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ABSTRACT
This paper introduces a feedforward control method for physical systems that can be described with linear
parameter-varying (LPV) models. The proposed feedforward controller structure is consequently derived
from a generic LPV representation and is shown to be identifiable directly from noisy measurement data.
The identified structure is advantageous for feedforward control, as using a simple least squares algorithm
allows to parameterise basis functions representing the required input trajectory to follow a given output
trajectory. Also, with the proposed regularisation, the input trajectory remains bounded even when the
physical system exhibits non-minimum phase behaviour. Additionally, the proposed controller structure
does not possess states but only considers the inputs and outputs signals and their derivatives, leading
to a unique physical interpretation of each controller’s parameter. Multiple feedforward controllers identi-
fied at various operating points can therefore be directly merged to create a parameter-varying controller.
A nonlinear and locally non-minimum phase system is considered in this study, i.e. an engine air path, to
evaluate the performances of the proposed feedforward strategy. The controller parameters are first iden-
tified from noisy measurement data, and then the proposed feedforward controller is implemented with
a feedback controller to track the exhaust pressure and NOx concentration. Using a detailed physical sim-
ulation of the engine air path, the proposed feedforward strategy showed encouraging output tracking
performances compared to state-of-the-art controlmethods. The presented feedforwardmethod is shown
to be straightforward to identify and calibrate while guaranteeing a contained computational complexity
and being applicable to many physical systems thanks to its modularity.
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1. Introduction

Feedforward control is a classical and efficient method to
enhance the performances of a feedback controller (Jean-
Francois et al., 2009; Poe &Mokhatab, 2017; Zhang et al., 2022).
However, no general method exists to identify a feedforward
controller of an arbitrary nonlinear physical system. This paper
proposes a controller structure that can be easily identified
frommeasurement data and applied to any physical system that
can be modelled as a linear parameter-varying (LPV) multi-
input multi-output (MIMO) model. A diesel engine air path is
taken as an example throughout this paper as multiple studies
already successfully identified LPVMIMOmodels to capture its
dynamics (Euler-Rolle et al., 2021; Kang & Shen, 2017; Ortner
& Re, 2007; Zhang et al., 2022).

Physical systems potentially exhibit, without loss of general-
ity, nonlinear dynamics, coupling behaviour and non-minimum
phase behaviours (John Hauser & Sastry, 1992; Qiu & Davi-
son, 1993). For many fields of applications, simple rule-based
and map-based controllers are still predominantly employed.
The necessary calibration efforts and the determination of an
appropriate control structure nevertheless limit the resulting
performance of such controllers. Different systems or systems
configurations usually necessitate distinct control strategies,

CONTACT Alexis Benaitier alexis.benaitier@tuwien.ac.at

leading to high development costs and efforts. A modular con-
troller structure with an automated identification from mea-
surement data would therefore be highly beneficial in terms of
calibration effort and modularity.

Numerous advanced control methods are currently using
a hierarchical control framework. It consists of a first control
layer defining setpoints for measured signals to achieve opti-
mality with respect to a given metric, e.g. cost, time, reference
tracking, etc. These setpoints, or desired trajectories, are usu-
ally map-based as in Plianos and Stobart (2011) or result from
a static optimisation using a simplified model of the system
(Jiang & Shen, 2019). Hierarchical control frameworks typically
comprise a second control layer responsible for controlling the
actuators to achieve accurate output setpoints or trajectories
tracking.

This second control layer has already been investigated to
realise an accurate output tracking of the reference. Initially
consisting of a single adaptive feedback controller as in Plianos
and Stobart (2011), a recent study emphasises the importance
of a feedforward control for accurate transient output track-
ing (Zhang et al., 2022). Indeed, predictive control methods, i.e.
when the output trajectory from the first layer is known before-
hand for a given horizon, considerably increase the tracking
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accuracy if the horizon is long enough (Euler-Rolle et al., 2021;
Kang & Shen, 2017). The main bottleneck of model predictive
controllers is their inherent computational complexity, given
the limited capabilities of control hardware devices especially
for mobile applications. Even considering simplified algorithms
such as an explicit model predictive controller as in Ortner
and Re (2007) or a parametrisation of the input for a reduced
dimensionality of a nonlinear predictive controller as proposed
inMurilo et al. (2014),more straightforwardmethods are highly
desired regarding a forthcoming hardware implementation.

Feedforward control is an interesting candidate to realise
accurate output tracking with computationally limited require-
ments. Indeed, for a specific simplified model of the system, a
nonlinear feedforward controller may be developed based on
the inverse characteristics of the model (Hirata et al., 2019).
Such controllers benefit from reduced computational complex-
ity but still suffer from calibration efforts and a lack of modu-
larity. To achieve a modular feedforward controller, i.e. reusable
for different systems or systems configurations, a black-box local
model network (LMN) can be of great interest. Especially if each
local model is a linear time-invariant (LTI) model, linear con-
trol theory can be used to derive a control law for perfect output
tracking.

Necessary conditions for the inversion of an LTI model to
achieve perfect output tracking have been formulated by Silver-
man (1969) at the beginning of the seventies. However, since
then, no such conditions for the inversion of a multi-input
multi-output (MIMO) nonlinear model have been formulated.
As a result, various feedforwardmethods rely on the differential
flatness property introduced by Fliess et al. (1995). Flatness-
based control designs are of great interest, especially with the
concept of flat input (Waldherr & Zeitz, 2008, 2010). Indeed, a
flat input can always be found when the system is observable,
and the trajectory of the flat input can be directly known from
the desired output trajectory. The physical input can thereafter
be recovered from the flat input using a differential parametri-
sation referred to as a dynamic compensator (Jean-Francois
et al., 2009).

The main difficulty when using the concept of flat input with
a dynamic compensator is the potential non-minimum phase
behaviour of the considered system, i.e. unstable zero dynamics.
Indeed, non-minimum phase behaviour can appear in numer-
ous physical systems (JohnHauser & Sastry, 1992; Sira-Ramírez
& Agrawal, 2004). For a system exhibiting a non-minimum
phase behaviour, a dynamic compensator method may create
an unbounded control input to realise a perfect output tracking
(Isidori, 1995). Nevertheless, perfect output tracking of a non-
minimum phase system is still possible with a bounded control
input if the controller knows the trajectory beforehand, i.e. with
a non-causal controller (Chen & Paden, 1996).

A decomposition-based algorithm can also be employed to
identify a feedforward controller (Harris McClamroch & Al-
Hiddabi, 1998; Spirito & Marconi, 2022). Splitting the system
into a minimum phase system and a non-minimum phase sys-
tem, the idea is to trivially invert the minimum phase part of
the original system while compensating in steady-state con-
ditions for the non-minimum phase part. This method can
provide acceptable results, but requires knowledge of control

Figure 1. Indirect and direct approach for inverse model parameters
identification.

engineering, and cannot be applied in full generality for an
arbitrary nonlinear system.

In order to avoid difficulties when inverting a model to iden-
tify a feedforward controller, a direct identification method can
be employed. Schenkendorf and Mangold (2014) indeed pro-
posed two methods to identify the parameters θ of an inverse
model �−1. Classically, an indirect method is used, inverting
a model previously identified by fitting a reconstructed out-
put ŷ to the measured output y given the measured input u,
as depicted in Figure 1. Alternatively, a direct method can be
considered, where the inverse model is directly identified by fit-
ting the reconstructed input û to themeasured input u given the
measured output y, also illustrated in Figure 1. Themain advan-
tage of the direct method is that no inversion is necessary, hence
no numerical difficulties.

This paper proposes a feedforward controller structure
directly identified from measurement data, i.e. direct identifi-
cation as shown in Figure 1, to ensure robustness against model
order selection and applicability to non-minimum phase sys-
tems. Additionally, the proposed feedforward controller struc-
ture offers the possibility to merge local controllers identified
at various operating points to create a single parameter-varying
controller. The proposed feedforward method can be applied to
a large class of physical systems which can be modelled with
an LPV model. The system must be open-loop stable, and the
output reference trajectory known and smooth, i.e.sufficiently
many times differentiable. Also, the input saturation is not
explicitly considered by this method but can be indirectly con-
sidered by modifying the output reference, usually limiting the
output rate of change. Finally, measurement data have to be
available and fulfil persistency of excitation, i.e. all frequencies
in the operating range of interest have to be excited.

In this paper, a nonlinear and locally non-minimum phase
system is taken as an example; the control of an engine air path.
The control inputs are the exhaust gas recirculation valve (EGR)
and the variable geometry turbocharger (VGT), controlled to
follow a prescribed exhaust manifold pressure Pexh and exhaust
nitrogen oxides mass flow NOx (Murilo et al., 2014; Plianos
& Stobart, 2011; Shi & Shen, 2021). Engine air paths are nonlin-
ear systems that are open-loop stable and exhibit strong output
coupling (Kang & Shen, 2017; Murilo et al., 2014). This paper
mainly focuses on reference output trajectories followable with-
out input saturation. The case where the input is saturated is
presented at the end of Section 5, where the output is not per-
fectly followed, to emphasise the robustness of the proposed
method.
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The remainder of this paper describes an automated feedfor-
ward controller identification method implemented to realise
the output tracking of any stable non-linear system. Section 2
details the implementation of the feedforward controller within
a classical hierarchical strategy. The proposed control algorithm
to generate an input trajectory to track a prescribed output
trajectory is presented in Section 3. The identification of the
feedforward controller parameters is discussed in Section 4.
Finally, the proposed feedforward controller is implemented in
combination with a simple feedback controller to track the NOx
andPexh of a diesel engine.Using a detailed simulation platform,
the proposed feedforward controller is compared to different
classical controllers in Section 5 for fixed and variable engine
operating points.

2. Control concept

A new feedforward method is proposed in this paper, with a
straightforward identification of its parameters and low compu-
tational requirements. The controller structure is derived from
a generic LPV model; hence it can be used for many physi-
cal systems. This section first provides background informa-
tion regarding feedforward control within a hierarchical con-
trol strategy. Then the controller structure is introduced as a
transformation of a generic LPV model.

2.1 Hierarchichal control strategy

The proposed feedforward control strategy necessitates out-
put reference to be followed and is therefore proposed to be
employed in a hierarchical control framework as depicted in
Figure 2. The high-level controller generates the desired out-
put trajectory based on the known operating point trajectory
of the system. Then a low-level controller designs the required
input trajectory to follow the reference output trajectory from
the high-level controller. Additionally, the low-level controller
can consider feedback from the plant, i.e. the measured physical
output, to compensate formodel inaccuracies and disturbances.

The reference output trajectory is expected to be smooth in
the sense that the reference can be differentiated. Indeed, for
many physical systems, the output trajectory essentially consists
of smooth transitions between predefined output setpoints and
is generated anytime a transition to a new output setpoint is nec-
essary. Additionally, a non-differentiable trajectory, i.e. step, can
always be approximated by a smooth trajectory using some fil-
tering techniques. This requirement comes from the fact that
most physical systems cannot follow a non-differentiable out-
put reference without an unbounded input unless they exhibit

Figure 2. Diagram of the low-level controller implementation within the hierar-
chical control strategy.

a direct feedthrough. To keep the feedforward method gen-
eral enough, differentiability of the output reference is therefore
required.

This paper focuses only on the design of the low-level con-
troller. More specifically, an automated method for feedforward
controller identification is proposed and tested. Eventually, a
feedback controller is added to the feedforward controller to
further study the accuracy and advantages of the proposed feed-
forward controller. The high-level controller is not considered
in this paper, i.e. the desired output trajectory, written with
the star superscript •∗, is considered perfectly known for the
remainder of this paper.

The main assumption of this paper for the design of a feed-
forward controller is that the physical system can be accu-
rately modelled as an LPV MIMO model for control purposes.
The scheduling vector ρ, defining the operating point at each
instant, is usually taken as the engine speed Nice and the engine
torque Tice for an engine air path (Euler-Rolle et al., 2021; Kang
& Shen, 2017; Ortner & Re, 2007; Zhang et al., 2022). With-
out loss of generality, an LPV model can be built as a nonlinear
aggregation of LTImodels�j identified at fixed operating points
ρj

�j :

{
ẋj = Ajxj + Bju
y = Cjxj + Dju

, (1)

with xj ∈ R
n, y ∈ R

m,u ∈ R
m and the matrices Aj,Bj,Cj and

Dj for each local model. The states xj have no physical mean-
ing when the system is identified from black-box identification
methods, i.e. when no a-priori knowledge of the system dynam-
ics is known. The states have therefore a different physicalmean-
ing at different operating points ρ j and so different state space
parameters cannot be directly merged, i.e. it is not possible to
directly interpolate between the matrices Aj,Bj,Cj and Dj. The
following section proposes a feedforward controller structure
where the controllers’ parameters at different operating points
can be merged directly.

2.2 Feedforward controller structure

A generic feedforward controller structure is proposed in this
section, assuming that the physical system can be modelled as
an LPV MIMO system. Local controllers are identified at var-
ious operating points, with the particularity of all sharing the
same parameters’ physical interpretation making the design of
a parameter-varying controller straightforward.

First, the proposed feedforward structure is introduced at a
fixed operating point ρj, where it is inherited from the linear
time-invariant model�j defined by the matricesA,B,C andD,
the index j being omitted for the ease of notation. Without loss
of generality,�j is assumed to be state observable, with the states
noted x. The observability matrix can therefore be built block-
wise with a relative degree ri ≥ 1 associated with each output
and fulfilling

∑m
i=1 ri = n (Brunovský, 1970)

Q =

⎡
⎢⎢⎣
Q1
Q2
· · ·
Qm

⎤
⎥⎥⎦ , Qi =

⎡
⎢⎢⎢⎣

ci
ciA
...

ciAri−1

⎤
⎥⎥⎥⎦ , ∀i ∈ {1, . . . ,m} , (2a)
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where ci represents the ith row of the matrix C.
A linear state transformation using the observability matrix

is possible and can be expressed as x̂ = Qx leading to the new
state space representation

�̂j :

{ ˙̂x = Âx̂ + B̂u
y = Ĉx̂ + Du

, (3a)

Â =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Â1 0 0 · · · 0[
�x

1
]

0 Â2 0 · · · 0[
�x

2
]

...
0 0 0 · · · Âm[

�x
m

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3b)

with �x
j ∈ R

1×n,∀j ∈ {1, . . . ,m}. Each �x
j is a row vector cor-

responding to the highest output derivative dynamics of each
physical output j. The obtained model �̂j consists of m chains
of integrators Âi, one associated with each output. Yet, for an
arbitrary system �j, the inputs can still have a direct impact on
all the states x̂, because B̂ and D have no particular structure.
For example, the first r1 states correspond to the first output and
verify

x̂k = y(k−1)
1 − d1u(k−1) −

k−1∑
l=1

b̂lu(k−l−1), ∀k ∈ {1, . . . , r1} ,
(4a)

with the last state dynamics

d
dt
x̂r1 = �x

1x̂ + b̂r1u. (4b)

The states associated with each output can be transformed so
that the new states become the outputs and their derivatives. For
example, for the first output, using relation (4a), new states z are
defined as

zk = x̂k + d1u(k−1) +
k−1∑
l=1

b̂lu(k−l−1), ∀k ∈ {1, . . . , r1} , (5)

such that zk = y(k−1)
1 holds.

The highest output dynamics can be found by derivating zr1
using (5) and the derivative of xk given in (4b)

d
dt
ẑr1 = �x

1x̂ + b̂r1u + d1u(r1) +
r1−1∑
l=1

b̂lu(r1−l). (6)

Finally, x̂ can be expressed as a function of z and the input and
its derivatives in (5) and then replaced in (6) to find

d
dt
ẑr1 = �x

1z +
r1∑
l=0

�u
1,lu

(l), (7)

with �u
1,l ∈ R

1×m.

Figure 3. Representation of �̃j withm chains of integrators.

This transformation can be done for each output and leads to
the new representation presented in Figure 3, where each state
corresponds to an output or one of its derivatives

z =
[
y1 y(1)

1 · · · y(r1−1)
1 y2 · · · y(rm−1)

m

]T
. (8)

Collecting all the equations representing the highest derivative
of each output, i.e. Equation (7) for each output, the following
m ordinary differential equations are found

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

y1
y(1)
1
...

y(r1)
1

⎤
⎥⎥⎥⎦
T

, . . . ,

⎡
⎢⎢⎢⎣

ym
y(1)
m
...

y(rm)
m

⎤
⎥⎥⎥⎦
T⎤⎥⎥⎥⎥⎦ θ

j
y

=

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

u1
u(1)
1
...

u(r
∗)

1

⎤
⎥⎥⎥⎥⎦

T

, . . . ,

⎡
⎢⎢⎢⎢⎣

um
u(1)
m
...

u(r
∗)

m

⎤
⎥⎥⎥⎥⎦

T⎤⎥⎥⎥⎥⎦ θ
j
u, (9)

where r∗ ≤ max ri
i

,∀i ∈ {1, · · · ,m} and the feedforward con-

troller parameter matrices θ
j
y ∈ R

∑
(ri+1)×m and θ

j
u ∈

R
m(r∗+1)×m. Each column k ∈ {1, . . . ,m} of thematrices θ

j
y and

θ
j
u are directly built reordering the terms of �x

k and �u
k,·. For

the well-conditioned of the feedforward controller, each out-
put’s highest dynamics is a weighted sum of the outputs, the
inputs and their derivatives and is linearly independent of the

other highest output derivatives, i.e. the matrix
[

θ
j
y

θ
j
u

]
must be

full column rank.
This paper proposes to use the input-output relation (9) as

the structure of a feedforward controller. This representation is
advantageous as it prevents classical numerical difficulties asso-
ciated with matrix inversion during parameter identification
or integration of unstable dynamics for feedforward control of
non-minimumphase systems. Also, this structure does not pos-
sess any states; hence no observability problem can appear. The
output and input must be smooth enough in the sense that their
time derivatives are well defined; this assumption is usually ver-
ified for arbitrary physical systems where the input and output
cannot physically jump but always change smoothly within a
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small enough timewindow. Finally,merging controllers’ param-
eters is straightforward, as each parameter has a unique physical
interpretation, independent of the operating point.

In the following of this paper, an efficient method to iden-
tify the controller parameters from noisy measurement data is
proposed. It is shown to be robust against model order selection
and benefits from a numerically efficient total least squares for-
mulation. Also, a simple method only requiring to solve a linear
least squares problem to design the necessary inputs to follow
a prescribed output trajectory is presented. The proposed feed-
forward controller is consequently straightforward to calibrate,
only consisting of physically interpretable parameters. Further-
more, its computational load is low enough to consider a future
hardware implementation.

Section 3 describes the proposed method to use (9) as a
feedforward controller, assuming already identified θ y(ρ) and
θu(ρ). The identification of the controller parameters θ y(ρ) and
θu(ρ) is discussed in Section 4 where first a controller is identi-
fied at each operating point, and then a nonlinear aggregation of
all the feedforward controllers is built from transient measure-
ments. The performances of the proposedmethod are evaluated
and compared to classical control methods in Section 5 using a
high-fidelity simulation platform of a diesel engine air path.

3. Input trajectory design

The feedforward controller should provide a trajectory of the
inputs u so that the system outputs y follow a trajectory pre-
scribed by the high-level controller. This section proposes a
robust method to realise such an output tracking using the rela-
tion (9) and a parametrisation of the input with basis functions.
Regularisation is added to the resulting least squares algorithm
to ensure bounded inputs even when the system exhibits non-
minimum phase behaviour.

3.1 Input parametrisationwith basis functions

The output trajectory tracking task can be seen as finding the
input trajectory such that the Equation (9) is fulfilled at each
time. Assuming that the output reference trajectory and its
derivatives are known, and the parameters θ y(ρ) and θu(ρ)

identified as in Section 4, a linear system of ordinary differen-
tial equations has to be solved to estimate the required input
trajectory.

A collocation method is proposed in this paper, as it has
already shown successful results for solving ordinary differen-
tial equations that are usually difficult to solve with integration
methods (Mai-Duy, 2005). Indeed, when the zero dynamics of
the system is unstable, i.e. non-minimum phase system, the
right-hand side of (9) has at least one unstable eigenmode.

The underlying idea of using a collocation method is to
approximate the input infinite-dimensional function space with
a finite set of functions

ui = ϕγ ui , ∀i ∈ {1, . . . ,m} , (10)

with each parameter vector γ ui ∈ R
L and a set of L linearly

independent functions

ϕ = [ϕ1, . . . ,ϕL] ∈ R
1×L (11a)

ϕk : R → R, ∀k ∈ {1, . . . , L} . (11b)

Gaussian functions are chosen to create a radial basis function
network that has been proven to be a universal function approx-
imator (Liao et al., 2003). Also, these functions are infinitely
differentiable, straightforward to parameterise and are non-zero
only in a small region, impacting the modelled signal only
locally.

To create a radial basis function network, Gaussian functions

ϕk(t) = e−εk(t−τk)
2
, (12)

are concentrated around regularly spaced time locations τk.
The parameter εk is chosen in a way that neighbouring

functions overlap and are sufficiently large to capture local
behaviours. By simply plotting the basis functions and the
designed inputs, it is straightforward to calibrate εk to achieve
the desired trade-off between smoothness and accurate track-
ing. Regarding the number of functions, as regularisation is
added in the next section, a large value of L will only increase
the computational requirements, while a smaller L will, at one
point, deteriorate the tracking accuracy. Choosing L large and
decreasing its value until the accuracy is negatively impacted
constitutes a simple and efficient calibration method.

For a practical implementation of relation (10), the functions
ϕk are discretised in Nt samples. The linear system of ordinary
differential Equation (9) can be reformulated as

Φuγ u = Φy, (13)

with the extended parameter vector γ u ∈ R
Lm defined in (A4),

thematrixΦu ∈ R
Ntm×Lm and the vectorΦy ∈ R

Ntm as defined
in detail in Appendix.

A classical least squares method can be employed to estimate
γ u in (13). Nevertheless, a dedicated regularisation is proposed
in the following section to keep the inputs bounded.

3.2 Bounded input trajectory with regularisation

Some physical systems are challenging to control with feedfor-
ward because they exhibit non-minimumphase behaviours. For
example, diesel engine air paths usually exhibit non-minimal
phase behaviour because of the turbocharger dynamics (Stürze-
becher et al., 2015). For any physical system with unstable
zero dynamics, a perfect output trajectory tracking can lead
to an unbounded control input when the control horizon is
bounded in the negative or positive time direction (Chen
& Paden, 1996). In that sense, finding a bounded input trajec-
tory so that Equation (9) perfectly holds at each time is usually
not possible. Instead, a bounded input trajectory thatminimises
the error between both sides of Equation (9) at each point in
time is proposed. The resulting output tracking will be shown
to be close to the expected trajectory, especially when pre-
actuation time is available, and the inputs will remain bounded,
i.e. feasible.

This paper proposes to use a modified ridge regression to
ensure boundedness of the input trajectory (Ramsay & Silver-
man, 2005). Taking advantage of the structure of Φu in (13), a
penalty directly applied to a specific input and its derivatives is
possible.
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The coefficients describing the optimal smooth input trajec-
tory γ ∗

u are directly given as a modified version of the initial
Moore–Penrose inverse

γ ∗
u =

(
ΦT

uΦu + CT
regCreg

)−1
ΦT

uΦy, (14a)

with Creg ∈ R
Ntm×Lm.

The matrix Creg is built as a block diagonal matrix to weight
the input and its derivatives independently

Creg = diag
{
Creg,i

}
, ∀i ∈ {1, . . . ,m} , (14b)

where each matrix Creg,i weights a specific input and its deriva-
tives

Creg,i =
r∗∑
k=0

υi,kϕ
(k)T , (14c)

with υi,k ≥ 0 the regularisation parameter for the kth derivative
of the ith input and ϕ(k) ∈ R

Nt×L corresponding to the sampled
kth derivatives of the functions defined in (11a). The proposed
regularisation plays an essential role in numerical stability to
ensure that the least squares problem (13) is well-posed. Also,
when the system exhibits non-minimum phase behaviour, reg-
ularisation ensures that the inputs remain bounded. In such a
case, perfect output tracking is, in theory, only possible with an
infinite pre-actuation time (Chen & Paden, 1996; Isidori, 1995).
Nevertheless, with enough pre-actuation time, e.g. a few sec-
onds for a diesel engine air path, perfect output tracking can
still be realised up to numerical precision. The proposed feed-
forward controller takes advantage of this possibility; it is, there-
fore, non-causal, in the sense that the EGR andVGT trajectories
are designed in advance for a prescribed horizon.

4. Controller parameter identification

The controller parameters θy(ρ) and θu(ρ) are function of the
scheduling variable ρ introduced in Section 2.1. A local learn-
ing approach is used to reduce the identification complexity
and gain meaningful information from the model structure
(Hametner & Jakubek, 2013). First, the local controllers are
identified in Section 4.1, and then a nonlinear aggregation of
the local controllers is parameterised in Section 4.2 to create a
parameter-varying controller.

4.1 Local controller parameter identification

The identification of the controller parameters θ
j
y and θ

j
u at a

fixed operating point ρj in (9) corresponds to the identification
of the parameters of a system of ordinary differential equa-
tions (ODE). Also, because the physical system may exhibit a
non-minimumphase behaviour locally, integrationmethods for
the parameter identification may be difficult (Mai-Duy, 2005).
A method based on principal differential analysis is therefore
chosen to ensure numerical stability and accuracy (Ramsay
& Silverman, 2005).

The measured signals during identification, i.e. input and
output, are individually modelled with a weighted sum of basis
functions, similarly as in (10). The weighted coefficients are
calibrated with the available measurements. Consequently, all

the necessary time derivatives of the inputs and outputs can be
estimated from the basis functions derivatives. The system of
ODE (9), for a constant scheduling vector ρ j, can be written as

βθ j = 0, (15)

with θ j
T = [ θ

j
u
T

θ
j
y
T ] the controller parameters to be identi-

fied and β a matrix being the concatenation of all the required
inputs, outputs, and their derivatives as shown in (9).

Because the measured outputs contain noise, and because all
the signals are modelled with basis functions, the signals in β

are only approximations of reality. A total least squares (TLS)
method is used to consider these perturbations during the con-
troller parameter identification. The TLSmethod is used to find
the parameters matrix θ j that exactly fulfils (15) for a theo-
retical signals matrix β̄ , assumed with no measurement error
and no smoothing approximation. Therefore, the matrix β is
decomposed into a theoretical true signals β̄ and additive noise
β̃

β = β̄ + β̃ . (16)

Applying theTLS approach, the signals noisematrix is estimated
as the matrix with the minimum Frobenius norm that makes β̄

m-rank deficient

β̄ = arg min
β̄

{∥∥β − β̄
∥∥
F
}
, (17a)

rank
(
β̄
) = rank(β) − m. (17b)

A solution to this constrained minimisation (17a)–(17b) can be
found using the singular value decomposition of the matrix β

β = U
(

�1 0
0 �2

) (
VT
1 VT

2
)T , (18)

where the m smallest singular values are collected in �2 with
the corresponding right singular vectorsVT

2 . Removing only the
smallestm eigenvalues ofβ would lead to thematrix β̄ minimis-
ing the Frobenius norm (17a) while fulfilling (17b) according
to the Eckart–Young–Mirsky theorem (Eckart & Young, 1936).
The estimated nullspace of β can be directly identified as the
remaining part of the singular value decomposition (18), and
will be the subspace where each ith column of the estimated
parameters matrix lies

θ
j
i ∈ 〈VT

2 〉, ∀i ∈ {1, . . . ,m} , (19)

and with all columns of θ j being linearly independent.
Given that thematrix (VT

1 VT
2 )T is orthonormal, them col-

umn vectors ofVT
2 are all orthogonal unit vectors. In that sense,

and without loss of generality, taking θ j = VT
2 is a reasonable

choice and does not need any specific re-scaling.
The proposed TLS method is only optimal within the

assumption of Gaussian noise (Eckart & Young, 1936), yet
gives sensibly better results than standard least-squaresmethods
as experienced by the authors. Also, the collected measure-
ment data must persistently excite the system within the whole
operating frequency range to accordingly capture the system
dynamics.
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4.2 Local controller network

To create a parameter-varying feedforward controller (9), the
parameters of multiple controllers identified at various oper-
ating points must be merged. A substantial advantage of the
proposed method is that all the local controllers share the same
structure. It is, therefore, possible to interpolate between each
feedforward model set of parameters to create a local controller
network, equivalent to a local model network of controllers
(Hunt & Johansen, 1997). Additionally, local controller models
with different output relative degrees can also bemerged, adding
a zero coefficient to all the missing input and output derivatives.

To capture the nonlinearities of the air path with respect to
the engine speed and load, the feedforward controller parame-
ters are defined as a nonlinear aggregation of the parameters of
the N local controllers

θu (ρ) =
N∑
j=1

φ̃j (ρ) θ
j
u, (20a)

θy (ρ) =
N∑
j=1

φ̃j (ρ) θ
j
y, (20b)

with φ̃j : R
2 → R the validity function associated with the jth

local model whose parameters are θ
j
u and θ

j
y. Furthermore,

at any operating point, the weighted sum of all the controller
parameters is constrained to be unitary to guarantee model
consistency and interpretability

N∑
j=1

φ̃j(ρ) = 1. (21)

Gaussian radial basis functions are employed to provide a simple
identificationwhile ensuring amodular and interpretable LMN.
The validity functions are parameterised as

φj (ρ) = e

(
−τT

j

(
ρ−ρj

)2)
. (22)

The parameters τ j are configurable and define the activation
range in each scheduling vector dimension. The Gaussian func-
tions (22) could be normalised to meet the requirement (21)
without complexifying the optimisation of τ j. Also, such a nor-
malisation usually suffers from the so-called reactivation issue
(Anzar & Azeem, 2004); a validity function can be not close to
zero in a region far away from its centre ρj.

To avoid reactivation, the validity function of each local
model is forced to reach zero asymptotically outside of a pre-
defined activation region. These activation regions are defined
using sigmoid functions in all ñ directions of the scheduling
vector

φactj (ρ) =
ñ∏

k=1

⎡
⎢⎣ 1

1 + e

(
τ k
act

(
ρk−ρk

j −σ k
)2)

+ 1

1 + e

(
τ k
act

(
−ρk+ρk

j −σ k
)2)
⎤
⎥⎦ , (23)

with σ k a predefined characteristic length scale in the kth-
direction of the scheduling vector and τ k

act the associated tran-
sition smoothness parameter in that direction.

For each local model, its validity function used in (20a)
and (20b) results from the normalisation of the product of its
raw activation function φj and the corresponding activation
region function φactj

φ̃j (ρ) = φj (ρ) φactj (ρ)∑N
k=1
(
φk (ρ) φactk (ρ)

) . (24)

The validity function parameters τ j are directly identified with
measurement data for a variable engine operating point. For that
purpose, an interior point method is employed to minimise the
square difference between the input computed using the cur-
rent parameter-varying controller and the measured input. The
weighting of each localmodel parameter results in the activation
of the jth local model only in the surroundings of its identifica-
tion region, i.e. for ρj close to ρ in the sense of the Euclidean
norm.

5. Simulation results

This section demonstrates the effectiveness of the proposed
automated feedforward controller identification method using
an experimentally validated simulation platform of a heavy-
duty diesel engine (Stefan et al., 2013). All controllers in this
section track a randomly generated output trajectory that mim-
ics Pexh and NOx concentration under real scenarios. The ref-
erence output trajectory is known in advance, and the output
measurements are corrupted with realistic noise during param-
eter identification. The EGR and VGT are considered as input
variables and except in the end of Section 5.4, the input is never
saturated.

First, the robustness of the local controller identification is
discussed in Section 5.1, especially regardingmodel order selec-
tion. Then, Section 5.2 shows the performances of the proposed
feedforward method when applied to an operating point where
the system exhibits non-minimum phase behaviour. A PI con-
troller is then added to remove steady-state output tracking
error in Section 5.3. Finally, in Section 5.4 a parameter-varying
feedforward controller is identified and compared to classical
controlmethods to realise accurate output tracking on the entire
engine operating region.

5.1 Local controller identification

This section emphasises the advantage of directly identifying a
feedforward controller, as proposed in Section 4, compared to
the inversion of a forward model (1) as detailed in Section 2.2,
i.e. indirect identification. For the direct identification, the basis
functions (12) are sampled at 50ms, and spaced every 0.6 s with
εk = 0.7 to balance accuracy and complexity.

When identifying a feedforward controller from the inver-
sion of a forward model, the model order selection greatly
influences the feedforward controller accuracy and stability as
depicted in Figure 4. For a small model order, the accuracy is
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Figure 4. Open loop output tracking using different model orders n to identify
a feedforward controller from model inversion, for a fixed engine operating point
Nice = 1200 rpm, Tice = 1000 Nm.

not enough to achieve accurate control. In contrast, some insta-
bilities occur for a high model order because the observability
matrix (2a) defined in Section 2.2 is close to being singular.

Directly identifying a feedforward controller from measure-
ment data is more robust to high model order selection, as
shown in Figure 5. All the proposed parametrisations in Figure 5
show almost identical results for a sufficiently highmodel order.
When adding additional model parameters, i.e. higher model
order, some of these parameters are kept to nearly zero. Another
advantage is the ability to independently choose themodel order
for each output and input. In that sense finding the minimum
number of model parameters can be possible, mainly thanks to
the TLS method introduced in Section 4.1.

Indeed, with the TLS method and a large number of out-
put and input derivatives, the optimal SVD truncation of (18)
can be found as given in Gavish and Donoho (2014). The
experimentally computed singular values and the optimal trun-
cation are depicted in Figure 6 using 5th order derivatives for
both the output and the input. Ten signals should be kept, as
the optimal truncation leads to eight meaningful singular val-
ues, and the system has two inputs/outputs according to (17b).
A fourth-order model can be chosen, with r1 = r2 = 2 and

Figure 5. Open loop output tracking using different numbers of input/output
derivatives to identify a feedforward controller with the TLS method, for a fixed
engine operating point Nice = 1200 rpm, Tice=1000 Nm. (C1 : r1 = r2 =1, r∗ =1;
C2 : r1 = r2 = 2, r∗ = 1; C3 : r1 = r2 = 2, r∗ = 2; C4 : r1 = r2 = 3, r∗ = 1).

Figure 6. Singular values σi of β using up to the 5-th derivative of each input and
output. The estimated optimal truncation threshold σ̂ ∗ is also represented.

r∗ = 1. This analysis coincides with the discussed results shown
in Figure 5.

5.2 Feedforward control at a non-minimumphase
operating point

A diesel engine air path can exhibit non-minimum phase
behaviour when operated at specific operating points, for exam-
ple, at a high rotational speed of 2000 rpm and a low load of
100Nm, when the VGT is actuated to modify the NOx mass
flow.At this operating point, when theVGT is set proportionally
to the desired NOx concentration, a typical non-minimum-
phase behaviour occurs as shown in Figure 7; the output goes
in the opposite direction at the beginning of each step.

At this operating point, and for this reduced SISO case, an
identified forward model usually has an unstable zero. As a
result, when an identified model is inverted to create a feedfor-
ward controller, the trajectory designed as proposed in Section 3
necessitates some regularisation to keep the input bounded.
Two different levels of regularisation are depicted in Figure 7.
Output oscillations and overshoots are reduced with a strong
regularisation, but the tracking is still not accurate.

When a feedforward controller is directly identified from
measurement data, the input relative degree can be set to a small
value to achieve better output tracking accuracy with fewer

Figure 7. Open loop feedforward control of VGT for a fixed operating pointNice =
2000 rpm, Tice = 100 Nm, EGR = 50%, where the system shows non-minimum
phase behaviour. (R1: light regularisation, R2: strong regularisation)
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oscillations. Indeed, in Figure 7, this latter method, referred
to as direct identification, shows fewer oscillations and a more
accurate output tracking, taking advantage of predictive knowl-
edge regarding the desired output trajectory. With the direct
method, regularisation is also needed but is much less sensitive
than for the indirect case. Indeed, the regularisation parameters
υi,k in (14c) have been set to 0.1 for each input and each input
derivative. Still, noticeably identical results are found whenever
the regularisation coefficients are taken in the range [0.01, 0.5].

A static controller is also employed in Figure 7 to empha-
sise the non-minimum phase behaviour of the system at this
specific operating point. This controller solely corresponds to
a static gain applied to the desired output. At the beginning of
each step, the output, i.e. NOx, starts to change in the wrong
direction before reaching the desired setpoint. This behaviour
occurs because of the non-minimum phase property of the sys-
temand is responsible for the numerical difficulties encountered
when using a feedforward controller with the indirect method.

5.3 Two-degree-of-freedom control

The proposed feedforward controller based on Equation (9)
only constitutes an open-loop controller. As a result, steady-
state errors are not compensated. Therefore, a PI controller is
added to work along with the feedforward controller C2 pre-
sented in Figure 5. The PI gains are manually calibrated to
asymptotically reach the reference during steady states, with a
unique parametrisation for the entire engine operating region.
The PI calibration is kept very simplistic, as the PI feedback
controller only aims at slowly removing steady-state error.

A schematic representation of this two-degree-of-freedom
controller (2DoF) is presented in Figure 8. For this study, the
output measurements are considered without noise to empha-
sise only the feedforward performances. The resulting output
tracking of this 2DoF strategy is depicted in Figure 9. The
results using only the feedforward controller are also displayed
to emphasise the importance of the feedforward part compared
to the PI contribution.

5.4 Varying engine operating point

In this section, multiple local controllers identified at various
engine operating points aremerged to create a single parameter-
varying controller. After adding a PI feedback loop to this
parameter-varying controller, the resulting 2DoF controller is
compared to classical controllers for a varying engine operating
point.

After identifying local controllers, the validity functions
parameters of the parameter-varying controller are optimised

Figure 8. Diagram of the two-degree-of-freedom controller (2DoF).

Figure 9. Comparison between a feedforward and a 2DoF controller, for a fixed
engine operating point Nice = 1200 rpm, Tice = 1000 Nm.

Figure 10. Region of highest activation for each local model (OPj) around its
identification centre.

with an interior-point method using transient operating point
measurement data. Each local model has the highest validity
function of them all around its operating point of identification,
as shown in Figure 10. The use of regularisation and region of
activation, as defined in (24), impedes reactivation and ensures
that each local model has a validity function near unity around
its corresponding operating point.

The parameter-varying feedforward controller is imple-
mented with a PI controller calibrated with constant gains. This
resulting 2DoF controller performances are shown in Figure 11
for a varying engine operating point and compared to:

• Only the PI controller from the 2DoF strategy. This strat-
egy is neither adaptive nor predictive but is highly conve-
nient regarding calibration effort and computational require-
ments;

• A network of full-state feedback controllers with integration
of the control error. It is composed of multiple state feedback
controllers identified at various operating points (Gregor-
cic & Lightbody, 2010). This control method is adaptive but
not predictive, as it only uses the current desired output and
system measurements;

• A flatness-based MPC as proposed in Euler-Rolle
et al. (2021) so that the local model parameters can be
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Figure 11. Closed-loop results using different controllers, without input satura-
tion and for a varying engine operating point.

directly merged, creating a time-varying controller at each
iteration. This adaptive and predictive strategy requires a sig-
nificant computational effort, making its implementation on
current hardware impractical.

The reference tracking regarding the first output, the exhaust
pressure Pexh, is almost identical for all controllers. Only
the non-predictive controllers, i.e. PI and state feedback con-
trollers, are slightly less accurate before large pressure variations.
Regarding the second output, the NOx mass flow, output track-
ing is inaccurate for the PI controller during transient phases.
The state feedback controller is faster than the PI controller but
fails to accurately follow the desired referenceNOx signal during
large transients. These observations are confirmed by a lower
coefficient of determination detailed in Table 1 for the non-
predictive controllers, especially regarding the second output
NOx.

The proposed 2DoF controller is more precise for both out-
puts during transient phases as it inherently considers predictive
information. The 2DoF method is almost as accurate as the
MPC and can still be improved with a more sophisticated feed-
back loop. Indeed, the MPC is primarily relying on its feedback
information to control the outputs during transient engine oper-
ating points. The 2DoF, with its simple PI feedback loop, cannot
perfectly follow the outputs during transient operating points,

Table 1. Coefficients of determination for
different controllers proposed in Figure 11.

Controller R2-Pexh R2-NOx

PI 0.984 0.613
Feedback 0.963 0.857
2DoF 0.991 0.947
MPC 0.992 0.987

Figure 12. Closed-loop results using different controllers, with input saturation
and for a varying engine operating point.

Table 2. Coefficients of determination for
different controllers proposed in Figure 12.

Controller R2-Pexh R2-NOx

PI 0.837 0.600
Feedback 0.676 0.709
2DoF 0.946 0.922
MPC 0.965 0.984

but the control error is immediately corrected after the engine
operating point returns to a steady state.

Another reference output trajectory tracking is presented in
Figure 12 for the same controllers. Nevertheless, this time, the
input is saturated for all the controllers as the reference is not
reachable between 475 and 480 seconds. Especially the exhaust
pressure cannot be accurately followed, even with the adaptive
MPC, resulting in lower coefficients of determination given in
Table 2 compared to the previous case summarised in Table 1.

The same observation as in the previous case still holds, with
non-predictive methods being slower and, therefore, less accu-
rate. During and shortly after an input saturation, the 2DoF
method is almost as precise as the adaptive MPC but with sig-
nificantly smaller computation requirements. Also, compared
to the PI or the state feedback controllers, the 2DoF method
is much faster at removing a steady-state error after an input
saturation phase.

6. Conclusion and outlook

This paper proposes an automated method for identifying a
feedforward controller for output tracking of a nonlinear phys-
ical system. The proposed structure benefits from its modu-
larity, making it applicable to any physical system modelled
with an LPV model. Additionally, the controller parameters
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can be directly identified from measurement data, guaran-
teeing robustness against model order selection and ensuring
numerical stability. Also, with the suggested TLS identifica-
tion approach, the model order can be estimated without prior
knowledge regarding the physical system.

A significant advantage of the proposed feedforward identi-
ficationmethod is that multiple local controllers can bemerged.
Because they share an identical structure, their parameters can
be combined to create a local controller network. Using a single
least squares algorithm, the resulting parameter-varying con-
troller can design an entire input trajectory given a desired
output trajectory. Moreover, the input trajectory is guaranteed
to be smooth and bounded thanks to regularisation, even if the
system exhibits non-minimum phase behaviour.

The proposed feedforward controller, implemented with a
simple PI feedback loop, i.e. two-degree-of-freedom controller,
is compared to classical controllers using a detailed physical
simulation of an engine air path. The accuracy during tran-
sient output tracking is improved using the proposed strategy
compared to non-predictivemethods. The 2DoF controller per-
forms almost as well as an adaptive MPC, even with input
constraints, but uses only a fraction of its complexity. The input
trajectory can therefore be easily recomputed anytime a new and
more accurate operating point trajectory or output reference
trajectory is available.

Future work is focusing on communicating the generated
input trajectory to the high-level controller to improve the set-
points definition and assess input constraints. Additionally, the
practical implementation of the proposed controller, e.g. on a
diesel engine testbed, is the next step to validate the proposed
feedforward strategy. Finally, a theoretical study regarding the
optimality of the proposed feedforward controller is also under
consideration.
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Appendix. Matrices for the feedforward least squares
formulation
This appendix provides details for re-writing (9) into the form (13) where
the input parametrization γ u appears linearly. First, the desired outputs
signals are discretised in Nt samples, and so are the basis functions given
in (11a), i.e. ϕk ∈ R

Nt leading to yi ∈ R
Nt ,∀i ∈ {1, . . . ,m}. Additionally,

the parameters of the controller structure (9) are also discretised

θ̄y = θy (ρ (t)) , (A1)

with ρ(t) the discretised operating trajectory provided by the high-level
controller. The model parameters are ordered in a three dimensional
matrix, i.e. θ̄y ∈ R

n×m×Nt .
With the discretised expected outputs and their derivatives, the left-

hand side of (9) is trivially computed. Also, the resulting m columns of Nt

samples are stored in a column vector Φy of Ntm elements

Φy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
k=1

( rk∑
l=0

(
ylk � θ̄y

(
l + 1 +

k−1∑
i=1

ri + 1, 1, ·
)))

...
m∑
k=1

( rk∑
l=0

(
ylk � θ̄y

(
l + 1 +

k−1∑
i=1

ri + 1,m, ·
)))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A2)

with θ̄y(l + 1 +∑k−1
i=1 ri + 1, k, ·) ∈ R

Nt ,∀l ∈ {0, . . . , rk},∀k ∈ {1, . . . ,m}.
The notation � refers to the standard Hadamard product, resulting in the
column vector Φy ∈ R

Ntm.
The right-hand side of (9) is discretised in Nt samples, with θ̄u ∈

R
m(r∗+1)×m×Nt created identically as θ̄y. The inputs are parameterised with

basis functions as shown in (10). It follows that in the right-hand side of (9)
all the inputs and their derivatives can be written[

ū1, ū(1)
1 , . . . , ū(r∗)

m

]
=
[
ϕγ u1 , ϕ(1)γ u1 , . . . , ϕ(r∗)γ um

]
.

(A3)
In Equation (9), the right-hand side can be expressed as done for the left-
hand side (A2), just changing the output signals with the inputs and θ̄ y by
θ̄u. Using the relation (A3), and collecting all the unknown variables,

γ u = [γ T
u1 , γ T

u2 , . . . , γ T
um
]T , (A4)

the right-hand side of (9) becomes

Φu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
k=1

⎛
⎝ r∗∑

l=0

(
ϕl � θ̄u

(
l + 1 + (k − 1)

(
r∗ + 1

)
, 1, ·))γuk

⎞
⎠

...
m∑
k=1

⎛
⎝ r∗∑

l=0

(
ϕl � θ̄u

(
l + 1 + (k − 1)

(
r∗ + 1

)
,m, ·))γuk

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A5)
From (A5), all contributions γuk ,∀k ∈ {1, . . . ,m} can be collected to
become a linear operation with respect to γ u

Φuγ u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r∗∑
l=0

(
ϕ(l) � θ̄u

(
l + 1 + (1 − 1)

(
r∗ + 1

)
, 1, ·))

...
r∗∑
l=0

(
ϕ(l) � θ̄u

(
l + 1 + (m − 1)

(
r∗ + 1

)
, 1, ·))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

...⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r∗∑
l=0

(
ϕ(l) � θ̄u

(
l + 1 + (1 − 1)

(
r∗ + 1

)
,m, ·))

...
r∗∑
l=0

(
ϕ(l) � θ̄u

(
l + 1 + (m − 1)

(
r∗ + 1

)
,m, ·))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

γ u,

(A6)
with Φu ∈ R

Ntm×Lm.
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