

DIPLOMARBEIT

Rendezvous-Multiple Broadcast
Networks

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Masterstudium Technische Mathematik

Schwerpunkt Analysis und Geometrie

eingereicht von

Johannes Hafner BSc
Matrikelnummer 00927401

ausgeführt am Institut für Logic and Computation
der Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer/in: Associate Prof. Dipl.-Math. Dr.techn. Florian Zuleger
Mitwirkung: Univ.-Ass. Benjamin Aminof PhD

Wien, 25.10.2018

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract

Automatic software verification is concerned with automatically deciding whether a given
model of a computer system satisfies a given specification. The Parameterized model
checking problem (PMCP) of networks is the special case of deciding whether a given
network (usually of identical processes) satisfies its specification regardless of the number
of processes in it. We explore the case where the processes are indeed all identical,
and communicate via rendezvous and symmetric broadcast. We map the boundary of
decidability of the PMCP in such networks. In particular, we show that the PMCP
is decidable for finite runs of such networks, whereas for infinite runs the situation is
more involved: the PMCP is undecidable already for networks with only two types of
broadcast messages (the case of a single symmetric broadcast is already known to be
decidable), but becomes decidable if one introduces certain grouping structures limiting
the scope of broadcast messages.

iii

Contents

Abstract iii

Contents v

1 Introduction 1
1.1 Problem Statement . 2
1.2 Aim of the Work . 2
1.3 State of the art . 2
1.4 Methodological approach . 3
1.5 Outline and Results . 3

2 Definitions and Preliminaries 5
2.1 General notations . 5
2.2 Labeled Transition Systems . 5
2.3 Example Network . 6
2.4 Grammars and Automata . 7

3 Rendezvous-Multiple Broadcast networks 11
3.1 Formal Definition . 11
3.2 Finite Executions . 14
3.3 Infinite executions . 19

4 Rendezvous-Fixed Group Broadcast Networks 27
4.1 Formal definition . 27
4.2 Parametrized Model Checking Problem 29

5 Unknown number of groups 33
5.1 Formal definition . 33
5.2 Reachability . 35
5.3 Infinite runs . 38
5.4 Deciding Colors . 50

6 Group changes 53
6.1 Formal definition . 53

v

6.2 Reachability . 54
6.3 Infinite runs . 57
6.4 Conclusion . 64

Bibliography 65

7 Appendix 68

vi

CHAPTER 1
Introduction

Automatic software verification is the art of writing computer programs capable of
deciding whether a given model of a software or hardware system behaves according to a
given specification. These specifications consist of questions like if a property is always
true for a run of the system. Alternatively, it may be of relevance how often or how
frequent a situation can occur.

One class of systems of interest are networks of identical processes, each running the
same code (represented by a process template). There are many types of such networks
that are achieved by varying one of two aspects: the topology of the network and the
communication protocols. The topology describes the connectivity of the network in
the sense of which processes can directly communicate with which other processes. The
communication protocols govern how processes communicate with each other, and one of
the most important aspects of this are the form of message between the processes (e.g.,
broadcast, or direct message passing between two processes).

We will focus on networks with a clique topology, i.e., ones in which each process
can communicate directly with every other process. Note that this is meant not at the
physical level, but at the more abstract high level. For example even though not every
computer on the Internet is directly physically connected to every other computer, it
is still considered a clique topology for our purposes since every computer can direct a
message to any other computer of its choice.

In terms of communication, we will focus on networks where processes communicate
using two types of communication primitives: symmetric broadcast and rendezvous. In
asymmetric broadcast, where one process sends a message to all other processes, and the
sender is potentially distinguished from the receivers. In symmetric broadcast however,
sending a broadcast message has the same effect on the sender as on any receiver. It
therefore makes sense to think of symmetric broadcasts as all processes receiving the

1

1. Introduction

message and leaving open where the message comes from.

Rendezvous messages are sent from one process to a fixed number of other processes.
Where there are only two processes involved one usually speaks of pairwise rendezvous,
and when k processes are involved one speaks of k-wise rendezvous. The source of the
name ’rendezvous’ comes from the fact that one distinguishes between not only sender
and receivers, but between each one of the k processes involved in a k-wise rendezvous.
I.e., two receivers that are in the same state may behave differently since they are assigned
different roles in the rendezvous. Thus, it is common not to think of senders and receivers
also in this case, and simply consider that k processes ‘rendezvous’ and change states
according to the k different roles they assumed during this meeting. It is worth noting
also that the state a process is in determines which (if any) rendezvous it can participate
in, and in which capacity. On the other hand every process can receive a broadcast
message regardless of the state it is in.

The networks we investigate are thus called Rendezvous-Multiple Broadcast Networks
(RMBNs for short), and we study them in general as well as focus on some special cases
where additional restrictions (or structure) are imposed on the communication primitives.

1.1 Problem Statement

We are interested in the behaviour of individual processes in RMBNs.
Specifically, we examine the Parametrized Model Checking Problem (PMCP): Given a
template describing each processes in the network, and a specification for the behavior of
a single process, decide whether all processes conform to the specification regardless of
the the size of the network (i.e., for networks with any number processes).

1.2 Aim of the Work

Are work is concerned with mapping the boundary of decidability of the PMCP problem.
Naturally, the usual tradeoff exists: the more powerful the system model is the more
likely is PMCP to be undecidable; and so it is in our case. below we describe the state of
the art before this thesis and our contributions.

1.3 State of the art

Early positive results for networks were given by [CGB86] and [GS92]. [CGB86] showed
ways to conclude properties of networks with any number of processes from networks
with two processes. [GS92] is working with rendezvous networks. In contrast to to the
networks in this thesis, they do not use broadcast transitions. They look at networks
with and without a controller process. A controller process is a unique type of process
that only appears once in the network.

2

1.4. Methodological approach

It was shown in [EFM99] that for networks with rendezvous and asymmetric broad-
casts, the PMCP is decidable for finite executions but undecidable for infinite executions
if there are at least two different messages used for asymmetric broadcasts.

In [ARZS14] it was shown that the PMCP is decidable for finite and infinite runs in
networks with rendezvous and only one type of symmetric broadcast. The languages
created by infinite executions of individual processes in these networks are ωB-regular.
In [ARZS14], the broadcast is an abstraction of ticks of a discrete clock.

While this proves the decidability of networks with discrete clocks, the problem is
harder for real-valued clocks. The question whether a given state can be visited infinitely
many times is undecidable with one real-valued clock in each process [AJ03]. For finite
runs however, the PMCP is decidable for one real-valued clock. With two real-valued
clocks per process, the PMCP is not even decidable for finite runs [ADM04].

The networks in [EFM99], [AJ03] and [ADM04] have a controller process, while
[ARZS14] and the networks here do not have a controller process, i.e. all processes run
the same code.

1.4 Methodological approach
Generalizing the model in [ARZS14], we look at different rendezvous-broadcast networks
with multiple broadcast messages. Undecidability results are created via reduction to
known undecidable problems, building on the results in [EFM99]. Decidability results
are created by outlining an algorithm constructing an automaton that recognizes the
language of all executions of a given network. [ARZS14] has outlined how this can be
used to solve the PMCP.

In our search for decidable models, we introduce a new kind of broadcast messages:
Group broadcasts. They can appear in networks where the processes are assigned to
groups. A group broadcast message is received by all processes in one group.

1.5 Outline and Results
• Chapter 2 gives an overview of notation and tools used.

• Chapter 3 gives results for general rendezvous-multiple broadcast networks (RMBN)
with symmetric broadcasts. While the PMCP is decidable for finite runs, infinite
runs are already undecidable with two types of broadcast messages.

• Chapter 4 introduces the rendezvous-fixed group broadcast network (RFGBN)
model. This model has a fixed number of groups built in, which can communicate via
group broadcast. Both the decidability result for finite runs and the undecidability
result for infinite runs can be extended to RFGBN from RMBN.

3

1. Introduction

• Chapter 5 introduces the rendezvous-group broadcast network (RGBN) model. In
this model, processes get assigned to any number of groups at the beginning of the
run. In this case, the PMCP is decidable for both finite and infinite runs.

• Chapter 6 generalizes the RGBN by allowing processes to change group as a
consequence of rendezvous messages. The PMCP is still decidable for both finite
and infinite runs.

4

CHAPTER 2
Definitions and Preliminaries

In this section we will go over some definitions and notations used throughout all sections.

2.1 General notations

N denotes the set of non negative integers. For n ∈ N let [n] refer to {1, . . . , n}, the set
of the first n positive integers. For two sets X and Y, let XY be the set of all function
f : Y → X . If π is a sequence and i ∈ N, let πi refer to the i-th element of the sequence
and |π| to the length of the sequence, which can be ∞. If ~s is an N -dimensional vector
and n ∈ [N], let ~s(n) refer to the n-th element of the vector. Let dim(~s) = N be the
dimension of the vector. For a positive integer N and a set X let XN be the set of
N -dimensional vectors over the set X .
For a set X and two integers N,M let XN×M be the set of N ×M matrices with values
in X . For three sets X ,Y,Z, let XY×Z be the set of |Y| × |Z| matrices with values in X ,
row names in Y and column names in Z. For X ∈ XN×M and n ≤ N , m ≤M , X(n,m)
denotes the element in row n and column m. For X ∈ XY×Z , y ∈ Y and z ∈ Z, X(y, z)
denotes the element in row with name y and column with name z.
For three sets X ,Y, Z and two functions or vectors f : Y → Z and g : X → Y,
let f ◦ g : X → Z be the concatenation of f and g, that is the function or vector
f ◦ g(x) = f(g(x)). ◦ will also be applied to vectors.

2.2 Labeled Transition Systems

In this thesis, all networks and the templates they are defined with are a special case of
a Labeled Transition System (LTS).

Definition 1. Labeled Transition System

5

2. Definitions and Preliminaries

Figure 2.1: Example of a rendezvous-multiple broadcast network with 2 broadcast types.

An LTS is an quadruple 〈S,S0,A, T 〉, where S is a set of states, S0 is a set of initial
states, A is a set of labels and T is a set of transition. The transitions are triples and
elements of S ×A×S. For s, s ∈ S and a ∈ A, the transitions are usually written in the
form s

a−→ s′. For such a transition t, we denote the following access functions:

• src(t) = s, the source of the transition

• dst(t) = s′, the destination of the transition

• label(t) = a, the label of the transition

A sequence of transitions π is called a path of the LTS, if for all i < |π|
dst(πi) = src(πi+1), i.e. the destination of each transitions must be the source of the
next transition.
We write src(π) = src(π1) for the source of the path and for a finite path dst(π) = dst(π|π|)
denotes the destination of the path.
A path is called a run of the LTS, if src(π) ∈ S0. In some special cases of LTS, there are
additional acceptance conditions for a path to be called a run.

2.3 Example Network
Figure 2.1 gives an example of a template for a network. It describes a rendezvous-multiple
broadcast network, which will be formally defined in Chapter 3.

States are displayed as squares with a capital letter in them. Initial states have yellow
background. Broadcast transitions are bold and labeled with a Greek letter. There are
two broadcast letters α and β and broadcast transitions with the same letter have the
same color. Rendezvous transitions are represented by thin arrows. For this template,
two process take each rendezvous transition together. There are two rendezvous letters a
and b. There are two roles for both letters, 1 and 2. There must be a process in both

6

2.4. Grammars and Automata

Figure 2.2: Example run of the network described by the template in Figure 2.1

source states A and B in order for a global rendezvous transition labeled with either a or
b to happen.

Figure 2.2 gives an example of how a run in the network described in Figure 2.1. It
has three processes. Each line of transitions gives the transitions each of the Processes 1,
2 and 3 takes. Initially, Process 1 is in State A, while Processes 2 and 3 are in State B.
From left to right, the following global transition happen: First, there is a rendezvous
transition with letter a, where Process 1 takes Role 1 and Process 2 takes Role 2. That
transfers Process 2 into state D, while keeping Process 1 in State A. Process 3 is inactive
in this transition. This is displayed by a thin gray line and keeps Process 3 in State B.
Next comes a broadcast transition labeled with α. Here, every Process follows the unique
transition labeled with α starting in the State it is currently in.
After that there is:

• A broadcast transition with label β

• A rendezvous transition with label b, where Process 3 takes Role 1 and Process 2
takes role 2

• A rendezvous transition with label a, where Process 1 takes Role 1 and Process 3
takes role 2
and finally another broadcast transition with label β

In the end, Process 1 is in State C and Processes 2 and 3 are in State C.

2.4 Grammars and Automata

The specifications for the PMCP describe a language, either with grammars or automata.
For finite words, the specifications must be regular languages. Regular languages are
recognized by finite word automata [MS97] and regular grammars. A regular grammar is
recursively defined and is of the forms:

7

2. Definitions and Preliminaries

expression meaning
ε The empty word
ab Word recognized by a followed by a word recognized by b
a ∪ b Word recognized by a or by b
a∗ Word consisting of any finite number of words all recognized by a

where a and b are both regular expressions themselves.

ω-regular languages are the equivalence of regular languages for infinite words. They
are sets of infinite words recognized by a grammar following the construction principles:

expression meaning
ε The empty word
ac Word recognized by a followed by a word recognized by c
aω Word consisting of an infinite sequence of words all recognized by a

where a is a regular expression and c is an ω-regular expression.
As parts of ω-regular expressions are regular, they also contain Kleene stars ∗ and ∪.

The automata and networks in this thesis show behavior that can not be described
by ω-regular languages as they are extensions of the networks presented in [ARZS14].
Therefore, ωB-regular languages are used. They possess B, in addition to the Kleene
star ∗. The number of repeats of the word recognized by aB must be bounded in the
infinite word. The expression (αBβ)ω for example recognizes every infinite word over the
alphabet {α, β} with an infinite number of β’s and where the number of α’s between two
consecutive β’s is bounded by any natural number.

B-automata recognizing ωB-regular languages are equipped with counters, which can
be increased and reset. A run is accepted if the counters stay bounded.
Every ω-regular language is also ωB-regular but not the other way round.

B-automata were introduced in [BC06]. A equivalent definition for B was simultane-
ously developed in [AKY08]. The formulation here is based on an equivalent formulation
in [Boj10].

Definition 2. B-automata

Given a set of counters C and a set of letters A, a B-automaton is an LTS extended
by an acceptance condition B =

〈
S,S0,A×

(
((C ∪ {0})× N)C

)
, T ,Φ

〉
. The transitions

are written in the form s
a−→
c
s′ with a ∈ A and c ∈ ((C ∪ {0})× N

If c(γ) = (0, k), c(δ) = (β, k′) with k, k′ ∈ N and γ, δ, β ∈ C and c(α) = (α, 0) for all other
counters α ∈ C, then the transition is written as s a−→ [γ := k , δ := β + k′]s′.

If c(γ) = (γ, 0), counter γ is said to be inactive in the transition.
If c(γ) = (γ, k) with k > 0, i.e. γ := γ + k, counter γ is said to be increased in the
transition.
If c(γ) = (0, k), i.e. γ := k counter γ is said to be reset in the transition.

8

2.4. Grammars and Automata

If c(γ) = (δ, k) with γ 6= δ; i.e. γ := δ + k, counter γ is said to copy counter δ in the
transition.

To access individual elements of the labels, ltr(s a−→
c
s′) = a and ctr_cmd(s a−→

c
s′) =

crefer to letter and counter command of the transition.
The acceptance condition Φ is a positive Boolean combination of statements of the form

B-conditions lim sup γ <∞
Büchi-conditions s appears infinitely often

for counters γ and states s.

The acceptance of a run is determined by the extended LTS
B =

〈
S × NC ,S0 × {0}C , ((C ∪ {0})× N)C , T ,Φ

〉
.

~s ∈ S × NC is called a configuration. ~s(0) ∈ S gives the state of the B-automaton
and ~s(γ) gives the value of counter γ. All counters have value 0 initially.
The elements of T are written as ~s a−→

c
~s′ and fulfill the following:

• ~s(0) a−→
c
~s′(0) is a transition ∈ T

• ~s′(γ) =
{
~s(δ) + k , c(γ) = (δ, k)
k , c(γ) = (0, k)

For a path ~π in B, ~π(0) refers to the corresponding path in B and ~π(γ) refers to the
sequence of the values of counter γ. Φ states the conditions of Ψ formally:

Φ Φ
lim sup γ <∞ lim sup~π(γ) <∞

s appears infinitely often {i ∈ N : src(~π(0)i) = s} =∞
If these conditions are met for a path ~π in B and the initial configuration src(vecπ)

is in S0 × {0}C , then ~π is considered a run.
For every path π of the B-automaton B there is exactly one path ~π in B, with ~π(0) = π.
π is considered a run, iff ~π is a run.

For a path π, let wrd(π) be the word created by π, i.e. the sequence ltr(π0), ltr(π1),
That word is said to be accepted by the run π and by the B-automaton B.

9

CHAPTER 3
Rendezvous-Multiple Broadcast

networks

This section introduces Rendezvous-Multiple Broadcast networks, which are an extension
of the Broadcast-Rendezvous networks described in [ARZS14].

These networks consist of several processes, which all run the same code. The code is
represented by process templates, which are labeled transition systems. The processes
have two ways of communicating with each other: rendezvous and symmetric broadcasts.
Broadcasts consist of a message sent to all processes. In rendezvous transitions a fixed
number K of processes communicate with each other. There are K roles for each ren-
dezvous letter, each of those with a unique transition in the template.

All processes can communicate with any other process in the network, i.e. there is no
topology between the processes involved.

3.1 Formal Definition
Both the templates and the networks of RMBNs are Labeled Transition Systems.

Definition 3. P : Rendezvous-Multiple Broadcast Network Template

The templates for the rendezvous-multiple broadcast network are an LTS of the form
P = 〈S,S0,Ar × [K] ∪ Ab, T 〉. The set S are the states and S0 the initial states. Ar is
the set of rendezvous letters, Ab is the set of broadcast letters and K ∈ N is the number
of roles in rendezvous transitions.
The transitions T consist of rendezvous and broadcast transitions. The rendezvous
transitions are those transitions with labels (a, k) ∈ Ar ∪ [K]. They are written in the

11

3. Rendezvous-Multiple Broadcast networks

form s
a,k−−→ s′. In these, s, s′ ∈ S, a ∈ Ar and k ≤ K. The broadcast transitions are those

with label β ∈ Ab. They are written in the form s
β−→ s′. For each state s ∈ S and each

broadcast label β ∈ Ab, there is exactly one state s′ ∈ S such that s β−→ s′ ∈ T .

src, dst and label are defined for transitions of RMBN templates as they are for
transitions of any LTS. Therefore label(s a,k−−→ s′) = (a, k). To access a and k individually,
ltr(s a,k−−→ s′) = a and role(s a,k−−→ s′) = k can be used.

The LTS PN and P∞ are constructed from the RMBN template P . They describe
networks of N or any number of processes respectively.

Construction 1. PN : Rendezvous-Multiple Broadcast Network with N processes con-
structed from the template P

For N ∈ N the network PN =
〈
SN ,SN0 ,Ar × [N]K , T N

〉
consists of N processes.

The elements of SN are called configurations and are N dimensional vectors over S. For
n ≤ N ~s(n) is the state process n is in when the network is in configuration ~s. The
initial configurations SN0 are all configurations where every process is in an initial state.
Compared to templates, the labels use K-dimensional vectors ~p ∈ [N]K instead of roles
k ∈ K. ~p(k) gives the process taking role K. In this definition, the number of roles in
rendezvous transitions is fixed as K over all rendezvous letters. In some examples and
specific networks, the number of roles can vary over rendezvous letters.
Fixing the number of roles does not reduce the expressing power of the mode. This is due
to the fact that the number of roles in each global rendezvous transition can be increased
to K by adding one state and a transition with source and destination in that state for
every missing role.

The elements of T N are called global transitions. Global rendezvous transitions
are written in the form ~s

a,~p−−→, ~s′, where ~s and ~s′ are configurations, a ∈ Ar and
p ∈ [N]K . For ~s a,~p−−→ ~s′ to be a global rendezvous transition ~p must be injective,
i.e. ~p(k) = ~p(k′)⇒ k = k′. Each role is taken by a different process. Additionally,

~s(n) = ~s′(n) , ∀n /∈ range(f)
~s(f(k)) a,k−−→ ~s′(f(k)) ∈ T , ∀k ≤ K

The labels are required to be unique, i.e. label(t) = label(t′) ⇒ t = t′. Given a
network without unique labels, a network with unique labels and the same runs and
executions can be constructed by creating a new label for each possible selection of
transitions participating in a rendezvous transition.

Process n is said to be active in the rendezvous transition ~s a,~p−−→ ~s′ iff n ∈ range(~p).
Global broadcast transitions are written in the form ~s

β−→ ~s′ where ~s and ~s′ are config-
urations and β ∈ Ab. For ~s

β−→ ~s′ to be a global broadcast transition, ~s(n) β−→ ~s′(n) ∈ T

12

3.1. Formal Definition

must be true for all n ≤ N . Every process is active in every broadcast transition.

For a global transition ~t, ~t(n) refers to the transitions process n takes. For a global
rendezvous transition, ~t(n) = ⊥, iff process n is not active in the transition. Additionally,
ltr(~s a,~p−−→ ~s′) = a and role(~s a,~p−−→ ~s′) = ~p.

Figure 2.1 in Chapter 2 shows an RMBN template.

Construction 2. P∞: Rendezvous-Multiple Broadcast Network with any number of
processes constructed from template P

The complete set of networks defined by the template P = 〈S,S0, T 〉 is the LTS

P∞ =
〈 ⋃
N∈N
SN ,

⋃
N∈N
SN0 ,Ar × NK ,

⋃
N∈N
T N

〉

, i.e. all networks for any number of processes N .

Runs and executions

The template P and the network P∞ are both Labeled Transition Systems. Therefore,
runs are already defined for both. Projections and Executions are specific to networks
though.

Definition 4. Projections and Executions of RMBN

Let ~π be a global run. For process n let i1, i2, . . . , be the indices of those transitions
in which process n is active. Then proj(~π, n) refers to the projection of the global run ~π
onto process n. I.e. the sequence of the local transitions process n takes in the global
run ~π. All global transitions where process n is not active are skipped. Formally, proj is
defined via the identity proj(~π, n)r = ~πir(n).
By definition, the projection of a global run onto a process is always a local run. If for a
local run π, there is a global run ~π and a process n, such that π = proj(~π, n), then π is
called an execution.

Not every local run is an execution. Due to symmetry, if π is an execution, there is a
global run ~π such that proj(~π, 1) = π.
exec(P) refers to the set of all executions of the template P . execfin(P) is the set of
all finite executions and execinf (P) the set of all infinite executions of P. Note that
the projection of an infinite run might be a finite execution. Additionally, for S ′0 ⊆ S0
the expression exec(P,S ′0) is used to denote those executions starting in any s ∈ S ′0, i.e.
exec(P,S ′0) = {π ∈ exec(P) : src(π) ∈ S ′0}. That implies that exec(P) = exec(P,S0).

13

3. Rendezvous-Multiple Broadcast networks

Definition 5. PMCP: Parametrized Model Checking Problem

For a specification language Φ the finite/infinite PMCP is the following: given a
template P and a specification φ ∈ L, are all executions in execfin(P) (execinf (P)
respectively) satisfying φ?

For finite executions, the specification languages will be regular languages. The finite
PMCP will be proven to be decidable for regular languages.

The specification used for infinite execution will be the following: Given sets S ′0 ⊆ S0
and Z ⊆ S, do all executions starting in S ′0 reach a state in Z? The infinite PMCP turns
out to be undecidable for this kind of specifications.

3.2 Finite Executions

In order for a process to take a rendezvous transition, there have to be other processes in
the sources of the other transition with the same letter. That can only happen when those
states are reachable. The set of reachable states depends on the broadcast transitions
the network took previously.
A breadth first search similar to [ARZS14] can be used to determine, which transitions
are usable in which situation. The algorithm creates the unwinding template. The first
main building block of the unwinding template is a component. Each component contains
the states and rendezvous transitions that are reachable only via rendezvous transition
from a given subset of the states. The broadcast transitions connect these components.
All broadcast transitions with the same letter and source in the same component have
their destination in the same component.

For only one type of broadcast letter, [ARZS14] shows that the components are
arranged in a lasso structure. Here, the components can be arranged in any structure.

The second main part of calculating the unwinding template is the reach function.
Given a component and a broadcast letter, it calculates the destination of all transitions
with the broadcast letter as label and a copy of the source in the component.

Algorithm 1. Constructing the unwinding template P(from the RMBN template P

Components are LTS characterized by their initial states S̃ ⊂ S and called comp(S̃).
The states of comp(S̃) are a subset of S × {S̃}, i.e. pairs of the form (s, S̃) with s ∈ S.
The labels are Ar × {S̃} × [K], i.e. triples of the form (a, S̃, k).

Given a set of a component’s initial states S̃, the component comp(S̃) is calculated
as follows:
comp(S̃) starts the LTS

〈
{(s, S̃) : s ∈ S̃}, {(s, S̃) : s ∈ S̃},Ar × {S̃} × [K], ∅

〉
.

14

3.2. Finite Executions

The algorithm repeatedly checks all rendezvous letters not yet added to the component.
Let Sa be the set of states s for which there is a transition with letter a and source s in
P . Let S′a be the set of states s, for which there is a transition with letter a and with
destination s′ in P . Letter a is added, if (s, S̃) is already the states of comp(S̃) for all
s ∈ Sa. If this is the case, (s′, S̃) is added to the states of comp(S̃) for all states s′ in S′a.
Additionally, for each transition s a,k−−→ s′ with letter a the transition (s, S̃) a,S̃,k−−−→ (s′, S̃)
is added to transitions of comp(S̃). From now on, a no longer needs to be checked when
calculating comp(S̃). The calculation of a component is finished, when all letters not yet
added have been negatively checked since the last time a letter was added.

The second main part of the calculation of P(is reach.
Let comp(S̃) =

〈
{(s, S̃) : s ∈ Ŝ}, {(s, S̃) : s ∈ S̃},Ar × {S̃} × [K], T S̃

〉
, here, Ŝ is the

subset of the original states S corresponding to the states of comp(S). Given a broadcast
letter β, let reach(comp(S̃), β) be the set {s′ ∈ S : ∃s ∈ Ŝ : s β−→ s′ ∈ T }.

The unwinding template is an RMBN created by combing several components and
adding broadcast transitions connecting the components. Its calculation starts with the
calculation of the initial component comp(S0). When the calculation of a component
comp(S̃) is finished, it is added to P(by adding all states, labels and transitions of the
component to the states, labels and transitions of P(. Then, the algorithm goes through
all broadcast labels β. For every broadcast letter β, reach(comp(S̃), β) is calculated.
For all broadcast transitions s β−→ s′ with s ∈ Ŝ, the set of states whose copies are in
comp(S̃), the transition (s, S̃) β−→ (s′, reach(comp(S̃), β) is added to the transitions of
P(. By doing so, all states copied from comp(S̃) have a broadcast transition labeled with
β starting in it. Additionally, if comp(reach(comp(S̃), β) has not yet been calculated
and it is not yet in the queue, reach(comp(S̃), β) is added to the queue of components
that have to be calculated. When reach has been calculated for all broadcast letters,
the first element of the queue are the initial states of the next component to be calculated.

This queue starts with only the set of the original initial states S0 as the initial
states for the first component to be calculated. The calculation then iterates between
calculating comp and reach. When the queue is empty after reach has been calculated
for every broadcast letter for the last component, the entire calculation is finished. As the
initial states of each component is the subset of all states, at most 2|S| components have
to be calculated, i.e. the number of components is at worst exponential in the number of
states.
Only the initial states of the first component comp(S0) are the initial states of the
unwinding template P(.

Figure 3.1 shows the unwinding of the network in Figure 2.1. There never can be
processes in all three of the states A,B and C. Depending on the sequence of previous
broadcasts, only two of them are reachable. Therefore, there are three components with

15

3. Rendezvous-Multiple Broadcast networks

Figure 3.1: Unwinding template of the network in Figure 2.1

initial states {A,B}, {A,C} and {B,C} respectively. In Figure 3.1 every component has
its own background color. As long as a process does not take any rendezvous transitions,
it stays either on the left hand side or the right hand side of Figure 3.1. The rendezvous
transitions give processes the opportunity to change side, as long as there is a process on
the other side.

Definition 6. Attributing components to transitions and runs

If t : s a,k−−→ s′ is a rendezvous transition in P let (t, S̃)(be the transition (s, S̃) (a,S̃,k−−−−→
(s′, S̃). For a broadcast transition t : s β−→ s′, (t, S̃)(is the transition (s, S̃) β−→
(s′, reach(comp(S̃), β). A local or global run in P can be transformed into a local
or global run in P(. For a local run π, let cmpi(π, i) be the initial states of the compo-
nent the corresponding run of P(is in after the i-th transition. It is iteratively defined:
cmpi(π, i) =

=


S0 , i = 0
cmpi(π, i− 1) , πi is a rendezvous transition
reach(comp(cmpi(π, i− 1)), β) , πi is a broadcast transition labeled with β

The sequence of transitions π(is now defined as π(i = (πi, cmpi(π, i− 1))(.
dst(π(i−1) = src(π(i) holds true, because the component of the destination in t(is
consistent with the definition of cmpi(π, i) for the run π.

For a configuration ~s let (~s, S̃)(be the configuration of states with (~s, S̃)(n = (~sn, S̃)
for every process n. Using this, the definition of (can be naturally extended to global
transitions ~t and global runs ~π.

16

3.2. Finite Executions

If ~π is a global run of P then ~π(is a global run of P(.
If π is a local run of P then π(may or may not be a local run of P(, as the required
states or transitions may not be part of a component. The runs of P(correspond to the
executions of P . To proof this, a couple of definitions and lemmata are used:
Let τ be a sequence of broadcast letters. Let τi be the i-th label in this sequence. Then,

cmpi(τ, i) =
{
S0 , i = 0
reach(comp(cmpi(τ, q − 1)), τi) , i ≥ 1

.

The same definition for broad is applied to global runs ~π. For a local run π, let
dstcmpi(π) = cmpi(π, |π|), i.e. the component at the end of the run. The same definition
for dstcmpi is used for global runs ~π and sequences of broadcast labels τ .

Let } be the inverse function of (, i.e. it removes the components from states,
configurations, transitions and runs.
For runs of the unwinding P(it is true that (π})(= π and (~π})(= ~π. This is due to
all transitions in P(being consistent with the definition of cmpi.

The following lemma states the consistency of Definition 6 and follows immediatly
from it:

Lemma 1. For a local or global run π or ~π, let broad(π) be the sequence of all broadcast
letters appearing in π and let ir be the sequence of the corresponding indices. It holds
true that cmpi(broad(π), r) = cmpi(π, i) for all i with ir ≤ i < ir+1

The following lemma allows merging global runs, as long as the have the same
broadcast transitions:

Lemma 2. Let ~1π, ~2π, . . . , ~Mπ be a family of M global runs with broad(~mπ) = broad(~m′π)
for all m,m′.
Then, there is a merged global run ~π with dim(~π) =

∑M
m=1 dim(~mπ).

It has proj (~π,
∑m
m̃=1 dim(~mπ) + n) = proj(~mπ, n) for all n ≤ dim(~mπ).

Proof: ~π can be constructed by simply putting all processes from each run ~mπ next to
each other. First, it takes all rendezvous transitions from the first run ~1π before the first
broadcast transition. Then all rendezvous transitions before the first broadcast transition
in the second run. It continues that way until all rendezvous transitions from the M -th
run before the first broadcast transitions are done. Then, it takes the first broadcast
transition, which must have the same letter in all M runs. This puts all processes in the
same state they have after the first broadcast transitions in their respective run. ~π then
does all rendezvous transitions between the first and second rendezvous transition and so
forth. This process leads to a run whose projections are the same as the projections of
the original run.

The following lemma shows that all states in P(are reachable:

17

3. Rendezvous-Multiple Broadcast networks

Lemma 3. Let P be a rendezvous-multiple broadcast template and P(its unwinding
template. Given a state (s,S ′) in component comp(S ′) of the unwinding template P(

and sequence of broadcast labels τ with dstcomp(τ) = S ′. Then, there exists a global run
of P(~π with Process 1 in state (s,S ′) at the end of the run and broad(~π) = τ .

Proof via nested induction: The outer induction is over the sequence of broadcast
labels τ , the inner is over the states of comp(S ′) in the order they were added to comp(S ′).

The outer induction hypothesis states that Lemma 3 is true for all prefixes τ ′ of τ
and all states (ŝ, dstcomp(τ ′)) in the component τ ′ leads to.

The inner induction hypothesis states that Lemma 3 is true for all states that were
added to comp(S ′) before s.

First, lets assume s ∈ S ′, i.e. s is an initial state of its component. If length(τ) = 0,
then S ′ = S0. In this case, the global run of length 0 only consisting of one process in
state s is used for ~π.

Otherwise, there is a state corresponding to ŝ in the component comp(τ, |τ | − 1) and
ŝ

τ|τ |−−→ s is a broadcast transition in P . Using the outer induction hypothesis there is
a global run π′ with broadcasts τ1, . . . , τ|τ |−1. At the end of π′ Process 1 is in state
(ŝ, comp(τ, |τ | − 1)). Adding a broadcast transition labeled with τ|τ | yields the desired
global run π.

For the case of s /∈ S ′ let a be the letter used to add (s,S ′) to comp(S ′). Then there
is a state ŝ and a role k′, such that ŝ a,k′−−→ s is a rendezvous transition in P . All states in
Sa, the set of starting states of transitions labeled with a, have been added to comp(S ′)
before s. Let kŝ be the starting state of the transition labeled with a and identifier k.
Using the inner induction hypothesis, there are K runs ~kπ. For them, broad(~kπ) = τ and
the destination of Process 1 is kŝ.
Lemma 2 allows merging the runs ~kπ, using ~k′π as first run. Now, a rendezvous transition
with label a using the first process of each run can be added. This yields a run where
Process 1 has destination s.

Lemma 3 together with Lemma 2 allows loading as many processes as needed into
any state of a component of P(.

Now, the final theorem for finite executions can be formulated:

Theorem 1. Let P be a rendezvous-multiple broadcast network template and P(its
unwinding template. If π is a finite run of P , then π is an execution of P iff π(is a
finite run of P(.
Every finite run of P(is an execution.

18

3.3. Infinite executions

Proof: Let us show first that every run π of P(is an execution. This is done
iteratively over the transitions of π. Let ~π(π, i) be the global run allowing the first i
transitions of π. ~π(π, 0) is the configuration containing only one process in state src(π).
If πi is a rendezvous transition and label(πi) = a then a copy of all states in Sa, the
set of sources of transitions with letter a, must be present in comp(cmpi((π, i − 1)).
For all of these states (s, cmpi(π, i− 1)), Lemma 3 yields a run with a process in state
(s, cmpi(π, q)) at the end and broadcast transitions broad(π1, . . . , πi). These runs are
merged with ~π(π, i− 1) using Lemma 3. Then, a transition with label a can be added
using the first process of each of these runs.
If trans(π, 1) is a broadcast transition with label β, the global broadcast transition with
label β is simply added to ~π(π, i− 1).
The global run constructed this way allows π.

Second, it is shown that π is an execution of P iff π(is a run of P(.
⇒: If π is an execution, there is a global run ~π with proj(~π, 1) = π. Then proj(~π(, 1) =
π(. It remains to show that ~π(is a global run, i.e. that each transition in ~π(is in
P(. Again, induction over the transitions of ~π(is used. If all transitions up to the
i-th transition are in P(, then all states in the configuration dst(~π(i) are represented
component comp(cmpi(~π(, i)). If ~π(i is a rendezvous transition, all states required for it
are therefore present in comp(cmpi(~π(, i). This implies that ~π(i is also present for that
component. Broadcast transitions can always be taken, as there is a broadcast transition
starting in every state.
⇐: If π(is a run in P(, it is an execution. Therefore, there is a global run ~π with
proj(~π, 1) = π(. Then, proj(~π}, 1) = π.

Therefore, the question whether a finite run is an execution is decidable. This is
unfortunately not true for infinite executions.

3.3 Infinite executions

In networks infinite runs are way harder to analyze than finite runs. The most straight-
forward idea would be to interpret P(as a Büchi-automaton, but not every run of that
Büchi-automaton is an execution.

To see that, let us look at Figure 3.1, which shows the unwinding template of the
network in Figure 2.1. The unwinding shows that without rendezvous transitions, all
processes stay either in the left or the right side of the graphic. Processes can only change
from right to left when the network takes an β-broadcast out of component comp({A,B}).
They can only change from right to left, when the network takes an α-broadcast out of
the same component. Whenever a process takes the transition labeled with (a, 1), another
process moves to D. If the next broadcast is an α-broadcast, then that other process has
moved from the right hand side states to the left hand side states. As there is only a
finite number of processes, this can only a finite number of times, unless processes come

19

3. Rendezvous-Multiple Broadcast networks

Figure 3.2: Example of a network whose executions are not ωB-regular

back. This can only happen when the the network takes an β-broadcast out of component
comp({A,B}). Therefore, the number of times a process can take the transition labeled
with (a, 1) between the times the network leaves component comp({A,B}) using a β-
broadcast is bounded by the number of processes in the network. As a consequence, only
runs where the number of a, 1 labeled transitions between β-broadcast leaving component
comp({A,B}) is bounded are executions. The same is true for b, 1 and α-broadcasts
leaving component comp({A,B}).

In [ARZS14], the PMCP is shown to be decidable for one type of broadcast mes-
sage. They search for cycles containing any given transition. In their case, they could
transform any cycle with broadcasts into a cycle with a fixed number of broadcasts.
Therefore, they only had to search for cycles with that many broadcasts. The example
in Figure 3.1 shows that this approach can not be used here easily, as there are many
potential cycles that do or do not have group broadcasts leaving component comp({A,B}).

[ARZS14] showed that the language created by the executions of rendezvous-broadcast
networks are always ωB-regular, as defined in Definition 2. The language of the network
in Figure 2.1 is still ωB-regular. It can be shown though that he executions of the
network in Figure 3.2 are not ωB-regular though.

Simulating counter machines with multiple broadcast networks

This section will show that the PMCP for infinite runs is undecidable for rendezvous-
multiple broadcast networks. This result is analogous to the case of asymmetric broadcast
[EFM99], where it is shown that two types of asymmetric broadcasts are enough for
undecidability. The proof here is based on their proof. It is shown that networks can
simulate counter machines. Counter machines consist of a process moving from state to
state and are equipped with some counters [Min67]

20

3.3. Infinite executions

Definition 7. Counter machines

Given a set of counters C, the template for counter machines are the labeled tran-
sition systems

〈
S, {0s}, C, T

〉
, where C is a set of counter commands. It it the union⋃

c∈C{c := c+ 1, c := c− 1, c = 0}. There are therefore three types of transitions:

s
c:=c+1−−−−→ s′ Increases counter c.

s
c:=c−1−−−−→ s′ Decreases counter c. Can only be taken when c > 0
s
c=0−−→ s′ Zero-Test. Can only be taken when c = 0

Configurations are elements of S ×NC . For a configuration ~s and a counter c ∈ C, ~s(c)
refers to the value of counter c in the configuration ~s. ~s(0) ∈ S refers to the control of
the counter machine. T C ⊂ S × NC × C × S × NC is the set of global transitions. Global
transitions are written in the form ~s

c−→ ~s′, where ~s and ~s′ are configurations and c ∈ C is
a counter command. ~s c−→ ~s′ is a global transition, if

• ~s(0) c−→ ~s′(0) is a transition ∈ T

• ~s′(γ) =


~s(γ) + 1 , c = (γ := γ + 1)
~s(γ)− 1 , c = (γ := γ − 1)
~s(γ) , otherwise

• If c = (γ = 0) then ~s(γ) must be 0.

The otherwise case occurs when c = (γ = 0) or when c involves another counter
than γ.
A counter machine is therefore the LTS

〈
S × NC , {(0s, 0, . . . , 0)}, C, T C

〉
.

If ~π is a path of a counter machine, src(~πi)(γ) refers to the value of counter γ before
the i-th transition.

An infinite path ~π of M is called bounded, if src(~πi)(γ) < V for some V ∈ N, all
c ∈ C and all i ∈ N.

The main challenge compared to [EFM99] is the lack of a controller. They can use the
controller process to simulate the control of the counter machine, while all other processes
of the networks simulate the counters. Networks with symmetric broadcasts have the
property that if one process can behave according to a given execution, any number of
process can follow the same execution. Therefore, several processes can take the role
of the control of the counter machine. This problem is overcome by using broadcast
transitions to force all processes simulating the control to have the same transitions.
In [EFM99] the number of processes in a given state simulates the value of counters.
Here, these values are represented by that number of processes in a designated state

21

3. Rendezvous-Multiple Broadcast networks

divided by the number of processes simulating the control of the counter machine.

They prove in chapter five that the following question is undecidable: Does a given
network with rendezvous transitions and asymmetric broadcasts allow infinite runs
starting in a given state?
We reduce infinite PMCP for RMBN to the same undecidable question about counter
machines [EFM99],[Min67]:

Problem 1. Let M be a counter machine with 3 counters, where every infinite bounded
run (not necessarily initial) visits the initial state infinitely often. Is there any infinite
bounded run of M?

Construction 3. RMBN template PM from the counter machine M

To simulate a counter machineM =
〈
S, {0s}, C, T

〉
, we create a rendezvous-broadcast

network with |T | broadcast transitions: PM =
〈
S̃, S̃0, Ãr × [2] ∪ Ãr, T̃

〉
.

• The set of states S̃ are {A,Z} ∪ C ∪ S ∪ T .

• The initial states S̃0 are {0s,A}.

• The rendezvous letters Ãr are at for t ∈ T .

• The broadcast letters Ãb are βt for t ∈ T .

• The transitions T̃ are constructed from the transitions T as follows. All broadcast
transitions missing in the table below lead to the sink Z:

Counter Machine Rendezvous-Multiple Broadcast Network
t = (s γ:=γ+1−−−−−→ s′) s

at,1−−→ t A
at,2−−→ γ

t
βt−→ s′ A

βt−→ A γ̃
βt−→ γ̃ , ∀γ̃ ∈ C

t = (s γ:=γ−1−−−−−→ s′) s
at,1−−→ t γ

at,2−−→ A

(B, t) βt−→ (A, s′) A
βt−→ A γ̃

βt−→ γ̃ , ∀γ̃ ∈ γ
t = (s γ=0−−→ s′) s

βt−→ s′ A
βt−→ A γ̃

βt−→ γ̃ , ∀γ̃ 6= γ

The state A is acting as the zero position for all counters and Z is a sink. Processes
simulating the counters can move from A to γ. The number of processes in the state γ in
a run of the new network indicates the value of counter γ in the corresponding run of the
counter machine. Processes in states s ∈ S and t ∈ T simulate the control of the counter
machine. They guess the next transition of the counter machine t by moving to state t.

PM is constructed such that if a process is not where it is supposed to be, it sinks with
the next broadcast. The transitions of the simulated counter machine are determined
by the broadcast transitions. The processes simulating the state have to guess the next
transitions correctly. If they fail to do so, they sink.

22

3.3. Infinite executions

A counter process sinks when it is in a state γ ∈ C when there is a broadcast transition
bt, where the original transition t has the counter command γ = 0. This idea was used in
[EFM99] too. The whole system guesses that the counter is 0. Otherwise processes sink,
which can only happen a finite number of times.

After each broadcast, no process will be in any state ∈ T . Such a configuration stands
for the following value of the counters γ in the original counter machine:

Sγ∑
s∈S Ss

(3.3.1)

where Ss̃ is the number of processes in state s̃ ∈ S̃ in such a configuration. In every
reachable configuration of the network, all processes in any state ∈ S are in the same
state. This is due to the following: For every broadcast letter βt, only one state appears
as destination of broadcast transitions labeled with βt: dst(t). Therefore there is only
one state ∈ S in the initial states of the component of the unwinding from Definition 6.

The following lemma contains the main part of the proof of the undecidability result
in Theorem 2.

Lemma 4. Let M =
〈
S, {0s}, C, T

〉
be a counter machine and PM be the RMBN

template constructed in Definition 3. Then, M contains an infinite bounded path iff there
is a projection of a global path of PM to one process that visits states in S infinitely many
times.

Observe that a path in the template PM visits a state in S infinitely many times iff it
visits a state in S once and never reaches Z, due the fact that the only alternative to
moving to Z is to alternate between states in S and T .

Proof: ⇐:
Sinking of processes can only occur a finite number of times, as it is impossible for

processes to come back from Z. When no process sinks anymore, all remaining processes
in states S and T have the same behavior. They follow a possible run of the counter
machine, given by the broadcast transitions. Furthermore the number of processes in
each counter is increased or decreased exactly by the number of processes in states in S
between broadcasts. Therefore there exists an infinite path of M which is bounded by
(3.3.1).
⇒:

Let π be an infinite path of M bounded by V ∈ N. Then a run of P, π̃ is constructed.
The starting configuration src(π̃) has one process in src(π), src(π)(γ) processes in γ
for each counter γ ∈ C and V · |C| processes in A. This system is now able to correctly
simulate the run of M without any process ever sinking. The single process simulating
the state starting in src(π) has the same behavior as the state of the counter machine.

Note, that Lemma 4 is only concerned with paths for both counter machines and
RMBN. They do not need to start in initial configuration. Fortunately, the counter

23

3. Rendezvous-Multiple Broadcast networks

machines in Problem 1 have the property that every infinite bounded run visits initial
states infinitely many times.

Theorem 2. The following PMCP is undecidable: Given a RMBN template P =
〈S,S0,Ar × [K] ∪ Ab, T 〉, a set of initial states S ′0 ⊆ S0 and a set of undesired states
Z ⊂ S, do all infinite executions starting in S0 reach a state in Z?

Let M be a counter machine with 3 counters, where every infinite bounded run visits
the initial state infinitely many times. If we could answer, whether every infinite run of
the RMBN PM from Construction 3 starting in the initial state of the counter machine
reaches state Z, then we would know whether M contains an infinite bounded path due
to Lemma 4. As this path visits the initial state infinitely many times, it contains a
bounded run. This is a contradiction to the undecidability of Problem 1.

Simulating any multiple broadcast network with two broadcast types

The undecidable result in Theorem 2 only proves undecidability of the PMCP for infinite
runs in general. [ARZS14] gave an algorithm to solve the PMCP for one broadcast
letter. Therefore, there might be other special cases of RMBN that are decidable. The
construction of the rendezvous-multiple broadcast network has as many broadcast types
as the original counter machine had transitions. Therefore Theorem 2 only proves that
there is no algorithm capable to solve the PMCP for networks with any number of
broadcasts. Given all results until now, it would still be possible for an algorithm to
exist capable of solving the PMCP for a limited number of broadcast types larger than
one. Unfortunately, the PMCP for infinite runs is already undecidable for two broadcast
types alone. This section will prove this by simulating any rendezvous-multiple broadcast
network with another network with only two broadcast types. This is achieved by using
sequences of the two new broadcast letters to encode the original broadcasts.

Construction 4. RMBN P̃ with two broadcast letters from RMBN P with any number
of broadcast letters

Let P = 〈S,So,Ar × [K] ∪ {β1, . . . , βI}, T 〉 be a RMBN template with I broadcast
letters.
Then P̃ is the template

〈
S × {0, . . . , I} ∪ {Z},S0 × {0},Ar × [K] ∪ {α, β}, T̃

〉
. The new

rendezvous transitions are ((s, 0) a,k−−→ (s′, 0)) for every rendezvous transition (s a,k−−→ s′) ∈
T . There are no rendezvous transitions for states with i 6= 0.
The broadcast transitions are:

Broadcast transition for
(s, i) β−→ (s, i+ 1) s ∈ S, 1 ≤ i < I

(s, I) β−→ Z s ∈ S
(s, i) α−→ (s′, 0)) (s, βi, s′) ∈ bT , 1 ≤ i < I

(s, 0) α−→ Z s ∈ S

24

3.3. Infinite executions

Let h be the string homomorphism replacing each broadcast transition labeled with
βi with the corresponding sequence of broadcasts transitions labeled with β, · · · , β, α
consisting of i instances of β-broadcasts followed by one α-broadcast.
The state Z is called a sink.

Lemma 5. Let P be a RMBN template and P̃ be the template constructed in Definition
4. Then, a run π of P is an execution iff h(π) is an execution of P̃ . For every execution
π′ of P̃ that does not sink there is an execution π with h(π) = π.

Proof: ⇒:
Each global run ~π of P can be directly translated into a global run of P̃ by extending
h to apply to global transitions. This global run is witness to the fact that h(π) is an
execution.
⇐:
Let ~π′ be a global run of P̃∞ that is witness that π′ is an execution. A global run in P∞
corresponding to ~π′ can be constructed: Processes that do not sink behave like a run of
the original template P . For processes that do sink a corresponding finite original run
can be constructed up to the transition in which it sinks. This run can be extended by
the process not taking any rendezvous transition, but still participating in all broadcast
transitions. These runs can be merged to form a global run in P∞, which is witness that
π is an execution.

Using Lemma 5, Theorem 2 can be strengthened in the sense that the PMCP
for safety specifications is already undecidable for infinite runs of rendezvous-multiple
broadcast networks with two types of broadcast transitions. To be precise, the following
is undecidable:

Theorem 3. The following PMCP is undecidable: Given a RMBN template P =
〈S,S0,Ar × [K] ∪ {α, β}, T 〉 with two broadcast letters, a set of initial states S ′0 ⊆ S0
and a set of undesired states Z ⊂ S, do all infinite executions starting in S0 reach a state
in Z?

25

CHAPTER 4
Rendezvous-Fixed Group

Broadcast Networks

In the last section the undecidability of the PMCP for liveliness specifications of
rendezvous-multiple broadcast networks was proven. As that problem is decidable
for only one broadcast type there might be other decidable special cases. The next
three sections will deal with one area of special cases: Networks, where the processes
are partitioned into groups. Each broadcast type only affects the processes of one group.
Processes can not communicate with processes of other groups via broadcasts. Some
rendezvous transitions on the other hand do allow communication between groups.
For the networks in this section the number of groups is determined by the process
templates. In the networks in the next two chapters the number of groups is free and can
be different for each global run of the network. Unfortunately, the PMCP for infinite runs
is still undecidable for networks with a fixed number of groups. The next two chapters
will show that the problem is decidable when the number of groups is not predetermined.

In rendezvous fixed-group-broadcast networks (RFGBN) process templates define the
groups. Each group has its own states and transitions. This implies that the number of
groups is fixed by the template.

4.1 Formal definition
The RFGBN and the templates they are defined with are LTS.

Definition 8. P : Rendezvous-Fixed Group Broadcast Network Template

The template for Rendezvous-fixed group broadcast networks (RFGBN) with L groups
is the LTS P = 〈S × [L],S0,A× [K] ∪ {β}, T 〉.
[L] is a set of groups. The set of initial states S0 ⊂ S× [L] has the property that for every

27

4. Rendezvous-Fixed Group Broadcast Networks

group l ≤ L there is at least one s ∈ S with (s, l) ∈ S0. For every pair (s, l) ∈ S×[L] there
is a group broadcast transition with source (s, l), which is most of the time written in the
form (s, l) β−→ (s′, l). The rendezvous transitions are usually written as (s, l) a,k−−→ (s′, l),
where s, s′ ∈ S, a ∈ A, k ≤ K and l ≤ L. For both broadcast and rendezvous transitions,
the group is the same in the source and the destination.

As for RMBN, ltr(t) = a and role(t) = k for the rendezvous transition t = (s, g) a,k−−→
(s′, g).

As RFGBN are a special case of RMBN, the LTS PN and P∞ are constructed from
the RMBN template P , comparable to Constructions 1 and 2.

Construction 5. PN : Rendezvous-Multiple Broadcast Network with N processes con-
structed from the template P

For N ∈ N, the network PN is the LTS
〈
SN × [L]N ,SN0 ,A× [N]K ∪ {β} × [L], T N)

〉
.

The pair (~s,~l) ∈ SN × GN is called a configuration. The initial configurations SN0 is the
set of configurations (~s,~l) with the property that (~s(n),~l(n)) ∈ S0 for all n ≤ N .

Global rendezvous transitions ~t ∈ T N are global transitions with labels (a, ~p) ∈
A × [N]K . They are written in the form (~s,~l) a,~p−−→ (~s′,~l). Note that for all rendezvous
transitions the group vector ~l is the same for source and destination. As for all RMBN p
must be injective. The following must be true:
~s(n) = ~s′(n) , ∀n /∈ range(p)
(~s(~p(k)),~l(~p(k))) a,k−−→ (~s′(~p(k)),~l(~p(k))) ∈ T , ∀k ≤ K

Global group broadcast transitions are those global transitions with labels (β, l) where
l ∈ [L]. They are written in the form (~s,~l) β,g−−→ (~s′,~l), where again the group vector is
not changing. (~s,~l) β,l−→ (~s′,~l) is a global group broadcast transition iff:
~s(n) = ~s′(n) , ~l(n) 6= l

(~s(n),~l(n)) β−→ (~s′(n),~l(n)) , ~l(n) = l

Process n is said to be active in the group broadcast transition (~s,~l) β,l−→ (~s′,~l) iff ~l(n) = l.
For a global rendezvous transition t = (~s,~l) a,p−−→ (~s′,~l), ltr(t) = a and role(t) = ~p. For

a global group broadcast transition (~s,~l) β,l−→ (~s′,~l), ltr(t) = β and role(t) = l.

For every local run π, the group l stays constant in all states throughout the run. It
is called the group of the run π.

Runs and executions are defined for RFGBN as they are defined for RMBN in
Definition 4. Note that while in RMBN all processes are active in all broadcast transi-
tions, in RFGBN process are only active in group broadcast transitions of their own group.

28

4.2. Parametrized Model Checking Problem

4.2 Parametrized Model Checking Problem
The RFGBN is a special case of the RMBN. Therefore, the decidability of the PMCP for
finite runs follows from the decidability of the RMBN.

For infinite runs, the undecidability result can unfortunately be extended to RFGBN
as well. This is done by constructing an RFGBN with two groups that simulates a RMBN
with two broadcast letters.

Construction 6. RFGBN P f from the RMBN P with two broadcast letters

Let P = 〈S,S0,Ar × [K] ∪ {α, β}, T 〉 be a RMBN template with two broadcast
letters. Then, the RFGBN template P f with rendezvous transitions of different sizes is
defined as the LTS

〈
Sf × {α, β},Sf0 , Ãf ∪ {β}, T f

〉
, where:

• The states in Sf ×{α, β} are triples ((s, d), b) ∈ (S ×{A,B, α, β})×{α, β}, usually
written in the form s, d; b. In addition, there are the sinks (Z,α) and (Z, β). Here,
{α, β} is used as the set of groups instead of [2].

• The initial states Sf0 are the states {(s,A; b) : s ∈ S0, b ∈ {α, β}}.

• The rendezvous letters Af are Ar∪(S × {α, β})∪
(
S × {α, β}

)
, where S × {α, β} ={

s, b : s ∈ S, b ∈ {α, β}
}
.

The rendezvous labels are Ar × [2K] ∪
(
S × {α, β} ∪ S × {α, β}

)
× [2].

• The transitions T f are as follows:

Original t ∈ T̃ New transitions in T f for
t : s b−→ s′ (s,A; b′) s,b;2−−−→ (s′, b; b′) b, b′ ∈ {α, β}
Broadcast (s,A; b) s,b;1−−−→ (s, b; b) b 6= b′

(s, b; b) β−→ (s,B; b)

(s,B; b) s,b;1−−−→ (s′, A; b)

(s, b; b′) s,b;2−−−→ (s′, A; b′)
t : s a,k−−→ s′ (s,A;α) a,2k−1−−−−→ (s′, d;α)
Rendezvous (s,A;β) a,2k−−→ (s′, d;β)

s ∈ S̃ (s, d; b) b−→ (Z, b) d 6= b, b ∈ {α, β}
New Sink (Z, b) b−→ (Z, b) d ∈ {α, β,A,B}

Each original process of P is simulated by a pair of processes in P f , one in group α,
one in group β. They can take rendezvous transitions together, as long as they are in a
state with A. Before every broadcast transition, they have to guess it together, moving
to a state with α or β. Then, one of them will be active in the group broadcast transition.

29

4. Rendezvous-Fixed Group Broadcast Networks

Figure 4.1: Part of a rendezvous-multiple broadcast network template

That process can tell this to its partner, moving both to a state with A again.

A faithful simulation of an original global run of P in P f has the same rendezvous
transition with twice as many processes participating. Before every broadcast, all pro-
cesses guess it, and after it all processes move back to a state with A.

Figure 4.2 shows the RFGBN constructed from the rendezvous-multiple broadcast
network from Figure 4.1. Figure 4.1 is an incomplete network, otherwise the resulting
RFGBN would be too complicated to show in a graphic.

In Figure 4.2 the left side shows group α and the right side group β. The states
simulating the state X from Figure 4.1 are in the upper half, the ones simulating Y in
the lower half. For simplicity, the sink Z is missing from Figure 4.2. All states that do
not have a group broadcast transition starting in it have their respective group broadcast
transition leading to the sink Z.

When any process is active in a group broadcast it did not guess correctly, it sinks.

In order to prove the correctness of the simulation we will look at its counter
representation. The following lemma states that as long as no process sinks, there are
always as many processes in an state of group α as there are in the corresponding state
of group β.

Lemma 6. Let ~π be a global run of PfM with an infinite number of α and β group
broadcasts. Let Si(s, d; d′) be the number of processes in state (s, d) and group d′ af-
ter the i-th transition. Then, there exists an index I, such that for all configurations i ≥ I:

• Si(s, α;α) + Si(s,B;α) = Si(s, α;β)

• Si(s, β;β) + Si(s,B;β) = Si(s, β;α)

30

4.2. Parametrized Model Checking Problem

Figure 4.2: RFGBN template to simulate the multiple broadcast network in Figure 4.1

• Si(s,A;α) = Si(s,A;β)

As there are only a finite number of processes which can sink and ~π is an infinite
run there must exist an index I, after which no process sinks. Let us first establish that
Si(s, α;α) + Si(s,B;α) − Si(s, α;β) stays constant for i ≥ I. Processes can enter and
leave these states only pairwise. The only way a process from one side can leave while
the other one stays is by sinking. If the difference is not 0, there are always processes
on one side of the equation. Then it takes at most two group broadcasts in that group
for processes to sink. As there are an infinite number of both group broadcasts, that
will happen. Therefore Si(s, α;α) + Si(s,B;α) = Si(s, α;β) for all i ≥ I. The other two
properties can be shown the same way.

The consequence of lemma 6 is that starting in I, every global run ~π of the RFGBN
Pf simulates a global run of P faithfully. The simulated path is not necessarily initial.
The following theorem concludes this chapter:

Theorem 4. The following PMCP is undecidable: Given a RFBGN template P =
〈S × [L],S0,A× [K] ∪ {β}, T 〉, a set of initial states S ′0 ⊆ S0 and a set undesired states
Z ⊂ S, do all infinite executions starting in S0 reach a state in Z?

31

4. Rendezvous-Fixed Group Broadcast Networks

This follows from the reduction to RMBN. Let P̃ f be the RFGBN from construction
6. The set of undesired states is {(Z,α), (Z, β)} ∪

{
(s, d; b) ∈ Sf × {α, β} : s ∈ Z

}
and

the set of starting states only contains ((0s, 0), A;α). If the question in Theorem 4 would
be decidable, so would be the question in Theorem 3 due to Lemma 6.

32

CHAPTER 5
Unknown number of groups

In all models presented so far, the PMCP for was undecidable for liveliness specifications.
This section introduces another special case of an RMBN. As in Chapter 4, the process
are arranged in groups. Broadcasts only affect processes in one group, but rendezvous
can connect different groups.
The difference however is that the number of groups in not fixed by the template. At the
beginning of the run, the processes are assigned to any number of groups. Rendezvous
transitions do not mention specific groups. Instead, they only set the relative group
positioning of the processes taking different roles.

5.1 Formal definition

Definition 9. P : Template for Rendezvous-Group Broadcast Networks

The process template for RGBN is the RMBN template 〈S,S0,A× [K]× G ∪ {β}, T 〉,
where A is set of rendezvous letters, K ∈ N and G is a set of group partition symbols.
All transitions t with label(t) = β are broadcast transitions, the others are rendezvous
transitions. Rendezvous transitions are written in the form s

a,k−−→
g

s′, with s, s′ ∈ S,
a ∈ A, k ≤ K and g ∈ G.
ltr(s a,k−−→

g
s′) refers to a, role(s a,k−−→

g
s′) to k and grp(s a,k−−→

g
s′) to g.

Given a rendezvous letter a, grpa(k) is the group partition symbol associated to role k
for the letter a. It is the group partition symbol g used in the unique transition with
letter a and role k.

The group partition symbols g ∈ G should be understood as an partitioning of the
roles for each letter. The processes taking the roles in the set {k ≤ K : grpa(k) = g}
need to be in the same group in a rendezvous transition with letter a.

33

5. Unknown number of groups

Definition 10. The network PN =
〈
SN × [N]N ,SN0 × [N]N ,A× [N]K ∪ {β} × [N], T N

〉
.

W.l.o.g. it can be assumed that every configuration (~s,~l) is in SN × [L]N , where L ≤ N
is the number of groups and there is at least one process in every group l ≤ L.

As for RFGBN in Construction 5, the global group broadcast transitions are elements
of
(
SN × [L]N

)
× ({β} × [L])×

(
SN × [L]N

)
.

Written in the form (~s,~l) β,l−→ (~s′,~l), only processes in group l are active:
~s(n) = ~s′(n) ~l(n) 6= l

~s(n) β−→ ~s′(n) ∈ T ~l(n) = l
Note that the broadcast transitions are not group specific in the templates of this model.

As in the general RMBN, the global rendezvous transition are elements of(
SN × [N]N

)
×
(
A× [N]K

)
×
(
SN × [N]N

)
. There is one additional condition for global

rendezvous transitions written in the form (~s,~l) a,~p−−→ (~s,~l), ensuring that roles in the same
set of the portioning are taken by processes in the same group:

~s(n) = ~s′(n) ∀n /∈ range(~p)
~s(~p(k)) a,k−−−−→

grpa(k)
~s′(~p(k)) ∈ T ∀k ≤ K

~l(~p(k)) = ~l(~p(k′)) ∀k, k′ ≤ K : grpa(k) = grpa(k′)

For global rendezvous transitions ~t = (~s,~l) a,~p−−→ (~s′,~l), label(~t) = (a, ~p), src(~t) = (~s,~l)
and dst(~t) = (~s,~l), as inherited from being an LTS. To access the individual elements,
ltr(~t) = a and role(~t) = ~p, src_st(~t) = ~s, dst_st(~t) = ~s′ and grp(~t) = ~l can be used.
For a global group broadcast transition ~t = (~s,~l) β,l−→ (~s′,~l), ltr(~t) = β, role(t) = l. Other
access functions are defined as for global rendezvous transitions.
For a global transition ~t ~t(n) gives the transition process n takes. For a global rendezvous
transition, that is ⊥, if n 6∈ range(f) and ~s(n) a,k−−−−→

grpa(k)
~s′(n) if n = ~p(k).

For a global group broadcast transition ~t(n) = ⊥ if ~p(n) 6= i. Otherwise, ~t(n) = ~s(n) β−→
~s′(n). For both kinds of transitions, process n is called active in transition ~t, if ~t(n) 6= ⊥.

Note that transitions with different group partition symbols can be in the same group.
While this definition is less natural, it does simplify the reasoning about these networks.
The expressive power is not changed by allowing this: Every run that is an execution
if transitions from different partitions can be in the same group, is also an execution
if they have to be in different groups. This is due to the fact that runs can be copied
(see Lemma 7) to have several times the number of groups, all copies taking the same
transitions. Then, the partitions of the roles of the global rendezvous transition can be
distributed across the copies.

34

5.2. Reachability

5.2 Reachability

In this section an algorithm will be provided, which solves the PCME problem for regular
specifications. In order to do so, we construct the reachability-unwinding template P(.
First, two lemmas will be presented, which allow the construction of runs with many
processes from runs with fewer processes.

Lemma 7. Let m~π,m ∈ [M] be a family of M global runs. Let Lm be the groups of m~π
respectively. Let L be the number of groups of the merged run. Let hm : Lm → [L] be
functions embedding the groups of the individual runs into [L]. Let mτ be the sequence of
groups in the order they have group broadcast transitions in m~π.
We call the broadcast comparable if the following is true: There is a sequence of groups in
[L], τ , representing the group broadcast of the merged run. τ has the property that for all
m, hm(mτ) is the sub-sequence of τ containing all groups in range(hm).
If the broadcasts are comparable, then there exists a merged run ~π with:

grp(~π)
(
m−1∑
m̃=1

dim(m̃~π) + n

)
= hm(group(m~π)(n)) (5.2.1)

and

proj(~π,
m−1∑
m̃=1

dim(m̃~π) + n) = proj(m~π, n)

The proof of Lemma 7 is the same as for Lemma 2. Here, process from one run m~π
are not concerned by broadcast in groups out of range of hm.

Creating the reachability-unwinding template

In a similar manner as in [ARZS14, p. 5-6], and Algorithm 1, the reachability-unwinding
template P(can be calculated. As there is only one broadcast letter, the components
are arranged in a lasso and can be identified by their index in the lasso. Inter-group
rendezvous transitions yield an additional challenge compared to [ARZS14]. When a
process takes a rendezvous transition with processes from other groups, those groups
might have seen more or less group broadcast transitions. To overcome this challenge, P(

can be calculated iteratively. All components are calculated in each iteration. comp(j, q)
stands for the j-th component in the q-th iteration of the calculation. The first iteration
only contains the states reachable without using any inter-group rendezvous transition.
Every other iteration allows inter-group rendezvous transitions, as long as the source
state of ever transition with a group symbol different from the observed transition is
present in the previous iteration.

Note, that Chapter 6, which gives an generalization of this model where processes
are capable of group changes uses the same proof with some adaptations for the added
functionality of the model.

35

5. Unknown number of groups

Algorithm 2. Construction of the unwinding template P(from the RGBN template P

Given a RGBN template P = 〈S,S0,A× [K]× G ∪ {β}, T 〉 the component comp(j, q)
is the LTS

〈
j
qS, jqS0,A× [K]× G, jqT

〉
. jqS are subsets of S × {j}.

For the first iteration, the calculation for comp(0, 0) starts as the LTS〈
S0 × {j},S0 × {j},A× NG × [K]× G, ∅

〉
and the calculation of comp(j, 0) for j ≥ 1 starts as〈
reach(comp(j − 1, 0), β)× {j}, reach(comp(j − 1, 0), β)× {j},A× NG × [K]× G, ∅

〉
, where

reach is defined as in Algorithm 1.
For all other iterations, comp(0, q) for q ≥ 1 starts as〈

0
q−1S,S0 × {j},A× NG × [K]× G, jq−1T

〉
and comp(j, q) with, j, q ≥ 1 start as〈
j
q−1S ∪ (reach(comp(j − 1, q), β)× {j}), reach(comp(j − 1, q), β)× {j},A× NG × [K]× G, jq−1T

〉
.

For q = 0, comp(j, 0) is calculated as in Algorithm 1, only using those rendezvous
letters a ∈ A, where all transitions labeled with a use the same group partition symbol.
As in Algorithm 1, transitions and destination states are added to the component, if all
required source states are present in the component.
When reach(comp(Jq−1, q)) = j

qS0 for some j ≤ J , then the calculation of this iteration is
finished. In this case, Jq is called the number of components of iteration q and J̃q = Jq− j
is called the cycle length of the iteration. This is due to comp(j, q) = comp(j −mJ̃q, q)
for Jq ≥ j < Jq +mJ̃q.

The number of components and the cycle length can vary from iteration to iteration.
When j > Jq−1, then

j−(m·J̃q−1)
q−1 S is used instead of j−mJ̃q−1

q−1 S.

For q ≥ 1, the calculation of comp(j, q) also includes inter-group rendezvous transitions.
Let gSa / gS ′a be the sets of states s for which there is a transition with source/destination
s, letter a and group partition symbol g. While Algorithm 1 iteratively goes through
rendezvous letters and checks, whether they should be added, we now go through triples
(a, g,~g), where a ∈ A, g ∈ G for which there is a transition with letter a and group
partition symbol g and ~g ∈ ([Jq−1] ∪ j)G , with ~g(g) = j and ~g(ĝ) ∈ [Jq−1] for ĝ 6= G.
In order for the triple (a, g,~g) to be added to comp(j, q), copies of all states in gSa
must be present in comp(j, q) and for all other group symbols ĝ, the copies of the states
ĝSa must be present in the component of the previous calculation comp(~g(ĝ), q − 1).
Then, copies of all states in gS ′a are added to j

qS, and the rendezvous transition of the
form (s, j) a,~g,k−−−→

g
(s′, j) are added to jqT for all transitions with letter a and group symbol g.

In each iteration, states and transitions are added to components, never removed.
A fixed point is reached, when no new states were added in the last iteration Q. The
components comp(j,Q) for all j ≤ JQ are then combined to form the unwinding template
P(. Broadcast transitions are added as in Algorithm 1.

36

5.2. Reachability

J = Jq is the number of components of the unwinding template P(and J̃ = J̃Q is
its cycle length.

Properties of the reachability-unwinding template

This section will highlight a couple of important properties of the template P(.
The following lemma allows loading as many processes as needed into one group:

Lemma 8. Let P(be a reachability-unwinding template of P with J components and a
cycle length of J̃ . For j ∈ N, let ĵ be j −mJ̃ for the minimal m ≥ 0, such that ĵ ≤ J .
Let ĵs be a state in component comp(ĵ).

Then, there exists a global run ~π of P(with j group broadcasts in the observed group
and Process 1 ends the run in state s.

Proof:
The proof is based on the proof of Lemma 3, with the following differences:

The outer hypothesis is over j instead of τ .

There is a third layer of induction, over the iterations of Algorithm 2. For the case of
a rendezvous transition added in iteration q, it is assumed that Lemma 8 is true for all
states added in iterations < q for any component j′ ≤ J . When merging the runs, the
observed groups of the runs for states that are source states for transitions with the same
group symbol are merged. They are comparable, as these have the same number of group
broadcast transitions in the observed group, which must be their component number.

Lemma 8, in combination with Lemma 7, allows loading any number of processes
into states of the corresponding component for any number of group broadcast in any
number of groups.

While } can be defined for RGBN as for RMBN, attributing components to transitions
and runs is more complicated. For global runs, the component of each group is determined
by the number of broadcasts in that group, allowing to define ~π(for a global run ~π. For
local runs, only the component of the observed group is determined. The rendezvous
letters of runs in the unwinding template guess the component of the other groups involved
in rendezvous transitions. Therefore, (can not be defined for local runs. Therefore,
Theorem 5 is only formulated in terms of }.

Theorem 5. Let P be a rendezvous-group broadcast network template and P(its
unwinding template. If π is an finite run of P , then π is an execution if there is an finite
run π̂ of P(with π̂} = π.
Every finite run of P(is an execution.

37

5. Unknown number of groups

The same proof as for Theorem 1 is used. The main difference is that π̂ is used instead
of ~π(It has to be constructed for ⇒. There must be a global run ~π with proj(~π, 1) = π.
Then, π̂ = proj(~π(, 1)

5.3 Infinite runs

The goal of this section is proving that the PMCP is decidable for infinite runs of
rendezvous-group broadcast networks and ωB-regular specifications. This is achieved by
constructing the B-automaton B∞P , which accepts the executions of the network defined
by the template P . The main building block of the automaton B∞P are transition colors,
which are defined as follows:

Definition 11. Color

For an RGBN template P the color of a transition in the unwinding template P(is:

• red, if it can only occur finitely many times in each group.

• blue, if it can occur infinitely many times in groups with finitely many group
broadcasts, but only a finite number of times in groups with an infinite number of
group broadcasts

• orange, if it can occur only a finite number of times in groups with finitely many
group broadcasts and it can occur infinitely many times in groups with an infinite
number of group broadcasts, but only a bounded number of times between each
group broadcast.

• green, if it can occur infinitely many times in any group and an unbounded number
of times between group broadcasts.

• violet otherwise

These colors are basically the same as the colors of transitions in [ARZS14]. The
main difference is that both orange and violet transitions are called orange in that work.
They distinguish the two cases by calling what we call violet to be orange and ’locally
reusable’.

We will prove that the following B-automaton describes the infinite executions of
RGBN. It recognizes the same words as the B-automaton for RBN in [ARZS14]. The
basic idea is that it consists of three copies of P(. One for the finite initial part of
infinite words. The set of transitions within this copy, ∞T ini contains all transitions from
P(.
The second copy is used for the case of Process 1 going through a finite number of group
broadcasts. The transitions of this copy ∞T noB only contains blue, green and violet
transitions.

38

5.3. Infinite runs

The second copy is used for the case of Process 1 going through an infinite number of
group broadcasts. The transitions of this copy ∞T infB only contains orange, green and
violet transitions.
The set of transitions ∞T con connects the first copy with the other two.

Construction 7. B-automaton B∞P accepting the executions of P .
Let P = 〈S,S0,A× [K]× G ∪ {β}, T 〉 be a rendezvous-group broadcast network

and P(= 〈S(,S(0 ,A× [K]× G ∪ {β}, T (〉 its unwinding template. Then, B∞P =
〈∞S,∞S0, T × ({γ, 0} × N) ,∞T ,Φ〉 is defined as:

• The set of states ∞S∞ is {(d, s, j)|d ∈ {ini, infB, noB}, js ∈ S(}

• The set of initial states ∞S0 = {(ini, s, 0)|0s ∈ oS0}

• The input alphabet are the original transitions T of the template P .

• There is one counter γ.

• The transitions ∞T consist of four parts ∞T ini ∪∞T infB ∪∞T noB ∪∞T con, one
for each type of the states and one connecting the types.
For all rendezvous transitions t : (js a,k−−→

G

js′) ∈ oT , these four parts contain the
following transitions:

Part Transition Condition
∞T ini (ini, s, j) t−−−−−→

γ:=γ+1
(ini, s′, j) All t ∈ oT

∞T infB (infB, s, j) t−−−−−→
γ:=γ+1

(infB, s′, j) t is orange or violet

(infB, s, j) t−→ (infB, s′, j) t is green
∞T noB (noB, s, j) t−→ (noB, s′, j) t is blue, green or violet
∞T con (ini, s, j) t−−−→

γ:=0
(infB, s′, j) All t ∈ oT

(ini, s, j) t−−−→
γ:=0

(noB, s′, j) All t ∈ oT

For all group broadcast transitions t : (js β−→ j′s′) ∈ oT , there are no transitions in
∞T noB. The other parts contain the following transitions:

Part Transition Condition
∞T ini (ini, s, j) t−−−−−→

γ:=γ+1
(ini, s′, j′) All t ∈ oT

∞T infB (infB, s, j) t−−−→
γ:=0

(infB, s′, j′) t is orange
∞T con (ini, s, j) t−−−→

γ:=0
(infB, s′, j′) All t ∈ oT

(ini, s, j) t−−−→
γ:=0

(noB, s′, j′) All t ∈ oT

• The acceptance condition Φ states that lim sup γ <∞.

39

5. Unknown number of groups

Theorem 6. For a RGBN template P the language accepted by B∞P from Construction
7 is execinf (P).

⊇:
Let π be an execution of P and π(the corresponding execution in the unwinding
template P(. Due to the way colors are defined in Definition 11, the following must be
true: If π(contains a finite number of group broadcast transitions, there must exist
an index i ∈ N after which all transitions are blue, violet or green. If it contains an
infinite number of group broadcast transitions, there must exist an index i ∈ N after
which all transitions are orange, violet or green. Observe that copies of all transitions in
P(are present in ∞T ini and ∞T con. ∞T noB contains copies all blue, violet and green
transitions while ∞T infB contains copies of all orange, green or violet transitions.

We can therefore construct a run πB of B∞P as follows: It contains the copies of the
transition π(in ∞T ini until index i. Then, the copy of transition π(i in ∞T con connect-
ing to the state (d, s, j) with d = noB is used, if π(contains a finite number of group
broadcast transitions. Otherwise, the transition in ∞T con connecting to the state with
d = infB is used. From there on, πB contains copies of the transition of π(in ∞T noB , if
it contains a finite number of group broadcast transitions and copies in ∞T infB otherwise.

It only remains to show that the counter γ does not prevent the acceptance of πB.
πB stays in ∞T ini only up to transition I. Therefore, counter γ is bounded by I during
these transitions. If πB then moves on to transitions in ∞T noB, the counter will never
be increase again.
Otherwise, it will be increased with every orange or violet rendezvous transition and
reset with every group broadcast transition. Let Tov be the set of all orange and violet
rendezvous transitions in P(. By Definition 11, for every transition t ∈ Tov the number
of occurrences of t between two group broadcast transitions must be bounded by a natural
number ct. The counter γ is therefore bounded by

∑
t∈Tov ct.

The remainder of Chapter 5.3 will be used to prove the other direction ⊆. More
machinery is required to do so. First, we will define configuration isomorphisms and
pseudo-cycles:

Definition 12. Configuration Isomorphism f

Let (~s,~l) and (~s′,~l′) be two configurations with n. Then f : [N]→ [N] is a configura-
tion isomorphism between (~s,~l) and (~s′,~l′) iff it is bijective and ~s(n) = ~s′(f(n)) for all
n ≤ N and ~l(n) = ~l(n′) iff ~l′(f(n)) = ~l′(f(n′)) for all n, n′ ≤ N .

A isomorphism exists between two configurations, if they contain the same number
of groups and for each group in (~s,~l), there is a group in (~s′,~l′), containing the same
number of processes in each group.
Observe that two counter represented configurations are isomorphic, if ctr(~s,~l) contains
the same columns as ctr(~s′,~l′), but potentially in a different ordering.

40

5.3. Infinite runs

Definition 13. Pseudo-Cycle

A pseudo-cycle of a group broadcast template P with N processes is a not necessarily
initial finite global path C of P∞ for which there is a configuration isomorphism between
src(C) and dst(C).

For a given isomorphism f between src(C) and dst(C), a group l is said to transform
into group l′ in a pseudo-cycle if for some n ≤ N grp(C)(n) = l and grp(C)(f(n)) = l′.

Intuitively, a pseudo-cycle starts and ends in basically the same configuration, but
individual processes and individual groups are in the situation of different processes and
groups in the end.
Observe that ’transforms into’ is a permutation of the groups of π, which allows the
following definition:

Definition 14. Group Transformation Cycles

The cycles of the permutation ’transforms into’ are called Group Transformation
Cycles.

Note that transforming into and group transformation cycles depend on the specific
isomorphism f . Group Transformation Cycles are used to characterize Groups:

Definition 15. The type of a group l in a pseudo-cycle is:

• with broadcasts, if at least one global broadcast transition is in group l;

• between broadcasts, if no broadcast is in group l, but there is at least one group
with broadcasts in the group transformation cycle of l;

• without broadcasts otherwise.

Note that as there is a fixed finite number of states and groups in each run, in any
infinite run there must be a configuration appearing infinitely many times. When a
transition appears an infinite number of times in an execution, it must appear on a
pseudo-cycle. This is because the transition must appear between two instances of the
same configuration on a global run the execution is the projection of. Such a pseudo-cycle
is called a witness of the color of the transition. If the execution contains an infinite
number of group broadcast transitions, then the witnessing pseudo-cycle contains a group
broadcast transition in the same group as the transition the pseudo-cycle is witness of.
This group is called the observed group. We can therefore conclude the following lemma:

Lemma 9. A transition t : s a,k−−→
g

s′ of P(is:

41

5. Unknown number of groups

1. red, iff it does not appear on any pseudo-cycle of P(;

2. blue, iff it appears on a pseudo-cycle CnoBt of P(in a group without broadcasts,
but it does not appear on any pseudo-cycle in a group with broadcasts;

3. orange, iff it appears on a pseudo-cycle ChasBt of P(in a group with broadcasts,
but it does not appear on any pseudo-cycle in a group with broadcasts.

4. green, iff it appears on a pseudo-cycle CnoBt of P(in the observed group l, which
is with broadcasts, there is a pseudo-cycle ChasBt where the observed group l′ is with
group broadcast and the starting configurations of the observed group of CnoBt is
nested in the starting configuration of ChasBt . I.e. there is an injective function ht
from the processes of the observed group of CnoBt to the processes of the observed
group of ChasBt with src(CnoBt)(n) = src(ChasBt)(gt(n)).

5. violet, iff it appears on a counter represented pseudo-cycle CnoBt of P(in a group
without broadcasts, and on a counter represented pseudo-cycle ChasBt in a group
with broadcasts, but the condition for the starting configurations in (4) can not be
met.

For the pseudo-cycle Cdt , d is called the type of the pseudo-cycle and t is the transitions
the pseudo-cycle is witness of.

Equipped with the concept of witnessing pseudo-cycles we can now give the idea
behind the proof of ⊆ of Theorem 6. Given a run π accepted by B∞P , a global run ~π in
P(is constructed, such that the projection to Process 1 corresponds to π. This is done
by running the witnessing pseudo-cycles for all transitions simultaneously and Process 1
swaps in and out of the position of the process that takes the transition the pseudo-cycles
are witness for.
Let V be the upper limit of the counter in B∞P for the run π. For orange and violet
transitions there are V copies of the witnessing pseudo-cycle available. This way, the
transition can happen up to V times between broadcasts and the pseudo-cycles get reset
during the broadcast.

In order for Process 1 to swap between pseudo-cycles it is necessary for the observed
groups of different pseudo-cycles to be merged into the same group. In order to do that,
the pseudo-cycles must have their broadcast transitions at the same time (see Lemma 7).
This is not the only condition we need to stitch the observed pseudo-cycles together to
construct ~π.

Lemma 10 lists the Conditions for all witnessing pseudo-cycles. We will then prove
⊆ of Theorem 6 assuming that the pseudo-cycles from Lemma 9 fulfill all Conditions
of Lemma 10. We will point out which condition is used when. This will give an
understanding why these conditions are needed. Afterwards, we will prove Lemma 10.
Note that the Conditions were not just created to make the stitching here work, but also

42

5.3. Infinite runs

to allow us to give an algorithm deciding the color of transitions. This algorithm will be
described as last part of this section.

Lemma 10. If there are witnessing pseudo-cycles Ĉdt for the color of edges according
to Lemma 9, then there are also witnessing pseudo-cycles Cdt and a fixed configuration
isomorphism fdt between the source and destination configuration of Cdt , which additionally
fulfill the following conditions:

1. Every group with broadcasts transforms into a group between broadcasts.

2. Every group between broadcasts transforms into a group with broadcasts.

3. Every group without broadcasts transforms into itself.

4. Every group with broadcasts has exactly one group broadcast transition in it.

5. All broadcast transitions happen after all rendezvous transitions.

6. For every kind of group (j, e) ∈ [J]× {hasB, betB, noB} there is exactly one group
of kind (j, d). For green transitions t, CnoBt has an additional second group of the
same kind as the observed group.

7. For a rendezvous transition t, the first global transition of the pseudo-cycles wit-
nessing t’s color has Process 1 take t.

8. For the witnessing pseudo-cycles ChasBt for orange broadcast transitions, Process
1 is only active in one group broadcast transition and no rendezvous transition.
Process fdt (1) is not active in any transition.

It will shortly be explained what the kind of a group is. Let it be noted that Condi-
tions 4 and together imply Conditions 1 and 2. They are still stated as proving this fact
is not necessary.

The following terms and operations are used for the construction of ~π to prove ⊆ of
Theorem 6:

• Kind: For a witnessing pseudo-cycle, the kind of a group refers to a tuple (j, e) ∈
[J] × {hasB, betB, noB}, where J is the number of components in P(. Both j
and e can be derived from the pseudo-cycle given a group. j is the component
the processes in the group are in in the source configuration of the pseudo-cycle.
e = hasB, if the group is with broadcasts, e = betB if it is between broadcasts and
e = noB, if it is without broadcasts.
j is called the component of the group and e its type. Condition 6 states that for
every kind (j, e) there is exactly one group of kind (j, e), with the exception of the
witnessing pseudo-cycle of green edges without broadcasts in the observed group,
which has a second group of the same kind as the observed group.

43

5. Unknown number of groups

• Job: In configurations of the global run ~π, some groups have jobs. Each job is a
triple (j, e, d) ∈ [J] × {hasB, betB, noB} × {hasB, noB}. In every configuration,
there is exactly one group for each job and each group has at most one job. There
may be groups without a job.
j is called the component of the group, d its group type and e its cycle type.

• Copy: A copy of a pseudo-cycle is a tuple (Cdt , v), where v ∈ N. The number of
copies depend on the transition:
If t is an orange or violet rendezvous transition and d = hasB, then v ≤ V .
If t is a green rendezvous transition and d = hasB, then v ≤ 2.
Otherwise, there is only one copy v = 1.

• Position: In ~π, processes have positions in configurations. These are triples
(Cdt , n̂, v), where (Cdt , v) is a copy and n̂ is process in the pseudo-cycle Cdt .
In every configuration, there is exactly one process in every position. Each process
is in at most one position, there may be processes without a position.

• Valid Position: A position (Cdt , n̂, v) of a process n in group with job (j, e, d′) is
called valid if The group of process n̂ in Cdt is of kind (j, e) and d = d′

• Mark: A copy of a pseudo-cycle (Cdt , v) can be marked. That means that the
first global transition, which involves the transition the pseudo-cycle is witness for
(Condition 7), has already happened.

• Valid Configuration: A group with job is said to be in a valid configuration if the
following is true for every process n in the group in a position (Cdt , n̂, v):

– The position is valid.
– If (Cdt , v) is unmarked, process n is in the same state as process n̂ in the source

configuration of Cdt .
– If (Cdt , v) is marked, process n is in the same state as process n̂ in reconfigura-

tion after the first transition of Cdt .

• Basic Configuration: A group is in a Basic Configuration, if it is in a valid
configuration and no process in the group is in the position of a marked Copy, i.e.
they are all in the source configuration of their pseudo-cycle.

• Reset: In a reset, all copies witnessing pseudo-cycles of type noB happen, except
the first transition of marked pseudo-cycles. Every process with position in these
cycles takes all the required rendezvous transition. In all pseudo-cycles, every
rendezvous transition happens before all broadcast transitions (Condition 5). Every
group with a job of the form (j, hasB, noB) needs to now take exactly one group
broadcast transition to finish all cycles of type noB (Conditions 4 and 5).
At the end, there is a Position Change and a Job Change: Every process involved
changes position according to fdt , a fixed configuration isomorphism between the
source and destination configurations of Cdt .

44

5.3. Infinite runs

The job change works as follows: Only groups of the form (j, betB, noB) and
(j, hasB, noB) change job. Groups with job (j, betB, noB) now have the job
(j, hasB, noB) (Condition 2) and groups of the form (j, hasB, noB) now have
the form (j′, betB, noB) (Condition 1), where j′ = j+1, if j < J and j′ = J− J̃+1,
if j = J and J̃ is the cycle length of P(. As groups without group broadcasts
transform into themselves (Condition 3), groups with jobs of type noB keep their
job.
All copies of cycles of type noB get unmarked.

• Flush: In a flush, all copies of witnessing pseudo-cycles of type hasB happen, except
the first transition of marked pseudo-cycles. In order for every process involved to
take the correct broadcast transition, there is a global broadcast transition in every
group with job of the form (j, hasB, hasB).
Position change is again according to fdt .
The job change works as follows: Only groups of the form (j, betB, hasB) and
(j, hasB, hasB) change job. Groups with job (j, betB, hasB) now have the job
(j, hasB, hasB) (Condition 2) and groups of the form (j, hasB, hasB) now have
the form (j′, betB, hasB) (Condition 1).
All copies of cycles of type hasB get unmarked.

Equipped with these terms, we can now define the global run ~π.
For the finite part where π stays within ∞T ini and ∞T con, Theorem 5 is used to

get a global run, whose projection to Process 1 is the prefix of π. This global run is
merged with a global run that for every job loads a basic configuration into a group using
Lemmas 8 and 7. From there on, we do a case distinction on whether the rest of the run
is in ∞T noB or ∞T hasB.

If the run decides to transition into ∞T noB , π remains in the same component for the
rest of the run. In addition to the basic configuration, one additional process is loaded
into every state of the component. That process does not have a position. For each
remaining transition the constructed global run is extended as follows:
Process 1 is in the correct state to perform the next transition. Let t be the next transition.
Process 1 swaps into the position (CnoBt , 1, 1), e.g. the position of the first process of
the only copy of the pseudo-cycle witnessing t without broadcasts in the observed group.
In CnoBt , Process 1 takes transition t in the first global transition of CnoBt (Condition
7). Therefore, the processes in position take the first transition of CnoBt and the copy
(CnoBt , 1) gets marked. Now, the additional Process without position in the state Process
1 is now in is used, as Process 1 swaps out of Position. Then, there is a reset. This yields
a configuration, where all groups are in a basic configuration and the group Process 1 is
an has an additional process in every state of the component Process 1 is in.

The case of π moving into transitions in ∞T hasB is more complex.
The construction now depends on the kind of transition. Let t be the next transition in

45

5. Unknown number of groups

π. Observe that after every step all groups are in a valid configuration.

• t is an orange or violet rendezvous transition:
In this case π swaps into the position (ChasBt , 1, v̂), where v̂ is the smallest v, such
that (ChasBt , v) is not marked. Then, the first transition of the copy (ChasBt , v̂)
happens and (ChasBt , v̂) gets marked.

• t is a green rendezvous transition:
In this case π swaps into the position (CnoBt , 1, 1). Note, that this is a noB cycle,
despite being in a group of cycle-type hasB. Therefore, other processes in the same
group need to swap position into the same group too. All processes with a position
(CnoBt , n̂, 1) in the observed group of CnoBt swap position with a process in position
(ChasBt , n, 1) in the same state. Remember, that the green pseudo-cycle of type
noB has two groups of that kind, one of them is the observed group.
This is possible, as for green transitions the number of processes in src(CnoBt) in
the observed group in each state must be less or equal than the number of processes
in src(ChasBt) in the observed group and the same state.
This allows the observed group of CnoBt , which is a group without group broadcast,
to happen in a group of group-type hasB. After the first transition, the copy
(ChasBt , 1) Process 1 swaps out, into the position to take the next transition. If the
next transition t′ is green as well, it swaps into the position (ChasBt′ , 1, 2) instead.
Now, a reset happens, where the observed group of CnoBt happens in a group of
cycle-type hasB. After the reset, the processes in that group swap back into the
group of cycle-type noB making their positions valid again.

• t is a group broadcast transition:
In this case, Process 1 moves into position (ChasBt , 1, 1). Then, two flushes happen.
That position is only active in one group broadcast transition and no rendezvous
transition (Condition 8). The first flush causes Process 1 to swap position according
to fdt . In the next flush, Process 1 is not active in any transition (Condition 8).
This is possible, as the group it is now in is between broadcasts.

After these flushes, all groups are in a basic configuration.

This construction creates a global run, which projected to Process 1 yields π. This
finishes the proof of Theorem 6 up to the proof of Lemma 10.

Proof of 10: The first step is to ensure Condition 7: t needs to be part of the first
transition. This can be achieved for non-green edges by shifting the start of the original
cycle Cdt right before the transition t appears in. Renaming the processes ensures that
Process 1 takes t.

For green and violet transitions, the process above has to be done with both pseudo-
cycles. For green transitions, a slight adaptation has to be used to ensure that the the

46

5.3. Infinite runs

structured pseudo-cycle ĈhasBt has more processes in each state of the source configuration
than ĈnoBt . When shifting the start of ĈhasBt to the position before t, the part of ĈnoBt

before t appears has to be appended to ĈhasBt at the end and the rest of the pseudo-cycle
ĈnoBt is added at the beginning.

The next preparation step is to ensure that every group with broadcasts transforms
into a group with broadcasts. There are no groups between broadcast for this step. This
is achieved by going through the cycle Ĉdt . Let f̂dt be an configuration isomorphism of
the source and destination configuration of Cdt . When the system went through Ĉdt once,
it goes through it again where each process n is active in the transitions in which process
f̂dt (n) was active in the first walk-through. If the number of times going through Ĉdt is
a common multiple of the cycle lengths of the group transformation cycles, each group
transforms into itself. There are therefore pseudo-cycles C̃dt witnessing the colors of
transitions, that go through the pseudo-cycles Ĉdt m times, where every group transforms
into itself. C̃dt does therefore not contain any groups between broadcasts. Using the same
method, we can require additionally that in witnessing pseudo-cycles ChasBt for group
broadcast transitions t Process 1 is active in at least two group broadcast transitions.
This will be necessary to ensure Condition 8 later on.

In the next step the pseudo-cycle Ċdt is created, which has 2R processes for each
process in C̃dt , where R is the number of broadcasts where that process is active. For
Processes in groups without broadcasts only 1 copy is needed.
Each of the copies for processes in groups with group broadcast is in a different group,
but corresponding copies of different processes from the same group are in the same
group. Ċdt has the same transitions as C̃dt , but different copies of the original process are
active for each transitions. In Ċdt , the first copy of a process is active in all transitions the
original process was active in C̃dt up to and including the first group broadcast transition,
where the original process in active. The second copy is in the destination state of the
first copy for the whole run, not active in any transition. This is possible, because it is
now in a group between broadcast. The third copy has the same source configuration
and is active in all transitions after the first group broadcast where the original process is
active, up to and including the second group broadcast of the original process. Only the
copies with odd numbers are active in any transition, with the exception of the last copy.
It is active in all transitions after the last group broadcast. These transitions after the last
broadcast are the reason groups between broadcast are needed in structured pseudo-cycles.

Note Ċdt is still a pseudo-cycle with the configuration isomorphism ḟdt . Let (n, r) be

the r-th copy of process n. Then ḟdt (n, r) =
{

(n, r + 1) , r < 2R
(fdt (n), 1) , r = 2R.

Ċdt fulfills all Conditions except 5 and 6 .
The groups of copies with odd r are with broadcasts, the groups of copies with even r
are between broadcasts. Based on this, each group can be attributed a kind. All groups
of the same kind will be merged to create Cdt . To do so, the group broadcast in groups

47

5. Unknown number of groups

Figure 5.1: Rendezvous-group broadcast network template

to be merged must occur at the same time. In Ċdt , all group broadcasts are the last
transition where any process in that group is active. Therefore, all group broadcasts can
be shifted to the end of the pseudo-cycle, after all rendezvous transitions. This allows all
processes from groups of the same kind to be placed in the same group.
For green edges, the observed group of CnoBt can not be merged with the other groups of
the same kind. Otherwise, the condition of having fewer processes in each state than
ChasBt can not be maintained.

Cdt now fulfills all conditions 1 - 8.

To illustrate this construction, the transformation of a witnessing cycle for an orange
rendezvous transitions is illustrated in figures 5.1 to 5.3. Figure 5.1 shows a rendezvous-
group broadcast network template without group change. All states are initial states.
The unwinding template for this template has only one component and is isomorphic
to the template itself. It contains three rendezvous letters a, b and c. They all describe
pairwise inter-group rendezvous transitions.

Figure 5.2 shows a possible cycle ĈhasBt witnessing that transition t = (A a,1−−→
Γ

B)
appears on a pseudo-cycle with a group broadcast in the observed group, which implies
it is orange, violet or green. (It actually is orange.)

Figure 5.3 shows the pseudo-cycle ChasBt constructed from ĈhasBt fulfilling Conditions
1 - 8. In ĈhasBt , Process 1 is in Group 1, which has on group broadcast, and Process

48

5.3. Infinite runs

Figure 5.2: Possible cycle

Figure 5.3: Pseudo-cycle according to Lemma 10 created from Figure 5.2.

49

5. Unknown number of groups

2 in Group 2 has two group broadcasts. Therefore, the transitions of Process 1 are
distributed among two processes in ChasBt , (1, 1) in the group of kind (1, hasB) and (1, 2)
an the group of kind (1, betB). The transitions of Process 2 are distributed among four
processes, two for both kinds (1, hasB) and (1, betB). As no group was without group
broadcast in the original pseudo-cycle ĈhasBt , the group of kind (1, noB) is empty.

5.4 Deciding Colors
Calculating the colors of transitions P(can be reduced to deciding colors for the case
of one global broadcasts letter as presented in [ARZS14]. To do so, we construct the
following RMBN with one broadcast letter β:

Construction 8. P̃ : RMBN with one broadcast letter β from the RGBN P(to decide
its colors.

Given an RGBN P = 〈S,S0,A× [K]× G ∪ {β}, T 〉
and it’s unwinding template P(=

〈
S(,S(0 ,A× [K]× [J]G ∪ {β}, T (

〉
,

the RMBN P̃ =
〈
S̃, S̃, Ã, T̃

〉
, where:

• The set of states S̃ contains triples (s, j, e), where js ∈ S(and e ∈ {hasB, betB, noB, obs}.
e = obs is only needed to test for the color green.

• All states are initial states.

• The rendezvous labels Ã are elements of A× ([J]× {hasB, betB, noB, obs})G× [K].
The rendezvous letters are tuples (a, f) with a ∈ A and f ∈ × ([J]× {hasB, betB, noB, obs})G .
β is the only broadcast label.

• The transitions are T̃ . Rendezvous transitions are written in the form (s, j, e) a,f,k−−−→
(s′, j, e). It is a transition in P̃ , if f(grpa(k)) = (j, e) and js

a,f1,k−−−−→ js′ is a
rendezvous transition in P(, where f1(G) = j if f(G) = (j, e) for some e, i.e. f1

is the projection of f onto the first component.
Remember that grpa(k) is the group partition symbol used in the transition with
letter a and role k.
Depending on e, the broadcast transitions are as follows:
(s, j, hasB) β−→ (s′, j′, betB) iff js

β−→ j′s′ is a broadcast transition in P(.
(s, j, betB) β−→ (s, j, hasB)
(s, j, noB) β−→ (s, j, noB)
(s, j, obs) β−→ (s, j, obs)

The basic idea of this construction is to include the group into the states. Due to
Condition 6, only one group of each kind is needed, except the additional observed
group in pseudo-cycles for green transitions. In structured pseudo-cycles, all groups of

50

5.4. Deciding Colors

type hasB have their group broadcast at the same time. These group broadcast can
be therefore simulated with one global broadcast, which does not change the state of
processes in betB and noB groups. It switches processes between groups of type hasB
and betB.

Observe that Construction 8 does not preserve colors, but it still can be used to
determine the colors of transitions. It would be possible to create an RBN with the same
executions as any given RGBN and get all the results of this section via reduction. Doing
so would require basically the same arguments as presented here and we chose to present
the results in a different manner.

The colors of transitions can be calculated using Construction 8 via the following
lemma:

Lemma 11. Let P(be the unwinding template of the RGBN P and let P̃ be the RMBN
from Construction 8. Then, a rendezvous transition t = (js a,f,k−−−→ js′) of P(

appears on a pseudo-cycle if a transition of the form (s, j, e) a,f̃ ,k−−−→ (s′, j, e) with f̃1 = f
appears on a pseudo-cycle of P̃ with a group broadcast for some e.

• If e = hasB, then t appears on a pseudo-cycle with broadcasts in the observed
group.

• If e = noB, then t appears on a pseudo-cycle without broadcasts in the observed
group.

• t is green, iff there are pseudo-cycles for both e = hasB and e = obs , ChasBt and
CnoBt , and for every js ∈ jS, the number of processes in state (s, j, obs) in the
source configuration of CnoBt is less or equal than the number processes in state
(s, j, hasB) in the source configuration of CnoBt .

A broadcast transition js
β−→ j′s′ of P(appears on a pseudo-cycle, if the broadcast

transition (s, j, hasB) β−→ (s′, j′, betB) appears on a pseudo-cycle of P̃ .

[ARZS14] uses linear programming to find such pseudo-cycles and their algorithm
can be used here as well.

51

CHAPTER 6
Group changes

Now that the RGBN turned out to be a restriction of RMBN with a decidable PMCP
for infinite runs, we want to generalize it a little bit further.
We do so by allowing processes to change between groups with rendezvous transitions.
The template specifies, which rendezvous transitions allow processes to change group.
Other processes active in the same transition can pull it to its group.
Formally, this will be done by having two group partition symbols in each rendezvous
transition. When they are the same, processes taking this transition stay in their group.
When they are different, a process taking this transition can change group.

6.1 Formal definition
Definition 16. The process template for rendezvous-group broadcast networks with
group changes are LTS of the form

〈
S,S0,A× [K]× G2 ∪ {β}, T

〉
, where A is set of

rendezvous letters, K ∈ N and G is a set of group partition symbols. The group broadcast
transitions are written in the from s

β−→ s′. For each state s ∈ S, there is exactly one
state s′ ∈ S, such that s→ s′ is a group broadcast transition. The rendezvous transitions
written in the form s

a,k−−→
g,g′

s′, where s, s′ ∈ S, a ∈ A, k ∈ N and G,G′ ∈ G.

While most access functions can be taken from Definitions 1 and 9, the group partition
symbols need new access functions:
src_grp(s a,k−−→

g,g′
s′) = g and src_grp(s a,k−−→

g,g′
s′) = g′.

In this case, src_grpa(k) = g and dst_grpa(k) = g′ are the unique group partition
symbols associated with letter a and role k.

We require additionally that if dst_grpa(k) = g′ for letter a, a role k and a group
partition symbol g′ then there is a role k̂ such that src_grpa(k̂) = g′,

53

6. Group changes

i.e. each group partition symbol appearing as a destination symbol also appears as a
source symbol in a transition with the same rendezvous letter.

As for RBGN each group partition symbol gets a group assigned in a global transition.
Intuitively, when the group partition symbols in a rendezvous transition are different,
a process taking that transition changes from the group assigned to the source group
partition symbol to the group assigned to the destination group partition symbol.

The last requirement in Definition 16 therefore ensures that there must be another
process pulling the process into its new group. Processes can not simply jump to a
random other group after the initial group assignment.

Construction 9. The network PN =
〈
SN × [N]N ,SN0 × [N]N ,A× [N]K ∪ {β} × [N], T N

〉
is defined as for RGBN in Definition 10. Global rendezvous transitions are written in the
form (~s,~l) a,~p−−→ (~s′,~l′), with the conditions:
~s(n) = ~s′(n) ∀n /∈ range(~p)
~s(~p(k)) a,k−−−−→

grpa(k)
~s′(~p(k)) ∈ T ∀k ≤ K

~l(~p(k)) = ~l(~p(k′)) ∀k, k′ ≤ K : src_grpa(k) = src_grpa(k′)
~l(~p(k)) = ~l′(~p(k′)) ∀k, k′ ≤ K : src_grpa(k) = dst_grpa(k′)
~l′(~p(k)) = ~l′(~p(k′)) ∀k, k′ ≤ K : dst_grpa(k) = dst_grpa(k′)

All results for RGBN have a analogous result for RGBN with group change. The
remainder of this section will outline how the definitions, theorems and proofs from
section 5 have to be adapted for RGBN with group change.

6.2 Reachability

When combining runs analogous to lemma 7, the group changes have to be considered as
well. Therefore,

grp(~πi(r,n,m))
(
m−1∑
m̃=1

dim(m̃~π) + n

)
= hm(group(m~πr)(n)) (6.2.1)

is used instead of (5.2.1). Here, i(r, n,m) refers to the index of the global transitions,
where process n of run m is active for the r-th time.
I.e. compared to RGBN, the current group of each process is used, not the global one.

Algorithm 2 to decide reachability needs only minor adaptations. The main issue
that needs to be mentioned is how to handle two group indicators in each transition. In
iteration q = 0, all source and destination group partition symbols of all transitions with
letter a must be the same in order to be considered for adding.

54

6.2. Reachability

Figure 6.1: Example of a template of a rendezvous-group broadcast network with group
changes.

The sets gSa / gS ′a are now the set of states s for which there is a transition with
source/destination s, letter a and source/destination group partition symbol g. We now
go through triples (a, g′, ~g), with g′ appearing on a transition with letter a as destination
symbol and ~g(g′) = j, where j is the component currently calculated. It has to be the
destination symbol, as states are added to the component the destination symbol is
mapped to in each calculation step. If the source symbol would be used, states would
be added to components already calculated in this iteration. When a triple (a, g′, ~g) is
added copies of all states in gS ′a are added to j

qS, and rendezvous transitions of the form
vecg(g)s a,~g,k−−−→

g,g′
js′ are added to j

qT for all transition with letter a and destination group

partition symbol g′.

Theorem 5 and Lemma 8 are still valid and the same proofs apply.

Example

We will now give an example of the calculation of the unwinding template for the RGBN
with group change in Figure 6.1.

Both rendezvous letters a and b describe inter-group rendezvous transitions, where
one of the three roles allows a process to change group. The process taking Role 3 will
change from the group the process taking Role 1 is in to the process taking Role 2 is in.

As there are no intra-group rendezvous transitions, Iteration 0 displayed in Figure
6.2 only contains broadcast transitions.

All states required to perform the global transition with letter a are present in group
1. Group partition symbol g can be mapped to Component 0, as it contains the states A
and U . Group partition symbol h can be mapped to Component 1, as it contains state

55

6. Group changes

Figure 6.2: Iteration 1 of unwinding of Figure 6.1

Figure 6.3: Iteration 1 of unwinding of Figure 6.1

56

6.3. Infinite runs

Figure 6.4: Iteration 2 of unwinding of Figure 6.1

E. The mappings are omitted from the label in Figures 6.3 and 6.4 to simplify the graphics.

In Iteration 2, the global transition b can be added as well, mapping group partition
symbol g to Component 1 and h to Component 0. Component 2 now contains the same
initial states as Component 0. This causes Iteration 2 to have 2 components and a cycle
length of 2.
No additional states are added in the next iteration.

6.3 Infinite runs

As for RGBN without group change, the first step in analyzing infinite runs is to define
colors. For broadcast transitions and non-group changing rendezvous transitions the
colors are defined as for RGBN without group change.

Transition causing a process to change groups have two colors, the source color and
the destination color. They depend on how often a process can leave or enter a given
group using the transition.

Definition 17. Let t be a transition with src_grp(t) = g and dst_grp(t) = g′ and
g 6= g′. Then, the source/destination color of t is:

• red, if it can only occurs finitely many times in any run.

• blue, if it can occur infinitely many times with g/g′ mapped to a group with finitely
many group broadcasts, but only a finite number of times with g/g′ mapped to a
group with an infinite number of group broadcasts.

• orange, if it can occur infinitely many times with g/g′ mapped to a group with an
infinite number of group broadcasts, but only a finite number of times with g/g′
mapped to a group with finitely many group broadcasts.

57

6. Group changes

• violet, if it can occur infinitely many times with g/g′ mapped to a group with an
infinite number of group broadcasts and infinitely many times with g/g′ mapped
to a group with an infinite number of group broadcasts broadcasts.

For example, if a group-changing edge can occur infinitely many times, but can only
finitely many times have its source in a group with a finite number of group broadcasts
and the destination can only be a finite number of times in a group with an infinite
number of group broadcasts, the edge is orange-blue.
Note that for group changing rendezvous transitions the distinction between violet and
green is not necessary. The reason for this will be explained later.

As a remark, if there were multiple transitions with the same letter and role, classifi-
cation of transitions would be harder. This is the main reason, why these are required to
be unique in our models.

Defining the automaton

The automaton B∞P is defined as for RGBN without group change for broadcast transitions
and not group changing rendezvous transitions. Group changing transitions are added as
follows:

Construction 10. For all group changing rendezvous transitions t : (js a,k−−−→
G,G′

js′) ∈ oT ,
depending on the source and destination colors, the following transitions are added to
∞T ini and ∞T con from Construction 7:

Part Transition Source color Destination color
∞T ini (ini, s, j) t−−−−−→

γ:=γ+1
(ini, s′, j) any any

∞T con (ini, s, j) t−−−→
γ:=0

(infB, s′, j) any any

(ini, s, j) t−−−→
γ:=0

(noB, s′, j) any any

(infB, s, j) t−−−→
γ:=0

(infB, s′, j) orange or violet orange or violet

(noB, s, j) t−−−→
γ:=0

(infB, s′, j) blue or violet orange or violet

(infB, s, j) t−−−→
γ:=0

(noB, s′, j) orange or violet blue or violet

(noB, s, j) t−−−→
γ:=0

(noB, s′, j) blue or violet blue or violet

Intuitively, adding those transitions to the B-automaton B∞P has the following effect:
For RGBN without group broadcast, the automaton chose either ∞T infB or ∞T noB and
stayed there for the remainder of the run.
Here, each group changing rendezvous transition allows switching between ∞T infB and
∞T noB. Additional, they need to guess the component the group they switch to is in.

58

6.3. Infinite runs

Analogous to Theorem 6, the following result holds true for RGBN with group change.

Theorem 7. For an RGBN template with group change P the language accepted by B∞P
from Construction 7 extended by Construction 10 is execinf (P).

⊇: The ability to change between ∞T infB and ∞T noB complicates the proof of this
direction slightly. Let π be an execution of P and π(a corresponding execution in the
unwinding template P(. Let ~π be a global run, whose projection to Process 1 is π(.
Let ir be the index of the r-th transition, where Process 1 is active in ~π. Due to the way
colors are defined in Definition 11, the following must be true: There must exist an index
I, such that in every group l of ~π one of the following is true:

• Group l has no group broadcast transition after index I,
All group changing rendezvous transitions after index I are green, violet or blue
and
The source/destination color of every group changing rendezvous transition with
source/destination in group l is violet or blue.

• Group l has an infinite number of group broadcast transitions,
All group changing transitions after index I are green, violet or orange and
The source/destination color of every group changing rendezvous transition with
source/destination in group l is violet or orange.

We can therefore construct a run πB of B∞P as follows: It contains the copies of the
transition π(in ∞T ini until index iR, where R are is the largest index, such that iR ≤ I.
Then, the copy of transition π(i in ∞T con connecting to the state (d, s, j) with d = noB,
if the group Process 1 is in after the transition has a finite number of group broadcasts
and d = infB otherwise. The same happens with every group changing rendezvous
transition after ir.

The counter is reset with every group changing rendezvous transition after iR. There-
fore, the counter is still bounded by

∑
t∈Tov ct.

In order to prove that every run π of B∞P is the projection of a global run ~π in P∞,
we are going to intuitively use twice as many copies of the witnessing pseudo-cycles
arranged in twice as many groups. This gives us two sets of groups, both containing the
same arrangement of copies of the witnessing pseudo-cycles as for RGBN without group
change. With each group changing rendezvous transition Process 1 will change between
the two sets.

As each group changing transition has two colors, there are two witnessing pseudo-
cycles srcCdt and dstCdt :

Lemma 12. The source/destination color of a group changing transition t is:

59

6. Group changes

• red, iff it does not appear on any pseudo-cycle of P(;

• blue, iff it appears on a pseudo-cycle yCnoBt of P(with source/destination in a group
without broadcast, but it does not appear on any pseudo-cycle with source/destination
in a group with broadcast;

• orange, iff it appears on a pseudo-cycle yChasBt of P(with source/destination in a
group with broadcast, but it does not appear on any pseudo-cycle with source/destination
in a group without broadcast;

• violet, iff it appears on a pseudo-cycle yCnoBt of P(with source/destination in a
group with broadcast and it appears on a pseudo-cycle yCnoBt with source/destination
in a group without broadcast;

y = src for the source color and y = dst for the destination color.

The following terms have to be changed compared to RGBN without group change:

• Job: The jobs of the configurations of the global run ~π are now quadruples
(j, e, d, x) ∈ [J] × {hasB, betB, noB} × {hasB, noB} × [2]. x is called the set
of jobs or groups.

• Copy: A copy of a pseudo-cycle is now a triple (yCdt , v, x).
For non-group changing transitions v is in the same range as for RGBN.
For group changing transitions, v = 1 always.

• Position: For configurations ~s in ~π the position of a process n is a quadruple
(yCdt , n̂, v, x), where n̂ is a process in the v-th copy of the pseudo-cycle Cdt in set
x ∈ [2].

• Valid Position: The position (yCdt , n̂, v, x) of process n, where n̂ is in a group of
kind (j, e), is valid, if it is in a group with job (j, e, d, x).

• Reset, Flush: Resets and flushes are now specific to a set x. A reset or flush of set
x does the same a reset or flush for RGBN, but only involves the copies of set x,
groups with jobs in set x and processes in positions in set x.

This now allows the construction of ~π. Compared to the case of RGBN without group
change, enough processes for both sets of groups are loaded initially. In the iterative
construction that follows, the cases for non-group changing transitions are the same, but
only involving the groups, processes, resets and flushes in the set Process 1 is in currently.

For the case of t being a group changing transition, let x be the set Process 1 is in
and x̂ the other set, where Process 1 goes to.
First, Process 1 moves into position (srcCdt , 1, 1, x). Then, two transitions happen, which
are a combination of the first transitions of the copies (srcCdt , 1, x) and (dstCdt , 1, x̂). It

60

6.3. Infinite runs

allows Process 1 to change from set x to set x̂. Let ~psrc and ~pdst be the assignments,
which processes take each role in those two first transitions of their respective cycle due
to Lemma 12. The processes in the following positions take the roles k in these two
transitions, which both have the letter a = ltr(t):

Transition Position Source group partition symbol
1 (srcCdt , ~psrc(k), 1, x) src_grpa(k) 6= dst_grp(t)

(dstCdt , ~pdst(k), 1, x̂) src_grpa(k) = dst_grp(t)
2 (dstCdt , ~pdst(k), 1, x̂) src_grpa(k) 6= dst_grp(t)

(srcCdt , ~psrc(k), 1, x) src_grpa(k) = dst_grp(t)
All positions in swapping roles change their position to the new set. A role is swapping,

if either:

• src_grpa(k) 6= dst_grp(t) and src_grpa(k) = dst_grp(t)

• src_grpa(k) = dst_grp(t) and src_grpa(k) 6= dst_grp(t)

All processes in a position (srcCdt , ~psrc(k), 1, x) for a swapping role k swap their position
with the process in position (dstCdt , ~pdst(k), 1, x̂). Note that this includes by construction
Process 1.

This yields a configuration isomorphic to the configuration we would have if the first
transitions of (srcCdt , 1, x) and (dstCdt , 1, x̂) had happened, but Process 1 is now in the
set x̂.
(srcCdt , 1, x) and (dstCdt , 1, x̂) both get marked. To finish of, Process 1 goes into position
for the next transition.
If t starts in a state with infB, a flush in set x happens. If t starts in a state with noB,
a reset in set x happens instead.
Then, all groups in set x are in a basic configuration, waiting for Process 1 to come back.
The groups in set x̂ are in a valid configuration.

All process in position of pseudo-cycle srcCdt set z and process ~pz(k) for any z ∈ [2]
and a role k with src_grpa(k) 6= dst_grp(t) and dst_grpa(k) = dst_grp(t) change
position to (dstCdt , ~pẑ(k), 1, ẑ). This includes Process 1. by construction
All processes in position of pseudo-cycle dstCdt and processes ~pz(k) for any z ∈ [2] and a
role k with src_grpa(k) = dst_grp(t) and dst_grpa(k) 6= dst_grp(t) change position to
(srcCdt , ~pẑ(k), 1, x̂).

These are all changes and additions required to prove ⊆ for Theorem 7

Creating Pseudo-cycles fulfilling the conditions in Lemma 10 works with the same
method as for RGBN without group change. Some details have to be observed due to
processes changing groups: The Positions of the splits of the transitions of one process are
determined by the broadcast of the groups. If a group broadcast is not the last broadcast,

61

6. Group changes

Figure 6.5: Example two transitions marked with b, 2

then two splits happen after it, with a new process not active in any transition.
When a group broadcast is the last broadcast of the group, there is no such additional
inactive process.
The deciding factor is, whether or not the broadcast is the last broadcast in the group
and not whether or not it is the last broadcast where the process is active.
The number of processes the transitions of one process are distributed among in the new
pseudo-cycle is therefore 1 + bl + 2 · bn.
bl is the number of group broadcasts, where the process is active and which is the last
broadcast in its respective group.
bn is the number of group broadcasts, where the process is active and which is not the
last broadcast in its respective group.

This process is illustrated for the network in figure 6.1 and transition 1V
b,3−−→
g,h

0W

starting with the fixed group pseudo cycle 6.5. It has two group broadcasts in both
groups, therefore each group is split up into four groups, two for each component, one
with and one between broadcasts.

Figure 6.6 shows the result when combining the groups with the same job.

Colors can again be decided by an reduction to the rendezvous-broadcast network
from Construction 8.
Of course, for the source color we are looking for a transition with its source in a group
with the correct type. For the destination color, the type of the group of the destination
of the transition is relevant.

62

6.3. Infinite runs

Figure 6.6: Example two transitions marked with b, 2

63

6. Group changes

6.4 Conclusion
We set out to explore the boundary of decidability of the PMCP for rendezvous-multiple
broadcast networks. We managed to refine that boundary with several decidability and
undecidability results. We found decidability for finite runs and undecidability for infinite
runs of the general RMBN as well as the RFGBN. We managed to give an algorithm
solving the PMCP for infinite runs for the special cases of the RGBN with and without
group change.

This by no means exhausts this research area. While solving the problems in this the-
sis, I managed to get several results not presented here. I will list them here without proof:

• Projections to several processes instead of individual processes can be described for
RGBN with and without broadcast. The languages they create can be recognized
by B-automaton with as many counters as there are processes in the projection.

• I also established a reverse result to [ARZS14]: For every B-automaton with one
counter and no Büchi conditions, there is a rendezvous-broadcast network template,
such that the language recognized by the B-automaton is an homomorphic image
of the language created by the infinite executions of the template.

• The language of any B-automaton without Büchi conditions is the homomorphic
image of the language created by the executions of an RMBN though.

• However, not every B-automaton without Büchi conditions and n counters can be
replicated by projections of a RGBN to n processes though.

This raises the question whether there is a model of a network with a decidable
PMCP for infinite runs, whose executions can correspond to any B-automaton without
Büchi conditions. One avenue that might work is to allow processes in RGBN to be a
member of more than one group.

Another model that may be of interest to investigate are RGBN where processes can
change group during broadcast transitions. Another extension would be to introduce
rendezvous transitions that only lead to empty groups.

These kind of models therefore give a lot of potential for further research.

64

Bibliography

[ADM04] P Aziz Abdulla, Johann Deneux, and Pritha Mahata. Multi-clock timed
networks. In Logic in Computer Science, 2004. Proceedings of the 19th Annual
IEEE Symposium on, pages 345–354. IEEE, 2004.

[AJ03] Parosh Aziz Abdulla and Bengt Jonsson. Model checking of systems with
many identical timed processes. Theoretical Computer Science, 290(1):241–264,
2003.

[AKY08] Parosh Aziz Abdulla, Pavel Krcál, and Wang Yi. R-automata. In Franck van
Breugel and Marsha Chechik, editors, CONCUR 2008-Concurrency Theory:
19th International Conference, CONCUR 2008, Toronto, Canada, August
19-22, 2008, Proceedings, volume 5201, pages 67–81. Springer, 2008.

[ARZS14] Benjamin Aminof, Sasha Rubin, Florian Zuleger, and Francesco Spegni. Live-
ness of Parameterized Timed Networks. Tu Vienna, Austria, 2014.

[BC06] Mikolaj Bojanczyk and Thomas Colcombet. Bounds in w-regularity. In Logic
in Computer Science, 2006 21st Annual IEEE Symposium on, pages 285–296.
IEEE, 2006.

[Boj10] Mikolaj Bojanczyk. Beynond ω-regular languages. In Jean-Yves Marion and
Thomas Schwentick, editors, 27th International Symposium on Theoretical
Aspects of Computer Science - STACS 2010, pages 11–16, Nancy,France, 2010.
Proceedings of the 27th Annual Symposium on the Theoretical Aspects of
Computer Science.

[CGB86] Edmund M Clarke, Orna Grumberg, and Michael C Browne. Reasoning about
networks with many identical finite-state processes. In Proceedings of the
fifth annual ACM symposium on Principles of distributed computing, pages
240–248. ACM, 1986.

[EFM99] Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of
broadcast protocols. In Logic in Computer Science, 1999. Proceedings. 14th
Symposium on, pages 352–359. IEEE, 1999.

[GS92] Steven M German and A Prasad Sistla. Reasoning about systems with many
processes. Journal of the ACM (JACM), 39(3):675–735, 1992.

65

Bibliography

[Min67] Marvin L Minsky. Computation: finite and infinite machines. Prentice-Hall,
Inc., 1967.

[MS97] Alexandru Mateescu and Arto Salomaa. Formal languages: an introduction
and a synopsis. In Handbook of formal languages, pages 1–39. Springer, 1997.

66

CHAPTER 7
Short Long
i.e. that is
e.g. for example
LTS Linear Transition System

PMCP Parameterized Model Checking Problem
RMBN Rendezvous-Multiple Broadcast Network
RFGBN Rendezvous-Fixed Group Broadcast Network
RGBN Rendezvous-Group Broadcast Network

Table 7.1: Acronyms

67

7. Appendix

Appendix

Object Variable Examples
Template P P = 〈S,S0,A, T 〉
State s s = A; s = B; . . . ; s ∈ S

Initial States S0 S0 = {A}
Transition t t = s

l−→ s′;t ∈ T
Source s src(s l−→ s′) = s

Destination s′ dst(s a−→ s′) = s′

Label a label(s a−→ s′) = a; a ∈ A
Rendezvous Letter a,b,. . . let(s a,k−−→ s′) = a

Broadcast Letter β,α,. . . let(s β−→ s′) = β
Counter γ,δ,. . . γ ∈ Γ

Counter Command γ γ = (γ := 0)
Role k role(s a,k−−→ s′) = k;k ≤ K;

Group Partition Symbol g grp(s a,k−−→
g

s′) = g ;grpa(k) = g

Path π π = t1, t2, t3, . . .
Path Index i πi;π2

Index of a Family of Paths m mπ
Index of Index r ir;πir
Configuration ~s ~s = (A,B,A,C)

Process n ~s(n);~s(3) = B;n ≤ N
Group Vector ~i ~i(n) = 2

Global Transition ~t ~t = ~s
a,p−−→
~i

~s′

Process Assignment ~p ~p : [K]→ N; role(~s a,~p−−→ ~s′) = ~p

Global Path ~π ~πi = ~t; ~π(n) = π
Projection π proj(π, n) = π

Component Index j (s, j) ∈ jS; (s, S̃) ∈ comp(S̃)
Calculation Iteration q qP

68

