ0. The existence of a strong solution
ρσ is proved by regularizing (3.7) in a careful way to deal with the singular kernel. The
regularized equation is solved locally in time by Banach’s fixed-point theorem. Entropy es-
timates allow us to extend this solution globally in time and to pass to the de-regularization
limit. The second step is the limit σ → 0 in (3.7). Since the bounds only provide weak con-
vergence of (a subsequence of) ρσ, the main difficulty is the identification of the nonlinear
limit fσ(ρσ). This is done by applying the div-curl lemma and exploiting the monotonicity
of f and the strict convexity of u → uf(u) [45].
We already mentioned that the existence of local smooth solutions ρσ to (3.7) has been
proven in [34]. However, we provide an independent proof that allows for global strong
solutions and that yields a priori estimates needed in the mean-field limit.
Our second and main result is the propagation of chaos, which shows a mean-field-type
convergence of the particle system (3.3) to a solution of (3.1). To define our particle
system properly, we need some definitions. Introduce the smooth approximation

fσ(u) =
u

0
(Γσ ∗ (f 1[0,∞)))(w)Ξ(σw)dw u ∈ R, (3.9)

where the mollifier Γσ for σ > 0 is given by Γσ(x) = σ−1Γ1(x/σ), and Γ1 ∈ C∞
0 (R) satisfies

Γ1 ≥ 0, Γ1 1 = 1, while the cutoff function Ξ ∈ C∞
0 (R) satisfies 0 ≤ Ξ ≤ 1 in R and

Ξ(x) = 1 for |x| ≤ 1. Then, thanks to Γσ, we have fσ ∈ C∞(R). The cut-off function
guarantees that the derivatives Dkfσ are bounded and compactly supported for all k ≥ 1.
Furthermore, it holds that fσ ≥ 0, fσ(0) = 0.
In a similar way, we introduce the mollifier function Wβ for β > 0 and x ∈ Rd by

Wβ(x) = β−dW1(β
−1x), W1 ∈ C∞

0 (Rd) is symmetric, W1 ≥ 0, W1 1 = 1. (3.10)

Let us define the cut-off version of the singular kernel K by

Kζ := Kωζ , where the cut-off function ωζ ∈ W 1,∞(Rd) is such that
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3.1 Introduction and problem setting

0 ≤ ωζ(x) ≤ 1 for x ∈ Rd, ∇ωζ ∞ ≤ 2ζ, (3.11)

ωζ(x) = 1 for all |x| ≤ ζ−1, ωζ(x) = 0 for all |x| ≥ 2ζ−1.

Then the regularized kernel Kζ is given by

Kζ(x) := Kζ ∗Wζ(x) for all x ∈ Rd,

where ζ > 0. Let the cutoff function Ξ ∈ C∞
0 (Rd) satisfy 0 ≤ Ξ ≤ 1 in Rd and Ξ(x) = 1

for |x| ≤ 1. Then we define the regularized initial datum for x ∈ Rd by

ρ0σ(x) = κσ(Wσ ∗ ρ0)(x)Ξ(σx), where κσ = Rd ρ
0(y)dy

Rd(Wσ ∗ ρ0)(y)Ξ(σy)dy . (3.12)

This definition guarantees the mass conservation since ρ0σ 1 = ρ0 1; see Section 3.2.1.
Note that our particle system (3.3) depends on 4 parameters: N ∈ N denotes the number of
particles, β > 0 models the strength of interaction between the particles, ζ > 0 describes the
regularization of the singular kernel K, and σ > 0 is a measure of the additional diffusion.
The quantities (β, ζ, σ) are regularization parameters needed to overcome the singularity
of the kernel K and the (possible) degeneracy of the nonlinearity f .
In the limit N → ∞, (β, ζ, σ) → 0, we prove the following propagation-of-chaos result.

Theorem 3.2 (Propagation of chaos). Let ζ−2s−1 ≤ C1N
1/4 and β−3d−7 ≤ ε logN for

some constants C1, ε > 0, and let Pk
N,σ,β,ζ(t) be the joint distribution of (XN

1 (t), . . . , XN
k (t))

for k ≥ 1 and t ∈ (0, T ). Then there exists a subsequence in σ such that

lim
σ→0

lim
N→∞, (β,ζ)→0

Pk
N,σ,β,ζ(t) = P⊗k(t) in the sense of distributions,

where the limit is locally uniform in t, and the measure P(t) is absolutely continuous with
respect to the Lebesgue measure with the probability density function ρ(t) that is a weak
solution to (3.1).

It is well known (see, e.g., Proposition 1.1.2 in the introduction of this thesis) that the
result of Theorem 3.2 implies the weak convergence of the empirical measure associated to
the particle system (3.3) towards the deterministic measure ρ(t), i.e.

µN,σ,β,ζ(t) =
N

i=1

δXN
i (t) ρ(t),

for a subsequence in σ. Furthermore, Theorem 3.2 shows that at any time t > 0, in the
limit N → ∞, (β, ζ, σ) → 0, any finite selection of k particles in (3.3) becomes independent
with limiting distribution ρ⊗k(t).
If equation (3.1) was uniquely solvable, we would obtain the convergence of the whole
sequence in σ. Unfortunately, the regularity of the solution ρ to (3.1) is too weak to
conclude the uniqueness of weak solutions. Up to our knowledge, none of the known
methods, such as [8, 35], seem to be applicable to equation (3.1).
Theorem 3.2 is proved in two steps: First, we show (strong) error estimates between par-
ticles of systems (3.3) and (3.6), respectively; see Proposition 3.3 below. Second, we show
the weak convergence of (a subsequence of) ρσ to a solution ρ to (3.1); see Corollary 3.13.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Proposition 3.3 (Error estimate for the stochastic system). Let XN
i and XN

i be the
solutions to (3.3) and (3.6), respectively. We assume that ζ−2s−1 ≤ C1N

1/4 for some
constant C1 > 0. Let δ ∈ (0, 1/4) and a := min{1, d− 2s} > 0. Then there exist constants
ε > 0, depending on σ and δ, and C2 > 0, depending on σ and T , such that if β−3d−7 ≤
ε logN then

E sup
0<s<T

max
i=1,...,N

|(XN
i −XN

i )(s)| ≤ C2(β + ζa) → 0 as (N, ζ, β) → (∞, 0, 0).

The proposition is proved by estimating the differences

E1(t) := E sup
0<s<t

max
i=1,...,N

|(XN
i − X̄N

i )(s)| ,

E2(t) := E sup
0<s<t

max
i=1,...,N

|(X̄N
i −XN

i )(s)| ,

and applying the triangle inequality. For the first difference, we estimate expressions like
DkKζ ∗ u ∞ for appropriate functions u and DkWβ ∞ for k ∈ N in terms of negative

powers of β (here, Dk denotes the kth-order partial derivatives). Using properties of Riesz
potentials, in particular Hardy–Littlewood–Sobolev-type inequalities (see Lemmas 3.22 and
3.23), we show that for some µi > 0 (i = 1, 2, 3),

E1(t) ≤ C(σ)β−µ1

t

0
E1(s)ds+ C(σ)β−µ2ζ−µ3N−1/2.

By applying the Gronwall lemma and choosing a logarithmic scaling for β and an algebraic
scaling for ζ with respect to N , we infer that E1(t) ≤ C(σ)N−µ4 for some µ4 ∈ (0, 1/4).
For the second difference E2, we need the estimates Wβ ∗ u − u ∞ ≤ C(σ)β (Lemma
3.21), and (Kζ −K) ∗ ρσ ∞ ≤ C(σ)ζa, ρσ,β,ζ − ρσ ∞ ≤ C(σ)(β + ζa) (Proposition 3.14),
recalling that a = min{1, d − 2s}. The proof of these estimates is very technical. The
idea is to apply several times fractional Gagliardo–Nirenberg inequalities that are proved
in Appendix 3.B and Hardy–Littlewood–Sobolev inequalities that are recalled in Lemmas
3.22–3.23. Then, after suitable computations,

E2(t) ≤ C(σ)(β + ζa) + C(σ)
t

0
E2(s)ds,

and we conclude with Gronwall’s lemma that E2(t) ≤ C(σ)(β + ζa).

The chapter is organized as follows. The existence of global nonnegative weak solutions to
(3.1) is proved in Section 3.2 by establishing an existence analysis for (3.7) and performing
the limit σ → 0. Some uniform estimates for the solution ρρ,β,ζ to (3.5) and for the
difference ρσ,β,ζ − ρσ are shown in Section 3.3. Section 3.4 is devoted to the proof of the
error estimate in Theorem 3.3 and the propagation of chaos in Theorem 3.2. In Appendices
3.A–3.C we recall some auxiliary results and Hardy–Littlewood–Sobolev-type inequalities,
prove new variants of fractional Gagliardo–Nirenberg inequalities, and formulate a result
on parabolic regularity.
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3.2 Analysis of the fractional porous media equation

Notation

We write · p for the Lp(Rd) or Lp(R) norm with 1 ≤ p ≤ ∞. The ball around the origin
with radius R > 0 is denoted by BR. The partial derivative ∂/∂xi is abbreviated as ∂i for
i = 1, . . . , d, and Dα denotes a partial derivative of order |α|, where α ∈ Nd

0 is a multiindex.
The notation Dk refers to the kth-order tensor of partial derivatives of order k ∈ N. In this
situation, the norm Dku p is the sum of all Lp norms of partial derivatives of u of order
k. Finally, C > 0, C1 > 0, etc. denote generic constants with values changing from line to
line.

3.2 Analysis of the fractional porous media equation

In this section, we prove the existence of global nonnegative weak solutions to (3.1). We
first prove the existence of a solution ρσ to (3.7) by a fixed-point argument and then perform
the limit σ → 0. In Section 3.2.1, we prove some basic estimates for a strong solution ρσ
to (3.7). Entropy and moment estimates as well as higher-order estimates are derived in
Sections 3.2.2 and 3.2.3, respectively. The existence of a unique strong solution to (3.7)
is proved in Section 3.2.4 using a regularized version of (3.7) and Banach’s fixed-point
theorem. The strong L1(Rd) limit σ → 0 is performed in Section 3.2.5 using the div-curl
lemma. Finally, Section 3.2.6 is concerned with the proof of a time-uniform weak L1(Rd)
limit of (ρσ), which is needed in the proof of Proposition 3.3. Recall definition (3.12) of
the number κσ, which is stated in (iv) below.

Proposition 3.4. Let Hypotheses (H1)–(H3) hold. Then for all σ > 0, there exists a
unique weak solution ρσ ≥ 0 to (3.7) satisfying (i) the regularity

ρσ ∈ L∞(0,∞;L1(Rd) ∩ L∞(Rd)) ∩ C0([0,∞);L2(Rd)),

∇ρσ ∈ L2(0,∞;L2(Rd)), ∂tρσ ∈ L2(0,∞;H−1(Rd)),

(ii) the weak formulation of (3.7) with test functions φ ∈ L2(0, T ;H1(Rd)), (iii) the inital
datum ρσ(0) = ρ0σ in L2(Rd), and (vi) the following properties for t > 0, which are uniform
in σ for sufficiently small σ > 0:

• Mass conservation: ρσ(t) 1 = ρ0 1.

• Dissipation of the L∞ norm: ρσ L∞(0,∞;L∞(Rd)) ≤ κσ ρ0 L∞(Rd) ≤ C ρ0 L∞(Rd).

• Moment estimate: supt∈[0,∞) Rd ρσ(x, t)|x|
2d

d−2sdx ≤ CT .

• Entropy inequality:

Rd

h(ρσ(T ))dx+ 4σ
T

0 Rd

fσ(ρσ)|∇
√
ρσ|2dxdt

+
T

0 Rd

|∇(−Δ)−s/2fσ(ρσ)|2dxdt ≤
Rd

h(ρ0σ)dx for all T > 0.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Additionally, for any T > 0, 1 < p < ∞, and 2 ≤ q < ∞, there exists C > 0, depending on
T , σ, p, and q, such that

ρσ Lp(0,T ;W 3,p(Rd)) + ∂tρσ Lp(0,T ;W 1,p(Rd)) + ρσ C0([0,T ];W 2,1(Rd)∩W 3,q(Rd)) ≤ C,

i.e., ρσ is even a strong solution to (3.7) and ρσ ∈ C0([0, T ];W 2,1(Rd) ∩ W 3,q(Rd)) for
q ≥ 2.

3.2.1 Basic estimates for ρσ

We prove a priori estimates in Lp spaces and an energy-type estimate. Let σ ∈ (0, 1) and let
ρσ be a nonnegative strong solution to (3.7). Integration of (3.7) in Rd and the definition
of ρ0σ immediately yield the mass conservation

ρσ(t) 1 = ρ0σ 1 = ρ0 1 for t > 0. (3.13)

Lemma 3.5 (Energy-type estimate). Let F ∈ C2([0,∞)) be convex and let F (ρ0σ) ∈
L1(Rd). Then

d

dt Rd

F (ρσ)dx = −σ
Rd

F (ρσ)|∇ρσ|2dx (3.14)

− cd,1−s

2 Rd Rd

(G(ρσ(x))−G(ρσ(y)))(fσ(ρσ(x))− fσ(ρσ(y)))

|x− y|d+2(1−s)
dxdy ≤ 0,

where G(u) :=
u
0 vF (v)dv for u ≥ 0 and cd,1−s is defined after (3.2).

Proof. First, we assume that F is additionally bounded. Then F (ρσ) − F (0) is an ad-
missible test function in the weak formulation of (3.7), since |F (ρσ)−F (0)| ≤ F ∞|ρσ|.
It follows from definition (3.66) of the fractional Laplacian and integration by parts that

d

dt Rd

F (ρσ)dx+ σ
Rd

F (ρσ)|∇ρσ|2dx = −
Rd

F (ρσ)ρσ∇ρσ · ∇(−Δ)−sfσ(ρσ)dx

= −
Rd

∇G(ρσ) · ∇(−Δ)−sfσ(ρσ)dx = −
Rd

G(ρσ)(−Δ)1−sfσ(ρσ)dx

= −cd,1−s
Rd Rd

G(ρσ(x))
fσ(ρσ(x))− fσ(ρσ(y))

|x− y|d+2(1−s)
dxdy.

A symmetrization of the last integral yields (3.14).
In the general case, we introduce Fk(u) = F (0) + F (0)u +

u
0

v
0 min{F (w), k}dwdv for

k > 0. Then Fk (u) is bounded and (3.14) follows for F replaced by Fk. The result follows
after taking the limit k → ∞ using monotone convergence.

We need a bound on κσ, defined in (3.12), to derive uniform L∞(Rd) bounds for ρσ.

Lemma 3.6 (Bound for κσ). There exists C > 0 such that, for sufficiently small σ > 0,

1 ≤ κσ ≤ 1

1− CσE
, where E :=

1

ρ0 1 Rd

(1 + |x|2d/(d−2s))ρ0(x)dx.
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3.2 Analysis of the fractional porous media equation

Proof. By Young’s convolution inequality (Lemma 3.19), we have

Rd

(Wσ ∗ ρ0)(x)Ξ(σx)dx ≤ Wσ ∗ ρ0 1 ≤ Wσ 1 ρ0 1 = ρ0 1,

which shows that κσ ≥ 1. To prove the upper bound, we use the triangle inequality
|x| ≤ |x− y|+ |y|:

Rd

(Wσ ∗ ρ0)(x)Ξ(σx)dx ≥
{|x|≤1/σ} Rd

Wσ(x− y)ρ0(y)dydx

=
Rd Rd

Wσ(x− y)dx ρ0(y)dy −
{|x|>1/σ} Rd

Wσ(x− y)ρ0(y)dydx

≥
Rd

ρ0(y)dy − σ2d/(d−2s)

{|x|>1/σ} Rd

|x|2d/(d−2s)Wσ(x− y)ρ0(y)dydx

≥
Rd

ρ0(y)dy − σ2d/(d−2s)

Rd Rd

|x− y|2d/(d−2s)Wσ(x− y)ρ0(y)dydx

− σ2d/(d−2s)

Rd Rd

|y|2d/(d−2s)Wσ(x− y)ρ0(y)dydx.

Using the property Rd |z|2d/(d−2s)Wσ(z)dz ≤ Cσ2d/(d−2s) for the second term on the right-
hand side and Wβ L1(Rd) = 1 for the third term, we find that

Rd

(Wσ ∗ ρ0)(x)Ξ(σx)dx ≥
Rd

ρ0(y)dy − Cσ4d/(d−2s)

Rd

ρ0(y)dy

− σ2d/(d−2s)

Rd

|y|2d/(d−2s)ρ0(y)dy.

Because of σ2d/(d−2s) ≤ σ for σ ≤ 1, we obtain

ρ0 1

κσ
=

Rd

(Wσ ∗ ρ0)(x)Ξ(σx)dx ≥
Rd

ρ0(y)dy − Cσ
Rd

(1 + |y|2d/(d−2s))ρ0(y)dy

≥
Rd

ρ0(y)dy − Cσ
Rd

ρ0(y)dy · E = ρ0 1(1− CσE),

which proves the lemma.

Lemma 3.7 (Bounds for ρσ). The following bounds hold:

ρσ(t) ∞ ≤ κσ ρ0 ∞ ≤ C ρ0 ∞, t > 0, (3.15)√
σ ρσ L2(0,T ;H1(Rd)) ≤ ρ0 2, (3.16)

where (3.15) holds for sufficiently small σ > 0.

Lemma 3.7 and mass conservation imply that ρσ(t) p is bounded for all t > 0 and 1 ≤
p ≤ ∞. Observe that κσ → 1 as σ → 0. So, if ρσ(t) → ρ(t) a.e., the dissipation of the L∞

norm follows, as stated in Theorem 3.1 (iv).
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Proof. The convexity of F shows that G, defined in Lemma 3.5, is nondecreasing. There-
fore, (d/dt) Rd F (ρσ)dx ≤ 0 and

sup
t>0 Rd

F (ρσ(t))dx ≤
Rd

F (ρ0σ)dx.

We choose a convex function F ∈ C2([0,∞)) such that F (u) = 0 for u ≤ ρ0σ ∞, F (u) > 0
for u > ρ0σ ∞ and satisfying F (u) ≤ Cu for u → ∞. Then

0 ≤
Rd

F (ρσ(t))dx ≤
Rd

F (ρ0σ)dx = 0 for t > 0.

Consequently, ρσ(x, t) ≤ ρ0σ ∞ ≤ κσ ρ0 ∞ for t > 0, showing the L∞(Rd) bound. Finally,
choosing F (u) = u2 in Lemma 3.5, the L2(0, T ;H1(Rd)) estimate follows.

3.2.2 Entropy and moment estimates

We need a fractional derivative estimate for fσ(ρσ), which is not an immediate consequence
of Lemma 3.5. To this end, we define the entropy density

hσ(u) =
u

0

v

1

fσ(w)

w
dwdv, u ≥ 0.

Lemma 3.8 (Entropy balance). It holds for all t > 0 that

d

dt Rd

hσ(ρσ)dx+ 4σ
Rd

fσ(ρσ)|∇ρ1/2σ |2dx+
Rd

|∇(−Δ)−s/2fσ(ρσ)|2dx = 0.

In particular, for all T > 0, there exists C > 0 such that

fσ(ρσ) L2(0,T ;H1−s(Rd)) ≤ C. (3.17)

Proof. The idea is to apply Lemma 3.5. Since hσ ∈ C2([0,∞)), we cannot use the lemma
directly. Instead, we apply it to the regularized function

hδσ(u) =
u

0

v

1

fσ(w)

w + δ
dwdv, u ≥ 0,

where δ > 0. Choosing F = hδσ in Lemma 3.5 gives

d

dt Rd

hδσ(ρσ)dx+ 4σ
Rd

fσ(ρσ)
ρσ

ρσ + δ
|∇ρ1/2σ |2dx (3.18)

= −cd,1−s

2 Rd Rd

(f δ
σ(ρσ(x))− f δ

σ(ρσ(y)))(fσ(ρσ(x))− fσ(ρσ(y))

|x− y|d+2(1−s)
dxdy,

where f δ
σ(u) :=

u
0 (v/(v + δ))fσ(v)dv for u ≥ 0.

Step 1: Estimate of hδσ. The pointwise limit hδσ(ρσ) → hσ(ρσ) holds a.e. in Rd × (0, T ) as
δ → 0. We observe that for all 0 < u ≤ 1,

|hδσ(u)| ≤ sup
0<v<1

f (v)
u

0

1

v

dw

w
dv ≤ Cu(| log u|+ 1),
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3.2 Analysis of the fractional porous media equation

while for all u > 1, since fσ ≥ 0 in [0,∞),

|hδσ(u)| ≤
1

0

1

v

fσ(w)

w + δ
dwdv +

u

1

v

1

fσ(w)

w + δ
dwdv

≤ C +
u

1

v

1
fσ(w)dwdv ≤ C +

u

0
fσ(v)dv ≤ C + ufσ(u).

The last inequality follows after integration of fσ(v) ≤ fσ(v)+ vfσ(v) = (vfσ(v)) in (0, u).
Therefore, since ρσ ≤ ρ0σ ∞ a.e. in Rd × (0,∞), we find that

|hδσ(ρσ)| ≤ Cρσ(| log ρσ|+ 1)1{ρσ≤1} + C1{ρσ>1} ≤ C(ρθσ + ρσ),

where θ ∈ (0, 1) is arbitrary, and consequently, because of mass conservation,

Rd

|hδσ(ρσ)|dx ≤ C + C
Rd

ρθσdx. (3.19)

Step 2: Estimate of Rd ρ
θ
σdx. Let 0 < α < 1 and d/(d + α) < θ < 1. Then, by Young’s

inequality,

Rd

ρθσdx =
Rd

(1 + |x|2)αθ/2ρθσ(1 + |x|2)−αθ/2dx

≤
Rd

(1 + |x|2)α/2ρσdx+ C
Rd

(1 + |x|2)−αθ/(2(1−θ))dx

≤
Rd

(1 + |x|2)α/2ρσdx+ C,

since the choice of θ guarantees that −αθ/(2(1−θ)) < −d/2, so Rd(1+|x|2)−αθ/(2(1−θ))dx <
∞. To control the right-hand side, we need to bound a suitable moment of ρσ.

For this, we use the test function (1 + |x|2)α/2ξk in the weak formulation of (3.7), where
ξk ∈ C2

0 (Rd) is a cut-off function with the properties

ξk(x) = 1 for |x| ≤ k, ξk(x) = 0 for |x| ≥ 2k,

k|∇ξk(x)|+ k2|Δξk(x)| ≤ C, 0 ≤ ξk(x) ≤ 1 for x ∈ Rd,

and k > 1 is arbitrary. We find that

Rd

(1 + |x|2)α/2ξkρσ(t)dx =
Rd

(1 + |x|2)α/2ξkρ0σdx+ σ
t

0 Rd

ρσξkΔ(1 + |x|2)α/2dxds

+ σ
t

0 Rd

ρσ 2∇[(1 + |x|2)α/2] · ∇ξk + (1 + |x|2)α/2Δξk dxds

− α
t

0 Rd

ρσξk(1 + |x|2)α/2−1x · ∇(−Δ)−sfσ(ρσ)dxds

−
t

0 Rd

ρσ(1 + |x|2)α/2∇ξk · ∇(−Δ)−sfσ(ρσ)dxds.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Since α < 1 and 0 ≤ ξk ≤ 1 in Rd, the terms involving Δ(1 + |x|2)α/2 and x(1 + |x|2)α/2−1

are bounded in Rd. It follows from the choice of ξk that

|∇[(1 + |x|2)α/2] · ∇ξk|+ |(1 + |x|2)α/2Δξk| ≤ Ckα−2, (1 + |x|2)α/2|∇ξk| ≤ Ckα−1.

Thus, taking into account the assumption on ρ0 and mass conservation,

sup
0<t<T Rd

(1 + |x|2)α/2ξkρσ(t)dx ≤ C + C
T

0 Rd

ρσ(−Δ)−s/2|∇(−Δ)−s/2fσ(ρσ)|dxdt.

Next, we apply the Hardy–Littlewood–Sobolev inequality (see Lemma 3.22) and the Hölder
inequality and use the fact that ρσ(t) is bounded in any Lp(Rd):

sup
0<t<T Rd

(1 + |x|2)α/2ρσ(x, t)ξk(x)dx

≤ C + C
T

0
ρσ 2d/(d+2s) (−Δ)−s/2[∇(−Δ)−s/2fσ(ρσ)] 2d/(d−2s)dt

≤ C +
T

0
ρσ 2d/(d+2s) ∇(−Δ)−s/2fσ(ρσ) 2dt

≤ C(η) + η
T

0
∇(−Δ)−s/2fσ(ρσ)

2
2dt

for all η > 0. Since ξk(x) ≤ ξk+1(x) for x ∈ Rd, k > 1, and ξk → 1 a.e. in Rd as k → ∞, we
deduce from monotone convergence that in the limit k → ∞,

sup
0<t<T Rd

(1 + |x|2)α/2ρσ(x, t)dx ≤ C(η) + η
T

0
∇(−Δ)−s/2fσ(ρσ)

2
2dt

for all η > 0. This proves that

Rd

ρθσdx ≤ C(η) + η
T

0
∇(−Δ)−s/2fσ(ρσ)

2
2dt.

Step 3: A priori estimate. Inserting the previous estimate into (3.19) leads to

sup
0<t<T Rd

|hδσ(ρσ(x, t))|dx ≤ C(η) + η
T

0
∇(−Δ)−s/2fσ(ρσ)

2
2dt.

We integrate (3.18) in time and use the previous estimate:

4σ
T

0 Rd

fσ(ρσ)
ρσ

ρσ + δ
|∇ρ1/2σ |2dxdt

+
cd,1−s

2

T

0 Rd Rd

(f δ
σ(ρσ(x))− f δ

σ(ρσ(y)))(fσ(ρσ(x))− fσ(ρσ(y))

|x− y|d+2(1−s)
dxdydt

≤
Rd

|hδσ(ρσ(T ))|dx+
Rd

|hδσ(ρ0σ)|dx ≤ C(η) + η
T

0
∇(−Δ)−s/2fσ(ρσ)

2
2dt.
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3.2 Analysis of the fractional porous media equation

We wish to pass to the limit δ → 0 in the previous inequality. We deduce from dominated
convergence that f δ

σ(ρσ) → fσ(ρσ) a.e. in Rd × [0,∞). The integrand of the second term
on the left-hand side is nonnegative, and we obtain from Fatou’s lemma that

4σ
T

0 Rd

fσ(ρσ)|∇ρ1/2σ |2dxdt+ cd,1−s

2

T

0 Rd Rd

(fσ(ρσ(x))− fσ(ρσ(y)))
2

|x− y|d+2(1−s)
dxdydt

(3.20)

≤ C(η) + η
T

0
∇(−Δ)−s/2fσ(ρσ)

2
2dt.

By the integral representation of the fractional Laplacian,

cd,1−s

2 Rd Rd

(fσ(ρσ(x))− fσ(ρσ(y)))
2

|x− y|d+2(1−s)
dxdy = ∇(−Δ)−s/2fσ(ρσ)

2
2,

the last term in (3.20) can be absorbed for sufficiently small η > 0 by the second term on
the left-hand side. This leads to the estimate

4σ
T

0 Rd

fσ(ρσ)|∇ρ1/2σ |2dxdt+
T

0 Rd

|∇(−Δ)−s/2fσ(ρσ)|2dxdt ≤ C.

Thus, we can pass to the limit δ → 0 in (3.18) giving the desired entropy balance. Finally,
bound (3.17) follows from the definition of the H1−s(Rd) norm and the facts that fσ(ρσ) ∈
L2(Rd) since fσ is locally Lipschitz continuous, fσ(0) = 0, and ρσ is bounded both in
L∞(Rd) and L2(Rd) independently of σ.

Lemma 3.9 (Moment estimate). It holds that

sup
0<t<T Rd

ρσ(x, t)|x|2d/(d−2s)dx ≤ C,

where C > 0 depends on T and the L1(Rd) norms of ρ0 and | · |2d/(d−2s)ρ0.

Proof. For the following computations, we would need to use cut-off functions to make
the calculations rigorous. We leave the details to the reader, as we wish to simplify the
presentation. Let m = 2d/(d−2s). Since | · |mρ0 ∈ L1(Rd) by assumption, we can compute

d

dt Rd

ρσ(t)
|x|m
m

dx = σ(m− 2 + d)
Rd

|x|m−2ρσdx−
Rd

ρσ|x|m−2x · ∇(−Δ)−sfσ(ρσ)dx

≤ C | · |m−2ρσ 1 + | · |m−1ρσ 2d/(d+2s) ∇(−Δ)−sfσ(ρσ) 2d/(d−2s).

(3.21)

By Young’s inequality and mass conservation, we have

| · |m−2ρσ 1 ≤ C
Rd

(1 + |x|m)ρσdx ≤ C + C
Rd

|x|mρσdx.

It follows from (3.17) that ∇(−Δ)−sfσ(ρσ) is bounded in L2(0, T ;Hs(Rd)). In particular,
because of the Sobolev embedding Hs(Rd) → Lm(Rd),

∇(−Δ)−sfσ(ρσ) L2(0,T ;Lm(Rd)) ≤ C.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Furthermore, using ρσ ∈ L∞(0,∞;L∞(Rd)), Young’s inequality, and the property 2d/(d+
2s) ≥ 1 (recall that d ≥ 2)

| · |m−1ρσ
2d/(d+2s)

2d/(d+2s)
=

Rd

ρ2d/(d+2s)
σ |x|2d(m−1)/(d+2s)dx

≤ C + C
Rd

ρσ|x|2d(m−1)/(d+2s)dx.

Thus, we infer from (3.21) and the identity 2d(m− 1)/(d+ 2s) = m that

d

dt Rd

ρσ(t)
|x|m
m

dx ≤ C + C
Rd

ρσ(t)|x|mdx,

and Gronwall’s lemma concludes the proof.

3.2.3 Higher-order estimate

We need some estimates in higher-order Sobolev spaces.

Proposition 3.10 (Higher-order regularity). Let T > 0, 1 < p < ∞ and 2 ≤ q < ∞.
Then there exists C > 0, depending on T , σ, p, and q, such that

ρσ Lp(0,T ;W 3,p(Rd)) + ∂tρσ Lp(0,T ;W 1,p(Rd)) + ρσ C0([0,T ];W 2,q(Rd)) ≤ C.

Proof. Step 1: Case s > 1/2. If s > 1/2 then w := ρσ∇(−Δ)−sfσ(ρσ) does not involve
any derivative of ρσ. Thus w ∈ Lp(0, T ;Lp(Rd)) for p < ∞ and Lemma 3.26 in Appendix
3.C implies that ρσ ∈ Lp(0, T ;W 1,p(Rd)). Iterating the argument leads to the conclusion.
Thus, in the following, we can assume that 0 < s ≤ 1/2.
Step 2: Estimate of divw in Lp(0, T ;W−1,p(Rd)). We claim that w can be estimated in
Lp(0, T ;Lp(Rd)) for any p < ∞. Then, by Lemma 3.26, ∇ρσ ∈ Lp(0, T ;Lp(Rd)). We use
the L∞ bound for ρσ, the fractional Gagliardo–Nirenberg inequality (Lemma 3.24), and
Young’s inequality to find that

w p ≤ C ∇(−Δ)−sfσ(ρσ) p ≤ C fσ(ρσ)
2s
p ∇fσ(ρσ)

1−2s
p ≤ C(η) + η ∇ρσ p,

where η > 0 is arbitrary. By estimate (3.72) in Lemma 3.26,

ρσ∇(−Δ)−sfσ(ρσ) p = w p ≤ C(η) + η ρσ∇(−Δ)−sfσ(ρσ) p + T 1/p ∇ρ0 p .

Choosing η > 0 sufficiently small shows the claim.
Step 3: Estimate of divw in Lp(0, T ;Lp(Rd)). We use Hölder’s inequality with 1/p =
2s/(d+ p) + 1/q to obtain

divw p ≤ ∇ρσ · ∇(−Δ)−sfσ(ρσ) p + ρσ(−Δ)1−sfσ(ρσ) p

≤ ∇ρσ (d+p)/(2s) ∇(−Δ)−sfσ(ρσ) q + C (−Δ)1−sfσ(ρσ) p.

By the fractional Gagliardo–Nirenberg inequality (Lemma 3.25 with θ = 1+d/p−d/q−2s
and Lemma 3.24 with s replaced by 1− s) and Young’s inequality, it follows that

divw p ≤ C ∇ρσ (d+p)/(2s) fσ(ρσ)
1−θ
p ∇fσ(ρσ)

θ
p + C fσ(ρσ)

s
p D2fσ(ρσ)

1−s
p
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≤ C ∇ρσ (d+p)/(2s) ∇ρσ
θ
p + C fσ(ρσ)D

2ρσ + fσ (ρσ)∇ρσ ⊗∇ρσ
1−s
p

≤ C(η) + C ∇ρσ
1/(1−θ)
(d+p)/(2s) + C ∇ρσ p + C ∇ρσ

2
2p + η D2ρσ p,

where η > 0 is arbitrary. Taking the Lp(0, T ) norm of the previous inequality and observing
that p/(1− θ) = (d+ p)/(2s) (because of θ = d(1/p− 1/q) + 1− 2s), it follows that

divw Lp(0,T ;Lp(Rd)) ≤ C + C ∇ρσ
1/(1−θ)

L(d+p)/(2s)(0,T ;L(d+p)/(2s)(Rd))
+ C ∇ρσ Lp(0,T ;Lp(Rd))

+ C ∇ρσ
2
L2p(0,T ;L2p(Rd)) + η D2ρσ Lp(0,T ;Lp(Rd)).

Lemma 3.26 and Step 2 (∇ρσ ∈ Lp(0, T ;Lp(Rd))) show that

∂tρσ Lp(0,T ;Lp(Rd)) + (1− Cη) D2ρσ Lp(0,T ;Lp(Rd)) ≤ C.

Choosing η > 0 sufficiently small, this yields ∂tρσ ∈ Lp(0, T ;Lp(Rd)) and ρσ ∈ Lp(0, T ;
W 2,p(Rd)). We deduce from Lemma 3.20, applied to ∇ρσ, that ∇ρσ ∈ L∞(0, T ;Lq(Rd))
for any 2 ≤ q < ∞. (At this point, we need the restriction q ≥ 2.)
Step 4: Higher-order regularity. To improve the regularity of ρσ, we differentiate (3.7) in
space. Recall that ∂i = ∂/∂xi, i = 1, . . . , d. Then

∂t∂iρσ − σΔ∂iρσ =
d

j=1

∂i∂j ρσ∂j(−Δ)−sfσ(ρσ) =
d

j=1

∂2
ijρσ∂j(−Δ)sfσ(ρσ)

+ ∂iρσ∂
2
jj(−Δ)−sfσ(ρσ) + ∂jρσ∂

2
ij(−Δ)−sfσ(ρσ) + ρσ∂

3
ijj(−Δ)−sfσ(ρσ) . (3.22)

We estimate the right-hand side term by term. Let 0 < s ≤ 1/2. First, by Hölder’s
inequality with 1/p = 1/q + 1/r, 1 < p < q < ∞, max{2, p} < r < ∞ and the fractional
Gagliardo–Nirenberg inequality (Lemma 3.24),

∂2
ijρσ∂j(−Δ)sfσ(ρσ)

p
Lp(0,T ;Lp(Rd))

≤
T

0
∂2
ijρσ

p
q ∂j(−Δ)sfσ(ρσ)

p
rdt

≤ C
T

0
∂2
ijρσ

p
q fσ(ρσ)

(1−2s)p
r ∇fσ(ρσ)

2sp
r dt

≤ C fσ(ρσ)
(1−2s)p

L∞(0,T ;Lr(Rd))
∇fσ(ρσ)

2sp
L∞(0,Lr(Rd))

T

0
∂2
ijρσ

p
qdt ≤ C.

The second and third term on the right-hand side of (3.22) can be treated in a similar way,
observing that ∂2

ij(−Δ)−s = ∂j(−Δ)−s∂i. The last term is estimated according to

ρσ∂
3
ijj(−Δ)−sfσ(ρσ) p ≤ C ∂3

ijj(−Δ)−sfσ(ρσ) p ≤ C ∂2
jjfσ(ρσ)

2s
p ∇∂2

jjfσ(ρσ)
1−2s
p

≤ C(η) ∂2
jjfσ(ρσ) p + η ∇∂2

jjfσ(ρσ) p,

and the last expression can be absorbed by the corresponding estimate of Δ∂iρσ from the
left-hand side of (3.22). Then we deduce from Lemma 3.26 that ∂t∂iρσ, ∂

3
ijjρσ ∈ Lp(0, T ;

Lp(Rd)) for all p > 1 and Lemma 3.20, applied to ∂2
ijρσ, yields ∂2

ijρσ ∈ C0([0, T ];Lq(Rd))
for all q ≥ 2.
Next, if 1/2 < s < 1, we use the second inequality in Lemma 3.24 and argue similarly as
before. This finishes the proof.
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Lemma 3.11. Under the assumptions of Proposition 3.10, for every q ≥ 2, there exists a
constant C = C(q) > 0, depending on σ, such that

ρσ C0([0,T ];W 2,1(Rd)∩W 3,q(Rd)) ≤ C.

The embedding W 3,q(Rd) → W 2,∞(Rd) for q > d yields a bound for ρσ in C0([0, T ];
W 2,∞(Rd)).

Proof. We first prove the bound in C0([0, T ];W 3,q(Rd)). By differentiating (3.7) twice in
space, estimating similarly as in Step 4 of the previous proof, and using the regularity
results of Proposition 3.10, we can show that ρσ is bounded in L∞(0, T ;W 3,q(Rd)) for any
q ≥ 2.

It remains to show the C0([0, T ];W 2,1(Rd)) bound for ρσ. In view of mass conservation
and Gagliardo–Nirenberg–Sobolev’s inequality, it suffices to show a bound for D2ρσ in
L∞(0, T ;L1(Rd)). To this end, we define the weights γn = (1 + |x|2)n/2 for n ≥ 0 and test
equation (3.7) for ρσ with vn := γnρσ. Then

∂tvn − σΔvn = div vn∇K ∗ fσ(ρσ) + In, vn(0) = γnρ
0
σ in Rd,

where In = −2σ∇γn · ∇ρσ − σρσΔγn − ρσ∇γn · ∇K ∗ fσ(ρσ).

Arguing as in Step 4 of the previous proof, we can find a bound in L∞(0, T ;W 2,p(Rd))
for vn. Indeed, we can proceed by induction over n, since the additional terms in In can
be controlled by Sobolev norms of v0, . . . , vn−1. The definition of ρ0σ implies that γnρ

0
σ,

γn∇ρ0σ ∈ L∞(Rd) ∩ L1(Rd) for every n ≥ 0. Then choosing n > d yields, for 0 ≤ t ≤ T ,
that

γnD
2ρσ p ≤ D2(γnρσ) p + 2 ∇γn · ∇ρσ p + ρσD

2γn p ≤ C(T ).

We conclude from γ−1
n ∈ L∞(Rd) ∩ L1(Rd) that

D2ρσ 1 ≤ γ−1
n p/(p−1) γnD

2ρσ p ≤ C(T ).

This proves the desired bound.

3.2.4 Existence of solutions to (3.7)

We show that the regularized equation (3.7) possesses a unique strong solution ρσ.

Step 1: Existence for an approximated system. Let T > 0 arbitrary, define the spaces

XT := L2(0, T ;H1(Rd)) ∩H1(0, T ;H−1(Rd)) → YT := C0([0, T ];L2(Rd)),

YT,R := {u ∈ YT : u− ρ0σ L∞(0,T ;L2(Rd)) ≤ R},

and consider the mapping S : v ∈ YT → u ∈ YT ,

∂tu− σΔu = div(u∇K(δ)
s ∗ f (η)

σ (v)) in Rd × (0, T ),

u(0) = ρ0σ in Rd,
(3.23)
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where K(δ)
s : Rd → R+ is a regularized version of Ks, defined by

K(δ)
s = K(δ)

s/2 ∗ K
(δ)
s/2,

K(δ)
s/2(x) = cd,−s/2



δs−d + (s− d)δs−d−1(|x| − δ) for |x| < δ,

|x|s−d for δ ≤ |x| ≤ δ−1,

[δd−s + (s− d)δd+1−s(|x| − δ−1)]+ for |x| > δ−1,

and f
(η)
σ is given by

f (η)
σ (ρ) =

|ρ|

0
fσ(u)min(1, uη−1)du+

η

2
ρ2, ρ ∈ R.

The regularization with parameter η is needed for the entropy estimates.

Lemma 3.12. For any 0 < s < 1 and a.e. x ∈ Rd, the function δ → K(δ)
s/2(x) is nonin-

creasing for δ ∈ (0, 1).

Proof. Let r∗δ = (d− s+ 1)/((d− s)δ). We can write K(δ)
s/2(x) = cd,−s/2Φδ(|x|) with

Φδ(r) =




δs−d + (s− d)δs−d−1(r − δ) for r < δ,

rs−d for δ ≤ r ≤ δ−1,

δd−s + (s− d)δd+1−s(r − δ−1) for δ−1 < r < r∗δ ,
0 for r ≥ r∗δ .

Then Φδ ∈ C0([0,∞)) ∩ C1(0, r∗δ ), and its derivative equals

Φδ(r) =
−(d− s)max{r, δ}s−d−1 0 ≤ r ≤ 1,

−(d− s)min{r, δ−1}s−d−1 1 ≤ r < r∗δ .

We show that Φδ(r) is nonincreasing in δ ∈ (0, 1) for r ≥ 1. We have for 1 ≤ r < r∗δ ,

Φδ(r) = Φδ(1) +
r

1
Φδ(u)du = 1− (d− s)

r

1
min{u, δ−1}s−d−1du.

Furthermore, we have Φδ(r
∗
δ ) = 0, while min(u, δ−1) = δ−1 > 0 for u > r∗δ , so it holds that

Φδ(r) = 1− (d− s)
r

1
min{u, δ−1}s−d−1du

+

for r ≥ 1.

At this point, the above representation formula together with elementary monotonicity
considerations show that Φδ(r) is nonincreasing in δ ∈ (0, 1) for r ≥ 1. It remains to show
that Φδ(r) is nonincreasing in δ ∈ (0, 1) for 0 ≤ r < 1. It holds that

Φδ(r) = Φδ(1)−
1

r
Φδ(u)du = 1 + (d− s)

1

r
max{u, δ}s−d−1du for 0 ≤ r < 1.

Once again, we conclude from the above representation formula together with elementary
monotonicity considerations that Φδ(r) is nonincreasing in δ ∈ (0, 1) for 0 ≤ r < 1. This
finishes the proof.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

We derive some estimates for f
(η)
σ . First, we have 0 ≤ f

(η)
σ (ρ) ≤ Cηρ

2 for ρ ∈ R, since

f (η)
σ (ρ) ≤ η + η−1max

[0,η]
fσ

ρ2

2
for |ρ| ≤ η,

f (η)
σ (ρ) ≤ fσ(|ρ|) + η

2
ρ2 ≤ fσ ∞η−2 +

η

2
ρ2 for |ρ| > η.

Furthermore,

|Df (η)
σ (ρ)| = ρ

|ρ|fσ(|ρ|)min(1, |ρ|η−1) + ηρ ≤ (η + η−1 fσ ∞)|ρ|,

which implies that |Df
(η)
σ (ρ)| ≤ Cη|ρ| for ρ ∈ R. This shows that there exists C(η) > 0

such that for any ρ1, ρ2 ∈ R,

|f (η)
σ (ρ1)− f (η)

σ (ρ2)| ≤ C(η)(|ρ1|+ |ρ2|)|ρ1 − ρ2|.

It follows that f
(η)
σ (v) ∈ L∞(0, T ;L1(Rd)) for v ∈ YT .

Since ∇K(δ)
s ∈ L∞(Rd), a standard argument shows that (3.23) has a unique solution

u ∈ XT → YT . Therefore, the mapping S is well-defined. Additionally, the nonnegativity
of u follows immediately after by testing (3.23) with min(0, u).

We show now that S is a contraction on YT,R for sufficiently small T > 0. We start with

a preparation. By testing (3.23) with u and taking into account the L∞ bound for ∇K(δ)
s ,

we deduce from Young’s inequality for products and convolutions that

Rd

u(t)2dx+
σ

2

t

0 Rd

|∇u|2dxdτ ≤
Rd

|ρ0σ|2dx+ C(δ, η, σ)
t

0
u 2

2 v 4
2dτ,

since f
(η)
σ (v) 1 ≤ Cη v 2

2 for v ∈ YT . Then, if v ∈ YT,R, we infer from Gronwall’s lemma
that

Rd

u(t)2dx+ σ
t

0 Rd

|∇u|2dxdτ ≤ eC(σ,δ,η)R4t

Rd

|ρ0σ|2dx for 0 ≤ t ≤ T. (3.24)

Let vi ∈ YT,R and set ui = S(vi), i = 1, 2. We compute

u1∇K(δ)
s ∗ f (η)

σ (v1)− u2∇K(δ)
s ∗ f (η)

σ (v2) 2

≤ (u1 − u2)∇K(δ)
s ∗ f (η)

σ (v1) 2 + u2∇K(δ)
s ∗ (f (η)

σ (v1)− f (η)
σ (v2)) 2

≤ u1 − u2 2 ∇K(δ)
s ∗ f (η)

σ (v1) ∞ + u2 2 ∇K(δ)
s ∗ (f (η)

σ (v1)− f (η)
σ (v2)) ∞

≤ u1 − u2 2 ∇K(δ)
s ∞ f (η)

σ (v1) 1 + u2 2 ∇K(δ)
s ∞ f (η)

σ (v1)− f (η)
σ (v2) 1

≤ C(δ, η) u1 − u2 2 v1
2
2 + u2 2( v1 2 + v2 2) v1 − v2 2 .

Therefore, using (3.24), for v1, v2 ∈ YT,R,

u1∇K(δ)
s ∗ f (η)

σ (v1)−u2∇K(δ)
s ∗ f (η)

σ (v2) 2 ≤ C(δ, η, R, T )( u1−u2 2+ v1− v2 2). (3.25)
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Next, we write (3.23) for (ui, vi) in place of (u, v), i = 1, 2, take the difference between the
two equations, and test the resulting equation with u1 − u2:

1

2
(u1 − u2)(t)

2
2 + σ

t

0 Rd

|∇(u1 − u2)|2dxdτ

= −
t

0 Rd

∇(u1 − u2) · (u1∇K(δ)
s ∗ f (η)

σ (v1)− u2∇K(δ)
s ∗ f (η)

σ (v2))dxdτ

≤ σ

2

t

0 Rd

|∇(u1 − u2)|2dxdτ +
1

2σ

t

0
u1∇K(δ)

s ∗ f (η)
σ (v1)− u2∇K(δ)

s ∗ f (η)
σ (v2)

2
2dτ.

It follows from (3.25) that

(u1 − u2)(t)
2
2 + σ

t

0 Rd

|∇(u1 − u2)|2dxdτ

≤ C(δ, η, R, T, σ)
t

0
( u1 − u2

2
2 + v1 − v2

2
2)dτ,

and we conclude from Gronwall’s lemma that

(u1 − u2)(t)
2
2 ≤ eC(δ,η,R,T,σ)t

T

0
v1 − v2

2
2dτ for 0 ≤ t ≤ T.

This inequality implies that S is a contraction in YT,R, provided that T is sufficiently small.
Therefore, by Banach’s theorem, S admits a unique fixed point u ∈ YT,R ⊂ YT for T > 0
sufficiently small.
It remains to show that the local solution can be extended to a global one. To this end,
we note that the function u ∈ XT satisfies (3.23) with v = u:

∂tu− σΔu = div(u∇K(δ)
s ∗ f (η)

σ (u)) in Rd × (0, T ),

u(·, 0) = ρ0σ in Rd.
(3.26)

Then, defining the truncated entropy density

h(η)(ρ) =
ρ

0

u

0
Df (η)

σ (v)v−1dvdu, ρ ≥ 0,

and testing (3.26) with Dh(η)(u) yields, in view of the definition of K(δ)
s , that

Rd

h(η)(u(t))dx+ σ
t

0 Rd

Df (η)
σ (u)u−1|∇u|2dxdτ (3.27)

+
t

0 Rd

|∇K(δ)
s/2 ∗ f (η)

σ (u)|2dxdτ =
Rd

h(η)(ρ0σ)dx

for 0 ≤ t ≤ T . This inequality and the definitions of f
(η)
σ and h(η) yield a (δ, T )-uniform

bound for u in L2(0, T ;H1(Rd)), which in turn (together with (3.26)) implies a (δ, T )-
uniform bound for u in XT , and a fortiori in YT . This means that the solution u can be
prolonged to the whole time interval [0,∞) and exists for all times.

81



3 Mean-field derivation of a porous-medium equation with fractional diffusion

Finally, we point out that, since ∇K(δ)
s ∈ L2(Rd), then ∇K(δ)

s ∗ f (η)
σ (u) ∈ L∞(0, T ;L2(Rd))

and so u∇K(δ)
s ∗ f (η)

σ (u) ∈ L∞(0, T ;L1(Rd)). This fact yields the conservation of mass for
u, i.e. Rd u(t)dx = Rd ρ

0
σdx for t > 0. Indeed, it is sufficient to test (3.26) with a cut-off

ψR ∈ C1
0 (Rd) satisfying ψR(x) = 1 for |x| < R, ψR(x) = 0 for |x| > 2R, |∇ψR(x)| ≤ CR−1

for x ∈ Rd, and then to take the limit R → ∞.
Step 2: Limit δ → 0. Let u(δ) be the solution to (3.26). An adaption of the proof of [14,
Lemma 1] shows that the embedding H1(Rd)∩L1(Rd; (1+ |x|2)κ/2) → L2(Rd) is compact.
Thus, because of the δ-uniform bounds for u(δ), the Aubin–Lions Lemma implies that (up
to a subsequence) u(δ) → u strongly in L2(0, T ;L2(Rd)) for every T > 0. We wish now to
study the convergence of the nonlinear and nonlocal terms in (3.26)–(3.27) as δ → 0.
It follows from (3.27) that (up to a subsequence)

∇K(δ)
s/2 ∗ f (η)

σ (u(δ)) U weakly in L2(Rd × (0, T )) as δ → 0. (3.28)

In order to identify the limit U , we first notice that, by construction, 0 ≤ K(δ)
s/2 Ks/2

a.e. in Rd. Furthermore, the Hardy–Littlewood–Sobolev inequality, the bound for f
(η)
σ , and

then the Gagliardo-Nirenberg-Sobolev inequality yield that

Ks/2 ∗ f (η)
σ (u) (d+2)/(d−s) ≤ C f (η)

σ (u) (d+2)/(d+2s/d) ≤ C(η) u 2
(2d+4)/(d+2s/d)

≤ C(η) u
2(s+2)/(d+2)
2 ∇u

2(d−s)/(d+2)
2 .

Therefore, since u ∈ L∞(0, T ;L2(Rd)) ∩ L2(0, T ;H1(Rd)),

T

0
Ks/2 ∗ f (η)

σ (u)
(d+2)/(d−s)
(d+2)/(d−s)dt ≤ C(η) u

2(s+2)/(d−s)

L∞(0,T ;L2(Rd))

T

0
∇u 2

2dt ≤ C(η, T ),

meaning that Ks/2∗f (η)
σ (u) ∈ L(d+2)/(d−s)(Rd×(0, T )). Taking into account that f

(η)
σ (u) ≥ 0

and that δ → K(δ)
s/2(x) ∈ R is nonincreasing (see Lemma 3.12), we deduce from monotone

convergence that

K(δ)
s/2 ∗ f (η)

σ (u) → Ks/2 ∗ f (η)
σ (u) strongly in L(d+2)/(d−s)(Rd × (0, T )). (3.29)

Furthermore, arguing as before and using the estimates for Df
(η)
σ leads to

K(δ)
s/2 ∗ (f (η)

σ (u(δ))− f (η)
σ (u)) (d+2)/(d−s) ≤ Ks/2 ∗ |f (η)

σ (u(δ))− f (η)
σ (u)| (d+2)/(d−s)

≤ C f (η)
σ (u(δ))− f (η)

σ (u) (d+2)/(d+2s/d)

≤ C(η) |u|+ |u(δ)|
(2d+4)/(d+2s/d)

u− u(δ) (2d+4)/(d+2s/d)

≤ C(η) u
(s+2)/(d+2)
2 ∇u

(d−s)/(d+2)
2 + u(δ)

(s+2)/(d+2)
2 ∇u(δ)

(d−s)/(d+2)
2

× u− u(δ)
(s+2)/(d+2)
2 ∇(u− u(δ))

(d−s)/(d+2)
2 .

Since u(δ) is bounded in L∞(0, T ;L2(Rd)) ∩ L2(0, T ;H1(Rd)), it follows that (up to a

subsequence) K(δ)
s/2∗(f

(η)
σ (u(δ))−f

(η)
σ (u)) converges weakly to some limit in L(d+2)/(d−s)(Rd×
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(0, T )). However, Hölder’s inequality and the fact that u(δ) → u strongly in Lp(0, T ;L2(Rd))
for every 2 ≤ p < ∞, which follows from

T

0
u(δ) − u p

2dt ≤ sup
0<t<T

(u(δ) − u)(t) p−2
2

T

0
u(δ) − u 2

2dt → 0 as δ → 0,

imply that

K(δ)
s/2 ∗ (f (η)

σ (u(δ))− f (η)
σ (u)) → 0 strongly in Lp(0, T ;L(d+2)/(d−s)(Rd)), p <

d+ 2

d− s
.

We conclude that

K(δ)
s/2 ∗ (f (η)

σ (u(δ))− f (η)
σ (u)) 0 weakly in L(d+2)/(d−s)(Rd × (0, T )). (3.30)

We deduce from (3.29)–(3.30) that

K(δ)
s/2 ∗ f (η)

σ (u(δ))−Ks/2 ∗ f (η)
σ (u)

= K(δ)
s/2 ∗ f (η)

σ (u)−Ks/2 ∗ f (η)
σ (u) +K(δ)

s/2 ∗ (f (η)
σ (u(δ))− f (η)

σ (u))

0 weakly in L(d+2)/(d−s)(Rd × (0, T )),

which, together with (3.28), implies that U = ∇Ks/2 ∗ f (η)
σ (u), that is,

∇K(δ)
s/2 ∗ f (η)

σ (u(δ)) ∇Ks/2 ∗ f (η)
σ (u) weakly in L2(Rd × (0, T )). (3.31)

Let ψ ∈ C∞
0 (Rd × (0, T )). Because of

∇K(δ)
s ∗ f (η)

σ (u(δ)) = K(δ)
s/2 ∗ ∇K(δ)

s/2 ∗ f (η)
σ (u(δ)) ,

we find that

T

0 Rd

ψ · ∇K(δ)
s ∗ f (η)

σ (u(δ))dxdt =
T

0 Rd

∇K(δ)
s/2 ∗ f (η)

σ (u(δ)) · K(δ)
s/2 ∗ ψ dxdt.

Our goal is to show that K(δ)
s/2 ∗ ψ → Ks/2 ∗ ψ strongly in L2(Rd × (0, T )) as δ → 0. We

can assume without loss of generality that ψ ≥ 0 a.e. in Rd × (0, T ). Indeed, for general
functions ψ, we may write ψ = ψ+ +ψ−, where ψ+ = max{0, ψ} and ψ− = min{0, ψ}, and
we have K(δ)

s/2 ∗ ψ = K(δ)
s/2 ∗ ψ+ − K(δ)

s/2 ∗ (−ψ−). Once again, since K(δ)
s/2 Ks/2 a.e. in Rd,

it is sufficient to show that Ks/2 ∗ ψ ∈ L2(Rd × (0, T )). The Hardy–Littlewood–Sobolev
inequality (see Appendix 3.B) yields

T

0
Ks/2 ∗ ψ 2

2dt ≤ C
T

0
ψ 2

2d/(d+2s)dt.

It follows from (3.31), the previous argument, and the fact that Ks ∗ u = (−Δ)−su =
Ks/2 ∗ Ks/2 ∗ u that

T

0 Rd

ψ · ∇K(δ)
s ∗ f (η)

σ (u(δ))dxdt →
T

0 Rd

∇Ks/2 ∗ f (η)
σ (u) · (Ks/2 ∗ ψ)dxdt
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=
T

0 Rd

ψ · ∇Ks ∗ f (η)
σ (u)dxdt

for every ψ ∈ L2(0, T ;L2d/(d+2s)(Rd)), which means that

∇K(δ)
s ∗ f (η)

σ (u(δ)) ∇Ks ∗ f (η)
σ (u) weakly in L2(0, T ;L2d/(d−2s)(Rd)). (3.32)

Since u(δ) → u strongly in L2(0, T ;L2(Rd)) and (u(δ)) is bounded in L∞(0, T ;L1(Rd))
(via mass conservation), it also holds that u(δ) → u strongly in L2(0, T ;L2d/(d+2s)(Rd)).
Therefore, the convergence (3.32) is sufficient to pass to the limit δ → 0 in (3.26).
Step 3: Limit η → 0 and conclusion. The limit δ → 0 in (3.26) shows that the limit u
solves

∂tu− σΔu = div(u∇Ks ∗ f (η)
σ (u)) in Rd × (0, T ),

u(·, 0) = ρ0σ in Rd.
(3.33)

Fatou’s Lemma and the weakly lower semicontinuity of the L2 norm allow us to infer from
(3.27) that for t > 0,

Rd

h(η)(u(t))dx+ σ
t

0 Rd

Df (η)
σ (u)u−1|∇u|2dxdτ (3.34)

+
t

0 Rd

|∇Ks/2 ∗ f (η)
σ (u)|2dxdτ ≤

Rd

h(η)(ρ0σ)dx.

At this point, all the bounds for u, derived in the previous subsections, and the moment
estimate, contained in Lemma 3.9, can be proved like in Sections 3.2.1–3.2.2. All these
estimates are uniform in η. It is rather straightforward to perform the limit η → 0 in
(3.33)–(3.34) to obtain a weak solution to (3.7). However, the higher regularity bounds
obtained in Section 3.2.3 imply that u is actually a strong solution to (3.7), which in turn
yields the uniqueness of u as a weak solution to (3.7). This finishes the proof of Theorem
3.4.

3.2.5 Limit σ → 0

We prove that there exists a subsequence of (ρσ) that converges strongly in L1(Rd× (0, T ))
to a weak solution ρ to (3.1).
The uniform L∞(Rd × (0, T )) bound for ρσ in Lemma 3.7 implies that, up to a subse-
quence, ρσ

∗ ρ weakly* in L∞(Rd × (0, T )) as σ → 0. We deduce from the uniform
L∞(0, T ;L1(Rd)) bound (3.13) and the moment bound for ρσ in Lemma 3.9 that (ρσ)
is equi-integrable. Thus, by the Dunford–Pettis theorem, again up to a subsequence,
ρσ ρ weakly in L1(Rd × (0, T )). It follows from the L2(0, T ;H1(Rd)) estimate (3.16)
that σΔρσ → 0 strongly in L2(0, T ;H−1(Rd)). The estimates in (3.17) and Lemma 3.7
show that (∂tρσ) is bounded in L2(0, T ;H−1(Rd)) and consequently, up to a subsequence,
∂tρσ ∂tρ weakly in L2(0, T ;H−1(Rd)). Therefore, the limit σ → 0 in (3.7) leads to

∂tρ = div(ρσ∇(−Δ)−sfσ(ρσ)) in L2(0, T ;H−1(Rd)), (3.35)

where the overline denotes the weak limit of the corresponding sequence.
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3.2 Analysis of the fractional porous media equation

We need to identify the weak limit on the right-hand side. The idea is to use the div-curl
lemma [45, Theorem 10.21]. For this, we define the vector fields with d+ 1 components

Uσ := ρσ,−ρσ∇(−Δ)−sfσ(ρσ) , Vσ := fσ(ρσ), 0, . . . , 0 .

Let R > 0 be arbitrary and write BR for the ball around the origin with radius R. The
L∞(Rd) bound (3.15) for ρσ and the L2(0, T ;H1−s(Rd)) bound (3.17) for fσ(ρσ) show that
(Uσ) is bounded in Lp(BR×(0, T )) for some p > 1, while (Vσ) is bounded in L∞(BR×(0, T )).
Furthermore, by (3.17),

div(t,x) Uσ = σΔρσ → 0 strongly in L2(0, T ;H−1(BR)) → H−1(BR × (0, T )),

curl(t,x) Vσ L2(0,T ;H−s(BR)) ≤ C ∇fσ(ρσ) L2(0,T ;H−s(BR)) ≤ C,

where curl(t,x) Vσ is the antisymmetric part of the Jacobian matrix of Vσ. Hence, by the
compact embedding H−s(BR × (0, T )) → W−1,r(BR × (0, T )) (since L2(0, T ;H−s(BR)) ⊂
H−s(BR × (0, T ))), the sequence (curl(t,x) Vσ) is relatively compact in W−1,r(BR × (0, T ))

for some r > 1. Therefore, we can apply the div-curl lemma giving Uσ · Vσ = Uσ · Vσ or

ρσfσ(ρσ) = ρfσ(ρσ) a.e. in BR × (0, T ).

By definition (3.9) of fσ(ρσ), it follows for arbitrary ρσ ∈ [0, L] and sufficiently large L > 0,
that

fσ(ρσ) =
ρσ

0
(Γσ ∗ (f 1[0,∞)))(u)Ξ(σu)du =

ρσ

0

∞

0
Γσ(u− w)f (w)dwΞ(σu)du

=
ρσ

0

∞

0
Γσ(u− w)f(w)dwΞ(σu)du =

∞

0

ρσ

0
Γσ(u− w)Ξ(σu)du f(w)dw.

We use the properties that (ρσ) is uniformly bounded and Ξ = 1 in [−1, 1]. Then, choosing
σ > 0 sufficiently small,

fσ(ρσ) =
∞

0

ρσ

0
Γσ(u− w)du f(w)dw

=
∞

0
Γσ(ρσ − w)f(w)dw −

∞

0
Γσ(−w)f(w)dw

=
R
Γσ(ρσ − w)f̃(w)dw −

R
Γσ(−w)f̃(w)dw,

setting f̃ := f1[0,∞). Hence, using f(0) = 0, we find that

fσ(ρσ)− f(ρσ) =
R
Γσ(u)(f̃(u+ ρσ)− f̃(ρσ))du−

R
Γσ(−w)(f̃(w)− f̃(0))dw.

Taking into account the fundamental theorem of calculus for the function f̃ ∈ C0∩W 1,1(R),
we can estimate as follows:

|fσ(ρσ)− f(ρσ)| ≤ ess sup
u∈supp(Γσ)\{0}

|f̃(u+ ρσ)− f̃(ρσ)|
|u| +

|f̃(u)− f̃(0)|
|u| R

Γσ(w)|w|dw
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≤ max
ξ∈supp(Γσ)∩[0,∞)

(f (ξ + ρσ) + f (ξ))
R
Γσ(w)|w|dw.

Then, since Γσ(u) = σ−1Γ1(σ
−1u), supp(Γσ) ⊂ Bσ(0) is compact, f ∈ C1([0,∞)), and (ρσ)

is uniformly bounded, we conclude that

|fσ(ρσ)− f(ρσ)| ≤ Cσ.

This means that fσ(ρσ) − f(ρσ) → 0 strongly in L∞(BR × (0, T )), and it shows that
ρσf(ρσ) = ρf(ρσ) a.e. in BR × (0, T ). As f is nondecreasing, we can apply [45, Theorem
10.19] to infer that f(ρσ) = f(ρ) a.e. in BR × (0, T ). Consequently, ρσf(ρσ) = ρf(ρ). As
u → uf(u) is assumed to be strictly convex, we conclude from [45, Theorem 10.20] that
(ρσ) converges a.e. in BR × (0, T ). Since (ρσ) is bounded in L∞(Rd × (0, T )), it follows
that ρσ → ρ strongly in Lp(BR × (0, T )) for all p < ∞. Using the moment estimate from
Lemma 3.9, we infer from

lim sup
σ→0

T

0 Rd

|ρσ − ρ|dxdt = lim sup
σ→0

T

0 Rd\BR

|ρσ − ρ|dxdt

≤ R−2d/(d−2s) lim sup
σ→0

T

0 Rd\BR

ρσ(t, x)|x|2d/(d−2s)dx

≤ R−2d/(d−2s)C → 0 as R → ∞

that ρσ → ρ strongly in Lp(Rd × (0, T )) for all p < ∞. The strong convergences of ρσ and
fσ(ρσ) in Lp(Rd×(0, T )) for all p < ∞ allow us to identify the weak limit in (3.35), proving
the weak formulation (3.8).
Finally, we deduce from the uniform L2(0, T ;H−1(Rd)) bound for ∂tρσ and the fact that
ρσ → ρ strongly in Lp(Rd) for any p < ∞ that ρ(0) = ρ0 in the sense of H−1(Rd).
Properties (iv) of Theorem 3.1 follow from the corresponding expressions satisfied by ρσ in
the limit σ → 0.

3.2.6 Time-uniform convergence of (ρσ).

The following lemma is needed in the proof of Proposition 3.3. It is essentially a consequence
of the L2(0, T ;H−1(Rd)) bound of ∂tρσ and the Ascoli–Arzelà theorem.

Corollary 3.13. Under the assumptions of Theorem 3.1, it holds for all φ ∈ L∞(Rd) that,
possibly for a subsequence,

Rd

ρσφdx →
Rd

ρφdx uniformly in [0, T ].

Proof. Let φ ∈ C1
0 (Rd) and 0 ≤ t1 < t2 ≤ T . The uniform L2(0, T ;H−1(Rd)) bound of

∂tρσ implies that

Rd

ρσ(t2)φdx−
Rd

ρσ(t1)φdx =
t2

t1

∂tρσ, φ dt

≤ |t2 − t1|1/2 ∂tρσ L2(0,T ;H−1(Rd)) φ H1(Rd) ≤ C|t2 − t1|1/2 φ H1(Rd).
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Hence, the sequence of functions t → Rd ρσ(t)φds is bounded and equicontinuous in [0, T ].
By the Ascoli–Arzelá theorem, up to a φ-depending subsequence, Rd ρσφdx → ξφ strongly
in C0([0, T ]) as σ → 0. Since ρσ

∗ ρ weakly* in L∞(0, T ;L∞(Rd)), we can identify the
limit, ξφ = Rd ρφdx. Since H

1(Rd) is separable, a Cantor diagonal argument together with
a density argument allows us to find a subsequence (which is not relabeled) such that for
all φ ∈ H1(Rd),

Rd

ρσφdx →
Rd

ρφdx strongly in C0([0, T ]). (3.36)

Since (ρσ) is bounded in L∞(0, T ;L2(Rd)), another density argument shows that this limit
also holds for all φ ∈ L2(Rd).
Now, let φ ∈ L∞(Rd). Using φ1{|x|<R} ∈ L2(Rd), it follows from (3.36) and the moment
estimate for ρσ that

lim sup
σ→0

sup
0<t<T Rd

ρσ(t)φdx−
Rd

ρ(t)φdx

≤ lim sup
σ→0

sup
0<t<T Rd

ρσ(t)φ1{|x|>R}dx−
Rd

ρ(t)φ1{|x|>R}dx

≤ R−2d/(d−2s) φ ∞ lim sup
σ→0

sup
0<t<T Rd

(ρσ(x, t) + ρ(x, t))|x|2d/(d−2s)dx

≤ C(T )R−2d/(d−2s) φ ∞ → 0 as R → ∞.

This shows that

lim
σ→0

sup
0<t<T Rd

ρσ(t)φdx−
Rd

ρ(t)φdx = 0,

concluding the proof.

3.3 Analysis of equation of the regularised equation (3.5)

This section is devoted to the analysis of equation (3.5),

∂tρσ,β,ζ − σΔρσ,β,ζ = div ρσ,β,ζ∇Kζ ∗ fσ(Wβ ∗ ρσ,β,ζ) , t > 0,

ρσ,β,ζ(0) = ρ0σ in Rd,
(3.37)

where Kζ = Kζ ∗Wζ and Wβ is defined in (3.10), as well as to an estimate for the difference
ρσ,β,ζ − ρσ, which is needed in the mean-field analysis. The existence and uniqueness of a
strong solution to (3.37) follows from standard parabolic theory, since we regularized the
singular kernel and smoothed the nonlinearity.

Proposition 3.14 (Uniform estimates). Let Hypotheses (H1)–(H3) hold and let T > 0,
p > d. Set a := min{1, d − 2s}, let ρσ be the strong solution to (3.7), and let ρσ,β,ζ be the
strong solution to (3.5). Then there exist constants C1 > 0, and ε0 > 0, both depending on
σ, p, and T , such that if β + ζa < ε0 then

ρσ,β,ζ − ρσ L∞(0,T ;W 2,p(Rd)) ≤ C1(β + ζa), (3.38)
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ρσ,β,ζ L∞(0,T ;W 2,p(Rd)) ≤ C1. (3.39)

Furthermore, for every q ≥ 2, there exists C2 = C2(q) > 0, depending on σ and T , such
that

(Kζ −K) ∗ ρσ L∞(0,T ;L∞(Rd)) ≤ C2ζ
a, (3.40)

ρσ,β,ζ L∞(0,T ;W 2,1(Rd)∩W 3,q(Rd)) ≤ C2. (3.41)

The proof is presented in the following subsections. The most difficult part is the proof
of (3.38) in Section 3.3.1. We first prove an estimate for D2(ρσ,β,ζ − ρσ) that depends on
a lower-order estimate of this difference. Second, this lower-order estimate is shown by
testing the equation satisfied by the difference ρσ,β,ζ − ρσ with a suitable nonlinear test
function. Based on the arguments of this section, estimates (3.39)–(3.41) are then shown
in Sections 3.3.2–3.3.4, respectively.

3.3.1 Proof of (3.38).

We introduce the difference u := ρσ,β,ζ − ρσ, which satisfies

∂tu− σΔu = div (u+ ρσ)∇Kζ ∗ fσ(Wβ ∗ (u+ ρσ))− ρσ∇K ∗ fσ(ρσ) (3.42)

= D[u] +R[ρσ, u] + S[ρσ, u] in Rd, t > 0,

and the initial datum u(0) = 0 in Rd, where

D[u] = div u∇K ∗ fσ(Wβ ∗ u) ,

R[ρσ, u] = div u∇K ∗ fσ(Wβ ∗ (u+ ρσ))− fσ(Wβ ∗ u)
+ ρσ∇K ∗ fσ(Wβ ∗ (u+ ρσ))− fσ(Wβ ∗ ρσ) + ρσ∇K ∗ fσ(Wβ ∗ ρσ)− fσ(ρσ) ,

S[ρσ, u] = div (u+ ρσ)∇(Kζ −K) ∗ fσ(Wβ ∗ (u+ ρσ)) .

We show first an estimate for D2u that depends on a lower-order estimate for u.

Lemma 3.15 (Conditional estimate for u). For any p > d, there exists a number Γp ∈ (0, 1)
such that, if sup0<t<T u(t) W 1,p(Rd) ≤ Γp then

D2u Lp(0,T ;Lp(Rd)) ≤ C u Lp(0,T ;W 1,p(Rd)) + β + ζa ,

recalling that a = min{1, d− 2s}, and where C > 0 is independent of u, β, and ζ, but may
depend on σ.

Proof. Let Γp ∈ (0, 1) be such that sup0<t<T u(t) W 1,p(Rd) ≤ Γp. We will find a constraint
for Γp at the end of the proof. The aim is to derive an estimate for the right-hand side
of (3.42) in Lp(0, T ;Lp(Rd)). We observe that u(t) 1 ≤ ρσ,β,ζ 1 + ρσ 1 ≤ 2 ρ0 1 for
t ∈ [0, T ]. In the following, we denote by C > 0 a generic constant that may depend on
σ, without making this explicit. Furthermore, we denote by µ a generic exponent in (0, 1),
whose value may vary from line to line.
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Step 1: Estimate of D[u]. Let 1/2 < s < 1. Then, by the Hardy–Littlewood–Sobolev-type
inequality (3.68),

D[u] p ≤ ∇u · ∇K ∗ fσ(Wβ ∗ u) p + u∇K ∗ [fσ(Wβ ∗ u)Wβ ∗ ∇u] p

≤ C ∇u p fσ(Wβ ∗ u) d/(2s−1) + C u d/(2s−1) fσ(Wβ ∗ u) ∞ ∇u p.

We use the Young convolution inequality, the Gagliardo–Nirenberg inequality, the smooth-
ness of fσ, the property fσ(0) = 0, and the fact Wβ L1(Rd) = 1 to estimate the terms on
the right-hand side:

Wβ ∗ u ∞ ≤ u ∞ ≤ u 1−λ
1 ∇u λ

p ≤ CΓλ
p ≤ C,

fσ(Wβ ∗ u) ∞ ≤ max
U

|fσ| Wβ ∗ u ∞ ≤ C,

fσ(Wβ ∗ u) ∞ ≤ |fσ(0)|+max
U

|fσ | Wβ ∗ u ∞ ≤ C,

u d/(2s−1) ≤ u 1−µ
1 u µ

∞ ≤ C u µ
W 1,p(Rd)

≤ CΓµ
p ≤ C,

where U := [− Wβ ∗ u ∞, Wβ ∗ u ∞] and λ > 0, µ > 0. Therefore, D[u] p ≤ C ∇u p

and
D[u] Lp(0,T ;Lp(Rd)) ≤ C u Lp(0,T ;W 1,p(Rd)). (3.43)

Next, let 0 < s ≤ 1/2. Then we write

D[u] = ∇u · K ∗ [fσ(Wβ ∗ u)Wβ ∗ ∇u] + uK ∗ [fσ (Wβ ∗ u)|Wβ ∗ ∇u|2]
+ uK ∗ [fσ(Wβ ∗ u)Wβ ∗Δu] =: D1 +D2 +D3.

By the Hardy–Littlewood–Sobolev-type inequality (Lemma 3.22),

D1 p ≤ C ∇u d/(2s) fσ(Wβ ∗ u)Wβ ∗ ∇u p ≤ C ∇u d/(2s) ∇u p.

Next, we apply the Gagliardo–Nirenberg inequality with λ = (1+1/d−2s/d)/(1+2/d−1/p):

∇u d/(2s) ≤ C u 1−λ
1 D2u λ

p ≤ C D2u λ
p ,

which is possible as long as λ ≥ 1/2 or equivalently d ≥ 2s, which is true. Consequently,
using Γp ≤ 1,

D1 p ≤ C ∇u p D2u λ
p ≤ CΓλ

p ∇u 1−λ
p D2u λ

p ≤ C(δ) ∇u p + δ D2u p,

where δ > 0 is arbitrary. It follows from the Hardy-Littlewood-Sobolev-type inequality and
the Gagliardo–Nirenberg inequality

∇u 2
2p ≤ C D2u d/p

p ∇u 2−d/p
p ≤ CΓp D2u d/p

p ∇u 1−d/p
p

that
D2 p ≤ C u d/2sΓp D2u d/p

p ∇u 1−d/p
p ≤ C(δ) ∇u p + δ D2u p.

Finally, using similar ideas, we obtain

D3 p ≤ C u d/(2s) Δu p ≤ CΓµ
p D2u p.
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Summarizing the estimates for D1, D2, and D3 and integrating in time leads to

D[u] Lp(0,T ;Lp(Rd)) ≤ C u Lp(0,T ;W 1,p(Rd)) + CΓµ
p D2u Lp(0,T ;Lp(Rd)). (3.44)

Step 2: Estimate of R[ρσ, u]. We write R[ρσ, u] = R1 +R2 +R3 for the three terms in the
definition of R[ρσ, u] below (3.42).
Step 2a: Estimate of R1. If s > 1/2, we can argue similarly as in the derivation of (3.43),
which gives

R1 Lp(0,T ;Lp(Rd)) ≤ C u Lp(0,T ;W 1,p(Rd)).

If 0 < s ≤ 1/2, we write R1 = R11 + · · ·+R16, where

R11 = ∇u · K ∗ fσ(Wβ ∗ (u+ ρσ))Wβ ∗ ∇ρσ ,

R12 = uK ∗ fσ (Wβ ∗ (u+ ρσ))(Wβ ∗ ∇ρσ) · (Wβ ∗ ∇(u+ ρσ)) ,

R13 = uK ∗ fσ(Wβ ∗ (u+ ρσ))Wβ ∗Δρσ ,

R14 = ∇u · K ∗ fσ(Wβ ∗ (u+ ρσ))− fσ(Wβ ∗ u) Wβ ∗ ∇u ,

R15 = uK ∗ fσ (Wβ ∗ (u+ ρσ))Wβ ∗ ∇(u+ ρσ)

− fσ (Wβ ∗ u)(Wβ ∗ ∇u) · (Wβ ∗ ∇u) ,

R16 = uK ∗ fσ(Wβ ∗ (u+ ρσ))− fσ(Wβ ∗ u) Wβ ∗Δu .

All terms except the last one can be treated by the Hardy–Littlewood–Sobolev and Ga-
gliardo–Nirenberg inequalities as before. For the last term, we use these inequalities and
the L∞(Rd) bound for ρσ:

R16 p ≤ C u d/(2s) fσ(Wβ ∗ (u+ ρσ))− fσ(Wβ ∗ u) Wβ ∗Δu
p

≤ C u d/(2s) fσ ∞ Wβ ∗ ρσ ∞ Wβ ∗Δu p ≤ C u d/(2s) Δu p ≤ CΓµ
p D2u p.

We infer that (possibly with a different µ > 0 than before)

R1 Lp(0,T ;Lp(Rd)) ≤ C u Lp(0,T ;W 1,p(Rd)) + CΓµ
p D2u Lp(0,T ;Lp(Rd)).

Step 2b: Estimate of R2. Since |fσ| is bounded on the interval [− u ∞ − ρσ ∞, u ∞ +
ρσ ∞], we obtain for s > 1/2,

R2 Lp(0,T ;Lp(Rd)) ≤ C u Lp(0,T ;W 1,p(Rd)).

For 0 < s ≤ 1/2, we write R2 = R21 + · · ·+R27, where

R21 = ∇ρσ · K ∗ fσ(Wβ ∗ (u+ ρσ))Wβ ∗ ∇u ,

R22 = ρσK ∗ fσ (Wβ ∗ (u+ ρσ))Wβ ∗ ∇(u+ ρσ) · (Wβ ∗ ∇u) ,

R23 = ρσK ∗ fσ(Wβ ∗ (u+ ρσ))Wβ ∗Δu ,

R24 = ∇ρσ · K ∗ fσ(Wβ ∗ (u+ ρσ))− fσ(Wβ ∗ ρσ) Wβ ∗ ∇ρσ ,

R25 = ρσK ∗ fσ (Wβ ∗ (u+ ρσ))(Wβ ∗ ∇u) · (Wβ ∗ ∇ρσ) ,

R26 = ρσK ∗ fσ (Wβ ∗ (u+ ρσ))− fσ (Wβ ∗ ρσ) |Wβ ∗ ∇ρσ|2 ,

R27 = ρσK ∗ fσ(Wβ ∗ (u+ ρσ))− fσ(Wβ ∗ ρσ) Wβ ∗Δρσ .
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Similar estimations as before allow us to treat all terms except the third one:

R23 p ≤ ρσK ∗ fσ(Wβ ∗ (u+ ρσ))− fσ(Wβ ∗ ρσ) Wβ ∗Δu
p

+ ρσK ∗ [fσ(Wβ ∗ ρσ)Wβ ∗Δu] p =: Q231 +Q232.

The first term can be estimated similarly as above by Q231 ≤ CΓµ
p D2u p, while

Q232 ≤ ρσΔK ∗ [fσ(Wβ ∗ ρσ)Wβ ∗ u] p + ρσK ∗ [Δfσ(Wβ ∗ ρσ)Wβ ∗ u] p

+ 2 ρσK ∗ [∇fσ(Wβ ∗ ρσ) · (Wβ ∗ ∇u)] p.

It follows from −ΔK ∗ v = (−Δ)1−sv and the fractional Gagliardo–Nirenberg inequality
(Lemma 3.24) that

Q232 ≤ C u W 1,p(Rd) + ρσ(−Δ)1−s[fσ(Wβ ∗ ρσ)Wβ ∗ u] p

≤ C u W 1,p(Rd) + C ρσ ∞ fσ(Wβ ∗ ρσ)Wβ ∗ u s
p D2[fσ(Wβ ∗ ρσ)Wβ ∗ u] 1−s

p

≤ C u W 1,p(Rd) + C u s
p u 1−s

p + ∇u 1−s
p + D2u 1−s

p

≤ C u W 1,p(Rd) + CΓp D2u p.

This shows that R23 p ≤ C u W 1,p(Rd) + CΓµ
p D2u p, and we conclude that

R2 Lp(0,T ;Lp(Rd)) ≤ C u Lp(0,T ;W 1,p(Rd)) + CΓµ
p D2u Lp(0,T ;Lp(Rd)).

Step 2c: Estimate of R3. We write R3 = R31 + · · ·+R37, where

R31 = ∇ρσ · K ∗ fσ(Wβ ∗ ρσ)− fσ(ρσ) Wβ ∗ ∇ρσ ,

R32 = ρσK ∗ fσ (Wβ ∗ ρσ)− fσ (ρσ) |Wβ ∗ ∇ρσ|2 ,

R33 = ρσK ∗ fσ (ρσ)(Wβ ∗ ∇ρσ −∇ρσ) · (Wβ ∗ ∇ρσ) ,

R34 = ∇ρσ · K ∗ fσ(ρσ)(Wβ ∗ ∇ρσ −∇ρσ) ,

R35 = ρσK ∗ fσ (ρσ)∇ρσ · (Wβ ∗ ∇ρσ −∇ρσ) ,

R36 = ρσK ∗ fσ(ρσ)(Wβ ∗Δρσ −Δρσ)

R37 = ρσK ∗ (fσ(Wβ ∗ ρσ)− fσ(ρσ))Wβ ∗Δρσ

We start with the estimate of R31. We use the Hardy–Littlewood–Sobolev inequality
(Lemma 3.22) and Lemma 3.21 to estimate Wβ ∗ ρσ − ρσ:

R31 ≤ C ∇ρσ d/s fσ(Wβ ∗ ρσ)− fσ(ρσ) p Wβ ∗ ∇ρσ d/s

≤ C ∇ρσ
2
d/s max

[0,2 ρσ ∞]
|fσ | Wβ ∗ ρσ − ρσ p ≤ C(σ)β,

also taking into account the L∞(0, T ;Lq(Rd)) bound for ∇ρσ; see Proposition 3.10. With
this regularity, we can estimate all other terms except R34 and R36. Since they have
similar structures, we only treat R34. This term is delicate since the factor fσ(ρσ) cannot
be bounded in Lq(Rd) for any q < ∞. Therefore, one might obtain via Hardy–Littlewood–
Sobolev’s inequality factors like ∇ρσ q1 and D2ρσ q2 with either q1 < 2 or q2 < 2.
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However, for such factors, an L∞ bound in time is currently lacking (Proposition 3.10
provides such a bound only for q ≥ 2). Our idea is to add and subtract the term fσ(0)
since

|fσ(ρσ)− fσ(0)| ≤ ρσ max
[0, ρσ ∞]

|fσ | ≤ Cρσ

can be controlled. This leads to

R34 p ≤ ∇ρσ · K ∗ [(fσ(ρσ)− fσ(0))(Wβ ∗ ∇ρβ −∇ρβ) p

+ fσ(0)∇ρσ · K ∗ (Wβ ∗ ∇ρσ −∇ρσ) p

≤ Cβ + |fρ(0)| ∇ρσ · K ∗ (Wβ ∗ ∇ρσ −∇ρσ) p =: Cβ +Q341,

as the first term can be estimated in a standard way. For the estimate of Q341, we need to
distinguish two cases.
If 1/2 < s ≤ 1, we infer from the Hardy–Littlewoord–Sobolev-type inequality (3.68) that

Q341 ≤ C ∇ρσ d/(2s−1) Wβ ∗ ρσ − ρσ p ≤ C ∇ρσ d/(2s−1) ∇ρσ pβ ≤ Cβ.

Next, let 0 < s ≤ 1/2. Then we apply the Hardy–Littlewoord–Sobolev-type inequality
(3.67), the standard Gagliardo–Nirenberg inequality for some λ > 0, and Lemma 3.21:

Q341 ≤ C ∇ρσ d/(2s) Wβ ∗ ∇ρσ −∇ρσ p ≤ C ρσ
1−λ
1 D2ρσ

λ
p(β D2ρσ p) ≤ Cβ.

We conclude that R34 p ≤ Cβ and eventually

R3 Lp(0,T ;Lp(Rd)) ≤ Cβ.

Summarizing the estimates for R1, R2, and R3 finishes this step:

R[ρσ, u] Lp(0,T ;Lp(Rd)) ≤ C u Lp(0,T ;W 1,p(Rd)) + Cβ + CΓµ
p D2u Lp(0,T ;W 1,p(Rd)). (3.45)

Step 3: Estimate of S[ρσ, u]. We formulate this term as S[ρσ, u] = S1 + · · ·+ S4, where

S1 = div u∇(Kζ −K) ∗ fσ(Wβ ∗ (u+ ρσ))− fσ(Wβ ∗ ρσ) ,

S2 = div u∇(Kζ −K) ∗ fσ(Wβ ∗ ρσ) ,

S3 = div ρσ∇(Kζ −K) ∗ fσ(Wβ ∗ (u+ ρσ))− fσ(Wβ ∗ ρσ) ,

S4 = div ρσ∇(Kζ −K) ∗ fσ(Wβ ∗ ρσ) .

The terms S1, S2, and S3 can be treated as the terms in R[ρσ, u], since they have the same
structure and the techniques used to estimate integrals involving K can be applied to those
involving Kζ . This leads to (for some µ > 0)

S1 + S2 + S3 Lp(0,T ;Lp(Rd)) ≤ C u Lp(0,T ;W 1,p(Rd)) + CΓµ
p D2u Lp(0,T ;Lp(Rd)). (3.46)

It remains to estimate S4. We write S4 = S41 + S42 + S43, where

S41 = ∇ρσ · (Kζ −K) ∗ fσ(Wβ ∗ ρσ)Wβ ∗ ∇ρσ ,

S42 = ρσ(Kζ −K) ∗ fσ (Wβ ∗ ρσ)|Wβ ∗ ∇ρσ|2 ,
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S43 = ρσ(Kζ −K) ∗ fσ(Wβ ∗ ρσ)Wβ ∗Δρσ .

Observe that, because of the definition of Kζ = Kζ ∗Wζ with Kζ = Kωζ (defined in (3.11)),
we have (Kζ − K) ∗ v = K ∗ (Wζ ∗ v − v) − (K(1 − ωζ)) ∗ Wζ ∗ v for every function v for
which the convolution is defined, and therefore, by the Hardy–Littlewood–Sobolev-type
inequality (3.67), Young’s convolution inequality, and Lemma 3.21,

ρσ(Kζ −K) ∗ v p ≤ C ρσ d/(2s) Wζ ∗ v − v p + C ρσ p (K(1− ωζ)) ∗ v ∞
≤ C ρσ d/(2s) ∇v pζ + C ρσ p K1Rd\B(0,ζ−1) ∞ v 1

≤ C ρσ d/(2s) ∇v pζ + Cζd−2s ρσ p v 1,

Given the regularity properties of ρσ (see Lemma 3.11) and the assumptions on fσ, it
follows that

S4 Lp(0,T ;Lp(Rd)) ≤ Cζmin{1,d−2s}. (3.47)

We conclude from (3.46) and (3.47) that

S[ρσ, u] Lp(0,T ;Lp(Rd)) ≤ C u Lp(0,T ;W 1,p(Rd)) + Cζa + CΓµ
p D2u Lp(0,T ;Lp(Rd)), (3.48)

where a := min{1, d− 2s}.
Step 4: End of the proof. Summarizing (3.44), (3.45), and (3.48), we infer that the right-
hand side of (3.42) can be bounded (for some µ > 0) by

D[u] +R[ρσ, u] + S[ρσ, u] Lp(0,T ;Lp(Rd))

≤ C u Lp(0,T ;W 1,p(Rd)) + C(β + ζa) + CΓµ
p D2u Lp(0,T ;Lp(Rd)).

By parabolic regularity (3.71),

D2u Lp(0,T ;Lp(Rd)) ≤ C u Lp(0,T ;W 1,p(Rd)) + C(β + ζa) + CΓµ
p D2u Lp(0,T ;Lp(Rd)).

Choosing Γp > 0 sufficiently small finishes the proof.

It remains to estimate the Lp(0, T ;W 1,p(Rd)) norm of u. This is done in the following
lemma.

Lemma 3.16 (Unconditional estimate for u). For any p > d, there exist constants C > 0,
and ε0 > 0, both depending on σ, p, and T , such that for β + ζa < ε0,

u L∞(0,T ;W 1,p(Rd)) ≤ C(β + ζa).

recalling that a := min{1, d− 2s}.
Proof. The idea is to test (3.42) with p|u|p−2u − p div(|∇u|p−2∇u). Integration by parts
and some elementary computations lead to

Rd

p div(|∇u|p−2∇u)Δudx = −p
i,j Rd

|∇u|p−2∂iu∂i∂
2
jjudx
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

= p
i,j Rd

∂j(|∇u|p−2∂iu)∂
2
ijudx

= p
Rd

|∇u|p−2|D2u|2dx+
p

2
j Rd

∂j(|∇u|p−2)∂j(|∇u|2)dx

= p
Rd

|∇u|p−2|D2u|2dx+
j Rd

4

p
(p− 2) ∂j(|∇u|p/2) 2

dx.

Consequently, we have

p u(t) p
W 1,p(Rd)

+ σp(p− 1)
t

0 Rd

|u|p−2|∇u|2dxds (3.49)

+ σ
t

0 Rd

p|∇u|p−2|D2u|2 + 4(p− 2)p−1 ∇(|∇u|p/2) 2
dxds

= p
t

0 Rd

|u|p−2u− div(|∇u|p−2∇u) D[u] +R[ρσ, u] + S[ρσ, u] dxds

=: Q[u].

We infer from Lemmas 3.20 and 3.26 that u ∈ C0([0, T ];W 1,p(Rd)). Therefore, since
u(0) = 0, it holds that u(t) W 1,p(Rd) ≤ Γp for all t ∈ [0, T ∗] and T ∗ := sup{t0 ∈ (0, T ) :
u(t) W 1,p(Rd) ≤ Γp for 0 ≤ t ≤ t0}. Let t ∈ [0, T ∗]. We have shown in the proof of the
previous lemma that

D[u] +R[ρσ, u] + S[ρσ, u] Lp(0,t;Lp(Rd)) ≤ C u Lp(0,t;W 1,p(Rd)) + C(β + ζa).

Hence, we can estimate the right-hand side Q[u] of (3.49) as follows:

Q[u] ≤ C
t

0 Rd

|u|p−1 + |∇u|p−2|D2u| D[u] +R[ρσ, u] + S[ρσ, u] dxds

≤ C u p−1
Lp(0,t;Lp(Rd))

+ ∇u
p/2−1

Lp(0,t;Lp(Rd))
|∇u|p/2−1|D2u| L2(0,t;L2(Rd))

× u Lp(0,t;W 1,p(Rd)) + β + ζa

≤ C(δ, p, t) u p
Lp(0,t;W 1,p(Rd))

+ (β + ζa)p + δ |∇u|p/2−1|D2u| 2
L2(0,t;L2(Rd)),

where δ > 0. Choosing δ sufficiently small, the last term is absorbed by the corresponding
expression on the left-hand side of (3.49), and we infer from (3.49) that for 0 ≤ t ≤ T ∗,

u(t) p
W 1,p(Rd)

≤ C(p, t)
t

0
u p

W 1,p(Rd)
ds+ C(p, t)(β + ζa)p.

We assume without loss of generality that C(p, t) is nondecreasing in t. Then Gronwall’s
lemma implies that for 0 ≤ t ≤ T ∗,

u(t) p
W 1,p(Rd)

≤ C(p, T )(β + ζa)p
t

0
eC(p,T )(t−s)ds ≤ (β + ζa)eC(p,T )t.

Choosing ε0 = 1
2Γp exp(−C(p, T )T/p) < 1, we find that u(t) W 1,p(Rd) ≤ Γp/2 for β +

ζa < ε0 and 0 ≤ t ≤ T ∗. By definition of T ∗, it follows that T ∗ = T . In particular,
u(t) W 1,p(Rd) ≤ C(β + ζa) for 0 < t < T , which finishes the proof.

94



3.3 Analysis of equation of the regularised equation (3.5)

3.3.2 Proof of (3.38) and (3.39).

Combining Lemmas 3.15 and 3.16 leads to

u Lp(0,T ;W 2,p(Rd)) ≤ C(σ, p, T )(β + ζa), where a = min{1, d− 2s}, (3.50)

as long as β + ζa < ε0 and p > d. Next, we differentiate (3.42) with respect to xi (writing
∂i for ∂/∂xi):

∂t(∂iu)− σΔ(∂iu) = ∂i D[u] +R[ρσ, u] + S[ρσ, u] , ∂iu(0) = 0 in Rd.

Taking into account estimate (3.50) and arguing as in the proof of Lemma 3.15, we can
show that for δ > 0,

∂i(D[u] +R[ρσ, u] + S[ρσ, u]) Lp(0,T ;Lp(Rd)) ≤ C(p, σ, δ)(β + ζa) + δ D3u Lp(0,T ;Lp(Rd)).

We infer from parabolic regularity (Lemma 3.26) for sufficiently small δ > 0 that

∂tDu Lp(0,T ;Lp(Rd)) + D3u Lp(0,T ;Lp(Rd)) ≤ C(p, σ)(β + ζa).

Then Lemma 3.20, applied to Du, leads to (3.38), which with Proposition 3.10 implies
(3.39).

3.3.3 Proof of (3.40).

Let x ∈ Rd. We use the definitions of Kζ and Wζ to find that

|(Kζ −K) ∗ ρσ(x)| =
Rd

Wζ(x− y) (K ∗ ρσ)(x)− ((Kωζ) ∗ ρσ)(y) dy

≤
Rd

Wζ(x− y)|x− y| |(K ∗ ρσ)(x)− (K ∗ ρσ)(y)|
|x− y| dy + (K(1− ωζ)) ∗ ρσ ∞

≤ ∇K ∗ ρσ ∞
Rd

Wζ(z)|z|dz + K1Rd\B(0,ζ−1) ∞ ρσ 1

≤ ζ ∇K ∗ ρσ ∞
Rd

W1(y)|y|dy + ζd−2s ρσ 1.

Let φ ∈ C∞
0 (Rd) be such that supp(φ) ⊂ B2 and φ = 1 in B1. Then (since we can assume

without loss of generality that ζ < 1), by arguing like in the derivation of (3.47), we obtain

|(Kζ −K) ∗ ρσ(x)| ≤ Cζmin{1,d−2s} ∇(Kφ) ∗ ρσ ∞ + ∇(K(1− φ)) ∗ ρσ ∞ + ρσ 1 ,

A computation shows that for p > max{d/(2s), 2},
∇(Kφ) ∗ ρσ ∞ = (Kφ) ∗ ∇ρσ ∞ ≤ Kφ p/(p−1) ∇ρσ p ≤ C ∇ρσ p,

∇(K(1− φ)) ∗ ρσ ∞ ≤ ∇(K(1− φ)) ∞ ρσ 1 ≤ C ρσ 1,

where we note that K1B2 ∈ Lp/(p−1) if p > d/(2s). Then, in view of the regularity of ρσ in
Lemma 3.11, we find that

(Kζ −K) ∗ ρσ L∞(0,T ;L∞(Rd)) ≤ Cζa.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

3.3.4 Proof of (3.41).

The L∞(0, T ;W 2,1(Rd) ∩ W 3,q(Rd)) bound for ρσ,β,ζ is shown in a similar way as the
corresponding bound for ρσ in Lemma 3.11.

3.4 Mean-field analysis

This section is devoted to the proof of Proposition 3.3 and Theorem 3.2. The existence of
solutions to (3.4) and (3.6) as well as the existence of density functions is shown in Section
3.4.1. In Section 3.4.2, we estimate the difference XN

i − X̄N
i of the processes of the original

system (3.3) and the intermediate system (3.4), while the difference X̄N
i − XN

i of the
processes of the intermediate system (3.4) and the macroscopic system (3.6) is estimated
in Section 3.4.3. These estimates are combined in Section 3.4.4 to conclude with the proof
of Proposition 3.3 and Theorem 3.2.

3.4.1 Existence of density functions for (3.4) and (3.6)

First, we show that the coefficients of the stochastic differential equation (3.6), satisfied by
XN , are globally Lipschitz continuous and of at most linear growth. The latter condition
follows from

|∇K ∗ fσ(ρσ(x, t))| ≤ K ∗ ∇fσ(ρσ) L∞(0,T ;L∞(Rd))

≤ C K ∗ ∇fσ(ρσ) L∞(0,T ;W 1,p(Rd)) ≤ C ∇fσ(ρσ) L∞(0,T ;W 1,r(Rd)) ≤ C(σ),

where p > d and r = dp/(d + 2s) according to the Hardy–Littlewood–Sobolev inequality,
and we used the regularity bounds for ρσ from Lemma 3.26. The global Lipschitz continuity
is a consequence of the mean-value theorem, the Hardy–Littlewood–Sobolev inequality, and
the W 2,∞(Rd) regularity of ρσ from Lemma 3.11:

sup
0<t<T

∇K ∗ fσ(ρσ(x, t))−∇K ∗ fσ(ρσ(y, t)) ≤ sup
0<t<T

D2K ∗ fσ(ρσ(·, t)) ∞|x− y|

= sup
0<t<T

K ∗ fσ (ρσ)∇ρσ ⊗∇ρσ + fσ(ρσ)D
2ρσ (·, t) ∞|x− y| ≤ C(σ)|x− y|.

These two conditions yield the existence and uniqueness of solutions to the associated
particle systems [67, Theorems 2.5 and 2.9]. Moreover, by [89, Theorem 2.3.1], the law
of the process XN

i is absolutely continuous with respect to the Lebesgue measure. By
Radon-Nikodym’s theorem, there exists a density function u(t) for all t > 0 on Rd, which is
measurable and integrable with respect to the Lebesgue measure. (Since all XN

i are copies
of the same process, their density functions are the same almost everywhere.) The processes
XN

i (t) have continuous paths, which implies the continuity of the distribution function of

XN
i (t) with respect to time, and this implies in turn the Bochner measurability of u(t).

Clearly, we have sup0<t<T u(t) L1(Rd) = 1, which shows that u ∈ L∞(0, T ;L1(Rd)).

Similar arguments show that X̄N
i (t) has a density function ū ∈ L∞(0, T ;L1(Rd)).

Next, we show that u and ū can be identified with the weak solutions ρσ and ρσ,β,ζ ,
respectively, using Itô’s lemma. Indeed, let φ ∈ C∞

0 (Rd × [0, T ]). We infer from Itô’s
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formula that

φ(XN
i (t), t) = φ(XN

i (0), 0) +
t

0
∂sφ(X

N
i (s), s)ds+ σ

t

0
Δφ(XN

i (s), s)ds

−
t

0
∇K ∗ fσ(ρσ(XN

i (s), s)) · ∇φ(XN
i (s), s)ds+

√
2σ

t

0
∇φ(XN

i (s), s) · dWi(s).

Taking the expectation, the Itô integral vanishes, and we end up with

Rd

φ(x, t)u(x, t)dx =
Rd

φ(x, 0)ρ0σ(x)dx+
t

0 Rd

∂sφ(x, s)u(x, s)dxds

+ σ
t

0 Rd

Δφ(x, s)u(x, s)dxds−
t

0 Rd

∇K ∗ fσ(ρσ(x, s)) · ∇φ(x, s)u(x, s)dxds.

(3.51)

Hence, u is a very weak solution in the space L∞(0, T ;L1(Rd)) to the linear equation

∂tu = σΔu+ div(u∇K ∗ fσ(ρσ)), u(0) = ρ0σ in Rd, (3.52)

where ρσ is the unique solution to (3.7).

It can be shown that (3.52) is uniquely solvable in the class of functions in L∞(0, T ;L1(Rd)).
This implies that u = ρσ in Rd × (0, T ) (and similarly ū = ρσ,β,ζ). The proof is technical
but standard; see, e.g., [25, Theorem 7] for a sketch of a proof.

Another approach is as follows. Because of the linearity of (3.51), it is sufficient to
prove that u ≡ 0 in Rd × (0, T ) if ρ0σ = 0. First, we verify that v := ∇K ∗ fσ(ρσ) ∈
L∞(0, T ;W 1,∞(Rd)) and u ∈ Lp(0, T ;Lp(Rd)) for p < d/(d − 1). Then, by density, (3.51)
holds for all φ ∈ W 1,q(0, T ;Lq(Rd))∩Lq(0, T ;W 2,q(Rd)) with q > d and φ(T ) = 0. Choosing
ψ to be the unique strong solution to the dual problem

∂tψ + σΔψ = v · ∇ψ + g, ψ(T ) = 0 in Rd

in the very weak formulation of (3.51), we find that
T
0 Rd ugdxdt = 0 for all g ∈ C∞

0 (Rd×
(0, T )), which implies that u = 0.

3.4.2 Estimate of XN
i − X̄N

i

We derive an estimate for the expectation of the difference XN
i −X̄N

i . To this end, we need
to estimate the difference of the microscopic average N−1 N

j=1, j=iWβ(X
N
j −XN

i ) and the

macroscopic average Wβ ∗ ρβ,ζ,σ(X̄N
i ). By a careful choice of β and ζ, we show that this

estimate is of the order N−1/4+δ for δ > 0.

Lemma 3.17. Let XN
i and X̄N

i be the solutions to (3.3) and (3.4), respectively, and let
δ ∈ (0, 1/4). Under the assumptions of Theorem 3.3 on β and ζ, it holds that

E sup
0<s<T

max
i=1,...,N

|(XN
i − X̄N

i )(s)| ≤ CN−1/4+δ.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Proof. To simplify the presentation, we set

Ψ(x, t) := fσ
1

N

N

j=1, j=i

Wβ(X
N
j (t)− x) , Ψ̄(x, t) := fσ

1

N

N

j=1, j=i

Wβ(X̄
N
j (t)− x) ,

and we write ρ := ρσ,β,ζ . Taking the difference of equations (3.3) and (3.4) in the integral
formulation leads to

sup
0<s<t

|(XN
i − X̄N

i )(s)| ≤
t

0
∇Kζ ∗ Ψ(XN

i (s), s)− fσ(Wβ ∗ ρ(X̄N
i (s), s)) ds (3.53)

≤
t

0
∇Kζ ∗ Ψ(XN

i (s), s)− Ψ̄(X̄N
i (s), s) ds

+
t

0
∇Kζ ∗ Ψ̄(X̄N

i (s), s)− fσ(Wβ ∗ ρ(X̄N
i (s), s)) ds =: I1 + I2.

Step 1: Estimate of I1. To estimate I1, we formulate I1 = I11 + I12 + I13, where

I11 =
t

0
∇Kζ ∗ Ψ(XN

i (s), s)−Ψ(X̄N
i (s), s) ds,

I12 =
t

0
∇Kζ ∗ Ψ(X̄N

i (s), s)− Ψ̄(XN
i (s), s) ds,

I13 =
t

0
∇Kζ ∗ Ψ̄(XN

i (s), s)− Ψ̄(X̄N
i (s), s) ds.

We start with the first integral:

I11 ≤
t

0
D2Kζ ∗Ψ(·, s) ∞ sup

0<r<s
max

i=1,...,N
|(XN

i − X̄N
i )(r)|ds.

We claim that
DkKζ ∗Ψ(·, s) ∞ ≤ C(σ)β−(k+1)(d+k)−1, k ∈ N. (3.54)

For the proof, we introduce

Φ(x, y) := fσ
1

N

N−1

j=1

Wβ(yj − x) for x ∈ Rd, y = (y1, . . . , yN−1) ∈ R(N−1)d.

Then, by definition of Kζ ,

DkKζ ∗Ψ(·, t) ∞ ≤ sup
y∈RN−1

Wζ ∗ Kωζ ∗DkΦ(·, y) ∞.

We estimate the right-hand side:

Wζ ∗ (Kωζ ∗DkΦ(·, y)) ∞ ≤ Wζ 1 Kωζ ∗DkΦ(·, y) ∞ ≤ C Kωζ ∗DkΦ(·, y) W 1,p(Rd)

≤ C K ∗ |DkΦ(·, y)| p + C K ∗ |Dk+1Φ(·, y)| p

≤ C DkΦ(·, y) r + C Dk+1Φ(·, y) r,
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3.4 Mean-field analysis

where we used the Hardy–Littlewood–Sobolev inequality for r = dp/(d + 2ps) in the last
step. It follows from the Faà di Bruno formula, after an elementary computation, that the
last term is estimated according to

Dk+1Φ(·, y) r
r =

Rd

Dk+1 fσ
1

N

N−1

j=1

Wβ(yj − x)
r

dx

≤ C(k,N) max
=1,...,k+1

f ( )
σ

r
∞ DkWβ

kr
∞ max

0≤j≤k Rd

|Dj+1Wβ(x)|rdx

≤ C(k,N) max
=1,...,k+1

f ( )
σ

r
∞β−(d+k)krβ−(d+k+1)r+d ≤ C(k,N, σ)β−(d+k)(k+1)r−r,

since DkWβ ∞ ≤ Cβ−(d+k) and Dj+1Wβ r ≤ Cβ−(d+j+1)+d/r. This verifies (3.54). We
infer from (3.54) with k = 2 that

I11 ≤ Cβ−3d−7
t

0
sup

0<r<s
max

i=1,...,N
|(XN

i − X̄N
i )(r)|ds.

The term I13 is estimated in a similar way, with Ψ replaced by Ψ̄:

I13 ≤ Cβ−3d−7
t

0
sup

0<r<s
max

i=1,...,N
|(XN

i − X̄N
i )(r)|ds.

The estimate of the remaining term I12 is more involved. Since Wβ is assumed to be
symmetric, we find that

I12 =
t

0 Rd

Kζ(y)∇ fσ
1

N

N

j=1, j=i

Wβ(X
N
j (s)− X̄N

i (s) + y)

− fσ
1

N

N

j=1, j=i

Wβ(X̄
N
j (s)−XN

i (s) + y) dyds

≤ C
t

0 Rd

Kζ(y) fσ
1

N
j=i

Wβ(X
N
j (s)− X̄N

i (s) + y)

× 1

N
j=i

∇ Wβ(X
N
j (s)− X̄N

i (s) + y)−Wβ(X̄
N
j (s)−XN

i (s) + y)

+ fσ
1

N
j=i

Wβ(X
N
j (s)− X̄N

i (s) + y) − fσ
1

N
j=i

Wβ(X̄
N
j (s)−XN

i (s) + y)

× 1

N
j=i

∇Wβ(X̄
N
j (s)−XN

i (s) + y) dyds

≤ C fσ ∞
t

0
sup
0<s<t

max
i=1,...,N

|(XN
i − X̄N

i )(s)| 1
N

j=i Rd

Kζ(y)|D2Wβ(y + ξij(s))|dyds

+ C fσ ∞
t

0
sup
0<s<t

max
i=1,...,N

|(XN
i − X̄N

i )(s)| Kζ ∗ ∇Wβ ∞ds,
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

where ξij(s) is a random value. We write K1 = K|B1 , K2 = K|Rd\B1
and note that Kζ ≤ K

for all ζ > 0. Then

Rd

Kζ(y)|D2Wβ(y + ξij(s))|dy ≤
B1+ζ

(K1 ∗Wζ)(y)|D2Wβ(y + ξij(s))|dy

+
Rd\B1−ζ

(K2 ∗Wζ)(y)|D2Wβ(y + ξij(s))|dy

≤ K1 ∗Wζ Lθ/(θ−1)(B1+ζ)
D2Wβ(·+ ξij(s)) Lθ(B1+ζ)

+ K2 ∗Wζ ∞ D2Wβ(·+ ξij(s)) L1(Rd\B1−ζ)

≤ K1
Lθ/(θ−1)(B1)

D2Wβ(·+ ξij(s)) Lθ(B1+ζ)
+ K2 ∞ D2Wβ(·+ ξij(s)) L1(Rd)

≤ C D2Wβ ∞ + D2Wβ 1 ≤ Cβ−d−2.

Observe that we did not use the compact support for Kζ (which depends on ζ), because a
negative exponent of ζ at this point would lead to a logarithmic connection between ζ and
N in the end, which we wish to avoid.
Furthermore, by the convolution, Sobolev, and Hardy–Littlewood–Sobolev inequalities as
well as the fact that |Kζ ∗ ∇Wβ | = |(Kwζ) ∗Wζ ∗ ∇Wβ | ≤ K ∗ |Wζ | ∗ |∇Wβ |,

Kζ ∗ ∇Wβ ∞ = Wζ ∗ Kζ ∗ ∇Wβ ∞ ≤ Kζ ∗ ∇Wβ ∞ ≤ Kζ ∗ ∇Wβ ∞
≤ C Kζ ∗ ∇Wβ W 1,p(Rd) ≤ C( K ∗ |∇Wβ | p

p + K ∗ |D2Wβ | p
p)

1/p

≤ C ∇Wβ W 1,r(Rd) ≤ Cβ−d−2+d/r,

where we recall that r > d/(2s) and we choose p > d satisfying 1/p = 2s/d − 1/r. The
previous two estimates lead to

I12 ≤ C(σ)β−d−2
t

0
sup

0<r<s
max

i=1,...,N
|(XN

i − X̄N
i )(r)|ds.

We summarize:

I1 ≤ C(σ)β−3d−7
t

0
sup

0<r<s
max

i=1,...,N
|(XN

i − X̄N
i )(r)|ds. (3.55)

Step 2: Estimate of I2. We take the expectation of I2 and use the mean-value theorem:

E(I2) =
t

0
E

Rd

∇Kζ(y) fσ
1

N
j=i

Wβ(X̄
N
j (s)− X̄N

i (s) + y) (3.56)

− fσ Wβ ∗ ρ(X̄N
i (s)− y, s) dy ds

≤ N−1 fσ ∞ Kζ ∗ ∇Wζ 1

t

0
sup
y∈Rd

E
j=i

|bij(y, s)| ds,

where

bij(y, s) = Wβ(X̄
N
j (s)− X̄N

i (s) + y)− N

N − 1
Wβ ∗ ρ(X̄N

i (s)− y, s).
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3.4 Mean-field analysis

We deduce from ∇Wζ L1(Rd) ≤ Cζ−1 that

Kζ ∗ ∇Wζ 1 ≤ Cζ−1 Kζ 1 ≤ Cζ−2s−1,

due to the compact support of Kζ(x) = |x|2s−dωζ(x) ≤ C|x|2s−d1|x|≤2ζ−1 and

{|x|<2/ζ}
|x|2s−ddx =

{|y|<2}
ζ−d|y/ζ|2s−ddy = Cζ−2s.

We claim that E( j=i |bij(y, s)|) ≤ C(σ)β−d/2N1/2 for all y ∈ Rd. To show the claim,

we compute the expectation E[( j=i bij(y, s))
2]. We estimate first the terms with k = j

(omitting the argument (y, s) to simplify the notation). Then an elementary but tedious
computation leads to

E(bjibki) =
Rd Rd Rd

Wβ(xj − xi + y)− N

N − 1
Wβ ∗ ρ(xi − y)

× Wβ(xk − xi + y)− N

N − 1
Wβ ∗ ρ(xi − y) ρ(xi)ρ(xj)ρ(xk)dxidxjdxk

=
Rd

Wβ ∗ ρ(xi − y)− N

N − 1
Wβ ∗ ρ(xi − y)

2

ρ(xi)dxi

≤ N−2 ρ L∞(0,T ;L∞(Rd)) Wβ ∗ ρ 2
L∞(0,T ;L2(Rd))

≤ C(σ)N−2 Wβ
2
1 ≤ C(σ)N−2.

The diagonal terms contribute in the following way:

E(b2ji) =
Rd Rd

Wβ(xj − xi + y)− N

N − 1
Wβ ∗ ρ(xi − y)

2

ρ(xi)ρ(xj)dxidxj

=
Rd

(W2
β ∗ ρ)(xi − y)− 2N

N − 1
(Wβ ∗ ρ)(xi − y)2

+
N2

(N − 1)2
(Wβ ∗ ρ)(xi − y)2 ρ(xi)dxi

≤ C(σ) W2
β ∗ ρ L∞(0,T ;L1(Rd)) + Wβ ∗ ρ 2

L∞(0,T ;L2(Rd)) ≤ C(σ)β−d,

since W2
β ∗ ρ 2 ≤ W2

β 1 ρ 2 ≤ C Wβ
2
2 ≤ β−dC. This shows that

E
j=i

|bji(y, s)| ≤ E
j=i

bji(y, s)
2 1/2

≤ C(σ)β−d/2N1/2.

We infer that (3.56) becomes

I2 ≤ C(σ)ζ−2s−1β−d/2N−1/2. (3.57)

Step 3: End of the proof. We insert (3.55) and (3.57) into (3.53) to infer that

E1(t) := E sup
0<s<t

max
i=1,...,N

|(XN
i − X̄N

i )(s)|
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

≤ C(σ)β−3d−7
t

0
E1(s)ds+ C(σ)ζ−2s−1β−d/2N−1/2.

By Gronwall’s lemma,

E1(t) ≤ C(σ)ζ−2s−1β−d/2N−1/2 exp C(σ)β−3d−7T , 0 ≤ t ≤ T.

We choose ε = δ/(C(σ)T ) for some arbitrary δ ∈ (0, 1/4). Then, since by assumption,
β−d/2 ≤ β−3d−7 ≤ ε logN and ζ−2s−1 ≤ C1N

1/4, we find that

E1(t) ≤ C(σ)C1ε log(N)N−1/4 exp C(σ)Tε logN =
C1δ

T
log(N)N−1/4+δ,

proving the result.

3.4.3 Estimate of X̄N
i −XN

i

Next, we compute the expectation of X̄N
i −XN

i by estimating the difference between ∇Kζ

and ∇K as well as the difference between Wβ ∗ ρ(X̄N
i ) and ρσ(X

N
i ). The estimate depends

on β and ζ.

Lemma 3.18. Let X̄N
i and XN

i be the solutions to (3.4) and (3.6), respectively. Then
there exists a constant C > 0, depending on σ, such that

E sup
0<t<T

max
i=1,...,N

|(X̄N
i −XN

i )(t)| ≤ C(β + ζa),

where a := min{1, d− 2s}.
Proof. We compute the difference

|(X̄N
i −XN

i )(t)| =
t

0
∇Kζ ∗ fσ(Wβ ∗ ρ(X̄N

i (s), s))−∇K ∗ fσ(ρσ(XN
i (s), s)) ds

≤ J1 + J2 + J3,

where ρ := ρσ,β,ζ , the convolution is taken with respect to xi, and

J1 =
t

0
∇Kζ ∗ fσ(Wβ ∗ ρ(X̄N

i (s), s))− fσ(Wβ ∗ ρ(XN
i (s), s)) ds ,

J2 =
t

0
∇Kζ ∗ fσ(Wβ ∗ ρ(XN

i (s), s))− fσ(ρσ(X
N
i (s), s)) ds ,

J3 =
t

0
∇(Kζ −K) ∗ fσ(ρσ(XN

i (s), s))ds .

Step 1: Estimate of J1. We write ∇Kζ ∗ fσ(· · · ) = Kζ ∗ ∇fσ and add and subtract the

expression fσ(Wβ ∗ ρ(X̄N
i − y))∇Wβ ∗ ρ(XN

i − y):

J1 =
t

0 Rd

Kζ(y) fσ(Wβ ∗ ρ(X̄N
i (s)− y))∇Wβ ∗ ρ(X̄N

i (s)− y)− ρ(XN
i (s)− y)
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− fσ(Wβ ∗ ρ(XN
i (s)− y))− fσ(Wβ ∗ ρ(X̄N

i (s)− y)) ∇Wβ ∗ ρ(XN
i (s)− y) dyds

≤ fσ ∞
t

0 Rd

Kζ(y)∇Wβ ∗ ρ(X̄N
i (s)− y)− ρ(XN

i (s)− y) dyds

+ fσ ∞ ∇Wβ ∗ ρ L∞(0,T ;L∞(Rd))

×
t

0 Rd

Kζ(y)Wβ ∗ ρ(XN
i (s)− y)− ρ(X̄N

i (s)− y) dyds.

By the mean-value theorem and using Wβ 1 = 1, we obtain for some random variable
ξij(s),

J1 ≤ fσ W 2,∞(R) ∇ρ L∞(0,T ;L∞(Rd))

t

0
sup

0<r<s
sup

i=1,...,N
|(X̄N

i −XN
i )(r)| (3.58)

×
Rd

2

k=1

Kζ(y)D
kWβ ∗ ρ(y + ξij(s), s) dyds.

We need to estimate the last integral. For this, we write for k = 1, 2

Rd

Kζ(y)D
kWβ ∗ ρ(y + ξij(s), s) dy ≤ Kk

1 +Kk
2 , where

Kk
1 :=

B1+ζ

K1 ∗Wζ(y)D
kWβ ∗ ρ(y + ξij(s), s) dy,

Kk
2 :=

Rd\B1−ζ

K2 ∗Wζ(y)D
kWβ ∗ ρ(y + ξij(s), s) dy,

where K1 = K|B1 and K2 = K|Rd\B1
. Note that Kζ ≤ K. A similar argument as for the

estimate of I12 in the proof of Lemma 3.17 shows that for θ > max{d/(2s), d},

Kk
1 +Kk

2 ≤ C DkWβ ∗ ρ L∞(0,T ;Lθ(Rd)) + DkWβ ∗ ρ L∞(0,T ;L1(Rd))

≤ C Dkρ L∞(0,T ;Lθ(Rd)) + Dkρ L∞(0,T ;L1(Rd)) ≤ C(σ),

where we used Proposition 3.14 ((3.39) and (3.41)) with p = θ in the last inequality. We
conclude from (3.58) that

J1 ≤ C(σ)
t

0
sup

0<r<s
max

i=1,...,N
|(X̄N

i −XN
i )(r)|ds. (3.59)

Step 2: Estimate of J2. We treat the two cases s < 1/2 and s ≥ 1/2 separately. Let first
s ≥ 1/2. Then

J2 =
t

0
∇Kζ ∗Wζ ∗ fσ(Wβ ∗ ρ(XN

i (s), s))− fσ(ρσ(X
N
i (s), s)) ds

≤ T ∇Kζ ∗ (fσ(Wβ ∗ ρ)− fσ(ρσ)) L∞(0,T ;L∞(Rd)).
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

Recalling the definition of Kζ = Kωζ in (3.11) and writing ∇Kζ ∗ u = ∇K ∗ u − [(1 −
ωζ)∇K] ∗ u+ [K∇ωζ ] ∗ u for u = fσ(Wβ ∗ ρ)− fσ(ρσ), we find that

J2 ≤ C(T ) ∇K ∗ u L∞([0,T ];L∞(Rd)) + [(1− ωζ)∇K] ∗ u L∞([0,T ];L∞(Rd)) (3.60)

+ [K∇ωζ ] ∗ u L∞(0,T ;L∞(Rd)) .

We estimate the right-hand side term by term. Because of

∇K ∗ v =
∇(−Δ)−1/2v for s = 1/2

(∇K) ∗ v for s > 1/2,

we use Sobolev’s embedding W 1,p(Rd) → L∞(Rd) for any p > d and then the boundedness
of the Riesz operator∇(−Δ)−1/2 : Lp(Rd) → Lp(Rd) [108, Chapter IV, §3.1] in case s = 1/2
or the Hardy–Littlewood–Sobolev inequality for α = α− 1/2 > 0 (see Lemma 3.22) in case
s > 1/2 to control the first norm in (3.60) by

∇K ∗ u L∞(0,T ;L∞(Rd)) ≤ C ∇K ∗ u L∞(0,T ;Lp(Rd)) +

d

j=1

∇K ∗Dju L∞(0,T ;Lp(Rd))

≤ C u L∞(0,T ;W 1,r(Rd)) = C fσ(Wβ ∗ ρ)− fσ(ρσ) L∞(0,T ;W 1,r(Rd)),

where r = p in case s = 1/2 and r = pd/(d+2s−1) in case s > 1/2. Choosing p > d+(2s−1)
guarantees that r > d always holds.
For the second norm in (3.60), Hölder’s inequality yields for q > d and 1/q + 1/q = 1, for
every t > 0,

[(1− ωζ)∇K] ∗ u(t) L∞(Rd) ≤ 1− ωζ L∞(Rd) ∇K Lq ({|x|>2ζ−1}) u(t) Lq(Rd)

≤ ∇K Lq ({|x|>2ζ−1}) u(t) Lq(Rd),

which can be bounded by Cζ1−2s+d/q u(t) Lq(Rd), since

∇K q

Lq ({|x|>2ζ−1}) ≤ C
{|x|>2ζ−1}

|x|(2s−d−1)q dx = Cζ−d

{|y|>2}
|y/ζ|(2s−d−1)q dy

≤ Cζ−d+(1+d−2s)q .

By similar arguments and the fact that ∇ωζ L∞ ≤ Cζ, we find that

K∇ωζ Lq ({|x|<2ζ−1}) ≤ Cζ1+d−2s−d/q ,

and hence, using q = q/(q − 1), we conclude for the second and third term in (3.60) that

[(1− ωζ)∇K] ∗ u(t) L∞(Rd) + [K∇ωζ ] ∗ u(t) L∞(Rd) ≤ Cζ1−2s+d/q u(t) Lq(Rd).

The choice d < q ≤ d/(2s − 1) guarantees on the one hand that q > d and on the other
hand that the exponent 1−2s+d/q is strictly positive (which allows us to use the property
ζ1−2s+d/q < 1).
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Using these estimates in (3.60), we arrive (for s ≥ 1/2) at

J2 ≤ C(T ) fσ(Wβ ∗ ρ)− fσ(ρσ) L∞(0,T ;W 1,r(Rd)) + fσ(Wβ ∗ ρ)− fσ(ρσ) L∞(0,T ;Lq(Rd)) ,

where we recall that r, q > d. These norms can be estimated by fσ(Wβ ∗ ρ(t)) −
fσ(ρσ(t)) Lq(Rd) ≤ fσ ∞ Wβ ∗ ρ(t)− ρσ(t) Lq(Rd) and

∇(fσ(Wβ ∗ ρ)− fσ(ρσ))(t) Lr(Rd) ≤ fσ ∞ (Wβ ∗ ∇ρ−∇ρσ)(t) Lr(Rd)

+ fσ ∞ (Wβ ∗ ρ− ρσ)(t) Lr(Rd) ∇ρσ(t) L∞(Rd).

The L∞(Rd× (0, T )) bound for ∇ρσ from Lemma 3.11 and the definition of fσ finally show
for s ≥ 1/2 and r, q > d that

J2 ≤ C(σ, T ) Wβ ∗ ρ− ρσ L∞(0,T ;W 1,r(Rd)) + Wβ ∗ ρ− ρσ L∞(0,T ;Lq(Rd)) . (3.61)

Now, let s < 1/2. In this case, we cannot estimate ∇K and put the gradient to the second
factor of the convolution. Adding and subtracting an appropriate expression as in Step
1, using the embedding W 1,p(Rd) → L∞(Rd) for p > d, the estimate Kζ ≤ K, and the
Hardy–Littlewood–Sobolev inequality, we find that

J2 =
t

0 Rd

Kζ(y) fσ(Wβ ∗ ρ(XN
i (s)− y))− fσ(ρσ(X

N
i (s)− y)) ∇Wβ ∗ ρ(XN

i (s)− y)

− fσ(ρσ(X
N
i (s)− y)) ∇ρσ(X

N
i (s)− y)−∇Wβ ∗ ρ(XN

i (s)− y) dyds

≤ fσ ∞ Wβ ∗ ∇ρ ∞
t

0 Rd

Kζ(y) ρσ(X
N
i (s)− y)−Wβ ∗ ρ(XN

i (s)− y) dyds

+ fσ ∞
t

0 Rd

Kζ(y) ∇ρσ(X
N
i (s)− y)−Wβ ∗ ∇ρ(XN

i (s)− y) dyds

≤ max{ ∇ρ L∞(0,T ;L∞(Rd)), 1} fσ W 1,∞T K ∗ |(Wβ ∗ ρ− ρσ)| L∞(0,T ;L∞(Rd))

+ K ∗ |(Wβ ∗ ∇ρ−∇ρσ)| L∞(0,T ;L∞(Rd))

≤ C(σ, T ) ∇ρ L∞(0,T ;L∞(Rd)) + 1

|α|≤2

Wβ ∗Dαρ−Dαρσ L∞(0,T ;Lr(Rd)),

where r > d is such that 1/r = 2s/d + 1/p (this is needed for the Hardy–Littlewood–
Sobolev inequality) and p > d (because of Sobolev’s embedding). Note that r > d can
be only guaranteed if s < 1/2. Together with the fact that ∇ρ L∞(0,T ;L∞(Rd)) ≤ C(σ)
(choose q > d in (3.41) and use Sobolev’s embedding), this shows that for s < 1/2,

J2 ≤ C(σ, T )

|α|≤2

Wβ ∗Dαρ−Dαρσ L∞(0,T ;Lr(Rd)). (3.62)

It follows from estimate (3.38) and Lemma 3.21 in Appendix 3.A for p > d that

(Wβ ∗Dαρ−Dαρσ)(t) Lp(Rd) ≤ C Dα∇ρ Lp(Rd)β + β + ζa ≤ C(σ, T )(β + ζa),
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

where we used the L∞(0, T ;W 3,p(Rd)) estimate for ρ = ρσ,β,ζ in (3.41). Then we deduce
from estimates (3.61) and (3.62) that for all 0 < s < 1,

J2 ≤ C(σ, T )(β + ζa),

where we recall that a = min{1, d− 2s}.
Step 3: Estimate of J3 and end of the proof. Arguing similarly as in Section 3.3.3, we have

(Kζ −K) ∗ ∇ρσ L∞(0,T ;L∞(Rd)) ≤ Cζa D2ρσ L∞(0,T ;Lp(Rd)) + ∇ρσ L∞(0,T ;L1(Rd)) .

This implies that

J3 ≤ fσ ∞ (Kζ −K) ∗ ∇ρσ L∞(0,T ;L∞(Rd)) ≤ C(σ)ζa. (3.63)

Taking the expectation, we infer from (3.59)–(3.63) that

E2(t) := E sup
0<s<t

max
i=1,...,N

|(X̄N
i −XN

i )(s)| ≤ C(σ)(β + ζa) + C(σ)
t

0
E2(s)ds,

An application of Gronwall’s lemma gives the result.

3.4.4 Proof of Theorem 3.2 and Proposition 3.3

Lemmas 3.17 and 3.18 show that

E sup
0<s<T

max
i=1,...,N

|(XN
i −XN

i )(s)| ≤ C(N−1/4+δ + β + ζmin{1,d−2s}),

and this expression converges to zero as N → ∞ and (β, ζ) → 0 under the conditions
stated in Theorem 3.3. This result implies the convergence in probability of the k-tuple
(XN

1 , . . . , XN
k ) to (XN

1 , . . . , XN
k ). Since convergence in probability implies convergence in

distribution, we obtain

lim
N→∞, (β,ζ)→0

Pk
N,β,σ(t) = P⊗k

σ (t) locally uniform in time,

where Pk
N,β,σ(t) and P⊗k

σ (t) denote the joint distributions of (XN
1 , . . . , XN

k )(t) and (XN
1 , . . . ,

XN
k )(t), respectively. By Section 3.4.1, Pσ(t) is absolutely continuous with the density

function ρσ(t). Using the test function φ = 1(−∞,x]d in Corollary 3.13, we have, up to a
subsequence,

Pσ(t, (−∞, x]d) =
(−∞,x]d

ρσ(y, t)dy →
(−∞,x]d

ρ(y, t)dy =: P(t, (−∞, x]d)

locally uniformly for t > 0. Since the convergence also holds for the initial condition, the
result is shown.
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3.A Auxiliary results

We recall some known results. The following result is proved in [11, Theorem 4.33].

Lemma 3.19 (Young’s convolution inequality). Let 1 ≤ p, r ≤ ∞, u ∈ Lp(Rd), v ∈
Lq(Rd), and 1/p+ 1/q = 1 + 1/r. Then u ∗ v ∈ Lr(Rd) and

u ∗ v r ≤ u p v q.

The following lemma slightly extends [101, Lemma 7.3] from the L2 to the Lp setting.

Lemma 3.20. Let p ≥ 2 and T > 0. Then the following embedding is continuous:

Lp(0, T ;W 1,p(Rd)) ∩W 1,p(0, T ;W−1,p(Rd)) → C0([0, T ];Lp(Rd)).

Proof. Let u ∈ Lp(0, T ;W 1,p(Rd)) ∩W 1,p(0, T ;W−1,p(Rd)) and 0 ≤ t1 ≤ t2 ≤ T . Then

Rd

|u(t2)|pdx−
Rd

|u(t1)|pdx =
t2

t1

∂tu, p|u|p−2u dt (3.64)

≤ p ∂tu Lp(t1,t2;W−1,p(Rd)) |u|p−2u Lp (t1,t2;W 1,p (Rd)),

where p = p/(p− 1). Direct computations using Young’s inequality lead to

|u|p−2u p

Lp (t1,t2;W 1,p (Rd))
= C

t2

t1 Rd

|u|p + |u|p (p−2)|∇u|p dxdt

≤ C
t2

t1

u(t) p
W 1,p(Rd)

dt.

We infer from (3.64) and the continuity of the integrals with respect to the time integration
boundaries that t → u(t) p is continuous and

sup
0<t<T

u(t) p ≤ u(0) p + C ∂tu Lp(t1,t2;W−1,p(Rd)) + C u Lp(0,T ;W 1,p(Rd)). (3.65)

Next, let t ∈ [0, T ] be arbitrary and let τn → 0 as n → ∞ such that t+τn ∈ [0, T ]. Estimate
(3.65) implies that (u(t+ τn))n∈N is bounded in Lp(Rd). Thus, there exists a subsequence
(τn ) of (τn) such that u(t+τn ) v(t) weakly in Lp(Rd) as n → ∞ for some v(t) ∈ Lp(Rd).
We can show, using estimate (3.65) and dominated convergence for the integral

T

0 Rd

(u(t+ τn , x)− v(t, x))φ(t, x)dx for φ ∈ C∞
0 (Rd × (0, T ))

that in the limit n → ∞
T

0 Rd

(u(t, x)− v(t, x))φ(t, x)dx = 0,

which yields v(t) = u(t).
Moreover, since t → u(t) p is continuous, we have u(t+ τn ) p → u(t) p. Since Lp(Rd)
is uniformly convex, we deduce from [11, Prop. 3.32] that u(t + τn ) → u(t) strongly in
Lp(Rd). Since the limit is unique, the whole sequence converges. Together with (3.65), this
concludes the proof.
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3 Mean-field derivation of a porous-medium equation with fractional diffusion

LetW1 ∈ C∞
0 (Rd) be nonnegative with Rd W1(x)dx = 1 and defineWβ(x) = β−dW1(β

−1x)
for x ∈ Rd and β > 0.

Lemma 3.21. Let 1 ≤ p < ∞ and u ∈ W 1,p(Rd). Then

Wβ ∗ u− u p ≤ Cβ ∇u p.

Proof. We use Hölder’s inequality and the fact that Wβ L1(Rd) = 1 to find that

Wβ ∗ u− u p
p =

Rd Rd

Wβ(x− y)(u(x)− u(y))dy
p

dx

≤
Rd Rd

Wβ(x− y)dy
p−1

Rd

Wβ(x− y)|u(x)− u(y)|pdy dx

=
Rd Rd

Wβ(z)|z|p |u(y + z)− u(y)|p
|z|p dydz

≤ ∇u p
p

Rd

Wβ(z)|z|pdz ≤ Cβp ∇u p
p,

which shows the lemma.

3.B Fractional Laplacian

We recall that the fractional Laplacian (−Δ)s for 0 < s < 1 can be written as the pointwise
formula

(−Δ)su(x) = cd,s
Rd

u(x)− u(y)

|x− y|d+2s
dy, where cd,s =

4sΓ(d/2 + s)

πd/2|Γ(−s)| , (3.66)

u ∈ Hs(Rd), and the integral is understood as principal value if 1/2 ≤ s < 1 [110, Theorem
2]. The inverse fractional Laplacian (−Δ)−s is defined in (3.2). The following lemma can
be found in [108, Chapter V, Section 1.2].

Lemma 3.22 (Hardy–Littlewood–Sobolev inequality). Let 0 < s < 1 and 1 < p < ∞.
Then there exists a constant C > 0 such that for all u ∈ Lp(Rd),

(−Δ)−su q ≤ C u p, where
1

p
=

1

q
+

2s

d
.

Applying Hölder’s and then Hardy–Littlewood–Sobolev’s inequality gives the following re-
sult.

Lemma 3.23. Let 0 < s < 1 and 1 ≤ p < q < ∞. Then there exists C > 0 such that for
all u ∈ Lq(Rd), v ∈ Lr(Rd),

u(−Δ)−sv p ≤ C u q v r,
1

q
+

1

r
=

1

p
+

2s

d
, (3.67)

u∇(−Δ)−sv p ≤ C u q v r,
1

q
+

1

r
=

1

p
+

2s− 1

d
, s >

1

2
. (3.68)
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Lemma 3.24 (Fractional Gagliardo–Nirenberg inequality I). Let d ≥ 2 and 1 < p < ∞.
Then there exists C > 0 such that for all u ∈ W 1,p(Rd) or u ∈ W 2,p(Rd), respectively,

(−Δ)su p ≤ C u 1−2s
p ∇u 2s

p if 0 < s ≤ 1/2,

(−Δ)su p ≤ C u 1−s
p D2u s

p if 1/2 < s ≤ 1.

Proof. It follows from the properties of the Riesz and Bessel potentials [108, Theorem 3,
page 96] that the operator (−Δ)s : W 1,p(Rd) → Lp(Rd) is bounded for 0 < s ≤ 1/2, while
the operator (−Δ)s : W 2,p(Rd) → Lp(Rd) is bounded for 1/2 < s ≤ 1. Thus, if 0 < s ≤ 1/2,

(−Δ)su p ≤ C( u p + ∇u p) for u ∈ W 1,p(Rd).

Replacing u by uλ(x) = λd/p−2su(λx) with λ > 0 yields

(−Δ)su p = (−Δ)suλ p ≤ C( uλ p + ∇uλ p) = Cλ−2s( u p + λ ∇u p).

We minimize the right-hand side with respect to λ giving the value λ0 = 2s(1− 2s)−1 u p

∇u −1
p and therefore,

(−Δ)su p ≤ C u 1−2s ∇u 2s
p .

The case 1/2 < s ≤ 1 is proved in a similar way.

Lemma 3.25 (Fractional Gagliardo–Nirenberg inequality II). Let d ≥ 2, 0 < s ≤ 1/2,
p ∈ (1,∞), and q ∈ [p,∞). If p < d/(2s), we assume additionally that q ≤ dp/(d − 2sp).
Then there exists C > 0 such that for all u ∈ W 1,p(Rd),

(−Δ)−s∇u q ≤ C u 1−θ
p ∇u θ

p,

where θ = 1 + d/p− d/q − 2s ∈ [0, 1].

Proof. The statement is true for s = 1/2 since the operator (−Δ)−1/2∇ : Lq(Rd) → Lq(Rd)
is bounded for any q ∈ (1,∞) [108, Theorem 3, page 96]. Then the inequality follows from
the standard Gagliardo–Nirenberg inequality.
Thus, let 0 < s < 1/2. We claim that it is sufficient to prove that (−Δ)−s∇ : W 1,p(Rd) →
Lq(Rd) is bounded. Indeed, assume that

(−Δ)−s∇u q ≤ C( u p + ∇u p) for u ∈ W 1,p(Rd). (3.69)

Replacing, as in the proof of Lemma 3.24, u by uλ(x) = λd/q−1+2su(λx) with λ > 0 yields

(−Δ)−s∇u q ≤ Cλ−θ( u p + λ ∇u p),

where θ is defined in the statement of the theorem. Minimizing the right-hand side with
respect to λ gives the value λ0 = θ(1− θ)−1 u p ∇u −1

p and therefore,

(−Δ)−s∇u q ≤ C u 1−θ
p ∇u θ

p.

It remains to show (3.69). To this end, we distinguish two cases. First, let p < d/(2s).
By assumption, p ≤ q ≤ r(1) := dp/(d − 2sp). We apply the Hardy–Littlewood–Sobolev
inequality (Lemma 3.22) to find that

(−Δ)−s∇u r(1) ≤ C ∇u p ≤ C( u p + ∇u p).
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Furthermore, by using (in this order) the boundedness of (−Δ)−1/2∇ : Lp(Rd) → Lp(Rd),
Lemma 2 in [108, page 133], equation (40) in [108, page 135], and Theorem 3 in [108, page
135f],

(−Δ)−s∇u p = ∇(−Δ)−1/2(−Δ)1/2−su p ≤ C (−Δ)1/2−su p (3.70)

≤ C (I −Δ)1/2−su p ≤ C (I −Δ)1/2u p ≤ C( u p + ∇u p).

These inequalities hold for any p ∈ (1,∞). Now, it is sufficient to interpolate with 1/q =
µ/p+ (1− µ)/r(1):

(−Δ)−s∇u q ≤ (−Δ)−s∇u µ
p (−Δ)−s∇u 1−µ

r(1) ≤ C( u p + ∇u p).

Second, let p ≥ d/(2s). We choose λ ∈ (0, d/(2sp)) ⊂ (0, 1) and apply the Hardy–
Littlewoord–Sobolev inequality:

(−Δ)−s∇u r(λ) = (−Δ)−λs(−Δ)−(1−λ)s∇u r(λ) ≤ C (−Δ)−(1−λ)s∇u p,

where r(λ) = dp/(d− 2sλp). Since (1− λ)s < 1/2, we deduce from (3.70) that

(−Δ)−s∇u r(λ) ≤ C( u p + ∇u p).

Since r(λ) → ∞ as λ → d/(2sp), the result follows.

3.C Parabolic regularity

Lemma 3.26 (Parabolic regularity). Let 1 < p < ∞, T > 0 and let u be the (weak)
solution to the heat equation

∂tu−Δu = v, u(0) = u0 in Rd,

where v ∈ Lp(0, T ;Lp(Rd)) and u0 ∈ W 2,p(Rd). Then there exists C > 0, depending on T
and p, such that

∂tu Lp(0,T ;Lp(Rd)) + D2u Lp(0,T ;Lp(Rd)) ≤ C v Lp(0,T ;Lp(Rd)) + D2u0 Lp(Rd) . (3.71)

Furthermore, if v = divw for some w ∈ Lp(0, T ;Lp(Rd;Rd)) then

∇u Lp(0,T ;Lp(Rd)) ≤ C w Lp(0,T ;Lp(Rd)) + T 1/p ∇u0 Lp(Rd) . (3.72)

Proof. We use a known result on the parabolic regularity for the equation

∂tu−Δu = v, u(0) = 0 in Rd. (3.73)

It holds that [76]

∂tu Lp(0,T ;Lp(Rd)) + D2u Lp(0,T ;Lp(Rd)) ≤ C v Lp(0,T ;Lp(Rd)). (3.74)

We apply this result to u = u − etΔu0, where etΔu0 is the solution to the homogeneous
heat equation in Rd with initial datum u0. Then u solves (3.73) and satisfies estimate
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(3.74). Inserting the definition of u and observing that D2(etΔu0) p ≤ C D2u0 p, we
obtain (3.71).
If v = divw for some w ∈ Lp(0, T ;Lp(Rd;Rd)), the uniqueness of solutions to the heat
equation yields u = etΔu0 + divU , where U solves

∂tU −ΔU = w, U(0) = 0 in Rd.

Then we deduce from the regularity result of [76] with u = U and v = w that

D2U Lp(0,T ;Lp(Rd)) ≤ C w Lp(0,T ;Lp(Rd)).

Since ∇u = etΔ∇u0 +∇ divU , inequality (3.72) follows.
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This chapter shows a joint work with Li Chen2 and Ansgar Jüngel3.

4.1 Introduction and motivation

The aim of this chapter is to prove a quantitative mean-field result in L2(Rd)-norm associ-
ated to the following interacting stochastic particle system describing the dynamics in time
t ≥ 0 of the spatial position XN,η

i of the i-th particle,

dXN,η
i (t) =

κ

N

N

j=1

∇V η(XN,η
i (t)−XN,η

j (t))dt+
√
2σdWi(t), (4.1)

XN,η
i (0) = ζi in Rd, i = 1, . . . , N,

where N ∈ N denotes the number of particles, the spatial dimension d ≥ 1, V η ≥ 0
denotes the interaction potential with interaction radius η > 0 and σ > 0 the diffusion
coefficient. The parameter κ = ±1 models the type of the dynamics: κ = −1 corre-
sponds to repulsive interactions and κ = 1 to aggregating particles. (Wi)

N
i=1 denotes

1Horaz, Epistulae I, 2. 40f ; English translation: The one who started has already done half of the work:
dare to know!

2University of Mannheim, Department of Mathematics, 68131 Mannheim, Germany
3Institute of Analysis and Scientific Computing, Technische Universität Wien, 1040 Wien, Austria
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a family of independent d-dimensional Brownian motions on a filtered probability space
(Ω,F , (Ft)0≤t<T ,P) and (ζi)

N
i=1 are F0-measurable i.i.d random variables with common

density function u0 ∈ W 2,∞(Rd).
For fixed η > 0 the interaction potential V η is defined by

V η(x) := η−dV
|x|
η

for x ∈ Rd, (4.2)

where V : Rd → R is a non-negative, smooth, normalized, symmetric function with support
on the unit ball B1(0) ⊂ Rd. Additionally, we assume that V = Z ∗Z, see Section 4.1.1 for
discussions of the assumptions.
In order to perform the mean-field limit N → ∞, the interaction radius η > 0 is coupled to
the number of particles N , such that η = N−β with 0 < β < 1/(d+ 2), which leads to the
regime of moderately interacting particles, see Section 1.2.2 for an introduction. In order
to show the main result of this chapter, we need additional assumptions on the smallness
of β (depending on the spatial dimension d), see Theorem 4.1.
There already are some results in the literature concerning particle system (4.1): In the
repulsive case κ = −1, Oelschläger proved in [91] the convergence in law of the so-called
empirical measures towards a porous-media type equation when η = N−β for some 0 <
β < 1/(d + 2). Later, he proved in [90] a quantitative mean-square convergence result in
expectation of the “smoothed” empirical measure, still for κ = −1 and 0 < β < 1/(2d +
4). The convergence rate in [90] is of order O(N−1/2−ε) for a small ε > 0. For the
more delicate aggregating case κ = 1, the mean-square convergence in probability of the
smoothed empirical measure under the algebraic scaling η = N−β for a particle system
similar to (4.1) modelling chemotaxis was shown in [109], while the (stronger) convergence
of the second moments in the path space under the (weaker) logarithmic scaling η ≥
C(logN)−1/(2d+4) for some C > 0 was derived in [27]. By using the stronger notion of
convergence, the authors in [27] derived a convergence rate which scales logarithmically in
N , whereas the result in [109] does not provide a convergence rate
In this part of the thesis, we present a conditional L2 convergence result (Theorem 4.1),
which leads to a generalisation of the results of [27, 90, 109] in the sense that we allow for
the (more difficult) aggregating case κ = 1, the (stronger) sense of mean-square convergence
in expectation and the (stronger) algebraic rate η = N−β for some 0 < β < 1/(d+2) in the
moderate regime. However, we need to assume that for algebraic scaling of η > 0 at least
convergence in probability holds; see Assumption (C1) and equation (4.16). In Section
4.A, we explain the technical difficulty of proving such a result for interaction potentials
approximating the Dirac measure with current techniques and present a proof for an other
type of singular potential, the Coulomb potential.

4.1.1 Motivation and main results

First, in order to measure the behavior of the stochastic particle systems (4.1), we need to
introduce the so-called empirical measure

µN,η(t, ω) :=
1

N

N

i=1

δ
XN,η

i (t,ω)
, for t > 0, ω ∈ Ω, (4.3)
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where XN,η
i (t) solve (4.1) for i = 1, . . . , N .

It is well-known (see e.g. [27, 91]) that the limiting behavior (N → ∞, η → 0) of the
particle system (4.1) is captured for both cases κ = ±1 by the local diffusion equation

∂tu = σΔu− κ div(u∇u) for t > 0, u(0) = u0 in Rd. (4.4)

In [91], equation (4.4) is derived for κ = −1 from (4.1) with η = N−β with 0 < β < 1/(d+2)
by proving convergence of the empirical measure in law towards a (random) Dirac measure
δX̂(t), where X̂(t) is a process with density function u(t) (with respect to the Lebesgue

measure).
In contrast to this, in [27] equation (4.4) is derived from system (4.1) for κ = 1 with a
different scaling in η > 0: There, the limit

N → ∞ and η ≥ C(log(N))−1/(2d+4) → 0

is considered in two steps, similar to the results in Chapter 2: First, for fixed η > 0,
which corresponds to weakly interacting particles, the mean-field limit leads to the nonlocal
diffusion equation

∂tū
η = σΔūη − κ div(ūη∇V η ∗ ūη), t > 0, ūη(0) = u0 in Rd. (4.5)

This equation is connected to the intermediate particle system

dX
η
i (t) = κ(∇V η ∗ ūη)(Xη

i (t))dt+
√
2σdWi(t),

X
η
i (0) = ζi in Rd, i = 1, . . . , N,

(4.6)

where all particles X
η
i (t) are independent and possess the common density function ūη(t).

Note that (4.5) still depends on the number N of particles via the interaction radius η =
η(N). Second, since V η converges to the Dirac delta distribution in the limit η → 0 and
ūη → u ([27, Lemma 2.1]), we have ∇V η ∗ ūη → ∇u in the sense of distributions, where u
solves (4.4). This fact is used in [27] in order to show convergence of

E sup
0<t<T

max
i=1,...,N

|XN,η
i (t)− X̂i(t)| → 0 (4.7)

for N → ∞, η → 0, where all X̂i(t) possess the common density function u(t) and solve

dX̂i(t) = κ∇u(X̂i(t))dt+
√
2σdWi(t),

X̂i(0) = ζi in Rd, i = 1, . . . , N.
(4.8)

At this point, we want to remark that [27] only considers the case κ = 1, however, with
similar arguments, the case κ = −1 can be shown in the logarithmic scaling by using
the concept of the intermediate system (4.6), see [26] where a cross-diffusion system is
considered with similar arguments and logarithmic scaling. Additionally, the main result
in [27] implies that µN,η(t) → u(t) in the weak sense for logarithmic scaling of η at a rate
O(η2) = O(log(N)−1/(d+2)). As explained in the introduction of this thesis, this can be
seen as a law of large numbers in the mean-field setting. However, in order to show a central
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limit theorem – which will be the goal of future work – we need algebraic convergence rates
in terms of N . The reason is that we want to apply the convergence result to determine
the limiting behaviour of the so-called fluctuation process

ξN (t) :=
√
N(µN,η(t)− u(t)). (4.9)

Heuristically, if this process converges to a limiting process ξ in an appropriate sense, it
can be seen as a correction of the mean-field behaviour since

µN,η(t) = u(t) +N−1/2ξN (t) ∼ u(t) +N−1/2ξ(t). (4.10)

This means that the particle dynamics for sufficiently large N can be captured by the
mean-field limit u(t) plus some noise term with scaling N−1/2. If ξ is a Gaussian process,
this corresponds to a central limit theorem in the mean-field setting.

In the setting of moderate interacting particles, we do not expect the convergence of
µN,η(t) → u(t) to be ‘fast enough’ such that ξN (t) has a Gaussian limit. The reason
is that for β → 0 the limiting PDE changes from the local model (4.4) to the non-local
PDE (4.5) for η = N0 = 1. Hence, from an intuitive point of view we have to expect that
the convergence to u is very slow for small values of β > 0 due to the structural change of
the limiting PDE, see [90].

In order to still show a fluctuation theorem, we use a similar approach as K. Oelschläger
in [90], where we do not compare µN,η with the solution to the local problem u, but to
the non-local intermediate solution ūη of (4.5) plus a deterministic correction Kη → 0 for
η → 0. In order to illustrate the main ideas and motivations here, we ignore the determin-
istic correction at the moment, since it is not relevant for the study of the L2 convergence,
which is the main part of this chapter.

We define the intermediate fluctuation process as follows

ξNinter(t) :=
√
N(µN,η(t)− ūη(t)). (4.11)

If ξNinter(t) → ξinter(t) for N → ∞ (which implies η(N) → 0) and ξinter(t) is a Gaussian
process, then by denoting the PDE error with rN (t) := ūη(t)− u(t) in the spirit of (4.10),
we can approximate the particle dynamics by the mean-field solution u plus the limiting
intermediate fluctuations ξinter and a PDE approximation error:

µN,η(t) = u(t) +N−1/2ξNinter(t) + rN (t) ∼ u(t) +N−1/2ξinter + rN (t). (4.12)

Hence, it is an important question to determine the limiting behaviour of the intermediate
fluctuation process ξNinter as well as to gain estimates for the PDE error rN (t).

First, let us remark that the PDE error estimate has already been done in [27] (κ = 1) and
[26] (κ = −1):

sup
0<t<T

ūη(t)− u(t) 2
L2 +

T

0
∇(ūη(t)− u(t)) 2

L2dt ≤ Cη2 = CN−2β . (4.13)
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Second, let us take a look at the dynamics of the intermediate fluctuations: Indeed, if
V η = Zη ∗ Zη as in [90] be a convolution square and let ·, · be a dual product, then the
stochastic differential equation for ξNinter reads as

d ξNinter(t), φ =

√
2σ√
N

N

i=1

∇φ(XN,η
i (t))dWi(t) +

√
N |(µN,η − ūη) ∗ Zη|2,Δφ dt+RN (t),

(4.14)

where φ is a test function and RN (t) denotes an error term, which determines the test
function space for φ and converges to zero for N → ∞. For details see Section 4.1.2.

In order to prove Gaussian behaviour in the limit for ξNinter(t), we see in (4.14) that the
term (µN,η − ūη) ∗Zη should converge in the L2 norm faster than N−1/2 if we assume that
Δφ ∈ L∞(Rd). This motivates us to define (as in [90]) the “smoothed” empirical measure
and intermediate PDE solution

fN,η(t, x) := (µN,η(t) ∗ Zη)(x) =
1

N

N

i=1

Zη(x−XN,η
i (t)),

gη(t, x) := (ūη(t) ∗ Zη)(x) =
Rd

Zη(x− y)ūη(y)dy.

(4.15)

Assumptions. Our main result is the L2(Rd) convergence of fN,η−gη in expectation with
rate N−1/2−ε. We impose the following assumptions.

(A1) Parameters: d ≥ 1, σ > 0, κ > 0, T > 0.

(A2) Interaction radius: η = N−β with 0 < β < 1/(d+2) (moderate regime); for additional
assumptions on β, see Theorem 4.1.

(A3) W1, . . . ,WN are independent d-dimensional Brownian motions on the filtered proba-
bility space (Ω,F , (Ft)t≥0,P).

(A4) Initial data: ζ1, . . . , ζN are F0-measurable independent and identically distributed
(i.i.d.) square-integrable random variables with the common density function u0 ∈
W 2,∞(Rd) whose (d+ 1)st moment is bounded.

(A5) Potential: V = Z ∗Z, where Z ∈ C3(Rd) is symmetric, nonnegative, normalized (i.e.
Z L1 = 1), and has compact support in the ball B1/2(0). Define Zη(x) = η−dZ(x/η)

for x ∈ Rd.

The regularity and the boundedness of the (d + 1)st moment of u0 are needed to obtain
bounded second derivatives and bounded (d+ 1)st moment for the solution ūη(t) to (4.5);
see Theorem 4.4 . The moment bound is used to estimate ūη in the “far field”, where we
need fast decay of the solution; see part 4 (Estimation of L(T )) of the proof in Section
4.7. Due to the assumptions on Z and by the definition V = Z ∗ Z, V is a symmetric,
nonnegative potential with V L1 = 1. The assumption of the compact support of Z
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implies that the potential V is compactly supported in the unit ball B1(0).
4 The definition

of Zη is consistent with (4.2) in the sense that V η = Zη ∗ Zη:

V η(x) = η−dV (x/η) = η−d

Rd

Z(x/η − y)Z(y)dy

= η−2d

Rd

Z((x− z)/η)Z(z/η)dz = Zη ∗ Zη(x).

Regularity of the solution to the non-local PDE (4.5). Before we state our main
theorem, we need to impose the following regularity of the solution ūη ≥ 0 to the non-local
PDE (4.5) for both cases κ = ±1:

(B1) Regularity and uniform bounds: ūη ∈ L∞(0, T ;W 2,∞(Rd) ∩ L1(Rd)), where

ūη L∞(0,T ;W 2,∞(Rd)) ≤ C

with a constant that is independent of η.

(B2) Smallness in case of κ = 1 (aggregating case): If κ = 1, then ūη(t) L∞(Rd) < σ.

(B3) Uniformly bounded (d+ 1)-st moment:

sup
0<t<T Rd

|x|d+1ūη(t, x)dx ≤ C,

where C > 0 does not depend on η.

In Section 4.3, we state assumptions on u0 such that there exists a unique solution which
fulfils (B1)–(B3); see Theorem 4.4. However, we want to remark that there may be weaker
assumptions on the initial condition such that (B1)–(B3) is still satisfied.

Additionally, we need the following (weak) convergence in probability with algebraic rate:

Assumption (C1): Let 0 < β < 1/(10d + 12) and the cut-off rate β(d + 3) < α <
1/2 − β(d + 1). Let (XN,η

i )Ni=1 and (X
η
i )

N
i=1 be the solutions to systems (4.1) and (4.6),

respectively. Then, we assume that for any γ > 0 and T > 0, there exists C(γ, T ) > 0 such
that for all 0 < t < T ,

P max
i=1,...,N

|XN,η
i (t)−X

η
i (t)| > N−α ≤ C(γ, T )N−γ . (4.16)

In Section 4.A.1, we discuss Assumption (C1) in more detail. In particular, we show that for
interaction potentials approximating singular potentials of Coulomb-type, the equivalent
formulation of (4.16) indeed holds.

Open Problem: It is still an open problem to prove convergence in probability (4.16) to
the intermediate system in the moderate regime with algebraic scaling of the interaction

4This condition can be weakened by assuming boundedness of the first moment of Z instead of a compact
support
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radius. We comment why current methods fail to handle interaction potentials approxi-
mating the Dirac measure in Section 4.A.2.

With these considerations at hand, the main theorem of this chapter can be stated in the
following way:

Theorem 4.1 (Mean-square convergence with rate N−1/2−ε). Let Assumptions (A1)–(A4)
as well as (B1)–(B3) and (C1) hold and let η = N−β, where 0 < β < 1/(10d+ 12). Then,
for any T > 0, there exists ε > 0 and a constant C(β, d, T ) > 0 such that for sufficiently
large number of particles N > 0,

E sup
0<t<T

(fN,η − gη)(t) 2
L2 + σ

T

0
∇(fN,η − gη)(t) 2

L2dt ≤ C(β, d, T )N−1/2−ε.

(4.17)

Theorem 4.1 can be summarised in the following way: Given that propagation of chaos
with respect to convergence in probability (4.16) holds, even a stronger result holds, which
forms an important step for showing a fluctuation result in the regime of aggregating par-
ticles, see Section 4.1.2 for an introduction why the L2-norm is a natural norm to study
for rigorously showing a fluctuation theorem.

A similar theorem as Theorem 4.1 was proved by Oelschläger in [90]. In this article, the
author showed a fluctuation theorem for the so-called corrected fluctuations (

√
N(µN,η(t)−

u(t)− cN (t)), where cN is a deterministic correction) in the repulsive case κ = −1, see [90,
Theorem 1] without additional assumption of the convergence in probability. Because of
structural reasons, the aggregating regime κ = 1 is much more involved.

There are three main differences of [90] to Theorem 4.1: First, in our case, we consider the
smoothed intermediate solution gη, whereas Oelschläger is using an approximation of gη

instead. Second, we do not need as strict assumptions on V , especially the assumptions on
the Fourier transform of Z (and therefore V ) is not needed in the present work. However,
we note that maybe in order to prove (4.16) rigorously, more assumptions on V might be
needed. Third, [90] only considers the respulsive case κ = −1, which makes the analysis
easier since the negative sign allows to neglect certain terms, which need to be estimated
in a different way in case of aggregation.

Similarly as our estimate (4.17), Stevens [109] showed an L2 convergence result for the
smoothed quantities for the chemotaxis equation. Compared to that work, we do not prove
the convergence of the smoothed quantities in probability but the stronger convergence in
expectation, and we are able to derive a convergence rate, which is absent in [109]. How-
ever, our result needs the condition that at least propagation of chaos holds in probability,
see Assumption (C1) and (4.16).

Initial condition. Since we have assumed in Assumption (A3) i.i.d. initial data, (4.17)
holds at time t = 0 in the following way (see the last step Section 4.7 for a proof):

E (fN,η − gη)(0) 2
L2 ≤ CN−1/2−ε0 , where ε0 = 1/2− βd > 0. (4.18)
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4.1.2 Connection to fluctuations

As mentioned in Section 4.1.1, the main motivation to study the quantitative mean-field
limit in L2 norm (see Theorem 4.1) lies in the fact that this result is needed when studying
fluctuations around the mean-field limit.

For particle systems like (4.1), an interesting question is whether the central limit theorem
holds in the limit N → ∞ when the particles become approximately independent, i.e. the
question if

√
N(µN,η(0)− u0) → Gaussian (which is fulfilled if all ζi are i.i.d) implies

ξN (t) =
√
N(µN,η(t)− u(t)) → Gaussian(t)5? (4.19)

As mentioned in the introduction of this chapter, if (4.19) holds, then we can interpret the
limit of the fluctuation process ξN (t) as next order correction of the mean-field behaviour

µN,η(t) = u+
1√
N

ξN (t) ∼ u+
1√
N

Gaussian(t) + O(
1√
N

). (4.20)

This means that for each particle number N fixed (large enough), the particle dynamics
can be approximately captured by the mean-field limit u plus some Gaussian noise with
scaling N−1/2. This is especially interesting since the particle system leading to a certain
PDE is not unique, see [47] and [25] for two different particle systems leading to the porous
medium equation. We refer the reader also to the end of Section 1.1.3 in the introduction
of this thesis for more details. In case of the viscous porous media equation, we expect
different fluctuation behaviour for those two particle systems, which would help us to un-
derstand the difference between those two systems from a modelling point of view.

Clearly, we can not expect limit (4.19) to hold if the convergence of µN,η to u (in the weak
sense) is slower than N−1/2. This motivates the introduction of intermediate fluctuations
ξNinter(t) defined in (4.11). We expect that the intermediate structure captures the limiting
behaviour of µN,η(t) in a better way than the local solution u(t). If

ξNinter(t) → Gaussian(t) (4.21)

holds (we do not specify the type of convergence here), then we can approximate the particle
dynamics (4.1) by the mean-field limit u plus a deterministic correction

µN,η(t) = u+
1√
N

ξNinter(t)− (u(t)− ūη(t)) ∼ u+
1√
N

Gaussian(t) + O(
1√
N

), (4.22)

where the last term also captures the PDE error (4.13).

Since we want to check whether (4.21) holds, we have to study the SDE, which is fulfilled by
ξNinter(t) for fixed N and η: At this point the author wants to remark that the following lines

5We do not specify what ’Gaussian’ means in this context; In fact we are talking about generalised
Ornstein-Uhlenbeck processes, however, since this is not within the scope of this thesis, we do not go
further into details here.
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give insights into the study of the intermediate fluctuations which relies on the main theorem
of this chapter (Theorem 4.1). However, the arguments will be presented as motivation but
without proof. The rigorous study of the limiting behaviour of the intermediate fluctuations
is ongoing work and not part of the present thesis.
Using a test function φ(t, ·) (since we only present ideas here, we do not specify the test
space), applying Itô’s formula leads to

d ξNinter(t), φ(t) = − ξNinter(t), (Lη
t )

∗φ(t) dt+
1√
N

N

i=1

∇φ(t,XN,η
i (t))

√
2σdWi(t)

+
1√
N

ξNinter(t),∇V η ∗ ξNinter(t)∇φ(t) dt,

(4.23)

where (Lη
t )

∗ denotes the dual formal operator of the linearised version of the non-local PDE
(4.5)

Lη
t φ := ∂tφ− σΔφ+ div φ∇V η ∗ ūη + ūη∇V η ∗ φ

(Lη
t )

∗ψ := −∂tψ − σΔψ −∇V η ∗ ūη∇ψ +∇V η ∗ (ūη∇ψ).

Motivated by K. Oelschläger [90], we take a test function which lies in the kernel of (Lη
t )

∗,
which simplifies (4.23) by cancelling the first term on the right-hand side. Additionally,
exploiting the “quadratic” structure V η = Zη ∗ Zη, the last term in (4.23) can we written
as

1√
N

ξNinter(t),∇V η ∗ ξNinter(t)∇φ(t) = − 1

2
√
N

(Zη ∗ ξNinter(t))2,Δφ(t)

+
1√
N

∇Zη ∗ ξNinter(t), (Zη ∗ (ξNinter∇φ)− Zη ∗ ξNinter∇φ)(t) .

The second term on the right-hand side can be viewed as ‘error term’ and hence ignored
for this motivational section. I want to put the spotlight on the first term on the right-
hand side, since it shows the necessity of studying the convergence rate of the smoothed
intermediate fluctuations in L2 norm. Assuming that the test function space is such that
Δφ is uniformly bounded, we get

1

2
√
N

(Zη ∗ ξNinter(t))2,Δφ ≤ sup
0<t<T

sup
x∈Rd

|Δφ(x, t)| 1

2
√
N

sup
0<t<T

Zη ∗ ξNinter(t) 2
L2

≤ C
√
N sup

0<t<T
Zη ∗ (µN,η(t)− ūη(t)) 2

L2 .

Thus, in order to get a Gaussian limiting behaviour in equation (4.23), we need to study
the convergence of

√
N sup0<t<T Zη ∗ (µN,η(t) − ūη(t)) 2

L2 . Theorem 4.1 shows that

sup0<t<T Zη ∗ (µN,η(t) − ūη(t)) 2
L2 ≤ CN−1/2−ε for ε > 0, which allows us to conclude

that

√
N sup

0<t<T
Zη ∗ (µN,η(t)− ūη(t)) 2

L2 → 0 for N → ∞.
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4 Quantitative convergence result for a diffusion model with aggregation

This shows that the main theorem of this chapter (Theorem 4.1) is a key step for under-
standing the limiting fluctuation behaviour of the stochastic interacting particle system
(4.1).

Outlook. At the moment of writing this thesis, it is still an open question whether
ξNinter converges to a generalized Ornstein-Uhlenbeck process - which would mean that the
central limit theorem holds for the intermediate fluctuations - or if we need a deterministic
correction, like in [90]. Similar to [90], the correction Kη(t) would be purely determined
from the PDE structure of the intermediate non-local and the local diffusion aggregation
equation.
Concerning the limiting structure - based on heuristic consideration - we expect that ξNinter
(or ξNinter + Kη) converges to a generalised Ornstein-Uhlenbeck process which can be at
least formally seen as a solution to the following (linear) SPDE of Dean-Kawasaki-type:

dξ(t) = Lt(ξ(t))dt+
√
2σ∇ · ( u(t)ξ),

where ξ : L2([0, T ] × Rd;Rd) → L2(Ω;Rd) is a vector-valued space-time white noise, Lt

denotes the formal operator of the linearised version of the diffusion aggregation equation
(4.4) and u is the solution to (4.4).

4.1.3 State of the art

Quantitative estimates for mean-field limits are of particular importance since they provide
information on the fluctuation process. There are many notions of convergence for showing
a propagation of chaos result, but not all of them can be directly used for fluctuation theory.
For a quantitative estimate on the trajectories for particle system (4.1) in case κ = 1 and
η ≥ C(log(N)−1/(2d+4)) we refer to [27], where a convergence rate of O(log(N)−1/(d+2)) is
derived which is too slow for a central limit theorem. Applying classical techniques (see
for instance the lecture notes by Sznitman [113]) mean-field estimates by coupling methods
naturally lead to quantitative results, however, we do not expect to get a convergence rate
of order 1/

√
N for the moderately interacting particle system (4.1) by coupling. Thus, we

will focus in this section on estimates on the empirical measure or the joint law (statistical
expressions) in the setting of (4.1) (or related) and refer the reader to the review [21] for
more quantitative results using coupling techniques.
Due to the fact that the study of mean-field limits is a timely topic, there are many
contributions in this direction. Hence, the following summary should be understood in the
sense that we only give a short outline of articles closely related to the present work and it
should not be understood as a complete list of articles concerning (quantitative) mean-field
results, for more detailed reviews on mean-field limits in general we refer to [21], [62] and
[53].
In the regime of weakly interacting particles (η = 1, β = 0) and smooth interaction
kernels, a propagation of chaos result for the finite marginals in L∞((0, T );L1(Rd)) norm
at rate 1/

√
N is shown by relative entropy techniques in [81] in the early 2000s. Almost

20 years later, also using bounds on the relative entropy norm, Jabin and Wang [63] were
able to derive a quantitative propagation of chaos result for the joint law of interacting
particles for a large class of interaction kernels (with weak assumptions on the regularity)
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in the weakly interacting regime at rate O(1/
√
N). Consequently, the authors together

with Bresch were able to even derive a quantitative result (in the weakly interacting case)
for singular attractive interaction kernels, which includes the Patlak-Keller-Segel system,
see [10]. Almost at the same time as [63], a quantitative result concerning Coulomb-type
interaction potentials with respect to a modulated energy norm was shown in [43] which
generalises the result of [42]. To the best of the author’s knowledge, there is no mean-field
result concerning the smoothed empirical measure in the weakly interacting regime with
regard to the L2-norm used in Theorem 4.1.
First results on moderately interacting particle systems with repulsive forces have been
presented by Oelschläger, showing the (non-quantitative) mean-field limit for β < 1/(d+2)
in [91], and characterizing some corrected fluctuations as Gaussians for β < 1/(2d+4), [90].
In the latter work, he showed a similar result as in Theorem 4.1 for κ = −1 but with stronger
assumptions in the interaction kernel V and not comparing to the intermediate non-local
solution directly. However, in case of repulsive particles assumption (C1) (see (4.16)) is not
necessary. A (non-quantitative) propagation of chaos result for reaction-diffusion equations
in the regime of moderately interacting particles was shown in [94]. Extending Oelschläger’s
methods developed in [94], Stevens [109] was able to derive a propagation of chaos result
for chemotaxis equations, by showing convergence of the smoothed empirical measure in
the norm sup0<t<T f(t) 2

L2 +
T
0 ∇f(s) 2

L2ds (non-quantitative), which is the same norm
with respect to time and space as considered in Theorem 4.1. In comparison to the notion of
convergence used in Theorem 4.1, this result only holds in probability. In [84], Méléard and
Roelly generalized the result [91] for moderately interacting particles by showing a (non-
quantitative) propagation of chaos result in the moderate regime by extending the space of
convergence and using probabilistic methods. Sequentially, a non-quantitative propagation
of chaos for a moderate model leading to a diffusion-convection equation, which does not
fulfil the assumptions on the drift coefficient in [84], was shown in [64]. Later, by using
probabilistic methods, a fluctuation theorem for moderately interacting particles (even with
non-linear diffusion part) was derived by Jourdain and Méléard with logarithmic connection
between η and N . In this article, the authors compared the empirical measure directly to
the local PDE solution (no deterministic correction) and used a scaling factor different from√
N , [65]. Concerning a particle approximation of a moderate model with aggregating and

repulsive interaction kernels, we refer to [86], where aggregation is modelled by a non-local
interaction kernel, which is different to our model.
More recently, using semigroup techniques, Flandoli and Leocata [48] were able to prove
(non-quantitative) convergence of the smoothed empirical measure for a biological PDE-
ODE system modelling aggregation in the moderate regime. This semigroup approach was
also used in other settings of moderately interacting particles, see [49] and [50] for example.
Convergence of the smoothed empirical measures in the moderate regime with logarithmic
scaling for the regularisation of the (singular) kernel and algebraic scaling in η was recently
shown with respect to Lm(Ω;L∞((0, T );Lp ∩ L1(Rd))-norm for some m ∈ N and p > 2
in [55] (non-quantitative), where singular drift terms, including repulsive Poisson kernels,
and environmental noise was considered. Summarising, there are many contributions using
moderately interacting particles, however, most of them are not quantitative or consider
only repulsive cases.
Since Theorem 4.1 can be used in fluctuation theory, we already mentioned the contribu-
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4 Quantitative convergence result for a diffusion model with aggregation

tions by Oelschläger [90] as well as Jourdain and Méléard [65] in the moderate setting. In
the classical mean-field setting (weakly interacting particles), we refer to the classical work
by Tanaka [114] and Dawson [39], based on ideas of Braun and Hepp [9]. For additional
treatment of non-linear diffusion terms in the fluctuation setting for weakly interacting
particles, we refer to [74] and [46]. Recently, motivated by the quantitative mean-field esti-
mates of [63], a central limit for singular kernels in the weakly interacting setting has been
studied in [117]. In fact, most results on fluctuations are presented for weakly interacting
particle systems; see also [70, 79, 105]. Up to the author’s knowledge, only the articles [90]
and [65] are concerned with fluctuations for moderately interacting particle systems.

4.1.4 Main idea of the proof of Theorem 4.1

For the proof of Theorem 4.1, we wish to estimate fN,η−gη = Zη∗(µN,η−ūη) in the L2(Rd)
norm. In order to illustrate the idea of the methods used in this work, we exemplary pick
the following two terms which appear in this or similar ways many times in the proof. Let
µN,η(t) denote the empirical measure associated with the intermediate system (4.6) at time
t > 0, then let us define

Z1 := E
t

0
| Zη ∗ (µN,η(s)− µN,η(s)), |∇fN,η −∇gη|2(s) |ds,

Z2 := E
t

0
| Zη ∗ (µN,η(s)− ūη(s)), |∇fN,η −∇gη|2(s) |ds.

The proof of Theorem 4.1 is mainly based on two considerations. First, the law-of-large-
numbers estimate (see Lemma 4.2)

sup
0<s<T

P | µN,η(s)− ūη(s), ψη | > N−θ ≤ C(m,T ) ψη
2m
L∞N2m(θ−1/2), (4.24)

valid for any θ ≥ 0, m ∈ N, ψη ∈ L∞(Rd), and the mean-field estimate (see Assumption
(C1))

sup
0<s<T

P max
i=1,...,N

|XN,η
i (s)−X

η
i (s)| > N−α ≤ C(γ, T )N−γ , (4.25)

for 0 < t < T , valid for α lying in a certain interval and for any γ > 0. Note that in both
estimates, the algebraic decay can be arbitrarily fast for large values of γ and m, under
the conditions that θ < 1/2 and ψη L∞ is growing not too fast in terms of η(N). Those
estimates in probability are motivated by articles by P. Pickl and co-workers, see [72] for
instance.
Second – in the sprit of [72, Theorem 4.2] – we split Ω into a set D1, for which we can
apply either (4.24) or (4.25), and its complement, where the integrands of Z1 and Z2 (or a
related expression) are small.
To fix some ideas, let us choose D(s) = {ω ∈ Ω : N−1 N

i=1 |(XN,η
i −X

η
i )(ω, s)| > N−α}.

Then, by the mean-value theorem applied to φη(·, y) := Zη(· − y), Gη(·, s) := |∇fN,η −
∇gη|(·, s) and 1 = 1Dc

1
+ 1D1 on Ω:

Z1 ≤ E
t

0

1

N

N

i=1

φη(·, XN,η
i (s))− φη(·, Xη

i (s)) , |∇fN,η −∇gη|2(·, s) ds
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≤ Dφη
L∞

1

N

N

i=1

E
t

0
Gη(s) 2

L2 |XN,η
i −X

η
i |1Dc

1
ds

+ sup
0<s<T

sup
ω∈Ω

Gη(s) 2
L2E

t

0

1

N

N

i=1

φη(·, XN,η
i )− φη(·, Xη

i ) L∞1D1ds . (4.26)

Since |XN,η
i −X

η
i | ≤ N−α on Dc

1, by assuming that Dφη is bounded by N r for some r > 0,
the first integral in (4.26) is – by recalling the definition of Gη – bounded by

N r−αE
t

0
∇fN,η −∇gη(s) 2

L2ds.

If φη and sup0<s<T supω∈Ω Gη(s) 2
L2 are bounded by Nk for some k > 0, the second

integral can be estimated by Nk multiplied by the probability of D1, which is bounded by
CN−γ due to the mean-field estimate (4.25). Thus, by choosing α and γ sufficiently large,
Z1 can be estimated by

Z1 ≤ σ

4
E

t

0
∇fN,η −∇gη(s) 2

L2ds+ CN−1/2−ε.

For Z2, we define D2(s) = {ω : |Zη ∗µN,η(s, x)−Zη ∗ ūη(s, x)| > σ
4 } for fixed x ∈ Rd. Since

|Zη ∗ µN,η(s, x)− Zη ∗ ūη(s, x)| is small on Dc
2, we find that

Z2 ≤ E
t

0
|Zη ∗ µN,η(s, ·)− Zη ∗ ūη(s, ·)|(1Dc

2
+ 1D2), |∇fN,η −∇gη|2(·, s) |ds

≤ σ

4
E

t

0
∇fN,η −∇gη(s) 2

L2ds+ C Zη
L∞ sup

ω∈Ω
Gη

2
L∞(0,T ;L2(Rd))P(D2(s))

It is important to remark that for illustrative reasons we ignored the dependence on x of
the set D2(s), for a more careful treatment of this (and similar terms) we refer to the proof
of Theorem 4.1. The last term is estimated by using the law-of-large-numbers estimate
(4.24), which gives, if all other expressions can be bounded,

Z2 ≤ σ

4
E

t

0
∇fN,η(s)−∇gη(s) 2

L2ds+ CN−1/2−ε,

by taking m large enough in (4.24). Thus,

Z1(t) + Z2(t) ≤ σ

2
E

t

0
∇fN,η(s)−∇gη(s) 2

L2ds+ CN−1/2−ε,

for some ε > 0. The first term can be absorbed by a term which is induced by the diffusion
of (4.1), whereas the second term gives us the desired rate. Many terms appearing in the
analysis of fN,η(s) − gη(s) L2 have a similar structure as Z1 and Z2. However, due to
an error we make by manipulating the convolution inside the dual bracket, we need more
careful estimates, which are sketched in some detail in Section 4.2.
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4 Quantitative convergence result for a diffusion model with aggregation

4.1.5 Outline of the chapter and notation

The chapter is organized as follows. We present more details on the proof in Section 4.2,
where an outline of the proof is given. This can serve the reader as a guideline through
the technical parts of the proof. The existence of solutions to (4.5) (Theorem 4.4) and
the particle systems (4.1) and (4.6) as well as some properties of the solution which are
needed for Theorem 4.1 are investigated in Section 4.3-4.4. Section 4.5 is concerned with
some auxiliary results and estimates needed in the proof of Theorem 4.1. The law-of-large-
number estimate (4.24), precisely stated in Lemma 4.2, is shown in Section 4.6. With these
preparations, the detailed and rigorous proof of Theorem 4.1 is given in Section 4.7. In the
appendix (Section 4.A) we discuss the assumption of propagation of chaos in probability
(4.16) in more details and give a proof for convergence in probability for Coulomb-type
interactions.

The norm of Lp(Rd) with 1 ≤ p ≤ ∞ is denoted by · Lp . We write µ, f = Rd f(x)dµ(x)
for the dual product between a measure µ and an integrable function f . We denote the
inner product on L2(Rd) by the same symbol, u, v = Rd u(x)v(x)dx for u, v ∈ L2(Rd).
The m-th derivative of a smooth function φ equals Dmφ. As usual, we omit the dependence
of ω ∈ Ω in most of the expressions. We denote by C > 0 a generic constant independent
of N and η, whose value may change from line to line.

4.2 Key steps of the proof of Theorem 4.1

I. Law of large numbers in probability. As already mentioned in Section 4.1.4, the
first ingredient of the proof is the law-of-large-numbers estimate (4.24). Roughly speaking,
we derive an estimate for the probability that µN,η− ūη, φη or (µN,η− ūη)∗ψη are outside

the ball of radius N−θ for an arbitrary θ ≥ 0.

Lemma 4.2 (Law of large numbers). Let (X
η
i )

N
i=1 be the solution to system (4.6) and let ūη

be the density function associated to X
η
i . Given θ ≥ 0 and φη ∈ L∞(Rd), ψη ∈ L∞(Rd;Rn)

with n ∈ {1, d, d× d}, we define the sets

AN
θ,φη

(t) := ω ∈ Ω :
1

N

N

i=1

φη(X
η
i (t))−

Rd

φη(x)ū
η(t, x)dx > N−θ , (4.27)

BN
θ,ψη

(t) :=
N

i=1

ω ∈ Ω :
1

N

N

j=1

ψη X
η
i (t)−X

η
j (t) − (ψη ∗ ūη)(Xη

i (t)) > N−θ . (4.28)

Then, for every m ∈ N and T > 0, there exists C(m) > 0 such that for all 0 < t < T ,

P(Aθ,φη(t)) ≤ C(m) φη
2m
L∞N2m(θ−1/2),

P(Bθ,ψη(t)) ≤ C(m) ψη
2m
L∞N2m(θ−1/2)+1.

Remark 4.3. Choosing θ < 1/2 and assuming that the dependence of φη or ψη is in such
a that the growth of φη

2m
L∞ or ψη

2m
L∞ is sufficiently ‘slow’ in terms of η (and hence
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N) leads to an arbitrary algebraic decay of the probabilities. Since all X
η
i (t) are already

independent at any time t ≥ 0 this might not be surprising, however, the author could not
find a quantitative result like this in literature. Hence, for the readers convenience we also
present a proof in Section 4.6.

Note that the exponent of N for the estimate of the probability of AN
θ,φη

(t) is smaller by

one than the exponent in the estimate for BN
θ,ψη

(t), since we do not take the union over
i = 1, . . . , N . By definition of the empirical measures, we can write

AN
θ,φη

(t) = | (µN,η − ūη)(t), φη | > N−θ ,

BN
θ,ψη

(t) =

N

i=1

|((µN,η − ūη) ∗ ψη)(t,X
η
i (t))| > N−θ .

The proof, detailed in Section 4.6, is rather standard (see, e.g., [44, Sec 2.G] for a similar
proof in a slightly easier setting). To shortly summarize the proof, we exemplary pick
BN
θ,ψη

(t) and apply Markov’s inequality to obtain

P(BN
θ,ψη

(t)) ≤ N2mθ+1 max
i=1,...,N

E
1

N2m

N

j=1

hij(t)
2m

= N2m(θ−1)+1 max
i=1,...,N

E
N

j,k=1

hij(t)hik(t)
m

,

where hij(t) = ψη(X
η
i (t)−X

η
j (t))−(ψη∗ūη)(Xη

i (t)). We show that the expectation vanishes
except for a number of cases which can be bounded by Nm (up to some constant). As each
of the products hij(t)hik(t) is bounded by ψη

2m
L∞ , we conclude that

P(BN
θ,ψη

(t)) ≤ C(m)N2m(θ−1)+1Nm ψη
2m
L∞ ,

proving the claim. The probability of AN
θ,φη

(t) is estimated in a similar way, see Section
4.6 for the complete proof.

II. Estimate of the L2 norm: We turn to the sketch of the proof of Theorem 4.1. To
compute the expectation of (fN,η − gη)(t) 2

L2 , we use Itô’s formula to find after some
reformulations detailed in Section 4.7:

(fN,η − gη)(t) 2
L2 − (fN,η − gη)(0) 2

L2 + 2σ
t

0
∇(fN,η − gη) 2

L2ds (4.29)

= −2σt

N
ΔV η(0) +K(t) + L(t) +M(t),

where

K(t) = C(σ)
1

N

N

i=1

t

0
((µN,η − ūη) ∗ ∇V η)(s,XN,η

i (s))dWi(s),
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L(t) = 2κ
t

0
µN,η − ūη, (∇V η ∗ ūη) · (∇Zη ∗ (fN,η − gη)) ds,

M(t) = 2κ
t

0
µN,η, |∇Zη ∗ (fN,η − gη)|2 ds.

The term L(t) can be treated in a similar way as the corresponding term in [90, (2.20)]
for κ = −1 except that by exploiting convergence in probability we make the analysis also
rigorous for the multidimensional case, while the calculations regarding this term in [90]
are restricted to one space dimension. The expression M(t) for κ = −1 in [90, (2.20)] is
negative and can be neglected in that work, but we need to estimate this term.
The idea is to estimate each of the terms on the right-hand side of (4.29) such that they
are either of order N−1/2−ε or can be absorbed by the gradient term on the left-hand side
since σ > 0. In view of the scaling of V η, the first term on the right-hand side of (4.29) is
bounded from above by CNβ(d+2)−1 (see (4.37) below). This expression is of order N−1/2−ε

for some ε > 0 if we assume that β < 1/(2d + 4). After taking supremum in time and
expectation of the expressions in (4.29), by the Burkholder–Davis–Gundy inequality, the
stochastic integral K(t) can be estimated by C/N+E(sup0<t<T M(t)), such that it remains
to estimate L(t) and M(t).

II.a. Estimate of the ‘quadratic term’ M(t) for κ = 1: The term M(t) (we refer to it
as ’quadratic term’), is (for κ = 1) the most involved one and shows the strength of our new
method. The reason lies in the fact that in contrast to the repulsive case (κ = −1) in the
aggregation case (κ = 1), this term has a positive sign and can therefore not be neglected or
used in order to absorb other terms on the left-hand side at a later stage of the estimates,
like in [90]. Hence, we have to establish a different strategy in order to estimate it in a
proper way such that we can indeed show estimate (4.17) with rate N−1/2−ε.
Using Lemma 4.10, we first observe that

M(t) ≈ 2κ
t

0
Zη ∗ µN,η, |∇(fN,η − gη)|2 ds, (4.30)

which only holds up to an error term since the convolution with Zη is inside the absolute
value. However, since we want to illustrate the idea of the proof here, we ignore this error
in this section; for details of the proof see Section 4.7.
Unfortunately, we cannot absorb M(t) by the last term on the left-hand side of (4.29), since
a naive estimate gives Zη ∗ µN,η L∞ ≤ CNβd, which diverges as N → ∞. Hence, we have
to estimate it directly. The idea is to add and subtract ūη, leading toM(t) = M1(t)+M2(t),
where

M1(t) = 2
t

0
µN,η − ūη, |Zη ∗ ∇(fN,η − gη)|2 ds,

M2(t) = 2
t

0
ūη, |Zη ∗ ∇(fN,η − gη)|2 ds.

For a sufficiently small initial datum, the norm ūη L∞ is small too (see Theorem 4.4).
Moreover, by assumption, Zη

L1 = Z L1 = 1. Thus, after an application of Young’s
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convolution inequality, M2 can be absorbed by the last term on the left-hand side of (4.29).
The smallness of the initial data is only needed in the aggregating case κ = 1, for the re-
pulsive case, the term M(t) can be treated as in [90] by absorbing it on the left-hand side
of (4.29).

The estimation of M1 is more delicate. Motivated by PDE techniques, a naive approach
would be to estimate M1(t) similar to M2(t). Unfortunately, Zη ∗ (µN,η − ūη) L∞ cannot
be bounded uniformly in ω and hence, this naive approach is not applicable. In order to
gain estimates for E(sup0<t<T |M1(t)|), we use the convergence in probability (Lemma 4.2
and Assumption (C1); (4.16)), since it allows us to divide Ω in a subset where the distance
between the particle dynamics and the mean-field equation is large and its complement.
Lemma 4.2 and Assumption (4.16) respectively show that this set has a small probability.
Hence, we add and subtract the intermediate empirical measure µN,η = N−1 N

i=1 δXη
i (t,ω)

.

Then E(sup0<t<T |M1(t)|) can be estimated by the sum of M11, M12, and an error term
(due to the error we make in (4.30)), where

M11 = E sup
0<t<T

t

0
Zη ∗ (µN,η − µN,η, |∇(fN,η − gη)|2 ds ,

M12 = E sup
0<t<T

t

0
Zη ∗ (µN,η − ūη), |∇(fN,η − gη)|2 ds .

The idea for M11 and M12 has already been explained in Section 4.1.4, since it forms the
core element of our idea. Summarizing, we use a combination of the law of large numbers
and mean-field estimates in probability ((4.24) and (4.25)) and exploit the diffusion struc-
ture of the model.

Finally, we have to estimate the error term M1 −M11 −M12. The strategy is inspired by
the one in [90], where a Taylor expansion is used. However, by exploiting the idea devel-
oped for M11 and M12, we see that a first-order expansion is sufficient. Still, the rigorous
estimate of the error term is very technical and more complicated than the estimate for the
one-dimensional situation of [90]; see estimates of M13 starting in (4.68) and (4.69).

II.b. Estimate of L(t): For the term L(t) in (4.29), we also add and subtract µN,η to split
the estimate in a mean-field part involving µN,η−µN,η and a law-of-large-numbers part for
µN,η − ūη. Again, the idea is to estimate both terms such that we obtain one contribution

of the type ∇(fN,η−gη) L2 and another contribution, which can be bounded by N−1/2−ε,
to split further the differences µN,η − µN,η and µN,η − ūη, and to apply Lemma 4.2 and
(4.16) several times. Additionally, this term is the reason why we need the assumption of
bounded (d+ 1)-st moment of the initial data; see calculations starting in (4.91).
Combining these estimates, we infer from (4.29) that

E sup
0<t<T

(fN,η − gη)(t) 2
L2 − (fN,η − gη)(0) 2

L2

+ C(σ)E
T

0
∇(fN,η − gη) 2

L2ds ≤ C(σ, T )N−1/2−ε.
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Observing that (fN,η − gη)(0) 2
L2 ≤ CN−1/2−ε0 , see (4.18), we conclude the proof for

0 < ε ≤ ε0.

4.3 Results from PDE analysis

The main purpose of this chapter is to show an improved mean-field convergence result in
L2(Rd) norm of the smoothed quantities fN,η and gη with convergence rate N−1/2−ε, see
Theorem 4.1. This result will be essential in the study of the corresponding fluctuations of
the particle system. However, since by definition gη = Zη ∗ ūη, where ūη is the unique weak
solution to (4.5), also existence, uniqueness and some bounds from classical non-linear PDE
analysis for non-local equations are needed.
The analysis of equation (4.5) in the repulsive case (κ = −1) is already included in [26],
where a mean-field limit to a cross-diffusion system is shown. However, due the fact that
[26] holds for cross-diffusion systems, smallness assumptions on u0 are needed which are
not necessary for the non-local viscous porous media equation (4.5) in case κ = −1. The
aggregating case of (4.5) (κ = 1) was already studied in [27]. For the reader’s convenience
and due to the fact that the assumptions in [26] and [27] on the initial condition are slightly
different, we present the result here with combined assumptions:

4.3.1 Assumptions on the initial data u0

Let in the following s > d/2+2. We denote with Cs the embedding constant of Hs(Rd) →
W 2,∞(Rd). Note that for this choice of s > 0, it holds that Hs(Rd) → W 2,∞(Rd) continu-
ously, see [75, Theorem 8.8].

Then, we impose the following condition on the initial datum:

u0 ∈ W 2,∞(Rd) ∩ L1(Rd), u0 ≥ 0, u0 L1 = 1,
Rd

|x|d+1u0(x)dx < ∞ (4.31)

Additionally, we assume in case κ = 1 (aggregating case) that u0 Hs < δ
Cs

for some δ > 0,

where we recall that Cs is the embedding constant Hs(Rd) → W 2,∞(Rd).

4.3.2 Existence and uniqueness of the non-local equation (4.5)

We use the following well-posedness theorem for equation (4.5) which holds for repulsive
and aggregating potentials.

Theorem 4.4 (Well-posedness of the non-local PDE (4.5) for κ = ±1). Let δ > 0, η > 0,
s > d/2 + 2, and let u0 satisfy (4.31) and

if κ = 1: u0 Hs < δ
Cs

or if κ = −1: u0 L∞ ≤ δ.

Then there exists a unique strong solution ūη ∈ L∞(0,∞;W 2,∞(Rd)) to (4.5) such that
ūη(t) ≥ 0 in Rd, ūη(t) L1 = 1, ūη(t) L∞ ≤ δ for t > 0 and the moment bound

sup
0<t<T Rd

|x|d+1ūη(t, x)dx < ∞ and ūη L∞(0,T ;W 2,∞(Rd)) ≤ C (4.32)
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hold uniformly in η.
For the stronger assumptions on u0 in case κ = 1 the regularity ūη ∈ L∞(0,∞;Hs(Rd)) ∩
L2
loc(0,∞;Hs+1(Rd)) holds and there exists C > 0 such that for all η > 0 and T > 0,

ūη L∞(0,T ;Hs(Rd)) + ∇ūη L2(0,T ;Hs(Rd)) ≤ C. (4.33)

Proof. As mentioned in the introduction of this section, the proof builds on results of [27]
(κ = 1) and [26] (κ = −1). However, it is important to remark that [26] deals with
cross-diffusion systems and hence there stronger assumptions on u0 are needed there. We
separate the proof in those two cases for existence, uniqueness and uniform bounds. Since
the results in [27] and [26] do not include moment bounds of the solution ūη, those will be
shown as last step of the proof for both cases.

κ = 1: Applying [27, Theorem 1] provides a unique weak solution to (4.5), which is nonneg-
ative, normalized, and satisfies the stated regularity. The proof of Theorem 1 in [27] shows
that if u0 L∞ ≤ M then also ūη(t) L∞ ≤ M for any M > 0 and t > 0. Furthermore, ūη

is uniformly bounded in the L∞(0, T ;L2(Rd)) norm and Dūη is uniformly bounded in the
L2(0, T ;L2(Rd)) norm. The higher-order estimates (4.33) are proved in [27, Theorem 2.2]
for s > d/2 + 1, but estimates for s > d/2 + 2 can be achieved in the same way.

Next, let κ = −1. The result in [26, Propsition 1] for n = 1 implies (under stronger
assumptions on u0) existence of a unique, nonnegative, normalized strong solution ūη to
(4.5) with the regularity ūη ∈ L∞(0,∞;Hs(Rd)) ∩ L2

loc(0,∞;Hs+1(Rd)) for s > d/2 + 1.
However, since for κ = −1, we do not need smallness of the L∞(Rd) norm (and we are in
an easier setting since no cross-diffusion is present), the assumptions stated in (4.31) are
sufficient to derive the desired regularity in Theorem 4.4. We refer the reader to the proof
of [26, Propsition 1] for details.

Moment estimates: It remains to derive the moment bound (4.33) for κ = ±1. We
present here only the idea since the calculations follow standard arguments. Multiplying
(4.5) by |x|d+1 and integrating over Rd yields

d

dt Rd

|x|d+1ūη(t, x)dx = −σ
Rd

∇ūη(t, x) · ∇|x|d+1dx (4.34)

+ 2κ
Rd

ūη(t, x)∇ūη(t, x) · ∇|x|d+1dx =: H1(t) +H2(t).

Clearly, this formulation is only formal as a rigorous argument needs a cut-off function; we
leave the details to the reader. Since ∇|x|d+1 = (d + 1)|x|d−1x, we obtain from Hölder’s
inequality and the Sobolev embedding Hs(Rd) → W 1,d+1(Rd) with s ≥ d/2 + 1/(d+ 1):

H2(t) ≤ C | · |dūη(t, ·) L(d+1)/d ∇ūη(t) Ld+1 ≤ C | · |dūη(t, ·) (d+1)/d

L(d+1)/d + ∇ūη(t) d+1
Ld+1

≤ C | · |dūη(t, ·) (d+1)/d

L(d+1)/d + 1 ,

where we have used (4.33) in the last step. As by Sobolev’s embedding ūη is also uniformly
bounded in L∞(0,∞;L∞(Rd)), we find that

| · |dūη(t, ·) (d+1)/d

L(d+1)/d =
Rd

|x|d+1ūη(t, x)ūη(t, x)1/ddx ≤ C
Rd

|x|d+1ūη(t, x)dx,
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and consequently,

H2(t) ≤ C + C
Rd

|x|d+1ūη(x, t)dx.

We integrate by parts and apply Young’s inequality |x|d−1 ≤ C(1+ |x|d+1) to the remaining
term:

H1(t) = σ
Rd

ūη(t, x)Δ|x|d+1dx = σ(d+ 1)(2d− 1)
Rd

|x|d−1ūη(t, x)dx

≤ C
Rd

(1 + |x|d+1)ūη(t, x)dx ≤ C + C
Rd

|x|d+1ūη(t, x)dx.

Inserting the estimates for H1(t) and H2(t) into (4.34) shows

d

dt Rd

|x|d+1ūη(t, x)dx ≤ C + C
Rd

|x|d+1ūη(t, x)dx.

Gronwall’s lemma and the fact that C does not depend on η > 0 then concludes the
proof.

4.4 Solvability of the particle systems

The solvability of the particle systems (4.1) and (4.6) was proved in [26]. For the conve-
nience of the reader, we recall the results.

Lemma 4.5 (Solvability of the particle systems). There exists a unique strong solution
XN,η

i to system (4.1) on (0, T ). Moreover, if the solution ūη to (4.5) satisfies ūη ∈
L∞(0, T ;W 2,∞(Rd)) then system (4.6) has a unique strong solution X

η
i with probability

density function ūη.

A strong solution means that (XN,η
i (t))t≥0 and (X

η
i (t))t≥0 are P-a.s. continuous, Rd-valued,

Ft-adapted processes satisfying (4.1) and (4.6), respectively, in the sense of Itô. Note that
the condition s > 2+d/2 in Theorem 4.4 implies that Hs(Rd) → W 2,∞(Rd) which yields a
unique solution ūη ∈ L∞(0, T ;W 2,∞(Rd)) if the assumptions on u0 stated in Theorem 4.4
are fulfilled.

4.5 Auxiliary results

We collect some inequalities which are used several times in the following sections. First,
we remark that for continuous functions F : Rd → Rn for n ∈ N,

µN,η(t), F =
1

N

N

i=1

F (XN,η
i (t)), (4.35)

(µN,η ∗ F )(t, x) =
1

N

N

j=1

F (x−XN,η
j (t)) for t > 0, x ∈ Rd. (4.36)

Clearly, this also holds for the empirical measure of the intermediate measure µN,η. The

scaling of V η and Zη, see (4.2) with η = N−β , implies the following bounds.
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Lemma 4.6. It holds for m ∈ N0 that

DmV η
L∞ + DmZη

L∞ ≤ CNβ(d+m), DmV η
L2 + DmZη

L2 ≤ CNβ(d+2m)/2,

(4.37)

Rd

Zη(y)|y|dy ≤ CN−β ,
Rd

Zη(y)2|y|2dy ≤ CNβ(d−2). (4.38)

These bounds imply the following result.

Lemma 4.7. It holds uniformly in Ω that for any m ∈ N0

sup
0<s<T

DmV η ∗ (µN,η(s)− ūη(s)) L∞ ≤ CNβ(d+m).

Proof. It follows from the definition of µN,η, Young’s convolution inequality, and estimate
(4.37) that

DmV η ∗ (µN,η − ūη)(s) L∞ ≤ 1

N

N

i=1

DmV η(x−X
η
i (s))

L∞
+ DmV η

L∞ ūη L1

≤ 2 DmV η
L∞ ≤ CNβ(d+m).

Since all estimates are uniform in ω, this finishes the proof.

We also need some bounds for fN,η − gη = (µN,η − ūη) ∗ Zη.

Lemma 4.8. It holds uniformly in Ω that

sup
0<s<T

∇(fN,η(s)− gη(s)) L∞ ≤ CNβ(d+1), sup
0<s<T

∇(fN,η(s)− gη(s)) L2 ≤ CNβ(d+2)/2.

(4.39)

Proof. The first inequality is shown as in the proof of Lemma 4.7. For the second one, we
compute by substitution

∇fN,η(s) 2
L2 =

1

N2

N

i,j=1 Rd

∇Zη y − (XN,η
i (s)−XN,η

j (s)) · ∇Zη(y)dy

≤ ∇Zη
L∞ ∇Zη

L1 ≤ CNβ(d+2),

where we have used Lemma 4.7 and the fact that ∇Zη
L1 = Nβ(d+1)

Rd |∇Z(xNβ)|dx =
Nβ ∇Z L1 .
For gη = ūη ∗ Zη, we see by Young’s convolution inequality

∇gη(s) 2
L2 = ∇Zη ∗ ūη(s) 2

L2 ≤ ∇Zη 2
L1 ūη(s) 2

L2 = N2β ∇Z 2
L1 ūη(s) 2

L2 ≤ CN2β ,

due to the uniform bounds of ūη; see Theorem 4.4. By triangle inequality, this concludes
the proof.
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Lemma 4.9. It holds that, uniformly in Ω,

sup
0<s<T

Zη ∗ µN,η(s) L2 + Zη ∗ µN,η(s) L2 ≤ CNβd/2. (4.40)

Proof. The proof is similar to that one of (4.39) (since Zη ∗ µN,η = fN,η):

Zη ∗ µN,η(s)|2L2 =
1

N2

N

i,j=1 Rd

Zη(x−XN,η
i (s))Zη(x−XN,η

j (s))dx

≤ Zη
L∞ Zη

L1 ≤ CNβd,

using (4.37) and Zη
L1 = Z L1 in the last step. The estimate for Zη ∗ µN,η is very

similar.

The final result is concerned with the “shift” of the convolution in the inner product of
L2(Rd).

Lemma 4.10. Let W ∈ L1(Rd) be symmetric and let u, v ∈ L2(Rd). Then

W ∗ u, v = u,W ∗ v .

4.6 Proof of Lemma 4.2 (Law-of-large numbers)

To estimate the probability of Bθ,ψη(t), defined in (4.28), we set

hij(t, ω) := ψη X
η
i (t, ω)−X

η
j (t, ω) − (ψη ∗ ūη)(Xη

i (t, ω))

for t ≥ 0, ω ∈ Ω, and i, j = 1, . . . , N . Note that depending on the choice of ψη, hij can be

a matrix, a vector or a scalar. Then BN
θ,ψη

(t) = N
i=1 BN

i (t), where

BN
i (t) := ω ∈ Ω :

1

N

N

j=1

hij(t, ω) > N−θ

and P(BN
θ,ψη

(t)) ≤ N maxi=1,...,N P(BN
i (t)). By the Markov inequality for m ∈ N, we have

for any i = 1, . . . , N

P(BN
i (t)) ≤ N2m(θ−1)E

1

N

N

j=1

hij(t)
2m

(4.41)

= N2m(θ−1)E
N

j,k=1

hij(t) · hik(t)
m

.

Looking at the summands of E(( N
j,k=1 hij(t) · hik(t))m) separately, we distinguish two

cases: First, we look at summands such that there exists an index j ∈ {1, . . . , N} so that
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hij appears only once in the product, i.e. terms of the form E hij(t)
2m−1
n=1, kn=j hikn(t) .

We claim that the fact that X
η
i and X

η
j are i.i.d. for i = j implies that

E hij(t)
2m−1

n=1, kn=j

hikn(t) = 0.

To prove the claim, we assume that ψη is scalar. In fact, this case can be extended to
vector-valued and matrix-valued functions by taking the sum over its components. Let K
denote the set of different indices kn appearing in the product kn=j hikn , and for each
∈ {1, . . . , N}, let α denote its multiplicity in this product. Then, by Fubini’s theorem,

E hij(t)

2m−1

n=1, kn=j

hikn(t) =
Rd

· · ·
Rd Rd

ψη(xi − xj)− (ψη ∗ ūη)(xi) ūη(xj)dxj

×
∈K

ψη(xi − x )− (ψη ∗ ūη)(xi) α
ūη(x )ūη(xi)dxi

∈K
dx .

Since ūη L1 = 1, the inner integral with respect to xj vanishes for all xi ∈ Rd,

Rd

ψη(xi−xj)− (ψη ∗ ūη)(xi) ūη(xj)dxj = (ψη ∗ ūη)(xi)− (ψη ∗ ūη)(xi)
Rd

ūη(xj)dxj = 0,

which proves the claim.

Next, we consider products of terms hij , where each factor hij appears at least twice. Those
are the terms which might not have vanishing expectation. We collect them in the set

Ni :=

2m

n=1

hijn : all indices jn appear at least twice .

We claim that the cardinality |Ni| of this set is, up to some factor, bounded by Nm. Indeed,
it holds that if α∈A hiα ∈ Ni, then the cardinality of A fulfils |A| ≤ m since all appearing
indices have to appear at least twice.

To estimate the cardinality of Ni, we write N i = ∪m−1
n=0 N i

n, where

N n
i :=

α∈A
hiα ∈ Ni : |A| = m− n .

We first look at N 0
i : It contains all products, where we have m different indices,

i.e. each index appears exactly twice. We can choose N
m such sets of indices.

Since N is large in comparison to m, we roughly estimate N
m ≤ C(m)Nm. By

taking into account all permutations of one such selection of indices, we get |N 0
i | ≤

(2m)!C(m)Nm = C(m)Nm, where C(m) is a generic constant depending on m.

For N n
i and n > 0 with the same argumentation, we get |N i

n| ≤ C(m)Nm−n
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Hence (since all N n
i are disjoint),

|Ni| ≤ C(m) (Nm +Nm−1 + · · ·+N)

m summands

≤ C(m)Nm. (4.42)

The expectation of | N
j=1 hij |2m can be written as the sum of expectations of products of

the form 2m
k=1 hijk , which is bounded from above by C ψη

2m
L∞ . This leads to

E
N

j=1

hij

2m

≤ C|Ni| ψη
2m
L∞ ≤ C(m)Nm ψη

2m
L∞ .

We infer from (4.41) that

P(BN
θ,ψη

(t)) ≤ C(m)N2m(θ−1)+1Nm ψη
2m
L∞ = C(m)N2m(θ−1/2)+1 ψη

2m
L∞ .

It remains to show the estimate for AN
θ,φη

(t), which is done in an analogous way as the one

for BN
θ,ψηη

. For the reader’s convenience we recall the main steps: By Markov’s inequality,

P(AN
θ,φη

(t)) ≤ N2mθE
1

N

N

i=1

φη(X
η
i (t))−

Rd

φη(x)ū
η(t, x)dx

2m

≤ N2m(θ−1)E
N

i=1

hi

2m

= N2m(θ−1)E
N

i,j=1

hihj

m

,

where hi(t) := φη(X
η
i (t))− Rd φη(x)ū

η(t, x)dx. Similarly as before, by a short computation
the expectation of all terms in the sum such that one index i ∈ {1, . . . , N} appears only
once vanish, i.e.

E hi

2m−1

n=1, kn=i

hkn = 0.

To estimate the remaining terms, we introduce

N :=
2m

n=1

hin : all indices in appear at least twice .

Its size can be estimated as before, leading to |N | ≤ C(m)(Nm + Nm−1 + · · · + N) ≤
C(m)Nm. Then we deduce from E( 2m

n=1 hin) ≤ C φη
2m
L∞ that

P(AN
θ,φη

(t)) ≤ C(m)N2m(θ−1/2) φη
2m
L∞ .

This finishes the proof.
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in
L2 norm)

The proof is split into several steps. The main idea is discussed in Section 4.1.4 and the
key steps are presented in Section 4.2.

Proof. 1. First reformulation. We first reformulate the L2(Rd) norm of (fN,η − gη)(t)
in terms of V η, µN,η, and ūη. For this, we expand

(fN,η − gη)(t) 2
L2 − (fN,η − gη)(0) 2

L2 = J1 + J2 + J3, where (4.43)

J1 = fN,η(t) 2
L2(Rd) − fN,η(0) 2

L2 ,

J2 = gη(t) 2
L2(Rd) − gη(0) 2

L2 ,

J3 = −2 fN,η(t), gη(t) − fN,η(0), gη(0) .

Step 1: Reformulation of J1. By definition (4.15) of fN,η, V η = Zη ∗ Zη, the symmetry of
Zη and the change of variable y = x−XN,η

i (t), we have

fN,η(t) 2
L2 =

1

N

N

i=1

Zη(·−XN,η
i (t))

2

L2

=
1

N2
Rd

N

i=1

Zη(x−XN,η
i (t))

2

dx

=
1

N2

N

i,j=1 Rd

Zη y +XN,η
j (t)−XN,η

i (t) Zη(y)dy (4.44)

=
1

N2

N

i,j=1

(Zη ∗ Zη)((XN,η
i −XN,η

j )(t)) =
1

N2

N

i,j=1

V η((XN,η
i −XN,η

j )(t)).

To reformulate the last expression, we apply Itô’s formula. For this, we rewrite the particle
system (4.1). In the following, we omit the argument t whenever this simplifies the notation.
Using (4.36),

(µN,η ∗ ∇V η)(XN,η
i ) =

1

N

N

j=1

∇V η(XN,η
i −XN,η

j ),

system (4.1) can be written as

dXN,η
i = κ(µN,η ∗ ∇V η)(XN,η

i ) +
√
2σdWi,

and consequently, for the vector Xij = (XN,η
i , XN,η

j )T ∈ R2d for some i, j ∈ {1, . . . , N},

dXij(t) = κ
(µN,η ∗ ∇V η)(XN,η

i (t))

(µN,η ∗ ∇V η)(XN,η
j (t))

dt+
√
2σ

dWi(t)
dWj(t)

.

We introduce g(X) = V η(X1 −X2) for X = (X1, X2)
T ∈ R2d. The derivatives are

Dg(X) =
∇V η(X1 −X2)
−∇V η(X1 −X2)

, D2g(X) =
D2V η(X1 −X2) −D2V η(X1 −X2)
−D2V η(X1 −X2) D2V η(X1 −X2)

.
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Abbreviating Yij = XN,η
i −XN,η

j , Itô’s formula gives

dg(Xij) = κ∇V η(Yij) · (µN,η ∗ ∇V η)(XN,η
i )− (µN,η ∗ ∇V η)(XN,η

j ) dt (4.45)

+
√
2σ∇V η(Yij) dWi − dWj + 2σΔV η(Yij)dt.

After summation over i, j = 1, . . . , N with i = j and using the property ∇V η(Yij) =
−∇V η(Yji) in the first term on the right-hand side, the integral formulation of (4.45)
becomes

i=j

g(Xij(t))− g(Xij(0)) = 2κ
i=j

t

0
∇V η(Yij(s)) · (µN,η ∗ ∇V η)(XN,η

i (s))ds

+ 2
√
2σ

i=j

t

0
∇V η(Yij(s))dWi(s) + 2σ

i=j

t

0
ΔV η(Yij(s))ds,

where we have used for the Itô integral the definition of Yij and

i,j=1

i=j

t

0
∇V η(XN,η

i −XN,η
j )dWi −

i,j=1

i=j

t

0
∇V η(XN,η

i −XN,η
j )dWj

= 2
i,j=1

i=j

t

0
∇V η(XN,η

i −XN,η
j )dWi,

due to anti-symmetry of ∇V η.
The definition of g and J1, the fact that the difference V η(Yij(t))− V η(Yij(0)) vanishes for
i = j (since Yii(t) = 0 for all t ≥ 0), and formulation (4.44) imply that

J1 =
1

N2
i=j

V η(Yij(t))− V η(Yij(0)) =
1

N2
i=j

g(Xij(t))− g(Xij(0))

=
2κ

N2
i=j

t

0
∇V η(Yij(s)) · (µN,η ∗ ∇V η)(XN,η

i (s))ds

+
2
√
2σ

N2
i=j

t

0
∇V η(Yij(s))dWi(s) +

2σ

N2
i=j

t

0
ΔV η(Yij(s))ds.

It follows from (4.36) that N−1 N
j=1∇V η(Yij) = (µN,η ∗ ∇V η)(XN,η

i ) and hence,

J1 =
2κ

N

N

i=1

t

0
|(µN,η ∗ ∇V η)(XN,η

i (s))|2ds (4.46)

+
2
√
2σ

N

N

i=1

t

0
(µN,η ∗ ∇V η)(XN,η

i (s))dWi(s)

+
2σ

N

N

i=1

t

0
(µN,η ∗ΔV η)(XN,η

i (s))ds− 2σ

N

t

0
ΔV η(0)ds.
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Note that we have written the sum over i = j as the sums over i and j minus the sum of the
diagonal i = j. In the sum over i = j, we need to evaluate ∇V η(Yii(s)) = ∇V η(0), which
vanishes due to anti-symmetry of ∇V η. However, the expression ΔV η(Yii(s)) = ΔV η(0)
does generally not vanish, explaining the last term.
Step 2: Reformulation of J2. Since Zη is symmetric, we infer from Lemma 4.10 that

gη(t) 2
L2 = Zη ∗ ūη(t), Zη ∗ ūη(t) = ūη(t), Zη ∗ Zη ∗ ūη(t) = ūη(t), V η ∗ ūη(t) .

Thus, considering V η ∗ ūη as a test function in the weak formulation of equation (4.5) for
ūη,

gη(t) 2
L2 = ūη(0), V η ∗ ūη(0) +

t

0
ūη, V η ∗ ∂tūη ds

+ σ
t

0
Δūη, V η ∗ ūη ds− κ

t

0
V η ∗ ūη, div(ūη∇V η ∗ ūη) ds,

and, after integrating by parts in the third term on the right-hand side,

J2 = gη(t) 2
L2 − gη(0) 2

L2 =
t

0
ūη, V η ∗ ∂tūη ds (4.47)

+ σ
t

0
ūη, V η ∗Δūη ds− κ

t

0
V η ∗ ūη, div(ūη∇V η ∗ ūη) ds.

Step 3: Reformulation of J3. We determine J3 by first calculating the mixed term

fN,η(t), gη(t) = µN,η(t) ∗ Zη, ūη ∗ Zη = µN,η(t), Z
η ∗ Zη ∗ ūη(t)

= µN,η(t), V
η ∗ ūη(t) =

1

N

N

i=1

V η ∗ ūη(t,XN,η
i (t)),

where we have again used Lemma 4.10 and the symmetry of Zη. By Itô’s lemma applied
to every summand V η ∗ ūη(t,XN,η

i (t)), as in (4.45),

J3 = − 2

N

N

i=1

V η ∗ ūη(t,XN,η
i (t))− V η ∗ ūη(0, XN,η

i (0))

= − 2

N

N

i=1

t

0
∂t(V

η ∗ ūη) + κ(∇V η ∗ ūη)(∇V η ∗ µN,η)

+ σΔV η ∗ ūη (s,XN,η
i (s))ds− 2

√
2σ

N

N

i=1

t

0
∇V η ∗ ūη(s,XN,η

i (s))dWi(s).

Since we have a factor 2 in front of the time derivative, ∂t(V
η ∗ ūη) = V η ∗ ∂tūη, inserting

equation (4.5) for ūη yields

2
t

0
∂t(V

η ∗ ūη)(s,XN,η
i (s))ds =

t

0
V η ∗ ∂tūη(s,XN,η

i (s))ds
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+
t

0
σV η ∗Δūη(s,XN,η

i (s))− κ∇V η ∗ ūη∇V η ∗ ūη(s,XN,η
i (s)) ds,

which allows us to write J3 as

J3 = − 1

N

N

i=1

t

0
V η ∗ ∂tūη(s,XN,η

i (s))ds (4.48)

− 1

N

N

i=1

t

0
σV η ∗Δūη(s,XN,η

i (s))− κ∇V η ∗ ūη∇V η ∗ ūη(s,XN,η
i (s)) ds

− 2

N

N

i=1

t

0
κ(∇V η ∗ ūη) · (∇V η ∗ µN,η) + σΔV η ∗ ūη (s,XN,η

i (s))ds

− 2
√
2σ

N

N

i=1

t

0
∇V η ∗ ūη(s,XN,η

i (s))dWi(s).

We combine estimates (4.46)–(4.48) to find from (4.44) for J1, J2, and J3 that

(fN,η − gη)(t) 2
L2 − (fN,η − gη)(0) 2

L2 = (K1 + · · ·+K6)(t), where (4.49)

K1(t) = −2σ

N

t

0
ΔV η(0)ds = −2σt

N
ΔV η(0),

K2(t) =
σ

N

N

i=1

t

0
2(µN,η ∗ΔV η)(XN,η

i (s)) + ūη(s), (ΔV η ∗ ūη)(s)

− 3ΔV η ∗ ūη(s,XN,η
i (s)) ds,

K3(t) =
t

0
ūη(s), V η ∗ ∂tūη(s) ds− 1

N

N

i=1

t

0
V η ∗ ∂tūη(s,XN,η

i (s))ds,

K4(t) = −κ
t

0
V η ∗ ūη, div(ūη∇V η ∗ ūη) ds

+
κ

N

N

i=1

t

0
∇V η ∗ (ūη∇V η ∗ ūη)(s,XN,η

i (s))ds,

K5(t) =
2κ

N

N

i=1

t

0
|∇V η ∗ µN,η|2 − (∇V η ∗ ūη) · (∇V η ∗ µN,η) (XN,η

i (s))ds,

K6(t) =

√
8σ

N

N

i=1

t

0
∇V η ∗ (µN,η − ūη)(s,XN,η

i (s))dWi(s).

In the next subsection, we rewrite K2, . . . ,K5 and directly estimate K1 and K6 at the end.

2. Second Reformulation. We reformulate the terms K2, . . . ,K5 in (4.49) in such a way
that some terms can be combined or cancel. We start with K2(t). Using (4.36), we write

K2(t) = 2σ
t

0
µN,η(s),ΔV η ∗ (µN,η − ūη)(s) ds
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4.7 Proof of Theorem 4.1 (Quantitative mean-field estimate in L2 norm)

+ σ
t

0
(ūη − µN,η)(s),ΔV η ∗ ūη(s) ds.

Because of V η = Zη ∗ Zη and Lemma 4.10, the first term in K2 becomes

2σ
t

0
µN,η,ΔV η ∗ (µN,η − ūη) ds = 2σ

t

0
µN,η ∗ Zη,ΔZη ∗ (µN,η − ūη) ds

= 2σ
t

0
fN,η,Δ(fN,η − gη) ds = −2σ

t

0
∇fN,η,∇(fN,η − gη) ds.

In a similar way, the second term of K2(t) can be written as

σ
t

0
ūη − µN,η,ΔV η ∗ ūη ds = −σ

t

0
∇(gη − fN,η),∇gη ds.

This shows that

K2(t) = −2σ
t

0
∇(fN,η − gη),∇fN,η ds+ σ

t

0
∇(fN,η − gη),∇gη ds.

Next, we consider K3(t). Using the definition V η = Zη ∗Zη, property (4.35), Lemma 4.10,
and equation (4.5), we infer that

K3(t) =
t

0
ūη, Zη ∗ Zη ∗ ∂tūη ds−

t

0
µN,η, Z

η ∗ Zη ∗ ∂tūη ds

=
t

0
(ūη − µN,η) ∗ Zη, Zη ∗ ∂tūη ds =

t

0
gη − fN,η, Zη ∗ ∂tūη ds

= σ
t

0
gη − fN,η, Zη ∗Δūη ds− κ

t

0
gη − fN,η, Zη ∗ div(ūη∇V η ∗ ūη) ds

= σ
t

0
∇(fN,η − gη),∇gη ds− κ

t

0
∇Zη ∗ (fN,η − gη), ūη∇V η ∗ ūη ds,

where we integrated by parts in the last step. The first term on the right-hand side is the
same as the last term in K2(t), which shows

K2(t) +K3(t) = −2σ
t

0
∇(fN,η − gη),∇(fN,η − gη) ds

− κ
t

0
∇Zη ∗ (fN,η − gη), ūη∇V η ∗ ūη ds. (4.50)

We turn to K4(t). Using the symmetry of Zη and Lemma 4.10 again, the first term becomes

−κ V η ∗ ūη div(ūη∇V η ∗ ūη) = −κ Zη ∗ Zη ∗ ūη, div(ūη∇Zη ∗ ūη)
= −κ Zη ∗ ūη, Zη ∗ div(ūη∇V η ∗ ūη) = −κ gη,∇Zη ∗ (ūη∇V η ∗ ūη) .

For the second term in K4(t), we take into account (4.35):

1

N

N

i=1

∇V η ∗ (ūη∇V η ∗ ūη)(XN,η
i ) =

1

N

N

i=1

Zη ∗ ∇Zη ∗ (ūη∇V η ∗ ūη)(XN,η
i )
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=
1

N

N

i=1 Rd

Zη(x−XN,η
i )∇Zη ∗ (ūη∇Zη ∗ ūη)(x)dx

= µN,η ∗ Zη,∇Zη ∗ (ūη∇V η ∗ ūη) = fN,η,∇Zη ∗ (ūη∇V η ∗ ūη) .

It follows from the antisymmetry of ∇Zη that

K4(t) = κ
t

0
fN,η − gη,∇Zη ∗ (ūη∇V η ∗ ūη) ds

= −κ
t

0
∇Zη ∗ (fN,η − gη), ūη∇V η ∗ ūη ds,

which equals the second term of K3(t). Hence, by (4.50)

K2(t) +K3(t) +K4(t) = −2σ
t

0
∇(fN,η − gη),∇(fN,η − gη) ds

− 2κ
t

0
∇Zη ∗ (fN,η − gη), ūη∇V η ∗ ūη ds. (4.51)

Finally, we consider K5(t). We use ∇V η = Zη ∗ ∇Zη, the definitions of fN,η and gη, as
well as (4.35):

K5(t) =
2κ

N

N

i=1

t

0
(∇V η ∗ µN,η)(X

N,η
i ) · Zη ∗ ∇Zη ∗ (µN,η(X

N,η
i )− ūη(XN,η

i )) ds

=
2κ

N

N

i=1

t

0
(∇V η ∗ µN,η)(X

N,η
i ) · Zη ∗ ∇(fN,η(XN,η

i )− gη(XN,η
i )) ds

= 2κ
t

0
µN,η, (∇V η ∗ µN,η) · (Zη ∗ ∇(fN,η − gη)) ds.

We add the expressions for K2, . . . ,K5:

(K2 + · · ·+K5)(t) = −2σ
t

0
∇(fN,η − gη),∇(fN,η − gη) ds (4.52)

− 2κ
t

0
∇Zη ∗ (fN,η − gη), ūη∇V η ∗ ūη ds

+ 2κ
t

0
µN,η, (∇V η ∗ µN,η) · (∇Zη ∗ (fN,η − gη)) ds.

We rewrite the second term on the right-hand side by adding and subtracting some terms
in the second argument of the dual bracket,

ūη∇V η ∗ ūη = (ūη − µN,η)∇V η ∗ ūη + µN,η∇V η ∗ (ūη − µN,η) + µN,η∇V η ∗ µN,η. (4.53)

Then the last integral in (4.52) cancels due to the last expression of (4.53) and, because of
∇V η ∗ (ūη − µN,η) = ∇Zη ∗ Zη ∗ (ūη − µN,η) = ∇Zη ∗ (gη − fN,η), we see that

− 2κ
t

0
∇Zη ∗ (fN,η − gη), (ūη − µN,η)∇V η ∗ ūη + µN,η∇V η ∗ (ūη − µN,η) ds
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= −2κ
t

0
ūη − µN,η, (∇V η ∗ ūη) · (∇Zη ∗ (fN,η − gη)) ds

+ 2κ
t

0
µN,η, |∇Zη ∗ (fN,η − gη)|2 ds,

and end up with

(K2 + · · ·+K5)(t) = −2σ
t

0
∇(fN,η − gη) 2

L2ds

− 2κ
t

0
ūη − µN,η, (∇V η ∗ ūη) · (∇Zη ∗ (fN,η − gη)) ds

+ 2κ
t

0
µN,η, |∇Zη ∗ (fN,η − gη)|2 ds.

In the repulsive case κ = −1, the last term is nonpositive and can be not only discarded but
also used in order to absorb other terms, see [90]. However, in the attractive case κ = 1,
we need to estimate this expression, which complicates the proof considerably.

We insert the previous formulation for K2 + · · · +K5 into (4.49) and take the supremum
over 0 < t < T and then the expectation:

E sup
0<t<T

(fN,η − gη)(t) 2
L2 + 2σE

T

0
∇(fN,η − gη)(s) 2

L2ds (4.54)

≤ E (fN,η − gη)(0) 2
L2 + E sup

0<t<T
|K1(t) +K6(t)| + L(T ) +M(T ),

where

L(T ) = 2κE sup
0<t<T

t

0
µN,η − ūη, (∇V η ∗ ūη) · (∇Zη ∗ (fN,η − gη)) ds , (4.55)

M(T ) = 2κE sup
0<t<T

t

0
µN,η, |∇Zη ∗ (fN,η − gη)|2 ds . (4.56)

The term K1(t) can be estimated directly by using (4.37):

K1(t) = −2σt

N
ΔV η(0) ≤ C(T )Nβ(d+2)−1. (4.57)

To estimate K6(t), we use the Burkholder–Davis–Gundy inequality and Jensen’s inequality:

E sup
0<t<T

|K6(t)| ≤ CE( K6
1/2
T ) ≤ C(E K6 T )

1/2.

where K6 T is the quadratic variation process of K6 at time T > 0. Since for different
particles, the Brownian motions Wi are independent, the quadratic variation becomes

(E K6 T )
1/2 =

8σ

N2

N

i=1

E
T

0
∇V η ∗ µN,η(s,X

N,η
i (s))− ūη(s,XN,η

i (s))
2
ds

1/2
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=
8σ

N
E

T

0
µN,η(s), |∇V η ∗ (µN,η − ūη)(s)|2 ds

1/2

=
8σ

N
E

T

0
µN,η(s), |∇Zη ∗ (fN,η − gη)(s)|2 ds

1/2

.

We infer from Young’s inequality, definition (4.56) of M(t), and |κ| = 1 that for any δ > 0
small

E sup
0<t<T

|K6(t)| ≤ C(σ, δ)

N
+ δE

T

0
µN,η, |∇Zη ∗ (fN,η − gη)|2 ds ≤ C(σ, δ)

N
+ δ|M(T )|.

(4.58)
It remains to estimate L(T ) and M(T ). We start with the estimate of M(T ) before turning
to the slightly easier (and similar) calculation of L(T ).

3. Estimation of M(T ). Before we start with estimates for M(T ), which contain the
main novelty of our method, we want to remark that the following calculations hold in both
cases κ = ±1. However – as mentioned before – by using the negative sign of M(T ) in case
κ = −1, this tedious estimate is not necessary (see [90]). Indeed the following calculations
rely on smallness of ūη(t) L∞ in comparison to the diffusion parameter σ, which is not
needed for κ = −1.

By adding and subtracting ūη, we use |κ| = 1 and write M ≤ M1 +M2, where

M1(T ) = 2E sup
0<t<T

t

0
µN,η − ūη, |∇Zη ∗ (fN,η − gη)|2 ds ,

M2(T ) = 2E sup
0<t<T

t

0
ūη, |∇Zη ∗ (fN,η − gη)|2 ds .

We infer from Young’s convolution inequality and Zη
L1 = 1 that

M2(T ) ≤ 2 ūη L∞(0,T ;L∞(Rd)) Zη 2
L1

t

0
∇(fN,η − gη) 2

L2ds (4.59)

≤ 2δ
t

0
∇(fN,η − gη) 2

L2ds,

if ūη L∞(0,T ;L∞(Rd)) ≤ δ, where δ > 0 is some arbitrary number. This smallness condition
is possible, due to Theorem 4.4, if the initial datum is small enough. The idea is to absorb
the right-hand side of (4.59) by the left-hand side of (4.54), which requires that δ < σ.

The estimate of M1 is more involved, and we split this expression as M1 ≤ M11+M12+M13

by adding and subtracting suitable expressions, where

M11 = 2E sup
0<t<T

t

0
Zη ∗ (µN,η − µN,η), |∇(fN,η − gη)|2 ds , (4.60)

M12 = 2E sup
0<t<T

t

0
Zη ∗ (µN,η − ūη), |∇(fN,η − gη)|2 ds ,
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M13 = 2E sup
0<t<T

t

0
µN,η − ūη, |∇Zη ∗ (fN,η − gη|2

− Zη ∗ (µN,η − ūη), |∇(fN,η − gη)|2 ds ,

where µN,η(t) = N−1 N
i=1 δXη

i (t,ω)
denotes the empirical measure of the intermediate sys-

tem (4.6).
The term M11 is estimated by the mean-field assumption (4.16), while M13 is treated by
the law-of-large-numbers estimate of Lemma 4.2. The last term M13 can be seen as an
error term, whose estimation is delicate and which needs a very careful analysis.

Step 1. Estimation of M11 (Mean-field estimate). To apply the mean-field result in prob-
ability (4.16), which we assumed in Theorem 4.1, we introduce the set

Cα(t) := ω ∈ Ω : max
i=1,...,N

|XN,η
i (t)−X

η
i (t)| > N−α , (4.61)

where α ∈ (β(d + 3), 1/2 − β(d + 1)). By (4.16), for any γ > 0 and T > 0, there exists
C(γ, T ) > 0 such that

sup
0<t<T

P(Cα(t)) ≤ C(γ, T )N−γ . (4.62)

The idea is to split Ω into the set Cα(s) and its complement Cc
α(s) with s ∈ (0, t) and to

estimate M11 on these two sets separately. For this, we write M11 ≤ M111 +M112, where

M111 = 2E sup
0<t<T

t

0
Zη ∗ (µN,η − µN,η),1Cα(s)|∇(fN,η − gη)|2 ds ,

M112 = 2E sup
0<t<T

t

0
Zη ∗ (µN,η − µN,η),1Cc

α(s)
|∇(fN,η − gη)|2 ds .

Going back to the particle formulation and using |XN,η
i (s) − X

η
i (s)| ≤ N−α on Cc

α(s) as
well as ∇Zη

L∞ ≤ CNβ(d+1) from (4.37), we find that

M112(T )

≤ 2E sup
0<t<T

t

0

1

N

N

i=1

Zη(x−XN,η
i )− Zη(x−X

η
i ) 1Cc

α(s)
, |∇(fN,η − gη)|2 ds

≤ 2 ∇Zη
L∞

1

N

N

i=1

E
T

0
|XN,η

i (s)−X
η
i (s)|1Cc

α(s)
, |∇(fN,η − gη)(s)|2 ds

≤ CNβ(d+1)−αE
T

0
∇(fN,η − gη)(s) 2

L2ds ≤ δE
T

0
∇(fN,η − gη)(s) 2

L2ds,

choosing N sufficiently large such that CNβ(d+1)−α ≤ δ. This is possible since

α > β(d+ 1).
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On the remaining set M111, we use Zη
L∞ ≤ CNβd,

sup
ω∈Ω

sup
0<s<T

∇(fN,η − gη)(s) 2
L2 ≤ CNβ(d+2)

from (4.39), and estimate (4.62). Fubini’s theorem then gives

M111(T ) ≤ 4 Zη
L∞

1

N

N

i=1

E sup
0<s<T

∇(fN,η − gη)(s) 2
L2

T

0
1Cα(s)ds

≤ 4TNβd sup
0<s<T

sup
ω∈Ω

∇(fN,η − gη)(s) 2
L2P(Cα(s))

≤ C(T )NβdNβ(d+2)N−γ = C(T )N2β(d+1)−γ ≤ C(T )N−1/2−ε,

where the last step follows after choosing γ > 1/2 + 2β(d + 1) and where ε > 0 denotes
here and in the following a small number with values changing in the proof (here, we can
choose ε := γ − 1/2− 2β(d+ 1) > 0). We conclude that

M11(T ) ≤ C(T )N−1/2−ε + δE
T

0
∇(fN,η − gη)(s) 2

L2ds, (4.63)

for N sufficiently large and δ > 0 arbitrary small.

Step 2. Estimation of M12 (Law-of-large numbers). The term M12 is treated by the law-
of-large-numbers estimate of Lemma 4.2. For this, we introduce for fixed δ > 0 (will be
chosen later)

Dδ(s, x) := ω ∈ Ω :
1

N

N

i=1

Zη(x−X
η
i (s))− (Zη ∗ ūη(s, x)) > δ , (4.64)

and we split Ω into the sets Dδ(s, ·) and Dc
δ(s, ·). Then M12 ≤ M121 +M122, where

M121(T ) = 2E
T

0

1

N

N

i=1

Zη(·−X
η
i (s))− (Zη ∗ ūη)(s) ,1Dc

δ(s,·)|∇(fN,η − gη)(s)|2 ds,

M122(T ) = 2E
T

0

1

N

N

i=1

Zη(·−X
η
i (s))− (Zη ∗ ūη)(s) ,1Dδ(s,·)|∇(fN,η − gη)(s)|2 ds.

In Dδ(s, ·)c, we have |N−1 N
i=1 Z

η(·−X
η
i (s))− (Zη ∗ ūη)(s, ·)| ≤ δ and therefore,

M121(T ) ≤ 2δE
T

0
∇(fN,η − gη)(s) 2

L2ds.

For the second term M122, we have to be careful with the x-dependence of the set Dδ(s, x).
First, we use Zη ∗ ūη L∞ ≤ Zη

L∞ ≤ CNβd from (4.37) and Fubini’s theorem

M122(T ) ≤ 2 Zη
L∞E

T

0
1Dδ(s,·), |∇(fN,η − gη)(s)|2 ds (4.65)
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≤ CNβd
T

0
E(1Dδ(s,·)), sup

ω∈Ω
|∇(fN,η − gη)(s)|2 ds

≤ CNβd
T

0
sup
x∈Rd

E(1Dδ(s,x)) sup
ω∈Ω

∇(fN,η − gη)(s) 2
L2ds

≤ C(T )NβdNβ(d+2) sup
0<s<T

sup
x∈Rd

P(Dδ(s, x)),

where we used (analogous to (4.39)) that

sup
ω∈Ω

∇fN,η 2
L2 ≤

Rd

1

N2

N

i,j=1

sup
ω∈Ω

∇Zη(XN,η
i (s)−XN,η

j (s) + y)∇Zη(y) dy

≤ ∇Zη
L∞ ∇Zη

L1 ≤ CNβ(d+2) (4.66)

in the last step.
Now, we apply for fixed x ∈ Rd Lemma 4.2 with φη(y) = Zη(x− y), θ = 0, and m > 0:

P(Dδ(s, x)) ≤ C(δ) φη
2m
L∞N−m ≤ C(δ)N2mβdN−m = C(δ)N−(1−2βd)m,

where we note that the right-hand side now depends on δ > 0 if we choose Dδ(s, x) depend-
ing on δ. This is slightly different than in Lemma 4.2, but does not change the computation
of the proof.
By assumption, β < 1/2d such that 1− 2βd > 0. Thus, if we choose m large enough,

M122(T ) ≤ C(T )N2β(d+1)−(1−2β)m ≤ C(T )N−1/2−ε.

Summarizing the estimates for M121 and M122, we infer that

M12(T ) = C(T )N−1/2−ε + 2δE
T

0
∇(fN,η − gη)(s) 2

L2ds, (4.67)

which finishes Step 2.

Step 3. Estimation of M13 (error estimate). We turn to the error term M13(T ) defined in
(4.60), which is the last and most technical one to estimate for M(T ). We add and subtract
an expression involving Zη ∗ (µN,η − ūη) to the error term M13, giving M13 ≤ M131+M132,
where

M131 = 2E sup
0<t<T

t

0
µN,η − ūη, |∇Zη ∗ (fN,η − gη)|2 (4.68)

− Zη ∗ (µN,η − ūη),∇(fN,η − gη) · ∇Zη ∗ (fN,η − gη) ds

M132 = 2E sup
0<t<T

t

0
Zη ∗ (µN,η − ūη),∇(fN,η − gη) · ∇Zη ∗ (fN,η − gη) (4.69)

− Zη ∗ (µN,η − ūη), |∇(fN,η − gη)|2 ds .
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We start with M131, which is estimated in a similar way as in [90], but we use the estimates
(4.16) (Assumption (C1)) and Lemma 4.2 instead of a Taylor expansion as in [90], where
the calculations for one space-dimension is done in case κ = −1.
We split M131 into several terms and the technical proof into several sub-steps. We abbre-
viate wN,η := Zη ∗ (fN,η − gη). The mean-value theorem for ∇wN,η then gives

∇wN,η(x)−∇wN,η(x− y) = D2wN,η(·+ (−1 + c∗)y) · y =
0

−1
D2wN,η(·+ ry)dr · y,

for some c∗ ∈ (0, 1), where D2wN,η = (∂2
ijw

N,η)di,j=1 denotes the Hessian matrix of wN,η.
The symmetry of Zη allows us to apply Lemma 4.10:

M131(T ) = 2E sup
0<t<T

t

0
µN,η − ūη, |Zη ∗ ∇(fN,η − gη)|2

− Zη ∗ (∇(fN,η − gη) · ∇wN,η) ds

= 2E sup
0<t<T

t

0
µN,η − ūη,

Rd

Zη(y)∇(fN,η − gη)(·− y)dy · ∇wN,η(·)

−
Rd

Zη(y)∇(fN,η − gη)(·− y) · ∇wN,η(·− y)dy ds

= 2E sup
0<t<τ

t

0
µN,η − ūη,

Rd

Zη(y)∇(fN,η − gη)(·− y)T

×
0

−1
D2wN,η(·+ ry)dr ydy ds ,

where we used the mean-value theorem in the last step. We expand ∂2
ijw

N,η by adding and
subtracting the empirical measure µN,η of the intermediate system (4.6):

∂2
ijw

N,η = ∂2
ijV

η ∗ (µN,η − ūη) = ∂2
ijV

η ∗ (µN,η − µN,η) + ∂2
ijV

η ∗ (µN,η − ūη).

Then M131 ≤ P1 + P2, where

P1(T ) = 2E sup
0<t<T

t

0
µN,η − ūη,

Rd

Zη(y)∇(fN,η − gη)(·− y)

×
0

−1
D2V η ∗ (µN,η − µN,η)(·+ ry)dr ydy ds ,

P2(T ) = 2E sup
0<t<T

t

0
µN,η − ūη,

Rd

Zη(y)∇(fN,η − gη)(·− y) (4.70)

×
0

−1
D2V η ∗ (µN,η − ūη)(·+ ry)dr ydy ds .

Step 3.1: Estimation of P1. We use the mean-field estimate in probability (4.16), which is
assumed to hold for this theorem. Since ūη is nonnegative by Theorem 4.4 and Uη(x) :=
Zη(x)|x| is symmetric, by Lemma 4.10

P1(T ) ≤ 2E sup
0<t<T

t

0
D2V η ∗ (µN,η − µN,η) L∞
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× µN,η + ūη

Rd

Uη(y)|∇(fN,η − gη)(·− y)|dy ds (4.71)

≤ 2E sup
0<t<T

t

0
D2V η ∗ (µN,η − µN,η) L∞ Uη ∗ (µN,η + ūη), |∇(fN,η − gη)| ds

≤ 2E
T

0
D2V η ∗ (µN,η − µN,η) L∞ ∇(fN,η − gη) L2

× µN,η ∗ Uη
L2 + ūη ∗ Uη

L2 ds,

and the last step follows from the Cauchy–Schwarz inequality. We claim that the con-
volutions with Uη are bounded by CNβ(d−2). Indeed, by (4.38) and Cauchy-Schwarz
(( N

i=1 xi)
2 ≤ N N

i=1 x
2
i for any xi ∈ R)

(µN,η ∗ Uη)(s) 2
L2 =

Rd

1

N

N

i=1

Zη(x−XN,η
i (s))|x−XN,η

i (s)|
2

dx (4.72)

≤
Rd

Zη(x)2|x|2dx ≤ CNβ(d−2),

(ūη ∗ Uη)(s) 2
L2 ≤ ūη 2

L∞(0,T ;L∞(Rd))N
β(d−2) ≤ CNβ(d−2).

Inserting these estimates into (4.71) and splitting Ω into Cα(s) and Cc
α(s) (defined in (4.61))

yields P1 ≤ P11 + P12, where

P11(T ) = CNβ(d−2)/2E
T

0
1Cc

α(s)
D2V η ∗ (µN,η − µN,η) L∞ ∇(fN,η − gη) L2ds ,

P12(T ) = CNβ(d−2)/2E
T

0
1Cα(s) D2V η ∗ (µN,η − µN,η) L∞ ∇(fN,η − gη) L2ds .

Step 3.1a: Estimation of P11. We compute

D2V η ∗ (µN,η − µN,η) L∞ = ess sup
x∈Rd

1

N

N

i=1

D2V η(x−XN,η
i (s))−D2V η(x−X

η
i (s))

≤ D3V η
L∞

1

N

N

i=1

|XN,η
i (s)−X

η
i (s)|.

Together with D3V η
L∞ ≤ CNβ(d+3) from (4.37), the definition of Cc

α(s), and Young’s
inequality, this shows that

P11(T ) ≤ CNβ(d−2)/2+β(d+3)−αE
T

0
∇(fN,η − gη)(s) L2ds

≤ δE
t

0
∇(fN,η − gη)(s) 2

L2ds+ C(δ, T )Nβ(3d+4)−2α

≤ δE
t

0
∇(fN,η − gη)(s) 2

L2ds+ C(δ, T )N−1/2−ε,
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if we choose α > 1/4 + β(3d + 4)/2 which is equivalent to β(3d + 4) − 2α < −1/2. The
choice α > 1/4 + β(3d+ 4)/2 is compatible with the assumptions of (4.16) since

1

4
+

β

2
(3d+ 4) < α <

1

2
− β(d+ 1) (4.73)

is non-empty. This is guaranteed if β(52d+ 3) < 1
4 which can be written as

β <
1

10d+ 12
=

1

2(5d+ 6)
. (4.74)

Since we choose β in this way, there exists an α > 0, that fulfils (4.73), and we can apply
(4.16) and get for such an α that for any γ > 0 and T > 0 there exists a constant C(γ, T )
such that

P(Cα(s)) ≤ C(γ, T )N−γ , (4.75)

which helps us in the next estimate:

Step 3.1b: Estimation of P12. To estimate P12, we apply the assumed convergence in
probability (4.16). The assumptions are satisfied since 1/4 + β(3d + 4)/2 < α < 1/2 −
β(d+ 1) is fulfilled. Therefore, because of P(Cα(s)) ≤ C(γ, T )N−γ for any γ > 0, estimate
D2V η

L∞ ≤ CNβ(d+2) from (4.37), and (4.39), we can estimate by Fubini’s theorem

P12(T ) ≤ CNβ(d−2)/2Nβ(d+2)E
T

0
1Cα(s) ∇(fN,η − gη) L2ds

≤ C(T )Nβ(3d+2)/2Nβ(d+2)/2 sup
0<s<T

P(Cα(s)) ≤ C(γ, T )N2β(d+1)−γ ≤ C(T )N−1/2−ε,

where the last step follows if we choose γ > 2β(d + 1) + 1/2. Collecting the estimates for
P11 and P12 gives

P1(T ) ≤ C(δ, T )N−1/2−ε + δE
T

0
∇(fN,η − gη)(s) 2

L2ds. (4.76)

Step 3.2: Estimation of P2. We continue by estimating P2(T ), defined in (4.70). We add
and subtract µN,η, giving P2 ≤ P21 + P22, where

P21(T ) = 2E sup
0<t<T

t

0
µN,η − µN,η,

Rd

Zη(y)∇(fN,η − gη)(·− y)

×
0

−1
D2V η ∗ (µN,η − ūη)(·+ ry)dr ydy ds ,

P22(T ) = 2E sup
0<t<T

t

0
µN,η − ūη,

Rd

Zη(y)∇(fN,η − gη)(·− y) (4.77)

×
0

−1
D2V η ∗ (µN,η − ūη)(·+ ry)dr ydy ds .
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Step 3.2a: Estimation of P21. Using (4.35), we write out the dual bracket, and add and
subtract a suitable expression in the second step:

P21(T ) ≤ 2E sup
0<t<T

t

0

1

N

N

i=1 Rd

Zη(y)∇(fN,η − gη)(XN,η
i − y)

×
0

−1
D2V η ∗ (µN,η − ūη)(XN,η

i + ry)dr ydyds

−
t

0

1

N

N

i=1 Rd

Zη(y)∇(fN,η − gη)(X
η
i − y)

×
0

−1
D2V η ∗ (µN,η − ūη)(X

η
i + ry)dr ydyds

≤ P211(T ) + P212(T ),

where

P211(T ) = 2E
T

0

1

N

N

i=1 Rd

Zη(y) ∇(fN,η − gη)(XN,η
i − y)−∇(fN,η − gη)(X

η
i − y)

×
0

−1
D2V η ∗ (µN,η − ūη)(XN,η

i + ry)dr · y dyds,

P212(T ) = 2E
T

0

1

N

N

i=1 Rd

Zη(y) ∇(fN,η − gη)(X
η
i − y)

×
0

−1
D2V η ∗ (µN,η − ūη)(XN,η

i + ry) (4.78)

−D2V η ∗ (µN,η − ūη)(X
η
i + ry) dr · y dyds.

Splitting Ω again into the sets Cα(s) and Cc
α(s), defined in (4.61), the first term P211 can

be estimated as

P211(T ) ≤ 4E
T

0 Rd

1Cα(s) ∇(fN,η − gη) L∞ D2V η ∗ (µN,η − ūη) L∞Zη(y)|y|dyds

+ 2E
T

0

1

N

N

i=1 Rd

1Cc
α(s)

Zη(y) ∇(fN,η − gη)(XN,η
i − y)−∇(fN,η − gη)(X

η
i − y)

×
0

−1
D2V η ∗ (µN,η − ūη)(XN,η

i + ry)dr · y dyds =: Q1(T ) +Q2(T ).

For the first term, we estimate supω∈Ω sup0<s<T ∇(fN,η − gη)(s) L∞ ≤ CNβ(d+1) by
using (4.39), supω∈Ω sup0<s<T D2V η ∗ (µN,η − ūη)(s) L∞ ≤ CNβ(d+2) by using (4.37),

Rd Z
η(y)|y|dy ≤ CN−β from (4.38), and finally, we choose γ > 2β(d+ 1)− 1/2:

Q1(T ) ≤ C(T )Nβ(d+1)+β(d+2)−β sup
0<s<T

P(Cα(s))
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≤ C(T )N2β(d+1)−γ ≤ C(T )N−1/2−ε. (4.79)

Next, we set

∇zN,η
i (y) := ∇(fN,η − gη)(XN,η

i − y)−∇(fN,η − gη)(X
η
i − y)

and add and subtract D2V η ∗ (µN,η − ūη)(X
η
i + ry) to the integrand of Q2, leading to

Q2 ≤ Q21 +Q22, where

Q21(T ) = 2E
T

0

1

N

N

i=1 Rd

1Cc
α(s)

Zη(y)|∇zN,η
i (y)|

0

−1
D2V η ∗ (µN,η − ūη)(XN,η

i + ry)

−D2V η ∗ (µN,η − ūη)(X
η
i + ry) dr · y dyds,

Q22(T ) = 2E
T

0

1

N

N

i=1 Rd

1Cc
α(s)

Zη(y)|∇zN,η
i (y)|

×
0

−1
D2V η ∗ (µN,η − ūη)(X

η
i + ry)dr · y dyds.

By definition (4.61) of Cc
α(s), the estimate D3V η

L∞ ≤ CNβ(d+3), the mean-value theorem
applied to D2V η ∗ (µN,η − ūη), ūη L1 = 1 and recalling the definition Uη(y) = Zη(y)|y|,
we have

Q21(T ) ≤ CE
T

0

1

N

N

i=1 Rd

1Cc
α(s)

Zη(y)|y||∇zN,η
i (y)| D3V η ∗ (µN,η − ūη) L∞

× |XN,η
i −X

η
i |dyds

≤ CN−αE
T

0
Uη ∗ (µN,η + µN,η), |∇(fN,η − gη)| D3V η

L∞ds

≤ C(T )Nβ(d+3)−α µN,η ∗ Uη
L2 + µN,η ∗ Uη

L2 E
T

0
∇(fN,η − gη) L2ds

≤ C(T )Nβ(d+3)−αNβ(d−2)/2E
t

0
∇(fN,η − gη) L2ds,

where in the last step we used the bound (4.72), which is uniform in ω ∈ Ω, for the estimates
for µN,η ∗ Uη and ūη ∗ Uη. Hence, by Young’s inequality,

Q21(T ) ≤ δE
T

0
∇(fN,η − gη) 2

L2ds+ C(δ, T )Nβ(3d+4)−2α (4.80)

≤ δE
t

0
∇(fN,η − gη) 2

L2ds+ C(T )N−1/2−ε,

after choosing α > 1/4 + β/2(3d+ 4), which is equivalent to β(3d+ 4)− 2α < −1/2. This
choice of α is admissible, see (4.73).
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For the term Q22, we introduce the set

Eθ(Xη
i (s), y, r, s) := ω ∈ Ω :

1

N

N

i=1

D2V η(X
η
i (s) + ry −X

η
j (s))

− (D2V η ∗ ūη)(s,Xη
i (s) + ry) > N−θ

= ω ∈ Ω : D2V η ∗ (µN,η − ūη)(X
η
i (s) + ry) > N−θ ,

which corresponds to BN
θ,ψ(s) with ψη(x) = D2V η(x + ry) in Lemma 4.2. As we integrate

in Q22 over Cc
α(s), we can use maxi=1,...,N |XN,η

i (s) −X
η
i (s)| ≤ N−α. Therefore, applying

the mean-value theorem to ∇zN,η
i and using supω∈Ω sup0<s<T D2(fN,η − gη)(s) L∞ ≤

CNβ(d+2), supω∈Ω sup0<s<T D2V η ∗ (µN,η − ūη)(s) L∞ ≤ CNβ(d+2) which can be proved
similarly as (4.39), we find that

Q22(T ) ≤ CN−αE
T

0
D2(fN,η − gη) L∞

1

N

N

i=1 Rd

Zη(y)|y|

×
0

−1
D2V η ∗ (µN,η − ūη)(X

η
i + ry) 1Eθ(Xη

i (s),y,r,s)
+ 1Ec

θ (X
η
i (s),y,r,s)

drdyds

≤ CN−α+2β(d+2) 1

N

N

i=1

T

0 Rd

0

−1
Zη(y)|y|P(EN

θ (X
η
i (s), y, r, s))drdyds

+ C(T )N−α+β(d+2)−β−θ,

where we also used Rd Z
η(y)|y|dy ≤ CN−β from (4.38) in the second term and Fubini’s

theorem in the first one. We deduce from Lemma 4.2 that for any m ∈ N

P(Eθ(Xη
i (s), y, r, s)) ≤ C(m) D2V η 2m

L∞N2m(θ−1/2)+1 ≤ CN2m(θ−1/2+β(d+2))+1,

where we note that the constant C > 0 is independent of y, r and s. This leads to

Q22(t) ≤ CN−α+2β(d+2)−βN2m(θ−1/2+β(d+2))+1 + C(T )Nβ(d+1)−α−θ

To bound the above right-hand side by N−1/2−ε, we need the following conditions on α
and θ:

(i) θ < 1/2− β(d+ 2): Then θ − 1/2 + β(d+ 2) is negative and we can choose m large
enough to obtain 2m(θ − 1/2 + β(d + 2)) + 1 < −1/2 − (β(2d + 1) − α). Note that
we choose m ∈ N after choosing α.

(ii) α+ θ > 1/2 + β(d+ 2): Then β(d+ 2)− α− θ < −1/2.

We need to ensure that both conditions are compatible with the conditions on α (imposted
in the estimation of P11, see (4.73)) and β (imposed in the theorem):

0 < β <
1

10d+ 12
and

1

4
+

β

2
(3d+ 4) < α <

1

2
− β(d+ 1).
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We infer from (i), (ii), and α < 1/2− β(d+ 1) that

1

2
+ β(d+ 1) < α+ θ < 1− β(2d+ 3).

This chain of inequalities is non-empty under the constraint β < 1/(6d + 8). Choosing α
close to 1/4 + β(3d + 4)/2 and taking into account the smallness condition on β, we can
always find an admissible value for θ > 0. Hence, conditions (i) and (ii) can be fulfilled
under the given condition on β.
We combine the inequality Q22(T ) ≤ C(T )N−1/2−ε with estimate (4.80) for Q21 and esti-
mate (4.79) for Q1:

P211(T ) = (Q1 +Q21 +Q22)(T ) ≤ C(T )N−1/2−ε + δE
T

0
∇(fN,η − gη) 2

L2ds. (4.81)

We turn to the term P212(T ), defined in (4.78), and split Ω in Cα(s) and Cc
α(s), defined in

(4.61). First, we observe the following two estimates: First, we obtain from the mean-value
theorem and Lemma 4.7:

D2V η ∗ (µN,η − ūη)(XN,η
i + ry)−D2V η(µN,η − ūη)(X

η
i + ry)

≤ |XN,η
i (s)−X

η
i (s)| sup

ω∈Ω
sup

0<s<T
D3V η ∗ (µN,η − ūη) L∞

≤ CNβ(d+3)|XN,η
i (s)−X

η
i (s)|.

This estimate is used on the set Cc
α(s). Furthermore, we use on the set Cα(s):

sup
ω∈Ω

sup
0<s<T

D2V η ∗ (µN,η − ūη)(s) L∞ ≤ CNβ(d+2).

Recalling the definition Uη(y) = Zη(y)|y|, this yields

P212(T ) ≤ CNβ(d+2)E
T

0
1Cα(s) Uη ∗ µN,η, |∇(fN,η − gη)| ds

+ CNβ(d+3)−αE
T

0
1Cc

α(s)
Uη ∗ µN,η, |∇(fN,η − gη)| ds

≤ CNβ(d+2)E Uη ∗ µN,η L2 ∇(fN,η − gη) L2

T

0
1Cα(s)ds

+ CNβ(d+3)−αE Uη ∗ µN,η L2

T

0
∇(fN,η − gη) L2ds .

In view of Uη ∗ µN,η L2 ≤ CNβ(d−2)/2 and ∇(fN,η − gη) L2 ≤ CNβ(d+2)/2 uniformly in
[0, T ] and Ω (see (4.72) and (4.39), respectively) and using the Cauchy–Schwarz inequality,

P212(T ) ≤ C(T )Nβ(d+2)+β(d−2)/2+β(d+2)/2 sup
0<s<T

P(Cα(s))

+ CNβ(d+3)+β(d−2)/2−αE
T

0
∇(fN,η − gη) L2ds
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≤ C(T )N2β(d+1)−γ + C(δ)Nβ(3d+4)−2α + δE
T

0
∇(fN,η − gη) 2

L2ds

≤ C(T )N−1/2−ε + δE
T

0
∇(fN,η − gη) 2

L2ds,

choosing as before α > 1/4 + β(3d+ 4)/2 and γ > 0 sufficiently large.
We combine the estimates for P211 and P212 (see (4.81)):

P21(T ) ≤ C(T )N−1/2−ε + 2δE
T

0
∇(fN,η − gη) 2

L2ds, (4.82)

which finishes Step 3.2a.

Step 3.2b: Estimation of P22. To estimate P22, defined in (4.77), we split Ω into the sets
Fθ(·, y, r, s) and Fc

θ (·, y, r, s), where

Fθ(x, y, r, s) := ω ∈ Ω :
1

N

N

i=1

D2V η(x+ ry −X
η
i (s))

− (D2V η ∗ ūη)(s, x+ ry) > N−θ .

= ω ∈ Ω : D2V η ∗ (µN,η − ūη)(x+ ry) > N−θ

Then P22 ≤ P221 + P222, where

P221(T ) = 2E sup
0<t<T

t

0
µN,η − ūη,

Rd

Zη(y)∇(fN,η − gη)(·− y)

×
0

−1
D2V η ∗ (µN,η − ūη)(·+ ry)1Fc

θ (·,y,r,s)dr ydy ds ,

P222(T ) = 2E sup
0<t<T

t

0
µN,η − ūη,

Rd

Zη(y)∇(fN,η − gη)(·− y)

×
0

−1
D2V η ∗ (µN,η − ūη)(·+ ry)1Fθ(·,y,r,s)dr ydy ds .

We estimate similarly as before, using the definition of Fc
θ (·, y, r, s) and Uη(y) = Zη(y)|y|:

P221(T ) ≤ CN−θE
T

0
µN,η + ūη,

Rd

Zη(y)|y||∇(fN,η − gη)|dy ds (4.83)

≤ CN−θE
T

0
Uη ∗ µN,η L2 + Uη ∗ ūη L2 ∇(fN,η − gη) L2ds

≤ CNβ(d−2)/2−θE
T

0
∇(fN,η − gη)(s) L2ds

≤ C(δ, T )Nβ(d−2)−2θ + δE
T

0
∇(fN,η − gη)(s) 2

L2ds,
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where we used (4.72) and Young’s inequality. Furthermore, recalling that D2V η ∗ (µN,η −
ūη) L∞ ≤ CNβ(d+2) uniformly in [0, T ] and Ω (see Lemma 4.7),

P222(T ) ≤ 2E
T

0
µN,η + ūη,

Rd

Zη(y)|∇(fN,η − gη)(·− y)|

×
0

−1
D2V η ∗ (µN,η − ūη)(·+ ry)1Fθ(·,y,r,s)dr · y dy ds

≤ CNβ(d+2)E
T

0
µN,η + ūη,

Rd

Zη(y)|∇(fN,η − gη)(·− y)|

×
0

−1
1Fθ(·,y,r,s)drdy ds.

We apply Fubini’s theorem and use the definition of µN,η as well as the uniform bound

∇(fN,η − gη) L∞ ≤ CNβ(d+1) from (4.39). Writing out the dual bracket then leads with
ūη ≥ 0 to

P222(T ) ≤ CNβ(d+2)E
0

−1

T

0

1

N

N

i=1 Rd

Zη(y)|y|1Fθ(X
η
i (s),y,r,s)

(4.84)

× |∇(fN,η − gη)(X
η
i (s)− y)|dydsdr

+ CNβ(d+2)E
0

−1

T

0 Rd

ūη(x)
Rd

Zη(y)|y|1Fθ(x,y,r,s)

× |∇(fN,η − gη)(x− y)|dydxdsdr

≤ CNβ(2d+3)
0

−1

T

0

1

N

N

i=1

Zη(y)|y|P(FN
θ (X

η
i (s), y, r, s))dydsdr

+ CNβ(2d+3)
0

−1

T

0 Rd

ūη(x)
Rd

Zη(y)|y|P(Fθ(x, y, r, s))dydxdsdr.

Again, we wish to apply Lemma 4.2 to estimate the probability of Fθ(·, y, r, s). For fixed
x ∈ Rd, the set Fθ(x, y, r, s) corresponds to AN

θ,φη
(s) with φη(z) = D2V η(x+ ry− z), while

Fθ(X
η
i (s), y, r, s)) corresponds to BN

θ,ψη
with ψη(z) = D2V η(z + ry). By Lemma 4.2, for

any m ∈ N, there exists C(m,T ) > 0 such that

P(Fθ(X
η
i (s), y, r, s)) ≤ C(m,T ) D2V η(·+ ry) 2m

L∞N2m(θ−1/2)+1

≤ C(m,T )N2m(θ−1/2+β(d+2))+1,

P(Fθ(x, y, r, s)) ≤ C(m,T ) D2V η(x+ ry − ·) 2m
L∞N2m(θ−1/2)

≤ C(m,T )N2m(θ−1/2+β(d+2)).

Then, in view of (4.38) and ūη(s) L1 = 1, we deduce from (4.84) that

P222(T ) ≤ C(m,T )Nβ(2d+3)N−βN2m(θ−1/2+β(d+2))+1.
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Together with estimate (4.83) for P221, we obtain

P22(T ) ≤ C(m,T )N2m(θ−1/2)+β(d+2))+2β(d+1)+1

+ C(δ, T )Nβ(d−2)−2θ + δE
T

0
∇(fN,η − gη) 2

L2ds.

To finish the estimate for P22, we need to choose θ for the set Fθ(·, y, r, s): We choose θ in
this step such that

1/4 + β(d− 2)/2 < θ < 1/2− β(d+ 2).

This is possible since 1/4+β(d−2)/2 < 1/2−β(d+2) is equivalent to β < 1/(6d+4), and this
is fulfilled by our assumptions. With this choice, β(d−2)−2θ < −1/2 and θ−1/2+β(d+2) is
negative such that, for sufficiently largem ∈ N, 2m(θ−1/2+β(d+2))+2β(d+1)+1 < −1/2.
We infer that

P22(T ) ≤ C(δ, T )N−1/2−ε + δ
T

0
∇(fN,η − gη) 2

L2ds,

which finishes Step 3.2b.

It remains to add estimate (4.82) for P21 and the previous estimate to conclude that

P2(T ) = P21(T ) + P22(T ) ≤ C(δ, T )N−1/2−ε + 3δE
T

0
∇(fN,η − gη) 2

L2ds,

this finishes Step 3.2.
Conclusion of Step 3.1 and 3.2. Combining estimate (4.76) for P1 and the previous estimate
for P2, we obtain for M131, defined in (4.68):

M131(T ) = P1(T ) + P2(T ) ≤ C(δ, T )N−1/2−ε + 4δE
T

0
∇(fN,η − gη) 2

L2ds. (4.85)

Step 3.3. Estimation of M132. We consider the term M132(T ), defined in (4.69). The
estimation of this expression is similar to the previous steps 3.1 and 3.2, but the estimates
are simpler. First, we add and subtract µN,η(s) in M132 to split the expression in a mean-
field part and a law-of-large-numbers part. Then M132 ≤ R1 +R2, where

R1(T ) = 2E sup
0<t<T

t

0
Zη ∗ (µN,η − µN,η),∇(fN,η − gη)

× ∇Zη ∗ (fN,η − gη)−∇(fN,η − gη) ds ,

R2(T ) = 2E sup
0<t<T

t

0
Zη ∗ (µN,η − ūη),∇(fN,η − gη)

× ∇Zη ∗ (fN,η − gη)−∇(fN,η − gη) ds .

We start with R1. By Young’s convolution inequality,

∇Zη ∗ (fN,η − gη) L2 ≤ Zη
L1 ∇(fN,η − gη) L2 = ∇(fN,η − gη) L2 , (4.86)
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and splitting Ω into Cα(s) and Cc
α(s) (see (4.61) for the definition), we arrive at

R1(T ) ≤ 4E
T

0
Zη ∗ (µN,η − µN,η) L∞ ∇(fN,η − gη) 2

L2 1Cα(s) + 1Cc
α(s)

ds

≤ 4E
T

0
∇Zη

L∞
1

N

N

i=1

|XN,η
i (s)−X

η
i (s)| ∇(fN,η − gη) 2

L21Cc
α(s)

ds

+ 4 sup
ω∈Ω

sup
0<s<T

Zη ∗ (µN,η − µN,η) L∞ ∇(fN,η − gη) 2
L2 E

T

0
1Cα(s)ds,

where we used in the last step the mean-value theorem in the first integral on the right-hand
side. It follows from ∇Zη

L∞ ≤ CNβ(d+1), (4.39), and supω∈Ω sup0<s<T Zη ∗ (µN,η −
µN,η)(s) L∞ ≤ CNβd that

R1(T ) ≤ C(T )Nβ(d+1)−αE
T

0
∇(fN,η − gη) 2

L2ds+ C(T )N2β(d+1) sup
0<s<T

P(Cα(s)).

We choose α such that the assumptions of (4.16) are fulfilled. This implies that α > β(d+1).
Therefore, we have C(T )Nβ(d+2)−α ≤ δ for sufficiently large N ∈ N. Moreover, by (4.16),
P(Cα(s)) ≤ CN−γ for any γ > 0. Choosing γ sufficiently large then leads to

R1(T ) ≤ C(T )N−1/2−ε + δE
T

0
∇(fN,η − gη) 2

L2ds. (4.87)

For R2(T ), we need the law-of-large-numbers estimate. We split Ω into the sets Dδ(s, x)
and Dc

δ(s, x), where we recall from definition (4.64) that Dδ(s, x) = {ω ∈ Ω : |Zη ∗ (µN,η −
ūη)(s, x)| > δ}. We write R2 = R21 +R22, where

R21(T ) = 2E sup
0<t<T

t

0
Zη ∗ (µN,η − ūη)1Dc

δ(s,·),∇(fN,η − gη)

× Zη ∗ ∇(fN,η − gη)−∇(fN,η − gη) ds ,

R22(T ) = 2E sup
0<t<T

t

0
Zη ∗ (µN,η − ūη)1Dδ(s,·),∇(fN,η − gη)

× Zη ∗ ∇(fN,η − gη)−∇(fN,η − gη) ds .

We infer from the definition of the set Dc
δ(s, ·) and (4.86) that

R21(T ) ≤ 4δE
T

0
∇(fN,η − gη) 2

L2ds. (4.88)

The second term R22(T ) is estimated similarly as M122(T ) in Step 2 of the estimation of
M(T ) (Law-of-large numbers estimate), see (4.65). We use Zη∗ūη L∞ ≤ ūη L1 Zη

L∞ ≤
CNβd and Fubini’s theorem:

R22(T ) ≤ CNβd
T

0
sup
ω∈Ω

∇(fN,η − gη) 2
L2 sup

x∈Rd

P(Dδ(s, x))ds.
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Using Lemma 4.2 with θ = 0 and ψη(y) = Zη(x− y), for any m ∈ N

sup
0<s<T

sup
x∈Rd

P(Dδ(s, x)) ≤ C(m) Zη(x− ·) 2m
L∞N−m ≤ C(m)N−m(1−2βd).

Using (4.66), we find that R22(T ) ≤ C(T )NβdNβ(d+2)N−m(1−2βd) = CN2β(d+1)−m(1−2βd).
Since 1 − 2βd < 0, we can choose m sufficiently large to obtain R22(T ) ≤ CN−1/2−ε.
Together with estimate (4.88) of R21, it follows that

R2(T ) ≤ R21(T ) +R22(T ) ≤ CN−1/2−ε + 4δE
T

0
∇(fN,η − gη) 2

L2ds.

In view of estimate (4.87) of R1, this finishes our estimate for M132:

M132(T ) ≤ R1(T ) +R2(T ) ≤ CN−1/2−ε + 5δE
T

0
∇(fN,η − gη) 2

L2ds.

Finally, we conclude from (4.85) that

M13(T ) ≤ M131(T ) +M132(T ) ≤ CN−1/2−ε + 9δE
T

0
∇(fN,η − gη) 2

L2ds. (4.89)

Finishing the estimate of M(T ). We collect estimate (4.63) of M11, estimate (4.67) of M12

and estimate (4.89) of M13:

M1(T ) ≤ (M11 +M12 +M13)(T ) ≤ CN−1/2−ε + 12δE
T

0
∇(fN,η − gη) 2

L2ds.

Adding this inequality to estimate (4.59) for M2, we conclude that

M(T ) ≤ M1(T ) +M2(T ) ≤ CN−1/2−ε + 14δ
T

0
∇(fN,η − gη) 2

L2ds. (4.90)

4. Estimation of L(T ). An expression like L(T ), defined in (4.55), has been estimated
in [90] using a Taylor approximation and Fourier estimates in one space dimension. This
approach is feasible also in higher space dimensions but it would become very tedious in
notation. Additionally, we could reduce the assumption on the potential V η in comparison
to [90] since we do not need any assumption on the Fourier transform of the potential.
Our idea is, as above, to split the integral over Ω in a mean-field part and a law-of-large-
numbers part.

We add and subtract the empirical measure µN,η(s) of the intermediate problem (4.6) to
L(T ), defined in (4.55). Then |L(T )| ≤ L1(T ) + L2(T ), where

L1(T ) = 2E sup
0<t<T

t

0
µN,η − µN,η, (∇V η ∗ ūη) · (∇Zη ∗ (fN,η − gη)) ds ,

L2(T ) = 2E sup
0<t<T

t

0
µN,η − ūη, (∇V η ∗ ūη) · (∇Zη ∗ (fN,η − gη)) ds . (4.91)
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The term L1 can be considered as the mean-field part, while L2 is the law-of-large-numbers
part.
Step 1. Estimation of L1. We start with L1(T ) and add and subtract the term
(∇V η ∗ ūη)(XN,η

i )(∇Zη ∗ (fN,η − gη))(X
η
i ), leading to L1(T ) ≤ L11(T ) + L12(T ), where

L11(T ) = 2E
T

0

1

N

N

i=1

(∇V η ∗ ūη)(s,XN,η
i (s))− (∇V η ∗ ūη)(s,Xη

i (s))

× (∇Zη ∗ (fN,η − gη))(s,X
η
i (s)) ds,

L12(T ) = 2E
T

0

1

N

N

i=1

(∇V η ∗ ūη)(s,XN,η
i (s))

× (∇Zη ∗ (fN,η − gη))(s,XN,η
i (s))− (∇Zη ∗ (fN,η − gη))(s,X

η
i (s)) ds.

For L11(T ), we split Ω for each time 0 < s < T into the sets Cc
α(s) and Cα(s), defined in

(4.61), use the definition of Cc
α(s) in the first term (leading to the factor N−α) and Lemma

4.2 in the second term (leading to the factor N−γ for any γ > 0). Then, by the mean-value
theorem applied to ∇V η ∗ ūη,

L11(T ) ≤ CN−α V η ∗D2ūη L∞E
T

0

1

N

N

i=1

(Zη ∗ ∇(fN,η − gη))(s,X
η
i (s)) ds

+ C(T ) sup
ω∈Ω

sup
0<s<T

Zη ∗ ∇(fN,η − gη) L∞ V η ∗ ∇ūη L∞(0,T ;L∞) sup
0<s<T

P(Cα(s)).

We infer from Young’s convolution inequality and Theorem 4.4 that for k = 1, 2,

V η ∗Dkūη L∞ ≤ V η
L1 Dkūη L∞ ≤ C, (4.92)

since Hs(Rd) → W 1,∞(Rd). Moreover, by definition of µN,η and the symmetry of Zη ≥ 0,
we have

1

N

N

i=1

(Zη ∗ ∇(fN,η − gη))(s,X
η
i (s)) = µN,η(s), Zη ∗ ∇(fN,η − gη)(s)

≤ µN,η(s), Z
η ∗ ∇(fN,η − gη)(s) = Zη ∗ µN,η(s), |∇(fN,η − gη)(s)|

≤ Zη ∗ µN,η(s) L2 ∇(fN,η − gη)(s) L2 ≤ C(T )Nβd/2 ∇(fN,η − gη)(s) L2

uniformly in s ∈ [0, T ], where we used (4.40) in the last step. Therefore, in view of the
uniform bound ∇(fN,η − gη) L∞ ≤ CNβ(d+1) (see (4.39)) and Young’s inequality,

L11(T ) ≤ C(T )N−α+βd/2E
T

0
∇(fN,η − gη) L2ds

+ C(T )N−γ sup
ω∈Ω

sup
0<s<T

Zη
L1 ∇(fN,η − gη) L∞

≤ C(T )N−α+βd/2E
T

0
∇(fN,η − gη) L2ds+ C(T )Nβ(d+1)−γ
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≤ δE
T

0
∇(fN,η − gη) 2

L2ds+ C(T, δ)N−2α+βd + C(T )Nβ(d+1)−γ .

Now, we choose α > 1/4+ βd/2 (which is consistent with the assumptions made in (4.16))
and γ > 0 sufficiently large to arrive at

L11(T ) ≤ C(T, δ)N−1/2−ε + δE
T

0
∇(fN,η − gη) 2

L2ds. (4.93)

For the term L12(T ), we split Ω again into Cα(s) and Cc
α(s) and we estimate similarly as

above. Using the mean-value theorem, estimate V η ∗ ∇ūη L∞ ≤ C from (4.92),

sup
ω∈Ω

sup
0<s<T

∇Zη ∗ (fN,η − gη)(s) L∞ ≤ sup
ω∈Ω

sup
0<s<T

∇(fN,η − gη)(s) L∞ ≤ CNβ(d+1)

due to Young’s convolution inequality and (4.39), as well as ∇Zη
L2 ≤ CNβ(d+1)/2 from

(4.37), we see that

L12(T ) ≤ N−α V η ∗ ∇ūη L∞(0,T ;L∞(Rd))E
T

0
D2Zη ∗ (fN,η − gη) L∞ds

+ C(T ) V η ∗ ∇ūη L∞(0,T ;L∞(Rd))N
β(d+1)−γ

≤ C(T )N−αE
T

0
∇Zη

L2 ∇(fN,η − gη) L2ds+ C(T )Nβ(d+1)−γ

≤ δE
T

0
∇(fN,η − gη) 2

L2ds+ C(T, δ)N−2α+β(d+1) + C(T )Nβ(d+1)−γ .

Again, choosing α > 1/4 + β(d + 1)/2 (which is a possible choice in (4.16)) and γ > 0
sufficiently large, we infer that

L12(T ) ≤ C(T )N−1/2−ε + δE
T

0
∇(fN,η − gη) 2

L2ds.

Together with estimate (4.93) for L11(t), we conclude that

L1(T ) = L11(T ) + L12(T ) ≤ C(T )N−1/2−ε + 2δE
T

0
∇(fN,η − gη) 2

L2ds. (4.94)

Step 2. Estimation of L2. The last step for estimating L(T ) is to derive suitable estimates
for L2(T ) defined in (4.91). To simplify the presentation, we abuse the notation by using
an integral notation instead of the dual product in

Rd

Zη(x− y)µN,η(y)∇V η(y − z)dy :=
Rd

Zη(x− y)∇V η(y − z)dµN,η(y)

:=
1

N

n

i=1

Zη(x−X
η
i )∇V η(X

η
i − z).

In this way, we can easier keep track of the variables. With this notation, we can re-write
the integrand of L2 by exploiting the symmetry of Zη:

µN,η − ūη, (∇Zη ∗ ∇(fN,η − gη)∇V η ∗ ūη
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= Zη ∗ (∇V η ∗ ūη(µN,η − ūη)),∇(fN,η − gη) .

where in integral-notation

Zη ∗ (∇V η ∗ ūη(µN,η − ūη)),∇(fN,η − gη)

=
Rd

(∇fN,η(x)−∇gη(x))
Rd

Zη(y − x)∇V η ∗ ūη(y)(µN,η(y)− ūη(y))dydx.

Writing out the convolution ∇V η ∗ ūη and applying the Cauchy–Schwarz inequality for the
integral in x, we find that

L2(T ) ≤ 2E
T

0
∇(fN,η − gη) L2

Rd Rd

ūη(z)

×
Rd

Zη(x− y)(µN,η − ūη)(y)∇V η(y − z)dydz
2

dx
1/2

ds .

To estimate L2 further, we define for some θ > 0 the set

Gθ(x, z, s) := ω ∈ Ω :
Rd

Zη(x− y)(µN,η − ūη)(y)∇V η(y − z)dy > N−θ ,

which corresponds to the set AN
θ,φη

(s) from Lemma 4.2 with φη(y) = Zη(x− y)∇V η(y− z).

We infer from this lemma that for any m ∈ N, there exists C(m) > 0 such that

P(Gθ(x, z, s)) ≤ C(m) ∇V η 2m
L∞ Zη 2m

L∞N2m(θ−1/2) ≤ C(m)N2m(θ−1/2+β(2d+1)), (4.95)

where the last inequality follows from (4.37), and this bound is uniform in (x, z, s). We
split the z-integral in B1(0) and B1(0)

c and the expectation in Gθk(x, z, s) and Gc
θk
(x, z, s)

for two different choices of θk, where k = 1, 2. Then L2(T ) ≤ L21(T ) + L22(T ), where

L21(T ) = 2E
T

0
∇(fN,η − gη) L2

Rd B1(0)
ūη(z) 1Gc

θ1
(x,z,s) + 1Gθ1

(x,z,s)

×
Rd

Zη(x− y)(µN,η − ūη)(y)∇V η(y − z)dydz
2

dx
1/2

ds

L22(T ) = 2E
T

0
∇(fN,η − gη) L2

Rd B1(0)c
ūη(z) 1Gc

θ2
(x,z,s) + 1Gθ2

(x,z,s)

×
Rd

Zη(x− y)(µN,η − ūη)(y)∇V η(y − z)dydz
2

dx
1/2

ds .

We start with the term L21(T ), stressing the fact that we integrate over z ∈ B1(0). Since
V η and Zη have compact support in a ball of radius η = N−β < 1, it is sufficient to integrate
in y over |y| < 2, as otherwise |y − z| > 1 and consequently, ∇V η(y − z) = 0. Then it is
sufficient to integrate in x over |x| < 3, as otherwise |x − y| > 1 and thus Zη(x − y) = 0.
Hence, with the definition of Gc

θ1
(x, z, s), we have L21(T ) ≤ L211(T ) + L212(T ), where

L211(T ) = CN−θE
T

0
∇(fN,η − gη) L2

B3(0) B1(0)
ūη(z)dz

2

dx
1/2

ds ,
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L212(T ) = C Zη
L∞ ∇V η

L∞E
T

0
∇(fN,η − gη) L2

×
B3(0) B1(0)

ūη(z)1Gθ1
(x,z,s)dz

2

dx
1/2

ds .

For the first term, we simply use Young’s inequality:

L211(T ) ≤ C(δ, T )N−2θ1 + δE
T

0
∇(fN,η − gη) 2

L2ds

≤ C(δ, T )N−1/2−ε + δE
T

0
∇(fN,η − gη) 2

L2ds,

choosing θ1 > 1/4 (which is possible; see below). For the second term L212, we use estimate
(4.37) for Zη and ∇V η, Hölder’s inequality, estimate (4.39) for ∇(fN,η − gη), the bound
ūη L∞ ≤ C from Theorem 4.4, and Lemma 4.2:

L212(T ) ≤ CNβdNβ(d+1)Nβ(d+2)/2E
T

0 B3(0) B1(0)
ūη(z)1Gθ1

(x,z,s)
2
dzdx

1/2

ds

≤ C(m,T )Nβ(5d+4)/2N2m(θ1−1/2+β(2d+1)) ≤ C(m,T )N−1/2−ε,

where we used the uniform probability estimate (4.95) for Gθ1(x, z, s), ūη(s) L2 ≤ C from
Theorem 4.4 as well as the fact that we integrate over a bounded domain in the x-variable.
The last inequality is possible since we can choose θ1 > 0 such that θ1−1/2+β(2d+1) < 0.
and m ∈ N large enough.
Remember that for L211 we need to choose θ1 > 1/4. Both conditions 1/4 < θ1 < 1/2 −
β(2d+ 1) can be satisfied since β < 1/(8d+ 4). This shows that

L21(T ) ≤ C(T )N−1/2−ε + δE
T

0
∇(fN,η − gη) 2

L2ds, (4.96)

which finishes the estimate for L21(T ).
Next, we estimate L22. To control the integrals over the far-field B1(0)

c, we take advantage
of the boundedness of the (d + 1)th moment of ūη, stated in Theorem 4.4. Since V η and
Zη have compact support in a ball of radius N−β , which is arbitrarily small for sufficiently
large N – with similar arguments as for L21 – if |z| > 1 we can integrate in y over |y| > 1/2,
as otherwise |y − z| > 1/2 and ∇V η(y − z) = 0 for sufficiently large N . Moreover, we can
integrate in x over |x| > 1/3, as otherwise |x − y| > 1/6 and Zη(x − y) = 0 for N large
enough.
Additionally, due to the compact support Zη(x − y)∇V η(y − z) = 0 if |x − y| ≥ N−β or
|y − z| ≥ N−β for sufficiently large N . Thus, it is sufficient to integrate over |x − z| ≤
|x− y|+ |y − z| < 2N−β .
With these considerations, we can write L22(T ) ≤ L221(T ) + L222(T ), where

L221(T ) = CE
T

0
∇(fN,η − gη) L2

B1/3(0)
c B1(0)c

ūη(z) 1Gc
θ2

(x,z,s)1{|x−z|<2N−β}

163



4 Quantitative convergence result for a diffusion model with aggregation

×
Rd

Zη(x− y)(µN,η − ūη)(y)∇V η(y − z)dydz
2

dx
1/2

ds ,

L222(T ) = CE
T

0
∇(fN,η − gη) L2

B1/3(0)
c B1(0)c

ūη(z) 1Gθ2
(x,z,s)1{|x−z|<2N−β}

×
Rd

Zη(x− y)(µN,η − ūη)(y)∇V η(y − z)dydz
2

dx
1/2

ds .

It follows from the definition of Gθ2(x, z, s) that

L221(T )

≤ CN−θ2E
T

0
∇(fN,η − gη) L2

B1/3(0)
c B1(0)c

ūη(z)1{|x−z|<2N−β}dz
2

dx
1/2

ds.

Since ūη is a probability density function, for fixed x ∈ Rd, the inner integral can be
estimated as

B1(0)c
ūη(z)1{|x−z|<2N−β}dz

2

≤
B1(0)c

ūη(z)dz
B1(0)c

ūη(z)1{|x−z|<2N−β}dz

≤
B1(0)c

ūη(z)1{|x−z|<2N−β}dz.

In view of |x|/|z| ≤ (|x− z|+ |z|)/|z| < 2N−β + 1 ≤ C for |x− z| < 2N−β and |z| > 1, we
have

B1/3(0)
c B1(0)c

ūη(s, z)1{|x−z|<2N−β}dz
2

dx ≤
B1/3(0)

c B1(0)c
ūη(s, z)1{|x−z|<2N−β}dzdx

≤ C
B1/3(0)

c

dx

|x|d+1
B1(0)c

|z|d+1ūη(s, z)dz ≤ C(d),

since ūη has a bounded (d + 1)st moment and B1/3(0)
c |x|−(d+1)dx < ∞. This estimate

allows us to conclude for L221(T ) as follows by Young’s inequality, choosing θ2 > 1/4:

L221(T ) ≤ C(d)N−θ2E
T

0
∇(fN,η − gη) L2ds

≤ C(δ, T )N−1/2−ε + δE
T

0
∇(fN,η − gη) 2

L2ds.

The remaining term L222(T ) is treated in a similar way. First, we notice that for fixed
x, z ∈ Rd

Rd

Zη(x− y)(µN,η − ūη)(y)∇V η(y − z)dy ≤ Zη∇V η
L∞(1 + ūη L1)

and hence by using (4.37) and the uniform estimate (4.39):

L222(T ) ≤ C Zη
L∞ ∇V η

L∞Nβ(d+2)/2
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× E
T

0 B1/3(0)
c B1(0)c

ūη(z)1Gθ2
(x,z,s)1{|x−z|<2N−β}dz

2

dx
1/2

ds

≤ C(T )Nβ(2d+1)Nβ(d+2)/2E
T

0 B1/3(0)
c

dx

|x|d+1

×
B1(0)c

|z|d+1ūη(s, z)1Gθ2
(x,z,s)dz

1/2

ds .

Thus, Fubini’s theorem, Jensen’s inequality for
√· and using the probability estimate (4.95)

for Gθ2(x, z, s), which is uniform in (x, z, s), gives for any m ∈ N

L222(T ) ≤ C(T )Nβ(5d+4)/2Nm(θ2−1/2+β(2d+1)) ≤ C(T )N−1/2−ε,

choosing 1/4 < θ2 < 1/2− β(2d+ 1) (such that θ2 − 1/2 + β(2d+ 1) < 0) and sufficiently
large m ∈ N. Combining the estimates for L221 and L222 leads to

L22(T ) ≤ L221(T ) + L222(T ) ≤ C(δ, T )N−1/2−ε + δE
T

0
∇(fN,η − gη) 2

L2ds. (4.97)

Finally, we collect estimate (4.96) for L21 and estimate (4.97) for L22,

L2(T ) ≤ L21(T ) + L22(T ) ≤ C(δ, T )N−1/2−ε + 2δE
T

0
∇(fN,η − gη) 2

L2ds

and add this inequality to estimate (4.94) for L1:

L(T ) ≤ L1(T ) + L2(T ) ≤ C(δ, T )N−1/2−ε + 4δE
T

0
∇(fN,η − gη) 2

L2ds. (4.98)

5. Conclusion. We insert estimates (4.57) for K1, (4.58) for K6, (4.90) for M , and (4.98)
for L into (4.29) to obtain

E sup
0<t<T

(fN,η − gη)(t) 2
L2 + 2(σ − 14δ)E

T

0
∇(fN,η − gη)(s) 2

L2ds

≤ E (fN,η − gη)(0) 2
L2 + C(T )Nβ(d+2)−1 +

C(σ)

N
+ C(T, δ)N−1/2−ε.

Since β < 1/(10d + 12) < 1/(2d + 4), we have β(d + 2) − 1 < −1/2. If (4.18) holds, i.e.
E (fN,η − gη)(0) 2

L2 ≤ CN−1/2−ε0 , we obtain, after taking δ ≤ σ/28,

E sup
0<t<T

fN,η(t)− gη(t) 2
L2 + σE

T

0
∇(fN,η − gη)(s) 2

L2ds ≤ C(T, σ)N−1/2−ε,

for some ε > 0 which proves the desired estimate.
It remains to verify (4.18). For this, we can argue similarly as in the beginning of the proof,
see (4.44) and below. We write

(fN,η − gη)(0) 2
L2 = fN,η(0) 2

L2 − 2 fN,η(0), gη(0) + gη(0) 2
L2
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=
1

N2

N

i,j=1

V η(XN,η
i (0)−XN,η

j (0))− 2

N

N

i=1

(V η ∗ u0)(XN,η
i (0)) + u0, V

η ∗ u0 .

Since XN,η
i (0) = ζi and since ζ1, . . . , ζN are independent with common density function u0,

we infer that

E (fN,η − gη)(0) 2
L2 =

1

N2

N

i,j=1, i=j Rd Rd

V η(x− y)u0(x)u0(y)dxdy

+
1

N
NβdV (0)− 2

N

N

i=1 Rd

(V η ∗ u0)(x)u0(x)dx+
Rd

(V η ∗ u0)(x)u0(x)dx

=
N(N − 1)

N2
Rd

(V η ∗ u0)(x)u0(x)dx+Nβd−1V (0)−
Rd

(V η ∗ u0)(x)u0(x)dx

≤ CNβd−1 +N−1 V η ∗ u0 L∞ u0 L1

≤ CNβd−1 +N−1 V η
L1 u0 L∞ u0 L1 ≤ CN−1/2−ε0 ,

where we used Young’s convolution inequality, V η
L1 = 1, u0 L∞ ≤ C, and we have set

ε0 = 1/2− βd > 0. This finishes the proof of Theorem 4.1.

4.A Comments on Assumption (C1)

In the appendix of this chapter we discuss Assumption (C1) and show a proof of convergence
in probability for interaction kernels approximating Coulomb interactions, which is partly
done in a joint work with Li Chen, Veniamin Gvozdik and Yue Li, [28]. This shows that
Assumption (C1) can be met by approximations of singular potentials. In Section 4.A.2
we point out what technical difficulties which occur if one wants to adapt the techniques
used for Coulomb interactions in order to give a rigorous proof of Assumption (C1).

4.A.1 Convergence in probability for Coulomb interactions

In order to discuss Assumption (C1) (see (4.16)), we show a convergence result in probabil-
ity, see Theorem 4.12 below, for a diffusion-aggregation model with Coulomb-type kernels:

For d ≥ 3, we consider the following diffusion system on Rd with Coulomb-type aggregation
(κ = 1) or Coulomb-type repulsion (κ = −1)

∂tρ = σΔρ− κ div ρ∇Φ ∗ ρ , (4.99)

where Φ = Cd

|x|d−2 , denotes the fundamental solution of the Laplace equation in dimension

d ≥ 3 with a constant Cd > 0. Additionally, we assume ρ(0) = ρ0 for a probability density
function ρ0 ∈ L∞(Rd) ∩ L1(Rd). Since the aim of this appendix is to illustrate ideas in
order to show a mean-field convergence result in probability, we additionally assume that
ρ0 ∈ C∞

c (Rd), which can be reduced by using suitable approximating sequences, [29].
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For approximating the Keller-Segel-type model (4.99) by a system of interacting particles,
we first introduce an approximating sequence

V η
coul := χη ∗ Φη, (4.100)

where χη = η−dχ(|x|/η) for a normalized χ ∈ C2
c (Rd) which fulfils χ = ξ ∗ ξ for some

ξ ∈ C2
c (Rd) and Φη is a sequence of approximating kernels such that Φη → Φ point-wise for

η → 0; we comment on the choice of approximating kernels after introducing the particle
systems:
The mean-field particle system for N interacting particles reads as follows

dY N,η
i (t) =

κ

N

N

j=1

∇V η
coul(Y

N,η
i (t)− Y N,η

j (t))dt+
√
2σdWi(t), (4.101)

Y N,η
i (0) = ζi in Rd, i = 1, . . . , N,

where ζi are i.i.d. random variables with common density function ρ0 and (Wi)
N
i=1 denotes

a family of independent d-dimensional Brownian motions.
Using standard ideas for moderately interacting particles, for fixed η > 0, we introduce an
intermediate system of size N starting with the same initial condition as the mean-field
particle system:

dY
η
i (t) = κ(∇V η

coul ∗ ρ̄η)(Y
η
i (t))dt+

√
2σdWi(t), (4.102)

Y
η
i (0) = ζi in Rd, i = 1, . . . , N,

where the particles Y
η
i are already independent with common density function ρ̄η, which

is the solution to the smoothed version of the Keller-Segel model (4.99)

∂tρ̄
η = σΔρ̄η − κ div(ρ̄η∇V η

coul ∗ ρ̄η) (4.103)

ρ̄η(0) = ρ0.

This can be seen by using Itô’s formula, which has been pointed out several times in this
thesis. For a complete existence theory of (4.99) and (4.103) we refer to the work [29].

In this section of the thesis – for proving a mean-field result with respect to convergence in
probability – we need the following regularity of the solution of the intermediate system:

Lemma 4.11. For any T > 0, there exists a unique solution ρ̄η ∈ L∞(0, T ;Hs(Rd)) with
s > d/2 + 2 to (4.103) such that ρ̄η(t) L1 = 1 for all 0 < t < T .

For a proof of Lemma 4.11 we refer to [29, Theorem 2] where even a more general setting
is considered.
The approximating sequence Φη of the Coulomb-type kernel Φ is chosen according to the
work of Lazarovici and Pickl [72] such that the Lipschitz 6 constant of the mean-field force
only diverges logarithmically in η−1, i.e.

|D2V η
coul| ∗ ρ̄η L∞(0,T ;L∞(Rd)) ≤ C log(η−1)( ρ̄η ∞ + ρ̄η L1). (4.104)

6With the absolute value inside it is not exactly the Lipschitz constant, but of same order
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This can be assured by taking the sequence Φη according to [72] with additional cut-off in
a ball around the origin, see [72, Lemma 6.1].

In the following, we prove a mean-field result in probability for particle system (4.101) to
the intermediate system (4.102) for the choice η = N−β . This corresponds to Assumption
(C1) and (4.16) but with interaction potentials approximating the singular Coulomb kernel
instead of a Dirac distribution. It follows mainly techniques developed in [71] and [72].

Theorem 4.12 (Convergence in probability for Coulomb potential). Let η = N−β. We
assume that 0 < β < 1/4d and β(d+1) < α < 1/2−β(d−1). Let (Y N,η

i )Ni=1 and (Y
η
i )

N
i=1 be

the solutions to systems (4.101) and (4.102), respectively. Then, for any γ > 0 and T > 0,
there exists C(γ, T ) > 0 such that for all 0 < t < T ,

P max
i=1,...,N

|Y N,η
i (t)− Y

η
i (t)| > N−α ≤ C(γ, T )N−γ . (4.105)

In order to prove Theorem 4.12, we need an equivalent result to Lemma 4.2 in the case
that the interaction potentials approximate the Coulomb potential:

Lemma 4.13 (Law of large numbers). Let (Y
η
i )

N
i=1 be the solution to system (4.102) and

let ρ̄η be the density function associated to Y
η
i . Given θ ≥ 0 and φη ∈ L∞(Rd), ψη ∈

L∞(Rd;Rn) with n ∈ {1, d, d× d}, we define the sets

AN
θ,φη

(t) := ω ∈ Ω :
1

N

N

i=1

φη(Y
η
i (t))−

Rd

φη(x)ρ̄
η(t, x)dx > N−θ , (4.106)

BN
θ,ψη

(t) :=

N

i=1

ω ∈ Ω :
1

N

N

j=1

ψη Y
η
i (t)− Y

η
j (t) − (ψη ∗ ρ̄η)(Y η

i (t)) > N−θ . (4.107)

Then, for every m ∈ N and T > 0, there exists C(m) > 0 such that for all 0 < t < T ,

P(Aθ,φη(t)) ≤ C(m) φη
2m
L∞N2m(θ−1/2),

P(Bθ,ψη(t)) ≤ C(m) ψη
2m
L∞N2m(θ−1/2)+1.

Since all Y
η
i are already independent, the proof can be done in an analogous way as the

proof of Lemma 4.2.

Idea of the proof of Theorem 4.12: For the proof of Theorem 4.12, we use a combination
of Markov inequality and a stopping time argument. First, we estimate the probability
using Markov’s inequality according to

P max
i=1,...,N

|Y N,η
i (t)− Y

η
i (t)| > N−α ≤ E(Sk

α(t)),

where Sk
α(t) = (Nαmaxi=1,...,N (Y N,η

i − Y
η
i )(t ∧ τα)|)k, τα is a suitable stopping time such

that Sk
α(t) is bounded, and k ∈ N is an arbitrary number. To bound the expectation of

Sk
α(t) by N−γ (up to a constant), we make use Lemma of 4.13 (law-of-large numbers),

Taylor’s expansion and a Gronwall argument. As mentioned in the introduction of this
appendix, the main ideas follow techniques developed in [71] and [72]. Furthermore, for
the proof of Theorem 4.12 we need the following auxiliary lemma:
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Lemma 4.14 (Estimates for V η
coul). For V

η
coul defined in (4.100) with η = N−β, there exists

a constant C > 0 such that for k = 1, 2, 3 and f ∈ L1(Rd) ∩ L∞(Rd)

DkV η
coul L∞ ≤ CNβ(d−2+k), V η

coul ∗ f ≤ C. (4.108)

Additionally, if ρ̄η denotes the weak solution to (4.103), then the following estimate holds

D2V η
coul ∗ ρ̄η L∞(0,T ;L∞(Rd)) ≤ C, (4.109)

for a constant C > 0 which does not depend on N .

Proof. For fixed x ∈ Rd, we get by recalling that η = N−β and by the fact that the cut-off
fulfils Φη ≤ Φ

|DkV η
coul(x)| ≤

Rd

|Dkχη(x− y)|Φ|y|≤η(y)dy +
Rd

|Dkχη(x− y)|Φ|y|≥η(y)dy

≤ Dkχη
L∞ Φ|y|≤η L1 + Dkχη

L1 Φ|y|≥η L∞ ≤ CNβ(d−2+k),

since a simple computation shows

Dkχη
L∞ ≤ CNβ(d+k), Φ|y|≤η L1 ≤ Cη2 = CN−2β ,

and
Dkχη

L1 = Nkβ , Φ|y|≥η L∞ ≤ Cη−(d−2) = Nβ(d−2).

This shows the first claim in (4.108), where we remark that we do not need the cut-off in
the definition of Φη for this part of the proof.
In order to show the second claim in (4.108), we see that for fixed x ∈ Rd, we have

V η
coul ∗ f(x) =

Rd

χη ∗ Φη(y)f(x− y)dy

≤
|y|≤1

χη ∗ Φη(y)f(x− y)dy +
|y|≥1

χη ∗ Φη(y)f(x− y)dy

≤ C χη
L1 Φ L1(B1) f L∞ + C χη

L1 Φ L∞(Rd\B1) f L1 ≤ C.

For the proof of (4.109) we need to be a bit more careful, since D2Φ is not integrable in a
ball around zero.
First, for D2V η

coul ∗ ρ̄η L∞(0,T ;L∞(Rd)) we can put one derivative on the solution ρ̄η and
arrive at

D2V η
coul ∗ ρ̄η L∞(0,T ;L∞(Rd)) = ∇V η

coul ∗ ∇ρ̄η L∞(0,T ;L∞(Rd))

≤ C ∇V η
coul ∗ ∇ρ̄η L∞(0,T ;W s−1,p(Rd)),

for the choice p = 2d/(d+2), where we used the Sobolev embedding for p(s−1) > d, which
is possible if we take s > d/2+2. Young’s convolutional inequality with q = d/(d+1) then
implies

∇V η
coul ∗ ∇ρ̄η L∞(0,T ;W s−1,p(Rd)) ≤ C χη

L1(Rd) ∇ρ̄η L∞(0,T ;Hs−1(Rd))

≤ C ρ̄η L∞(0,T ;Hs(Rd)) ≤ C,

where we have used the Hardy-Littlewood-Sobolev inequality, χη
L1 = 1 and the fact that

ρ̄η L∞(0,T ;Hs(Rd)) is uniformly bounded, see Lemma 4.11. This finishes the proof.
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Proof of Theorem 4.12

Proof. 1. Preparations. We start with some definitions. Let α > 0 be given as in the
theorem and let k ∈ N. We define the stopping time

τα(ω) := inf t ∈ (0, T ) : max
i=1,...,N

|(Y N,η
i − Y

η
i )(t)| ≥ N−α

and the random variable

Sk
α(t) := Nα max

i=1,...,N
|(Y N,η

i − Y
η
i )(t ∧ τα)|

k ≤ 1.

Additionally, we define the set

Bα(t) := {ω ∈ Ω : Sk
α(t) = 1},

which includes for fixed t > 0 all ω ∈ Ω such that the first time s > 0 of maxi=1,...,N |(Y N,η
i −

Y
η
i )(s, ω)| ≥ N−α fulfils that s ≤ t, i.e. τα(ω) ≤ t.

Note that this set does not depend on k, since Sk
α(t) = 1 is equivalent to Sk

α(t)
1/k = 1, and

Sk
α(t)

1/k does not depend on k.
It follows from the continuity of the paths of Y N,η

i and Y
η
i and the fact that if

maxi=1,...,N |(Y N,η
i − Y

η
i )(t, ω)| > N−α for a fixed t > 0 then t > τα(ω) that

P max
i=1,...,N

|(Y N,η
i − Y

η
i )(t)| > N−α ≤ P max

i=1,...,N
|(Y N,η

i − Y
η
i )(t ∧ τα)| = N−α

= P(Bα(t)) = P(Sk
α(t) = 1) ≤ E(Sk

α(t)),

where the last estimate follows from Markov’s inequality.
Now, if we show that for every γ > 0 and T > 0, there exists k ∈ N and C = C(γ, k, T ) > 0
such that

E(Sk
α(t)) ≤ CN−γ ,

the proof is finished.
To prove this claim, we insert the integral formulations of (4.1) and (4.6) and add

±∇V η
coul(Y

η
i (s)− Y

η
j (s))

in the last step: For every i = 1, . . . , N it holds that

(Y N,η
i − Y

η
i )(t ∧ τα)

k
(4.110)

≤ C(k, T )
t∧τα

0

1

N

N

j=1

∇V η
coul(Y

N,η
i (s)− Y N,η

j (s))− (∇V η
coul ∗ ρ̄η)(s, Y

η
i (s))

k

ds

≤ C(k, T )(I1,i(t) + I2,i(t)),

where

I1,i(t) =
t∧τα

0

1

N

N

j=1

∇V η
coul(Y

N,η
i (s)− Y N,η

j (s))−∇V η
coul(Y

η
i (s)− Y

η
j (s))

k

ds,
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I2,i(t) =
t∧τα

0

1

N

N

j=1

∇V η
coul(Y

η
i (s)− Y

η
j (s))− (∇V η

coul ∗ ρ̄η)(s, Y
η
i (s))

k

ds.

In the following, we estimate both terms.

2. Estimate for I2,i(t). The term I2,i(t) can be estimated by a law-of-large numbers
argument. We wish to apply Lemma 4.13 with ψη = ∇V η

coul and θ > 0 which will be chosen
later in the proof. In order to shorten notation, we abbreviate the integrand of I2,i(t) as

Ii(s) =
1

N

N

j=1

∇V η
coul(Y

η
i (s)− Y

η
j (s))− (∇V η

coul ∗ ρ̄η)(s, Y
η
i (s)) .

We have, with the notation of Lemma 4.13, BN
θ,∇V η

coul
(s) = N

i=1{Ii(s) > N−θ}. Keeping in

mind that we want to estimate E(Sk
α(t)), we compute the expectation of

Nαk max
i=1,...,N

I2,i(t)

by splitting Ω into the two sets BN
θ,∇V η

coul
(s) and its complement BN

θ,∇V η
coul

(s)c. First, we

observe that Ii(s) ≤ N−θ for all i = 1, . . . , N on BN
θ,∇V η

coul
(s)c. This yields

E Nαk max
i=1,...,N

I2,i(t) ≤ E Nαk
t

0
max

i=1,...,N
Ii(s)

k 1BN
θ,∇V

η
coul

(s)cds

+ E Nαk
t

0
max

i=1,...,N
Ii(s)

k 1BN
θ,∇V

η
coul

(s)ds

≤ TNαkN−θk + C(T )Nαk ∇V η
coul

k
L∞ sup

0<s<T
P(BN

θ,∇V η
coul

(s)).

Then, because of ∇V η
coul L∞ ≤ CNβ(d−1) (see (4.108)) and after an application of Lemma

4.13, for any m ∈ N

E Nαk max
i=1,...,N

I2,i(t) ≤ C(k,m, T )Nαk N−θk +Nβ(d−1)kN2mβ(d−1)N2m(θ−1/2)+1

(4.111)

= C(k,m, T ) N (α−θ)k +Nαk+β(d−1)(k+2m)+m(2θ−1)+1 .

This finishes the estimate for I2,i.
3. Estimate for I1,i(t). Similar as for I2,i(t), in order to shorten notation, we define

Ii(s) =
1

N

N

j=1

∇V η
coul(Y

N,η
i (s)− Y N,η

j (s))−∇V η
coul(Y

η
i (s)− Y

η
j (s)) .

The estimate for I1,i(t) is more technical than the law-of-large numbers estimate for I2,i(t).
We perform a Taylor expansion of ∇V η

coul around (Y
η
i − Y

η
j )(s) with a linear term and a

quadratic remainder:

E Nαk max
i=1,...,N

I1,i(t) ≤ E Nαk
t∧τα

0
max

i=1,...,N
Ii(s)

kds (4.112)
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≤ C(k)E Nαk
t∧τα

0
max

i=1,...,N

1

N

N

j=1

D2V η
coul(Y

η
i (s)− Y

η
j (s))

× (Y N,η
i − Y N,η

j )− (Y
η
i − Y

η
j ) (s)

k

ds

+ C(k) D3V η
coul

k
L∞E Nαk

t∧τα

0
max

i=1,...,N

1

N

N

j=1

(Y N,η
i − Y

η
i )(s ∧ τα)

− (Y N,η
j − Y

η
j )(s ∧ τα)

2k
ds ≤ C(k)(I11 + I12 + I13)(t),

where

I11(t) = E Nαk
t∧τα

0
max

i=1,...,N

1

N

N

j=1

D2V η
coul(Y

η
i − Y

η
j )(Y

N,η
i − Y

η
i )(s)

k

ds ,

I12(t) = E Nαk
t∧τα

0
max

i=1,...,N

1

N

N

j=1

D2V η
coul(Y

η
i − Y

η
j )(Y

N,η
j − Y

η
j )(s)

k

ds ,

I13(t) = D3V η
coul

k
L∞E Nαk

t

0
max

i=1,...,N
(Y N,η

i − Y
η
i )(s ∧ τα)

2k
ds .

We start with I13(t). It follows from Fubini’s theorem, D3V η
coul L∞ ≤ CNβ(d+1) (see

(4.108)), the definition of Sk
α(s) and Sk

α(s)
2 ≤ Sk

α(s) (since Sk
α(s) ≤ 1) that

I13(t) ≤ C(k)Nβ(d+1)k
t

0
E N−αkSk

α(s)
2 ds ≤ C(k)Nβ(d+1)k−αk

t

0
E(Sk

α(s))ds. (4.113)

Note that we need the definition of the stopping time τα, which guarantees that Sk
α(t) ≤ 1.

Next, we estimate I11(t) ≤ I111(t) + I112(t) by adding and subtracting (D2V η
coul ∗ ρ̄η)(Y

η
i ):

I111(t) = E
t∧τα

0
Sk
α(s) max

i=1,...,N

1

N

N

j=1

D2V η
coul(Y

η
i (s)− Y

η
j (s))

− (D2V η
coul ∗ ρ̄η)(s, Y

η
i (s))

k

ds ,

I112(t) = E
t∧τα

0
Sk
α(s) max

i=1,...,N
(D2V η

coul ∗ ρ̄η)(s, Y
η
i (s))

k
ds .

For I111(t), we apply Lemma 4.13 for m ∈ N (which will be chosen later in the proof) with
ψη = D2V η

coul and θ = 0 and split Ω into B0,D2V η
coul

(s) and B0,D2V η
coul

(s)c. Fubini’s theorem
then leads to

I111(t) ≤ E
t∧τα

0
Sk
α(s) max

i=1,...,N

1

N

N

j=1

D2V η
coul(Y

η
i (s)− Y

η
j (s))

− (D2V η
coul ∗ ρ̄η)(s, Y

η
i (s))

k

1B
0,D2V

η
coul

(s)cds
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+ C(T ) D2V η
coul

k
L∞ sup

0<s<T
P(B0,D2V η

coul
(s))

≤
t

0
E(Sk

α(s))ds+ C(m,T )NβdkN2mβdN2m(0−1/2)+1,

using again D2V η
coul L∞ ≤ CNβd (see (4.108)) and the construction of B0,D2V η

coul
(s).

The estimate for I112(t) simply follows from Fubini’s theorem and (4.108):

I112(t) ≤ D2V η
coul ∗ ρ̄η k

L∞
t

0
E(Sk

α(s))ds ≤ C(k)
t

0
E(Sk

α(s))ds,

where we used estimate (4.109). We conclude that

I11(t) ≤ C(k)
t

0
E(Sk

α(s))ds+ C(k,m, T )Nβd(k+2m)−m+1, (4.114)

where the constant C(k) > 0 depends on the L∞(0, T ;W 2,∞(Rd)) norm of ρ̄η, which is
bounded uniformly in η.
Finally, we estimate I12(t) by similar techniques as for I11(t), however, since we sum over
j = 1, . . . , N , we have to put the modulus inside the sum in order to put Sk

α(s) out of the
expression. First, we put the modulus inside the sum:

I12(t) ≤ E Nαk
t∧τα

0
max

i=1,...,N

1

N

N

j=1

D2V η
coul(Y

η
i (s)− Y

η
j (s)) Y N,η

j (s)− Y
η
j (s)

k

ds

≤ E
t∧τα

0
Sk
α(s) max

i=1,...,N

1

N

N

j=1

D2V η
coul(Y

η
i (s)− Y

η
j (s))

k

ds ,

where we used the definition of Sk
α(s) for s < τα. Similarly as in the estimate for I11(t),

we add and subtract |D2V η
coul| ∗ ρ̄η(s, Y

η
i (s)), which yields I12(t) ≤ C(k)(I121(t) + I122(t)),

where

I121(t) = E
t∧τα

0
Sk
α(s) max

i=1,...,N

1

N

N

j=1

D2V η
coul(Y

η
i (s)− Y

η
j (s))

− |D2V η
coul| ∗ ρ̄η (s, Y

η
i (s))

k

ds ,

I122(t) = E
t∧τα

0
Sk
α(s) max

i=1,...,N
(|D2V η

coul| ∗ ρ̄η)(s, Y
η
i (s))

k
ds .

By Lemma 4.13 with ψη = |D2V η
coul| and θ = 0, using Sk

α(s) ≤ 1 yields for any m ∈ N

I121(t) ≤
t

0
E(Sk

α(s))ds+ C(T ) D2V η
coul

k
L∞ sup

0<s<T
P(BN

0,|D2V η
coul|(s))

≤
t

0
E(Sk

α(s))ds+ C(m,T )NβdkN2mβdN2m(0−1/2)+1, (4.115)
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where the estimates follow the ones for I111(t).
We obtain for I122(t):

I122(t) ≤ C |D2V η
coul| ∗ ρ̄η k

L∞(0,T ;L∞(Rd))

t

0
E(Sk

α(s))ds

≤ C(k) log(N)
t

0
E(Sk

α(s))ds, (4.116)

where we used that our approximating sequence fulfils (4.104).

Together with (4.115), we infer that

I12(t) ≤ C(k)(1 + log(N))
t

0
E(Sk

α(s))ds+ C(k,m, T )Nβd(k+2m)−m+1. (4.117)

We insert the estimates for I11(t) in (4.114), I12(t) in (4.117), and I13(t) in (4.113) into
(4.112):

E Nαk max
i=1,...,N

I1,i(t) ≤ C(k) 1 + log(N) +Nβ(d+1)k−αk
t

0
E(Sk

α(s))ds

+ C(k,m, T )Nβd(k+2m)−m+1.

Combining this estimate with (4.111), we conclude from (4.110) that

E(Sk
α(t)) = E Nαk max

i=1,...,N
Y N,η
i (t ∧ τα)− Y

η
i (t ∧ τα)

k

≤ C(k) 1 +Nβ(d+1)k−αk + log(N)
t

0
E(Sk

α(s))ds

+ C(k,m, T ) Nk(α−θ) +Nαk+β(d−1)(k+2m)+m(2θ−1)+1 +Nβd(k+2m)−m+1 .

Since α ≥ β(d+ 1) by assumption, the factor Nβ(d+3)k−αk is bounded for all N . We claim
that for any given γ > 0 and (β, α) chosen according to the theorem, we can choose k, θ
and m such that the remaining terms are bounded by N−γ .
Indeed, let θ ∈ (α, 1/2 − β(d − 1)). Then we choose k ∈ N so large that k(α − θ) ≤ −γ.
Furthermore, we choose m ∈ N sufficiently large such that

βd(k + 2m)−m+ 1 ≤ −γ (which is possible because of β < 1/4d) and

αk+β(d−1)(k+2m)+m(2θ−1)+1 ≤ −γ (which is possible since θ < 1/2−β(d−1)).

We infer that

E(Sk
α(t)) ≤ C(k)(1 + log(N))

t

0
E(Sk

α(s))ds+ C(k,m, T )N−γ ,

and an application of Gronwall’s lemma implies that E(Sk
α(t)) ≤ C(k,m, T )N−γ+1. Since

γ > 0 was arbitrary, this concludes the proof.
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4.A.2 Comments on the proof in the moderate regime

An interesting and natural question is whether we can adapt the proof of Theorem 4.12
for moderately interacting particles such that we do not need to assume Assumption (C1);
see (4.16). If we perform the proof of Theorem 4.12 with V η defined in (4.2) for η = N−β

instead of V η
coul, two terms are of particular interest (with ūη we denote the weak solution

to the intermediate PDE (4.5)):

(i) D2V η ∗ ūη L∞(0,T ;L∞(Rd)) used for estimates of term I112, and

(ii) |D2V η| ∗ ūη L∞(0,T ;L∞(Rd)) used for estimates of term I122.

For the first term, we can use the regularity of ūη in order to estimate

D2V η ∗ ūη L∞(0,T ;L∞(Rd)) ≤ V η
L1(Rd) D2ūη L∞ ≤ C.

The situation becomes more delicate for |D2V η| ∗ ūη: Due to the absolute value, we can
not put the derivate on the solution of the intermediate partial differential equation ūη.
Choosing a purely convex (or concave) potential V is also not possible, since we need
at least integrability on the whole space Rd. Interestingly, in [93] Oelschläger showed a
mean-field convergence result for the porous media equation without additional diffusion
in one dimension by using a singular potential V such that V (x) ≥ 0 for x = 0, see [93,
Forumla (2.8)]. It is still an open problem whether we can do a similar trick since the case
x = 0, which corresponds to particles being exactly at the same place, has to be treated in
a careful way. Another way to treat the difficulties could be to use a different strategy in
the proof in order to avoid the absolute value inside the convolution. Future work will go
in those two directions.
At the end of this appendix, the author wants to remark that for logarithmic scaling of
η > 0 with respect to the number of particles, the proof of Assumption (C1) can be done
exactly as for Theorem 4.12. The main reason lies in the fact that for η−1 ∼ log(N) the
norm of |D2V η| ∗ ūη scales only logarithmically in N , which is the same situation as in the
case of Coulomb interaction in Theorem 4.12. However – in terms of fluctuations around
the mean-field limit — we are interested in an algebraic rate of η > 0, i.e. η = N−β for
some β > 0.
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[30] L. Chen, A. Holzinger, A. Jüngel, and N. Zamponi. Analysis and mean-field derivation
of a porous-medium equation with fractional diffusion. Communications in Partial
Differential Equations, 1-53, 2022.

[31] L. Chen, X. Li, P. Pickl, and Q. Yin. Combined mean field limit and non-relativistic
limit of Vlasov–Maxwell particle system to Vlasov–Poisson system. Journal of Math-
ematical Physics, 61(6), 061903, 2020.
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Equations aux dérivées partielles (2003), 1–47.

180



Bibliography

[55] S. Guo, and D. Luo. Scaling limit of moderately interacting particle systems with
singular interaction and environmental noise. Submitted for publication, arXiv preprint
arXiv:2207.03616, 2022.

[56] M. Hauray, and S. Mischler, S. On Kac’s chaos and related problems. Journal of
Functional Analysis, 266(10), 6055-6157, 2014.

[57] D. Hilbert. Mathematische Probleme. Nachrichten der Königlichen Gesellschaft der
Wissenschaften zu Göttingen, mathematisch-physikalische Klasse. Vandenhoeck &
Ruprecht, 3, 253-297, 1900.

[58] R. A. Holley and D. W. Stroock. Generalized Ornstein-Uhlenbeck processes and infi-
nite particle branching Brownian motions. Publications of the Research Institute for
Mathematical Sciences, 14(3), 741-788, 1978.

[59] K. Ichikawa, M. Rouzimaimaiti, and T. Suzuki. Reaction diffusion equation with non-
local term arises as a mean field limit of the master equation. Discrete Contin. Dyn.
Syst. 5 (2012), 115–126.

[60] C. Imbert, R. Tarhini, and F. Vigneron. Regularity of solutions of a fractional porous
medium equation. Interfaces Free Bound. 22 (2020), 401–442.

[61] P. E. Jabin, and Z. Wang. Mean field limit and propagation of chaos for Vlasov systems
with bounded forces. Journal of Functional Analysis, 271(12), 3588-3627, 2016.

[62] P. E. Jabin, and Z. Wang. Mean field limit for stochastic particle systems. Active
Particles, Volume 1: Advances in Theory, Models, and Applications, 379-402, 2017.

[63] P. E. Jabin, and Z. Wang. Quantitative estimates of propagation of chaos for stochastic
systems with W−1,∞ kernels. Inventiones mathematicae, 214, 523-591, 2018.

[64] B. Jourdain. Convergence of moderately interacting particle systems to a diffusion-
convection equation. Stochastic processes and their applications, 73, 247–270, 1998.
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Dvorak, D., Bäuml, T., Holzinger, A., Popp, H. (2017). A comprehensive algorithm for
estimating lithium-ion battery parameters from measurements. IEEE Transactions on Sus-
tainable Energy, 9(2), 771-779.

Chen, L., Daus, E. S., Holzinger, A., Jüngel, A. (2021). Rigorous derivation of population
cross-diffusion systems from moderately interacting particle systems. Journal of Nonlinear
Science, 31(6), 1-38.
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