
Moment-Based Loop Analysis

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Miroslav Stankovič, BSc
Registration Number 11836790

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr.techn. Laura Kovács
Second advisor: Univ.Prof. Dr. Ezio Bartocci

The dissertation has been reviewed by:

Ana Sokolova Alessandro Abate

Vienna, 20th February, 2023
Miroslav Stankovič

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der Arbeit

Miroslav Stankovič, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quel-
len und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich
Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder
dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich
gemacht habe.

Wien, 20. Februar 2023
Miroslav Stankovič

iii

To my grandfather

Acknowledgements

First of all, I would like to thank Laura Kovács for her great supervision. Laura introduced me to
the area of probabilistic program analysis and guided me through the research and publishing in
this area. She provided just the right amount of support to keep my PhD experience challenging
but not overwhelming as I steadily joined the research community. I could not ask for a better
supervisor. I would also like to thank Ezio Bartocci, my PhD co-supervisor, for the steady stream
of tips, feedback, questions, and ideas. Both Laura and Ezio encouraged striving for quality, and
I am incredibly grateful for their guidance and support over the years.

I am also grateful to my research group and colleagues, with whom I had many fruitful discussions
and collaborations, in particular Marcel Moosbrugger, Daneshvar Amrollahi, George Kenison,
Ahmad Karimi, Andrey Kofnov, and Efstathia Bura. A special thanks to Marcel - sharing an
office as well as doing research with him has been excellent. I’d also like to thank Ana Sokolova
and Alessandro Abate, whose feedback and suggestions helped me improve this thesis.

For the much-needed distractions from research, I would like to thank my friends and teammates,
in particular Krisztina Fruzsa, Davide Longo, Marko Puza, L’ubomír Val’ovský, and Lukáš
Borovský. A very special thank you goes to Martina Kmecová for being by my side during this
journey.

I am also immensely grateful to family, my brother František and, especially, my parents Mária
and Pavel, for their unconditional love and support, despite having hardly any idea what it is I am
actually doing.

We acknowledge funding from the TU Wien Doctoral College (SecInt), the FWF research projects Log-
iCS W1255-N23 and P 30690-N35, the WWTF ICT19-018 grant ProbInG, the ERC Consolidator Grant ARTIST
101002685, the ERC Starting Grant 2014 SYMCAR 639270, the Wallenberg Academy Fellowship 2014 TheProSE,
and the FWF grants S11405-N23, S11409-N23 (RiSE/SHiNE).

vii

Kurzfassung

In dieser Arbeit untersuchen wir die automatisierte Analyse von Schleifen probabilistischer Pro-
gramme (PPs). Wir betrachten insbesondere das Finden einer quantitativen Schleifeninvariante:
eine Eigenschaft einer gegebenen Schleife, die ihr Verhalten beschreibt. Schleifeninvarianten
sind der Schlüssel um über Programmschleifen logisch zu Schließen. Im Zusammenhang mit
probabilistischen Programmen stellen Variablen Verteilungen dar, und die Invariante muss statis-
tische Eigenschaften dieser Verteilungen erfassen. In unserer Arbeit konzentrieren wir uns auf
die Berechnung sogenannter momentbasierter Invarianten (MBIs), invariante Eigenschaften, die
den Erwartungswert und höhere (und gemischte) Momente von Programmvariablen beschreiben.
Obwohl es nicht möglich ist, alle Momente zu berechnen, welche die zugrunde liegende Vertei-
lung vollständig charakterisieren würde, sind unsere Methoden in der Lage, Momente beliebiger
Ordnung zu berechnen, wodurch wir die Schleifeneigenschaften relativ genau erfassen können.

Als eines der Hauptergebnisse dieser Arbeit geben wir eine Charakterisierung von Prob-solvable
Loops, einer Klasse von PP-Schleifen, für die MBIs theoretisch immer berechnet werden können.
Wir beschreiben auch ein vollständig automatisiertes Verfahren zum Berechnen von MBIs
jeglicher Ordnung für jedes Programm dieser Klasse. Die Methode wird implementiert und
anhand mehrerer anspruchsvoller Benchmarks aus der Literatur evaluiert.

Im zweiten Teil der Dissertation untersuchen wir, wie die Moment-basierte Analyse von Prob-
solvable Loops und MBIs angewendet werden kann, um über verschiedene Probleme in Bayes’schen
Netzwerken (BNs) zu argumentieren. Wir erweitern das zuvor eingeführte Framework, um die
Codierung von BNs als PPs zu ermöglichen, und bieten auch eine Möglichkeit, mehrere Aufgaben
in der BN-Analyse als Berechnung von MBIs in einem entsprechenden PP zu codieren – wie z.
B. exakte Inferenz, erwartete Anzahl von Proben oder Sensitivitätsanalyse.

Im letzten Teil der Arbeit diskutieren wir kurz Erweiterungen dieser Arbeit. Wir charakterisieren
die Klasse von Programmen, für die MBIs berechnet werden können (momentberechenbare Pro-
gramme), vollständig und untersuchen, wie Wahrscheinlichkeitsverteilungen aus MBIs automa-
tisch approximiert werden können. Wir betrachten auch nicht momentberechenbare Programme,
für die wir Kombinationen von Variablen und Approximationen betrachten.

ix

Abstract

In this thesis, we explore automated analysis of loops of probabilistic programs (PPs). We look
specifically at finding a quantitative loop invariant: a property of a given loop that describes
its behaviour. Loop invariants are key for reasoning about program loops. In the context of
probabilistic programs, variables represent distributions, and the invariant needs to capture the
statistical properties of these distributions. In our work, we focus on computing so-called moment-
based invariants (MBIs), invariant properties that describe the expected value and higher (and
mixed) moments of program variables. While it is not feasible to compute all moments, which
would fully characterize the underlying distribution, our methods are able to compute moments
of arbitrary order, hence allowing us to capture the loop properties relatively precisely.

As one of the main results in this thesis, we give a characterization of Prob-solvable loops, a class
of PP loops, for which MBIs can be, in principle, always computed. We also describe a fully
automated method of computing MBIs of arbitrary order for any program of this class. The
method is implemented and evaluated on several challenging benchmarks from the literature.

In the second part of the thesis, we study how moment-based analysis of Prob-solvable loops and
MBIs can be applied to reasoning about various challenges in Bayesian networks (BNs). We
extend the framework introduced earlier to accommodate encoding BNs as PPs and also provide
a way to encode several tasks in BN analysis as computing MBIs in a corresponding PP - such as
exact inference, expected number of samples, or sensitivity analysis.

In the last part of the thesis, we briefly discuss extensions of this work. We fully characterize
the class of programs for which MBIs can be computed (moment-computable programs) and
investigate how to automatically estimate probability distributions from MBIs. We also consider
programs that are not moment-computable, for which we look at combinations of variables and
approximations.

xi

List of Publications

The list of peer-reviewed publications I have co-authored during my PhD studies.

[BKS19] Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. Automatic generation of
moment-based invariants for prob-solvable loops. In Proc. of ATVA 2019: the 17th
International Symposium on Automated Technology for Verification and Analysis,
volume 11781 of LNCS, pages 255–276. Springer, 2019.

[BKS20b] Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. Mora - automatic generation
of moment-based invariants. In Proc. of TACAS 2020: the 26th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems, volume
12078 of LNCS, pages 492–498. Springer, 2020.

[BKS20a] Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. Analysis of Bayesian net-
works via prob-solvable loops. In Proc. of ICTAC 2020: the 17th International
Colloquium on Theoretical Aspects of Computing, volume 12545 of LNCS, pages
221–241. Springer, 2020.

[SBK22] Miroslav Stankovič, Ezio Bartocci, and Laura Kovács. Moment-based analysis of
bayesian network properties. Theoretical Computer Science, 903:113–133, 2022.

[KMS+22b] Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Efs-
tathia Bura. Moment-based invariants for probabilistic loops with non-polynomial
assignments. In Proc. of QEST 2022: Quantitative Evaluation of Systems - 19th
International Conference, volume 13479 of Lecture Notes in Computer Science,
pages 3–25. Springer, 2022. Best Paper Award.

[KMS+22a] Ahmad Karimi, Marcel Moosbrugger, Miroslav Stankovic, Laura Kovács, Ezio
Bartocci, and Efstathia Bura. Distribution estimation for probabilistic loops. In Proc.
of QEST 2022: Quantitative Evaluation of Systems - 19th International Conference,
volume 13479 of Lecture Notes in Computer Science, pages 26–42. Springer, 2022.

[MSBK22] Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Laura Kovács. This is
the moment for probabilistic loops. Proc. ACM Program. Lang., 6(OOPSLA2):1497–
1525, 2022.

[ABK+22] Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel Moos-
brugger, and Miroslav Stankovic. Solving invariant generation for unsolvable loops.
In Static Analysis - 29th International Symposium, SAS 2022, volume 13790 of
Lecture Notes in Computer Science, pages 19–43. Springer, 2022. Radhia Cousot
Young Researcher Best Paper Award.

xiii

Contents

Kurzfassung ix

Abstract xi

List of Publications xiii

Contents xv

1 Introduction 1
1.1 Problem Statement and Motivation . 2
1.2 Related Work . 4
1.3 Contributions . 6
1.4 Outline and Organization . 9

2 Preliminaries 11
2.1 Probabilities, Expectation, and Moments . 11
2.2 C-Finite Recurrences . 14

3 Prob-solvable Loops 17
3.1 Overview . 17
3.2 Programming Model: Prob-solvable Programs 19
3.3 Moment-Based Invariants of Prob-solvable Loops 22
3.4 Implementation and Experiments . 28
3.5 Chapter Conclusion . 31

4 Implementation - MORA 33
4.1 Overview . 33
4.2 MORA – Programming Model . 34
4.3 MORA– Usage . 35
4.4 MORA– Tool Overview . 36
4.5 Evaluation . 39
4.6 Chapter Conclusion . 39

5 Analyzing Bayesian Networks 41

xv

5.1 Overview . 41
5.2 Programming Model: Extending Prob-solvable Loops 45
5.3 Encoding BNs as Prob-solvable Loops . 51
5.4 Automatic BN Analysis via Prob-solvable Loop Reasoning 57
5.5 Implementation and Experiments . 61
5.6 Chapter Conclusion . 64

6 Further Developments 67
6.1 Moment-Computability . 68
6.2 Polynomial Self-dependencies . 70
6.3 Non-polynomial Updates . 71
6.4 Quantitative Evaluation . 71

7 Conclusion 73

List of Figures 75

List of Tables 77

List of Algorithms 79

Bibliography 81

CHAPTER 1
Introduction

The recent rise in prominence of probabilistic programs (PPs) due to the emerging applications
in AI and machine learning poses a significant challenge to software verification and automated
reasoning. Probabilistic programs, unlike their non-probabilistic counterpart, allow drawing
random values from a predefined probability distribution. The presence of probabilistic behaviour
precludes treating program variables as having a certain value; instead, program variables must be
treated as probabilistic distributions. This causes reasoning about general probabilistic programs
to be hard [KKM19] and usually requires us to make certain simplifications, impose restrictions
on the program syntax, or limit the type of analysis that can be done. Just as in the case of
non-probabilistic programs, loops in PPs provide an additional challenge for program analysis.

Probabilistic programs, as used these days, can be understood in two different ways. (1) Programs
encoding randomized algorithms, meant to be run, using randomness to enrich the program.
(2) Programs capturing stochastic (generative) models, encoding complex probability distribu-
tions.

PPs as randomized algorithms Randomization can be leveraged to improve the performance
of a program. In the Randomized quicksort, for example, the expected worst-case is O(n log n),
compared to the worst case O(n2) of quicksort.

In Monte Carlo algorithms, the improvement in computation time is traded for precision. The
Miller-Rabin algorithm [Rab80], for instance, checks whether a given number is likely to be
prime. The algorithm runs in O(k log3 n) and returns a false positive with probability at most 4−k,
where the parameter k is the number of iterations of the algorithm.

In some cases, the addition of randomness can solve problems that would be otherwise unsolvable,
as in the case of certain consensus protocols [FLP85]. Random choice also plays a crucial role in
breaking the symmetry in Hermann’s self-stabilization protocol [Her90]. Randomness is also
used in the implementation of cryptographic [BGB12] and privacy [BKOB12] protocols.

1

1. INTRODUCTION

Probabilistic program analysis is necessary to reason about randomized algorithms, whether
it is to assess the expected runtime, estimate the probability of correct output, or quantify the
uncertainty.

PPs as probabilistic models The use of randomness and probabilistic behaviour in modeling
is a natural way of capturing the uncertainties present in a real-world system. Probabilistic
models can represent complex probability spaces in an intuitive and compact way. Traditionally,
probabilistic models had the form of a probabilistic graphical model (PGM) or a system of
equations and formulas. Bayesian networks (BNs), for example, are a class of PGMs represented
by an acyclic graph, modeling conditional dependence between state variables. One of the main
challenges arising from probabilistic models, and Bayesian networks in particular, is making
inferences based on observations or evidence.

With the recent surge in AI and machine learning development, many engineers found themselves
using probabilistic models [Gha15]. As a result, using (probabilistic) programs as models
is becoming increasingly more common. For many, programs are more easily understood
and worked with while still allowing for mathematical precision. Program representation is
particularly useful to capture generative (probabilistic) models, where programs naturally capture
the steps leading to a particular distribution, generating a new sample or data point. Probabilistic
languages like FIGARO[Pfe09], WEBPPL[GS14], STAN[CGH+17], INFER.NET[MWG+18],
or SCENIC[FDG+19] make it easier to encode probabilistic models and capture the complex
underlying distributions. One may also equip programs with symbolic parameters and seek to
optimize the parameter values.

Formal analysis of probabilistic programs, when viewed as models, can help us understand the
complex underlying distribution, answer inference queries, or even optimize the parameters.

1.1 Problem Statement and Motivation

Analysis of probabilistic programs is especially challenging due to its naturally quantitative
character. Reasoning about problems such as variable distribution upon termination, probability
of termination, expected runtime, and reachability probabilities requires dealing with quantities
and functions. As in the case of non-probabilistic programs, the presence of loops and recursive
behaviour proves to be the key challenge in automated PP analysis. Exact analysis is typically
unfeasible due to the arbitrary, even random, number of loop executions, and even generating
simple non-trivial loop properties is very tricky.

A standard approach in loop analysis involves so-called inductive loop invariants - properties
that are true before the loop execution and that remain true after each execution of the loop
body. Invariants often have a form of a logical or algebraic expression. When reasoning about
a program, such invariants can replace the loop to make the reasoning easier. Invariants, however,
do not, in general, uniquely represent the loop, as there may be other programs that satisfy the
same invariant property and thus give an overapproximation of the loop behaviour.

2

1.1. Problem Statement and Motivation

To make automated invariant generation possible, invariant generation techniques impose certain
restrictions, such as using templates and user guidance to generate invariants, limiting search
space to a subclass of possible invariants, such as linear or polynomial functions, restricting
program syntax, dealing only with finite or discrete systems, or computing approximates of or
bounds on the desired values.

A variety of approaches have been considered for invariant generation. One of the earlier
works [KMMM10] uses constraint-solving approach and linear templates to generate invariants
in the framework of [MM05]. A martingales-based approach is used in [BEFH16] to generate
invariants over expected values, further refined in [KUH19] to reason about higher moments for
runtime approximation. For polynomial invariants generation, Lagrange interpolation is used
in [CHWZ15] and Stengle’s Positivstellensatz in [FZJ+17].

All the above approaches, however, rely heavily on templates and/or user-provided guidance. In
our work, we focus on full automation for generating non-linear invariants. More specifically,
the central theme of this thesis revolves around using expected value and higher (and mixed)
moments as a way to capture the distribution properties of variables in probabilistic loops. We
refer to the invariants over the (higher and mixed) moments of program variables as moment-based
invariants (MBIs).

We also explore the implications of being able to compute arbitrary MBIs on analysis of proba-
bilistic models, in particular Bayesian networks.

As such, the work in this thesis provides the first algorithmic approaches to solving the following
research goals.

Research Goal 1: Develop a fully automated approach to capture moment-based properties
of probabilistic loops.

To this end, we use statistical properties to eliminate the probabilistic behaviour from the loop.
Program variables, which are essentially probability distributions, can be viewed as sequences of
moments. Mixed moments then capture dependencies between program variables. We consider
the moments to be variables on their own and refer to them as E-variables. Probabilistic updates
over program variables then become non-probabilistic updates with respect to the E-variables.
Being able to reason about an arbitrary (finite) number of moments allows us to preserve as much
information as desired.

With probabilistic behaviour out of the way, we adopt some of the algebraic approaches from
the analysis of non-probabilistic programs. A prominent method of generating invariants in the
non-probabilistic setting is based on summarizing the loop through (linear) recurrences [Kov08,
KCBR17, HJK18b]. The recursive behaviour of E-variables can be captured by a system of
linear recurrences (over the E-variables), and the closed-form expressions can be computed.
The closed-form solutions then give rise to invariants involving higher and mixed moments, the
moment-based invariants (MBIs).

The theoretical aspects of this approach, as well as the class of Prob-solvable loops for which this
analysis can be conducted, are presented in Chapter 3, while the implementation and experiments

3

1. INTRODUCTION

are covered in Chapter 4.

Research Goal 2: Apply moment-based analysis to reason about Bayesian networks.

We represent Bayesian networks as PPs, and specifically as PPs that can be analyzed using the
moment-based approach developed in Chapter 3. For this, we extend the class of Prob-solvable
loops and give an algorithm to convert a variety of BNs (such as discrete, Gaussian, conditional
linear Gaussian, and some dynamic BNs) to a Prob-solvable loop.

A number of problems arising in BNs can then be reformulated as a task of computing moments,
or MBIs, such as exact inference, sensitivity analysis, filtering, or computing the expected
numbers of rejected samples in sampling-based procedures.

In Chapter 5, we cover the details of representing BNs as programs as well as using MBIs to
reason about BNs.

Summary of moment-based approach To solve the main goals of this thesis, we leverage
statistical methods and algebraic techniques from program analysis to fully automatically generate
moment-based loop invariants and even address various problems from BN analysis. The key
aspects of our approach can be summarized as follows:

• Full automation: no need for user guidance and/or templates,

• Symbolic computation: capture entire classes of programs with a single static analysis,

• Rich model: allow polynomial dependencies and unbounded continuous variables,

• Theoretical foundations: provide computational guarantees for a well-defined class of
probabilistic programs,

• Higher moments: compute higher and mixed moment properties, in principle of arbitrary
order, to more precisely capture program properties,

• Applications: model Bayesian networks and solve Bayesian network challenges via
moment-based analysis.

The main limitation, as shall be clear by the end of this thesis, is that only a restricted class of
programs can be analysed. This restriction, however, is a necessary one to guarantee computability.
When higher-order moments are required, the number of E-variables, and thus the size of the
recurrence system, can grow exponentially in the worst case. Thus scalability of the approach
also remains a challenge.

1.2 Related Work

In the context of probabilistic programs (PPs), formal semantics for PPs were first introduced
in [Koz81], together with a deductive calculus to reason about the expected running time of

4

1.2. Related Work

PPs [Koz85]. This approach was further refined and extended in [MM05] by introducing the
weakest pre-expectations based on the weakest precondition calculus of [Dij75]. While [MM05]
infers quantitative invariants only over the expected values of program variables, our moment-
based invariants yield quantitative invariants over arbitrary higher-order moments, including
expected values. Further, the setting of [MM05] considers PPs where the stochastic inputs are
restricted to discrete distributions with finite support. However, handling Gaussian BNs requires
considering also continuous distributions with infinite support, as done in our work.

Invariant synthesis with templates and hints. In [MM05], a deductive approach, the weakest
pre-expectation calculus, for reasoning about PPs with discrete program variables is introduced.
Based on the weakest pre-expectation calculus, [KMMM10] presents the first template-based
approach for generating linear quantitative invariants for PPs. For this, the loop is annotated with
linear template invariants, and a constraint solver is used to find template parameters that yield an
invariant. Other works [CHWZ15, FZJ+17] also address the synthesis of polynomial invariants.
Constraint-solving approach aided by multivariate Lagrange interpolation is used in [CHWZ15],
while [FZJ+17] employs Stengle’s Positivstellensatz and a transformation to a sum-of-squares
problem. In [BEFH16], martingales are used to synthesize loop invariants over expected values.
This approach was adapted in [KUH19] to allow reasoning about higher moments to approximate
runtimes of randomized programs. All of these works [CHWZ15, FZJ+17, BEFH16, KUH19]
target a slightly different problem and, unlike our approach, rely on templates. The first data-
driven technique for invariant generation for PPs is presented in [BTP+22].

Probabilistic model checking A common approach for the analysis of probabilistic programs
is based on probabilistic model checking [BK08]. However, this approaches [KNP11, DJKV17,
KZH+11] cannot yet handle unbounded and real variables. Furthermore, probabilistic model
checking tools, however, have no support for invariant generation. Our techniques could poten-
tially aid these tools in the presence of loops.

Recurrences in non-probabilistic loops Using recurrence equations to extract quantitative
invariants of loops is a well-studied technique for non-probabilistic programs [BCKR20, FK15,
HJK17, HJK18b, KBCR19, Kov08, dOBP16, RCK04].

Statistical approaches A different approach to characterize the distributions of program vari-
ables is to use statistical methods such as Monte Carlo and hypothesis testing [YS06]. Simulations
are, however, performed on a chosen finite number of program steps and do not provide guaran-
tees over a potentially infinite execution, such as unbounded loops, limiting thus their use (if at
all) for invariant generation.

Computing lower and upper bounds on (higher) moments Another class of related prob-
lems is finding bounds over the expected values [BGP+16, Kar94, CFGG20] and higher mo-
ments [KUH19, WHR21]. In [BGP+16], the authors also consider bounds over higher-order
moments and consider nonlinear terms using interval arithmetic at the price of producing very

5

1. INTRODUCTION

conservative bounds. Our approach, in contrast, natively supports probabilistic polynomial
assignments and provides a precise symbolic expression over higher-order moments.

Termination Determining whether a program terminates or simply the halting problem is a
well-known undecidable problem in program analysis. In the case of probabilistic programs,
termination is a more nuanced problem. It is natural to ask not only whether a program terminates
(with probability 1), known as AST, or almost sure termination, but also what is the probability of
termination and whether the expected runtime of an almost surely terminating program is finite
(PAST, or positive almost sure termination). Determining AST and PAST has been studied quite
extensively, usually by constructing ranking supermartingales [AGR21, ACN17, CS13, CFNH16,
CGMZ22, CH20, FH15, LG19, MMKK17, MBKK21]. A variety of approaches have been used
to find suitable supermartingales, including reduction to constraint solving, algebraic techniques,
or techniques from machine learning.

Expected runtime and cost expectations Related to termination are the problems of com-
puting expected runtime and expected cost, or resource consumption, of probabilistic programs.
The analysis is typically restricted to computing the bounds on the expected cost (or run-
time) [BKKV15, KUH19, NCH18, WFG+19], with bounds on the higher moments considered
in [WHR21]. A common approach [AMS20, BKK+23, KKMO16, MHG21, OKKM16] is to
adapt or generalize the weakest precondition-like calculus of [MM05].

Bayesian Network analysis via PPs. To the best of our knowledge only [BKKM18] targets
BNs explicitly on the source code level, by using the weakest precondition calculus similar
to [KKMO16, MM05]. The PPs addressed in [BKKM18] are expressed in the Bayesian Network
Language (BNL) fragment of the probabilistic Guarded Command Language (pGCL) of [MM05].
The main restriction of BNL is that loops prohibit undesired data flow across multiple loop itera-
tions: it is not possible to assign to a variable the value of the same variable or another variable at
the previous iteration. Furthermore, BNL does not natively allow to draw samples from Gaussian
distribution, thus allowing only discrete BNs to be encoded in BNL. In contrast to [BKKM18],
in our work we use Prob-solvable loops, as a subclass of PPs, to allow polynomial updates
over random variables and parametric distribution. Variable updates of Prob-solvable loops can
involve coefficients from Bernoulli, Gaussian, uniform, and other distributions, whereas variable
updates drawn from Gaussian and uniform distributions can depend on other program variables.
Compared to [BKKM18], we thus support reasoning about (conditional linear) Gaussian BNs and
our PPs also allow data flow across loop iterations which is necessary to encode dynamic BNs.

1.3 Contributions

The work presented in this thesis pushes the state-of-the-art in automated invariant generation.
Our approach is based on computing arbitrary higher-order moments of program variables,
allowing more precise characterization of the underlying variable distributions.

6

1.3. Contributions

The main parts of the thesis, covered in Chapters 3-5, are based on the following four peer-
reviewed publications, of which I am the main author:

[BKS19] Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. Automatic generation of
moment-based invariants for prob-solvable loops. In Proc. of ATVA 2019: the 17th
International Symposium on Automated Technology for Verification and Analysis,
volume 11781 of LNCS, pages 255–276. Springer, 2019.

[BKS20b] Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. Mora - automatic generation
of moment-based invariants. In Proc. of TACAS 2020: the 26th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
volume 12078 of LNCS, pages 492–498. Springer, 2020.

[BKS20a] Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. Analysis of Bayesian
networks via prob-solvable loops. In Proc. of ICTAC 2020: the 17th International
Colloquium on Theoretical Aspects of Computing, volume 12545 of LNCS, pages
221–241. Springer, 2020.

[SBK22] Miroslav Stankovič, Ezio Bartocci, and Laura Kovács. Moment-based analysis of
bayesian network properties. Theoretical Computer Science, 903:113–133, 2022.

The key ideas behind the approach are introduced in [BKS19] (covered in Chapter 3) and form the
theoretical foundation of this work. Technical implementation and the tool MORA are discussed
in [BKS20b] and covered in Chapter 4. Applications of this work to the analysis of Bayesian
networks [BKS20a, SBK22] are covered in Chapter 5.

Further results, building on the results of Chapters 3-5, are briefly discussed in Chapter 6. These
results are based on the following four peer-reviewed publications:

[MSBK22] Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Laura Kovács. This is
the moment for probabilistic loops. Proc. ACM Program. Lang., 6(OOPSLA2):1497–
1525, 2022.

[ABK+22] Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel
Moosbrugger, and Miroslav Stankovic. Solving invariant generation for unsolvable
loops. In Static Analysis - 29th International Symposium, SAS 2022, volume 13790
of Lecture Notes in Computer Science, pages 19–43. Springer, 2022. Radhia
Cousot Young Researcher Best Paper Award.

[KMS+22b] Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Efs-
tathia Bura. Moment-based invariants for probabilistic loops with non-polynomial
assignments. In Proc. of QEST 2022: Quantitative Evaluation of Systems - 19th
International Conference, volume 13479 of Lecture Notes in Computer Science,
pages 3–25. Springer, 2022. Best Paper Award.

7

1. INTRODUCTION

[KMS+22a] Ahmad Karimi, Marcel Moosbrugger, Miroslav Stankovic, Laura Kovács, Ezio
Bartocci, and Efstathia Bura. Distribution estimation for probabilistic loops. In Proc.
of QEST 2022: Quantitative Evaluation of Systems - 19th International Conference,
volume 13479 of Lecture Notes in Computer Science, pages 26–42. Springer, 2022.

The former four publications, of which I am the main author, were written together with my PhD
supervisors, Laura Kovács and Ezio Bartocci. Their experience, detailed feedback, and revisions
played a major role in shaping these publications (this is also true for the publications covered
next).

The latter quadruple of publications is a result of a broader collaboration with my colleagues.
Here, I summarize, as required, my relative contributions insofar as can be identified and to the
best of my judgment. The research covered in [MSBK22] was conducted together with Marcel
Moosbrugger. Of our contributions, roughly equally split between us, my focus was mostly
on the more theoretical part of moment-computability. The work of [ABK+22] arose from a
discussion we had together about finding combinations of variables to which our previously
developed methods could be applied. I was mostly involved in the earlier stages of formulating
the problem and forming the initial approach/algorithm for the synthesis of variable combinations.
In [KMS+22b], we apply the PCE to approximate non-polynomial functions to get a Prob-
solvable loop. The restrictions to guarantee that the approximations lead to a Prob-solvable loop
were formulated by Marcel and me and adapted by Andrey, who also came up with how to use
the PCE within PPs. The idea of using MBIs to estimate a distribution arose naturally in the
discussions, and we addressed it properly in [KMS+22a]. I was involved in applying the two
estimation methods to PPs, as well as designing the tests to evaluate the estimations.

Summary of contributions We summarize our contributions below.

• We introduce the class of Prob-solvable loops with probabilistic assignments over random
variables and distributions in Section 3.2. The class is further extended in Section 5.2 to
accommodate Bayesian network analysis.

• We show that Prob-solvable loops can be modeled as C-finite recurrences over higher-order
moments of variables (Theorem 3.1).

• We provide a fully automated approach that derives moment-based invariants over arbitrary
higher-order moments of Prob-solvable loops (Algorithm 1).

• We provide a sound encoding of BNs as Prob-solvable loops, in particular addressing
discrete BNs (disBNs), Gaussian BNs (gBNs), conditional linear Gaussian BNs (clgBNs),
and dynamic BN (dynBNs) (Section 5.3).

• We formalize several BN problems as moment-based invariant generation tasks in Prob-
solvable loops (Section 5.4).

• We implemented the theoretical contributions in a tool called MORA (Chapter 4).

8

1.4. Outline and Organization

1.4 Outline and Organization

In Chapter 2, we introduce key results from loop analysis, algebra, probability, and statistics,
which form the basis for our work.

Chapter 3, based on [BKS19], forms the foundation of this thesis. It defines the class of Prob-
solvable loops (Section 3.2), establishes the notion of moment-based invariants and gives an
algorithm to compute them (Section 3.3).

In Chapter 4, based on [BKS20b], we introduce tool MORA, which implements the previously
discussed methods (Sections 4.2-4.4). Experiments and evaluation are discussed in Section 4.5

We explore how to use the methods developed in Chapter 3 in Bayesian network analysis in
Chapter 5. In Section 5.2, the model of Prob-solvable is extended and Section 5.3 shows how
BNs can be encoded as Prob-solvable loops. In Section 5.4, we discuss how BN analysis can be
done via reasoning about Prob-solvable loops. This Chapter is based on [BKS20a, SBK22].

Chapter 6 briefly presents further developments and generalizations, building on the work
of Chapters 3-5. The results presented here come from [ABK+22, KMS+22a, KMS+22b,
MSBK22].

The thesis is concluded in Chapter 7.

9

CHAPTER 2
Preliminaries

In this chapter, we cover background material that forms a foundation of the main results in
Chapters 3-5.

Throughout this paper, let N,Z,R denote the set of natural, integer, and real numbers. We use E
for the expectation operator.

2.1 Probabilities, Expectation, and Moments

We first introduce basic notions from probability and statistics in order to reason about probabilis-
tic systems and refer to [Lin92] for further details.

Definition 2.1 (σ-algebra). Given a set Ω, A σ-algebra F is a non-empty collection of subsets
of Ω, such that:

1. Ω is in F ,

2. if A is in F , then so is its complement Ω \ A, and

3. F is closed under countable unions.

Definition 2.2 (Measurable space). Measurable space the tuple (Ω, F) consisting of a set Ω and
a σ-algebra F on Ω.

Definition 2.3 (Probability space). A probability space is a triple (Ω, F, P) consisting of a sample
space Ω denoting the set of outcomes, where Ω ̸= ∅, a σ-algebra F with F ⊂ 2Ω, denoting a set
of events, and a probability measure P : F → [0, 1] s.t. P (Ω) = 1.

We now define random variables and their higher-order moments.

11

2. PRELIMINARIES

Definition 2.4 (Random variable). A random variable X : Ω → E is a measurable function
from a set Ω of possible outcomes (also called sample space) to a measurable space E. If Ω is
finite or countable, the random variable X is called discrete; otherwise, X is continuous. For
a given random variable X , we will denote the sample space of X by Ω(X). The probability
that a random variable X has a value from a measurable set S ⊂ E is P (X ∈ S) = P ({w ∈
Ω|X(w) ∈ S}). For a singleton set, we write P (X = x) for P (X ∈ {x}).

Example 2.1. Consider a regular dice roll. We can describe it with a probability space (Ω, F, P),
with Ω = {1, 2, 3, 4, 5, 6}, F = 2Ω, and P (A) = |A|

6 . We can represent the roll with a random
variable X : Ω → (Ω, F), with X(x) = x. To represent whether the roll is odd or even, we let
B = {odd, even} and define random variable Y : Ω → (B, 2B), with Y (x) = odd for odd x
and Y (x) = even for even x.

When working with a random variable X , one is, in general, interested in expected values and
other moments.

Definition 2.5 (Expected value). An expected value of a random variable X defined on a
probability space (Ω, F, P) is the Lebesgue integral: E[X] =

∫
Ω X ·dP. In the special case when

Ω is discrete, that is the outcomes are X1, . . . XN with corresponding probabilities p1, . . . pN ,
we have E[X] = ∑N

i=1 Xi · pi. The expected value of X is often also referred to as the average,
mean, or µ of X .

Definition 2.6 (Higher-Order moments). Let X be a random variable, c ∈ R, and k ∈ N. We
write Momk[c, X] to denote the kth moment about c of X , which is defined as:

Momk[c, X] = E[(X − c)k] (2.1)

In this thesis, we will be primarily working with moments about 0, called raw moments, and
about the mean E[X], called central moments. We note, though, that we can move to moments of
X with different centers.

Theorem 2.1 (Transformation of center). Let X be a random variable, c, d ∈ R, and k ∈ N.
The kth moment about d of X can be calculated from the moments about c of X by:

E
[
(X − d)k

]
=

k∑
i=0

(
k

i

)
E

[
(X − c)i

]
(c − d)k−i.

Moments involving multiple random variables are called mixed moments.

Definition 2.7 (Mixed moments). Let X1, . . . , Xm be random variables and ki ∈ N for
1 ≤ i ≤ m. Then E[Xk1

1 · · · Xkm
m] is a mixed moment of order k1 + · · · + km.

For arbitrary random variables X and Y , we have the following basic properties about their
expected values and other moments:

• E[c] = c for a constant c ∈ R,

12

2.1. Probabilities, Expectation, and Moments

• expected value is linear, E[X + Y] = E[X] + E[Y] and E[c · X] = c · E[X],
• expected value is not multiplicative, in general E[X · Y] ̸= E[X] · E[Y],
• expected value is multiplicative for independent random variables.

As a consequence of the above, expected values of monomials over arbitrary random variables,
e.g. E[X · Y 2], cannot be in general further simplified.

The moments of a random variable X with bounded support fully characterise its value distribu-
tion. While computing all moments of X is generally impossible, knowing only a few moments
of X gives useful information about its value distributions.

Definition 2.8 (Common moments). Variance measures how spread the distribution is and is
defined as the second central moment: V ar[X] = Mom2[E[X], X].

Covariance is a mixed moment measuring the variability of two distributions and is defined as
Cov[X, Y] = E[(X − E[X]) · (Y − E[Y])].

Skewness measures the asymmetry of the distribution and is defined as the normalised third
central moment:

Skew[X] = Mom3[E[X], X]
(V ar[X])3/2 .

Basic results about variance and covariance state that

Cov[X, X] = V ar[X],
V ar[X] = E[X2] − (E[X]2), and

Cov[X, Y] = E[X · Y] − E[X] · E[Y].

Another useful tool in reasoning about probability spaces is the so-called characteristic function.

Definition 2.9 (Characteristic function). The characteristic function of a random variable X ,
denoted by ϕX(t), is the Fourier transform of its probability density function (pdf). That is,
ϕ(t) = E[eitX], with a bijective relation between probability distributions and characteristic
functions.

The characteristic function ϕX(t) of a random variable X captures the value distribution induced
by X . In particular, the characteristic function ϕX(t) of X enables inferring properties about
distributions given by weighted sums of X and other random variables, and thus also about
statistical higher-order moments of X .

Complex probability spaces are often represented using probabilistic graphical models (PGMs),
most commonly Bayesian networks, or simply BNs.

Definition 2.10 (Bayesian network). A Bayesian network consists of a directed acyclic graph G
and a set of conditional probability distributions.

13

2. PRELIMINARIES

The nodes NG of G represent the random variables of the model, and the edges EG of G the
causal dependencies between variables. For each X ∈ NG let Par(X) = {Y |(Y, X) ∈ E} be
the set of variables X depends on. A conditional probability distribution fX is given for each
node X ∈ G given its parents Par(X).

Conditional probability distributions in a BN can be specified in different ways, and we overview
the most common ones. For a discrete variable X , dependencies are often given by a conditional
probability table by listing all possible values of parent variables Par(X) and the corresponding
values of X . In the case of a continuous variable X , dependencies can be specified using Gaussian
distributions. Another common dependency in a BN is a deterministic one when the value of a
node X is determined by the values of its parents from Par(X); e.g., a binary variable can be
true if all its (binary) parents are true or if one of its parents is true.

Definition 2.11 (Variants of Bayesian networks). The following variants of Bayesian networks
are considered throughout the paper:

• A discrete Bayesian network (disBN) is a BN whose variables are discrete-valued.

• A Gaussian Bayesian network (gBN) is a BN whose dependencies are given by the Gaussian
distribution in which, for any BN node X , we have P (X|Par(X)) = G(µX , σ2

X), with
µX = αX + ∑mX

k=1 βX,kYX,k,, Par(X) = {Y1, · · · , YmX } and σ2
X is fixed.

• A conditional linear Gaussian Bayesian network (clgBN) is a BN in which (i) continuous
nodes X are not parents of discrete nodes Y ; (ii) the local distribution of each discrete node
Y is a conditional probability table (CPT); (iii) the local distribution of each continuous
node X is a set of Gaussian distributions, one for each configuration of the discrete parents
Y , with the continuous parents acting as regressors.

• A dynamic Bayesian network (dynBN) is a structured BN consisting of a series of time
slices that represent the state of all the BN nodes X at a certain time t. For each time-slice,
a dependency structure between the variables X at that time is defined by intra-time-slice
edges. Additionally, there are edges between variables from different slices—inter-time-
slice edges, with their directions following the direction of time.

2.2 C-Finite Recurrences

We recall basic mathematical properties about recurrences and higher-order moments of variable
values – for more details see [KP11, Lin92].

While sequences and recurrences are defined over arbitrary fields of characteristic zero, in our
work, we only focus on sequences/recurrences over R.

Definition 2.12 (Sequence). A univariate sequence in R is a function f : Z → R. A recurrence
for a sequence f(n) is

f(n + r) = R(f(n), f(n + 1), . . . , f(n + r − 1), n), with n ∈ N,

14

2.2. C-Finite Recurrences

for some function R : Rr+1 → R, where r ∈ N is called the order of the recurrence.

For simplicity, we denote by f(n) both the recurrence of f(n) as well as the recurrence equation
f(n) = 0. When solving the recurrence f(n), one is interested in computing a closed form
solution of f(n), expressing the value of f(n) as a function of n for any n ∈ N. In our work,
we only consider the class of linear recurrences with constant coefficients, also called C-finite
recurrences.

Definition 2.13 (C-finite recurrences). A C-finite recurrence f(n) satisfies the linear homoge-
neous recurrence with constant coefficients:

f(n + r) = a0f(n) + a1f(n + 1) + . . . + ar−1f(n + r − 1), with r, n ∈ N, (2.2)

where r is the order of the recurrence, and a0, . . . , ar−1 ∈ R are constants with a0 ̸= 0.

An example of a C-finite recurrence is the recurrence of Fibonacci numbers satisfying the
recurrence f(n + 2) = f(n + 1) + f(n), with initial values f(0) = 0 and f(1) = 1. Unlike
arbitrary recurrences, closed forms of C-finite recurrences f(n) always exist [KP11] and have
the form

f(n) = P1(n)θn
1 + · · · + Ps(n)θn

s , (2.3)

where θ1, . . . , θs ∈ R are the distinct roots of the characteristic polynomial of f(n) and Pi(n) are
polynomials in n. Closed forms of C-finite recurrences are called C-finite expressions. We note
that while the C-finite recurrence (2.2) is homogeneous, inhomogeneous C-finite recurrences can
always be translated into homogeneous ones, as the inhomogeneous part of a C-finite recurrence
is a C-finite expression.

In our work, we focus on the analysis of Prob-solvable loops and consider loop variables x as
sequences x(n), where n ∈ N denotes the loop iteration counter. Thus, x(n) gives the value of
the program variable x at iteration n.

Theorem 2.2 (Closed-form [KP11]). Every C-finite sequence (an)∞
n=0 can be written as an

exponential polynomial, that is an = ∑m
i=1 ndiun

i for some natural numbers di ∈ N and complex
numbers ui ∈ C. We refer to

∑m
i=1 ndiun

i as the closed-form or the solution of the sequence
(an)∞

n=0 or its recurrence.

An important fact is that closed forms of linear recurrences with constant coefficients of any order
always exist and are computable. This also holds for all variables in systems of linear recurrences
with constant coefficients.

15

CHAPTER 3
Prob-solvable Loops

This chapter is based on a joint work [BKS19] with Laura Kovács and Ezio Bartocci, published
in the proceedings of ATVA 2019.

[BKS19] Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. Automatic generation of
moment-based invariants for prob-solvable loops. In Proc. of ATVA 2019: the 17th
International Symposium on Automated Technology for Verification and Analysis,
volume 11781 of LNCS, pages 255–276. Springer, 2019.

3.1 Overview
In this chapter we introduce a fully automated approach to compute invariant properties over
higher-order moments of so-called Prob-solvable loops, to stand for probabilistic P-solvable loops.
Prob-solvable loops are PPs that extend the imperative P-solvable loops described in [Kov08] with
probabilistic assignments over random variables and parametrised distributions. As such, variable
updates are expressed by random polynomial, and not only affine, updates (see Section 3.2).

Consider, for example, the PPs of Figure 3.1(A) and Figure 3.1(B): the expected value of vari-
able s at each loop iteration is the same in both PPs, while the variance of the value distribution
of s differs in general (a similar behaviour is also exploited by Figure 3.1(C)-(D)). Thus, Fig-
ure 3.1(A) and Figure 3.1(B) do not have the same invariants over higher-order moments; yet,
many approaches would fail to identify such differences and only compute expected values of
variables. Our work uses statistical properties to eliminate probabilistic choices and turn random
updates into recurrence relations over higher-order moments of program variables. We show that
higher-order moments of Prob-solvable loops can be described by C-finite recurrences (Theo-
rem 3.1). We further solve such recurrences to derive moment-based invariants of Prob-solvable
loops (Section 3.3). Moment-based invariants describe statistical properties of loop variables
that hold at arbitrary loop iteration, hence invariants. They are represented by closed-form

17

3. PROB-SOLVABLE LOOPS

real x := rand (-9, 7), y := rand (-7, 9);
real s := 0, f := 0;

while (true){
f := 1 [3/4] 0;
x := x + f * gauss(1,16/3);
y := y + f * rand(-6,10);
s := s + x * y;

}

D

real x := -1, y := 1;
real s := 0, f := 0, d;
while (true){

f := 1 [3/4] 0;
x := x + f * rand(1-d, 1+d);
y := y + f * rand(2-2d,2+2d);
s := x + y;

}

A real x := rand (-9, 7), y := rand (-7, 9);
real s := 0, f := 0;

while (true){
f := 1 [3/4] 0;
x := x + f * rand(-3,5);
y := y + f * rand(-6,10);
s := x + y;

}

B

real x := -1, y := 1;
real s := 0, f := 0, d;
while (true){

f := 1 [3/4] 0;
x := x + f * rand(1-d, 1+d);
y := y + f * rand(2-2d,2+2d);
s := s + x * y;

}

C

VVaarr 𝒔𝒏 = 𝟔𝒅𝟐+𝟗𝟒𝟎 𝒏𝟓 + 𝟖𝒅𝟒+𝟖𝟒𝒅𝟐+𝟐𝟕𝟏𝟗𝟐 𝒏𝟒 +𝟖𝒅𝟒+𝟓𝟒𝒅𝟐-𝟗𝟕𝟐 𝒏𝟑 + 𝟖𝒅𝟒+𝟒𝟒𝒅𝟐-𝟑𝟔𝟒 𝒏𝟐 +𝟖𝟎𝒅𝟒+𝟑𝟐𝟒𝒅𝟐-𝟗𝟏𝟒𝟒𝟎 𝒏

𝑬 𝒔𝒏 = 𝟑𝟖𝒏𝟑 + 𝟑𝟖𝒏𝟐 − 𝒏 𝑬 𝒔𝒏 = 𝟑𝟖𝒏𝟑 + 𝟑𝟖𝒏𝟐 − 𝒏

𝑬 𝒔𝒏 = 𝟗𝟒𝒏
VVaarr 𝒔𝒏 = 𝟐𝟎𝒅𝟐 + 𝟐𝟕𝟏𝟔 𝒏

𝑬 𝒔𝒏 = 𝟗𝟒𝒏
VVaarr 𝒔𝒏 = 𝟑𝟒𝟕𝟏𝟔 𝒏 + 𝟏𝟐𝟖𝟑

VVaarr 𝒔𝒏 = 𝟐𝟏𝟖 𝒏𝟓 + 𝟑𝟒𝟏𝟗𝟏𝟗𝟐 𝒏𝟒 + 𝟐𝟗𝟎𝟑𝟕𝟐 𝒏𝟑 +𝟐𝟕𝟒𝟗𝟔𝟒 𝒏𝟐+ 𝟓𝟏𝟑𝟏𝟐𝟖𝟖 𝒏
Figure 3.1: Examples of four Prob-solvable loops. f:=1 [3/4] 0 is a statement that assigns
to f the value 1 with probability 3

4 and the value 0 with probability 1 − 3
4 = 1

4 . The func-
tion rand(a,b) samples a random number from a uniform distribution with support in the
real interval [a, b] and the function gauss(µ,σ2) samples a random number from a normal
distribution with mean µ and variance σ2. For each loop, we provide the moment-based invariants
for the first (E[−]) and second moments (V ar[−]) of s computed using our approach, where n
denotes the loop counter.

solutions for higher-order moments of program variables and capture how the statistical moments
of program variables evolve through the loop iterations.

To the best of our knowledge, no other method is able to derive higher-order moments of PPs in a
fully automated approach. Our work hence allows replacing, for example, the required human
guidance of [GKM13, KNP11] for Prob-solvable loops. Unlike existing works, we support PPs
with parametrised distributions (e.g., in Figure 3.1(A)): instead of taking concrete instances of
a given parametrised distribution, we automatically infer invariants of the entire class of PPs
characterised by the considered parametrised distribution.

Our approach is both sound and terminating: given a Prob-solvable loops and an integer k ≥ 1,
we automatically infer the moment-based invariants over the kth moments of our input loop
(see Section 3.3). Unlike the approach of [Kov08] for deriving polynomial invariants of non-
probabilistic (P-solvable) loops, our work only computes closed form expressions over higher-
order moments and does not employ Gröbner basis computation to eliminate loop counters from
the derived closed forms. As such, our moment-based invariants are not restrictive to polynomial

18

3.2. Programming Model: Prob-solvable Programs

properties but are linear combinations of polynomial expressions and exponential sequences over
the loop counter. Moreover, Prob-solvable loops are more expressive than P-solvable loops as
they are not restricted to deterministic updates but allow random assignments over variables.

3.2 Programming Model: Prob-solvable Programs

We now introduce our programming model of Prob-solvable programs, to stand for probabilistic
P-solvable programs. P-solvable programs [Kov08] are non-deterministic loops whose behaviour
can be expressed by a system of C-finite recurrences over program variables. Prob-solvable pro-
grams extend P-solvable programs by allowing probabilistic assignments over random variables
and distributions.

Prob-solvable loops Let m ∈ N and x1, . . . xm denote real-valued program variables. We
define Prob-solvable loops with x1, . . . xm variables as programs of the form:

I;while(true){U}, where: (3.1)

• I is a sequence of initial assignments over x1, . . . , xm. That is, I is an assignments
sequence x1 := c1; x2 := c2; . . . xm := cm, with ci ∈ R representing a number drawn
from a known distribution 1 - in particular, ci can be a real constant.

• U is the loop body and is a sequence of m random updates, each of the form:

xi := aixi + Pi(x1, . . . xi−1) [pi] bixi + Qi(x1, . . . xi−1), (3.2)

or, in the case of a deterministic assignment,

xi := aixi + Pi(x1, . . . xi−1), (3.3)

where ai, bi ∈ R are constants and Pi, Qi ∈ R[x1, . . . , xi−1] are polynomials over program
variables x1, . . . , xi−1. Further, pi ∈ [0, 1] in (3.2) is the probability of updating xi to
aixi + Pi(x1, . . . xi−1), whereas the probability to update xi to bixi + Qi(x1, . . . xi−1)
in (3.2) is 1 − pi.

The coefficients ai, bi and the coefficients of Pi and Qi in the variable assignments (3.2)-(3.3)
of Prob-solvable loops can be drawn from a random distribution as long as the moments of this
distribution are known and are independent of program variables x1, . . . , xm. Hence, the variable
updates of Prob-solvable loop can involve coefficients drawn from Bernoulli, uniform, normal,
and other distributions. Moreover, Prob-solvable loops support parametrised distributions, for
example one may have the random distribution rand(d_1,d_2) with arbitrary d1, d2 ∈ R
symbolic constants. Similarly, rather than only considering concrete numeric values of pi, the
probabilities pi in the probabilistic updates (3.2) of Prob-solvable loops can also be symbolic
constants.

1a known distribution is a distribution with known and computable moments

19

3. PROB-SOLVABLE LOOPS

Example 3.1. The programs in Fig. 3.1 are Prob-solvable, using uniform distributions given
by rand(). Fig. 3.1(D) also uses normal distribution given by gauss(). Note that while the
random distributions of Fig. 3.1(B,D) are defined in terms of concrete constants, Fig. 3.1(A,C)
have a parametrised random distribution, defined in terms of d ∈ R.

Prob-solvable loops and moment-based recurrences Let us now consider a Prob-solvable
program with n ∈ N denoting the loop iteration counter. We show that variable updates of
Prob-solvable programs yield special recurrences in n, called moment-based recurrences. For
this, we consider program variables x1, . . . , xm as sequences x1(n), . . . , xm(n) allowing us
to precisely describe relations between values of xi at different loop iterations. Using this
notation, probabilistic updates (3.2) over xi turn xi(n) into a random variable, yielding the
relation (similarly, for deterministic updates (3.3)):

xi(n + 1) = aixi(n) + Pi(x1(n), . . . , xi−1(n)) [pi] bixi(n) + Qi(x1(n), . . . , xi−1(n)).

The relation above could be treated as a recurrence equation over random variables xi(n) provided
the probabilistic behaviour depending on p is encoded (as an extension) into a recurrence equation.
To analyse such probabilistic updates of Prob-solvable loops, for each random variable xi(n)
we consider their expected values E[xi(n)] and create new recurrence variables from expected
values of monomials over original program variables (e.g., a new variable E[xi · xj]). We refer
to these new recurrence variables as E-variables. We note that any program variable yields an
E-variable, but not every E-variable corresponds to one single program variable as E-variables are
expected values of monomials over program variables. We now formulate recurrence equations
over E-variables rather than over program variables, yielding moment-based recurrences.

Definition 3.1 (Moment-based recurrences). Let x(n) be a sequence of random variables. A
moment-based recurrence for x is a recurrence over E-variable E[x]:

E[x(n + r)] = R(E[x(n)],E[x(n + 1)], . . . ,E[x(n + r − 1)], n) (n ∈ N),

for some function R : Rr+1 → R, where r ∈ N is the order of the moment-based recurrence.

Note that variable updates xi := f1(xi) [pi] f2(xi) yield the relation

E[xi(n + 1)] = E
[
pi · f1(xi(n)) + (1 − pi) · f2(xi(n))

]
= pi · E[

f1(xi(n))
]

+ (1 − pi) · E[
f2(xi(n))

]
.

(3.4)

Thanks to this relation, probabilistic updates (3.2) are rewritten into the moment-based recurrence
equations

E[xi(n + 1)] = pi · E[
aixi(n) + Pi(x1(n), . . . , xi−1(n))

]
+(1 − pi) · E[

bixi(n) + Qi(x1(n), . . . , xi−1(n))
]
.

(3.5)

In particular, we have E[xi(n + 1)] = pi · E[aixi(n) + Pi(x1(n), . . . , xi−1(n))] for the deter-
ministic assignments of (3.3) (that is, pi = 1 in (3.3)).

20

3.2. Programming Model: Prob-solvable Programs

By using properties of expected values of expressions expr1, expr2 over random variables, we
obtain the following simplification rules:

E[expr1 + expr2] → E[expr1] + E[expr2]
E[expr1 · expr2] → E[expr1] · E[expr2], if expr1, expr2 are independent
E[c · expr1] → c · E[expr1]
E[c] → c
E[D · expr1] → E[D] · E[expr1]

(3.6)

where c ∈ R is a constant and D is a known independent distribution.

Example 3.2. The moment-based recurrences of the Prob-solvable loop of Fig. 3.1(A) are:(...{...(
E[f(n + 1)] = 3

4E[1] + 1
4E[0])

E[x(n + 1)] = E
[
x(n) + f(n + 1) · rand(1 − d, 1 + d)

]
E[y(n + 1)] = E

[
y(n) + f(n + 1) · rand(2 − 2d, 2 + 2d)

]
E[s(n + 1)] = E

[
x(n + 1) + y(n + 1)

]
By using the simplification rules (5.4) on the above recurrences, we obtain the following simplified
moment-based recurrences of Fig. 3.1(A):(...{...(

E[f(n + 1)] = 3
4

E[x(n + 1)] = E[x(n)] + E[f(n + 1)] · E[rand(1 − d, 1 + d)]
E[y(n + 1)] = E[y(n)] + E[f(n + 1)] · E[rand(2 − 2d, 2 + 2d)]
E[s(n + 1)] = E[x(n + 1)] + E[y(n + 1)]

(3.7)

In Section 3.3 we show that Prob-solvable loops can further be rewritten into a system of C-finite
recurrences over E-variables.

Prob-solvable loops and mutually dependent updates Consider PP loops with mutually
dependent affine updates

xi :=
m∑

k=1
ai,kxk + ci [pi]

m∑
k=1

bi,kxk + di, (3.8)

where ai,k, bi,k, ci, di ∈ R are constants. While such assignments are not directly captured by
updates (3.2) of Prob-solvable loops, this is not a restriction of our work. Variable updates
given by (3.8) yield mutually dependent C-finite recurrences over E-variables. Using methods
from [KP11], this coupled system of C-finite recurrences can be rewritten into an equivalent
system of independent C-finite recurrences over E-variables, yielding an independent system of
moment-based recurrences over which our invariant generation algorithm from Section 3.3 can be
applied. Hence probabilistic loops with affine updates are special cases of Prob-solvable loops.

21

3. PROB-SOLVABLE LOOPS

Multi-path Prob-solvable loops While (5.1) defines Prob-solvable programs as single-path
loops, the following class of multi-path loops can naturally be modeled by Prob-solvable pro-
grams:

I;while(true){if t then U1 else U2}, where: (3.9)

I is as in (5.1), t is a boolean-valued random variable, and U1 and U2 are respectively sequences
of deterministic updates xi := aixi + Pi(x1, . . . xi−1) and xi := bixi + Qi(x1, . . . xi−1) as
in (3.3). PPs (3.9) can be rewritten to equivalent Prob-solvable loops, as follows. A pair of
updates x := u1[p]v1 from U1 and x := u2[p]v2 from U2 is rewritten by the following sequence
of updates:

f := 1[p]0;
g := 1[p]0;
x := t(u1f + v1(1 − f)) + (1 − t)(u2g + v2(1 − g))

(3.10)

with f, g fresh program variables. The resulting program is Prob-solvable and we can thus
compute moment-based invariants of multi-path loops as in (3.9). The programs Coupon,

Random˙Walk˙2D of Table 3.1 are Prob-solvable loops corresponding to such multi-path
loops.

3.3 Moment-Based Invariants of Prob-solvable Loops

Thanks to probabilistic updates, the values of program variables of Prob-solvable loops after a
specific number of loop iterations are not a priory determined. The value distributions xi(n) of
program variables xi are, therefore, random variables. When analysing Prob-solvable loops, and
in general probabilistic programs, one is therefore required to capture relevant properties over
expected values and higher moments of the variables in order to summarise the value distribution
of program variables precisely.

Moment-based invariants We are interested in automatically generating so-called moment-
based invariants of Prob-solvable loops. Moment-based invariants are properties over expected
values and higher moments of program variables, such that these properties hold at arbitrary loop
iterations (and hence are invariants).

Automated generation of moment-based invariants of Prob-solvable loops Our method
for generating moment-based invariants of Prob-solvable loops is summarized in Algorithm 1.
Algorithm 1 takes as input a Prob-solvable loop P and a natural number k ≥ 1 and returns
moment-based invariants over the kth moments of the program variables {x1, . . . , xm}. We
denote by n the loop counter of P .

Theorem 3.1. Higher-order moments of variables in Prob-solvable loops can be modeled by
C-finite recurrences over E-variables.

22

3.3. Moment-Based Invariants of Prob-solvable Loops

Algorithm 1 Moment-Based Invariants of Prob-solvable Loops
Input: Prob-solvable loop P as defined in (5.1), with variables {x1, . . . , xm}, and k ≥ 1
Output: Set MI of Moment-based invariants of P over the kth moments of {x1, . . . , xm}
Assumptions: n ∈ N is the loop counter of P

1: Extract the moment-based recurrence relations of P , for i = 1, . . . , m:

E[xi(n + 1)] = pi · E[
aixi(n) + Pi(x1(n), . . . , xi−1(n))

]
+(1 − pi) · E[

bixi(n) + Qi(x1(n), . . . , xi−1(n))
]
.

2: MBRecs = {E[xi(n + 1)] | i = 1, . . . , m} ▷ initial set of moment-based recurrences
3: S := {xk

1, . . . , xk
m} ▷ initial set of monomials of E-variables

as Momk[0, xi(n)] = E[xi(n)k]
4: while S ̸= ∅ do
5: M := πm

i=1 xαi
i ∈ S, where αi ∈ N

6: S := S \ {M}
7: M ′ = M [xαi

i ← updi], for each i = m, . . . , 1 ▷ replace each xαi
i in M with updi

where updi denotes:
pi · (

aixi + Pi(x1, . . . xi−1)
)αi + (1 − pi) · (

bixi + Qi(x1, . . . xi−1)
)αi

8: Rewrite M ′ as M ′ = ∑
Nj for monomials Nj over x1, . . . , xm

9: Simplify the moment-based recurrence E[M(n + 1)] = E[∑ Nj] using the rules (5.4)
▷ M(n + 1) denotes

πm
i=1 xi(n + 1)αi

10: MBRecs = MBRecs ∪ {E[M(n + 1)]}
▷ add E[M(n + 1)] to the set of moment-based recurrences

11: for each monomial Nj in M do
12: if E[Nj] ̸∈ MBRecs then ▷ there is no moment-based recurrence for Nj

13: S = S ∪ {Nj} ▷ add Nj to S
14: end if
15: end for
16: end while
17: Solve the system of moment-based recurrences MBRecs
18: MI = {E[xi(n)k] − CFi(k, n) = 0 | i = 1, . . . m}

▷ CFi(k, n) is the closed form solution of E[xk
i]

19: return the set MI of moment based invariants of P for the kth moments of x1, . . . , xm

Sketch. We want to show that E[xαi
i] can be expressed using a recurrence equation. The idea is

to express xαi
i (n + 1) in terms of the value of xi at nth iteration. The value of xi(n + 1) is

aixi(n) + Pi(x1(n + 1), . . . xi−1(n + 1) (3.11)

with probability p and

bixi(n) + Qi(x1(n + 1), . . . xi−1(n + 1) (3.12)

23

3. PROB-SOLVABLE LOOPS

with probability (1 − p). From here, we can derive that

E[xαi
i (n+1)] = E[pi ·

(
aixi+Pi(x1, . . . xi−1)

)αi +(1−pi)·(bixi+Qi(x1, . . . xi−1)
)αi]. (3.13)

For arbitrary monomial M = π
xαi

i (n+1), we can express E[M] by substituting each xαi
i (n+1)

as above. This process is captured by line 7 of Algorithm 1. The new equations can be further
simplified using properties of expected values and the simplification rules (5.4) to give recurrence
equations over E-variables.

We now describe Algorithm 1. Our algorithm first rewrites P into a set MBRecs of moment-
based recurrences, as described in Section 3.2. That is, program variables xi are turned into
random variables xi(n) and variable updates over xi become moment-based recurrences over
E-variables by using the relation of (3.4) (lines 1-2) of Algorithm 1).

The algorithm next proceeds with computing the moment-based recurrences of the kth moments
of x1, . . . , xm. Recall that the kth moment of xi is given by:

Momk[0, xi(n)] = E[xi(n)k].

Hence, the set S of monomials yielding E-variables for which moment-based recurrences need
to be solved is initialized to {xk

1, . . . , xk
m} (line 3 of Algorithm 1). Note that by considering the

resulting E-variables E[xk
i] and solving the moment-based recurrences of E[xk

i], we derive closed
forms of the kth moments of {x1, . . . , xm} (line 17 of Algorithm 1). To this end, Algorithm 1
recursively computes the moment-based recurrences of every E-variable arising from the moment-
based recurrences of E[xk

i] (lines 4-16 of Algorithm 1), thus ultimately computing closed forms
for E[xk

i]. One can then use transformations described in Proposition 2.1 to compute closed
forms for other moments, such as variance and covariance. In more detail,

• for each monomial M = π
x

αj

j from S, we substitute xαi
i in M by its probabilistic

behaviour. That is, the update of xi in the Prob-solvable loop P is rewritten, according to
(3.4), into the sum of its two probabilistic updates, weighted by their respective probabilities
(lines 5-7 of Algorithm 1). Rewriting in line 7 of Algorithm 1 represents the most non-
trivial step in our algorithm, combining non-deterministic nature of our program with
polynomial properties. The resulting polynomial M ′ from M is then reordered to be
expressed as a sum of new monomials Nj (line 8 of Algorithm 1); such a sum always exists
as M ′ involves only addition and multiplication over x1, . . . , xm (recall that Pi and Qi are
polynomials over x1, . . . , xm).

• By applying the simplification rules(5.4) of E-variables over the moment-based recurrence
of E[∑ Nj], the recurrence of E[M(n + 1)] is obtained and added to the set MBRecs.
Here, M(n + 1) denotes

πm
i=1 xi(n + 1)αi . As the recurrence of E[M(n + 1)] depends

on E[Nj], moment-based recurrences of E[Nj] need also be computed and hence S is
enlarged by Nj (lines 9-13 of Algorithm 1).

As a result, the set MBRecs of moment-based recurrences over E-variables corresponding to S
is obtained. These recurrences are C-finite expressions over E-variables (see correctness argument

24

3.3. Moment-Based Invariants of Prob-solvable Loops

of Theorem 3.3) and hence their closed-form solutions exist. In particular, the closed forms
CFi(k, n) of E[xi(n)k] is derived, turning E[xi(n)k] − CFi(k, n) = 0 into a inductive property
that holds at arbitrary loop iterations and is hence a moment-based invariant of P over the kth
moment of xi (line 17 of Algorithm 1).

Theorem 3.2 (Soundness). Consider a Prob-solvable loop P with program variables x1, . . . , xm

and let k be a non-negative integer with k ≥ 1. Algorithm 1 generates moment-based invariants
of P over the kth moments of x1, . . . , xm.

Note when k = 1, Algorithm 1 computes the moment-based invariants as invariant relations
over the closed-form solutions of expected values of x1, . . . , xm. In this case, our moment-based
invariants are quantitative invariants as in [KMMM10].

Example 3.3. We illustrate Algorithm 1 for computing the second moments (i.e. k = 2) of the
Prob-solvable loop of Figure 3.1(A). Our algorithm initializes with

MBRecs = {E[f(n + 1)],E[x(n + 1)],E[y(n + 1)],E[s(n + 1)]}

and
S = {f2, x2, y2, s2}.

We next (arbitrarily) choose M to be the monomial f2 from S. Thus, S = {x2, y2, s2}. Using
the probabilistic update of f , we replace f2 by 3

4 · 12 + (1 − 3
4) · 02, that is, by 3

4 . As a result,
MBRecs = MBRecs ∪ {E[f(n + 1)2] = 3

4} and S remains unchanged.

We next choose M to be x2 and set S = {y2, s2}. We replace x2 by its randomised behaviour,
yielding E[M(n + 1)] = E[x(n + 1)2] = E[

(
x(n) + f(n + 1) · rand(1-d,1+d)

)2]. By the
simplification rules (5.4) over E-variables, we obtain:

E[x(n + 1)2] = E[x(n)2] + 2 · E[x(n)] · E[f(n + 1)] + E[f(n + 1)2] · 1
3(d2 + 3), (3.14)

as f(n + 1) is independent from x(n) and E[rand(1-d,1+d)2] = 1
3(d2 + 3). We add the

recurrence (3.14) to MBRecs and keep S unchanged as the E-variables E[x(n)],E[f(n + 1)],
and E[f(n + 1)2] have their recurrences already in MBRecs.

We next set M to y2 and change S = {s2}. Similarly to E[x(n + 1)2], we get:

E[y(n + 1)2] = E[y(n)2] + 4 · E[y(n)] · E[f(n + 1)] + E[f(n + 1)2] · 4
3(d2 + 3), (3.15)

by using that f(n + 1) is independent from y(n) and E[rand(2-2d,2+2d)2] = 4
3(d2 + 3).

We add the recurrence (3.15) to MBRecs and keep S unchanged.

We set M to s2, yielding S = ∅. We extend MBRecs with the recurrence:

E[s(n + 1)2] = E[
(
x(n + 1) + y(n + 1)

)2] = E[x(n + 1)2] + 2E[(xy)(n + 1)] + E[y(n + 1)2]

25

3. PROB-SOLVABLE LOOPS

and add xy to S. We therefore consider M to be xy and set S = ∅. We obtain:

E[(xy)(n + 1)] = E[(xy)(n)] + 2 · E[x(n)] · E[f(n + 1) + E[y(n)] · E[f(n + 1)] + 2 · E[f(n + 1)2],

by using that E[rand(1-d,1+d)] = 1 and E[rand(2-2d,2+2d)] = 2. We add the
recurrence of E[(xy)(n + 1)] to MBRecs and keep S = ∅.

As a result, we proceed to solve the moment-based recurrences of MBRecs. We focus first on
the recurrences over expected values:

E[f(n + 1)] = 3
4

E[x(n + 1)] = E[x(n)] + E[f(n + 1) · rand(1-d,1+d)] = E[x(n)] + 3
4

E[y(n + 1)] = E[y(n)] + E[f(n + 1) · rand(2-2d,2+2d)] = E[x(n)] + 2 · 3
4

E[s(n + 1)] = E[x(n + 1)] + E[y(n + 1)]

Note that the above recurrences are C-finite recurrences over E-variables. For computing closed
forms, we respectively substitute E[f(n + 1) by its closed form in E[y(n + 1)] and E[x(n + 1)],
yielding closed forms for E[y(n + 1)] and E[x(n + 1)], and hence for E[s(n + 1)]. By also using
the the initial values of Figure 3.1, we derive the closed forms:

E[f(n)] = 3
4 E[s(n)] = 9

4n
E[x(n)] = 3

4n − 1 E[y(n)] = 3
2n + 1

We next similarly derive the closed forms for higher-order and mixed moments:

E[f(n)2] = 3
4 E[s(n)2] = 81

16n2 + 20d2+27
16 n

E[x(n)2] = 9
16n2 + 4d2−21

16 n + 1 E[y(n)2] = 9
4n2 + 4d2+15

4 n + 1
E[(xy)(n)] = 9

8n2 − 3
8n − 1

yielding hence the moment-based invariants over the second moments of variables of Figure 3.1.
Using Proposition 2.1 and Definition 2.8, we derive the variance V ar[s(n)] = 20d2+27

16 n.

Let us finally note that the termination of Algorithm 1 depends on whether for every mono-
mial M (from the set S, line 4 of Algorithm 1) the moment-based recurrence equation over the
corresponding E-variable E[M(n + 1)] can be computed as C-finite expression over E-variables.

Theorem 3.3 (Termination). For any non-negative integer k with k ≥ 1 and any Prob-solvable
loop P with program variables x1, . . . , xm, Algorithm 1 terminates. Moreover, Algorithm 1
terminates in at most O(km · dm−1

m · dm−2
m−1 . . . · d1

2) steps, where di = max{deg(Pi), deg(Qi), 1}
with deg(Pi), deg(Qi) denoting the degree of polynomials Pi and Qi of the variable updates (3.2).

Proof. We associate every monomial with an ordinal number as follows:

xαk
k · x

αk−1
k−1 . . . xα1

1
σ−→ ωk · αk + ωk−1 · αk−1 · · · + α1,

and order monomials M, N such that M > N if σ(M) > σ(N). Algorithm 1 terminates if for
every monomial M (from the set S, line 4 of Algorithm 1) the moment-based recurrence equation

26

3.3. Moment-Based Invariants of Prob-solvable Loops

over the corresponding E-variable E[M(n + 1)] can be computed as C-finite expression over
E-variables. We will show that this is indeed the case by transfinite induction over monomials.

Let M = πK
k=1 xαk

k be a monomial and assume that every smaller monomial has a closed form
solution in form of a C-finite expression.

Let
xαi

i :=
(
cixi + Pi(x1, · · · xi−1)

)αi (3.16)

be the updates of our variables after removing the probabilistic choice as in line 5 of the algorithm.
Then recurrence for M is

E[M(n + 1)] = E
[Kπ

i=1

(
pi · (

aixi + Pi(x1, . . . xi−1)
)αi

+ (1 − pi) · (
bixi + Qi(x1, . . . xi−1)

)αi
)
(n)

]
= E[M(n)] +

J∑
j=1

bj · E[
Nj(n)

]
(3.17)

for some J , constants bi and monomials N1, . . . , NJ all different than M . By Lemma 3.4,
we have an inhomogeneous C-finite recurrence relation E[M(n + 1)] = E[M(n)] + γ, for
some C-finite expression γ. Hence, the closed form of E[M(n + 1)] exists and is a C-finite
expression.

We finally prove our auxiliary lemma.

Lemma 3.4. M > Nj for all j ≤ J in (3.17).

Proof. Let M = πK
k=1 xαk

k and have Nj = πK
k=1 xβk

k coming from

Kπ
i=1

(
cixi + Pi(x1, · · · xi−1)

)αi . (3.18)

Assume M ≤ Nj , i.e. ωK · αK + · · · + α1 ≤ ωK · βK + · · · + β1, so we have αK ≤ βK . Note
that in (3.18) xK only appears in factor cKxK + PK(x1, . . . xK−1). Considering the multiplicity,
we get at most αK th power of xK , hence αK ≥ βK . Thus αK = βK .

So for M ≤ Nj we need Nj from (cKxK)αK · πK−1
i=1

(
cixi + Pi(x1, · · · xi−1)

)αi .

Proceeding similarly for xK−1, xK−2, · · · we get that for each k ≤ K we have αk = βk, which
contradicts the assumption, thus M > Nj as needed.

Regarding the termination, let’s look at what monomials can possibly be added to S. Let
M = π

xαi
i ∈ S. Based on the algorithm and the above, it is clear that in the case i = m

we have αm ≤ k. For any i < m the maximum value of αi is αi+1 · di+1. Hence we have
αi ≤ k · πm

j=i+1 dj . thus we can count all possible monomials, hence the upper bound on the
algorithm time complexity, as a product of these upper bounds. This yields km·dm−1

m ·dm−2
m−1 . . .·d1

2
as claimed.

27

3. PROB-SOLVABLE LOOPS

3.4 Implementation and Experiments

We implemented our work in the Julia language, using Aligator ([HJK18a]) for handling and
solving recurrences. We evaluated our work on several challenging probabilistic programs
with parametrised distributions, symbolic probabilities and/or both discrete and continuous
random variables. All our experiments were run on MacBook Pro 2017 with 2.3 GHz Intel
Core i5 and 8GB RAM. Our implementation and benchmarks are available at: github.com/
miroslav21/aligator.

Benchmarks We evaluated our work on 13 probabilistic programs, as follows. We used 7
programs from works [CHWZ15, KMMM10, CS14, FZJ+17, KUH19] on invariant generation.
These examples are given in lines 1-7 of Table 3.1; we note though that BINOMIAL("p") represents
our generalisation of a binomial distribution example taken from [CHWZ15, FZJ+17, KMMM10]
to a probabilistic program with parametrised probability p. We further crafted six examples of
our own, illustrating the distinctive features of our work. These examples are listed in lines 8-13
of Table 3.1: lines 8-11 correspond to the examples of Figure 3.1; line 12 of Table 3.1 shows a
variation of Figure 3.1, with a parametrized distribution p; line 13 corresponds to a non-linear
Prob-solvable loop computing squares. All our benchmarks are available at the aforementioned
URL as well as at the end of this section.

Experimental results with moment-based invariants Results of our evaluation are presented
in Table 3.1. While Algorithm 1 can compute invariants over arbitrary kth higher-order moments,
due to lack of space and readability, Table 3.1 lists only our moment-based invariants up to the
third moment (i.e. k ≤ 3), that is for expected values, second- and third-order moments. The first
column of Table 3.1 lists the benchmark name, whereas the second column gives the degree of
the moments (i.e., k = 1, 2, 3) for which we compute invariants. The third column reports the
timings (in seconds) our implementation needed to derive invariants. The last column shows our
moment-based invariants; for readability, we decided to omit intermediary invariants (up to 30
for some programs) and only display the most relevant invariants.

We could not perform a fair practical comparison with other existing methods: to the best of
our knowledge, existing works, such as [KMMM10, GKM13, BEFH16, KUH19], require user
guidance/templates/hints. Further, existing techniques do not support symbolic probabilities
and/or parametrised distributions - which are, for example, required in the analysis of programs
STUTTERINGA, STUTTERINGC, STUTTERINGP of Table 3.1. We also note that examples
COUPON, STUTTERINGC, STUTTERINGP involve non-linear probabilistic updates hindering
automation in existing methods. In contrast, such updates can naturally be encoded as moment-
based recurrences in our framework. We finally note that while second-order moments are
computed only by [KUH19], but with the help of user-provided templates, no existing approaches
compute moments for k ≥ 3. Our experiments show that inferring third-order moments are in
general, not expensive; yet, for examples STUTTERINGA, STUTTERINGC, STUTTERINGP with
parametrized distributions/probabilities, more computation time is needed.

28

github.com/miroslav21/aligator
github.com/miroslav21/aligator

3.4. Implementation and Experiments

Program Moment Runtime (s) Computed Moment-Based Invariants

COUPON [KUH19]
1 0.37 E[c(n)] = (2n − 1)/(2n)
2 0.40 E[c2(n)] = (2n − 1)/(2n)
3 0.34 E[c2(n)] = (2n − 1)/(2n)

COUPON4 [KUH19]
1 0.90 E[c(n)] = (4n − 33)/(4n)
2 1.1 E[c2(n)] = (4n − 33)/(4n)
3 1.3 E[c3(n)] = (4n − 33)/(4n)

RANDOM_WALK_1D_CTS [KUH19]
1 0.12 E[x(n)] = n/5
2 0.45 E[x2(n)] = n2/25 + 22n/75
3 1.00 E[x3(n)] = n3/125 + n222/125 − n21/250

SUM_RND_SERIES [CHWZ15]
1 0.31 E[x(n)] = n2/4 + n/4
2 2.89 E[x2(n)] = n4/16 + 5n3/24 + 3n2/16 + n/24
3 17.7 E[x3(n)] = n6/64 + 7n5/64 + 13n4/64 + 9n3/64 + n2/32

PRODUCT_DEP_VAR [CHWZ15]
1 0.65 E[p(n)] = n2/4 − n/4
2 6.27 E[p(n)] = n4/16 − n3/8 + 3n2/16 − n/8
3 37.5 E[p3(n)] = n6/64 − 3n5/64 + 9n4/64 − 21n3/64 + 15n2/32 −

n/4

RANDOM_WALK_2D [CS14, KUH19]
1 0.07 E[x(n)] = 0
2 0.26 E[x2(n)] = n/2
3 0.49 E[x3(n)] = 0

BINOMIAL("p") [CHWZ15,
FZJ+17, KMMM10]

1 0.17 E[x(n)] = np
2 0.47 E[x2(n)] = n2p2 + np(1 − p)
3 1.6 E[x3(n)] = n3p3 − 3n2p3 + 3n2p2 + 2np3 − 3np2 + np

STUTTERINGA – FIG. 3.1(A)
1 0.44 E[s(n)] = 9n/4
2 2.2 E[s2(n)] = 81n2/16 + (20d2 + 27)/16n
3 8.48 E[s3(n)] = 81d2n2/16 + 63d2n/16 + 729n3/64 + 9n2(4d2 −

9)/32 + 9n2(4d2 + 9)/16 + 567n2/64 + 3n(−6d2 − 21)/8 +
3n(6d2 − 12)/16 + 243n/32

STUTTERINGB – FIG. 3.1(B)
1 0.49 E[s(n)] = 9n/4
2 2.03 E[s2(n)] = 81n2/16 + 347/16n + 128/3
3 7.43 E[s3(n)] = 729n3/64 + 9369n2/64 + 1359n/32=

STUTTERINGC – FIG. 3.1(C)
1 1.8 E[s(n)] = 3n3/8 + 3n2/8 − n
2 72.5 E[s2(n)] = 9n6/64 + 3n5(8d2 + 27)/160 + n4(8d4 + 84d2 −

90)/192 + n3(32d4 + 216d2 − 252)/288 + n2(8d4 + 44d2 +
61)/64 + n(80d4 + 324d2 − 9)/1440

3 2144 E[s3(n)] = 27n9/512 + 27n8(16d2 + 39)/2560 + 3n7(824d4 +
6444d2 + 1242)/17920 + n6(1900d4 + 3996d2 − 4365)/2560 +
n5(2004d4 + 1704d2 − 54)/2560 + n4(−1900d4 − 7056d2 +
13446)/7680 + n3(−6948d4 − 12708d2 − 6969)/7680 +
n2(−1900d4 − 3114d2 − 315)/3840 + n(−108d4 − 603d2 +
288)/6720

STUTTERINGD – FIG. 3.1(D)
1 1.92 E[s(n)] = 3n3/8 + 3n2/8 − n
2 46.3 E[s2(n)] = 9n6/64 + 93n5/32 + 1651n4/96 + 2849n3/72 +

2813n2/64 + 5131n/288
3 2076 E[s3(n)] = 27n9/512 + 1593n8/512 + 94587n7/1792 +

545971n6/2560 + 270117n5/1280 − 58585n4/768 −
132599n3/512 − 536539n2/3840 − 771n/140

STUTTERINGP
1 0.28 E[s(n)] = 3np
2 1.68 E[s2(n)] = 11n2p2 + 3np(−2p + 1) + np(−p − 1) + 4np(−p +

2) − 1
3 6.05 E[s3(n)] = 27n3

1p3 −3n2
1p3 +3n2

1p2(−6p+3)+12n2
1p2(−3p+

3)+12n2
1p2(−2p+3)+3n1p(4p2 −3p+3)+3n1p(8p2 −12p+

9) + n1p(p2 − 3p(−p − 1) − 3p + 2)/2 + 2n1p(2p2 − 6p(−p +
2) − 6p + 13) + 6

SQUARE
1 0.38 E[y(n)] = n2 + n
2 2.46 E[y2(n)] = n4 + 6 ∗ n3 + 3 ∗ n2 − 2 ∗ n
3 8.70 E[y3(n)] = n6 + 15 ∗ n5 + 45 ∗ n4 − 15 ∗ n3 − 30 ∗ n2 + 16 ∗ n

Table 3.1: Moment-based invariants of Prob-solvable loops, where n is the loop counter.

29

3. PROB-SOLVABLE LOOPS

Benchmarks

We evaluated our work on 13 Prob-solvable programs. For each program, we computed moment-
based invariants of the first, second, and third-order moment. The programs are listed below,
with u() representing uniform distribution.

COUPON

Probabilistic model of Coupon Collector’s pro-
gram for two coupons, taken from [KUH19].

f := 0
c := 0
d := 0
while t r u e :

f := 1 [1 / 2] 0
c := 1 − f + c * f
d := d + f − d* f

COUPON4

Probabilistic model of Coupon Collector’s pro-
gram for four coupons, taken from [KUH19].

f := 0
g := 0
a := 0
b := 0
c := 0
d := 0
while t r u e :

f := 1 [1 / 2] 0
g := 1 [1 / 2] 0
a := a + (1 − a)* f *g
b := b + (1 − b)* f *(1 − g)
c := c + (1 − c)*(1 − f)* g
d := d + (1 − d)*(1 − f)*(1 − g)

RANDOM_WALK_1D_CTS

A variation of random walk in one dimension
with assignments from continuous distributions
taken from [KUH19].

v := 0
x := 0
while t r u e :

v := u (0 , 1)
x := x + v [7 / 1 0] x − v

SUM_RND_SERIES

A program modeling Sum of Random Series
game taken from [CHWZ15].

n := 0
x := 0
while t r u e :

n := n + 1
x := x + n [1 / 2] x

PRODUCT_DEP_VAR

A program modeling Product of Depen-
dent Random Variables game taken from
[CHWZ15].

f := 0
x := 0
y := 0
p := 0
while t r u e :

f := 0 [1 / 2] 1
x := x + f
y := y + 1 − f
p := x*y

RANDOM_WALK_2D

A variation of random walk in two dimension
as in [CS14, KUH19]. Each direction is chosen
with equal probability.

h := 0
x := 0
y := 0
while t r u e :

h := 1 [1 / 2] 0
x := x−h [1 / 2] x +h
y := y+(1 −h) [1 / 2] y −(1 −h)

30

3.5. Chapter Conclusion

BINOMIAL

Another classic example, modeling binomial
distribution. Appeared also in [CHWZ15,
FZJ+17, KMMM10]. However, we consider
the program to be parametric, computing invari-
ants for arbitrary values of p.
x := 0
while t r u e :

x := x + 1 [p] x

STUTTERINGA

Program 3.1(A) from Section 3.1.

STUTTERINGB

Program 3.1(B) from Section 3.1.

STUTTERINGC

Program 3.1(C) from Section 3.1.

STUTTERINGD

Program 3.1(D) from Section 3.1.

STUTTERINGP

A variation of program 3.1(A) from Introduc-
tion with d = 1, parametrized w.r.t. p.

f := 0
x := −1
y := 1
s := 0
while t r u e :

f := 1 [p] 0
x := x + f *u (0 , 2)
y := y + f *u (0 , 4)
s := x + y

SQUARE

Our own program with polynomial assign-
ments.

x := 0 ; y := 1
while t r u e :

x := x+2 [1 / 2] x
y := x ^2

3.5 Chapter Conclusion

We introduced a novel approach for automatically generating moment-based invariants of a
subclass of probabilistic programs (PPs), called Prob-solvable loops, with polynomial assignments
over random variables and parametrised distributions. We combine methods from symbolic
summation and statistics to derive invariants over higher-order moments, such as expected values
or variances, of program variables. To the best of our knowledge, our approach is the first method
for computing higher-order moments of PPs fully automatically and the first to handle PPs with
parametrised distributions.

31

CHAPTER 4
Implementation - MORA

This chapter introduces tool MORA and is based on a joint work [BKS20b] with Laura Kovács
and Ezio Bartocci, published in the proceedings of TACAS 2020.

[BKS20b] Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. Mora - automatic genera-
tion of moment-based invariants. In Proc. of TACAS 2020: the 26th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
volume 12078 of LNCS, pages 492–498. Springer, 2020.

4.1 Overview

In this chapter, we introduce tool MORA. MORA implements the approach for automatically
generating quantitative invariants of Prob-solvable loops, as described in Chapter 3, with random
assignments, parametrized distributions, and probabilistic polynomial updates. The main purpose
of this chapter is to describe what MORA can do and how it can be used. It is intended as a tool
demonstration and a guide for the potential users. We focus on the usage and implementation
aspects of MORA, with the details on theoretical foundations and algorithmic aspects of MORA

being covered in Chapter 3. We note, however, that, when compared to the experimental setup
from Chapter 3 and [BKS19], MORA comes with a completely new design, fully implemented
in python and supporting easy installation and use even by non-experts in PP analysis. The
implementation is available at:

https://github.com/miroslav21/mora,

and was successfully evaluated on a number of challenging examples. Unlike other existing
approaches, e.g. [KMMM10, CS14, BEFH16, KUH19], MORA computes non-linear invariants in
a fully automatic way without relying on user-provided templates/hints. The proposed automatic
approach can handle an arbitrary number of loop iterations and infinite loops. On the contrary,

33

https://github.com/miroslav21/mora

4. IMPLEMENTATION - MORA

x=0
while true:

u = RV(uniform, 0, b)
g = RV(gauss, 0, 1)
x = x - u @ 1/2; x + u @ 1/2
y = y + x + g

Loop conditions are ignored, yielding non-
deterministic PPs. The value of the random
variable u is sampled from a uniform distribu-
tion with support in the real interval [0, b],
whereas the value of g is a random number
from a Gaussian distribution with mean (first
moment) 0 and variance (second moment) 1.
Updates of program variable x are probabilistic:

with probability 1/2, the variable x is updated to x-u. Similarly, with probability 1/2, x is updated
to x+u. Further, updates to u and g do not depend on other variables; the update to x depends only
on itself and u.

Figure 4.1: An illustrative example of a Prob-solvable loop.

tools like PSI [GMV16] support only the automatic analysis of probabilistic programs with a
specified number of loop iterations.

Moreover, the invariants inferred by MORA are not restricted to expected values but are quantita-
tive invariants over the higher-order moments of program variables. We refer to such invariants as
moment-based invariants [BKS19]. To the best of our knowledge, no other tool can automatically
compute higher-order moments of PPs, not even for the restricted, yet expressive enough, class of
Prob-solvable loop.

4.2 MORA – Programming Model
Input programs to MORA are PP loops that are Prob-solvable [BKS19]. In Figure 4.1, we give an
example of a Prob-solvable loop and use this example as a running example to guide the potential
users of MORA in the rest of this chapter.

In a nutshell, probabilistic assignments of Prob-solvable loops include (i) variable values drawn
from random distributions, such as uniform or normal distributions, and (ii) random variable
updates. In the sequel, we write RV to refer to a random variable. Input programs to MORA

therefore satisfy the following two properties:

(1) Input programs to MORA are PPs generated from the grammar in Figure 4.2.

(2) In addition to the grammar of Figure 4.2, MORA requires its PP input to be Prob-solvable,
imposing further restrictions as follows:

• PP loop variables are different from each other and from parameters;

• probabilities used within a variable update sum up to 1;

• updated variables depend on themselves linearly and may depend polynomially only on
other variables that have been previously updated.

34

4.3. MORA– Usage

Grammar defining PP inputs to MORA

PROGRAM → INIT_ASSIGNS "while t r u e : " RV_ASSIGNS UPD_ASSIGNS

INIT_ASSIGNS → INIT_ASSIGN | INIT_ASSIGN INIT_ASSIGNS
RV_ASSIGNS → RV_ASSIGN | RV_ASSIGN RV_ASSIGNS
UPD_ASSIGNS → UPD_ASSIGN | UPD_ASSIGN UPD_ASSIGNS

INIT_ASSIGN → VAR " = " INIT_EXPR
RV_ASSIGN → VAR " = " RV_EXPR
UPD_ASSIGN → VAR " = " UPD_BRANCHES

UPD_BRANCHES → UPD_BRANCH | UPD_BRANCH UPD_BRANCHES
UPD_BRANCH → UPD_EXPR "@" UPD_PROB
UPD_PROB → SIMP_EXPR

INIT_EXPR → RV_EXPR | SIMP_EXPR
RV_EXPR → "RV(u n i f o r m , " SIMP_EXPR " , " SIMP_EXPR ") "

| "RV(g a u s s , " SIMP_EXPR " , " SIMP_EXPR ") "
UPD_EXPR → UPD_EXPR OP UPD_EXPR | VAR | ATOM
SIMP_EXPR → SIMP_EXPR OP SIMP_EXPR | ATOM

ATOM → NUM | PARAMETER
OP → [*+ −]
VAR → [a−zA−Z] [a−zA−Z0 −9]*
PARAMETER → [a−zA−Z] [a−zA−Z0 −9]*
NUM → [−] ? [0 − 9] + [.] ? [0 − 9] * ([\ /] [1 − 9] [0 − 9] *) ?

Figure 4.2: Grammar of Prob-solvable loops for MORA

Note that Figure 4.1 satisfies all constraints above, and thus is Prob-solvable.

4.3 MORA– Usage

We describe the easiest way MORA can be used to generate moment-based invariants:

1. Save a Prob-solvable loop to a file, for example save Figure 4.1 in the file running.

2. In the main MORA folder invoke python with python3.7 and execute:

from mora.mora import mora

3. Run MORA using the command:

mora("running", goal=GOAL),

where GOAL can be (i) a specific natural number k ≥ 1, in which case MORA computes the
kth moments of all variables from running; (ii) a specific moment of one loop variable of

35

4. IMPLEMENTATION - MORA

Figure 4.3: MORA workflow diagram.

running (e.g. "xˆ2" specifying the second moment of a variable x of Figure 4.1); or (iii) a list
containing the goals as just specified. One can specify finitely many goals as inputs to MORA;
yet, at least one goal is required. For example, by running mora("running", [1, "xˆ2",
"xˆ3"]), MORA computes the expected values (first moments) of all variables from Figure 4.1,
as well as the second and third moments of variable x of Figure 4.1 (specified by xˆ2 and xˆ3,
respectively).

MORA is completely automatic. That is, once execution of MORA is started on a given Prob-
solvable loop and input goals, MORA outputs the higher-order moments, and thus moment-based
invariants, of its loop w.r.t. the specified input goals. To this end, MORA computes the expected
values of all monomials over loop variables, on which one of the goals from GOAL depends.
In general, computing the kth moment requires computing the expected values of all monomial
expressions over loop variables, such that the total degree of the monomials is less or equal than k,
see [BKS19] for more details.

In the rest of the chapter, we will illustrate the main steps of MORA, by considering Figure 4.1
as its input loop and [1, 2] as its list of input goals. With such an input goal, MORA is set to
compute the first and second moments of each variable of Figure 4.1. Note, that even if 1 was
omitted from the aforementioned input goal, MORA would still need to compute some of the first
moments of the variables, as they are required for computing the second-order moments. In the
following, we showcase the MORA behaviour for:

mora("running", [1, 2]). (4.1)

4.4 MORA– Tool Overview

We first give details on our implementation. We then present the overall workflow of MORA in
Figure 4.3, based on which we overview the main components of our tool.

36

4.4. MORA– Tool Overview

Overall implementation MORA is implemented in python3, requiring python version
of at least 3.7. MORA relies on the diofant and scipy libraries: (i) the python library
diofant is used in MORA for symbolic mathematical computations and recurrence solving;
(ii) the scipy library, and in particular its statistics module scipy.stats, is used in MORA

to handle probability distributions and statistical functions, as well as to simplify and compute
expressions involving probability distributions and initial values of variables. Altogether, our
implementation comprises around 350 lines of code.

MORA – Parser MORA first checks whether a given input program is Prob-solvable, by
checking the requirements of Section 4.2. If the input program is not Prob-solvable, an error is
reported, and the execution of MORA stops. Otherwise, within its parser module, MORA extracts
initial values from its input loop, rewrites loop updates into equations over expected values of
monomial expressions over loop variables, and processes the list of its input goals to identify
which higher-order moments need to be computed.

For our demo execution (4.1), MORA extracts the initial value x(0)=0, where x(0) denotes the
initial value of x before the loop. Using the input goals specified in (4.1), MORA is set to compute
the expected values of {u, g, x, y, uˆ2, gˆ2, xˆ2, yˆ2 characterizing the first and
second moments of all loop variables of Figure 4.1. Further, the loop updates of Figure 4.1 are
rewritten by MORA into equations over expected values, as follows:

{
E[xk(n + 1)] = E[1/2 · (x(n) − u(n + 1))k + 1/2 · (x(n) + u(n + 1))k]
E[yk(n + 1)] = E[(y(n) + x(n + 1) + g(n + 1))k] , (4.2)

where n ≥ 0 is the loop counter of Figure 4.1, x(n) denotes the value of x at the nth loop
iteration, and E[expr] is the expected value of an expression expr.

MORA – Core After rewriting probabilistic loop updates into equations over expected values,
MORA rewrites these equations into non-probabilistic recurrences over so-called E-variables,
with the loop counter n being the recurrence index. E-variables are simply variables created from
monomials over original variables. Thanks to the restrictions defining PPs to be Prob-solvable, the
resulting recurrences are linear recurrences with constant coefficients, that is, C-finite recurrences,
whose closed forms can always be computed [KP11]. MORA solves these recurrences by calling
its Solver module.

Using the equations (4.2) over expected values, the non-probabilistic recurrences of Figure 4.1
generated by MORA are as follows, using the MORA synthax:

37

4. IMPLEMENTATION - MORA

y = x + y
g**2 = 1
x = x
u = b/2
x**2 = b**2/3 + x**2
u**2 = b**2/3
y**2 = b**2/3 + x**2 + 2*x*y + y**2 + 1
g = 0
x*y = b**2/3 + x**2 + x*y

(4.3)

The left-hand sides of these equations represent values of E-variables at iteration n + 1, while
monomials over original variables on the right-hand side represent E-variables at iteration n. For
example, the first equation of (4.3) stands for E[y(n + 1)] = E[x(n)] + E[y(n)]. On the other
hand, the fourth equation of (4.3) represents E[x(n + 1)2] = b2

3 + E[x(n)2], as b is a constant
parameter and x**k in python denotes the kth power of x.

Solver In this module, MORA extracts and solves recurrences from the non-probabilistic equa-
tions over E-variables computed by its Core module. By exploiting the structure of Prob-solvable
programs, MORA also optimizes the order in which recurrences are solved, e.g. independent
recurrences are solved first. Partial solutions can be used to reduce the complexity of the latter
recurrences. MORA then uses the diofant library to handle and solve single recurrences.

For Figure 4.1, using the E-variable equations of (4.3), the following closed form solutions are
computed by MORA:

E[u2] = b2

3
E[x1] = 0
E[y1] = y(0)
E[x2] = b2n

3
E[u1] = b

2
E[y1x1] = b2n

6 (n + 1)
E[y2] = n

18
(
2b2n2 + 3b2n + b2 + 18

)
+ y(0)2

E[g1] = 0
E[g2] = 1

(4.4)

with y(0) standing for the initial value of y (treated as a parameter, since not specified).

MORA – Out_Parser MORA’s output consists of basic information about the program and
the goal, moment-based invariants computed, and computation time. By default, the MORA

output is shown only on the screen. However, an optional argument can specify if an output
file should be created. Two possible values for output_format are (i) "txt", producing a
simple human-readable file, and (ii) "tex", producing a file with invariants in LATEX format (as
given in (4.4) above).

38

4.5. Evaluation

Program Moment Runtime
PoC (s)

Runtime
MORA (s)

SUM_RND_SERIES

1 0.31 0.22
2 2.89 0.93
3 17.7 2.47

STUTTERINGA
1 0.44 0.25
2 2.20 1.07
3 8.48 3.35

STUTTERINGC
1 1.80 0.66
2 72.5 12.2
3 2144 73.9

SQUARE

1 0.38 0.22
2 2.46 0.73
3 8.70 1.67

Table 4.1: Comparison of MORA vs. proof-of-concept (PoC) implementation of [BKS19].

4.5 Evaluation

A proof-of-concept implementation, together with initial experiments, were already given in
our work on generating moment-based invariants [BKS19]. MORA comes, however, with a new
design and a re-implementation of [BKS19], significantly improving the experimental setting
and evaluations of [BKS19]. Table 4.1 compares MORA against the experiments of [BKS19], on
a subset of Prob-solvable loops from [BKS19], evidencing that MORA is faster than our initial
proof-of-concept implementation. This is due to the following reasons:

• MORA now optimizes the order in which recurrences are sent to the diofant recurrence solver.
This reduces the amount of necessary symbolic computation and speeds up the process.

• While MORA is implemented entirely in python, with limited usage of external libraries, the
previous implementation was done in Julia and relied on calls to the sympy library of python.

• MORA does not rely on Aligator [HJK18a] for handling systems of recurrences, allowing us to
eliminate some intermediate and redundant steps.

4.6 Chapter Conclusion

We described MORA, a fully automated tool for generating invariants of probabilistic programs.
MORA combines recurrence solving, symbolic summation, and statistical reasoning and derives
higher-order moments of loop variables in probabilistic programs.

39

CHAPTER 5
Analyzing Bayesian Networks

This chapter is based on a joint work [BKS20a, SBK22] with Laura Kovács and Ezio Bartocci,
published in the proceedings of ICTAC 2020, and in the Theoretical Computer Science journal,
respectively.

[BKS20a] Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. Analysis of Bayesian
networks via prob-solvable loops. In Proc. of ICTAC 2020: the 17th International
Colloquium on Theoretical Aspects of Computing, volume 12545 of LNCS, pages
221–241. Springer, 2020.

[SBK22] Miroslav Stankovič, Ezio Bartocci, and Laura Kovács. Moment-based analysis of
bayesian network properties. Theoretical Computer Science, 903:113–133, 2022.

5.1 Overview

Bayesian networks, or BNs for short, are well-established probabilistic models suitable to
represent, learn and predict (through Bayesian inference) the behavior of complex systems
with uncertainty or partially available information. The emergence of BNs, starting with the
seminal work [Pea85], represented an important milestone in the advancement of artificial intelli-
gence. The scientific impact of these models is also confirmed by the multitude of fields where
they found a successful application. Examples include probabilistic machine learning [Hec08],
speech recognition [ZR98], sports betting [CFN12], image processing [LSS05], runtime verifica-
tion [KBS+13], program synthesis [SRB+15], gene regulatory networks [FLNP00], diagnosis of
diseases [JC10], and finance [NJ07].

A BN is a graphical representation of a probability distribution over a set of random variables.
In particular, it consists of a directed acyclic graph (DAG), where the nodes represent random
variables and edges capture their conditional dependencies. Each node/variable is associated with

41

5. ANALYZING BAYESIAN NETWORKS

a probability distribution that is conditional on each value combination of the nodes/variables
that are its parents in the DAG.

For example, Figure 5.1 shows a BN modeling two events, the rain (R) and an active sprinkler
(S) that can be responsible for the grass (G) being wet. As expected, the sprinkler is usually
inactive when it rains. This means that the probability of the sprinkler being active depends on
the probability to rain. The BN in Figure 5.1 models graphically such dependency with a directed
edge starting from the node representing the variable R and ending to the node associated with
the variable S. This dependency is also captured quantitatively by a conditional probability
table (CPT) associated with the variable S. A CPT specifies, for each possible combination of
values of the parents’ variables (one for each row of the table), and the corresponding probability
for the child’s variable to have a certain discrete value (one for each table column). In our
running example of Figure 5.1, G, R, S are binary random variables with Bernoulli conditional
distributions. However, in general, BNs allow arbitrary types for their random variables and their
conditional distributions.

Probabilistic inference A common operation on BNs is to estimate what is the probability of
an event being the cause of another observed event. For example, in the BN of Figure 5.1, we
may want to answer the following question:

Q1 - What is the probability that it has rained, given that the grass is wet?

The inherited Bayesian inference framework of BNs provides a solution to this problem, enabling
the computation of the posterior probability of some random variables, given the prior distribution
of other random variables in the network. The problem of probabilistic inference has been
extensively investigated in the literature [KF09] resulting in the development of exact and
approximation (using Monte Carlo simulations) techniques, both found to be computationally
NP-hard [Coo90, DL93].

Number of samples Among the approximation techniques [KF09, YD06], a typical example
is the rejection sampling: a sample is accepted when it complies with the evidence; otherwise is
rejected. A drawback of this method is the number of samples that it may require before getting
the first accepted sample, while most of the samples may be wasted simply because they do not
satisfy the observations. Thus, a second important question, investigated also in [BKKM18], is:

Q2 - What is the expected number of samples until an accepting sample occurs?

Sensitivity analysis BN parameters are most likely to be imprecise or wrong because they are
often provided manually or estimated from (incomplete) data. In the example of Figure 5.1, the
CPT for the random variable S contains imprecise symbolic parameters a and b. In this case,
sensitivity analysis aims to answer this third question:

Q3 - How much does a small change in BN parameters affect probabilistic inference?

42

5.1. Overview

Grass Wet (G)

Rain (R)Sprinkler (S)

R=1 R=0
0.8 0.2

S=1 S=0
R=0 0.4+a 0.6-a

R=1 0.01+b 0.99-b

G=1 G=0
S=0, R=0 0.1 0.9

S=0, R=1 0.8 0.2

S=1, R=0 0.75 0.25

S=1, R=1 0.99 0.01

Q1 - Exact Inference Problem

What is the probability that it is raining, given the
evidence that grass is wet (with a=b=0) ?

Discrete Bayesian Network (disBN)
real R, S, G, GR;
real a, b;
real count=1, continue=1;

while (true){
R := 1@0.8; 0@0.2;
S := [R=0] @0.4+a; 0@0.6-a;

+ [R=1] @0.01+b; 0@0.99-b;
G := [S=0][R=0] @0.1; 0@0.9;

+ [S=0][R=1] @0.8; 0@0.2;
+ [S=1][R=0] @0.75; 0@0.25;
+ [S=1][R=1] @0.99; 0@0.01;

GR := G * R;
continue := continue * (1-G);
count := count + continue;

}

Encoding disBN as Prob-Solvable Loop

ℙ ࡾ (ࡳ = ॱ ॱࡾࡳ ࡳ = ૙. ૟૝૚૞૛00..77૚૜૞૛ = ૙. ૡૢૢ૙ૢ૛
Exact Inference Problem

Q2 - Expected Number of Samples
What is the expected number of samples till an
accepting sample occurs (given the evidence
that the grass is wet) ?

ॱ ࢔࢚࢔࢛࢕ࢉ = ૚ − ૙. ૡૠࢇ + ૙. ૡ૝ૡ࢈ + ૙. ૛ૡ૟૝ૡ .૙−࢔ ૚૜ࢇ − ૙. ૚૞૛࢈ + ૙. ૠ૚૜૞૛
Expected Number of Samples

Q3 – Sensitivity Analysis
How much is the probability that it is raining, given
the evidence that grass is wet, sensitive to small
changes (a and b) in some of the BN parameters ?

Sensitivity Analysis

ℙ ࡾ (ࡳ = −૙. ૚૞૛܊ + ૙. ૟૝૚૞૛−૙. ૚૜܉ − ૙. ૚૞૛܊ + ૙. ૠ૚૜૞૛

࢙ࢋ࢒࢖࢓ࢇ࢙# = lim࢔→ஶॱ ࢔࢚࢔࢛࢕ࢉ = ૚−૙. ૚૜ࢇ − ૙. ૚૞૛࢈ + ૙. ૠ૚૜૞૛

A Conditional Probability Table (CPT) for G

CPT for S
CPT for R

B

Figure 5.1: Solving probabilistic inference, the expected number of samples, and the sensitivity
analysis for a discrete BN (disBN), by encoding the disBN as a Prob-solvable loop and computing
automatically moment-based invariants (MBIs).

Analysis of BNs as PPs Probabilistic programs provide a unifying framework to both encode
probabilistic graphical models, such as BNs, and to implement sophisticated inference algorithms
and decision-making routines that can operate in real-world applications [Gha15]. In this chapter,
we explore the link between Bayesian network analysis and static program analysis. Specifically,
we connect BN analysis with the moment-based analysis of probabilistic programs. An extension
of Prob-solvable loops is proposed, with new features essential for encoding BNs and for solving
several kinds of BN analyses via invariant generation over higher-order statistical moments of
Prob-solvable loop variables. Figure 5.1(B) shows a Prob-solvable loop encoding the probabilistic
behavior of the discrete BN (disBN) illustrated in Figure 5.1(A). The Prob-solvable loop of
Figure 5.1(B) requires one variable for each disBN node and some extra variables that depend on
the particular BN analysis. For example, to solve exact probabilistic inference and sensitivity

43

5. ANALYZING BAYESIAN NETWORKS

Sex (S)

Conditional Linear Gaussian Bayesian Network (clgBN)
real S, D, W1_1, W1_0, W1;
real W2_1, W2_0, W2, D1_S, W2D1_S;
real a, b;

while (true){
S := 1 @0.5; 0 @0.5;
D := [S=0] @0.9; 0 @0.1;

+ [S=1] @0.7; 0 @0.3;
W1_1 := RV(gauss, 7 + a, 2 + b);
W1_0 := RV(gauss, 7.5, 2.5);
W1 := W1_1 * D + W1_0 * (1 – D);
W2_1 := RV(gauss, 1.02 + 0.89*W1, 3.2);
W2_0 := RV(gauss, -1.68 + 1.35*W1, 4.0);
W2 := W2_1 * D + W2_2 * (1-D);
D1_S := D * (1-S);
W2D1_S := W2*D1_S;

}

Encoding clgBN as Prob-Solvable Loop

Weight loss (W1)
(week 1)

Weight loss (W2)
(week 2)

D=1 D=0
S=0 0.9 0.1

S=1 0.7 0.3

W1
D=0 𝓝 𝟕. 𝟓, 𝟐. 𝟓
D=1 𝓝 𝟕 + 𝒂, 𝟐 + 𝒃

W2
D=0 𝓝 −𝟏. 𝟔𝟖 + 𝟏. 𝟑𝟓 ∗ 𝑾𝟏, 𝟒. 𝟎
D=1 𝓝 𝟏. 𝟎𝟐 + 𝟎. 𝟖𝟗 ∗ 𝑾𝟏, 𝟑. 𝟐

Q1 - Exact Inference Problem

What is the expected weight loss of male rats and its
variance after two weeks of drug trial (a=b=0) ?

Exact Inference Problem

S=0
(male)

S=1
(female)

0.5 0.5

Drug (D)

𝔼 𝑾𝟐 𝑫 = 𝟏, 𝑺 = 𝟎] = 𝟕. 𝟐𝟓VVaarr 𝑾𝟐 𝑫 = 𝟏, 𝑺 = 𝟎] = 𝟓. 𝟏𝟖𝟎𝟐𝟓
Q3 – Sensitivity Analysis

How much are the expected weight loss of male rats
and its variance affected by a small change of the
parameters a and b ?

Sensitivity Analysis𝔼 𝑾𝟐 𝑫 = 𝟏, 𝑺 = 𝟎] = 𝟎. 𝟖𝟗 𝒂 + 𝟕. 𝟐𝟓

CPT for D CPT for S

CPT for W2CPT for W1

A B

VVaarr 𝑾𝟐 𝑫 = 𝟏, 𝑺 = 𝟎] = 𝟓. 𝟏𝟖𝟎𝟐𝟓 + 𝟎. 𝟕𝟗𝟐𝟏𝒃
Figure 5.2: Solving probabilistic inference and sensitivity analysis in a conditional linear Gaussian
BN (clgBN), by encoding the clgBN as a Prob-solvable loop and computing MBIs.

analysis, we require an extra variable to store the product of the random variables G and R. On
the other hand, to compute the expected number of samples until an accepting sample occurs, we
would need two other auxiliary variables count and continue. Each row of each CPT is encoded
as a probabilistic assignment in the Prob-solvable loop. Our approach generates moment-based
invariants as quantitative invariants over higher-order moments to solve the three questions
(Q1-Q3) of Figure 5.1. The required Prob-solvable loop analysis, however, requires additional
steps (e.g. calculating limits) that were not yet supported by the Prob-solvable model [BKS19] of
Chapter 3. Moreover, while the Prob-solvable programming model can model the probabilistic
behavior of disBNs, it cannot model other BN variants, such as BNs with Gaussian conditional
dependencies as in Figure 5.2(A). In this chapter, we also extend Prob-solvable loops with new
features supporting Gaussian and uniform random variables depending on other random variables
and show that these extensions allow us to solve BN problems via Prob-solvable loop reasoning.

44

5.2. Programming Model: Extending Prob-solvable Loops

Chapter contributions Let us briefly summarize the contributions presented in this chapter.
(1) We extend the model of Prob-solvable loops and prove that it admits a decision procedure
for computing moment-based invariants (Section 5.2). (2) We provide a sound encoding of BNs
as Prob-solvable loops, in particular addressing discrete BNs (disBNs), Gaussian BNs (gBNs),
conditional linear Gaussian BNs (clgBNs) and dynamic BN (dynBNs) (Section 5.3). (3) We
formalize several BN problems as moment-based invariant generation tasks in Prob-solvable
loops (Section 5.4). (4) We extend the tool MORA and evaluate our approach on a number of
examples, fully automating BN analysis via Prob-solvable loop reasoning (Section 5.5).

The rest of this chapter is organized as follows. In Section 5.2, we introduce our probabilistic
programming model while Section 5.3 and Section 5.4 show how to encode, respectively, both
Bayesian Networks and different kinds of analyses in our framework. Section 5.5 provides the
empirical evaluation of our approach applied to a set of benchmarks. We summarize this Chapter
in Section 5.6.

5.2 Programming Model: Extending Prob-solvable Loops

We introduce our programming model extending the class of Prob-solvable loops [BKS19],
allowing us to encode and analyze BN properties in Section 5.3. In particular, we extend [BKS20a]
to allow coefficients to be polynomials over finite discrete variables and to support more complex
expressions, which helps reduce the number of auxiliary variables necessary to encode BNs.
To this end, we consider probabilistic while-programs as introduced in [Koz81, MM05] and
restrict this class of programs to probabilistic programs with polynomial updates among random
variables. In the following sections, whenever we refer to a Prob-solvable loop/program, we
mean a program as defined below.

Definition 5.1 (Prob-solvable loop). Let m, r ∈ N0 and let VD = {di | i ≤ r} be the set of
bounded discrete program variables and VX = {xi | i ≤ m} be the set of arbitrary program
variables. Let further V = VD ∪VX . A Prob-solvable loop with variables from V is a probabilistic
program of the form

I;while(true){U}, (5.1)

where:

• (Initialization) I is a sequence of initial assignments over V . That is, I is an assignments
sequence v := cv, where cv represents a number drawn from a known distribution 1. In
particular, cv can be a constant. For v ∈ VD we further require the distribution to be
discrete and bounded.

• (Update) U denotes a sequence of r+m random updates in the order d1, . . . , dr, x1, . . . , xm,
with each update of the form:

v :=
∑

j

updv,j

1a known distribution is a distribution with known and computable moments

45

5. ANALYZING BAYESIAN NETWORKS

where the updv,j has the form

Pi,j,1(d1, . . . , di−1)@pi,j,1; . . . ; Pi,j,αj,i(d1, . . . , di−1)@pi,j,αj,i ; (5.2)

if v = di ∈ VD or

Qi,j,1(d1, . . . , dr)xi + Ri,j,1(d1, . . . , dr, x1, . . . , xi−1)@qi,j,1;
... (5.3)

Qi,j,βj,i
(d1, . . . , dr)xi + Ri,j,βj,i

(d1, . . . , dr, x1, . . . , xi−1)@qi,j,βj,i
;

if v = xi ∈ VX , where all P , Q and R are polynomials, and all p and q are probabilities
of taking the respective value. An expression upd@p; means that the value upd is taken
with probability p.

• (Dependencies) The coefficients of Q and R in the variable assignments (5.2)-(5.3) of
xi can be drawn from a random distribution as long as the moments of this distribution
are known, and either they are (i) Gaussian or uniform distributions linearly depending
on variables xj with j ≤ i and polynomially on variables from VD; or (ii) other known
distributions independent from all v ∈ V .

Note that Prob-solvable loop supports parametrised distributions. For example, one may have
the uniform distribution U(l, u) with arbitrary symbolic constants l < u ∈ R. Similarly, the
probabilities pi, qi in the probabilistic updates (5.2)-(5.3) can be symbolic constants.

The restriction on random variable dependencies from Definition 5.1 extends [BKS19] by allow-
ing parameters of Gaussian and uniform distributions in Prob-solvable loop to be specified using
the previously updated program variables xj and to depend on xi linearly. In Theorem 5.1 we
prove that this extension maintains the existence and computability of higher-order statistical mo-
ments of Prob-solvable loops, allowing us to derive all moment-based invariants of Prob-solvable
loops of degree k ≥ 1.

We also further allow the coefficients of (5.2)-(5.3) to be polynomials over discrete variables VD.
We allow the updates to capture multiple non-binary probabilistic branches in the update, which
further generalizes [BKS19, BKS20a] where updates were restricted to the form

xi := aixi + Pi(xi, . . . , Pi−1)@pi; bixi + Qi(xi, . . . , Pi−1)@1 − pi; .

In the sequel, we prove that arbitrary moment-based invariants for our generalized class of
Prob-solvable loops are computable (Theorem 5.2) using Algorithm 2.

Definition 5.2 (Moment-based invariants (MBIs)). Let P be a Prob-solvable loop and n ∈ N
denote an arbitrary loop iteration of P . Consider k ∈ N with k ̸= 0. A moment-based invariant
(MBI) of degree k over xi of P is E[xi(n)k] = fxi,k(n), where fxi,k : N → R of n is a closed-
form expression denoting the kth (raw) higher-order moments of xi, such that fxi,k(b) depends
only n and the initial variable values of P .

46

5.2. Programming Model: Extending Prob-solvable Loops

Algorithm 2 Moment-Based Invariants (MBIs) of generalized Prob-solvable Loops
Input: Prob-solvable loop P with variables V = {x1, . . . , xm}, and k ≥ 1
Output: MBIs of P of degree k
Assumptions: n ∈ N is an arbitrary loop iteration of P

1: Extract moment-based recurrence relations of P , for v ∈ V:

E[v(n + 1)] =
∑

j

updv,j

▷ as of Definition 5.1
2: MBRecs = {E[v(n + 1)] | v ∈ V} ▷ initial set of moment-based recurrences
3: S := {vk | v ∈ V} ▷ initial set of monomials of E-variables
4: while S ̸= ∅ do
5: M := πm

i=1 xαi
i ∈ S, where αi ∈ N

6: S := S \ {M}
7: M ′ = M [xαi

i ← ∑
j updxi,j], for each i = m, . . . , 1 ▷ replace each xαi

i in M with
updxi,j as in (5.7)

8: Rewrite M ′ as M ′ = ∑
Nj for monomials Nj over x1, . . . , xm

9: Simplify moment-based recurrence E[M(n + 1)] = E[∑ Nj] using (5.4)-(5.6)
▷ M(n + 1) denotes

πm
i=1 xi(n + 1)αi

10: MBRecs = MBRecs ∪ {E[M(n + 1)]} ▷ add E[M(n + 1)] to the set of
moment-based recurrences

11: for each monomial Nj in M do
12: if E[Nj] ̸∈ MBRecs then ▷ no moment-based recurrence for Nj

13: S = S ∪ {Nj} ▷ add Nj to S
14: end if
15: end for
16: end while
17: MBI = {E[v(n)k] − fv,k(n) = 0 | v ∈ V} ▷ fv,k(n) is the closed form solution of E[xk

i]
18: return MBIs of P for the kth moments of x1, . . . , xm

In what follows, we consider an arbitrary Prob-solvable loop P and formalize our results relative
to P . Further, we reserve n ∈ N to denote an arbitrary loop iteration of P . Note that MBIs of P
yield functional representations of the kth higher-order moments of loop variables xi at n. Hence,
the MBIs E[xi(n)k] = fxi,k(n) are valid and invariant. In Algorithm 2 we show that MBIs of
Prob-solvable loops can always be computed. As in [BKS19], the main ingredient of Algorithm 2
are so-called E-variables for capturing expected values and other higher-order moments of loop
variables of P .

Definition 5.3 (E-variables of Prob-solvable Loops [BKS19]). An E-variable of P is an expected
value of a monomial over the random variables xi of P .

Using Definition 5.3, in Algorithm 2 we compute E-variables based on expected values E[xi(n)]
of loop variables xi, as well as using higher-order and mixed moments of P , such as E[xk

i (n)]

47

5. ANALYZING BAYESIAN NETWORKS

or E[xixj(n)] (lines 3 and 9 of Algorithm 2). To this end, Algorithm 2 resembles the approach
of [BKS19] and extends it to handle Prob-solvable loops with dependencies among random
variables drawn from Gaussian/uniform distributions (line 9 of Algorithm 2). More specifically,
Algorithm 2 uses moment-based recurrences over E-variables from [BKS19], describing the
expected values E[xi(n)] of xi as functions of other E-variables (line 2 of Algorithm 2). To this
end, note that Prob-solvable loop updates from (5.2)-(5.3)

over xi yield linear recurrences with constant coefficients over E[xi(n)], by using the following
simplification rules over E-variables:

E[expr1 + expr2] → E[expr1] + E[expr2]
E[expr1 · expr2] → E[expr1] · E[expr2], if expr1, expr2 are independent
E[c · expr1] → c · E[expr1]
E[c] → c
E[D · expr1] → E[D] · E[expr1]

(5.4)

where c ∈ R is a constant, D is a known independent distribution, and expr1, expr2 are
polynomial expressions over random variables.

Yet, to address our Prob-solvable loop extensions compared to [BKS19], in addition to (5.4) we
need to ensure that dependencies among the random variables of P yield also moment-based
recurrences. We achieve this by introducing the following two simplification rules over random
variables with Gaussian/uniform distributions:

G(exprµ, σ2) → exprµ + G(0, σ2),
U(exprl, expru) → exprl + (expru − exprl)U(0, 1), (5.5)

for arbitrary polynomial expressions exprµ, exprl, expru over random variables. Using (5.5) in
addition to (5.4), moment-based recurrences of Prob-solvable loops can always be computed as
linear recurrences with constant coefficients over E-variables (line 9 of Algorithm 2), implying
the existence of closed form solutions of E-variables and hence of MBIs of P , as formalized
below in Theorem 5.1.

Lastly, we introduce simplification rules that simplify the treatment of discrete random variables.
These rules are based on the Theorem 5.3 and have the following form:

dn → ∑m−1
i=0 aid

i, (5.6)

where m = |Ω(d)| and ais are constants as of Theorem 5.3. With these rules, the powers for the
discrete part of E-variable monomials never exceed a certain bound.

Theorem 5.1. The simplification rules (5.5) are correct.

Proof. Recall that there is a one-to-one correspondence between probability distributions and
characteristic functions E[eitX] of a random variable X . In particular, the characteristic function
of a Gaussian distribution with parameters µ and σ2 is E[eitG(µ,σ2)] and thus the characteristic
function of G(exprµ, σ2) is E[eitG(exprµ,σ2)]. Then

48

5.2. Programming Model: Extending Prob-solvable Loops

E
[
eitG(exprµ,σ2)

]
=

∫
E

[
eitG(y,σ2)f(y)

]
dy

=
∫∫

eitx 1√
2πσ2

e− (x−y)2

2σ2 f(y)dxdy

=
∫∫

eit(x+y) 1√
2πσ2

e− ((x+y)−y)2

2σ2 f(y)dxdy

=
∫

eitx 1√
2πσ2

e− (x)2

2σ2 dx

∫
eityf(y)dy

= E
[
eitG(0,σ2)

]
· E

[
eit·exprµ

]
= E

[
eit(G(0,σ2)+exprµ)]

by change of limits for x ∈ R, where f is the probability density function of the random
variable exprµ. Note that E

[
eit(N (0,σ2)+exprµ)]

corresponds to the characteristic function of
expr1 + G(0, σ2), and hence the simplification rule G(exprµ, σ2) → expr1 + G(0, σ2) of (5.5)
is correct.

Similarly, for a uniform distributions with limits l, u we have the corresponding characteristic
function E[eitU(l,u)], hence for U(exprl, expru) we have

E
[
eitU(exprl,expru)

]
=

∫
f(y)E

[
eitU(yl,yu)

]
dy

=
∫

f(y)
∫ yu

yl

1
yu − yl

eitxdxdy

=
∫

f(y) 1
yu − yl

∫ 1

0
(yu − yl)eit(yl+(yu−yl)x)dxdy

=
∫

f(y)
∫ 1

0
1 · eit(yl+(yu−yl)x)dxdy

=
∫

f(y)E
[
eit(yl+(yu−yl)U(0,1))

]
dy

= E
[
eit(exprl+(expru−exprl)U(0,1))

]
by the rules of expectations and the change of limits, with y = (yl, yu) and f the probability den-
sity function of the random variable (exprl, expru). Expression E

[
eit(exprl+(expru−exprl)U(0,1))

]
corresponds to the characteristic function of exprl + (expru − exprl)U(0, 1)), so the simplifica-
tion rule U(expr1, expr2) → expr1 + (expr2 − expr1)U(0, 1) of (5.5) is correct.

Further, observe that polynomial expressions remain polynomial after applications of (5.5)
(line 9 of Algorithm 2). Once Gaussian and uniform distributions depending on loop variables are
replaced using (5.5), we are left with independent known distributions and polynomial expressions
over random variables for which (5.4) and (5.6) can further be used.

49

5. ANALYZING BAYESIAN NETWORKS

Since the left- and right-hand sides of the rules (5.4), (5.5), and (5.6) are equal, in the mathemati-
cal sense, the MBIs computed correspond to the properties of the original loop P .

We next prove, that arbitrary moments for variables of our new, extended version of Prob-solvable
loops are computable.

Theorem 5.2. Let P be an extended Prob-solvable loop (as of Definition 5.1) with discrete finite
variables variables {d1, . . . , dr} and arbitrary variables {x1, . . . , xm} and consider k ∈ N.
Algorithm 2 is sound and terminating, yielding MBIs of degree k of P .

Proof. For the proof, we will use properties of C-finite recurrences, that is, linear recurrences with
constant coefficients. Closed-form solutions always exist for homogeneous C-finite recurrences
and are called C-finite expressions. Furthermore, any inhomogeneous C-finite recurrence can be
translated into a homogeneous one if the inhomogeneous part is a C-finite expression.

We associate every monomial with an ordinal number as follows,

rπ
i=1

dδi
i

mπ
i=1

xλi
i

σ−→
m∑

i=1
ωm · λi

and partially order monomials M, N such that M > N iff σ(M) > σ(N).

Algorithm 2 terminates if for every monomial M (from the set S, line 4 of Algorithm 2) the
moment-based recurrence equation over the corresponding E-variable E[M(n + 1)] can be
computed as a C-finite expression over E-variables. We will show that this is indeed the case by
transfinite induction over monomials.

Let W = πK
i=1 xλi

i , M = W
πr

i=1 dδi
i , M = {W · πr

i=1 dγi
i |i ∈ {1, . . . , r}, ∀i : γi < |Ω(di)|}.

Assume that every monomial smaller than M has a closed-form solution in the form of a C-finite
expression.

Updates of P are of the form specified by equations (5.2)-(5.3) of Definition 5.1.

The algorithm rewrites E[M(n + 1)] as a sum of E-variables, which leads to

E
[rπ

i=1

∑
j

αj,i∑
α

pi,j,α (Pi,j,α(d1, . . . , dr))δi

·
Kπ

i=1

∑
j

βj,k∑
β

qk,j,β

(
Qk,j,β(d1, . . . , dr) + Rk,j,β(d1,...,dr,x1,...,xk−1)

)λi
]
. (5.7)

After applying the simplification rules, the expression simplifies to

E[M(n + 1)] =
∑

Mi∈M
cMiMi(n) +

J∑
j=1

bjE
[
Nj(n)

]
(5.8)

for some J , constants ci, bi, and monomials N1, . . . , NJ all smaller than M . By assumption,
there is a closed form expression for each Nj , hence for the sum

∑J
j=1 bjE[Nj(n)]. Since M

50

5.3. Encoding BNs as Prob-solvable Loops

was arbitrary from M, a similar recurrence can be derived for any monomial in M. Since we
further have |M| < ∞, we have a system of |M| inhomogeneous linear C-finite recurrences of
the form

E[M∗(n + 1)] =
∑

M∈M
cM∗,M M(n) + fM∗

for each M∗ ∈ M, and C-finite expressions fM∗ . Hence, the closed forms of E[M∗(n)] exist
and are C-finite expressions.

Example 5.1. Consider the Prob-solvable loop in Figure 5.2(B). An example of E-variable would
be E[W22], for which an MBI E[W22] = 4.01408a2 + 53.83168a + 4.01408b + 250.3172 is
computed using Algorithm 2.

Remark. While Prob-solvable loops are non-deterministic, with trivial loop guards of true, we
note that probabilistic loops bounded by a number of iterations, such as

n := 0; while(n < 1000){n := n + 1}
can be encoded as Prob-solvable loops.

5.3 Encoding BNs as Prob-solvable Loops

In this section, we argue that Prob-solvable loops offer a natural way for encoding BNs, enabling
further BN analysis via Prob-solvable loop reasoning in Section 5.4.

5.3.1 Finite Variables

For a finite discrete random variable X , let [X = x] be the expression such that [X = x] = 1
if X = x and 0 otherwise. Note that when X is binary-valued, we have [X = 1] = X and
[X = 0] = 1 − X . It follows that, in general, for a discrete variable X with possible values
x = 0, 1, . . . , k − 1, we have [X = x] = π

0≤i<k
i ̸=d

X−i
x−i . Furthermore, let [(X, Y) = (x, y)] =

[X = x] · [Y = y]. Then, [(X, Y) = (x, y)] = 1 iff X = x ∧ Y = y, and 0 otherwise. Finally,
we write [X ̸= x] to denote 1 − [X = x]. Observe that [X = x] and [X ̸= x] are polynomials
in X .

Theorem 5.3. Let X be a discrete random variable over A = {a1, . . . , am}. Then we can
rewrite Xn as a linear combination of 1, X, X2, · · · , Xm. Furthermore,

Xn = anM−1X, (5.9)

where an = (an
1 , · · · , an

m), M is an m×m matrix with Mij = ai−1
j , and X = (X0, · · · , Xm−1)T .

Proof. Since X has a value drawn from A, then X −a = 0 for some a ∈ A thus
π

a∈A(X −a) =
0. Hence also

Xk
π
a∈A

(X − a) = 0, (5.10)

51

5. ANALYZING BAYESIAN NETWORKS

which gives

Xk+m =
∑

0<i<m

diX
k+i (5.11)

for some values di.

The sequence 1, X, X2, · · · then give rise to a recursively defined sequence (xk)∞
k=0 such

that xi = Xi defined by xk = XK for =≤ k < m and a recursive property as given
by (5.10) and (5.11). We can now solve the recurrence, giving us another way of represent-
ing the sequence 1, X, X2, · · · .

The characteristic polynomial of (xk)∞
k=0 is

π
a∈A(X − a), thus we have

Xn =
∑

0<i≤m

cia
n
i ,

with the coefficients ci coming from the values of first m terms in the sequence, i.e. x0, x1, · · · , xm−1
or 1, X, · · · , Xm−1. This gives a system of linear equations

X0 =
∑

0<i≤m

cia
0
i

...

Xm−1 =
∑

0<i≤m

cia
m−1
i

or MC = X where X = (X0, · · · , Xm−1)T , C = (c1, · · · , cm)T , and M with Mkl = ak−1
l .

Then we have C = M−1X. Note that the values ci are linear combinations of X0, · · · , Xm−1.

This gives

Xn = (an
1 , an

2 , · · · , an
m)M−1X.

(Or Xn = A⊙nM−1X with Hadamard power notation.)

This result allows us to rewrite any power of a finite random variable with m possible values in
terms of its first m − 1 moments.

Corollary 5.3.1. For a binary random variable X we have Xn = X for n ≥ 1.

The representation of arbitrary finite variables introduces polynomial dependencies, which were
not supported previously. With the extension of Definition 5.1 and by Theorem 5.2, we can
rewrite the E-variables and the recurrences to guarantee the termination of Algorithm 2.

52

5.3. Encoding BNs as Prob-solvable Loops

Dynamic Bayesian Network (dynBN)

real U, H, O
real H = 1;

while (true){
U := 0 @ .25; 1 @ .25; 2 @ .25; 3 @ .25;
H := [H=1][U=0] @ 0.99; 0 @ 0.01;

+ [H=1][U=1] @ 0.95; 0 @ 0.05;
+ [H=1][U=2] @ 0.90; 0 @ 0.10;
+ [H=1][U=3] @ 0.80; 0 @ 0.20;
+ [H=0] @ 0; 0 @ 1;

O := [H=1]*4 @ 0.50;
[H=1]*3 @ 0.42;
[H=1]*2 @ 0.06;
[H=1]*1 @ 0.02;
[H=1]*0 @ 0;

+ [H=0]*4 @ 0.01;
[H=0]*3 @ 0.04;
[H=0]*2 @ 0.11;
[H=0]*1 @ 0.32;
[H=0]*0 @ 0.52;

}

Encoding dynBN as Prob-Solvable Loop

𝑯𝒆𝒂𝒍𝒕𝒉𝒕-𝟏(𝑯𝒕-𝟏) 𝑯𝒆𝒂𝒍𝒕𝒉𝒕(𝑯𝒕)
𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒕(𝑶𝒕-𝟏)

𝑽𝑳𝒐𝒘 (𝟎) 𝑳𝒐𝒘 (𝟏) 𝑴𝒆𝒅𝒊𝒖𝒎 (𝟐) 𝑯𝒊𝒈𝒉 (𝟑)
0.25 0.25 0.25 0.25

A B

𝑼𝒔𝒂𝒈𝒆𝒕(𝑼𝒕)

𝑽𝑮𝒐𝒐𝒅 (𝟒) 𝑮𝒐𝒐𝒅 (𝟑) 𝑴𝒐𝒅𝒆𝒓𝒂𝒕𝒆 (𝟐) 𝑷𝒐𝒐𝒓 (𝟏) 𝑽𝑷𝒐𝒐𝒓 (𝟎)𝑯 = 𝟎 0.01 0.04 0.11 0.32 0.52𝑯 = 𝟏 0.50 0.42 0.06 0.02 0

𝑶𝑲 (𝟏)
𝑯 = 𝟎

𝑼 = 𝟎 0𝑼 = 𝟏 0𝑼 = 𝟐 0𝑼 = 𝟑 0

𝑯 = 𝟏
𝑼 = 𝟎 .99𝑼 = 𝟏 .95𝑼 = 𝟐 .90𝑼 = 𝟑 .80

𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒕-𝟏(𝑶𝒕-𝟏)

𝑼𝒔𝒂𝒈𝒆𝒕-𝟏(𝑼𝒕-𝟏)

Figure 5.3: In Figure 5.3(B) we give the Prob-solvable loop encoding of the dynamic Bayesian
Network (dynBN) from Figure 5.3(A).

Example 5.2. With the Theorem 5.3, we are able to encode the BN of Figure 5.3. For the random
variable usage over {0, 1, 2, 3}, program variable U , we have

Xn =
(
0n 1n 2n 3n

) (���.
1 1 1 1
0 1 2 3
0 1 4 9
0 1 8 27

)���
−1 (���.

X0

X1

X2

X3

)���

=
(
0n 1n 2n 3n

) (���.
1 −11/6 1 −1/6
0 3 −5/2 1/2
0 −3/2 2 −1/2
0 1/3 −1/2 1/6

)���
(���.

X0

X1

X2

X3

)��� .

(5.12)

With (5.12), we can reduce the power of U above three whenever it appears in the recurrence
computation. Such higher power may appear when computing higher moments for random
variables Health or Observation.

53

5. ANALYZING BAYESIAN NETWORKS

5.3.2 Modeling Local Probabilistic Models of BNs as Prob-solvable Loop Updates

A BN is fully specified by its local dependencies. We consider common local probabilistic models
and encode these models as Prob-solvable loop instances, as follows.

Deterministic Dependency

We first explore local probabilistic models specifying deterministic dependency, that is, when
the values of BN nodes X are determined by the values of the parent variables from Par(X).
For example, when X is binary-valued, such a deterministic dependency can be a Boolean
expression. On the other hand, when X is continuous, deterministic dependency can be a function
over Par(X).

For a continuous variable X whose value is given by a polynomial Q(Par(X)), encoding
deterministic dependencies as a Prob-solvable loop update is straightforward: we simply setX =
Q(Par(X)).

For a finite discrete random variable X , the representation as introduced in 5.3.1 provides a natural
way to specify deterministic dependencies as updates of Prob-solvable loops (see Algorithm 3).

Conditional Probability Tables – CPTs

As shown in Figure 5.1(A), a common way to specify BN dependencies among discrete variables
is with CPTs, with each CPT line representing a possible assignment of values of a BN node X
to Par(X). A CPT for X can be turned into Prob-solvable loop updates as follows.

We represent the values of X with integers {0, · · · , m − 1} for an m-ary variable X . Let
Par(X) = {Y1, · · · , Yk}, denoting the parents of X . We represent each line L in the CPT
for X by an update UL. Each line L specifies the values for Par(X). If L specifies values
Y1 = y1, · · · , Yk = yk we let DL ≡ Λ

i Yi = yi Let P (X = i|L) = pL,i and define UL to be

0 · [DL] @ pL,0; · · · ; (m − 1) · [DL] @ pL,m−1; (5.13)

encoding that the value of UL is 0 if DL not as specified in the respective CPT line L; otherwise
the value of XL is i with probability pL,i. We then set

X =
∑

L∈CP T

XL. (5.14)

Example 5.3. Using (5.13)-(5.14), the disBN of Figure 5.1(A) is encoded as a Prob-solvable
loop in Figure 5.1(B). While the parameters of S and G are not directly visible from the disBN,
these parameters are given by the expected values of S and G in the Prob-solvable loop of
Figure 5.1(B). Note that Figure 5.1(B) also features a GR variable corresponding to a Bernoulli
random variable depending on G and R, such that GR is 1 iff both G and R are 1. The program
variable continue samples a sequence of Bernoulli random variables (one for each iteration
n), while the random variable count represents a geometric distribution encoding the sum of
continue values.

54

5.3. Encoding BNs as Prob-solvable Loops

Alarm (A)

Earthquake (EQ)Burglary (B)

Discrete Bayesian Network (disBN)
real B, EQ, A, J, M;

while (true){
B := 1 @0.01; 0 @0.99;
EQ := 1 @0.02; 0 @0.98;
A := [B=1][EQ=1] @0.95; 0 @0.05;

+ [B=1][EQ=0] @0.94; 0 @0.06;
+ [B=0][EQ=1] @0.29; 0 @0.71;
+ [B=0][EQ=0] @0.001; 0 @0.999;

J := [A=0] @0.05; 0 @0.95;
+ [A=1] @0.9; 0 @0.1;

M := [A=0] @0.01; 0@0.99;
+ [A=1] @0.7; 0@0.3;

}

Encoding disBN as Prob-Solvable Loop

A

CPT for B

CPT for M

BJohnCalls (J) MaryCalls (M)

B=1 B=0

0.01 0.99

J=1 J=0

A=0 0.05 0.95

A=1 0.9 0.1

EQ=1 EQ=0

0.02 0.98

M=1 M=0

A=0 0.01 0.99

A=1 0.7 0.3

CPT for EQ

CPT for J

A=1 A=0

B=1 EQ=1 0.95 0.05

B=1 EQ=0 0.94 0.06

B=0 EQ=1 0.29 0.71

B=0 EQ=0 0.001 0.999

CPT for A

Figure 5.4: The discrete Bayesian Network (disBN) of Figure 5.4(A) shows a burglar alarm
example. A burglar (B) and earthquake (EQ) directly affect the probability of the Alarm (A)
going off, but whether or not John calls (J) or Mary calls (M) depends only on the alarm. A
Prob-solvable loop encoding for this disBN is given in Figure 5.4(B).

Linear Dependency for Gaussian Variables

A local probabilistic model for a Gaussian random variable with continuous parents (as introduced
in Definition 2.11) can be encoded as a Prob-solvable loops update, as follows:

X = RV

(
gauss, αX +

∑
Y ∈P ar(X)

βX,Y · Y, σ2
X

)
, (5.15)

where αX , βX,Y are constants, σ2
X is fixed and RV (gauss, µ, σ2) denotes a Gaussian random

variable drawn from a Gaussian distribution G(µ, σ2).

Conditional Linear Gaussian Dependency

By combining BN dependencies on discrete and continuous variables for a Gaussian random
variable X , we can model conditional linear Gaussian dependencies for X . Let D be the joint
distribution of the discrete parents of X and for each d ∈ D let Gd be the Gaussian distribution
associated with condition d (here Gd may depend on the values of continuous parents Par(X)
of X , as discussed in Section 5.2). The conditional linear Gaussian dependency for X can be
modeled as the following Prob-solvable loop update:∑

d∈Ω(D)
[D = d] · Gd. (5.16)

Example 5.4. Figure 5.2(B) shows the Prob-solvable loop encoding of the clgBN of Figure 5.2(A).
The random variables, W1 and W2 are given by conditional linear Gaussian dependency and

55

5. ANALYZING BAYESIAN NETWORKS

Dynamic Bayesian Network (dynBN)
real R, U;
real R = 1;

while (true){
R := [R=1] @0.7; 0@0.3;

+ [R=0] @0.3; 0@0.7;
U := [R=1] @0.9; 0@0.1;

+ [R=0] @0.2; 0@0.8;
}

Encoding dynBN as Prob-Solvable Loop

Q1 - Exact Inference Problem Exact Inference Problem

𝑹𝒂𝒊𝒏𝒕-𝟏(𝑹𝒕-𝟏) 𝑹𝒂𝒊𝒏𝒕(𝑹𝒕) 𝑹𝒂𝒊𝒏𝒕+𝟏(𝑹𝒕+𝟏)

𝑼𝒎𝒃𝒓𝒆𝒍𝒍𝒂𝒕-𝟏(𝑼𝒕-𝟏) 𝑼𝒎𝒃𝒓𝒆𝒍𝒍𝒂𝒕(𝑼𝒕) 𝑼𝒎𝒃𝒓𝒆𝒍𝒍𝒂𝒕+𝟏(𝑼𝒕+𝟏)

𝑹𝒕-𝟏 𝑹𝒕 = 𝟏 𝑹𝒕 = 𝟎
1 0.7 0.3

0 0.3 0.7

𝑹𝒕 𝑼𝒕 = 𝟏 𝑼𝒕 = 𝟎
1 0.9 0.1

0 0.2 0.8

𝑹𝒂𝒊𝒏𝟎 𝑹𝟎 = 𝟏

What is the probability of raining on day n ? 𝔼 𝑹𝒏 = 𝟓 -𝒏 𝟐𝒏 + 𝟓𝒏𝟐
What is the probability of taking an umbrella on day n ? 𝔼 𝑼𝒏 = 𝟕(𝟐 -𝒏) 𝟓-𝒏 + 𝟏𝟏𝟐𝟎

A B

Figure 5.5: In Figure 5.5(B) we give the Prob-solvable loop encoding of the dynamic Bayesian
Network (dynBN) from Figure 5.5(A). Solutions of probabilistic inferences in this dynBNs are
also given, by computing MBIs of Figure 5.5(B).

encoded using (5.16). For simplicity, W1 and W2 are further split into variables W1_1 and
W1_2, and W2_1 and W2_2, respectively, representing different values of W1 and W2 based
on the value of D. Further, D1_S is a binary variable which is 1 iff D is 1 and S is 0, and
W2D1_S represents the expected value of W2 · D1_S.

Temporal Dependencies in DynBNs

Dependencies in dynBNs are given by intra- and inter-time-slice edges. While the encoding of
these dependencies is similar to the afore discussed BN dependencies, there are two restrictions
on the structure of the dynBNs ensuring that dynBNs can be encoded as Prob-solvable loops.
First, if X is not a finite discrete variable, its dependence on itself must be represented by a linear
function. Second, a variable X can only depend on itself in the previous time-slice and current
time-slice variables.

Example 5.5. Figure 5.5(B) lists the Prob-solvable loop corresponding to Figure 5.5(A). The
Bernoulli random variables R and U are encoded using (5.13)-(5.14). The parameters of R and
U change across iterations, corresponding to parameters in different time-slices of the dynBN;
their concrete values are given by the expected values of R and U .

56

5.4. Automatic BN Analysis via Prob-solvable Loop Reasoning

Algorithm 3 Encoding BN variants as Prob-solvable loops
Input: BN
Output: Prob-solvable program
Notation: LPM denoting a local probabilistic model

1: Nodes := topologically ordered set of BN nodes
2: for X in Nodes do
3: if LPM of X is CPT then
4: for each line L in the CPT do Set XL as in (5.13)
5: end for
6: Set X as in (5.14)
7: end if
8: if LPM of X is a linear dependency for Gaussian variables then Set X as in (5.15)
9: end if

10: if LPM of X is a conditional linear Gaussian dependency then Set X as in (5.16)
11: end if
12: end for

5.3.3 Encoding BNs as Prob-solvable Loops

Section 5.3.2 encoded common local probabilistic models of BN dependencies as Prob-solvable
loop updates. Since BNs are DAGs, BN nodes can be ordered in such a way that each BN node
X depends only on previous BN variables— its parents Par(X). Hence, BNs can be encoded as
Prob-solvable loops, as shown in Algorithm 3 and stated below.

Theorem 5.4. Every BN and dynBN2 with local probabilistic models given by CPT or (conditional
linear) Gaussian dependencies can be encoded as a Prob-solvable loop. In particular, disBNs,
gBNs, and clgBNs can be encoded as Prob-solvable loops.

Based on Algorithm 3 and Theorem 5.4, we complete this section by defining the following class
of BNs, in relation to Prob-solvable loops.

Definition 5.4 (Prob-solvable Bayesian Networks). A Prob-solvable Bayesian Network (PSBN)
is a BN that can be encoded as a Prob-solvable loop.

The relation and expressivity of PSBNs, and hence Prob-solvable loops, compared to BN variants
is visualized in Figure 5.6.

5.4 Automatic BN Analysis via Prob-solvable Loop Reasoning

We now show that several BN challenges can automatically be solved by generating moment-
based invariants of Prob-solvable loops encoding the respective BNs. To this end, (i) we consider
exact inference, sensitivity analysis, filtering, and computing the expected number of rejecting

2subject to the restriction on structure of dynBN as discussed in Section 5.3.2

57

5. ANALYZING BAYESIAN NETWORKS

samples in sampling-based BN procedures and (ii) formalize these BN problems as reasoning
tasks within Prob-solvable loop analysis. We then (iii) encode BNs as Prob-solvable loop P using
Algorithm 3 and (iv) generate moment-based invariants of P using Algorithm 2. We address
steps (i)-(ii) in Sections 5.4.1-5.4.3, and report on the automation of our work in Section 5.5.

5.4.1 Exact Inference in BNs

Common queries on BN properties address (i) the probability distributions of BN nodes X , for
example, by answering whether P (X = x) or P (X < c); (ii) the conditional probabilities of BN
nodes X, Y , such as P (X = x|Y = y); or (iii) the expected values and higher-order moments of
BN nodes X, Y , for instance, E[X],E[X2],E[X|Y = y] and E[X2|Y = y]. Here we focus on
(iii) but show that, in some BN variants, queries related to (ii) can also be solved by our work.

Exact Inference in disBNs

In the case when a BN node X is binary-valued, we have E[X] = P (X = true). Furthermore,
for any higher-order moment of X we also have Momk[X] = P (X = true). For non-binary-
valued but discrete BN node X , with values from {0, . . . , m − 1}, the higher-order moments
of X are also computable. Moreover, the first m − 1 moments are sufficient to fully specify
probabilities P (X = i), for i ∈ {0, . . . , m − 1}, as shown in Theorem 5.3.

Lemma 5.5. The higher-order moments of a discrete random variable X over {0, . . . , m − 1}
are specified by the first m − 1 higher-order moments of X .

Proof. Let P (X = i) = pi, for i ∈ {0, . . . , m}. Then
∑

0≤i<m ikpk = Momk(X), yielding
m linear equations over p0, · · · pm−1, with k ∈ {1, · · · m − 1}. As

∑
0≤i<m pi = 1, we have a

linear system of m linearly independent equations, implying the existence of a unique solution
that specifies the distribution of X .

For computing conditional expected values and higher-order moments, we show next that deriving
E[Xk|D = i] is reduced to the problem of computing E[Xk·[D=i]]

E[[D=i]] .

Lemma 5.6. If D = i with non-zero probability, we have

E[Xk|D = i] = E[Xk · [D = i]]
E[[D = i]] .

Proof. By partition properties for expected values, we have

E[Xk[D = i]] = E[Xk[D = i]|D = i]P (D = i) + E[Xk[D ̸= i]|D = i]P (D ̸= i).

As [D = i] = 1 if and only if D = i, we derive E[Xk[D = i]|D = i] = E[Xk|D = i] and
E[Xk[D ̸= i]|D = i] = 0. Therefore, E[Xk|D = i] = E[Xk|D = i]P (D = i). Since
P (D = i) ̸= 0, we conclude E[Xk|D = i] = E[Xk·[D=i]]

E[[D=i]] .

58

5.4. Automatic BN Analysis via Prob-solvable Loop Reasoning

Bayesian Networks

Prob-Solvable Bayesian Networks

Conditional Linear Gaussian Bayesian Networks (clgBN)

Gaussian Bayesian Networks (gBN)

Discrete Bayesian Networks (disBN)

Dynamic Bayesian Networks (dynBN)

Dynamic Discrete Bayesian
Networks (dyndisBN)

Dynamic
Conditional Linear
Gaussian Bayesian
Networks
(dynclgBN)

Dynamic Gaussian Bayesian
Networks (dyngBN)

Figure 5.6: BN hierarchy.

Exact Inference in gBNs

Recall that a Gaussian distribution is specified by its first two moments that is, by its mean µ and
variance σ2. As all nodes in a gBN are Gaussian random variables, the first two moments of gBN
nodes are sufficient to analyse gBN behavior. Further, E[X] and E[X2] of a gBN node X are
computable using Algorithm 2.

Exact Inference in clgBNs

As continuous variables X in clgBNs are Gaussian random variables, the means, and variance of
X are also computable using Algorithm 2. However, clgBNs might also include discrete variables
D, whose (conditional) higher-order moments can be computed as in Lemmas 5.5-5.6. Further,
for a continuous variable X and a discrete variable D in a clgBN, we have

E[X|D = i] = E[Xk · [D = i]]
E[[D = i]] ,

allowing us, for example, to derive E[W2|D = 1] = 7.25 + 0.89a in Figure 5.2.

Exact Inference in dynBNs

As dynBNs are infinite in nature, (infinite) Prob-solvable loops are suited to reason about dynBN
inferences, such as (i) long-term behavior or prediction and (ii) filtering and smoothing. A related
problem is characterizing the dynBN behavior after n iterations, in particular as n → ∞.

(i) Prediction and long-term behavior in dynBNs By modeling dynBNs as Prob-solvable
loops, we can compute/predict higher-order moments E[Xk

n] of dynBN nodes X using Algo-
rithm 2, for an arbitrary n. Further, thanks to the existence of E[Xk

n] for Prob-solvable loops, we
conclude that limn→∞ E[Xk

n] is also computable. Moreover, Algorithm 2 computes higher-order
moments/MBIs in O(1) time w.r.t. n, which is not the case of the O(n) approach of the standard
Forward algorithm.

59

5. ANALYZING BAYESIAN NETWORKS

(ii) Filtering and prediction in dynBNs Predicting the next dynBNs state Xt+1 given the
observations e1, . . . , et+1 until time t + 1 can be expressed as P (Xt+1|e1, . . . , et+1), which in
turn can be rewritten using Bayes’ rule under the sensor Markov assumption (the evidence et

depends only on program variables Xt from the same time-slice), as follows:

P (Xt+1|e1, . . . , et+1) = P (et+1|Xt+1) ·
∑
xt

P (Xt+1|xt) · P (xt|e1, . . . , et),

where P (et+1|Xt+1) and P (Xt+1|xt) are specified by the BN, assuming discrete-valued ob-
servation variables. Filtering and prediction in dynBNs are thus computable using MBIs of
Prob-solvable loops.

5.4.2 Number of BN Samples until Positive BN Instance

As pointed out in [BKKM18], an interesting question about BNs is "Given a Bayesian network
with observed evidence, how long does it take in expectation to obtain a single sample that
satisfies the observations?". A related though arguably simpler question would require giving the
expected number of positive instances (samples satisfying the observation) in N samples of BNs.
Both of these questions can be answered using standard results from probability theory.

Lemma 5.7. Given the probability p of a BN observation, the expected number of positive BN
instances in N samples is pN . Further, the expected number of BN samples until the first positive
BN instance is 1

p .

Proof. Since every BN iteration (sample) is independent of previous ones, the occurrence of
positive BN instances can be modeled as a Bernoulli random variable, given by the probability
p of positive instances in any given iteration (or sample). Therefore, the number of positive
instances in N samples is the sum of independent, identically distributed Bernoulli random
variables, parametrized by p, following thus a Binomial distribution with parameters N and p.
The number of positive BN samples is thus E[Binom(N, p)] = pN . The expected number of
BN samples until the first positive BN instance is thus given by the distribution of the number
of Bernoulli trials needed for one success, which in turn is given by the geometric distribution
Geometric(p). The expected number of samples until the first positive BN instance is thus
E[Geometric(p)] = 1

p .

We note that Lemma 5.7 can be answered using Prob-solvable loop reasoning by relying on
Algorithm 2, as illustrated next.

Example 5.6. For inferring the expected number of positive instances in N samples in Figure 5.1,
we first encode the observation in the BN as a new variable GR = G·R, capturing the observation
that the grass is wet and there was rain. We then transform the BN into a dynBN adding an
inter-time-slice counter update count = count + GR. The expected number of positive instances
is then the prediction E[countn] for n = N .

For answering the question of [BKKM18], we again encode the observation first as above, e.g.,
GR = G · R. We use a boolean variable to indicate whether there has been a positive instance

60

5.5. Implementation and Experiments

Gaussian Bayesian Network (gBN)
real ALG, ANL, S, S_0, ANL_0;

while (true){
ALG := RV(gauss, 50.6, 112.8);
ANL_0 := -3.57 +0.99*ALG;
ANL := RV(gauss, ALG_0, 110.25);
S_0 := -11.19 +0.76*ALG + 0.31*ANL;
S := RV(gauss, S_0, 158.8);

}

Encoding gBN as Prob-Solvable Loop

Algebra (ALG) Statistics (S)

ALG𝓝 𝟓𝟎. 𝟔, 𝟏𝟏𝟐. 𝟖 S𝓝 −𝟏𝟏. 𝟏𝟗 + 𝟎. 𝟕𝟔 ∗ 𝑨𝑳𝑮 + 𝟎. 𝟑𝟏 ∗ 𝑨𝑵𝑳, 𝟏𝟓𝟖. 𝟖

Analysis (ANL)

CPT for SCPT for ALG

A B
ANL𝓝 −𝟑. 𝟓𝟕 + 𝟎. 𝟗𝟗 ∗ 𝑨𝑳𝑮, 𝟏𝟏𝟎. 𝟐𝟓

CPT for ANL

Figure 5.7: The Gaussian Bayesian Network (gBN) of Figure 5.7(A) describes the relationships
between the marks on three math-related topics. Its respective Prob-solvable loop encoding is
given in Figure 5.7(B).

continue = continue · [GR = 0], which is initiated as 1 (or true) and updated to 0 once
GR = 1 and stays 0 thereafter. Finally, we update a loop counter as long as there is no positive
instance observed with count = count + continue. The expected number of samples until the
first positive instance is the long-term behavior of count, i.e., limn→∞ E[countn].

5.4.3 Sensitivity Analysis in BNs

As BNs rely on network parameters, a challenging task is to understand to what extent can a
small change in a network parameter influence the outcome of a particular BN query. This
task is referred to as sensitivity analysis in BNs. More precisely, we would like to compute
P (X|e) and E[X|e] for a random variable X and evidence e as functions of a BN parameter(s) θ.
For doing so, we note that Prob-solvable loops may use symbolic coefficients. Thus, replacing
concrete BN probabilities with symbolic parameters and solving BN queries as discussed in
Section 5.4.1, allow us to automate sensitivity analysis in BNs by computing MBIs of the
respective Prob-solvable loops, using Algorithm 2.

Example 5.7. A sensitivity analysis in Figure 5.2 could measure the effect of parameters of weight
loss in week 1 on the conditional expectation E[W2|D = 1]. That is, we compute E[W2|D = 1]
as a function of parameters of W1. In this case, we introduce symbolic parameters a and b,
adjusting the parameters of weight loss in week 1 (W1_1) when the drug is administered.
Using Algorithm 2, we compute the MBIs E[W2k · D],E[D], from which we have, for k = 1,
that E[W2|D = 1] = E[W 2·D]

E[D] = 0.89a + 7.25, answering the respective sensitivity analysis
of Figure 5.2.

5.5 Implementation and Experiments

We automated BN analysis via Prob-solvable loop reasoning by extending and using our tool
MORA [BKS20b]. Although Algorithm 3 describes a way how to automatically translate BNs

61

5. ANALYZING BAYESIAN NETWORKS

Grass – Fig. 5.1 (disBN) #nodes: 3, #edges: 3, #parameters: 7
Q1: P (R|G) 0.11s P (R|G) = 1599

1827 ≈ 0.8752
Q2: Number of samples till G = 1 0.27s #samples = 2500

1827 ≈ 1.37
Q3: Sensitivity of P (R|G) 0.25s P (R|G) = 0.04b+0.6396

−0.178a+0.04b+0.7308
Q3: Number of samples sensitivity 0.32s #samples = 1

−0.178a+0.04b+0.7308
Alarm [RN10] – Fig. 5.4 (disBN) #nodes: 5, #edges: 4, #parameters: 10

Q1: P (B|A) 0.13s P (B|A) = 470010
1258221 ≈ 0.3736

Q1: P (EQ|M) 0.15s P (EQ|M) = 1052777∗20
586817249 ≈ 0.03588

Q1: P (¬EQ ∧ ¬B|A ∧ J) 0.65s P (¬EQ ∧ ¬B|A ∧ J) = 4486509
11323989 ≈ 0.3962

Q1: P (EQ ∧ ¬B|M ∧ J) 0.46s P (EQ ∧ ¬B|M ∧ J) = 365743899
2084100239 ≈ 0.1754

Q2: Number of samples (for M ∧ J) 0.37s #samples = 1000000000000
50054875461 ≈ 19.98

Q3: Sensitivity analysis (all of above) 1.48s

P (B|A) = 10bq+940b
−279bq+939b+289q+1

P (EQ|M) = 45540bq+21010q
−19251bq+64791b+19941q+1069

P (¬EQ ∧ ¬B|A ∧ J) = bq−b−q+1
−279bq+939b+289q+1

P (EQ ∧ ¬B|M ∧ J)
= −366110bq+366110q

−351261bq+1182201b+363851q+2259
Asia [LS88] (disBN) #nodes: 8, #edges: 8, #parameters: 18

Q1: P (Asia, Lung|Dysp) 0.46s P (A, L|D) = 439
1547368 ≈ 0.00028

Q2: Samples till Asia ∧ Lung 1.23s #samples = 20000
11 ≈ 1818.19

Q3: Sensitivity analysis 1.18s P (A, L|D) =
19a

10000 + 59b
20000 + 439

2000000
− 594a

3125 − 297b
2500 + 193421

250000
Marks [MKB79] – Fig. 5.7 (gBN) #nodes: 3, #edges: 3, #parameters: 6

Q1: Marks: expected values 0.02s
E[ALG] = 253

5 , E[ANL] = 11631
250 ,

E[ST AT] = 1042211
25000

Q3: Marks: sensitivity analysis EVs 0.03s
E[ALG] = µALG, E[ANL] = 99µALG

100 − 357
100 ,

E[ST AT] = 10669µALG
10000 − 122967

10000

Q1: Marks: second moments 0.05s
E[ALG2] = 66829

25 , E[ANL2] = 149080491
62500 ,

E[ST AT 2] = 1272324089651
625000000

Q3: Marks: sensitivity 2nd moments 0.09s

E[ALG2] = µ2
ALG + 564

5

E[ANL2] =
9801µ2

ALG
10000 − 35343µALG

5000 + σANL

+ 6165009
50000

E[ST AT 2] =
113827561µ2

ALG
100000000 − 1311934923µALG

50000000
+ 961σANL

10000 + 219203159849
500000000

Q1: Average: expected values 0.03s E[Avg] = 4735311
100000 ≈ 47.35

Q3: Average: sensitivity EV 0.04s E[Avg] = 40569µALG
40000 − 158667

40000
Q1: Average: second moments 0.08s E[Avg2] = 23800990133851

10000000000 ≈ 2380

Q3: Average: sensitivity 2nd moment 0.17s E[Avg2] =
1645843761µ2

ALG
1600000000 − 6436961523µALG

800000000
+ 17161σANL

160000 + 1133531965649
8000000000

Rats [Edw12] – Fig. 5.2 (clgBN) #nodes: 4, #edges: 4, #parameters: 11
Q1: E[W 2|D] 0.51s E[W 2|D] = 15.02
Q3: E[W 2|D] sensitivity 0.58s E[W 2|D] = 15.02 + 2.24a
Q1: E[W 22|D] 0.99s E[W 22|D] = 607089

2500 = 242.8356
Q3: E[W 22|D] sensitivity 1.37s E[W 22|D] = 3136

625 a2 + 42057
625 a+ 3136

625 b+ 607089
2500

win95pts (disBN) #nodes: 76, #edges: 112, #parameters: 574
Q1: E[P rtP ort|DS_LCLOK] 3.08s = 989900017424505

999770762903873 ≈ 0.99
Q3: E[P rtP ort|DS_LCLOK] 4.38s (Full result omitted due to the size)
Q1: E[P gOrnttnOK|¬P roblem2] 15.8s = 19

20
Q3: E[P gOrnttnOK|¬P roblem2] 17.7s (Full result omitted due to the size)
Q1: E[GDIOUT ∧ ¬P rtF ile|P rtSel] 160s = 500032476276151100993201

2000000000000000000000000 ≈ 0.25
Q3: E[GDIOUT ∧ ¬P rtF ile|P rtSel] 182s (Full result omitted due to the size)
Q1: E[P rtStatP aper ∧ LclOK|P roblem6 ∧ ¬P rtF ile] 339s (Full result omitted due to the size)
Q3: E[P rtStatP aper ∧ LclOK|P roblem6 ∧ ¬P rtF ile] 445s (Full result omitted due to the size)

Table 5.1: BN analysis via Prob-solvable loop reasoning within MORA.

to Prob-solvable loops, this part of the process was not implemented for the experiments below
due to the lack of standard encoding for (dynamic) Bayesian networks. Bayesian networks were
first manually encoded as Prob-solvable loops following the Algorithm 3. We then extended
MORA to support our extended programming model of Prob-solvable loops and integrated

62

5.5. Implementation and Experiments

Algorithm 2 within MORA3 to generate MBIs of Prob-solvable loops, thus solving the BN
problems of Sections 5.4.1-5.4.3. As benchmarks, we used 41 BN-related problems for 8 BNs
taken from [Edw12, MKB79, KN10, LS88, RN10, Mod19]. Tables 5.1 and 5.2 summarize our
experiments. For each example in Tables 5.1-5.2, we list the BN queries we considered, that
is, probabilistic inference (Q1), number of BN samples (Q2), and sensitivity analysis (Q3) as
introduced in Section 4.1 and discussed in Sections 5.4.1-5.4.3. Column 2 shows the time needed
by MORA to compute moment-based invariants (MBIs) solving the respective BN problems.
The last column gives our derived solutions for the considered BN queries. Computation times
are improved compared to [BKS20a]. This is partially thanks to code optimization in the tool
implementation, unrelated to work presented in the paper. The most significant improvement,
however, is seen in the discrete BNs. In this case, our improved timing results are mainly due to
the fact that the number of auxiliary variables is reduced in the extended framework, reducing
the amount of algebraic manipulation and recurrence solving. For example, the inference of
E[PrtPort|DS_LOCK] in the original form (with auxiliary variables) takes 67s in the approach
of [BKS20a]. In contrast, our current work computes results within 3s after performing rewriting
into a single, larger assignment. Our experiments were run on a MacBook Pro 2017 with 2.3
GHz Intel Core i5 and 8GB RAM.

Limitations Let us address some of the limitations of our approach and the implementation.
As Figure 5.6 illustrates, our approach does not work for arbitrary (dynamic) Bayesian networks.
The limitations arise from the restrictions we impose on the dependencies within the network and
from the limits of the encodings specified in Section 5.3.

Some of the restrictions are strong, in the sense that they keep us within the algebraic frameworks
introduced with our approach. Amongst strong restrictions are, for example, the restriction on
polynomial dependence of (unbounded) variables on themselves or limiting discrete variables
to only depend on discrete variables. The former guarantees the finiteness of the system of
recurrences we need to solve, while the latter ensures we stay within the realm of polynomial
arithmetic.

In contrast, we believe our weak restrictions do not violate any of the algebraic methods we
use. An example would be the restriction on inter-time-slice dependencies of variables in DBNs.
Many of the weak restrictions arise from the richness of the world of Bayesian networks. There
are too many ways to specify conditional probability dependencies (CPDs) to handle them all,
such as deterministic CPDs or tree-CPDs, and a variety of distributions can be used (other than
the ones introduced in the paper).

Complexity Our approach relies on algebraic techniques (such as finding roots of polynomials
and solving recurrences), for which external libraries are used (sympy, diofant), and hence
giving precise overall complexity bounds is challenging. We shall further discuss some partial
complexity results of our algorithms.

3https://github.com/probing-lab/mora

63

https://github.com/probing-lab/mora

5. ANALYZING BAYESIAN NETWORKS

Encoding Bayesian networks: The encoding of a BN as a probabilistic loop is linear (in the size
of BN) in both memory and time. A single probabilistic branch is used for each line of a table in
discrete and CLG dependencies.

Encoding of the probabilistic queries: Each of the queries considered in our work can be encoded
using only a constant number of new variables and corresponding polynomial probabilistic
updates. The size of the polynomials is, in the worst case, exponential in the number of variables
that appear in the query.

Number of recurrences: The number of recurrences that need to be constructed and solved
depends on the query and is, in the worst case, exponential (in the number of variables). Compared
to [BKS20a], only a single program variable is needed to encode any CPT, reducing the number
of recurrences involving a given variable exponentially (in the number of parents of the given
variable). In BNs with variables with many parents, this leads to significant improvement (e.g.,
from 67s to 3s for the inference query E[PrtPort|DS_LOCK] in the win95pts network). The
exponential time complexity corresponds to the NP-hardness of exact inference in BNs.

Comparison Our algebraic methods allow us to work with symbolic constants to analyze
entire classes of BNs as a single problem and provide sensitivity analysis, encode various
distributions and dependencies without the need to modify the entire approach, and address
several different BN-related challenges within one framework. On the other hand, manipulating
algebraic expressions and reasoning about algebraic objects is difficult and often slow. Single-
purpose tools optimized for their task will likely perform better than the approach presented
here.

Encoding a BN as a probabilistic program was also used in [BKKM18] to address computing the
expected number of samples (Q2), where a syntactic fragment of pGCL called Bayesian Network
Langauge (BNL) was used. Unlike Prob-solvable loops, BNL does not allow information flow
across loop iterations and hence cannot model DBNs. Furthermore, only discrete variables are
allowed in the BNL, further restricting the classes of BNs that can be modeled.

Approximate simulation-based methods, such as rejection sampling, are also often used to answer
probabilistic queries on Bayesian networks. There are two main disadvantages of such approaches.
First, events with very low probability require a great number of samples. We partially addressed
this by computing the expected number of samples beforehand (Q2). Second, specifying local
dependencies using symbolic parameters is not possible. Allowing symbolic parameters in
Prob-solvable loops allows evaluating probabilistic queries on an entire class of BNs, as well as
analyzing the sensitivity of BNs.

5.6 Chapter Conclusion

We show how to encode various kinds of Bayesian networks as an extended version of Prob-
solvable loops [BKS19]. This new class of probabilistic programs supports polynomial arithmetic
using finite-value variables as polynomial coefficients in polynomial updates. We provide a
fully automatic approach that can compute, for this class of programs, closed-form expressions

64

5.6. Chapter Conclusion

Umbrella [RN10] – Fig. 5.5 (dynBN) #nodes: 2, #edges: 2, #parameters: 3

Q1: Prediction 0.44s
E[R] = 2n+5n

2·5n

E[U] = 7·2n

20·5n + 11
20

Q1: Long-term behaviour 0.44s
E[R] → 1

2 as n → ∞
E[U] → 11

20 as n → ∞

Q3: Prediction - sensitivity 0.47s
E[R] = −3+10(−1+r)(− 3

10 +r)n

−13+10r

E[U] = (−47+70(−1+r)(− 3
10 +r)n+20r)

−130+100r

Q3: Long-term - sensitivity 0.47s
E[R] → 3

13−10r as n → ∞
E[U] → 47−20r

130−100r as n → ∞
Defect [Mod19] – Fig. 5.3 (dynBN) #nodes: 3, #edges: 3, #parameters: 17

Q1: Prediction 1.11s

E[O = 0] = 13
25 − 13·91n

25·102n

E[O = 1] = 8
25 − 3·91n

10·102n

E[O = 2] = 11
100 − 91n

20·102n

E[O = 3] = 1
25 + 19·91n

50·102n

E[O = 4] = 1
100 + 49·91n

100·102n

Q1: Long-term behaviour 1.11s

E[O = 0] → 13
25 as n → ∞

E[O = 1] → 8
25 as n → ∞

E[O = 2] → 11
100 as n → ∞

E[O = 3] → 1
25 as n → ∞

E[O = 4] → 1
100 as n → ∞

Q3: Prediction - sensitivity 2.63s

E[O = 0] = (25ab−13a+91b)(25a+91)n

(25a+91)·102n − b

− 1183(25a+91)n

(625a+2275)·102n + 13
25

E[O = 3] = 19a(25a+91)n

(50a+182)·102n + 1729(25a+91)n

(1250a+4550)·102n + 1
25

Q3: Long-term - sensitivity 2.63s
E[O = 0] → 13

25 as n → ∞
E[O = 3] → 1

25 as n → ∞
Table 5.2: DBN analysis via Prob-solvable loop reasoning within MORA.

summarising the behavior of high-order moments of the program variables over infinite loops.
This allows us to turn several BN analyses into the problem of computing moment-based in-
variants of Prob-solvable loops. In particular, we show how our approach can automate exact
inference, sensitivity analysis, filtering, and computing the expected number of rejecting samples
in sampling-based procedures via Prob-solvable loop reasoning.

65

CHAPTER 6
Further Developments

In this chapter, we give a brief overview of the latest research ([MSBK22, ABK+22, KMS+22b,
KMS+22a]) building on the work of this thesis. The goal is to present the main results and the
intuition or ideas behind them, so most of the technical details are omitted.

In Section 6.1, based on [MSBK22], we present the latest developments in the theoretical
understanding of the class of programs that can be analyzed using methods of this thesis, the theory
of moment-computability, and we give a precise characterization of such class of probabilistic
loops, which we term moment-computable.

We then address the analysis of loops that are not moment-computable. In Section 6.2, based
on [ABK+22], we study loops where a variable can admit a polynomial self-dependency, for
which, in general, moment-based invariants cannot be computed automatically. We then consider
loops with non-polynomial updates in Section 6.3, based on [KMS+22b].

Section 6.4, based on [KMS+22a], discusses the use of moment-based invariants to estimate
distributions of program variables and the quality of such estimates.

[MSBK22] Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Laura Kovács. This is
the moment for probabilistic loops. Proc. ACM Program. Lang., 6(OOPSLA2):1497–
1525, 2022.

[ABK+22] Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel Moos-
brugger, and Miroslav Stankovic. Solving invariant generation for unsolvable loops.
In Static Analysis - 29th International Symposium, SAS 2022, volume 13790 of
Lecture Notes in Computer Science, pages 19–43. Springer, 2022. Radhia Cousot
Young Researcher Best Paper Award.

[KMS+22b] Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Efs-
tathia Bura. Moment-based invariants for probabilistic loops with non-polynomial

67

6. FURTHER DEVELOPMENTS

lop ∈ {and, or}, cop ∈ {=, ̸=, <, >, ≥, ≤}, Dist ∈ {Bernoulli, Normal, Uniform, . . . }

⟨sym⟩ ::= a | b | . . . ⟨var⟩ ::= x | y | . . .

⟨const⟩ ::= r ∈ R | ⟨sym⟩ | ⟨const⟩ (+ | * | /) ⟨const⟩
⟨poly⟩ ::= ⟨const⟩ | ⟨var⟩ | ⟨poly⟩ (+ | - | *) ⟨poly⟩ | ⟨poly⟩**n
⟨assign⟩ ::= ⟨var⟩ = ⟨assign_right⟩ | ⟨var⟩ , ⟨assign⟩ , ⟨assign_right⟩
⟨categorical⟩ ::= ⟨poly⟩ ({⟨const⟩} ⟨poly⟩)* [{⟨const⟩}]

⟨assign_right⟩ ::= ⟨categorical⟩ | Dist(⟨poly⟩∗) | Exponential(⟨const⟩/⟨poly⟩)
⟨bexpr⟩ ::= true (⋆) | false | ⟨poly⟩ ⟨cop⟩ ⟨poly⟩ | not ⟨bexpr⟩ | ⟨bexpr⟩ ⟨lop⟩ ⟨bexpr⟩
⟨ifstmt⟩ ::= if ⟨bexpr⟩: ⟨statems⟩ (else if ⟨bexpr⟩: ⟨statems⟩)∗ [else: ⟨statems⟩] end

⟨statem⟩ ::= ⟨assign⟩ | ⟨ifstmt⟩

⟨statems⟩ ::= ⟨statem⟩+

⟨loop⟩ ::= ⟨statem⟩* while ⟨bexpr⟩ : ⟨statems⟩ end
Figure 6.1: Grammar describing the syntax of probabilistic loops ⟨loop⟩.

assignments. In Proc. of QEST 2022: Quantitative Evaluation of Systems - 19th
International Conference, volume 13479 of Lecture Notes in Computer Science,
pages 3–25. Springer, 2022. Best Paper Award.

[KMS+22a] Ahmad Karimi, Marcel Moosbrugger, Miroslav Stankovic, Laura Kovács, Ezio
Bartocci, and Efstathia Bura. Distribution estimation for probabilistic loops. In Proc.
of QEST 2022: Quantitative Evaluation of Systems - 19th International Conference,
volume 13479 of Lecture Notes in Computer Science, pages 26–42. Springer, 2022.

6.1 Moment-Computability

The methods developed in [BKS19] (Chapter 3) were further refined in [MSBK22]. The main
results, which we cover in this section, are an extension to and a precise characterization of the
class probabilistic loops for which moments of program variables can be computed.

Programming model The extended programming model is defined by the syntax as given
in Figure 6.1. As programs considered in this thesis, the model allows loop-free initialization
followed by a single loop. Unlike the model from Chapter 3, the loop body allows nested
if-statements, arbitrary polynomial arithmetic, simultaneous assignments, and multiple assign-
ments to the same variable. The model still supports drawing from common distributions, even
continuous ones with unbounded support and symbolic constants.

Moment-computability The syntax is quite generous, and not for all programs allowed by
this programming model can MBIs be computed. Whether we can compute MBIs for a given

68

6.1. Moment-Computability

program largely depends on the (polynomial) dependencies amongst variables present in the loop.
We formalize what we mean by variable dependence as follows:

Definition 6.1 (Variable Dependency [MSBK22, Def. 15]). Let P be a probabilistic loop and
x, y be variables in P . We define:

• y depends conditionally on x, if there is an assignment of y within an if-else-statement and
x appears in the if-condition.

• y depends finitely on x, if x is finite and appears in an assignment of y.

• y depends linearly on x, if x appears only linearly in every assignment of y.

• y depends polynomially on x, if there is an assignment of y in which x appears non-linearly
and x is not finite

• y depends on x if it depends on x conditionally, finitely, linearly, or polynomially.

Furthermore, we consider the transitive closure for variable dependency as follows: If z depends
on y and y depends on x, then z depends on x. If one of the two dependencies is polynomial, then
z depends polynomially on x.

With this, we can formulate the main result of moment-computability: precise characterization of
moment-computable loops.

Theorem 6.1 (Moment-Computability [MSBK22, Thm. 6]). A probabilistic loop P is moment-
computable if (1) none of its non-finite variables depends on itself polynomially, and (2) if the
variables in all if-conditions are finite.

Let us now briefly discuss the necessity of the two conditions. Even without considering
probabilistic behaviour, removing any of the two restrictions leads to problems that are beyond
possible.

(1) If the restriction on polynomial self-dependence is loosened, one can easily encode the logistic
map, a first-order quadratic recurrence defined by xn+1 = r · xn(1 − xn). The logistic map is
well-known for its chaotic behaviour, and, for most values r, has no analytical solution.

(2) Even without polynomial assignments, we can model a Turning machine once we are allowed
if conditions over non-finite variables. One way to do that would be to model the tape using
two variables l and r, whose binary representation represents the tape left and right from the
tape. Writing and shifting the head can be done by addition/subtraction and multiplying by
2 or 1

2 , with a loop taking care of the remainder after the multiplication by 1
2 (loosening the

condition (2) is necessary for this). With a binary variable term storing whether the Turing
machine has terminated, computing the moment-based invariants for term would solve the
Halting problem. As the Halting problem is undecidable, condition (2) is necessary to guarantee
the moment-computability.

69

6. FURTHER DEVELOPMENTS

6.2 Polynomial Self-dependencies

In [ABK+22], we consider programs with polynomial self-dependencies, i.e., programs violating
condition (1) of Theorem 6.1. As argued in the previous section, (higher) moments of program
variables cannot be, in general, computed. Instead, in this work, we investigate combinations
of program variables for which solutions can be reached. A novel technique is presented that
automatically synthesizes polynomials over program variables that admit closed-form solutions
and thus leads to polynomial loop invariants.

This work, although arising from the analysis of probabilistic programs, is more general and
advances the state-of-the-art in loop invariant generation for non-probabilistic programs as well.

Example 6.1. Consider the following program.
x, y = 1, 1
while ⋆ do

w = x + y
x = w2

y = w3

end while

Due to the polynomial dependencies, closed form solutions to the recurrences for variables x, y,
and z cannot be easily computed. However, there is a polynomial invariant y2(n) − x3(n) = 0.

The technique for deriving loop invariants can be summarized as follows:

Step 1: Classify program variables as effective and defective. Intuitively, effective variables are
those for which closed forms can be computed. Defective variables, on the other hand, are the
sources of unsolvability and do not, generally, admit close-form solutions. More precisely, a
variable is defective if it depends on itself polynomially or on a defective variable. Otherwise,
it is effective. The notions of effectiveness/defectiveness are also extended to monomials. A
monomial is defective if it contains a defective variable; otherwise, it is effective.

Step 2: For a fixed degree bound d we construct a candidate polynomial S(n) = ∑
cW W , where

W are defective monomials in program variables of degree at most d and cW are corresponding
symbolic constants. Recurrence for S(n) is then computed symbolically, in a similar fashion as
the recurrences for E-variables in Chapter 3.

Step 3: Although variables in S(n) are defective, S(n) may admit a closed form. This happens if
the recurrence is well-behaved, e.g., when it has the form

S(n + 1) = κS(n) +
∑

cM M, (6.1)

where M are effective monomials and cM unknown constats.

Step 4: The question then is: are there constants cW , cM , and κ that satisfy (6.1)? This leads to a
system of (quadratic) equations. If such constants exist, this leads to a first-order linear recurrence
for S(n) for which a closed form can be computed. The closed form then leads to a polynomial
invariant for the program loop.

Steps 2-4 can be repeated, increasing the degree bound d.

70

6.3. Non-polynomial Updates

6.3 Non-polynomial Updates

Probabilistic programs with non-polynomial updates are addressed in [KMS+22b]. Updates with
non-polynomial functions often arise from models with complex dynamics, such as the use of
trigonometric functions to describe rotational movements. How can we leverage the advances in
the analysis of PPS with polynomial arithmetic to compute MBIs of PPs with non-polynomial
updates?

A method based on polynomial chaos expansion (PCE) is presented in [KMS+22b]. PCE approx-
imates a random variable in terms of a polynomial in known random variables and can be applied
when the second moment of the variable is finite. For any L2 function g : Rk → R, independent
continuous random variables z1, . . . , zk, and degree bound d we can approximate g(z1, . . . , zk)
as a polynomial ĝ in z1 . . . , zk of degree bounded by d. The coefficients of ĝ depend on g itself
and the orthonormal polynomial basis determined by z1, . . . , zk.

We also address the quality of approximation in terms of the convergence rate with respect to the
degree bound d. Under certain conditions, we achieve optimal, i.e., exponential, convergence
rate. This is the case in iteration stable loops, i.e., loops the random variables z1, . . . , zk are
continuous, independent, and identically distributed across iterations for every non-polynomial
L2-type update g(z1, . . . , zk). Optimal convergence can also be achieved when in iteration
non-stable loops if we restrict our interest to finitely many loop iterations. For general iteration
non-stable loops, we derive an upper bound on the approximation error.

Once the non-polynomial functions are replaced by their polynomial approximations, the program
can be analysed using the methods from quantitative loop analysis, for example, the ones presented
in this thesis.

6.4 Quantitative Evaluation

In [KMS+22a], we study techniques for distribution estimation from moments. We automate the
process of estimation for methods based on Gram-Charlier expansion and Maximal Entropy. The
2 main questions addressed in the paper are:

1. How to automatically estimate distributions of program variables of a PP from its moments?

2. Are the distribution estimations based on moments accurate?

For the automated estimation, we assume that a probabilistic loop, as well as a set of moments,
are given as input. We present two ways of estimating distributions. The first method is based
on Gram-Charlier series expansion and can be used with parametric moments, in particular
parametric with respect to loop iteration, i.e., in the form of MBIs. The second method is
based on Maximal Entropy and tries to minimize information contained in the estimation while
conforming to the moments given. In both cases, the estimation is given in the form of a
probability density function (pdf).

For the purpose of evaluating the two methods, we also compute an estimation based on sampling,
which we use as a proxy for the true distribution represented by the probabilistic program.

71

6. FURTHER DEVELOPMENTS

𝜒2 test

K-S test

Precision

PP MomentsMora, Polar

𝑆𝑎𝑚𝑝𝑙𝑒𝐷𝑎𝑡𝑎 𝑓GC𝑓ME
Sampling

Maximal
Entropy

Gram-Charlier
Expansion

In
pu

t
Di

st
rib

ut
io

n
es

tim
at

io
n

Es
tim

at
io

n
ev

al
ua

tio
n

frequencies

est. moments

cdf

frequencies

est. moments

cdf

frequencies

est. moments

cdf

Figure 6.2: Overview of the process of distribution estimation and estimation evaluation.

The accuracy of the estimations is then evaluated in 3 ways, each requiring a slightly different
representation of the distribution. The overview of the entire process is represented in Figure 6.2.

Chi-squared (χ2) goodness-of-Fit test detects statistically significant differences between observed
and expected frequencies. Expected frequencies are taken from the sample data, partitioned
into intervals.Expected frequencies can be computed from estimated pdfs fGC and fME from
GC and ME estimation methods. For an interval I , the expected frequencies are

∫
I fGC(x)dx

(and similarly for ME). Test statistic measuring the deviation between expected and observed
frequencies is computed and compared to the critical value determined by the number of samples
and the number of intervals of partition. Based on the comparison, we either reject or fail to
reject that the frequencies come from the same distribution.

Kolmogorov-Smirnov statistical test (K-S) compares two cumulative distribution functions (cdfs).
For the ME and GC estimations, cdfs FGC and FME can be compudet directly from pdfs fGC

and fME . Sampled cdf FSample(x) is simply the number of samples < x, normalized by the
total number of samples. Again, corresponding K-S test statistics are computed and compared to
the critical value.

Last, we evaluate the precision of the 3 estimations by comparing true and estimated moments.
For the purposes of this evaluation, we assume that we are given a set of higher moments T that
have not been used to estimate the distributions. For each estimation, GC, ME, and sample-based,
we compute the moments corresponding to the moments from T . The moments we compare were
not used for ME/GC estimations and allow us to test how well the estimates generalize to capture
higher moments as well. We compute absolute and relative estimate errors.

Experimental results suggest that moment-based GC and ME distribution estimations provide
accurate approximations for continuous variables of probabilistic loops.

72

CHAPTER 7
Conclusion

In this thesis, we introduced a fully automated static analysis method for loop invariant generation
for a class of probabilistic loops, pushing the limits of the state-of-the-art work. The invariants,
MBIs, can capture moment-based properties of program variables of arbitrary order. We further
used MBIs for the analysis of BNs.

The core method of this thesis was introduced in Chapter 3. The first key technique we utilized for
the MBI generation is the removal of probabilities. We use statistical properties of distributions
and moments to replace the former with the latter. Reasoning about moments rather than
distributions makes the analysis feasible. Probabilistic updates of the loop are represented as
(a larger number of) non-probabilistic updates over E-variables.

Removal of probabilities is then combined with algebraic techniques from quantitative invariant
generation from non-probabilistic programs to further rewrite the loop into linear recurrences
over E-variables. Closed-form solutions of the recurrences then give the moment-based invariant
properties of the original loop.

We implemented the approach in a tool called MORA, described in detail in Chapter 4.

The theoretical understanding of the problem was further developed in Section 6.1, where we
gave precise characterization for the class of moment-computable loops that can be analysed with
our approach. The restrictions imposed on the loops are inherited from a non-probabilistic setting,
and loosening these restrictions leads to undecidability. This shows that we have pushed to the
edge of what is possible within the considered framework.

We also considered how the techniques of this thesis could be used when programs are not
moment-computable. In Section 6.2, we looked into combinations of variables for which moment-
based properties can be computed. In Section 6.3, we looked into approximating non-polynomial
functions to get a moment-computable loop.

In the second part of the thesis, we applied moment-based reasoning about programs to the
analysis of probabilistic models, in particular to Bayesian networks. We showed in Section 5.3

73

7. CONCLUSION

how to encode various classes of BNs, such as discrete, Gaussian, or conditional linear Gaussian
BNs, as probabilistic programs. In Section 5.4, we also reformulated several challenges in BN
analysis as the problem of computing MBIs, for instance, exact inference, sensitivity analysis,
and filtering. This allowed us to address these challenges using the fully automated approach of
MBI generation.

When an unbounded or continuous distribution is represented using moments, some information
is necessarily lost. In Section 6.4, we explored how the moment-based loop properties/MBIs can
be used to estimate the underlying distributions automatically, and we quantified how well the
estimations recapture the original distribution.

In this thesis, we gave a strong theoretical foundation as well as an implementation of a fully
automated moment-based analysis of probabilistic loops. It allows us to generate invariants over
arbitrary higher-order moments for loops with polynomial updates and symbolic constants. We
demonstrated that this approach can be used for probabilistic program analysis as well as the
analysis of Bayesian networks.

74

List of Figures

3.1 Four Prob-solvable loops with MBIs over the first two moments 18

4.1 An illustrative example of a Prob-solvable loop. 34
4.2 Grammar of Prob-solvable loops for MORA . 35
4.3 MORA workflow diagram. 36

5.1 Discrete BN encoded as Prob-solvable loop and analysed using MBIs 43
5.2 Conditional linear Gaussian BN encoded as Prob-solvable loop, analyzed using MBIs 44
5.3 Encoding of a dynamic BN as a Prob-solvable loop 53
5.4 Encoding of a discrete BN as a Prob-solvable loop 55
5.5 Encoding and the analysis of a dynamic BN . 56
5.6 BN hierarchy. 59
5.7 Encoding of a Gaussian BN as a Prob-solvable loop 61

6.1 Grammar describing the syntax of probabilistic loops ⟨loop⟩. 68
6.2 Overview of the process of distribution estimation and estimation evaluation. . . 72

75

List of Tables

3.1 Moment-based invariants of Prob-solvable loops 29

4.1 Comparison of MORA vs. proof-of-concept (PoC) implementation of [BKS19]. . 39

5.1 BN analysis via Prob-solvable loop reasoning within MORA. 62
5.2 DBN analysis via Prob-solvable loop reasoning within MORA. 65

77

List of Algorithms

1 Moment-Based Invariants of Prob-solvable Loops 23
2 Moment-Based Invariants of generalized Prob-solvable Loops 47
3 Encoding BN variants as Prob-solvable loops 57

79

Bibliography

[ABK+22] Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel
Moosbrugger, and Miroslav Stankovic. Solving invariant generation for unsolvable
loops. In Static Analysis - 29th International Symposium, SAS 2022, volume 13790
of Lecture Notes in Computer Science, pages 19–43. Springer, 2022. Radhia
Cousot Young Researcher Best Paper Award.

[ACN17] Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotnỳ. Lexicographic
ranking supermartingales: an efficient approach to termination of probabilistic
programs. Proceedings of the ACM on Programming Languages, 2(POPL):1–32,
2017.

[AGR21] Alessandro Abate, Mirco Giacobbe, and Diptarko Roy. Learning probabilistic
termination proofs. In Alexandra Silva and K. Rustan M. Leino, editors, Computer
Aided Verification - 33rd International Conference, CAV 2021, Virtual Event, July
20-23, 2021, Proceedings, Part II, volume 12760 of Lecture Notes in Computer
Science, pages 3–26. Springer, 2021.

[AMS20] Martin Avanzini, Georg Moser, and Michael Schaper. A modular cost analysis for
probabilistic programs. Proc. ACM Program. Lang., 4(OOPSLA):172:1–172:30,
2020.

[BCKR20] Jason Breck, John Cyphert, Zachary Kincaid, and Thomas Reps. Templates and
recurrences: better together. PLDI, 2020.

[BEFH16] Gilles Barthe, Thomas Espitau, Luis María Ferrer Fioriti, and Justin Hsu. Synthe-
sizing probabilistic invariants via Doob’s decomposition. In Proc. of CAV 2016:
the 28th International Conference on Computer Aided Verification, volume 9779 of
LNCS, pages 43–61. Springer, 2016.

[BGB12] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Probabilistic
relational hoare logics for computer-aided security proofs. In MPC, 2012.

[BGP+16] Olivier Bouissou, Eric Goubault, Sylvie Putot, Aleksandar Chakarov, and Sriram
Sankaranarayanan. Uncertainty propagation using probabilistic affine forms and
concentration of measure inequalities. In TACAS, 2016.

81

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

[BKK+23] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja,
and Lena Verscht. A calculus for amortized expected runtimes. Proc. ACM Program.
Lang., 7(POPL):1957–1986, 2023.

[BKKM18] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Math-
eja. How long, O Bayesian network, will I sample thee? - A program analysis
perspective on expected sampling times. In Proc. of ESOP 2018: the 27th European
Symposium on Program. Languages and Systems, volume 10801 of LNCS, pages
186–213. Springer, 2018.

[BKKV15] Tomás Brázdil, Stefan Kiefer, Antonín Kucera, and Ivana Hutarová Vareková.
Runtime analysis of probabilistic programs with unbounded recursion. Journal of
Computer and System Sciences, 2015.

[BKOB12] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Prob-
abilistic relational reasoning for differential privacy. In POPL, 2012.

[BKS19] Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. Automatic generation of
moment-based invariants for prob-solvable loops. In Proc. of ATVA 2019: the 17th
International Symposium on Automated Technology for Verification and Analysis,
volume 11781 of LNCS, pages 255–276. Springer, 2019.

[BKS20a] Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. Analysis of Bayesian
networks via prob-solvable loops. In Proc. of ICTAC 2020: the 17th International
Colloquium on Theoretical Aspects of Computing, volume 12545 of LNCS, pages
221–241. Springer, 2020.

[BKS20b] Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. Mora - automatic generation
of moment-based invariants. In Proc. of TACAS 2020: the 26th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
volume 12078 of LNCS, pages 492–498. Springer, 2020.

[BTP+22] Jialu Bao, Nitesh Trivedi, Drashti Pathak, Justin Hsu, and Subhajit Roy. Data-driven
invariant learning for probabilistic programs. In Sharon Shoham and Yakir Vizel,
editors, Computer Aided Verification - 34th International Conference, CAV 2022,
Haifa, Israel, August 7-10, 2022, Proceedings, Part I, volume 13371 of Lecture
Notes in Computer Science, pages 33–54. Springer, 2022.

[CFGG20] Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Ehsan Kafsh-
dar Goharshady. Polynomial invariant generation for non-deterministic recursive
programs. In PLDI, 2020.

[CFN12] Anthony C. Constantinou, Norman E. Fenton, and Martin Neil. pi-football: A
Bayesian network model for forecasting association football match outcomes.
Knowl. Based Syst., 36:322–339, 2012.

82

[CFNH16] Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hasheminezhad.
Algorithmic analysis of qualitative and quantitative termination problems for affine
probabilistic programs. 2016.

[CGH+17] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich,
Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.
Stan: A probabilistic programming language. Journal of statistical software, 76(1),
2017.

[CGMZ22] Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and
Dorde Zikelic. Sound and complete certificates for quantitative termination analysis
of probabilistic programs. In Sharon Shoham and Yakir Vizel, editors, Computer
Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August
7-10, 2022, Proceedings, Part I, volume 13371 of Lecture Notes in Computer
Science, pages 55–78. Springer, 2022.

[CH20] Jianhui Chen and Fei He. Proving almost-sure termination by omega-regular decom-
position. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 869–882, 2020.

[CHWZ15] Yu-Fang Chen, Chih-Duo Hong, Bow-Yaw Wang, and Lijun Zhang.
Counterexample-guided polynomial loop invariant generation by lagrange inter-
polation. In Proc. of CAV 2015: the 27th International Conference on Computer
Aided Verification, volume 9206 of LNCS, pages 658–674. Springer, 2015.

[Coo90] Gregory F. Cooper. The computational complexity of probabilistic inference using
Bayesian belief networks. Artif. Intell., 42(2-3):393–405, 1990.

[CS13] Aleksandar Chakarov and Sriram Sankaranarayanan. Probabilistic program analysis
with martingales. In International Conference on Computer Aided Verification,
pages 511–526. Springer, 2013.

[CS14] Aleksandar Chakarov and Sriram Sankaranarayanan. Expectation Invariants for
Probabilistic Program Loops as Fixed Points. Static Analysis Symposium, pages
85–100, 2014.

[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453–457, 1975.

[DJKV17] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A
storm is coming: A modern probabilistic model checker. In Proc. of CAV 2017: the
29th International Conference on Computer Aided Verification, volume 10427 of
LNCS, pages 592–600. Springer, 2017.

[DL93] Paul Dagum and Michael Luby. Approximating probabilistic inference in Bayesian
belief networks is NP-hard. Artif. Intell., 60(1):141–153, 1993.

83

[dOBP16] Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. Polynomial invariants
by linear algebra. In ATVA, 2016.

[Edw12] David Edwards. Introduction to Graphical Modelling. Springer Science & Business
Media, 2012.

[FDG+19] Daniel J Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L
Sangiovanni-Vincentelli, and Sanjit A Seshia. Scenic: a language for scenario
specification and scene generation. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 63–78,
2019.

[FH15] Luis María Ferrer Fioriti and Holger Hermanns. Probabilistic termination: Sound-
ness, completeness, and compositionality. In Proc. of POPL 2015: the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 489–501. ACM, 2015.

[FK15] Azadeh Farzan and Zachary Kincaid. Compositional recurrence analysis. pages
57–64. IEEE, 2015.

[FLNP00] Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er. Using Bayesian
networks to analyze expression data. J. Comput. Biol., 7(3-4):601–620, 2000.

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[FZJ+17] Yijun Feng, Lijun Zhang, David N. Jansen, Naijun Zhan, and Bican Xia. Finding
polynomial loop invariants for probabilistic programs. In Proc. of ATVA 2017:
the 15th International Symposium on Automated Technology for Verification and
Analysis, volume 10482 of LNCS, pages 400–416. Springer, 2017.

[Gha15] Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nat.,
521(7553):452–459, 2015.

[GKM13] Friedrich Gretz, Joost-Pieter Katoen, and Annabelle McIver. Prinsys - on a quest
for probabilistic loop invariants. In Proc. of QEST 2013, volume 8054 of LNCS,
pages 193–208. Springer, 2013.

[GMV16] Timon Gehr, Sasa Misailovic, and Martin T. Vechev. PSI: Exact symbolic inference
for probabilistic programs. In CAV, 2016.

[GS14] Noah D. Goodman and Andreas Stuhlmüller. The design and implementation of
probabilistic programming languages. http://dippl.org, 2014. Accessed:
2022-9-26.

84

http://dippl.org

[Hec08] David Heckerman. A tutorial on learning with Bayesian networks. In Innova-
tions in Bayesian Networks: Theory and Applications, volume 156 of Studies in
Computational Intelligence, pages 33–82. Springer, 2008.

[Her90] Ted Herman. Probabilistic self-stabilization. Inf. Process. Lett., 35(2):63–67, 1990.

[HJK17] Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács. Automated
generation of non-linear loop invariants utilizing hypergeometric sequences. ISSAC,
2017.

[HJK18a] Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács. Aligator.jl - A
Julia Package for Loop Invariant Generation. In CICM, pages 111–117, 2018.

[HJK18b] Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács. Invariant genera-
tion for multi-path loops with polynomial assignments. In VMCAI, 2018.

[JC10] Xia Jiang and Gregory F. Cooper. A Bayesian spatio-temporal method for disease
outbreak detection. Journal of the American Medical Informatics Association,
17(4):462–471, 2010.

[Kar94] Richard M. Karp. Probabilistic recurrence relations. J. ACM, 41(6):1136–1150,
1994.

[KBCR19] Zachary Kincaid, Jason Breck, John Cyphert, and Thomas W. Reps. Closed forms
for numerical loops. POPL, 2019.

[KBS+13] Kenan Kalajdzic, Ezio Bartocci, Scott A. Smolka, Scott D. Stoller, and Radu
Grosu. Runtime verification with particle filtering. In Proc. of RV 2013, the 4th
International Conference on Runtime Verification, volume 8174 of LNCS, pages
149–166. Springer, 2013.

[KCBR17] Zachary Kincaid, John Cyphert, Jason Breck, and Thomas Reps. Non-linear reason-
ing for invariant synthesis. Proceedings of the ACM on Programming Languages,
2(POPL):1–33, 2017.

[KF09] Daphne Koller and Nir Friedman. Probabilistic Graphical Models - Principles and
Techniques. MIT Press, 2009.

[KKM19] Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. On the
hardness of analyzing probabilistic programs. Acta Informatica, 56(3):255–285,
2019.

[KKMO16] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico
Olmedo. Weakest precondition reasoning for expected run–times of probabilistic
programs. In European Symposium on Programming, pages 364–389. Springer,
2016.

85

[KMMM10] Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll C. Morgan.
Linear-invariant generation for probabilistic programs: Automated support for
proof-based methods. In Proc. of SAS 2010, volume 6337 of LNCS, pages 390–406,
2010.

[KMS+22a] Ahmad Karimi, Marcel Moosbrugger, Miroslav Stankovic, Laura Kovács, Ezio
Bartocci, and Efstathia Bura. Distribution estimation for probabilistic loops. In
Proc. of QEST 2022: Quantitative Evaluation of Systems - 19th International
Conference, volume 13479 of Lecture Notes in Computer Science, pages 26–42.
Springer, 2022.

[KMS+22b] Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Efs-
tathia Bura. Moment-based invariants for probabilistic loops with non-polynomial
assignments. In Proc. of QEST 2022: Quantitative Evaluation of Systems - 19th
International Conference, volume 13479 of Lecture Notes in Computer Science,
pages 3–25. Springer, 2022. Best Paper Award.

[KN10] Kevin B. Korb and Ann E. Nicholson. Bayesian Artificial Intelligence. Chapman
and Hall, 2nd edition, 2010.

[KNP11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In Proc. of CAV 2011, volume 6806 of LNCS,
pages 585–591. Springer, 2011.

[Kov08] Laura Kovács. Reasoning algebraically about P-solvable loops. In TACAS, pages
249–264, 2008.

[Koz81] Dexter Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328–
350, 1981.

[Koz85] Dexter Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162–178, 1985.

[KP11] Manuel Kauers and Peter Paule. The Concrete Tetrahedron - Symbolic Sums,
Recurrence Equations, Generating Functions, Asymptotic Estimates. Springer,
2011.

[KUH19] Satoshi Kura, Natsuki Urabe, and Ichiro Hasuo. Tail probabilities for randomized
program runtimes via martingales for higher moments. In TACAS, 2019.

[KZH+11] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns, and
David N. Jansen. The ins and outs of the probabilistic model checker MRMC.
Perform. Eval., 68(2):90–104, 2011.

[LG19] Ugo Dal Lago and Charles Grellois. Probabilistic termination by monadic
affine sized typing. ACM Transactions on Programming Languages and Systems
(TOPLAS), 41(2):1–65, 2019.

86

[Lin92] Gwo Dong Lin. Characterizations of Distributions via Moments, volume 54.
Springer, 1992.

[LS88] S. L. Lauritzen and D. J. Spiegelhalter. Local Computation with Probabilities on
Graphical Structures and their Application to Expert Systems (with discussion).
Royal Statistical Society: Series B (Statistical Methodology), 50(2):157–224, 1988.

[LSS05] Jiebo Luo, Andreas E. Savakis, and Amit Singhal. A Bayesian network-based
framework for semantic image understanding. Pattern Recognit., 38(6):919–934,
2005.

[MBKK21] Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. Au-
tomated termination analysis of polynomial probabilistic programs. In European
Symposium on Programming, pages 491–518. Springer, Cham, 2021.

[MHG21] Fabian Meyer, Marcel Hark, and Jürgen Giesl. Inferring expected runtimes of
probabilistic integer programs using expected sizes. In Jan Friso Groote and
Kim Guldstrand Larsen, editors, Tools and Algorithms for the Construction and
Analysis of Systems - 27th International Conference, TACAS 2021, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part
I, volume 12651 of Lecture Notes in Computer Science, pages 250–269. Springer,
2021.

[MKB79] Kantilal Varichand Mardia, John T. Kent, and John M. Bibby. Multivariate Analysis.
Academic Press, 1979.

[MM05] Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Springer, 2005.

[MMKK17] Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter
Katoen. A new proof rule for almost-sure termination. Proceedings of the ACM on
Programming Languages, 2(POPL):1–28, 2017.

[Mod19] GeNIe Modeler. BayesFusion, LLC, 2019.

[MSBK22] Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Laura Kovács.
This is the moment for probabilistic loops. Proc. ACM Program. Lang.,
6(OOPSLA2):1497–1525, 2022.

[MWG+18] Tom Minka, John M. Winn, John Guiver, Yordan Zaykov, Dany Fabian,
and John Bronskill. Infer.NET 0.3, 2018. Microsoft Research Cambridge.
http://dotnet.github.io/infer.

[NCH18] Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. Bounded expectations:
resource analysis for probabilistic programs. ACM SIGPLAN Notices, 53(4):496–
512, 2018.

87

[NJ07] Richard E. Neapolitan and Xia Jiang. Probabilistic Methods for Financial and
Marketing Informatics. Morgan Kaufmann, 2007.

[OKKM16] Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph
Matheja. Reasoning about recursive probabilistic programs. In LICS. ACM, 2016.

[Pea85] Judea Pearl. Bayesian networks: A model of self-activated memory for evidential
reasoning. Proceedings of the 7th Conference of the Cognitive Science Society,
pages 329–334, 1985.

[Pfe09] Avi Pfeffer. Figaro: An object-oriented probabilistic programming language.
Charles River Analytics Technical Report, 137:96, 2009.

[Rab80] Michael O. Rabin. Probabilistic algorithm for testing primality. Journal of number
theory, 12(1):128–138, 1980.

[RCK04] Enric Rodríguez-Carbonell and Deepak Kapur. Automatic generation of polynomial
loop invariants: Algebraic foundations. In ISSAC, 2004.

[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach.
Pearson Education, 2010.

[SBK22] Miroslav Stankovič, Ezio Bartocci, and Laura Kovács. Moment-based analysis of
bayesian network properties. Theoretical Computer Science, 903:113–133, 2022.

[SRB+15] K. Selyunin, D. Ratasich, E. Bartocci, Md. A. Islam, S. A. Smolka, and R. Grosu.
Neural programming: Towards adaptive control in cyber-physical systems. In Proc.
of CDC 2015, pages 6978–6985. IEEE, 2015.

[WFG+19] Peixin Wang, Hongfei Fu, Amir Kafshdar Goharshady, Krishnendu Chatterjee,
Xudong Qin, and Wenjun Shi. Cost analysis of nondeterministic probabilistic
programs. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 204–220, 2019.

[WHR21] Di Wang, Jan Hoffmann, and Thomas Reps. Central moment analysis for cost
accumulators in probabilistic programs. In PLDI, 2021.

[YD06] Changhe Yuan and Marek J. Druzdzel. Importance sampling algorithms for
Bayesian networks: Principles and performance. Mathematical and Computer
Modelling, 43(9):1189–1207, 2006.

[YS06] Håkan L. S. Younes and Reid G. Simmons. Statistical probabilistic model checking
with a focus on time-bounded properties. Inf. Comput., 2006.

[ZR98] Geoffrey Zweig and Stuart J. Russell. Speech recognition with dynamic Bayesian
networks. In Proc. of AAAI/IAAI 98, the 15th National Conference on Artificial
Intelligence and 10th Innovative Applications of Artificial Intelligence Conference,
pages 173–180. AAAI Press / The MIT Press, 1998.

88

	Kurzfassung
	Abstract
	List of Publications
	Contents
	Introduction
	Problem Statement and Motivation
	Related Work
	Contributions
	Outline and Organization

	Preliminaries
	Probabilities, Expectation, and Moments
	C-Finite Recurrences

	Prob-solvable Loops
	Overview
	Programming Model: Prob-solvable Programs
	Moment-Based Invariants of Prob-solvable Loops
	Implementation and Experiments
	Chapter Conclusion

	Implementation - Mora
	Overview
	Mora – Programming Model
	Mora– Usage
	Mora– Tool Overview
	Evaluation
	Chapter Conclusion

	Analyzing Bayesian Networks
	Overview
	Programming Model: Extending Prob-solvable Loops
	Encoding BNs as Prob-solvable Loops
	Automatic BN Analysis via Prob-solvable Loop Reasoning
	Implementation and Experiments
	Chapter Conclusion

	Further Developments
	Moment-Computability
	Polynomial Self-dependencies
	Non-polynomial Updates
	Quantitative Evaluation

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

