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Abstract

A method for the shape optimization of a cavity for the injection molding process is
implemented and tested. This is necessary because shrinkage and warpage occur dur-
ing the cooling process. As a result, the shapes of the cavity and the molding differ.
Since the shape of the molding depends directly on the cavity, an environment is im-
plemented in PYTHON which allows to determine an optimized shape of the cavity.

The process of injection molding is modelled using the finite element method. The
process before ejection is simulated with aid of help of a time-dependent thermal con-
ductivity model. Shrinkage and warpage that occur during cooling after ejection are
described by a non-linear elasticity equation which also takes thermoelastic material
behavior into account.

These simulations are integrated into an optimization algorithm which utilizes free-
form deformation to change the shape of the cavity. The aim of the optimization is
to achieve the smallest possible deviation between the geometry of the molding and
a reference geometry. For this purpose, an objective function is introduced, which
defines a scalar value for the shape deviation.

The framework is examined in 3D in relation to the impact of the choice of different
optimization algorithms, the influence of its design parameters, their sensitivities and
the impact of an initial guess. Finally, a real-world application case is optimized with
the presented method.
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Kurzfassung

Eine Methode zur Formoptimierung einer Kavitätsgeometrie für den Kunststoffspritz-
guss wird implementiert und getestet. Dies ist notwendig, da es während des Abküh-
lungsvorgangs beim Kunststoffspritzgussverfahren zu Schwindungen und Verzug im
Bauteil kommt, was zur Folge hat, dass sich die Formen von Kavität und Werkstück
unterscheiden. Da die Werkstückform direkt von der Kavität abhängt, soll eine Umge-
bung in PYTHON geschaffen werden, die es erlaubt eine geeignete Form der Kavität zu
ermitteln.

Der Prozess des Kunststoffspritzgusses wird mithilfe der Finiten Elemente Methode
(FEM) modelliert. Dabei wird der Prozess vor dem Auswurf mithilfe einer zeitab-
hängigen Wärmeleitungsgleichung simuliert. Schwindung und Verzug während des
Abkühlens nach dem Auswurf wird mit einer nicht-linearen Elastizitätsgleichung be-
schrieben, welche zusätzlich das thermoelastische Materialverhalten berücksichtigt.

Diese Simulation sind in einen Optimierungsalgorithmus eingebunden, welcher mit-
hilfe einer Free-Form-Deformation die Kavitätsgeometrie verändert. Ziel der Opti-
mierung ist dabei eine möglichst kleine Abweichung zwischen der Geometrie des
Werkstücks und einer Referenzgeometrie. Hierfür wird eine Zielfunktion eingeführt,
welche einen skalaren Wert für die Formabweichung errechnet.

Die Umgebung zur Formoptimierung der Kavitätsgeometrie für den Kunststoffspritz-
guss wird in 3D untersucht. Dabei wird die Auswahl verschiedener Optimierungsal-
gorithmen, der Einfluss der Design Variablen, der Sensitivtäten sowie einer passenden
Initialisierung untersucht. Schließlich wird ein realer Anwendungsfall mit der vorge-
stellten Methode optimiert.



Master’s Thesis IV

List of Figures

1. Difference between the cavity shape and the molding shape [41]. . . . . 1
2. The molding shape is specified. With shape optimization, the cavity

shape can be determined [41]. . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. Scheme of the injection molding machine. The plasticizing mainly in-

cludes the screw (1), the hopper (2) and the nozzle (3). The mold is
formed by two halves (4) and (6). At the end of the process, the part (5)
can be ejected [33]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4. General shape optimization loop. Adapted and inspired by [29]. . . . . . 6
5. Illustration of the Hausdorff Distance between two sets A and B [2]. . . . . 16
6. Deformation of the mesh (blue) due to free form deformation. The spline

is illustrated in red, and the control point mesh in green. . . . . . . . . . 18
7. Optimization Loop. Dashed boxes mark the different components/pro-

grams of the framework with the indices referring according to Table 3.
The initial geometry Ω̃ is passed to the simulations (1). The result ge-
ometry Ω is compared with the reference geometry Ω̂ by the objective
function J (2). Until the optimum is reached, the algorithm (3) varies
the control points PkCP

. Based on the new set of control points, the up-
dated geometry Ωffd from the free-form deformation (4) initializes the
next simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8. Class structure of the IMO framework. Arrows show strong relations,
where the whole object is passed to another class. Lines marked with a
diamond mark dependencies, but not as strong as the ones mentioned
before. The dashed arrow shows an external dependency. . . . . . . . . . 22

9. Representation of the optimization for a 2D square. On the left, the cur-
rent initial mesh is shown, and the resulting mesh after the simulation
on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

10. (a) The elements are pulled apart for this visualization of the cube test
case. (b) The control points are symmetrically distributed over the do-
main. The outline (red) marks the spline of the undeformed mesh. Black
points mark the location of the control points. . . . . . . . . . . . . . . . . 27

11. (a) Temperature distribution after 0.2 seconds for the inner part of the
cube. The maximum temperature is in the center. (b) Displacement field
for the cross-section of the cube. The initial form is illustrated behind in
gray. Since no real material properties are modelled, the utilization of
units becomes unnecessary. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

12. Geometry of the L-Shape test case. The elements are pulled apart for
this visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



Master’s Thesis V

13. (a) Temperature distribution after 0.2 seconds for the inner part of the
L-Shape. (b) Displacement field (scaled by factor 5) for the L-Shape. The
initial form is illustrated behind in gray. Since no real material properties
are modelled, the utilization of units becomes unnecessary. . . . . . . . . 30

14. Plot of the Distance Function for the cube test case with 81 design param-
eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

15. FFD of the cube after the optimization. The gray mesh shows half of the
initial mesh. Since no real material properties are modelled, the utiliza-
tion of units becomes unnecessary. . . . . . . . . . . . . . . . . . . . . . . 33

16. Difference d between the simulated mesh and the reference mesh. For
a perfectly optimized molding shape, all discrepancies would be zero.
Since no real material properties are modelled, the utilization of units
becomes unnecessary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

17. Control point mesh with 27 CP for the L-Shape test case. . . . . . . . . . 34
18. Plot of the Distance Function for the L-Shape test case with 81 design

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
19. Plot of the Distance Function for the cube test case with 54 design param-

eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
20. Objecive function values for different numbers of design parameters for

the L-Shape test case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
21. Field plot for the design parameter sensitivity of the cube. The arrows

show the direction of the sensitivity; length and color indicate the value
(norm) of the sensitivity. All vectors are normalized with a min-max-scale. 40

22. Control point mesh for the L-Shape test case with 48 control points. Gray
marked control points are not in contact with the geometry. . . . . . . . . 41

23. Field plot for the design parameter sensitivity of the L-Shape. The ar-
rows show the direction of the sensitivity; length and color indicate the
value (norm) of the sensitivity. All vectors are normalized with a min-
max-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

24. Plot of the objective function for the L-Shape test case for different values
of r. With r, a new set of design parameters is automatically generated
from a sensitivity analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

25. Cube tests with and without initial guess. The index IG denotes for
which test the initial guess was used. . . . . . . . . . . . . . . . . . . . . . 44

26. L-Shape tests with and without initial guess. The index IG denotes for
which test the initial guess was used. . . . . . . . . . . . . . . . . . . . . . 45

27. Objective function values for the cube test case with the Hausdorff Distance. 46



Master’s Thesis VI

28. Comparison for the objective function values for a Hausdorff Distance
and Distance Function driven optimization with BOBYQA. Opt. Haus-
dorff : Haussdorf denotes the optimization which minimizes the Haus-
dorff Distance and measures the Hausdorff Distance. Opt. Hausdorff : Dis-
tance denotes the optimization which minimizes the Hausdorff Distance
and measures the Distance Function as a reference. . . . . . . . . . . . . . 47

29. Polyamide Nylon Cable Clamps [1]. . . . . . . . . . . . . . . . . . . . . . 52
30. Reference mesh and initial temperature distribution. A and B inidicate

the cutting surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
31. Field plot for the design parameter sensitivity of the cable clamp. The

arrows show the direction of the sensitivity, length and color indicate
the value (norm) of the sensitivity. All vectors are normalized with a
min-max-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

32. Control point mesh for the cable clamp. Gray points mark control points,
with reduced DoF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

33. The shape of the mold after the simulation. The difference d (in mm)
between the coordinates of the mold and the reference shape are colored. 55

34. Plot of the objective function for the cable clamp optimization. . . . . . . 56



Master’s Thesis VII

List of Tables

2. Definition of mesh terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3. Software dependencies for the IMO framework. The Indices refer to the

optimization loop illustrated in Figure 7. . . . . . . . . . . . . . . . . . . . 21
4. Cube test case parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5. Cube test case design parameters. . . . . . . . . . . . . . . . . . . . . . . . 31
6. Optimization results for the cube test case with 81 design parameters.

The variable n denotes function evaluations needed in order to reach
the minimum of the optimization. . . . . . . . . . . . . . . . . . . . . . . 32

7. Optimization results of the L-Shape test case with 81 design parame-
ters. The variable n describes the function evaluations needed in order
to reach the minimum of the optimization. . . . . . . . . . . . . . . . . . 34

8. Optimization results of the L-Shape test case with 81 design parame-
ters. The variable n describes the function evaluations needed in order
to reach the minimum of the optimization. . . . . . . . . . . . . . . . . . 36

9. L-Shape test case design parameters. . . . . . . . . . . . . . . . . . . . . . 38
10. Optimization results of the cube test case with 81 design parameters for

different values of r. The variable n describes the function evaluations
needed in order to reach the minimum of the optimization. . . . . . . . . 41

11. Results of the L-Shape test case optimization with 144 design parame-
ters for different values of r. The variable n describes the function eval-
uations needed in order to reach the minimum of the optimization. . . . 43

12. Square test case simulation parameters. . . . . . . . . . . . . . . . . . . . 59
13. Cube test case simulation parameters. . . . . . . . . . . . . . . . . . . . . 59
14. L-Shape test case simulation parameters. . . . . . . . . . . . . . . . . . . 59
15. Cable clamp simulation parameters. . . . . . . . . . . . . . . . . . . . . . 60
16. Cube test case with 54 design parameters. . . . . . . . . . . . . . . . . . . 60



Master’s Thesis VIII

List of Symbols and Abbreviations

Greek Symbols

αth Thermal Modulus
γ Thermal Expansion Factor
Γ Boundary of a Domain
δ(A,B) Hausdorff Distance between Point Clouds A and B

∆ Laplace Operator
η Parametric Coordinate
H Knot Vector
κ Thermal Diffusivity
λ Lame Constant
µ Lame Constant
ν Poisson Number
ξ Parametric Coordinate
Ξ Knot Vector
Π Energy Functional
ρ Density
Ω Domain
Ω̃ Initial Domain
Ω Result Domain
Ω̂ Target Domain
Ωffd Free-Form Deformation Domain
∇ Nabla Operator

Latin Symbols

Bi,j Control Net
cp heat capacity
C Cauchy-Green Deformation Tensor
d Dimension
DJ Objective Function Value
E Green-St. Venant Deformation Tensor
F Formal Deformation Gradient Tensor
I Identity Matrix
J(x) Objective Function
k Thermal Conductivity
kCP Control Point Index
Lp Metric with Degree p



Master’s Thesis IX

m Mesh
n Function Evaluations
Ni,p Basis Function for Spatial Dimension i and Degree p
Nk Interpolation Function
NCP Total Number of Control Points
PkCP

Control Point with index kCP

q Local Heat Flux
r Threshold for the Sensitivity
Res(v, T ) Residual
S Basis-Spline
T Temperature
tr Trace of a Matrix
SkCP
i Sensitivity of a Control Point in Spatial Direction i

S(v, T ) Dirichlet Boundary Condition
u Displacement Vector
v(x) Test Function
W Strain-Energy Density
x Coordinates Vector

Abbreviations

CP Control Point
DP Design Parameter
DoF Degree of Freedom
FEM Finite Element Method
FFD Free Form Deformation
IG Initial Guess
IMO Injection Molding Optimizer



Master’s Thesis 1

1. Introduction

One of the major processes of producing plastic parts is the injection molding pro-
cess. Typical examples for injection molded parts are mobile phone or computer cases,
lighting parts in the automotive sector or small plastic parts like bottle caps or cable
clamps.
During injection molding, hot and liquid plastic is injected into a cavity shape, and
eventually, the part will be ejected and fully solidifies. However, due to shrinkage and
warpage during the cooling process, the cavity shape can deviate from the shape of the
mold (see Figure 1). Another challenge in producing plastic components, is the trend
of producing biodegradable plastics. This includes taking different material properties
and deformation behavior into account.

Figure 1: Difference between the cavity shape and the molding shape [41].

Facing the problem of finding the desired cavity shape in order to achieve an optimal
molding shape, computational methods can be of use. Typical approaches in engi-
neering are the simulation of physical processes with the finite element method (FEM).
However, since a single forward simulation only provides information of the current
configuration, it is not sufficient to determine the optimal shape. Instead, one needs to
solve the inverse problem, e.g. via optimization procedures. One approach to address
this problem has been introduced in [41] and is based on directly solving the inverse
problem. The method is computationally very efficient, but suffers from the drawback
that it considers the cooling process as steady-state, i.e. infinitely slow [42]. Hence,
as an alternative approach, we investigate automatized shape optimization. The sec-
ond approach proposed in this work, is the combination of FEM with a mathematical
shape optimization. This idea is already applied e.g. in [14] for the process of plastic
extrusion. Unlike the first approach, this allows a transient consideration of the cool-
ing process. Further advantages of shape optimization are the option to include plastic
deformation as well as optimizing additional features, such as residual stresses or ma-
terial parameters.

Shape optimization approaches can be found in many fields of engineering, from aero-
dynamics to viscous flow analysis [28, 21]. An integral part of shape optimization is
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the method that is responsible for the shape deformation. In this work, we employ
free-form deformation (FFD) [30]. Applying FFD in combination with FEM, the finite
element mesh serves as the basis for both solving the governing equations and the ge-
ometry representation. In order to deform the finite element mesh smoothly to yield
geometry updates, the finite element mesh is embedded in a box spline, which can
be easily deformed by using relatively few geometric parameters. In this case, these
parameters are the positions of the control points.

Another important choice in shape optimization is the definition of an optimization
goal. Recent studies in the field of shape optimization for injection molding processes
focus on different optimization problems. In [40], the overall stresses within the mold-
ing are optimized, while in [32] the reduction of material waste is aimed at. However,
this work focuses on the optimization of the cavity shape (see Figure 2), such that the
desired molding shape is returned after the shrinkage and warpage process.

Figure 2: The molding shape is specified. With shape optimization, the cavity shape
can be determined [41].

In this work, a PYTHON-based framework was implemented that combines the sim-
ulation of the injection molding process with a shape optimization. An overview of
the injection molding process, the finite element method, shape optimization as well
as the used software tools in this work are described in Chapter 2. Chapter 3 focuses
on the methods for the simulation and optimization, including the definition of the
objective function and the free-form deformation. Further, the injection molding opti-
mization framework is proposed in this chapter. Subsequently, the framework is tested
in Chapter 4 regarding different optimization algorithms, the set of design variables,
the proposed sensitivity analysis, a proposal of an initial guess and two different objec-
tive functions. The findings from this chapter are discussed in Chapter 5. Combining
these results, in Chapter 6 the optimization of a cable clamp is shown, in order to give
an example for a real-world application of the proposed method. Finally, Chapter 7
sums up the results of this work, and ideas for future work are proposed.
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2. Theoretical Foundations

In this chapter, the injection molding process (see Section 2.1) and the finite element
method (see Section 2.2) are described briefly. Further, the fundamental concept of
shape optimization (see Section 2.3) including some useful optimization algorithms
are depicted. Finally, the software tools used in this work are described in Section 2.4.

2.1. Injection Molding Process

Injection molding is a manufacturing process for producing plastic parts. Molten plas-
tic is injected into a cavity form, where it cools down and forms the product [4]. Fig-
ure 3 shows the process of injection molding in a scheme. In the following, the process
steps are briefly explained [41].

Figure 3: Scheme of the injection molding machine. The plasticizing mainly includes
the screw (1), the hopper (2) and the nozzle (3). The mold is formed by two
halves (4) and (6). At the end of the process, the part (5) can be ejected [33].

Plasticizing
At first, the material (e.g. plastic pellets, solid granules) is filled into the plasticizing
unit through the hopper. By the rotation of the screw, the granules are transported
forward and compressed at the front of the screw. Both friction and the heated walls
of the plasticizing unit cause the material to heat up and melt.

Filling
Once enough molten plastic has accumulated at the front of the plasticizing unit, the
nozzle opens, and the molten plastic is injected into the mold. In order to press the
plastic out of the cylinder, the screw is pushed forwards. As soon as the plastic melt
comes into contact with the mold, it starts to solidify. The molds walls are actively
cooled down, in order to ensure fast solidification.
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Packing and Cooling
Due to shrinkage during material cooling, more plastic melt must be injected into the
mold for as long as possible. As such, a constant pressure is maintained on the melt.
The nozzle can be closed afterwards, and the plasticizing unit is ready to use for the
next melting process.

Ejection
The partially solidified molding is ejected by the opening of the mold. The workpiece
is not fully cooled down yet and will shrink and warp further during the continued
cool down. The part is either ejected or has to be extracted manually.

2.2. Finite Element Method

Numerical models of material behavior are often based on partial differential equa-
tions. Since the finding of an analytical solution of a partial differential equation ranges
from complex to impossible, a numerical solution is required.
The main idea of a numerical scheme is to search for a solution in a discrete or finite-
dimensional space. The finite element method is one such scheme.
The main idea in FEM is to split the computational domain into a finite number of sub-
domains. These subdomains mostly have the form of simple geometric shapes, such
as triangles and rectangles in 2D or prismatic and hexahedral elements in 3D.
In FEM, values of the unknown function (e.g. temperature) are computed at so-called
nodes, the intersection corners of elements. In between the nodes, the values are in-
terpolated using e.g. Lagrange polynomials or B-splines. Inserting this formulation
into form of the underlying partial differential equation generates a linear system for
the unknown function values. These are then determined using appropriate solution
algorithms for solving (nonlinear) systems of equations [12].

2.2.1. Geometry and Topology

When subdividing a computational domain into a set of non-overlapping elements,
one generates a so-called mesh. This mesh is fully defined by two properties: (1) The
position of the nodes comprising the mesh, and (2) the connectivity between nodes [13].
The nodal positions are stored in a file named Geometry, whereas the connectivity is
stored in the Topolgy file.
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2.2.2. Element Type

Before the FEM calculation can be started, a suitable element type must be selected.
There are a number of possibilities, depending on the number of nodes of the refer-
ence element. Second-order hexahedral elements are the most common used elements
for structural simulations. However, automatic meshing produces tetrahedral meshes
much better than hexahedral meshes. Comparative studies have demonstrated that
second-order tetrahedral meshes show good results compared to hexahedral meshes
of the same order [7]. Only for elasto-plastic deformation, the hexahedral mesh out-
performs the tetrahedral mesh [3].
This work focuses mainly on the implementation of second-order hexahedral elements.
Yet, it is fully applicable for second-order tetrahedral meshes as seen in Section 6.

2.3. Shape Optimization

2.3.1. Overview

Generally, optimization (or mathematical programming) aims at finding one or more
optimal parameters for a system. While optimization is used in various fields, such as
physics, biology, engineering, economics and business, the underlying mathematical
principles are identical [39]. Usually, shape optimization can be understood as a mini-
mization problem. To minimize a function or a system, one must find the minimum of
the objective function J(d):

min J(d). (1)

The objective function depends on the vector of the design parameters d. Discussing
the theory of minimization is sufficient, since max J(d) = −min(−J(d). Minimization
problems often include constraints or inequalities that need to be satisfied [29].

In engineering applications, structural optimization has become of great importance.
For example, construction work, automobile, or airplane structures can be optimized
for improved strength or stiffness properties and reduced weight or cost. Structural
optimization can be divided into two areas of research, the optimization of shape and
the optimization of the topology of the structural configuration [16].

Whereas topology optimization focuses on the distribution of the material within the
finite element model, shape optimization focuses on the geometry of the structure and
requires redefinition of the finite element mesh [16]. The design parameters are some-
how connected to the shape of the geometry. Changes within the topology, such as
adding or removing parts, are not allowed [16, 29].
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Usually, structural optimization follows a certain scheme, as illustrated in Figure 4. At
first, the model is initialized with input parameters from an Initial Draft, which is used
to compute a solution of the Analytical Model. By Evaluating the objective function, a
scalar value can be transferred to the Optimization Algorithm. The latter determines,
based on constraints and other restrictions, the new design parameters. If a point is
reached that satisfies the optimization criteria, the algorithm stops and the optimiza-
tion is successful [29].

Initial Draft

Analytical Model:
Analytical and

Numerical
Computation

Evaluation of Ob-
jective Function

Optimum
reached?

Variation of De-
sign Parameters

Optimal Design

no

yes

Optimization Algorithm

Figure 4: General shape optimization loop. Adapted and inspired by [29].

2.3.2. Optimization Algorithms

As mentioned above, the goal of the optimization is the minimization of a function J(x).
In numerical computing, there is need of iterative methods to yield the minimum of a
function. Quite popular minimization algorithms are e.g. the gradient descent algorithm
or Newton’s method. The gradient descent algorithm needs first order derivative informa-
tion, whereas Newton’s method needs both first and second order derivative informa-
tion. However, there are optimization problems, upcoming from scientific, engineering
or artificial intelligence applications, where only the output of a simulation is known.
Due to the fact, that the objective function for lacks a derivative, a derivative-free op-
timization or an approximation of the derivative is required [19]. In the following, an
overview of the optimization algorithms used in this work is given.

BFGS

BFGS is the acronym for the Broyden-Fletcher-Goldfarb-Shanno algorithm and is a
gradient-based iterative algorithm for solving unconstrained nonlinear optimization
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problems. BFGS usually needs the gradient of a function, and is therefore no derivative-
free optimization algorithm. However, if no gradient is available, it can be approximated
by the difference quotient. BFGS is a quasi-Newton method, in particular the Hessian
matrix is approximated at every iteration. The main idea is the minimization of dif-
ference between the current and the last approximation of the Hessian matrix. This
is done by comparing the inversions of the Hessian matrix approximations with the
Frobenius norm. BFGS uses the line-search method in order to find the minimum of
the problem [15].

BOBYQA

BOBYQA stands for Bounded Optimization BY Quadratic Approximation and was in-
vented by M. Powell in 2009 and tackles, like all of Powell’s algorithms, nonlinear
problems. The algorithm is a trust region approach trying to yield a quadratic model
of the objective function by interpolation. As there exists a Hessian matrix of any
quadratic function, the algorithm is somehow similar to the BFGS algorithm. BOBYQA

is minimizing the Frobenius norm of the comparison between the Hessian matrices of
the model and the function by a similar version of the Brodyn formula. So the main
difference between BFGS and BOBYQA is the search strategy. Note, that BOBYQA works
only with bounded constraints [25].

LINCOA

The LINCOA solves linear constraint optimization problems. Like BOBYQA, it uses
a quadratic approximation of the trust-region model and minimizing the Frobenius
norm. It is an adaption to BOBYQA, as it also solves linear constraint problems [26].

COBYLA

COBYLA stands for Constrained Optimization BY Linear Approximation and was in-
vented by M. Powell in 1994. COBYLA is a direct search optimization algorithm which
uses linear models built by approximation for nonlinear constraint problems. The al-
gorithm constructs a linear model, by interpolating the vertices of a simplex. While
minimizing the problem with the Simplex-Method, the algorithm does also propose
a new set of simplices iteratively. Since this algorithm uses linear programming, it is
different to the algorithms mentioned above [24].
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2.4. Software Tools

Nutils
All simulations described in this work are performed with the simulation software NU-
TILS developed by Evalf [35]. NUTILS is a free and open-source library for FEM com-
putations written in the programming language PYTHON [34]. Nutils is a well-suited
platform for numerical science, since it supports Isogeometric Analysis, the Finite Cell
Method (FCM), multi-physics, mixed methods, and hierarchical refinement.

Gustaf
GUSTAF is a PYTHON library to process and visualize numerical-analysis-geometries
and was developed by Tataratat at the Institute of Lightweight and Structural Biome-
chanics (TU Wien). It supports linear elements and is used especially for FEM and
Isogeometric Analysis. In this work, GUSTAF is used to perform the free-form defor-
mation as well as mesh generation and visualizations.

PDFO
Powell’s Derivative-Free Optimization solvers (PDFO) is a cross-platform package
providing interfaces for using Powell’s derivative-free optimization solvers, which
were originally implemented in Fortran 77. PDFO wraps the original code from Pow-
ell into the more user-friendly PYTHON environment [27].

SciPy
In the PYTHON library SCIPY [37] are many algorithms for optimization, integration,
interpolation and more mathematical problems implemented. SCIPY provides the
BFGS algorithm, which is described above.

PCU
POINT CLOUD UTILS or PCU is a PYTHON library for manipulating and processing 3D
point clouds and meshes [38]. It provides the implementation of the Hausdorff Distance,
used in this work.
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3. Methods

In this chapter, the simulation model for the injection molding process and important
terminology is introduced. Further, the mathematical formulation of the shape opti-
mization framework, including the definition of the objective function and the free-
form deformation, will be explained. Finally, the implemented injection molding opti-
mization (IMO) framework is depicted.

3.1. Simulation

This section contains the necessary equations to model the process of injection mold-
ing in a simplified manner. To keep the model simple, and therefore the computational
effort low, simplifying assumptions are made. For example, viscoelasticity, crystalliza-
tion as well as the in-flow behavior are neglected here. We divide the entire injection
molding process into two parts. The process before the ejection is described by the heat
conduction equation, while the part after the ejection considers the nonlinear elasticity
of the polymer. The heat simulation, as well as, the shrinkage and warpage simulation
are described in the following sections. In particular, we state the governing equa-
tions as well as the discretization method. For more detailed information about the
discretization method, refer to [12, 13].

3.1.1. Heat Simulation

As mentioned above, the process before the ejection is modelled by the heat conduction
equation. The transient simulation for this process is described in this section.

Governing Equations
Fourier’s law of thermal conduction reads

q = −k∇T, (2)

where q is the local heat flux density, k the thermal conductivity and ∇T the tempera-
ture gradient. Considering a small volume, the first law of thermodynamics yields

∂u

∂t
+∇q = 0. (3)

Here, u describes the internal energy per unit volume of the system, t the time and ∇q

the change of the heat flux. The differential equation for the internal energy is defined
as
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∂u

∂t
= cpρ

∂T

∂t
, (4)

where cp is the heat capacity under constant pressure and ρ the density. For a homoge-
neous medium, the heat conduction equation then yields

∂T

∂t
− κ∆T = 0. (5)

The thermal diffusivity κ is defined as

κ =
k

cpρ
. (6)

Spatial Discretization
The space-dependent part of the heat equation (see Equation 5) is discretized in this
section. The weak formulation of the heat equation yields

Ω

κ∇T (x)∇v(x)dΩ = 0, (7)

where v(x) are the test functions of the problem and Ω the domain. We require a dis-
crete solution variable to obtain a numerical formulation of the problem. Therefore, by
using the interpolation functions Nk for a node k, we write

T (x) =
k

i=1

NkT̃k (8)

and

v(x) =
k

i=1

Nkṽk, (9)

where T̃k and ṽk describe the nodal values. After partial integration, one obtains the
residual for the domain Ω

Res(v, T ) :=
Ω

κ∇T (x)∇v(x)dΩ
!
= 0. (10)
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After numerical integration, a linear system of equations is obtained, which needs to
be solved. The Dirichlet boundary condition can be defined as

S(v, T ) :=
Γ

(T − TDirichlet)
2dΓ

!
= 0. (11)

By seperatively minimizing S(v, T ) from the heat equation, we find the space con-
straints for the Dirichlet boundary condition to obtain the boundary values for Equa-
tion 10. This yields the condition T = TDirichlet on Γ, but needs to be implemented in
NUTILS as defined in Equation 11. Note, that Γ defines the boundary of the domain.

Temporal Discretization
In addition to discretizing in space, a temporal discretization is needed in order to solve
the time-dependent heat equation (see Equation 5). In the work at hand, the implicit
Euler method is used for solving the heat equation. For a time step n, the discretization
scheme yields

Tn+1 = Tn +∆tf(Tn+1, tn+1), (12)

with ∆t being the time step size and f the derivative of the function T with respect to
the time t. As this method is an implicit time scheme and one finds the variable Tn+1

on both sides of the equation, which leads to a system of equations for every time step.

3.1.2. Shrinkage and Warpage Simulation

The process after the ejection of the workpiece can be simulated with the shrinkage
and warpage simulation. In order to simplify this part of the simulation, we assume
that the material has solidified completely at the time of ejection. This way we can use
a stationary formulation of thermoelasticity. Hyperelastic material models for non-
linear elasticity are widely used in isothermal settings. Since thermal expansion and
contraction plays a crucial role in this process, we need to make some adjustments to
the isothermal formulations.

Governing Equations
The strain-energy density function for the Saint-Venant-Kirchhoff model is defined as

W (E) =
λ

2
[tr(E)]2 + µtr(E2), (13)
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where λ and µ are the Lamé parameters and E is the Green-St. Venant deformation
tensor [6]. It is defined as

E =
1

2
C− I , (14)

with I being the Identity Matrix and

C = F̃⊤F̃ (15)

being the right Cauchy-Green deformation tensor [6, 17]. We define the formal defor-
mation gradient tensor with respect to a displacement u as

F = ∇u+ I. (16)

Taking thermal expansion of the material into account, the deformation gradient tensor
is defined as

F̃ = γ− 1
dF, (17)

where d is the spatial dimension. For more detailed information about these equations,
refer to [6, 17, 41].
The thermal expansion factor γ can be linearized as

γ(T ) = 1 + αth(T − T0), (18)

with the thermal modulus αth [20]. Here, T is the temperature and T0 the initial tem-
perature.

Discretization
The displacements u, which occur during this process, can be approximated by

u(x) =
k

i=1

vk(x)ũk(x), (19)

where vk are the test functions of the problem. The energy functional for a domain Ω is
defined as
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Π :=
Ω

W (E)dΩ, (20)

with W (E) being the strain-energy-density function for the Saint-Venant-Kirchhoff
model as formulated in Equation 13). This functional can now be minimized in or-
der to obtain the solution for the displacement u.

3.2. Domain and Mesh Terminology

For a better comparison, we need to introduce different states of the domain as men-
tioned in [41]. First, we define an initial domain

Ω̃ ⊂ Rd, (21)

which will be the start domain of any simulation. The dimension of the domain is
given by the exponent d. The corresponding coordinates of this domain would be

x̃ ∈ Ω̃. (22)

As we have seen in the previous chapter, the goal of our simulation model is to obtain
the displacement field u : Ω̃ → Rd. The result is called the result domain and can be
described through

Ω := {x ∈ Rd : x = x̃+ u(x̃), x̃ ∈ Ω̃}. (23)

By knowing the displacement field u, we can simply determine the resulting state by
adding all the coordinates ũ of the initial domain with the displacement field u.
The shape of the result domain is the shape, which we want to optimize, in order to be
as close as possible to a target domain

Ω̂ ⊂ Rd. (24)

This shape is of importance for formulating the objective function (see Section 3.3.1).
For the sake of clarity, it has to be mentioned that we introduce a fourth state of the
domain, the free-form deformation domain
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Ωffd ⊂ Rd. (25)

This state is discussed more detailed in Section 3.3.2.

The difference between a domain and a mesh has to be highlighted. Whilst the domain
is a design space (e.g. a surface or volume), the mesh is the discretized form of the do-
main. Therefore, the domain is approximated by a set of smaller and simpler elements.
However, the state of the mesh corresponds to the state of the domains as explained
above. A visualization of the different states of a mesh is shown in Table 2.

Table 2: Definition of mesh terms.
Name Description

m̂

The reference mesh is the targeted shape of the iteration
process. It is required for determining the objective func-
tion value.

m̃

The initial mesh is the input mesh for the optimization
loop. It can be derived from a guess or estimated (see Sec-
tion 3.4.4).

mffd

The FFD mesh is the start mesh for the simulation. It is the
deformed mesh based on the variation of the input param-
eters (see Section 3.3.2). It is further used as the current
cavity shape.

m

The simulated mesh or result mesh is the resulting mesh
after the simulation is performed. It is the shape, which
has to be optimized.
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3.3. Optimization Strategy

This section provides the outline for the shape optimization framework. Firstly, two
potential objective functions are introduced, followed by an description of free-form
deformation, which is essential for updating the initial geometry. Subsequently, the
optimization strategy is presented.

3.3.1. Objective Function

Describing an objective function J(x) gives us the opportunity to express an abstract
problem, such as determining the difference between the result shape Ω and the tar-
geted shape Ω̂ , by means of a scalar value. Therefore, the objective function J is a
function of the type

J : x, x̂ → R, (26)

where x and x respectively describe the associated coordinates of the shapes. In the
following, two different objective functions will be introduced.

Distance Function
The Lp-metric is a commonly used formulation measuring similarities of shapes. For
two points x,y in Rk, the Lp-distance is defined as

Lp(x, y) =
k

i=0

(| xi − yi |)p
1
p
. (27)

For any p ≥ 1, Lp(x, y) defines a metric. If p = 2, one obtains the Euclidean Distance,
which returns the distance between two points x,y in the Euclidean Space [36].

With p = 2, we obtain the Euclidean distance of two corresponding points. Each point
of xi can be uniquely assigned to a point of x̂i.
We can now integrate over the whole boundary Γ of the result domain, in order to sum
up these distances. The objective function is then defined as

J(x, x̂) := Γ

L2(xi, x̂i)dΓ

Γ

dΓ
. (28)

The Distance Function can by understand as a summation of all distances over the
boundary of the domain and is normalized by the domain boundary.
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Hausdorff Distance
Another frequently used distance measurement formulation applied to point clouds
is the Hausdorff Distance. Furthermore, it can be applied to point clouds containing
different numbers of points [36]. For two point clouds A and B in R2 or R3, the directed
Hausdorff Distance is

δ⃗(A,B) = sup
a∈A

inf
b∈B

∥a− b∥, (29)

where ∥.∥ is the Euclidean metric [2]. Here, a and b are members of the point clouds A
and B, respectively. The supremum defines the lowest upper bound, and the infimum
the highest lower bound, respectively. The term infb∈B∥a − b∥ describes the (smallest)
distance from a point a to the point cloud B. This means, δ⃗(A,B) is defined as the
lowest upper bound (supremum) over all points in A of the distances to B [36]. In
Figure 5, the directed Hausdorff Distance from A to B is illustrated with a dashed line.

Figure 5: Illustration of the Hausdorff Distance between two sets A and B [2].

For a full comparison of both shapes, one uses the Hausdorff Distance given by

δ(A,B) = max δ⃗(A,B), δ⃗(B,A) . (30)

The objective function based on the Hausdorff Distance is defined as

J(x, x̂) := δ(x, x̂). (31)

3.3.2. Free-Form Deformation

Free-form deformation (FFD) was first described by Sederberg et al. [30] and has been
widely used in the context of solid deformation of geometric models. In FFD, a poly-
nomial box-spline is constructed around a solid (in this case a mesh) to be deformed.
By moving its control points in the physical space, one obtains a deformed solid. In
this work, FFD is performed by the use of so-called B-splines (basis splines). They will
be explained briefly in the following section.
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B-Splines
In terms of simplicity, only 2-dimensional splines will be observed in the following. A
more detailed description about splines and solid B-splines can be found in [9]. Assum-
ing an arbitrary control net (or control mesh) Bi,j with i = 1, 2, ..., I and j = 1, 2, ..., J

and the knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1} and H = {η1, η2, ..., ηn+p+1}, a 2D-surface
B-spline (basis spline) is given by

S(ξ, η) =
m

i

n

j

Ni,p(ξ)Nj,q(η)Bi,j. (32)

Hereby, Ni,p(ξ) and Nj,q(η) are the B-spline basis functions, and the indices p and q de-
scribe the polynomial order of the spline. The vectors ξ and η denote the parametric
coordinates.

Basis Function
The basis functions for the B-Splines are generated by using the Cox-de Boor formula-
tion [10]. For a specific knot vector Ξ and for p = 0 the basis functions are defined
as

Ni,0(ξ) =

1 if ξi ≤ ξ < ξi+1,

0 otherwise
(33)

and for p = 1, 2, 3, ... the basis functions are defined recursively as

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ)− ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (34)

Solid Deformation
A deformation of the parametric grid can be achieved by manipulation or translation of
the respective control points, and hence the reference mesh. Subsequently, the physical
coordinates of the deformed body can be recalculated. Therefore it is sufficient to move
the unique control points PkCP

which are contained within the control net Bi,j. We de-
fine a set of control points {P0,P1, ...,P} with PkCP

∈ Rd and 0 ≤ kCP ≤ NCP = I · J
denoting the total number of control points, which refers to Bi,j in Equation 32. In
terms of simplicity, we address the set of control points by a single index kCP .

An examplary free-form deformation of a 2D-mesh incorporating 9 elements is illus-
trated in Figure 6. Thereby, by embedding the initial mesh (see Figure 6a) and a control
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(a) Original Mesh with
9 control points

P̃5

(b) Deformed Mesh

P̃5

(c) Deformed Spline

Figure 6: Deformation of the mesh (blue) due to free form deformation. The spline is
illustrated in red, and the control point mesh in green.

mesh consisting of NCP = 9 control points, the initial shape can be modified by means
of a FFD. In particular, the control point P5 = (2, 1) is shifted to P̃5 = (2.5, 1.5), as seen
in Figure 6b. Through the displacement of the control point, the surface spline (red) is
deformed as illustrated in Figure 6c. Therefore, by applying FFD, a deformation of the
original mesh can be achieved by translating the control points of a surface spline.

Design Parameters
A design parameter corresponds to the spatial component i = x, y, z of a single control
point PkCP

. Therefore, the degree of freedom of a control point PkCP
indicates the

number of spatial axes along which it can be moved. It may be necessary to restrict
movement along certain coordinate axes by reducing the degree of freedom of a control
point.
Thus, from one single control point we obtain as many design parameters (DP) for
the objective function as specified by the degree of freedom. In other words, a single
design parameter describes the translation of a control point along a specific coordinate
axis.

3.3.3. Problem Formulation

In order to identify the optimal shape of the mold, we can formulate the shape opti-
mization problem as

Find argmin J(x(PkCP
), x̂) (35)

with PkCP
∈ Rd for 0 ≤ kCP ≤ NCP . The overall goal of the optimization loop is mini-

mizing the difference between the reference shape and the shape of the configuration
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after the cooling and shrinkage process completed. Therefore, a free-form deformation
of the initial mesh is necessary, as well as the simulation starting from the deformed
body Ωffd. The objective function J(x(PkCP

), x̂) describes the difference between these
shapes as a scalar value and has to be minimized.

3.4. IMO Framework

The PYTHON-based injection molding optimization (IMO) framework implements the
optimization problem explained in the section above. This section provides an over-
view of the optimization loop and describes the corresponding class structure of the
implemented shape optimization tool. Additionally, a demonstration of a 2D opti-
mization is given followed by a description of a sensitivity analysis method as well as
a proposal for an initial guess.

The entire loop of the shape optimization for injection mold design is illustrated in Fig-
ure 7. The dashed boxes mark different parts of the algorithms using different libraries,
which are depicted in Section 2.4.

Starting from an initial draft Ω̃, the first numerical solution of the injection mold pro-
cess will be determined according to the equations from Section 3.1. The results of the
heat conduction, as well as, the shrinkage and warpage simulations are collectively
referred to the result domain Ω.
The next step is the evaluation of the objective function J . With the reference domain Ω̂ a
scalar value for the differences between the two shapes is determined according to the
definition of Section 3.3.1. If the function value of J does not converge to the tolerance
limit, the algorithm varies the position of the control points PkCP

.
The new set of control points is passed to the free-form deformation and the deformed
configuration Ωffd is returned. This shape is used as input for the next simulation.
Once the algorithm determines the minimum of the objective function, the optimiza-
tion loops stops and returns the optimal design for the cavity.

Following the description of the optimization loop for the presented framework, it is
depicted which software tool from Section 2.4 is responsible for which component of
the optimization. An overview of the software dependencies as well as the functional-
ities of the components is provided in Table 3
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Start

Ω̃

Simulation of ini-
tial temperature

distribution

Simulation of the
cooling process

Ω

Evaluation of Ob-
jective Function
J(x(PkCP

), x̂)

Optimum
reached?

Variation of PkCP

Free-form de-
formation

Ωffd

Ω̂

Optimal Design

no

yes

1

2

3

4

Figure 7: Optimization Loop. Dashed boxes mark the different components/programs
of the framework with the indices referring according to Table 3. The initial
geometry Ω̃ is passed to the simulations (1). The result geometry Ω is com-
pared with the reference geometry Ω̂ by the objective function J (2). Until the
optimum is reached, the algorithm (3) varies the control points PkCP

. Based
on the new set of control points, the updated geometry Ωffd from the free-
form deformation (4) initializes the next simulation.
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Table 3: Software dependencies for the IMO framework. The Indices refer to the opti-
mization loop illustrated in Figure 7.

Index Software Description Input Output

1 NUTILS Simulation of the temperature
distribution and the cooling pro-
cess.

Ω̃ or Ωffd Ω

2 NUTILS, PCU Evaluation of the objective func-
tion J(x, x̂). The software is de-
pending on the chosen objective
function.

Ω, Ω̂ J(x, x̂)

3 PDFO, SCIPY The optimization of the objec-
tive function. The software is
depending on the chosen opti-
mization algorithm.

J(x, x̂) PkCP

4 GUSTAF The free-form-deformation of
the initial shape.

PkCP
Ωffd

3.4.1. Class Structure

Figure 8 shows the dependencies between the different classes of the IMO framework.
In the following, these classes and their main functionalities will be discussed briefly.

Simulation
The framework is constructed in such a way, that the simulation class is passed to the
framework externally. Therefore, the physical problem of interest can be defined freely.
The displacement field u is passed from the shrinkage and warpage simulation.

nuguMesh
All meshes within the framework are a combination of two mesh types, namely the
GUSTAF-mesh as well as the domain and geometry (geom) from the corresponding
NUTILS-mesh. This is necessary in order to address both the FFD and the simulation
from the same mesh object. With the current ControlPointsSet, a FFD of the initial
mesh is performed.

Functional
The Functional class stores four different meshes, which are related to the different
states of the configurations mentioned in Section 3.2. Further, this class points to the
chosen objective function and stores the current objective function value J(x) = DJ .
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Simulation
u

Functional
mref

mffd

msim

minitial

J(x)=DJ

objectiveFunction()

nuguMesh

gustaf-mesh
domain
geom

ffd() : nuguMesh

Optimization

method
Functional
ControlpointsSet

Function()
optimize()

Controlpoint

index
DoF
bounds

ControlpointsSet

dimCP

DPlist

Figure 8: Class structure of the IMO framework. Arrows show strong relations, where
the whole object is passed to another class. Lines marked with a diamond
mark dependencies, but not as strong as the ones mentioned before. The
dashed arrow shows an external dependency.

Controlpoint
The Controlpoint class stores all necessary information defining one control point PkCP

for the FFD spline. A control point is depicted by its index, the degree of freedom (DoF)
and the bounds for the optimization.

ControlpointsSet
This class defines the dimensions dimCP for the control point mesh of the FFD (see
Section 3.3.2). The variable DPlist (DP = design parameter) defines, which control point
PkCP

is allowed to be moved with respect to the specified degree of freedom.

Optimization
Finally, the Optimization class combines the Functional and ControlpointsSet classes. The
preferred optimization algorithm optimizes the dummy function Function(), which calls
the FFD and the simulation from the inside of the optimization loop. Different opti-
mization algorithms can be called from here.
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3.4.2. Optimization Representation in 2D

In this section, the introduced framework is represented as an example for a 2D mesh
consisting of 4× 4 elements, where each element has the size of 0.5× 0.5 units. For the
shrinkage and warpage simulation, the mesh is fixed at the center and no rotation is
allowed (simulation parameters in Table 12). Further, we define a set of 4 × 4 control
points with two degrees of freedom each,

which is why an optimization using BOBYQA using the Distance Function with 32 de-
sign parameters is carried out (see n=0). Goal of this optimization is to obtain a mold-
ing shape, which has the same shape as the initial mesh.

Each optimization loop in this framework starts with the simulation of the initial mesh
m̃ (n=0), where a significant discrepancy between the targeted shape m̂ and the refer-
ence shape m̃ can be observed.

Initially, the algorithm begins with moving every design parameter. For n=1, the con-
trol point P0 is moved along its first degree of freedom, which, in this case corresponds
to the x-axis. The deformed mesh mffd is passed to the simulation, and the result mesh
m is compared with m̂.

The second function evaluation is performed for the deformation according to the sec-
ond DoF of P0, which implies that P0 is moved along the y-axis. After this procedure
is repeated for each design parameter, the algorithm determines a new approximation
of the model to perform further function evaluations.

At function evaluation 150, a convexity can be observed at the bottom and the right
side of mffd, but the simulation does not yield a satisfactory result, as the result mesh
still deviates significantly from the desired shape. However, an improvement at the
bottom can be observed.

Finally, after 5545 function evaluations, the algorithm returns the meshes as illustrated
for n = 5545. The result shape closely matches the reference shape, and the objective
function value is DJ = 1.85310 · 10−4, which is considered acceptable.
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Figure 9: Representation of the optimization for a 2D square. On the left, the current
initial mesh is shown, and the resulting mesh after the simulation on the right.



Master’s Thesis 25

3.4.3. Sensitivity Analysis

The sensitivity S of the objective function J is defined as the partial derivative with
respect to a design parameter. Since a design parameter corresponds to the spatial
component i = x, y, z of a single control point indexed kCP , it can be expressed as

SkCP
i :=

∂J

∂xkCP
i

. (36)

Since we evaluate the sensitivity of a control point along one certain axis, we observe
the sensitivity of a design parameter. Due to the lack of information of the derivative
of the objective function the finite difference method is used as an approximation of
the derivative [29]. Then, the sensitivity yields

∂J

∂xkCP
i

≈
J |

x
kCP
i +h

+ J |
x
kCP
i −h

2h
, (37)

with h being the step size of the finite difference method. In this work, we assume
h = 10−6. By determining the sensitivities of the objective function, we can hierarchi-
cally order the influence of the individual design parameters, and therefore reduce the
number of design parameters by a threshold. We define the threshold r as

SkCP
i

Smax
i

< r, (38)

where Smax
i is the maximum sensitivity in a certain spatial direction. By selecting an

appropriate value for r, we can effectively eliminate design parameters that have mi-
nor influence on the optimization process.

3.4.4. Initial Guess

To speed up convergence of the optimization problem, an enhanced initial guess is
needed. Since the shrinkage and warpage simulation returns a displacement field u,
an initial guess could involve utilizing the inverse of the displacement field.

Therefore, by initializing with the target domain Ω̂ as the input for the whole simula-
tion of the process, the computed displacement field u after the shrinkage and warpage
simulation is defined as

u(x̃), x̃ ∈ Ω̃. (39)
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We define the initial guess by subtracting the displacement field from the initial coor-
dinates. The initial guess domain then is

ΩIG := {xIG ∈ Rd : xIG = x̃− u(x̃), x̃ ∈ Ω̃}. (40)
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4. Evaluation and Analysis of Test Cases

The presented framework is subjected to various tests. First, two test cases are defined:
a cube and a L-Shape. Based on these two test cases, five different studies are carried
out: (1) test with different algorithms, (2) influence of the choice of design parameters,
(3) performance of a sensitivity analysis, (4) check of the initial guess and (5) test of the
two objective functions.

4.1. Definition of Test Cases

In order to evaluate the proposed optimization scheme in the following chapters, two
test cases are defined in this section. The first consists of a 3D cube, while the second
test case has the 3D shape of an L. The cube yields a very basic testcase with high
symmetries, whereas the L-Shape represents a geometry with internal corners and a
varying wall thickness, in order to test the algorithms robustness.

4.1.1. Cube

The initial mesh of the cube with an edge length of 2 units consists of 64 hexahedral
elements and is illustrated in Figure 10a. The initial mesh serves as the reference mesh,
i.e. the aim of the optimization is to ensure that the mesh after the simulation has an
identical shape as the initial mesh after the simulation. As shown in Table 4 we use 3
control points per dimension, implying that we obtain 27 control points in total. They
are located symmetrical on the domain as seen in Figure 10b.

xz

y

(a) Mesh of the cube

xz

y

(b) Control Points

Figure 10: (a) The elements are pulled apart for this visualization of the cube test case.
(b) The control points are symmetrically distributed over the domain. The
outline (red) marks the spline of the undeformed mesh. Black points mark
the location of the control points.
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Table 4: Cube test case parameters.
Dimension 2× 2× 2

Nodes 5× 5× 5

Control points 3× 3× 3

The heat conduction and the cooling process are modelled as formulated in Section 3.1.
The boundary temperature of the solid body is defined as

TDirichelet = 1 on Γ, (41)

where Γ describes the surface of the solid body. The initial temperature is set to

TInitial = 100. (42)

Also, the rigid body movement is restricted by setting the displacement at the center
of the cube to

ux=1,y=1,z=1
!
= 0. (43)

Additionally, in order to make the problem statically determinant, the rotation around
all axes is restricted. All relevant parameters for the simulation are listed in Table 13.

The temperature distribution obtained by the heat conduction simulation (time = 0.2
seconds) is depicted in Figure 11a. The maximum of the temperature is located in the
center of the cube, while the boundary temperature on the surfaces is constant. We
denote, that the temperature displaying in some corners is not consistent, even though
the determined values are correct. This could be caused by the support of triangulation
of graphical processors.

Figure 11b shows the cross-section of the deformed mesh, with the color scale indicat-
ing the magnitude of displacement caused by shrinkage. In the background (in light
gray), one can see the initial mesh before the simulation. The deformed mesh has
shrunk in comparison with the initial mesh. Due to the boundary conditions, the dis-
placements are smallest in the center, whereas the largest displacements occur at the
corners.
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Figure 11: (a) Temperature distribution after 0.2 seconds for the inner part of the cube.
The maximum temperature is in the center. (b) Displacement field for the
cross-section of the cube. The initial form is illustrated behind in gray. Since
no real material properties are modelled, the utilization of units becomes
unnecessary.

4.1.2. L-Shape

The L-Shape test case consists of 320 elements, with a cross-section of 4 × 4 elements
and a side length of 12 elements as illustrated in Figure 8. This test case is chosen in
order to find out, if the presented method is suitable to handle corners of the geometry.
Since corners have a change in the cross-sectional area, warpage typically occurs in
these regions. Additionally, this shape does not show as many symmetries as the cube.
The rigid body movement is not allowed, which means

ux=0,y=0,z=0
!
= 0, (44)

and as explained above, any rotation around all axes is restricted.

x

y

z

Figure 12: Geometry of the L-Shape test case. The elements are pulled apart for this
visualization.
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The temperature distribution after the heat conduction simulation is calculated with
the same initial temperature values as in the above test case and is illustrated in Fig-
ure 13a. For the relevant simulation parameters, refer to Table 14.

The displacements from the shrinkage and warpage simulation are shown in Fig-
ure 13b, scaled by a factor 5, which allows a better observation of warpage effects.
Notably, curvature can be seen the outer surfaces (xmax and ymax).
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Figure 13: (a) Temperature distribution after 0.2 seconds for the inner part of the L-
Shape. (b) Displacement field (scaled by factor 5) for the L-Shape. The ini-
tial form is illustrated behind in gray. Since no real material properties are
modelled, the utilization of units becomes unnecessary.
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4.2. Algorithm Test

In order to assess the compatability and performance within the IMO framework, the
four algorithms presented in Section 2.3.2 will now be examined. For this purpose, the
two introduced test cases, namely the cube and L-Shape, will be evaluated.

4.2.1. Cube Test Case

First, we define the reference mesh as described in Table 4 which also serves as the
initial mesh of the optimization. Therefore, no enhanced guess about the optimization
solution is passed to the algorithm. The objective function is described through the
Distance Function as described in Section 3.3.1 and the solver’s specific tolerance level
is set to 10−6

The control mesh is defined by 3× 3× 3 grid of control points and since movement in
all three spatial directions is allowed, this yields in a set of 81 design parameters (see
Table 5). Each design parameter is constrained with the bound of (-0.5, 0.5), limiting
the movement of each design parameter to ± 0.5 units. Since BFGS cannot handle any
constraints, these bounds can be disregarded for all optimizations with BFGS.

Table 5: Cube test case design parameters.
Index DoF x DoF y DoF z

0-26 (-0.5, 0.5) (-0.5, 0.5) (-0.5, 0.5)

The result of this test case is presented in Table 6. Among the four algorithms, BFGS

shows fastest convergence, requiring 2214 function evaluations. BOBYQA algorithms
terminates after 4610 function evaluations, while COBYLA and LINCOA are stopped
after 40500 function evaluations due to default settings of the solver, as they failed
to converge. The last column of the table indicates the number of required function
evaluations in order to reach a value below < 6 · 10−3. It should be noted, that LINCOA

reaches this value needing only 200 function evaluations more than BOBYQA.

Since all algorithms converge to nearly the same value, and the value of the objective
function is sufficiently small, it can be observed that the optimum is reached for this
specific test case. As the number of design parameters is limited, further improvement
in the results can not be achieved.

Figure 14 illustrates the objective function values in a double-logarithmic scaling. The
fastest convergence is achieved by BFGS algorithm (in red). Additionally, BOBYQA (in
blue) and LINCOA (in orange) reach a low value at around 2000 function evaluations,
whereby the slower convergence rate of LINCOA can be observed. The figure clearly
demonstrates that COBYLA (in green) algorithm is remarkable slower at converging for
this test case.
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Table 6: Optimization results for the cube test case with 81 design parameters. The
variable n denotes function evaluations needed in order to reach the minimum
of the optimization.

Algorithm n Minimum < 6.3 · 10−3

BFGS 2214 6.29589 · 10−3 1067

BOBYQA 4610 6.29591 · 10−3 1956

COBYLA 40500 6.29642 · 10−3 8379

LINCOA 40500 6.29590 · 10−3 2159
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Figure 14: Plot of the Distance Function for the cube test case with 81 design parameters.
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Results BFGS Optimization
As all optimizations converge to similar values, it is sufficient to only show one final
output. Therefore, the results from the BFGS optimization are depicted in this section.

In Figure 15 we can see the cross section (normal to z-axis) of the deformed mesh mffd

of the cube and the cross section (normal to x-axis) of the initial mesh m̃ in gray. The
coloring indicates the magnitude of the deformation due to FFD. As defined in the
boundary conditions, the center of the cube is permitted to undergo any movement.
Therefore, the deformation arises from the inside to the surface of the cube, and highest
values are obtained for the corners.

1.0e-03

9.7e-02

0.02
0.04
0.06
0.08

u

y

z x

Figure 15: FFD of the cube after the optimization. The gray mesh shows half of the
initial mesh. Since no real material properties are modelled, the utilization
of units becomes unnecessary.

The difference between the mesh after the simulation m and the reference mesh m̂

is illustrated in Figure 16. The greatest difference at the surface is d = 0.011, which
corresponds to only 0.55% of the edge length.

6.3e-07

0.011
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Figure 16: Difference d between the simulated mesh and the reference mesh. For a
perfectly optimized molding shape, all discrepancies would be zero. Since
no real material properties are modelled, the utilization of units becomes
unnecessary.

The least differences occur at the middle of an edge or surface, which could be caused
by the presence of control points at exactly these locations. However, this does not
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apply for the corners of the cube, where the difference between m and m̂ is noticeable
bigger. The maximum differences between both meshes occur at the inner nodes of a
surface.

4.2.2. L-Shape Test Case

The performance of the different algorithms investigated above is now examined for
the L-Shape (see Section 4.1.2) with a net of 3×3×3 control points as shown in Figure 17.
For the control point bounds, the same values are used as in the previous test case (see
Table 5), the specific parameters for the simulation are listed in Table 14 and the solver’s
tolerance limits are set to 10−6.

x

y

z

Figure 17: Control point mesh with 27 CP for the L-Shape test case.

The final result of the optimizations is illustrated in Table 7. In this specific test case, it
is observed that only the algorithms utilizing quadratic approximations of the model
(BFGS, BOBYQA and LINCOA) converge successfully. In contrast, COBYLA was inter-
rupted automatically, as it did not converge within a suitable timeframe. Similar to the
cube test case, BFGS demonstrates the fastest convergence, while BOBYQA and LINCOA

also show good convergence behavior.

Table 7: Optimization results of the L-Shape test case with 81 design parameters. The
variable n describes the function evaluations needed in order to reach the min-
imum of the optimization.

Algorithm n Minimum < 3.8 · 10−3

BFGS 10168 3.79204 · 10−3 5577

BOBYQA 31977 3.79204 · 10−3 7493

COBYLA 40500 4.33890 · 10−3 -
LINCOA 33559 3.79204 · 10−3 10449
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Figure 18 illustrates the values of the objective function over the function evaluations in
a double logarithmic scaling. In comparison with the cube test case, BOBYQA (in blue)
as well as LINCOA (in orange) show an improved convergence behavior. However, the
BFGS (in red) algorithm outperforms both of them at the end of the optimization.
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Figure 18: Plot of the Distance Function for the L-Shape test case with 81 design param-
eters.
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4.3. Design Parameter Test

In order to prove the influence of the choice and number of design parameters, both of
the test cases from the previous section will be performed again, but with a different
set of design parameters.

4.3.1. Cube Test Case

The same test case from Section 4.2.1 is used with a reduced set of 54 design parame-
ters. The reduced set of design parameters is chosen, such that such that unnecessary
directions in the control point movement are blocked. E.g. it is not possible to move a
control point in direction to the center of the cube, as we know that the cooling of the
solid will cause shrinking, and therefore, the cube has to expand in order to reach the
optimal shape. Additionally, all symmetries are taken into account and a movement of
the control point located at the center of the cube is not needed. These conditions result
in the set of design parameters documented in Table 16. Parameters for the simulation
are listed in Table 13 and the tolerance level is 10−6.

The results from this test are shown in Table 8. Again, BFGS shows the best perfor-
mance, while BOBYQA and LINCOA have similar numbers of iterations. In comparison
to the results obtained from the 81-design parameter test case (see Figure 14) with unre-
stricted bounds, all show a significantly improved performance. The BFGS algorithm
needs approximately 72% of the function evaluations, while BOBYQA needs around
56%. LINCOA needs 20.3% of the function evaluations, and the most significant de-
crease is measured for COBYLA with 5.6% of the previous function evaluations.

Table 8: Optimization results of the L-Shape test case with 81 design parameters. The
variable n describes the function evaluations needed in order to reach the min-
imum of the optimization.

Algorithm n Minimum

BFGS 1595 6.29589 · 10−3

BOBYQA 2586 6.29590 · 10−3

COBYLA 2669 6.29590 · 10−3

LINCOA 8223 6.29590 · 10−3

The objective function values for this test case are illustrated in Figure 19. A rapid de-
cline can be observed for BOBYQA (in blue), whilst LINCOA (in orange) and COBYLA (in
green) perform comparatively worse. Towards the end of the optimization, BFGS (in
red) outperforms the other algorithms. While the trends for BFGS, BOBYQA and LIN-
COA are comparable to the previous testcases, COBYLA shows improved convergence
behavior.
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Figure 19: Plot of the Distance Function for the cube test case with 54 design parameters.
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4.3.2. L-Shape Test Case

The aim of the study is to identify the relationship between the function evaluations
needed and the determined minimum of the objective function for an increasing num-
ber of design parameters. Therefore, nine different sets of control meshes with an
increasing number of control points are defined as shown in Table 9. Simulation pa-
rameters are listed in Table 14 and the tolerance level is set to 10−5, so we expect a faster
convergence of the optimization.

Table 9: L-Shape test case design parameters.
Dimension Number of CP Number of DP

2× 2× 2 8 24
3× 3× 2 18 54
3× 3× 3 27 81
4× 4× 3 48 144
4× 4× 4 64 192
5× 5× 3 75 225
7× 7× 3 147 441
8× 8× 4 256 768
10× 10× 4 400 1200

Figure 20 depicts the final values of the objective function for each set of design pa-
rameters. For the tests with 441, 768 and 1200 design parameters, the optimization
was stopped manually at 200.000 function evaluations, as they did not reach the tol-
erance limit of the algorithm. The curve shows a hyperbolic behavior; an increasing
number of design parameter leads to a decrease of the objective function value. When
considering a lower number of design parameters, a significant drop of the objective
function can be observed. In contrast, as the number of design parameters increases,
the final value decreases at a slower rate. Since the number of needed function evalua-
tions increases with a higher number of design parameters (compare Section 4.3.1), the
computational time rises dramatically. Optimizing with a set of 4×4×4 control points
(2.23927 · 10−3) results in a better outcome compared to the optimization with 5× 5× 3

control points (2.42506 · 10−3), despite the number of design parameters is higher for
the second case.
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Figure 20: Objecive function values for different numbers of design parameters for the
L-Shape test case.
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4.4. Sensitivity Analysis

With a sensitivity analysis, the sensitivity of a single design parameter with respect to
the objective function can be measured. The proposed method from Section 3.4.3 is
tested in this section.

4.4.1. Cube Test Case

The sensitivity analysis is carried out for the cube test case with 81 design parameters
(see Section 4.1.1). Table 13 shows the simulation parameters, the tolerance level for
the BFGS algorithm is 10−5.

With the step size h = 10−6 (see Equation 37) and by using the three spatial components
of a control point, we can describe the sensitivity for one control point by a vector.
Then, the length (or norm) of this vector describes the magnitude of the sensitivity of
the control point with respect to the objective function and the geometry.
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Figure 21: Field plot for the design parameter sensitivity of the cube. The arrows show
the direction of the sensitivity; length and color indicate the value (norm) of
the sensitivity. All vectors are normalized with a min-max-scale.

The determined sensitivities are illustrated as vectors, normalized with a min-max-scale,
which means that the maximum values are normalized to one, and the minimum val-
ues are normalized to zero. Figure 21 shows the resulting vector field for the sensitivi-
ties of the cube’s control points. The corners of the cube exhibit the highest sensitivity,
whereas the sensitivity at the center is zero. This observation also underscores the
symmetry of the problem.
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With the threshold

SkCP
i

Smax
i

< r, (45)

we can eliminate design parameters with low sensitivities. By choosing r = 0.05, the
new set of design parameters that was automatically selected this way coincides with
the manually chosen set that was described in Section 4.3.1.

Optimization with the reduced set of design parameters show satisfactory results, as
illustrated in Table 10. Due to symmetrical reasons, the objective function converges to
the exact same value, while requiring approximately 70 % of the computational effort
compared to the test with 81 control points.

Table 10: Optimization results of the cube test case with 81 design parameters for dif-
ferent values of r. The variable n describes the function evaluations needed
in order to reach the minimum of the optimization.

r Number of DP n Minimum

0 81 1886 6.29590 · 10−3

0.05 54 1320 (69.99 %) 6.29590 · 10−3 (100 %)

4.4.2. L-Shape Test Case

The sensitivity analysis is examined for the L-Shape by using a set 4 × 4 × 3 control
points, which yields all together 144 design parameters. As illustrated in Figure 22,
control points which are not directly in contact with the geometry, are marked in gray.
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z

Figure 22: Control point mesh for the L-Shape test case with 48 control points. Gray
marked control points are not in contact with the geometry.
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We perform a sensitivity analysis (see Section 3.4.3) utilizing the BFGS-algorithm for
all 144 design variables with a tolerance of 10−5. The resulting normalized vector field
for the control points sensitivites is shown in Figure 23.

The highest sensitivities are observed at the outer layer of the L-shape, specifically
at x = 0 and y = 0, whereby the inner control points (z = 1) exhibit smaller sensi-
tivities. In contrast, the corners ((x, y, z) = {(0, 6, 0), (0, 6, 2), (0, 2, 0), (6, 0, 0), (6, 0, 2)})
mark control points with a high sensitivity to the problem.
The smallest values occur exactly in the corner (at x = 4, 6 and y = 4, 6), where the
control points are not in contact with the geometry.
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Figure 23: Field plot for the design parameter sensitivity of the L-Shape. The arrows
show the direction of the sensitivity; length and color indicate the value
(norm) of the sensitivity. All vectors are normalized with a min-max-scale.

In order to test if the number of design parameters can be reduced depending on the
results obtained by the sensitivity analysis, two tests are performed. The threshold for
the automatized elimination of insignificant design parameters is set to r = 0.025 or
r = 0.05, which automatically generates two sets of 122 and 105 design parameters,
respectively. These created sets (see Table 11) are tested against the original set (see
Section 4.3.2).

In both optimizations with an automatically reduced set of design parameters, the ob-
jective function yields higher values compared to the reference test case. For r = 0.05,
the final result is approximately 70% higher than the reference value, yet it requires
less function evaluations (35.83%). Objective functions values for r = 0.025 are ap-
proximately 10% greater than those for r = 0 and the number of function evaluations
are reduced by 46.94%.
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Table 11: Results of the L-Shape test case optimization with 144 design parameters for
different values of r. The variable n describes the function evaluations needed
in order to reach the minimum of the optimization.

r Number of DP n Minimum

0 144 36685 2.77900 · 10−3

0.025 122 17220 (46.94%) 3.05544 · 10−3 (109.95%)

0.05 105 13144 (35.83%) 4.79849 · 10−3 (169.43%)

The values of the objective function for the performed test cases are shown in Figure 24
in a double logarithmic scaling. The blue curve shows the evolution of the objective
function for the reference test case with r = 0, the values for the automatically gen-
erated design parameter sets for r = 0.025 and r = 0.05 are illustrated in green and
red, respectively. The red curve clearly shows the fast convergence, but with a signif-
icantly higher value compared to the other curves. The lines corresponding to r = 0

and r = 0.025 show a similar trend, with the line for r = 0 showing a drop towards the
end of the optimization.
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Figure 24: Plot of the objective function for the L-Shape test case for different values of
r. With r, a new set of design parameters is automatically generated from a
sensitivity analysis.
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4.5. Initial Guess

With a suitable initial guess, the number of iterations for the optimization can be de-
creased. As defined in Section 3.4.4, the inverse displacement is added on the reference
mesh and taken as initial mesh for the optimization. The effectiveness of this approach
is tested in the following section for the cube and the L-Shape.

4.5.1. Cube Test case

Here, six different optimization tests are carried out in order to quantify the influence
of the proposed initial guess. Four tests are performed with the cube shape as de-
scribed in Section 4.1.1 using BFGS or BOBYQA. The 54 design parameters test (see
Table 16) is also examined with the initial guess.
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Figure 25: Cube tests with and without initial guess. The index IG denotes for which
test the initial guess was used.

The results for all tests are illustrated in Figure 25 in a double logarithmic scale. Dashed
lines mark the original results from the previously optimized test cases without using
the initial guess. On the contrary, solid lines in the same color mark the corresponding
results with the utilization of the initial guess as input mesh (suffix IG in the legend). At
the beginning of the optimization, the tests with the initial guess show a significantly
smaller value of the objective function. It should be emphasized that the objective
function for both BFGS IG tests shows an intermediate increase.
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All tests show a similar behavior, as the solid lines converge to a lower value of the
objective function, which implies a more accurate result. Additionally, the optimiza-
tion using the initial guess needs less function evaluations to converge. Final values
for the objective function are noticeable smaller than these from the original test cases.
For the Cube-81 IG, the final results are 8.106 % of the Cube-81 optimization with the
BFGS algorithm and 11.969 % for BOBYQA. The Cube-54 BFGS IG test case’s final value
of objective function is 10.970 % of the Cube-54 BFGS.

4.5.2. L-Shape Test Case

The L-shape test case is carried out with 81 design parameters as previously shown
in Figure 17) and 144 design parameters (see Figure 22), both using BFGS for the opti-
mization routine.

Both optimizations using the initial guess (solid lines, suffix IG) show a faster converg-
ing behavior as illustrated in Figure 26. Both optimizations with the initial guess show
a similar trend and result in a significant smaller value. While the L-81 IG result is only
6.108 % of the L-81 test, the L-54 IG test, with just 5.749 % of the L-54 test case’s final
value. At the beginning of the procedure, the objective function shows a peak for both
initial guess tests.
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Figure 26: L-Shape tests with and without initial guess. The index IG denotes for which
test the initial guess was used.
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4.6. Objective Function Test

With this test, two different objective functions are being compared. So far, only the
Distance Function (see Section 3.3.1) has been utilized. However, in this section, the
performance of the Hausdorff Distance (see Section 3.3.1) is examined.

4.6.1. Cube test case

The cube test cases (refer to Section 4.1.1) with 81 design parameters (see Table 5) and
54 design parameters (see Table 16) are tested with the Hausdorff Distance as objective
function instead of the Distance Function.
Since BFGS is a gradient-based optimization algorithm and the Hausdorff Distance is a
piecewise linear function, we assume that a combination is not feasible or would not
show acceptable results. Therefore, BFGS is neglected in this testing.
For the 61 design parameter test case, the results are shown in Figure 27. Only the
BOBYQA and LINCOA algorithms show feasible results at the end of the optimization.
Again, LINOCA, converges relatively slow (33525 function evaluations).
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Figure 27: Objective function values for the cube test case with the Hausdorff Distance.

Figure 28 shows the comparison between the optimization with the Hausdorff Distance
and Distance Function for the BOBYQA algorithm using a double logarithmic scale. In
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order to see the impact of a different objective function, we need to measure the second
objective function as a reference, while optimizing the first objective function.

The solid blue line depicts the evaluated Hausdorff Distance for the optimization using
the Hausdorff Distance as objective Function. The dashed blue line shows the corre-
sponding Distance Function for the Hausdorff optimization. Red lines show the objec-
tive function values for the Distance Function optimization. The dashed red line marks
the values for the Distance Function, while the solid red line shows the corresponding
Hausdorff Distance.

The optimization with the Hausdorff Distance (in blue) converges at fewer function eval-
uations compared to the optimization with the Distance Function (in red). Looking at
the measured Distance Function (dashed lines), the Distance Function performs much
better. In contrast, both measured Hausdorff Distances converge to similar values.
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Figure 28: Comparison for the objective function values for a Hausdorff Distance and
Distance Function driven optimization with BOBYQA. Opt. Hausdorff :
Haussdorf denotes the optimization which minimizes the Hausdorff Distance
and measures the Hausdorff Distance. Opt. Hausdorff : Distance denotes
the optimization which minimizes the Hausdorff Distance and measures the
Distance Function as a reference.
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5. Discussion

Five tests have been carried out to investigate the performance of the IMO framework
under different conditions: (1) testing different algorithms, (2) a design parameter
study, (3) evaluating the automatized sensitivity analysis, (4) assessing the impact of
the initial guess and (5) comparing two different objective functions. This section aims
at discussing the results obtained from these test cases, along with the limitations of
the framework.

5.1. Algorithms

An important component of any optimization routine is the choice of an appropriate al-
gorithm. Therefore, four different algorithms were tested with regard to their compati-
bility and performance in combination with the presented framework (see Section 4.2).

The noise of the objective function during the optimization with COBYLA, BOBYQA

and LINCOA are due to the larger range of tested values for the individual design
parameters compared to BFGS. This implies that a a poorly chosen design parameter
leads to a peak in the objective function.

The test cases investigating different algorithms for the cube and the L-Shape show that
algorithms utilizing quadratic model approaches generally perform better than those
utilizing linear approximations. As shown in Table 6 and 7, the BFGS algorithm shows
the best result for both test cases. The performance of BOBYQA is also similar good, yet
more function evaluations are required for both tests. Therefore, optimization of the
shrinkage and warpage simulation in combination with the heat conduction simula-
tion, using the BFGS is the best option of the tested algorithms. LINCOA did not show
comparable good results, however, the algorithm’s advantages of tackling constrained
problems was not utilized in these tests. COBYLA shows an improved convergence
for fewer design parameters, which underlines that this algorithm is better suited for
smaller numbers of variables.

In the algorithm test, BFGS converged the fastest, while BOBYQA also showed quick
convergence behavior. At the initial guess test (see Section 4.5), it was also shown that
BFGS shows quicker convergence compared to BOBYQA. With the results from 4.6, it
is shown that BOBYQA seems to be more robust than BFGS, since the latter fails to op-
timize the piecewise-linear Hausdorff Distance. However, since BFGS showed the least
number of function evaluations, and since one function evaluation is time-expensive
for larger simulations, we chose BFGS instead of BOBYQA. Nevertheless, further in-
vestigation is needed here, as the reduction of function evaluations is crucial for this
optimization framework.
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Siegbert et al. [31] compared different optimization algorithms for shape optimization
of extrusion dies. The objective function used is based on the velocity distribution
at the outflow. However, the results from this work show comparable findings. The
authors obtained a fast convergence for the BFGS algorithm and showed even better
results for BOBYQA. BOBYQA is also used for the shape optimization of extrusion dies
in [14, 23].

5.2. Design Parameters and Sensitivity Analysis

The number and selection of design parameters have a significant impact on the shape
optimization. The tests carried out show that a larger set of design parameters affect
the results in two distinct ways. Firstly, the number of function evaluations increases
as more parameters need to be considered. Secondly, the final value of the objective
function may decrease, although such improvement cannot be guaranteed.
In cases where the system exhibits high symmetries, such as the cube, the objective
function value remains the same, although the number of function evaluations is re-
duced.

The design parameter test (Section 4.3) and the sensitivity analysis (see Section 4.4)
showed the strong impact of the number of design parameters on the optimization.
Figure 20 illustrates that an increasing number of design parameters results in a lower
objective function value. This leads to a massive increase of the number of function
evaluations, although the improvement of the result converges. Therefore, the in-
troduced sensitivity analysis in combination with a reduction of the design variables
shows good results. With the threshold of the sensitivity according to the sensitivity’s
maximum in a certain spatial direction (see Section 3.4.3), the number of function eval-
uations could be decreased in all cases. For a fully symmetrical problem, the value of
the objective function was not influenced negatively.

While a higher number of design parameters can lead to an improvement of the opti-
mization result, which is reflected in a low value of the objective function, the associ-
ated computational time has to be considered, as it increases linearly with the number
of design parameters. Since the L-Shape test showed a better result for a control mesh
with a higher resolution but a lower number of design parameters, it can be derived
that not only the absolute number of design parameters is important but also an ad-
equate resolution of the control mesh. This yields in a crucial tradeoff between the
computational cost, as we estimate, that for more complex shapes, such as undercuts
or shapes with multiple corners, a higher set of design parameters is necessary for a
sufficient shape optimization.
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Testing the L-Shape with different numbers of design parameters showed that an im-
provement of the result can be achieved, by having a higher resolution control point
mesh while having fewer design parameters in total. Hence, the number of design pa-
rameters is not the only factor in achieving satisfactory results. Instead, the resolution
of the control point mesh in all spatial directions plays a vital role for shape optimiza-
tion.

Determining the sensitivity of the design parameters depicted that it is possible to
detect design parameters with a low impact on the shape deformation. By eliminating
unsignificant design parameters, and therefore reducing the total number of design
parameters, the number of function evaluations will decrease. However, this yields a
less accurate solution of the optimization procedure, since fewer design parameters are
processed. For this particular case of optimizing the L-Shape, a good trade-off between
accuracy and number of function evaluations seems to be a value of r = 0.025.

5.3. Initial Guess

Using the initial guess as described in in Section 3.4.4 is clearly beneficial for the shape
optimization for injection molding design. Final objective function values are signifi-
cantly smaller (ca. 10 %) and convergence behavior is affected positively as well. At the
beginning of the optimization, the tests showed a peak in the objective function, which
can be explained by an inaccurate approximation by the optimization algorithm. How-
ever, the proposed initial guess showed good results for all test cases (see Section 4.5)
and worked well with BFGS as well as BOBYQA. It improves the optimization frame-
work in two ways. First, the final value of the objective function is lower than com-
pared to a test without the initial guess. Second, the number of function evaluations
needed to reach convergence is decreased in all tests performed. Therefore, the use of
this method is highly recommended for further use of the framework.

5.4. Objective Function

A suitable objective function is the key element for the IMO framework. Shape match-
ing optimization method using the Euclidean metric was already performed in [11].
However, this work focused on shape matching techniques, using a weighted formu-
lation of the Euclidean distance and the Hausdorff Distance. It is shown that the proposed
Distance Function works fine in combination with the used algorithms. The Hausdorff
Distance failed in combination within this framework. Even though it indicates the per-
formance of the shape matching (compare Figure 28), some algorithms cannot handle
the definition of the Hausdorff Distance.

The optimization with the Hausdorff Distance does not show satisfactory results. Only
for BOBYQA and LINCOA the optimization converges to good solutions. Yet, the results
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are not as good as compared to results obtained by the Distance Function. A reason for
the bad convergence behavior could be the piecewise linear definition of the Hausdorff
Distance which is not continuously differentiable and is therefore difficult for the al-
gorithms to be approximated by quadratic functions and that the Hausdorff Distance is
quite sensitive to noise, as shown by [36].

5.5. Limitations

The proposed framework shows two major limitations: the dependency on the objec-
tive function and the dependency on the number of design parameters.

As discussed above, the objective function is the key element of the optimization. If
it is not chosen properly, the algorithm will fail at optimizing or get stuck at a local
minimum during optimization.

Computational cost is a limitation of this framework, as the number of design param-
eters may not be arbitrarily increased without incurring prohibitively high compu-
tational requirements. Therefore, the framework is limited to the number of design
parameters.

Moreover, the result depends on the choice of the optimization algorithm as they can
handle the minimization problem differently. For example, LINCOA does not show
suitable results, whereas it might perform better for a constrained problem.
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6. Application Case

In this section, a real-world example is optimized to demonstrate the applicability of
the proposed method. The results from the previous sections are considered, such that
we can see the overall procedure works for a more complex workpiece.

6.1. Test Case Description

Cable clamps, as seen in Figure 29, are a typical example for injection molding man-
ufactured workpieces. Like many injection molded parts, they are often made of
Polyamide Nylon, a thermoplastic with high stability and ductile strength. The ma-
terial parameters used here, are given in Table 15.

Figure 29: Polyamide Nylon Cable Clamps [1].

In order to reduce the computational time, the symmetrical properties of the clamp
are used and only a quarter of the cable clamp is optimized. The clamp is divided at
sections A and B, where we constrain the displacements in the normal direction of the
plane. The geometry, obtained from [5], has the dimensions of 11.5 × 8 × 9 mm and
is and automatically meshed using HYPERMESH [18]. In this particular case, a tetra-
hedral mesh is used since NUTILS does not provide mesh import features for unstruc-
tured hexahedral meshes yet. We define the generated mesh as our reference mesh m̂,
which is the targeted shape of the optimization. The reference mesh, as illustrated in
Figure 30, consists of 14.892 tetrahedral elements, and therefore has 3.340 nodes. The
initial temperature distribution obtained by the heat simulation is between 503 K in-
side of the clamp and 353 K at the surface.



Master’s Thesis 53

350

500

380
400
420
440
460
480

T 
[K

]

xy
z A

B

Figure 30: Reference mesh and initial temperature distribution. A and B inidicate the
cutting surfaces.

6.2. Preliminary

The initial mesh m̃ for the optimization is evaluated by using the initial guess as de-
fined in Section 3.4.4. Then, we define the control point mesh with a set of 4 × 4 × 4

control points as seen in Figure 32, which yields a total set of 192 design parameters.
Based on the initial guess and the control point mesh, a sensitivity analysis as described
in Section 3.4.3 is performed.

In Figure 31, the determined sensitivities are illustrated as vectors, normalized with a
min-max-scale, which means that the maximum values are normalized to one and the
minimum values are normalized to zero. Here, the length of the arrow as well as the
color describe the value of sensitivity. It can be observed that sensitivities are low at
these points, where a control point is not in contact with the geometry, whereas highest
sensitivities are determined at the bridge (x = 11.5, z = 9).

With the threshold of r = 0.05 from Equation 38, all design parameters with a mag-
nitude of less than 5% than the maximum in the spatial direction i are eliminated. By
applying this method, the number of design parameters is reduced to 175.

Figure 32 shows the control point mesh for the cable clamp. Control points marked in
gray, have a reduced degree of freedom. They indicate, where the sensitivity analysis
in combination with the reduction factor eliminated design parameters.
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Figure 31: Field plot for the design parameter sensitivity of the cable clamp. The ar-
rows show the direction of the sensitivity, length and color indicate the value
(norm) of the sensitivity. All vectors are normalized with a min-max-scale.
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Figure 32: Control point mesh for the cable clamp. Gray points mark control points,
with reduced DoF.
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6.3. Results

For this optimization we employ BFGS with a tolerance limit of 10−4 and a targeted
objective function value of 10−5. The set of design parameter is generated based on the
results from the sensitivity analysis using a threshold of r = 0.05.

After 9072 function evaluations, the optimization process stops with a final value of
1.00241 · 10−5. Figure 33 shows the molding shape for the optimized cavity shape. The
colors indicate the difference d between the coordinates of the molding shape and the
reference shape. The largest difference between the compared geometries is observed
at the upper right corner. Overall, the majority auf the surface shows small differences
between the two meshes.

Figure 34 illustrates the trend of the objective Function during the optimization pro-
cess. Initially, a peak occurs due to an inaccurate first approximation of the gradient.
However, the objective function approaches the targeted value of 10−5.
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Figure 33: The shape of the mold after the simulation. The difference d (in mm) be-
tween the coordinates of the mold and the reference shape are colored.
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Figure 34: Plot of the objective function for the cable clamp optimization.
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7. Conclusion and Outlook

7.1. Summary

The aim of this work was to determine the optimal design of a cavity shape for the
injection molding process. Therefore, an object-oriented and PYTHON-based frame-
work has been implemented, which combines the simulation of the injection molding
process with a shape optimization.

The proposed optimization framework can be separated into four components. At first,
the molding process is simulated by a heat conduction and shrinkage and warpage
simulation with FEM, using an initial mesh as the shape of the cavity. Second, the
resulting molding shape is transferred to an objective function, which measures the
difference of the molding shape according to a reference shape. Then, the output of the
objective function is passed to the optimization algorithm, which aims at minimizing
the objective function. Finally, the algorithms input variables are used for a FFD of the
cavity shape. The new shape yields as an input for the next function evaluation.

In order to show the functionality as well as the limitations of the model, the frame-
work has been tested in multiple test cases.
Four different algorithms were examined, and it was shown that shape optimiza-
tion for injection molding design works better for an optimization algorithm using
a quadratic model approach. The best results are obtained with the use of BFGS, which
showed the best performance in terms of needed function evaluations.
It could be observed that an increasing the number of design parameters results in a
smaller value of the objective function at the end of the optimization. However, the
tradeoff is a massive increase in function evaluations. This can be prevented by using
a sensitivity analysis, which measures the influence of one single design parameter
with respect to the objective function. Then, the set of design parameters can be re-
duced automatically by a threshold, which is beneficial in order to reduce the number
of function evaluations.
Further, an initial guess for this framework is proposed, which adds the inverse dis-
placements of a first simulation to the reference mesh. All tests showed an improve-
ment due to this first guess.
Furthermore, two different objective functions were analyzed. The proposed Distance
Function showed sufficient results for all cases. Optimizations using the Hausdorff Dis-
tance only worked sufficiently in combination with BOBYBA and is therefore not suit-
able for this framework.

Finally, a cable clamp, which yields as a real-world example, was optimized with the
injection molding optimization framework. The results showed that the framework
can handle more complex geometries in a suitable manner.
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7.2. Outlook

By now, only one objective function works effectively within this framework. A possi-
ble next step could involve enhancing the proposed Distance Function, such as imple-
menting a weighted objective function, which takes e.g. corners or important areas of
the molding into account. Furthermore, exploring alternative measurements for shape
matching techniques, as described in [36], could be evaluated in order to improve the
process.

The proposed objective function is focused only on the minimization of shape differ-
ences. It could be easily adapted, in order to minimize residual stresses within the
workpiece, while finding the optimal shape of the cavity. Also, it is possible to opti-
mize certain material parameters combined with the structural shape optimization.

In order to use the framework more efficiently, further studies should be made to keep
the number of needed function evaluations as low as possible. Therefore, the number
of design parameters should remain small enough. One way to address this problem
would be the introduction of a control mesh with an inhomogeneous distribution of
design parameters. Also, a better understanding of the sensitivities of the design pa-
rameters would be advantageous in order to choose the threshold more effectively.
Additionally, constraining the optimization problem, e.g. by constraining the design
parameters to the symmetry of the problem could useful.

Furthermore, the simulation of the injection molding process requires further improve-
ment. Currently, the process before the ejection of the part is modelled only by a tran-
sient heat conduction equation, while the process afterwards only considers nonlinear
elastic material behavior.
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A. Appendix

Table 12: Square test case simulation parameters.
ν [-] α [1/K] κ [W/(mK)] ∆t [s] Tin [K] Tfinal [K]

0.3 0.005 0.01 0.1 100 1

Table 13: Cube test case simulation parameters.
ν [-] α [1/K] κ [W/(mK)] ∆t [s] Tin [K] Tfinal [K]

0.3 0.05 0.2 0.1 100 1

Table 14: L-Shape test case simulation parameters.
ν [-] α [1/K] κ [W/(mK)] ∆t [s] Tin [K] Tfinal [K]

0.3 0.025 0.2 0.1 100 1
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Table 15: Cable clamp simulation parameters.
ν [-] α [1/K] κ [W/(mK)] ∆t [s] Tin [K] Tfinal [K]

0.4 [22] 15 · 10−5 [22] 0.2 [22] 0.1 503 [8] 353 [8]

Table 16: Cube test case with 54 design parameters.
Index DoF x DoF y DoF z

0 (-0.5, 0) (-0.5, 0) (-0.5, 0)
1 (-0.5, 0) (-0.5, 0)
2 (0, 0.5) (-0.5, 0) (-0.5, 0)
3 (-0.5, 0) (-0.5, 0)
4 (-0.5, 0)
5 (0, 0.5) (-0.5, 0)
6 (-0.5, 0) (0, 0.5) (-0.5, 0)
7 (0, 0.5) (-0.5, 0)
8 (0, 0.5) (0, 0.5) (-0.5, 0)
9 (-0.5, 0) (-0.5, 0)
10 (-0.5, 0)
11 (0, 0.5) (-0.5, 0)
12 (-0.5, 0)
14 (0, 0.5)
15 (-0.5, 0) (0, 0.5)
16 (0, 0.5)
17 (0, 0.5) (0, 0.5)
18 (-0.5, 0) (-0.5, 0) (0, 0.5)
19 (-0.5, 0) (0, 0.5)
20 (0, 0.5) (-0.5, 0) (0, 0.5)
21 (-0.5, 0) (0, 0.5)
22 (0, 0.5)
23 (0, 0.5) (0, 0.5)
24 (-0.5, 0) (0, 0.5) (0, 0.5)
25 (0, 0.5) (0, 0.5)
26 (0, 0.5) (0, 0.5) (0, 0.5)
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