
DISSERTATION

Optimizing the Density Functional
Theory Code WIEN2k

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Doktor der Technischen Wissenschaften

unter der Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Blaha
Institut für Materialchemie (E165), TU Wien, Österreich

eingereicht an der Technischen Universität Wien

Fakultät für Technische Chemie

von

Dipl.-Ing. Thomas Ruh, BSc.
Matrikelnummer 00825393

Wien, 5. Juni 2023
Thomas Ruh





DISSERTATION

Optimizing the Density Functional
Theory Code WIEN2k

carried out in partial fulfilment of the requirements for the degree of

Doktor der Technischen Wissenschaften

under the supervision of

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Blaha
Institut für Materialchemie (E165), TU Wien, Österreich

submitted to the TU Wien

Faculty of Technical Chemistry

by

Dipl.-Ing. Thomas Ruh, BSc.
Registration Number 00825393

Vienna, 5th June, 2023
Thomas Ruh





But we all got a
chicken-

duck-
woman-
thing

waiting for us.

BUSHES OF LOVE – BAD LIP READING,
YouTube, 02.01.2016





Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. Thomas Ruh, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 5. Juni 2023
Thomas Ruh

vii





Kurzfassung

Erkenntnisse über moderne Materialien auf einem atomistischen Level sowie ein Ver-
ständnis von Struktur-Eigenschaftsbeziehungen sind von größter Bedeutung, wenn es um
das Design und/oder die Optimierung von Materialien geht. Eine Möglichkeit, solche
Erkenntnisse zu gewinnen, stellen Computersimulationen dar, für deren Durchführung
heute eine Vielzahl verschiedener Modelle und Näherungsmethoden im Einsatz sind.

Das Softwarepaket WIEN2k verwendet „Full-Potential Linearized Augmented Plane
Wave“ Kohn-Sham-Dichtefunktionaltheorie (DFT), um Materialien zu beschreiben und
deren Eigenschaften zu berechnen und/oder vorherzusagen. Die Grundlage dafür sind
fundamentale quantenmechanische Simulationen ihrer elektronischen Strukturen.

Heutzutage ist die Leistungsfähigkeit moderner Computerhardware so weit fortgeschritten,
dass es möglich ist, derartige Simulationen auf einem „normalen“ Laptop zu rechnen,
sofern es sich um „einfache“ Materialien handelt. Allerdings wachsen die komputativen
Kosten solcher Simulationen mit der dritten Potenz der Zahl der Atome, die notwendig ist,
um das Material zu modellieren. Dies führt dazu, dass die Verwendung von hocheffizienten
und optimierten Computercodes unerlässlich ist, um deshalb immer noch herausfordernde
komplexere Materialien mit Simulationen behandeln zu können.

Eine der größten Hürden bei der Behandlung von komplexen Materialien besteht in der
Tatsache, dass im Zuge von DFT-Simulationen wiederholt generalisierte Eigenwertproble-
me zu lösen sind, die immer noch zu den für Computer am schwierigsten zu lösenden
algebraischen Problemen gehören.

In dieser Arbeit wird die Leistungsfähigkeit der in WIEN2k verwendeten Algorithmen zur
Lösung von Eigenwertproblemen getestet und optimiert – sowohl im Zusammenhang mit
High Performing Computing (deutsch etwa „Hochleistungsrechnen“) als auch für Fälle,
in denen alle statt nur „einige“ der niedrigsten Eigenwerte benötigt werden (wie es bei
Routinerechnungen mit WIEN2k der Fall ist). Darüber hinaus wird mithilfe eines neuen
Programms (3DDENS) eine neue signifikant schnellere Methode zur Berechnung von
Elektronendichten auf 3D-Rastern aus WIEN2k-Daten implementiert. Schließlich wird
WIEN2k auf einige Fallbeispiele unterschiedlicher Komplexität angewendet, um unter-
schiedliche Anforderungen verschiedener Problemstellungen an komputative Parameter
sowie Optimierungsansätze zu zeigen.

ix





Abstract

Insights into modern advanced materials on an atomistic level as well as an understanding
of structure-property relations are crucial for designing and/or optimizing materials
with specifically tailored properties. Simulations are an effective way of gaining such
understanding. A vast variety of different models and approximations are used nowadays.

The software package WIEN2k utilizes full-potential linearized augmented plane wave
Kohn-Sham Density Functional Theory (DFT) to describe materials and obtain and/or
predict their properties based on fundamental quantum mechanical simulations of their
electronic structure.

Nowadays, hardware performance has grown to a degree that lets laptops run DFT
simulations of “simple” materials. However, the computational cost of simulations grows
cubically with the number of atoms needed to model it, which means that more complex
materials are still challenging and need efficient and well-optimized codes.

A major cause of these challenges with DFT simulations is the fact that during these
simulations generalized eigenvalue problems have to be solved repeatedly, which still
belong to the most difficult algebraic problems for computers to solve efficiently.

In this thesis, the performance of WIEN2k is assessed and optimized with a particular
focus on the utilized eigensolvers – both in context of high performance computing
and in cases when all eigenvalues are needed (instead of the lowest “few” eigenvalues
that are used in routine calculations). Furthermore, a new and much faster method to
obtain electronic densities on a 3D grid from WIEN2k data was implemented in WIEN2k
by adding a new program (3DDENS). Finally, WIEN2k is applied to several problems
with different levels of complexity to illustrate how different simulations have different
computational requirements and benefit from different optimizations.

xi





Acknowledgements

A doctoral thesis is an undertaking that cannot be completed without the support of a
multitude of different people:

First and foremost, I want to thank my supervisor Peter Blaha for the possibility to join
his group and work on my thesis, for sharing his knowledge and experience, and for his
help in all matters DFT and WIEN2k. Second, I would like to thank Fabien Tran (who
shared his office with me) for his help in making sense of WIEN2k.

It would be remiss of me to not acknowledge all the friends I made along the way of
my academic endeavours. They made the good times so much better and substantially
lightened the frustration during the more challenging and stressful stretches: Christian,
Danny, and Max, with whom I began my studies back in 2008; Jesús, Andi, Andre,
Christoph, Florian (two actually), Glix, Hedda, Leila, Lorenz, Karin, KoPé, Peter,
Raffael, Ralf, Sebastian, Ulrike, Tobi, Vera, Verena, and all the others, who have – sadly
– currently slipped my mind, I had the great pleasure of meeting during my PhD work at
TU Wien; all the people from Ghent University (Stefaan, Kurt, my office mates Michiel
and Sam, and so many more) who made my stay in Belgium that much more fun...

Finally, I owe my deepest gratitude to my husband, Klaus Ruh, my parents Karin
and Christian Ruh as well as my sister Hannah for their constant support (morally,
emotionally, and financially) during all of my studies (beginning with my bachelor studies
all the way through to the completion of this doctoral thesis).

The computational results presented have been achieved using the Vienna Scientific
Cluster (VSC). Therefore, I would also like to express my gratitude to the good people
from the VSC team (Claudia, Dieter, Irene, Jan, Markus, and Sig), for their patience
and their support with all HPC-related troubles.

Last but not least, I gratefully acknowledge financial support by the FWF (project
P27738-N28 and the doctoral school Solids4Fun), and the VSC Research Center funded
by the Austrian Federal Ministry of Science, Research, and Economy (bmwfw) for funding
the VSC School.

xiii





Contents

Kurzfassung ix

Abstract xi

Acknowledgements xiii

1 Introduction 1
1.1 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Density Functional Theory 5
2.1 The Wave Function Ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Foundation of Density Functional Theory . . . . . . . . . . . . . . . . . . 13
2.3 Formalism of Kohn-Sham . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Exchange-Correlation Functionals . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Solving the KS-Equations – Eigenvalue Problem . . . . . . . . . . . . . . 22
2.6 Self Consistent Field (SCF) . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 WIEN2k 27
3.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Expansion of Kohn-Sham-Orbitals . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Flow of Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Solving the Generalized Eigenvalue Problem . . . . . . . . . . . . . . . . . 37
3.5 Parallelization in WIEN2k . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Performance and Optimization 47
4.1 Benchmark of WIEN2k 14.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Choice of Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Using Optimized Libraries for Parallel Calculations . . . . . . . . . . . . . 59
4.4 Hybrid Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Optimizing Atomic Positions 73
5.1 Experimental Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Simulating the Diffraction Peaks . . . . . . . . . . . . . . . . . . . . . . . 77

xv



6 Adsorption on Surfaces 81
6.1 Thermochemical Energy Storage . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Simulating Mixed-Oxide Surfaces . . . . . . . . . . . . . . . . . . . . . . . 83
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 The Delta-Project 93
7.1 The Original Delta-Benchmark . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Extending the Test Set – Elemental Crystals and Oxides . . . . . . . . . . 95
7.3 Extending the Test Set Further – Real Binaries . . . . . . . . . . . . . . . 96

8 Conclusion 99

List of Figures 103

List of Tables 104

List of Algorithms 107

Abbreviations and Acronyms 109

Bibliography 113



CHAPTER 1
Introduction

In the beginning the Universe was created.
This has made a lot of people very angry and been widely regarded as a bad move.

Douglas Adams, The Restaurant at the End of the Universe (1980)

Solid materials in any shape or form have always been – and still are – the very
foundation of day-to-day life: basic building materials (wood, concrete, steel, glass...)
used in construction of infrastructure and housing, components in mechanical engineering
(often metals or ceramics) or “high-tech” materials based on semi-conductors (transistors,
solar cells...) are only a few examples.

Nowadays, applications grow ever more complex and need specific – and often specifically
tailored – materials with certain desired properties. Therefore, it is not surprising that
materials science plays a major role, since the understanding of materials – and relations
between certain characteristics (e.g. structure or composition) and materials properties –
becomes more and more essential.
One possible way to gain crucial insights are simulations – both complementary to
experiments and stand-alone: In their capacity as complementary methods, simulations
can support key findings, assist with interpretation of results, or shed light on the roots
of interesting properties and their trends. As stand-alone tool, they can be used to
predict properties of new materials or properties of known materials that are difficult to
investigate experimentally. Another possible use of simulations – particularly due to the
advent of machine learning – are screenings, in which a large pool of possible candidate
materials are checked for the suitability for a given application.

Today, a multitude of theoretical methods is available that use different approaches
and approximations; examples include empirical models with problem-/material-specific
parameters [1, 2], Monte Carlo techniques using repeated random sampling and subsequent

1



1. Introduction

stochastic analysis [3, 4], or ab-initio (or first-principle) methods like Density Functional
Theory (DFT) [5, 6], which takes the electronic density in a molecule or a unit cell into
account.

Looking at the number of publications gives a clear proof of the growing importance
of simulations in general and DFT in particular: Searching for the keywords “density
functional theory” in the Web of Science Core Collectioni and Scopusii (both are widely
used databases of scientific literature), yields more than 202 000 and 210 000 results,
respectively, for the years 1990–2020 (see Figure 1.1). The milestone of 10 000 yearly
publications listed in those databases has been reached in 2012 and 2011, respectively,
and this number is still growing rapidly – resulting in an average of almost 40 daily DFT
publications during the last decade.

2020201820162014201220102008200620042002200019981996199419921990
Year

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

N
u
m
b
e
r
o
f
P
u
b
li
ca

ti
o
n
s
p
e
r
Y
e
a
r
/
1
0
3

Web of Science

Scopus

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Year

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

T
o
ta
l
N
u
m
b
e
r
N
u
m
b
e
r
o
f
P
u
b
li
ca

ti
o
n
s
/
1
0
4

Web of Science

Scopus

Figure 1.1: The yearly (left) and total (right) number of publications between 1990
and 2020 found when searching the Web of Science Core Collection and Scopus for the
keywords “density functional theory”.

DFT simulations of “simple” materials – with structures that can be modelled using
small unit cells up to 50 atoms and structures that exhibit inversion symmetry – are
feasible on any modern PC. However, the computational cost scales with the cube of the
number of atoms. Therefore, efficient use of resources, both memory and time, during
calculations is paramount to successfully run simulations on more complex structures
(structures with defects, surfaces, layered materials...).
This work aims to examine the performance of the software package WIEN2k [7, 8] and
implement modifications to improve its efficiency.

iwww.clarivate.com/webofsciencegroup
iiwww.scopus.com

2

www.clarivate.com/webofsciencegroup
www.scopus.com


1.1. Structure of the Thesis

1.1 Structure of the Thesis
This thesis is divided into three main parts:

Firstly, a general overview of DFT is presented after a brief introduction into the relevant
fundamentals of quantum mechanics is given (Chapter 2 – “Density Functional Theory”).
Details of the software WIEN2k (a quick summary of its history, implementation of DFT,
flow of programs, parallelization schemes. . . ) are provided in Chapter 3 – “WIEN2k”.

In the second part, Chapter 4 (“Performance and Optimization”) deals with benchmarks
of the initial parallel performance of core parts of WIEN2k as of the start of the thesis
project, modifications and optimizations that were done during the project, as well as
another set of benchmarks of the “new” parallel performance after the main part of the
project was done.

Lastly, three use cases of WIEN2k are shown to demonstrate various applications that
benefit from different kinds of parallelization:

(i) Optimization of Atomic Positions: In Chapter 5, calculations on small-to-medium-
sized unit cells are presented, which were needed to optimize atomic positions of
“building blocks” to set up the Order-Disorder (OD) structure of Chlorodithionite
in order to properly simulate intensity data of an X-Ray Diffraction (XRD)
experiment.

(ii) Adsorption on Surfaces: Chapter 6 deals with medium-to-large unit cells of mixed
magnesium/calcium oxide surfaces – which means additional vacuum has to be
considered, increasing computational cost – and the behaviour of adsorbed water
molecules.

(iii) Error Estimation in DFT Codes: In Chapter 7, the ∆-Projectiii is introduced,
which is an on-going large-scale project of multiple research groups. The aim is to
create benchmark sets to compare different DFT codes and provide estimates for
their precision.
Calculations within the scope of this ∆-Project were generally done on small unit
cells, however, the sheer number of test cases (thousands of small unit cells had to
be computed) and the required accuracy still present a computational challenge.

iiihttps://molmod.ugent.be/deltacodesdft

3

https://molmod.ugent.be/deltacodesdft




CHAPTER 2
Density Functional Theory –

From Wave Functions to
Electronic Densities

In fact, the mere act of opening the box will determine the state of the cat, although
in this case there were three determinate states the cat could be in: these being Alive,
Dead, and Bloody Furious.

Terry Pratchett, Lords and Ladies (1995)

One of the main goals of computational chemistry is to gain insights into characteristics
and properties of materials (molecules, nanoparticles, solids...) by describing them using
models and simulations run by computer programs. A particular type of models is used
in so-called “ab-initio methods” – Density Functional Theory (DFT), the focus of this
thesis, is a reputable example of such methods: No empirical parameters or experimental
inputs aside of a (rough estimate of a) structure are necessary. Only fundamental
principles (“first principles”) of quantum mechanics are used and the resulting equations
(Schrödinger or Schrödinger-like equationsi) are solved.

In quantum mechanics, a set of postulates is used as foundation (which are described in
many introductory textbooks on the topic – e.g. references [9] and [10]). A thorough
overview of the main postulates as well as derived ones can be found in reference [11].

iStrictly speaking, relativistic systems – e.g. systems with heavy elements – would require the usage
of the Dirac equation instead; however, for the relevant considerations in this thesis, the Schrödinger
equation is sufficient.

5



2. Density Functional Theory

In short, the main postulates of quantum mechanics are:

• State: The state of any given quantum mechanical system is uniquely and com-
pletely defined by a normalized complex wave function Ψ(r⃗, s, t), where r⃗ are the
position vectors of the particles, s describes the spin degrees of freedom, and t is
the time. Ψ is the subject of a more detailed discussion in Section 2.1.

• Probability: Ψ is interpreted as probability amplitude, such that the probability
to find a given particle in the volume dV =dr⃗ =dxdydz is given by the square of
the complex modulus |Ψ|2. This can also be expressed as the product of Ψ with its
complex conjugate Ψ∗ (absolute square) according to:

|Ψ(r⃗, s, t)|2 = Ψ∗(r⃗, s, t)Ψ(r⃗, s, t)dr⃗ . (2.1)

This interpretation is the reason that a valid wave function Ψ must be normalized,
since the following condition must hold:

∞

−∞
Ψ∗(r⃗, s, t)Ψ(r⃗, s, t)dr⃗ = 1 , (2.2)

as the probability to find the particle somewhere in space must be 1.

• Schrödinger Equation: The time evolution of Ψ of a non-relativistic system is
derived from the Time-Dependent Schrödinger Equation (TDSE):

iℏ∂Ψ(r⃗, s, t)
∂t

= ĤΨ(r⃗, s, t) , (2.3)

where Ĥ is the Hamilton operator, which is a linear Hermitian operator, and ℏ is
the reduced Planck constant


ℏ = h

2π


.

In case of stationary wave functions (e.g. for systems in the ground state), no time
dependency has to be considered. Therefore, the Time-Independent Schrödinger
Equation (TISE) can be used:

ĤΨ(r⃗, s) = EΨ(r⃗, s) , (2.4)

where E is the total energy of the system, corresponding to the Hamiltonian Ĥ.

• Correspondence Principle: In quantum mechanics, a particular Hermitian oper-
ator corresponds to every observable in classical mechanics (momentum, energy. . . ).
Examples for such operators are the momentum operator p̂:

p̂ = iℏ ∂

∂x

∂

∂y

∂

∂z
, (2.5)

and the kinetic energy operator T̂ :

T̂ = − ℏ2

2m

∂2

∂x2
∂2

∂y2
∂2

∂z2 , (2.6)

where m is the mass of the given particle.

6



2.1. The Wave Function Ψ

• Results of Measurements: The result of a measurement of an observable A of a
quantum system will be the eigenvalue ai of the corresponding operator Â if the
state Ψ is an eigenfunction of Â (cf. Equation 2.7) – the system will be in the
corresponding eigenstate Ψi after the measurement.

ÂΨ(r⃗, s, t) = aiΨ(r⃗, s, t) (2.7)

If Ψ is not an eigenfunction of Â, the measurement will result in a distribution of
values with an expectation value ⟨A⟩ given by:

⟨A⟩ = Ψ∗(r⃗, s, t)ÂΨ(r⃗, s, t)dτ

Ψ∗(r⃗, s, t)Ψ(r⃗, s, t)dτ
, (2.8)

where dτ is a shorthand for an integration over all arguments of Ψ.

• Completeness of Eigenfunctions: The linearly independent eigenfunctions of a
Hermitian operator Â form a complete basis, which means that a general state Ψ
can be expanded as linear combination of eigenfunctions Ψi of Â:

Ψ =
n

i=1
ciΨi , (2.9)

where cn are the linear coefficients and n might go to infinity.
This is not per se its own postulate, but follows from the correspondence principle.
However, this expansion plays an important role in many schemes to solve the
Schrödinger equation (cf. Sections 2.1 and 2.5). Thus, it is mentioned explicitly.

Many fundamental principles of physics and chemistry can be derived directly from
these postulates. As an example, Heisenberg’s uncertainty principle directly follows
from the correspondence principle – two measurements can only be independent if the
corresponding operators commute.

2.1 The Wave Function Ψ
In order to treat a material computationally, a model of the state of a given system is
necessary. The first step in such models is the “translation” of the state of a real material
(atom, model, solid. . . ) into a mathematical representation that defines the state (with
respect to the constituents and geometry of the material):
In Figure 2.1, a schematic representation of a 4-particle system (two nuclei and two
electrons – for instance H2) is shown as an example: The positions of all particles are
defined by position vectors r⃗1, r⃗2, R⃗1, and R⃗2 (by convention, electronic properties and
positions are denoted by lower case letters; upper case letters are used for the nuclear
analogues). Additionally, the masses of the nuclei M1 and M2, the electron mass me, and
the charges of the particles (Z1 and Z2 for the nuclei and −e for the electrons) as well as
information about the spins of the electrons are needed for a complete description.

7



2. Density Functional Theory

The second ingredient necessary for any computational treatment is a relation of the
properties (e.g. the total energy) of the material to its state.
In case of quantum mechanical systems, the state is defined by a wave function Ψ
depending on the quantities listed above, and the relation between Ψ and the properties
of the system is given by the Schrödinger Equation.

Figure 2.1: Schematic representation of a 4-particle system (comprised of two nuclei
and two electrons, for instance H2). The system is defined by the position vectors for
all particles (r⃗1, r⃗2, R⃗1, and R⃗2), their masses (M1, M2, and me) and charges (Z1, Z2,
and −e). By convention, lower case letters are used for electronic properties; upper case
letters denote nuclear properties.

2.1.1 Schrödinger Equation

In 1926, Erwin Schrödinger published a series of communications [12–15] – which were
summarized later that same year in his “Physical Review” publication “An Undulatory
Theory of the Mechanics of Atoms and Molecules” [16] – in which he detailed a theory
that relates “material points” [16] to what he calls “wave-systems” [16]. The ultimate
consequence of Schrödinger’s theory are the postulates that the state of a system is
defined by an associated wave function Ψ(r⃗, s, t) and that its dynamics are described by
the time-dependent Schrödinger Equation (see above, Equation 2.3). In case of stationary
states (e.g. ground states), the time-independent version can be used to obtain the total
energy of any given system:

ĤΨ(r⃗, s, t) = EΨ(r⃗, s, t) . (2.4 revisited)

8



2.1. The Wave Function Ψ

Depending on the system size (i.e. the number of particles in a given system), different
constructions of the Hamiltonian Ĥ have to be used:

The single particle Hamiltonian Ĥsp is given by Equation 2.10 and includes kinetic energy
contributions as well as the potential in which the particle is located.

Ĥsp = − ℏ
2m

∇2 + V (r⃗ ) , (2.10)

where m and V (r⃗ ) are the mass and the position-dependent potential of the particle,
respectively, ℏ is the reduced Planck constant, and ∇2 is a shorthand notation for the
sum of the partial double derivatives of the spatial coordinates x, y, and z:

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . (2.11)

In case of systems made up of more than one particle and more than one type of
particle (electrons and nuclei), the many-body Hamiltonian Ĥmb contains kinetic energy
contributions for all particles as well as Coloumb interactions (attraction or repulsion)
between particle pairs – as sums over all particles or possible pairs, respectively. It is
given by:

Ĥmb = T̂e + T̂N + V̂eN + V̂NN + V̂ee , (2.12)

where the following expressions for the individual operators are used:

kinetic energy of electrons: T̂e = −ℏ2

2

n

i

1
mi

∇2
i , (2.12a)

kinetic energy of nuclei: T̂N = −ℏ2

2

N

a

1
Ma

∇2
a , (2.12b)

electron-nucleus attraction: V̂eN = − 1
4πε0

n

i

N

a

Zae

r⃗ai
, (2.12c)

electron-electron repulsion: V̂ee = 1
4πε0

n

i<j

e2

r⃗ij
, and (2.12d)

nucleus-nucleus repulsion: V̂NN = 1
4πε0

N

a<b

ZaZb

R⃗ab

. (2.12e)

Here, n and N are the numbers of electrons and nuclei, respectively, mi and Ma are
the masses of electron i and nucleus a, respectively, and Za and Zb are the nuclear
charges of nuclei a and b. e is the elementary charge; and ε0 is the vacuum permittivity.
r⃗ij = r⃗i − r⃗j , r⃗ai = R⃗a − r⃗i, and R⃗ab = R⃗a − R⃗b are distances between pairs of particles –
electron-electron, electron-nucleus, and nucleus-nucleus pairs.

9



2. Density Functional Theory

2.1.2 Born-Oppenheimer Approximation
The Born-Oppenheimer (BO) approximation [17] is a first step to reduce the dimension-
ality of the wave function Ψ – thus, making the solution of the Schrödinger equation
more tractable.
The base consideration of this approximation is the fact that nuclei are substantially more
massive than electrons (melectron ≈ 1

1836 mproton) – consequently, their dynamics happen
on vastly different time scales. Thus, the total wave function Ψtot is first separated into
a product of an electronic part ψelec and a nuclear part ψnuc (which is not specific to the
BO approximation but a common ansatz to solve partial differential equations)

Ψtot = ψelecψnuc . (2.13)

This allows splitting the total Hamiltonian Ĥtotal in electronic and nuclear terms and
subsequently neglecting the cross-terms – it is here where approximations take effect:
The kinetic energy of the nuclei is assumed to be 0 (the nuclei are kept “frozen” during the
time scale of electronic motion) and ignored entirely. The electron-nucleus interactions
(coulombic attraction) cannot be removed completely; however, they enter as static
external Coulomb potential (vext) acting on the electrons. The fixed positions of the
nuclei are now only parameters to determine this potential.
The remaining electronic Hamiltonian Ĥelec is given by Equation 2.14:

Ĥelec = −ℏ2

2

n

i

1
mi

∇2
i +

N

i

vext(r⃗i) +
N

i<j

vee(r⃗i, r⃗j) ; (2.14)

where vee is the interaction potential between the electrons. Ĥelec is then used to solve
the electronic Schrödinger equation approximatively (cf. Section 2.1.3).
Obviously, the BO approximation does not give exact solutions; however, the errors
remain small for many materials – especially in systems where nuclear motion does not
play a significant role (e.g. in case of low-temperature simulations) and electrons are in
the ground-state. Even if the approximation breaks down (e.g. in case of vibrational
transitions [18] or occasionally in the presence of light elements like hydrogen [19]), it is
often possible to add corrections [18–21].

2.1.3 Methods to Solve the Many-Body Schrödinger Equation
For the sake of brevity, atomic units (a.u.) are introduced for the following considerations:
In this unit system, distances are given in multiples of the Bohr radius a0 (5.29×10−11 m),
which corresponds to the most probable proton-electron distance in the ground-state
hydrogen atom. The unit of energy is called hartree (1 Ha ≈ 27.2 eV ≈ 4.36 × 10−18 J).
ℏ, e2, me, and the quantity 1

4πε0
take the value of 1 a.u., leading to simplified equations

with a reduced number of pre-factors.

After the BO approximation is applied, the electronic Schrödinger equation has to be
solved to obtain the electronic wave function ψelec for a given set of nuclear coordinates.
In the following, examples of possible ways to achieve such solutions are presented:

10



2.1. The Wave Function Ψ

2.1.3.1 Exact and Numerical Solutions

Exact solutions are only possible in single-electron systems (hydrogen or “hydrogen-like”
cations like H+

2 , He+, Li2+. . . ) – the electron-electron interaction of multiple electrons
would introduce additional terms, thus preventing the separation of variables. Such
solutions are achieved by translating the Cartesian coordinates to spherical coordinates
(i.e. giving the position by the distance to the origin r – usually put to the nucleus –
and two angles θ and ϕ). Then, the (electronic) wave function ψelec depends on on these
variables r, θ, and ϕ. Now, ψelec can be separated:

ψelec(r, θ, ϕ) = u(r)Yl,m(θ, ϕ) , (2.15)

where u(r) is the radial part of the wave function that depends only on the distance to
the nucleus, and Yl,m(θ, ϕ) are the famous spherical harmonics that contain the angular
dependence of ψelec. They take different expressions for different values of the quantum
numbers l and m and, thus, cause the different shapes of atomic orbitals (e.g. spherical
for s-orbitals with l = 0, dumbbell-like for p-orbitals with l = 1, and so on).

Going beyond hydrogen (or related single-electron systems), it is no longer possible to
solve the electronic Schrödinger equation exactly. In principle, one can use numerical
methods to solve many-body equations, however, these methods grow increasingly costly
with the number of electrons to be considered.

2.1.3.2 Hartree-Fock

An alternative approach is to use combinations of single-particle wave functions ϕ instead
of the many-body wave function ψelec. One possibility is the so-called Hartree product
[22]:

Ψ(r⃗1, r⃗2, . . . , r⃗N ) =
N

i

ϕi(r⃗i ) (2.16)

that simply combines all ϕi multiplicatively. However, this ansatz is symmetric and,
thus, does not satisfy the Pauli exclusion principle (which requires electronic wave
functions to be anti-symmetric) [23, 24]. As a consequence, the exchange energy (the
energy contribution to the total energy of a quantum system caused by the presence of
indistinguishable particles without classical analogue) is neglected completely.

The Hartree-Fock (HF)-method, an extension of the Hartree method, uses the same
single-particle wave functions to construct Slater determinants instead [25, 26]:

Ψ(r⃗1, r⃗2, . . . , r⃗N ) = 1√
N !

ϕ1(r⃗1) ϕ2(r⃗1) . . . ϕN (r⃗1)
ϕ1(r⃗2) ϕ2(r⃗2) . . . ϕN (r⃗2)

...
... . . . ...

ϕ1(r⃗N ) ϕ2(r⃗N ) . . . ϕN (r⃗N )

, (2.17)

where N is the number of electrons and 1√
N ! is a normalization factor.

11



2. Density Functional Theory

Solving a Schrödinger equation in the HF framework results in a set of parameters ϵi that
are interpreted as energies of single-particle orbital according to Koopmans’ theorem [27]:

Theorem 1:
Koopman’s Theorem

The ionization energy I of a given electron is equal to the negative orbital energy
ϵ.

I = −ϵ (2.18)

The usage of such determinants recovers the anti-symmetry, as swapping of two columns
(corresponding to pairwise electron swaps) will change the sign.
While using a determinant instead of a product accounts for exchange, electronic correla-
tion (another type of electron-electron interaction exclusive to quantum systems that
arises, for instance, from interactions of electrons of opposite spin) is still not included.
In fact, the formal definitions of exchange and correlation energies are related to the
Hartree and Hartree-Fock methods, respectively: The exchange energy is the difference
of the energy given by the Hartree method compared to the HF energy; the correlation
energy is the difference between the unknown “true” energy and the HF energy.

2.1.3.3 Post-Hartree-Fock Methods

To account for missing electronic correlation, so-called “post-Hartree-Fock”-methods are
used to add correlation using the HF result as starting point (at increased computational
cost compared to “pure” HF). Widely used methods include (details can be found in ref.
[28]):

• Configuration Interaction (CI):
Here, the wave function is set up by a linear combination of additional Slater deter-
minants corresponding to electronically excited states (configurations). “Interaction”
in the name of the method refers to the mixing of these different configurations.

• Møller–Plesset (MP) perturbation theory [29]:
In general, perturbation theory treats complex systems by adding a (small) pertur-
bation to a (Hamilton) operator of a Schrödinger equation with an exact solution.
These unperturbed operators are derived from simpler models that cannot accu-
rately describe the given systems. In MP perturbation theory, the Fock operator
of the HF-method is used as unperturbed operator and the correlation potential
corresponds to the perturbation.

• Coupled Cluster (CC):
Similarly to CI, CC methods use excited Slater determinants; however, in contrast
to CI, they are added perturbatively to the reference wave function derived via HF.

• Quantum Monte Carlo methods

12



2.2. Foundation of Density Functional Theory

2.2 Foundation of Density Functional Theory

One of the main problems when solving the electronic Schrödinger equation – both
numerically or by means of wave function based methods like (post-)HF – is the fact
that the electronic wave function ψelec still depends on 4 N parameters – three spatial
coordinates and one spin coordinate for each of the N electrons of the system at hand.
As a direct consequence, the computational cost of calculations grows rapidly; and one
quickly runs into what Walter Kohn called “an exponential wall” [30] that severely limits
the size of tractable systems.

This exponential wall is a twofold challenge. Firstly, the computation times of wave
function based methods increase exponentially with the system size N – HF, for instance,
nominally scales with O(N4) [31], which means that a system with twice the number of
electrons would take 16 (24) times longer to compute. Post-HF methods tend to behave
even worse than that: compute times of coupled cluster methods for instance exhibit
naive scaling in the order of O(N8) [32]ii.
Secondly, the memory requirements to store the necessary data blow up exponentially as
well. This second problem can be illustrated with a simple thought experiment: Suppose,
one wants to numerically calculate – and subsequently store – the wave function of a
single oxygen atom with 8 electrons. The wave function ΨO (Equation 2.19) then depends
on the positions of those electrons, or in other words, on 24 Cartesian coordinates (leaving
aside the spin coordinate for each electron):

ΨO = ΨO(r⃗1, r⃗2, ..., r⃗8) = ΨO[(x1, y1, z1), (x2, y2, z2), ..., (x8, y8, z8)] . (2.19)

If ΨO is to be expressed on a course grid of only 10 grid points per dimension, 1024 values
have to be saved. Assuming only the real part of ΨO is stored and a single value takes
8 B of memory (nowadays, this so-called “double precision” is widely used)iii leads to a
total memory requirement of 8 × 1024 B or 8 × 109 PB. By comparison, the currently
most powerful supercomputer (Frontier at the Oak Ridge National Laboratory, United
States)iv has a total shared storage capacity of about 700 PB.

A possible way to work around these issues of wave function based methods is to use
DFT instead. DFT replaces wave functions with electron densities, thus reducing the
number of spatial coordinates from 3 N to just 3.

iiIn practice, it is usually possible to achieve better performance by leaving aside negligible contributions
(provided they can be determined – inexpensively – on the fly), by using advanced, sometimes specially-
tailored, algorithms, or by introducing additional approximations or simplifications. The scaling of HF
for instance can be reduced even below O(N3) [31].

iiiStoring the complete complex wave function would take 16 B per value, thus doubling the required
memory.

ivAccording to www.top500.org, which is a ranking of supercomputers compiled by Jack Dongarra,
Erich Strohmaier, and Horst Simon twice a year. Its latest iteration of November 2022 lists Frontier at
the top spot.

13

www.top500.org


2. Density Functional Theory

2.2.1 Hohenberg-Kohn Theorems
The foundation of DFT is built by two theorems formulated and proven by Pierre
Hohenberg and Walter Kohn in 1964 [33]. The observable quantity “electron density”
ρ(r⃗ ) lies at the heart of these theorems (and, subsequently, DFT); and it is defined in
Equation 2.20:

ρ(r⃗ ) = N · · · |Ψ(r⃗1, r⃗2, r⃗3, . . . , r⃗n)|2dr⃗2dr⃗3 . . . dr⃗n (2.20)

N [ρ] = ρ(r⃗ )dr⃗ = N (2.21)

The additional requirement for ρ that integrating over all of space must give the number
of electrons N (Equation 2.21) is automatically contained in Equation 2.20, since only
normalized wave functions Ψ are allowed.
As mentioned before (cf. Section 2.1), any given system (atom, molecule, or solid) is
defined by the position of its constituents and their respective masses and charges. After
the BO approximation is applied and the nuclear positions are fixed, the system can be
summarily described by the external potential vext(r⃗ ) generated by the nuclear charges
at their positions (cf. Figure 2.1), in which the electrons move. As vext(r⃗ ) enters into
the electronic Hamiltonian Ĥelec (Equation 2.14), it determines the wave function of the
system (e.g. obtained via solving the TISE) and, subsequently, the properties of the
system (e.g. total energy Etot, the electron density ρ. . . ):

vext → Ĥ → Ψ −→ all properties (Etot, ρ...) . (2.22)

According to Hohenberg and Kohn, it can be shown “[...]that conversely [vext(r⃗ )] is a
unique functional of [ρ(r⃗ )], apart from a trivial additive constant.” [33] This is the first
Hohenberg-Kohn theorem:

Theorem 2:
1st Hohenberg-Kohn Theorem

The ground-state (GS) electron density ρGS(r⃗ ) of a given system unambiguously
defines the electron number N and the external potential vext(r⃗ ); and thus,
subsequently, defines Ĥ for the system and – by extension – everything else of the
system (wave function, energy and derived properties. . . ). Therefore:

EGS = E[ρGS] , (2.23)

where EGS is the energy of the ground-state [33, 34].

While the first theorem of Hohenberg and Kohn does prove that the energy of the
ground-state of a system is a functional of the corresponding electron density ρGS and
that there is no other system (with a different wave function: Ψ ̸= Ψ′) that can have the
same density, no further information about the nature of this functional is given.

14



2.2. Foundation of Density Functional Theory

The second Hohenberg-Kohn theorem now states that such a functional does not only
exist, it can also be used to find the ground-state energy EGS by way of a variational
principle:

Theorem 3:
2nd Hohenberg-Kohn Theorem – Density Variational Principle

A functional F [ρ] of the electron density ρ(r⃗ ) exists that allows to express the
energy of a system in a given potential vext as:

Evext [ρ] = F [ρ] + vext(r⃗ )ρ(r⃗ )dr⃗ ≥ EGS . (2.24)

The second equality in Equation 2.24 holds true, if ρ(r⃗ ) is the density of the
ground-state (i.e. for ρGS(r⃗ ) the functional F [ρ] minimizes the energy).
Moreover, F [ρ] is universal – valid for any number of particles and any external
potential [33].

So far, no approximations or simplifications have been used – Equation 2.24 would give
the true ground-state energy, provided F [ρ] is known. However, the exact expression of
F [ρ] is not known, therefore, approximations have to be introduced.

2.2.2 Approximating F [ρ]
Approximating F [ρ] in its entirety would introduce errors of the order of more than 10 %,
thus failing to describe real systems sufficiently well for results to be predictive. Therefore,
a more sophisticated approach to approximating F [ρ] with the goal of achieving smaller
errors is needed:

In the wave function picture, the total electronic energy Eelec can be split into several
contributions: the kinetic energy T , the electronic interaction energy Eee, and the external
potential energy Eext. Eee can be split further into a classical Coulomb energy part
ECoul (arising from repulsive electron-electron interaction of a continuous classical charge
distribution of density ρ) and two contributions without classical analogues that stem from
the quantum nature of electrons: electronic exchange Ex (resulting from the exchange
interaction between indistinguishable particles) and correlation Ec (which mostly arises
from interactions of electrons of opposite spin)v. Eelec is then given by

Eelec = T + ECoul + Ex + Ec + Eext , (2.25)

with
Eee = ECoul + Ex + Ec . (2.25a)

vAs mentioned in Section 2.1.3.2, Ex is formally defined as the difference between the Hartree limit
(neglecting exchange and correlation completely) and the Hartree-Fock limit (which treats exchange
exactly, but neglects correlation completely. Analogously, Ec is the difference between the Hartree-Fock
limit and the (unknown) true ground state energy.

15



2. Density Functional Theory

A reasonable ansatz to construct the Hohenberg-Kohn functional is to assume an analogous
split of F [ρ] into a sum of functionals (Equation 2.26) and search for expressions for the
individual parts.

F [ρ] = T [ρ] + ECoul[ρ] + Ex[ρ] + Ec[ρ] (2.26)

Note that Eext[ρ] is not a part in the construction of the unknown functional F [ρ] as
it is non-universal – it depends on the system at hand – while all parts of the sum in
Equation 2.26 are universal. Moreover, Eext[ρ] is one of two contributions mentioned in
Equation 2.25 that can be written down exactly as a functional of ρ (cf. Equation 2.24,
second term on the right); the other being the Coulomb energy ECoul[ρ]. All other parts
need to be approximated; however, by being able to express ECoul[ρ] exactly, the error
introduced is already smaller.

Two main approaches to tackle the approximations of the remaining terms (with the goal
of reducing errors even further) exist:

• Kohn-Sham-DFT
In Kohn-Sham (KS)-DFT [35], single-particle functions Φi – called KS-orbitals –
are introduced, thus replacing the many-body Hamiltonian with a sum of single-
particle Hamiltonians. This method (details are presented in Section 2.3) is used
in WIEN2k [7, 8] and is widely spread due to its high accuracy.

• Orbital-free DFT
Orbital-free (sometimes called “pure”) DFT aims to find explicit expressions for
the functionals and is based on the Thomas-Fermi model [36, 37], in which a way
to calculate electronic energies from the density ρ was developed already in 1927.
This model uses the kinetic energy of an Uniform Electron Gas (UEG) T UEG as
approximation for T and approximates Eee with ECoul (neglecting exchange and
correlation entirely):

ETF[ρ] = T UEG[ρ] + ECoul[ρ] + Eext[ρ] , (2.27)

leading to

ETF[ρ] = C1 ρ(r⃗ )
5
3 dr⃗ + 1

2
ρ(r⃗ )ρ(r⃗ ′)
|r⃗ ′ − r⃗ | dr⃗dr⃗ ′ + vext(r⃗ )ρ(r⃗ )dr⃗ , (2.27a)

with
C1 = 3

10(3π2)
2
3 . (2.27b)

In 1930, this model was improved by Dirac [38] – leading to the Thomas-Fermi-
Dirac (TFD) model, which added a functional for the exchange energy (second
term in Equation 2.28) – again, the UEG was used as approximation:

ETFD[ρ] = ETF[ρ] + C2 ρ(r⃗ )
4
3 dρ(r⃗ ) , (2.28)

16



2.3. Formalism of Kohn-Sham

with

C2 = −3
4

 3
π

 1
3

. (2.28a)

The advantage of orbital-free DFT (compared to KS-DFT) lies in the fact that it
is much faster computationally – which makes it usable for large systems. However,
it is less accurate; the underlying model (cf. Equation 2.27a), for instance, predicts
molecules to be unstable in general, as all atoms repel each other [39]. Moreover,
energies calculated by TFD exhibit errors of about 10 %, and the model fails to
properly replicate the shell structure of atoms [35].
Despite these shortcomings, orbital-free DFT is still developed and refined, and
more advanced versions of these models are in use [40].

2.3 Formalism of Kohn-Sham
In this formalism proposed by Kohn and Sham in 1965 [41], the “real” system of n
interacting electrons is replaced by a system of non-interacting electrons with the same
electron density. Thus, instead of the many-body wave function, a coupled system of
n single-particle orbitals Φi is used to describe the material. The density ρ(r⃗ ) is then
defined as

ρ(r⃗ ) =
n

i=1
|Φ2

i | , (2.29)

where Φi are the KS orbitals and n is the number of occupied KS orbitals (i.e. n is
chosen such that the orbital energies ϵi of all considered orbitals are smaller or equal to
the Fermi energy EF : ϵi ≤ EF ).

The non-interacting kinetic energy Ts for this system is given by:

Ts = −1
2 Φ∗(r⃗ )∇2Φ(r⃗ )dr⃗ , (2.30)

and the electronic interaction energy Eee is approximated with the classical Coloumb
energy:

Eee[ρ] ≈ ECoul[ρ] = 1
2

ρ(r⃗ )ρ(r⃗ ′)
|r⃗ ′ − r⃗ | dr⃗dr⃗ ′ . (2.31)

Using Ts and ECoul in Equation 2.26 gives

F [ρ] = Ts[ρ] + ECoul[ρ] + Exc[ρ] , (2.32)

with
Exc[ρ] = (T [ρ] − Ts[ρ]) + (Eee[ρ] − ECoul[ρ]) . (2.32a)

While the expressions Ts and ECoul can be written down exactly, Exc is set up in a way
that it only contains the differences between the interacting and non-interacting kinetic
energies (first term in Exc) and between the electronic interaction energy Eee and the
Coloumb energy ECoul (second term in Exc).

17



2. Density Functional Theory

This definition of Exc is the central point of the KS-formalism: The total KS energy is
given by

Eelec = Ts[ρ] + Eext[ρ] + ECoul[ρ] + Exc[ρ] . (2.33)

The only term of this equation that cannot be expressed explicitly and needs approxi-
mations is Exc – which can be reasonably assumed to be small (as it only contains the
above mentioned differences).

Applying the variational principal leads to the KS-Equations:
−1

2∇2 + veff(r⃗ )


Φi(r⃗ ) = ϵiΦ(r⃗ ) , (2.34)

where veff is defined as:

veff = vext(r⃗ ) + vCoul(r⃗ ) + vxc(r⃗ ) , (2.35)

with

external potential: vext = Z

r
, (2.35a)

Coulomb potential: vCoul = 1
2

ρ(r⃗ )ρ(r⃗ ′)
|r⃗ ′ − r⃗ | dr⃗dr⃗ ′ , and (2.35b)

exchange-correlation potential: vxc = ∂Exc[ρ]
∂ρ

. (2.35c)

2.4 Exchange-Correlation Functionals
Having arrived at the KS equations, an approximation for the exchange-correlation (XC)
part of the functional construction (Equation 2.32) is needed.
A hierarchical ranking has been proposed by Perdew and Schmidt, which they named
“Jacob’s Ladder”vi [42]. Starting from the bottom (what Perdew and Schmidt call
the “Hartree World” [42]) without any exchange-correlation included, one can “climb
the ladder” by adding improvements to the description of Exc (and thus increasing
computational cost as well) until “DFT Heaven” (i.e. chemical accuracy with errors
below 1 kcal mol−1 = 0.043 eV) is reached:
The first three rungs are the so-called “semi-local” approximations that contain only one
integral:

Esemi-local
xc = ρ(r⃗ )ϵxc (2.36)

where ϵxc is the XC energy per unit volume that depends on the density and its derivatives
(depending on the specific approximations) [42, 43].

viInspired by a ladder to heaven dreamt up by Jacob in the Bible: “Jacob left Beer-sheba and went
toward Haran. He came to a certain place and stayed there for the night, because the sun had set. Taking
one of the stones of the place, he put it under his head and lay down in that place. And he dreamed
that there was a ladder set up on the earth, the top of it reaching to heaven; and the angels of God were
ascending and descending on it.” (Genesis 28.10-12)

18



2.4. Exchange-Correlation Functionals

2.4.1 Local Density Approximation (LDA)
The Local Density Approximation (LDA) is a very simple approach (the “first rung”),
already proposed by Kohn and Sham in 1965 [41], and uses an ϵxc that only depends on
the local density:

ELDA
xc [ρ] = ρ(r⃗ )ϵxc(ρ(r⃗ ))dr⃗ . (2.37)

The main assumption of LDA now is that ϵxc = ϵUEG
xc – which is reasonable for systems

with slowly varying densities; and agrees surprisingly well with experimental data for
atoms and molecules [35].
A second assumption (generally used when constructing functionals) is that ϵxc is just
the sum of an exchange contribution ϵx and a correlation contribution ϵc. ϵx for the UEG
is explicitly known from TFD theory [38]:

ϵUEG
x = ϵLDA

x = −3
4

 3
π

 1
3

ρ(r⃗ )
4
3 dr⃗ . (2.38)

ϵUEG
c , on the other hand, cannot be written down in a closed form. Instead, quantum

Monte-Carlo data (e.g. from [44]) are used to find and parametrize analytic representations
for ϵUEG

c [45–47].

LDA also allows the treatment of spin-polarized systems, where the spin-densities ρ↑
and ρ↓ replace the total density ρ (with ρ = ρ↑ + ρ↓), since up- and down-spin states
are no longer occupied in equal parts. The exchange energy of this Local Spin Density
Approximation (LSDA) still has an analytical form [42, 48]:

ELSDA
x (ρ↑, ρ↓) = 1

2

ELSDA

x (2ρ↑) + ELSDA
x (2ρ↓)


. (2.39)

The correlation energy in the LSDA has to be solved numerically [49].

In an expansive study that compared more than 60 functionals of all flavours using a
test set of 44 strongly bound solids of Tran and coworkers [43], LDA agrees reasonably
well with experimental lattice constants (with a Mean Relative Error (MRE) of −1.5 %),
while (severly) overestimating bulk moduli (MRE of 8.1 %) and cohesive energies (MRE
of 17.2 %). The too small lattice constants together with too large cohesive energies
nicely illustrate LDA’s systematic overbinding.

2.4.2 Generalized Gradient Approximation (GGA)
While LDA is a good starting point and works reasonably well for certain cases, clearly
real materials exist that cannot be (approximatively) described by the uniform electron
gas. Therefore, functionals that capture more complex densities in a more realistic way
beyond the LDA are necessary as well.
In Generalized Gradient Approximations (GGAs), gradient corrections are introduced,
i.e. ϵxc now additionally depends on the gradients of the spin densities:

EGGA
xc (ρ↑, ρ↓) = dr⃗f(ρ↑, ρ↓, ∇ρ↑∇ρ↓) . (2.40)

19



2. Density Functional Theory

The construction of functionals of this family (as well as the functionals of the next rung)
is no longer clear-cut, instead, there exist two philosophies:

• Semi-empirical approximations contain initially undetermined parameters fitted
against accurate atomic data (spearheaded by Axel Becke [50]).

• Non-empirical approximations do not use fitted parameters at all, but are con-
structed obeying theoretical constraints, e.g. exactly reproducing the uniform
electron gas or the second gradient expansion in the limit of slowly varying densities
[6, 51]. Perdew, who laid seminal groundwork in this particular field, called this
ansatz “constraint satisfaction” [51]. Arguably among the most “famous” GGAs is
Perdew-Burke-Ernzerhof (PBE) [52], which – despite being introduced more than
25 years ago – is still widely usedvii. Other well-known examples include Wu-Cohen
(WC) and PBEsol [53], which is a revised version of PBE to improve properties of
solids.

• Mixed approaches are possible as well: Zhang and Yang, for example, obtain a
different value for a certain parameter of PBE (by fitting exchange-only atomic
energies to results from another method, thus creating a revised version of PBE
called “revPBE” that substantially improves PBE’s atomic total energies as well as
reducing errors in atomization energies for molecules [54].

GGAs give slightly improved lattice constants and bulk moduli in strongly bound solids
compared to LDA; however, they greatly improve cohesive energies [43]. Notably, most
GGAs invert LDA’s overbinding (leading to too small lattice constants and too large
cohesive energies) by underestimating bond strengths giving (slightly) too large lattice
constants.

2.4.3 meta-GGA
meta-GGAs (mGGAs) add even more corrections to ELDA

xc : While most mGGAs found
in literature use the kinetic-energy density τ (which is given by Equation 2.41a), mGGAs
that use Laplacians ∇2ρ instead have been proposed as well [55]. Using τ , Exc is then
given as:

EmGGA
xc = ρ(r⃗ )ϵmGGA

xc (ρ↑, ρ↓, ∇ρ↑∇ρ↓, τ↑, τ↓)dr⃗ (2.41)

with
τ(r⃗ ) = 1

2

occ

i

|∇ϕi(r⃗ )|2 (2.41a)

A very promising non-empirical mGGA in that it fulfils all known constraints known for
mGGAs is SCAN (“Strongly Constraints and Appropriately Normed Functional”) [56].
Other well-known functionals are, for example, PKZB (a mGGA that has been proposed
more than 20 years ago) [57], TPSS [58], revTPSS [59], and the empirical MGGA_MS2

viiThe three use cases of WIEN2k reported in this dissertation (cf. Chapters 5–7) utilize PBE as well.

20



2.4. Exchange-Correlation Functionals

[60]. Moreover, specialised mGGAs have been published as well, e.g. mBEEF [61] that
has been trained (i.e. parametrized) on real data especially for surface chemistry studies.

In their functional test on solids [43], Tran et al. found mGGAs to perform similarly
to GGAs in case of strongly bound solids (while the results on lattice constants and
bulk moduli are very comparable, the mGGAs appear to improve cohesive energies
very slightly). For the weakly bound solids, most mGGAs tested improve the GGA
results of both lattice constants and cohesive energies (but still severely deviate from the
experimental values).
As the authors mention explicitly, a clear advantage of some mGGAs (e.g. MGGA_MS2
and SCAN) over GGAs is the fact that GGAs usually cannot well describe molecules
and solids at the same time while mGGAs yield satisfactory results for both types of
systems. Therefore, mGGAs should be the better choice in mixed systems (e.g. when
studying adsorption of small molecules on surfaces) [43].

2.4.4 Beyond Semi-Local Functionals

All approximations so far attempted to improve upon the basis that was set up by the LDA
– via the inclusion of more information about the system (gradient of ρ, kinetic energy
density τ and/or second derivatives of ρ). Beyond that, it is no longer straightforward to
add systematic corrections to (try to) improve a functional.

One possible approach is breaking the (semi-)locality of LDA and (m)GGAs by adding
non-local contributions (for instance via the inclusion of exact exchange from the UEG):
Becke suggested in 1993 using hybrid functionals – i.e. replacing a fraction of Ex of a given
functional with exact exchange (e.g. from HF, EHF

x ) [62] to reduce a slight overbinding
tendency still present in some GGAs. A general ansatz for a hybrid functional is given
here (instead of GGAs, mGGAs can be used as well):

Ehybrid
xc = ELDA/GGA

xc + a

Eexakt

x − ELDA/GGA
x


+ b∆EGGA

x + c∆EGGA
c , (2.42)

where a is the fraction of exact exchange “mixed in” and b and c are some fractions of
included gradient corrections for Ex and Ec (in case of a (m)GGA being used, b and
c will be 0). Becke used a = 0.20 with hybrid-LDAs [62], while Perdew et al. found
a = 0.25 to be a better choice in hybrid-GGAs [63].

A variety of other methods exist to fix known shortcomings of density functionals (e.g. the
failure to describe strongly correlated ground states) or extend them to include more “real
physics” like non-local interactions (e.g. London dispersion or van der Waals interactions
in general). Examples for such methods are the Random Phase Approximation (RPA)[64],
DFT+U [65], or DFT-D3 [66]. Functionals that go even beyond hybrid functionals are, for
instance, non-local van der Waals (nlvdw) functionals [67, 68] or so-called double-hybrid
functionals, that include HF exchange and correlation from pertubation theory [69, 70].

21



2. Density Functional Theory

2.5 Solving the KS-Equations – Eigenvalue Problem
Introducing any approximation for the unknown parts of the density functional in the
KS-formalism leads to a set of coupled single-particle equations (see Eq. 2.34) that still
cannot be solved exactly, since there is no analytical expression for the single-particle
orbitals Φk. Therefore, the Φk are expanded into basis functions ϕi (i.e. Φk is represented
by a linear combination of the basis functions comprising the basis set):

Φk(r⃗ ) =
n

ciϕi(r⃗ ) . (2.43)

To find the coefficients ci of the expansion of Φk, the variational principle is applied to
find the minimum of Ek. From the postulates of quantum mechanics follows that the
energy Ek of a state Φk can be derived from the eigenvalues from the Hamiltonian Ĥ:

⟨Ek⟩ = Φ∗
k(r⃗ )ĤΦk(r⃗ )dr⃗

Φ∗
k(r⃗ )Φk(r⃗ )dr⃗

. (2.44)

∂Ek

∂ci
= 0 . (2.45)

Setting the derivatives of Ek with respect to the coefficients ci to 0 (Eq. 2.45) leads to
the secular equations (a set of linear equations), the matrix representation of which is
given by:

HC = ESC , (2.46)

with
Hm,n = ϕ∗

mĤϕndr⃗ (2.46a)

and
Sm,n = ϕ∗

mϕndr⃗ . (2.46b)

Here, H and S denote the Hamilton and the overlap matrix, respectively, which are
obtained by solving the integrals shown above. C is the eigenvector matrix, and the
diagonal matrix E contains the corresponding eigenvalues ϵk.

Despite the fact that the eigenvalues ϵ are usually called “(one-electron) orbital energies”,
they do not a priori correspond to physical energiesviii [71]. They arise during the solution
of Equation 2.45, where they are introduced as Lagrange multipliers to find the minimum
of Ek.

Within the KS-formalism, the physical meaning of ϵi is described by Janak’s theorem
[72].

viiiThe highest occupied orbital is the exception – it corresponds to the negative ionization energy −I.

22



2.5. Solving the KS-Equations – Eigenvalue Problem

Theorem 4:
Janak’s Theorem

Each ϵi (corresponding to a given orbital Φi) relates to the derivative of the total
energy E with respect to the occupation ni of the orbital Φi:

ϵi = ∂E

∂ni
. (2.47)

The choice of basis functions depends on the system one wants to treat and should
be informed by the underlying physics. For instance, atom centred basis functions are
typically used to describe atoms/molecules in quantum chemistry, while basis sets based
on plane waves are well-suited for periodic materials. Thus, different implementations of
DFT (in different codes) expand the KS-orbitals in different basis sets. The following
(non-exhaustive) list gives a few examples of widely used basis sets:

• Slater-Type Orbitals (STOs) and Gaussian-Type Orbitals (GTOs):
STOs and GTOs are widely used examples of localized orbitals. They are used to
approximate the radial part of “hydrogen-like orbitals” (i.e. orbitals obtained by
solving the Schrödinger equation of e.g. hydrogen). While the radial behaviour of
STOs reproduces that of hydrogen-like orbitals close to the nucleus (ϕ(r) ∝ e−αr),
they do not exhibit radial nodes. This issue can be addressed by using more than
one STOs per atomic orbital.
Due to their discontinuity (they display a cusp at r = 0), STOs are computationally
challenging and usually are replaced by GTOs (ϕ(r) ∝ e−αr2), which can be handled
more easily. To recover the proper behaviour near the nucleus, multiple GTOs per
STO are needed though.

• Plane waves:
Plane waves are cheap to compute and appear promising for periodic systems
(due to their own periodicity), however, they are not well suited to describe fast
variations close to the nucleus, as a large number of plane waves would be needed
to adequately describe this part of the potential. Therefore, the “real” potential
is replaced with a so-called pseudopotential [73, 74] that smooths the oscillations
near the nucleus but reproduces the potential farther away (which is important for
chemical bonding) – leading to a smaller number of necessary plane waves.

• Augmented (or mixed) basis sets:
Augmented basis sets – which are used in WIEN2k – are an alternate approach to
address the shortcomings of plane waves. The modeled material is partitioned into
different regions where different basis functions are employed: In regions close to
the nuclei, basis functions capable of mimicking an oscillating wave function are
used (in case of WIEN2k, these are linear combinations of radial functions and
spherical harmonics – more details see in Section 3.2), and in regions of slowly
varying potentials (few) plane waves are sufficient.

23



2. Density Functional Theory

• Projector Augmented Waves (PAWs) [75]: Proposed by Blöchl in 1994, PAWs offer
a different approach compared to augmented basis sets. In this method, the pseudo
wave function ψ̃ (which is usually expanded into plane waves) is the variational
quantity. Outside of an atomic sphere, ψ̃ is equal to the true wave function ψ, while
inside of spheres it is coupled via a projector function p to an atomic all-electron
partial wave expansion ϕ.

Further details on different basis set choices in electronic structure calculations can be
found in textbooks on the topic – e.g. reference [76].

2.6 Self Consistent Field (SCF)
When trying to solve the KS equations, one runs into a circular dependency: The
ultimate goal is to obtain the ground-state density ρ(r⃗ ) of a given system, which requires
knowledge about the effective potential veff (cf. Equation 2.35) as it enters into the KS
Hamiltonian. However, ρ(r⃗ ) is needed to calculate veff since the latter is a functional of
the former.

The appearance of dependencies like this is common in mean-field approximations, which
use an averaged “mean field” to describe much more complex many-body interactions of
the system at hand. The Hartree potential (Section 2.1.3.2) and veff in KS-DFT (Section
2.3) are examples for such approximative mean-fieldsix – they reduce the many-body
problem with its associated many-body equations to a system of coupled one-particle
equations with independent particles. The “isolated” particles are treated as moving in
the mean field, which in turn is constructed from the particle positions [77].

To resolve this issue, the method of a “Self-Consistent Field (SCF)” is applied. According
to Hartree, who introduced this concept into electronic structure calculation, the following
definition is established: “If the final field is the same as the initial field, the field will
be called ‘self-consistent’,[...].” [78] When applying SCF methods, this requirement is
relaxed and the initial and final fields are assumed equal if the differences remain below
a given threshold (prescribed by the desired accuracy).
In practice of KS-DFT, the “initial field” veff is derived from some starting estimate of
the electron density ρ. Subsequently, this veff is used to calculate an updated density ρ
which determines the “final field” of the given step. Usually, the densities rather than
the effective potentials are compared to check whether self-consistency has been reached.

The detailed steps of an SCF cycle in the context of electronic structure simulations
(schematically depicted in Figure 2.2) are:

ixIn principle, DFT as laid out by the Hohenberg-Kohn theorems is not a mean-field approximation,
as the relevant mean field is an exact one. However, approximations have to be made in KS-DFT, as the
exact field is unknown.

24



2.6. Self Consistent Field (SCF)

Figure 2.2: Schematic representation of the SCF cycle to solve KS equations. The
starting input is an initial guess of the electron density ρin

0 (the first element in an –
ideally – converging series of ρj) that is needed to calculate the effective potential veff.
Subsequently, the KS equations are solved to get new KS orbitals Φi, which, in turn, are
used to compute the output density ρout

j . The two densities ρin
j and ρout

j are compared – if
the difference is small enough to fulfil the desired accuracy (specified by the “convergence
criteria”) the SCF cycle is exited and a final converged ρout is obtained. Otherwise, the
procedure is repeated with a new ρin

j+1, that is created by mixing ρin
j and ρout

j .

• Initial Guess of ρin
0 :

To start the SCF cycle, an initial guess of the input density ρin
0 is needed. One

such possible guess would be the assumption that – in a first approximation – the
“combined” electronic density of a molecule or a solid is simply a superposition of
its constituent atoms. In other words, ρin

0 can be derived from the electron densities
of the “free” atoms making up the material. This method is used in WIEN2k, as
well as in many other solid-state DFT codes (e.g. VASP [79–81] or exciting
[82]).

• Calculation of the Effective Potential veff:
The effective potential veff is a functional of ρ(r⃗ ) – using the newly generated input
density ρin

0 (which is the first element in an – ideally – converging series ρj), veff
can be calculated.

• Solution of KS Equations:

25



2. Density Functional Theory

Subsequently, this calculated effective potential veff is plugged into the KS equations,
leading to a generalized eigenvalue problem that has to be solved to get KS orbitals
Φi (cf. Section 2.5).

• Computation of ρout
j :

In the next step, the output density ρout
j can be derived from the newly obtained

KS orbitals Φi according to Equation 2.29.
• Comparison of ρin

j and ρout
j :

The input density ρin
j (creating the “initial field”) is compared with the resulting

output density ρout
j (determining the “final field” of the iteration) – the difference

between the two densities is evaluated with respect to a given desired accuracy.
Depending on this, two different next steps are possible:

– Creation of new Density ρin
j+1:

In case of a too large difference between input and output densities, a new
input density ρin

j+1 is created by combining (or “mixing”) the previous input
density ρin

j and the corresponding output density ρout
j . A variety of algorithms

– which are themselves still topic of current research – to create the new input
density are in use: The foundation for the method used in WIEN2k (without
simultaneous movement of atom positions) is laid out in reference [83]. An
in-depth overview of mixing algorithms in general can be found in reference
[77].
This newly created input ρin

j+1 is then used to run through the cycle again to
get a new output density ρout

j+1.
– Converged Result:

If the density difference stays below the desired limit, the cycle is exited and
the converged density ρout is obtained after j iterations.

After running through j steps – which results in a series of output densities (ρout
0 , ρout

1 ,
ρout

2 ,. . . ,ρout
j ) – the obtained converged density can then be used to determine the total

ground-state energy (and derived properties).

26



CHAPTER 3
WIEN2k

It is you, who defines the number of k-points. If you want, just specify 1 k-point. But
beware: your results may be complete nonsense !

Peter Blaha, WIEN2k Mailing List (2012-06-29)

The software package WIEN2k [7, 8] utilizes DFT to describe a wide range of crystalline
solid materials on an ab-initio level, including:

• infinite (“perfect”) bulk solids,
• solids with impurities or vacancies,
• surfaces,
• nanostructures,
• atoms or molecules. . .

As mentioned before, to run a simulation only a (rough estimate of the) structure
of a material is needed without any further experimental input. WIEN2k then uses
fundamental principles of quantum mechanics to calculate the total ground state energy
of the system. This, in turn, can then be used to derive further materials properties,
such as:

• atomic positions after structure optimization (i.e. minimization of atomic forces),
• phase transitions,
• electronic properties (band structure, Density of States (DOS)),
• spectroscopic properties (IR or Raman shifts, X-ray Photoelectron Spectroscopy

(XPS), X-ray Absorption Spectroscopy (XAS)),

27



3. WIEN2k

• magnetism,

• Nuclear Magnetic Resonance (NMR) and NMR Knight shifts,

• Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM)
images of surfaces,

• optical properties. . .

3.1 History

WIEN2k has been developed and continuously improved for more than 30 years at the
Institute of Materials Chemistry at the TU Wieni. Initially programmed to simulate only
solids with rocksalt structure, the code was gradually extended to deal with all space
groups.
The first public release under the name WIEN happened in 1990 [84], at which point
cubic, tetragonal, orthorhombic, and hexagonal structures with inversion symmetry could
be treated – all other space groups were added later on. The WIEN package received
major new releases in 1993 and 1997 (as WIEN93 and WIEN97, respectively). The
current name of the package has been in use since the fourth release as WIEN2k in 2001
[85, 86].
A fundamental change to the code happened in 2003, when the previous limitation of 99
inequivalent atoms per unit cell was extended to 999 atoms. Since then, the code has
been updated regularly (at least once a year) with both minor improvements (bugfixes
and introduction of convenience tools such as scripts for plotting) as well as major
additions, including new packages (e.g. non-local van der Waals interactions [87], valence
band photo electron spectroscopies (e.g. XPS) [88]. . . ), new functionals (e.g. alternative
exchange-correlation potentials like mBJ-TB [89] or meta-GGAs like SCAN [56]), or
inclusion of new basis functions (e.g. high energy Local Orbitals (HELOs) and high
derivative Local Orbitals (HDLOs) [90]).

3.2 Expansion of Kohn-Sham-Orbitals

According to the definition of “ideal” crystals, bulk solid materials are treated with
periodic boundary conditions in WIEN2k, i.e. a small unit cell (that contains all
necessary information about the material) is repeated indefinitely in all three spatial
dimensionsii. Therefore, the Bloch theorem can be applied to the wave functions of the
crystalline material.

iAs of May 2023, it is still maintained by Peter Blaha.
iiThis complicates the treatment of non-3D materials – like surface slabs, nano materials, or molecules.

For a use case of surface slabs see Chapter 6.

28



3.2. Expansion of Kohn-Sham-Orbitals

Theorem 5:
Bloch’s Theorem

In a periodic crystal (i.e. a periodic potential), there exists a basis of eigenstates
(called Bloch states) of the form [91]:

ψ(r⃗ ) = ei⃗kr⃗u(r⃗ ) , (3.1)

where r⃗ is a position vector and k⃗ is a wave vector in reciprocal lattice space. The
exponential part ei⃗kr⃗ is a plane wave that is modulated with the lattice periodic
function u(r⃗ ). Lattice periodic means that

u(r⃗ ) = u (r⃗ + n⃗a⃗) , (3.2)

where n⃗ is any triple of integer numbers and the vector a⃗ contains the lattice
constants of the crystal – i.e. u(r⃗ ) is invariant against any translation of a full
lattice vector.

Seeing that Bloch states already contain plane waves, a reasonable approach might be
to expand the KS orbitals into plane waves as well. However, this turns out to be
computationally challenging. Close to the nuclei, the potential diverges at small values of
r, the distance from the nucleus, and the wave functions vary strongly and even oscillate
for higher principal quantum numbers; the variation of the wave functions becomes much
slower at larger distances. As mentioned before, a plane wave basis cannot easily capture
these oscillations (a large number of basis functions would be necessary, thus increasing
computational cost); however, it is well adapted to represent the slow variations “in
between atoms” with only a few basis functions.

3.2.1 Augmented Plane Waves (APW)

The Augmented Plane Waves (APW) method was proposed by Slater in 1937 [92] to
address these issues, and it builds the foundation of all basis sets used in WIEN2k.

The unit cell of a material is decomposed into two regions (shown in Figure 3.1):

1. Spheres around the atoms, S:
Within the atomic spheres (defined via their “Muffin Tin (MT)” radii RMT) the
quickly varying wave functions are expanded into “atom-like” basis functions
(consisting of a linear combination of products of radial functions and spherical
harmonics). The amount of charge contained within an atomic sphere informs the
categorization of statesiii:

iiiThe fact that WIEN2k treats all electrons in the full potential (instead of, for instance, using a
smooth pseudo-potential in the core regions) is the reason that it is called a “all electron” or “full-potential”
code.

29



3. WIEN2k

a) core states with very low energies have their charge contained completely,
b) semi-core states, while having low energies, still have some of their charge

outside the sphere, and
c) valence states that have a considerable amount of charge outside the sphere

and, therefore, relevant for chemical bonds.

2. Interstitial, I:
is the region outside the atomic spheres with slowly varying potential where plane
wave basis functions can be efficiently used to expand the wave functions. The
interstitial is the region of interest with respect to chemical bonds, as overlap
between electronic states of neighboring atoms happens “far away” of nuclei.

Figure 3.1: The unit cell of the simulated material is decomposed into two types of
regions: spheres around the atoms and interstitial in between the atoms. Different basis
functions are used in the different regions. The radii RMT(i) define the size of each
atomic sphere and are input parameters of a DFT calculation with WIEN2k.

Every plane wave is augmented with an atom-like function (hence the name of the
method). The respective basis functions for the two regions are then given by:

ϕAPW
k⃗,K⃗

=




1√
V

ei(k⃗+K⃗)r⃗ r⃗ ∈ I

l,m
Ak⃗+K⃗

l,m ul(r, E)Yl,m(r̂) r⃗ ∈ S
(3.3)

30



3.2. Expansion of Kohn-Sham-Orbitals

Here, k⃗ is the wave vector restricted to the first Brillouin zone, K⃗ are reciprocal lattice
vectors and V is the volume of the unit cell. The number of used plane waves is determined
by a largest value Kmax and the possible k⃗ vectors are sampled on a reciprocal k-mesh.
u(r, E) is the solution of the radial Schrödinger equation for energy E depending on the
distance r from the nucleus (obtained numerically on a logarithmic radial grid inside
the sphere), Ylm(r̂) are spherical harmonics for the quantum numbers l and m, and the
coefficients Ak⃗+K⃗

l,m are chosen such that the atom-like function and the corresponding
plane wave match in value at the sphere boundary.

Nowadays, the APW basis set alone (see below for the alternative APW+lo) is de facto
not used at all. This is due to two issues that arise during computation: First, the secular
equation of APW is a non-linear function of the energy, which has to be evaluated for its
zeroes (as the energy parameter E in Eq. 3.3 is required to match the eigenstate energy
ϵ) at every point of the k-mesh. Second, singularities in the secular equation appear,
when a node of ul(r, E) coincides with a sphere boundary. Both of these problems make
the APW method computationally very demanding even for moderately sized systems.
[84]

3.2.2 Linearized Augmented Plane Waves (LAPW)
To address the computational challenges of APW, Andersen suggested a linearization of
energy dependency of the basis functions inside the atomic spheres that additionally use
the first derivative of the radial solution of the Schrödinger equation u̇(r, El) = ∂u(r,E)

∂E |El

[93, 94]. In this Linearized Augmented Plane Waves (LAPW) method, ϕLAPW in the
interstitial region remains the same, but the basis function within atomic spheres no
longer depend on the energy: Instead of requiring that the energy parameter El matches
the corresponding KS eigenvalue, it remains fixed to an expected value (roughly in the
middle of the occupied band) for a given value of l that can be pre-determined relatively
cheaply. The LAPW basis functions are then given by:

ϕLAPW
k⃗,K⃗

=




1√
V

ei(k⃗+K⃗)r⃗ r⃗ ∈ I

l,m
Ak⃗+K⃗

l,m ul(r, El) + Bk⃗+K⃗
l,m u̇l(r, El) Yl,m(r̂) r⃗ ∈ S

(3.4)

The coefficients Ak⃗+K⃗
l,m and Bk⃗+K⃗

l,m are again determined via matching to the corresponding
plane wave; this time, however, a second boundary condition is needed, thus both value
and slope have to match.

The basis set derived from this method is already expected to describe electrons in a
solid well. However, to improve errors introduced by the linearization and add even more
flexibility – especially in cases with semi-core states – additional k⃗-independent functions
called “Local Orbital (LO)” can be introduced [95]. These LOs contain two energy
parameters E1,l and E2,l, thus making it possible to treat two states with same l- but
different n-values (e.g. 3s and 4s). This might be necessary, if there is a valence electron
for the higher principal quantum number, while the charge of the lower n state (of the

31



3. WIEN2k

same l-value) is not completely contained in the sphere). The LO is completely contained
inside the sphere (hence “local”) and 0 in the interstitial (thus adding no additional plane
wave to the basis set); in the spheres it is given as:

ϕLO
lm = [Al,mul(r, E1,l) + Bl,mu̇l(r, E1,l) + Cl,mul(r, E2,l)] Yl,m(r̂) . (3.5)

The necessary boundary conditions in this case (to find the coefficients Al,m, Bl,m, and
Cl,m) are that the function goes to zero (and has a zero slope) at the sphere boundary
and has to be normalized within the sphere.

3.2.3 Augmented Plane Waves and Local Orbitals (APW+lo)
Sjöstedt et al. showed that the linearization method of LAPW is not the most efficient
and can be improved upon by using almost the basis functions in the spheres as in the
original APW method (i.e. with only a radial function u). The difference is that in
this alternative to APW the energy is fixed in the same manner as with LAPW – i.e. a
pre-determined El will be used as well. [96]

ϕAPW+lo
k⃗,K⃗

=




1√
V

ei(k⃗+K⃗)r⃗ r⃗ ∈ I

l,m
Ak⃗+K⃗

l,m ul(r, El)Yl,m(r̂) r⃗ ∈ S
(3.6)

To introduce enough flexibility in the radial functions, a new local orbital (lo) (note the
lower cases to distinguish this lo from the LAPW method) is added [96]:

ϕlo
l,m = [Al,mul(r, El) + Bl,mu̇(r, El)] Yl,m(r̂) (3.7)

It has been shown that these alternative method converges to the same results as the
LAPW method, but does so much faster, as it is possible to reduce the basis set size up
to 50 % [97].

3.2.4 Higher Derivative Local Orbitals (HDLO)
Recently, Karsai et al. implemented the possibility to include HDLOs to certain states to
increase the flexibility of the used basis set even further [90]. The use of HDLOs has been
suggested before (e.g. in Ref. [98]) to reduce linearization errors and improve basis set
convergence. The general idea is (again) to introduce additional basis functions (entirely
contained within the atomic spheres) that make use of the second energy derivative of
ul(r, El):

ϕHDLO
l,m =

 AHDLO
l,m ul(r, El) + CHDLO

l,m ü(r, El) Yl,m(r̂) r⃗ ∈ S

0 r⃗ ∈ I
(3.8)

Tests by Karsai et al. [90] reveal that using HDLOs in case of d- and f-block elements
greatly reduces linearization errors (especially in connection with large RMT values above

32



3.3. Flow of Calculations

2.5 bohr). Moreover, they showed that HDLOs remove the RMT-dependence in many
cases, thus facilitating accurate results even with large RMT values. Larger sphere radii
are advantageous (provided the results are accurate enough) for two reasons: (i) Core
leakage (i.e. charge of core electrons not contained in the spheres) gets reduced, which
might be a problem for elements late in the periodic table (e.g. f-block elements). And,
(ii), calculations grow faster, as a smaller plane wave cutoff Kmax can be used.

3.3 Flow of Calculations
WIEN2k as a software package consists of a large number of independent programs that
perform different tasks: the necessary input parameters and calculation specifics are
provided via dedicated input files (each program reads its own file), and the results are
written out in corresponding output files.
The execution of these programs can be directly controlled from the command line via
shell scripts: The script x_lapw enables manual execution of a single program, while
run_lapw and runsp_lapw start SCF cycles without or with spin-polarization (i.e.
without or with magnetism taken into account), respectively.
Alternatively, a web-based graphical user interface (w2web) can be used as well.

The general flow of a WIEN2k calculation is depicted schematically in Figure 3.2.

This general scheme only shows the programs that have to be run at least once during
a “standard” WIEN2k SCF cycle (in case of spin-polarization, the programs LAPW1,
LAPW2, and LCORE are run twice per iteration – once for spin-up electrons and once for
spin-down electrons). Further programs can be switched on as needed, for instance, to
add orbital-dependent potentials with the program ORB (e.g. in LDA+U calculations
[65, 99, 100]), to add spin-orbit coupling with LAPWSO, or add corrections for long-range
dispersion by using pair-wise atomic dispersion coefficients (DFT-D3 [66, 101] or DFT-D4
[102–104]) or using non-local van der Waals functionals (NLVDW [67, 68, 87]).

3.3.1 Core Programs
The main (or “core”) programs of WIEN2k, which are executed at least once in every
calculation, consist of the programs depicted in the scheme shown in Figure 3.2. They
fall into two different groups:

• Initialization: NN, SGROUP, SYMMETRY, LSTART, KGEN, and DSTART.
• SCF cycle (cf. Section 2.6): LAPW0, LAPW1, LAPW2, LCORE, and MIXER.

During initialization, the input structure (which is provided via the struct-file, see
below in Section 3.3.2) is passed through the programs NN, SGROUP, and SYMMETRY:
NN calculates next neighbour distances and checks for sphere overlaps (which must not
occur). SGROUP finds the space group of the material at hand as well as point groups of
the inequivalent atom sites. symmetry generates the symmetry operation matrices of

33



3. WIEN2k

Figure 3.2: Flowchart of a general WIEN2k calculation consisting of initialization and
SCF cycle: The input structure is passed through the programs NN, SGROUP, and
SYMMETRY, which update the struct-file with additional symmetric information. KGEN
sets up the k-mesh, and LSTART generates atomic densities that are superposed by
DSTART to obtain an initial ρin. This initial density is used as starting point for the SCF
cycle, in which the programs LAPW0, LAPW1, LAPW2, CORE, and MIXER are cycled until
convergence of ρ is reached. Scheme reproduced from [7].

34



3.3. Flow of Calculations

the respective space groups. All three of those programs add necessary information to
the struct-file, thus completing it.
Subsequently, LSTART generates electronic densities of the “free” atoms (i.e. the electronic
densities the atoms would have if they would not be part of a solid). LSTART is a
modified version of a relativistic DFT code programmed by Desclaux in the 1960s (the
non-relativistic version was published in reference [105] and reference [106] contains
details of the physics used in the relativistic version).
The atomic densities generated by LSTART are then superposed by DSTART to obtain a
density ρin which is used as starting point for the SCF cycle.
The last ingredient needed is the k-mesh, which is a special point grid that is used to
sample the unit cell in reciprocal space. This mesh is provided by KGEN.

After an SCF cycle is started, the five main programs are cycled until a converged
electronic density is obtained:
The potential Vtot (a sum of the Coloumb potential VCoul and the exchange-correlation
potential Vxc) is calculated from the electronic density with the program LAPW0.
This potential is used to compute the eigenvalues for core (LCORE, which is based on
the same DFT code as LSTART [105, 106]), semi-coreiv, and valence states (LAPW1),
respectively. LCORE generates the electronic density contribution (ρcore) of the core states
directly, while LAPW1 passes the eigenvalues ϵk and eigenvectors Φk to LAPW2, where
the valence density ρval is generated.
In the final step of an SCF cycle, MIXER combines (“mixes”) the newly calculated
densities ρval and ρcore with the old input density ρold to obtain a new density ρnew.
These densities are compared to ascertain if the cycle can be stopped and a converged
density was found or if another iteration is necessary.

After the SCF cycle has ended with a converged electronic density ρ, a third – much larger
– group of programs can be used to analyse the results or calculate further materials
properties. Commonly used examples include:

• TETRA, which calculates total or partial densities of states,
• SPAGHETTI, which is used to generate electronic band structures a long defined

k-paths,
• LAPW5, which generates the electronic density in a 2D cut through the unit cell for

plotting,
• 3DDENS (contributed by the author as part of this dissertation), with which the

electronic density of the whole unit cell can be generated on a 3D gridv,
• NMR, which calculates NMR shifts,
• OPTIC for the calculation of optical properties. . .
ivA semi-core state is a state at a comparatively low energy that has charge that is not completely

contained inside the atomic sphere. These states sometimes lead to complications during calculations; to
properly treat theses states, additional basis functions are necessary, cf. Section 3.2.

vMoreover, 3DDENS allows the simulation of constant current STM images.

35



3. WIEN2k

3.3.2 The case.struct-File as Master Input
As mentioned before, the only input necessary to start a calculation is the structure of
the material. This is provided via the case.structvi file that contains information
about:

1. the unit cell,
such as lattice parameters a, b, and c (given in bohr) as well as the lattice angles α,
β, and γ, which span the unit cell, and information about the lattice type (i.e. the
centering of the unit cell).

2. the atoms in the unit cell,
including the total number of inequivalent atoms in the cell, their positions (as
positive fractions and multiplicities (i.e. the number of equivalent atoms – the
positions of which need to be given as well), and the atom types (given by the
atomic charge number).
The radii of the respective atomic spheres RMT should be specified as well, as the
internal default is usually not optimal.

3. parameters concerning the calculation,
including, for instance, symmetry related data (space group, matrix representations
of the symmetry operations – usually automatically set during initialization) or
the number of points on the mesh used to numerically solve the radial Schrödinger
equation within the atomic spheres as well as the distance of the first mesh point
from the respective atomic center (usually “standardized” values are used here).

Only the data about the unit cell and the atoms have to be provided by the user.

3.3.3 Input/Output in WIEN2k
Input/Output (IO) handling in WIEN2k is set up in a way that every program reads
in program specific computational parameters from dedicated input files: For instance,
LAPW0 gets the chosen functional from case.in0 or LAPW1 reads in e.g. energy
parameters and basis set size necessary for the eigensolving step from case.in1. These
files can be modified to change computational parameters.
Shared IO is read from/written to files that are accessed by multiple programs. The
following example nicely illustrates the way that such shared IO is handled in WIEN2k:
The potential calculated by LAPW0 is written to two files (case.vsp and case.vns)
which are then read in by LAPW1 in order to calculate the eigenvalues and -vectors.
These values are in turn written to case.energy and case.vector by LAPW1 and,
subsequently, used by LAPW2 to calculate the electronic valence density ρval (stored in

viThe naming scheme of WIEN2k requires that all “active” files, for instance used during an SCF
cycle, are called the same as the working directory of the calculation. As stand-in for this name, the
general “case” is used from now on.

36



3.4. Solving the Generalized Eigenvalue Problem

case.clmval).
While this IO handling has the clear drawback of needing a substantial amount of file
accesses, two advantages are apparent as well:

• The memory requirements are reduced, as it is, for instance, not necessary to keep
all eigenvalues and -vectors in memory when the SCF cycle progresses from solving
the eigenvalue problem (solved by LAPW1) to calculating the electronic density
(done by LAPW2).

• A crashed calculation can be restarted from the last “save point”, as in most cases
WIEN2k programs do not overwrite their own input (provided the crash was caused
by a hardware or system problem – e.g. a network failure – and not a user-related
error).

3.4 Solving the Generalized Eigenvalue Problem
As described in Section 2.5, expanding the KS-orbitals into any basis set and applying
the variational principal leads to a generalized eigenvalue problem (Eq. 2.46) that can be
solved algebraically. The setup of the matrices H and S and the subsequent solution
of the problem (both are performed within the program LAPW1) are routinely the most
expensive steps in an SCF cycle – taking up to 90% of the total time (depending on the
problem size).

HC = ESC , (2.46 revisited)

with
Hm,n = ϕ∗

mĤϕndr⃗ (2.46a revisited)

and
Sm,n = ϕ∗

mϕndr⃗ . (2.46b revisited)

Therefore, it is crucial that the computations involved in these steps are performed as
efficiently as possible. WIEN2k uses algebraic libraries (i.e. collections of optimized
and constantly improved algorithms) to perform the necessary matrix operations and
calculations.
The following open-source libraries are used in the eigensolvers of WIEN2k:

• Basic Linear Algebra Subprograms (BLAS) [107] and
• Linear Algebra PACKage (LAPACK) [108] for local single-processor computations

(also called “sequential”).

• Parallel BLAS (PBLAS) [109],
• Scalable LAPACK (ScaLAPACK) [110], and

37



3. WIEN2k

• Eigenvalue soLvers for Petaflop-Applications (ELPA) [111, 112] for parallel multi-
processor computation (both with distributed or shared memory)vii.

Moreover, WIEN2k can make use of the proprietary Intel® libraries Math Kernel Library
(MKL) and Vector Math Library (VML), which are now part of the open programming
model openAPIviii.

The following gives a brief overview of the two eigensolvers implemented in WIEN2k.
Both are entirely based on the routines and algorithms contained in the libraries listed
above. Note, that only the (main) sequential algorithms are mentioned (i.e. BLAS
and LAPACK routines). With one exception, the analogous routines of PBLAS and
ScaLAPACK are used instead in case of parallel computations (see also Section 3.5).

3.4.1 Set-Up of H and S

In every SCF iteration, the first step during the solution of the respective eigenvalue
problem is the setup of the Hamilton matrix H and the overlap matrix S according
to Equations 2.46a and 2.46b. H and S are both either symmetric (i.e. hi,j = hj,i

and si,j = sj,i), if the modelled unit cell contains an inversion center, or Hermitian (i.e.
hi,j = h∗

j,i and si,j = s∗
j,i), if no inversion symmetry is present.

The setup of these matrices is a two step procedure, during which the LAPW1 subroutine
HAMILT computes the spherical matrix elements Hsp and S, and subroutine HNS sets up
the non-spherical matrix elements Hnsp.
Both programs make use of BLAS routines (mostly dgemm and zhemm) and, if available,
Intel® VML cos-functions (vdcos and vzcis). This is also true for parallel computations
– as no other routines are used – the necessary communication across processors was
implemented “manually” using MPI (see Section 3.5.1).

3.4.2 Standard (“Full”) Diagonalization
The default diagonalization scheme is used to solve for the eigenpairs (i.e. eigenvalues
and associated eigenvectors) of the general eigenvalue problem. It is also called “full
diagonalization”, as it calculates the eigenvalues exactly (for the given SCF iteration)
and uses the whole (full) matrices to do so.

The general scheme of the full diagonalization scheme is shown in Algorithm 3.1.

The used library algorithms for the main steps are listed below:

• Finding the Cholesky factorization of S (dpotrf/zpotrf). This is required for
the next step.

• Reducing the general eigenvalue problem (Eq. 2.46) to standard form H ′C ′ = EC ′

(dsygst/zhegst).
viiELPA was implemented as part of this thesis.

viiihttps://www.oneapi.io/

38

https://www.oneapi.io/


3.4. Solving the Generalized Eigenvalue Problem

Algorithm 3.1: Pseudo-code representation of a “full” diagonalization during
the eigensolving step of LAPW1.

Input: read matrices H and S that were set up previously
perform a Cholesky factorization on S;
transform the general eigenvalue problem into standard form;
compute lowest eigenvalues up to a cut-off;
transform eigenvectors C ′ back to original problem;
Output: write eigenvalues to case.energy-file
Output: write eigenvectors to case.vector-file

• Computing the eigenvalues. Routinely in WIEN2k simulations, only eigenvalues
below a specified energy cut-off (up to 10% of all eigenvalues) are computed.
Therefore, a LAPACK algorithm based on inverse iteration [113] (called “expert
driver”) is used (dsyevx/zheevx)ix. For applications that require all eigenvalues
(e.g. the simulation of NMR shifts), two alternative routines have been implemented
during this thesis (cf. Section 4.2.1).
This step is the exception mentioned above regarding parallel computation: During
parallel calculations, pdsyevr and pzheevr – algorithms based on relatively
robust representations [115] – are called instead of the parallel analogous of the
algorithm used in sequential computations.

• The resulting eigenvectors in C ′ are transformed back into the original problem
(dtrsm/ztrsm).

3.4.3 Iterative Diagonalization

A second scheme (called “iterative diagonalization”) has been implemented [116] as
alternative for larger systems that need only “few” eigenvalues relative to the dimension
of the associated matrices.
This method makes use of the fact that during an SCF cycle the KS equations are
solved iteratively. This means, in short, that it is not necessary to solve for the exact
eigenvalues during each iteration. Instead, approximate solutionsx are calculated using
the eigenvectors of the previous iteration as the respective starting point. This works
based on the (sensible) assumption that the change of the eigenvectors going from one
SCF iteration to the next is only small.

The general scheme of the iterative scheme is shown in Algorithm 3.2.

The four main steps are (more details can be found in [116]):

ixIn case of sequential computation and symmetric matrices, which occur in materials that exhibit
inversion symmetry, a modified version of dsyevx by Kvasnicka et al. [114] is used.

xAs long as the approximations converge as the SCF cycle, this approximative approach is satisfactory.

39



3. WIEN2k

Algorithm 3.2: Pseudo-code representation of a “iterative” diagonalization
during the eigensolving step of LAPW1. Note that the first step of an SCF cycle
using iterative diagonalization has to be done within the “full” diagonalization
scheme, as eigenvectors are needed.

Input: read matrices H and S that were set up previously
Input: read eigenvectors C from the previous step
generate search space Z:
if search space Z is calculated on the fly then

perform LU-factorization of H;
solve resulting system of linear equations

else if inverse H−1
0 will be stored on disk then

if first iteration within the iterative diagonalization scheme then
calculate the inverse H−1

0 ;
Output: write inverse H−1

0 to case.storeHinv
calculate Z via matrix-matrix multiplication

else
Input: read inverse H−1

0 from case.storeHinv
calculate Z via matrix-matrix multiplication

end if
end if
set up an eigenvalue problem with reduced dimension;
solve the eigenvalue problem of reduced dimension “fully”;
Output: write eigenvalues to case.energy-file
Output: write eigenvectors to case.vector-file

• Finding starting estimates for the eigenvalues – these estimates are based on the
eigenvectors of the previous SCF iteration:
The vectors (stored in a matrix) are multiplied with the Hamilton matrix H and the
overlap matrix S, respectively. To set up the estimated eigenvectors, these products
are used. Only Level-3 BLAS routines (dsymm/zhemm and dsyr2k/zher2k,
respectively) are used.

• Calculation of the search space in one of two different ways:

1. The search space can be calculated “on the fly” by performing a LU-factorization
of the H (dgetrf/zgetrf) followed by the solution of the corresponding
system of linear equations (dgetrs/zgetrs).

2. More efficiently, it is possible to calculate and store the inverse of H once in
during first step, which is then read in all subsequent iterations. The search
space is then generated by simple matrix-matrix multiplication. However, this
procedure requires sufficient disk space and causes additional IO operations.

• Setting up an eigenvalue problem of reduced dimension (two times the number of
looked-for eigenvalues, usually about 20% of the original dimension). Again, only

40



3.5. Parallelization in WIEN2k

the same level-3 BLAS routines as above are used.
• Finding the solution of the reduced eigenvalue problem – this is done as described

in the previous section.

Another key difference to the full diagonalization scheme (aside from faster computation
in “standard” cases) lies in the dependence on the number of eigenvalues: It is small
for the time spent in the full scheme, while the iterative diagonalization exhibits linear
dependence [116]. That means that in cases in which more (or possibly all) eigenvalues
are needed, the full scheme might be faster again.

3.5 Parallelization in WIEN2k
3.5.1 Parallel Computing
Parallel computing as well as High-Performance Computing (HPC) are terms in computer
science that are somewhat self-explanatory and do not have rigorous definitions at the
same time. Parallel computing simply relates to computations during which multiple
calculations or processes are performed; the main motivation usually is achieving faster
execution times. Parallel computations can be performed on any hardware with more
than one core, which nowadays includes common laptops. On the other hand, HPC
utilizes supercomputers or computer clusters for parallel computations on a much larger
scale, i.e. computer systems with up to hundreds of thousands of Central Processing
Units (CPUs), combined memory up to hundreds of TB (if not PB), specialized file
systems (to handle data access and storage), and sophisticated interconnects to facilitate
communication between the CPUs. [117]

Here, only two important types of parallelism in parallel computing – namely “data
parallelism” and “task parallelism” – shall be discussed in brief, as both are relevant
for parallelism in WIEN2k. A few other notions important to (parallel) computing (e.g.
speedup) will be introduced were they are needed in Chapter 4. Further details and
in-depth discussions about parallel computing and HPC are readily available in textbooks
(for instance [117–119]).

3.5.1.1 Data Parallelism

Data parallelism uses multiple processors to work on different subsets of the same data:
The data (for instance a matrix that has to be diagonalized) is split up, distributed
across multiple processors (which can be part of the same CPU but can also be on a
different node, provided communication between nodes can be done efficiently), and finally
processed. Two widespread computing models used to do this are Open Multi-Processing
(OpenMP) [120] and Message Passing Interface (MPI) [121]xi, that are aptly described

xiWhile OpenMP itself is an application programming interface, MPI is just a standard for message
passing – hence the name. There are various implementations of MPI, for instance from Intel (used to

41



3. WIEN2k

as “shared-memory” and “distributed-memory” multiprocessing. In a nutshell, the key
differences are:

• OpenMP (as shared-memory model) runs on a single node without any requirements
with respect to network capabilities – the available memory must, of course, be
sufficiently large. For MPI parallel jobs this is the other way around: They can run
across different hosts (e.g. a computer cluster) – hence distributed memory – and,
therefore, need network connections to handle the communication. The memory
requirements are much lower, as the data is split up.

• There is no direct communication in OpenMP, data exchange is handled via access
to the same memory space. In MPI computations, on the other hand, data is
exchanged via explicit messages between two processes.

• When executed, a OpenMP program runs as single instance during which multiple
so-called “threads” are spawned that perform a given instruction (for instance, a
loop over matrix elements) concurrently. These threads can be active for the whole
runtime or be joined again after a parallel task has been completed (this is called
the “fork-join model”). MPI programs are run with multiple instances: Every
participating process runs the entire program – the difference between the instances
(e.g. the specific communication pathways or the data subset) are determined
hierarchically (each instance is assigned a “rank”).

• OpenMP programs can be started directly by the user, while MPI programs have
to be executed via a specific command (usually called “mpirun” that is part of
every MPI implementation): This command launches all necessary instances of the
MPI-parallel program, assigns the ranks, and sets up communication.

• Coding errors can cause wrong results due to parallelization in case of OpenMP
(even if the actual computations are all correct), as “race conditions” might occur.
Read and write accesses to the shared data must be handled in a way that ensures
that stored values are not changed out of order: Input values must be read correctly
by all threads that need them before they get overwritten; values that are updated
during iterations must not be read for the start of the next step before they have
been updated, and so on. Otherwise, the results will change when repeatedly
running the program (depending on the speed of the respective threads). This
does not happen with MPI programs; errors in the parallelization simply lead to
“deadlocks” – program freezes – that are, for instance, caused by all instances
waiting for messages at the same time.

3.5.1.2 Task Parallelism

In task parallel computation, processors either perform the same task on different data
sets (this is done in WIEN2k’s k-point parallelization, see below) or different tasks

be commercial, no part of the openAPI programming model), MPICH (www.mpich.org), or openMPI
(www.open-mpi.org).

42

www.mpich.org
www.open-mpi.org


3.5. Parallelization in WIEN2k

altogether. For instance, automated WIEN2k calculations (during which a list of solids
is simulated in parallel) could be considered task parallelism: Every processor runs a
different solid until the calculation has finished and then starts another calculation on
the next solid from the list. During the work for this thesis, this was done during the
calculation of a large number of benchmark cases (see Chapter 7).

3.5.2 Parallelization of WIEN2k
All of the main programs of WIEN2k have been parallelized (provided the time consump-
tion of the respective program is large enough for parallelization to make sense). The
program offers three levels of parallelism that can be employed to speed up calculations.
[7, 8]

Depending on the size of the problem (mostly determined by the number of atoms in a unit
cell) and the available hardware, one (or a combination) of the following parallelization
schemes can be utilized – the first two of which make use of data parallelism, while the
last one serves as a prototypical example for task parallelism:

• Shared memory processing (OpenMP):
All programs of WIEN2k that use libraries (like BLAS and LAPACKxii) – for
instance, most of the core programs mentioned in section 3.3.1 – can make use
of shared memory parallelization via the usage of the OpenMP versions of the
respective libraries.
This form of parallelization is controlled by environment variables of the operating
system (OMP_NUM_THREADS which specifies how many threads should be used in
threaded parts of any given program). Alternatively, WIEN2k specific parameters
can be chosen in the .machines file (see example at the end of this chapter).

• Distributed memory processing (MPI):
MPI-parallel versions of most of the core programs exist (DSTART, LAPW0, LAPW1,
and LAPW2). In fact, parallelization is necessary for large systems (more than 50
atoms per unit cell), as the associated memory requirements grow beyond single-
system memory sizes. For MPI parallelization to be effective, the interconnect
between the parts of the network must be strong enough to facilitate fast com-
munication (the small cluster of the WIEN2k group uses an Infiniband network
with transfer rates of 40 GB/s). Moreover, sufficiently large number of cores are
needed for MPI to be efficient (the specifics depend on the problem sizes and the
hardware).
MPI parallelization in WIEN2k works on two levels: (i) Some programs are
parallelized over atoms or basis functions (e.g. LAPW0 or DSTART), which yields
excellent speedups, as hardly any communication (aside from the distribution)

xiiAside from the algebraic libraries heavily used in WIEN2k, FFTW [122] is also used when Fourier
transforms are needed, e.g. in LAPW0 or 3DDENS.

43



3. WIEN2k

is necessary. (ii) Other programs (e.g. LAPW0 or LAPW1) make use of parallel
versions of libraries (ScaLAPACK, ELPA, Fastest Fourier Transform in the West
(FFTW)). This type of MPI parallelism was benchmarked as part of this thesis (cf.
Section 4.1).

• k-point parallelization:
WIEN2k programs that operate on a k-mesh (e.g. LAPW1, LAPW2, NMR, or OPTIC,
can be executed in k-parallel. That means, that the k-point list is split up and
multiple processors work on their own subset of k-points. This is then followed by
a summation step that combines the partial results.
While OpenMP and MPI parallelization will be discussed in more detail in Chapter
4, k-point parallelization was not a major focus of this thesis; therefore, a simple
performance test was conducted to illustrate this scheme.
The program LAPW1 was used on a small test case (LiBH4) with computational
parameters chosen such that the matrices of the associated eigenvalue problem have
dimensions around 9300. A series of test-runs was done, where the same steps were
performed for up to 6 k-points at the same timexiii. The recorded execution times
are summarized in Table 3.1 and visualized in Figure 3.3.

Table 3.1: Results of a performance test of k-point parallelization in WIEN2k: LAPW1
was run on a small test case (LiBH4) with matrix dimensions of around 9300, performing
the same steps for up to six k-points in parallel.

Execution Time (in s) of Processor
#1 #2 #3 #4 #5 #6

1 k-point 140 — — — — —
2 k-points 142 139 — — — —
3 k-points 144 140 144 — — —
4 k-points 147 146 146 139 — —
5 k-points 154 152 151 147 148 —
6 k-points 159 157 159 158 158 158

The test does not reveal any significant performance drops due to the concurrent
execution of multiple k-points up to three parallel k-points on the given hardware.
The slight deviations are likely a combination of random fluctuations and minute
differences in the size of the respective matrices – which vary in the order of 0.5 % in
this case. That means a list of k-points could be tackled using up to three processors
(i.e. splitting the list and sharing the k-points between multiple processors). Due

xiiiFor a system this small in terms of atoms per unit cell, 6 k-points are not enough to expect physical
results; however, the actual results are not of interest here.

44



3.5. Parallelization in WIEN2k

Figure 3.3: Performance test of k-parallelism in WIEN2k. Shown is the execution time
of the program LAPW1 on a hexacore CPU when solving the eigenvalue problem for a
small test case (LiBH4) with matrix dimensions of around 9300 (slightly varying from
k-point to k-point) with up to 6 k-points solved in parallel on a single workstation with a
6-core Intel i7-4930K processor.

to the virtually unchanged average k-point solution time, perfect scaling behaviour
compared to a sequential run would be expected (i.e. only half the sequential
execution time in case of two and a third of the execution time in case of three
k-points in parallel.)
Going beyond three tasks (in this particular test case), the (perfect) scaling begins
to break down, as the average execution time per k-point starts to increase: for 6
k-points in parallel the average completion time for a k-point is increased by more
than 10 %.
However, taking the initial k-point execution time of 140 s as basis, sequentially
solving 6 k-points in this test case would take a single processor about 840 s, while
sixfold k-point parallelization would lead to all k-points being completed after 159 s –
which is no longer “perfect” but is still a reduction of the execution time by a factor
of 5.3. This result (albeit on a very simple test case) impressively demonstrates,
how straightforwardly and efficiently k-point parallelization can be used.

In practice, the “optimal” parallelization scheme depends on the size of the problem
as well as the available hardware. For example, if WIEN2k calculations are run a
computer cluster consisting of multi-core hosts without fast interconnect that shares a
file system, a combination of k-point and OpenMP usually is recommended: The k-points
are distributed to the different hosts of the cluster, where multi-threaded calculations

45



3. WIEN2k

can be executed. If a supercomputer or the required network capabilities are available,
distributed parallelization (via MPI) can be considered as well.

In WIEN2k, the parallelization is controlled with a single configuration file (.machines).
One such file to handle all three types of parallelization could look like this (assuming
three hosts with 16 cores each and 24 k-points in an SCF run):

# .machines file
# OpenMP related directives
omp_global:16
omp_lapw1:4
# k-list splitting used in lapw1 (with additional MPI)
1:host1:4
1:host2:4
# k-list splitting continued (no MPI)
1:host3
1:host3
1:host3
1:host3

Using a .machine file like this, all programs that make use of multi-threaded libraries
will use 16 threads, except LAPW1 which will only use 4. During the execution of
LAPW1, the 24 k-points will be split in 6 subsets of 4 k-points each, four of which will
be concurrently processed by host3 (i.e. four instances of LAPW1 will be started using 4
threads each). Hosts 1 and 2 will process one subset each utilizing hybrid parallelization
– each k-point will be distributed to 4 cores (i.e. each host will start 4 instances of
LAPW1_mpi) that additionally use 4 threads each.

46



CHAPTER 4
Performance and Optimization

There is a theory which states that if ever anyone discovers exactly what the Universe
is for and why it is here, it will instantly disappear and be replaced by something even
more bizarre and inexplicable.
There is another theory which states that this has already happened.

Douglas Adams, The Restaurant at the End of the Universe (1980)

This chapter deals with different optimization approaches that can be employed to
improve the performance of a computer code. The main focus is on speeding up the
solution of the eigenvalue problem that is at the core of any WIEN2k calculation. The
chapter is divided into four parts:

1. The results of a benchmark of the status of MPI parallelization as of the beginning
of the work for this thesis are presented first.

2. The potential of choosing task-appropriate or more efficient algorithms for a given
task is demonstrated with two examples in the second part.

3. In the third part, parameters that can be tuned to optimize the performance of
MPI parallel computation will be discussed. Moreover, comparisons between two
libraries – ScaLAPACK and ELPA, which has been newly implemented as part of
this thesis – will be presented.

4. Lastly, the results of a small test of mixed parallelization are presented to demon-
strate that choosing the “correct” type of parallel computation is hardly straight
forward.

47



4. Performance and Optimization

Unless stated otherwise, all results in this chapter have been obtained for real symmetric
matrices (derived from structures with inversion) using the third generationi of the
Vienna Scientific Cluster (VSC), the Austrian super computerii. The configuration of
the compute nodes was as follows:

• CPU: Intel Xeon E5-2650v2 (2 CPUs per node with 8 cores each), with 2.60 GHz
and 20 MB Cache

• Memory: 64 GB per node (larger memory nodes were available but were not used
for the presented computations)

• Network: Infiniband (QDR-80) in a fat tree.
• Relevant software: Linux (Scientific Linux 6.6) on both log-in and compute nodes,

Intel MKL 11.3 (with LAPACK 3.5.0 and ScaLAPACK 2.0.2), Intel Fortran Com-
piler 16.0.1, Intel MPI 5.1

4.1 Benchmark of WIEN2k 14.2
This benchmark of the program LAPW1 has been presented as poster paper at a HPC
conference and been published in the conference proceedings [123], therefore only a
summary will be given here.

A relatively small (albeit too large for sequential computation – the upper limit for
matrix dimensions is 20 000 due to memory limitations) real eigenvalue was chosen as
example, that still reveals interesting scaling behavior. The involved matrices were of the
size 24920 × 24920 and 1620 eigenvalues were computed using 2 up to 512 cores. LiBH4
was used as test structure, however, as this is merely a small unit cell with only 5 atoms
per unit cell, a 2 × 2 × 2 supercell (48 atoms per cell) was used to somewhat “artificially”
increase the problem sizeiii.

Wall-clock times (i.e. the real-world time elapsed between start and end of the run) were
obtained with a WIEN2k routine (based on walltime.c) that is used by default to time
programs and sub-steps. All runs have been done four times each, with the found times
usually agreeing within 3 %. Instead of using the usual speedup (S = tsequential/tparallel)
to evaluate the scaling of a given routine, here the parallel time is related to the time
taken on two cores (S = t2 cores/tn cores). This is done because the test case is too large
for sequential computation (WIEN2k limits the maximum matrix size in sequential runs).
Moreover, a different algorithm is used on a single core.

The mean values of all runs are summarized in Table 4.1 – total wall-clock times as
well as timings for the main setup steps (setting up the spherical and non-spherical
matrix elements of H , and S, setup in the programs HAMILT and HNS, respectively), the

iWhich has been decommissioned since.
iihttps://www.vsc.ac.at

iiiThe resultant eigenvalues were not checked for correctness, as only the timings were of interest.

48

https://www.vsc.ac.at


4.1. Benchmark of WIEN2k 14.2

duration of the diagonalization (both full and iterative), and the detailed sub-steps of
both schemes.

The full diagonalization is clearly the dominant sub-step across all core numbers – it
takes about 75 % of the total time at 2 cores. Its share continuously increases due to
the better scaling of HAMILT and HNS (at 512 cores, the setup routines only take up
about 10 % of the total time). The iterative diagonalization, on the other hand, is faster
then the (combined) setup at smaller core number, however, due to its worse scaling, it
becomes the dominating contribution between 32 and 64 cores.

In terms of total speedup (shown in Figure 4.1), the eigensolvers scale really badly:
While the iterative variant follows the linear speedup until 16 cores and only deviates
from that as soon as inter-node communication starts, the speedup of the full scheme
almost immediately breaks down – already at 16 cores only roughly 50 % of the expected
speed increase are achieved. Notably, the full diagonalization stagnates between 64 and
192 cores. In fact, the speed decreases between 64 and 128 cores, which might be due
to unfavorable processor grid dimension (cf. Section 4.3.1.1). The performance surges
once more at 256 cores and remains more or less constant from then on. The iterative
diagonalization scales better than the full scheme, despite also reaching 50 % of the linear
speedup above 32 cores. At least, the performance increases up until 192 cores. In
contrast to the full scheme, iterative solver shows a drop in performance at 256 cores.
After that, basically no gain is noticeable for higher core numbers.

The setup routines HAMILT and HNS scale quite nicely until 128 cores and reasonably
well beyond that. Still, given the immediate speedup breakdown of both solvers, using
more than 256 cores would not be meaningful (results of benchmarks with larger cases
not discussed here suggest that 512 cores might still be reasonable for larger cases).

The speedups of the sub-steps are shown in Figure 4.2: As mentioned before, the speedups
of all sub-steps immediately break down as soon as inter-node communication comes into
play (i.e. going beyond 16 cores). At 512 cores, all routines are below 50 % (most quite
significantly) of the theoretical speedup.

The performance drop of the full diagonalization scheme around 128 cores is caused
by the eigenvalue computation step (as at smaller core numbers it is the dominating
step). In conjunction with the significant improvement at 256 cores, this suggests some
influence of the processor grid (as 256 cores decompose into a square 16 × 16 processor
grid which might be beneficial for this particular routine). On the other hand, both
the eigenvalue estimation step as well as the setup of the reduced eigenvalue problem
(pdgemm/pdsyr2k and pdsymm/pdsyr2k, respectively) show a distinct speedup drop
at 256 cores, and a less pronounced one at 64 cores, indicating that square processor
grids might not be beneficial for these algorithms.

The curious feature of the solution of the reduced eigenvalue problem exhibiting super-
linear speedup (visible in the inset of Figure 4.2) is probably connected to the smallness
of the test case: At some core number, the reduced problem gets small enough to be kept
in cache, thus eliminating memory accesses. From 32 cores onward, the speedup drops

49



4. Performance and Optimization
Table4.1:“Tim

esofdifferentstepsofthe
W

IEN
2k

subprogram
l
a
p
w
1

-dealing
with

the
setup

and
the

solution
ofa

generalized
eigenvalue

problem
[...].

T
he

dim
ension

ofthe
involved

m
atrices

in
this

exam
ple

was
24920×

24920.
1620

eigenvalues
were

com
puted

with
the

iterative
diagonalization

schem
e.

G
iven

are
wall-clock

tim
es

in
seconds.”

Initially
published

in
[123]©

2016
IEEE.

N
um

ber
of

cores
Task

2
4

8
16

32
64

128
192

256
320

384
448

512
Totaltim

e
spent

in
program

l
a
p
w
1

Full
3581.6

2123.8
1172.0

728.1
409.3

254.7
253.4

201.2
88.9

92.6
87.6

82.2
73.6

Iterative
1486.9

821.0
426.0

245.8
123.8

76.4
43.1

34.3
29.9

27.6
26.7

24.7
25.3

Setup
tim

es
(sam

e
for

both
procedures)

H
sp ,S

496.3
257.7

126.6
66.1

33.0
16.7

10.0
6.7

5.1
4.1

3.7
3.2

2.8
H

nsp
350.5

194.7
103.2

71.9
30.9

17.1
7.8

5.7
4.6

3.8
3.2

2.8
2.5

Sub-step
tim

es
for

fulldiagonalization
Total

2729.2
1667.0

938.4
586.5

342.0
217.6

232.3
185.5

75.9
81.4

77.3
72.9

64.9
C

holesky
154.8

85.4
44.1

25.8
17.4

11.9
5.5

4.9
3.9

3.4
2.9

2.6
2.0

R
eduction

665.5
396.2

211.6
123.8

90.9
57.8

47.8
44.4

35.1
36.3

38.1
32.8

32.1
Eigenvalues

1899.1
1177.3

678.5
434.5

232.0
146.7

178.1
135.9

36.6
41.5

36.2
37.2

30.5
Sub-step

tim
es

for
iterative

diagonalization
Total

635.3
368.9

191.0
71.8

56.2
39.0

21.5
18.1

16.3
15.9

15.7
14.8

15.9
Estim

ate
for

eigenvalues
145.6

90.5
48.9

26.2
13.8

11.9
4.2

3.1
3.5

2.2
2.0

1.7
1.7

LU
-Factorization

278.3
144.6

75.6
39.2

23.0
13.2

9.5
7.3

6.4
6.5

6.4
6.2

6.2
Solution

linear
equations

64.3
52.8

29.0
16.6

6.8
3.6

1.7
1.3

1.0
0.8

0.8
0.7

0.6
Setup

reduced
problem

87.5
53.3

28.6
15.7

8.1
6.7

2.5
1.8

2.0
1.3

1.1
1.0

1.0
Solution

reduced
problem

28.8
20.2

4.0
2.5

2.2
2.0

2.0
1.8

1.5
1.7

1.8
1.6

1.8

50



4.2. Choice of Algorithm

Figure 4.1: Benchmark of WIEN2k - Setup and Diagonalization: Shown are the speedups
of both setup steps (setting up Hsp, Hnsp, and S) as well as full diagonalization (“full
diag.”), and iterative diagonalization (“iter. diag”) for a real matrix (24920 × 24920, 1620
eigenvalues computed). Modified from [123] © 2016 IEEE.

below super-linear again (most likely due to overhead) and remains constant beyond that
number of cores.

Further tests with additional openMP parallelization (see Figure 4.3) reveal that combin-
ing MPI and openMP parallelization in WIEN2k 14.2 is at best useless and in the worst
case detrimental to the performance – going to 16 threads increases the execution time.
The only time reduction that was found (when increasing the number of openMP threads)
appeared at 128 cores and 2 threads. This lends further credence to the assumption that
square grids are beneficial for some algorithms (as using 2 threads with 128 cores means
that 64 cores make up a 8 × 8 grid).

4.2 Choice of Algorithm

4.2.1 Solving for All Eigenvalues
Routinely, calculations performed with WIEN2k only need the lowest eigenvalues – a
“standard” SCF run computes between about 10 to 15 % of the eigenvalues (depending
on the system). Therefore, a highly optimized version of LAPACKs dsyevx (which is
based on inverse iteration [113]) is used in non-MPI parallelized runs [114].

However, when a larger number or all eigenvalues are needed – as is the case, for instance,
when simulated NMR shifts are calculated (details on that can be found in [124–126]),
the modified dsyevx no longer works efficiently. The expected scaling for the basis of

51



4. Performance and Optimization

Figure 4.2: Benchmark of WIEN2k - Detailed comparison of full and iterative diago-
nalizations: Shown are the speedups of a real matrix (24920 × 24920, 1620 eigenvalues
computed) diagonalized with (left) full diagonalization and (right) iterative diagonaliza-
tion. Modified from [123] © 2016 IEEE.

Figure 4.3: Combination of MPI and OpenMP parallelism: Shown are total execution
times for different numbers of threads per MPI job for the full diagonalization of a real
matrix (24920 × 24920, 1620 eigenvalues computed). Modified from [123] © 2016 IEEE.

52



4.2. Choice of Algorithm

the modified version used in WIEN2k, is O(nk), where n is the dimension of the matrix
and k the number of eigenvalues, at best, but can increase to O(n3) depending on the
separation of the eigenvalues [127].

Therefore, two algorithms as implemented in LAPACK have been made available (as
options for the user to choose) for computation of all eigenvalues and tested:

• dsyevr uses the Multiple Relatively Robust Representations (MR3) algorithm
[128], which shifts the original problem (by subtracting multiples of the identity
matrix) close to an eigenvalue and uses that shifted matrix to compute it. dsyevr
is reported to scale as O(n2), however, if some eigenvalues are not well separated,
additional operations are needed ([127, 129].

• dsyevd makes use of the “Divide & Conquer” approach [130, 131], where the
eigenvalue problem gets divided into two smaller problems (roughly half of the
original), which are divided further until remaining small matrices can be solved,
e.g. via the QR algorithm [132, 133]. Scaling is reported to be O(n3) “in the worst
case” [127], however, in benchmarks exponents below 3 have been found [127]

In practice, one has to keep in mind that the memory requirements of dsyevd are
(potentially much, depending on n) higher than for all other eigensolvers in LAPACK.

Both above-mentioned algorithms were implemented in the sequential version of WIEN2k
and tested locally on a “standard” workstation (Intel i7-4930K with 3.40 GHz and 6 cores,
32 GB RAM). The test case was again an “artificially blown-up” supercell of a small
system, for which the basis set size was tuned to achieve the desired matrix dimension.
The result of this test is shown in Figure 4.4.

These results clearly show that the modified dsyevx algorithm only is competitive
below 3000 computed eigenvalues, beyond that it is drastically slower. dsyevd is
the fastest algorithm across the tested eigenvalue range, but the difference between
dsyevd and dsyevr decreases going to more eigenvalues. Scaling was found to be
O(n2.98) for dsyevd (only slightly below the expected worst case according to [127]) and
O(n2.60) – worse than the expected n2 [127] but still significantly better than the other
algorithms. It is therefore assumed that dsyevr will outperform dsyevd for even larger
matrix dimensions (and eigenvalue numbers). The test was aborted at 10 000 computed
eigenvalues for dsyevx, as both the performance and the scaling (until that point scaling
behavior of O(n3.45) was found) are inferior to the other algorithms (dsyevx took
50 % longer to compute 10 000 eigenvalues than dsyevr and dsyevd took for 16 000).
The worse than reported worst-case scaling of dsyevx is very likely to be due to the
optimization for “few” eigenvalues.

4.2.2 Plotting Electron Density on a 3D Grid
As part of this thesis, a new program called 3DDENS capable of providing the electronic
density ρ on a 3D grid was introduced into the collection of WIEN2k.

53



4. Performance and Optimization

Figure 4.4: Total execution times when computing all eigenvalues as function of the
number of those eigenvalues. Compared were the performances of three algorithms: the
default dsyxev4 (blue squares), dsyevr based on MR3 (red circles), and the “Divide
& Conquer” algorithm dsyevd (green triangles). Note the logarithmic time scale.

For computational reasons (e.g. to make use of symmetry as much as possible), ρ is stored
via expansion coefficients (of the expansion into lattice harmonics) [7]: Analogously to
the basis set decomposition into plane waves outside the atomic spheres and “atom-like”
basis functions inside, the electronic density is expanded in a similar way:

ρ(r⃗ ) =


 K⃗

ρK⃗eiK⃗r⃗ r⃗ ∈ I

LM
ρLM (r)YLM (r̂) r⃗ ∈ S

(4.1)

Here, r⃗ is the position vector and K⃗ are reciprocal vectors, ρK⃗ are the Fourier coefficients
of the density expansion in the interstitial, ρLM (r) is the radial contribution and YLM (r̂)
are spherical harmonics of the degree L and the order M according to [134]. Note the
capitalization of L and M – this is done to avoid confusion with the quantum numbers l
and m that appear in the basis set description.

However, when using non-local van der Waals functionals in WIEN2k, ρ is needed on
a 3D grid (details can be found in reference [87]). Moreover, one might need 2D or 3D
grids for visualization of the electronic density.

The program LAPW5 is still used to get a 2D grid representation of the electronic density.
The general procedure is summarized in Algorithm 4.1 and consists of the following main
steps:

• setting up of the 2D grid

54



4.2. Choice of Algorithm

• looping over all grid points:

– calculating interstitial density with a discrete Fourier sum
– calculating density in atomic spheres from lattice harmonics

• writing output

Algorithm 4.1: Pseudo-code representation of the procedure used in the
program lapw5 to obtain the electron density on a 2D grid.

Input: read computational parameter for lapw5
Input: read plane on which electron density will be plotted
set up grid in specified plane;
Input: read Fourier coefficients
Input: read lattice harmonics
forall grid points in y-direction do

forall grid points in x-direction do
if (x,y) lies inside atomic sphere then

calculate density from lattice harmonics;
else

calculate density from Fourier coefficients with discrete Fourier sum;
end if
store calculated value for corresponding grid point (x,y);

end forall
end forall
Output: write density data to case.rho-file

Before the introduction of 3DDENS, LAPW5 was used to provide ρ on a 3D grid as
well: The script prepare_xsf would run LAPW5 n times to add n layers in the third
dimension. Subsequently, the output of every singly run would be compiled in a file
(case.xsf), which in turn could be used together with a program able to visualize
electronic densities (for instance XCrysdeniv [135] or VESTA)v [136]. Computation of
discrete Fourier sums is costly, however, thus making this method very slow – especially
for cases that have lots of grid points within the interstitial (e.g. molecules in a large box
of vacuum that can have more than 99 % of grid points in the interstitial, see benchmark
below). The Fourier sums cannot be avoided for 2D grids of the density, but seeing that
those usually contain in the order of 104 grid points this is manageable. 3D grids usually
contain about 106 points, which leads to large compute times.

To alleviate this, 3DDENS (summarized in Algorithm 4.2) makes use of fast Fourier
transforms (as implemented in [122]) to obtain the density on all grid points of the cell
in one step. That means, 3DDENS reads in the Fourier coefficients and uses them to

ivhttp://www.xcrysden.org
vhttps://jp-minerals.org/vesta/en

55

http://www.xcrysden.org
https://jp-minerals.org/vesta/en


4. Performance and Optimization

calculate the interstitial density of the cell as if no atoms were present. The second step
then is – again – to loop over all grid points, check whether they fall within an atomic
sphere, and, if so, replace the wrong electron density from the Fourier transform with the
correct one calculated from the lattice harmonics (this step is the same as in LAPW5).

Algorithm 4.2: Pseudo-code representation of the procedure used in the newly
implemented program 3ddens to obtain the electron density on a 3D grid.

Input: read computational parameters for 3ddens
set up grid;
Input: read Fourier coefficients
perform FFTW and calculate density in whole unit cell;
store current density values on corresponding grid points;
Input: read lattice harmonics
forall grid points in z-direction do

forall grid points in y-direction do
forall grid points in x-direction do

if (x,y,z) lies inside atomic sphere then
calculate density from lattice harmonics;
replace density at (x,y,z) with new value;

else
do nothing;

end if
end forall

end forall
end forall
Output: write density data to case.xsf-file

Not only is this new method much faster than the previous method, it is also OpenMP-
parallelized: The used FFTW library has a threaded version. Moreover, 3DDENS itself
parallelizes over z-values (i.e. the grid points in the third direction) showing somewhat
satisfactory speedup up to 4 threads).

In the following, a brief benchmark of the new method is presented: A selection of
materials with small unit cells (around 5 atoms in the unit cell) where chosen. The aim
was to test all cell and lattice types. In Table 4.2 all test cases are listed.

The electronic densities were computed for all test cases with the old, LAPW5-based
method and with 3DDENS (both with and without OpenMP-parallelization). The results
are given in Table 4.3 and visualized in Figure 4.5.

The benchmark shows impressively, how much faster the new 3DDENS is compared to
the old method. The execution times of all test cases were reduced by at least 90 %, with
the exception of Ne. This is due to the fact that the old method took only 1.6 s. The
largest improvement was found for H3PO4, where the execution time reduced by more

56



4.2. Choice of Algorithm

Table 4.2: Test set members of the 3DDENS benchmark. “Cell” is the shape of
the unit cell,“Lattice” specifies the Bravais lattice (P...primitive, C...base-centered,
R...rhombohedral, H...hexagonal, B...body-centered, F...face-centered), “grid” gives the
number of grid points in the respective direction, and “Ratio” is the percentage of grid
points within the interstitial.

Testcase
Parameter TeI CaSb2 MoF6 H3PO4 Ne OsO4
Cell triclinic monoclinic orthorombic cubic cubic monoclinic
Lattice P P P P P C
Inversion yes yes yes no yes yes
x-grid 144 72 144 200 48 144
y-grid 120 64 128 200 48 128
z-grid 120 144 80 200 48 72
Ratio 0.828 0.663 0.873 0.998 0.866 0.908

Testcase
Parameter MnO h-BN TiO2 Sm3S4 MgCu2 MgO
Cell trigonal hexagonal tetragonal cubic cubic cubic
Lattice R H B B F F
Inversion yes no yes yes yes yes
x-grid 216 120 120 100 100 100
y-grid 216 120 120 100 100 100
z-grid 216 300 288 100 100 100
Ratio 0.873 0.829 0.684 0.775 0.658 0.744

Table 4.3: Comparison of the benchmark results of the new program 3DDENS. “pre-
pare_xsf” is the old method based on LAPW5. 3DDENS was run sequentially and in
parallel using 2 (“omp2”) or 4 (“omp4”) threads.

Testcase
Program TeI CaSb2 MoF6 H3PO4 Ne OsO4
prepare_xsf 111.7 17.5 163.4 10310.5 1.6 92.5
3ddens 6.6 1.5 6.7 16.3 0.1 4.6
3ddens (omp2) 4.0 0.9 3.8 11.6 <0.1 2.7
3ddens (omp4) 2.6 0.7 2.3 9.4 <0.1 1.7

Testcase
Program MnO h-BN TiO2 Sm3S4 MgCu2 MgO
prepare_xsf 179.8 112.1 118.3 111.8 24.5 34.2
3ddens 18.7 6.0 12.0 4.4 4.1 1.9
3ddens (omp2) 11.7 4.1 7.1 2.5 2.4 1.2
3ddens (omp4) 8.4 2.9 4.5 1.5 1.4 0.8

57



4. Performance and Optimization

Te
I

C
aS
b 2

M
oF

6

H 3
P
O 4

N
e

O
sO

4

M
nO

h-
B
N

T
iO

2

Sm
3
S 4

M
gC
u 2

M
gO

Testcase

0

100

101

102

103

104

E
x
e
c
u
ti
o
n

T
im

e
(s
)

prepare xsf

3ddens

3ddens (omp2)

3ddens (omp4)

Figure 4.5: Performance benchmarks of the new program 3ddens for calculating elec-
tronic densities on 3D grids. The times of the previously used method prepare_xsf
(which uses layer-by-layer application of lapw5) is represented by the red columns. Times
of three different versions of 3ddens are shown: non-threaded (yellow) and threaded
with 2 (“omp2”, lightblue) and 4 threads (“omp4”, green). Note the logarithmic scale on
thy y-axis.

58



4.3. Using Optimized Libraries for Parallel Calculations

than 99 % (from almost 3 hours to 17 seconds) – which is due to the large proportion of
grid points being part of the interstitial.

4.3 Using Optimized Libraries for Parallel Calculations
4.3.1 MPI Parallelization with Libraries
A couple of general considerations have to be taken into account when applying MPI
parallelization to a given problem. The foremost of which is the size of the involved
matrices: Parallel computing in general always introduces overhead (for example, spawn-
ing and joining threads in OpenMP, setting up the communication (MPI), and – of
course – the MPI communication itself). Ideally, this should be small relative to the
computation of the actual task; however, for too small problem sizes overhead might
become dominant. It is perfectly possible for an over-parallelized job to actually take
longer than the sequential task would. As a rule of thumb used in WIEN2k [7] states
that the distributed matrices should be no smaller than 1500 × 1500 for parallelization
to make sense.

To check WIEN2k’s parallel efficiency, a one-shot benchmark was performed (the results
are published in [137]) in which the time spent in MPI-specific tasks during a run of
LAPW1 (using a 21756 × 21756 test case and both ScaLAPACK and ELPA) was tracked
with the instrumentation software Allinea (now Linaro) MAPvi. The results are shown in
Figure 4.6.

The fraction of times spent in MPI tasks almost immediately jumps up – at 64 cores
it already surpassed 50 %. The increase levels off beyond 160 cores (75 % and remains
almost constant around that value. For 416 and 512 cores, another increase to about
85 % was recorded. In terms of execution times of LAPW1, it has to be noted that in this
particular case no performance gain could be achieved beyond 64 cores, and for the two
largest core numbers, the times began to grow again. The same behavior was observed
both for ScaLAPACK and ELPA.

This result showcases quite impressively that one always has to keep in mind how
to best parallelize any given problem. Two further necessary considerations (matrix
decomposition and making sure that the parallel system is configured properly) are
presented below.

4.3.1.1 Influence of Matrix Decomposition

The question of matrix decomposition actually consists of two interconnected parts:

• How is the matrix itself decomposed?
• How are the sub-matrices (however many there are) distributed among the cores?
viThe 2016 version 6.0.6 of Allinea Map was used. The current Linaro MAP can be found here:

https://www.linaroforge.com/linaroMap

59

https://www.linaroforge.com/linaroMap


4. Performance and Optimization

Figure 4.6: Fraction of time spent in MPI communication.

The first question is compounded by the fact that LAPACK and ScaLAPACK make use of
the symmetric or Hermitian properties of the matrices used in WIEN2k calculations (i.e.
ai,j = aj,i and ai,j = a∗

j,i, respectively), because in this way only half of the entries above
or below the diagonal and the diagonal itself have to be stored. Figure 4.7 schematically
shows four possible ways to distribute a M × M matrix: The first option (Figure 4.7a)
comes with massive load imbalances – CPU2 will only get zero values, while CPU1 will
only get non-zeroes. Options b and c (Figure 4.7b,c) are only marginal improvements
(and both actually equivalent, as the matrix is square. There is still a large disparity
between the amount of non-zero values every CPU is getting. The solution to these
load balancing issues is what is called “block-cyclic distribution” (shown in Figure 4.7d),
which is used in ScaLAPACKto handle, for instance, load balancing in diagonal matrices.
The matrix is divided in smaller blocks, characterized by their “block size” (which is the
number of matrix elements in each block and not necessarily a square number). These
blocks are subsequently distributed to the processors in a cyclic manner. One way to
visualize this process is to think of covering the divided matrix with the processor grid
P × Q and assigning the blocks accordingly.

Now that the matrix is decomposed in blocks, the question of the optimal distribution to
the processors remains open: Both block size (block size tests will be discussed in Section
4.3.3) and layout of the processor grid can be tuned for optimal performance. The grid
shape of the processor grid is determined at runtime in WIEN2k and set up such, that
the grid is “as square as possible” (i.e. P + Q is minimal). That means for 32 cores, a
8 × 4 grid is chosen over a 16 × 2 configuration. For non-square grids both P × Q and
Q × P are possible. Table 4.4 shows tests of the effect of the grid shape (P × Q, which
is the WIEN2k default, vs. Q × P ) for pdsyevr and pdsygst (pdsyevr displayed a
very bad performance for 128 cores in the WIEN2k benchmark in the previous section).
The same test case as for the Benchmark was used.

60



4.3. Using Optimized Libraries for Parallel Calculations

Figure 4.7: Possible ways of distributing a symmetric or hermitian upper diagonal M ×M
matrix among 4 CPUs: The distribution to a 2 × 2 grid shown in (a) has severe load
balancing issues – all entries of the subset of CPU1 are non-zero, while CPU2 has only
zeroes. 4 × 1 (b) and 1 × 4 (c) grids are only slightly better, as CPU0 has only a small
fraction of non-zero matrix elements. The best way to distribute matrix elements among
multiple processors is what is called a “block-cyclic distribution”: A “block size” is
defined as new computational parameter that is used to subdivide the whole matrix.
These smaller blocks are then distributed cyclically (according to the chosen processor
grid) among all CPUs. Note that the blocks do not have to be square.

61



4. Performance and Optimization

Table 4.4: Execution times of pdsyevr and pdsygst for different grid geometries: The
grid dimension in WIEN2k are chosen at runtime in a way, that P + Q (P is the larger
and Q the smaller grid dimension) is minimized, making the resulting grid “as square as
possible”.

pdsyevr pdsygst
# of Cores P×Q Q×P diff. P×Q Q×P diff.
2 1942.9 s 2036.8 s 5% 665.4 s 778.7 s 7 %
8 697.6 s 721.4 s 3% 217.0 s 208.0 s -4%
32 238.5 s 256.3 s 8% 88.4 s 78.6 s -11%
128 170.1 s 65.7 s -61% 46.7 s 39.2 s -16%
512 30.0 s 80.7 s 169% 31.5 s 25.9 s -18%
2048 36.2 s 69.5 s 92% 24.1 s 20.6 s -14%

The measured times reveal that the performance drop of pdsyevr at 128 cores is most
likely caused by an unfavorable processor grid. Using a 6 × 18 grid instead of the default
decreases the time spent in pdsyevr by 61 %. However, at all other core numbers the
default grid shape is beneficial. pdsygst on the other hand shows inverted behavior:
For core number larger than 2 the Q × P grid was found to be beneficial and reducing
the time between −4 and −18 %. That means there is a necessarily a trade-off, as the
different algorithms of the eigensolver scheme show inverted behavior. To account for this,
a new option to WIEN2k’s run_lapw script has been added. If switched on, WIEN2k
will use both grid geometries in the first two iterations of the SCF cycle and automatically
pick the faster one for the following iterations.

4.3.1.2 Influence of Proper CPU Binding

After preliminary tests on VSC3 (LAPW1, matrix size 26 252, 16 cores, MPI only) of the
influence of the block size exhibited sharp and non-reproducible spikes in the compute
time, repeat calculations revealed an unusually large spread of execution times up to
50 % (left side of Figure 4.8). It turned out that these deviations had two causes not
produced by WIEN2k:

• Processes jumping between CPU cores, thus leading to longer memory access times
• Cores being assigned more than one core, which hampers performance for obvious

reasons

Usually, proper CPU-process assignment is handled by the operating system, however,
sometimes configurations can be off. To fix this problem, CPU binding can be enforced at
run-time (--cpu_bind=map_cpu), however, the downside is that this has to be tuned
specifically for the used hardware. After ensuring pinning, the same repetition test was
re-run with excellent reproducibility of the observed execution times (a variance of about
1 % was found).

62



4.3. Using Optimized Libraries for Parallel Calculations

Figure 4.8: Influence of CPU binding: The left side shows the spread between repeated
measurements of the execution time of LAPW1 (matrix size 26 252, 16 cores, MPI only) –
deviations up to 50 % are observed. The right plot shows the same repeat measurement
after explicit CPU binding was turned on with hardly any variance visible (about 1 %).

4.3.2 Eigenvalue SoLvers for Petaflop-Applications (ELPA)

The open-source library ELPA (Eigenvalue SoLvers for Petaflop-Applications)[111,
112]vii was implemented in WIEN2k as part of this thesis.

Nowadays, ELPA is widely used in many electronic structure codes. It is used on top
of ScaLAPACK, which is actually a prerequisite, as in WIEN2k, for example, only the
computation of the eigenvalues is handled by ELPA, which also means that it uses
block-cyclic distribution as well, thus making it quite easy to integrate into existing codes.
All other algorithms used in the eigensolvers of WIEN2k still are part of ScaLAPACK.
That means, the general strategy of using ELPA remains the same as laid out in the
description of the full diagonalization scheme of WIEN2k (Section 3.4.2):
A Cholesky factorization of the general eigenvalue problem followed by the transformation
into standard form are performed. As first part for the eigenvalue step, ELPA performs
a tridiagonalization, as do all other solvers presented so far. The difference lies in the
specific implementation of this step. ELPA uses Householder transform [138] to arrive at
a tridiagonal matrix – either directly in one step (this algorithm is called elpa1) or in a
2-step procedure by way of a band matrix in between (elpa2) [112] – this is illustrated
schematically in Figure 4.9. To do this, the complete matrix is needed instead of only a
upper or lower diagonal matrix. Therefore, the implementation of ELPA included an
additional step to setup the full matrix.

viihttps://elpa.mpcdf.mpg.de

63

https://elpa.mpcdf.mpg.de


4. Performance and Optimization

Figure 4.9: Schematic representation of the difference between elpa1 and elpa2. House-
holder transformations are used in both cases, however, elpa1 (a) uses a 1-step approach;
elpa2 (b) uses two steps with a band matrix as intermediary. Reproduced with permission
from [112], © IOP Publishing.

Figure 4.10 shows a first test of ELPA (both elpa1 and elpa2) compared to pdsyevr up
to 2048 cores (the same test case as for the initial benchmark was used again): While
elpa1 starts with similar timings up to the performance irregularity of ScaLAPACK
at 128 cores, it performs better from then on. elpa2 immediately outperforms both
ScaLAPACK and elpa1 almost across the whole range of core numbers – only at 2048
does elpa1 catch up. Both ELPA alternatives reduce the execution time until 1024 cores,
elpa1 even beyond. Technically, elpa1 scales better (it shows higher speedups) compared
to elpa2, however, in absolute times elpa2 remains faster. For that reason, ELPA (more
specifically, elpa2) is the new parallel default in WIEN2k (provided it is installed on the
respective system).

The additional matrix completion step is negligibly fast (it was found to be below 0.5 %
of the total runtime). It was realized with the level 3 PBLAS routines pdtran and
its complex analogue pdtranc. The only slight drawback here is the fact, that this
completion imposes higher memory requirements, since an additional array of the size of
H is neededviii.

viiiAn alternative hand-coded method that utilizes a much smaller array hhelp and explicit MPI
communication was implemented but is currently not functional due to the switch from upper to lower
diagonal matrices for the Cholesky factorization in newer WIEN2k versions.

64



4.3. Using Optimized Libraries for Parallel Calculations

Figure 4.10: Scaling comparison of ScaLAPACK and ELPA up to 2048 cores. The “ideal”
times (dashed lines) are the times corresponding to linear speedup related to the time
at 16 cores. The performance irregularity at 128 cores in case of ScaLAPACK, where
the algorithm is actually slower than before, is the reproduced behavior described in the
benchmark (Section 4.1).

Figure 4.11: Execution time of the main algorithms of the full diagonalization dependent
on the number of calculated eigenvalues. The dependence on the number of eigenvalues of
the eigensolving steps (both ELPA and ScaLAPACK), pdpotrf (Cholesky factorization),
pdsygst (transformation to standard form), and pdtrsm (back transformation of the
eigenvectors) are compared for a test matrix of size 26252 × 26252 on 16 cores.

65



4. Performance and Optimization

4.3.3 Performance Benchmarking with ELPA

After the implementation of ELPA, different tests and comparisons with the ScaLAPACK
have been performed to investigate performance improvements and effects of computa-
tional parameters like core number, number of computed eigenvalues, and block-size.
The results of those tests are summarized below.

A test (with matrix sizes 26252 × 26252 on 16 cores) of the effect the number of computed
eigenvalue has on the performance of the algorithms involved in the full diagonalization
scheme shows no dependence in case of the Cholesky factorization (pdpotrf) and the
transformation to standard form (pdsygst) (Figure 4.11). Which is as expected, as both
of these algorithms act on entire matrices independently from the number of eigenvalues
needed. The time consumption of ELPA grows almost perfectly linearly – and while the
gap closes, as the ScaLAPACK diagonalization time grows more slowly, ELPA remains
faster up to 100 % of computed eigenvalues.

The influence of the block size was tested as well for three different matrix sizes of
21756 × 21756, 26252 × 26252, and 31304 × 31304 on 16 and on 32 cores (Figures 4.12
and Figure 4.13). Both ScaLAPACK and ELPA scale nicely going from 16 to 32 cores.
In terms of block size dependence, both libraries show similar behavior: Both seem
to perform better for smaller block sizes with estimated optima around 64 and 96,
respectively. Especially the curves for ELPA are very shallow, which makes it hard to
assign a “real optimum”. The spread of the different block size dependent execution
times are very comparable as well: Both libraries exhibit differences between the highest
and the lowest time in the order of 20 to 30 %, which means that via choosing the block
size correctly, enhancing the performance would be possible relatively easily.

Figure 4.12: Block size test on 16 cores. Timings of ScaLAPACK (left) and ELPA (right)
for different matrix sizes are compared over a block size range from 16 to 256.

66



4.4. Hybrid Parallelization

Figure 4.13: Block size test on 32 cores. Timings of ScaLAPACK (left) and ELPA (right)
for different matrix sizes are compared over a block size range from 16 to 256.

4.4 Hybrid Parallelization
Inspite of the initial benchmark presented in this thesis (Section 4.1) showed no benefits
in using OpenMP and MPI parallelization at the same time, a small benchmark was
performed with a newer version of WIEN2k (WIEN2k 18), as OpenMP improvements
have been provided by the community (credit goes to P. Ondracka). The results of
this new benchmark are summarized in Tables 4.5 and 4.6. Note, that this benchmark
uses the MPI version of LAPW1 with ScaLAPACK routines – that means that even the
single-processor run was performed with parallel algorithms from this library.

When using either pure OpenMP or pure MPI, an interesting observation can be made:
The setup of the spherical matrix elements scales fairly well with both methods (albeit
worse with OpenMP). While the non-spherical setup and the diagonalization show
almost identical scaling in case of MPI, inverse behavior is found for OpenMP: The
diagonalization scales better with OpenMP than with MPI, the non-spherical setup shows
a pronounced decrease in speed up with OpenMP.

For mixed parallelization, no clear trends emerge: 16 mixed cores (either 2 threads and 8
MPI processes or 4 of each) compare reasonable well to the timings found for 16 MPI
processes. The same is true for both setup steps and 8 mixed cores, however using 4
threads and 2 MPI processes yields a very curious timing for the diagonalization (at
almost twice the execution time of 8 cores used purely with MPI.

According to this benchmark, hybrid parallelization is still not recommended (at least for
small cases). In principle, pure OpenMP parallelization could be used as an alternative
to MPI, as the most time consuming diagonalization step scales better in this benchmark.
However, the sequential version of LAPW1, which should rather be used for non-MPI

67



4. Performance and Optimization

calculations, does not scale as well with the number of threads (4 threads usually give good
performance gains, any number larger than 4, however, are usually not reasonable)[7].

Table 4.5: Parallel execution times of a small hybrid parallelization benchmark. Given
are the wall-clock times of the matrix setup (spherical and non-spherical elements,
respectively) as well as the diagonalization step within the full diagonalization scheme.
A test case of matrix dimensions 14404 × 14404 was used.

OMP MPI Hsp, S Hnsp diag Total
1 1 137.6 s 122.2 s 936.7 s 1198.8 s
1 2 67.7 s 65.3 s 559.2 s 696.0 s
1 4 35.6 s 39.8 s 288.7 s 365.6 s
1 8 20.0 s 22.8 s 188.5 s 232.8 s
1 16 10.9 s 16.7 s 133.2 s 162.4 s
2 1 73.7 s 67.2 s 538.4 s 681.6 s
2 4 20.1 s 24.5 s 184.4 s 230.7 s
2 8 11.4 s 13.9 s 143.1 s 169.9 s
4 1 42.1 s 41.3 s 349.1 s 434.7 s
4 2 22.9 s 25.6 s 315.1 s 365.4 s
4 4 12.0 s 15.3 s 145.1 s 174.0 s
8 1 20.9 s 26.8 s 109.4 s 159.2 s
16 1 15.2 s 28.6 s 91.6 s 137.6 s

Table 4.6: Parallel execution speedup of the benchmark in Table 4.5

OMP MPI Hsp, S Hnsp diag Total
1 1 1 1 1 1
1 2 2.03 1.87 1.68 1.72
1 4 3.87 3.07 3.24 3.28
1 8 6.88 5.36 4.97 5.15
1 16 12.62 7.32 7.03 7.38
2 1 1.87 1.82 1.74 1.76
2 4 6.85 4.99 5.08 5.20
2 8 12.07 8.79 6.55 7.05
4 1 3.27 2.96 2.68 2.76
4 2 6.01 4.77 2.97 3.28
4 4 11.47 7.99 6.46 6.89
8 1 6.58 4.56 8.56 7.53
16 1 9.05 4.27 10.23 8.71

68



4.4. Hybrid Parallelization

To also compare hybrid parallelization with the sequential version, a second benchmark
with matrix dimensions of 17808 × 1708 was performed on a compute node of the local
cluster of the WIEN2k group (Intel i7-7820X with 3.60 GHz and 8 cores). The execution
times are listed in Table 4.7), the speedup is summarized in Table 4.8 – here, the runtime
of the unthreaded sequential run was used as reference for the speedup. “MPI = 0”
calculations have been run with the sequential version of LAPW1, all other calculations
used the MPI-version with the respective parallel library. Hyperthreading was used for
the 16-core cases.

For the sequential version, satisfactory scaling with the number of thread was observe
until 4 threads, going beyond that is not sensible. The “MPI pure” runs with ELPA
and ScaLAPACK nicely illustrate the advantage of ELPA – it is faster by at least 30 %
in all cases and scales better as well (albeit on a rather low level). However, using
up to 8 cores still leads to a performance gain for both libraries. Irregular timings of
ScaLAPACK with only one MPI process were observed, which could be connected to
issues with the configuration or be a bug of the local implementation, additional testing
would be necessary to investigate this further.

When using a second thread, all times grow worse compared to the MPI-only times with
the same total number of cores (and the irregularity of ScaLAPACK with only one MPI
process gets compounded further), with the exception of ELPA with two threads and 4
MPI processes (this combination is slightly faster than ELPA with 8 MPI cores), however,
this would mean super-linear speedup which is unlikely. Further tests would be required
here as well.

A comparison of threaded and MPI runs (leaving aside the mixed parallelization) reveals
a slight edge of the sequential LAPW1 over ELPA at fewer nodes, ELPA takes over at 8
cores. ScaLAPACK is slower up until 8 cores. Another strange observation with this
respect is the fact that the setup of Hnsp appears to be faster when using one MPI
job, which is counter intuitive, because it would mean that pdsyr2k, which is the
algorithm mainly used in the program HNS that sets up Hnsp, is faster than its sequential
counterpart.

Hyperthreading (i.e. using 16 cores on a system with only 8 physical cores, which leads
to every CPU running two processes at once) slightly decreases performance.

This second benchmark confirms the conclusion of the one above: Hybrid parallelization
is currently not recommended.

69



4. Performance and Optimization

Table 4.7: Execution times of a second benchmark performed on a compute node of
the local cluster of the WIEN2k group (Intel i7-7820X with 3.60 GHz and 8 cores).
Given are the wall-clock times of the matrix setup (spherical and non-spherical elements,
respectively) as well as the diagonalization step within the full diagonalization scheme.
“MPI = 0” calculations have been run with the sequential version of LAPW1, all other
calculations used the MPI-version with the respective parallel library. Hyperthreading
was used for the 16-core cases. A test case of matrix dimensions 17808 × 1708 was used.
Data courtesy of Peter Blaha.

OMP MPI Hsp, S Hnsp diag Total
Sequential

1 0 113.3 s 80.4 s 297.6 s 493 s
2 0 60.9 s 40.0 s 176.9 s 280 s
4 0 34.0 s 27.5 s 116.3 s 180 s
6 0 25.6 s 23.8 s 94.3 s 145 s
8 0 23.4 s 22.4 s 84.7 s 132 s

ELPA
1 1 120.1 s 57.5 s 336.5 s 518 s
1 2 63.1 s 29.9 s 186.8 s 283 s
1 4 33.8 s 18.7 s 107.0 s 132 s
1 8 18.6 s 10.0 s 74.9 s 111 s
2 1 114.9 s 84.4 s 581.0 s 784 s
2 2 55.5 s 34.0 s 203.9 s 297 s
2 4 20.0 s 14.1 s 71.7 s 109 s
2 8 18.3 s 14.4 s 83.6 s 124 s

Scalapack
1 1 120.5 s 57.8 s 1379.1 s 1561 s
1 2 63.2 s 29.9 s 291.0 s 387 s
1 4 32.8 s 17.8 s 166.5 s 220 s
1 8 19.4 s 10.1 s 114.6 s 148 s
2 1 116.1 s 84.7 s 1528.2 s 1737 s
2 2 55.4 s 34.1 s 310.9 s 404 s
2 4 20.3 s 14.0 s 116.8 s 154 s
2 8 18.3 s 14.2 s 125.6 s 162 s

70



4.4. Hybrid Parallelization

Table 4.8: Speedup of the benchmark in Table 4.7

OMP MPI Hsp, S Hnsp diag Total
Sequential

1 0 1 1 1 1
2 0 1.86 2.01 1.68 1.76
4 0 3.33 2.92 2.56 2.74
6 0 4.43 3.38 3.16 3.40
8 0 4.84 3.59 3.51 3.73

ELPA
1 1 0.94 1.40 0.88 0.95
1 2 1.80 2.69 1.59 1.74
1 4 3.35 4.30 2.78 3.73
1 8 6.09 8.04 3.97 4.44
2 1 0.99 0.95 0.51 0.63
2 2 2.04 2.36 1.46 1.66
2 4 5.67 5.70 4.15 4.52
2 8 6.19 5.58 3.56 3.98

Scalapack
1 1 0.94 7.96 0.22 0.32
1 2 1.79 4.52 1.02 1.27
1 4 3.45 2.69 1.79 2.24
1 8 5.84 1.39 2.60 3.33
2 1 0.98 0.95 0.19 0.28
2 2 2.05 2.36 0.96 1.22
2 4 5.58 5.74 2.55 3.20
2 8 6.19 5.66 2.37 3.04

71





CHAPTER 5
Optimizing Atomic Positions

“Ah, I’ve got an idea!” said the Dean, beaming. “We can get Hex to reverse the thaumic
flow in the cthonic matrix of the optimized bi-direction octagonate, can’t we?”

Terry Pratchett, Ian Stewart, and Jack Cohen, The Science of Discworld (1999)

The following chapters deal with three exemplary use cases of WIEN2k. All DFT calcu-
lations were performed using the PBE functional [52]; all other important computational
parameters, for instance the radii of the atomic spheres (RMT), the k-mesh size for
Brillouin zone sampling, and the parameter Rmin

MTKmax (RKmax in short) that is the
product of the smallest atomic sphere and the largest reciprocal vector Kmax and that
determines the size of the used basis set, will be given for each case.

When evaluating X-Ray Diffraction (XRD) data of chlorothionite, Berthold Stöger found
diffuse diffraction (streaked reflections – which appear as consequence of stacking faults
in the material) that could not entirely be explained with the structures extracted from
experimental data. Figure 5.1 shows the observed reflections of the crystallographic layer
hk3: Two different types of streaks can be seen. The first type (highlighted with the
dotted box) derives from stacking faults in the layered crystalline material and can be
simulated using XRD data alone. The second type (dashed box in Figure 5.1), however,
arises due to local distortions that are not visible in XRD measurement as they are
averaged out due to the large number of layers. Here, DFT offers an opportunity to find
these local distortions: The optimization of atomic positionsi is a crucial first step of
many DFT calculations and can be used to find local distortions. This first use case
demonstrates the importance of this step.

iOften also called “structure minimization”, as the goal is to minimize residual forces acting upon
atoms that arise from atoms not occupying their equilibrium positions.

73



5. Optimizing Atomic Positions

Figure 5.1: Diffraction pattern (hk3 layer) of chlorothionite with two types of streaks:
The streaks marked with the dotted box arise due to stacking faults in the crystal
structure, the second type (in the dashed box) are caused by local distortions that cannot
be resolved directly from an XRD experiment [139].

5.1 Experimental Background
5.1.1 Order-Disorder (OD) Structures

Figure 5.2: A piece of chlorothionite of roughly 8 cm, found at the Tolbachik Volcano,
Kamchatka Oblast, Russia. Image taken from www.mineralienatlas.de with per-
mission of the copyright holder Luigi Chiappino.

74

www.mineralienatlas.de


5.1. Experimental Background

Figure 5.3: The unit layers of the layered material chlorothionite (Layer 1 and Layer 2)
and the stacking order (1-2-1-...). The pseudo-symmetry elements (2-fold rotation axes
and mirror planes) of both layers 1 and 2 are shown as well. [139]

Chlorothionite is a naturally occurring lightblue to greenish mineral that is classified as
a sulfate (Figure 5.2). Chemically, it is a double salt with the formula K2Cu(SO4)Cl2.

The structure of chlorothionite has been known since the 1970s [140] – chlorothionite is a
layered material and an Order-Disorder (OD) structure [141, 142]. That means that the
individual layers have higher symmetry than the overall structure. In Figure 5.3, the
two different unit layers (“Layer 1” and “Layer 2”) and the stacking are shown. The
pseudo-symmetry elements (2-fold rotation axes and mirror planes) of layers 1 and 2 are
displayed as well – these symmetry elements are valid only for the layer, but not for the
entire structure.

Figure 5.4: Two possibilities of stacking layer 2 of chlorothionite on layer on 1. The
highlighted mirror plane (red dashed box) in layer 1 is the reason for the diffuse diffraction,
as two inequivalent double layers can be set up: The unit cell of layer 2 can go to the left
or to the right of the mirror plane of layer 1 [139].

75



5. Optimizing Atomic Positions

A direct consequence of the layer symmetry being higher than the overall symmetry
of the stacking is visualized in Figure 5.4. Starting from the first layer, there are two
possibilities of adding the second layer on top: Either to the left of the highlighted mirror
plane or to the right. That means that indefinitely many different stacking orders are
possible.

5.1.2 X-Ray Diffraction (XRD)

X-Ray Diffraction is a powerful tool that is widely applied to study crystalline samples
(e.g. powders or single crystals). At its core, it uses the phenomenon of diffraction which
occurs if the distance between diffracting planes is in the order of the wave length of the
incoming beam. This makes X-rays ideally suited to be used with crystalline materials,
as they are ordered (therefore form potentially diffracting planes) and the wave length of
X-rays matches the typical distances in crystalline materials of about 10−10 m.

When X-rays interact with materials (specifically the electron density of it), they get
scattered, producing a secondary wave that emanates in all directions. This happens
multiple times at neighboring atoms when a samples is hit by X-rays, however, most of the
scattered secondary waves interfere destructively and cancel each other out. Only under
certain incident angles in combination with matching atomic distances can constructive
interference lead to scattered X-rays that can be detected. Bragg’s law gives the condition
for this to happen (Equation 5.1).

Figure 5.5: Schematic representation of the basic principle of XRD. X-rays from hit a
sample (here a single crystal, but powders are possible as well), get diffracted according
to Bragg’s law and get detected. The angles under which constructive interference occurs
give information about the structure of the sample.

76



5.2. Simulating the Diffraction Peaks

Figure 5.6: Simulation of the disorder related streaks in chlorothionite. Simulated peaks
appear above the red arrow in the diffraction pattern (right), going from the center to
the left (and from right to left in the simulated peak profile) [139].

nλ = 2d sin θ , (5.1)

where λ is the wavelength of the X-rays, d is the distance between lattice planes at which
diffraction occurs, θ is the incident angle, and n is the diffraction order. Figure 5.5 shows
a simple schematic of the basic setup and the diffraction process at lattice planes.

5.2 Simulating the Diffraction Peaks
Using just the data from the experiment, the extracted unit cell (for a single layer – the
two layers in Figure 5.3 are translationally equivalent) can be used to simulate the streaks
that appear in the diffraction pattern due to stacking faults in the layered structure
(cf. Section 5.1.1). Figure 5.6 shows such a simulation: The simulated peak profile goes
along the red arrow shown in the diffraction pattern to the right. The streaks appear as
the intensity does not go down in between two reflections completely, which is caused
by diffuse diffraction. This can be simulated with the experimental structure, taking
into account stacking faults. The parameter “corr” is a measure of disorder, 0 would
mean completely random stacking, corr = −1 would lead to alternating stacking, as after
stacking one layer to the left of the mirror plane of the unit layer, the next would always
go to the right.

The second type of streaks, which cannot be simulated with only one unit cell, are caused
by local distortions in the layers that get averaged out during an XRD experiment. They
are probably caused by non-negligible interatomic interactions across layers due to the
fairly thin layers of chlorothionite. This phenomenon (of local distortion) is typical
for OD structures and is called “desymmetrization” [143]. DFT can find the distorted
positions via force minimization (as described above). By performing such structure
optimizations on four different stacking fragments (shown in Figure 5.8 at the end of

77



5. Optimizing Atomic Positions

this chapter), it is possible to extract the necessary layer geometries and subsequently
successfully model the streaks caused by desymmetrization as well.

5.2.1 Computational Details
The optimization of atomic positions is among the most important tasks performed with
WIEN2k. Routinely, structures have internal degrees of freedom (i.e. atoms that do not
occupy positions fixed by symmetry). This is especially important, if substitutions are
undertaken (and the substituent atom causes local distortions) or when a calculation is
started with an experimental structure. Due to the approximations inherent in the density
functionals or limitations in experimental methods leading to differences regarding the
equilibrium positions. That means that after the initial calculation, (potentially large)
forces acting upon the atoms are to be expected. These forces have to be minimized in
order to find a ground state energy. The idea is simply to move atoms in some direction
(prescribed by the forces) and recalculate the forces on the new position. This is done
by using a modified version of WIEN2k’s MIXER program (called “MSR1a” [144, 145],
that moves the atoms on the fly (instead of changing the atomic positions after fully
converging and starting a new SCF cycle), which is a very efficient and usually quite fast
method.

For the structure optimization of the chlorothionite fragments, different k-meshes [146]
had to be used due to the different unit cell dimension (4 × 4 × 4 for Fragment 1, 5 × 7 × 2
for Fragment 2, and 2 × 1 × 3 for Fragments 3 and 4); convergence checks with respect
to the k-meshes were performed and virtually the same positions were found when the
mesh size was increased. The following parameters were used for all four cases: atomic
radii of 1.92 bohr for Cu, 1.86 bohr for Cl, 2.10 bohr for K, 1.34 bohr for S, and 1.27 bohr
for O; RKmax was set to 7, and a Hubbard U of 6 eV was used to treat the delocalized
3d electrons of Cu in the LDA+U scheme as implemented in WIEN2k [65, 99]. Moreover,
Cu was treated spin-polarized (with antiferromagnetic ordering). All forces were relaxed
until the residual forces were below 1 mRy/bohr.

5.2.2 Results
Figure 5.9 (at the end of this chapter) showcases some examples of geometry changes due
to atomic position optimization. Finally, Figure 5.7 shows a successful simulation of the
peak profile along the red arrow inserted into the diffraction pattern – both simulations,
with purely experimental input and with DFT-based input, are shown for comparison.

78



5.2. Simulating the Diffraction Peaks

Figure 5.7: Simulation of the distortion related streaks in chlorothionite diffraction
patterns. Simulated peaks appear over the red arrow in the diffraction pattern (right)
going from left to right [139].

Figure 5.8: For different layer fragments (with different stacking order) for which the
atomic positions were optimized.

79



5. Optimizing Atomic Positions

Figure 5.9: Fragment 3 before (left) and after (after) atomic position optimization. 5
examples of structural changes are highlighted (dashed circles).

80



CHAPTER 6
Adsorption on Surfaces

It is up to you, how “thick” (how many layers) you want to make your slab. The thicker
the better, but soon you will run out of computer power.

Peter Blaha, WIEN2k Mailing List (2013-06-26)

When investigating the MgO/Mg(OH)2 system as potential candidate for thermochemical
energy storage, Danny Müller and coworkers found that the hydration of MgO with
steam is slow and incomplete, but can be much improved by doping Ca (leading to mixed
oxides Mg(1−x)CaxO), as can be seen in Figure 6.1.

A reasonable hypothesis would be to assume that this has to do with adsorption of water
on the respective oxide surfaces, as adsorption is the first step of the reaction of the solid
and the molecules in the gas phase. Therefore, in this second use case of WIEN2k, the
adsorption behavior of water on mixed (Mg,Ca)O surfaces is investigated. Particular
focus is put on the question whether adsorbed water remains intact or dissociates to form
hydroxyl groups.

Understanding the properties of and processes on surfaces is crucially important when
studying materials in general. All interactions of solid materials with matter happen
(initially) at the surface. Adsorption on surfaces plays a particularly important role
for these interactions, as properties of both the solid as well as the adsorbed species
change due to adsorption. Such changes could affect, for instance, the electronic structure
and thereby chemical bonding thus making a material catalytically active (e.g. in
heterogeneous catalysis).

81



6. Adsorption on Surfaces

Figure 6.1: Hydration of MgO and Ca-doped MgO with water vapor. Pure MgO (red
triangles) reacts slowly and incompletely, Ca-doping (here 10 %) enables complete and
fast conversion (blue squares). Courtesy of Danny Müller.

Figure 6.2: Schematic representation of the principle of thermochemical energy storage
using a reversible chemical reaction A(s) ⇌ B(s) + C(g): During charging, solid A is
decomposed with waste heat in reactor 1, which leads to the creation of solid B and gas
C. B can then be stored until heat is needed or transported. During discharging, B is
reacted with C, releasing the stored energy and recovering solid A that can be used in a
next cycle. Reprinted from [147], © (2016) with permission from Elsevier.

82



6.1. Thermochemical Energy Storage

6.1 Thermochemical Energy Storage
Thermochemical energy storage is a promising approach to address the issue of energy
loss via waste heat [148].

The fundamental principle – utilizing reversible reactions to turn heat into chemical
energy and vice versa – is simple yet elegant (cf. schematic representation in Figure 6.2):
A solid material A is decomposed into two products (another solid B and gas C), thus
storing the heat of the reaction in the two products. This process is called charging. B
can then be transported and/or stored until energy is needed. Then, during discharging,
B can react with C to form A again, while releasing the previously stored energy.

A(s) ⇌ B(s) + C(g) (6.1)

The choice of system depends on the amount of waste heat to be utilized; however, a
large number of systems over a wide charging temperature range are studied for potential
usage [147], making thermochemical energy storage highly flexible and adaptable.

6.2 Simulating Mixed-Oxide Surfaces
Simulating surfaces using a DFT code with periodic boundary conditions requires the
setup of special unit cells: In principle, a surface is a two-dimensional defect that
terminates a solid in one direction – that means periodicity remains intact parallel to the
surface. To model such a system, the unit cell of the bulk material (in this case MgO or
CaO-doped MgO) is used as basis to create a supercell with a vacuum layer along one
lattice vector. The thickness of the vacuum layer has to be simultaneously large enough
that neighboring cannot interact and small enough that computational cost remains
reasonable. The vacuum layer necessitates larger basis sets; and the thicker the vacuum
layer is the more APWs are needed. Thus, modeling surfaces greatly benefits of MPI
parallelization – in fact, in larger cases it is actually inevitable as memory requirements
grow.

MgO (in a cubic, rock salt structure with aexp = 4.214 Å [149]) and CaO (cubic, rock salt
structure, aexp = 4.8152 Å [150]) were used as a starting point to determine DFT lattice
parameters and to create surface slabs. The slabs used for the presented calculations
(shown in Figure 6.3) have 5 MgO layers (with 40 atoms in per unit cell) along the
c-direction and 15 Å between the slabs. This is achieved by first setting up a 1 × 1 × 2
supercell to get the 5 layers perpendicular to the lattice vector c; the vacuum layer can be
added at this point already. Finally, a

√
2 × √

2


R45 cell was created using the 5-layer
model with vacuum. According to this notation, the final cell has new lattice vectors a′

and b′ that are a factor of
√

2 larger than a and b, additionally, both vectors are rotated
by 45◦. In other words, the lattice vectors are rotated into the diagonals of the original
cell and scaled.

Surface slab models for pure MgO (as reference), Mg0.9Ca0.1O, and Mg0.8Ca0.2O were
set up. Since it seems reasonable to assume that changes in the electronic structure

83



6. Adsorption on Surfaces

Figure 6.3: Surface slab model of with 5 layers of MgO with inversion symmetry and
15 Å of vacuum between neighboring slabs. Shown are two slabs – the supercell is set up
in way, that the vacuum is “in the middle”, i.e. the unit cell contains half a slab at small
coordinates of the lattice vector perpendicular to the surface, and another half slab at
large coordinates. The original cubic unit cell that was used to create the slab is drawn
with dashed black lines.

of the surface caused by Ca-doping would also affect the adsorption behavior of water,
the Ca atoms were placed at the surface. Vegard’s law (Equation 6.2) [151] was used
to estimate the expanded lattice parameters due to mixing, which is expected to occur
due to the lattice mismatch of the constituent oxides (the DFT lattice parameters were
determined to be aMgO = 4.26 Å and aCaO = 4.84 Å, respectively).

aMg(1−x)Cax)O = (1 − x) aMgO + xaCaO , (6.2)

where aMg(1−x)CaxO, aMgO, and aCaO are the cubic lattice constants of the mixed and
pure constituent oxides (Mg(1−x)Cax)O, MgO, and CaO, respectively. x is the fractional
content of CaO.

Another possible cause of the changed hydration behavior by doping might be related to
the expansion of the lattice (via introducing larger Ca ions): To investigate the influence
of size effects, all three types of slab were simulated within a range of different lattice
parameters (the respective Vegard values for x = 0 to x = 0.5).

As first step, the surface energies ∆Esurf for all surface models were compared. The
surface energy is a measure for the energy cost per unit area that is needed to create the
surface. It can be calculated according to:

∆Esurf = 1
2A


Etotal

slab − nfuEtotal
bulk


, (6.3)

where A is the unit surface area, Etotal
slab is the total energy of the surface slab, Etotal

bulk is the
total energy per formula unit of the bulk material, and nfu gives the number of formula
units contained in the slab. The factor 1

2 arises due to the fact that a surface slab has

84



6.2. Simulating Mixed-Oxide Surfaces

two surfaces. In mixed surface slabs, the second term of the difference is repeated for all
species occurring in the mixture.

The following computational parameters were used: For the surface slabs, a 2 × 2 × 1
Monkhorst-Pack k-mesh [146] was chosen for Brillouin zone sampling. The RMT values of
Mg/Ca, O, and H were set to 1.7 bohr, 1.1 bohr, and 0.55 bohr, respectively. An RKmax
value of 3.5 was used. For the bulk calculations, a denser k-mesh (5 × 5 × 5) was sampled,
the RMT values remained the same and an RKmax of 8 was chosen. All structures were
relaxed to residual forces of below 1 mRy/bohr.

Figure 6.4 displays the calculated surface energies. The pure MgO (001) surface with its
equilibrium lattice parameter gives a value of about 55 meV/Å2, which agrees with values
found in literature [152, 153]i. For larger values of a, the surface energy increases, which
is to be expected, as the slab moves away from the equilibrium lattice parameter. The
Mg0.9Ca0.1O surfaces behave similarly, even though the surface energy increases more
slowly. Furthermore, the values at lattice parameters corresponding to x = 0, x = 0.05,
and x = 0.1 lie within 1.1 meV/Å2 of each other. The progression of ∆Esurf in the case
of Mg0.8Ca0.2O matches expectations as well: The lattice parameter of the undoped
MgO surface deviates by more than 1 %, while the minimum of ∆Esurf appears at the
equilibrium value of a according to Vegard’s law.

In the second step, water molecules were adsorbed on both side of slab (to keep inversion
symmetry and to avoid polarization across the slab). According to Hu et al., mainly
four adsorption structures of water occur on (001) surfaces of MgO and CaO (Figure
6.5) that are mediated by hydrogen bonds [154]: In the Type I adsorption structure, the
water is oriented planar with respect to the surface; the O atom sits above a cation site
and the O-H-bonds point in the direction of the cation-anion bonds of the oxide. This is
energetically the most favorable orientation on MgO. Type II has the water oxygen above
a hollow site, while the H atoms point downwards in the direction of oxygen sites. This
is the most stable orientation of CaO. Type III (only one O-H-bond oriented towards
the surface with the other pointing away from the surface) is reported to be the most
stable for fluorides (and was, therefore, not considered in this work). Lastly, the Type IV
adsorption structure is the preferred configuration for dissociated water – one hydroxyl
is located above and slightly off-center of a hollow cite, while the second H atom forms a
second hydroxyl with a lattice O.

From the total energies of these surface slabs, the adsorption energy of water on the
surface can be calculated as follows:

Eads,H2O = 1
nads,H2O

Etotal
slab+H2O − Etotal

slab − nads,H2OEtotal
H2O , (6.4)

where Eads,H2O is the adsorption energy of a water molecule, Etotal
slab+H2O and Etotal

slab are
the total energies of the surface slab with and without adsorbed water, and Etotal

H2O is the
iThe cited sources give values of 0.90 J m−2 and 0.92 J m−2, respectively. Converting the value found

in this work results in 0.88 J m−2.

85



6. Adsorption on Surfaces

Figure 6.4: Surface energies for MgO, Mg0.9Ca0.1O, and Mg0.8Ca0.2O as function of
lattice parameter a.

Figure 6.5: Different possible adsorption structures of water molecules on binary cubic
materials. Used with permission of the Royal Society of Chemistry. Reprinted from [154].

86



6.3. Results

Figure 6.6: Top view of the three slab models. a) MgO (001) surface with four equivalent
adsorption sites. b) Mg0.9Ca0.1O (001) surface with three different adsorption sites:
one Ca site in the corner, two equivalent Mg sites B on the edges, and one Mg site in
the center of the unit area. c) Mg0.8Ca0.2O (001) surface with two pairwise equivalent
adsorption sites (Ca sites in the corners and in the center, Mg sites on the edges).

total energy of a water moleculeii. nads,H2O denotes the number of adsorbed molecules.
The computational parameters remained the same as for all other slab calculations.

To obtain values for Etotal
slab+H2O with intact water, a molecule was adsorbed in the

geometries of Type I and Type II. Dissociation was triggered “manually”: After the
adsorption structure was relaxed, one hydrogen was moved to a neighboring lattice
oxygen and the simulation re-run. Figure 6.6 shows the top view of the unit areas of the
surface slabs used here: All slabs have 4 cationic adsorption sites, one and two of which
are occupied by Ca instead of Mg in case of Mg0.9Ca0.1O and Mg0.8Ca0.2O, respectively.
In case of MgO, all those sites are equivalent by symmetry (in case of mono-molecular
adsorption); in case of Mg0.9Ca0.1O, two different Mg sites occur (a twofold site on the
edges of the square, and the center atom (labeled “B” and “A” in Figure 6.6, respectively);
in case of Mg0.8Ca0.2O, the two Mg sites and the two Ca sites are equivalent.

6.3 Resultsiii

For the MgO surface with the correct lattice parameter the reported behavior [154] could
be reproduced. The Type I structure is energetically favored, while Type II is stable
but less favorable. Type IV was not observed on MgO (the hydrogen which was split off
manually, recombined with the hydroxyl group to re-form molecular water). All other
adsorption calculations were started from structure Type I for simplicity.

iiFor consistency, this energy is also calculated with WIEN2k, where a single water molecule sits in a
large “box” to make sure it does not interact with its periodic images.

iiiThe results presented here have been published in [155].

87



6. Adsorption on Surfaces

Figure 6.7: Surface slab of (Mg0.9Ca0.1)O with one adsorbed and dissociated water
molecule: H2O was initially adsorbed on top of a Mg atom, relaxed, and manually
split (i.e. one H was moved to a bulk O). After a second relaxation, the adsorbed H2O
remained dissociated – the newly formed OH-groups can be seen within the dashed black
ellipse.

Increasing the lattice parameter moves the optimal adsorption structure away from Type
I – during relaxation the oxygen atom moves towards the hollow site and the whole water
molecule starts to tilt. Moreover, hydroxyl groups are stable even on a pure MgO surface
for the two largest values of a (and for the largest cell, the hydroxyls are energetically
favorable). This confirms the initial assumption that size effects (due to lattice expansion)
influence adsorption, as the expansion of the lattice was caused “manually” and no other
effects come into play.

In case of both Ca-doped surfaces, stable hydroxyl structures were observed over the
whole range of lattice parameters – Figure 6.7 shows an example: The adsorbed oxygen is
located above a hollow site and one of the hydrogen atoms has formed a hydroxyl group
with a lattice O. This confirms the second initial assumption of the electronic structure
of the surface having an effect as well.

These electronic effects of Ca doping become even more apparent when the most stable
adsorbed species is plotted against the lattice parameter (see Figure 6.8): For pure MgO
(red curve), intact water (full symbols) is the most stable configuration over almost the
whole size range – only at the very largest slab, hydroxyl groups are more stable (open
symbols). The point at which this switch between preferential adsorption of molecular
and dissociated water occurs shifts towards smaller sizes with increasing Ca content: In

88



6.3. Results

Figure 6.8: Stability of adsorbed water on mixed (Mg,Ca)O surfaces: Full symbols
denote adsorbed (but not dissociated) water molecules are more stable, empty symbols
denote the slabs, where dissociation was energetically favorable and two OH groups
occupy the surface after adsorption. Reprinted from [155], © (2017) with permission
from WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

case of the surface with one Ca site – Mg0.9Ca0.1O – this happens at the lattice parameter
nominally corresponding to x = 0.15 according to Vegard’s law. For Mg0.8Ca0.2O, the
switch happens at even smaller unit cells – only the smallest slab (with the lattice
parameter of a pure MgO surface) dissociation of the adsorbed water is less favorable.

Additionally, the DFT formation energetics of mixed (Mg,Ca)O phases were modeled
utilizing a regular solution model as suggested by Peelaers et al. [156]: The model given
in Equation 6.5 assumes a parabolic relation between the Ca content x and the enthalpy
of formation ∆f H.

∆f HMg(1−x)CaxO = 4x(1 − x)∆H0 (6.5)

To find the parameter ∆H0, the formation enthalpies of mixed oxides with Ca contents
from 0 to 100 % had to be calculated. A primitive 2 × 2 × 2 supercell of MgO was used as
starting point (a larger 3×3×3 cell was used for the smallest Ca content) in which random
Mg atoms were substituted for Ca. These random mixed structures were created with
the program “supercell” [157] – the number of substitutions was prescribed by the target
Ca content. For the calculation of ∆f HMg(1−x)CaxO, RMT radii of 1.7 bohr for all atoms
were chosen. A k-mesh of 5 × 5 × 5 and a basis set determined by Rmin

MTKmax = 8 were
used. The lattice parameters of the respective mixed oxides were optimized (the starting
value again determined according to Vegard’s law) and all structures were relaxed (until
residual forces below 1 mRy/bohr were reached). ∆f H(Mg(1−x)Cax)O was then derived

89



6. Adsorption on Surfaces

Figure 6.9: a) Simulated enthalpy of formation (∆f H) as laid out by [156]: ∆f H was
calculated for randomly generated mixed (Mg,Ca)O structures with varying Ca content
(blue circles). These values were parabolically fitted (see Equation 6.5) such, that all of
them lie on or above the fit parabola. A ∆f H0 of 170 meV per unit formula. b) ∆f G
as function of x at 650 K, the entropic contribution was estimated using Equation 6.7.
Reprinted from [155], © (2017) with permission from WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim.

according to:

∆f HMg(1−x)CaxO = Etotal
Mg(1−x)CaxO − (1 − x) Etotal

MgO − xEtotal
CacO , (6.6)

where Etotal
Mg(1−x)Cax)O is the energy of the mixed oxide and Etotal

MgO/CaO are the respective
energies of the bulk oxides.

The calculated values for ∆f HMg(1−x)Cax)O were fitted such that all enthalpies fall on or
above the fit – they are only upper bounds, as the randomly chosen configuration is not
necessarily the energetically most favorable (see Figure 6.9a). Thus, a value for ∆H0
of 170 meV per unit formula was obtained. To account for entropic effects as well, the
mixing entropy was modeled with the entropy of a random mixture according to:

S(x) = −kB [x ln x + (1 − x) ln (1 − x)] , (6.7)

where kB is Boltzmann’s constant. Using the values for ∆H(x) and S(x) the Gibbs free
energy can be calculated as function of x for a given temperature T = 650 K according to

∆f G(x) = ∆H(x) − TS(x) . (6.8)

The obtained ∆f G as function of x is shown in Figure 6.9b. As both ∆f H and ∆f G are
positive over the whole range of x, MgO and CaO should not be miscible according to
thermodynamics at 650 K, which agrees with experimental findings in literature [158].

90



6.3. Results

Müller et al. [155] propose the origin of materials as reason for the existence of mixed
(Mg,Ca)O phases: They are synthesized via co-precipitation of hydroxides and subsequent
calcination at mild temperatures (around 650 K). For the hydroxides, the authors find
miscibility up to 10 % Ca(OH)2 (which was confirmed by XRD). Thus, DFT results and
experimental findings are in agreement that Ca-rich (Mg,Ca)O phases have to be formed
via the detour of hydroxides for thermodynamic reasons.

91





CHAPTER 7
Error Estimation in DFT Codes –

The Delta-Project

+++ Divide By Cucumber Error. Please Reinstall Universe And Reboot +++

Terry Pratchett, Hogfather (1997)

Solid-state DFT codes have been in use for decades and continue to be improved and
further developed. In recent years, they are gaining more and more traction as work horses
in condensed matter physics and materials science [159], and majorly contribute to large-
scale material research oriented data collection projects like the Materials Projecti [160]
and the NOMAD Laboratoryii [161]. However, systematic assessments with respect to
reliability and precision of DFT have not been done until fairly recently. Such assessments
are particularly important, because even when codes implement the same approximations
(e.g. KS-DFT with a given density functional), the specifics still vary (for instance with
respect to basis sets or treatment of core electrons). The Delta Projectiii was among the
first projects to attempt such an assessment on a larger scale.

7.1 The Original Delta-Benchmark
In 2013, Lejaeghere et al. proposed a metric to quantify the agreement between different
electron codes [162], that was subsequently used in their seminal work in 2016 [163], in
which they compared 40 different codes (including all-electron, PAW, and pseudopotential
codes). The test set then consisted of 71 experimentally known crystals.

ihttps://materialsproject.org
iihttps://nomad-lab.eu

iiihttps://molmod.ugent.be/deltacodesdft

93

https://materialsproject.org
https://nomad-lab.eu
https://molmod.ugent.be/deltacodesdft


7. The Delta-Project

Figure 7.1: Example of an energy-volume curve, shown is the curve of SnO3. The plus
symbols denote the measured energies. The fit was obtained from the Birch-Murnaghan
density of state.

The metric ∆ is defined according to Equation 7.1 and compares energy-volume curves
in a pre-defined volume range (going from −6 % to 6 %) with 7 calculated energies in
equidistant steps of 2 %. The smaller the value of ∆ is, the better the agreement between
two codes.

∆(a,b) = 1
0.12V0

1.06V0

0.94V0

[Ea(V ) − Eb(V )]2 dV , (7.1)

where V0 is the equilibrium volume obtained by fitting a energy-volume curve with
an equation of state that – in case of the Delta approach, the Birch-Murnaghan [164]
equation of states is used.

E(V ) = E0 + 9
16V0B0




V0
V

 2
3 − 1

3

B1 +


V0
V

 2
3 − 1

2

6 − 4


V0
V

 2
3

 , (7.2)

where V0 and B0 are the equilibrium volume and bulk modulus, respectively, and B1 is
the first derivative of B0 with respect to pressure. Figure 7.1 shows an example of an
energy-volume curve (here SnO3 is shown).

94



7.2. Extending the Test Set – Elemental Crystals and Oxides

Figure 7.2: Test set structures. (left) Elemental crystals to account for different coor-
dination numbers (tier 1). (right) Oxide structures to account for different chemical
environments (different “oxidation numbers” of the cation from +1 to +6, tier 2). Repro-
duced from [159] under CC BY 4.0.

7.2 Extending the Test Set – Elemental Crystals and
Oxides

Another interesting issue (beyond simple agreement of codes) is whether pseudopotentials
are transferable to different solids. To study this question further, more comprehensive
test sets are necessary to systematically test different pseudopotentials. In a recently
submitted study [159], an extended test set of 960 structures in total, was proposed. It
consists of two subsets: the tier 1 set containing elemental crystals to systematically
account for different coordination numbers, and the tier 2 set to do the same for oxidation
numbers (Figure 7.2 shows the used test set structures). Moreover, a reference set of
high-accuracy (i.e. highly converged) were obtained from WIEN2k and Fleur [165], two
all-electron codes. Calculations of the 570 tier 2 crystals, that were used as starting point
for the WIEN2k references were conducted as part of this thesis.

Results produced by 9 pseudopotential codes were compared to the all-electron reference
[159]. A visual summary of these comparisons is given in Figure 7.3: The all-electron
codes WIEN2k and Fleur show excellent agreement with each other over the whole test
set. The pseudopotential codes, on the other hand, show significant deviations. Moreover,
not all elements of the test set could be calculated with all codes, as the corresponding
pseudopotentials are not available in all codes (for instance due to difficulties in describing
localized f-states). Some codes implemented systematic improvements to the underlying
pseudopotentials (which shall not be discussed here) during this study and achieved
improvements by adding new or adapting existing pseudopotentials. This highlights the
importance of systematic studies like the one presented by Bosoni et al., as they advance
progress of electronic structure calculations in general.

95



7. The Delta-Project

Figure 7.3: Results of a comparison of 9 pseudopotential codes with the reference test
set presented in [159]. Box-and-whisker plots show the calculated deviations of V0, B0,
and B1 from the reference data set. Reproduced from [159] under CC BY 4.0.

7.3 Extending the Test Set Further – Real Binaries
One issue with the test set layout as described so far is the fact that while coordination
numbers (tier 1) and oxidation numbers (tier 2) are covered extensively and systematically,
a systematic treatment of chemical bonds is still missing. Moreover, most of the tier 1
and tier 2 test cases are purely hypothetical structures (only a little over 10 % of the
oxides are known experimentally). Therefore, the preliminary work of creating a third
tier was done as part of the work for this thesis. This included the following steps:

• scanning the Inorganic Crystal Structure Database (ICSD) iv [166] for suitable
candidates of experimentally known cubic binary crystals without internal degrees
of freedom (i.e. all atomic positions are fixed by symmetry),

ivwww.https://icsd.fiz-karlsruhe.de

96

www.https://icsd.fiz-karlsruhe.de


7.3. Extending the Test Set Further – Real Binaries

• setting up a classification system and find as objective criteria as possible to classify
the candidates (which was iterated a couple of times during the process),

• classifying the candidate crystals, and
• selecting test cases (5 per element.)

As of January 2018, the ICSD contained experimental structures of 32 163 binaries, 11 840
of which were cubic. After the removal of duplicates, 1457 candidates in 23 different
structure typesv remained to be classified.

The classification system is based on electronic difference densities: The superposed
densities of free atoms filling the lattice was subtracted from the calculated crystal density.
The main idea was to have test set members that represent the prototypical bond types
ionic, covalent, and metallic, and include a possible band gap as additional criterion.
According to these specifications, every element should occur in 5 binaries. The finalized
assessment criteria were as follows:

• A binary was defined as “ionic” if the following criteria were met:

– area around the atom in the difference density plots almost spherical
– interstitial region mostly shows electron depletion or neutral
– both atoms with electron accumulation and depletion present

• The criteria for a “metallic” binary were:

– area around the atoms rather spherical
– large portions of interstitial with electron accumulation
– both atom types electronically depleted

• A “covalent” binary exhibited clearly visible localized electronic accumulation/depletion
between the atoms (in bond directions).

• If there are features of more than one of the other three classes, the crystal will be
considered “mixed”.

Figure 7.4 shows three examples of difference density plots: Electrons are accumulated
in red areas (positive values) and depleted in blue areas (negative values). Shown are
(from left to right): CsI (rock salt structure, “ionic”), MnZn (CsCl structure), “metallic”,
and AuSb3 (AuSb3 structure type, “covalent”).

After all 1457 binaries were manually classified, the test set members were chosen. The
goal was to choose as few crystals as possible while containing as many elements with 4
or 5 different bond types as possible. In the end, 241 cubic binary structures were chosen
to generate tier 3. Figure 7.5 shows how often each element is represented.

vThe 5 most common structure types are (in that order) rock salt, CsCl, Laves, AuCu3, and fluorite.

97



7. The Delta-Project

Figure 7.4: Difference density plots of three prototypical cases: (a) CsI (rock salt
structure, (100) plane) as representative of ionic binaries, (b) MnZn (CsCl structure,
(110) plane) as representative of metallic binaries, (c) AuSb3 (AuSb3 structure, (100)
plane) as representative of covalent binaries. Red areas exhibit electron accumulation
compared to the density free atoms sitting on lattice sites would induce, blue areas are
electron depleted.

Figure 7.5: Elemental map of the number of binaries contained in the binary testset per
element

Only 7 elements could not be included: At, Fr, and the noble gases. Ra, Pm, and Ac
could be included only once; Rb, Tc, I, and Pa only twice, and all other elements are
contained at least three times in the tier 3 test set.

98



CHAPTER 8
Conclusion

“The Answer to the Great Question ... Of Life, the Universe and Everything ... Is ...
Forty-two,” said Deep Thought, with infinite majesty and calm.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy (1979)

In this thesis, the performance of the DFT code WIEN2k has been assessed with a focus
on the solution of the general eigenvalue problem, which is needed to obtain energies of
the electronic states and, subsequently, ground state energies modeled systems.

Two questions regarding performance of the eigensolvers in WIEN2k were investigated:

1. How can the eigensolving step (as part of the program LAPW1) perform efficiently
in parallel?

2. How does the (sequential) performance change, if not only the lowest eigenvalues
(about 10 to 15 %) are needed but all of them?

To answer the first question, a variety of computational parameters necessary to set up
parallel calculations (e.g. number of processors, block size of the matrix distribution,
shape of the processor grid) were tested and shown to have at least some influence.
Moreover, testing alternative algorithms (e.g. ELPA) and using the faster ones is always
a possible approach to increase parallel efficiency.

The answer to the second question was quite clearly that the default algorithm used
in sequential calculations is not suited to calculate all eigenvalues for larger matrices.
Alternative algorithms have been implemented as replacement for such calculations.

However, the quest for faster and/or more efficient parallel computations does not stop, as
for instance “old” algorithms and libraries are continuously developed and improved (both

99



8. Conclusion

(sca)LAPACK and ELPA continue to evolve) and entirely new methods and algorithms
become available.

Furthermore, a new and much faster method (3DDENS) to obtain electronic density data
on a 3D grid has been implemented and benchmarked against a small yet diverse set of
crystal structures to excellent results: The time to finish setting up the grid was reduced
by more than 80 % in all but one cases, the most extreme example was a reduction of
99.8 % for a molecule in a box.

The last three chapters of the thesis dealt with three different use cases, giving three
examples of tasks that can be performed with WIEN2k. Beyond that, they served to
showcase how different problem sizes profit from different parallelization schemes:

1. The calculation of optimized atomic positions, which cannot be found reliably by
experiment (XRD in this particular case), is a simple but important application of
solid state DFT in general.
In this case, input data for a simulation of XRD diffraction patterns of an OD
structure (chlorothionite) was created, which is a layered mineral that shows a
large amount of stacking disorder. To obtain this data, the atomic positions in four
fragments of different stackings needed to be optimized. Subsequent simulations
of the diffraction pattern showed that input based on the DFT data succeeded to
capture the proper streak behavior observed in experiment. A publication of the
results is in preparation [139].
The calculations for this use case were performed k-point and MPI parallel: As the
unit cells of the stacking fragments were relatively small (with 10 to 20 atoms per
cell), a larger number of k-points was needed for Brillouin zone sampling (hence the
k-point parallelism), and the associated matrices in LAPW1 were just large enough
to run every k-point on 16 cores.

2. Studying the adsorption behavior of small molecules on surfaces is another pro-
totypical example for DFT calculations – especially in connection with materials
science.
The example study presented investigated the adsorption behavior of water molecules
on mixed magnesium/calcium oxide surfaces in order to shed light on the incom-
plete hydration reaction of MgO. On pure MgO surfaces, water adsorbs as intact
molecule, which could explain low reactivity. By replacing Mg by Ca atoms, the
preferred adsorption structure changed to two hydroxyl groups (i.e. dissociated
water), thus achieving the experimentally found faster and complete hydration for
the mixed surfaces. The results of these study have already been published [155].
To model these systems, surface slabs with five MgO layers were modeled with
a vacuum layer between neighboring slabs. These slabs need a larger number of
APWs due to the vacuum layer, which in turn means large matrices in LAPW1.
Therefore, these calculations could make efficient use of MPI parallelism.

100



3. The calculations for the Delta project were not routine, as a large number of small
systems (most of them hypothetical) were simulated to create benchmark data for
two newly created test sets.
Even though the structures contained within these test sets are very small (less than
10 atoms per cell), both k-point parallelization and efficient task parallelism are
crucially important, simply because of the large number of calculations needed. For
instance, to provide high quality reference data for 570 oxides, seven calculations
per oxide with very large (33 × 33 × 33) k-meshes had to be conducted.
The purpose of the Delta project is the creation of an expansive test set that
can be used to thoroughly assess the precision and transferability of DFT codes.
This is still an ongoing and actually very active field of research, a large-scale
test comparison of 9 pseudopotential codes using all-electron data of WIEN2k and
FLEUR [165] as reference was recently submitted [159].

101





List of Figures

1.1 Yearly and total number of DFT publications between 1990–2020 in Web of
Science and Scopus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Schematic representation of a 4-particle system in a Cartesian coordinate
system (e.g. H2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Schematic representation of the SCF cycle to solve KS equations . . . . . . . 25

3.1 Decomposition of a (schematic) unit cell in atomic spheres and interstitial . . 30
3.2 Flowchart of a general WIEN2k calculation consisting of initialization and

SCF cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Performance test of k-parallelism in WIEN2k . . . . . . . . . . . . . . . . . . 45

4.1 Benchmark of WIEN2k - Setup and diagonalization, modified from [123]
©2016 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Benchmark of WIEN2k - Detailed comparison of full and iterative diagonal-
izations, modified from [123] ©2016 IEEE . . . . . . . . . . . . . . . . . . . . 52

4.3 Benchmark of WIEN2k - Combination of MPI and OpenMP parallelism,
modified from [123] ©2016 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Total execution times when computing all eigenvalues as function of the
number of those eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Performance benchmarks of the new program 3ddens . . . . . . . . . . . . . 58
4.6 Fraction of time spent in MPI communication . . . . . . . . . . . . . . . . . . 60
4.7 Possible ways of distributing a symmetric or Hermitian M × M among 4 CPUs 61
4.8 Influence of CPU binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.9 Schematic representation of the difference between elpa1 and elpa2. Repro-

duced with permission from [112], © IOP Publishing . . . . . . . . . . . . . . 64
4.10 Scaling comparison of ScaLAPACK and ELPA up to 2048 cores . . . . . . . . 65
4.11 Execution time of the main algorithms of the full diagonalization dependent

on the number of calculated eigenvalues . . . . . . . . . . . . . . . . . . . . . 65
4.12 Block size test on 16 cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.13 Block size test on 32 cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Diffraction pattern (hk3 layer) of chlorothionite with two types of streaks [139] 74
5.2 Chlorothionite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Unit layers and stacking of chlorothionite [139] . . . . . . . . . . . . . . . . . 75

103



5.4 Two possibilities of stacking layer 2 of chlorothionite on layer 1 [139] . . . . . 75
5.5 Schematic representation of the basic principle of XRD . . . . . . . . . . . . 76
5.6 Simulation of the disorder related streaks in chlorothionite diffraction patterns

[139] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7 Simulation of the distortion related streaks in chlorothionite diffraction pat-

terns [139] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.8 Layer fragments to be optimized . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.9 Fragment 3 before and after atomic position optimization . . . . . . . . . . . 80

6.1 Hydration of MgO and Ca-doped MgO with water vapor . . . . . . . . . . . 82
6.2 Schematic representation of thermochemical energy storage. Reprinted from

[147], © (2016) with permission from Elsevier . . . . . . . . . . . . . . . . . . 82
6.3 Surface slab model of MgO with 15 Å of vacuum between neighboring slabs . 84
6.4 Surface energies for MgO, Mg0.9Ca0.1O, and Mg0.8Ca0.2O as function of lattice

parameter a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Different possible adsorption structures of water molecules on binary cubic

materials. Used with permission of the Royal Society of Chemistry. Reprinted
from [154] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.6 Top view of the three slab models . . . . . . . . . . . . . . . . . . . . . . . . 87
6.7 Surface slab of (Mg0.9Ca0.1)O with one adsorbed and dissociated water molecule 88
6.8 Stability of adsorbed water on mixed (Mg,Ca)O surfaces. Reprinted from [155],

© (2017) with permission from WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.9 Simulated enthalpy of formation (a) and Gibbs free energy (b). Reprinted
from [155], © (2017) with permission from WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Example of an energy-volume curve of SnO3 . . . . . . . . . . . . . . . . . . . 94
7.2 Test set structures. Reproduced from [159] under CC BY 4.0 . . . . . . . . . 95
7.3 Results of a comparison of 9 pseudopotential codes with the reference test set

presented in [159]. Reproduced from [159] under CC BY 4.0 . . . . . . . . . . 96
7.4 Difference density plots of three prototypical cases . . . . . . . . . . . . . . . 98
7.5 Elemental map of the number of binaries contained in the binary testset per

element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

104



List of Tables

3.1 Timings of a performance test of k-point parallelization in WIEN2k . . . . . 44

4.1 “Times of different steps of the WIEN2k subprogram lapw1.” Initially pub-
lished in [123] © 2016 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Test set members of the 3DDENS benchmark . . . . . . . . . . . . . . . . . . 57
4.3 Comparison of the benchmark results of the new program 3DDENS . . . . . . 57
4.4 Execution times of pdsyevr and pdsygst for different grid geometries . . . 62
4.5 Parallel execution times of a small hybrid parallelization benchmark . . . . . 68
4.6 Parallel execution speedup of the benchmark in Table 4.5 . . . . . . . . . . . 68
4.7 Execution times of a second benchmark . . . . . . . . . . . . . . . . . . . . . 70
4.8 Speedup of the benchmark in Table 4.7 . . . . . . . . . . . . . . . . . . . . . 71

105





List of Algorithms

3.1 Pseudo-code representation of a “full” diagonalization during the eigensolv-
ing step of LAPW1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Pseudo-code representation of a “iterative” diagonalization during the
eigensolving step of LAPW1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Pseudo-code representation of the procedure used in the program lapw5
to obtain the electron density on a 2D grid. . . . . . . . . . . . . . . . . . . 55

4.2 Pseudo-code representation of the procedure used in the newly implemented
program 3ddens to obtain the electron density on a 3D grid. . . . . . . . 56

107





Abbreviations and Acronyms

a.u. atomic units
AFM Atomic Force Microscopy
APW Augmented Plane Waves

BLAS Basic Linear Algebra Subprograms
BO Born-Oppenheimer

CC Coupled Cluster
CI Configuration Interaction
CPU Central Processing Unit

DFT Density Functional Theory
DOS Density of States

ELPA Eigenvalue soLvers for Petaflop-Applications

FFTW Fastest Fourier Transform in the West

GGA Generalized Gradient Approximation
GTO Gaussian-Type Orbital

HDLO high derivative Local Orbital
HELO high energy Local Orbital
HF Hartree-Fock
HPC High-Performance Computing

ICSD Inorganic Crystal Structure Database
IO Input/Output

KS Kohn-Sham

109



LAPACK Linear Algebra PACKage
LAPW Linearized Augmented Plane Waves
LDA Local Density Approximation
LO Local Orbital of LAPW method
lo local orbital of APW+lo method
LSDA Local Spin Density Approximation

mGGA meta-GGA
MKL Math Kernel Library
MP Møller–Plesset
MPI Message Passing Interface
MR3 Multiple Relatively Robust Representations
MRE Mean Relative Error

NMR Nuclear Magnetic Resonance

OD Order-Disorder
OpenMP Open Multi-Processing

PAW Projector Augmented Wave
PBE Perdew-Burke-Ernzerhof
PBLAS Parallel BLAS

RPA Random Phase Approximation

ScaLAPACK Scalable LAPACK
SCF Self-Consistent Field
STM Scanning Tunneling Microscopy
STO Slater-Type Orbital

TDSE Time-Dependent Schrödinger Equation
TFD Thomas-Fermi-Dirac
TISE Time-Independent Schrödinger Equation

UEG Uniform Electron Gas

VML Vector Math Library
VSC Vienna Scientific Cluster

XAS X-ray Absorption Spectroscopy
XC exchange-correlation
XPS X-ray Photoelectron Spectroscopy

110



XRD X-Ray Diffraction

111





Bibliography

1. Nilsson, L. & Karplus, M. “Empirical energy functions for energy minimization
and dynamics of nucleic acids”. Journal of Computational Chemistry 7, 591–616
(1986).

2. Patel, S. & Brooks, C. L. “CHARMM fluctuating charge force field for proteins: I
parameterization and application to bulk organic liquid simulations”. Journal of
Computational Chemistry 25, 1–16 (2003).

3. Hammersley, J. M. & Handscomb, D. C. Monte Carlo Methods. isbn: 0-416-52340-4
(Methuen, London, 1975).

4. Binder, K. The Monte Carlo Method in Condensed Matter Physics. isbn: 0-387-
54369-4 (Springer, New York, 1995).

5. Jones, R. “Density functional theory: Its origins, rise to prominence, and future”.
Reviews of Modern Physics 87, 897–923 (2015).

6. Mardirossian, N. & Head-Gordon, M. “Thirty years of density functional theory
in computational chemistry: an overview and extensive assessment of 200 density
functionals”. Molecular Physics 115, 2315–2372 (2017).

7. Blaha, P., Schwarz, K., et al. WIEN2k: An Augmented Plane Wave plus Local
Orbitals Program for Calculating Crystal Properties. isbn: 3-9501031-1-2 (Vienna
University of Technology, Austria, 2019).

8. Blaha, P., Schwarz, K., et al. “WIEN2k: An APW+lo program for calculating the
properties of solids”. The Journal of Chemical Physics 152, 074101 (2020).

9. Levin, F. S. An Introduction to Quantum Theory, 129–173. 808 pp. isbn: 978-
0521598415 (Cambridge University Press, 2001).

10. Berman, P. R. Introductory Quantum Mechanics, 77–114. 653 pp. isbn: 978-3-319-
68598-4 (Springer International Publishing, 2018).

11. Nottale, L. & Célérier, M.-N. “Derivation of the postulates of quantum mechanics
from the first principles of scale relativity”. Journal of Physics A: Mathematical
and Theoretical 40, 14471–14498 (2007).

12. Schrödinger, E. “Quantisierung als Eigenwertproblem - Erste Mitteilung”. Annalen
der Physik 79(4), 361–376 (1926).

113

http://dx.doi.org/10.1002/jcc.540070502
http://dx.doi.org/10.1002/jcc.540070502
http://dx.doi.org/10.1002/jcc.10355
http://dx.doi.org/10.1002/jcc.10355
http://books.google.com/books?vid=ISBN0-416-52340-4
http://books.google.com/books?vid=ISBN0-387-54369-4
http://dx.doi.org/10.1103/revmodphys.87.897
http://dx.doi.org/10.1080/00268976.2017.1333644
http://dx.doi.org/10.1080/00268976.2017.1333644
http://dx.doi.org/10.1080/00268976.2017.1333644
http://books.google.com/books?vid=ISBN3-9501031-1-2
http://books.google.com/books?vid=ISBN3-9501031-1-2
http://dx.doi.org/10.1063/1.5143061
http://dx.doi.org/10.1063/1.5143061
http://dx.doi.org/10.1017/CBO9781139164177.006
http://books.google.com/books?vid=ISBN978-3-319-68598-4
http://dx.doi.org/10.1088/1751-8113/40/48/012
http://dx.doi.org/10.1088/1751-8113/40/48/012
http://dx.doi.org/https://doi.org/10.1002/andp.19263840404


13. Schrödinger, E. “Quantisierung als Eigenwertproblem - Zweite Mitteilung”. Annalen
der Physik 79(4), 489–527 (1926).

14. Schrödinger, E. “Quantisierung als Eigenwertproblem - Dritte Mitteilung”. Annalen
der Physik 80(4), 437–490 (1926).

15. Schrödinger, E. “Quantisierung als Eigenwertproblem - Vierte Mitteilung”. Annalen
der Physik 81(4), 109–139 (1926).

16. Schrödinger, E. “An Undulatory Theory of the Mechanics of Atoms and Molecules”.
Physical Review 28, 1049–1070 (1926).

17. Born, M. & Oppenheimer, R. “Zur Quantentheorie der Molekeln”. Annalen der
Physik 84(4), 457–484 (1927).

18. Schwenke, D. W. “Beyond the Potential Energy Surface: Ab initio Corrections
to the Born-Oppenheimer Approximation for H2O”. The Journal of Physical
Chemistry A 105, 2352–2360 (2001).

19. Holka, F., Szalay, P. G., et al. “Accurate ab initio determination of the adiabatic
potential energy function and the Born–Oppenheimer breakdown corrections for
the electronic ground state of LiH isotopologues”. The Journal of Chemical Physics
134, 094306 (2011).

20. Pack, R. T. & Hirschfelder, J. O. “Energy Corrections to the Born–Oppenheimer
Approximation. The Best Adiabatic Approximation”. The Journal of Chemical
Physics 52, 521–534 (1970).

21. Tajti, A., Szalay, P. G. & Gauss, J. “Perturbative treatment of the electron-
correlation contribution to the diagonal Born-Oppenheimer correction”. The Jour-
nal of Chemical Physics 127, 014102 (2007).

22. Hartree, D. R. “The Wave Mechanics of an Atom with a Non-Coulomb Central
Field. Part I. Theory and Methods”. Mathematical Proceedings of the Cambridge
Philosophical Society 24, 89–110 (1928).

23. Fock, V. “Näherungsmethode zur Lösung des quantenmechanischen Mehrkörper-
problems”. Zeitschrift für Physik 61, 126–148 (1930).

24. Slater, J. C. “Note on Hartree’s Method”. Physical Review 35, 210–211 (1930).
25. Hartree, D. R. & Hartree, W. “Self-consistent field, with exchange, for beryllium”.

Proceedings of the Royal Society of London. Series A - Mathematical and Physical
Sciences 150, 9–33 (1935).

26. Slater, J. C. “A Simplification of the Hartree-Fock Method”. Physical Review 81,
385–390 (1951).

27. Koopmans, T. “Über die Zuordnung von Wellenfunktionen und Eigenwerten zu
den Einzelnen Elektronen Eines Atoms”. Physica 1, 104–113 (1934).

28. Jensen, F. Introduction to Computational Chemistry 2nd Edition. 620 pp. isbn:
978-0470011874 (Wiley, 2011).

114

http://dx.doi.org/https://doi.org/10.1103/PhysRev.28.1049
http://dx.doi.org/10.1021/jp0032513
http://dx.doi.org/10.1021/jp0032513
http://dx.doi.org/10.1063/1.3555758
http://dx.doi.org/10.1063/1.3555758
http://dx.doi.org/10.1063/1.3555758
http://dx.doi.org/10.1063/1.1673017
http://dx.doi.org/10.1063/1.1673017
http://dx.doi.org/10.1063/1.2744014
http://dx.doi.org/10.1063/1.2744014
http://dx.doi.org/10.1017/s0305004100011919
http://dx.doi.org/10.1017/s0305004100011919
http://dx.doi.org/10.1007/bf01340294
http://dx.doi.org/10.1007/bf01340294
http://dx.doi.org/10.1103/physrev.35.210.2
http://dx.doi.org/10.1098/rspa.1935.0085
http://dx.doi.org/10.1103/physrev.81.385
http://dx.doi.org/https://doi.org/10.1016/S0031-8914(34)90011-2
http://dx.doi.org/https://doi.org/10.1016/S0031-8914(34)90011-2
http://books.google.com/books?vid=ISBN978-0470011874


29. Møller, C. & Plesset, M. S. “Note on an Approximation Treatment for Many-
Electron Systems”. Physical Review 46, 618–622 (1934).

30. Kohn, W. “Nobel Lecture: Electronic structure of matter—wave functions and
density functionals”. Reviews of Modern Physics 71, 1253–1266 (1999).

31. Strout, D. L. & Scuseria, G. E. “A quantitative study of the scaling properties
of the Hartree–Fock method”. The Journal of Chemical Physics 102, 8448–8452
(1995).

32. Jin, Y. & Bartlett, R. J. “Perturbation Improved Natural Linear-Scaled Coupled-
Cluster Method and Its Application to Conformational Analysis”. The Journal of
Physical Chemistry A 123, 371–381 (2018).

33. Hohenberg, P. & Kohn, W. “Inhomogeneous electron gas”. Physical Reviews 136,
B864–B871 (1964).

34. Sun, J., Furness, J. W. & Zhang, Y. in Mathematical Physics in Theoretical
Chemistry (ed S. M. Binder, J. E. H.) 119–159 (Elsevier, 2019). isbn: 978-0-12-
813651-5.

35. Becke, A. D. “Perspective: Fifty years of density-functional theory in chemical
physics”. The Journal of Chemical Physics 140, 18A301 (2014).

36. Thomas, L. H. “The calculation of atomic fields”. Mathematical Proceedings of the
Cambridge Philosophical Society 23, 542–548 (1927).

37. Fermi, E. “Un metodo statistico per la determinazione di alcune prioprietà
dell’atomo”. Rendiconti Academia Dei Lincei 6, 602–607 (1927).

38. Dirac, P. A. M. “Note on Exchange Phenomena in the Thomas Atom”. Mathematical
Proceedings of the Cambridge Philosophical Society 26, 376–385 (1930).

39. Teller, E. “On the Stability of Molecules in the Thomas-Fermi Theory”. Reviews
of Modern Physics 34, 627–631 (1962).

40. Karasiev, V. V. & Trickey, S. B. in Advances in Quantum Chemistry 221–245
(Elsevier, 2015).

41. Kohn, W. & Sham, L. J. “Self-consistent equations including exchange and corre-
lation effects”. Physical Reviews 140, A1133–A1138 (1965).

42. Perdew, J. P. Jacob’s ladder of density functional approximations for the exchange-
correlation energy. in AIP Conference Proceedings (AIP, 2001).

43. Tran, F., Stelzl, J. & Blaha, P. “Rungs 1 to 4 of DFT Jacob’s ladder: Extensive
test on the lattice constant, bulk modulus, and cohesive energy of solids”. The
Journal of Chemical Physics 144, 204120 (2016).

44. Ceperley, D. M. & Alder, B. J. “Ground State of the Electron Gas by a Stochastic
Method”. Physical Review Letters 45, 566–569 (1980).

45. Vosko, S. H., Wilk, L. & Nusair, M. “Accurate spin-dependent electron liquid
correlation energies for local spin density calculations: a critical analysis”. Canadian
Journal of Physics 58, 1200–1211 (1980).

115

http://dx.doi.org/10.1103/physrev.46.618
http://dx.doi.org/10.1103/physrev.46.618
http://dx.doi.org/10.1103/revmodphys.71.1253
http://dx.doi.org/10.1103/revmodphys.71.1253
http://dx.doi.org/10.1063/1.468836
http://dx.doi.org/10.1063/1.468836
http://dx.doi.org/10.1021/acs.jpca.8b07947
http://dx.doi.org/10.1021/acs.jpca.8b07947
http://dx.doi.org/10.1063/1.4869598
http://dx.doi.org/10.1063/1.4869598
http://dx.doi.org/10.1017/s0305004100011683
http://dx.doi.org/10.1017/s0305004100016108
http://dx.doi.org/10.1103/revmodphys.34.627
http://dx.doi.org/10.1063/1.1390175
http://dx.doi.org/10.1063/1.1390175
http://dx.doi.org/10.1063/1.4948636
http://dx.doi.org/10.1063/1.4948636
http://dx.doi.org/10.1103/physrevlett.45.566
http://dx.doi.org/10.1103/physrevlett.45.566
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1139/p80-159


46. Perdew, J. P. & Zunger, A. “Self-interaction correction to density-functional
approximations for many-electron systems”. Physical Review B 23, 5048–5079
(1981).

47. Perdew, J. P. & Wang, Y. “Accurate and simple analytic representation of the
electron-gas correlation energy”. Physical Review B 45, 13244–13249 (1992).

48. Oliver, G. L. & Perdew, J. P. “Spin-density gradient expansion for the kinetic
energy”. Physical Review A 20, 397–403 (1979).

49. Von Barth, U. & Hedin, L. “A local exchange-correlation potential for the spin
polarized case. i”. Journal of Physics C: Solid State Physics 5, 1629–1642 (1972).

50. Becke, A. D. “Density functional calculations of molecular bond energies”. The
Journal of Chemical Physics 84, 4524–4529 (1986).

51. Perdew, J. P., Ruzsinszky, A., et al. “Prescription for the design and selection of
density functional approximations: More constraint satisfaction with fewer fits”.
The Journal of Chemical Physics 123, 062201 (2005).

52. Perdew, J. P., Burke, K. & Ernzerhof, M. “Generalized Gradient Approximation
Made Simple”. Physical Review Letters 77, 3865–3868 (1996).

53. Perdew, J. P., Ruzsinszky, A., et al. “Restoring the Density-Gradient Expansion
for Exchange in Solids and Surfaces”. Physical Review Letters 100, 136406 (2008).

54. Zhang, Y. & Yang, W. “Comment on “Generalized Gradient Approximation Made
Simple””. Physical Review Letters 80, 890–890 (1998).

55. Filatov, M. & Thiel, W. “Exchange-correlation density functional beyond the
gradient approximation”. Physical Review A 57, 189–199 (1998).

56. Sun, J., Ruzsinszky, A. & Perdew, J. “Strongly Constrained and Appropriately
Normed Semilocal Density Functional”. Physical Review Letters 115, 036402
(2015).

57. Perdew, J. P., Kurth, S., et al. “Accurate Density Functional with Correct Formal
Properties: A Step Beyond the Generalized Gradient Approximation”. Physical
Review Letters 82, 2544–2547 (1999).

58. Tao, J., Perdew, J. P., et al. “Climbing the Density Functional Ladder: Nonempirical
Meta–Generalized Gradient Approximation Designed for Molecules and Solids”.
Physical Review Letters 91, 146401 (2003).

59. Perdew, J. P., Ruzsinszky, A., et al. “Workhorse Semilocal Density Functional for
Condensed Matter Physics and Quantum Chemistry”. Physical Review Letters
103, 026403 (2009).

60. Sun, J., Haunschild, R., et al. “Semilocal and hybrid meta-generalized gradient ap-
proximations based on the understanding of the kinetic-energy-density dependence”.
The Journal of Chemical Physics 138, 044113 (2013).

116

http://dx.doi.org/10.1103/physrevb.23.5048
http://dx.doi.org/10.1103/physrevb.23.5048
http://dx.doi.org/10.1103/physrevb.45.13244
http://dx.doi.org/10.1103/physrevb.45.13244
http://dx.doi.org/10.1103/physreva.20.397
http://dx.doi.org/10.1103/physreva.20.397
http://dx.doi.org/10.1088/0022-3719/5/13/012
http://dx.doi.org/10.1088/0022-3719/5/13/012
http://dx.doi.org/10.1063/1.450025
http://dx.doi.org/10.1063/1.1904565
http://dx.doi.org/10.1063/1.1904565
http://dx.doi.org/10.1103/physrevlett.77.3865
http://dx.doi.org/10.1103/physrevlett.77.3865
http://dx.doi.org/10.1103/physrevlett.100.136406
http://dx.doi.org/10.1103/physrevlett.100.136406
http://dx.doi.org/10.1103/physrevlett.80.890
http://dx.doi.org/10.1103/physrevlett.80.890
http://dx.doi.org/10.1103/physreva.57.189
http://dx.doi.org/10.1103/physreva.57.189
http://dx.doi.org/10.1103/physrevlett.115.036402
http://dx.doi.org/10.1103/physrevlett.115.036402
http://dx.doi.org/10.1103/physrevlett.82.2544
http://dx.doi.org/10.1103/physrevlett.82.2544
http://dx.doi.org/10.1103/physrevlett.91.146401
http://dx.doi.org/10.1103/physrevlett.91.146401
http://dx.doi.org/10.1103/physrevlett.103.026403
http://dx.doi.org/10.1103/physrevlett.103.026403
http://dx.doi.org/10.1063/1.4789414
http://dx.doi.org/10.1063/1.4789414


61. Wellendorff, J., Lundgaard, K. T., et al. “mBEEF: An accurate semi-local Bayesian
error estimation density functional”. The Journal of Chemical Physics 140, 144107
(2014).

62. Becke, A. D. “Density-functional thermochemistry. III. The role of exact exchange”.
The Journal of Chemical Physics 98, 5648–5652 (1993).

63. Perdew, J. P., Ernzerhof, M. & Burke, K. “Rationale for mixing exact exchange
with density functional approximations”. The Journal of Chemical Physics 105,
9982–9985 (1996).

64. Harl, J., Schimka, L. & Kresse, G. “Assessing the quality of the random phase
approximation for lattice constants and atomization energies of solids”. Physical
Review B 81, 115126 (2010).

65. Anisimov, V. I., Zaanen, J. & Andersen, O. K. “Band theory and Mott insulators:
Hubbard U instead of Stoner I”. Physical Review B 44, 943–954 (1991).

66. Grimme, S., Antony, J., et al. “A consistent and accurate ab initio parametrization
of density functional dispersion correction (DFT-D) for the 94 elements H-Pu”.
The Journal of Chemical Physics 132, 154104 (2010).

67. Dion, M., Rydberg, H., et al. “Van der Waals Density Functional for General
Geometries”. Physical Review Letters 92, 246401 (2004).

68. Román-Pérez, G. & Soler, J. M. “Efficient Implementation of a van der Waals
Density Functional: Application to Double-Wall Carbon Nanotubes”. Physical
Review Letters 103, 096102 (2009).

69. Zhao, Y., Lynch, B. J. & Truhlar, D. G. “Doubly Hybrid Meta DFT: New Multi-
Coefficient Correlation and Density Functional Methods for Thermochemistry and
Thermochemical Kinetics”. The Journal of Physical Chemistry A 108, 4786–4791
(2004).

70. Grimme, S. “Semiempirical hybrid density functional with perturbative second-
order correlation”. The Journal of Chemical Physics 124, 034108 (2006).

71. Perdew, J. P. & Levy, M. “Physical Content of the Exact Kohn-Sham Orbital
Energies: Band Gaps and Derivative Discontinuities”. Physical Review B 51, 1884–
1887 (1983).

72. Janak, J. F. “Proof that ∂E
∂ni

= ε in density-functional theory”. Physical Review B
18, 7165–7168 (1978).

73. Bachelet, G. B., Hamann, D. R. & Schlüter, M. “Pseudopotentials that work: From
H to Pu”. Physical Review B 26, 4199–4228 (1982).

74. Vanderbilt, D. “Soft self-consistent pseudopotentials in a generalized eigenvalue
formalism”. Physical Review B 41, 7892–7895 (1990).

75. Blöchl, P. E. “Projector augmented-wave method”. Physical Review B 50, 17953–
17979 (1994).

117

http://dx.doi.org/10.1063/1.4870397
http://dx.doi.org/10.1063/1.4870397
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1063/1.472933
http://dx.doi.org/10.1063/1.472933
http://dx.doi.org/10.1103/physrevb.81.115126
http://dx.doi.org/10.1103/physrevb.81.115126
http://dx.doi.org/10.1103/physrevb.44.943
http://dx.doi.org/10.1103/physrevb.44.943
http://dx.doi.org/10.1063/1.3382344
http://dx.doi.org/10.1063/1.3382344
http://dx.doi.org/10.1103/physrevlett.92.246401
http://dx.doi.org/10.1103/physrevlett.92.246401
http://dx.doi.org/10.1103/physrevlett.103.096102
http://dx.doi.org/10.1103/physrevlett.103.096102
http://dx.doi.org/10.1021/jp049253v
http://dx.doi.org/10.1021/jp049253v
http://dx.doi.org/10.1021/jp049253v
http://dx.doi.org/10.1063/1.2148954
http://dx.doi.org/10.1063/1.2148954
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.51.1884
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.51.1884
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.18.7165
http://dx.doi.org/10.1103/physrevb.26.4199
http://dx.doi.org/10.1103/physrevb.26.4199
http://dx.doi.org/10.1103/physrevb.41.7892
http://dx.doi.org/10.1103/physrevb.41.7892
http://dx.doi.org/10.1103/physrevb.50.17953


76. Martin, R. M. Electronic Structure: Basic Theory and Practical Methods (Cam-
bridge University Press, 2004).

77. Woods, N. D., Payne, M. C. & Hasnip, P. J. “Computing the self-consistent field
in Kohn–Sham density functional theory”. Journal of Physics: Condensed Matter
31, 453001 (2019).

78. Hartree, D. R. “The Wave Mechanics of an Atom with a Non-Coulomb Central
Field. Part II. Some Results and Discussion”. Mathematical Proceedings of the
Cambridge Philosophical Society 24, 111–132 (1928).

79. Kresse, G. & Hafner, J. “Ab initiomolecular dynamics for liquid metals”. Physical
Review B 47, 558–561 (1993).

80. Kresse, G. & Furthmüller, J. “Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set”. Computational Materials
Science 6, 15–50 (1996).

81. Kresse, G. & Furthmüller, J. “Efficient iterative schemes forab initiototal-energy
calculations using a plane-wave basis set”. Physical Review B 54, 11169–11186
(1996).

82. Gulans, A., Kontur, S., et al. “exciting: a full-potential all-electron package imple-
menting density-functional theory and many-body perturbation theory”. Journal
of Physics: Condensed Matter 26, 363202 (2014).

83. Marks, L. D. & Luke, D. R. “Robust mixing for ab initio quantum mechanical
calculations”. Physical Review B 78 (2008).

84. Blaha, P., Schwarz, K., et al. “Full-potential, linearized augmented plane wave
programs for crystalline systems”. Computer Physics Communications 59, 399–415
(1990).

85. Schwarz, K., Blaha, P. & Madsen, G. “Electronic structure calculations of solids us-
ing the WIEN2k package for material sciences”. Computer Physics Communications
147, 71–76 (2002).

86. Schwarz, K. & Blaha, P. “Solid state calculations using WIEN2k”. Computational
Materials Science 28, 259–273 (2003).

87. Tran, F., Stelzl, J., et al. “Simple way to apply nonlocal van der Waals functionals
within all-electron methods”. Physical Review B 96, 054103 (2017).

88. Bagheri, M. & Blaha, P. “DFT calculations of energy dependent XPS valence
band spectra”. Journal of Electron Spectroscopy and Related Phenomena 230, 1–9
(2019).

89. Tran, F. & Blaha, P. “Accurate Band Gaps of Semiconductors and Insulators with
a Semilocal Exchange-Correlation Potential”. Physical Review Letters 102, 226401
(2009).

90. Karsai, F., Tran, F. & Blaha, P. “On the importance of local orbitals using second
energy derivatives for d and f electrons”. Computer Physics Communications 220,
230–238 (2017).

118

http://dx.doi.org/10.1017/cbo9780511805769
http://dx.doi.org/10.1088/1361-648x/ab31c0
http://dx.doi.org/10.1088/1361-648x/ab31c0
http://dx.doi.org/10.1017/s0305004100011920
http://dx.doi.org/10.1017/s0305004100011920
http://dx.doi.org/10.1103/physrevb.47.558
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/physrevb.54.11169
http://dx.doi.org/10.1103/physrevb.54.11169
http://dx.doi.org/10.1088/0953-8984/26/36/363202
http://dx.doi.org/10.1088/0953-8984/26/36/363202
http://dx.doi.org/10.1103/physrevb.78.075114
http://dx.doi.org/10.1103/physrevb.78.075114
http://dx.doi.org/10.1016/0010-4655(90)90187-6
http://dx.doi.org/10.1016/0010-4655(90)90187-6
http://dx.doi.org/10.1016/s0010-4655(02)00206-0
http://dx.doi.org/10.1016/s0010-4655(02)00206-0
http://dx.doi.org/10.1016/s0927-0256(03)00112-5
http://dx.doi.org/10.1103/physrevb.96.054103
http://dx.doi.org/10.1103/physrevb.96.054103
http://dx.doi.org/10.1016/j.elspec.2018.11.002
http://dx.doi.org/10.1016/j.elspec.2018.11.002
http://dx.doi.org/10.1103/physrevlett.102.226401
http://dx.doi.org/10.1103/physrevlett.102.226401
http://dx.doi.org/10.1016/j.cpc.2017.07.008
http://dx.doi.org/10.1016/j.cpc.2017.07.008


91. Bloch, F. “Über die Quantenmechanik der Elektronen in Kristallgittern”. Zeitschrift
für Physik 52, 555–600 (1929).

92. Slater, J. C. “Wave Functions in a Periodic Potential”. Physical Review 51, 846–851
(1937).

93. Andersen, O. K. “Simple approach to the band-structure problem”. Solid State
Communications 13, 133–136 (1973).

94. Andersen, O. K. “Linear methods in band theory”. Physical Review B 12, 3060–
3083 (1975).

95. Singh, D. “Ground-state properties of lanthanum: Treatment of extended-core
states”. Physical Review B 43, 6388–6392 (1991).

96. Sjöstedt, E., Nordström, L. & Singh, D. “An alternative way of linearizing the
augmented plane-wave method”. Solid State Communications 114, 15–20 (2000).

97. Madsen, G. K. H., Blaha, P., et al. “Efficient linearization of the augmented
plane-wave method”. Physical Review B 64 (2001).

98. Michalicek, G., Betzinger, M., et al. “Elimination of the linearization error and
improved basis-set convergence within the FLAPW method”. Computer Physics
Communications 184, 2670–2679 (2013).

99. Anisimov, V. I., Solovyev, I. V., et al. “Density-functional theory and NiO photoe-
mission spectra”. Physical Review B 48, 16929–16934 (1993).

100. Czyżyk, M. T. & Sawatzky, G. A. “Local-density functional and on-site correlations:
The electronic structure of La2CuO4 and LaCuO3”. Physical Review B 49, 14211–
14228 (1994).

101. Grimme, S., Ehrlich, S. & Goerigk, L. “Effect of the damping function in dispersion
corrected density functional theory”. Journal of Computational Chemistry 32,
1456–1465 (2011).

102. Caldeweyher, E., Bannwarth, C. & Grimme, S. “Extension of the D3 dispersion
coefficient model”. The Journal of Chemical Physics 147, 034112 (2017).

103. Caldeweyher, E., Ehlert, S., et al. “A generally applicable atomic-charge dependent
London dispersion correction”. The Journal of Chemical Physics 150, 154122
(2019).

104. Caldeweyher, E., Mewes, J.-M., et al. “Extension and evaluation of the D4 London-
dispersion model for periodic systems”. Physical Chemistry Chemical Physics 22,
8499–8512 (2020).

105. Desclaux, J. “Hartree Fock Slater self consistent field calculations”. Computer
Physics Communications 1, 216–222 (1970).

106. Desclaux, J. “A multiconfiguration relativistic DIRAC-FOCK program”. Computer
Physics Communications 9, 31–45 (1975).

119

http://dx.doi.org/10.1007/bf01339455
http://dx.doi.org/10.1103/physrev.51.846
http://dx.doi.org/10.1016/0038-1098(73)90210-x
http://dx.doi.org/10.1103/physrevb.12.3060
http://dx.doi.org/10.1103/physrevb.43.6388
http://dx.doi.org/10.1103/physrevb.43.6388
http://dx.doi.org/10.1016/s0038-1098(99)00577-3
http://dx.doi.org/10.1016/s0038-1098(99)00577-3
http://dx.doi.org/10.1103/physrevb.64.195134
http://dx.doi.org/10.1103/physrevb.64.195134
http://dx.doi.org/10.1016/j.cpc.2013.07.002
http://dx.doi.org/10.1016/j.cpc.2013.07.002
http://dx.doi.org/10.1103/physrevb.48.16929
http://dx.doi.org/10.1103/physrevb.48.16929
http://dx.doi.org/10.1103/physrevb.49.14211
http://dx.doi.org/10.1103/physrevb.49.14211
http://dx.doi.org/10.1002/jcc.21759
http://dx.doi.org/10.1002/jcc.21759
http://dx.doi.org/10.1063/1.4993215
http://dx.doi.org/10.1063/1.4993215
http://dx.doi.org/10.1063/1.5090222
http://dx.doi.org/10.1063/1.5090222
http://dx.doi.org/10.1039/d0cp00502a
http://dx.doi.org/10.1039/d0cp00502a
http://dx.doi.org/10.1016/0010-4655(70)90008-1
http://dx.doi.org/10.1016/0010-4655(75)90054-5


107. Blackford, L. S., Demmel, J., et al. “An updated set of basic linear algebra
subprograms (BLAS)”. ACM Transactions on Mathematical Software 28-2, 135–
151 (2002).

108. Anderson, E., Bai, Z., et al. LAPACK Users’ Guide Third. isbn: 0-89871-447-8
(paperback) (Society for Industrial and Applied Mathematics, Philadelphia, PA,
1999).

109. Choi, J., Dongarra, J. & Walker, D. Parallel Matrix Transpose Algorithms on
Distributed Memory Concurrent Computers. Tech. rep. (Center for Research on
Parallel Computation, Rice University, Houston, TX, USA).

110. Blackford, L. S., Choi, J., et al. ScaLAPACK Users’ Guide. isbn: 0-89871-397-8
(paperback) (Society for Industrial and Applied Mathematics, Philadelphia, PA,
1997).

111. Auckenthaler, T., Blum, V., et al. “Parallel solution of partial symmetric eigenvalue
problems from electronic structure calculations”. Parallel Computing 37, 783–794
(2011).

112. Marek, A., Blum, V., et al. “The ELPA library - scalable parallel eigenvalue
solutions for electronic structure theory and computational science”. Journal of
Physics: Condensed Matter 26, 21320 (2014).

113. Ipsen, I. C. F. “Computing an Eigenvector with Inverse Iteration”. SIAM Review
39, 254–291 (1997).

114. Kvasnicka, D. F., Gansterer, W. N. & Ueberhuber, C. W. A Level 3 Algorithm
for the Symmetric Eigenproblem. in VECPAR’98 - 3rd International Meeting on
Vector and Parallel Processing (1998), 267–275.

115. Parlett, B. N. & Dhillon, I. S. “Relatively robust representations of symmetric
tridiagonals”. Linear Algebra and its Applications 309, 121–151 (2000).

116. Blaha, P., Hofstätter, H., et al. “Iterative diagonalization in augmented plane wave
based methods in electronic structure calculations”. Journal of Computational
Physics 229, 453–460 (2010).

117. Parallel Computing (eds Trobec, R., Vajteršic, M. & Zinterhof, P.) isbn: 978-1-
84882-409-6 (Springer London, 2009).

118. Parallel Computing: On the Road to Exascale (eds Joubert, G. R., Leather, H.,
et al.) isbn: 978-1-61499-621-7 (IOS Press, 2016).

119. Robey, R. & Zamora, Y. Parallel and High Performance Computing. isbn: 978-
1617296468 (Manning Publications, 2021).

120. Dagum, L. & Menon, R. “OpenMP: an industry standard API for shared-memory
programming”. Computational Science & Engineering, IEEE 5, 46–55 (1998).

121. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard
Version 4.0 (2021).

120

http://books.google.com/books?vid=ISBN0-89871-447-8 (paperback)
http://books.google.com/books?vid=ISBN0-89871-397-8 (paperback)
http://dx.doi.org/10.1088/0953-8984/26/21/213201
http://dx.doi.org/10.1088/0953-8984/26/21/213201
http://dx.doi.org/10.1137/s0036144596300773
http://dx.doi.org/10.1016/s0024-3795(99)00262-1
http://dx.doi.org/10.1016/s0024-3795(99)00262-1
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2009.09.036
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2009.09.036
http://dx.doi.org/10.1007/978-1-84882-409-6
http://books.google.com/books?vid=ISBN978-1-61499-621-7
http://books.google.com/books?vid=ISBN978-1617296468
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf


122. Frigo, M. & Johnson, S. “The Design and Implementation of FFTW3”. Proceedings
of the IEEE 93, 216–231 (2005).

123. Ruh, T. & Blaha, P. Evaluating eigensolver schemes within the density functional
theory package WIEN2k. in 2016 International Conference on High Performance
Computing & Simulation (HPCS) (IEEE Conference Publications, 2016), 973–978.

124. Laskowski, R. & Blaha, P. “Calculations of NMR chemical shifts with APW-based
methods”. Physical Review B 85, 035132 (2012).

125. Laskowski, R. & Blaha, P. “Calculating NMR chemical shifts using the augmented
plane-wave method”. Physical Review B 89, 014402 (2014).

126. Laskowski, R. & Blaha, P. “NMR Shielding in Metals Using the Augmented Plane
Wave Method”. The Journal of Physical Chemistry C 119, 19390–19396 (2015).

127. Demmel, J. W., Marques, O. A., et al. “Performance and Accuracy of LAPACK’s
Symmetric Tridiagonal Eigensolvers”. SIAM Journal on Scientific Computing 30,
1508–1526 (2008).

128. Dhillon, I. S. & Parlett, B. N. “Multiple representations to compute orthogonal
eigenvectors of symmetric tridiagonal matrices”. Linear Algebra and its Applications
387, 1–28 (2004).

129. Dhillon, I. S., Parlett, B. N. & Vömel, C. “The design and implementation of the
MRRR algorithm”. ACM Transactions on Mathematical Software 32, 533–560
(2006).

130. Cuppen, J. “A Divide and Conquer Method for the Symmetric Tridiagonal Eigen-
problem.” Numerische Mathematik 36, 177–196 (1980/81).

131. Gu, M. & Eisenstat, S. C. “A Divide-and-Conquer Algorithm for the Symmetric
Tridiagonal Eigenproblem”. SIAM Journal on Matrix Analysis and Applications
16, 172–191 (1995).

132. Francis, J. G. F. “The QR Transformation A Unitary Analogue to the LR
Transformation–Part 1”. The Computer Journal 4, 265–271 (1961).

133. Francis, J. G. F. “The QR Transformation–Part 2”. The Computer Journal 4,
332–345 (1962).

134. Kara, M. & Kurki-Suonio, K. “Symmetrized multipole analysis of orientational
distributions”. Acta Crystallographica Section A 37, 201–210 (1981).

135. Kokalj, A. “Computer graphics and graphical user interfaces as tools in simulations
of matter at the atomic scale”. Computational Materials Science 28, 155–168
(2003).

136. Momma, K. & Izumi, F. “VESTA: a three-dimensional visualization system for
electronic and structural analysis”. Journal of Applied Crystallography 41, 653–658
(2008).

121

http://dx.doi.org/10.1109/jproc.2004.840301
http://dx.doi.org/10.1109/HPCSim.2016.7568440
http://dx.doi.org/10.1109/HPCSim.2016.7568440
http://dx.doi.org/10.1103/physrevb.85.035132
http://dx.doi.org/10.1103/physrevb.85.035132
http://dx.doi.org/10.1103/physrevb.89.014402
http://dx.doi.org/10.1103/physrevb.89.014402
http://dx.doi.org/10.1021/acs.jpcc.5b05947
http://dx.doi.org/10.1021/acs.jpcc.5b05947
http://dx.doi.org/10.1137/070688778
http://dx.doi.org/10.1137/070688778
http://dx.doi.org/10.1016/j.laa.2003.12.028
http://dx.doi.org/10.1016/j.laa.2003.12.028
http://dx.doi.org/10.1145/1186785.1186788
http://dx.doi.org/10.1145/1186785.1186788
http://eudml.org/doc/132696
http://eudml.org/doc/132696
http://dx.doi.org/10.1137/s0895479892241287
http://dx.doi.org/10.1137/s0895479892241287
http://dx.doi.org/10.1093/comjnl/4.3.265
http://dx.doi.org/10.1093/comjnl/4.3.265
http://dx.doi.org/10.1093/comjnl/4.4.332
http://dx.doi.org/10.1107/s0567739481000491
http://dx.doi.org/10.1107/s0567739481000491
http://dx.doi.org/10.1016/s0927-0256(03)00104-6
http://dx.doi.org/10.1016/s0927-0256(03)00104-6
http://dx.doi.org/10.1107/s0021889808012016
http://dx.doi.org/10.1107/s0021889808012016


137. Höfinger, S., Ruh, T. & Haunschmid, E. “Fast Approximate Evaluation of Parallel
Overhead from a Minimal Set of Measured Execution Times”. Parallel Processing
Letters 28, 1850003 (2018).

138. Householder, A. S. “Unitary Triangularization of a Nonsymmetric Matrix”. Journal
of the ACM 5, 339–342 (1958).

139. Stöger, B. & Ruh, T., Manuscript in preparation.
140. Scordari, F., Scandale, E. & Giacovazzo, C. “The crystal structure of chlorotionite,

CuK2Cl2SO4”. Zeitschrift für Kristallographie - Crystalline Materials 144, 226–237
(1976).

141. Dornberger-Schiff, K. & Grell-Niemann, H. “On the theory of order–disorder (OD)
structures”. Acta Crystallographica 14, 167–177 (1961).

142. Stöger, B., Weil, M., et al. “The Order-Disorder (OD) Polytypism of [Cu2ZnTeO4]2+

[SO4·H2O]2−”. Crystal Research and Technology 55, 1900182 (2020).
143. Ďurovič, S. “Desymmetrization of OD structures”. Kristall und Technik, 1047–1053

(14 1979).
144. Marks, L. D. “Fixed-Point Optimization of Atoms and Density in DFT”. Journal

of Chemical Theory and Computation 9, 2786–2800 (2013).
145. Marks, L. D. “Predictive Mixing for Density Functional Theory (and Other Fixed-

Point Problems)”. Journal of Chemical Theory and Computation 17, 5715–5732
(2021).

146. Monkhorst, H. J. & Pack, J. D. “Special points for Brillouin-zone integrations”.
Physical Review B 13, 5188–5192 (1976).

147. Deutsch, M., Müller, D., et al. “Systematic search algorithm for potential thermo-
chemical energy storage systems”. Applied Energy 183, 113–120 (2016).

148. Cot-Gores, J., Castell, A. & Cabeza, L. F. “Thermochemical energy storage and
conversion: A-state-of-the-art review of the experimental research under practical
conditions”. Renewable and Sustainable Energy Reviews 16, 5207–5224 (2012).

149. Tsirelson, V. G., Avilov, A. S., et al. “X-ray and Electron Diffraction Study of
MgO”. Acta Crystallographica Section B Structural Science 54, 8–17 (1998).

150. Shen, C., Liu, R., et al. “Phase stability study of La1.2Ca1.8Mn2O7”. Materials
Research Bulletin 36, 1139–1148 (2001).

151. Vegard, L. “Die Konstitution der Mischkristalle und die Raumfüllung der Atome”.
Zeitschrift für Physik 5, 17–26 (1921).

152. Alfonso, D. R., Snyder, J. A., et al. “Opposite rumpling of the MgO and CaO (100)
surfaces: A density-functional theory study”. Physical Review B 62, 8318–8322
(2000).

153. Logsdail, A. J., Mora-Fonz, D., et al. “Structural, energetic and electronic properties
of (100) surfaces for alkaline earth metal oxides as calculated with hybrid density
functional theory”. Surface Science 642, 58–65 (2015).

122

http://dx.doi.org/10.1142/s0129626418500032
http://dx.doi.org/10.1142/s0129626418500032
http://dx.doi.org/10.1145/320941.320947
http://dx.doi.org/10.1524/zkri.1976.144.16.226
http://dx.doi.org/10.1524/zkri.1976.144.16.226
http://dx.doi.org/10.1107/s0365110x61000607
http://dx.doi.org/10.1107/s0365110x61000607
http://dx.doi.org/10.1002/crat.201900182
http://dx.doi.org/10.1002/crat.201900182
http://dx.doi.org/10.1021/ct4001685
http://dx.doi.org/10.1021/acs.jctc.1c00630
http://dx.doi.org/10.1021/acs.jctc.1c00630
http://dx.doi.org/10.1103/physrevb.13.5188
http://dx.doi.org/10.1016/j.apenergy.2016.08.142
http://dx.doi.org/10.1016/j.apenergy.2016.08.142
http://dx.doi.org/10.1016/j.rser.2012.04.007
http://dx.doi.org/10.1016/j.rser.2012.04.007
http://dx.doi.org/10.1016/j.rser.2012.04.007
http://dx.doi.org/10.1107/s0108768197008963
http://dx.doi.org/10.1107/s0108768197008963
http://dx.doi.org/10.1016/s0025-5408(01)00588-8
http://dx.doi.org/10.1007/bf01349680
http://dx.doi.org/10.1103/physrevb.62.8318
http://dx.doi.org/10.1103/physrevb.62.8318
http://dx.doi.org/10.1016/j.susc.2015.06.012
http://dx.doi.org/10.1016/j.susc.2015.06.012
http://dx.doi.org/10.1016/j.susc.2015.06.012


154. Hu, X. L., Carrasco, J., et al. “Trends in water monomer adsorption and dissociation
on flat insulating surfaces”. Physical Chemistry Chemical Physics 13, 12447 (2011).

155. Müller, D., Knoll, C., et al. “Calcium Doping Facilitates Water Dissociation in
Magnesium Oxide”. Advanced Sustainable Systems 2, 1700096 (2017).

156. Peelaers, H., Steiauf, D., et al. “(InxGa1−x)2O3 alloys for transparent electronics”.
Physical Review B 92, 085206 (2015).

157. Okhotnikov, K., Charpentier, T. & Cadars, S. “Supercell program: a combinatorial
structure-generation approach for the local-level modeling of atomic substitutions
and partial occupancies in crystals”. Journal of Cheminformatics 8 (2016).

158. Doman, R. C., Barr, J. B., et al. “Phase Equilibria in the System CaO-MgO”.
Journal of the American Ceramic Society 46, 313–316 (1963).

159. Bosoni, E., Beal, L., et al. How to verify the precision of density-functional-
theory implementations via reproducible and universal workflows. 2023. arXiv:
2305.17274 [cond-mat.mtrl-sci].

160. Jain, A., Ong, S. P., et al. “Commentary: The Materials Project: A materials
genome approach to accelerating materials innovation”. APL Materials 1, 011002
(2013).

161. Draxl, C. & Scheffler, M. “The NOMAD laboratory: from data sharing to artificial
intelligence”. Journal of Physics: Materials 2, 036001 (2019).

162. Lejaeghere, K., Speybroeck, V. V., et al. “Error Estimates for Solid-State Density-
Functional Theory Predictions: An Overview by Means of the Ground-State
Elemental Crystals”. Critical Reviews in Solid State and Materials Sciences 39,
1–24 (2013).

163. Lejaeghere, K., Bihlmayer, G., et al. “Reproducibility in density functional theory
calculations of solids”. Science 351, aad3000–aad3000 (2016).

164. Birch, F. “Finite Elastic Strain of Cubic Crystals”. Physical Review 71, 809–824
(1947).

165. The FLEUR project. https://www.flapw.de/.
166. Zagorac, D., Müller, H., et al. “Recent developments in the Inorganic Crystal

Structure Database: theoretical crystal structure data and related features”. Journal
of Applied Crystallography 52, 918–925 (2019).

123

http://dx.doi.org/10.1039/c1cp20846b
http://dx.doi.org/10.1039/c1cp20846b
http://dx.doi.org/10.1002/adsu.201700096
http://dx.doi.org/10.1002/adsu.201700096
http://dx.doi.org/10.1103/physrevb.92.085206
http://dx.doi.org/10.1186/s13321-016-0129-3
http://dx.doi.org/10.1186/s13321-016-0129-3
http://dx.doi.org/10.1186/s13321-016-0129-3
http://dx.doi.org/10.1111/j.1151-2916.1963.tb11737.x
https://arxiv.org/abs/2305.17274
http://dx.doi.org/10.1063/1.4812323
http://dx.doi.org/10.1063/1.4812323
http://dx.doi.org/10.1088/2515-7639/ab13bb
http://dx.doi.org/10.1088/2515-7639/ab13bb
http://dx.doi.org/10.1080/10408436.2013.772503
http://dx.doi.org/10.1080/10408436.2013.772503
http://dx.doi.org/10.1080/10408436.2013.772503
http://dx.doi.org/10.1126/science.aad3000
http://dx.doi.org/10.1126/science.aad3000
http://dx.doi.org/10.1103/physrev.71.809
https://www.flapw.de/
http://dx.doi.org/10.1107/s160057671900997x
http://dx.doi.org/10.1107/s160057671900997x

	Kurzfassung
	Abstract
	Acknowledgements
	Introduction
	Structure of the Thesis

	Density Functional Theory
	The Wave Function 
	Foundation of Density Functional Theory
	Formalism of Kohn-Sham
	Exchange-Correlation Functionals
	Solving the KS-Equations – Eigenvalue Problem
	Self Consistent Field (SCF)

	WIEN2k
	History
	Expansion of Kohn-Sham-Orbitals
	Flow of Calculations
	Solving the Generalized Eigenvalue Problem
	Parallelization in WIEN2k

	Performance and Optimization
	Benchmark of WIEN2k 14.2
	Choice of Algorithm
	Using Optimized Libraries for Parallel Calculations
	Hybrid Parallelization

	Optimizing Atomic Positions
	Experimental Background
	Simulating the Diffraction Peaks

	Adsorption on Surfaces
	Thermochemical Energy Storage
	Simulating Mixed-Oxide Surfaces
	Results

	The Delta-Project
	The Original Delta-Benchmark
	Extending the Test Set – Elemental Crystals and Oxides
	Extending the Test Set Further – Real Binaries

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations and Acronyms
	Bibliography

