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Abstract

Recent studies have shown an association between the development of colorectal cancer
(CRC) and the composition of the patients’ gut microbiome. The aims of this thesis were
to identify microbial signatures in the gut microbiome associated with CRC and cancer
precursor (adenoma), and to develop machine learning models for the screening of these
diseases based on the composition of the stool microbiome.

Meta-analysis dataset containing 1786 samples from healthy individuals and adenoma and
CRC patients was obtained from publicly available repositories. Differential abundance
analysis (DAA) was performed to detect biomarkers using three methods: ALDEx2,
ANCOM-BC, and MaAsLin2. Machine learning models for distinguishing healthy indi-
viduals and CRC or adenoma patients were trained on 80% of the dataset and tested on
the remaining 20%, with several parameter options to optimise the performance.

DAA of CRC compared with healthy samples revealed a total of 39 differentially abundant
taxa identified by all three methods. Comparison of adenoma and healthy samples
resulted in 111 detected DA taxa by ALDEx2 and ANCOM-BC. The best machine
learning performance for CRC-healthy classification was obtained using a support vector
machine model with a radial kernel on a genus level with MaAsLin2 feature selection.
This model yielded an area under the curve (AUC) of 0.84 for cross-validation and 0.80
for the test dataset. For the distinction between adenoma and healthy samples, the light
gradient-boosting machine model using the 50 highest scoring species achieved an AUC
of 0.85 for cross-validation and 0.72 for the test dataset.

Machine learning models performed comparably well in detecting CRC and better in
detecting adenomas than the currently used fecal tests. For the first time, a large
meta-analysis dataset was successfully used to demonstrate the suitability of machine
learning algorithms for the identification of bacterial biomarkers and the development of
microbiome-based diagnostic solutions for CRC and adenoma. The developed models
were able to screen for these diseases non-invasively - based on stool samples, and with
fairly high accuracy already. With further optimization, such tools could be used in the
future to accompany colonoscopy in regular screening programs for colorectal cancer.
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Kurzfassung

Jüngste Studien haben einen Zusammenhang zwischen der Entwicklung von Darmkrebs
(CRC) und der Zusammensetzung des Darmmikrobioms der Patienten gezeigt. Ziel dieser
Arbeit war es, mikrobielle Signaturen im Darmmikrobiom zu identifizieren, die mit
Darmkrebs und Krebsvorstufen (Adenomen) assoziiert sind, und maschinelle Lernmodelle
für das Screening dieser Krankheiten auf der Grundlage der Zusammensetzung des
Stuhlmikrobioms zu entwickeln.

Ein Meta-Analyse-Datensatz mit 1786 Proben von gesunden Personen, Adenom- und
Darmkrebs-Patienten wurde aus öffentlich zugänglichen Quellen beschafft. Die differenzi-
elle Abundanzanalyse (DAA) wurde durchgeführt, um die Biomarker mit drei Methoden
zu erkennen: ALDEx2, ANCOM-BC und MaAsLin2. Modelle für maschinelles Lernen zur
Unterscheidung zwischen gesunden Personen und CRC- oder Adenom-Patienten wurden
auf 80% des Datensatzes trainiert und auf den verbleibenden 20% getestet, wobei mehrere
Parameteroptionen zur Optimierung der Leistung verwendet wurden.

Die DAA von Darmkrebs im Vergleich zu gesunden Proben ergab insgesamt 39 differenziell
abundante Taxa, die mit allen drei Methoden identifiziert wurden. Beim Vergleich von
Adenomen und gesunden Proben wurden 111 DA-Taxa von ALDEx2 und ANCOM-BC
erkannt. Die beste maschinelle Lernleistung für die Klassifizierung von CRC-gesund wurde
mit einem Support Vector Machine Modell mit einem radialen Kernel auf Gattungsebene
mit MaAsLin2-Variablenauswahl erzielt. Dieses Modell ergab eine Fläche unter der
Kurve (AUC) von 0.84 für die Kreuzvalidierung und 0.80 für den Testdatensatz. Für die
Unterscheidung zwischen Adenomen und gesunden Proben erreichte das Light Gradient-
Boosting Maschine Modell unter Verwendung der 50 ausgewählten Arten eine AUC von
0.85 bei der Kreuzvalidierung und 0.72 im Testdatensatz.

Die maschinellen Lernmodelle schnitten bei der Erkennung von kolorektalen Karzinomen
vergleichbar gut und bei der Erkennung von Adenomen besser ab als die derzeit verwen-
deten Fäkaltests. Zum ersten Mal wurde ein großer Meta-Analyse-Datensatz erfolgreich
genutzt, um die Eignung von Algorithmen des maschinellen Lernens für die Identifizierung
bakterieller Biomarker und die Entwicklung mikrobiombasierter Diagnoselösungen für
Darmkrebs und Adenome zu demonstrieren. Die entwickelten Modelle waren in der Lage,
diese Krankheiten nicht-invasiv (auf der Grundlage von Stuhlproben) und bereits mit
recht hoher Genauigkeit zu erkennen. Bei weiterer Optimierung könnten solche Tests in
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Zukunft als Ergänzung zur Darmspiegelung in regelmäßigen Vorsorgeprogrammen für
Darmkrebs eingesetzt werden.



Contents

Abstract iii

Kurzfassung v

Contents vii

1 Introduction 1
1.1 Gut microbiome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Metagenomics and amplicon sequencing . . . . . . . . . . . . . . . . . 2
1.3 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Colorectal cancer and adenoma . . . . . . . . . . . . . . . . . . . . . . 5

2 Methods 7
2.1 Study inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Alpha diversity and species evenness . . . . . . . . . . . . . . . . . . . 9
2.4 Beta diversity and data transformation . . . . . . . . . . . . . . . . . . 9
2.5 Differential abundance analysis . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Results and discussion 17
3.1 Alpha diversity and species evenness . . . . . . . . . . . . . . . . . . . 17
3.2 Beta diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Differential abundance analysis . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Machine learning models . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Conclusion 53

A Appendix 57

List of Figures 61

List of Tables 65

Bibliography 67

vii





CHAPTER 1
Introduction

1.1 Gut microbiome

The human gut microbiome comprises a collection of microorganisms that reside in
the human gastrointestinal tract, including their genomes, genes, and gene products
[1]. Organisms in the microbiome perform essential processes for host physiology and
survival. Some functions of the gut microbiome include fermentation of indigestible food
components into absorbable metabolites, synthesis of essential vitamins, elimination of
toxic compounds, outcompetition of pathogens, strengthening of the intestinal barrier,
and stimulation and regulation of the immune system [2].

Given the diverse range of functions of the gut microbiota and the fact that microbial
genes are more abundant than genes in the human genome, it is not surprising that
the intestinal microbiota plays a critical role in the human body [3]. Although they are
involved in numerous vital and beneficial activities, some gut microbiome organisms are
also associated with a number of diseases, including diseases both inside and outside the
gut, such as rheumatoid arthritis, colorectal cancer, inflammatory bowel disease, obesity,
diabetes, and cardiovascular diseases [4]. The shift in microbiome composition associated
with diseased states is often referred to as dysbiosis [4].

Gut microbiome composition and function can be assessed from fecal samples (non-
invasive) and tissue/biopsy samples taken during endoscopy. In both cases, samples are
analyzed by respective methods from the fields of metagenomics, metatranscriptomics,
metaproteomics, or metabolomics, depending on the analysis goal. Metagenomics enables
the identification and quantification of organisms in a sample, whereas other omics deliver
more insight into dynamics and functional processes [2].

1



1. Introduction

1.2 Metagenomics and amplicon sequencing
The first microbial studies utilized the direct cultivation and isolation of microbes to
identify and quantify them. This approach is limited because approximately 99% of
microbes are currently uncultivable, and the growth conditions used may favor the
selection of some species over others [5]. Metagenomics is a modern approach that is
defined as the study of a collection of genetic material (genomes) present in a sample with
a mixed community of organisms [6]. Metagenomic tools enable microbiome exploration
without selection bias or constraints associated with cultivation methods [5]. Basic
steps in metagenomic analysis include sample collection, DNA/RNA extraction, library
preparation, genetic sequencing, and bioinformatic data analysis [5]. Because this thesis
employed an amplicon sequencing dataset, the methodology for this approach is presented
in more detail here.

The 16S rRNA gene is present in all bacteria, and consists of hypervariable regions spaced
by ultra-conserved regions. The most important step in library preparation for 16S rRNA
sequencing (also referred to as amplicon sequencing) is polymerase chain reaction (PCR)
used to amplify the genetic material in a sample. Universal primers are used, as they can
anneal to the conserved regions of bacteria, and therefore, the 16S rRNA hypervariable
region can be amplified. Hypervariable regions are characteristic for each bacterium and
are thus used to reliably infer taxonomy up to the genus level. [7, 5]

Amplified region of the 16S rRNA gene is sequenced in the next step. There are many
sequencing technologies and platforms, however, next-generation sequencing (NGS) using
Illumina has become the mainstream method of choice. The platform is based on
sequencing by synthesis technology (SBS). During this type of sequencing, DNA is
fragmented and adapters are added to both ends. Single-stranded DNA (ssDNA) is
added to the flowcell, and fragments are attached to the surface due to complementary
oligos on the adapters and the surface. In a so-called bridge-PCR, each fragment is
amplified, forming clusters of identical sequences. SBS follows with the help of DNA
polymerase and four dNTPs with specific fluorescence. The 3’ end of these dNTPs
contains an azide group, which blocks the incorporation of the next base. In this way,
photos are scanned after each base incorporation, and based on the light signal, the base
is identified. After scanning, the azide group is removed, and the process continues until
the desired read length is obtained. After binding another end of ssDNA to the flowcell,
forming the double stranded bridge and cleaving off of the original forward strand, the
remaining reverse strand is sequenced in the same manner. [6, 8]

Bioinformatic analysis of acquired data starts with reads for each sample stored in FASTQ
files (text files with nucleotide sequences, including quality scores for each base). If
paired-end reads are available, the pairs are merged to obtain full sequences. The result
of a bioinformatic pipeline is an amplicon sequence variant (ASV) table – a matrix with
one dimension (rows) corresponding to samples and the second dimension (columns)
corresponding to sequence variants (i.e., uniquely identified nucleotide sequences). This
matrix contains information on how much of each ASV is present in each sample (the
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so-called ASV counts). Because ASVs correspond to DNA regions that are specific to
each bacterium, taxonomy can be assigned to them. This is done by classifying the
obtained ASVs with the help of reference sequences with known taxonomy. [9]

1.3 Machine learning
Machine learning is a part of artificial intelligence and is being used in numerous fields
because of its ability to learn from the presented dataset (called training data) and make
predictions about unknown data. There are three general types of algorithms: supervised
learning, unsupervised learning and reinforcement learning [10]. This thesis employed
different learners from the supervised learning category; therefore, a short explanation of
the general concept and the applied algorithms is provided in this chapter.

Supervised learning algorithms use a set of variables as inputs (also predictors, features,
independent variables) to predict the value of one or more outputs (responses, dependent
variables). Outputs can have one of two general forms: quantitative or qualitative.
Quantitative responses include measurements with a range of values, and measurements
close in value are also close in nature. In contrast, qualitative responses are part of a finite
set of values that can be considered as response classes, denoting them as categorical
or discreet variables. Depending on the type of output variable, a supervised learning
task is either a regression when predicting a quantitative response or classification when
predicting a qualitative response. Since machine learning was used in this thesis to
predict the disease status of a sample (healthy or CRC/adenoma), we are speaking of a
classification task. [11]

The input data for ML algorithms are usually stored in a matrix form. In this case, we
could directly use the ASV table (output of the bioinformatic pipeline). The table contains
samples in rows and bacterial taxa (obtained by exchanging ASVs with corresponding
taxonomic assignments) in columns (n samples × m taxa). Samples represent observations
and bacterial taxa features (variables). Supervised learning algorithms also require a target
vector to store the responses for each sample. This vector is therefore n-dimensional
and has a value of 0 for samples that are healthy or a value of 1 for samples with
CRC/adenoma (in two separate classification tasks, one for healthy vs. CRC and one for
healthy vs. adenoma).

The difference between the ML algorithms arises from the different approaches for
separating the classes. This results in different objective functions that ML models are
attempting to optimize.

Four classifiers applied in this thesis were linear, LASSO, RIDGE, elastic net, and logistic
regression. LASSO and RIDGE both optimise least squares with added penalty terms.
Least squares is the basic regression model in which linear coefficients are chosen based
on the minimization of the residual sum of squares - the squared difference between
the actual response and the predicted/modelled response. LASSO additionally contains
a so-called L1 norm in the objective function. L1 norm represents the sum of the
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1. Introduction

absolute model coefficients. RIDGE contains the L2 norm, which is the sum of squared
coefficients. The nature of the LASSO constraint results in some of the coefficients
being exactly 0, which reduces the number of features because the features with zero
coefficients do not contribute to the model. The elastic net uses a combination of L1 and
L2 norms with an adjustable parameter to control the ratio between the penalties. In the
logistic regression, the probabilities describing the possible outcomes of an observation
are modeled using a logistic function. Using the Newton-Raphson algorithm to solve the
problem of maximization of the log-likelihood function, we obtain a solution that can be
considered as weighted least squares with an adjusted response. So, although the initial
design of the logistic regression algorithm is completely different than the idea behind
LASSO/RIDGE/elastic net, it also ends up being connected to the classic least squares
problem. [11, 12]

Bayes’ theorem generally describes the probability of an event based on prior conditional
probability. Gaussian Naive Bayes algorithm for classification assumes that the likelihood
of the features is Gaussian (normally distributed) and the parameters are estimated using
maximum likelihood. [13, 14]

Random forests are tree-based models. The idea is to partition the feature space into
regions and fit a simple model for each region. In each step, a split variable is chosen, and
a split point (a value of this variable) defines the border of regions. This is referred to as
tree building. Using a node impurity measure (e.g., misclassification error or Gini index),
we can define an objective function that contains the chosen impurity measure and tree
size (number of nodes, i.e., number of times a partition has been conducted) multiplied
by a tuning parameter. This function should be minimized, and thus, the aim is to find
a compromise between tree size and goodness of fit (large trees can lead to overfitting).
Since single classification trees are very sensitive to small data changes, many trees are
generated when using the random forest classifier and the decision is made by assigning
an observation to the class which is predicted by the majority of the trees. [11]
Light Gradient Boosting Machine algorithm is also based on decision trees, but has some
additional advantages, e.g. faster training and higher efficiency, lower memory usage and
better accuracy. [15]

Support vector machines work by transforming the feature space into a higher-dimensional
space to separate the data clouds of the groups that overlap. In this space, a hyperplane
(in the linear case) is constructed and represents the border between data clouds. An
objective function follows from a simple optimization problem, where the aim is to
construct a separating hyperplane by finding the largest distance between the two classes
of the training data. Hyperplanes are used in the linear case, however, sometimes, the
classes can be separated much better with nonlinear decision boundaries. In this case,
we can use other functions (also called kernels), e.g. radial basis function. [11]
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1.4 Colorectal cancer and adenoma
Colorectal cancer (CRC) is one of the most prevalent cancers worldwide, ranking third
among the most common cancers after breast and lung cancers, and is the second leading
cause of cancer-related deaths in 2020 [16]. The adenoma-carcinoma sequence has been
proposed as a process by which colorectal cancer arises, implying that most, if not all,
colorectal carcinomas occur after the development of a malignant adenoma [17]. A
colorectal adenoma is an unusual growth of cells formed in the lining of the colon [18].
Most of them are benign, but around 3-5% of affected individuals develop carcinoma
during a subsequent period of 10 years [19]. The development of colorectal cancer is
attributed to genetic mutations and factors such as diet, inflammation in the intestine
and, as recently discovered, the gut microbiota. Dysbiosis of the gut microbiome has
been described as a likely mutagenic mechanism by which genotoxic stress is generated
in the gut environment, leading to colorectal cancer [20].

Currently, the most widely used screening tools for CRC include colonoscopy as a direct
visualization method, and fecal immunochemical test (FIT) and fecal occult blood test
(FOBT) as indirect and non-invasive tests [21]. Both non-invasive methods are based on
testing for (hidden) blood in stool samples [22, 23]. Compared with symptom-recognized
colorectal cancer, CRC detected by either invasive or non-invasive screening tools results
in a higher overall survival rate and CRC-specific survival rate [24]. This finding highlights
the importance of regular screening. To increase participation, screening tools should be as
convenient and non-invasive as possible while maintaining high accuracy. Colonoscopy is
the most reliable diagnostic method for CRC with high sensitivity (88.7%) and specificity
(90.3%) [25]. However, it also has drawbacks such as the inability to detect cancers in
the proximal colon as successfully as in the distal colon, which decreases the initially
determined efficiency of this procedure [26]. The accuracy of diagnosis also depends
on the experience of the physician who performs it [27]. One of the most accurate and
widely used non-invasive methods for CRC screening, FIT, shows a sensitivity of 75%
and a specificity of approximately 90% for CRC, however, the sensitivity for detecting
advanced adenomas is much lower (20-40%) [28].

As already mentioned, bacteria in the intestinal microbiome can stimulate the development
and progression of CRC through processes such as the induction of a chronic inflammatory
state or immune response, altering stem cell dynamics, the biosynthesis of toxic and
genotoxic metabolites, and affecting host metabolism [29]. A recent review summarized
common biomarkers of gut dysbiosis in CRC patients with increased relative abundance
of the organisms Fusobacterium nucleatum, Parvimonas micra, and Peptostreptococcus
anaerobes [30]. Interestingly, F. nucleatum also showed potential for early diagnosis, since
the performance of colorectal adenoma detection with fecal immunochemical test (FIT)
was increased when combining FIT with the quantification of this biomarker [31]. It was
also discovered that using the ratio of F. nucleatum to the probiotics Faecalibacterium
prausnitzii and Bifidobacterium resulted in surprisingly good diagnostic performance
[32]. A study on gut mucosal microbiome identified taxa with the highest abundances
for cancer stages I-III, respectively [33]. Dominant phylotypes for cancer stages 0-III and
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for stage IV have also been identified in stool samples from young- and old-onset CRC
patients [34].

Understanding changes in microbiome composition during CRC development offers a new
strategy for the diagnosis of this disease [35]. Cancers diagnosed at earlier stages usually
have higher survival rates [36]. This emphasizes the importance of identifying biomarkers
specific to adenoma and early stages of cancer. Hence, the first aim of this thesis was to
identify microbial signatures in the stool microbiome associated with colorectal adenoma
and cancer using a large meta-analysis dataset of amplicon sequences. In addition, the
goal was to develop a machine learning tool that can distinguish between health and
colorectal cancer or adenoma and thus classify sequenced stool samples. These results
were intended to motivate and serve as information for the development of a novel
non-invasive screening tool that performs better than the currently available non-invasive
methods (FIT and FOBT) and accompanies colonoscopy in the regular screening and
prevention of colorectal cancer.
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CHAPTER 2
Methods

2.1 Study inclusion
Google Scholar was used to search for studies that included microbiome amplicon
sequence reads of stool samples from CRC and adenoma patients as well as healthy
controls. The search was conducted in November 2021. Of the several studies initially
found, only four met the conditions related to read quality (Q-score) and sequencing
platform (Illumina): Baxter et al. [37], Zackular et al. [38], Zeller et al. [39], and
Yang et al. [34]. Raw FASTQ files were downloaded from the NIH National Center
for Biotechnology Information Sequence Read Archive (SRA) with accession numbers
PRJNA290926 (Baxter et al.) and PRJNA763023 (Yang et al.), from the European
Nucleotide Archive (ENA) with accession number ERP005534 (Zeller et al.), and from
the Mothur Project website (Zackular et al.) [40]. All studies except Yang et al included
sequencing information of the V4 region of the 16S rRNA gene, whereas the Yang study
included the V3-V4 region. The number of participants for a certain disease status
(healthy/adenoma/CRC) is given for each study and the entire meta-analysis dataset in
Table 2.1.

2.2 Data preprocessing
Raw reads were processed using the bioinformatics workflow manager Nextflow. The
workflow included DADA2 pipeline (version 1.26) to generate a table of amplicon sequence
variants (ASVs) with counts for each sample [9]. In addition to the reads in the FASTQ
files, the workflow used user-defined parameters set after inspection of the reads, which
were then used during the preprocessing steps (Table 2.2). The tool Cutadapt was
used in the workflow to trim off any primer sequences and adapters [41]. However,
primer removal was not performed in this case because primers were already removed in
the published FASTQ files of the chosen studies. FIGARO was used to determine the
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2. Methods

Table 2.1: Number of samples in the different studies and in the meta-analysis dataset.
Because the meta-analysis dataset was created after preprocessing steps that excluded
some samples, the number of samples from the studies do not fully sum to the number of
samples in the final meta-analysis dataset.

Dataset healthy adenoma CRC
Baxter 172 198 120

Zackular 30 30 30
Zeller 50 38 41
Yang 474 0 564

meta-analysis dataset 739 290 757

optimal trimming parameters (based on error rates) for paired-end reads for the DADA2
pipeline [42]. Flag -a was used to input the amplicon length (depending on the 16S
rRNA region sequenced). To filter and trim reads in DADA2, the filterAndTrim()
function was used, with the truncLen argument defined with forward and reverse trim
position (FIGARO output) and the maxEE argument defined with forward and reverse
expected error values (FIGARO output). Other arguments were the standard filtering
parameters (set as in the DADA2 pipeline tutorial). For single-end reads, the truncation
length parameter was set to 0 and maxEE was set to 2. After learning the error rates
with the learnError() function, the core sample inference algorithm was applied
with the dada() function. Finally, paired reads were merged with the mergePairs()
function, and in the single-end case, the output of the dada() function was simply used
to continue. The makeSequenceTable() function created the ASV table and chimeras
in the table were removed with the removeBimeraDenovo() function. Samples with a
read count lower than the user-defined sample depth (set to 5000) were removed from the
ASV table due to low coverage. The DECIPHER (version 2.26.0) function IdTaxa()
(similar to the DADA2 assignTaxonomy() function) was used to classify sequences
and determine the confidence percentage for each assigned taxon [43]. Species were
added using the addSpecies() function with the Silva reference fasta file. The tryRC
argument was set to TRUE to use the reverse complement of sequences if it has a better
match to the reference sequences [44].

The ASV tables from individual studies were merged into a single dataset containing
155146 different ASVs for 1786 samples. Since this dataset caused excessive memory
consumption, it was necessary to reduce it before proceeding with further analysis. This
was done using a taxonomy map table created with the IdTaxa() and addSpecies()
functions in the pipeline. The dataset was therefore reduced to 1488 species. All
subsequent data exploration analyses prior to machine learning (alpha and beta diversity,
differential abundance analysis) were performed in R (version 4.2.1). The corresponding
scripts with code can be found in the GitHub repository [45].
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2.3. Alpha diversity and species evenness

Table 2.2: User-defined parameters used as input for the preprocessing pipeline for each
study dataset. The same (V4) region of the 16S rRNA gene was sequenced in Baxter,
Zackular and Zeller studies, hence the same parameters were used for these datasets.
Since the Yang study contained both paired-end (PE) reads and single-end (SE) reads,
the parameters for each case were different.

Baxter, Zackular, Zeller Yang PE Yang SE
amplicon length 250 460 460
forward length 251 250 427
reverse length 251 250 -

2.3 Alpha diversity and species evenness
Alpha diversity index and species evenness were calculated on a complete data set
(ASV level). For alpha diversity, the diversity() function from the vegan package
(version 2.6.2) was used, and for species evenness, the diversityresult() function
from the BiodiversityR package (version 2.14.4), both with Shannon index. Counts for
the respective diagnosis groups (healthy, adenoma, CRC) were first tested for normal
distribution using the Shapiro-Wilk test. The Kruskal-Wallis test was used to test whether
the difference in alpha diversity and evenness between the three groups was significant,
followed by Dunn’s test for multiple pairwise comparisons with Benjamini-Hochberg (BH)
p-value correction to determine which groups were significantly different.

2.4 Beta diversity and data transformation
Beta diversity quantifies the (dis)similarity between samples. The differences between
the diagnosis groups (healthy/adenoma/CRC) and the study dataset groups (Baxter/Za-
ckular/Zeller/Yang) were of the greatest interest, so these two groupings were used for
this analysis.

Beta diversity was visualized using principal component analysis (PCA) and principal
coordinate analysis (PCoA). The PcaHubert() function of the rrcov package (version
1.7.0) was used to calculate the principal components. This function was chosen because
it takes into account the high dimensionality and possible outliers. The mcd argument of
the function was set to FALSE because only "tall" datasets are possible for the MCD
estimator (i.e., the number of observations must be at least twice the number of variables,
which is almost never the case for sequencing data). In this way, the ROBPCA algorithm
was applied. The number of components k was not fixed, so the algorithm itself finds the
optimal number of components to calculate [46].

The vegdist() function of the vegan package (version 2.6.2) was used to obtain the
Aitchison distance object, with the pseudocount argument set to 0.000001 to handle
zeros in the ASV table. The Aitchison distance is simply the Euclidean distance for
centered log-ratio (clr) transformed data. Since sequencing data are compositional data,

9



2. Methods

meaning that the values (counts) for each sample sum to a constant, the transformations
and methods used to analyse the data should take into account the compositional nature
of the dataset. This property is caused by the assay technology itself, since the number
of counts for each sample is limited by an arbitrary total - the library size [47]. An
obstacle when dealing with compositional data is that they do not exist in Euclidean
space (and should not be treated as such). However, Aitchison found that compositional
data can be mapped into real (Euclidean) space by using the log-ratio transformation [48].
This leads to the Aitchison distance being superior to the commonly used Bray-Curtis
dissimilarity or Jensen-Shannon divergence, since these measures do not represent a
true linear distance [49]. PCoA was therefore performed with the Aitchison distance
object using the pcoa() function from the ape package (version 5.6.2). Logarithmic
transformations have another advantage: they eliminate skewness and center the data.
This is demonstrated by the example of the first sample in the meta-analysis dataset
(Figure A.1). Centered data are better suited to meet the assumptions of linear models
used later in machine learning. Clr-transformed data are also scale invariant, meaning
that the same ratio is obtained for a sample with few read counts as for an identical
sample with many read counts (only the precision of the clr estimate is affected) [49].
Permutational multivariate analysis of variance or PERMANOVA is a method for geomet-
ric partitioning of multivariate variation in the space of a chosen dissimilarity measure.
The p-values are obtained by distribution-free permutation techniques (without assuming
multivariate normality). The null hypothesis is that there are no differences in the
positions of the group centroids in the space of the chosen dissimilarity measure [50].
This method was used to test the significance of the difference between the beta diversity
of different diagnosis groups and study datasets. The adonis2() function of the vegan
package (version 2.6.2) was used to test overall differences, and pairwise comparisons
were tested using the permanova_pairwise() function of the ecole package (version
0.9.2021).

2.5 Differential abundance analysis
Differential abundance analysis (DAA) is used to determine differences in abundance
of microorganisms between two or more groups [51]. Differentially abundant taxa
between the groups with a disease (CRC and adenoma) and the healthy group were
determined using three different methods. Recommended tools that take into account the
compositional nature of microbiome datasets are ALDEx2 and ANCOM [49]. ALDEx2
implements the centered log-ratio transformation and ANCOM implements an alternative
approach, additive log-ratio [52]. The aldex() function from the ALDEx2 package
(version 1.28.1) was used to analyse differential abundance based on the Wilcoxon
rank sum test and Welch’s t-test. The ANCOMBC package (version 2.1.1) allows bias
correction. The ancombc2() function was used with study (and diagnosis) variables in
the fix_formula argument to correct for bias caused by using different study datasets.
p-values were corrected using the Benjamini-Hochberg procedure. Because only one
taxon was differentially abundant in adenoma vs. healthy DAA using ancombc2(),
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the calculation was repeated without bias correction (without the study variable in the
fix_formula argument) to obtain a comprehensive list of DA taxa for this comparison.
Finally, a popular microbiome-specific method, the Maaslin2 package (version 1.8.0) with
the Maaslin2() function was used for differential abundance analysis [52]. The variable
study was set as a random effect to account for this covariate.

2.6 Machine learning
Machine learning (ML) models have the ability to learn from the data we present to
them (training data) and make predictions about unknown data. This thesis employed
nine different learners from the supervised learning category of ML. Because the response
was categorical in this case (0 - healthy, 1 - disease (CRC or adenoma); 2 classes), we
refer to it as ML classification. [11]

The machine learning pipeline was written in JupyterLab (Python version 3.6.9). Two
separate classifications were evaluated, one for CRC vs. healthy and one for adenoma
vs. healthy. Multiclass classification (all 3 groups classified by the same model) was also
investigated, but the separation between groups was less successful. Because more model
optimization, analysis, and interpretation techniques are available for binary classification,
this approach was chosen.

Several parameters were implemented in the pipeline to search for optimal settings for
the classification tasks (overview in Table 2.3). All parameter combinations were tested
using Katib, the Kubernetes-native project for automated machine learning (AutoML)
[53], and output metrics were documented and inspected.

Table 2.3: Overview of the available parameter settings for the machine learning.

Taxonomy level species, genus
Data transformation compositional, subsampling

Feature selection none, SelectKBest, Maaslin2

Model

Logistic regression (LR), LASSO, RIDGE,
Elastic net (EN), Support vector machine with linear
kernel (SVM linear), Support vector machine with
radial kernel (SVM), Random forest (RF),
Light gradient boosting machine (LGBM),
Gaussian naive Bayes (GNB)

For each parameter setting, the feature dataset was split into 80% for training and
validation and 20% for testing of the created model at the end. The former part was
again divided into 80% for model training and 20% for model validation during 5-fold
cross-validation (CV) with 5 repetitions. The output metrics of the created models
(including AUC, sensitivity, specificity, accuracy, and F1-score) are the calculated mean
of the metrics from the validation portions of the dataset (mean of the 25 values for
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each metric respectively during CV). All splits were stratified to maintain the class
distribution. The workflow is shown in Figure 2.1 [54].

Figure 2.1: Splitting of the meta-analysis dataset during ML workflow

The machine learning pipeline consisted of the following key steps, which are described
in detail in the sections below:

• Importing the required libraries and functions, and setting the desired parameters

• Import of the datasets

• Data transformation

• Feature selection

• Model training and cross-validation

• Model testing

• Model interpretation
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Installation of requirements, importing functions and setting
hyperparameters
In this part, the required functions were imported from available libraries and self-created
modules. A variety of parameters could be set to examine and compare the performance
of ML algorithms (Table 2.3).

Data ingestion
All feature datasets (ASV tables) were imported into Python and stored as data frames
in a count table dictionary. A taxonomy map dictionary was also created using the
information from each taxonomy map. This dictionary was then used to rename the
features (ASVs) to the specified taxonomic level so that the feature names contained the
entire taxonomy up to the desired taxonomic resolution. Finally, the feature data frames
from the count table dictionary were merged into a single feature dataset.

Data transformation
The merged dataset was transformed by either compositional or subsampling transforma-
tion. As discussed in Section 2.4, sequencing data are compositional because the counts
for each sample sum to a constant, so compositional centered log-ratio transformation
was one of the chosen methods. Prior to the transformation, the zeros in the dataset were
replaced with a pseudocount (set to 0.000001) and the centred log-ratio transformation
was calculated using the function clr() to remove the closure effects. In the subsampling
transformation, random subsampling to an equal count is performed for each sample.
The library biom (version 2.1.10) was used and the feature table was first converted
to BIOM format with the function Table(). Subsampling was performed using the
function subsample() with default parameters (except for the desired subsampling
depth, which was one of the pipeline parameters, but was set constantly to 5000 because
the compositional approach was preferred and subsampling was not explored with further
subsampling depths).

Feature selection
Before selecting significant features, labelling was performed to create class labels, i.e.,
the response vector. Based on the metadata information, samples from the control
group (healthy) were labelled with zeros and samples from the other diagnosis group
(adenoma/CRC) were labelled with ones. The test dataset was also separated prior to
feature selection, so that the test dataset remained completely uninvolved in the creation
of the model.

If chosen, all features could have been used to train the models. Two other options were
SelectKBest (SKB) and Maaslin2, a DAA tool introduced in Section 2.5. SKB is an
algorithm based on univariate statistical tests to select k features with the highest scores
(k was always set to 50 for the purposes of this analysis) [55]. It was implemented with

13



2. Methods

sklearn.feature_selection SelectKBest() function with mutual_info_classif
scoring function (returns univariate scores of features). Maaslin2 was implemented
in a module written in R (version 4.1.2) using the Maaslin2() function with the diagno-
sis group set as a fixed_effect and the study information as a random_effect to
correct for the confounding effect of the study variable. The q-value significance threshold
max_significance was left at the default value of 0.25. Before running Maaslin2,
MD5 hashing of the feature names was performed to prevent renaming. Subsequently,
the hashing was reversed to restore the feature names according to the taxonomy. The
same feature selection method was then applied to the test dataset.

The pipeline also allowed removal of any of the datasets or the outliers detected by the
robust PCA method (Section 2.4). However, these options were not explored in detail
during AutoML as they did not seem to provide significantly better results and it was
decided to preserve the entirety of the dataset.

Model training and cross-validation

Nine different classifiers were implemented in the pipeline: logistic regression (LR),
LASSO, RIDGE, elastic net (EN), support vector machine with linear kernel (SVM
linear), support vector machine with radial kernel (SVM), random forest (RF), light
gradient boosting machine (LGBM), and Gaussian Naive Bayes (GNB). The package
sklearn (version 0.24.2) was used for all models except for LGBM in the pipeline.

Four classifiers were defined using the LogisticRegression() function from the
sklearn.linear_model module; LR, LASSO, RIDGE and EN. For LR the default settings
of the function were used, only the parameter max_iter was adjusted (set globally to
10000 and always used with this function, as the default setting was not sufficient for
this dataset). For LASSO, the penalty was set to "l1", C to 1 (1/ALPHA, ALPHA set
to 1), and solver to "liblinear". For RIDGE, penalty was set to "l2", C was set to
1/2 (1/2*ALPHA), and solver to "liblinear". For EN, penalty was set to "elasticnet",
solver to "saga", and l1_ratio to 0.5. Since the LogisticRegression() function
was used for LASSO, RIDGE and EN models, these are not exactly the "real" LASSO,
RIDGE and EN algorithms, but rather logistic regression with L1, L2, combination of
L1 and L2 penalties respectively (see Section 1.3).

SVM models were implemented using the SVC() function from the sklearn.svm module.
For SVM linear, kernel was set to "linear" and for SVM with radial kernel, the default
kernel type "rbf" was used. In both cases, probability was set to TRUE to allow later
probability estimates with the model.

For the random forest classifier, the function RandomForestClassifier() was used
with the default settings from the module sklearn_ensemble.

LBGM was defined using the lightgbm package (version 3.3.2) and the
LGBMClassifier() function with default settings.

14



2.6. Machine learning

GNB was implemented with the function GaussianNB() from the module
sklearn.naive_bayes with default settings.

The selected model was fitted with training data using fit(), and the evaluation metrics
were calculated during cross-validation (CV). RepeatedStratifiedKFold() with 5
folds (n_splits) and 5 repetitions (n_repeats) was used. A for loop was used to create
a dictionary for each CV split of the training data, containing metrics including precision,
recall, and thresholds (output of precision_recall_curve()) and predictions for
validation datasets. The metrics and predictions from the dictionary were used to plot the
receiver operating characteristic (ROC) and precision-recall (PR) curves, and the (non-
normalised and normalised) confusion matrix (CM). Because changing the cut-off along
the ROC curve allows adjustment of the sensitivity and specificity values, two sets of CM
were created in the pipeline, one for the cut-off determined in the predict() method
and one manually defined to classify the probabilities calculated by predict_proba()
and thus modify the sensitivity and specificity.

Model testing
The model was then used to predict (predict()) the output of the test dataset. The
predicted vector was compared to the actual response vector of the test data. ROC curve
and other evaluation metrics were calculated based on the performance of the model
on the test dataset. Confusion matrix for the test dataset was based on the output of
predict_proba() and the calculated probabilities were classified using the adjusted
cutoff value determined for the training dataset.

Model interpretation
SHAP library (version 0.41.0) was used for model interpretation. In particular, the global
summary of the permutation explainer (explainers.Permutation()) on training
data was used to visualize the n (set to 20) features that contribute to the model the most
based on the Shapley values. According to the errors obtained while running the function,
the argument max_evals should be at least 2*(number of features)+1. However, when
the number of features was »249, the kernel died, so the argument max_evals was set
to 500 to prevent kernel from crashing. This meant that it was impossible to interpret
the models with all species. For the tree ensemble models, TreeExplainer() was
implemented and a beeswarm plot (plots.beeswarm()) was created to see how the
top features affected the output of the model.
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CHAPTER 3
Results and discussion

3.1 Alpha diversity and species evenness
Alpha diversity quantifies the diversity of a community within a sample. The Shannon
diversity index and additionally species evenness were chosen as measures for this analysis.
Statistical tests were performed to determine if differences in alpha diversity measures
were significant among the three diagnosis groups.
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Figure 3.1: Comparison of alpha diversity between the healthy, adenoma, and CRC group.
p-values of pairwise comparisons were calculated using Dunn’s test with Benjamini-
Hochberg correction.
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Figure 3.2: Comparison of Shannon evenness index between the healthy, adenoma, and
CRC group. p-values of pairwise comparisons were calculated using Dunn’s test with
Benjamini-Hochberg correction.

Because the Shapiro-Wilk test showed that none of the three groups followed a normal
distribution (Table 3.1), the Kruskal-Wallis test was performed to test the significance of
differences for all three groups, followed by a Dunn’s test for pairwise comparisons. This
procedure was applied for all calculations in this chapter since the null-hypothesis of the
Shapiro-Wilk test was rejected in all cases.

Table 3.1: p-values of the Shapiro-Wilk and Kruskal-Wallis tests for alpha diversity
(Shannon diversity index) and species evenness (Shannon evenness index) to test for
normal distribution and significance of differences between groups, respectively.

healthy adenoma CRC

Shannon diversity index Shapiro-Wilk 7.34e-12 3.33e-08 4.96e-06
Kruskal-Wallis 7.37e-07

Shannon evenness index Shapiro-Wilk < 2.20e-16 5.04e-10 2.86e-12
Kruskal-Wallis 2.35e-02

The Kruskal-Wallis test revealed a significant difference in alpha diversity among the
three groups. Dunn’s test showed that the difference is significant between the adenoma
and CRC group, as well as between adenoma and healthy group, indicating that adenoma
patients had significantly higher diversity compared with the other two groups. This
is surprising, as it was expected that the healthy group would have the highest alpha
diversity. The same results are obtained for the Shannon evenness index, which makes
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Table 3.2: p-values of Dunn’s test for pairwise comparisons of alpha diversity and species
evenness between the three groups. Non-significant p-values are marked with “(ns)”.

adenoma - CRC adenoma - healthy CRC - healthy
Shannon diversity index 1.05e-06 3.55e-06 6.31e-01 (ns)
Shannon evenness index 2.32e-02 2.32e-02 7.86e-01 (ns)

sense since the Shannon evenness index is directly correlated with and calculated from
the Shannon diversity index. However, the differences between the groups are less obvious
here, as indicated by higher p-values.

Zeller et al. reported no significant changes in Shannon diversity or species and gene
richness between the healthy, adenoma, and CRC group. The results of the Yang et
al. paper showed a significant decrease in Shannon diversity index in old-onset CRC
compared with an age-matched control group and a significant decrease in diversity of
young-onset CRC patients compared with an age-matched control group. Interestingly,
old-onset CRC patients also had a significantly lower diversity compared to young-onset
CRC patients. In general, studies on healthy individuals have shown that the diversity of
the microbiome increases with age or does not change significantly [56, 57]. As mentioned
earlier, an intuitive hypothesis was that the healthy microbiome would be the most
diverse, as low alpha diversity is often associated with a dysbiotic gut microbiome [57].
Inclusion of the samples from the Yang dataset could explain the diversity level observed
in the CRC group, which is comparable to that of the healthy group. The alpha diversity
values of 185 young-onset-CRC patients (age 36-46; making up 24.4% of the samples in
the CRC group) could have a "balancing" effect on the overall alpha diversity of this group.
Baxter et al. and Zackular et al. did not examine microbial diversity in their datasets.
Other publications report differing results regarding diversity in fecal samples between
groups, with some finding significant changes [58, 59, 60, 61] and some non-significant
differences [62, 63, 64]. Sheng et al. reported a significant difference, however, with
CRC patients having higher Shannon and Simpson diversity than healthy controls [59].
Overall, alpha diversity does not appear to be a meaningful metric for comparing the
microbiomes of CRC and adenoma patients with healthy controls due to inconsistent
results in the literature. In addition, ethnicity and geographic location are known to
have a significant impact on gut microbiome composition [65, 56]. It is therefore difficult
to analyse alpha diversity in a meta-analysis dataset consisting of samples from different
countries and continents and to compare the groups, considering that each of them has
a slightly different representation of different geographic locations. In this case, the
adenoma group is the most distinct because it does not include samples from the Yang et
al. dataset, which could explain the observed significant difference to other two groups.
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3.2 Beta diversity
To analyse and visualise the (dis)similarity between sample groups, beta diversity was
examined. Two ordination methods were used, principal component analysis (PCA) on
a clr-transformed dataset (Figure 3.3) and principal coordinate analysis (PCoA) on an
Aitchison distance object (Figure 3.4). In addition, (pairwise) PERMANOVA was used
to quantify multivariate community-level differences between groups. The (dis)similarity
was inspected between the three diagnosis groups as well as the four different study
datasets present in the meta-analysis dataset.
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Figure 3.3: Principal component analysis (PCA) plot with the first two principal compo-
nents (10 principal components calculated) and the distinction between different diagnosis
groups (a) and study datasets (b).

As indicated in Methods (Section 2.4), the number of components k in the PCA function
was determined by the algorithm’s for finding the optimal k [46]. This resulted in 10
calculated principal components (PCs), which cumulatively explained only 12.6% of the
variance. Therefore, different numbers of components were calculated and cumulative
variance was checked to see if a satisfactory percentage of the cumulative explained
variance (80-95%) could be achieved (Table A.1). In addition, screeplots (Figure A.2)
were examined to possibly find the elbow point and determine the cut-off for the number
of components, but this was not readily possible. Since the usual criteria (percentage of
cumulative variance, elbow point in a screeplot) for determining the number of principal
components could not be readily obtained, the 10 PCs calculated according to the
algorithm’s criterion were taken. Since PCA was used for two-dimensional visualisation
of beta diversity, the calculation of 10 PCs was acceptable in this case because it saved
some computational time and the information contained in the first two PCs did not
change significantly when the number of components was varied.

Both ordination methods imply that the healthy and CRC groups are more widely
dispersed, while the adenoma group is concentrated in a more limited area. This is
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Figure 3.4: Principal coordinates analysis (PCoA) plot for Aitchison distance (1206
coordinates calculated) with the distinction between different diagnosis groups (a) and
study datasets (b).

because of the Yang dataset, since it clusters "away" from the Baxter and Zeller datasets
without containing any adenoma samples. The differences between the study datasets
are more apparent on the plot. The Yang and Zackular datasets are closer together and
separated from the Baxter and Zeller datasets, which also form an overlapping cluster.
However, the clusters for both groupings cannot be clearly separated. The overlap of
Yang and Zackular or Baxter and Zeller datasets is unknown. As discussed in Section 3.1,
geography (and other attributes such as race and diet) is an important factor influencing
the composition of the gut microbiome. However, the overlapping study datasets do
not consist of samples from people from the same locations and with the same race.
Although there is no explicit information about each sample in the metadata, Yang
samples originate from China and Zackular samples from the United States (with 85.2%
of the dataset coming from white individuals and only 9.1% from Asian individuals).
The Baxter dataset is also from the USA, with 90.7% of the samples coming from white
individuals. The Zeller samples are from European countries (Germany, France, Denmark,
and Spain) and contain no information on race. The unique feature of the Yang dataset
is also the targeted 16S rRNA region during sequencing (V3-V4 versus V4 in all other
studies). This meta-analysis dataset has a very high dimensionality (approximately 1500
dimensions) and is obviously very complex, as PCA did not reveal a high proportion of
explained information (variance) in the first components. This suggests that the observed
separation in the 2D graphs in Figure 3.3 and Figure 3.4 does not tell much and represent
the real situation, as it captures only a tiny part of the information contained in the
dataset.

PERMANOVA results show a significant difference in microbial distance between all
diagnosis groups and study datasets overall (p-value 0.001 for both distinctions, Table 3.3)
and in pairwise comparisons (adjusted p-value 0.003 for all comparisons in diagnosis
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groups distinction (Table 3.4) and 0.006 when distinguishing study datasets (Table 3.5)).
Zeller et al. reported a significant difference in taxonomic community composition
between the healthy and CRC groups. Yang et al. also found significant differences for
all comparisons ( old-onset CRC vs. age-matched controls, old-onset CRC vs. young-
onset CRC, young-onset CRC vs. age-matched controls, but also between old and
young control groups). These frequently reported significant differences in taxonomic
composition between diagnosis groups suggest that there is an apparent shift in the
composition of the microbiome in patients with disease. As will be shown in the next
chapters, this dysbiosis is consistent in the literature and in the results of the various
methods used here and can therefore be used as an indicator for CRC. The significant
difference between study datasets suggests that this information should be adequately
accounted for in further analysis methods, as it could introduce bias. Therefore, it was
included as a confounding variable (when possible) in the differential abundance analysis.

Table 3.3: Results of PERMANOVA for differences between diagnosis groups and study
datasets.

Df SumOfSqs R2 F p-value
diagnosis groups 2 489352.5 0.017 15.852 0.001

Residual 1783 27521194.8 0.983
Total 1785 28010547.3 1.000

study datasets 3 1937838 0.069 44.149 0.001
Residual 1782 26072710 0.931

Total 1785 28010547 1.000

Table 3.4: Results of pairwise PERMANOVA for differences between diagnosis groups.p-
values adjusted with Bonferroni correction.

pairs SumOfSqs F.Model R2 p-value p adjusted
healthy vs. adenoma 311598.15 20.315 0.019 0.001 0.003

healthy vs. CRC 44708.06 2.876 0.002 0.001 0.003
adenoma vs. CRC 464628.20 30.230 0.028 0.001 0.003
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Table 3.5: Results of pairwise PERMANOVA for differences between study datasets.
p-values adjusted with Bonferroni correction.

pairs SumOfSqs F.Model R2 p-value p adjusted
Baxter vs. Zeller 183519.94 12.644 0.019 0.001 0.006
Baxter vs. Yang 1438839.15 99.040 0.059 0.001 0.006

Baxter vs. Zackular 381315.12 27.868 0.043 0.001 0.006
Zeller vs. Yang 597343.71 39.452 0.033 0.001 0.006

Zeller vs. Zackular 353347.25 22.968 0.097 0.001 0.006
Yang vs. Zackular 64911.54 4.416 0.004 0.001 0.006
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3.3 Differential abundance analysis
To investigate the differences in microbial composition between the two groups with
disease (colorectal carcinoma/adenoma) and the healthy group, a differential abundance
analysis was performed. The aim of this analysis was to find universal biomarkers for
the intestinal dysbiosis that occurs in the development of colorectal cancer. Three tools
were used, ALDEx2, ANCOM-BC and MaAsLin2, as it is recommended to use different
approaches to obtain robust results. In a comparison of 14 different DAA methods,
Nearing et al. concluded that ALDEx2 and ANCOM-II provided the most consistent
results [52].

Organisms with a significant difference in abundance between groups are summarized in
tables for each comparison and method. Only 10 taxa with the highest effect size values
were listed for each sample group because analysis of all identified taxa would be too
extensive. Evidence found in the literature regarding the function and effects of specific
organisms on colorectal cancer development and their reported abundance in samples
from other CRC related studies was discussed.

3.3.1 Colorectal cancer vs. healthy

ALDEx2
ALDEx2 identified 36 differentially abundant taxa enriched in the healthy group and
9 taxa enriched in the CRC group (supplementary files S1 and S2). Only taxa with
significant corrected p-values (< 0.05) from both Welch’s and Wilcoxon rank sum tests
were considered differentially abundant. Bias correction was not performed because it
was implemented for this method.

Enriched in healthy

Among the ten taxa with the highest effect size values in the healthy group (Table 3.6)
are several bacteria from the families Lachnospiraceae (Lachnospira pectinoschiza, Lach-
nospiraceae, Lachnospiraceae ND3007 group, [Eubacterium] eligens group, [Eubacterium]
hallii group) and Ruminococcaceae (Faecalibacterium prausnitzii, Ruminococcus). In
a study comparing the composition of the microbiome between healthy controls and
patients with some form of intestinal disease, the family Lachnospiraceae had a high
relative abundance in healthy controls compared to CRC patients [66]. Ruminococcaceae
UCG-003 was also enriched in healthy controls in this comparison [66]. Most bacteria
from these two families belong to the so-called SCFA (shortchain fatty acids) producers.
These compounds are formed during the fermentation of some carbohydrates (including
dietary fibre) that cannot be digested by humans. Degradation by the microbiota leads to
the production of various SFCAs, e.g. acetate, propionate, butyrate, formate, succinate,
which can be ingested by the host [67]. SFCAs are important for the control of inflam-
matory processes in the gut and interact directly with the host immune system. Studies
have reported an association between higher SFCA levels and improved epigenetic state
of host histones, as well as a reduction in inflammatory markers. Propionate and acetate
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Figure 3.5: ALDEx2 result plots for DAA between CRC and healthy group. Red dots
represent species identified by Welch’s (left) or Wilcoxon rank sum test (right) (species
with BH corrected p-values < 0.05). Association between the relative abundance and the
magnitude of the difference per sample is shown in this plot. [51]

have been shown to promote the accumulation of Treg (regulatory T-cells important for
self-antigen tolerance and autoimmune disease prevention) in the colon, while butyrate
and propionate enhance Treg differentiation [68]. Dietary fibre intake has been shown
to correlate with the abundance of SFCA-producing bacteria, including Eubacterium
[69, 67]. Studies have also shown that the Western diet leads to a decrease of this and
other desirable taxa, while the Mediterranean diet leads to an increase in Eubacterium
spp. in the gut [67]. Faecalibacterium prausnitzii is an important butyrate producer with
demonstrated anti-inflammatory and gut microbiota modulating properties. Cell-free
supernatant of F. prausnitzii suppressed colorectal cancer cell growth in-vitro and re-
searchers suggest that probiotic supplementation of F. prausnitzii may be beneficial for
CRC prevention and management [70].

Monoglobus pectinilyticus was detected as a highly prevalent species in the healthy group
compared to CRC patients based on whole-genome shotgun sequenced fecal samples [71].

Family Peptostreptococcaceae was found to be enriched in tissue samples from CRC
patients compared with samples from healthy controls [63]. The well-known CRC
enriched species Peptostreptococcus stomatis, identified both here and in the literature,
also belongs to this family. It is therefore unexpected that this family was identified as
enriched in the healthy group by all three methods.

Erysipelotrichaceae family was previously found to be increased in the lumen of CRC
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Table 3.6: Differentially abundant taxa with the highest effect-size values identified by
ALDEx2 in CRC vs. healthy comparison. Top 10 taxa enriched in the healthy group
and all (9) identified taxa enriched in the CRC group. we.eBH- BH corrected p-value
from Welch’s test; wi.eBH- BH corrected p-value from Wilcoxon rank sum test; effect-
effect size.

enriched in healthy we.eBH wi.eBH effect
Lachnospira pectinoschiza 1.58 · 10−09 2.23 · 10−10 0.26
family Lachnospiraceae 3.80 · 10−12 2.00 · 10−13 0.25
genus Monoglobus 1.01 · 10−14 1.66 · 10−16 0.24
family Peptostreptococcaceae 7.95 · 10−11 3.00 · 10−12 0.24
Faecalibacterium prausnitzii 4.79 · 10−11 1.00 · 10−12 0.22
genus Lachnospiraceae ND3007 group 4.92 · 10−07 1.13 · 10−07 0.21
genus [Eubacterium] eligens group 2.42 · 10−06 5.68 · 10−07 0.19
genus Ruminococcus 7.21 · 10−08 5.46 · 10−08 0.19
Erysipelotrichaceae UCG-003 bacterium 2.28 · 10−07 1.49 · 10−07 0.18
genus [Eubacterium] hallii group 1.08 · 10−03 3.42 · 10−04 0.18
enriched in CRC
genus Parvimonas 1.50 · 10−26 1.15 · 10−24 −0.41
genus Fusobacterium 1.71 · 10−13 4.66 · 10−11 −0.27
Peptostreptococcus stomatis 2.87 · 10−13 4.34 · 10−09 −0.24
genus Porphyromonas 2.07 · 10−09 5.84 · 10−06 −0.19
Dialister pneumosintes 4.73 · 10−05 1.67 · 10−03 −0.16
Fusobacterium nucleatum 2.71 · 10−04 8.56 · 10−03 −0.13
Gemella morbillorum 1.25 · 10−03 1.91 · 10−02 −0.11
genus Peptostreptococcus 5.88 · 10−05 8.07 · 10−03 −0.11
genus Hungatella 7.07 · 10−03 4.43 · 10−02 −0.09

patients [63]. There are no reports of it’s abundance in stool samples.

Enriched in CRC

Genus Parvimonas and in particular species Parvimonas micra have been associated
with colorectal cancer in the literature. This bacterium participates in the development
of CRC by altering immune responses and promoting inflammation in the intestine [72].
Multivariate analysis also showed that P. micra is a risk factor for poor survival in
CRC patients [73]. In addition, the same study analyzed ApcMin/+ mice (mice with
multiple intestinal neoplasia [74]) colonized with P. micra and found significantly higher
tumor burden and tumor load in these mice. Colonization with P. micra also led to
upregulation of genes involved in cell proliferation, stemness, angiogenesis, invasiveness,
and metastasis. It enhanced the infiltration of Th17 cells and the expression of cytokines
secreted by Th17 cells (Il-17, Il-22, and Il-23), which play a role in the development of
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CRC, in the colon of ApcMin/+, as well as conventional and germ-free mice [73].
Fusobacterium nucleatum is frequently enriched in the microbiome of CRC patients. F. nu-
cleatum binds to CRC cells with virulence factors Fap2 and FadA and lipopolysaccharide
(LPS). Signalling by CRC cells’ receptors activates nuclear factor kappa B (NF-κB) (reg-
ulatory protein complex), which increases the expression of pro-inflammatory cytokines
and oncogenes, leading to DNA damage and inflammatory responses and causing tumour
progression [72]. Fap2 factor also binds to immune cells and causes immunosuppression
[75]. Another mechanism of this bacterium is the recruitment of tumour-infiltrating
immune cells, creating a pro-inflammatory microenvironment and promoting the progres-
sion of colorectal neoplasia [75]. F. nucleatum levels in stool were found to be higher in
later stages of cancer, suggesting that this bacterium may have an impact on infiltration
of CRC [76]. It may also be associated with more invasive cancer development, as one
study showed that the frequency of patients with lymph node metastases was higher in
the Fusobacterium nucleatum over-abundance group than in the under-abundance group
[77].
Flynn et al. proposed a model of colonization and persistence of oral bacterial communi-
ties (present during periodontitis - an inflammatory disease in the mouth) in the colon
that create a microenvironment for colon lesions ("oral-microbe-induced colorectal tumori-
genesis model" [78]) [79]. Oral bacteria associated with CRC include Peptostreptococcus
stomatis (but also, for example, the previously discussed P. micra and F. nucleatum). P.
stomatis is a producer of saccharolytic and fermented products, which may explain its
association with CRC, as it likely contributes to the acidic and hypoxic tumor microenvi-
ronment that supports bacterial colonization [80]. Another commonly reported species in
CRC from Peptostreptococcus genus is P. anaerobius. Using an ApcMin/+ mouse model,
Long et al. reported that this species is associated with CRC via a signaling pathway
involving NF-κB activation and induced cytokine and interleukin secretion [81]. Another
study based on a mouse model showed that P. anaerobius is involved in the development
of CRC by promoting cholesterol biosynthesis [82].
A commonly reported species associated with CRC from the identified differentially
abundant Porphyromonas genus is Porphyromonas gingivalis. This bacterium is also
found in periodontitis patients. Mouse models showed that P. gingivalis recruits tumour-
infiltrating immune cells by regulating NLRP3 inflammasome (protein of the innate
immune system [83]) activity, creating a proinflammatory microenvironment and promot-
ing the progression of colorectal neoplasia [84].
Dialister pneumosintes is another species commonly found in periodontitis patients, and
it has also been identified in association with CRC [71, 85]. Gamella morbillorum may
have an immunosuppressive function in the development of CRC, as it has been shown
to lower interleukin IL-12 levels and cleave IgA1 in oral infections in mice, allowing the
bacteria to bypass the protective functions of the adaptive immune response [86, 87, 88].
CRC tumor cell development can be caused by epigenetic pathways such as silencing of
tumor suppressor genes (TSGs) by e.g., promoter hypermethylation. Xia et al. reported
CDX2 (a TGS) promoter hypermethylation, upregulation of DNA methyltransferase,
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and promotion of colonic epithelial cell proliferation in germ-free and conventional mice
by Hungatella hathewayi [89].

ANCOM-BC

ANCOM-BC with bias correction for the variable "study" (four different study datasets in
the meta-analysis dataset) detected 63 differentially abundant taxa enriched in the healthy
group (supplementary file S5) and 18 taxa enriched in the CRC group (supplementary
file S6) (BH corrected p-value q < 0.05).
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Figure 3.6: ANCOM-BC result plot for DAA between CRC and healthy group. Red dots
represent differentially abundant species with BH corrected p-value q < 0.05. Taxa with
effect size > 0 are enriched in the healthy group, whereas those with negative effect size
are enriched in the CRC group.

Enriched in healthy

The genus Subdoligranulum was reported to be enriched in the non-cancer group compared
to a colorectal cancer group in DAA from a study that analysed amplicon sequences from
different sample types [90].

Megamonas hypermegale was reported as enriched in stool samples from healthy controls
compared to CRC samples [91] and this organism was thought to produce SCFAs [92].

Enriched in CRC

The enrichment of Ruminococcaceae UBA1819 in the CRC group is somewhat surprising,
as the Ruminococcaceae family is involved in the production of gut-beneficial short-chain
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Table 3.7: Differentially abundant taxa with the highest effect-size values identified by
ANCOM-BC in CRC vs. healthy comparison. Top 10 taxa enriched in the healthy
group and in the CRC group, respectively. q- BH corrected p-value; lfc- log-fold change,
measure for effect size.

enriched in healthy q lfc
Faecalibacterium prausnitzii 4.51 · 10−11 1.28
genus Monoglobus 6.45 · 10−15 1.08
Lachnospira pectinoschiza 7.55 · 10−11 0.95
family Peptostreptococcaceae 6.56 · 10−10 0.93
Erysipelotrichaceae UCG-003 bacterium 2.84 · 10−07 0.89
genus Faecalibacterium 2.88 · 10−07 0.88
genus Subdoligranulum 1.36 · 10−06 0.86
genus [Eubacterium] eligens group 2.57 · 10−07 0.81
genus Megamonas 5.25 · 10−08 0.78
genus Ruminococcus 5.26 · 10−06 0.76
enriched in CRC
genus Parvimonas 1.60 · 10−34 −1.38
genus Fusobacterium 1.27 · 10−15 −1.09
Peptostreptococcus stomatis 2.25 · 10−19 −0.91
genus Porphyromonas 2.77 · 10−16 −0.85
genus Hungatella 2.08 · 10−06 −0.49
family Ruminococcaceae genus UBA1819 4.43 · 10−04 −0.47
Gemella morbillorum 1.29 · 10−05 −0.41
Eisenbergiella tayi 9.23 · 10−04 −0.36
genus Akkermansia 2.27 · 10−02 −0.34
family Prevotellaceae 7.26 · 10−03 −0.33

fatty acids (SCFAs) and iso-butyrate, and this taxon is also commonly associated with a
healthy gut [93, 66].

Eisenbergiella tayi was recently discovered in shotgun metagenomic sequencing in associ-
ation with CRC [94, 95]. It was shown that E. tayi is highly enriched in the left colon
cancer [95].

The genus Akkermansia was found to be significantly enriched in CRC samples in this
dataset. A 2021 study found that A. muciniphila is significantly decreased in patients with
colorectal cancer or adenoma compared to healthy controls. This study also showed that
oral administration of A. muciniphila suppressed colon tumorigenesis in a mouse model
[96]. However, a more recent study (2022) in mouse models showed that administration
of this particular species resulted in more intestinal tumors and more colon damage. It
also induced more Ki67+ proliferating cells (tumor proliferation), higher expression of
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proliferating cell nuclear antigen (PCNA), and increased gene expression of proliferation-
associated molecules. This suggests that A. muciniphila may promote the formation of
CRC by increasing early inflammatory levels and enhancing proliferation of intestinal
epithelial cells [97].

Prevotellaceae family was enriched in the intestinal lumen of CRC patients [63]. Pre-
votellaceae has also been enriched in obese women [98] and epidemiological studies have
found a strong association between obesity and colorectal cancer [63].

MaAsLin2
79 taxa were identified as enriched in the healthy group and 24 taxa were identified as
enriched in the CRC group by MaAsLin2 with bias correction for using different study
datasets (supplementary files S10 and S11).

(a) Faecalibacterium prausnitzii (b) Fusobacterium genus

Figure 3.7: MaAsLin2 plots for two detected differentially abundant taxa in CRC
vs. healthy DAA. Faecalibacterium prausnitzii (a) is enriched in healthy samples and
Fusobacterium (b) is enriched in CRC samples.

Enriched in healthy

Parasutterella can ferment inulin and produce SCFAs [99]. This genus has been shown
to support interspecies metabolic interactions in the intestine and may have a beneficial
effect on intestinal mucosal homeostasis [100]. However, levels of this taxon have been
reported to be elevated in CRC patients [101].

Enriched in CRC

Solobacterium moorei (and its higher taxonomic rank, family Erysipelotrichaceae) in
the oral microbiome has been associated with reduced CRC risk [102]. However, in
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Table 3.8: Differentially abundant taxa with the highest effect-size values identified by
MaAsLin2 in CRC vs. healthy comparison. Top 10 taxa enriched in the healthy group
and in the CRC group, respectively. qval- BH corrected p-value; coef- coefficient of the
linear model, measure for effect size.

enriched in healthy qval coef
genus Monoglobus 7.30 · 10−17 3.57
Lachnospira pectinoschiza 5.95 · 10−13 3.46
Faecalibacterium prausnitzii 8.89 · 10−10 3.07
genus [Eubacterium] ventriosum group 1.52 · 10−10 3.06
family Peptostreptococcaceae 2.10 · 10−10 2.92
genus Parasutterella 1.67 · 10−10 2.85
Erysipelotrichaceae UCG-003 bacterium 2.39 · 10−08 2.84
genus Lachnospiraceae ND3007 group 1.59 · 10−09 2.76
genus Megamonas 1.08 · 10−10 2.70
genus [Eubacterium] eligens group 8.93 · 10−08 2.66
enriched in CRC
genus Parvimonas 2.20 · 10−46 −5.76
Peptostreptococcus stomatis 1.18 · 10−33 −4.07
genus Fusobacterium 3.38 · 10−20 −4.02
genus Porphyromonas 1.45 · 10−26 −3.40
genus Hungatella 3.17 · 10−09 −2.00
Gemella morbillorum 1.10 · 10−09 −1.85
Eisenbergiella tayi 9.97 · 10−06 −1.52
Solobacterium moorei 4.65 · 10−08 −1.51
order Oscillospirales family UCG-011 5.62 · 10−04 −1.36
genus Intestinimonas 4.73 · 10−04 −1.29

a gut microbiome study, S. moorei was found to be enriched in CRC fecal samples
[103]. A study examining the oral microbiota in relation to the gut microbiota found
that Solobacterium spp. had significantly higher relative abundance in CRC patients
compared with controls, and that S. moorei had significantly higher levels in the CRC
advanced-stage group than in the early-stage group in both saliva and stool samples
[104].

Oscillospirales is a common gut commensal anaerobe, but was identified here as enriched
in CRC. Tran et al. indicated that there is potential competition between tumour-
associated taxa and common gut anaerobes (such as Oscillospirales and Lachnospiraceae),
as tumour-associated ASVs showed a strong negative correlation with gut commensals in
their research [105]. However, this should suggest that Oscillospirales would be depleted
in the CRC group, which is not the case according to the MaAsLin2 results.
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3. Results and discussion

A study analysing fecal metagenomic sequencing data from young CRC patients (20-49
years of age) compared with older CRC patients and healthy controls reported the
enrichment of Intestinimonas butyriciproducens in young CRC samples [106]. Because
the meta-analysis dataset analysed here consists of young-onset CRC patients (aged
36-46 years; representing 24.4% of the CRC group) from the Yang et al. study, it is not
surprising that these results are consistent. I. butyriciproducens is a common butyrate
producer, and although butyrate has generally been shown to be beneficial to the gut,
some studies have reported enhancement of colonic neoplasia development in rats [107]
and induction of colon cancer in mouse models [108], which has led to controversy about
the effect of butyrate on gut health [109]. Several other SCFA producers mentioned
above have also been identified as enriched in the CRC group.
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3.3. Differential abundance analysis

3.3.2 Adenoma vs. healthy

ALDEx2
29 taxa were identified as enriched in the healthy group (supplementary file S3) and 88
as enriched in the adenoma group (supplementary file S4).

0 5 10 15

−
6

−
4

−
2

0
2

Median  Log2  relative abundance

M
e
d
ia

n
  
L
o
g

2
  
D

if
fe

re
n
c
e

ra
b
.w

in
.A

D
M

ra
b
.w

in
.H

T
Y

Welch’s test

0 5 10 15

−
6

−
4

−
2

0
2

Median  Log2  relative abundance

M
e
d
ia

n
  
L
o
g

2
  
D

if
fe

re
n
c
e

ra
b
.w

in
.A

D
M

ra
b
.w

in
.H

T
Y

Wilcoxon rank sum test

Figure 3.8: ALDEx2 result plots for DAA between adenoma and healthy group. Red dots
represent species identified by Welch’s (left) or Wilcoxon rank sum test (right) (species
with BH corrected p-values < 0.05). Association between the relative abundance and the
magnitude of the difference per sample is shown in this plot. [51]

Enriched in healthy

Anaerostipes hadrus is another butyrate producer that has been reported to be more
abundant in the feces of healthy control subjects compared to samples from CRC patients
[110, 60].

Bifidobaterium longum is a well-known probiotic bacterium that has been shown in
studies to suppress mutagen-induced colon tumor development, have antigenotoxic effects,
suppress colon tumor incidence, and reduce tumor volume when administered orally to
rats [111].

Bacteroides thetaiotaomicron regulates the intestinal immune system and its colonisation
in the intestine and interaction with the host leads to strengthening of the mucosal barrier
against pathogens [112]. Administration of B. thetaiotaomicron alleviated the clinical
signs of induced colitis in mice [113].

Shigella is generally responsible for infections in humans and causes the disease shigellosis
with symptoms such as dysentery and fever [114]. The abundance of Escherichia-Shigella
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3. Results and discussion

Table 3.9: Differentially abundant taxa with the highest effect-size values identified by
ALDEx2 in adenoma vs. healthy comparison. Top 10 taxa enriched in the healthy in the
adenoma group. we.eBH- BH corrected p-value from Welch’s test; wi.eBH- BH corrected
p-value from Wilcoxon rank sum test; effect- effect size.

enriched in healthy we.eBH wi.eBH effect
Anaerostipes hadrus 5.14 · 10−20 2.13 · 10−11 0.38
Bifidobacterium longum 6.67 · 10−22 1.07 · 10−11 0.35
Bacteroides thetaiotaomicron 5.56 · 10−17 3.98 · 10−09 0.35
Escherichia-Shigella 4.94 · 10−24 7.32 · 10−12 0.33
genus Haemophilus 4.24 · 10−12 1.71 · 10−07 0.27
genus Parabacteroides 3.69 · 10−08 1.08 · 10−07 0.26
genus Collinsella 1.39 · 10−09 1.71 · 10−05 0.22
family Lachnospiraceae genus CAG-56 2.43 · 10−09 5.32 · 10−05 0.22
Brevundimonas mediterranea 2.51 · 10−06 1.38 · 10−04 0.21
genus Phascolarctobacterium 5.92 · 10−09 6.22 · 10−05 0.21
enriched in adenoma
Alistipes putredinis 5.60 · 10−25 8.00 · 10−27 −0.67
Bacteroides vulgatus 0.00 · 10+00 8.99 · 10−24 −0.57
Butyricicoccus faecihominis 1.24 · 10−13 1.54 · 10−14 −0.51
genus [Ruminococcus] torques group 4.11 · 10−25 7.40 · 10−26 −0.50
genus Methanobrevibacter 4.91 · 10−17 2.00 · 10−18 −0.48
class Gammaproteobacteria 2.72 · 10−12 7.90 · 10−17 −0.47
Akkermansia muciniphila 1.60 · 10−17 1.07 · 10−18 −0.47
family Lachnospiraceae 3.95 · 10−13 2.53 · 10−23 −0.47
order Oscillospirales family UCG-011 1.40 · 10−12 5.64 · 10−15 −0.44
family Pasteurellaceae 3.25 · 10−11 9.16 · 10−16 −0.43

in the gut correlated negatively with the intake of dietary fibre, fruits and vegetables, and
the fecal butyrate concentration in the fecal microbiome of Crohn’s disease patients [115].
However, there are reports of significantly lower abundance of Escherichia-Shigella in
CRC patients compared with healthy controls [59]. Thus, it appears that this bacterium
is not necessarily associated with a healthy microbiome composition, but discriminates
between healthy and CRC gut microbial profiles.

A study using stool samples reported that Haemophilus is found in significantly higher
proportion in colorectal cancer compared to controls [116]. A recent study of the intestinal
mucosal microbiome found that high abundance of Haemophilus was associated with
CRC recurrences and poorer rates of disease-free survival (DFS) or overall survival (OS)
rates [117]. Therefore, the results of both ALDEx2 and ANCOM-BC in this dataset are
not consistent with previous reports.
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3.3. Differential abundance analysis

Although Parabacteroides has been shown to be both beneficial and pathogenic to human
health, it is generally agreed that this genus, particularly P. distasonis plays a protective
role in colorectal cancer [118]. Studies indicated an inverse correlation of P. distasonis
levels with the presence of intestinal tumors, as well as anti-inflammatory and anti-tumor
properties. A study examining the differences between sporadic colorectal adenomas
and samples without lesions (controls) found that P. distasonis was detected only in
histological samples from control subjects [119].

The genus Collinsella has been proposed as a fecal biomarker for early detection of CRC
because it has been shown to be substantially elevated in CRC stage I compared with
healthy controls [59].

Brevundimonas was reported to be reduced in CRC patients compared with healthy
individuals [120] and also to have significantly lower relative abundance in tumor mucosa
compared with the matched noncancerous mucosa in CRC patients [121]. Since exposure
to aromatic hydrocarbons is known to be associated with CRC [122], Brevundimonas
levels might have a positive influence, as this genus is able to degrade and detoxify
aromatic compounds, thus reducing their toxic effect [123, 121].

The enrichment of Lachnospiraceae in the healthy group has already been discussed in
CRC vs. healthy DAA (Section 3.3.1).

Phascolarctobacterium is a SCFA producer and has been reported to have beneficial
effects on the host, including positive effects on mood in humans [124, 125].

Enriched in adenoma

It has been found that the levels of a member of the genus Alistipes, A. finegoldii are
increased in an inflamed intestinal environment and contribute to the pathogenesis and
formation of (right-sided) colorectal tumors [126, 127].

The role of the various species from the Bacteroides genus is complex. As discussed
earlier, B. thetaiotaomicron is associated with beneficial effects on the gut. The impact
of B. vulgatus is not as easy to describe, as the effect of this species appears to depend on
the overall gut environment and also on the animal models used in the research. There
are reports of B. vulgatus levels being elevated in patients with Chron’s disease and
triggering the expression of proinflammatory cytokines. This bacterium was also able to
induce colitis and gastritis in transgenic rats, with similar results by other studies on
humans. However, there are also reports showing alleviation of inflammation in mice,
potential probiotic effects, and protection against induced colitis in mice. [128]
Wang et al. performed structural segregation of the gut microbiota between healthy
volunteers and colorectal cancer patients and found that two OTUs closely related to B.
vulgatus were enriched in the healthy controls [129].

A study examining biomarkers for early detection of CRC found that Butyricoccus
faecihominis was more abundant in the gut microbiota of adenoma patients than in that
of CRC patients (but not in that of adenoma patients compared with healthy individuals)
[130]. This bacterium was isolated for the first time relatively recently (2016) from the
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stool of a healthy human and is known to function as a butyrate producer [131]. There
is not much information about its association with the development of colorectal cancer.

Ruminococcus torques has been identified as one of the common species significantly
associated with a high risk of colorectal cancer [132]. There are also reports of enrichment
of circulating bacterial DNA of this taxon in stool samples from CRC patients [133].

Methanobrevibacter millerae was increased in adenoma samples compared with controls in
amplicon-sequenced fecal samples [130]. Differential abundance analysis of CRC patients
compared with healthy individuals revealed that genus Methanobrevibacter was enriched
in CRC samples [134]. Many studies have reported elevation of methanogens in samples
from patients with ulcerative colitis, intestinal polyps, and tumors. However, further
research is needed to understand the mechanism by which they contribute to disease
development [135].

The class Gammaproteobacteria was detected as enriched in adenoma stool samples
compared with controls, especially the order Enterobacteriales, family Enterobacteriaceae
[136]. E. coli, a bacterium belonging to this taxonomy, is suspected of promoting
colorectal cancer, although it is generally considered a commensal bacterium. There
are two mechanisms described by Allen et al. by which E. coli may contribute to the
development of CRC. One is through the production of genotoxins such as colibactin,
which can damage double-stranded DNA, leading to neoplastic transformation. Second is
by causing inflammatory response through various pattern recognition receptors (PRRs),
a process in which neoplastic progression is enhanced. [137]

Akkermansia muciniphila’s inconclusive role in CRC was discussed in Section 3.3.1.
According to the results based on this dataset, the high abundance of this species is
associated with cancer/adenoma dysbiosis rather than a healthy colon.

The enrichment of Lachnospiraceae in the adenoma group was not expected because this
taxon is usually associated with healthy gut flora (Section 3.3.1). However, this family
was detected among the top 10 species for distinguishing adenoma patients from CRC
patients using the random forest algorithm [61]. Nevertheless, there are no other reports
of Lachnospiraceae enrichment in the adenoma group compared with a healthy control
group.

Oscillospirales order is detected as enriched in the adenoma group, although this was
also unexpected, just as its enrichment in the CRC group (Section 3.3.1).

There are no reports on the abundance of Pasteurellaceae in stool samples from CRC/ade-
noma patients. The only finding in the literature is that this taxon had a significantly
higher relative abundance in cancerous tissue than in the intestinal lumen of CRC patients
[63].
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ANCOM-BC
ANCOM-BC with bias correction for using different study datasets detected only one
differentially abundant species Ruminococcus champanellensis enriched in the healthy
group (supplementary file S9). With the intention of identifying more taxa, the bias
correction was omitted. This resulted in the discovery of 136 DA taxa, 48 of which were
enriched in the healthy group and 88 in the adenoma group (supplementary files S7 and
S8).
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Figure 3.9: ANCOM-BC result plot for DAA between adenoma and healthy group. Red
dots represent differentially abundant species with BH corrected p-value q < 0.05. Taxa
with positive effect size are enriched in the healthy group, whereas those with negative
effect size are enriched in the adenoma group.

Enriched in healthy

The genus Dialister was found to be enriched in healthy in adenoma vs. healthy
comparison, whereas Dialister pneumosintes was identified as differentially enriched in
CRC (Table 3.6). However, the literature indicates that this taxon is actually more
abundant in healthy stool samples than in samples from CRC patients [91]. As mentioned
in Section 3.3.1, Megamonas was previously found to be enriched in healthy samples
compared to CRC samples [91].

Enriched in adenoma

Bacteroides uniformis can adapt to different intestinal environments and is considered
a potential probiotic with multiple effects on host health [128]. It was also reported
that an OTU related to B. uniformis was enriched in healthy controls compared to
CRC patients [129]. Park et al. found that the relative abundance of the genus "Family
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Table 3.10: Differentially abundant taxa with the highest effect-size values identified by
ANCOM-BC in adenoma vs. healthy comparison. Top 10 taxa enriched in the healthy
group and in the adenoma group, respectively. q- BH corrected p-value; lfc- log-fold
change, measure for effect size.

enriched in healthy q lfc
Escherichia-Shigella 3.54 · 10−22 1.85
Bifidobacterium longum 4.21 · 10−21 1.76
Anaerostipes hadrus 7.22 · 10−23 1.66
Bacteroides thetaiotaomicron 5.67 · 10−19 1.47
genus Parabacteroides 2.52 · 10−11 1.30
genus Collinsella 1.67 · 10−12 1.27
genus Phascolarctobacterium 9.95 · 10−12 1.21
genus Haemophilus 3.06 · 10−16 1.21
genus Dialister 7.49 · 10−09 1.16
genus Megamonas 9.50 · 10−09 1.16
enriched in adenoma
Alistipes putredinis 4.70 · 10−29 −2.64
Bacteroides vulgatus 7.22 · 10−23 −2.59
Akkermansia muciniphila 8.13 · 10−16 −1.94
genus Methanobrevibacter 6.08 · 10−20 −1.92
family [Ruminococcus] torques group 7.41 · 10−20 −1.79
Bacteroides uniformis 1.80 · 10−11 −1.65
genus Family XIII AD3011 group 1.01 · 10−14 −1.40
genus Ruminococcus 1.26 · 10−09 −1.37
Butyricicoccus faecihominis 6.32 · 10−16 −1.37
family Pasteurellaceae 4.82 · 10−13 −1.28

XIII AD3011 group" was lower in the CRC group than in the control group based on
amplicon sequencing of stool samples [138]. There are no reports of the abundance of
these two taxa in comparison between adenoma patients and healthy individuals, but in
the analysis of CRC, the results of previous studies do not appear to be consistent with
the ANCOM-BC results here.

Ruminococcus genus was reported as enriched in colorectal cancer patients compared
to control subjects [59, 139]. The abundance of this genus was particularly elevated in
patients with stage I of CRC, suggesting that Ruminococcus may be a biomarker for early
detection of CRC [139], and the results of this dataset confirm this suggestion. The only
species identified by ANCOM-BC with bias correction, Ruminococcus champanellensis,
belongs to this genus. However, according to those results, it is enriched in the healthy
group. There are no reports of its association with CRC. Although it is already known
that Ruminococci serve as degraders of complex polysaccharides in the intestine [140],
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this particular species is even able to degrade insoluble dietary fibre, which makes it
unique [141].

MaAsLin2
MaAsLin2 with bias correction for the study datasets identified only one DA taxon
enriched in the adenoma group. This tool was not explicitly used during data exploration
in R, as were the other two DAA methods, but was used as part of the machine learning
pipeline for feature selection. Therefore, the settings for this method were kept constant
for the CRC vs. healthy and adenoma vs. healthy classification. Omitting the bias
correction as in ANCOM-BC would likely lead to more DA taxa and more comparable
results with the other two methods.

Table 3.11: Differentially abundant taxon identified by MaAsLin2 in adenoma vs. healthy
comparison, enriched in the adenoma group. qval- BH corrected p-value; coef- coefficient
of the linear model, measure for effect size.

enriched in adenoma qval coef
family Erysipelatoclostridiaceae 2.00 · 10−03 −1.80

The family Erysipelatoclostridiaceae is a newly discovered taxon (in 2019) [142]. There
are no reports of it being associated with colorectal cancer or adenoma.
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3.3.3 Results comparison of differential abundance analysis methods
As can be seen in the Venn diagram of differentially abundant taxa for the CRC vs.
healthy analysis, the three methods produce relatively consistent results (Figure 3.10).
MaAsLin2 yields the most identified taxa, of which 22 taxa are found only with this
method. The largest overlap is between MaAsLin2 and ANCOM-BC with 80 shared
identified organisms. ANCOM-BC completely overlaps with either one of the other two
methods and there are no taxa identified exclusively by this tool. 39 taxa are detected
by all three methods. The list of these bacteria can be found in supplementary file S13.

MaAsLin2

ALDEx2 ANCOM−BC

22 (20%)

4 (4%) 0 (0%)

1 (0%) 41 (38%)

1 (0%)

39 (36%)
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Figure 3.10: Venn diagram of the differentially abundant taxa found between healthy
and CRC group by three different methods.

MaAsLin2 yielded only one identified taxon for adenoma vs. healthy DAA, which is not
recognised by the other two methods (Figure 3.11). However, as mentioned earlier, this
was the only method that applied a bias correction for adenoma vs. healthy analysis, as
ALDEx2 does not have this option and it was omitted in ANCOM-BC to obtain more
DA organisms. This resulted in a rather high number of identified taxa by ANCOM-BC,
but still comparable to the number (and identity) of taxa detected by ALDEx2. 78% of
all taxa are shared between the two methods and are listed in S14 (MaAsLin2 was not
taken into account here).
Most of the identified taxa in DAA for both comparisons are consistent with findings
in the literature. Some bacteria were not expected to be enriched in a particular group
based on previous results from other studies. This is not so surprising because not all
studies cited here used stool samples and amplicon sequencing to assess microbiome
composition. Many of them analyzed biopsy samples, which have a significantly different
composition than stool samples [143, 144]. The site from which the biopsy sample was
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Figure 3.11: Venn diagram of the differentially abundant taxa found between healthy
and adenoma group by three different methods.

taken (cancerous/noncancerous tissue, intestinal region) is also of great importance [63].
Therefore, it is not always meaningful to compare these results with fecal sequencing
results. In addition, many studies have used animal models, which is not always directly
translatable to the condition in the human body. However, the field of microbiome
composition and function and its use for the diagnosis of (colorectal) cancer is still in its
infancy. Due to the lack of high quality studies using fecal amplicon sequencing, studies
with different methodologies were included in the discussion.

The bacteria identified here, especially the consensus organisms of the three methods
(S13 and S14), are quite reliable biomarkers for colorectal cancer/adenoma dysbiosis - or
at least the best possible with the available methods and metadata information. The
dataset used for analysis here is robust and the sample size is large enough for each
group. Another argument for its robustness is a diverse origin of the samples (European,
American, and Asian). However, this dataset does not represent all races equally, as
Whites and Asians are most commonly represented here. The results may therefore be
missing some unique microbiome signatures of other races. The problem was also the
missing metadata, as correcting for variables (other than study) such as cancer stage,
age, race, diet type etc. would yield more reliable results. Nonetheless, bias correction
was a problem in the adenoma vs. healthy DAA with only one confounding variable
(study), since a single taxon was identified by ANCOM-BC and MaAsLin2, respectively.
It is generally possible that there are few, or even none differentially abundant organisms
between groups. However, in the case of colorectal adenoma, this is highly unlikely, as the
literature results indicate a microbiome dysbiosis in adenoma patients. The beta diversity
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results on this dataset also indicate a significantly different taxonomic composition. For
this reason, it was justified to omit the bias correction to allow the algorithm to identify
more species (which was done in ANCOM-BC). However, it should also have been omitted
in MaAsLin2 to ensure consistency in the methodology.

The researchers emphasise that no single OTU is increased in all individuals with CRC
and that microbial community structure is more informative for the gut dysbiosis that
occurs in colorectal cancer development than are abundance differences of individual taxa
[144, 145]. This is because of the heterogeneity of CRC occurrence- not all individuals
have the same type of CRC dysbiosis. Flemer et al. found that the most common taxa
associated with CRC (Fusobacterium, Peptostreptococcus, Parvimonas) were significantly
enriched in only 20-30% of CRC patients. However, they succeeded in defining four
microbial clusters of the CRC-associated microbiota, at least one of which was more
than twofold increased (compared to the mean in all control samples) in all but one of
the individuals with CRC (a study with 70 CRC patients and 56 healthy controls) [144].
Identifying microbial clusters in larger data sets and examining the composition of each
cluster would be a wise next step in future research in this area.
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3.4 Machine learning models
Nine different algorithms, three feature selection options, two data transformation
methods, and two taxonomy levels were explored in detail during automated runs of the
machine learning pipeline, where all parameter combinations were tested (Table 2.3).
Two separate classifications were modelled: CRC vs. healthy and adenoma vs. healthy.
The best performing models (based on area under the curve (AUC)) per algorithm are
presented in the following subsections for both classifications. Results are based on 80%
of the meta-analysis dataset used for training. Output metrics (AUC, sensitivity and
specificity) are the mean of metrics resulting from a 5-fold cross-validation with 5 repeats
(25 values). The best performing models were used to predict the classes of samples from
a test dataset, consisting of the remaining 20% of the meta-analysis dataset.

3.4.1 Colorectal cancer-healthy classification

Table 3.12: CRC vs. healthy classification: the best performing model (based on AUC)
for each algorithm. FS- feature selection, AUC- area under the curve, SKB- SelectKBest;
ML algorithm abbreviations can be found in Table 2.3. Data transformation for the best
performing models was always compositional (centered log ratio).

Model Taxonomy FS AUC Sensitivity Specificity Test AUC
LR genus SKB 0.826 0.718 0.770 0.750

LASSO genus SKB 0.826 0.719 0.772 0.753
RIDGE genus SKB 0.823 0.775 0.715 0.757

EN genus SKB 0.825 0.718 0.774 0.754
SVM linear genus SKB 0.824 0.711 0.779 0.764

SVM genus Maaslin2 0.843 0.724 0.824 0.794
RF genus SKB 0.834 0.712 0.789 0.800

LGBM species None 0.829 0.707 0.791 0.787
GNB species SKB 0.803 0.585 0.863 0.746

Overall, we can conclude that the genus taxonomy level and the SelectKBest algorithm
for feature selection seem to work best for most of the algorithms. The genus level is
probably the better option because many taxa do not contain species-level information
and because this also reduces the dimension of the dataset (from 1488 species to 940
genera). Dimensionality reduction is an important step before machine learning because
models that contain many variables tend to overfit to the training data at hand, resulting
in high evaluation metrics (AUC) for the training dataset, but perform poorly on unknown
data. This is a common problem with sequencing datasets because of the large number
of identified taxa. It is therefore important to preprocess the data and select the features
(taxa) that are most important for classification. The SelectKBest algorithm with
the mutual information scoring function finds k features that have the highest mutual
information with the target variable. In other words, these k variables contain the most
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information needed to obtain the target variable (i.e., the class membership of a sample).
The number k was set constant to 50. This is another hyperparameter that should be
varied in future optimization of these models to check which values give optimal results.

Data for all models presented in Table 3.12 were preprocessed using compositional data
transformation, as this method gave better results than subsampling. Using CRC-healthy
classification on a genus level as an example, the mean AUC of the best-performing models
was 0.825 ± 0.011 for compositional transformation and 0.740 ± 0.051 for subsampling
(with a subsampling depth set to 5000). In addition to the overall higher AUC mean,
all individual algorithms performed better with the compositional data transformation
in this example. For this reason, and because of the explanation of the advantages of
using the compositional data transformation with count data in Section 2.4, the centered
log-ratio transformation was the preferred data transformation method, and subsampling
was omitted from AutoML for adenoma-healthy classification to reduce the number of
calculated experiments and thus the computation time.

(a) ROC AUC (b) PRC

Figure 3.12: Area under the receiver operating characteristic curve (ROC AUC) (a) and
precision-recall curve (PRC) (b) for the CRC-healthy classification (SVM model on a
genus level with Maaslin2 feature selection). The individual 25 curves resulting from
each cross-validation step and the overall mean are shown in the graphs.

The support vector machine algorithm with radial kernel at genus level and with Maaslin2
feature selection yielded the highest AUC (0.843). Looking at the AUC values in
Table 3.12, we can see that the AUC is high for all algorithms (>0.8). This is a good sign,
because AUC is a metric for the overall ability of the model to classify the observations
into their respective groups. The algorithms used are quite simple (some of them are
even linear), which makes them easy to interpret, which is an important attribute of
a potential diagnostic product in medicine. More specific metrics are sensitivity and
specificity. Sensitivity denotes the proportion of correctly classified observations from
class 1 (here CRC, the true positives), while specificity denotes the proportion of true
negatives (here healthy). The plot of the area under the receiver operating characteristic
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curve (AUC ROC) shows the relationship between the true positive rate (sensitivity) and
the false positive rate (1-specificity). In a diagnostic model such as this, sensitivity is of
greater importance because we do not want the true positives (people with colorectal
cancer) to go under the radar. We would rather have a higher proportion of false positives
because we can always perform colonoscopy on healthy individuals and confirm that they
are indeed healthy, even though the ML model has classified them as having CRC. This
is the reason why a confusion matrix with an adjusted cutoff was implemented in the
ML pipeline. We see that setting the cutoff to 0.4 results in a higher proportion of true
positives (higher sensitivity), but at the cost of lower specificity. The cutoff adjusted for
the training dataset can be used to predict unknown samples. This was done for the
test dataset. The values for sensitivity and specificity in Table 3.12 are the "original"
values obtained when the cutoff is defined by the function predict(). The values in
the confusion matrix in Figure 3.13b are the result of the probabilities calculated by
predict_proba() and classified using an adjusted cutoff value (defined manually, here
0.4). This means that all samples with probabilities > 0.4 were classified as CRC and
≤ 0.4 as healthy.

(a) CM with default cutoff (b) CM with adjusted cutoff (0.4)

Figure 3.13: Confusion matrix (CM) for CRC-healthy classification: with default cutoff
determined by the predict() function (a), and with manually adjusted cutoff (set
to 0.4) to increase the sensitivity. The non-normalized CM with mean and standard
deviation can be found in the appendix (Figure A.3a).

The results of the performance of the most successful model on the test dataset show that
a higher sensitivity was indeed achieved with an adjusted cutoff even for the unknown
data (sensitivity in Table 3.13 versus in Figure 3.14b). Based on the AUC values for
the test dataset for all algorithms (Table 3.12), we can see that the models performed
similarly for the training and test data, indicating that they are unlikely to be overfitted.
However, a more reliable assessment of performance would be to use an external test
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dataset. Here, a portion of the meta-analysis dataset was split off from the training data
to later serve as the (internal) test dataset. This dataset contained samples from the four
study datasets (in random proportions), making it similar in "quality" to the training
data. External datasets with their own aspects, such as sample preparation, inclusion of
a particular race/geographic region, etc., would be necessary to test performance in an
unbiased manner.

Table 3.13: Evaluation metrics for the best performing model of the CRC-healthy
classification (SVM on a genus level with Maaslin2 feature selection) on the test dataset.
Sensitivity and specificity are based on the default cutoff.

AUC Sensitivity Specificity
0.794 0.750 0.838

(a) ROC curve (b) CM with adjusted cutoff (0.4)

Figure 3.14: CRC-healthy classification of the test dataset with the best performing
model: ROC curve (a) and the confusion matrix with an adjusted cutoff (set to 0.4) (b)
for the test dataset.

Figure 3.15 shows the taxa with the highest contributions to the output of the best
performing machine learning model. Since Maaslin2 was the feature selection method,
we again see the taxa already identified by the DAA tools in Section 3.3.1: genera Pep-
tostreptococcus, Parvimonas, Porphyromonas, Fusobacterium, Dialister, Ruminococcaceae
UBA1819 and family Prevotellaceae, which were enriched in the CRC samples, and family
Peptostreptococcaceae, genera Lachnospira, Erysipelotrichaceae UCG-003, Ruminococcus,
Megamonas and Anaerostipes, which were enriched in the healthy samples. Although
there were 99 features selected by Maaslin2, the ones that contribute the most to the
model are also the ones with the highest effect size determined by the DAA algorithms
(Table 3.6, Table 3.7, Table 3.8).
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Figure 3.15: Interpretation of the best performing CRC-healthy classification model
(SVM with Maaslin2 feature selection). 20 taxa with the highest contribution based on
Shapley values calculated by iterating through permutations of the features are shown
[146].
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3.4.2 Adenoma-healthy classification

Table 3.14: Adenoma vs. healthy classification: the best performing model (based on
AUC) for each algorithm. FS- feature selection, AUC- area under the curve, SKB-
SelectKBest; ML algorithm abbreviations can be found in Table 2.3. Data transformation
for the best performing models was always compositional (centered log ratio).

Model Taxonomy FS AUC Sensitivity Specificity Test AUC
LR species SKB 0.826 0.534 0.827 0.762

LASSO species SKB 0.837 0.534 0.838 0.753
RIDGE species SKB 0.824 0.535 0.823 0.748

EN species SKB 0.833 0.533 0.834 0.762
SVM linear species SKB 0.825 0.558 0.828 0.755

SVM species None 0.839 0.499 0.849 0.693
RF species SKB 0.838 0.508 0.847 0.710

LGBM species SKB 0.853 0.556 0.852 0.715
GNB genus SKB 0.814 0.934 0.607 0.774

(a) ROC AUC (b) PRC

Figure 3.16: Area under the receiver operating characteristic curve (ROC AUC) (a) and
precision-recall curve (PRC) (b) for the adenoma-healthy classification (LGBM model on
a species level with SKB feature selection). The individual 25 curves resulting from each
cross-validation step and the overall mean are shown in the graphs.

The best performing model for adenoma-healthy classification is LGBM at the species
level with SelectKBest feature selection (and compositional data transformation). The
resulting AUC is even slightly higher than for CRC-healthy classification. While the
sensitivity and specificity values were about the same for the CRC-healthy classification,
here we have low sensitivity and higher specificity. The imbalance can be seen on the
ROC curve in Figure 3.16a. The reason for the unbalanced results is a large imbalance of
classes in the training dataset - 232 adenoma and 591 healthy samples (ratio ≈ 1 : 2.5). To
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address this problem, class weights could be added when defining the classifier functions
in future optimization of the models. The imbalance also resulted in the need for a rather
extreme cutoff value to obtain a satisfactory ratio between sensitivity and specificity.
Setting it to 0.2, we obtain approximately equal values (Figure 3.17b).

(a) CM with default cutoff (b) CM with adjusted cutoff (0.2)

Figure 3.17: Confusion matrix (CM) for adenoma-healthy classification: with default
cutoff determined by the predict() function (a), and with manually adjusted cutoff
(set to 0.2) to increase the sensitivity. The non-normalized CM with mean and standard
deviation can be found in the appendix (Figure A.3b).

It is interesting to look at the results using Maaslin2 feature selection. The q-value
threshold for significance in the Maaslin2() function was not explicitly set, but was
left at the default value of 0.25. This threshold was higher than that used for differential
abundance analysis (Section 3.3), where the overall Maaslin2 results table was used and
only the features with q< 0.05 were considered significant (because this threshold was
taken for the other two DAA methods). With this more liberal q-value threshold, Maaslin2
yielded 4 DA taxa at the genus level (genus Desulfovibrio, family Erysipelatoclostridiaceae
genus Frisingicoccus, and genus Mogibacterium) and 3 DA species-level taxa (Alistipes
obesi, family Erysipelatoclostridiaceae, and genus Mogibacterium) that were used as
features for the ML models. Although the number of variables was so small, the
performance of the algorithms was surprisingly good: the average AUC of the 9 species-
level models was 0.698 ± 0.020 (with the highest AUC of 0.718 for the GNB model) and
0.708±0.026 at the genus level (with the highest AUC of 0.732 again for the GNB model).
This shows that a reduction to fewer taxa can indeed lead to reliable models (of course,
a reduction to only 3/4 taxa is a bit too drastic to obtain accurate models). Future
optimization of the ML pipeline should therefore focus on exploring further methods
for feature selection, including implementing the other two DAA tools used here and
adjusting the cutoff threshold of the corrected p-value to obtain a desirable number of
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features.

As with the CRC-healthy classification, performance on the test dataset is satisfactory
for all adenoma-healthy classifiers (Table 3.14). Table 3.15 and Figure 3.18b again
demonstrate the improvement in sensitivity when using the cutoff value for classification
determined on the training dataset (here 0.2).

Table 3.15: Evaluation metrics for the best performing model of the adenoma-healthy
classification (LGBM on a species level with SKB feature selection) on the test dataset.
Sensitivity and specificity are based on the default cutoff.

AUC Sensitivity Specificity
0.715 0.586 0.845

(a) ROC curve (b) CM with adjusted cutoff (0.2)

Figure 3.18: Adenoma-healthy classification of the test dataset with the best performing
model: ROC curve (a) and the confusion matrix with an adjusted cutoff (set to 0.2) (b)
for the test dataset.

The beeswarm plot implemented for the tree-based models is even more informative than
the permutation explainer (suitable for all model types, Figure 3.15). Here we can see
not only the features that contribute most to the output of the model, but also how
the feature value affects the model output. Figure 3.19 shows that a low value of the
features Anaerostipes hadrus, Escherichia Shigella, Bifidobacterium longum (i.e. their low
count values) and a high value of the features Eubacterium halii, Gammaproteobacteria,
Alistipes putredinis, Ruminococcus torques group, Pasteurellaceae, Methanobrevibacter,
Akkermansia muciniphila (i.e. their high count values) contribute to the classification
of a sample to class 1 (adenoma). The bacteria from the first group of taxa (whose
low abundance contributes to classification as adenoma) were found to be significantly
enriched in the healthy group, and the bacteria from the second group of taxa (whose
high abundance contributes to classification as adenoma) were found to be significantly
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enriched in the adenoma group in DAA (Section 3.3.2). The feature selection method
used for this classification is SKB, and the results of the ML interpretation show that
the features with the highest effect size values detected in DAA are not only selected by
a different algorithm (SKB) but are also the most relevant to the ML classification. This
highlights that the identified biomarkers in Section 3.3 are a reliable list of organisms
indicative of the dysbiosis of the gut microbiome during the development of colorectal
cancer and adenoma.

Figure 3.19: Interpretation of the best performing adenoma-healthy classification model
(LGBM with SKB feature selection). 20 taxa with the highest contribution based on
Shapley values and their effect on model output.
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CHAPTER 4
Conclusion

Examination of the differences in alpha diversity between the healthy, adenoma, and
colorectal cancer groups in the meta-analysis dataset did not yield meaningful outcomes.
Combined with the inconsistent results from the literature, it was concluded that alpha
diversity was not a relevant metric for comparing the microbiome composition of healthy
controls and colorectal cancer/adenoma patients. The differences in beta diversity were
statistically significant between the three diagnosis groups and the four study datasets.
The significant difference in taxonomic composition between the diagnosis groups was
further investigated using differential abundance analysis tools and machine learning
models.

Differential abundance analysis (DAA) detected taxa enriched in healthy controls and
in groups with a disease (colorectal cancer/adenoma). The organisms were identified
using three different DAA methods, and the overlapping results of these tools represent
a set of biomarkers indicative of gut microbiome dysbiosis in colorectal cancer and
adenoma. Robustness was achieved by using multiple methods and a large and diverse
dataset. Because all of the work here was based on publicly available data, the lack of
metadata precluded more detailed analysis of the microbial signatures characteristic of
these diseases. The only complete information available for all samples was the study
dataset from which they originated. There are reports of unique taxa representative of
different cancer stages, and it would thus be important and exciting to identify them
in a large meta-analysis dataset such as this. This is not possible without the detailed
metadata for the individual datasets. DA organisms have mostly been detected by other
researchers as well, but not always based on fecal amplicon sequencing. Some bacteria
have never been mentioned in the literature in the context of colorectal cancer or adenoma.
The organisms detected here are therefore a good basis for further research, which should
perhaps focus on understanding the heterogeneity of CRC occurrence and trying to find
microbial clusters, rather than single organisms, indicative of different CRC gut dysbiosis
types.
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The machine learning models were very successful in classifying the samples for both cases
(CRC vs. healthy and adenoma vs. healthy). For the internal test data set, the evaluation
metrics were slightly lower than for cross-validation, but still good. Performance is
comparable to that of the commonly used non-invasive tool, the fecal immunochemical
test (FIT), for detecting CRC and superior to this method for detecting adenomas.
Future work should include evaluation of the models using external test datasets. As
the gut microbiome and its use for developing diagnostic tools has become a popular
field in recent years, hopefully new datasets with more detailed metadata will become
available, which will certainly make the models more accurate. With adequate metadata,
it would also be possible to develop a tool that not only screens for cancer but can also
reliably identify the cancer stage. The algorithms tested here are quite simple, but still
managed to perform very well. Further optimization should involve hyperparameter
tuning, where the different values of the ML classifier function parameters (regularisation
strength for linear models (LR, LASSO, RIDGE, EN), maximum depth of the tree
for tree-based methods (RF, LGBM), kernel coefficient for SVM...) should be tested
during the automated runs to find optimal conditions under which the models could
perform even better. With more high-quality data (and metadata) and detailed model
optimization strategies, performance can be improved. Therefore, there is probably no
need to use more complex approaches (e.g. deep learning), as these may produce less
explainable solutions with a higher risk of overfitting. In addition to hyperparameter
tuning, further work should focus on feature selection in order to reduce the dimension
to the relevant features and obtain reliable models with as few variables as possible. The
results of the model interpretation were consistent with the DAA results, as the features
that contributed most to the models were also those with the highest absolute effect
size in the DAA. Thus, the DAA tools used here would be good candidates for feature
selection methods, and the (corrected) p-value significance threshold and/or the absolute
effect size value could serve as adjustable hyperparameters. It is also worth noting that
depending on the results of future research, identified biomarkers could also serve as
a basis for the development of cheaper and simpler non-invasive tests, e.g., based on
real-time polymerase chain reaction.

To summarize, the most important outcomes of the work presented in this thesis are a
list of fecal biomarkers of colorectal cancer and adenoma dysbiosis as a result of a robust
statistical analysis, and the classification models developed for screening these diseases.
The enhancement of these models should be continued, as they could not only serve
as a screening tool in the future, but their interpretation also offers insight into which
organisms play a significant role during CRC/adenoma gut dysbiosis. The advantages of
such a screening method are that it is completely non-invasive, as only a stool sample is
needed to formulate a diagnosis (classification), it is also independent of the practitioner’s
experience, and it can offer disease screening results promptly and relatively accurately.

Ultimately, the results presented here provide valuable information for understanding the
imbalance of the gut microbiome in colorectal carcinoma and adenoma patients. Recent
advances in sequencing technology combined with artificial intelligence have made this
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possible. With further optimization, these types of models, or simpler alternatives based
on their results, could serve as a non-invasive addition to colonoscopy, the gold standard
in the diagnosis of colorectal cancer and polyps.
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Appendix
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Figure A.1: Comparison of the ASV counts distribution between raw data (a) and centered
log-ratio (clr) transformed data (b) for the first sample of the meta-analysis dataset. Raw
data is strongly left-skewed, whereas the distribution becomes more centered after the
clr transformation.

Table A.1: Cumulative proportion of explained variance for different numbers of calculated
principal components (PCs).

Number of PCs Cumulative explained variance (%)
10 12.6
30 22.2
100 43.6
200 63.3
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Scree plot: 10 computed PCs

V
a
ri

a
n
c
e
s

5
1
0

1
5

2
0

2
5

3
0

1 2 3 4 5 6 7 8 9 10

(a) 10 computed PCs

Scree plot: 100 computed PCs

V
a
ri

a
n
c
e
s

5
1
0

1
5

2
0

2
5

3
0

1 6 12 19 26 33 40 47 54 61 68 75 82 89 96

(b) 100 computed PCs

Scree plot: 100 computed PCs
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Figure A.2: Scree plots of computed 10 principal components (PCs) (a), 100 PCs (b)
and 100 PCs with 20 PCs shown on the plot (c). Variance on the y-axis represents the
absolute variance.
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(a) CRC-healthy classification (b) adenoma-healthy classification

Figure A.3: The original (non-normalized and with default cutoff) confusion matrix with
mean and standard deviation for CRC-healthy classification (a) and adenoma-healthy
classification (b).
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