CO₂ VALORIZATION – CATALYSIS – SUPPORTED IONIC LIQUIDS

CONTINUOUS FORMATION OF BIODERIVED CYCLIC CARBONATES USING SUPERCRITICAL CARBON DIOXIDE

Philipp Mikšovsky¹, Katharina Rauchenwald², Elias N. Horn¹, Shaghayegh Naghdi³, Dominik Eder³, Thomas Konegger², Michael Schnürch¹ and Katharina Bica-Schröder¹

¹Institute of Applied Synthetic Chemistry | ² Institute of Chemical Technologies and Analytics | ³Institute of Materials Chemistry TU Wien, Getreidemarkt 9, 1060 Vienna, Austria

INTRODUCTION

We present a continuous flow method for the conversion of bioderived epoxides into cyclic carbonates using carbon dioxide in its supercritical state as reagent and solvent. Various ammonium-based ionic liquids were initially investigated in batch mode. For limonene oxides^[1], tetrabutylammonium chloride turned out to be the best-performing and selective catalyst. In continuous flow, the ionic liquid was physisorbed on mesoporous silica as SILP catalyst. After optimization in short-term experiments, the long-term stability of the SILP system was studied for 48 h.

Twitter: @SchroederLabTUW

IAS

WIEN

CONTINUOUS CONVERSION: LIMONENE OXIDE

SET-UP FOR CONTINUOUS FLOW

SILP 1 (30 wt% TBAC (1) on mesoporous silica), CO_2 : 1.99 mL/min, limonene oxide (**1a**): 0.01 mL/min, 15 MPa, 120 °C, 12 h

CONTINUOUS CONVERSION: LIMONENE DIOXIDE

~Si-OH \ Bu Bu Bu Bu Bu CI⁻ ~Si-OH

SUPPORTED IONIC LIQUIDS

- different fractions
- > conversion and yields were determined via NMR and GC analysis

LINSEED OIL-BASED CARBONATES

WHY CARBONATES ?

- \succ biscarbonates:
 - precursors for polymers such as isocyanate-free polyurethanes
- \succ cyclic carbonates: aprotic polar solvents, e.g. in Li-ion batteries
- \succ limonene carbonate: cheap and abundant feedstock $(43 Mt/a)^{[2]}$

Bu ^{Bu}Bu

Bu

X-

~Si-OH

~Si-OH

CONTINUOUS FLOW?

 \succ mesoporous silica as a commonly used support material not suitable due to agglomeration over time

LONG-TERM STABILITY

optimized conditions:

SILP 1 (30 wt% TBAC (1) on mesoporous silica, CO₂: 1.99 mL/min, limonene dioxide (**2a**): 0.01 mL/min, 20 MPa, 120 °C, 12 h

 \geq 48 h experiment > overall yield: 17% (13% (**2b**) / 3% (**2c**)) \succ traces of leaching (15 wt% loading)

silica supported ILs before and after application in continuous flow

SiOC supported ILs studies on tunable porosity and hydrophobicity

References:

[1] Mikšovsky et al., Organic Process and Research Development, 2022, 26, 2799-2810. [2] 360ResearchReports Global Limonene Market Research Report 2020, 2020, https://www.360researchreports.com/global-limonene-market-15061488 (04/2023) [3] Stabler et al., Journal of the American Ceramic Society, 2018, 101, 4817–4856.

European Research Council Established by the European Commission This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant agreement No. 864991).

 \succ research on alternative supporting materials such as monolithic silicon oxycarbides (SiOC)^[3] currently ongoing