
PLEXUS
Lisbon, May 2023

From Producer-Consumer Games
to Substructural Calculi

Chris Fermüller1

(based of joint work with Robert Freiman1 and Timo Lang2)
1Vienna University of Technology

2University College London

1

Plan of the talk

Motivation: From loose metaphors to formal games

Game Type 1 [F&Lang, Tableaux 2017], [F, Lorenzen-Vol. 2021]

Proponent claims that Client can extract desired packages of
information from the information that Server provides, while
Opponent seeks to refute P’s claim

Type 1 games interpret substructural sequent calculi

Game Type 2 (work in progress, tentative)

directly model the ongoing interaction of Producer and Consumer
P wins if C’s demands can be served, potentially forever

Games first! — Which one connect to calculi? How?

Open issues: A research agenda

2

Motivation

substructural logics are often motivated by resource consciousness

usually only metaphorical – think of Girard’s cigarette example:

“For $1 you get a pack of Camels, but also a pack of Marlboro”

“but also”: multiplicative in contrast to additive conjunction

to breathe life into the resource metaphor, we need dynamics

=⇒ games modeling strategic interaction

traditional paradigm of game semantics: ‘formulas as games’
In contrast, we consider ‘formulas as items (of information)’

Two types of games:

Type 1: Information extraction games
Type 2: Models of Producer-Consumer interaction

3

Information Extraction Games

Guiding Ideas:

Information: Lorenzen’s ‘assertions’, rather than ‘formulas as games’
resource conciousness: information can be stored/accessed/consumed

Different ways of accessing information:

A Server may provide information to a Client e.g. as follows:

C can have all of those once: {a, b, c, . . .} (multiset)

C can have any one of those: (a, b, c, . . .) (C’s choice)

S gives C (just) one of those: [a, b, c , . . .] (S’s choice)

C can have the first of those: ⟨a, b, c , . . . | (stack)

C can have the first or last of those: ⟨a, b, . . . e, f ⟩ (deque)
C can have these as often as C wants: ∥a, b, c , . . . ∥ (‘protected’)

Arbitrary nestings results in information packages:

for example: {∥a∥, (⟨b, c |, [d , e, f])}
4

Accessing/extracting information as a game

Information extraction game(s) (formerly C/S game – [F/Lang, 2017]):

Proponent claims that S provides the information that C wants,
while Opponent seeks to refute P’s claim

Remark:
In [F/Lang 2017] we identified C with P and S with O (‘C/S game’)
We now prefer to keep S passive and let P act in C’s behalf, opposed by O

States of the game: Γ ▷ F
Γ . . . bundle of information provided by S
F . . . information wanted by C (possibly structured, as explained below)

Two possible interpretations:

Strict reading: F is equivalent to Γ

Affine reading: F is (modulo equivalence) contained in Γ

NB: ‘equivalence’ is (implicitly) defined by the rules of the game

5

Where are the logical connectives?

(Some) logical connectives directly correspond to access structures.
Following tradition, we formulate rules for binary and unary connectives.

Compound (information) items offered by S:

{a, b} multiset =⇒ a⊗ b (multiplicative conjunction)

(a, b) any – P’s choice (for C) =⇒ a ∧ b (additive conjunction)

[a, b] any – O’s choice (against C) =⇒ a ∨ b (additive disjunction)

⟨a, b| first a, then b =⇒ a; b (a new connective)

∥a∥ ‘protected’ a =⇒ !a (‘bang’, ‘of course’)

We speak of Information Packages (IPs), rather than formulas.

In order to make these corespondences precise and make them work in full
generality we need to provide precise specifications of game rules!

6

Rules of the (standard) Information Extraction Game

The rules stepwise reduce states to simpler states in round:

Step 1 P, as scheduler, chooses an IP F of the state Γ ▷ H

Step 2 two cases:
– F in Γ =⇒ Unpack the IP provided by S
– F = H =⇒ Check the IP wanted by C

corresponding choices by P or by O determine the next state

We focus on the case, where the IPs of S form a multiset Γ = [G1, . . . ,Gn]
(More general ‘deep inference’ style rules could be obtained analogously)

Unpack-rules (F among S’s IPs)

(U∨) F = F1 ∨ F2: O chooses i , Fi replaces F in Γ

(U∧) F = F1 ∧ F2: P chooses i , Fi replaces F in Γ

(U⊗) F = F1 ⊗ F2: F1 and F2 replace F in Γ

Check-rules (F is C’s current IP — rules are dual)

(C∨) F = F1 ∨ F2: P chooses i , Fi replaces F as C’s wanted IP

(C∧) F = F1 ∧ F2: O chooses i , Fi replaces F as C’s wanted IP

(C⊗) F = F1 ⊗ F2: P has declares which part of Γ will be used for
extracting F1 and F2, respectively; O chooses correspondingly 7

Did we loose implication?

F1 → F2 is interpreted as conditional information: F2 givenF1

The corresponding Check-rules (state Γ ▷ F1 → F2) is obvious :

(C→) F2 becomes C’s current IP, F1 is added to Γ

For F1 → F2 provided by S, the following is obvious too:

(U→) If F1 as well as F1 → F2 are in Γ, the P may choose to
replace these two IP-occurrences by F2

More generally, F1 only needs to be contained in information in Γ:

(U→) P has declares which part (Γ1) of Γ is to be used for
extracting F1 and which part (Γ2), augmented by F2, allows
to extract C’s wanted IP; O chooses correspondingly

Written in sequent style:

F1, Γ ▷ F2
Γ ▷ F1 → F2

(C→)
Γ1 ⊢ F1 F2, Γ2 ▷ H

F1 → F2, Γ1, Γ2 ▷ H
(U→)

8

Rules for Protected IP’s

Simple form of interpreting ‘protection’:

only relevant for information provided by S

∥F1, . . . ,Fn∥: Fi remain in Γ for each reduction, no splitting necessary

Reflective form of interpreting ‘protection’: (linear logic style)

we also allow ∥∥F∥∥ and [F , ∥F∥], etc, also for C’s wanted IP

the corresponding connective is ! (‘bang’ of linear logic)

(U!) if P picks !F , then P may either replace if by F , delete it
or add another copy of F in Γ, as wished

(C!) If C’s wanted !F is picked, P may replace it by F
if all formulas in Γ are protected

Final States (Winning Conditions)

recall the two possible interpretations of Γ ▷ F : equivalent / contained in
corresponding winning states for P: F , Γ ▷ F or F ▷ F
Adding the clearly contradictory IP ⊥ renders ⊥, Γ ▷ F winning for P, too

9

Instances of the game matching well known calculi

Full completeness and soundness is straightforward for some calculi.

For the game with reflective form of protection (strict and affine reading):

Theorem

Each of P’s winning strategies for G1, . . . ,Gn ▷ F translates into
a cut-free proof of G1, . . . ,Gn ⊢ F in (affine) ILL, and vice versa.

For the game with simple form of protection (S: ∥...∥ instead of [...]):

Theorem

Each of P’s winning strategies for G1, . . . ,Gn ▷ F translates into
a cut-free proof of G1, . . . ,Gn ⊢ F in Gentzen’s LI, and vice versa.

Note: explicit weakening corresponds to dismissal of information by P

In a similar vain, many other calculi, eg. Lambek’s, can modelled
Moreover, also new calculi with new connectives arise!

10

Types 2 games: Modeling Producer-Consumer Interaction

A slogan borrowed from Grigori Japaridze:
Games first! (Even if they call for other/new types of calculi)

Like in information extraction games:

Producer(Server) provides packages of items (possibly information)

Consumer requests/consumes such items

focus on P’s winning strategies

Unlike in information extraction games:

Producer = Server as Proponent / Consumer = Client as Opponent

states given by complex requests/produce packages (multitasks)

P wins if C’s atomic requests are satisfied (potententially) forever

asynchronous request and produce moves!
P does not regulate (= pick the next task to be processed)

11

(Multi)tasks / P-C-Game Moves

Game states are fully specified by multitasks

A multitask is a multiset of tasks
Let X ∈ {C,P}

Atomic tasks: a! (produce), a? (request)

If S ,T are multitasks then S ∨X T is a task (X -choice)

If S is a multitask then repX (S) is a task (X -repeat)

P-C-game Moves:

S ∨X T : X can replace this by all tasks in S , or by all tasks in T

repX (S): X can add all tasks in S to the multitask

P can remove a matching pair (a!, a?) from the multitask

NB: The game is not yet fully specified!
Who wins? Who moves when?

12

Guarantees Instead of Regulations

Rather than fixing P/C alternations or choice precedences,
we allow for asynchronous moves.

Players give certain guarantees (mutual promises)

Guarantees given by P:

Success: Every request is met by a produce eventually

Availability: Every P-choice is made eventually

Guarantees given by C:

Responsiveness: Every C-choice is made eventually

Main question:
Assuming that C meets his guarantees, can P meet hers?

Note the asymmetry: P can wait for C, but not vice versa

13

Soundness with respect to aILL

(φ1, . . . , φn ⇒ φ)π = φπ−
1 ∪ . . . ∪ φπ−

n ∪ φπ+

aπ+ = {a?} aπ− = {a!}
(φ ∧ ψ)π+ = {φπ+ ∨C ψ

π+} (φ ∧ ψ)π− = {φπ− ∨P ψ
π−}

(φ ∨ ψ)π+ = {φπ+ ∨P ψ
π+} (φ ∨ ψ)π− = {φπ− ∨C ψ

π−}
(φ⊗ ψ)π+ = φπ+ ∪ ψπ+ (φ⊗ ψ)π− = φπ− ∪ ψπ−

(φ→ ψ)π+ = φπ− ∪ ψπ+ (φ→ ψ)π− = φπ+ ∪ ψπ−

(!φ)π+ = {repC(φπ+)} (!φ)π− = {repP(φπ−)}

Theorem

Every cut-free proof of sequent Π → ∆ in aILL translates into a success
strategy for P for the multitask (Π → ∆)π.

14

P-winability without linear provability

The sequent
a, b ⇒ (a ∧ b)⊗ (a ∨ b)

translates into the multitask

{a!, b!, {a?} ∨C {b?}, {a?} ∨P {b?}}

Unprovability of the sequent: ⊗ calls for splitting {a, b} right away

Winning strategy for P:
Wait for C to choose between a? and b?.

NB: P only needs to be available if C is responsive!

A side remark:
¬a ∨ ¬b ∨ ((a ⊓ b) ∧ (a ⊔ b)) is unwinable in Japaridze’s game

15

Pure and conditional request/produce packages

Mixtures of requests and productions may be unintended?
Can we avoid them?

Pure request task: atoms are only requests (a?)

Pure produce task: atoms are only productions (a!)

Atomic conditonal task (a!|b?): P produces a, if b is requested by C

Conditional task (A|B): P performs task A if C performs task B

NB: We may keep conditional tasks (conditionally) pure
Classifying conditional tasks as P-choices preserves fairness

Claim: Conditional tasks correspond to linear implication!

16

Further Questions / Open Issues

Is there an adequate calculus for P-C-games?

Can one model asynchronous moves by imperfect information games?

Which (types of) guarantees are natural in P-C-games?

Interpreting full (classical) linear logic (‘the challenge for `’)

Game based interpretations of (different types of) subexponentials

A role for random choice connectives?

. . . (Many more related topics!) . . .

17

