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Abstract: The accuracy of radio-based positioning is heavily influenced by a dense multipath (DM)
channel, leading to poor position accuracy. The DM affects both time of flight (ToF) measurements
extracted from wideband (WB) signals—specifically, if the bandwidth is below 100 MHz—as well as
received signal strength (RSS) measurements, due to the interference of multipath signal components
onto the information-bearing line-of-sight (LoS) component. This work proposes an approach for
combining these two different measurement technologies, leading to a robust position estimation in
the presence of DM. We assume that a large ensemble of densely-spaced devices is to be positioned.
We use RSS measurements to determine “clusters” of devices in the vicinity of each other. Joint
processing of the WB measurements from all devices in a cluster efficiently suppresses the influence
of the DM. We formulate an algorithmic approach for the information fusion of the two technologies
and derive the corresponding Cramér-Rao lower bound (CRLB) to gain insight into the performance
trade-offs at hand. We evaluate our results by simulations and validate the approach with real-world
measurement data. The results show that the clustering approach can halve the root-mean-square
error (RMSE) from about 2 m to below 1 m, using WB signal transmissions in the 2.4 GHz ISM band
at a bandwidth of about 80 MHz.

Keywords: indoor positioning; Internet of Things; CRLB; AoA; ToA; sensor fusion; RSS; wideband

1. Introduction
1.1. State of the Art

Radio-based indoor localization is an increasingly important research topic, as many
modern electronic devices are dependent on robust and accurate position information to
provide location-dependent services and applications. Exemplary applications include
positioning in retail scenarios guiding costumers to products they are looking for, tracking
medical devices in healthcare environments, providing guests of museums with accurate
position-dependent interactive tours, tracking articles in warehouses and logistic centers,
and many more [1–8].

Current state-of-the-art algorithms focus mostly on one measurement method, which
can, for example, include received signal strength (RSS) measurements from multiple devices
to each other, wideband (WB) measurements to infrastructures such as wireless modems and
other equipment or measurements with higher bandwidths, e.g., ultra-wideband (UWB).

These multiple measurement methods have their own advantages and disadvantages,
as the technology imposes direct limitations. Measurements of RSS values are, for example,
relatively easy to acquire, but the information content of a single measurement is low, and
thus, a single measurement provides only marginal positional information. Therefore, a
need arises for a large number of (independent) measurements to increase the positional
information to an acceptable level, and additionally, a significant number of fixed “anchor
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nodes” are necessary for reference [9]. Other technologies, for example, time difference of
arrival (TDoA)-based localizations utilizing WB measurements in the industrial, scientific,
and medical (ISM) bands (i.e., 80 MHz at 2.4 GHz), provide much more information with
a single measurement, but additional WB anchor infrastructure is necessary—so-called
access points (APs), similar to [10] (Chapter 6). In this case, the devices and APs need more
complicated radio chips to send and receive higher bandwidth signals. Chips providing
even higher bandwidths are increasingly cost-intensive and power-hungry, and thus, not
economical for many applications.

All of the previously mentioned radio-based localization technologies have in common
that multipath-propagation influences the measurements [11], which can negatively affect
the results. For bandwidths smaller than 100 MHz, in which typical indoor scenario
multipath components can not be discerned anymore, the interfering dense multipath
component (DMC) leads to diminished performance [12].

Algorithms developed in recent years focus on many different approaches, including
machine learning [13] or classical signal processing [14,15], but focus mostly on single
measurement methods. For many of these approaches, essential performance bounds such
as the Cramér-Rao lower bound (CRLB) are also derived [16–20].

Combining multiple measurement methods allows us to use complimentary gains
from each method, but increases the complexity of the system architecture and of the
algorithms [21]. Thus, it must be regarded when developing new approaches. Some re-
search was conducted to fuse multiple localization and measurement methods [1,22]. These
algorithms combine position estimates, but do not fuse measurement data directly. Other
existing methods incorporate maximum likelihood estimates for time of arrival (ToA), angle
of arrival (AoA), and RSS, but those methods rely on fusing multiple measurements from
a single node [23,24], they do not fuse the information of multiple nodes. Furthermore,
there is no research yet that focuses on the derivation of a CRLB for such fused algorithms.
Other methods for data fusion of multiple measurements incorporate machine learning,
for example, methods based on channel state information [25,26] or support vector re-
gression [27,28]. Machine learning algorithms need training data to work, which is not
necessary for our proposed algorithm.

1.2. Concept

This work proposes a method that combines WB time of flight (ToF) and AoA mea-
surements of multiple nodes in an indoor scenario. To overcome the limitations of single
WB measurements, RSS measurements are collected between the nodes, to determine those
in the vicinity of each other. By selecting the WB measurements of those nodes, we obtain
access to multiple realizations of the interfering dense multipath component (DMC) and
thus an additional information gain for every measurement.

This is achieved by an approach we call clustering, where RSS measurements are used
to find the nearest nodes, for which WB measurements are then processed jointly.

In the following, we describe likelihoods for node and cluster positions, which describe
regions with likelihoods of a node being at one position. In Figure 1, this concept is
visualized in a typical warehouse scenario, incorporating multiple shelves defining aisles,
nodes placed on these shelves, and multiple anchors over the room.

Here, the likelihood of a room with measurements on six antenna-arrays, each incor-
porating two antennas, can be seen, where red regions show a large likelihood for a node
to be in a position.

The antenna arrays allow for coherent processing, yielding information on the AoA.
Different anchor positions allow for a TDoA positioning approach. In the upper-left subplot,
a single likelihood for WB measurements is shown. One can see that the resulting likelihood
is multi-modal, and the position with the largest likelihood (shown as a white circle) is
at one of the false modes. This multi-modality stems from the estimation of false peaks
in the time-domain, which are caused by multipath components dominating over the
line-of-sight (LoS). The real position is shown as a blue triangle. The same can be seen
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in the lower-left subplot, for a node in the vicinity, showing similar effects. In addition,
this measurement suffered from a poor signal-to-noise ratio (SNR), which broadens the
likelihood in all spatial directions. The lower-right subplot shows a single node far away
from the other two examples, for which the estimation works rather poorly. These cases
can be mitigated by the clustering approach.
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Figure 1. Visualization of the RSS-based Clustering, excerpts show single likelihoods over a floorplan,
overall graphic shows a combined likelihood from a set of 15 nodes
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Figure 1. Visualization of the RSS-based clustering. Excerpts show single likelihoods over a floorplan;
overall graphic shows a combined likelihood from a set of 15 nodes.

To improve the positioning accuracy and reliability of a single node, multiple nodes can
be clustered, and thus a joint likelihood can be computed, which mitigates the uncertainties.
However, the strategy for clustering is not clear, as there is no previous information from
WB measurements alone. Here, RSS measurements can be used, giving us a list of nodes
that are likely near a node in a cluster (which is seen as a defining “first” node for the
cluster), seen again as a blue triangle. All other nodes within this cluster are shown as black
crosses. Now, the joint likelihood seen in Figure 1 for the whole room is for a combination
of all WB measurements within this cluster, applying our proposed algorithm. This shows
a single defined mode, where the maximum is the estimated position for the defining node.
Note that these nodes can be positioned at different heights, which the algorithm takes
into account by a three-dimensional formulation. This approach would also be applicable
to multiple measurements of a single node at different positions near each other, but this
work focuses on static scenarios.

In order to assess the achievable performance, the CRLB for the cluster center incorpo-
rating the DMC was evaluated. The algorithm treats measurements from multiple nodes
as different realizations of a single node; thus, a correction factor is introduced. This factor
regards the information loss from cluster nodes being in different positions. Therefore, we
have to introduce a bias term on top of the CRLB since the algorithm leads to the estimation
of the cluster center, which differs from the true position of the node. This is verified by
simulations of increasing complexity and by a real-world measurement campaign.
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1.3. Contribution

The contributions of this work are the following:

• A concept for the information fusion of WB TDoA and AoA measurements exploit-
ing RSS-based clustering of multiple agent nodes to jointly process their position
information.

• A maximum likelihood estimation-based algorithm for the mentioned concept.
• An efficient implementation of the proposed algorithm using a particle-based estimator.
• A derivation of estimation performance bounds for this concept incorporating:

– Results for a correction factor describing the loss of information from large clusters.
– Derivation of the CRLB incorporating this correction factor and information gain

from multiple measurements.
– Introduction of a biased lower bound attributing to the performance losses when

estimating a single node within a cluster.

• Numeric evaluations of these bounds, showing the influence of parameters such as
the number of nodes in the cluster, size of the cluster, and positions of nodes within a
cluster. Specifically, we analyze the performance bounds for:

– Single node positions, validating the information gain.
– Increasing node distances for two nodes, validating the biased lower bound.
– A fully synthetic measurement scenario with nodes over a simulated room with

shelves, validating the data fusion concept.
– The same scenario, incorporating real RSS measurements for clustering of adja-

cent nodes, but keeping synthetic WB measurements for positioning, validating
the impact of realistic clustering with RSS data.

• A verification of the theoretical results with real-world measurement data for both
WB and RSS, showing that the algorithm is applicable to real scenarios.

1.4. Paper Outline

The paper is structured as follows: Section 2 defines the overall notation. The signal
model for the WB-measurements and the resulting likelihood for single measurements to one
agent node are presented in Section 3. In Section 4, we describe the clustering approach in
detail and the conditions that have to be met to allow this approach. In Section 5 we derive
the CRLB for our system model, additionally focusing on the information loss dependent on
the cluster geometry. Section 6 focuses on evaluations of both synthetic scenarios and real-
world measurements, verifying performance. Lastly, a conclusion can be found in Section 7.
Additional insights and detailed derivations are shown in Appendices A–C.

2. Notation

Column vectors are denoted by boldface lower-case letters, and matrices are denoted
by boldface upper-case letters. The probability density function (PDF) of a random variable
is denoted as f (x). For any vector x, we denote the transpose as xT , the Hermitian
transpose as xH , the Euclidian norm as ‖x‖, the mean over all elements in the vector
as x, the expectation operator as Ei[x] in dimension i (where dimension i denotes the
dimension along the expectation operator is calculated), and the complex conjugate as x∗.
The calligraphic notation L denotes a set, other usages of calligraphic fonts are described at
their first occurrence. {xl}L denotes the mean operator over all vectors xl for l in the set
L. Furthermore, we introduce a trace operator as tr{X} for a matrix X and det(X) as it’s
determinant. Sub-matrices of a matrix X are written with their corresponding superscripts
without parentheses, i.e., X i,i. A superscript with brackets X(i) is used to denote a matrix
designated by index i (notably used for matrices corresponding to a single anchor m) and
[X]3×3 is the upper-left 3× 3 sub-block of a matrix. Real and imaginary parts of x are
denoted asRx and Ix, respectively.
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3. Signal Model

The system setup consists of L transmitting nodes that are located at positions
pl = [xl , yl , zl ]

T ∈ R3, ∀l ∈ {1, . . . , L} and receiving antennas at positions pm,k ∈ R3,
∀m ∈ {1, . . . , M}, ∀k ∈ {1, . . . , K}, where index k describes the antennas within each an-
chor, and index m describes the anchor. The number of anchors and antennas per anchor
are described by M and K, respectively. The radio channel from the l-th transmitting node
to the k-th receiving antenna of anchor m is given as

hl,m,k(τ; pl) = αl,mδ(τ − τm,k(pl)) + νl,m,k(τ) (1)

with propagation delay τm,k(pl) = 1
c

∥∥∥pl − pm,k

∥∥∥ and the complex amplitude αl,m of the
received LoS signal from node l to anchor m. The DMC is described by a zero-mean
complex Gaussian random process. With the assumption of uncorrelated scattering, the
auto-correlation of the random process νl,m,k(τ) is defined as

E
[
νl,m,k(τ)ν

∗
l′ ,m′ ,k′

(
τ′
)]

= Sν(τ − τm(pl), ν̃l,m)δ
(
τ − τ′

)
δ
[
l − l′

]
δ
[
m−m′

]
δ
[
k− k′

]
, (2)

where τm(pl) = 1
c (‖pl − pm‖) is a mean delay per array m, with pm = {pm,1, . . . , pm,K}

being the mean antenna position. The delay power spectrum (DPS) Sν(τ − τm(pl), ν̃l,m)
is defined later in this section. With the assumption that every node l is transmitting a
baseband signal s(t) at frequency fc, the received signal at anchor m is described by

rl,m,k(t) = α̃l,m,ks(t− τm,k(pl)− εl) +
∫

s(t− τ)νl,m,k(τ + εl)dτ + wl,m,k(t), (3)

with a complex amplitude α̃l,m,k = αl,me−j2π fc(τm,k(pl)+εl) that accounts for the phase shift
at antenna k, εl is the transmit time of node l, and wl,m,k(t) is the noise modeled as AWGN
with double-sided power spectral density (PSD) N0/2. With this, we can describe the
sampled and stacked received signals as

rl,m = sl,m(pl , εl)αl,m + wl,m ∈ CNsK×1, (4)

where rl,m =
[
rT

l,m,1, . . . , rT
l,m,K

]T
. Additive noise resulting from the DMC and additive

white Gaussian noise (AWGN) is described within the noise vector wl,m. The baseband-
signal vector is described as

sl,m(pl , εl) = [e−j2π fc(τm,1(pl)+εl)s(τm(pl) + εl)
T , . . . ,

e−j2π fc(τm,K(pl)+εl)s(τm(pl) + εl)
T ]T

(5)

where s(τ) ∈ CNs×1 = [s(−τ), s(τ + Ts), . . . , s(−τ + (Ns − 1)Ts)]
T is a sampled version

of s(t− τ). Note that Ts is the sampling time interval. This is a conventional “wideband”
phased-array signal model with identical envelopes and phase shifts for the AoA.

The covariance matrix [Cl,m]k describes the noise vector wl,m and is the sampled noise
covariance of the AWGN and DMC. We introduce a covariance matrix for every array
element k as [Cl,m]k = [Cl,m

ν ]k + [Cl,m
w ]k ∈ CNs×Ns , where [Cl,m

w ]k = σ2
l,m I, with I being the

identity matrix of according dimensions and noise variance σ2
l,m = N0/Ts. The covariance

for the DMC is described as[
Cl,m

ν

]
k
=
∫

Sν

(
τ − τm(pl)− εl ; η̃l,m

)
s(τ)s(τ)Hdτ, (6)
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where η̃l,m are parameters describing the shape of the DPS. Now, assuming that the DMC
is a Gaussian process [16,29], the likelihood function of the model for a single node and
antenna array equates to

fl,m(rl,m | pl , εl , ηl,m, αl,m) =
e−(rl,m−sl,m(pl ,εl)αl,m)H(Cl,m)−1(rl,m−sl,m(pl ,εl)αl,m)

πNsK det(Cl,m)
, (7)

with parameter vector ηl,m =
[
σ2

l,m, η̃T
l,m

]T
and Cl,m being a block diagonal matrix described

by the k-th matrices [Cl,m]k for every array element. To obtain a joint likelihood for a single
node, the factorization of these likelihoods equates to

fl(rl | pl , εl , ηl , αl) =
M

∏
m=1

fl,m(rl,m | pl , εl , ηl,m, αl,m), (8)

which assumes independence of the DMC and AWGN between anchors. Here,

rl =
[
rT

l,1, . . . , rT
l,M

]T
is a stacked receive vector, αl = [αl,1, . . . , αl,M]T are the stacked LoS

amplitudes and ηl =
[
ηl,1

T , . . . , ηl,M
T
]T

is a stacked parameter vector. Lastly, we introduce
the DPS Sν(τ; η̃) similar to [12,29] as

Sν(τ; η̃) = Ω1
γ f + γr

γ f
2 e−τ/γ f (1− e−τ/γr )Σ(τ), (9)

with η̃ = [Ω1, γ f , γr]T , which corresponds to a normalized power of the DMC of Ω1, a fall
time for the process γ f , and a rise time γr. Furthermore, a step-function Σ(τ) is defined as
1 for all t ≥ τ, and 0 otherwise.

4. Clustering Approach

Incorporating a second measurement method, namely RSS measurements, multiple
adjacent nodes can be processed jointly to improve the positioning accuracy and mitigate
outliers due to the DMC. We focus on a node of interest, l′, at position pl′ . We define
a set of nodes L of size N, which incorporates all nodes l, which we want to include
in our evaluation. This set L can be defined in various ways, but notably, we use RSS
measurements and genie-aided methods to define the nodes within the set. The genie-aided
method incorporates the N − 1 nearest nodes (in geometrical sense) to l′ and the node l′

itself, where we use the ground-truth of all node positions pl . The RSS-based method uses
RSS measurements from the node l′ to all other nodes l, and incorporates the N− 1 nodes l
with the largest RSSs and the node l′ itself. For our purposes, it is assumed that the node
positions pl are distributed around a mean cluster position pc ≈ {pl}L. The index l′ is
omitted from here on to improve readability.

Assuming that measurements between different positions pl are independent, the
joint likelihood for the set L equates to

f (r | pc, ε, η, α) = ∏
l∈L

∫
pl∈L

fl(rl | pl , εl , ηl , αl) f (pl | pc)dpl , (10)

where α = [αT
l ]

T , ε = [εT
l ]

T , and η = [ηT
l ]

T ∀l ∈ L are stacked versions of their respective
counterparts and r is a stacked vector of [rT ]T with l ∈ L. The term

f (pl | pc) = δ(pl − pc − ∆l) ≈ δ(pl − pc), (11)

models the displacement between pl and pc by ∆l . The approximation assumes that the
term f (pl | pc) is negligible because all likelihoods fl(rl | pl , εl , ηl , αl) have wide main
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lobes in comparison to the offset distance ∆l from the cluster position pc. Thus, a simplified
log-likelihood for estimation and analysis is proposed as

ln f (r | pc, ε, η, α) = ∑
l∈L

ln fl(rl | pc, εl , ηl , αl). (12)

For this factorized likelihood function f (r | pc, ε, η, α), it can be shown that there exists
an unbiased estimator for the mean cluster position, if the regularity condition

E
[

∂ ln f (r | pc, ε, η, α)

∂pc

]
= 0 (13)

holds true [30], because the distribution of pl∀l ∈ L around pc is assumed to be the zero-
mean. Note that (13) defines implicitly the exact cluster position pc. This is similar to [31],
where this assumption is used for spatial antenna arrays.

For all other parameters, this has already been shown in the literature [12,16].

5. Cramér-Rao Lower Bound

In order to evaluate the accuracy of results, the CRLB is derived, which is a general
bound for the achievable accuracy. The CRLB is the inverse of the Fisher information (FI),
for which derivations are shown in the following Subsections.

5.1. Introduction

The general form of the Fisher information matrix (FIM) for a PDF of the form f (r | ψ)
is [30,32]

Jψ = Er|ψ

[(
∂

∂ψ
ln f (r | ψ)

)(
∂

∂ψ
ln f (r | ψ)

)T
]

, (14)

for which the CRLB of an unbiased estimator ψ̂ of the parameter vector ψ is defined as

Eψ

[
(ψ̂−ψ)(ψ̂−ψ)H

]
� J−1

ψ , (15)

where it should be noted that A � B indicates that A− B is a positive semi-definite matrix.

5.2. Derivation of the Position Error Bound (PEB)

To derive lower bounds on the error variance of position estimates, we first
define a parameter vector ψl,m = [φl,m, ϑl,m, τl,m,Rαl,m, Iαl,m]

T with an azimuth an-
gle from anchor m to node l of φl,m = atan2(yl − ym, xl − xm), with elevation angle
ϑl,m = atan2(zl − zm,

√
(xl − xm)2 + (yl − ym)2), and delay τl,m = τm(pl) + εl .

The equivalent Fisher information matrix (EFIM) [33] on the delay τl,m and angle
measurements φl,m and ϑl,m acquired by anchor m on each node l is then given as

Jψl,m
=

Jφl,m 0 0
0 Jϑl,m 0
0 0 Jτl,m

, (16)

where the diagonal elements Jφl,m , Jϑl,m , and Jτl,m account for the information with respect
to the different parameters. A derivation of this EFIM is given in Appendix A. Further-
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more, we introduce the Jacobian matrix Pm(pl) for transforming spherical to Cartesian
coordinates, which is defined as

Pm(pl) =


∂xl

∂φl,m

∂xl
∂ϑl,m

∂xl
∂τl,m

∂yl
∂φl,m

∂yl
∂ϑl,m

∂yl
∂τl,m

∂zl
∂φl,m

∂zl
∂ϑl,m

∂zl
∂τl,m



=


− sin φl,m sin ϑl,m

τl,mc
cos φl,m cos ϑl,m

τl,mc
sin φl,m cos ϑl,m

c
sin φl,m cos ϑl,m

τl,mc
cos φl,m sin ϑl,m

τl,mc
sin φl,m sin ϑl,m

c

0 − sin φl,m
τl,mc

cos φl,m
c

 ∈ R3×3,

(17)

for node l ∈ L at position pl = [xl , yl , zl ]
T . Note that c is the speed of light.

Assuming independent noise for all nodes l ∈ L, and knowledge of the displacement
∆l = pl − pc between the node positions pl and the cluster position pc, the Cartesian EFIM
for the cluster is expressed by the sum of the node EFIMs,

J(m)
pc

= ∑
l∈L

Pm(pl)Jψl,m
Pm(pl)

T = Pm(pc)J
ψ
(c)
m

Pm(pc)
T . (18)

The right-hand side of this expression transforms the sum-information in Cartesian
coordinates back to range and angle measurements. This yields a (non-diagonal) EFIM
J

ψ
(c)
m

for the cluster center as

J
ψ
(c)
m

= ∑
l∈L

Pm(pc)
−1Pm(pl)Jψl,m

(Pm(pc)
−1Pm(pl))

T , (19)

where the off-diagonal elements describe some transformation of angle information to
delay-information and vice versa. We thus argue that a diagonal EFIM, written as a sum of
all delay and angle terms, serves as an upper bound on the delay and angle information for
the cluster at pc, if the position offsets ∆l are unknown, i.e., we have

J̃
ψ
(c)
m

= ∑
l∈L

Jψl,m
(20)

as an upper bound on the sum-information from all the delay and angle measurements for
all nodes of the cluster and the corresponding bound on the position information,

J̃
(m)
pc

= Pm(pc) J̃
ψ
(c)
m

Pm(pc)
T . (21)

From this, we define a multi-anchor EFIM for the cluster position pc, which is decom-
posed into three components corresponding to the delay and angle terms as

Jpc
=

M

∑
m=1

J̃
(m)
pc

(22)

≈
M

∑
m=1

[
8π2

d2
m

D2
λ(φm) KL SINRmRr(φm +

π

2
, ϑm) (23)

+
8π2

d2
m

D2
λ(ϑm) KL SINRmRr(φm, ϑm +

π

2
) (24)

+Λ
8π2

c2 β2 KL [S̃INRτ ]mRr(φm, ϑm)

]
, (25)

using the results from Appendices B and C. Here, dm, φm, and ϑm are the distances between
the array centers and the cluster center and the corresponding angle parameters. D2

λ(φm)
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and D2
λ(ϑm) are the array apertures in azimuth and elevation, β2 is the mean-squared

signal bandwidth, and SINRm and [S̃INRτ ]m account for the interference by the dense
multipath (DM). The factor KL quantifies the number of antennas per anchor, as well as the
number of nodes in the cluster, which are interpreted as a boost in SINR, i.e., a suppression
of the influence of the DM. Finally, the matrices Rr(φm, ϑm) are so-called ranging direction
matrixs (RDMs) [33] defined as

Rr(φm, ϑm) = e(φm, ϑm)eT(φm, ϑm) (26)

where e(φm, ϑm) is a unit vector pointing from array m in the direction of node l.
This position error bound (PEB) (see (22)) also takes the correction factor Λ into

account for the clustering, dissimilar to other related work only showing results for single
nodes. It accounts for the spread of delays τm(pl) for l ∈ L around τm(pc), which leads to
an apparent loss of bandwidth as derived in Appendix B.

With this, we can define the PEB for multiple anchors m and multiple nodes l ∈ L as

Pc =
√

tr{J−1
pc
}. (27)

5.3. Biased Lower Bound

In the previous subsection, we derived the PEB for the cluster position pc. For real-
world applications, the cluster position would be mostly of no importance, but it can be
assumed that the cluster position is within a vicinity of the position of the node l′, which
has been used to define the cluster. Equality holds true for scenarios where all nodes
l ∈ L \ {l′} are distributed in such a way that the cluster position pc = pl′ . In real world
scenarios, this assumption often does not hold; thus, we propose a biased lower bound for
the node l′

Pl′ = Pc + ‖pc − pl′‖. (28)

This biased lower bound has the advantage of easier representation of relevant errors,
and comparability with the root-mean-square error (RMSE) of the first node position p̂l′ .

6. Numeric Evaluation

Note that in this section, if there is a discussion about the cluster position pc or the
position of the first node in a cluster pl′ , it is always assumed to be for every possible set L
for every node l ∈ L, meaning that this evaluation is conducted for every possible cluster
in a scenario. To validate the CRLB and biased bound for pl′ , we evaluated four simulation
scenarios, two of which represent a realistic indoor scenario. Lastly, an evaluation of
measurement data was conducted, where the scenario corresponded to our simulations. For
the evaluation, only the AWGN case was considered, and all estimations were conducted
in practice via a particle evaluation of the joint-likelihood f (r | pc, η, α) [34], described in
(12), by

p̂c = arg max
pc ,εl∀l∈L

f (r | pc, ε, η, α). (29)

For the parameter α, a least-squares solution can be found as

α̂l,m(pc) = [sl,m(pc, εl)
Hsl,m(pc, εl)]

−1sl,m(pc, εl)
Hrl,m, (30)

calculated for every element αl,m. The parameter ε had to be estimated by the particle filter.
This particle filter allowed us to estimate the position of a cluster with size N = 40 on a
typical workstation in under 30 s of time, and for small cluster sizes, the computation time
decreases linearly.

As the estimations of DMC parameters are omitted, the state of this joint-likelihood
can be represented by a parameter vector ν = [xc, yc, zc, ε1, . . . , εNl ]

T , where εl represents
the transmit time of each node in the set L, and Nl represents the number of elements in
the set L. For the initialization of the parameters [xc, yc]T , a support over the simulated
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room was chosen. For the height zc, the support was chosen to be in the range [−6 m, 6 m]
for scenarios with no shelf simulation, and [0 m, 2 m] for scenarios with shelf simulation.
For the measurement scenario, the particles were initialized within the aisles only. Transmit
times εl were initialized on an interval of [ 0 m

c , 150 m
c ], which represents all transmit times in

simulated and measured scenarios within a reasonable margin. Note that c again represents
the speed of light.

Each particle νp is initialized as one realization of the parameter vector ν, meaning
that each particle represents a cluster position and unknown transmit times of all nodes
within the cluster. The likelihood is then evaluated for each and every particle.

All evaluations are conducted with 1000 particles, each of which represents one state
νp. This was a reasonable trade-off between estimation time and accuracy. A three-step
approach was chosen. After an initalization step, particles were resampled twice from
the computed likelihoods. The first resampling step was completed by resampling from
the computed normalized log-likelihood and adding additional i.i.d. Gaussian noise to
every resampled parameter. This noise was chosen as an i.i.d. Gaussian process described
by a mean of 0 m and a standard deviation of 0.5 m for parameters [xc, yc, zc]T and 0.5 m 1

c
for parameters εl . The additional noise helps mitigating particle deprivation, where all
particles are resampled from a single previous particle with an exceptionally large likeli-
hood compared with all other particles. This first resampling step was chosen to better
ensure resampling from modes which were underrepresented in the initialization step,
but avoiding a much larger number of particles beforehand. This strategy leads to a very
coarse maximum for the particles, and thus a second resampling step is necessary. There,
we used a classical strategy where the resampling was conducted directly from the esti-
mated normalized likelihood, once again adding the same i.i.d. noise. This resampling
focused more on the dominant mode of the resulting distribution, and thus can be seen
as a refinement in the vicinity of the dominant mode. This two-step resampling strategy
allows us to use significantly fewer particles for our estimation problem. By only using
the second resampling step, we needed a factor of at least 20 times the number of particles
for comparable accuracy, which leads to a proportional increase of calculation time by the
same factor. It should be noted that this implementation is capable of calculating positions
in real time, as the number of operations to be processed is fixed by the number of particles.

Note that the simulations and measurements used six antenna arrays with two anten-
nas each. This is not a limitation of the algorithm. Arbitrary antenna configurations can
be used, but the configuration in the simulations was chosen for easier comparison to the
measurement scenario.

6.1. Cluster in Single Position

For a first evaluation, we show that the PEB for the cluster position pc holds true. To
achieve this, we simulated a scenario with following parameters.

For placement of the antenna arrays, see Figure 2. All antenna-arrays are shown
as squares, and the positions of all nodes l are shown as a black cross. The arrays are
all oriented such that they are spaced in the direction of the y-axis; therefore, the posi-
tioning performance improves with the aperture of the arrays. The nodes are placed at
pc = [14 m, 12 m, 1 m]T . For this scenario, 1100 realizations of a channel incorporating DMC

was chosen, with an SNR at 1 m of α2
1 m

σ2
l,m,k

= 25 dB, where α1 m is the equivalent amplitude

of the normalized signal at 1 m. The cluster-size N was varied, where the first node was
always one unique node from all 1110 simulated nodes, and every other node in the set
was chosen randomly from all other remaining nodes.
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Figure 2. Scenario 6.1 and 6.2: Results for synthetic scenario in single position with random clusters
and schematic plot for clusters of size 1 and size 2 with variable distance.
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and schematic plot for clusters of size 1 and size 2 with variable distances.

The signal amplitude was then scaled according to the Friis equation, leading to

αl,m = α1 m

(
λc

4πdl,m

)
, (31)

where λc =
1
fc

and dl,m is the distance between node l and anchor m. The parameter Ω1 of
the DMC at 1 m was drawn from an i.i.d. Gaussian random process, and scaled according
to the Friis Equation [35] resulting in

[Ω1]l,m ∼ N
(

µ = 0 dB, σ2 = 2.16 dB×
(

λc

4πdl,m

)2
)

, (32)

where N (µ, σ2) is a random i.i.d Gaussian process. This describes one realization of the
random variable for the parameter Ω1. The parameters for the fall and rise time of the
DMC were chosen as fixed values being γr = 5 ns and γ f = 20 ns, which are typical values
for an indoor scenario [29,36].

Figure 2 shows that the CRLB can be attained for this scenario, as the curve showing
the RMSE for p̂c is almost identical to the theoretical bound. A small offset can be seen for
small cluster sizes (i.e., N in the range of 2 to 4), which can be attributed to the particle-
based estimation not being perfect. This could be mitigated by using more particles. Note
that the bias ‖pc − pl′‖ and correction factor Λ were both zero for all different cluster sizes
in this scenario, and therefore, the equivalent Fisher information (EFI) could be directly
summed up, meaning the CRLB scaled with 1√

N
, which can be interpreted as using different

realizations from the same node.

6.2. Double-Node Clusters with Variable Distance

For this scenario, the same settings as in the previous section were used regarding
antenna placement and signal parameters, see Table 1. All other parameters of the signal are
also defined the same as in Section 6.1. In this scenario, 1110 pairs of nodes were simulated,
where for every node l′ a new realization of the channel was drawn, with position pl′
being the same as in the previous scenario, and for the corresponding node l = 2, another
realization of the channel was drawn at a position p2 = pl′ + [dr cos φr, dr sin φr, 0]T , where
the distance dr was evaluated at four distances from 0.1 m to 2 m, and the angle φr was
drawn from a uniform random distribution with φr ∼ [0, 2π). This is visualized as
concentric circles in Figure 2.
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Table 1. Settings for simulation.

fc β M K Antenna
Spacing

2.44 GHz 75.3 MHz 6 2 6 cm

As can be seen in Figure 3, the PEBPc, omitting the correction factor Λ, is constant over
distance, which is not representative for the RMSE for the estimated position p̂l′ of the first
node l′. Correcting for the mean distance ‖pc − pl′‖, one can see that the performance of
the estimator is attaining the biased lower bound Pl′ . Note that this biased lower bound is
not only a linear offset due to geometric distance, but also incorporates a small information
loss by the introduction of the evaluated correction factor Λ. This simulation shows that
the introduction of a lower bound incorporating a bias between cluster center pc and the
position of the first node pl′ can be replicated in an evaluation of the according RMSE.
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Figure 3. Scenario 6.2: Results for synthetic scenario for clusters of size N = 2 with fixed distance in a
circle around node l′.

6.3. Simulated Scenario with Genie-Aided Clusters

To further test our algorithm in a more realistic scenario, we simulated a room where
1110 nodes are placed on shelves at different heights and positions in a room, for refer-
ence see Figure 1. The signal parameters were again chosen according to Table 1, and
parameters Ω1 and αl,m were again scaled according to Equations (31) and (32). For each
intersection with a shelf of a ray casted from antenna array position pm to a node position
pl , distributions of parameters Ω1 and αl,m are changed according to Table 2. These values
were chosen to represent empirical measurements for this type of shelf in previous work
[37]. Sets L for clusters were chosen to minimize geometric cluster sizes, where nearest
nodes from l′ were selected, assuming side information provided by a genie. This was
conducted to show a perfect scenario, minimizing other possible unknown effects to the
estimation, and incorporates no model for the RSS, only geometric distances. As can be
seen in Figure 4, the RMSE almost attains the biased lower bound in this scenario. This
shows that for a perfect selection of nearest nodes, the estimation of the position pc can
also be seen as a good estimate for the position pl′ of the first node in a cluster, improving
accuracy significantly with bigger cluster sizes. As sizes of the clusters are relatively small,
the correction factor Λ is almost negligible for all cluster sizes in this scenario. This can be
seen in the lines for the biased lower bound with Λ = 1 and the biased lower bound with
Λ correct being almost identical.
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Table 2. Change of parameters.

Intersections 0 1 2 3

µ of Ω1 −20 dB −10 dB 0 dB 10 dB

σ2 of Ω1 2.16 dB 5.30 dB 7.15 dB 6.40 dB
α2

l,m
σ2

l,m,k
at 1 m 25 dB 21.42 dB 19.46 dB 19.56 dB
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Figure 4. Scenario 6.3: Results for synthetic scenario with genie-aided clusters (minimum distance to
node 1).

In Figure 5a–c the floorplans of the scenario can be seen, where red triangles show
the estimated position and cyan crosses show the true position for every 10th simulated
node, omitting many measurements for better visibility. The true and estimated positions
are connected by a dotted gray line. Similar to Figure 1, anchors are again shown as black
squares. In Figure 5a, many estimated node positions are outliers. This is due to the
multi-modality of the likelihood for single nodes leading to false positions in the likelihood
being dominant. This can be mitigated mostly by larger cluster sizes N, which can be seen
in Figure 5b,c, where the position errors improve with larger cluster size N.
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Figure 5. Scenario 6.3: Floorplans with results for synthetic scenario with genie-aided clusters
(showing only every 10th processed node for better visibility).

6.4. Simulated Scenario with RSS-Based Clusters

To further show that the clustering approach works for realistic scenarios, the same
simulation as in Section 6.3 was conducted, but clusters were defined according to real RSS
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measurements in a corresponding measurement scenario. All RSS measurements between
every pair of nodes were known. Clusters were then defined by sorting the RSS values from
the l′th node to every other node in descending order, achieving the now measured sets L
for every node l′. As these measurements are noisy and incorporate channel parameters,
geometric cluster sizes are bigger and often biased, for example, in the direction of an aisle,
compared to the genie-aided clusters in the previous subsection.

Figure 6 shows the same results as in Figure 4, but with clusters based on RSS mea-
surements. The mean bias for pl′ is now significantly larger, leading to a diminished
performance for bigger cluster sizes N. Still, the RMSE mostly attains the biased lower
bound. It should be noted that the correction factor Λ is now showing a significant offset
for larger clusters with the RMSE following the resulting offset. It can be seen that the
effects of the bias for pl′ and the correction factor Λ dominate over the classical CRLB for
large cluster sizes N, meaning that there is an optimum for the cluster size depending on
the scenario.
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Figure 6. Scenario 6.4: Results for synthetic scenario with RSS-based clusters.

Figure 7 again shows a map of the environment as previously seen in Figure 5a. Note
that the results for single nodes differ, as these evaluations were conducted with different
realizations for the channel. Now, for larger cluster sizes, as seen in Figure 7b,c, it can be
seen that the estimated positions p̂l′ are increasingly shifted into the aisles. This effect is
attributed to the RSS measurements showing smaller values when the propagation path is
through a shelf, which is an expected behavior of the channel, biasing our clusters towards
the centers of the aisles. As seen in Figure 6, the RMSE is lower for clusters of size N = 11
than for clusters of size N = 25. This can be seen as smaller absolute errors in Figure 7b
than in Figure 7c, but for some scenarios, it may be preferable to achieve a slightly larger
absolute positioning error in exchange for a more accurate classification of positions to the
right aisle and/or shelf.
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Figure 7. Scenario 6.4: Floorplans with results for synthetic scenario with RSS-based clusters (showing
only every 10th processed node for better visibility).

6.5. Experimental Validation

Figure 8 shows parts of the measurement setup and room. Here, one can see the
placement of nodes (in this case, electronic shelf labels) mounted on industrial shelves,
similar to those found in retail stores. The antennas seen in the picture correspond to the two
upper-left positions for anchors seen in Figure 1. The nodes allowed for cooperative RSS
measurements between each pair of nodes by using a proprietary protocol and transmission
in the ISM band at 2.4 GHz. The WB measurements were conducted according to a protocol
described in detail in [4,38].
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Figure 8. Scenario 6.4 and 6.5: Pictures of the measurement setup and room. (a) Red ellipse
marking one agent node. (b) Red ellipse marking the access point antenna for controlling the
agent nodes. (c) Red ellipse marking one linear 2-antenna array. (d) Red ellipse marking the PC for
measurement processing.

To further validate results, we used WB measurement data from a scenario corre-
sponding to our simulations. The geometry and number of anchors were the same as in
the simulation scenarios in the previous two subsections; parameters from Table 1 still
apply. Corresponding RSS measurement data were also retrieved. These measurements
were for all 1100 nodes in a timeframe of approximately 24 h, where most time was used
for transmission of the RSS measurement data to the infrastructure. In comparison, a
single WB measurement took less than one minute with additional post-processing. Both
genie-aided and RSS data-based clustering approaches were evaluated. As we wanted
these evaluations to show the optimal performance we could achieve in such a scenario,
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we further incorporated prior knowledge of the agent positions, restricting all particles to
areas within aisles (see Figure 1 for reference). This allows us to improve performance by
incorporating knowledge about the room.

Figure 9 shows the measurement scenario. Note that the CRLB and biased lower
bound are not shown here, as an accurate estimation of these bounds requires appropriate
channel parameters, which cannot be extracted from our measurements well enough.
Therefore, one can see that the performance of the clustering approaches corresponds to
the two simulation scenarios seen in Sections 6.3 and 6.4. It can also be seen that for the
genie-aided clustering, the performance increased for all cluster sizes in this evaluation,
though we expect the performance to worsen for even larger cluster sizes, as the bias term
dominates for large clusters. The evaluation using RSS measurement data again shows an
ideal cluster size for the RMSE of N = 11, meaning that for real-world scenarios, using
the RSS-based clustering approach there is no need for more computationally intensive,
larger cluster sizes. For reference, the RMSE is also plotted for an evaluation using RSS
measurements, which does not incorporate a prior in the aisles. This evaluation was
conducted with the same number of particles, as these proved to be sufficient. Here, we see
that the estimation performance was worse over all cluster sizes, justifying the initialization
within aisles. As a side note, an evaluation with non-fixed cluster sizes, where clusters
were determined by RSS-thresholds was also conducted. Over a wide range of thresholds,
this did not improve the results.

Version June 12, 2023 submitted to Sensors 15 of 23

(a) (b)

(c) (d) 

Figure 8. Scenario 6.4 and 6.5: Pictures of the measurement setup and room

0 5 10 15 20 25 30 35 40
0

1

2

Cluster size N

Er
ro

r
in

m

RMSE for p̂l′ (RSS), without prior RMSE for p̂l′ (RSS)

Bias for pl′ , Mean of ∥pc − pl′ ∥ (RSS) RMSE for p̂l′ (Genie)

Bias for pl′ , Mean of ∥pc − pl′ ∥ (Genie)

Figure 9. Scenario 6.5: Results for measurement scenario

similar to those found in retail stores. The antennas seen in the picture correspond to the 355

two upper-left positions for anchors seen in Figure 1. The nodes allowed for cooperative 356

RSS measurements inbetween each pair of nodes by using a proprietary protocol and 357

transmission in the ISM-band at 2.4 GHz. The WB measurements were done according to a 358

protocol described in detail in [4,38]. 359

To further validate results, we used WB measurement data from a scenario corre- 360

sponding to our simulations. The geometry and number of anchors were the same as in 361

the simulation scenarios in the previous two subsections, parameters from Table 1 still 362

apply. Corresponding RSS measurement data were also retrieved. These measurements 363

were done for all 1100 nodes in a timeframe of approximately 24 hours, where most time 364

was used for transmission of the RSS measurement data to infrastructure. In comparison, 365

a single WB measurement took less than a minute with additional post-processing. Both 366

genie-aided and RSS data based clustering approaches were evaluated. As we wanted 367

these evaluations to show the optimal performance we could achieve in such a scenario, 368

we further incorporated prior knowledge of the agent positions, restricting all particles to 369

Figure 9. Scenario 6.5: Results for measurement scenario.

As seen in Figure 10a, comparable to the synthetic scenarios, the estimation errors
for non-clustered processing were rather large. Some effects of the geometry were more
pronounced, which can be seen, for example, in the left-most nodes at x ≈ 6 m, y ≈ 9 m,
being estimated very accurately in comparison with most other nodes. As these nodes are
in the direct vicinity of an antenna array, there is a pronounced LoS-component and a good
SNR for WB measurements. Furthermore, the effects of the initialization within possible
aisles already leads to better results for the non-clustered case.



Sensors 2023, 23, 5772 17 of 24Version June 12, 2023 submitted to Sensors 16 of 23

10 15 20
6

8

10

12

14

16

x in m

y
in

m

(a) N=1

10 15 20
6

8

10

12

14

16

x in m

y
in

m

(b) N=11

Anchors True position pl′ Estimated position p̂l′

Figure 10. Scenario 6.5: Floorplans with results from measurements with RSS-based clusters (showing
only every 10-th processed node for better visibility)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Error in m

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

N=1 N=5 (RSS) N=11 (RSS)
N=25 (RSS) N=11 (Genie) N=25 (Genie)

Figure 11. Scenario 6.5: CF plot and excerpt for different cluster sizes and different cluster selection
strategies, measurement data

areas within aisles (see Figure 1 for reference). This allows us to improve performance by 370

incorporating knowledge about the room. 371

In Figure 9 the results can be seen for the measurement scenario. Note that the 372

CRLB and biased lower bound are not shown here, as an accurate estimation of these 373

bounds requires appropriate channel parameters, which cannot be extracted from our 374

measurements well enough. Therefore, one can see that the performance the clustering 375

approaches corresponds to the two simulation scenarios seen in Subsections 6.3 and 6.4. 376

It can also be seen that for the genie-aided clustering, the performance is getting better 377

for all cluster sizes in this evaluation, though we expect the performance to worsen for 378

even larger cluster sizes, as the bias term will dominate for large clusters. The evaluation 379

using RSS measurement data again shows an ideal cluster size for the RMSE of N = 11, 380

meaning that for real-world scenarios using the RSS-based clustering approach there is no 381

need for more computationally intensive, larger cluster sizes. For reference, the RMSE is 382

also plotted for an evaluation using RSS measurements, which does not incorporate a prior 383

in the aisles. This evaluation was done with the same number of particles, as these proved 384

to be still sufficient. Here we see that the estimation performance is worse over all cluster 385

sizes, justifying the initialisation within aisles. As a side note, an evaluation with non-fixed 386
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only every 10th processed node for better visibility).

Looking at Figure 10b, we again see a significant performance improvement for the
clustering algorithm using RSS-based clusters. It is worth noting that, again, the estimated
positions p̂l′ are increasingly shifted to within centers of aisles, which again, can contribute
to RSS measurements giving the stronger indications for links with LoS conditions, which
often happen to be on the opposite side of aisles for our scenario.

Figure 11 shows a plot for the cumulative frequency (CF) of the error ‖p̂c − pl′‖ for
both genie-aided and RSS-based clustering approaches. It can be seen that especially
outliers can be minimized by the clustering approaches compared to the non-clustered
(N = 1) case. It should be noted that the genie-aided approach clearly outperforms the
RSS-based method, but for the minimization of outliers (>2 m), both methods are almost
equal when using cluster sizes N ≥ 11. Furthermore, one can see that the performance
of the RSS-based clusters is worse for very small errors (<0.2 m) than for a non-clustered
approach. This can be attributed to the bias-term being dominant, as RSS-measurements to
nodes on the other side of an aisle were often dominating, even in small cluster sizes.
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7. Conclusions

This paper investigates an indoor position system that is capable of fusing WB ToF
measurements and cooperative RSS measurements from a cluster of nodes located in
close proximity to one another. We derive a lower bound on the position error for this
setup to understand the scaling behavior and performance limits. We also formulate an



Sensors 2023, 23, 5772 18 of 24

approximated maximum likelihood algorithm for the setup and analyze the performance
with synthetic data and real-world measurement data.

Our proposed approach demonstrates a performance gain of one node for a non-
clustered approach being around 2 m to the performance of an RSS-clustered approach
being around 1 m in our measurement scenario. Synthetic scenarios show that our RMSE
can approach the derived biased lower bound, incorporating a correction factor that ac-
counts for the precise scaling of delay information in the case of clustering.

Furthermore, an efficient implementation has been developed for our algorithm, based
on an iterative implementation of a maximum likelihood estimator. Overall, we were able
to show that the introduced approach mitigates mutual problems of both measurement
methods, improving localization performance by incorporating information that can be
processed jointly.

Results for the fusion of multiple measurement methods—like the ones evaluated—
show that this is a promising field for future research, and further work should incorporate
other measurement methods and additional information to improve upon the principle
findings of this paper. Future work for the presented method will focus on a fully Bayesian
implementation supporting joint cooperative positioning based on both measurement
types, directly incorporating the information content of RSS measurements into a joint
algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

AEB angulation error bound
AoA angle of arrival
AP access point
AWGN additive white Gaussian noise
CF cumulative frequency
CRLB Cramér-Rao lower bound
DM dense multipath
DMC dense multipath component
DPS delay power spectrum
FI Fisher information
EFI equivalent Fisher information
EFIM equivalent Fisher information matrix
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FIM Fisher information matrix
IoT internet of things
ISM industrial, scientific, and medical
LoS line-of-sight
MCS Monte-Carlo simulation
PDF probability density function
PEB position error bound
PSD power spectral density
RDM ranging direction matrix
REB ranging error bound
RFID radio frequency identification
RMSE root-mean-square error
RSS received signal strength
RSSI received signal strength indicator
SNR signal-to-noise ratio
SINR signal-to-interference-plus-noise-ratio
TDoA time difference of arrival
ToA time of arrival
ToF time of flight
UWB ultra-wideband
WB wideband

Appendix A. Derivation of EFIM

For ease of notation, indices l and m are omitted here without loss of generality,
but these derivations apply for a single anchor m and node l. To derive position error
bounds, we first derive an FIM for a spherical parameter vector ψ = [φ, ϑ, τ,Rα, Iα]T with
nuissance parameter α ∈ C, as

Jψ =

[
A B

BT D

]
∈ R5×5. (A1)

The block matrices are defined similar to [16] as

A =

Jφφ 0 0
0 Jϑϑ 0
0 0 Jττ


B =

 0 0
0 0

JτRα JτIα


D =

[
JRαRα 0

0 JIαIα

]
.

(A2)

The FIs between the parameters in the according subscript are denoted as Jφφ, Jϑϑ,Jττ ,
JτRα, JτIα, JRαRα, JIαIα. Note that the transmit time εl is also omitted, as for TDoA
positioning an unknown transmit time has negligible influence [39], given an appropriate
geometry of anchor nodes. To gain further insight, we use the EFIM [Jψ′ ]

−1
3x3 for the

parameter vector ψ′ = [φ, ϑ, τ]T by using the Schur complement on (A1)

[Jψ′
−1]3×3 = (A− BD−1BT)−1 =

Jφ 0 0
0 Jϑ 0
0 0 Jτ

−1

, (A3)
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where Jφ, Jϑ, and Jτ are the respective FI terms for the parameters. Due to the structure of the
block matrices A, B, and D, the EFIM [J−1

ψ′ ]3×3 is a diagonal matrix, illustrating that range
and angle information components are independent. To derive a CRLB for positioning, a
transformation of the EFIM from the spherical parameter vector to a cartesian parameter
vector p = [x, y, z]T is necessary. For this, the corresponding FIM for the parameter vector
p can be computed by

Jp = T Jψ′T
T , (A4)

with T being the Jacobian matrix for transformation of spherical to cartesian coordinates
incorporating partial derivatives of p with respect to ψ′

T =
∂pT

∂ψ′
=


∂x
∂φ

∂x
∂ϑ

∂x
∂τ

∂y
∂φ

∂y
∂ϑ

∂y
∂τ

∂z
∂φ

∂z
∂ϑ

∂z
∂τ

 =

−
sin φ sin ϑ

τc
cos φ cos ϑ

τc
sin φ cos ϑl,m

c
sin φ cos ϑ

τc
cos φ sin ϑ

τc
sin φ sin ϑ

c
0 − sin φ

τc
cos φ

c

 ∈ R3×3, (A5)

where c denotes the speed of light.

Appendix B. Derivation of the Ranging Error Bound (REB) and Correction Factor Λ

Appendix B.1. Ranging Error Bound

The ranging error bound (REB) is derived from the likelihood function (7). To account
for the DMC, an signal-to-interference-plus-noise-ratio (SINR) is introduced, which quanti-
fies the reduction of the SNR due to the interfering DM [16,39]. With this, we can define
the EFI (which is the equivalent information neglecting nuisance parameters) for the delay
τl,m for a single node as [16,39]

Jτl,m = 8π2β2S̃INRτm K, (A6)

where β2 is the mean-squared bandwidth [40], which is defined as β2 = ‖ṡ‖2/
(
4π2‖s‖2) =∫

f f 2|S( f )|2d f for the normalized pulse ‖s‖2Ts = 1, ṡ being the derivative of the sampled

pulse with respect to the delay τ, and f is the frequency in the Fourier domain, [S̃INRτ ]m is
the SINR for anchor m, and K is the number of antennas at anchor m. Additional parameters
and further definitions are described in previous work (see Appendix A in [16] or [12]).
With this, the contribution of delay measurements to the FIM for measurements in-between
multiple anchors and all nodes of a cluster can be written as

J(τ)pc
=

M

∑
m=1

∑
l∈L

Λ
8π2

c2 β2[S̃INRτ ]m K Rr(φl,m, ϑl,m), (A7)

where Rr(φl,m, ϑl,m) is the previously mentioned RDM, and Λ is the correction factor
discussed in the following subsection. As argued in Section 5, an upper bound on this
component is used in (25).

Appendix B.2. Correction Factor Λ

As the delays τm(pl) of each node in the cluster are in the vicinity of the delay τm(pc),
we can assume that τm(pl) ≈ τm(pc) ∀l ∈ L. Still, small offsets remain. To address this, we
introduce an equivalent log-likelihood of Equation (12) as

ln f (r | τm(pc), ε, η, α) = ln f (rc | τm(pc), α), (A8)

with the assumption of parameters ε being estimated correctly and omitting parameters η
of the DMC. The vector rc is a summed and weighted receive signal defined as

rc = ∑
l∈L

c∗l rl , (A9)
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with c∗l being complex conjugate weights that are introduced to maximize the SNR for rc.
The vector rl is the received signal from Equation (3), omitting indices m and k for the sake
of easier notation. We now define a summed and weighted received signal without noise as

r(s)c = ∑
l∈L

c∗l s(τ(pl))αl,m ≈ s(τ(pl))c
Hα, (A10)

with c = [cl ]
T ∀l ∈ L being a stacked version of all weights within a cluster, where we

assume the delays to be approximately equal for all l ∈ L. Furthermore, we introduce a
weighted noise vector r(n)c = ∑l∈L c∗l ww, again omitting indices m, k for easier notation.
From this, we can define an SNR of this mean weighted signal as

SNRc =
‖r(s)c ‖2

E{‖r(n)c ‖2}
≈ ‖s(τl,m)‖2 |cHα|2

Ns σ2
n ‖c‖2 . (A11)

Maximizing this SNR, we obtain

SNRmax
c ≈ ‖s(τ(pc)‖2 ‖α‖2

Ns σ2
l,m,k

, (A12)

which maximizes the inner product cHα by setting the weights c = α. With this, we can see
that the previous log-likelihood in (A8) is proportional to

ln f (rc | τl(pc), α) ∝ ‖rc − ∑
l∈L
‖αl‖2s(τl,m)‖2. (A13)

We can then express ∑l∈L ‖αl‖2s(τl,m) = sc, which is a weighted summed baseband
signal with delays τm(pc). We introduce the Fourier transform of the delayed signal vector
s(τl) as S(τl, f ) = S( f )e−j2π f τl . With this, we can write the squared sum of the time derivative
of sc as

‖ṡc‖2 =
∫

f

∣∣∣∣∣∑l∈L ‖αl‖2S( f )e−j2π f τl

∣∣∣∣∣
2

f 2d f

=
∫

f
|S( f )|2

∣∣∣∣∣∑l∈L ‖αl‖2e−j2π f τl

∣∣∣∣∣
2

f 2d f

=
∫

f
|S( f )|2|Λ( f )|2 f 2d f

(A14)

where Λ( f ) has a low-pass characteristic, reducing the effective bandwidth of S( f ). We
denote the effective reduction of the bandwidth by the factor Λ as

‖ṡc‖2 = Λ‖ṡ‖2 = Λβ2. (A15)

This correction factor Λ for the CRLB describing the relative bandwidth loss in a
cluster with Λ ∈ [0, 1], which corresponds to the factor Λ in Equation (25). This factor can
also be interpreted as a mean information loss in a cluster due to mutual information within
the clusters. Here, β2 is the mean squared bandwidth of the signal, defined in Appendix C.

Appendix C. Derivation the AEB

The angulation error bound (AEB) for a general angle φ representing either azimuth
or elevation, the EFI for the case incorporating DM is approximated by [16]

JAEB(φ) ≈ 8π2SINR M D2
λ(φ), (A16)
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where D2
λ(φ) is the normalized squared array aperture, which is defined as

D2
λ(φ) =

1
M

M

∑
m=1

d2
m

λ2 sin2(φ− φm), (A17)

with φm being the angle of array elements relative to the coordinate system per anchor, and
dm is the distance of array elements to the anchor position. With this, we can define the

AEB for azimuth φl,m and elevation ϑl,m as Aφl,m =
√

J−1
φl,m

and Aϑl,m =
√

J−1
ϑl,m

. For the case
of clustering, these bounds can then be found to be

Aφm =
√
[Jφm ]

−1 =
√
[∑
l∈L

Jφl,m ]
−1 (A18)

Aϑm =
√
[Jϑm ]

−1 =
√
[∑
l∈L

Jϑl,m ]
−1, (A19)

where Jφm and Jϑm are the clustered EFIMs for azimuth and elevation, respectively. Note
that here, no correction factor is required, as the equivalent aperture reduction is negligible
in the case of the AEB due to f 2

c � (Λβ2)[16]. Furthermore, over a whole scenario, it can be
assumed that El [φl,m] ≈ 0 and El [ϑl,m] ≈ 0, thus the dependency on different positions can
be assumed to be negligible for the AEB. From this, we can define an EFI for a multi-anchor
clustered case for azimuth and elevation as

J(φ)pc
≈

M

∑
m=1

∑
l∈L

8π2

d2
l,m

D2
λ(φl,m)SINRm K Rr(φl,m +

π

2
, ϑl,m), (A20)

J(ϑ)pc
≈

M

∑
m=1

∑
l∈L

8π2

d2
l,m

D2
λ(ϑl,m)SINRm K Rr(φl,m, ϑl,m +

π

2
), (A21)

with the previously mentioned RDM and an SINR per anchor as SINRm.
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