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Kurzfassung 

 
Unterscheidung konspezifischer Fledermäuse durch ihre Echolokationsrufe 

mittels eines Convolutional Neural Networks 
 

von Andreas Mayer 

 
 

Fledermäuse verwenden Echolokationsrufe um ihre Umgebung wahrzunehmen. Folgendermaßen 

wird in diesbezüglichen Forschungsarbeiten in der Natur oft auf Audioaufnahmen 

zurückgegriffen. In vergangenen Studien wurde gezeigt, dass die Ortungsrufe zur 

Diskriminierung zwischen unterschiedlichen Spezien genügen, jedoch gab es bisher keine 

Versuche mittels Echolokationsrufen zwischen Individuen der selben Spezies zu unterscheiden. 

In dieser Arbeit zeige ich, dass es bei 2 Spezien (Miniopterus fuliginosus, Pipistrellus abramus), 

durch Anwendung eines 4-lagigen Convolutional Neural Networks (CNN), welches mit 

Spektrogrammen von Fledermausrufen trainiert wurde, möglich ist, konspezifische Individuen 

mit einer hohen Erfolgsrate zu unterscheiden. Die Fledermäuse wurden im Einzel- und Paarflug 

aufgenommen, ihre Ortungslaute gesammelt und als Datenbank genutzt, um verschiedene 

Modelle auf Basis eines Neuronalen Netzwerks (NN) zu trainieren und evaluieren. Die Modelle 

selbst wurden mit Local Interpretable Model-Agnostic Explanations (LIME) analysiert, einer 

Methode die erklärt, aus welchem Grund das NN bei seiner Entscheidung ankommt. Die F1 Werte 

der Klassifikationen über alle Experimente reichen von 0,710 bis 0,983. Diese Ergebnisse weisen 

auf eine individuell spezifische Signatur in den Echolokationsrufen hin. Die Analyse  mittels 

LIME legt nahe, dass diese die Endfrequenz der absteigend frequenzmodulierten Rufe ist. 

Änderungen der Klassifikationsperformance des NN deuten auf ein Jamming-avoidance 

Verhalten der Fledermäuse hin. 
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Abstract 

 
Distinguishing conspecific bats by their echolocation calls using a 

convolutional neural network 

 

by Andreas Mayer 

 

 

Bats use echolocation calls to perceive their surroundings. Consequently, sound measurements 

are often used to study them in the field. It has been shown that their calls are enough to identify 

the species of bat reliably, but there have been no attempts to use sounds to discriminate between 

individuals within the same species. In my thesis, I show that with 2 separate species 

(Miniopterus fuliginosus, Pipistrellus abramus) it is possible to identify conspecific individuals 

with a high success rate, when using a 4 layer convolutional neural network (CNN), that is trained 

on spectrograms of bat echolocation calls. The bats were recorded while flying alone and in pairs, 

with the calls collected being used as a database to train and evaluate NN models. The models 

themselves were analyzed using Local Interpretable Model-Agnostic Explanations (LIME), a 

method showing how the NN arrives at its prediction. F1 scores for classification across all 

experiments ranged from 0.710 to 0.983. These results indicate an individual specific cue within 

the echolocation calls, which with LIME was found to likely be the terminal frequency of the 

downward frequency-modulated calls. Change in classification performance of the NN in pair 

flight indicates jamming avoidance behaviour is employed by the bats. 
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1 Introduction 

1.1 Bat Echolocation 

While most mammals use vision to navigate their environment, bats use echolocation to perceive 
their surroundings. With their acoustic imaging system they can not only determine the location 
of an echo source, but also perceive its size, form, and surface texture. Since the bats produce the 
carrier signal, an, in general, ultrasonic pulse, themselves with their mouth or nose, their 
navigational system can be described as an active orientation system. [1] 
The advantage of being independent from sunlight is offset however, by a limited duty cycle, 
sound field, range and resolution, as well as relatively high energy cost per pulse emitted. 
Evolutionary it was therefore important for each of the over 1100 bat species [2], most of which 
utilize echolocation, to be as efficient as possible in their respective environment and adapt how 
they produce ultrasonic pulses and listen for the corresponding echoes. 
Typically, bats use ultrasonic, downward frequency-modulated (FM) pulses as their echolocation 
calls (fig. 1, left). However, there are many varieties of call structures. Some species, for example 
those of the family Rhinolophidae,  have adapted their hearing to a very narrow frequency band 
and consequently produce calls with a constant frequency (CF), which additionally may have FM 
parts before and/or after the CF one (fig. 1, center). Furthermore, other species may first use steep 
downward frequency sweep which is then followed by a quasi-constant frequency part (FM-QCF, 
fig. 1, right) where the frequency gradient approaches zero. The final, and also lowest, frequency 
reached in these calls is called the terminal frequency (TF) of the call. 
Due to the vocal anatomy needed to emit these pulses, in CF bats the largest amount of energy is 
usually present in the second harmonic of the call, while the first harmonic is attenuated by the 
nasolaryngeal tract. In FM emitting bats, the fundamental frequency is the most strongly emitted 
mode. [1] 
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Figure 1: Types of echolocation calls in bats. Abbreviations: FM = frequency modulated, CF = 
constant frequency, QCF = quasi constant frequency, TF = terminal frequency. Figure modified 
from [3] 
 

1.2 Echolocation call categorization  

Several studies have been published that automatically categorize bat calls recorded from 
different species. Through machine-learning algorithms theses calls could be attributed with high 
accuracy to a certain bat species of the respective database that was used to train the used model. 
[4]–[8] One of the motivations for this approach is to be able to monitor the activity and quantity 
of bat populations in the wild, as well as which species are present in a certain location. [9] This 
could be useful not only for understanding the animals better but also to protect them through 
conducting environmental impact assessments employing this method.  
So far, however, these systems are missing an important factor when evaluating the presence of 
bats: the number of individuals that make up the population. An automated system that counts 
individuals in the wild would need to differentiate between calls of not only different species, but 
bats of the same species at the same time. Further applications of distinguishing conspecifics are 
monitoring feeding behaviour and to understand the communicative potential of the calls better.  
Moreover, a system that is able to distinguish between conspecifics that fly simultaneously, might 
help in research regarding the jamming avoidance behaviour of bats. This phenomenon has been 
shown in bats flying while surrounded by a complex auditory scene, for example other bats that 
also emit echolocation calls. It has been discussed, that in this situation bats will change parts of 
their calls, presumably the TF, so they can distinguish their own echoes from those of other 
individuals more easily. [10] 

TF 
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This thesis describes the development and results of a classifier based on a convolutional neural 
network (CNN), used to distinguish between spectrograms of echolocation calls of individual 
bats of the same species in two different species. 
After individual distinction, LIME (Local Interpretable Model-Agnostic Explanations) [11], an 
explanation technique for the classifications made by neural networks, is used to get an insight 
into which parts of the bats’ calls is important for categorizing them to an individual. In addition 
to helping future work on a system that counts individuals and elucidates jamming avoidance 
behaviour, these explanations may give insights into which call features are important for the bats 
themselves to distinguish between each other. [12]–[16] 
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2 Methods 

2.1 Bat species  

Two bat species, Miniopterus fuliginosus (Hodgson, 1835) and Pipistrellus abramus 
(Temminck, 1840), that use downward FM-type echolocation pulses with a quasi-constant 
terminal frequency (QC-TF) part, were investigated. Figure 2 shows an example of echolocation 
pulses of both species. During flight, bats will vary the frequency bandwidth and pulse duration 
in response to the surrounding conditions.  

Figure  2: Representative spectrograms of individual echolocation calls of the bat species used. 

The bats were housed in the laboratory of the Faculty of Life and Medical Sciences and were kept 
on an ad libitum nutrient-enriched diet based on live mealworms (larvae of Tenebrio molitor) and 
vitamin-enriched water. P. abramus individuals were  kept in rearing cages [25 (L) × 17 
(W) × 17 cm (H)] in groups of 3 to 5 individuals at 25 ± 2°C and 55 ± 5 % relative humidity, and 
with the natural light-dark cycle of the photoperiod in Kyotanabe, Japan. M. fuliginosus 
individuals were kept together in a flight room [4 (L) × 3 (W) × 2 m (H)] that enabled them to fly 
regularly; at  20.5 ± 1°C and 90 ± 5 % relative humidity. The day-night cycle of the room was set 
to 12 h:12 h dark:light. 
M. fuliginosus individuals were captured in Fukui prefecture in a forest close to the Disaster 
Prevention Research Institute with permission by the Fukui Prefectural Government, Natural 
Environmental Division. They have been shown to change the TF part of their calls when exposed 
to FM jamming sounds mimicking other bats, shifting their own TF upwards by up to 2 kHz. [10] 
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This is called the jamming avoidance response and may help individuals flying in groups to listen 
to the echoes they have produced themselves and not by mistake to those from other individuals. 
Furthermore bats themselves may distinguish each other by listening specifically for the TF part 
of their conspecifics’ echolocation calls. [10], [14], [17], [18] This species’ echolocation calls 
sweep downward from about 100 kHz to about 50 kHz, where their hearing sensitivity peaks at 
frequencies between 44 and 56  kHz. [19] 
P. abramus individuals were captured at a roost in Kyotanabe, Kyoto prefecture. They have been 
shown to increase their TF by even more than 2  kHz when exposed to jamming sounds with 
frequencies below that of their own pulses. [20] Furthermore they will decrease the TF when 
foraging, in a trade-off for a wider sonar beam-width [21], and adapt their call intensity to have a 
constant echo intensity [22] as well as reduce the duration of their calls when approaching prey. 
[23] This species’ echolocation calls sweep downward from about 80 kHz to about 40 kHz, where 
their hearing sensitivity peaks at frequencies between 35 and 50 kHz. [24] 
 

2.2 Audio recording 

As a first step in training a neural network to classify calls, suitable training data had to be 
obtained. Different recording setups were applied. First, M. fuliginosus and P. abramus bats were 
recorded while flying alone in a flight chamber (fig. 3). In these 7 sessions a standing microphone 
(Avisoft CM16), sampling at 500 kHz, in conjunction with an analog amplifier (DT MA3) and 
analog bandpass filter (15 kHz – 150 kHz, NF 3625) were used. 

 

Figure 3: Flight chamber with standing microphone. Bats fly freely in a flight space separated 
by a net, sizing 4.5×6×2.4m. 
 
Secondly, pairs of M. fuliginosus were flying together at the same time. For this setup it was not 
longer enough to just use a standing microphone, as the data would need to be correctly labelled 
(i.e. which call originated from which respective bat) and it would be impossible to tell apart the 
origin of each call later. Therefore, a custom-made, on-board recording device (data logger) was 
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developed in cooperation with Girlier company during the course of this research. It records with 
a 288 kHz sampling rate, at 16 bit (96 dB dynamic range) and uses an omnidirectional MEMS 
(microelectromechanical systems) microphone. With an 50 mAh (nominal value) battery the 
typical maximum recording length was 3-5 minutes.  
Using this device is also the reason why the pair flight experiment could only be conducted with 
M. fuliginosus: even though the weight of the logger is light, it is still more than 40% of a 
P. abramus individual’s bodyweight, prompting them not to fly when it was attached (table 1). 

Table 1: Bat weight compared to data logger weight. 

 
The data logger’s design was updated during the course of the study as the first version 
intermittently skipped recording for a few seconds, making synchronization impossible. 
Furthermore the weight was reduced in the second version. The logger was attached to the back 
of the bat by using a strip of double-sided tape (fig. 4). 
 
 
 
 
 
 
 
 
 
 
 

 
The MEMS microphone records with high sensitivity and low noise in the typical frequency 
ranges of both bat species used (fig. 5). Since it was attached to the bat’s during flight, the 
recordings made this way were free from any Doppler shifts and sound attenuation, as when 
recording with a standing microphone, and true to what the bats could hear themselves. 

Bat species typical weight  [g] 
Data logger weight 
(abs., including 
50 mAh battery) [g] 

Data logger weight 
(rel. body weight) 

M. fuliginosus 13.0 2.9 22 % 
P. abramus 6.5 2.9 44 % 

Figure 4: The first (left, top) and second (left, bottom) version of the on-board data logger. 
M. fuliginosus with the first version of the data logger attached on its back (right). 

MEMS mic battery 

mm 
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To have an accurate comparison of calls emitted during solo and pair flights, all bats that flew in 
pairs were also recorded with the logger while flying alone to remove the microphone used as a 
variable. 
 

 

Figure 5: Recording characteristic of MEMS microphone on the on-board recording device. 
 
The flight times per recording were 3-5 minutes for recordings made with the standing 
microphone and 1-3 minutes for recordings made with the on-board data logger. When recording 
with the logger, the bats flew alone before and after the pair flight. 
 

2.3 Processing of data  

The acquired sound files were cut automatically using software written in Python. The script 
detects a rise in the amplitude and then waits until it falls under a threshold. If the calls surpasses 
a minimum length and volume it is saved.  
As described above, data loggers were used in pair flights to be sure of the true originator of each 
call. The issue was still not solved however, as with the data logger it could still happen that one 
of the attached loggers will pick up a call of the other bat. For this reason, the obtained pair flight 
recordings were synchronized and those calls recorded by the first logger were discarded, where 
the second logger had recorded calls within a set time window prior to the first one (fig. 6). 
Exclusion window lengths,  , used were 15 ms and 25 ms. As the echolocation calls 
emitted by one bat need time to propagate to (the attached microphone of) the other, these values 
are derived from the speed of sound, 343 m/s, and the maximum distance, , between 
the two bats, where one device can still “hear” the calls from the opposing bat. 
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∙  
While a  of 15 ms thus corresponds to a propagation distance within 5.15 m, a 

 of 25 ms corresponds to calls emitted within 8.58 m, larger than the flight space 
(fig. 3) diagonal of 7.87 m. 
This method may exclude some calls that were truly those of the first bat, however it strictly 
excludes the calls that could have originated from the second one. 
As and additional comparison, the synchronized recordings of the pair flights were cut manually 
in a way that only those segments were left were both individuals were emitting sounds 
simultaneously. Since M. fuliginosus only emits echolocation calls during flight, this corresponds 
to having only those calls left while both bats were airborne at the same time. This analysis was 
again done for exclusion window lengths of 15 and 25 ms. 

 

Figure 6: Call exclusions in pair flights. Two bats were equipped with on-board data loggers, 
recordings are synchronized. When interested in calls recorded with data logger A, only those 
calls are accepted where data logger B did not also record a call in a set time window before.  
(a) Logger B recorded a call temporally too close before logger A, so the call of A is rejected. (b) 
Logger B recorded a call before logger A, but outside of the exclusion window. (c) Logger B only 
recorded a call after logger A. (d) No calls were recorded by logger B before logger A. 
 
After cutting, in another Python script, for each call a spectrogram was created. Additionally, a 
contrast function was used to eliminate any noise in the background and leave a clear image of 
the call and possible harmonics. After this, the spectrograms were looked at by myself to ensure 
no noise or other sounds were mistakenly seen as an echolocation call by the program. If images 
containing noise were found, they were deleted from the database. 
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Spectrograms were generated using the SciPy library’s signal package. The length of the FFT was 
calculated via   / _  ∗  _ , 

Where   is the sample rate of the recording, _   is the upper frequency limit of the 
image and _  is the resolution of the frequency range. As mentioned, the sampling rate of the 
standing microphone was 500 kHz and for the data logger it was 288 kHz. The upper frequency 
was set to 144 kHz, and the frequency resolution was set to 128 pixels for all images. The output 
image size was 512x128 pixels and the window type used was a Hanning window, with a window 
width of 128, in all cases. 
 

2.4 Neural network   

Figure 7: Structure of the convolutional neural network used to classify the spectrograms. Not 
shown are the dropout layers after each convolutional and the final fully-connected layer. In the 
depicted case the outcome would be the probability of a call coming from 2 different individuals. 
 
The structure of the neural network us ed in all analyses consisted of 3 convolutional layers with 
increasing channel sizes (64, 128 and 256 respectively) and using a ReLU (rectified linear unit) 
activation function, each followed by a max pooling layer (4x4 kernel) and a dropout layer (p = 
0.20). Finally, two fully connected layers led to the outcome, the posterior probability for each 
class (bat individuals) that the input image (the spectrogram of an echolocation call) came from 
them (fig. 7). The PyTorch library [25] was used to develop, train and evaluate the CNN. 
The outcome of the evaluation of a dataset can be summarized in a confusion matrix of 
observation and prediction (table 2). 
 

Table 2: Confusion matrix of observation and prediction. 

Confusion matrix 
Prediction 
Positive Negative 

Observation 
Positive True Positive (TP) False Negative (FN) 
Negative False Positive (FP) True Negative (TN) 
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The performance of the model was evaluated by calculating the F1 score, which itself can be 
calculated from precision, and recall of the model. Precision  TPTP + FP  

Recall  TPTP + FN 

 
While precision is a metric to answer the question “Of all positive predictions, how many are 
really positive?”, recall is a metric to answer the question ”Of all real positive cases, how many 
are predicted positive?”. In other words, if one wants to avoid mainly false positives, they should 
improve their model according to precision, and if they want to avoid mainly false negatives, 
recall should be considered. If, on the other hand, both FP and FN should be avoided equally, the 
harmonic mean of precision and recall, the F1 score should be used as a metric, as was done in 
this case. 
 F1 score  2 ∙ Precision ∙ RecallPrecision + Recall TPTP + 0.5 (FP + FN) 

 
With a confusion matrix showing how each call was matched to an individual, the F1 score could 
be calculated for each bat. All bats’ individual (micro) F1 scores were then averaged to gain the 
macro F1 score as a final indicator for each experiment.  
The NN was trained with 90% of the dataset and tested with the remaining 10% in a 10-fold setup. 
(fig. 8). This was repeated for 10 different random seeds and results were then averaged. Each 
training cycle consisted of 100 epochs. The reason for using a k-fold setup is to prevent overfitting, 
a situation where the model is trained so strongly on the training data, that it has difficulties 
predicting the correct labels for the testing data. When using k-folds, the model is eventually 
evaluated with all of the dataset, preventing this scenario.  
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Figure 8: 10-fold cross validation. Each fold was evaluated with 10 random starting seeds. The 
outputs Ei for each iteration was the micro F1 score, which were than averaged to the macro F1 
score. 
 
For the analysis of bats flying alone, the processed recordings of all sessions in which the standing 
microphone was used, were combined. The calls of those individuals of which most calls were 
available were used to train and test the NN.  
The analysis of the M. fuliginosus pair flight experiment was conducted with data logger 
recordings only. Each model was trained with the calls of the two bats flying alone and tested 
with the calls left over after call exclusion (chapter 2.3) of the bats flying together. For each pair 
four models were trained, they included all combinations of exclusion window times and whether 
only those calls were used where both bats were airborne simultaneously or not. 
For the two pairs where there were enough calls left over even after close calls were excluded, a 
respective model was trained to compare the performances of solo-flight and pair-flight trained 
models. 
 

2.5 Local Interpretable Model-Agnostic Explanations (LIME) 

Usually, when using machine learning, the user does not know exactly how a model arrives at its 
decision and just has to trust on it’s prediction. To overcome this black-box nature, an “explainer” 
can show the parameters of the input that are most important to the model. LIME has the 
advantage of being model-agnostic, meaning that the underlying model doesn’t need to be known 
by it. The explanation is generated by approximating the model by an interpretable one, for 
example one that is linear and has only a few non-zero coefficients. The black-box model is then 
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estimated locally, in the neighbourhood of the prediction. For image classification, the image is 
divided into contiguous superpixels (fig. 9) which are turned on and off (blacked out) in different 
permutations. The simple, linear model is then trained with the probabilities for each permutation. 
Each superpixel is weighted in this process and those with the highest positive weights are chosen 
as the explanation (fig. 10). [11] 
The image segmentation function used for all LIME analyses in this thesis was the Felzenswalb 
algorithm [26]. The size of the neighbourhood to learn the linear model was set to 100 and the 10 
most important superpixels were plotted. 

 

Figure 9: An image is split into superpixels by LIME. Image sources: Marco Tulio Ribeiro, 
Pixabay. 

 

Figure 10: Different superpixels are turned on and off, those permutations yield data on which a 
simple, linear model is trained. Superpixels with the highest positive weights are then presented 
as the explanation. Image sources: Marco Tulio Ribeiro, Pixabay.  
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3 Results 

3.1 Call collection 

The total number of calls recorded with the standing microphone for M. fuliginosus and 
P. abramus flying alone are shown in table 3 and visualized in figure 11. 

Table 3: Calls acquired for M. fuliginosus and P. abramus flying alone. 
 Bat Individual ID 

(M. fuliginosus) # of calls Bat Individual ID 
(P. abramus) # of calls 

2686 628 342 1,055 

2699 329 345 1,007 

2853 258 346 946 

602 583 348 1,223 

605 1,031   

 

 
Figure 11: Calls collected per individual bat in solo flight, recorded with a standing microphone. 
 
The number of calls acquired for 4 pairs of M. fuliginosus flying alone (used for training) before 
and after the pair flight (used for testing), are shown in table 4 and visualized in figure 12. All of 
these recordings were performed with the onboard data logger. For each pair four different 
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datasets were created, differing in call exclusion windows lengths and if the used audio included 
only calls where both bats are airborne simultaneously or not. 

Table 4: Datasets acquired for the pair flight experiments depending on call exclusion window. 
Calls for training were recorded during solo flight and calls for testing were recorded in pair flight. 

Pair 
no. Bat Individual ID # of calls, 

solo flight 

# of calls 
for 

testing, 
15 ms 

exclusion 

# of calls 
for 

testing, 
25 ms 

exclusion 

# of calls 
for testing, 

15 ms 
exclusion, 
movement 

only 

# of calls 
for testing, 

25 ms 
exclusion, 
movement 

only 

1 
605 4,810 1,344 1,240 843 720 

2686 3,162 1,142 1,064 901 836 

2 
601 2,909 1,165 1,080 539 451 

2690 2,804 698 649 535 490 

3 
601 2,909 1,129 1,012 816 692 
605 2,079 1,357 1,286 810 738 

4 
605 2,079 1,015 906 630 534 

2690 2,804 1,341 1,254 492 415 

 

 
Figure 12: Calls collected for each pair of bats. For each pair the calls collected in solo flights are 
shown in the respective left (solid) column and the calls collected in pair flight are shown in the 
respective right (dotted) column. The pair flight echolocation calls represented are those, that are 
left over after using a 25 ms exclusion window and recordings of both bats flying simultaneously 
only.  
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3.2 Classification results 

The F1 scores for the solo flight experiments are shown in table 5.  

Table 5: Classification results for solo flight experiments. 

Bat species F1 score 

P. abramus (standing microphone) 0.710 

M. fuliginosus (standing microphone) 0.842 

M. fuliginosus (on-board data logger) 0.924 

 
The F1 scores for the pair flight experiments are shown in table 6 and compared to the solo flight 
experiment in figure 13. Scores for solo flight data for the respective pairs are shown for 
comparability. All individuals were of species M. fuliginosus. For each model trained on a pairs 
solo flight data, the 4 respective pair flight datasets created were evaluated. 

Table 6: Classification results for pair flight experiments. 
 F1 score 

Pair 
no. Bat Individual ID solo flight 

pair flight, 
15 ms 

exclusion 

pair flight, 
25 ms 

exclusion 

pair flight, 
15 ms 

exclusion, 
both 

airborne 
only 

pair flight, 
25 ms 

exclusion, 
both 

airborne 
only 

1 
605 

0.921 0.946 0.943 0.947 0.942 
2686 

2 
601 

0.983 0.895 0. 899 0.868 0.866 
2690 

3 
601 

0.961 0.930 0.925 0.933 0.927 
605 

4 
605 

0.969 0.885 0.880 0.872 0.861 
2690 
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Figure 13: Respective F1 scores in solo and pair flights for 4 pairs of bats.  
 
For pairs no. 1 and 3 enough calls were obtained in pair-flight to train their own model. Their 
results are shown in the right-most column of table 7. 

Table 7: Classification results for models trained with calls collected in pair flight (right-most 
column). 

 Trained with solo-flight data Trained with 
pair-flight data 

Pair 
no. Bat Individual ID F1 score, solo 

flight 

F1 score, pair flight, 25 ms 
exclusion, 

both airborne only 

1 
605 

0.921 0. 942 0.948 
2686 

3 
601 

0. 961 0. 927 0.956 
605 

 

3.3 Explanations by LIME algorithm 

Examples of images generated with LIME are shown in figures 14 to 27. Representative images 
(spectrograms overlayed with LIME superpixels) have been plotted for the analyses of the solo 
flight data recorded of M. fuliginosus and P. abramus with the standing microphone when flying 
alone (table 5), as well as of the analyses of all M. fuliginosus pairs in table 6 and 7. For each 
analysis an image with the average value of all LIME generated images for each pixel has been 
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plotted as well. The values of all axes are pixels. Colors indicate the importance of each superpixel 
for the decision made by the model, encoded with the following colormap:  
 
 

3.3.1 Standing microphone recordings 
The following images were generated with calls represented in table 3 and models whose 
outcomes are represented in table 5.  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

3.3.2 On-board data logger recordings 
The following images were generated with calls represented in table 4 and models whose 
outcomes are represented in table 6.  These models were trained with solo flight data and tested 
with pair flight data. Only the case of 25 ms exclusion time of movement-only data is used. Since 
these recordings were made with the on-board data logger, all following calls represented are 
from M. fuliginosus. 

Figure 15: LIME analysis, representative correctly identified image of P. abramus (bat ID 345, 
top) and average image (bottom). 

most important least important 

Figure 14: LIME analysis, representative correctly identified image of M. fuliginosus (bat ID 
2686, top) and average image (bottom). 
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Figure 16: LIME analysis, pair 1. Representative call of bat 2686 correctly identified (top) and 
average image (bottom). 

Figure 17: LIME analysis, pair 2. Representative call of bat 601 correctly identified (top) and 
average image (bottom). 

Figure 18: LIME analysis, pair 3. Representative call of bat 605 correctly identified (top) and 
average image (bottom). 
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The next set of images were generated with the models whose outcomes are represented in table 7. 
These models were trained and tested with pair flight data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 19: LIME analysis, pair 4. Representative call of bat 2690 correctly identified (top) and 
average image (bottom). 

Figure 21: LIME analysis, pair 3. Representative call of bat 601 correctly identified (top) and 
average image (bottom). 

Figure 20: LIME analysis, pair 1. Representative call of bat 2686 correctly identified (top) and 
average image (bottom). 
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3.3.3 Misidentified calls 
Followingly examples of misidentified calls and their LIME analyses are presented.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 24: LIME analysis, pair 1. Interpreted as bat ID 2686, while true caller was bat ID 605. 

 

 

Figure 25: LIME analysis, pair 2. Interpreted as bat ID 2690, while true caller was bat ID 601. 
 

Figure 22: LIME analysis, standing microphone, solo flight, M. fuliginosus. Interpreted as bat 
ID 2699, while true caller was bat ID 2686. 

Figure 23: LIME analysis, standing microphone, solo flight, P. abramus. Interpreted as bat ID 
346, while true caller was bat ID 342. 
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Figure 26: LIME analysis, pair 3. Interpreted as bat ID 605, while true caller was bat ID 601. 
 

 

Figure 27: LIME analysis, pair 4. Interpreted as bat ID 605, while true caller was bat ID 2690. 
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4 Discussion 

4.1 Echolocation call classification 

For the first time, conspecific bats could be distinguished by their echolocation calls alone in this 
study. These results indicate an individual-specific cue is contained within the calls. 
In solo-flight recordings conducted with the standing microphone, the F1 score of analysis using 
the M. fuliginosus calls was 0.842 compared to 0.710 of P. abramus calls (table 5). Since the 
number of individuals was similar (5 and 4), this parameter is unlikely to have made a difference 
when comparing the two classification scores of the NN. Furthermore, the range of the number 
of calls per individual used to train the NN was much smaller for P. abramus, yet still leading to 
a lower F1 score. With this, I presume that the success rate is different mainly because of the 
fundamental difference of the echolocation calls between the two species: While M. fuliginosus 
bats have a more developed and longer TF part in their echolocation calls, P. abramus bats’ calls 
may be shortened due to the flight setting in a confined space. [27] This different echolocation 
behaviour may also stem from the different habitats they live in in the wild. P. abramus bats don’t 
live in large colonies in caves, as M. fuliginosus, and therefore have no need to develop 
significantly different call patterns between individuals; making it more difficult for the NN to 
tell them apart. 

4.1.1 On-board data logger recordings, solo flight evaluation 
For solo flight recordings of M. fuliginosus conducted with the on-board data logger, the F1 score 
was 0.924 for a model trained and evaluated with all 4 bats that used the device (table 5). Similar 
results were obtained when only the calls of the pair itself was used to train an, in this case binary, 
model. The respective models’ F1 scores were, with a minimum of 0.921 for pair no. 1, also 
higher for all pairs (table 6, “solo flight” column), compared to the score of 0.842 for calls 
recorded with the standing microphone. An explanation for this increase performance might be 
the much larger call database collected with the data logger. Furthermore the calls of these 
databases do not include any Doppler shifts, i.e. are less distorted than when recorded with a 
standing microphone. 

4.1.2 Pair flight evaluation, solo flight model 
When evaluating the solo flight trained models with calls recorded in pair flight (table 6, 
figure 13), the F1 scores dropped when compared to the same trained models evaluated with the 
solo flight calls in 3 out of 4 pairs, with pair no. 1 as an exception (0.921 for solo flight calls vs. 
0.942 for pair flight calls [25 ms exclusion window, movement only data]). This may well be an 
indication of jamming avoidance behaviour by the bats: as the model has more difficulty 
distinguishing between the same bats, with the only difference being the calls stemming from a 
pair flight and not solo flight scenario, one can assume the reason for this is due to the bats 
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changing their individual echolocation calls to avoid interference of their respective echoes.  The 
call characteristic that has been shown to change most significantly in previous studies is the 
terminal frequency of the calls. [10] This observation is also fitting with the analysis made with 
LIME in this thesis (see below). 
Furthermore, the F1 scores were lower when increasing the exclusion window size in all instances 
except for pair no. 2 when using the entire recordings (calls where one bat was not airborne 
included). This indicates that unnecessarily many calls had been excluded for the 25 ms window 
and due to the reduced dataset caused a worse performance. 
Comparing the results for using only calls recorded when both bats are airborne simultaneously, 
versus when also including calls recorded when one of the bats was temporarily resting, the results 
are ambiguous and improve or diminish almost equally as often. An explanation for this might be 
that the bats sometimes keep the adaption of the TF of their echolocation calls even when the 
opposite bat is currently not emitting any pulses.  

4.1.3 Pair flight evaluation, pair flight model 
Two pairs (pair no. 1 and 3) had models trained also with pair flight calls (table 7), and in both 
cases the F1 score improved when compare to the model having been trained with calls from solo 
flights. This, of course, makes sense as in the improved version the training dataset stemmed from 
the same recording session as the testing dataset. This would actually be the best case for a NN 
that needs to distinguish calls. However, the minimal difference (0.027 for pair no.1 and 0.005 
for pair no. 3) to the F1 scores obtained with models trained and tested with solo flight calls, 
suggests, that the possible changes of the bats’ echolocation calls are not big enough to 
significantly reduce the performance of the neural network. This is a positive sign for a possible 
future system that, set up in nature, will need to distinguish many bats flying at once, with each 
of them changing their TF due to the group flight situation. 
 

4.2 LIME analysis 

Spectrograms overlaid with the LIME superpixels (fig. 14 to 21), the relevant image areas for the 
NN’s decision, show a clear pattern. In most cases of correct identification the TF part of the calls’ 
spectrogram is the most important feature to determine the individual. This result was observed 
across both species, in solo and pair flight, as well as all combinations of call exclusion criteria, 
and can therefore be linked to previous studies like [10], indicating the individual characteristic 
of the TF of echolocation calls of bats. 
The average images of all respective LIME generated images for each analyzed dataset show a 
similar result, with the brightest spots being the QC-TF parts of the call. Furthermore, by focusing 
just on the black color parts, the echolocation calls themselves, the uniformity of the calls is 
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visible. For example, in figure 15 (bottom), showing P. abramus calls, there seems to be more 
noise and/or less uniformity in the spectrograms than in figure 14 (bottom).  
Another practical use of LIME is to find out why wrong decisions were made by the NN. Figures 
22, 24 and 25 show spectrograms where more than one call or the initial call and an echo are 
depicted. As the model was trained on images almost exclusively depicting only one call without 
any echoes, the NN will of course have more trouble identifying these deviating cases. Figure 26 
shows the case of a call to weak in amplitude in parts, so that the spectrograms was not bright 
enough to be recognized. Figures 23 and 27 show proper spectrograms, and in these cases it can 
be assumed the calls where just too similar to those of the bat’s it was mistaken for.  
 

4.3 Call collection 

Recordings conducted of bats flying solo and recorded with a standing microphone in 7 recording 
sessions yielded a range from 258 to 1,031 usable calls (i.e. calls after processing of audio 
recordings) for 5 M. fuliginosus individuals and a range of 946 to 1,223 calls for 4 P. abramus 
individuals (table 3, figure 11). Much more usable calls were able to be retrieved when recording 
with the on-board data logger, where with just one recording session 2,079 to 4,810 usable calls 
per bat in solo flight were retrieved (table 4). This may well be explained by the difference in 
recording location of the different microphones. A standing microphone will not pick up a bat’s 
call when the distance between sender and receiver is too big and the call is attenuated too much 
as it propagates in the air. This is not the case when the call is recorded directly after emission as 
with the data logger. The improvement in recording calls seems to also outweigh the reduced 
recording time with the logger due to increased strain of the bat while flying with a device that is 
over 20 % of their body weight (table 1).  
For calls recorded of M. fuliginosus  flying in pairs, some more observations can be made. Firstly, 
the number of calls is much less than in solo flight, with a maximum of 1,357 calls for bat ID 605 
in pair 3, even when only applying the weakest selection criteria (15 ms exclusion window and 
data of one bat resting included, table 4). Secondly, when increasing the call exclusion window 
from 15 ms to 25 ms, the calls left over are reduced, as with a bigger window length more calls 
will fall into the exclusion criteria. Thirdly, when reducing the recordings to only those times 
where both animals were airborne at the same time, again less calls were extracted as the leftover 
sound data was shorter. 
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5 Conclusion and outlook 

With the experiments and analyses described in this thesis, I showed for the first time that, 
individual, conspecific bats of the two species Miniopterus fuliginosus and Pipistrellus abramus, 
can be distinguished by their echolocation calls alone. The individual specific signature was found 
by LIME analysis to most likely be the constant terminal frequency part of the echolocation calls 
which, indicated by reduced performance of the NN and as suggested in previous studies, might 
change by an individual bat when not flying alone (jamming avoidance behaviour). Whether the 
bats themselves can tell each other apart by eavesdropping on the echolocation calls of their 
conspecifics is not totally clear, but was suggested in previous studies. [12]–[14] 
In terms of audio recording, overall, the on-board data logger proved to be a more successful 
device to record calls of bats than the standing microphone, as attenuations and possible Doppler-
shifts are not included in its recordings. However, it has to be noted that for a setting of an 
automated system in nature this is not feasible. It will, nevertheless, be a useful tool in further 
experiments in the future and give an insight to the bats’ hearing perspective during flight. 
A possible improvement in individual classification could lie in the processing step of the audio 
recordings. There, noise that was mistaken for echolocation calls by the Python script that cut the 
audio file, was deleted by hand. Instead, it could be useful to take these cuts and put them into a 
separate class labelled “noise” or “unknown”. This way the NN could be trained to also identify 
noise, or other sounds that are not echolocation calls, automatically. 
As a first application in the wild, microphones could be set up in nature close to a known feeding 
area. By recording the bats’ calls some conclusion might be drawn into whether it is always the 
same individual(s) returning or if there is more variety. Furthermore, such an experiment could 
be conducted without needing to catch and tag any animals. 
 
 
  



26 
 

6 Acknowledgements 

I would like to thank my fellow students at the Neuroethology and Bioengineering Laboratory of 
Doshisha University for taking me in with such hospitality, even though communication through 
the language barrier was not always easy. Soshi Yoshida was especially helpful, not just for 
helping me with the research and experiments  I conducted, but also by helping me with countless 
tasks related to my daily life in Japan. Furthermore I would like to thank Professor Shizuko Hiryu 
of this laboratory for her academic guidance and support in all of my research, publishing and 
this thesis. I am also grateful to Olga Heim for getting me started in my research topic as well as 
helping me with publishing my findings, and to Professor Keisuke Imoto of the Faculty of Science 
and Engineering, Doshisha University, for his help in refining the neural network used for my 
analyses.  
From my home university TU Wien, I want to give special thanks to Professor Eugenijus Kaniusas 
for his inspiring lectures, and together with Mr. Thomas Rief, for their always prompt help with 
questions regarding my double degree. 
Finally, my gratitude goes to my family for supporting me from near and far. 
 
Thank you very much. 
Vielen Dank!  
ありがとうございました． 
  



27 
 

7 References 

[1] G. Neuweiler, The Biology of Bats. Oxford University Press, 2000. 
[2] N. B. Simmons, “Order Chiroptera,” in Mammal Species of the World: a Taxonomic and 

Geographic Reference, vol. 1, 2005, pp. 312–529. 
[3] H. Raghuram and M. Jain, “Species and acoustic diversity of bats in a palaeotropical wet 

evergreen forest in southern India,” 2014. [Online]. Available: 
https://www.researchgate.net/publication/265551050 

[4] K. Kobayashi, K. Masuda, C. Haga, T. Matsui, D. Fukui, and T. Machimura, 
“Development of a species identification system of Japanese bats from echolocation calls 
using convolutional neural networks,” Ecol Inform, vol. 62, May 2021, doi: 
10.1016/j.ecoinf.2021.101253. 

[5] J. Rydell, S. Nyman, J. Eklöf, G. Jones, and D. Russo, “Testing the performances of 
automated identification of bat echolocation calls: A request for prudence,” Ecol Indic, 
vol. 78, pp. 416–420, Jul. 2017, doi: 10.1016/j.ecolind.2017.03.023. 

[6] B. M. Siemers and G. Kerth, “Do echolocation calls of wild colony-living Bechstein’s bats 
(Myotis bechsteinii) provide individual-specific signatures?,” Behav Ecol Sociobiol, vol. 
59, no. 3, pp. 443–454, Jan. 2006, doi: 10.1007/s00265-005-0068-x. 

[7] R. D. Redgwell, J. M. Szewczak, G. Jones, and S. Parsons, “Classification of echolocation 
calls from 14 species of bat by support vector machines and ensembles of neural networks,” 
Algorithms, vol. 2, no. 3, pp. 907–924, Sep. 2009, doi: 10.3390/a2030907. 

[8] X. Chen, J. Zhao, Y. hua Chen, W. Zhou, and A. C. Hughes, “Automatic standardized 
processing and identification of tropical bat calls using deep learning approaches,” Biol 
Conserv, vol. 241, p. 108269, Jan. 2020, doi: 10.1016/J.BIOCON.2019.108269. 

[9] J. T. Treitler, O. Heim, M. Tschapka, and K. Jung, “The effect of local land use and loss 
of forests on bats and nocturnal insects,” Ecol Evol, vol. 6, no. 13, pp. 4289–4297, Jul. 
2016, doi: 10.1002/ece3.2160. 

[10] K. Hase, Y. Kadoya, Y. Maitani, T. Miyamoto, K. I. Kobayasi, and S. Hiryu, “Bats enhance 
their call identities to solve the cocktail party problem,” Commun Biol, vol. 1, no. 1, Dec. 
2018, doi: 10.1038/s42003-018-0045-3. 

[11] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why Should I Trust You?’: Explaining the 
Predictions of Any Classifier,” NAACL-HLT 2016 - 2016 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language 
Technologies, Proceedings of the Demonstrations Session, pp. 97–101, Feb. 2016, doi: 
10.18653/v1/n16-3020. 



28 
 

[12] Y. Yovel, M. L. Melcon, M. O. Franz, A. Denzinger, and H. U. Schnitzler, “The voice of 
bats: How greater mouse-eared bats recognize individuals based on their echolocation 
calls,” PLoS Comput Biol, vol. 5, no. 6, 2009, doi: 10.1371/journal.pcbi.1000400. 

[13] M. Schuchmann, S. J. Puechmaille, and B. M. Siemers, “Horseshoe bats recognise the sex 
of conspecifics from their echolocation calls,” Acta Chiropt, vol. 14, no. 1, pp. 161–166, 
Jun. 2012, doi: 10.3161/150811012X654376. 

[14] G. Jones and B. M. Siemers, “The communicative potential of bat echolocation pulses,” 
Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral 
Physiology, vol. 197, no. 5. pp. 447–457, May 2011. doi: 10.1007/s00359-010-0565-x. 

[15] W. Mitch Masters, K. A. S Raver, K. A. Kazial, and W. M. Masters, “Sonar signals of big 
brown bats, Eptesicus fuscus, contain information about individual identity, age and 
family affiliation,” 1995. 

[16] S. C. Burnett, K. A. Kazial, and W. M. Masters, “Discriminating individual big brown bat 
(eptesicus fuscus) sonar vocalizations in different recording situations,” Bioacoustics, vol. 
11, no. 3, pp. 189–210, Jan. 2001, doi: 10.1080/09524622.2001.9753462. 

[17] K. Hase, T. Miyamoto, K. I. Kobayasi, and S. Hiryu, “Rapid frequency control of sonar 
sounds by the FM bat, Miniopterus fuliginosus, in response to spectral overlap,” 
Behavioural Processes, vol. 128, pp. 126–133, Jul. 2016, doi: 
10.1016/j.beproc.2016.04.017. 

[18] Y. Maitani, K. Hase, K. I. Kobayasi, and S. Hiryu, “Adaptive frequency shifts of 
echolocation sounds in Miniopterus fuliginosus according to the frequency-modulated 
pattern of jamming sounds,” Journal of Experimental Biology, vol. 221, no. 23, Dec. 2018, 
doi: 10.1242/jeb.188565. 

[19] T. Furuyama, K. Hase, S. Hiryu, and K. I. Kobayasi, “ Hearing sensitivity evaluated by 
the auditory brainstem response in Miniopterus fuliginosus ,” J Acoust Soc Am, vol. 144, 
no. 5, pp. EL436–EL440, Nov. 2018, doi: 10.1121/1.5079904. 

[20] E. Takahashi, K. Hyomoto, H. Riquimaroux, Y. Watanabe, T. Ohta, and S. Hiryu, 
“Adaptive changes in echolocation sounds by Pipistrellus abramus in response to artificial 
jamming sounds,” Journal of Experimental Biology, vol. 217, no. 16, pp. 2885–2891, Aug. 
2014, doi: 10.1242/jeb.101139. 

[21] K. Motoi, M. Sumiya, E. Fujioka, and S. Hiryu, “ Three-dimensional sonar beam-width 
expansion by Japanese house bats ( Pipistrellus abramus ) during natural foraging ,” J 
Acoust Soc Am, vol. 141, no. 5, pp. EL439–EL444, May 2017, doi: 10.1121/1.4981934. 

[22] S. Hiryu, T. Hagino, H. Riquimaroux, and Y. Watanabe, “ Echo-intensity compensation in 
echolocating bats ( Pipistrellus abramus ) during flight measured by a telemetry 



29 
 

microphone ,” J Acoust Soc Am, vol. 121, no. 3, pp. 1749–1757, Mar. 2007, doi: 
10.1121/1.2431337. 

[23] S. Hiryu, T. Hagino, E. Fujioka, H. Riquimaroux, and Y. Watanabe, “ Adaptive 
echolocation sounds of insectivorous bats, Pipistrellus abramus , during foraging flights 
in the field ,” J Acoust Soc Am, vol. 124, no. 2, pp. EL51–EL56, Aug. 2008, doi: 
10.1121/1.2947629. 

[24] S. Boku, H. Riquimaroux, A. M. Simmons, and J. A. Simmons, “ Auditory brainstem 
response of the Japanese house bat ( Pipistrellus abramus ) ,” J Acoust Soc Am, vol. 137, 
no. 3, pp. 1063–1068, Mar. 2015, doi: 10.1121/1.4908212. 

[25] A. Paszke et al., “Automatic differentiation in PyTorch.” 
[26] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmentation,” 

Int J Comput Vis, vol. 59, no. 2, pp. 167–181, Sep. 2004, doi: 
10.1023/B:VISI.0000022288.19776.77/METRICS. 

[27] S. Hiryu, T. Hagino, E. Fujioka, H. Riquimaroux, and Y. Watanabe, “ Adaptive 
echolocation sounds of insectivorous bats, Pipistrellus abramus , during foraging flights 
in the field ,” J Acoust Soc Am, vol. 124, no. 2, pp. EL51–EL56, Aug. 2008, doi: 
10.1121/1.2947629. 

 
 


