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Kurzfassung

Da die Probleme bei der Betrachtung von degenerierten, parabolischen Systemen sehr in-
dividuell sind und es keine allgemeine Lösungstheorie gibt, betrachten wir motiviert aus
der Anwendung drei verschiedene Modelle.
Das erste Modell kommt aus der Thermodynamik und beschreibt die zeitliche Evoluti-
on von Fluiden mit mehreren Komponenten. Wir erweitern die bestehende Literatur um
ein Modell, in dem die Temperatur zeit– und ortsabhängig ist und beweisen die globa-
le Existenz schwacher Lösungen unter Ausnutzung der Entropiestruktur, die wir aus der
thermodynamischen Modellierung erhalten.
Das zweite Modell kommt aus der Biologie und beschreibt die Evolution von Biofilmen. Wir
entwickeln ein Finite–Volumen Schema, für das wir die Existenz und, mit einer zusätzlichen
Voraussetzung, die Eindeutigkeit von diskreten Lösungen zeigen. Die Hauptschwierigkeit
hierbei besteht in einem degenerierten–singulären Diffusionsterm und dem Beweis der obe-
ren/unteren Schranke für die Biomasse für den wir, anders als im kontinuierlichen Fall, kein
Vergleichsprinzip im Diskreten anwenden konnten. Dieses Problem umgehen wir durch die
Einführung einer Entropievariablen, welche die gewünschten Schranken garantiert. Des
Weiteren zeigen wir, dass die diskreten Lösungen bei der Verfeinerung des Gitters gegen
eine schwache Lösung des Systems konvergieren.
Zuletzt betrachten wir ein weiteres Modell, welches die Evolution von Biofilmen beschreibt.
Das Modell besteht aus einer degenerierten Reaktions–Diffusionsgleichung und einer lokalen
Cahn–Hilliard–Gleichung vierter Ordnung mit degenerierter Mobilität, singulärem Poten-
tial und nichtlinearen Quelltermen.
Wir zeigen die globale Existenz schwacher Lösung mit Hilfe einer geeigneten Regularisierung
und einer Galerkin–Approximation. Da wir aufgrund der Degeneriertheit keine optimalen
Abschätzungen erhalten, um den Limes für die Deregularisierung durchzuführen, benötigen
wir einen Minty–Browder–Trick zur Identifikation des Quelltermes.





Abstract

Since degenerate parabolic systems are quite peculiar, there is no general theory available
to obtain the existence of solutions. Thus, we take a closer look at three different models
which are motivated applications.
The first model comes from thermodynamics and describes the evolution of multicompo-
nent fluids. We extend the literature by proposing a model which includes nonisothermal
temperature as well as Soret/Dufour effects, and prove the global existence by using the
entropy structure of the system.
The second model is derived from biology and describes the development of biofilms. We de-
velop a finite–volume scheme for which we prove the existence of discrete solutions and, un-
der additional assumptions, the uniqueness. The main difficulty comes from the degenerate–
singular diffusion term and the proof of lower/upper bounds for the biomass fraction since
we cannot apply a comparison principle as in the continuous case. We overcome this chal-
lenge by introducing an entropy variable which guarantees these bounds. Furthermore, we
prove that discrete solutions converge towards a weak solution under mesh refinement.
The last model we discuss is obtained from biology as well and models the growth of biofilms
by considering the biomass/solvent as fluid mixture. This system consists of a degenerate
reaction–diffusion equation and a local fourth order Cahn–Hilliard equation with degener-
ate mobility, singular potential and nonlinear source terms. We prove global existence by
applying a suitable truncation and a galerkin approximation. Since we do not find optimal
estimates due to the degeneracy of the mobility, we perform a Browder–Minty trick for the
identification of the source term in the deregularization limit.
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1 Introduction

The purpose of this thesis is to establish new results in the broad area of analysis/numerical
analysis for degenerate parabolic systems. In this context, the term degenerate refers to the
diffusion coefficients/the diffusion matrix in the sense, that they are not necessarily strictly
positive/positive definite. Although the degeneracy is physically/biologically beneficial in
a wide range of contexts, it can cause potential difficulties from a mathematical point of
view.
As there is no general theory for degenerate parabolic systems, we have to combine avail-
able techniques to individually prove existence for each system. Furthermore, there is no
general maximum principle. This would be advantageous as we aspire for naturally lower
and upper bounds for the solutions due to the physical/biological context.
In the following chapters, we discuss several degenerate parabolic systems coming from a
physical or biological application and present different techniques to handle the lack of esti-
mates due to the degeneracy as well as the proof of upper/lower bounds for the weak solu-
tions or discrete solutions in the finite–volume context. The results in this thesis are based
on the publication [HJ21] (Christoph Helmer, Ansgar Jüngel), the publication [HJZ23]
(Christoph Helmer, Ansgar Jüngel, Antoine Zurek) and the paper [HJ23](Christoph Helmer,
Ansgar Jüngel), which is submitted for publication.

1.1 The Maxwell–Stefan–Fourier System

Our goal is to derive and discuss a model, which describes the behavior of a multiple
component system in a nonisothermal (no constant temperature) setting, that includes the
consideration of Soret and Dufour effects. Mathematically, multicomponent systems are
described by Maxwell–Stefan systems and the interaction of the single components with
each other is called cross–diffusion. The Soret effect (also known as thermopheresis or
thermodiffusion) refers to the particle movement due to a temperature gradient [Lud56].
The Dufour effect is the reciprocal phenomena to the Soret effect and is described by a heat
flux of a chemical potential gradient [ME80]. The discussion of these systems have their
origin in the 19th century, when they were first described independently by Maxwell for
gases [Max67] and Stefan for fluids [Ste71]. For a more detailed overview about physical
derivations and applications regarding the Maxwell–Stefan system, we refer to the well–
known work of Taylor and Krishna [TK93].
While the physical description goes back to the 19th century, the mathematical existence
analysis started only hundred years later in 1998 with [GM98].
Even more recent is the mathematical research for nonisothermal systems, which has been
discussed in publications only from 2015 onwards in [GPZ15,PP17,HS18]. However, none
of these papers consider the inclusion of the Soret/Dufour effects.

1



1 Introduction

1.1.1 The Model Equations

We consider the partial mass densities ρi for i = 1, . . . , n and the temperature θ in a fluid
mixture. This evolution of the system is described as follows:

∂tρi + div Ji = ri, Ji = −
n

j=1

Mij(ρ, θ)∇qj −Mi(ρ, θ)∇1

θ
, (1.1)

∂t(ρθ) + div Je = 0, Je = −κ(θ)∇θ −
n

j=1

Mj(ρ, θ)∇qj in Ω, i = 1, . . . , n, (1.2)

where Ω ⊂ R3 is a bounded domain, ρ = (ρ1, . . . , ρn) is the vector of mass densities,
and qi = log(ρi/θ) is the thermo-chemical potential of the i–th species. The parameter ρ
describes the total mass density, i.e. ρ = n

i=1 ρi, κ(θ) describes the heat conductivity and
ri denotes reaction terms for i = 1, . . . , n. The terms Mi∇(1/θ) and n

j=1Mj∇qj describe
the Soret and Dufour effect, respectively.

We prescribe the following boundary and initial conditions

Ji · ν = 0, Je · ν + λ(θ0 − θ) = 0 on ∂Ω, t > 0, (1.3)

ρi(·, 0) = ρ0i , (ρiθ)(·, 0) = ρ0i θ
0 in Ω, i = 1, . . . , n, (1.4)

where ν is the outer normal vector of ∂Ω and θ0 > 0, λ ≥ 0 are constant.

We call the diffusion fluxes in equation (1.1) the Fick–Onsager formulation. This for-
mulation comes from the Onsager reciprocal relations [Ons31]. In the isothermal case,
it has been shown in [BD23] that the Fick–Onsager form and the usual Maxwell–Stefan
formulation which is given by

∂tρi + div Ji = ri, di = −
n

j=1

bijρiρj
Ji
ρi

− Jj
ρj

, i = 1, . . . , n

where bij = bji ≥ 0 for i, j = 1, . . . , n, are equivalent.

As the heat flux, i.e. the term −κ(θ)∇θ, is given by Fourier’s law, we call the whole
system the Maxwell–Stefan–Fourier system in Fick–Onsager form.

Naturally, we assume conversation of the total mass in our system which means, that
the sum over the diffusion fluxes Ji as well as the sum over the reaction terms ri should
vanish. Therefore, the total mass density ρ is constant in time. Furthermore, we assume

n

i=1

Mij = 0 for j = 1, . . . , n, and

n

i=1

Mi = 0. (1.5)

1.1.2 Mathematical Challenges

We prove two existence results; one for the nondegenerate system and the one for the de-
generate case. In the first case, we assume that the diffusion coefficients are symmetric, i.e.

2



1.1 The Maxwell–Stefan–Fourier System

Mij = Mji for all i, j = 1, . . . , n, and that the diffusion matrix Mij is positive semidefinite
in the sense, that for cM > 0 holds

n

i,j=1

Mij(ρ, θ)zizj ≥ cM |Πz|2 for z ∈ Rn, ρ ∈ Rn
+, θ ∈ R+, (1.6)

where Π = I − 1
n1⊗ 1 with 1 = (1, . . . , 1) ∈ Rn is the orthogonal projection on span{1}⊥.

Therefore, we do not have coercivity of the diffusion operator, which would be necessary
to obtain H1–estimates for the chemical potentials. Furthermore, the equation (1.1) has
(without additional assumptions) a singularity in ρi = 0 and θ = 0. Hence, we have to
ensure the positivity of the partial mass densities and the temperature, which is not trivial.
In the second case, we weaken condition (1.6), such that we allow the degeneracy in the

partial mass densities. Namely, we assume

n

i,j=1

Mij(ρ, θ)zizj ≥ cM

n

i=1

ρi (Πz)
2
i for z ∈ Rn, ρ ∈ Rn

+, θ ∈ R+. (1.7)

To overcome these issues, we first use the volume filling assumption n
i=1 ρi = ρ to

eliminate one equation. This means we only solve the equation for ρi, i = 1, . . . , n− 1 and
obtain ρn from the relation ρn = ρ − n−1

i=1 ρi. This is advantageous, because we obtain
positive definiteness of the reduced diffusion matrix (Mij)

n−1
i,j=1 under the assumption (1.6).

Then, we adapt the techniques of [Jün15] by using the entropy structure of the system. To
be more precise, we introduce the mathematical entropy and define the (relative) chemical
potential vi as well as w with vi = log ρi − log ρn and w = log θ. By inverting the relation
between vi and ρ, we find for i = 1, . . . , n− 1

ρi =
ρ0 exp(vi)
n
j=1 exp(vj)

.

This ensures 0 < ρi < ρ∗ as well as θ > 0. Using an implicit Euler discretization in time,
we then solve a regularized problem in variables vi and w. Finally, we derive suitable
estimates in form of an entropy inequality and apply the Aubin–Lions compactness lemma
to perform the deregularization.

1.1.3 State of the Art

We repeat the state of the art which we have given in [HJ21] and extend it by the recent
research since the publication.
The isothermal equations were derived from the multi-species Boltzmann equations in the
diffusive approximation in [BB21,BGPS13]. The Fick–Onsager form of the Maxwell–Stefan
equations was rigorously derived in Sobolev spaces from the multi-species Boltzmann sys-
tem in [BG20]. The Maxwell–Stefan equations in the Fick–Onsager form, coupled with the
momentum balance equation, can be identified as a rigorous second-order Chapman–Enskog
approximation of the Euler (–Korteweg) equations for multicomponent fluids; see [HJT19]
for the Euler–Korteweg case and [OR20] for the Euler case. The work [BGP19] is con-
cerned with the friction limit in the isothermal Euler equations using the hyperbolic for-
malism developed by Chen, Levermore, and Liu. A formal Chapman–Enskog expansion

3



1 Introduction

of the stationary non-isothermal model was presented in [TA99]. Another non-isothermal
Maxwell–Stefan system was derived in [ABSS20], but the energy flux is different from the
expression in (1.2).

The existence analysis of (isothermal) Maxwell–Stefan equations started with the paper
[GM98], where the existence of global-in-time weak solutions near the constant equilibrium
was proved. A proof of local-in-time classical solutions to Maxwell–Stefan systems was
given in [Bot11], and regularity and instantaneous positivity for the Maxwell–Stefan system
were shown in [HMPW17]. In [JS13], the entropy or formal gradient-flow structure was
revealed, which allowed for the proof of global-in-time weak solutions with general initial
data. Maxwell–Stefan systems coupled with the Poisson equation for the electric potential,
were analyzed in [JL19].

Alt and Luckhaus [AL83] proved a global existence result for parabolic systems related
to the Fick–Onsager formulation. However, their result cannot be applied directly to sys-
tem (1.1) because of the lack of coerciveness. Moreover, this theory does not yield L∞

bounds. They are obtained from the technique of [Jün15], but the treatment of Soret
and Dufour terms requires some care and is not contained in that work. In [BD23] the
relation between Maxwell–Stefan and Fick–Onsager formulation was thoroughly investi-
gated in the isothermal case. All the mentioned results hold if the barycentric velocity
vanishes. For non-vanishing fluid velocities, the Maxwell–Stefan equations need to be cou-
pled with the momentum balance. The Maxwell–Stefan equations were coupled with the
incompressible Navier–Stokes equations in [CJ15], and the global existence of weak solu-
tions was shown. A similar result can be found in [DD21], where the incompressibility
condition was replaced by an artificial time derivative of the pressure and the limit of
vanishing approximation parameters was performed. Coupled Maxwell–Stefan and com-
pressible Navier–Stokes equations were analyzed in [BD21], and the local-in-time existence
analysis was performed. A global existence analysis for a general isothermal Maxwell–
Stefan–Navier–Stokes system was performed in [DDGG20]. For the existence analysis of
coupled stationary Maxwell–Stefan and compressible Navier–Stokes–Fourier systems, we
refer to [BJPZ22, GPZ15, PP17]. In [BJPZ22], temperature gradients were included in
the partial mass fluxes, but only the stationary model was investigated. In [Dru22], a
Navier–Stokes–Fick–Onsager–Fourier system is discussed, where the results from [BD21]
are generalized to the nonisothermal case. The paper [FHKM22] discusses a more general
class of nonisothermal reaction–diffusion systems including the Soret and Dufour effect and
proves the global existence of renormalised solutions. Furthermore, the most recent pa-
per [JG23] is based on the model, which we discuss in [HJ21], i.e. this thesis, and improves
on the modeling regarding the thermodynamics. However, the global existence of solutions
can still be proved with the same techniques and (partly) the same estimates as in this
thesis.

1.2 About Biofilms

Biofilms are accumulations of microorganisms which grow on surfaces and produce ex-
tracellular polymeric substance (EPS) ( [PMCW11]). The EPS can be understood as a
layer of slime and varies wildly depending on the underlying microorganisms, see for in-
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stance [PMCW11] for a description of the composition for gram–negative bacteria. The
production of EPS enables a protected mode of growth for the microorganisms, which
means the Biofilm structure is more resistant against antimicrobials [Poz18].
The biofilm development can be divided into several stages (see [KD10]). At first, free
living (planktonic) microorganisms attach to a surface and become sessile. These cells then
connect by producing EPS and thus forming a growing biofilm. Lastly, cells detach from
the biofilm due to different effects; for instance, erosion, mechanical stress ( [KD10]) or
quorum sensing. Quorum sensing describes the communication between cells via signal
molecules [EHKE15]. These signal–molecules, which are also called autoinducers, are able
to cause a detachment of cells in the biofilm. This can lead to a dispersion of microorgan-
isms, which can lead to the development of new biofilm colonies, see for instance [SEL14].
In this work, we do not consider erosion or mechanical stress, but we consider in section
1.3 rather a model, which accounts quorum sensing as cause for a detachment of cells.

As biofilms can be prevelant on almost any surface in a moist environment, they are of
major importance in nature, food industry and medicine, see for instance [FAG09,HSCS04,
SN16,Bry08].

Therefore, we want to emphasize that infections with biofilms, as for instance on catheters
by Staphyloccucus aureus bacteria, are highly problematic, since the biofilm structure gives
an improved protection of antibacterial treatment [HSCS04].

1.3 A Quorum Sensing induced Biofilm Model

We discuss a system of nonlinear partial differential equations which models the biofilm
growth including quorum sensing effects. It is an extension to the biofilm growth model
suggested in [EPL01] and describes the growth of a biofilm dependent on the nutrient,
signal molecules and the cells which got detached due to the quorum sensing effect of the
signal molecules. The model was first suggested in [EHKE15] and then mathematically
analyzed in [ESE17]. The aim in this thesis is, to define an implicit Euler finite–volume
scheme for the model analyzed in [ESE17] and to prove the existence of discrete solutions
which preserve the L∞–bounds of the model, as well as the convergence towards a weak
solution.

1.3.1 The Model Equations

We begin by introducing the model of [ESE17]. The biofilm is modeled by the biomass
fraction M(x, t). We say biomass, as M(x, t) describes technically the EPS, which includes
the microorganisms as well as other substances. The nutrient concentration is modeled by
S(x, t). The parameter A(x, t) describes the autoinducer, i.e. the signal molecule, which
induces the quorum sensing effect. Lastly, the dispersed cells are modeled by N(x, t). Then,
M,N, S,A satisfy the scaled diffusion equations

∂tM − d1 div(f(M)∇M) = g1(M,S,A) in Ω, t > 0, (1.8)

∂tN − d2∆N = g2(M,N, S,A), in Ω, t > 0, (1.9)

∂tS − d3∆S = g3(M,N, S), in Ω, t > 0, (1.10)
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1 Introduction

∂tA− d4∆A = g4(M,N,A), in Ω, t > 0, (1.11)

and the initial and boundary conditions

M(0) = M0, N(0) = N0, S(0) = S0, A(0) = A0 in Ω, (1.12)

M = MD, N = 0, S = 1, A = 0 on ∂Ω, t > 0, (1.13)

where Ω ⊂ Rd (d ≥ 1) is a bounded domain and MD ∈ (0, 1) is a constant.

Remark 1. In the literature, mostly homogeneous Dirichlet boundary conditions have been
used but for the numerical analysis, we need nonhomogeneous boundary conditions since the
introduction of the entropy variable requires MD to be nonzero. However, we may MD = γ
and pass the limit γ → 0 to cover homogeneous conditions as well.

The source terms used in [ESE17] describe the nutrient consumption, the dead of biomass
and dispersed cells, the production of signal molecules and detachment of biomass.

g1(M,S,A) =
S

k1 + S
M − k2M − η

An

1 +An
M, (1.14)

g2(M,N, S,A) =
S

k1 + S
N − k2N + η

An

1 +An
M, (1.15)

g3(M,N, S) = − µS

k1 + S
(M +N), (1.16)

g4(M,N,A) = −λA+ α+ β
An

1 +An
(M +N) . (1.17)

where k1, k2, α, β, η, µ > 0 and n > 1.
The growth of biomass and dispersed cells in (1.14) and (1.15) respectively is controlled

by the nutrient availability and described by the monod kinetic growth term S/(k1 + S).
Furthermore, the biomass and the dispersed cells both die with rate k2. However, the last
term of the source terms g1 and g2 describes the detachment through quorum sensing: cells
from the biomass get detached with rate ηAn/(1 + An) and become dispersed cells. The
nutrient consumption by the biomass M and dispersed cells N is described in the source
term g3. The signal molecule/autoinducer has a decay rate of λ and is produced with rate
α+ βAn/(1 +An).

Remark 2. (i) The original model in [EHKE15] also contains the effect of re–attachment
of dispersed cells to the biomass. According to [ESE17], the effect of re–attachment
is negligible, due to why it is not treated in the analysis.

(ii) Furthermore, as pointed out in [ESE17] as well, without a signal molecule produc-
tion/activity, i.e. α = β = η = 0 we recover the originally suggested model from
[EPL01]. Thus, the model (1.8)–(1.17) be considered as a generalization.

The diffusion term f(M) is chosen, as suggested in [EPL01] and used in [ESE17], as

f(M) =
M b

(1−M)a
, where a > 1, b > 0. (1.18)
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1.3 A Quorum Sensing induced Biofilm Model

We can rewrite the diffusion operator in equation (1.8) as div(f(M)∇M) = ∆F (M),
where

F (M) =
M

0
f(s)ds, M ≥ 0. (1.19)

Heuristically, the superdiffusion singularity prevents the biomass fraction to exceed its
maximum value 1 as the diffusion gets larger and “spreads” the biomass, while the porous–
medium degeneracy leads to finite speed of propagation. For more details regarding the
modeling, we refer to [EPL01,EHKE15,ESE17].

1.3.2 Mathematical Challenges

The main difficulty of the analysis is the degenerate-singular diffusion term. On the con-
tinuous level, the authors of [ESE17] proved that the choice of the initial value M0 such
that ∥M0∥L∞(Ω) < 1 − ρ for some ρ ∈ (0, 1) guarantees the existence of δ > 0 such that
M ≤ 1 − δ almost everywhere in Ω ( [ESE17, Lemma 3.3]). This bound is proved by the
use of a comparison principle, which we could not adapt to the discrete case. We overcome
this challenge by introducing an entropy variable W of the form

W ε = F (M)− F (MD) + ε log
M ε

MD
(1.20)

and regularize the (discretized) system by adding higher order terms of the form ε(W ε −
∆W ε), where ε is the parameter for the regularization. Solving the regularized problem in
W ε and using the invertibility of (0, 1) → R, M ε → W ε, we find 0 < M ε < 1.

1.3.3 Finite–Volume Methods

We give a short introduction to finite–volume methods. To this end, we focus solely on
the discretization of the biomass equation (1.8), as it is clear that the discretization for
the other equations works analogously. We want to mention on a lighter note, that finite–
volume methods is a broad research topic and we just scratch the surface with our simplified
motivation. Thus, we refer to the finite–volume monument [EGH00] for a detailed intro-
duction into finite–volume methods. To discretize the scheme, we first discretize with an
implicit euler method in time. Therefore, we replace the continuous time derivative by

∂tM ≈ Mk −Mk−1

∆t

for k = 1, . . . , NT , where NT denotes the number of time steps and ∆t the size of the
time step. Then, the idea of the finite–volume method is, to partition the domain Ω such
that K∈T K = Ω, where T denotes the set of control volumes and K denotes the control
volumes/cells. We integrate equation (1.8) over one control volume K and formally apply
the divergence theorem to obtain

K

Mk −Mk−1

∆t
dx−

σ∈EK σ
d1∇F (Mk) · νK,σds =

K
g1(M

k, Sk, Ak)dx, (1.21)
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where σ denotes an edge, EK denotes the set of edges of K and νK,σ denotes the outside
normal vector of control volume/cell K on edge σ. The goal is, to rewrite the equation
in terms of Mk

K , where Mk
K = m(K)−1

K Mk(x)dx, where m(K) denotes the volume of
the cell K. For the first term of equation (1.21), this is rather obvious. Furthermore, we
replace (Mk, Sk, Ak) in the source term by the averages over the cell K to obtain

K
g1(M

k, Sk, Ak)dx ≈ m(K)g1(M
k
K , Sk

K , Ak
K).

It remains to approximate the integral over the boundary of cell K. To this end, we
denote with EK the edges of cell K and distinguish two cases:

(i) The edge σ ∈ EK is separating the cells K and L ∈ T , which we denote as σ = K | L.
In this case, we assume that the edge σ is orthogonal to the straight line which
connects the middle points xK and xL of cells K and L, respectively.

−
σ
d1∇F (Mk) · νK,σds ≈ −d1

m(σ)

dσ
F (Mk

L)− F (Mk
K) =: Fk

M,K,σ, (1.22)

where m(σ) denotes the length of edge σ and dσ the distance between xK and xL.

(ii) The edge σ ∈ EK is an exterior edge, i.e. σ ⊂ ∂Ω. In this case we approximate the
integral over σ by

−
σ
d1∇F (Mk) · νK,σds ≈ −d1

m(σ)

dσ
F (MD)− F (Mk

K) =: Fk
M,K,σ, (1.23)

where dσ denotes the distance between the middle point xK and the edge σ.

The approximation in equations (1.22)–(1.23) is called Two–Point flux approximation. We
want to point out, that the orthogonality assumption for the edges σ which we made in
case 1.3.3 is crucial for the consistency of the approximation, i.e. that the truncation error
on the flux is of the samer order as the maximum length of the edges of the mesh (see
[EGH00, Example 1.2]). Summarized, we reach the following finite–volume approximation
for equation (1.8):

m(K)

∆t
Mk

K −Mk−1
K +

σ∈EK
Fk
M,K,σ = m(K)g1(M

k
K , Sk

K , Ak
K).

1.3.4 State of the Art

Due to the importance of biofilm analysis, there are many different mathematical mod-
els for biofilm growth. We do not attempt to list all of them but rather give a rough
overview. The mathematical modeling of biofilms started in the 1980s with the work
of [RM80] which focused on the biofilm dynamics at steady states. In [WG86], a one
dimensional model including a transport equation for biomass and describing the evolu-
tion of the biofilm thickness was suggested (see [WZ10] for further details and references).
The work [PvLH99] suggested a multidimensional model which implements the existence
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1.4 A Cahn–Hilliard Type system modeling Biofilm Growth

of a sharp front between the biomass and the fluid. In this model, the domain is sepa-
rated into a liquid and a solid area. The solid area is characterized by the positivity of
biomass density while the liquid area is characterized by the absence of biomass. The
flow velocity in the liquid area satisfies the incompressible Navier–Stokes equation. The
growth of the biomass is controlled by a reaction term. The equations for this model do
not contain spreading of the biomass. However, the effect of spreading itself is considered
as “redistribution in space according to discrete rules” ( [PvLH99]). For more details,
we refer to [PvLH99,PvLH98b,PVLH98a]. In [EPL01], the authors extend [PvLH99] by
suggesting a new equation to model the biomass growth, which also considers the spatial
distribution by including a diffusion flux. For this model, the existence and uniqueness
of global weak solutions has been shown in [EZE09] for the hydrostatic case, i.e. without
coupling with the incompressible Navier–Stokes equation. The (hydrostatic) model has
been extended in several ways, for instance by adding a nutrient taxis term to the biomass
equation in [EEWZ14] or considering quorum sensing effects in [EHKE15]. The global ex-
istence of weak solutions has been shown in [ESE17]. Another approach is the modeling of
mixing effects by considering multiple biofilm species, as for instance in [RSE15]. For this
model, global existence of weak solutions has been shown in [DMZ19], while a finite–volume
scheme was developed in [DJZ21] including numerical analysis. However, this model does
not consider an equation for the nutrient. A finite–volume method of the model of [EPL01]
was considered in [AES18], but without containing numerical analysis. Other variants of
the above biofilm model are possible. For instance, the authors in [HES22] considered a
PDE–ODE system which contains the equation for biomass growth from [EPL01] and an
ODE for the nutrient consumption. After a spatial discretization, random cell attachment
is considered and numerically simulated for the resulting ODE.

A completely different approach to the modeling of biofilm growth was chosen in [FHX14],
where the authors models the biofilm evolution as a two–phase free boundary problem. In
this model, the fluid outside of the biomass is considered as an incompressible viscous
fluid, while within the biofilm, a mixture of two fluids is assumed. The interface between
both areas is representing the free boundary. Lastly, we mention the model of [WZ12].
In this model, the biofilm is modeled as a fluid–mixture consisting of the biomass and
solvent containing dissolved nutrient substrate. The equation for the fluid is coupled with
a reaction–diffusion equation, which describes the substrate concentration. The evolution
of the biofilm is then governed by a chemical potential coming from the extended Flory–
Huggins energy (see [ZCW08a,ZCW08b,WZ12]), leading to a Cahn–Hilliard Type equation.

1.4 A Cahn–Hilliard Type system modeling Biofilm Growth

We discuss a biofilm growth model motivated by [WZ12]. As mentioned in section 1.3.4,
the biofilm is modeled as a fluid mixture, which leads to a Cahn–Hilliard type equation
for the biomass growth. The aim is to establish an existence result for this kind of biofilm
growth model.
The Cahn–Hilliard equation was developed to describe a phase separation between two
components [NC08]. In our case, the two components are the biomass fraction u and the
solvent fraction us. Before going into more details, we introduce the model equations.
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1.4.1 The Model Equations

The (modified) version of the model in [WZ12] is given by

∂tv − div((1− u)∇v) = g(u, v), (1.24)

∂tu− div(M(u)∇µ) = h(u, v), (1.25)

µ = −∆u+ f ′(u) in Ω, t > 0, (1.26)

where Ω ⊂ Rd (d ≥ 1) is a bounded domain. We impose no–flux boundary conditions

(1− u)∇u · ν = M(u)∇µ · ν = ∇u · ν = 0 ∂Ω, t > 0. (1.27)

The initial conditions are

u(0) = u0, v(0) = v0. (1.28)

The mobility is chosen as

M(u) = u(1− u), (1.29)

although more general choices are possible (see Remark 34). The function f describes the
Flory–Huggins mixing free energy

f(u) =
1

N
u log u+ (1− u) log(1− u) + λu(1− u), (1.30)

f ′(u) =
1

N
+ λ+

1

N
log u− log(1− u)− 1− 2λu (1.31)

whereN > 0 is the generalized polymerization index and λ > 0 describes the Flory–Huggins
mixing parameter. We define the reaction terms as

g(u, v) = −ug0(v), h(u, v) = u(1− u)h0(v), (1.32)

where g0 and h0 are non decreasing, continuous functions.
Equation (1.25) describes the evolution of the biomass fraction as per a degenerated

Cahn–Hilliard equation with nonlinear source term. The degeneracy comes from the de-
generate mobility M(0) = M(1) = 0. Furthermore, the equation is singular due to the
derivative of the Flory–Huggins mixing free energy (1.31). As mentioned in the introduc-
tion, the Cahn–Hilliard equation describes the phase separation between two components.
The second component is the solvent fraction, which is implicitly given by the volume filling
assumption u+ us = 1, such that us = 1− u. The case u = 0 is corresponding from model
point of view to the abscence of biomass, i.e. only solvent is present. The case u = 1 on
the other hand would imply the abscence of solvent and as such the presence of purely
biomass. In [ZCW08a], this case is excluded as a modeling assumption, as it would imply
the existence of dry biomass. In the modified equations, we allow the “dry–biomass” case
in the mathematical analysis, as we can not guarantee u < 1 with the chosen mobility.
However, an appropriate choice of the mobility excludes the case u = 1 (see Remark 34).
Equation (1.24) describes the substrate concentration, which is necessary for the biomass
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1.4 A Cahn–Hilliard Type system modeling Biofilm Growth

growth. The substrate consumption is only possible in the solvent (as it needs to be dis-
solved) and then consumed with rate h0(v). The factor u(1− u) in h ensures, that there is
no growth in the pure solvent/pure biomass case. This implies, that in the pure solvent case
bacterial mass can not come out of nowhere, while in the pure biomass case the substrate
can not be dissolved in the solvent to cause further growth. The function g describes the
consumption of the substrate and is chosen as in [WZ12]. From a modeling point of view,
this is slightly inaccurate in the case u = 1: The growth stops, the solvent is not present
and the substrate can not be dissolved in solvent. Thus, the consumption of the substrate
should also vanish. This can be easily fixed by also adding a factor 1− u in the definition
of g or changing the mobility to ensure u < 1, see Remark 34. However, as we want to
compare our results numerically to the model of [WZ12], we decided to keep the function
g as defined in [WZ12], which also remains flexible in the choice whether to adjust the
mobility or the source term.
Since our model is motivated by [WZ12] but yet different, we briefly remark the differ-

ences between the two models:

(i) We neglected the velocities of biomass and solvent,

(ii) We added the solvent fraction us = 1− u in the production rate h and the mobility
M ,

(iii) We neglect the elastic energy to mathematically simplify the definition of the chemical
potential µ,

(iv) We neglect the factor of the solvent fraction in the time derivative of equation (1.24).

Our analysis works as well with given velocities with bounded divergence. The addition
of the solvent fraction in the mobility and production rate seems however mathematically
necessary to achieve an existence result. To be more precise, we need a cancellation in
M(u)f ′′(u) to identify the weak limit and does not seem possible without the additional
factor. The negligence of the solvent fraction in the time derivative removes a degeneracy
which we were not able to treat.

1.4.2 Mathematical Challenges

As there is no general maximum principle for equations of fourth order, it is difficult to
prove the L∞–bounds 0 ≤ u ≤ 1 for the biomass fraction. Furthermore, due to the degen-
eracies in the mobilities of equations (1.24) and (1.25), we do not obtain an H1 estimate
for the chemical potential and the substrate fraction, respectively.
As a consequence, we can not expect strong convergence for approximate solutions of the
substrate equation. We overcome these issues in the following way: First, we truncate
the mobility M(u), the Flory–Huggins mixing energy f(u) and the source terms. Further-
more, we add a higher order term of the form κ∆v for the substrate equation. Following
then [EG96], we use a Galerkin method and obtain uniform estimates by entropy/energy
inequalities. Using the Stampacchia method, we prove the bounds for the substrate equa-
tion, i.e. 0 ≤ v ≤ 1. With the help of an entropy inequality and the Lemma of Fatou we
conclude the L∞–bound for the biomass fraction, i.e. 0 ≤ u ≤ 1 in the deregularization
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limit. However, there are still some difficulties: Since we do not have H1 estimates for the
chemical potential and the substrate concentration, we can only identify the limit in the
sense of L2(0, T ;H1(Ω)′). Furthermore, due to lack of strong convergence for the substrate
in the deregularization, it proves difficult to identify the limit in the nonlinear source terms.
We overcome this by using a Minty–Browder argument.

1.4.3 State of the Art

Since we gave already a state of the art regarding biofilm models (see section 1.3.4), we
focus on the analytical aspects of Cahn–Hilliard equations in this section. To this end, we
repeat the relevant part of the state of the art which we have given in [HJ23] and extend it
by references which caught our attention only after submission as well as other interesting
results. The first existence analysis of Cahn–Hilliard equations was given in [Yin92] in one
space dimension and in [EG96] in several space dimensions. Most of the analytical results
on the Cahn–Hilliard equations do not contain reaction terms. Moreover, if reaction terms
are included in the Cahn–Hilliard model, mostly nondegenerate mobilities are chosen; see,
e.g., [AKK11,CMZ14,GL16]. When the gradient term in the free energy is replaced by a
nonlocal spatial interaction energy, degenerate mobilities (and singular potentials) can be
treated [Fri21, IM18]. As per our knowledge, there are few papers which consider degen-
erate mobilities combined with source terms, for instance [FLR17,MR15]. However, the
setting is different than in the model which we consider, as both papers examine a nonlocal
variant the Cahn–Hilliard equation. The only work which considers degenerate mobility in
combination with source terms is [Ebe20]: However, our work is different in two important
details: In [Ebe20, Chapter 7.3], upper bounds can not be proved and in [Ebe20, Chapter
7.5], the source terms contain the chemical potential. Furthermore, we have a second degen-
eracy in the coupled reaction–diffusion equation which causes additional difficulties. Some
results describe a connection from nonlocal to local models. For instance, in [CES23] the
convergence to local solutions on the torus without source terms is proved. In [MRST19]
the convergence of solutions to a nonlocal Cahn–Hilliard equation with constant mobility
and without source terms to solutions of the local Cahn–Hilliard equation is proved. The
connection between nonlocal models and local models considering degeneracies and source
terms seems yet unclear.

1.5 Outline of the Thesis

In this section, we give an overview about the structure of the thesis.

Chapter 2 is considering the Maxwell–Stefan–Fourier system in Fick–Onsager form.

• We explain the modeling of the system in section 2.3.

• We prove that the Maxwell–Stefan formulation leads to the Fick–Onsager form for a
specific choice of coefficients (Proposition 5).

• We formulate the existence theorems for the nondegenerate case (Theorem 3) and
the degenerate case (Theorem 4).
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• We give the proof for theorem 3 in section 2.4 and the proof for theorem 4 in section
2.5 respectively.

The results in this chapter are based on the research collaboration with Ansgar Jüngel
(TU Wien) and has been under the title Analysis of Maxwell–Stefan systems for heat con-
ducting fluid mixtures ( [HJ21]).

In Chapter 3, we present the details about the finite–volume scheme/numerical analysis
for the quorum sensing biofilm model.

• In Section 3.1, we formulate the finite–volume scheme.

• We formulate the existence for discrete solutions (Theorem 13), the uniqueness of
discrete solutions (Theorem 14) and the convergence of discrete solutions towards
weak solutions of the (continuous) equations (Theorem 15).

• We present the proofs for the existence, uniqueness and convergence in sections 3.2,
3.3 and 3.5, respectively.

• We present some numerical experiments in section 3.6.

The results of this chapter are based on a research collaboration with Ansgar Jüngel (TU
Wien) and Antoine Zurek (UTC) published under Analysis of a finite–volume scheme for
a single–species biofilm model ( [HJZ23]).

In chapter 4, we provide the existence proof for the Cahn–Hilliard Type biofilm model.

• We formulate the existence theorem for global weak solutions (Theorem 22) and
explain the key ideas.

• In sections 4.2–4.4 we provide the details for the existence proof.

• In section 4.5, we discretize the system by a BDF2 discretization in time and a finite–
volume discretization in space.

• We present some numerical experiments and compare our results to the model of
[WZ12].

The results of this chapter are based on a research collaboration with Ansgar Jüngel
(TU Wien) and are submitted for publication under the title Existence Analysis for a
reaction–diffusion Cahn–Hilliard–Type system with degenerate mobility and singular poten-
tial modeling biofilm growth ( [HJ23]).

Lastly, to conclude the thesis, we give a short discussion of our results and give an outlook
to further possible research directions in chapter 5.
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2 Analysis for the Maxwell–Stefan–Fourier
system

The results in this chapter have been published in [HJ21].

In this chapter, we provide the mathematical details for the Maxwell–Stefan Fourier
system in Fick–Onsager form. To this end, we first present the main results, namely the
existence theorem in the nondegenerate and the degenerate case in section 2.1. We present
the mathematical ideas used in the existence proof in section 2.2. In section 2.3, we explain
the derivation of the Maxwell–Stefan Fourier system in Fick–Onsager form and prove, that
the Maxwell–Stefan formulation implies the Fick–Onsager form for a suitable choice of Mij ,
Mi and di. In section 2.4 we then give the full proof for the existence in the nondegenerate
case, and in section 2.5 we describe, which steps in the proof of section 2.4 changes to
obtain the degenerate existence result.

2.1 Main Results

Before stating our main results, we impose the following assumptions: We impose the
following assumptions:

(H1) Domain: Ω ⊂ R3 is a bounded domain with a Lipschitz continuous boundary.

(H2) Data: θ0 ∈ L∞(Ω), infΩ θ0 > 0, θ0 > 0, λ ≥ 0; ρ0i ∈ H1(Ω) ∩ L∞(Ω) satisfies
0 < ρ∗ ≤ ρ0i ≤ ρ∗ in Ω for some ρ∗, ρ∗ > 0.

(H3) Diffusion coefficients: For i, j = 1, . . . , n, the coefficients Mij , Mj ∈ C0(Rn
+ × R+)

satisfy (1.5) and Mij , Mi/θ are bounded functions.

(H4) Heat conductivity: κ ∈ C0(R+) and there exist cκ, Cκ > 0 such that for all θ ≥ 0,

cκ(1 + θ2) ≤ κ(θ) ≤ Cκ(1 + θ2).

(H5) Reaction rates: r1, . . . , rn ∈ C0(Rn ×R+) ∩ L∞(Rn ×R+) satisfies
n
i=1 ri = 0 and

there exists cr > 0 such that for all q ∈ Rn and θ > 0,

n

i=1

ri(Πq, θ)qi ≤ −cr|Πq|2.

The bounds on ρ0 in Hypothesis (H2) are needed to derive the positivity and boundedness
of the partial mass densities. In the example presented in Section 2.3, the coefficients Mij
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and Mi/θ depend on ρi; since we prove the existence of L∞ solutions ρi, the functions
Mij and Mi are indeed bounded, as required in Hypothesis (H3). The growth condition
for the heat conductivity in Hypothesis (H4) is used to derive higher integrability of the
temperature, see (2.9), which allows us to treat the heat flux term. If λ = 0, we can impose
the weaker condition κ(θ) ≥ cκθ

2. Hypothesis (H5) is satisfied for the reaction terms used
in [DDGG20]. The bound for n

i=1 riqi gives a control on the L2(Ω) norm of Πq. Together
with the estimates for ∇(Πq) from (2.7), we are able to infer an H1(Ω) estimate for Πq.
A more natural L2(Ω) bound for q may be derived under the assumption that the total
initial density does not lie on a critical manifold associated to the reaction rates; we refer
to [DDGG20, Theorem 11.3] for details. Vanishing reaction rates are allowed in Theorem
4 below.

Theorem 3 (Existence). Let Hypotheses (H1)–(H5) hold, let (Mij) satisfy (1.6), and let
T > 0. Then there exists a weak solution (ρ, θ) to (1.1)–(1.4) satisfying ρi > 0, θ > 0 a.e.
in ΩT ,

ρi ∈ L∞(ΩT ) ∩ L2(0, T ;H1(Ω)) ∩H1(0, T ;H2(Ω)′), (2.1)

vi ∈ L2(0, T ;H1(Ω)), (Πq)i ∈ L2(0, T ;H1(Ω)), (2.2)

θ ∈ L2(0, T ;H1(Ω)) ∩W 1,16/15(0, T ;W 2,16(Ω)′), log θ ∈ L2(0, T ;H1(Ω)); (2.3)

where vi = log(ρi/ρn) and (Πq)i = vi − n
j=1 vj/n for i = 1, . . . , n; it holds that

T

0
⟨∂tρi, ϕi⟩dt+

T

0 Ω

n−1

j=1

Mij∇vj − Mi

θ
∇ log θ · ∇ϕidxdt =

T

0 Ω
riϕidxdt, (2.4)

T

0
⟨∂t(ρθ), ϕ0⟩dt+

T

0 Ω
κ(θ)∇θ · ∇ϕ0dxdt+

T

0 Ω

n−1

j=1

Mj∇vj · ∇ϕ0dxdt (2.5)

= λ
T

0 ∂Ω
(θ0 − θ)ϕ0dxds

for all ϕ1, . . . , ϕn ∈ L2(0, T ;H1(Ω)), ϕ0 ∈ L∞(0, T ;W 1,∞(Ω)) with ∇ϕ0 · ν = 0 on ∂Ω,
and i = 1, . . . , n; and the initial conditions (1.4) are satisfied in the sense of H2(Ω)′ and
W 2,16(Ω)′, respectively.

The weak formulation can be written in various variable sets since

n−1

j=1

Mij∇vj =
n

j=1

Mij∇(Πq)j =
n

j=1

Mij∇qj ,

n−1

j=1

Mj∇vj =

n

j=1

Mj∇(Πq)j =

n

j=1

Mj∇qj ,

whenever the corresponding variables are defined. Thus, our definition of a weak solution is
compatible with (1.1)–(1.2). The proof is based on a suitable approximate scheme, uniform
bounds coming from entropy estimates, and H1(Ω) estimates for the partial mass densities.
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2.2 Mathematical Ideas

More precisely, we use two levels of approximations. First, we replace the time derivative
by an implicit Euler discretization to overcome issues with the time regularity. Second,
we add higher-order regularizations for the thermo-chemical potentials and the logarithm
of the temperature w = log θ to achieve H2(Ω) regularity for these variables. Since we
are working in three space dimensions, we conclude L∞(Ω) solutions, which are needed to
define properly ρi = exp(w + qi).
A priori estimates are deduced from a discrete version of the entropy inequality (2.7).

They are derived from the weak formulation by using vi and e−w0 − e−w as test func-
tions, where w0 = log θ0. The entropy structure is only preserved if we add additionally a
W 1,4(Ω) regularization and some lower-order regularization in w. The properties for the
heat conductivity allow us to obtain estimates for θ in H1(Ω) and for ∇ log θ in L2(Ω).
Property (1.6) provides gradient estimates for v and, in view of (2.8), also for ρ.
Condition (1.6) provides a control on the relative thermo-chemical potentials vi, but it

excludes the dilute limit, i.e. situations when the mass densities vanish. This situation is
included in [Dru21], which deals with the isothermal case. We are able to replace condition
(1.6) by a degenerate one, which allows for dilute mixtures:

n

i,j=1

Mij(ρ, θ)zizj ≥ cM

n

i=1

ρi(Πz)
2
i for z ∈ Rn, ρ ∈ Rn

+, θ ∈ R+. (2.6)

This corresponds to “degenerate” diffusion coefficientsMij ; see Section 2.3 for a motivation.
Although this hypothesis seems to complicate the problem, there are two advantages. First,

it allows us to derive a gradient bound for ρ
1/2
i , and second, it helps us to avoid the bound

from ri in Hypothesis (H5). In fact, we may assume that ri = 0.

Theorem 4 (Existence, “degenerate” case). Let condition (2.6) be satisfied. Moreover,
let Hypotheses (H1)–(H4) hold for T > 0 and additionally, (ρ0i )

1/2 ∈ H1(Ω) ∩ L∞(Ω),
Mij/ρj and Mj/ρj are bounded, ri = 0 for all i, j = 1, . . . , n. Then there exists a weak
solution (ρ, θ) to (1.1)–(1.4) satisfying ρi ≥ 0, θ > 0 a.e. in ΩT , (2.1), (2.3), and the weak
formulation (2.4)–(2.5) with, respectively,

n

i=1

Mij

ρj
∇ρj ,

n

i=1

Mi

ρi
∇ρi instead of

n−1

i=1

Mij∇vj ,
n−1

i=1

Mi∇vi.

2.2 Mathematical Ideas

In this section, we describe the key ideas of the proofs to theorem 3 and 4. As mentioned
in the introduction, we want to use the entropy structure of the system.
We describe the main ideas for the first existence result. We use the mathematical

entropy

h =
n

i=1

ρi(log ρi − 1)− ρ log θ.

Introducing the relative thermo-chemical potentials vi = ∂h/∂ρi − ∂h/∂ρn = qi − qn for
i = 1, . . . , n and interpreting h as a function of (ρ′, θ), a formal computation (which is
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2 Analysis for the Maxwell–Stefan–Fourier system

made precise for an approximate scheme; see (2.20)) shows that

d

dt Ω
h(ρ′, θ)dx+

cM
2 Ω

1

n
|∇v|2 + |∇Πq|2 dx

+
Ω
κ(θ)|∇ log θ|2dx+ λ

∂Ω

θ0
θ

− 1 ds ≤
n−1

i=1 Ω
rividx. (2.7)

The bound for ∇v comes from the positive definiteness of the reduced diffusion matrix
(Mij)

n−1
i,j=1; see Lemma 6. Under suitable conditions on the heat conductivity and the

reaction rates, this so-called entropy inequality provides gradient estimates for v, log θ, θ,
and Πq, but not for the full vector q. Indeed, the relation vi = log ρi − log ρn can be
inverted yielding

ρi =
ρ0 exp(vi)
n
j=1 exp(vj)

, i = 1, . . . , n− 1, ρn = ρ0 −
n−1

j=1

ρj , (2.8)

which suggests to work with the reduced vector ρ′ = (ρ1, . . . , ρn−1). Moreover, this shows
that ρi stays bounded in some interval (0, ρ∗) and, in view of the bound for ∇v, that ∇ρ
is bounded in L2(Ω). Together with a bound for the (discrete) time derivative of ρi, we
deduce the strong convergence of ρi from the Aubin–Lions compactness lemma.
Still, there remains a difficulty. The estimate for κ(θ)1/2∇ log θ in L2(Ω) from (2.7)

is not sufficient to define κ(θ)∇θ in the weak formulation. The idea is to derive better
estimates for the temperature by using θ as a test function in the weak formulation of
(1.2). If κ(θ) ≥ cκθ

2 for some cκ > 0 and Mj/θ is assumed to be bounded, then a formal
computation, which is made precise in Lemma 7, gives

1

2

d

dt Ω
ρ0θ2dx+ cκ

Ω
θ2|∇θ|2dx− λ

∂Ω
(θ0 − θ)θds (2.9)

=

n−1

j=1 Ω

Mj

θ
θ∇vj · ∇θdx ≤ cκ

2 Ω
θ2|∇θ|2dx+ C

n−1

j=1 Ω
|∇vj |2dx.

Since ∇vj is bounded in L2, this yields uniform bounds for θ2 in L∞(0, T ;L1(Ω)) and
L2(0, T ;H1(Ω)). These estimates are sufficient to treat the term κ(θ)∇θ. The delicate
point is to choose the approximate scheme in such a way that estimates (2.7) and (2.9) can
be made rigorous; we refer to Section 2.4 for details.

2.3 Modeling

We consider an ideal fluid mixture consisting of n components with the same molar masses
in a fixed container Ω ⊂ R3. The balance equations for the partial mass densities ρi are
given by

∂tρi + div(ρivi) = ri, i = 1, . . . , n,

where vi are the partial velocities and ri the reaction rates. Introducing the total mass
density ρ = n

i=1 ρi, the barycentric velocity v = ρ−1 n
i=1 ρivi, and the diffusion fluxes

18



2.3 Modeling

Ji = ρi(vi − v), we can reformulate the mass balances as

∂tρi + div(ρiv + Ji) = ri, i = 1, . . . , n. (2.10)

By definition, we have n
i=1 Ji = 0, which means that the total mass density satisfies

∂tρ + div(ρv) = 0. We assume that the barycentric velocity vanishes, v = 0, i.e., the
barycenter of the fluid is not moving. Consequently, the total mass density is constant in
time.

The non-isothermal dynamics of the mixture is assumed to be given by the balance
equations

∂tρi + div Ji = ri, ∂tE + div Je = 0, i = 1, . . . , n,

where Je is the energy flux and E the total energy. We suppose that the diffusion fluxes
are proportional to the gradients of the thermo-chemical potentials qj and the temperature
gradient (Soret effect) and that the energy flux is linear in the temperature gradient and
the gradients of qj (Dufour effect):

Ji = −
n

j=1

Mij∇qj −Mi∇1

θ
, i = 1, . . . , n, Je = −κ(θ)∇θ −

n

j=1

Mj∇qj .

The proportionality factor κ(θ) between the heat flux and the temperature gradient is the
heat (or thermal) conductivity.

The thermo-chemical potentials and the total energy are determined in a thermodynam-
ically consistent way from the free energy

ψ(ρ, θ) = θ

n

i=1

ρi(log ρi − 1)− ρθ(log θ − 1).

For simplicity, we have set the heat capacity equal to one. The physical entropy s, the
chemical potentials µi, and the total energy E are defined by the free energy according to

s = −∂ψ

∂θ
= −

n

i=1

ρi(log ρi − 1) + ρ log θ,

µi =
∂ψ

∂ρi
= θ(log(ρi/θ) + 1), i = 1, . . . , n,

E = ψ + θs = ρθ.

We introduce the mathematical entropy h := −s and the thermo-chemical potentials qj =
µj/θ = log(ρj/θ) + 1 for j = 1, . . . , n. These definitions lead to system (1.1)–(1.2). The
Gibbs–Duhem relation yields the pressure p = −ψ+ n

i=1 ρiµi = ρθ of an ideal gas mixture.
Note that we do not need a pressure blow-up at ρ = 0 to exclude vacuum or a superlinear
growth in θ to control the temperature. Note also that, because of the nonvanishing
pressure, one may criticize the choice of vanishing barycentric velocity. In the general
case, the mass and energy balances need to be coupled with the momentum balance for
v. Such systems, but only for isothermal or stationary systems, have been analyzed in,
e.g., [BJPZ22,CJ15,DDGG20,Dru16]. The choice v = 0 is a mathematical simplification.
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2 Analysis for the Maxwell–Stefan–Fourier system

If the molar masses mi of the components are not the same, we need to modify the free
energy according to [BJPZ22, Remark 1.2]

ψ = θ
n

i=1

ρi
mi

log
ρi
mi

− 1 − cWρθ(log θ − 1),

where cW > 0 is the heat capacity. For simplicity, we have set mi = 1 and cW = 1.
We show that the Maxwell–Stefan equations

∂tρi + div Ji = ri, di = −
n

j=1

bijρiρj
Ji
ρi

− Jj
ρj

, i = 1, . . . , n, (2.11)

with bij = bji > 0 can be formulated as (1.1) for a specific choice of di, Mij , andMi. The co-
efficients bij may be interpreted as friction coefficients and can depend on (ρ, θ); see [BD21,
Section 4]. The equivalence between the Fick–Onsager and Maxwell-Stefan formulations
was thoroughly investigated in [BD23], and we adapt their proof to our nonisothermal
framework. For this, we introduce the matrix B = (Bij) satisfying Bii =

n
j=1, j ̸=i bijρj

and Bij = −bijρi for j ̸= i. It is not invertible since ρ ∈ ker(B), but its group inverse B#

exists uniquely, satisfying BB# = B#B = I − (ρ/ρ)⊗ 1 and

n

j=1

B#
ij ρj = 0,

n

j=1

B#
ji = 0 for i = 1, . . . , n. (2.12)

Furthermore, we introduce the projection P = (Pij) = I − 1⊗ (ρ/ρ) on span{ρ}⊥.
Proposition 5. Define the driving forces

di = ρi∇µi

θ
− ρi

ρθ
∇(ρθ)− 2ρiθ∇1

θ
+ qiρi∇ log θ for i = 1, . . . , n, (2.13)

where the numbers qi ∈ R satisfy n
i=1 qiρi = 0. Then (2.11) can be written as (1.1) with

Mij =

n

k=1

B#
ikρkPkj , Mi = −θ

n

k=1

B#
ikρkqk for i, j = 1, . . . , n, (2.14)

where (Mij) is symmetric and Mij and Mi satisfy (1.5).

The first three terms in the driving forces (2.13) are the same as [BD23, (4.18)] and [BD15,
(2.11)], while the last term is motivated from [TA99, (A5)]. A computation shows that

n
i=1 di = 0 which is consistent with (2.11). It is argued in [BD23] that Mij is of the form

ρi(ai(ρ, θ)δij + ρjSij(ρ, θ)) for some functions ai and Sij , and in the nondegenerate case,
one may assume that ai(ρ, θ) stays positive when ρ → ρ with ρi = 0 [BD23, (6.6)]. This
formulation motivates condition (2.6).

Proof. The proof is based on the equivalence between the Fick–Onsager and Maxwell–
Stefan formulations elaborated in [BD23, Section 4] for the isothermal case. First, the
driving forces can be formulated as

di = ρi∇µi

θ
− ρi∇ log

ρ

θ
+ qiρi∇ log θ,
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2.4 Proof of Existence – Nondegenerate Case (Theorem 3)

which shows that

n

j=1

ρj∇µj

θ
=

n

j=1

dj + ρj∇ log
ρ

θ
− qjρj∇ log θ = ρ∇ log

ρ

θ
.

Consequently, another formulation is

di = ρi∇µi

θ
− ρi

ρ

n

j=1

ρj∇µj

θ
+ qiρi∇ log θ =

n

j=1

ρiPij∇µj

θ
+ qiρi∇ log θ.

Setting R = diag(ρ1, . . . , ρn) and q∗ = diag(q1ρ1, . . . , qnρn), we obtain d = RP∇(µ/θ) +
q∗∇ log θ. On the other hand, by (2.11),

di = −
n

j=1, j ̸=i

bijρj Ji +

n

j=1, j ̸=i

bijρiJj = −
n

j=1

BijJj .

This shows that d = −BJ and hence J = −B#d = −B#RP∇(µ/θ)−B#q∗∇ log θ. Thus,
defining Mij and Mi as in (2.14), it follows that

Ji = −
n

j=1

Mij∇µj

θ
−Mi∇1

θ
.

The matrix τ = BR is symmetric and so does τ#. Moreover, by [BD23, (4.26)], B# =
P⊤Rτ#P⊤. Therefore, M = B#RP = P⊤Rτ#RP is symmetric. We deduce from the
properties (2.12) that

n

j=1

Mij =

n

j,k=1

B#
ikρk δkj − ρj

ρ
= 0,

n

i=1

Mi = −θ
n

j=1

n

i=1

B#
ij ρjqj = 0.

This finishes the proof.

2.4 Proof of Existence – Nondegenerate Case (Theorem 3)

The idea of the proof is to reformulate equations (1.1)–(1.2) in terms of the relative po-
tentials vi, to approximate the resulting equations by an implicit Euler scheme, and to
add some higher-order regularizations in space for the variables vi and w = log θ. The
de-regularization limit is based on the compactness coming from the entropy estimates and
an estimate for the temperature.

Set w0 = log θ0, ε > 0, N ∈ N, and τ = T/N > 0. To simplify the notation, we
set v = (v′, 0) = (v1, . . . , vn−1, 0) and v̄ = (v̄1, . . . , v̄n−1, 0). Let (v̄, w̄) ∈ L∞(Ω;Rn+1)
be given, and set ρi(v) = ρ0evi/ n

j=1 e
vj for i = 1, . . . , n − 1, ρn = ρ0 − n−1

i=1 ρi, and
qi = log ρi − w for i = 1, . . . , n. We define the approximate scheme

0 =
1

τ Ω
(ρi(v)− ρ̄i(v̄))ϕidx+

Ω

n−1

j=1

Mij(ρ, e
w)∇vj −Mi(ρ, e

w)e−w∇w · ∇ϕidx

(2.15)
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2 Analysis for the Maxwell–Stefan–Fourier system

+ ε
Ω

D2vi : D
2ϕi + viϕi dx−

Ω
ri(Πq, ew)ϕidx,

0 =
1

τ Ω
(E − Ē)ϕ0dx+

Ω
κ(θ)∇θ +

n−1

j=1

Mj(ρ, e
w)∇vj · ∇ϕ0dx (2.16)

− λ
∂Ω

(θ0 − θ)ϕ0ds+ ε
Ω
ew D2w : D2ϕ0 + |∇w|2∇w · ∇ϕ0 dx

+ ε
Ω
(ew0 + ew)(w − w0)ϕ0dx

for test functions ϕi ∈ H2(Ω), i = 0, . . . , n − 1. Here, D2u is the Hessian matrix of the
function u, “:” denotes the Frobenius matrix product, and E = ρ0θ, Ē = ρ0θ̄. The lower-
order regularization ε(ew0 + ew)(w−w0) yields an L2(Ω) estimate for w. Furthermore, the
higher-order regularization guarantees that vi, w ∈ H2(Ω) → L∞(Ω), while the W 1,4(Ω)
regularization term for w allows us to estimate the higher-order terms when using the test
function e−w0 − e−w.

Step 1: solution of the linearized approximate problem. In order to define the fixed-
point operator, we need to solve a linearized problem. To this end, let y∗ = (v∗, w∗) ∈
W 1,4(Ω;Rn) and σ ∈ [0, 1] be given. We want to find the unique solution y = (v′, w) ∈
H2(Ω;Rn) to the linear problem

a(y, ϕ) = σF (ϕ) for all ϕ = (ϕ0, . . . , ϕn−1) ∈ H2(Ω;Rn), (2.17)

where

a(y, ϕ) =
Ω

n−1

i,j=1

Mij(ρ
∗, ew

∗
)∇vj · ∇ϕidx+

Ω
κ(ew

∗
)ew

∗∇w · ∇ϕ0dx

+ ε
Ω

n−1

i=1

D2vi : D
2ϕi + viϕi

+ ε
Ω
ew

∗
D2w : D2ϕ0 + |∇w∗|2∇w · ∇ϕ0 + ε

Ω
(ew0 + ew

∗
)wϕ0dx,

F (ϕ) = −1

τ Ω

n−1

i=1

(ρ∗i − ρ̄i)ϕidx− 1

τ Ω
(E∗ − Ē)ϕ0dx+ λ

∂Ω
(ew0 − ew

∗
)ϕ0dx

+
Ω

n−1

i=1

Mi(ρ
∗, ew

∗
)e−w∗∇w∗ · ∇ϕidx−

Ω

n−1

j=1

Mj(ρ
∗, ew

∗
)∇v∗j · ∇ϕ0dx

+
Ω

n

i=1

ri(Πq
∗, ew

∗
)ϕidx+ ε

Ω
(ew0 + ew

∗
)w0ϕ0dx

and ρ∗i = ρi(v
∗), ρ∗ = n

i=1 ρ
∗
i , E

∗ = ρ0ew
∗
. By Hypothesis (H3) and the generalized

Poincaré inequality [Tem97, Chap. 2, Sec. 1.4], we have

a(y, y) ≥ ε
Ω

|D2v|2 + |v|2 dx+ ε
Ω
ew

∗
(|D2w|2 + w2)dx ≥ εC(∥v∥2H2(Ω) + ∥w∥2H2(Ω)).
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2.4 Proof of Existence – Nondegenerate Case (Theorem 3)

Thus, a is coercive. Moreover, a and F are continuous on H2(Ω;Rn). The Lax–Milgram
lemma shows that (2.17) possesses a unique solution (v′, w) ∈ H2(Ω;Rn).

Step 2: solution of the approximate problem. The previous step shows that the fixed-
point operator S : W 1,4(Ω;Rn) × [0, 1] → W 1,4(Ω;Rn), S(y∗, σ) = y, where y = (v′, w)
solves (2.17), is well defined. It holds that S(y, 0) = 0, S is continuous, and since S
maps to H2(Ω;Rn), which is compactly embedded into W 1,4(Ω;Rn), it is also compact. It
remains to determine a uniform bound for all fixed points y of S(·, σ), where σ ∈ [0, 1].
Let y be such a fixed point. Then y ∈ H2(Ω;Rn) solves (2.17) with (v∗, w∗) replaced by
y = (v′, w). With the test functions ϕi = vi for i = 1, . . . , n− 1 and ϕ0 = e−w0 − e−w (we
need this test function since ϕ0 = −e−w does not allow us to control the lower-order term),
we obtain

0 =
σ

τ Ω

n−1

i=1

(ρi(v)− ρi(v̄))vidx+
σ

τ Ω
(E − Ē)(−e−w)dx+

σ

τ Ω
(E − Ē)e−w0dx

+
Ω

n−1

i,j=1

Mij∇vi · ∇vjdx+
Ω
κ(ew)ew∇w · ∇(−e−w)dx− σ

Ω

n−1

i=1

rividx

− σ
Ω

n−1

j=1

Mje
−w∇w · ∇vjdx+ σ

Ω

n−1

j=1

Mj∇vj · ∇(−e−w)dx

− σλ
∂Ω

(ew0 − ew)(e−w0 − e−w)dx+ ε
Ω

n−1

i=1

|D2vi|2 + v2i dx

+ ε
Ω
(ew0 + ew)(w − σw0)(e

−w0 − e−w)dx

+ ε
Ω

|D2w|2−D2w : ∇w ⊗∇w + |∇w|4 dx

=: I1 + · · ·+ I12.

We see immediately that I7 + I8 = 0. Furthermore,

I1 + I2 =
σ

τ Ω

n−1

i=1

(ρi − ρ̄i)
∂h

∂ρi
+ (θ − θ̄)

∂h

∂θ
dx.

The function (ρ′, θ) → h(ρ′, θ) = n
i=1 ρi(log ρi − 1) − ρ0 log θ with ρn = ρ0 − n−1

i=1 ρi is
convex, since the second derivatives are given by

∂2h

∂ρ2i
=

1

ρi
+

1

ρn
,

∂2h

∂θ2
=

ρ0

θ2
,

∂2h

∂ρi∂θ
= 0,

∂2h

∂ρi∂ρj
=

1

ρn
,

hence we can conclude in the same way as in [JS13] that the Hessian is positive definite by
Sylvester’s criterion. This shows that

h(ρ′, θ)− h(ρ̄′, θ̄) ≤
n−1

i=1

∂h

∂ρi
(ρ′, θ)(ρi − ρ̄i) +

∂h

∂θ
(ρ′, θ)(θ − θ̄)
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and consequently,

I1 + I2 ≥ σ

τ Ω
h(ρ′, θ)− h(ρ̄′, θ̄) dx.

For the estimate of I4, we need the following lemma.

Lemma 6. Let the matrix (Mij) ∈ Rn×n satisfy (1.5) and (1.6). Then

n−1

i,j=1

Mij(zi − zn)(zj − zn) ≥ cM
n

n−1

i=1

|zi − zn|2.

Proof. We use (1.5) and then (1.6) to find for any z ∈ Rn that

n−1

i,j=1

Mij(zi − zn)(zj − zn) =
n

i,j=1

Mijzizj ≥ cM |Πz|2. (2.18)

Therefore, we want to prove

cM |Πz|2 ≥ cM
n

n

i=1

(zi − zn)
2 . (2.19)

To prove this, we first recall

|Πz|2 =
n

i=1

zi − 1

n

n

j=1

zj

2

.

We observe with z̄ = 1
n

n
j=1 zj that the inequality we want to prove is equivalent to

n

i=1

zi − 1

n

n

j=1

zj

2

− 1

n

n−1

i=1

(zi − zn)
2 ≥ 0

⇔
n

i=1

z2i − 2ziz̄ + z̄2 − 1

n

n

i=1

z2i − 2znzi + z2n ≥ 0

⇔
n

i=1

z2i − nz̄2 − 1

n

n

i=1

z2i + 2
1

n

n

i=1

znzi − z2n ≥ 0

⇔n− 1

n

n

i=1

z2i −
1

n

n

i=1

zi

2

+ 2
1

n

n

i=1

znzi − z2n ≥ 0

⇔n− 1

n

n−1

i=1

z2i −
1

n

n

i=1

zi − zn

2

≥ 0

⇔
n−1

i=1

z2i ≥ 1

n− 1

n−1

i=1

zi

2

.
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2.4 Proof of Existence – Nondegenerate Case (Theorem 3)

Since x → x2 is a convex function, Jensen inequality implies

(n− 1)
n−1
i=1 zi
n− 1

2

≤ (n− 1)
n−1
i=1 z2i
n− 1

=
n−1

i=1

z2i ,

we conclude that (2.19) holds.

By Lemma 6 and Hypothesis (H5),

I4 =
1

2 Ω

n

i,j=1

Mij∇qi · ∇qj +
n−1

i,j=1

Mij∇vi · ∇vj dx

≥ cM
2 Ω

|∇Πq|2dx+
cM
2n Ω

|∇v|2dx,

I6 = σ
Ω

n

i=1

riqidx ≥ σcr
Ω
|Πq|2dx.

Furthermore, we observe

I11 = ε
Ω
(ew0 + ew)(w − σw0)(e

−w0 − e−w)dx

= 2ε
Ω
(w − σw0) sinh(w − w0)dx.

Rewriting the integrand and using cosh(x) ≥ x for all x ∈ R, we find

(w − σw0) sinh(w − w0) = (w − w0)(w − σw0)
1

0
cosh(s(w − w0))ds

= (w2 − σw0w − w0w + σw2
0)

1

0
cosh(s(w − w0))ds

≥ 1

2
w2 +

1

2
w2 − (σ + 1)w0w

sinh(w − w0)

w − w0
.

Since sinh(w − w0)/(w − w0) ≥ 1, the lower bound of the right hand side depends on the
sign of 1/2w2 − (σ + 1)w0w. Since σ and w0 are nonnegative, we find

1

2
w2 − (σ + 1)w0w < 0 ⇒ 0 < w ≤ 2(σ + 1)w0.

Therefore, it is sufficient to prove that the function

g : [0, 4w0]× [0, 1] → R

(w, σ) → 1

2
w2 − (σ + 1)w0w

sinh(w − w0)

w − w0
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attains a minimum. However, g is a continuous function on a compact set and therefore has
a minimum, i.e. it exists (ŵ, σ̂) such that g(ŵ, σ̂) ≤ g(w, σ) for all (w, σ) ∈ [0, 4w0]× [0, 1].
Hence, we conclude

I11 ≥ 1

2
w2 + g(ŵ, σ̂).

Next, we have

I5 =
Ω
κ(ew)|∇w|2dx,

I9 = 2σλ
∂Ω

(cosh(w0 − w)− 1)ds ≥ 0,

I12 =
ε

2 Ω
|D2w|2 + |D2w −∇w ⊗∇w|2 + |∇w|4 dx.

Summarizing these estimates and applying the generalized Poincaré inequality, we arrive
at the discrete entropy inequality

σ

τ Ω
h(ρ′, θ) + e−w0E dx+

cM
2 Ω

1

n
|∇v|2 + |∇Πq|2 + σcr|Πq|2 dx

+ εC ∥v∥2H2(Ω) + ∥w∥2H2(Ω) + ∥w∥4W 1,4(Ω) +
Ω
κ(ew)|∇w|2dx

≤ σ

τ Ω
h(ρ̄′, θ̄) + e−w0Ē dx+ 2ε∥w0∥2L2(Ω) + C(w0), (2.20)

where C(w0) > 0 is the constant, coming from the estimate of I11. We observe that the left-
hand side is bounded from below since −ρ0 log θ + e−w0E = ρ0(− log θ + θ/θ0) is bounded
from below. The bound for Πq implies an L2(Ω) bound for v since |v|2 ≤ n|Πq|2; see the
proof of Lemma 6.
Estimate (2.20) gives a uniform bound for (v′, w) in H2(Ω;Rn) and consequently also

in W 1,4(Ω; Rn), which proves the claim. We infer from the Leray–Schauder fixed-point
theorem that there exists a solution (v′, w) to (2.15)–(2.16).

Step 3: temperature estimate. We need a better estimate for the temperature.

Lemma 7. Let (ρ, w) be a solution to (2.15)–(2.16) and set θ = ew. Then there exists a
constant C > 0 independent of ε and τ such that

1

τ Ω
ρ0θ2dx+

1

2 Ω
κ(θ)|∇θ|2dx ≤ C +

1

τ Ω
ρ0θ̄2dx+ C

Ω
|∇v|2dx.

Proof. We use the test function θ in (2.16). Observing that (E − Ē)θ = ρ0(θ − θ̄)θ ≥
(ρ0/2)(θ2 − θ̄2) and that κ(θ) ≥ cκ(1 + θ2) by Hypothesis (H4), we find that

1

2τ Ω
ρ0(θ2 − θ̄2)dx+

1

2 Ω
κ(θ)|∇θ|2dx+

cκ
2 Ω

θ2|∇θ|2dx− λ
∂Ω

(θ0 − θ)θdx

≤ −
n−1

j=1 Ω
Mj∇vj · ∇θdx− ε

Ω
θ(D2 log θ : D2θ + |∇ log θ|2∇ log θ · ∇θ)dx
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− ε
Ω
(θ0 + θ)(log θ − log θ0)θdx

=: J1 + J2 + J3. (2.21)

Since Mj/θ is assumed to be bounded,

J1 ≤ cκ
2 Ω

θ2|∇θ|2dx+ C
n−1

j=1 Ω
|∇vj |2dx.

Furthermore,

J2 = −ε
Ω

− 1

θ
∇θ ·D2θ∇θ + |D2θ|2 + 1

θ2
|∇θ|4 dx

= −ε

2 Ω
|D2θ|2 + 1

θ2
|∇θ|4 + D2θ − 1

θ
∇θ ⊗∇θ

2

dx ≤ 0.

The last integral J3 is bounded since −θ2 log θ is the dominant term. The last term on
the left-hand side of (2.21) is bounded from below by −(λ/2) ∂Ω θ20dx, which finishes the
proof.

Remark 8. Better estimates can be derived if we assume that κ(θ) ≥ cκ(1 + θα+1) for
α ∈ (1, 2). Indeed, using θα as a test function in (2.16), we find that

1

τ Ω
ρ0(θ − θ̄)θαdx+ αcκ

Ω
θ2α|∇θ|2dx− λ

∂Ω
(θ0 − θ)θαdx

≤ −α

n−1

j=1 Ω
Mjθ

α−1∇vj · ∇θdx− ε
Ω
(θ0 + θ)(log θ − log θ0)θ

αdx

− ε
Ω
θ D2 log θ : D2θα + |∇ log θ|2∇ log θ · ∇θα dx

=: J4 + J5 + J6. (2.22)

A tedious but straightforward computation shows that J6 ≥ 0 if α ∈ (1, 2). Furthermore,
since Mj/θ is bounded,

J4 ≤ αcκ
2 Ω

θ2α|∇θ|2dx+ C

n−1

j=1 Ω
|∇vj |2dx.

The first integral on the right-hand side is controlled by the left-hand side of (2.22). This
yields a bound for θα+1 ∈ L∞(0, T ;L1(Ω)) ∩ L2(0, T ;H1(Ω)) ⊂ L8/3(ΩT ) (see Lemma 10)
and consequently θ ∈ L8(α+1)/3(ΩT ), which is better than the result in Lemma 10.

Step 4: uniform estimates. Let ((v′)k, wk) be a solution to (2.15)–(2.16) for given
(v′)k−1 = v̄′ and wk−1 = w̄, where k ∈ N. We set

θk = exp(wk), ρki = exp(wk + qki ) =
ρ0ev

k
i

n
j=1 e

vkj
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2 Analysis for the Maxwell–Stefan–Fourier system

for i = 1, . . . , n − 1, and Ek = ρ0θk. We introduce piecewise constant functions in time.

For this, let ρ
(τ)
i (x, t) = ρki (x), θ

(τ)(x, t) = θk(x), v
(τ)
i (x, t) = vki (x), q

(τ)
i = log(ρ

(τ)
i /θ(τ)),

and E(τ)(x, t) = Ek(x) for x ∈ Ω, t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N . At time t = 0, we set

ρ
(τ)
i (x, 0) = ρ0i (x) and θ(τ)(x, 0) = θ0(x) for x ∈ Ω. Furthermore, we introduce the shift

operator (στρ
(τ)
i )(x, t) = ρk−1

i (x) for x ∈ Ω, t ∈ ((k−1)τ, kτ ]. Let (ρ′)(τ) = (ρ
(τ)
1 , . . . , ρ

(τ)
n−1).

Then ((ρ′)(τ), θ(τ)) solves (see (2.15)–(2.16))

0 =
1

τ

T

0 Ω
(ρ

(τ)
i − στρ

(τ)
i )ϕidxdt (2.23)

+
T

0 Ω

n−1

j=1

Mij(ρ
(τ), θ(τ))∇v

(τ)
j +Mi(ρ

(τ), θ(τ))∇ 1

θ(τ)
· ∇ϕidxdt

+ ε
T

0 Ω
D2v

(τ)
i : D2ϕi + v

(τ)
i ϕi dxdt−

T

0 Ω
ri(Πq

(τ), θ(τ))ϕidxdt,

0 =
1

τ

T

0 Ω
(E(τ) − στE

(τ))ϕ0dxdt− λ
T

0 ∂Ω
(θ0 − θ(τ))ϕ0dsdt (2.24)

+
T

0 Ω
κ(θ(τ))∇θ(τ) +

n−1

j=1

Mj(ρ
(τ), θ(τ))∇v

(τ)
j · ∇ϕ0dxdt

+ ε
T

0 Ω
θ(τ) D2 log θ(τ) : D2ϕ0 + |∇ log θ(τ)|2∇ log θ(τ) · ∇ϕ0 dxdt

+ ε
T

0 Ω
(θ0 + θ(τ))(log θ(τ) − log θ0)ϕ0dxdt.

The discrete entropy inequality (2.20) and the L∞ bound for ρ
(τ)
i imply the following

uniform bounds:

∥ρ(τ)i ∥L∞(0,T ;L∞(Ω)) + ∥θ(τ)∥L∞(0,T ;L1(Ω)) ≤ C,

∥v(τ)i ∥L2(0,T ;H1(Ω)) + ∥κ(θ(τ))1/2∇ log θ(τ)∥L2(ΩT ) ≤ C,

ε1/2∥v(τ)i ∥L2(0,T ;H2(Ω)) + ε1/2∥ log θ(τ)∥L2(0,T ;H2(Ω)) ≤ C,

ε1/4∥ log θ(τ)∥L4(0,T ;W 1,4(Ω)) ≤ C,

for all i = 1, . . . , n− 1, where C > 0 is independent of ε and τ . Hypothesis (H4) yields

∥∇θ(τ)∥L2(ΩT ) + ∥∇ log θ(τ)∥L2(ΩT ) ≤ C. (2.25)

Lemma 9 (Estimates for the temperature). There exists a constant C > 0 which does not
depend on ε or τ such that

∥θ(τ)∥L2(0,T ;H1(Ω)) + ∥ log θ(τ)∥L2(0,T ;H1(Ω)) ≤ C. (2.26)

Proof. The entropy inequality shows that − log θ(τ)+θ(τ) is uniformly bounded from above,
which shows that | log θ(τ)| is uniformly bounded too and hence, log θ(τ) is bounded in
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L∞(0, T ;L1(Ω)). Together with the L∞(0, T ;L1(Ω)) bound for θ(τ), estimate (2.25), and
the Poincaré–Wirtinger inequality, we find that

∥θ(τ)∥L2(ΩT ) ≤ C∥θ(τ)∥L2(0,T ;L1(Ω)) + ∥∇θ(τ)∥L2(ΩT ) ≤ C,

∥ log θ(τ)∥L2(ΩT ) ≤ C∥ log θ(τ)∥L2(0,T ;L1(Ω)) + ∥∇ log θ(τ)∥L2(ΩT ) ≤ C,

from which we conclude the proof.

We proceed by proving more uniform estimates. Because of the L2(ΩT ) bound of ∇v
(τ)
i

and

T

0 Ω
|∇ρ

(τ)
i |2dxdt =

T

0 Ω
|∇ρ0|2 exp(v

(τ)
i )

n
j=1 exp(v

(τ)
j )

2

dxdt

+
T

0 Ω

exp(v
(τ)
i )∇v

(τ)
i

n
j=1 exp(v

(τ)
j )

− exp(v
(τ)
i ) n

j=1 exp(v
(τ)
j )∇v

(τ)
j

( n
j=1 exp(v

(τ)
j ))2

2

dxdt

≤
T

0 Ω
|∇ρ0|2dxdt+ 2

T

0 Ω
|∇v|2dxdt ≤ C, (2.27)

(∇ρ
(τ)
i ) is bounded in L2(ΩT ) and, taking into account the L∞ bound for ρ

(τ)
i , the fam-

ily (ρ
(τ)
i ) is bounded in L2(0, T ;H1(Ω)). By Lemma 7 and Hypothesis (H4), (∇(θ(τ))2)

is bounded in L2(ΩT ). Therefore, since ((θ(τ))2) is bounded in L1(ΩT ), the Poincaré–
Wirtinger inequality gives a uniform bound for (θ(τ))2 in L2(0, T ;H1(Ω)). These bounds
yields higher integrability of θ(τ), as shown in the following lemma.

Lemma 10. There exists C > 0 independent of ε and τ such that (θ(τ)) is bounded in
L16/3(ΩT ).

Proof. We deduce from the bound for (θ(τ))2 in L2(0, T ;H1(Ω)) ⊂ L2(0, T ;L6(Ω)) that
(θ(τ)) is bounded in L4(0, T ;L12(Ω)). By interpolation with 1/r = α/12 + (1 − α)/2 and
rα = 4,

∥θ(τ)∥rLr(ΩT ) =
T

0
∥θ(τ)∥rLr(Ω)dt ≤

T

0
∥θ(τ)∥rαL12(Ω)∥θ(τ)∥r(1−α)

L2(Ω))
dt

≤ ∥θ(τ)∥r(1−α)
L∞(0,T ;L2(Ω))

T

0
∥θ(τ)∥4L12(Ω)dt ≤ C.

The solution of 1/r = α/12 + (1− α)/2 and rα = 4 is α = 3/4 and r = 16/3.

Lemma 11. There exists C > 0 independent of ε and τ such that

τ−1∥ρ(τ)i − στρ
(τ)
i ∥L2(0,T ;H2(Ω)′) + τ−1∥θ(τ) − στθ

(τ)∥L16/15(0,T ;W 2,16(Ω)′) ≤ C. (2.28)

Proof. Let ϕ0 ∈ L16(0, T ;W 2,16(Ω)), ϕ1, . . . , ϕn−1 ∈ L2(0, T ;H2(Ω)) and set M
(τ)
i =

Mi(ρ
(τ), θ(τ)), r

(τ)
i = ri(ρ

(τ), θ(τ)) for i = 1, . . . , n − 1. It follows from (2.23)–(2.24) and
Hypotheses (H3)–(H5) that

1

τ

T

0 Ω
(ρ

(τ)
i − στρ

(τ)
i )ϕidxdt ≤ C∥∇v(τ)∥L2(ΩT )∥∇ϕ∥L2(ΩT )
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+

n−1

i=1

∥M (τ)
i /θ(τ)∥L∞(ΩT )∥∇ log θ(τ)∥L2(ΩT )∥∇ϕ∥L2(ΩT )

+ ε∥v(τ)∥L2(0,T ;H2(Ω))∥ϕ∥L2(0,T ;H2(Ω)) + ∥r(τ)∥L2(ΩT )∥ϕ∥L2(ΩT )

≤ C∥ϕ∥L2(0,T ;H2(Ω)),

and

1

τ

T

0 Ω
(E(τ) − στE

(τ))ϕ0dxdt

≤ C + C∥θ(τ)∥L8/3(ΩT )∥∇(θ(τ))2∥L2(ΩT )∥∇ϕ0∥L8(ΩT )

+
n−1

j=1

∥M (τ)
j /θ(τ)∥L∞(ΩT )∥θ(τ)∥L8/3(ΩT )∥∇v

(τ)
j ∥L2(ΩT )∥∇ϕ0∥L8(ΩT )

+ λ∥θ0 − θ(τ)∥L8/7(0,T ;L8/7(∂Ω))∥ϕ0∥L8(0,T ;L8(∂Ω))

+ ε∥θ(τ)∥L3(ΩT )∥ log θ(τ)∥L2(0,T ;H2(Ω))∥D2ϕ0∥L6(ΩT )

+ ε∥θ(τ)∥L16/3(ΩT )∥∇ log θ(τ)∥3L4(ΩT )∥∇ϕ0∥L16(ΩT )

+ εC 1 + ∥θ(τ) log θ(τ)∥L2(ΩT ) ∥ϕ0∥L2(ΩT ) ≤ C∥ϕ0∥L16(0,T ;W 2,16(Ω)).

Since |E(τ) − στE
(τ)| = ρ0|θ(τ) − στθ

(τ)| ≥ ρ∗|θ(τ) − στθ
(τ)|, this concludes the proof.

Step 5: limit (ε, τ) → 0. Estimates (2.27)–(2.28) allow us to apply the Aubin–Lions
lemma in the version of [DJ12]. Thus, there exist subsequences that are not relabeled such
that as (ε, τ) → 0,

ρ
(τ)
i → ρi, θ(τ) → θ strongly in L2(ΩT ), i = 1, . . . , n− 1. (2.29)

The L∞(ΩT ) bound for (ρ
(τ)
i ) and the L16/3(ΩT ) bound for (θ(τ)) imply the stronger con-

vergences

ρ
(τ)
i → ρi strongly in Lr(ΩT ) for all r < ∞,

θ(τ) → θ strongly in Lη(ΩT ) for all η < 16/3.

The uniform bounds also imply that, up to subsequences,

ρ
(τ)
i ⇀ ρi weakly in L2(0, T ;H1(Ω)),

θ(τ) ⇀ θ weakly in L2(0, T ;H1(Ω)),

∇v
(τ)
i ⇀ ∇vi weakly in L2(0, T ;L2(Ω)),

τ−1(ρ
(τ)
i − στρ

(τ)
i ) ⇀ ∂tρi weakly in L2(0, T ;H2(Ω)′),

τ−1(θ(τ) − στθ
(τ)) ⇀ ∂tθ weakly in L16/15(0, T ;W 2,16(Ω)′),

where i = 1, . . . , n− 1 and j = 1, . . . , n. Moreover, as (ε, τ) → 0,

ε log θ(τ) → 0, εv
(τ)
i → 0 strongly in L2(0, T ;H2(Ω)).
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At this point, vi is any limit function; we prove below that vi = log(ρi/ρn).

We deduce from the linearity and boundedness of the trace operator H1(Ω) → H1/2(∂Ω)
that

θ(τ) ⇀ θ weakly in L2(0, T ;H1/2(∂Ω)).

Using the compact embedding H1/2(∂Ω) → L2(∂Ω), this gives

θ(τ) → θ strongly in L2(0, T ;L2(∂Ω)).

The a.e. convergence of ρi for i = 1, . . . , n− 1 implies that, up to a subsequence,

ρ(τ)n = ρ0 −
n−1

i=1

ρ
(τ)
i → ρ0 −

n−1

i=1

ρi =: ρn a.e. in ΩT .

Next, we prove that θ and ρi are positive a.e. We know already that θ(τ) and ρ
(τ)
i

are positive in ΩT . It follows from the L∞(0, T ;L1(Ω)) bound for log θ(τ) and the a.e.
pointwise convergence θ(τ) → θ that log θ is finite a.e. and therefore θ > 0 a.e. in ΩT . For
the positivity of ρi, we observe first that there exists a constant C(n) > 0 such that for all
z1, . . . , zn−1 ∈ R,

log 1 +
n−1

i=1

ezi ≤ C(n) 1 +
n−1

i=1

|zi| .

Since ρ
(τ)
i = ρ0 exp(v

(τ)
i )/ n

j=1 exp(v
(τ)
j ), ρ0 ≥ ρ∗, and v

(τ)
i is bounded in L1(Ω), this

implies for sufficiently small δ > 0 that

meas (x, t) : ρ
(τ)
i (x, t) ≤ δ = meas (x, t) : − log

ρ0(x) exp(v
(τ)
i (x, t))

n
j=1 exp(v

(τ)
j (x, t))

≥ − log δ

≤ meas (x, t) :

n

j=1

|v(τ)j (x, t)| ≥ C(1− log δ + log ρ∗)

≤ C

− log δ

T

0 Ω

n

i=1

|v(τ)i (x, t)|dxdt ≤ C

− log δ
, i = 1, . . . , n− 1.

We infer from

meas lim inf
(ε,τ)→0

{(x, t) : ρ(τ)i (x, t) ≤ δ} ≤ lim inf
(ε,τ)→0

meas{(x, t) : ρ(τ)i (x, t) ≤ δ}

≤ lim sup
(ε,τ)→0

meas{(x, t) : ρ(τ)i (x, t) ≤ δ} ≤ meas lim sup
(ε,τ)→0

{(x, t) : ρ(τ)i (x, t) ≤ δ} ,

and the pointwise convergence ρ
(τ)
i → ρi that in fact equality holds in the previous chain

of inequalities, which means that

meas{(x, t) : ρi(x, t) ≤ δ} = lim
(ε,τ)→0

meas{(x, t) : ρ(τ)i (x, t) ≤ δ} ≤ C

− log δ
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and ρi > 0 a.e. in the limit δ → 0, where i = 1, . . . , n − 1. We prove in a similar way for

ρ
(τ)
n = ρ0/( n

j=1 exp(v
(τ)
i )) > 0 that ρn > 0 a.e.

As ρ
(τ)
i converges a.e. to an a.e. positive limit, we have

v
(τ)
i = log ρ

(τ)
i − log ρ(τ)n → log ρi − log ρn a.e. in ΩT .

Thus vi = log ρi − log ρn. Furthermore, q
(τ)
i = log ρ

(τ)
i − log θ(τ) → log ρi − log θ =: qi and

(Πq(τ))i = v
(τ)
i − 1

n

n

j=1

v
(τ)
j → vi − 1

n

n

j=1

vj =: Ui a.e. in ΩT .

This shows that vi = qi − qn and Ui = (qi − qn) − n
j=1(qj − qn)/n = (Πq)i. The a.e.

convergence of (Πq(τ)) and the boundedness of ri by Hypothesis (H5) lead to

ri(Πq
(τ), θ(τ)) → ri(Πq, θ) strongly in Lη(ΩT ), η < ∞.

By assumption, Mij(ρ
(τ), θ(τ)) and Mj(ρ

(τ), θ(τ))/θ(τ) are bounded. Then the strong
convergences imply that these sequences are converging in Lq(ΩT ) for q < ∞, and the
limits can be identified. Thus,

Mij(ρ
(τ), θ(τ)) → Mij(ρ, θ) strongly in Lq(ΩT ),

Mj(ρ
(τ), θ(τ))/θ(τ) → Mj(ρ, θ)/θ strongly in Lq(ΩT ) for all q < ∞.

This shows that

Mj(ρ
(τ), θ(τ)) =

1

θ(τ)
Mj(ρ

(τ), θ(τ))θ(τ) → 1

θ
Mj(ρ, θ)θ = Mj(ρ, θ)

strongly in Lη(ΩT ) for η < 16/3. Moreover, taking into account (2.26), we have

Mj(ρ
(τ), θ(τ))∇ 1

θ(τ)
= −Mj(ρ

(τ), θ(τ))

θ(τ)
∇ log θ(τ) ⇀

Mj(ρ, θ)

θ
∇ log θ

weakly in Lη(ΩT ) for η < 8/3. Finally, by the weak convergence of (∇v(τ)) in L2(ΩT ),

Mij(ρ
(τ), θ(τ))∇v

(τ)
j ⇀ Mij(ρ, θ)∇vj weakly in Lη(ΩT ), η < 2,

Mj(ρ
(τ), θ(τ))∇v

(τ)
j ⇀ Mj(ρ, θ)∇vj weakly in Lη(ΩT ), η < 16/11,

Mj(ρ
(τ), θ(τ))∇ 1

θ(τ)
⇀ − 1

θ2
Mj(ρ, θ)∇θ weakly in Lη(ΩT ), η < 8/7.

These convergences allow us to perform the limit (ε, τ) → 0. Finally, we can show

as in [Jün15, p. 1980f] that the linear interpolant ρ
(τ)
i of ρ

(τ)
i and the piecewise constant

function ρ
(τ)
i converge to the same limit, which leads to ρ0i = ρ

(τ)
i (0) ⇀ ρi(0) weakly in

H2(Ω)′. Thus, the initial datum ρi(0) = ρ0i is satisfied in the sense of H2(Ω)′. Similarly,
(ρθ)(0) = ρ0θ0 in the sense of W 2,16(Ω)′. This finishes the proof.
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2.5 Proof of Existence – Degenerate Case (Theorem 4)

The proof of Theorem 4 is very similar to that one from Section 2.4, therefore we present
only the changes in the proof. Steps 1–3 are the same as in the previous section. Only the
estimate of I4 is different:

I4 =
Ω

n−1

i,j=1

Mij∇vi · ∇vjdx =
Ω

n

i,j=1

Mij∇qi · ∇qjdx ≥ cM
n Ω

n

i=1

ρi|∇(Πq)i|2dx.

This gives a uniform estimate for Ω ρ
(τ)
i |∇(Πq(τ))i|2dx. We claim that it yields a bound for

∇(ρ
(τ)
i )1/2 in L2(ΩT ). Indeed, we insert the definitions q

(τ)
i = log(ρ

(τ)
i /θ(τ)) and (Πq(τ))i =

q
(τ)
i − n

j=1 q
(τ)
j /n = log ρ

(τ)
i − n

j=1(log ρ
(τ)
j )/n to find that

n

i=1

ρi|∇(Πq(τ))i|2 =
n

i=1

ρ
(τ)
i ∇ log ρ

(τ)
i − 1

n

n

j=1

∇ log ρ
(τ)
j

2

=

n

i=1

ρ
(τ)
i |∇ log ρ

(τ)
i |2 − 2

n
∇ρ0 ·

n

j=1

∇ log ρ
(τ)
j +

ρ0

n2

n

j=1

∇ log ρ
(τ)
j

2

≥ 4
n

i=1

|∇(ρ
(τ)
i )1/2|2 − 4|∇(ρ0)1/2|2.

This shows the claim.

In contrast to Step 4 in Section 2.4, we do not have a uniform bound for v
(τ)
i in L2(0, T ;

H1(Ω)) but a bound for (ρ
(τ)
i )1/2. We deduce from the L∞ bound for ρ

(τ)
i a bound for

ρ
(τ)
i in L2(0, T ;H1(Ω)), using ∇ρ

(τ)
i = (ρ

(τ)
i )1/2∇(ρ

(τ)
i )1/2. This bound changes the proof

of estimate (2.28) for the time translates. In fact, we just have to replace the estimations

involving ∇v
(τ)
j :

T

0 Ω

n−1

j=1

M
(τ)
ij ∇v

(τ)
j · ∇ϕjdxdt dxdt =

T

0 Ω

n

j=1

M
(τ)
ij ∇ log ρ

(τ)
j · ∇ϕi dxdt

≤
n

j=1

∥M (τ)
ij /ρ

(τ)
j ∥L∞(ΩT )∥∇ρ

(τ)
j ∥L2(ΩT )∥∇ϕi∥L2(ΩT ),

T

0 Ω

n−1

j=1

M
(τ)
j ∇v

(τ)
j · ∇ϕ0 dxdt =

T

0 Ω

n

j=1

M
(τ)
j ∇ log ρ

(τ)
j · ∇ϕ0 dxdt

≤
n

j=1

∥M (τ)
ij /ρ

(τ)
j ∥L∞(ΩT )∥∇ρ

(τ)
j ∥L2(ΩT )∥∇ϕ0∥L2(ΩT ).

This yields (2.28).

The L2(0, T ;H1(Ω)) estimate for ρ
(τ)
i and (2.28) allow us to apply the Aubin–Lions

lemma in the version of [DJ12] yielding, up to a subsequence, the strong convergence
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2 Analysis for the Maxwell–Stefan–Fourier system

ρ
(τ)
i → ρi in L2(ΩT ) as (ε, τ) → 0 and, because of the boundedness of ρ

(τ)
i , in Lr(ΩT ) for

any r < ∞.
It remains to perform the limit (ε, τ) → 0 in the terms involving v(τ),

n

j=1

Mij(ρ
(τ), θ(τ))∇v

(τ)
j ,

n

i=1

Mi(ρ
(τ), θ(τ))∇v

(τ)
i , εθ(τ)(D2v

(τ)
j + v

(τ)
j ).

The last term is easy to treat: The bound for
√
εv

(τ)
j in L2(0, T ;H2(Ω)) and the strong

convergence of θ(τ) imply that εθ(τ)(D2v
(τ)
j + v

(τ)
j ) → 0 strongly in L2(ΩT ). Since Mij/ρ

(τ)
j

is bounded by assumption, we have Mij(ρ
(τ), θ(τ))/ρ

(τ)
j → Mij(ρ, θ)/ρj strongly in Lr(ΩT )

for r < ∞. Hence, using (1.5) and the weak convergence of (∇ρ
(τ)
j ) in L2(ΩT ),

n−1

j=1

Mij(ρ
(τ), θ(τ))∇v

(τ)
j =

n

j=1

Mij(ρ
(τ), θ(τ))

ρ
(τ)
j

∇ρ
(τ)
j ⇀

n

j=1

Mij(ρ, θ)

ρj
∇ρj

weakly in Lη(ΩT ) for η < 2. Since (Mij/ρ
(τ)
j )∇ρ

(τ)
j is bounded in L2(ΩT ), this convergence

also holds in L2(ΩT ). The limit in the second term n
i=1Mi(ρ

(τ), θ(τ))∇v
(τ)
i is performed

in an analogous way, leading to

n

i=1

Mi(ρ
(τ), θ(τ))∇v

(τ)
i =

n

i=1

Mi(ρ
(τ), θ(τ))

ρ
(τ)
i

∇ρ
(τ)
i ⇀

n

i=1

Mi(ρ, θ)

ρi
∇ρi

weakly in L2(ΩT ). This finishes the proof.
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3 Analysis of a Finite–Volume Scheme for a
Quorum Sensing induced Biofilm Model

The results in this chapter are a modified version of the publication [HJZ23].

In this chapter, we provide the discretization and numerical analysis for the quorum sens-
ing induced biofilm model. To this end, we first introduce notation and impose assumptions
in section 3.1.1. Afterwards, we provide the finite–volume discretization in section 3.1.2
before presenting the main results of this chapter in section 3.1.3. Having presented the
main results, we present the proofs for the existence of discrete solutions in section 3.2,
the uniqueness in section 3.3 and the convergence in section 3.5. Finally, we present some
numerical simulations in section 3.6, where we show the order of convergence in one dimen-
sion and simulations in two dimensions, showing a hollowing effect which was also observed
in [ESE17].
While the results in [HJZ23] consider the model of [EPL01], in this thesis we give a

modified version of the paper where we perform the computations for the more general
model of [EHKE15,ESE17].

3.1 Numerical scheme and main results

3.1.1 Notation and assumptions

Before we are able to introduce the Finite–Volume Scheme, we need some notation. The
following part, which introduces the standard notation for two–point approximation finite–
volume methods, can also be found similarly in [DJZ21] and is repeated here for the con-
venience of the reader.

Let Ω ⊂ R2 be an open, bounded, polygonal domain. We consider only two-dimensional
domains, but the generalization to higher space dimensions is straightforward. An admis-
sible mesh of Ω is given by a family T of open polygonal control volumes (or cells), a
family E of edges, and a family P of points (xK)K∈T associated to the control volumes and
satisfying Definition 9.1 in [EGH00]. This definition implies that the straight line xKxL
between two centers of neighboring cells is orthogonal to the edge σ = K|L between two
cells. The condition is satisfied, for instance, by triangular meshes whose triangles have
angles smaller than π/2 [EGH00, Example 9.1] or by Voronöı meshes [EGH00, Example
9.2].
The family of edges E is assumed to consist of interior edges Eint satisfying σ ⊂ Ω and

boundary edges σ ∈ Eext fulfilling σ ⊂ ∂Ω. For a given control volume K ∈ T , we denote
by EK the set of edges of K. This set splits into EK = Eint,K ∪ Eext,K . For any σ ∈ E , there
exists at least one cell Kσ ∈ T such that σ ∈ EK . When σ is an interior cell, σ = K|L, Kσ

can be either K or L.
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3 Analysis of a Finite–Volume Scheme for a Quorum Sensing induced Biofilm Model

The admissibility of the mesh and the fact that Ω is two-dimensional imply that

K∈T σ∈EK
m(σ)d(xK , σ) ≤ 2

K∈T
m(K) = 2m(Ω), (3.1)

where d is the Euclidean distance in R2, m(σ) denotes the one-dimensional Lebesgue mea-
sure of an edge, and m(K), m(Ω) denote the two-dimensional Lebesgue measure of a cell,
the domain, respectively. Let σ ∈ E be an edge. We define the distance

dσ =
d(xK , xL) if σ = K|L ∈ Eint,K ,
d(xK , σ) if σ ∈ Eext,K ,

and introduce the transmissibility coefficient by

τσ =
m(σ)

dσ
. (3.2)

We assume that the mesh satisfies the following regularity assumption: There exists ξ > 0
such that for all K ∈ T and σ ∈ EK ,

d(xK , σ) ≥ ξdσ. (3.3)

The size of the mesh is denoted by ∆x = maxK∈T diam(K).
Let T > 0 be the end time, NT ∈ N the number of time steps, ∆t = T/NT the time

step size, and set tk = k∆t for k = 0, . . . , NT . We denote by D an admissible space-time
discretization of ΩT := Ω × (0, T ), composed of an admissible mesh T and the values
(∆t,NT ). The size of D is defined by χ := max{∆x,∆t}.
As it is usual for the finite-volume method, we introduce functions that are piecewise

constant in space and time. The finite-volume scheme yields a vector vT = (vK)K∈T ∈ R#T

of approximate values of a piecewise constant function v such that v = K∈T vK1K ,
where 1K is the characteristic function of K. We write vM = (vT , vE) for the vector that
contains the approximate values in the control volumes and on the boundary edges, where
vE := (vσ)σ∈Eext ∈ R#Eext . For such a vector, we use the notation

vK,σ =
vL if σ = K|L ∈ Eint,K ,
vσ if σ ∈ Eext,K (3.4)

for K ∈ T and σ ∈ EK and introduce the discrete gradient

Dσv := |DK,σv|, where DK,σv = vK,σ − vK . (3.5)

The discrete H1(Ω) seminorm and the discrete H1(Ω) norm are defined by

|v|1,2,M =
σ∈E

τσ(Dσv)
2

1/2

, ∥v∥1,2,M = ∥v∥20,2,M + |v|21,2,M 1/2
, (3.6)

where ∥ · ∥0,p,M denotes the Lp(Ω) norm

∥v∥0,p,M =
K∈T

m(K)|vK |p
1/p

for 1 ≤ p < ∞.
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3.1 Numerical scheme and main results

Then, for a given family of vectors vk = (vkT , v
k
E) for k = 1, . . . , NT and a given nonnegative

constant vD such that vkσ = vD for all σ ∈ Eext, we define the piecewise constant in space
and time function v by

v(x, t) =
K∈T

vkK1K(x) for x ∈ Ω, t ∈ (tk−1, tk], k = 1, . . . , NT . (3.7)

For the definition of an approximate gradient for such functions, we need to introduce a
dual mesh. Let K ∈ T and σ ∈ EK . The cell TK,σ of the dual mesh is defined as follows:

• If σ = K|L ∈ Eint,K , then TK,σ is that cell (“diamond”) whose vertices are given by
xK , xL, and the end points of the edge σ.

• If σ ∈ Eext,K , then TK,σ is that cell (“half-diamond”) whose vertices are given by xK
and the end points of the edge σ.

An example of a construction of a dual mesh can be found in [CHLP03]. For an illustration,
we refer to [GHHK20]. The cells TK,σ define, up to a negligible set, a partition of Ω. The
definition of the dual mesh implies the following property. As the straight line between two
neighboring centers of cells xKxL is orthogonal to the edge σ = K|L, it follows that

m(σ)d(xK , xL) = 2m(TK,σ) for all σ = K|L ∈ Eint,K . (3.8)

The approximate gradient of a piecewise constant function v in ΩT is given by

∇Dv(x, t) =
m(σ)

m(TK,σ)
DK,σv

kνK,σ for x ∈ TK,σ, t ∈ (tk−1, tk], , k = 1, . . . , NT ,

where the discrete operator DK,σ is given in (3.5) and νK,σ is the unit vector that is normal
to σ and that points outward of K.

3.1.2 Numerical scheme

We are now in the position to formulate the finite-volume discretization of (1.8)–(1.13).
Let D be an admissible discretization of ΩT . The initial conditions are discretized by the
averages

M0
K =

1

m(K) K
M0(x)dx, N0

K =
1

m(K) K
N0(x)dx, (3.9)

S0
K =

1

m(K) K
S0(x)dx, A0

K =
1

m(K) K
A0(x)dx. (3.10)

for K ∈ T . On the Dirichlet boundary, we set Mk
σ = MD, Nk

σ = 0, Sk
σ = 1 and Ak

σ = 0 for
σ ∈ Eext at time tk.

LetMk
K , Nk

K , Sk
K and Ak

K be some approximations of the mean values ofM(·, tk), N(·, tk),
S(·, tk) and A(·, tk), respectively, in the cell K. Then the elements Mk

K , Nk
K , Sk

K and Ak
K

are solutions to

m(K)

∆t
(Mk

K −Mk−1
K ) +

σ∈EK
Fk
M,K,σ = m(K)g1(M

k
K , Sk

K , Ak
K), (3.11)
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3 Analysis of a Finite–Volume Scheme for a Quorum Sensing induced Biofilm Model

m(K)

∆t
(Nk

K −Nk−1
K ) +

σ∈EK
Fk
N,K,σ = m(K)g2(M

k
K , Nk

K , Sk
K , Ak

K), (3.12)

m(K)

∆t
(Sk

K − Sk−1
K ) +

σ∈EK
Fk
S,K,σ = m(K)g3(M

k
K , Nk

K , Sk
K), (3.13)

m(K)

∆t
(Ak

K −Ak−1
K ) +

σ∈EK
Fk
A,K,σ = m(K)g4(M

k
K , Nk

K , Ak
K), (3.14)

the numerical fluxes are defined as

Fk
M,K,σ = −τσd1DK,σF (Mk), Fk

N,K,σ = −τσd2DK,σN
k, (3.15)

Fk
S,K,σ = −τσd3DK,σS

k, Fk
A,K,σ = −τσd4DK,σA

k, (3.16)

where K ∈ T , σ ∈ EK , k ∈ {1, . . . , NT }, and we recall definitions (1.14)–(1.17) for gi,
i = 1, . . . , 4, (1.19) for F , and (3.2) for τσ.
For the convenience of the reader, we recall the discrete integration-by-parts formula for

piecewise constant functions v = (vT , vE) :

K∈T σ∈EK
FK,σvK = −

σ∈E
FK,σDK,σv +

σ∈Eext
FK,σvσ, (3.17)

where FK,σ is a numerical flux like in (3.15)–(3.16).

3.1.3 Main results and Key Ideas

We impose the following hypotheses:

(H1) Domain: Ω ⊂ R2 is a bounded polygonal domain.

(H2) Discretization: D is an admissible discretization of ΩT := Ω × (0, T ) satisfying the
regularity condition (3.3) and ∆t < 1/2.

(H3) Initial data: S0, M0 ∈ L2(Ω) satisfy 0 ≤ S0 ≤ 1 and 0 ≤ M0 < 1 in Ω. N0, A0 ∈ L∞

satisfy 0 ≤ N0 and 0 ≤ A0 ≤ Amax where Amax > 0 is a constant such that

Amax ≥ (α+ β)
1 + 2(∥N0∥L∞(Ω) + Tη) exp(2T )

λ
.

(H4) Dirichlet datum: MD ∈ (0, 1) is a constant.

(H5) Parameters: di > 0 for i = 1, 2, 3, 4, k1, k2 > 0, α, β, η, µ > 0, n > 1, a > 1, and
b > 0.

Remark 12 (Discussion of the hypotheses). Conditions M0 < 1 and MD < 1 allow for
the proof of Mk

K < 1 for all K ∈ T and k = 1, . . . , NT , thus avoiding quenching of the
solution, i.e. the occurrence of regions with Mk

K = 1. We assume that MD is positive to
be able to introduce an entropy variable. This condition can be relaxed by introducing
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3.1 Numerical scheme and main results

an approximation procedure. The assumption that the boundary biomass is constant is
imposed for simplicity. It can be generalized to piecewise constant or time-dependent
boundary data, for instance. Moreover, mixed Dirichlet–Neumann boundary conditions
or mixed Dirichlet–Robin boundary conditions for the biomass could be imposed as well;
see [ESE17, Section 3]. In principle, space-dependent boundary data MD can be treated
with an entropy method for finite-volume schemes as in [CCHGJ19]. The delicate point is
here the definition of the entropy variable W ε

K , which requires a piecewise approximation
of the Dirichlet data. We may assume that the diffusion coefficients d1, . . . , d4 depend on
the spatial variable. In this case, they have to be assumed to be strictly positive. The
condition a > 1 corresponds to “very fast diffusion”. In numerical simulations, usually the
values a = b = 4 are chosen [EPL01, Table 1].

Our first main result concerns the existence of solutions to the numerical scheme. We
introduce the function

Z(M) :=
M

0
F (s)ds− F (MD)(M −MD), M ∈ [0, 1). (3.18)

Theorem 13 (Existence of discrete solutions). Assume that Hypotheses (H1)–(H5) hold.
Then, for every k = 1, . . . , NT , there exists a solution (Mk, Nk, Sk, Ak) to scheme (3.9)–
(3.16) satisfying

0 ≤ Mk
K < 1, 0 ≤ Nk

K ≤ Nmax, 0 ≤ Sk
K ≤ 1, 0 ≤ Ak

K ≤ Amax for all K ∈ T ,
(3.19)

where Nmax > 0 depends only on N0, T and η and Amax > 0 depends only on α, β, λ and
Nmax. Furthermore there exist positive constants C1 and C2 independent of ∆x and ∆t
such that

∥Z(Mk)∥0,1,M +∆tC1∥F (Mk)∥21,2,M ≤ ∥Z(Mk−1)∥0,1,M +∆tC2. (3.20)

Moreover, if M0 ≥ m0 in Ω and MD ≥ m0 for some m0 > 0 then any discrete solution
(Mk, Nk, Sk, Ak) to scheme (3.9)–(3.16) fulfilling bounds (3.19) satisfies

Mk
K ≥ m0 exp − k2 + η

An
max

1 +An
max

tk for all K ∈ T , k = 1, . . . , NT . (3.21)

The existence result is proved by a fixed-point argument based on a topological degree
result. The main difficulty is to approximate the equations in such a way that the singular
point M = 1 is avoided. This can be done, as in [EZE09], by introducing a cut-off approxi-
mation fε(M) of f(M). Then, by the comparison principle, it is possible to show the bound
M ε ≤ 1− δ(ε) for the approximate biomass M ε, where δ(ε) ∈ (0, 1). Since the comparison
principle cannot be easily extended to the discrete case, we have chosen another approach.
We first formulate a regularized problem for each time step by introducing the entropy

variableW ε
K := Z ′

ε(M
ε
K), where Zε is the sum of Z(M ε

K) and ε times the Boltzmann entropy
(see (3.26)), and by adding higher-order terms of W ε

K . We then solve the regularized
problem for W ε

K and obtain the biomass fraction by inverting the relation W ε
K = Z ′

ε(M
ε
K).

Then 0 < M ε
K < 1 by definition and we can derive a uniform estimate similar to (3.20).
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3 Analysis of a Finite–Volume Scheme for a Quorum Sensing induced Biofilm Model

The uniform bound for F (M ε) allows us to perform the deregularization limit and to infer
that the a.e. limit function MK = limε→0M

ε
K satisfies MK < 1 for all K ∈ T . The positive

lower bound for Mk comes from the fact that the source term g1(M
k
K , Sk

K , Ak
K) is bounded

from below by the linear term −k2M
k
K , and it is proved by a Stampacchia truncation

method.

Theorem 14 (Uniqueness of discrete solutions). Assume that Hypotheses (H1)–(H5) hold
and that there exists a constant m0 > 0 such that M0(x) ≥ m0 for x ∈ Ω and MD ≥ m0.
Then there exists γ∗ > 0, depending on the data, the mesh, and m0, such that for all
0 < ∆t < γ∗, there exists a unique solution to scheme (3.9)–(3.16).

The proof of the theorem is based on a discrete version of the dual method. On the
continuous level, the idea is to choose test functions ψ and ϕ solving −∆ϕ = M1 − M2,
−∆θ = N1−N2, −∆ψ = S1−S2 and −∆ζ = A1−A2 with homogeneous Dirichlet boundary
data, where (M1, N1, S1, A1) and (M2, N2, S2, A2) are two solutions to (1.8)–(1.13) with the
same initial data, and to exploit the monotonicity of the nonlinearity F (M). On the discrete
level, we replace the diffusion equations for ϕ, θ, ψ and ζ by the corresponding finite-volume
schemes and estimate similarly as in the continuous case. The restriction on the time step
size is due to L2(Ω) estimates coming from the source terms.
We also prove that our scheme converges to the continuous model, up to a subsequence.

For this result, we introduce a family (Dm)m∈N of admissible space-time discretizations of
ΩT indexed by the size χm = max{∆xm,∆tm} of the mesh, satisfying χm → 0 as m → ∞.
We denote by Mm the corresponding meshes of Ω, by ∆tm the corresponding time step
sizes and we set ∇m := ∇Dm [JZ22].

Theorem 15 (Convergence of the scheme). Assume that the Hypotheses (H1)–(H5) hold.
Let (Dm)m∈N be a family of admissible meshes satisfying (3.3) uniformly and let
(Mm, Nm, Sm, Am)m∈N be a corresponding sequence of finite-volume solutions to scheme
(3.9)–(3.16) constructed in Theorem 13. Then there exist (M,N, S,A) ∈ L∞(ΩT ;R2), satis-
fying F (M)−F (MD), N , S−1, A ∈ L2(0, T ;H1

0 (Ω)), and a subsequence of (Mm, Nm, Sm, Am)
(not relabeled) such that, as m → ∞,

Mm → M, Nm → N, Sm → S, Am → A a.e. in ΩT ,

∇mF (Mm) ⇀ ∇F (M), ∇mNm ⇀ ∇N, ∇mSm ⇀ ∇S, ∇mAm ⇀ ∇A weakly in L2(ΩT ).

Moreover, the limit (M,N, S,A) is a weak solution to (1.8)–(1.13), i.e., for all ψ1, ψ2, ψ3,
ψ4 ∈ C∞

0 (Ω× [0, T )),

−
T

0 Ω
M∂tψ1dxdt−

Ω
M0(x)ψ1(x, 0)dx+ d1

T

0 Ω
∇F (M) · ∇ψ1dxdt (3.22)

=
T

0 Ω
g1(M,S,A)ψ1dxdt,

−
T

0 Ω
N∂tψ2dxdt−

Ω
N0(x)ψ2(x, 0)dx+ d2

T

0 Ω
∇N · ∇ψ2dxdt (3.23)

=
T

0 Ω
g2(M,N, S,A)ψ2dxdt,
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3.2 Existence of solutions

−
T

0 Ω
S∂tψ3dxdt−

Ω
S0(x)ψ3(x, 0)dx+ d3

T

0 Ω
∇S · ∇ψ3dxdt (3.24)

=
T

0 Ω
g3(M,N, S)ψ3dxdt,

−
T

0 Ω
A∂tψ4dxdt−

Ω
A0(x)ψ(x, 0)dx+ d4

T

0 Ω
∇A · ∇ψ4dxdt (3.25)

=
T

0 Ω
g4(M,N,A)ψ4dxdt,

The convergence proof is based on the uniform estimates derived for the proof of The-
orem 13 and a discrete compensated compactness technique [ACM17] needed to iden-
tify the nonlinear limits. For the limit m → ∞, we use the techniques of [CHLP03].
If uniqueness for the limiting model holds in the class of weak solutions, the whole se-
quence (Mm, Nm, Sm, Am) converges. Uniqueness in a smaller class of functions is proved
[ESE17, Lemma 3.6], but we have been unable to show the required regularity of the limit
(M,N, S,A) from our approximate system, since the time discretization is not compatible
with the technique of [ESE17].

3.2 Existence of solutions

For the proof of Theorem 13, we proceed by induction. By Hypothesis (H3), 0 ≤ M0
K < 1,

0 ≤ N0
k ≤ Nmax, 0 ≤ S0

K ≤ 1, 0 ≤ A0
K ≤ Amax holds forK ∈ T . Let (Mk−1, Nk−1, Sk−1, Ak−1)

satisfy

0 ≤Mk−1
K < 1,

0 ≤Nk−1
K ≤ Nmax,

0 ≤Sk−1
K ≤ 1,

0 ≤Ak−1 ≤ Amax

for all K ∈ T and some k ∈ {1, . . . , NT }. We use the function Zε : [0, 1) → R, defined by

Zε(M) =
M

0
F (s)ds− F (MD)(M −MD) + ε M log

M

MD
+MD −M , (3.26)

where ε > 0 and F (M) is given in (1.19).
Step 1: Definition of a fixed-point problem. We formulate the problem in terms of the

entropy variable and we add a regularization term. Let R > 0 and set

KR := (W,N, S,A) ∈ R4Λ :∥W∥1,2,M < R, ∥N∥0,2,M < R, ∥S∥0,2,M < R, ∥A∥0,2,M < R,

Wσ = 0, Nσ = 0, Sσ = 1, Aσ = 0 for σ ∈ Eext ,

where Λ = #T +#Eext. We define the fixed-point mappingQ : KR → R4Λ byQ(W,N, S,A) =
(W ε, N ε, Sε, Aε), where (W ε, N ε, Sε, Aε) solves for all K ∈ T ,

ε m(K)W ε
K −

σ∈EK
τσDK,σW

ε (3.27)
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= −m(K)

∆t
(MK −Mk−1

K )−
σ∈EK

FM,K,σ +m(K)g1(MK , [SK ]+, [AK ]+),

m(K)

∆t
(N ε

K −Nk−1
K ) +

σ∈EK
FN,K,σ = m(K)g2(MK , [NK ]+, [SK ]+, [AK ]+), (3.28)

m(K)

∆t
(Sε

K − Sk−1
K ) +

σ∈EK
FS,K,σ = m(K)g3(MK , [SK ]+, [NK ]+), (3.29)

m(K)

∆t
(Aε

K −Ak−1
K ) +

σ∈EK
FN,K,σ = m(K)g4(MK , [NK ]+, [AK ]+). (3.30)

the fluxes are as in (3.15)–(3.16), [z]+ := max{0, z}, and we impose the Dirichlet boundary
conditions W ε

σ = 0, N ε
σ = 0, Sε

σ = 1, Aε
σ = 0 for σ ∈ Eext. The value MK is a function of

WK , implicitly defined by

WK = Z ′
ε(MK) = F (MK)− F (MD) + ε log

MK

MD
, K ∈ T . (3.31)

The map (0, 1) → R, MK → WK is invertible because the function Z ′
ε is increasing. This

shows that MK is well defined and MK ∈ (0, 1) for K ∈ T . The ε-regularization is needed
to obtain a bound for W ε in the discrete H1(Ω) norm. The existence of a unique solution
(W ε, N ε, Sε, Aε) to (3.27)–(3.30) is a consequence of [EGH00, Lemma 9.2].
We claim that Q is continuous. To show this, we first multiply (3.27) by W ε

K , sum over
K ∈ T , and use the discrete integration-by-parts formula (3.17):

ε∥W ε∥21,2,M = ε
K∈T

m(K)(W ε
K)2 −

σ∈EK
τσDK,σ(W

ε)W ε
K = J1 + J2 + J3, where

J1 = −
K∈T

m(K)

∆t
(MK −Mk−1

K )W ε
K ,

J2 = −
K∈T σ∈EK

FM,K,σW
ε
K ,

J3 =
K∈T

m(K)
[SK ]+

k1 + [SK ]+
− k2 − η

An
K

1 +An
K

MKW ε
K .

By the Cauchy–Schwarz inequality and the bound 0 < MK < 1, we find that

|J1| ≤ 2

∆t
m(Ω)1/2∥W ε∥0,2,M,

|J2| ≤
K∈T

1

m(K)
σ∈EK

|FM,K,σ|2
1/2

∥W ε∥0,2,M,

|J3| ≤ 1

k1 + 1
+ k2 + η m(Ω)1/2∥W ε∥0,2,M.

Because of the assumption ∥W∥1,2,M < R, the flux |FM,K,σ| is bounded from above by
a constant depending on R. This implies that |J2| ≤ C(R)∥W ε∥0,2,M, where C(R) > 0
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is some constant. (Here and in the following, we denote by C, Ci > 0 generic constants
whose value change from line to line.) This shows that ε∥W ε∥1,2,M ≤ C(R) for (another)
constant C(R) > 0. Using similar arguments, we obtain the existence of C(R) > 0 such
that ∥N ε∥0,2,M ≤ C(R), ∥Sε∥0,2,M ≤ C(R), ∥Aε∥0,2,M ≤ C(R).

Next, let (Wℓ, Nℓ, Sℓ, Aℓ)ℓ∈N ⊂ KR be a sequence satisfying (Wℓ, Nℓ, Sℓ, Aℓ) → (W,N, S,A)
as ℓ → ∞. The previous uniform estimates for (W ε

ℓ , N
ε
ℓ , S

ε
ℓ , A

ε
ℓ) := Q(Wℓ, Nℓ, Sℓ, Aℓ) show

that (W ε
ℓ , N

ε
ℓ , S

ε
ℓ , A

ε
ℓ) is bounded uniformly in ℓ ∈ N. Therefore, there exists a subsequence

which is not relabeled such that (W ε
ℓ , N

ε
ℓ , S

ε
ℓ , A

ε
ℓ) → (W ε, N ε, Sε, Aε) as ℓ → ∞. Taking

the limit ℓ → ∞ in (3.27)–(3.30), we see that (W ε, Sε, N ε, Aε) = Q(W,S,N,A). We deduce
from the uniqueness of the limit that the whole sequence converges, which means that Q
is continuous.

Step 2: Brouwer topological degree. We wish to show that Q admits a fixed point. To
this end, we use a topological degree argument [Dei85, Chap. 1] and prove that deg(I −
Q,KR, 0) = 1, where deg is the Brouwer topological degree. By the properties of the
Brouwer topological degree, deg(I−Q,KR, 0) ̸= 0 implies the existence of (W ε, N ε, Sε, Aε) ∈
KR such that (I − Q)(W ε, N ε, Sε, Aε) = 0. Furthermore, by definition of deg, we have
deg(I,KR, 0) = 1, since 0 ∈ KR. We deduce from the invariance by homotopy that
deg(I−ρQ,KR, 0) is invariant in ρ, if any solution (Sε,W ε, ρ) ∈ KR×[0, 1] to the fixed-point
equation (W ε, N ε, Sε, Aε) = ρQ(W ε, N ε, Sε, Aε) satisfies (W ε, N ε, Sε, Aε, ρ) /∈ ∂KR× [0, 1].
Therefore, it is sufficient to prove that any solution to the fixed-point equation satisfies
(W ε, N ε, Sε, Aε, ρ) ̸∈ ∂KR × [0, 1] for sufficiently large values of R > 0.

Let (W ε, N ε, Sε, Aε, ρ) be a fixed point of Q and assume that ρ ̸= 0, the case ρ = 0 being
clear. Then (W ε, N ε, Sε, Aε) solves

ε m(K)W ε
K −

σ∈EK
τσDK,σW

ε (3.32)

= −ρ
m(K)

∆t
(M ε

K −Mk−1
K )− ρ

σ∈EK
Fε
M,K,σ + ρm(K)g1(M

ε
K , [Sε

K ]+, [A
ε
K ]+)

m(K)

∆t
(N ε

K − ρNk−1
K ) + ρ

σ∈EK
Fε
S,K,σ = ρm(K)g2(M

ε
K , [N ε

K ]+, [S
ε
K ]+, [A

ε
K ]+) (3.33)

m(K)

∆t
(Sε

K − ρSk−1
K ) + ρ

σ∈EK
Fε
S,K,σ = ρm(K)g3(M

ε
K , [N ε

K ]+, [S
ε
K ]+), (3.34)

m(K)

∆t
(Aε

k − ρAk−1
K ) + ρ

σ∈EK
Fε
A,K,σ = ρm(K)g4(M

ε, [N ε]+, [A
ε]+) (3.35)

for K ∈ T with the boundary conditions W ε
σ = 0, N ε

σ = 0, Sε
σ = 1, Aε

σ = 0 for σ ∈ EK , the
fluxes are given by (3.15)–(3.16) with (M,N, S,A) replaced by (M ε, N ε, Sε, Aε), and M ε

K

is the unique solution to (3.31) with WK replaced by W ε
K .

Step 3: A priori estimates. We establish some a priori estimates for the fixed points
(W ε, N ε, Sε, Aε) of Q, which are uniform in R. Definition (3.31) immediately gives the
bound 0 < M ε

K < 1 for all K ∈ T . Recall that limM↗1 F (M) = +∞.
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Lemma 16 (Pointwise bounds for (N ε, Sε, Aε)). There exists Nmax > 0 and Amax > 0
such that

0 ≤N ε
K ≤ Nmax for K ∈ T ,

0 ≤Sε
K ≤ 1 for K ∈ T ,

0 ≤Aε
K ≤ Amax for K ∈ T .

Proof. We start with the lower bounds. To this end, we first multiply (3.33) by ∆t[N ε
K ]−,

where [z]− := min{0, z}, and sum over K ∈ T . Using discrete integration by parts, we
obtain

K∈T
m(K)[N ε

K ]2− + ρd2∆t
σ∈E

τσDK,σN
εDK,σ[N

ε]−

= ρ
K∈T

m(K)Nk−1
K [N ε

K ]− + ρ∆t
K∈T

m(K)g2(M
ε
K , [N ε

K ]+, [S
ε
K ]+, [A

ε
K ]+)[N

ε
K ]−.

Using the induction hypothesis, we have Nk−1
K ≥ 0 which gives the nonpositivity of the

first term on the right hand side. Furthermore, using [N ε
K ]+[N

ε
K ]− = 0 we obtain

g2(M
ε
K , [N ε

K ]+, [S
ε
K ]+, [A

ε
K ]+)[N

ε
K ]− = η

[Aε
K ]n+

1 + [Aε
K ]n+

M ε
K [N ε

K ]− ≤ 0.

The monotonicity of z → [z]− implies

ρd2∆t
σ∈E

τσDK,σN
εDK,σ[N

ε]− ≥ 0.

Collecting all estimates, we conclude

∥[N ε
K ]−∥20,2,M ≤ 0

and thus N ε
K ≥ 0 for all K ∈ T . The same argument shows Sε

K ≥ 0 and Aε
K ≥ 0 for all

K ∈ T .

We want to prove the upper bound for N ε
K .

Let K0 ∈ T with N ε
K0

= max{N ε
K0

| K ∈ T }. Then, it is easy to see

ρ
σ∈EK0

Fε
N,K0,σ = −ρ

σ∈EK0

τσd2DK0,σNK0

= −ρ
σ∈EK0

τσd2 N ε
K0,σ −N ε

K0
≥ 0.

Furthermore, we can estimate the right hand side of the equation (3.33) using

Sε
K

k1 + Sε
K

− k2 ≤ 1
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and 0 < ρ ≤ 1. Inserting this in equation (3.33), we find

m(K0)

∆t
N ε

K0
≤ m(K0)

∆t
Nk−1

K0
+m(K0)N

ε
K0

+m(K0)η.

Now, dividing by m(K0) and multiplying with ∆t we obtain

N ε
K0

≤ Nk−1
K0

+∆tN ε
K0

+∆tη ≤ Nk−1
K1

+∆tN ε
K0

+∆tη,

where Nk−1
K1

:= max{Nk−1
K | K ∈ T }.

Since N ε
K0

is the solution at time step k, we can iterate the estimate:

Nk−1
K1

≤ Nk−2
K2

+∆tNk−1
K1

+∆tη,

Nk−2
K2

≤ Nk−3
K3

+∆tNk−2
K2

+∆tη,

...

N1
Kk−1

≤ N0
Kk

+∆tN1
Kk−1

+∆tη, (3.36)

where Nk−j
Kj

:= max{Nk−j
K | K ∈ T } for j = 1, . . . , k. We infer

N ε
K0

≤ N0
Kk

+
k

ℓ=1

∆tN ℓ
Kk−ℓ

+ (k − 1)∆tη. (3.37)

Using ∆t < 1/2, we subtract the term at step k in the inequality (3.37), to arrive at

N ε
K0

≤ 2 N0
Kk

+

k−1

ℓ=1

∆tN ℓ
Kk−ℓ

+ (k − 1)∆tη .

Applying Gronwall’s inequality and using (k − 1)∆t ≤ k∆t ≤ T , we find

N ε
K0

≤ 2(N0
Kk

+ Tη) exp(2T ) ≤ 2(∥N0∥L∞(Ω) + Tη) exp(2T ) =: Nmax.

To verify the upper bound for Sε, we multiply (3.34) by ∆t[Sε
K − 1]+, sum over K ∈ T ,

and use discrete integration by parts:

K∈T
m(K) (Sε

K − 1)− (ρSk−1
K − 1) [Sε

K − 1]+ + ρd1∆t
σ∈E

DK,σ(S
ε − 1)DK,σ[S

ε − 1]+

= ρ∆t
K∈T

m(K)g3 M ε
K , N ε

K , Sε
K [Sε

K − 1]+ ≤ 0, (3.38)

since we have always g3(M
ε
K , N ε

K , Sε
K) ≤ 0. It follows from the induction hypothesis and

ρ ≤ 1 that ρSk−1
K ≤ 1, and the first term on the left-hand side can be estimated according

to

K∈T
m(K) (Sε

K − 1)− (ρSk−1
K − 1) [Sε

K − 1]+ ≥
K∈T

m(K)[Sε
K − 1]2+.
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We deduce from the monotonicity of z → [z]+ that the second term on the left-hand side of
(3.38) is nonnegative as well. Hence, K∈T m(K)[Sε

K − 1]2+ ≤ 0 and consequently Sε
K ≤ 1

for all K ∈ T .
Last but not least, we verify the upper bound for A. To this end, we choose Amax > 0

sufficiently large, such that

λAmax − [α+ β] (1 +Nmax) ≥ 0.

We prove Aε
K ≤ Amax for all K ∈ T . To this end, we multiply equation (3.35) by ∆t[Aε

K −
Amax]+ and sum over K ∈ T , which gives

K∈T
m(K) Aε

K − ρAk−1
K [Aε

K −Amax]+ −∆tρ
K∈T σ∈EK

Fε
A,K,σ[A

ε
K −Amax]+ (3.39)

= ∆tρ
K∈T

m(K)g4(M
ε
K , N ε

K , Aε
K)[Aε

k −Amax]+.

(3.40)

As before, the second term on the left–hand side is nonnegative and

K∈T
m(K) Aε

K − ρAk−1
K [Aε

K −Amax]+ ≥
K∈T

m(K)[Aε
K −Amax]

2
+.

It remains to prove the nonpositivity of the right hand side of equation (3.39). If Amax ≥
Aε

K , the right–hand side vanishes. If Amax ≤ Aε
K , then

λAε
k − [α+ β](1 +Nmax) ≥ λAmax − [α+ β](1 +Nmax) ≥ 0

by definition of Amax. In particular, this implies

−λAε
K + [α+ β](1 +Nmax) ≤ 0.

We conclude

g4(M
ε
K , N ε

K , Aε
K) = −λAε

K + α+ β
(Aε

K)n

(1 + (Aε
K)n

(M ε
K +N ε

K)

≤ −λAε
K + [α+ β](1 +Nmax)

≤ 0,

and thus

∥[Aε −Amax]+∥20,2,M ≤ 0,

which implies Aε
K ≤ Amax for all K ∈ T .

Lemma 17 (Estimate for F (M ε
K)). Let ε ∈ (0, 1]. Then there exist constants C1, C2 > 0,

depending on Ω and MD, such that

ε∆t∥W ε∥21,2,M + ρ∥Z(M ε)∥0,1,M + ρ∆tC1∥F (M ε)− F (MD)∥21,2,M (3.41)

≤ ∆tC2 + ∥Zε(M
k−1)∥0,1,M.
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Proof. We multiply (3.32) by ∆tW ε
K , sum over K, and use discrete integration by parts

with W ε
σ = 0:

ε∆t∥W ε∥21,2,M + J4 + J5 = J6, where (3.42)

J4 = ρ
K∈T

m(K)(M ε
K −Mk−1

K )W ε
K ,

J5 = ρ∆td1
σ∈E

τσDK,σF (M ε)DK,σW
ε,

J6 = ρ∆t
K∈T

m(K)g1(M
ε
K , Sε

K , Aε
K)W ε.

By the convexity of Zε, (M
ε
K −Mk−1

K )Z ′
ε(M

ε
K) ≥ Zε(M

ε
K)− Zε(M

k−1
K ) such that

J4 ≥ ρ
K∈T

m(K) Z(M ε
K) + ε M ε

K log
M ε

K

MD
+MD −M ε

K − Zε(M
k−1
K )

≥ ρ∥Z(M ε
K)∥0,1,M − ρ∥Zε(M

k−1
K )∥0,1M,

where we have used the facts that Z(M ε
K) is nonnegative and the function x → x log(x/MD)+

MD − x attains its minimum on (0, 1) in MD. The definition of W ε
K and the monotonicity

of the functions F and log imply that

J5 = ρ∆td1
K∈T

m(K) [DK,σ(F (M ε)− F (MD))]2 + εDK,σF (M ε)DK,σ logM
ε (3.43)

≥ ρ∆td1|F (M ε)− F (MD)|21,2,M ≥ ρ∆td1C(ξ)∥F (M ε)− F (MD)∥21,2M,

where the last step follows from the discrete Poincaré inequality [BCCHF15, Theorem 3.2].
Recall that by definition of W , we have M ε

σ = MD since W ε
σ = 0. Finally, by the Young

inequality and taking into account the bounds Sε
K ≤ 1 and M ε

K < 1, we find that

J6 ≤ ρ∆t
1

k1 + 1
+ k2 + η

K∈T
m(K) |F (M ε

K)− F (MD)|+ εM ε
K log

M ε
K

MD

≤ δ

2
ρ∆t

1

k1 + 1
+ k2 + η ∥F (M ε)− F (MD)∥21,2,M +

∆t

2δ

1

k1 + 1
+ k2 + η m(Ω)

+ ε∆tC,

where δ > 0, and the constant C > 0 may depend on Ω and MD but is uniform in ε ∈ (0, 1].
Inserting the estimates for J4, J5, and J6 into (3.42) yields

ε∆t∥W ε∥21,2,M + ρ∆t d2C(ξ)− δ

2

1

k1 + 1
+ k2 + η ∥F (M ε)− F (MD)∥21,2,M

+ ρ∥Z(M ε)∥0,1,M ≤ ρ∥Zε(M
k−1)∥0,1,M +∆tC(δ).

Then, choosing δ > 0 sufficiently small shows the conclusion.
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Step 4: Concluding the existence of a fixed point. We deduce from the estimates of
Lemmas 16–17 that

∥W ε∥1,2,M ≤ 1√
ε∆t

(∥Zε(M
k−1)∥0,1,M +∆tC)1/2, ∥N ε∥0,2,M ≤ Nmaxm(Ω)1/2 (3.44)

∥Sε∥0,2,M ≤ m(Ω)1/2, ∥Aε∥0,2,M ≤ Amaxm(Ω)1/2. (3.45)

Thus, choosing

R = max Amaxm(Ω)1/2, Nmaxm(Ω)1/2,m(Ω)1/2,
1√
ε∆t

(∥Zε(M
k−1)∥0,1,M+∆tC)1/2 +1,

we see that (W ε, N ε, Sε, Aε) ̸∈ ∂KR. This implies the invariance in ρ, and since we have
deg(I − ρQ,KR, 0) = 1 for ρ = 0, we infer that deg(I −Q,KR, 0) = 1. We conclude that Q
admits a fixed point, i.e. a solution (W ε, N ε, Sε, Aε) to (3.32)–(3.35).

Step 5: Limit ε → 0. Thanks to Lemmas 16–17 and the bound 0 < M ε
K < 1, there

exist subsequences, which are not relabeled, such that M ε
K → Mk

K , N ε
K → Nk

K , Sε
K → Sk

K ,
Aε

K → Ak
K , and εW ε

K → 0 as ε → 0 (taking into account (3.44)), where 0 ≤ Mk
K ≤ 1,

0 ≤ Nk
K ≤ Nmax, 0 ≤ Sk

K ≤ 1 and 0 ≤ Ak
K ≤ Amax for all K ∈ T . Passing to the limit

ε → 0 in (3.41) and taking into account the lower semicontinuity of F (extended for M = 1
by setting F (1) = ∞), we find that

∆tC1∥F (Mk)− F (MD)∥20,2,M ≤ ∥Z(Mk−1)∥0,1,M +∆tC < ∞.

Thus, F (Mk
K) is finite, which implies that Mk

K < 1 for any K ∈ T . We can perform
the limit ε → 0 in (3.32)–(3.35) to deduce the existence of a solution (Mk, Nk, Sk, Ak) to
scheme (3.9)–(3.16).

Step 6: Positive lower bound for Mk. Again, we proceed by induction. Let M0 ≥ m0 in
Ω and MD ≥ m0. Then M0

K ≥ m0 for all K ∈ T . Set

mk := m0 (1 + C∆t)−k ,

where C = C(k2, η, Amax) := k2 + η An
max

1+An
max

. Note that

mk −mk−1 = m0 (1 + C∆t)−k −m0 (1 + C∆t)−(k−1)

= (m0 −m0(1 + C∆t)) (1 + C∆t)−k

= −C∆tmk.

The induction hypothesis reads as Mk−1
K ≥ mk−1 for K ∈ T . We multiply (3.11) by

∆t[Mk
K −mk]−, sum over K ∈ T , and use discrete integration by parts:

K∈T
m(K)(Mk

K −Mk−1
K )[Mk

K −mk]− = J7 + J8, where

J7 = −∆t
σ∈E

τσDK,σF (Mk)DK,σ[M
k
K −mk]−,
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J8 = ∆t
K∈T

m(K)g1(M
k, Sk, Ak)[Mk

K −mk]−.

Taking into account that Mk−1
K −mk−1 ≥ 0, we estimate the left-hand side according to

K∈T
m(K)(Mk

K −Mk−1
K )[Mk

K −mk]−

=
K∈T

m(K) (Mk
K −mk)− (Mk−1

K −mk−1) [Mk
K −mk]−

+
K∈T

m(K)(mk −mk−1)[Mk
K −mk]−

≥
K∈T

m(K)[Mk
K −mk]2− − C∆tmk

K∈T
m(K)[Mk

K −mk]−.

Since F and z → [z −mk]− are monotone, we have J7 ≤ 0. Furthermore,

J8 = ∆t
K∈T

m(K)
Sk
K

k1 + Sk
K

− k2 − η
(Ak

K)n

1 + (Ak
K)n

Mk
K [Mk

K −mk]−

≤ − k2 + η
An

max

1 +An
max

∆t
K∈T

m(K)Mk
K [Mk

K −mk]−

≤ − k2 + η
An

max

1 +An
max

∆t
K∈T

m(K)mk[Mk
K −mk]−.

The terms involving k2 + η(Amax)
n/(1 + (Amax)

n) cancel and we end up with

K∈T
m(K)[Mk

K −mk]2− ≤ 0.

It follows that [Mk
K −mk]− = 0 and hence Mk

K ≥ mk ≥ m0 exp(−Ck∆t).

3.3 Uniqueness of solutions

We proceed by induction. Let k ∈ {1, . . . , NT }, let (Mk
1 , N

k
1 , S

k
1 , A

k
1) and (Mk

2 , N
k
2 , S

k
2 , A

k
2)

be two solutions to scheme (3.9)–(3.16), and assume that Mk−1
1 = Mk−1

2 , Nk−1
1 = Nk−1

2 ,
Sk−1
1 = Sk−1

2 , Ak−1
1 = Ak−1

2 . The functions Mk
1 −Mk

2 , N
k
1 −Nk

2 , S
k
1 − Sk

2 and Ak
1 −Ak

2 are
solutions, respectively, to

m(K)

∆t
(Mk

1,K −Mk
2,K)− d1

σ∈EK
τσDK,σ(F (Mk

1 )− F (Mk
2 )) = m(K)Gk

K , (3.46)

m(K)

∆t
(Nk

1,K −Nk
2,K)− d2

σ∈EK
τσDK,σ(N

k
1 −Nk

2 ) = m(K)Hk
K , (3.47)

m(K)

∆t
(Sk

1,K − Sk
2,K)− d3

σ∈EK
τσDK,σ(S

k
1 − Sk

2 ) = m(K)Jk
K , (3.48)
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m(K)

∆t
(Ak

1,K −Ak
2,K)− d4

σ∈EK
τσDK,σ(A

k
1 −Ak

2) = m(K)Lk
K (3.49)

for K ∈ T , where

Gk
K =

Sk
1,K

k1 + S1,K
Mk

1,K − k2M
k
1,K − η

(Ak
1,K)n

1 + (Ak
1,K)n

Mk
1,K

− Sk
2,K

k1 + Sk
2,K

Mk
2,K + k2M

k
2,K + η

(Ak
2,K)n

1 + (Ak
2,K)n

Mk
2,K ,

Hk
K =

Sk
1,K

k1 + Sk
1,K

Nk
1,K − k2N1,K + η

(Ak
1,K)n

1 + (Ak
1,K)n

Mk
1,K

− Sk
2,K

k1 + Sk
2,K

Nk
2,K + k2N2,K − η

(Ak
2,K)n

1 + (Ak
2,K)n

Mk
2,K ,

Jk
K = − µSk

1,K

k1 + Sk
1,K

(Mk
1,K +Nk

1,K) +
µSk

2,K

k1 + Sk
2,K

(Mk
2,K +Nk

2,K),

Lk
K = −λAk

1,K + α+ β
(Ak

1,K)n

1 + (Ak
1,K)n

(Mk
1,K +Nk

1,K)

+ λA2,K − α+ β
(Ak

2,K)n

1 + (Ak
2,K)n

(Mk
2,K +Nk

2,K).

Now, let the vectors (ϕk
T , ϕ

k
E), (θ

k
T , θ

k
E), (ψ

k
T , ψ

k
E) and (ζkT , ζ

k
E ) be the unique solutions to

−
σ∈EK

τσDK,σϕ
k = m(K)(Mk

1,K −Mk
2,K),

−
σ∈EK

τσDK,σθ
k = m(K)(Nk

1,K −Nk
2,K)

−
σ∈EK

τσDK,σψ
k = m(K)(Sk

1,K − Sk
2,K),

−
σ∈EK

τσDK,σζ
k = m(K)(Ak

1,K −Ak
2,K)

for K ∈ T , where we impose the boundary conditions ϕk
σ = θkσ = ψk

σ = ζkσ = 0 for σ ∈ Eext.
The existence and uniqueness of these solutions is a direct consequence of [EGH00, Lemma
9.2]. We multiply (3.46) by ϕk

K and sum over K ∈ T :

1

∆t
K∈T

m(K)(Mk
1,K −Mk

2,K)ϕk
K = I1 + I2, where (3.50)

I1 = d1
K∈T σ∈EK

τσDK,σ(F (Mk
1,K)− F (Mk

2,K))ϕk
K , I2 =

K∈T
m(K)Gk

Kϕk
K .
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Inserting the equation for ϕk and using discrete integration by parts gives

K∈T
m(K)(Mk

1,K −Mk
2,K)ϕk

K = −
K∈T σ∈EK

τσDK,σ(ϕ
k)ϕk

K =
σ∈E

τσ(DK,σϕ
k)2 = |ϕk|21,2,M.

Concerning the sum I1, we use the equation for ϕk again, apply discrete integration by
parts twice, and take into account the positive lower bound for Mk

i from Theorem 13:

I1 = d1
K∈T

(F (Mk
1,K)− F (Mk

2,K))
σ∈EK

τσDK,σϕ
k

= −d1
K∈T

m(K)(F (Mk
1,K)− F (Mk

2,K))(Mk
1,K −Mk

2,K)

≤ −d1c0
K∈T

m(K)(Mk
1,K −Mk

2,K)2,

where c0 > 0 depends on the minimum of Mk
1 or Mk

2 .
To estimate I2, we first rewrite Gk

K . We obtain

Gk
K =

Sk
1,K

k1 + Sk
1,K

− k2 Mk
1,K −Mk

2,K +
k1M

k
2,K

(k1 + Sk
1,K)(k1 + Sk

2,K)
Sk
1,K − Sk

2,K

− η
(Ak

1,K)n

1 + (Ak
1,K)n

Mk
1,K −Mk

2,K +
(Ak

1,K)n

1 + (Ak
1,K)n

Mk
2,K + η

(Ak
2,K)n

1 + (Ak
2,K)n

Mk
2,K

=
Sk
1,K

k1 + Sk
1,K

− k2 Mk
1,K −Mk

2,K +
k1M

k
2,K

(k1 + Sk
1,K)(k1 + Sk

2,K)
Sk
1,K − Sk

2,K

− η
(Ak

1,K)n

1 + (Ak
1,K)n

(Mk
1,K −Mk

2,K) +
(Ak

1,K)n − (Ak
2,K)n

(1 + (Ak
1,K)n)(1 + (Ak

2,K)n)
Mk

2,K

=
Sk
1,K

k1 + Sk
1,K

− k2 Mk
1,K −Mk

2,K +
k1M

k
2,K

(k1 + Sk
1,K)(k1 + Sk

2,K)
Sk
1,K − Sk

2,K

− η
(Ak

1,K)n

1 + (Ak
1,K)n

(Mk
1,K −Mk

2,K) +
Mk

2,K
n−1
ℓ=0 (A

k
1,K)ℓ(Ak

2,K)n−1−ℓ

(1 + (Ak
1,K)n)(1 + (Ak

2,K)n)
(Ak

1,K −Ak
2,K)

Finally, because of the bounds 0 ≤ Mk
K < 1, 0 ≤ Sk

K ≤ 1 and 0 ≤ Ak
K ≤ Amax from The-

orem 13, the Young inequality and the discrete Poincaré inequality [BCCHF15, Theorem
3.2],

I2 ≤ −k2|ϕk|21,2,M +
K∈T

m(K)
1

k1 + 1
+

ηAn
max

1 +An
max

Mk
1,K −Mk

2,K

+
1

k1
Sk
1,K − Sk

2,K + ηnAn−1
max Ak

1,K −Ak
2,K ϕk

K

≤ 3δ

4

1

k1 + 1
+ η

An
max

1 +An
max

2

∥Mk
1 −Mk

2 ∥20,2,M +
3δ

4k21
∥Sk

1 − Sk
2∥20,2,M
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+
3δ

4
η2n2A2(n−1)

max ∥Ak
1 −Ak

2∥20,2,M +
1

δ
∥ϕk∥20,2,M

≤ 3δ

4

1

k1 + 1
+ η

An
max

1 +An
max

2

∥Mk
1 −Mk

2 ∥20,2,M +
3δ

4k21
∥Sk

1 − Sk
2∥20,2,M

+
3δ

4
η2n2A2(n−1)

max ∥Ak
1 −Ak

2∥20,2,M +
C

δξ
ϕk

2

1,2,M

where δ > 0 is arbitrary. Collecting these estimates, we infer from (3.50) that

1

∆t
− C

δξ
|ϕk|21,2,M +

3

4
d1c0∥Mk

1 −Mk
2 ∥20,2,M

≤ 3δ

4

1

k1 + 1
+ η

An
max

1 +An
max

2

∥Mk
1 −Mk

2 ∥20,2,M +
1

k21
∥Sk

1 − Sk
2∥20,2,M

+ η2n2A2(n−1)
max ∥Ak

1 −Ak
2∥20,2,M .

The same computation gives for equation (3.47)

1

∆t
− C

δξ
|θk|21,2,M +

3

4
d2∥Nk

1 −Nk
2 ∥20,2,M

≤ 3δ

4

1

k1 + 1

2

∥Nk
1 −Nk

2 ∥20,2,M + η2
An

max

1 +An
max

2

∥Mk
1 −Mk

2 ∥20,2,M

+
N2

max

k21
∥Sk

1 − Sk
2∥20,2,M + η2n2A2(n−1)

max ∥Ak
1 −Ak

2∥20,2,M .

Arguing similarly for equation (3.48), we arrive to

1

∆t
− C

δξ
|ψk|21,2,M +

3

4
d3∥Sk

1 − Sk
2∥20,2,M

≤ 3δ

4

µ2

(k1 + 1)2
∥Mk

1 −Mk
2 ∥20,2,M + ∥Nk

1 −Nk
2 ∥20,2,M

+
µ2

k21
(1 +Nmax)

2∥Sk
1 − Sk

2∥20,2,M .

Last but not least, we notice similarly as before that

Lk
k = α+ β

(Ak
1,K)n

1 + (Ak
1,K)n

Mk
1,K −Mk

2,K + Nk
1,K −Nk

2,K

+

(Mk
2,K +Nk

2,K)

n−1
ℓ=0 (A

k
1,K)ℓ(Ak

2,K)n−1−ℓ

1 + (Ak
1,K)n 1 + (Ak

2,K)n
− λ

 (Ak
1,K −Ak

2,K).

Therefore we can repeat the estimates as before to obtain

1

∆t
− C

δξ
|ζk|21,2,M +

3

4
d4∥Ak

1 −Ak
2∥20,2,M
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≤ 3δ

4
α+ β

An
max

1 +An
max

2

∥Mk
1 −Mk

2 ∥20,2,M + ∥Nk
1 +Nk

2 ∥20,2,M

+ (1 +Nmax)
2 nAn−1

max + λ
2 ∥Ak

1 −Ak
2∥20,2,M

We set

Rk := ∥Mk
1 −Mk

2 ∥20,2,M + ∥Nk
1 −Nk

2 ∥20,2,M + ∥Sk
1 − Sk

2∥20,2,M + ∥Ak
1 −Ak

2∥20,2,M
and

C := max
1

k1 + 1
+ η

An
max

1 +An
max

2

,
1

k21
, η2n2A2(n−1)

max ,
µ2

k21
(1 +Nmax)

2,

α+ β
An

max

1 +An
max

2

, (1 +Nmax)
2 nAn−1

max + λ
2

Then an addition of the previous inequalities yields

1

∆t
−C

δξ
|ϕk|21,2,M+|θk|21,2,M+|ψk|21,2,M+|ζk|21,2,M +

3

4
min{c0d1, d2, d3, d4}−δC Rk ≤ 0.

Choosing δ ≤ C/min{c0d1, d2, d3, d4} and ∆t < C/(δξ), both terms are nonnegative, and
we infer that ϕk

K = θkK = ψk
K = ζkK = 0 and consequently

Mk
1,K −Mk

2,K = Nk
1,K −Nk

2,K = Sk
1,K − Sk

2,K = Ak
1,K −Ak

2,K = 0

for all K ∈ T .

3.4 Uniform estimates

We establish some estimates for the solution (Mk, Nk, Sk, Ak) constructed in Theorem 13
that are uniform with respect to ∆x and ∆t . The first bounds follow from the results of
Section 3.2.

Lemma 18 (Uniform estimates I). There exists a constant C3 > 0 independent of ∆x and
∆t such that

0 ≤ Mk
K < 1, 0 ≤ Nk

K ≤ Nmax, 0 ≤ Sk
K ≤ 1, 0 ≤ Ak

K ≤ Amax for K ∈ T ,

NT

k=1

∆t ∥F (Mk)∥21,2,M + ∥Nk∥21,2,M + ∥Sk∥21,2,M + ∥Ak∥21,2,M ≤ C3.

Proof. The L∞ bounds follow directly from Theorem 13, while the discrete gradient bound
for F (Mk) is a consequence of Lemma 17. It remains to show the discrete gradient bound
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for Nk, Sk and Ak. We multiply (3.12) by ∆tNk
K , sum over K ∈ T , and use discrete

integration by parts:

K∈T
m(K)(Nk

K −Nk−1
K )Nk

K = −∆td2|Nk|21,2,M +∆t
K∈T

m(K)g2(M
k
K , Nk

K , Sk
K , Ak

K)Nk
K ,

(3.51)

where we have used that the boundary terms vanish since Nσ = 0. The left hand side is
bounded from below by

K∈T
m(K)(Nk

K −Nk−1
K )Nk

K ≥ 1

2
K∈T

m(K) (Nk
K)2 − (Nk−1

K )2 ,

while the second term on the right hand side of equation (3.51) is bounded from above.
More precisely, the L∞–bounds for (Mk

K , Nk
K , Sk

K , Ak
K) imply

g2(M
k
K , Nk

K , Sk
K , Ak

K)Nk
K =

Sk
K

k1 + Sk
K

Nk
K − k2N

k
K + η

(Ak
K)n

1 + (Ak
K)n

Nk
K

≤ 1

k1 + 1
max{1, N2

max}+ η
An

max

1 +An
max

Nmax.

We conclude

1

2
∥Nk∥20,2,M + d2∆t|Nk|21,2,M ≤ 1

2
∥Nk−1∥20,2,M

+m(Ω)∆t
1

k1 + 1
max{1, N2

max}+ η
An

max

1 +An
max

Nmax ,

and summation over k = 1, . . . , NT gives

1

2
∥NNT ∥20,2,M + d2

NT

k=1

∆t|Nk|21,2,M ≤ 1

2
∥N0∥20,2,M

+m(Ω)T
1

k1 + 1
max{1, N2

max}+ η
An

max

1 +An
max

Nmax .

Due to the different Dirichlet–boundary condition for S, we multiply equation (3.13)
by ∆t(Sk

K − 1). Then we proceed as before, i.e. we sum over K ∈ T and use discrete
integration by parts:

K∈T
m(K)(Sk

K − Sk−1
K )(Sk

K − 1) = −∆td3
σ∈E

τσDK,σ(S
k)DK,σ(S

k − 1) (3.52)

+ ∆t
K∈T

m(K)g3(M
k
K , Nk

K , Sk
K)(Sk

K − 1)

≤ −∆td3
σ∈E

τσ(DK,σ(S
k − 1))2 +∆t

K∈T
m(K)

µSk
KMk

K

k1 + Sk
K

(Mk
K +Nk

K).
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Note that the boundary terms vanish since Sσ −1 = 0. The left-hand side is bounded from
below by

K∈T
m(K) (Sk

K − 1)− (Sk−1
K − 1) (Sk

K − 1) ≥ 1

2
K∈T

m(K) (Sk
K − 1)2 − (Sk−1

K − 1)2 .

Using again the upper bounds for Mk
K , Nk

K and Sk
K , the last term on the right-hand side of

(3.52) is bounded by ∆tm(Ω)µ(1 +Nmax)/(k1 + 1). Therefore, it follows from (3.52) that

1

2
K∈T

m(K)(Sk
K−1)2+∆td3|Sk

K−1|21,2,M ≤ 1

2
K∈T

m(K)(Sk−1
K −1)2+∆tm(Ω)

µ(1 +Nmax)

k1 + 1
.

Summing this inequality from k = 1, . . . , NT , we find that

1

2
∥SNT − 1∥20,2,M + d3

NT

k=1

∆t|Sk
K − 1|21,2,M ≤ 1

2
∥S0 − 1∥20,2,M + T m(Ω)

µ(1 +Nmax)

k1 + 1
.

Since |Sk
K − 1|1,2,M = |Sk

K |1,2,M, this yields the desired estimate. The gradient bound for
Ak

K is proved similarly to the gradient bound of Nk
K .

We also need an estimate for the time translates of the solution. For this, let ϕ ∈ C∞
0 (ΩT )

be given and define ϕk = (ϕk
T , ϕ

k
E) ∈ RΛ (recall that Λ = #T +#E) for k = 1, . . . , NT by

ϕk
K =

1

m(K) K
ϕ(x, tk)dx, ϕk

σ =
1

m(σ) σ
ϕ(s, tk)ds = 0,

where K ∈ T and σ ∈ Eext.
Lemma 19 (Uniform estimates II). For any ϕ ∈ C∞

0 (ΩT ), there exist constants C4, C5,
C6, C7 > 0, only depending on the data and the mesh, such that

NT

k=1K∈T
m(K)(Mk

K −Mk−1
K )ϕk

K ≤ C4∥∇ϕ∥L∞(ΩT ),

NT

k=1K∈T
m(K)(Nk

K −Nk−1
K )ϕk

K ≤ C5∥∇ϕ∥L∞(ΩT ),

NT

k=1K∈T
m(K)(Sk

K − Sk−1
K )ϕk

K ≤ C6∥∇ϕ∥L∞(ΩT ),

NT

k=1K∈T
m(K)(Ak

K −Ak−1
K )ϕk

K ≤ C7∥∇ϕ∥L∞(ΩT ).

Proof. We only prove the first estimate, since all other estimates are shown similarly. We
multiply (3.11) by ∆tϕk

K , sum over K ∈ T and k = 1, . . . , NT , and use discrete integration
by parts. Then

NT

k=1K∈T
m(K)(Mk

K −Mk−1
K )ϕk

K = I3 + I4, where (3.53)
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I3 = −d1

NT

k=1

∆t
σ∈E

τσDK,σF (Mk)DK,σϕ
k,

I4 =

NT

k=1

∆t
K∈T

m(K)
Sk
K

k1 + Sk
K

− k2 − η
(Ak

K)n

1 + (Ak
k)

n
Mk

Kϕk
K .

It follows from the Cauchy–Schwarz inequality, Lemma 18, the mean-value theorem, and
the mesh regularity (3.3) that

|I3|≤ d1C

NT

k=1

∆t
K∈T σ∈EK

m(σ)dσ
DK,σϕ

k

dσ

2 1/2

≤ d1C∥∇ϕ∥L∞(ΩT )

NT

k=1

∆t
K∈T σ∈EK

m(σ)dσ

1/2

≤ d1Cξ−1/2∥∇ϕ∥L∞(ΩT )

NT

k=1

∆t
K∈T σ∈EK

m(σ)d(xK , σ)
1/2

= d1C 2m(Ω)Tξ−1∥∇ϕ∥L∞(ΩT ),

where we used (3.1) in the last step. Next, using similar arguments and the discrete
Poincaré inequality [BCCHF15, Theorem 3.2],

|I4| ≤ 1

k1 + 1
+ k2 + η

An
max

1 +An
max

T m(Ω)

NT

k=1

∆t∥ϕk∥20,2,M
1/2

≤ 1

k1 + 1
+ k2 + η

An
max

1 +An
max

T m(Ω)Cξ−1

NT

k=1

∆t|ϕk|21,2,M
1/2

≤ 1

k1 + 1
+ k2 + η

An
max

1 +An
max

T m(Ω)Cξ−1∥∇ϕ∥L∞(ΩT )

NT

k=1

∆t
K∈T σ∈EK

m(σ)dσ

1/2

≤ C(T,Ω, ξ)ξ−1 1

k1 + 1
+ k2 + η

An
max

1 +An
max

∥∇ϕ∥L∞(ΩT ).

Inserting these estimates into (3.53) shows the first statement of the lemma.

3.5 Convergence of the scheme

The compactness follows from the uniform estimates proved in the previous section and
the discrete compensated compactness result obtained in [ACM17, Theorem 3.9].

Lemma 20 (Compactness). Let (Mm, Nm, Sm, Am)m∈N be a sequence of solutions to scheme
(3.9)–(3.16) constructed in Theorem 13. Then there exists (M,N, S,A) ∈ L∞(ΩT ;R2) sat-
isfying F (M),N , S, A ∈ L2(0, T ;H1(Ω)) such that, up to a subsequence, as m → ∞,

Mm → M, Nm → N, Sm → S, Am → A a.e. in ΩT ,
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3.5 Convergence of the scheme

F (Mm) → F (M) strongly in Lr(ΩT ) for 1 ≤ r < 2,

∇mF (Mm) ⇀ ∇F (M), ∇mNm ⇀ ∇N, weakly in L2(ΩT )

∇mSm ⇀ ∇S, ∇mAm ⇀ ∇A weakly in L2(ΩT ).

Proof. The a.e. convergence for Mm is a consequence of [ACM17, Theorem 3.9]. Indeed,
the estimates in Lemmas 18–19 correspond to conditions (a)–(c) in [ACM17, Prop. 3.8],
while assumptions (At1), (Ax1)–(Ax3) of [ACM17] are satisfied for our implicit Euler
finite-volume scheme. In particular, the function F : [0, 1) → R+

0 with F (0) = 0 and
limM↗1 F (M) = +∞ is a single-valued maximal monotone graph. Consequently, its in-
verse F−1 is a single-valued maximal monotone graph as well. This allows us to ap-
ply [ACM17, Theorem 3.9] so that there exists a subsequence, which is not relabeled, such
that Mm → M and F (Mm) → F (M) a.e. in ΩT . In view of Lemma 18, the sequence
(F (Mm)) is bounded in L2(ΩT ). A simple computation shows that (F (Mm)r)m∈N is uni-
formly integrable for 1 ≤ r < 2. The a.e. convergence F (Mm) → F (M) implies the
convergence in measure, and thanks to the Vitali’s convergence theorem, we conclude that
F (Mm) → F (M) strongly in Lr(ΩT ) for all 1 ≤ r < 2.

As a consequence of the gradient estimate in Lemma 17, there exists a subsequence of
(∇mF (Mm)) (not relabeled) such that ∇mF (Mm) ⇀ Ψ weakly in L2(ΩT ) as m → ∞. The
limit Ψ can be identified with F (M) by following the arguments in the proof of [CHLP03,
Lemma 4.4]. Indeed, the idea is to prove that for all ϕ ∈ C∞

0 (ΩT ;R2),

Am :=
T

0 Ω
∇mF (Mm) · ϕdxdt+

T

0 Ω
F (Mm) div ϕdxdt → 0

as m → ∞. This is done by reformulating the two integrals:

Ω
∇mF (Mm) · ϕdx = −1

2
K∈T σ∈Eint,K

m(σ)

m(TK,σ)
DK,σF (Mm)

TK,σ

ϕ(s, t) · νK,σdx,

Ω
F (Mm) div ϕdx =

1

2
K∈T σ∈Eint,K

DK,σF (Mm)
σ
ϕ(s, t) · νK,σds.

Because of the property (see [CHLP03, Lemma 4.4])

1

m(TK,σ) TK,σ

ϕ(t, s) · νK,σdx− 1

m(σ) σ
ϕ(s, t) · νK,σds ≤ χm∥ϕ∥C1(Ω)

and the uniform estimates for F (Mm) from Lemma 18, it follows that

|Am| ≤ 1

2

NT

k=1

∆tm
K∈T σ∈Eint,K

m(σ)DK,σF (Mk)

× 1

m(TK,σ) TK,σ

ϕ(t, s) · νK,σdx− 1

m(σ) σ
ϕ(s, t) · νK,σds

≤ χmC∥ϕ∥C1(Ω) → 0 as m → ∞.

This implies that Ψ = ∇F (M). Finally, similar arguments as above show the convergence
results for Nm, ∇mNm, Sm, ∇mSm and Am, ∇mAm.
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Lemma 21 (Convergence of the traces). Let (Mm, Nm, Sm, Am)m∈N be a sequence of
solutions to scheme (3.9)–(3.16) constructed in Theorem 13. Then the limit function
(M,N, S,A) obtained in Lemma 20 satisfies

F (M)− F (MD), N, S − 1, A ∈ L2(0, T ;H1
0 (Ω)).

Proof. The proof for N , S and A is a direct consequence of [BCH13, Prop. 4.9]. For F (M),
we follow the proof of [BCH13, Prop. 4.11]. We choose a fixed m ∈ N and introduce

a definition of the trace of Mm, denoted by Mm, such that Mm(x, t) = Mk
K if (x, t) ∈

σ × (tk−1, tk] with σ ∈ Eext,K. Following [BCH13], we wish to prove that

T

0 ∂Ω
(F (Mm)− F (M))ψdxdt → 0 as m → ∞ (3.54)

for all ψ ∈ C∞
0 (∂Ω × (0, T )), from which the claim F (M) = F (MD) a.e. on ∂Ω × (0, T )

follows. Indeed, as Mm = MD on ∂Ω× (0, T ), we have by the Cauchy–Schwarz inequality,

T

0 ∂Ω
|F (Mm)− F (Mm)|dxdt =

NT

k=1

∆tm
K∈T σ∈Eext,K

m(σ)|F (MD)− F (Mk
K)|

≤
NT

k=1

∆tm
K∈T σ∈Eext,K

τσ|F (MD)− F (Mk
K)|2

1/2

×
NT

k=1

∆tm
K∈T σ∈Eext,K

m(σ)dσ

1/2

.

Hence, thanks to Lemma 18 and the fact that dσ = d(xK , σ) ≤ diam(K) ≤ χm for every
σ ∈ Eext,K , it follows that

T

0 ∂Ω
|F (Mm)− F (Mm)|dxdt ≤ C(T m(∂Ω)χm)1/2 → 0 as m → ∞,

which proves the claim.
Now, as Ω is assumed to be a polygonal domain, ∂Ω consists of a finite number of faces

denoted by (Γi)1≤i≤I . Similarly to [BCH13,EGHM02], we define for δ > 0 the subset Ωi,δ

of Ω such that every x ∈ Ωi,δ satisfies d(x,Γi) < δ and d(x,Γi) < d(x,Γj) for all j ̸= i. We
also define the subset ωi,δ ⊂ Ωi,δ as the largest cylinder of width δ generated by Γi. Let νi
be the unit vector that is normal to Γi, i.e., more precisely, we introduce the set

ωi,δ := x− hνi ∈ Ωi : x ∈ Γi, 0 < h < δ and [x, x− hνi] ⊂ Ωi,δ for all 1 ≤ i ≤ I.

Finally, we also introduce the subset Γi,δ := ∂ωi,δ ∩ Γi, which fulfills m(Γi \ Γi,δ) ≤ Cδ for
some constant C > 0 only depending on Ω.

Let i ∈ {1, . . . , I} be fixed and let ψ ∈ C∞
0 (Γi×(0, T )). Then there exists δ∗ = δ∗(ψ) > 0

such that for every δ ∈ (0, δ∗), we have supp(ψ) ⊂ Γi,δ × (0, T ). We write

T

0 Γi

(F (Mm)− F (M))ψdxdt = B1,m,δ +B2,m,δ +B3,δ, where
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3.5 Convergence of the scheme

B1,m,δ =
T

0

1

δ Γi,δ

δ

0
F (Mm(x, t))− F (Mm(x− hνi, t)) ψ(x, t)dhdxdt,

B2,m,δ =
T

0

1

δ Γi,δ

δ

0
F (Mm(x− hνi, t))− F (M(x− hνi, t)) ψ(x, t)dhdxdt,

B3,δ =
T

0

1

δ Γi,δ

δ

0
F (M(x− hνi, t))− F (M) ψ(x, t)dhdxdt.

We apply the Cauchy–Schwarz inequality to the first term and then use [BCH13, Lemma 4.8]
and Lemma 18 to find that

|B1,m,δ| ≤
T

0

1

δ Γi,δ

δ

0
F (Mm(x, t))− F (Mm(x− hνi, t))

2
dhdxdt

1/2

×
T

0 Γi

ψ(x, t)2dxdt
1/2

≤ δ + χm∥F (Mm)∥1,2,M∥ψ∥L2(Γi×(0,T )).

Taking into account that Lemma 20 implies that F (Mm) → F (M) strongly in Lr(ΩT ) for
1 ≤ r < 2, we infer that the second term B2,m,δ converges to zero as m → ∞. This shows
that

lim
m→∞

T

0 Γi

(F (Mm)− F (M))ψdxdt ≤ C
√
δ + |B3,δ|.

Since F (M) ∈ L2(0, T ;H1(Ω)), the function F (M) has a trace in L2(∂Ω × (0, T )) so that
B3,δ → 0 as δ → 0. Hence, performing the limit δ → 0, we conclude that (3.54) holds,
finishing the proof.

It remains to verify that the limit function (M,N, S,A) obtained in Lemma 20 is a weak
solution to (1.10)–(1.18). We follow the ideas of [CHLP03] and prove that M solves (3.22),
as the proof of (3.24) is analogous. Let ϕ ∈ C∞

0 (Ω× [0, T )) and let χm = max{∆xm,∆tm}
be sufficiently small such that supp(ϕ) ⊂ {x ∈ Ω : d(x, ∂Ω) > χm} × (0, T ). The aim is to
prove that Fm

10 + Fm
20 + Fm

30 → 0 as m → ∞, where

Fm
10 = −

T

0 Ω
Mm∂tϕdxdt−

Ω
Mm(x, 0)ϕ(x, 0)dx,

Fm
20 = d1

T

0 Ω
∇mF (Mm) · ∇ϕdxdt,

Fm
30 = −

T

0 Ω
g1(Mm, Sm, Am)ϕdxdt.

The convergence results from Lemma 20 allow us to perform the limit m → ∞ in these
integrals, leading to

Fm
10 + Fm

20 + Fm
30 → −

T

0 Ω
M∂tϕdxdt−

Ω
M0(x)ϕ(x, 0)dx

+ d1
T

0 Ω
∇F (M) · ∇ϕdxdt−

T

0 Ω
g1(M,S,A)ϕdxdt.

59



3 Analysis of a Finite–Volume Scheme for a Quorum Sensing induced Biofilm Model

Now we set ϕk
K = ϕ(xK , tk), multiply (3.11) by ∆tϕk−1

K , and sum over K ∈ T and
k = 1, . . . , NT :

Fm
1 + Fm

2 + Fm
3 = 0, where (3.55)

Fm
1 =

NT

k=1K∈T
m(K)(Mk

K −Mk−1
K )ϕk−1

K ,

Fm
2 = −d1

NT

k=1

∆tm
K∈T σ∈Eint,K

τσDK,σF (Mk)ϕk−1
K ,

Fm
3 = −

NT

k=1

∆tm
K∈T

m(K)g1(M
k
K , Sk

K , Ak
K)ϕk−1

K .

We claim that Fm
j0 − Fm

j → 0 as m → ∞ for j = 1, 2, 3. Then (3.55) implies that
Fm
10 + Fm

20 + Fm
30 → 0 for m → ∞, finishing the proof.

For the first limit, we argue as in [CHLP03, Theorem 5.2]:

Fm
10 = −

NT

k=1K∈T
m(K)Mk

m,K(ϕk
K − ϕk−1

K )−
K∈T

m(K)M0
m,Kϕ0

K

= −
NT

k=1K∈T

tk

tk−1 K
Mk

m,K∂tϕ(xK , t)dxdt−
K∈T K

M0
m,Kϕ(xK , 0)dx.

This shows that |Fm
10 − Fm

1 | ≤ C∥ϕ∥C2(ΩT )χm → 0 as m → ∞.
Next, we use discrete integration by parts to rewrite Fm

2 :

Fm
2 = d1

NT

k=1

∆tm
K∈T σ∈Eint,K

τσDK,σF (Mk)DK,σϕ
k−1.

By the definition of the discrete gradient, we can also rewrite Fm
20 :

Fm
20 = d1

NT

k=1K∈T σ∈Eint,K

DK,σF (Mk)
m(σ)

m(TK,σ)

tk

tk−1 TK,σ

∇ϕ · νK,σdxdt.

Hence, using [CHLP03, Theorem 5.1] and the Cauchy–Schwarz inequality, we find that

|Fm
20 − Fm

2 | ≤ d1

NT

k=1K∈T σ∈Eint,K
m(σ)DσF (Mk)

×
tk

tk−1

1

m(TK,σ) TK,σ

∇ϕ · νK,σdx− 1

dσ
DK,σϕ

k−1dx dt

≤ d1

NT

k=1K∈T σ∈Eint,K
m(σ)DσF (Mk) · C∆tmχm
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≤ Cχmd1

NT

k=1

∆tm
σ∈E

m(σ)dσ

1/2 NT

k=1

∆tm|F (Mk)|21,2,M
1/2

≤ Cχmd1ξ
−1/2

NT

k=1

∆tm
σ∈E

m(σ)d(xK , σ)
1/2

,

where we used the mesh regularity (3.3) in the last step. Taking into account the estimate
for F (Mm) from Lemma 17 and the property (3.1), we infer that Fm

20 − Fm
2 → 0.

Finally, using the regularity of ϕ, we obtain

|Fm
30 − Fm

3 | ≤
NT

k=1K∈T
m(K)|g1(Mk

K , Sk
K , Ak

K)|
tk

tk−1

ϕk−1
K − 1

m(K) K
ϕdx dt

≤ 1

k1 + 1
+ k2 + η

An
max

1 +An
max

NT

k=1K∈T
m(K)

tk

tk−1

ϕk−1
K − 1

m(K) K
ϕdx dt

≤ 1

k1 + 1
+ k2 + η

An
max

1 +An
max

m(Ω)T∥∇ϕ∥L∞(ΩT )χm → 0.

This finishes the proof.

3.6 Numerical experiments

We present in this section some numerical experiments for the biofilm model (3.9)–(3.16)
in one and two space dimensions.

3.6.1 Implementation of the scheme

The finite-volume scheme (3.9)–(3.16) is implemented in MATLAB. As we used the same
method to implement the scheme as [JZ21], we repeat the description of the implementation
and the adaptive time step procedure for the convenience of the reader:
Since the numerical scheme is implicit in time, we have to solve a nonlinear system of
equations at each time step. In the one-dimensional case, we use Newton’s method.
Starting from (Mk−1, Nk−1, Sk−1, Ak−1), we apply a Newton method with precision ε =
10−10 to approximate the solution to the scheme at time step k. In the two-dimensional
case, we use a Newton method complemented by an adaptive time-stepping strategy to
approximate the solution of the scheme at time tk. More precisely, starting again from
(Mk−1, Nk−1, Sk−1, Ak−1), we launch a Newton method. If the method does not converge
with precision ε = 10−8 after at most 50 steps, we multiply the time step by a factor 0.2
and restart the Newton method. At the beginning of each time step, we increase the value
of the previous time step size by multiplying it by 1.1. Moreover, we impose the condition
10−8 ≤ ∆tk ≤ 10−2 with an initial time step size equal to 10−5. Our adaptive time-step
strategy aims to improve the numerical performance of our scheme in terms of number
of time steps, CPU time, etc. However, this strategy is not mandatory and, as in our
one-dimensional test case, we can always implement our scheme with a constant time step
with a reasonable size.
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3 Analysis of a Finite–Volume Scheme for a Quorum Sensing induced Biofilm Model

3.6.2 Test case 1: Rate of convergence in space

We illustrate the order of convergence in space and at final time T = 10−3 for the biofilm
model in one space dimension with Ω = (0, 1).

Parameter d2 d3 d4 k1 k2 α β λ η ν n

Value 4.1667 4.1667 3.234 0.4 0.067 30.7 10α 0.02218 0.6 793.65 2.5

Table 3.1: Parameters used in the numerical simulations

Considering remark 1, we assume only homogeneous Dirichlet boundary data for the
biomass in our numerics, i.e. MD = 0. For d1, we choose d1 = 4.1667. Except for d1,
these values are the same as those considered in [ESE17]. Indeed, in [ESE17] the value of
d1 is set to 4.2 · 10−8. However, with this rather small value of d2, we have to compute
the solution of (3.9)–(3.16) for a large final time to obtain a relevant approximation of the
order of convergence in space at T . Here, the idea was to speed up the dynamics of M to
reduce the computational time. We take a = 2 and b = 1 such that,

F (x) = log(1− x) +
1

1− x
− 1,

F ′(x) =
x

(1− x)2
.

Finally, we impose the initial data N0(x) = sin(πx), S0(x) = 1 − 0.2 sin(πx), A0(x) =
sin(πx) and

M0(x) = 0.2 g(x− 0.38) + 0.9 g(x− 0.62),

where g(x) = max{1− 92x2, 0}.

Since exact solutions to the biofilm model are not explicitly known, we compute a refer-
ence solution (Mref , Nref , Sref , Aref) on a uniform mesh composed of 5120 cells and with
∆t = (1/2 560)2 ≈ 1.53 · 10−7. We use this rather small value of ∆t because the Euler dis-
cretization in time exhibits a first-order convergence rate, while we expect a second-order
convergence rate in space for scheme (3.9)-(3.16), due to the two-point flux approximation
scheme used in this work [DJZ21]. We compute approximate solutions on uniform meshes
made of 40, 80, 160, 320, 640, 1280 and 2560 cells, respectively. In Figure 3.1, we present
the L1(Ω) norm of the difference between the approximate solutions and the average of
the reference solution (Mref , Nref , Sref , Aref) at the final time T = 10−3. We observe a
convergence of order 2 (approximately) for M , N , S and A, respectively, in the L1 norm.

In the L2 norm, we observe a convergence of order ≈ 1.7 for M and a second order
convergence for N , S and A.
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3.6 Numerical experiments

Figure 3.1: Test case 1: L1 and L2 norm of the error between the reference solution and
the solutions computed on coarser grids at final time T = 10−3.
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3 Analysis of a Finite–Volume Scheme for a Quorum Sensing induced Biofilm Model

3.6.3 Test case 2: Microbial floc I

We consider the domain Ω = (0, 1)× (0, 1) and the microbial floc which we have considered
in [HJZ23]. Therefore, we choose a = b = 4 such that

F (x) = −18x2 − 30x+ 13

3(x− 1)3
+ x+ 4 log(1− x)− 13

3

and the initial data N0(x, y) = 0, S0(x, y) = 1, A0(x, y) = 0 and

M0(x, y) = 0.3 p(x− 0.4, y − 0.5) + 0.9 p(x− 0.6, y − 0.5),

where p(x, y) = max{1− 82x2 − 82y2, 0}.

As in test case 1 we take the values from table 3.1, i.e. the values from [ESE17]. However,
in the 2D test cases we also choose d1 as in [ESE17], such that d1 = 4.2 · 10−8.
In Figures 3.2–3.5, we illustrate the behavior M ,N ,S and A along time for a mesh of

Ω = (0, 1)2 composed of 896 triangles. We observe, as in [EPL01,EZE09,ESE17], that after
a transient time, the two colonies merge. Due to the high concentration of biomass after this
stage, we observe an expansion of the biomass due to the porous-medium type degeneracy.
Then, at T = 10 we can see in figure 3.5, that the biofilm produced a comparatively large
amount of the quorum sensing signal molecule A. As described in [ESE17], the quorum
sensing signal molecule can switch the biofilm development and put the biofilm growth to
a hold. At the same time, the overall number of dispersed cells N is continuously growing
due to the increase of signal molecules. As time progresses, we can see that the interplay
between the held growth of biofilm and the deteachment of cells causes a hollowing effect
similarly to the observations in [ESE17]. Furthermore, we can see in figure 3.2 at time
T = 15, that the growth now takes place only in areas, where the concentration of the
signal molecule (see figure 3.5) is low. At the final time which we consider, namely T = 25
we observe in figures 3.3 and 3.5, that the signal molecule as well as the concentration of
dispersed cells decreased. Thus, the biomass started to grow again in its new boundaries.
Due to the hollowing effect, the growth in the former “center” of the biomass is still put to
a hold.
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3.6 Numerical experiments

(a) M at T = 0.0002 (b) M at T = 5

(c) M at T = 10 (d) M at T = 15

(e) M at T = 20 (f) M at T = 25

Figure 3.2: Test case 2: Evolution of M .
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(a) N at T = 0.0002 (b) N at T = 5

(c) N at T = 10 (d) N at T = 15

(e) N at T = 20 (f) N at T = 25

Figure 3.3: Test case 2: Evolution of N .
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3.6 Numerical experiments

(a) S at T = 0.0002 (b) S at T = 5

(c) S at T = 10 (d) S at T = 15

(e) S at T = 20 (f) S at T = 25

Figure 3.4: Test case 2: Evolution of S.
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(a) A at T = 0.0002 (b) A at T = 5

(c) A at T = 10 (d) A at T = 15

(e) A at T = 20 (f) A at T = 25

Figure 3.5: Test case 2: Evolution of A.
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3.6.4 Test case 3: Microbial floc II

As mentioned before, we take the values of table 3.1 and d1 = 4.2 · 10−8 as in [ESE17]. As
in the second test case, we take a = b = 4 and N0(x, y) = 0, S0(x, y) = 1, A0(x, y) = 0.
However, as the initial data for the biomass, we consider similarly to [ESE17, 4.1 Microbial
floc] a microbial floc which is M0 = 0.1 in a small circular region of the domain. More
precisly, we choose

M0(x, y) =
0.1, if (x− 1/2)2 + (y − 1/2)2 ≤ 1/16,

0, otherwise.

Note,that in [ESE17] the circular floc takes 0.03% of the domain [0, 1] × [0, 1]. This is
not the case for us, since by definition of the initial data M0, we occupy approximately
0.012% of the domain. We still expect to observe a similar behavior as in [ESE17]. As
in case 2, we consider a mesh consisting of 896 triangles. The biomass stays (apart from
growth) for T = 5 and T = 10. At T = 15 however, we can already observe that the
signal molecule concentration has increased significantly (Figure 3.9) and the detachment
of cells has started in the center of the biomass effect (Figure 3.6). Unlike in [ESE17], the
biomass does not increase in the inside of the hollowing effect at time T = 25, which is
probably caused by the different choice of the initial data. Due to the different initial data,
the maximum of the signal molecule seems to be reached only at a later time. In this way,
unlike in [ESE17], we observe at T = 25 only a growth at the edges of the biomass region,
but not yet at the void in the center.
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(a) M at T = 0.0002 (b) M at T = 5

(c) M at T = 10 (d) M at T = 15

(e) M at T = 20 (f) M at T = 25

Figure 3.6: Test case 3: Evolution of M .
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3.6 Numerical experiments

(a) N at T = 0.0002 (b) N at T = 5

(c) N at T = 10 (d) N at T = 15

(e) N at T = 20 (f) N at T = 25

Figure 3.7: Test case 3: Evolution of N .
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(a) S at T = 0.0002 (b) S at T = 5

(c) S at T = 10 (d) S at T = 15

(e) S at T = 20 (f) S at T = 25

Figure 3.8: Test case 3: Evolution of S.
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(a) A at T = 0.0002 (b) A at T = 5

(c) A at T = 10 (d) A at T = 15

(e) A at T = 20 (f) A at T = 25

Figure 3.9: Test case 3: Evolution of A.
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4 Existence Analysis for a Cahn-Hilliard-Type
System Modeling Biofilm Growth

The results of this chapter have been submitted for publication under [HJ23].

In this chapter, we provide the mathematical details for the model (1.24)–(1.28). To this
end, we first introduce the main results and briefly describe the key ideas in section 4.1.
Then, we introduce a truncated and regularized version of equations (1.24)–(1.28) in section
4.2.1 and prove the existence by using a galerkin approximation in section 4.2.2. In section
4.3, we provide uniform estimates in form of an energy and an entropy inequality which
are necessary in order to perform the deregularization limit. In section 4.4, we conclude
the existence proof by performing the limit. Finally, we present numerical experiments in
section 4.5 where we also compare the numerics of the modified system (1.24)–(1.28) to the
non–modified (yet simplified) system of [WZ12].

4.1 Main Result and Key Ideas

We impose the following assumptions:

(A1) Domain: Ω ⊂ Rd (d ≥ 1) is a bounded domain with Lipschitz continuous boundary.
Set ΩT = Ω× (0, T ).

(A2) Initial data: u0 ∈ H1(Ω) satisfies 0 < u∗ ≤ u0 ≤ u∗ in Ω for some u∗, u∗ > 0 and
v0 ∈ L2(Ω) satisfying 0 ≤ v0 ≤ 1 in Ω.

(A3) Source terms: g0 ∈ C0([0, 1]) is nondecreasing and satisfies g0(0) = 0, and h0 ∈
C1([0, 1]) is nondecreasing.

Our main result is the global existence of bounded weak solutions.

Theorem 22 (Global existence). Let Assumptions (A1)–(A3) hold. Then there exists a
weak solution (u, v) to (1.24)–(1.28) with the constitutive relations (1.29)–(1.32), satisfying
0 ≤ u ≤ 1, 0 ≤ v ≤ 1 in ΩT ,

u ∈ L2(0, T ;H2(Ω)) ∩ C0([0, T ];H1(Ω)),

(1− u)∇v, ∂tu, ∂tv ∈ L2(0, T ;H1(Ω)′),

and the weak formulation for all ϕ1, ϕ2 ∈ L2(0, T ;H2(Ω)),

T

0
⟨∂tv, ϕ1⟩dt+

T

0
⟨(1− u)∇v,∇ϕ1⟩dt =

T

0 Ω
g(u, v)ϕ1dxdt,
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T

0
⟨∂tu, ϕ2⟩dt+

T

0
⟨J,∇ϕ2⟩dt =

T

0 Ω
h(u, v)ϕ2dxdt,

where ⟨·, ·⟩ is the dual product between H1(Ω)′ and H1(Ω) and J = −∇(M(u)∆u) +
M ′(u)∇u + M(u)f ′′(u)∇u as well as (1 − u)∇v = ∇((1 − u)v) + v∇u are understood
in the sense of L2(0, T ;H1(Ω)′).

The proof of Theorem 22 is based on a suitable approximation scheme, truncating the
nonlinearities and using a Galerkin method similarly as in [EG96]. Uniform estimates are
obtained from the energy and entropy equalities, proved in Lemma 28 for the sequence of
approximate solutions,

d

dt Ω

1

2
|∇u|2 + f(u) dx+

Ω
M(u)|∇µ|2dx =

Ω
h(u, v)µdx, (4.1)

d

dt Ω
Φ(u)dx+

Ω
(∆u)2 + f ′′(u)|∇u|2 dx =

Ω
h(u, v)Φ′(u)dx, (4.2)

where Φ is defined by Φ′′(u) = 1/M(u) and Φ(1/2) = Φ′(1/2) = 0. This function can be
interpreted as the thermodynamic entropy of the system, since a computation shows that,
with M(u) given by (1.29),

Φ(u) = u log u+ (1− u) log(1− u) + log 2 ≥ 0 for 0 < u < 1.

Since f ′′(u)|∇u|2 ≥ −2λ|∇u|2 for 0 < u < 1, the corresponding integral in (4.2) can be
bounded by Gronwall’s lemma and the energy bound (4.1).
The difficulty is to estimate the right-hand sides of (4.1)–(4.2). The term h(u, v) contains

the factor u(1−u) which cancels the singularity from Φ′(u), such that Ω h(u, v)Φ′(u)dx is
bounded. For the other integral, we include the definition of µ and integrate by parts:

Ω
h(u, v)µdx =

Ω
(1− 2u)|∇u|2 + u(1− u)h′0(v)∇v · ∇u+ h(u, v)f ′(u) dx.

The last term is bounded since h(u, v) cancels the singularity of the potential f ′(u). The
first term can be treated by Gronwall’s lemma since u is bounded. For the second term,
we use Young’s inequality:

Ω
u(1− u)h′0(v)∇v · ∇udx ≤ C

Ω
|∇u|2dx+ C

Ω
(1− u)|∇v|2dx,

where we use the property 0 ≤ v ≤ 1. The last integral can be absorbed by the energy
bound for v:

1

2

d

dt Ω
v2dx+

Ω
(1− u)|∇v|2dx =

Ω
g(u, v)vdx ≤ C. (4.3)

There is another difficulty: Because of the degeneracy in the equation for v, we do not
obtain an estimate for ∇v (see (4.3)) and therefore we cannot expect strong convergence
for (a subsequence of) the approximate solutions (vδ) with δ > 0 being an approximation
parameter, but only weak* convergence in L∞(ΩT ). Surprisingly, the weak convergence
of (vδ) is enough to pass to the limit δ → 0 in (1 − uδ)∇vδ, since this expression can be
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written as ∇((1 − uδ)vδ) + vδ∇uδ, which converges weakly in the sense of distributions,
since (∇uδ) converges strongly (up to a subsequence). However, the weak convergence is
not sufficient to perform the limit in the reaction rates. The idea is to use the duality of
H1(Ω)′ and H1(Ω) as well as a Minty-Browder trick. Indeed, since h0 is nondecreasing, we
have for y ∈ C∞

0 (ΩT ),

0 ≤
T

0 Ω
uδ(1− uδ)(vδ − y)(h0(vδ)− h(y))dxdt

=
T

0
vδ − y, uδ(1− uδ)(h0(vδ)− h0(y)) dt.

(Observe that we need to truncate the factor uδ(1− uδ), since we cannot expect that 0 ≤
uδ ≤ 1; see Section 4.2.1.) By the Aubin–Lions lemma, vδ → v strongly in L2(0, T ;H1(Ω)′)
and uδ → u strongly in L2(0, T ;H1(Ω)). Hence, a computation shows that the limit δ → 0
in the previous inequality leads to

0 ≤
T

0
v − y, u(1− u)(h1 − h(y)) dt,

where h1 is the weak L2(ΩT )-limit of (h0(vδ)). A Minty–Browder argument, made precise
in Lemma 33, shows that h1 = h0(v), implying that h(uδ, vδ) ⇀ h(u, v) weakly in L2(ΩT ).

4.2 Existence for the approximate system

4.2.1 Truncated regularized system

We truncate the functions M(u), f(u), and the source terms. Let δ > 0 and set [u]+ =
max{0, u} and [u]1+ = min{1,max{0, u}} for u ∈ R. We introduce for u ∈ R

Mδ(u) =



M(δ) if u ≤ δ,

M(u) if δ < u < 1− δ,

M(1− δ) if u ≥ 1− δ.

Then Mδ(u) ≥ M(u) for u ∈ R. Furthermore, we set

D+(u) = [1− u]1+.

We approximate the singular part f1(u) = N−1u log u+(1−u) log(1−u) of the free energy
by setting

f1,δ(u) = f1(u) if δ < u < 1− δ,

f1,δ(u) = f1(δ) + f ′
1(δ)(u− δ) + 1

2f
′′
1 (δ)(u− δ)2 if u ≤ δ,

f1,δ(u) = f1(1− δ) + f ′
1(1− δ)(u− (1− δ)) + 1

2f
′′
1 (1− δ)(u− (1− δ))2 if u ≥ 1− δ.

This means that

f ′′
1,δ(u) =



f ′′
1 (δ) if u ≤ δ,

f ′′
1 (u) if δ < u < 1− δ,

f ′′
1 (1− δ) if u ≥ 1− δ.

(4.4)
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The regular part f2(u) = λu(1 − u) (0 ≤ u ≤ 1) of the free energy is extended to R such
that |f2(u)| ≤ C for u ∈ R. Furthermore, we set fδ = f1,δ + f2, and this function is defined
for all u ∈ R. We also need to truncate the source terms:

g+(u, v) = −[u]1+g0([v]
1
+), h+(u, v) = [u]+[1− u]+h0([v]

1
+).

Finally, let κ > 0. We wish to find a solution to the truncated and regularized system

∂tv − div(D+(u)∇v)− κ∆v = g+(u, v), (4.5)

∂tu− div(Mδ(u)∇µ) = h+(u, v), (4.6)

µ = −∆u+ f ′
δ(u) in Ω, t > 0, (4.7)

subject to the initial conditions (1.28) and the Neumann boundary conditions

∇v · ν = ∇µ · ν = ∇u · ν = 0 on ∂Ω, t > 0. (4.8)

4.2.2 Galerkin approximation

To solve (4.5)–(4.8) with initial condition (1.28), we use the Galerkin method (as in [EG96]).
Let (ϕℓ)ℓ∈N be the orthonormal eigenfunctions of the Laplace operator with homogeneous
Neumann boundary conditions. We can assume that λ1 = 0 and ϕ1 = const. Let L ∈ N.
We wish to find solutions

vL(x, t) =

L

ℓ=1

Aℓ(t)ϕℓ(x), uL(x, t) =

L

ℓ=1

Bℓ(t)ϕℓ(x), µL(x, t) =

L

ℓ=1

Cℓ(t)ϕℓ(x)

to the finite-dimensional system

Ω
∂tvLϕdx = −

Ω
(D+(uL) + κ)∇vL · ∇ϕdx+

Ω
g+(uL, vL)ϕdx, (4.9)

Ω
∂tuLϕdx = −

Ω
Mδ(uL)∇µL · ∇ϕdx+

Ω
h+(uL, vL)ϕdx, (4.10)

Ω
µLϕdx =

Ω
∇uL · ∇ϕdx+

Ω
f ′
δ(uL)ϕdx (4.11)

for all ϕ ∈ span(ϕ1, . . . , ϕL), with the initial conditions

vL(0) =

L

ℓ=1

(v0, ϕℓ)L2(Ω)ϕℓdx, uL(0) =

L

ℓ=1

(u0, ϕℓ)L2(Ω)ϕℓdx.

This gives an initial-value problem for a system of ordinary differential equations for
(A1, . . . , AL) and (B1, . . . , BL):

∂tAℓ = −
Ω
([uL]

1
+ + κ)∇vL · ∇ϕℓdx+

Ω
g+(uL, vL)ϕℓdx,

∂tBℓ = −
Ω
Mδ(uL)∇µL · ∇ϕℓdx+

Ω
h+(uL, vL)ϕℓdx,
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4.2 Existence for the approximate system

Cℓ =
Ω
∇uL · ∇ϕℓdx+

Ω
f ′
δ(uL)ϕℓdx for ℓ = 1, . . . , L,

with the initial conditions Aℓ(0) = (v0, ϕℓ)L2(Ω) and Bℓ(0) = (u0, ϕℓ)L2(Ω). As the right-
hand side of this system is continuous in (A1, . . . , AL) and (B1, . . . , BL), the Peano theorem
ensures the existence of a local solution. To extend this solution globally, we prove some a
priori estimates.

Lemma 23 (Energy estimate for the Galerkin approximation). There exists a constant
C(δ) > 0 independent of L such that for all t ∈ (0, T ),

1

2
∥∇uL(t)∥2L2(Ω) +

Ω
fδ(uL(t))dx+

1

2
M(δ)

t

0
∥∇µL∥2L2(Ω)ds

≤ 1

2
∥∇uL(0)∥2L2(Ω) +

Ω
fδ(uL(0))dx+ C(δ),

and because of Assumption (A2), the right-hand side can be bounded independently of L.

Proof. We choose ϕ = µL in (4.10) and ϕ = ∂tuL in (4.11):

Ω
∂tuLµLdx = −

Ω
Mδ(uL)|∇µL|2dx+

Ω
h+(uL, vL)µLdx

≤ −M(δ)
Ω
|∇µL|2dx+ C∥µL∥L1(Ω),

Ω
µL∂tuLdx =

Ω
∇uL · ∇∂tuLdx+

Ω
f ′
δ(uL)∂tuLdx

=
d

dt

1

2 Ω
|∇uL|2dx+

Ω
fδ(uL)dx ,

since |h+(uL, vL)| ≤ C because of our truncations. Here and in the following, C > 0 denotes
a generic constant with values changing from line to line. Equating both expressions and
integrating over (0, t) gives

1

2 Ω
∥∇uL(t)∥2L2(Ω) +

Ω
fδ(uL(t))dx ≤ 1

2 Ω
|∇uL(0)|2dx+

Ω
fδ(uL(0))dx (4.12)

−M(δ)
t

0 Ω
|∇µL|2dxds+ C

t

0
∥µL∥L1(Ω)ds.

The choice ϕ1 = const. in (4.11) shows that

Ω
µLdx ≤

Ω
|f ′

δ(uL)|dx ≤ C(δ).

Set µ̄L = |Ω|−1
Ω µLdx. By the Poincaré–Wirtinger inequality, the previous estimate

provides a bound for the L2(Ω) norm of µL:

∥µL∥L2(Ω) ≤ ∥µL − µ̄L∥L2(Ω) + ∥µ̄L∥L2(Ω) ≤ CP ∥∇µL∥L2(Ω) + C(δ).
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Applying Young’s inequality, we have

t

0
∥µL∥L1(Ω)ds ≤ C(Ω)

t

0
∥µL∥L2(Ω)ds ≤

1

2
M(δ)

t

0
∥∇µL∥2L2(Ω)ds+ C(δ,Ω, T ).

Inserting this estimate into (4.12) finishes the proof.

Lemma 24 (Estimates for uL and µL). There exists C(δ) > 0 independent of L such that

∥uL∥L∞(0,T ;H1(Ω)) + ∥µL∥L2(0,T ;H1(Ω)) ≤ C(δ).

Proof. The proof of Lemma 23 shows that (∇µL) and (µL) are bounded in L2(ΩT ) and
that (∇uL) is bounded in L∞(0, T ;L2(Ω)). We choose ϕ1 = const. in (4.10):

d

dt Ω
uLdx =

Ω
h+(uL, vL)dx ≤ C(Ω).

Consequently, Ω uL(t)dx is uniformly bounded, at least on finite time intervals. This
allows us to apply the Poincaré–Wirtinger inequality to deduce an L2(Ω) bound for uL(t)
uniformly in time.

We also need a priori estimates for the substrate concentration.

Lemma 25 (Estimates for vL). There exists C(v0) > 0 only depending on the initial datum
v0 such that

∥vL∥L∞(0,T ;L2(Ω)) + ∥D+(uL)
1/2∇vL∥L2(ΩT ) + κ1/2∥∇vL∥L2(ΩT ) ≤ C(v0).

Proof. We choose the test function ϕ = vL in (4.9) and take into account that g0(0) = 0:

1

2

d

dt Ω
v2Ldx+

Ω
(D+(uL) + κ)|∇vL|2dx = −

Ω
[uL]

1
+g0([vL]

1
+)vLdx ≤ 0.

An integration over (0, T ) yields the result.

The uniform estimates for uL in L∞(0, T ;H1(Ω)) and vL in L∞(0, T ;L2(Ω)) show that
the coefficients (Aℓ) and (Bℓ) are bounded in (0, T ). Thus, we infer the global existence
of solutions to the Galerkin system (4.9)–(4.11). To pass to the limit L → ∞, we need an
estimate for the time derivatives.

Lemma 26 (Estimates for the time derivatives). There exist C1(δ) > 0 depending on δ
and C2 > 0 independent of δ such that

∥∂tuL∥L2(0,T ;H1(Ω)′) ≤ C1(δ), ∥∂tvL∥L2(0,T ;H1(Ω)′) ≤ C2.

Proof. Let ψ ∈ L2(0, T ;H1(Ω)) and let ΠLψ be the projection of ψ on span(ϕ1, . . . , ϕL).
We infer from (4.9) and the bounds of Lemma 25 that

T

0 Ω
∂tvLψdxdt =

T

0 Ω
∂tvLΠLψdxdt
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≤
T

0
∥D+(uL)

1/2∥L∞(Ω)∥D+(uL)
1/2∇vL∥L2(Ω)∥∇ΠLψ∥L2(Ω)dt

+
t

0
∥g+(uL, vL)∥L2(Ω)∥ΠLψ∥L2(Ω)dt ≤ C2∥ψ∥L2(0,T ;H1(Ω)).

Furthermore, using Mδ(uL) ≤ CM and the bounds of Lemma 24,

T

0 Ω
∂tuLψdxdt =

T

0 Ω
∂tuLΠLψdxdt

≤ CM

T

0
∥∇µL∥L2(Ω)∥∇ΠLψ∥L2(Ω)dt

+
T

0
∥h+(uL, vL)∥L2(Ω)∥ΠLψ∥L2(Ω)dt ≤ C1(δ)∥ψ∥L2(0,T ;H1(Ω)).

This concludes the proof.

The estimates of Lemmas 24–26 allow us to apply the Aubin–Lions lemma [Sim87, Corol-
lary 4] to find subsequences (not relabeled) such that, as L → ∞,

uL → u, vL → v strongly in L2(ΩT ),

uL ⇀ u, vL ⇀ v, µL ⇀ µ weakly in L2(0, T ;H1(Ω)),

∂tuL ⇀ ∂tu, ∂tvL ⇀ ∂tv weakly in L2(0, T ;H1(Ω)′).

Since Mδ, D+, f
′
δ, g+, and h+ are bounded functions, we have

Mδ(uL) → Mδ(u), D+(uL) → D+(u), f ′
δ(uL) → f ′

δ(u),

h+(uL, vL) → h+(u, v), g+(uL, vL) → g+(u, v) strongly in L2(ΩT ).

Thus, we can perform the limit L → ∞ in the Galerkin system (4.9)–(4.11), which yields
the existence of a solution (u, v, µ) to

t

0
⟨∂tu, ϕ1⟩ds = −

t

0 Ω
Mδ(u)∇µ · ∇ϕ1dxds+

t

0 Ω
h+(u, v)ϕ1dxds, (4.13)

t

0
⟨∂tv, ϕ2⟩ds = −

t

0 Ω
(D+(u) + κ)∇v · ∇ϕ2dxds+

t

0 Ω
g+(u, v)ϕ2dxds, (4.14)

t

0 Ω
µϕ3dxds =

t

0 Ω
∇u · ∇ϕ3dxds+

t

0 Ω
f ′
δ(u)ϕ3dxds (4.15)

for all ϕi ∈ L2(0, T ;H1(Ω)), i = 1, 2, 3, and all 0 < t < T , recalling that ⟨·, ·⟩ is the dual
product between H1(Ω)′ and H1(Ω).

4.3 Uniform estimates

We need some estimates uniform in δ and κ as well as lower and upper bounds to remove
the truncation.
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Lemma 27 (Uniform estimates for v). There exists C(v0) > 0 only depending on v0 such
that

∥v∥L∞(0,T ;L2(Ω)) + ∥D+(u)
1/2∇v∥L2(ΩT ) + κ1/2∥∇v∥L2(ΩT ) ≤ C(v0).

Furthermore, it holds that 0 ≤ v(t) ≤ 1 in Ω for 0 < t < T .

Because of the lower and upper bounds for v, we can remove the truncation in g+(u, v) =
−[u]1+g0(v) and h+(u, v) = [u]+[1− u]+h0(v).

Proof. We start with the lower and upper bounds for v. We use the test function [v]− =
min{0, v} in (4.14) and use the assumption v(0) ≥ 0 in Ω:

Ω
[v(t)]2−dx+

t

0 Ω
(D+(u) + κ)|∇[v]−|2dxds =

t

0 Ω
g+(u, v)[v]−dxds = 0,

since g0(0) = 0 implies that g+(u, v)[v]− = −[u]1+g0(0)[v]− = 0. This implies that v(t) ≥ 0
in Ω, t > 0. The property v(t) ≤ 1 is proved in a similar way using the test function [v−1]+
and the fact that g+(u, v)[v − 1]+ = −[u]1+g0(1)[v − 1]+ ≤ 0. The remaining estimates can
be shown as in Lemma 25.

Next, we show some uniform estimates for u. For this, we introduce the entropy density

Φδ(u) =
u

1/2

s

1/2

drds

Mδ(r)
≥ 0. (4.16)

Lemma 28 (Energy and entropy estimates). There exists C(T ) > 0 independent of δ and
κ such that for all t > 0 and all sufficiently small δ > 0,

sup
0<t<T Ω

1

2
|∇u(t)|2dx+ fδ(u(t)) dx+

T

0 Ω
Mδ(u)|∇µ|2dxds ≤ C(T ), (4.17)

sup
0<t<T Ω

Φδ(u(t))dx+
T

0 Ω
(∆u)2dxds ≤ C(T ). (4.18)

Since fδ is bounded from below (by construction), the energy inequality provides uniform
bounds for u.

Proof. We first prove the energy inequality and then the entropy inequality.

Step 1: Energy inequality. We know from Section 4.2.2 that u ∈ L∞(0, T ;H1(Ω)) and
µ ∈ L2(0, T ;H1(Ω)). Then we infer from the boundedness of f ′

δ that ∆u = f ′
δ(u) − µ ∈

L2(0, T ;L2(Ω)). By elliptic regularity theory, u ∈ L2(0, T ;H2(Ω)). Moreover, ∇∆u =
f ′′
δ (u)∇u − ∇µ ∈ L2(ΩT ), which implies that u ∈ L2(0, T ;H3(Ω)) (this regularity is not
uniform in (δ, κ)). Consequently, ∆u ∈ L2(0, T ;H1(Ω)) and

0 =
t

0
⟨∂tu, µ+∆u− f ′

δ(u)⟩ds

=
t

0
⟨∂tu, µ⟩ds− 1

2 Ω
(|∇u(t)|2 − |∇u(0)|2)ds−

Ω
(fδ(u(t))− fδ(u(0))ds.
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On the other hand, we use ϕ2 = µ ∈ L2(0, T ;H1(Ω)) as a test function in (4.13):

t

0
⟨∂tu, µ⟩ds+

t

0 Ω
Mδ(u)|∇µ|2dxds =

t

0 Ω
h+(u, v)µdx.

This shows that, using the definition of µ,

1

2 Ω
|∇u(t)|2dx+

Ω
fδ(u(t))dx+

t

0 Ω
Mδ(u)|∇µ|2dxds = 1

2 Ω
|∇u0|2dx (4.19)

+
Ω
fδ(u

0)dx+
t

0 Ω
∇h+(u, v) · ∇udxds+

t

0 Ω
h+(u, v)f

′
δ(u)dxds.

It remains to estimate the last two integrals. For the last but one integral, we insert the
definition of h+(u, v) and apply Young’s inequality:

t

0 Ω
∇h+(u, v) · ∇udxds

=
t

0 Ω
1{0<u<1} (1− 2u)h0(v)|∇u|2 + u(1− u)h′0(v)∇v · ∇u dxds

≤ C
t

0 Ω
|∇u|2dxds+ C

t

0 Ω
1{0<u<1}(1− u)|∇v|2dxds

≤ C
t

0 Ω
|∇u|2dxds+ C,

where the last step follows from Lemma 27, and C > 0 denotes here and in the following
a constant independent of δ and κ.

For the last integral in (4.19), we observe that the function s → −s(1 − s)(N−1 log s −
log(1− s)+N−1 − 1) is bounded in [0, 1]. We insert the definition of f ′

δ(u) and distinguish
three cases. First, let u ≤ δ. Then

h+(u, v)f
′
δ(u) = [u]+[1− u]+ f ′

δ(δ) + f ′′
1 (δ)(u− δ) + λ(1− 2u)

= [u]+[1− u]+
1

N
log δ − log(1− δ) +

1

N
− 1

+ [u]+[1− u]+(u− δ)
1

Nδ
+

1

1− δ
+ λ[u]+[1− u]+(1− 2u)

≤ δ(1− δ) | log(1− δ)|+ 1

N
+ λδ(1− δ) ≤ C,

using [u]+[1− u]+ ≤ δ(1− δ) and u− δ ≤ 0. Second, let δ < u < 1− δ. We have

h+(u, v)f
′
δ(u) = u(1− u)

1

N
log u− log(1− u) +

1

N
− 1 + λu(1− u)(1− 2u) ≤ C,

since z → z log z is bounded in [0, 1]. Finally, let u ≥ 1− δ (and δ ≤ 1/2). We obtain

h+(u, v)f
′
δ(u) = [u]+[1− u]+

1

N
log(1− δ)− log δ +

1

N
− 1
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+ [u]+[1− u]+(u− δ)
1

N(1− δ)
+

1

δ
+ λ[u]+[1− u]+(1− 2u)

≤ δ(1− δ) | log δ|+ 1

N
+ (1− δ)δ(1− 2δ)

1

N(1− δ)
+

1

δ
+ λ ≤ C.

This proves that, for 0 < t < T ,

t

0 Ω
h+(u, v)f

′
δ(u)dxds ≤ C(Ω, T ).

Therefore, we infer from (4.19) that

1

2 Ω
|∇u(t)|2dx+

Ω
fδ(u(t))dx+

t

0 Ω
Mδ(u)|∇µ|2dxds

=
1

2 Ω
|∇u0|2dx+

Ω
fδ(u

0)dx+ C
t

0 Ω
|∇u|2dxds+ C.

Since u0 is strictly positive and bounded away from one, there exists δ0 > 0 such that
fδ(u

0) = f(u0) for 0 < δ ≤ δ0. An application of Gronwall’s lemma shows (4.17).

Step 2: Entropy inequality. Because of the truncation, we have ∇Φ′
δ(u) = ∇u/Mδ(u) ∈

L2(ΩT ), where Φδ is defined in (4.16). Thus, we can use ϕ1 = Φ′
δ(u) as a test function in

(4.13):

Ω
Φδ(u(t))dx−

Ω
Φδ(u(0))dx =

t

0
⟨∂tu,Φ′

δ(u)⟩ds (4.20)

= −
t

0 Ω
Mδ(u)∇µ · ∇Φ′

δ(u)dxds+
t

0 Ω
h+(u, v)Φ

′
δ(u)dxds

≤ −
t

0 Ω
∇(−∆u+ f ′

δ(u)) · ∇udxds+
t

0 Ω
[u]+[1− u]+h0(v)Φ

′
δ(u)dxds.

The first integral on the right-hand side can be written as

−
t

0 Ω
∇(−∆u+ f ′

δ(u)) · ∇udxds = −
t

0 Ω
(∆u)2dxds−

t

0 Ω
f ′′
δ (u)|∇u|2dxds.

Because of f ′′
1,δ(u) ≥ 0 by (4.4) and f ′′

2 (u) ≥ −C, we obtain

−
t

0 Ω
∇(−∆u+ f ′

δ(u)) · ∇udxds ≤ −
t

0 Ω
(∆u)2dxds+ C

t

0 Ω
|∇u|2dxds.

We claim that the integrand of the last integral in (4.20) is bounded, i.e. [u]+[1−u]+Φ
′
δ(u)

is bounded uniformly in u ∈ [0, 1] and δ ∈ (0, 1/2). Indeed, if δ ≤ u ≤ 1 − δ, we can
compute

|[u]+[1− u]+Φ
′
δ(u)| = u(1− u)

u

1/2

ds

s(1− s)
= u(1− u) log

u

1− u
≤ 1.
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4.4 The limit (δ, κ) → 0

If 0 < u < δ, we find that

|[u]+[1− u]+Φ
′
δ(u)| = u(1− u)

δ

1/2

ds

s(1− s)
+

u

δ

ds

δ(1− δ)

= u(1− u) log
δ

1− δ
+ u(1− u)

δ − u

δ(1− δ)
.

The first term is uniformly bounded since |u log δ| ≤ |δ log δ| ≤ 1 and |(1−u) log(1−δ)| ≤ 1.
This holds also true for the second term because of u(1 − u) < δ(1 − δ). The final case
1− δ < u < 1 is treated in a similar way:

|[u]+[1− u]+Φ
′
δ(u)| = u(1− u)

1−δ

1/2

ds

s(1− s)
+

u

1−δ

ds

δ(1− δ)

= u(1− u) log
1− δ

δ
+ u(1− u)

u− (1− δ)

δ(1− δ)
.

The first term is uniformly bounded since |(1−u) log δ| ≤ |δ log δ| ≤ 1 and |u log(1−δ)| ≤ 1,
and the second term is bounded too. We conclude from (4.20) that

Ω
Φδ(u(t))dx+

t

0 Ω
(∆u)2dxds ≤

Ω
Φδ(u

0)dx+ C
t

0 Ω
|∇u|2dxds,

and the energy bound (4.17) leads to (4.18).

Finally, we derive a bound for the time derivatives of u and v.

Lemma 29 (Bounds for the time derivatives). There exists C > 0 independent of δ and κ
such that

∥∂tu∥L2(0,T ;H1(Ω)′) + ∥∂tv∥L2(0,T ;H1(Ω)′) ≤ C.

Proof. The proof is similar to that one of Lemma 26; we just have to estimate the re-
action terms. Since 0 ≤ v ≤ 1, we have the pointwise bounds g+(u, v) = −[u]1+g0(v) ≤
max0≤v≤1 g0(v) and h+(u, v) = [u]+[1− u]+h0(v) ≤ max0≤v≤1 h0(v). Consequently, ∥g+(u,
v)∥L2(ΩT ) and ∥h+(u, v)∥L2(ΩT ) are uniformly bounded, concluding the proof.

4.4 The limit (δ, κ) → 0

Set κ = δ and let (uδ, vδ, µδ) be a weak solution to (4.13)–(4.15). Lemmas 27–29 give the
following uniform bounds:

0 ≤ vδ ≤ 1 in ΩT ,

∥D+(uδ)
1/2∇vδ∥L2(ΩT ) + δ1/2∥vδ∥L2(0,T ;H1(Ω)) + ∥∂tvδ∥L2(0,T ;H1(Ω)′) ≤ C,

∥uδ∥L∞(0,T ;H1(Ω)) + ∥uδ∥L2(0,T ;H2(Ω)) + ∥∂tuδ∥L2(0,T ;H1(Ω)′) ≤ C,

∥Mδ(uδ)
1/2∇µδ∥L2(ΩT ) ≤ C.

85



4 Existence Analysis for a Cahn-Hilliard-Type System Modeling Biofilm Growth

The Aubin–Lions lemma [Sim87, Corollary 4] implies the existence of a subsequence, which
is not relabeled, such that, as δ → 0,

uδ → u strongly in L2(0, T ;H1(Ω)) and C0([0, T ];L2(Ω)).

We also have the weak convergences

vδ ⇀ v weakly* in L∞(0, T ;L∞(Ω)),

∂tuδ ⇀ ∂tu, ∂tvδ ⇀ ∂tv weakly in L2(0, T ;H1(Ω)′),

D+(uδ)∇vδ ⇀ I, Mδ(uδ)
1/2∇µδ ⇀ J weakly in L2(ΩT ),

where I, J ∈ L2(ΩT ), and it holds that δ∇vδ → 0 strongly in L2(ΩT ). Before we identify
the limits I and J , we show that the limit u is bounded from below and above.

Lemma 30 (L∞ bounds for u). It holds that 0 ≤ u ≤ 1 in ΩT .

Proof. We proceed as in the proofs of [EG96, Lemma 2] or [PP21, Theorem 5]. Let α > 0
and introduce the set Vα,δ = {(x, t) ∈ ΩT : uδ(x, t) ≥ 1 + α}. Integrating Φ′′

δ (uδ(x, t)) =
1/Mδ(1− δ) = 1/(δ(1− δ)) for (x, t) ∈ Vα,δ twice gives

Φδ(uδ(x, t)) =
uδ(x,t)

1/2

s

1/2

drds

Mδ(r)
=

(uδ − 1/2)2

2δ(1− δ)
for (x, t) ∈ Vα,δ.

The entropy estimate (4.18) shows that

α2|Vα,δ|
2δ(1− δ)

≤
Vα,δ

(uδ − 1/2)2

2δ(1− δ)
d(x, t) =

Vα,δ

Φδ(uδ)d(x, t) ≤ C(T ).

Then we deduce from the a.e. pointwise limit uδ(x, t) → u(x, t) as δ → 0 amd Fatou’s
lemma that

|{u(x, t) ≥ 1 + α}| = lim
δ→0

|Vα,δ| ≤ lim
δ→0

2C(T )

α2
δ(1− δ) = 0,

implying that u(x, t) ≤ 1 + α a.e. in ΩT for all α > 0. Therefore, u(x, t) ≤ 1 in ΩT .
A similar argument proves that u ≥ 0 in ΩT . Indeed, let Wα,δ = {(x, t) : uδ(x, t) ≤ −α}

for α > 0. It follows from Φ′′
δ (uδ(x, t)) = 1/δ(1 − δ) for (x, t) ∈ Wα,δ that Φδ(uδ(x, t)) ≤

(1/2− uδ(x, t))
2/(2δ(1− δ)). Hence,

α2|Wα,δ|
2δ(1− δ)

≤
Wα,δ

(1/2− uδ)
2

2δ(1− δ)
d(x, t) =

Wα,δ

Φδ(uδ)d(x, t) ≤ C(T ),

and proceeding as before gives |{u(x, t) ≤ −α}| = 0 in the limit δ → 0 for all α > 0 and
therefore u ≥ 0 in ΩT .

We continue by identifying I. We conclude from [1−uδ]
1
+vδ ⇀ (1−u)v and vδ∇uδ ⇀ v∇u

weakly in L2(ΩT ) that

D+(uδ)∇vδ = ∇([1− uδ]
1
+vδ) + vδ1{0<uδ<1}∇uδ ⇀ ∇((1− u)v) + v∇u = (1− u)∇v

weakly in L2(0, T ;H1(Ω)′). This shows that I = (1− u)∇v in L2(0, T ;H1(Ω)′).
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4.4 The limit (δ, κ) → 0

Lemma 31 (Identification of J). It holds that J = −∇(M(u)∆u)+∇M(u)∆u+M(u)∇f ′(u)
in the sense of L2(0, T ;H1(Ω)′).

Proof. We proceed as in [EG96, Section 3]. It holds for ϕ ∈ C∞
0 (ΩT ) that

T

0 Ω
Mδ(uδ)∇µδ · ∇ϕdxdt =

T

0 Ω
Mδ(uδ)∇ −∆uδ + f ′

δ(uδ) · ∇ϕdxdt

=
T

0 Ω
Mδ(uδ)∆uδ∆ϕdxdt+

T

0 Ω
M ′

δ(uδ)∆uδ∇uδ · ∇ϕdxdt

+
T

0 Ω
Mδ(uδ)f

′′
δ (uδ)∇uδ · ∇ϕdxdt =: J1 + J2 + J3.

First, we consider J1. We observe that Mδ → M uniformly, since by the mean-value
theorem,

|Mδ(z)−M(z)| ≤ sup
0<z<δ

|M(δ)−M(z)|+ sup
1−δ<z<1

|M(1− δ)−M(z)|

≤ M ′(ξδ)δ +M ′(ηδ)δ → 0,

where ξδ ∈ (z, δ) and ηδ ∈ (1 − δ, z). This implies that Mδ(uδ) → M(u) a.e. in ΩT and,
as Mδ is uniformly bounded, also strongly in L2(ΩT ). Together with the convergence
∆uδ ⇀ ∆u weakly in L2(ΩT ), we find that

J1 →
T

0 Ω
M(u)∆u∆ϕdxdt.

For the integral J2, we claim that M ′
δ(uδ)∇uδ → M ′(u)∇u strongly in L2(ΩT ). This

limit is not trivial since M ′
δ is discontinuous at δ and 1− δ. We consider the integrals

T

0 Ω
|M ′

δ(uδ)∇uδ −M ′(u)∇u|2dxdt =
T

0 {0<u<1}
|M ′

δ(uδ)∇uδ −M ′(u)∇u|2dxdt

+
T

0 {u=0}
|M ′

δ(uδ)∇uδ −M ′(u)∇u|2dxdt+
T

0 {u=1}
|M ′

δ(uδ)∇uδ −M ′(u)∇u|2dxdt.

On the set {0 < u < 1}, we know that M ′
δ(uδ) → M ′(u) a.e. in ΩT and, because of

the strong convergence of (∇uδ), also M ′
δ(uδ)∇uδ → M ′(u)∇u a.e. in ΩT (possibly for a

subsequence). Moreover, |M ′
δ(uδ)∇uδ|2 is uniformly bounded on {0 < u < 1}. Therefore,

by dominated convergence,

T

0 {0<u<1}
|M ′

δ(uδ)∇uδ −M ′(u)∇u|2dxdt → 0.

It follows from ∇u = 0 on {u = 0} ∪ {u = 1} and the uniform bound for M ′
δ that

T

0 {u=0}
|M ′

δ(uδ)∇uδ −M ′(u)∇u|2dxdt =
T

0 {u=0}
|M ′

δ(uδ)∇uδ|2dxdt
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≤ C
T

0 {u=0}
|∇uδ|2dxdt →

T

0 {u=0}
|∇u|2dxdt = 0.

The limit in the remaining integral over {u = 1} vanishes in the same way. This shows
that

J2 →
T

0 Ω
M ′(u)∆u∇u · ∇ϕdxdt.

Finally, for the limit in J3, we observe that Mδ(z)f
′′
δ (z) = Mδ(z)(f

′′
1,δ(z) + f ′′

2 (z)) is
uniformly bounded, since the singularities as δ → 0 in f ′′

1,δ are canceled by the factor
Mδ(z). Thus, it remains to show that Mδ(uδ)f

′′
δ (uδ) → M(u)f ′′(u) in ΩT \N , where N is

a set of measure zero. To this end, we distinguish several cases.
Let (x, t) ∈ ΩT \ N and 0 < u(x, t) < 1. For given ε > 0, there exists 0 < δ < ε such

that δ < ε ≤ uδ(x, t) ≤ 1 − ε < 1 − δ. At this point, we have Mδ(uδ(x, t))f
′′
δ (uδ(x, t)) =

M(uδ(x, t))f
′′(uδ(x, t)) → M(u(x, t))f ′′(u(x, t)). Next, if u(x, t) = 1, we choose δ > 0 such

that uδ(x, t) ≥ 1− δ. Then

Mδ(uδ(x, t))f
′′
δ (uδ(x, t)) = M(δ)(f ′′

1 (δ) + f2(uδ))

= N−1δ + (1− δ) + δ(1− δ)f2(uδ) → 1 = (Mf ′′)(1).

On the other hand, if uδ(x, t) < 1− δ and uδ(x, t) → 1,

Mδ(uδ(x, t))f
′′
δ (uδ(x, t)) = M(uδ(x, t))f

′′(uδ(x, t))

= N−1(1− uδ(x, t)) + uδ(x, t) + uδ(1− uδ)f
′′
( uδ) → 1 = (Mf ′′)(1).

The case u(x, t) = 0 is treated in a similar way. We conclude that Mδ(uδ)f
′′
δ (uδ) →

M(u)f ′′(u) strongly in L2(ΩT ). Then, in view of the strong convergence of (∇uδ),

J3 →
T

0 Ω
M(u)f ′′(u)∇u · ∇ϕdxdt.

Summarizing, we have shown that

T

0 Ω
Mδ(uδ)∇µδ · ∇ϕdxdt →

T

0 Ω
M(u)∆u∆ϕ+M ′(u)∆u∇u · ∇ϕ

+M(u)f ′′(u)∇u · ∇ϕ dxdt,

and the right-hand side can be identified as the weak formulation of J .

Remark 32. Choosing the mobility such that Φ(0) = Φ(1) = ∞, one can show that
{u = 0} ∪ {u = 1} has measure zero, which means that 0 < u < 1 holds a.e. in ΩT ,
and we can write J = M(u)∇(−∆u+ f ′(u)) in the sense of distributions. The claim that
{u = 0} ∪ {u = 1} has measure zero can be proved as in [EG96, Corollary]. It follows
from the entropy bound ΩΦδ(uδ(t))dx ≤ C(T ) and the fact that lim infδ→0Φδ(uδ) = Φ(u)
if 0 < u < 1 and lim infδ→0Φδ(uδ) = ∞ else.

It remains to pass to the limit δ → 0 in the reaction terms. Since (vδ) is only converging
weakly, this limit is not trivial. The idea is to use the Minty–Browder trick, which is
possible since (uδ) converges strongly in L2(0, T ;H1(Ω)).
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4.4 The limit (δ, κ) → 0

Lemma 33. It holds that g+(uδ, vδ) ⇀ g(u, v) and h+(uδ, vδ) ⇀ h(u, v) weakly in L2(ΩT )
as δ → 0.

Proof. We only show the limit in h+(uδ, vδ) as the proof in g+(uδ, vδ) is similar. We
know that (∂tvδ) is bounded in L2(0, T ;H1(Ω)′) and (vδ) is bounded in L2(ΩT ). Since
the embedding L2(Ω) → H1(Ω)′ is compact, we infer from the Aubin–Lions lemma that,

up to a subsequence, vδ → v strongly in L2(0, T ;H1(Ω)′). Moreover, ([1 − uδ]
1/2
+ ∇vδ) is

bounded in L2(ΩT ). Furthermore, we know that (uδ) is bounded in L∞(0, T ;H1(Ω)) and
L2(0, T ;H2(Ω)), and uδ → u strongly in L2(0, T ;H1(Ω)).

Let y ∈ C∞
0 (ΩT ). It follows from the monotonicity of h0 that

0 ≤
T

0 Ω
[uδ]+[1− uδ]+(vδ − y)(h0(vδ)− h0(y))dxdt (4.21)

=
T

0
vδ − y, [uδ]+[1− uδ]+(h0(vδ)− h0(y) dt,

recalling that ⟨·, ·⟩ is the dual product between H1(Ω)′ and H1(Ω). This formulation is
possible if [uδ]+[1−uδ]+h0(vδ) ∈ L2(0, T ;H1(Ω)). To verify this statement, we observe that
∇uδ ∈ L2(0, T ;H1(Ω)) implies that (1 − 2uδ)1{0<uδ<1}∇uδ ∈ L2(0, T ;L2(Ω)). Moreover,

[uδ]+[1− uδ]
1/2
+ ∈ L∞(ΩT ) and [1− uδ]

1/2
+ ∇vδ ∈ L2(ΩT ). This shows that

∇ [uδ]+[1− uδ]+h0(vδ) = [uδ]+[1− uδ]+h
′
0(vδ)∇vδ + h0(vδ)(1− 2uδ)1{0<uδ<1}∇uδ

is a function in L2(ΩT ), so that [uδ]+[1− uδ]+h0(vδ) ∈ L2(0, T ;H1(Ω)).

Let h1 be the weak* limit of (h0(vδ)) in L∞(0, T ;L∞(Ω)) and h2 be the weak limit of
([uδ]+[1 − uδ]+h0(vδ)) in L2(ΩT ). We claim that h2 = u(1 − u)h1. Indeed, since (uδ)
converges strongly in L2(0, T ;H1(Ω)), [uδ]+[1−uδ]+h0(vδ) ⇀ u(1−u)h1 weakly in L2(ΩT )
(here, we use 0 ≤ u ≤ 1 in ΩT ); see Lemma 30), and we deduce from the uniqueness of the
limit that u(1− u)h1 = h2.

We can now pass to the limit δ → 0 in (4.21) to find that

0 ≤
T

0
v − y, u(1− u)(h1 − h0(y) dt =

T

0 Ω
u(1− u)(h1 − h0(y))(v − y)dxdt.

By density, this inequality holds for all y ∈ L2(ΩT ). Let w ∈ L2(ΩT ) and choose y = v−ηw
for η ∈ R. Then

0 ≤ η
T

0 Ω
u(1− u)(h1 − h0(v − ηw))wdxdt.

Choosing η > 0 and performing the limit η → 0 yields
T
0 Ω u(1−u)(h1−h0(v))wdxdt ≥ 0.

On the other hand, if η < 0 and η → 0, we have
T
0 Ω u(1 − u)(h1 − h0(v))wdxdt ≤ 0.

Since w is arbitrary, u(1− u)h1 = u(1− u)h0(v). Thus,

h+(uδ, vδ) = [uδ]+[1− uδ]+h0(vδ) ⇀ u(1− u)h0(v) weakly in L2(ΩT ).

This ends the proof.
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Remark 34 (Generalizations). It is possible to generalize the relations (1.29) and (1.32) for
the mobility and the reaction rates. For instance, we may choose M(u) = um(1−u)mM0(u)
for m ≥ 1 and 0 < m∗ ≤ M(u) ≤ m∗ for u ∈ [0, 1], where m∗ ≥ m∗ > 0; see [EG96]. In
fact, we just need M(0) = M(1) = 0 and M(u)f ′′(u) ∈ C0([0, 1]); see [PP21]. The latter
condition is needed to identify the weak limit J . The reaction terms may be generalized to
g(u, v) = g0(v)g1(u) and h(u, v) = h0(v)h1(u), for instance, where we assume that g1 is
bounded in [0, 1]; g0 grows at most linearly; h1 satisfies h1(u)f

′(u) ≤ C for all u[0, 1] to
cancel the singularities of f ′; and |h1(u)| ≤ C(1− u) for u ∈ [0, 1] to estimate in Step 1 of
the proof of Lemma 28 the integral

Ω
h1(u)h

′
0(v)∇v · ∇udx ≤

Ω
|∇u|2dx+ C

Ω
(1− u)|∇v|2dx.

Clearly, also the free energy f(u) may be generalized if the factors in the diffusion and
reaction terms are adapted in such a way that the singularities from f ′(u) are canceled.

4.5 Numerical experiments

4.5.1 Scaling of the equations

The biofilm model with physical units reads as follows:

∂tv − div(D(1− u)∇v) = −Rcuv,

∂tu− div(M ′u(1− u)∇µ) = u(1− u)
Rpv

Kv + v
,

µ = −Γ1∆u+ Γ2f
′(u),

and f ′(u) is given by (1.31), observing that the parameters N and λ and the volume fraction
u are dimensionless. Here, D > 0 is the diffusivity, M ′ > 0 the mobility constant, Rc > 0
the consumption rate, Rp > 0 the production rate, Γ1 > 0 the parameter of the distortional
energy, and Γ2 > 0 the parameter of the mixing free energy.
Choosing the characteristic length x0, the characteristic time t0, the characteristic con-

centration v0, and the characteristic chemical potential µ0, the scaled equations read as
follows:

∂tv − div(D0(1− u)∇v) = −R0
cuv, (4.22)

∂tu− div(M0u(1− u)∇µ) = u(1− u)
R0

pv

K + v
, (4.23)

µ = −Γ0
1∆u+ Γ0

2f
′(u), (4.24)

where the dimensionless parameters are

D0 =
Dt0
x20

, M0 =
M ′t0µ0

x20
, R0

c = Rct0, R0
p = Rpt0,

K =
Kv

v0
, Γ0

1 =
Γ1

µ0x20
, Γ0

2 =
Γ2

µ0
.
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4.5 Numerical experiments

The model of [WZ12] (without elastic energy contributions) reads as

∂t((1− u)v)− div(D0(1− u)∇v) = −u
Rcv

K + v
,

∂tu− div(M0(1− u)∇µ) = u
Rpv

Kv + v
,

µ = −Γ1∆u+ Γ2f
′(u).

Symbol Parameter Value Unit

D Diffusivity 10−10 m2 s−1

M ′ Mobility 2.5 · 10−8 s
Rc Consumption rate 10−2 s−1

Rp Production rate 10−2 kgm−3 s−1

Kv Half-saturation constant 10−4 kgm−3

Γ1 Distortional energy 4 · 10−15 m4 s−2

Γ2 Mixing free energy 4 · 10−6 m2 s−2

N Polymerization parameter 103

λ Flory–Huggins parameter 0.55
x0 Characteristic length 10−4 m
t0 Characteristic time 102 s
v0 Characteristic concentration 10−3 kgm−3

kBT Thermal energy at T = 300K 4 · 10−21 kgm2 s−2

K Half-saturation constant for model of [WZ12] 5 · 10−4

Table 4.1: Parameters used in the numerical simulations.

The characteristic chemical potential µ0 is determined by the thermal energy and the
characteristic concentration and length (see Table 4.1) as µ0 = kBT/(v0x

3
0) = 4·10−6m2s−2.

The values of the physical parameters in Table 4.1 differ from those in [WZ12] but are of a
similar order. With our values, the scaled parameters are of order one (except K and Γ0

1):

D0 = R0
c = R0

p = 1, K = 10−1, M0 = 10−3, Γ0
1 = 10−1, Γ0

2 = 1.

4.5.2 Numerical discretization

As in [ZCW08b], we approximate equations (4.22)–(4.24) in the one-dimensional domain
Ω = (0, 1) by a BDF2 (second-order Backward Differentiation Formula) discretization in
time. The spatial discretization is performed by finite volumes. The scheme is explicit for
the mobility and potential, using the second-order approximation ūk := 2uk−1 − uk−2, but
implicit in the reactions and semi-implicit in the diffusion. Let ∆t > 0 be the time step size,
∆x > 0 the space grid size, and xi = i∆x, xi±1/2 = (i±1/2)∆x. We introduce finite-volume

cells Ki = (xi−1/2, xi+1/2) for i = 1, . . . , Nx. Then the values uki , v
k
i , and µk

i approximate
u(xi, k∆t), v(xi, k∆t), and µ(xi, k∆t) respectively for i = 1, . . . , Nx, k = 1, . . . , NT . Our
scheme reads for k ≥ 2 as follows:

∆x

2∆t
(3vki − 4vk−1

i + vk−2
i ) + Gk

i+1/2 − Gk
i−1/2 = −∆xR0

cu
k
i v

k
i ,
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∆x

2∆t
(3uki − 4uk−1

i + uk−2
i ) + Fk

i+1/2 −Fk
i−1/2 = ∆xuki (1− uki )

R0
pv

k
i

K + vki
,

Hk
i+1/2 −Hk

i−1/2 +∆xf ′(ūki ) = ∆xµk
i ,

where the numerical fluxes are given by

Gk
i+1/2 = −D0(1− uki+1/2)

vki+1 − vki
∆x

,

Fk
i+1/2 = −M0u

k
i+1/2(1− uki+1/2)

µk
i+1 − µk

i

∆x
, Hk

i+1/2 = −uki+1 − uki
∆x

,

and uki+1/2 =
1
2(u

k
i+1+uki ). The approximation (u1i , v

1
i , µ

1
i ) at the first time step is computed

from the implicit Euler method.
In the same way, we discretized a simplified version of [WZ12] which reads in its dimen-

sionless form for k ≥ 2 as

∆x

2∆t
(3wk

i − 4wk−1
i + wk−2

i ) + Gk
i+1/2 − Gk

i−1/2 = −∆xuki
R0

cv
k
i

K̃ + v
,

∆x

2∆t
(3uki − 4uk−1

i + uk−2
i ) + Fk

i+1/2 −Fk
i−1/2 = ∆xuki

R0
pv

k
i

K + vki
,

Hk
i+1/2 −Hk

i−1/2 +∆xf ′(ūki ) = ∆xµk
i ,

where we abbreviated wk
i = (1 − uki )v

k
i , G and H are as above, F = −M0u

k
i+1/2(µ

k
i+1 −

µk
i )/∆x, and R0

c = 1, R0
p = 1 are scaled rates. We use the Newton method to solve the

resulting system of nonlinear equations. For the first three test cases, we used a mesh of
128 cells and the time step size ∆t = 10−3.

4.5.3 Numerical results

Test case 1:

We consider the initial conditions

u0(x) =
1

2
sin(2πx)2 + 2 · 10−2, v0(x) ≡ 0.75.

The numerical solutions u and v are presented in Figure 4.1. The substrate concentration
converges uniformly to zero as t → ∞ because of the consumption term, while the volume
fraction of the biomass is increasing in time. The increase becomes slower and stops after
some time since the production term is proportional to the substrate concentration which
almost vanishes for large times and hence the production term vanishes too. In our model,
both the biomass fraction and the substrate concentration change at a slower rate compared
to the model of [WZ12], which is caused by the additional factor 1− u in the source term.
Accordingly, the convergence to the steady state is smaller in our model than in the model
of [WZ12]. Note that, without the additional factor 1 − u, an initial value u0 smaller but
close to one may lead to a volume fraction exceeding its maximal value and consequently
break down the numerical scheme.
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4.5 Numerical experiments

Figure 4.1: Biomass fraction u (top) and substrate concentration v (bottom) in test case 1
for our system (left) and the system of [WZ12] (right).

Test case 2:

We consider the initial conditions

u0(x) =
0.2, if 0 ≤ x ≤ 0.2,

1 · 10−2, if 0.2 < x ≤ 1,
v0(x) ≡ 0.1.

In both models, the volume fraction of biomass growths rather fast until the substrate
concentration vanishes; see Figure 4.2. Due to the additional factor 1− u in our mobility,
we can observe a slower diffusion in areas of larger volume fraction compared to [WZ12].
In areas of low volume fractions, we observe a larger growth than for [WZ12], which can
be explained by the larger nutrient consumption compared to our model, causing a lack of
nutrient supply for further growth.
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Figure 4.2: Biomass u in test case 2 for our system (left) and the system of [WZ12] (right).

Test case 3:

We choose the initial conditions

u0(x) = −(x− 1/2)2 + 1/3, v0(x) ≡ 0.3. (4.25)

As in the previous test cases, we observe in Figure 4.3 a faster growth of biomass volume
fraction in the model of [WZ12]. Moreover, the growth process dominates before the
diffusion process flattens the maximal volume fraction towards the steady state. Due to
the absence of the factor 1− u, this effect is stronger than in the model of [WZ12].

Figure 4.3: Biomass u in test case 3 for our system (left) and the system of [WZ12] (right).

94



4.5 Numerical experiments

Test case 4:

We analyze the order of convergence in space with the initial conditions (4.25). Since there
does not exist an explicit solution, we compute a reference solution (uref , vref) at time T = 1
on a mesh with 2048 cells with time step size ∆t = 10−5. The approximate solutions u(j)

are determined on meshes of 2j cells for j = 4, . . . , 10. We choose a rather small value for
T to compute the order of convergence in space before a steady state is reached. Figure
4.4 (left) illustrates the discrete L2 norm of the difference uref − u(j) for j = 4, . . . , 10. As
expected, we observe a second-order convergence in space.

Figure 4.4: Convergence in space (left) and convergence in time (right) at time T = 1.

Test case 5:

We analyze the order of convergence in time by using as before the initial conditions (4.25)
and by choosing L = 128 cells in space. We compute a reference solution (uref , vref) at
time T = 1 with time step size ∆t = 1/(214L) ≈ 5 · 10−7. The approximate solutions u(j)

are determined with time step sizes ∆t = 1/(22jL) for j = 1, . . . , 6. Figure 4.4 (right)
illustrates the discrete L2 norm of the difference uref − u(j) for j = 1, . . . , 6. We observe a
convergence in time of order 1.73 for u and 2 for v, respectively.
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5 Discussion and Outlook

We briefly give a discussion of our results and an outlook over possible extensions and open
problems connected to this thesis.

5.1 The Maxwell–Stefan–Fourier System

We have proved the global existence of weak solutions for the Maxwell–Stefan Fourier
system by adapting the techniques of [Jün15]. As pointed out in [JG23], the modeling
in our model was inaccurate from a thermodynamical point of view: First and foremost,
to be consistent with the Onsager reciprocity principle, the Onsager Matrix should be
symmetric. This is considered for the coefficients of the mobility matrix (Mij)i,j=1,...,n,
but not for the terms describing the Soret/Dufour effects. Furthermore, considering a
vanishing barycentric velocity, the pressure needs to be considered to be consistent with
thermodynamics. Then, as shown in [JG23], the Onsager matrix is positive definite on the
space L = {y ∈ Rn : y · √ρ}, while we assumed positive definiteness on L = {y ∈ Rn : y ·√
1}. However, from a mathematical point of view, these are only minor shortcomings, as

the improved thermodynamical modeling heavily relies on the same estimates as in chapter
2.

Of course, there is room for further research. For instance, the question of existence in
case of nonvanishing barycentric velocity is open. Furthermore, the equivalence between
the Maxwell–Stefan and the Fick–Onsager formulation remains open in the nonisothermal
setting. In Proposition 5, we showed based on [BD23] that the Maxwell–Stefan formulation
leads to the Fick–Onsager formulation for a specific choice of coefficients, but we were not
able to establish equivalence. Another question which remains open is the longterm behav-
ior of the system. From a practical point of view, numerical analysis for the (improved)
model, including simulations and comparisons to experiments would be interesting.

5.2 The Quorum Sensing Biofilm Model

We showed the existence, uniqueness and convergence of discrete solutions for the quo-
rum sensing biofilm model of [EHKE15]. The discrete solutions preserve the upper bound
for the biomass fraction and the solvent, and furthermore guarantees upper bounds for
the autoinducer molecule and the dispersed cells. According to our numerical simulations
however, the upper bounds for autoinducer molecules and signal cells overestimate the ac-
tual concentration. Hence, it might be possible to improve the upper bounds significantly.
Another question worth investigating regards the regularity of the limit. We have proved
convergence towards a weak solution (M,N, S,A), yet according to [ESE17], the unique-
ness only holds for a smaller class of functions and we can not conclude the convergence of
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the whole sequence. Therefore, a proof of the required regularity for the limit (M,N, S,A)
would be interesting. As the numerical results showed, we find for the biomass fraction
an order of convergence in space of ≈ 1.7 in the L2–Norm, instead of an expected second
order convergence. This might be caused by the degenerate–singular diffusion term, but
it would be interesting to analytically prove which order of convergence should actually
be obtained. Since biofilms are highly complex, more effects could be taken into account.
For instance an extension of the model which includes treatment of the biofilm with bio-
cide could be considered and the numerical analysis could be adapted. Besides, the initial
biofilm growth model of [EPL01] is coupled to an incompressible Navier–Stokes equation.
This coupling is neglected in the existence analysis [EZE09], as well as in the numeri-
cal analysis/simulations. In the existence analysis, this coupling complicates the problem
tremendously, as the Navier–Stokes equation is assumed to hold in the bulk liquid region,
i.e. Ωb := {x ∈ Ω | M(t, x) = 0}. Consequently, the sharp biomass front operates as free
boundary for the incompressible Navier–Stokes equation. It is yet unclear how to prove the
existence of solutions in this case. From a modeling point of view, it would be interesting to
compare the biofilm growth model of [EPL01] with the growth model discussed in chapter
4.

5.3 Cahn–Hilliard Type Biofilm Growth Model

We discussed a biofilm growth model motivated by [WZ12] and proved the global existence
of weak solutions for a modified version of this model by truncating the equations and using
a Galerkin approximation.
From a model point of view however, this can only be seen as a first step towards an exis-
tence analysis for the binary fluid biofilm models, as the modifications which we described
in section 1.4.1 went quite far from the original model. This raises plenty of questions for
further research. The model of [WZ12] used the mobility M(u) = u. From an analytical
point of view however, it does not seem possible to treat mobilities which do not cancel
the singularities in M(u)f ′′(u). This is caused by the degeneracy of the mobility, which
requires additional truncations/regularizations in the analysis and the lack of estimates to
identify the limit in the deregularization.
Another step back towards the original model of [WZ12] would be, to find a way to treat
the additional factor (1−u) in the time derivative of the substrate equation. However, new
techniques might be needed as this adds another degeneracy to the equation. The addition
of elastic effects, is another possible step towards the original model [WZ12]. Having said
that, it complicates the analysis to a great deal as it adds an additional coupling to an
Smoluchowski equation (see [WZ12, Equation (16)]) and it yet remains unclear how to
prove the global existence.

Apart from the connection to biofilm models, another interesting question is the relation
between local and nonlocal Cahn–Hilliard equations. As described in section 1.4.3, some
papers investigated the connections between local and nonlocal Cahn–Hilliard equations.
This poses the question, whether we could obtain the solution of the model (1.24)–(1.29)
as a limit of a nonlocal counterpart.
As the existence analysis for the model of [WZ12] appears to be highly nontrivial without
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modifications and tremendous simplifications, this also raises the question whether we can
find a potentially more complex yet solvable (from an analytical point of view) nonlocal
biofilm growth model.
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