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We consider a general nonsymmetric second-order linear elliptic partial differential equation in the
framework of the Lax–Milgram lemma. We formulate and analyze an adaptive finite element algorithm
with arbitrary polynomial degree that steers the adaptive meshrefinement and the inexact iterative solution
of the arising linear systems. More precisely, the iterative solver employs, as an outer loop, the so-
called Zarantonello iteration to symmetrize the system and, as an inner loop, a uniformly contractive
algebraic solver, for example, an optimally preconditioned conjugate gradient method or an optimal
geometric multigrid algorithm. We prove that the proposed inexact adaptive iteratively symmetrized finite
element method leads to full linear convergence and, for sufficiently small adaptivity parameters, to
optimal convergence rates with respect to the overall computational cost, i.e., the total computational
time. Numerical experiments underline the theory.

Keywords: adaptive finite element method; iterative solver; nonsymmetric PDEs; optimal convergence
rates; cost-optimality.

1. Introduction

The mathematical understanding of optimal adaptivity for finite element methods (AFEMs) has reached
a high level of maturity; see, e.g., Binev et al. (2004); Stevenson (2007); Cascón et al. (2008); Kreuzer
& Siebert (2011); Cascón & Nochetto (2012); Carstensen et al. (2014); Feischl et al. (2014) for some
contributions to linear partial differential equations (PDEs). While the focus is usually on optimal
convergence rates with respect to the degrees of freedom (Binev et al., 2004; Cascón et al., 2008;
Kreuzer & Siebert, 2011; Cascón & Nochetto, 2012; Carstensen et al., 2014; Feischl et al., 2014), the
cumulative nature of adaptivity should rather ask for optimal convergence rates with respect to the overall
computational cost, i.e., the overall elapsed computational time. This, usually called optimal complexity,
has been thoroughly analyzed for adaptive wavelet methods (Cohen et al., 2001, 2003), and it has also
been addressed in the seminal work (Stevenson, 2007) on AFEM for the Poisson model problem. Recent
works (Gantner et al., 2021; Haberl et al., 2021; Heid et al., 2021) considered optimal complexity for
energy minimization problems and, in particular, for symmetric linear elliptic PDEs. In contrast to this,
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ADAPTIVE FEM WITH QUASI-OPTIMAL OVERALL COST 1561

optimal complexity for nonsymmetric linear elliptic PDEs remained an open question due to the lack
of a contractive algebraic solver that is compatible with the variational structure of the PDE. Closing
this gap is the topic of the present work. While the canonical candidate for solving the nonsymmetric
discrete systems would be GMRES, we take a different path that is motivated by up-to-date proofs of
the Lax–Milgram lemma and closely related to the Richardson iteration used in the context of optimal
adaptive wavelet methods. Some comments on the challenges presented by GMRES and related future
work are given below.

As a model problem, we consider the nonsymmetric second-order linear elliptic PDE

−div(A∇u�) + b · ∇u� + cu� = f − div f in Ω subject to u� = 0 on ∂Ω (1.1)

on a polyhedral Lipschitz domain Ω ⊂ R
d with d ≥ 1, where A ∈ [L∞(Ω)]d×d

sym is a symmetric diffusion

matrix, b ∈ [L∞(Ω)]d is a convection coefficient, c ∈ L∞(Ω) is a reaction coefficient and f ∈ L2(Ω)

and f ∈ [L2(Ω)]d are the given data.
With b(u, v) := 〈A∇u, ∇v〉Ω + 〈b · ∇u + cu, v〉Ω and F(v) := 〈f , v〉Ω + 〈 f , ∇v〉Ω , where 〈·, ·〉Ω

denotes the usual L2(Ω)-scalar product, the weak formulation of (1.1) reads:

Find u� ∈ X := H1
0(Ω) such that b(u�, v) = F(v) for all v ∈ X . (1.2)

To ensure the existence and uniqueness of u� ∈ H1
0(Ω), we assume that the bilinear form b(·, ·) is

continuous and elliptic on H1
0(Ω) so that the Lax–Milgram lemma applies.

To discretize (1.2), we employ a conforming finite element method based on a conforming simplicial
triangulation T� of Ω and a fixed polynomial degree m ∈ N. With

X� := {
v� ∈ H1

0(Ω) : v�|T is a polynomial of degree ≤ m, for all T ∈ T�

}
,

the finite element formulation reads:

Find u�
� ∈ X� such that b

(
u�
�, v�

) = F(v�) for all v� ∈ X�. (1.3)

Existence and uniqueness of u�
� follow again from the Lax–Milgram lemma. Note that (1.3) leads to

a nonsymmetric, yet positive definite linear system of equations. To derive an optimal nonsymmetric
algebraic solver, we follow the constructive proof of the Lax–Milgram lemma and reduce the discrete
formulations (1.3) to symmetric problems by employing the so-called Zarantonello symmetrization
(sometimes referred to as Banach–Picard fixed-point iteration). To this end, we define the bilinear form
associated with the principal part of the PDE by

a(u, v) := 〈A∇u, ∇v〉Ω for all u, v ∈ X . (1.4)

Note that a(·, ·) is continuous and elliptic on X and consult Section 2 for details. For a given damping
parameter δ > 0, define the Zarantonello mapping Φ�(δ; ·) : X� → X� by

a(Φ�(δ; u�), v�) = a(u�, v�) + δ
[
F(v�) − b(u�, v�)

]
for all v� ∈ X�; (1.5)
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1562 M. BRUNNER ET AL.

Fig. 1. Schematic view of the AISFEM algorithm components.

see Zarantonello (1960) or Zeidler (1990, Section 25.4). The Riesz–Fischer theorem (and also the Lax–
Milgram lemma) proves existence and uniqueness of Φ�(δ; u�) ∈ X�, i.e., the Zarantonello operator
is well-defined. In particular, u�

� = Φ(δ; u�
�) is the only fixpoint of Φ(δ; ·) for any δ > 0. Moreover,

choosing δ suitably will lead to a contractive method to approximate u�
� in the spirit of the Banach

fixpoint theorem with respect to the a(·, ·)-induced energy norm |||v||| := a(v, v)1/2. At this point, it thus
remains to treat a symmetric, positive definite (SPD) linear system of equations corresponding to (1.5),
which can be solved iteratively in practice for instance by the use of either a conjugate gradient (CG)
method with an optimal preconditioner, see e.g., Chen et al. (2012), or an optimal geometric multigrid
(MG) solver, see e.g., Jinbiao & Zheng (2017); Innerberger et al. (2022).

The proposed adaptive strategy of this work, hereafter referred to as adaptive iteratively symmetrized

finite element method (AISFEM), begins with the initial guess u0,0
0 := u

0,j
0 := u0,�

0 := 0 ∈ X0 associated

to a coarse mesh T0. Finite element approximations uk,j
� ∈ X� are successively computed, where � ∈ N0

is the mesh-refinement index of the �th adaptively refined mesh. More precisely, uk,j
� is obtained after

j algebraic solver steps in the kth step of the Zarantonello symmetrization approximating the unique

uk,�
� := Φ�(δ; u

k−1,j
� ) ∈ X�, where u

k−1,j
� ∈ X� denotes the final approximation of uk−1,�

� when the
algebraic solver is adaptively terminated. In particular, our analysis provides stopping criteria for the
algebraic solver as well as the (perturbed) Zarantonello symmetrization. We give a schematic view of
our approach in Fig. 1; see Algorithm A in Section 3 below for the formal statement.

Overall, the adaptive strategy thus leads to a triple index set

Q := {
(�, k, j) ∈ N

3
0 : uk,j

� is used by the AISFEM Algorithm A
}
, (1.6)

equipped with the natural lexicographic ordering |·, ·, ·|. This enables us to present the main contributions
of this work: first, in the spirit of Gantner et al. (2021); Haberl et al. (2021), we prove that the quasi-error

Δ
k,j
� := ∣∣∣∣∣∣u� − uk,j

�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,�
� − uk,j

�

∣∣∣∣∣∣ + η�

(
uk,j
�

)
for all (�, k, j) ∈ Q, (1.7)

which is the sum of the overall error plus the algebraic solver error plus the residual error estimator,

is linearly convergent with respect to the ordering of Q, i.e., |�′, k′, j′| ≤ |�, k, j| means that uk′,j′
�′ is

computed earlier than uk,j
� within the (sequential) adaptive loop and |�, k, j| − |�′, k′, j′| ∈ N0 is the
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ADAPTIVE FEM WITH QUASI-OPTIMAL OVERALL COST 1563

overall number of discretization, symmetrization and algebraic solver steps in between. In explicit terms,
Theorem 4.1 proves the existence of constants Clin > 0 and 0 < qlin < 1 as well as an index �0 ∈ N0
such that, for all (�, k, j), (�′, k′, j′) ∈ Q with |�, k, j| > |�′, k′, j′| and �′ ≥ �0, there holds that

Δ
k,j
� ≤ Clinq|�,k,j|−|�′,k′,j′|

lin Δ
k′,j′
�′ . (1.8)

The threshold level �0 ∈ N0 arises from the lack of Galerkin orthogonality with respect to the a(·, ·)-
induced energy norm leading to a more involved analysis. Secondly, as shown in Corollary 4.2, this
implies that, for any s > 0, there holds the equivalence

sup
(�,k,j)∈Q

(#T�)
s Δ

k,j
� < ∞ ⇐⇒ sup

(�,k,j)∈Q

( ∑
(�′,k′,j′)∈Q

|�′,k′,j′|≤|�,k,j|

#T�′

)s

Δ
k,j
� < ∞. (1.9)

The interpretation of (1.9) is that the AISFEM algorithm leads to algebraic convergence rate s > 0 with
respect to the degrees of freedom (finite left-hand side) if and only if it leads to algebraic convergence
rate s with respect to the overall computational cost (finite right-hand side), i.e., with respect to the
computational time. Thirdly, extending available results from the literature (Cascón & Nochetto, 2012;
Feischl et al., 2014; Bespalov et al., 2017), Theorem 4.3 proves that, for sufficiently small adaptivity
parameters, the proposed algorithm has optimal complexity (which follows from optimal rates with
respect to the degrees of freedom and (1.9)). Finally, we admit that the proposed strategy hinges crucially
on the appropriate (sufficiently small) choice of the Zarantonello parameter δ > 0 in (1.5) as well as on
the parameter λalg > 0 in the stopping criterion for the algebraic solver in Algorithm A(i.b.II) below. If
these parameters are chosen too large, the proposed method may fail to converge. Besides this restriction,
linear convergence (1.8) is guaranteed for any choice of the other adaptivity parameters λsym, θ , Cmark
(see Algorithm A below).

Outline

The remainder of the work is organized as follows. Section 2 focuses on the setting and underlying
assumptions. In Section 3, we present the AISFEM algorithm in full detail and highlight some of its
properties. The main results of this work are presented in Section 4, the proofs of which are given in
Section 5. Numerical experiments in Section 6 underline the theoretical results, before the short Section 7
concludes our results and outlines future work.

2. Preliminaries

In this section, we state all prerequisites to formulate the AISFEM algorithm (Algorithm A in Section 3
below). In particular, we collect the contraction properties of the Zarantonello symmetrization, the
algebraic solver, the mesh-refinement strategy and the required properties of the a posteriori error
estimator.

2.1 Abstract formulation of the model problem

According to the Rellich compactness theorem (Kufner et al., 1977, Theorem 5.8.2), 〈K u, v〉 :=
〈b · ∇u + cu, v〉Ω defines a compact linear operator K : X → X ′, where we recall that
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1564 M. BRUNNER ET AL.

X ′ = H−1(Ω) is the dual space of X = H1
0(Ω). With this notation, the weak formulation (1.2)

takes the more abstract form

b(u�, v) = a(u�, v) + 〈
K u�, v

〉 = F(v) for all v ∈ X . (2.1)

Since b(·, ·) is continuous and elliptic on X , i.e., there exists α0 > 0 such that

α0 ||u||2X ≤ b(u, u) for all u ∈ X , (2.2)

a simple compactness argument proves that also the principal part a(·, ·) is elliptic, i.e., there exists
α′

0 > 0 such that

α′
0 ||u||2X ≤ a(u, u) for all u ∈ X ; (2.3)

see, e.g., Bespalov et al. (2017, Remark 3). In particular, a(·, ·) is a scalar product on X and the a(·, ·)-
induced energy norm |||v|||2 = a(v, v) is an equivalent norm on X , i.e., |||v||| � ||v||X for all v ∈ X .
Consequently, b(·, ·) is also elliptic and continuous with respect to ||| · |||, i.e., there exist (in practice
unknown) constants 0 < α ≤ L < ∞ such that

α |||u|||2 ≤ b(u, u) and |b(u, v)| ≤ L |||u||| |||v||| for all u, v ∈ X . (2.4)

While this setting already guarantees the Céa-type quasi-optimality of Galerkin solutions u�
� ∈ X� ⊂ X

to (1.3), i.e.,

∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣ ≤ CCéa min
v�∈X�

∣∣∣∣∣∣u� − v�

∣∣∣∣∣∣ with CCéa := L/α, (2.5)

we recall from Bespalov et al. (2017, Theorem 20) that adaptivity improves the constant CCéa in the
Céa-type estimate (2.5): if X� ⊆ X�+1 and

∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣ → 0 as � → ∞, then (2.5) holds with a constant
1 ≤ C� ≤ L/α and C� → 1 as � → ∞.

Remark 2.1. The contractive Zarantonello symmetrization and hence the results of this work hold in
an abstract framework beyond that of the introduction in Section 1. More precisely, the analysis allows
for an abstract separable Hilbert space X over K ∈ {R,C} with norm ||·||X and a weak formulation
(2.1), where a(·, ·) is a Hermitian and continuous sesquilinear form on X and K : X → X ′ is a
compact linear operator such that b(·, ·) is elliptic and continuous on X . Provided that a contractive
algebraic solver is used (see Section 2.5), the analysis thus also applies to other boundary conditions
(e.g., mixed Dirichlet–Neumann–Robin instead of homogeneous Dirichlet boundary conditions used in
the introduction).

2.2 Mesh refinement

From now on, let T0 be a given conforming triangulation of Ω ⊂ R
d with d ≥ 1, which is admissible

in the sense of Stevenson (2008) for d ≥ 3. For mesh refinement, we employ newest vertex bisection
(NVB); see Aurada et al. (2015) for d = 1, Stevenson (2008) for d ≥ 1 and Karkulik et al. (2013)
for d = 2 with nonadmissible T0. For each triangulation TH and marked elements MH ⊆ TH ,
let Th := refine(TH , MH) be the coarsest triangulation where all T ∈ MH have been refined,
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ADAPTIVE FEM WITH QUASI-OPTIMAL OVERALL COST 1565

i.e., MH ⊆ TH\Th. We write Th ∈ T(TH) if Th results from TH by finitely many steps of refinement
and, for N ∈ N0, we write Th ∈ TN(TH) if Th ∈ T(TH) and #Th − #TH ≤ N. To abbreviate notation,
let T := T(T0). Throughout, each triangulation TH ∈ T is associated with a finite-dimensional finite
element space XH ⊂ X , and we assume that Th ∈ T(TH) implies nestedness XH ⊆ Xh ⊂ X .

Within the setting of AFEM, we will work with a hierarchy {T�}�∈N0
generated by NVB refinements

from the initial mesh T0.

2.3 A posteriori error estimator and axioms of adaptivity

For TH ∈ T, let

ηH(T; ·) : XH → R≥0 for all T ∈ TH (2.6)

be the local contributions of some computable error estimator. We define

ηH(UH ; vH) :=
⎛
⎝ ∑

T∈UH

ηH(T; vH)2

⎞
⎠

1/2

for all UH ⊆ TH and vH ∈ XH .

To abbreviate notation, let ηH(vH) := ηH(TH ; vH). Furthermore, we suppose that ηH satisfies the
following axioms of adaptivity from Carstensen et al. (2014) with constants Cstab, Crel, Cdrel > 0 and
0 < qred < 1 only depending on the dimension d, the polynomial degree m and γ -shape regularity
of T0:

(A1) stability: For all TH ∈ T and Th ∈ T(TH), all vh ∈ Xh and all vH ∈ XH and every UH ⊆
TH ∩ Th, it holds that

|ηh(UH , vh) − ηH(UH , vH)| ≤ Cstab |||vh − vH|||;

(A2) reduction: For all TH ∈ T and Th ∈ T(TH), and all vH ∈ XH , it holds that

ηh

(
Th \ TH , vH

) ≤ qred ηH

(
TH \ Th, vH

)
;

(A3) reliability: For all TH ∈ T, the exact solutions u� ∈ X of (1.2) and u�
H ∈ XH of (1.3) satisfy

that ∣∣∣∣∣∣u� − u�
H

∣∣∣∣∣∣ ≤ Crel ηH

(
u�

H

)
;

(A4) discrete reliability: For all TH ∈ T and Th ∈ T(TH), the corresponding exact discrete
solutions satisfy that ∣∣∣∣∣∣u�

h − u�
H

∣∣∣∣∣∣ ≤ Cdrel ηH

(
TH\Th, u�

H

)
.

We note that these axioms (A1)–(A4) are satisfied for the standard residual error estimators; see
Section 6 below for the model problem (1.1) from the introduction.
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1566 M. BRUNNER ET AL.

2.4 Contractive Zarantonello symmetrization

It is well known (Zeidler, 1990, Section 25.4) that the Zarantonello mapping ΦH(δ; ·) introduced in (1.5)
is a contraction for sufficiently small δ > 0, i.e., for 0 < δ < 2α/L2 and all uH , wH ∈ XH , there holds

|||ΦH(δ; uH) − ΦH(δ; wH)||| ≤ q[δ] |||uH − wH||| with q[δ] := 1 − δ(2α − δL2) < 1. (2.7)

Theoretically, δ� := α/L2 minimizes the expression in (2.7) resulting in q[δ�] = 1 − α2/L2; see, e.g.,
Heid & Wihler (2020).

2.5 Contractive algebraic solver

We assume that we have at hand an iterative algebraic solver with iteration step ΨH : X ′ ×XH → XH .
This means, given a linear and continuous functional G ∈ X ′ and an approximation wH ∈ XH of the
unique solution w�

H ∈ XH to

a
(
w�

H , vH

) = G(vH) for all vH ∈ XH , (2.8)

the algebraic solver returns an improved ΨH(G; wH) ∈ XH in the sense that there exists a constant
0 < qalg < 1, which is independent of G and XH , such that

∣∣∣∣∣∣w�
H − ΨH(G; wH)

∣∣∣∣∣∣ ≤ qalg

∣∣∣∣∣∣w�
H − wH

∣∣∣∣∣∣. (2.9)

To simplify notation when the right-hand side G is complicated or lengthy (as for the Zarantonello
iteration (1.5)), we shall write ΨH(w�

H ; ·) instead of ΨH(G; ·), even though w�
H is unknown and will never

be computed.
In the framework of AFEM, possible examples for such contractive solvers include optimally

preconditioned conjugate gradient methods or optimal geometric multigrid methods, see, e.g., Chen
et al. (2012) or Jinbiao & Zheng (2017), respectively, for approaches focused on lowest-order discretiza-
tions and Innerberger et al. (2022) for an optimal multigrid method, which is also robust with respect to
the polynomial degree.

3. Completely adaptive algorithm

In the following, we formulate an inexact AISFEM in the spirit of Haberl et al. (2021). For ease of
presentation, we make the following conventions: Algorithm A defines certain terminal indices �, k[�],
j[�, k], indicated by underlining. We shall omit the arguments of k and j if these are clear from the context,
e.g., we simply write

u
k,j
� := u

k,j[�,k]
� and u

k,j
� := u

k[�],j[�,k[�]]
� , etc.

A similar convention will be used for triple indices, e.g., (�, k, j) = (�, k, j[�, k]), etc.

Remark 3.1. To give an interpretation of the stopping criteria in Step (i.b.II) and Step (i.d.) of Algorithm
A, we note the following: since the algebraic solver is contractive (2.9), the term

∣∣∣∣∣∣uk,j
� −uk,j−1

�

∣∣∣∣∣∣ provides
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ADAPTIVE FEM WITH QUASI-OPTIMAL OVERALL COST 1567

Algorithm A: adaptive iteratively symmetrized finite element method (AISFEM)

Input: initial triangulation T0, initial guess u0,0
0 := u

0,j
0 := 0, marking parameters 0 < θ ≤ 1 and

Cmark ≥ 1, solver parameters λsym, λalg > 0 and damping parameter δ > 0.
Loop: For � = 0, 1, 2, . . . , repeat the following steps (i)–(iv):

(i) For all k = 1, 2, 3, . . . , repeat the following steps (a)–(d):

(a) Define uk,0
� := u

k−1,j
� and, for purely theoretical reasons, uk,�

� := Φ�(δ; u
k−1,j
� ).

(b) For all j = 1, 2, 3, . . . repeat the following steps (I)–(II):

(I) Compute uk,j
� := Ψ�(u

k,�
� ; uk,j−1

� ) and η�(T; uk,j
� ) for all T ∈ T�.

(II) Terminate j-loop if
∣∣∣∣∣∣uk,j

� − uk,j−1
�

∣∣∣∣∣∣ ≤ λalg

[
λsym η�

(
uk,j
�

) + ∣∣∣∣∣∣uk,j
� − u

k−1,j
�

∣∣∣∣∣∣].
(c) Upon termination of the j-loop, define j[�, k] := j.

(d) Terminate k-loop if
∣∣∣∣∣∣uk,j

� − u
k−1,j
�

∣∣∣∣∣∣ ≤ λsym η�

(
u

k,j
�

)
.

(ii) Upon termination of the k-loop, define k[�] := k.

(iii) Determine M� ⊆ T� of up to the constant Cmark minimal cardinality, satisfying θ η�(u
k,j
� )2 ≤

η�(M�; u
k,j
� )2.

(iv) Generate T�+1 := refine(T�, M�) and define u0,0
�+1 := u

0,j
�+1 := u0,�

�+1 := u
k,j
� .

Output: discrete approximations uk,j
� and corresponding error estimators η�(u

k,j
� ).

a posteriori error control on the algebraic error
∣∣∣∣∣∣uk,�

� − uk,j
�

∣∣∣∣∣∣, i.e.,

∣∣∣∣∣∣uk,�
� − uk,j

�

∣∣∣∣∣∣ ≤ qalg

1 − qalg

∣∣∣∣∣∣uk,j
� − uk,j−1

�

∣∣∣∣∣∣.

Moreover, for sufficiently small λalg > 0, also the perturbed Zarantonello symmetrization is a
contraction; see Lemma 5.1 below. With the same reasoning as for the algebraic solver, the term∣∣∣∣∣∣uk,j

� − u
k−1,j
�

∣∣∣∣∣∣ = ∣∣∣∣∣∣uk,j
� − uk,0

�

∣∣∣∣∣∣ thus provides a posteriori error control of the symmetrization error∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣. With this understanding and the interpretation that the error estimator η�(u
k,j
� ) controls the

discretization error
∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣ (which is indeed true for uk,j
� = u

k,j
� ), the heuristics behind the stopping

criteria is as follows: We stop the algebraic solver in Algorithm A(i.b.II) provided that the algebraic
error

∣∣∣∣∣∣uk,�
� − uk,j

�

∣∣∣∣∣∣ is of the level of the discretization error plus the symmetrization error. Moreover, we
stop the (perturbed) Zarantonello symmetrization in Algorithm A(i.d.) provided that the symmetrization

error
∣∣∣∣∣∣u�

� − u
k,j
�

∣∣∣∣∣∣ is of the level of the discretization error. Up to the factors λalg and λsym, this ensures

that all three error sources of
∣∣∣∣∣∣u� − u

k,j
�

∣∣∣∣∣∣ are equibalanced.
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1568 M. BRUNNER ET AL.

For the analysis of Algorithm A, we recall that the set Q from (1.6) is given by

Q := {
(�, k, j) ∈ N

3
0 : uk,j

� is used in Algorithm A
}
.

Together with this set, we define

� := sup{� ∈ N0 : (�, 0, 0) ∈ Q} ∈ N0 ∪ {∞}, (3.1a)

k[�] := sup{k ∈ N0 : (�, k, 0) ∈ Q} ∈ N0 ∪ {∞}, whenever (�, 0, 0) ∈ Q, (3.1b)

j[�, k] := sup{j ∈ N0 : (�, k, j) ∈ Q} ∈ N0 ∪ {∞}, whenever (�, k, 0) ∈ Q. (3.1c)

Note that these definitions are consistent with that of Algorithm A, but also cover the cases that the
�-loop, the k-loop or the j-loop in the algorithm do not terminate, respectively. We note that formally
#Q = ∞ and hence either � = ∞ or k[�] = ∞ or j[�, k[�]] = ∞, where the latter case is excluded by
Lemma 3.2.

On Q, we define an ordering by

(�′, k′, j′) ≤ (�, k, j) ⇐⇒ uk′,j′
�′ is computed earlier in Algorithm A than uk,j

� .

Furthermore, we introduce the total step counter |·, ·, ·|, defined for all (�, k, j) ∈ Q, by

|�, k, j| := #{(�′, k′, j′) ∈ Q : (�′, k′, j′) ≤ (�, k, j)} ∈ N0. (3.2)

Our first observation is that the algebraic solver in the innermost loop of Algorithm A always
terminates.

Lemma 3.2. Independently of the adaptivity parameters θ , λsym and λalg, the j-loop of Algorithm A
always terminates, i.e., j[�, k] < ∞ for all (�, k, 0) ∈ Q.

Proof. Let (�, k, 0) ∈ Q. We argue by contradiction and assume that the stopping criterion in Algorithm
A(i.b.II) always fails and hence j[�, k] = ∞. By assumption (2.9), the algebraic solver is contractive

and hence convergent with limit uk,�
� := Φ�(δ; u

k−1,j
� ). Moreover, by failure of the stopping criterion in

Algorithm A(i.b.II), we thus obtain that

η�

(
uk,j
�

) + ∣∣∣∣∣∣uk,j
� − u

k−1,j
�

∣∣∣∣∣∣ � ∣∣∣∣∣∣uk,j
� − uk,j−1

�

∣∣∣∣∣∣ j→∞−−−→ 0.

This yields
∣∣∣∣∣∣uk,�

� − u
k−1,j
�

∣∣∣∣∣∣ = 0. Consequently, u
k−1,j
� is a fixpoint of Φ�(δ; ·), cf. Algorithm A(i.a), and

hence u
k−1,j
� = u�

� by uniqueness of the fixpoint. In particular, the initial guess uk,0
� = u

k−1,j
� = uk,�

� is
already the exact solution of the linear Zarantonello system and hence the algebraic solver guarantees
that uk,j

� = uk,�
� for all j ∈ N0. Consequently, the stopping criterion in Algorithm A(i.b.II) will be satisfied

for j = 1. This contradicts our assumption, and hence we conclude that j[�, k] < ∞. �

Remark 3.3. For the mathematical tractability, we formulated Algorithm A in a way that #Q = ∞.
Any practical implementation will aim to provide a sufficiently accurate approximation uk,j

� in finite
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ADAPTIVE FEM WITH QUASI-OPTIMAL OVERALL COST 1569

time. More precisely, Algorithm A will then be terminated after Algorithm A(i.b.II) if

η�

(
u

k,j
�

) + ∣∣∣∣∣∣uk,j
� − uk,0

�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,j
� − u

k,j−1
�

∣∣∣∣∣∣ ≤ τ , (3.3)

where τ > 0 is a user-specified tolerance. For τ = 0, finite termination yields that u
k,j
� = u� with

η�(u
k,j
� ) = 0. To see this, note that (3.3) implies uk,�

� = u
k,j
� = u

k,j−1
� and u�

� = u
k,j
� = u

k−1,j
� by uniqueness

of the fixpoint of the contractive solver and the contractive Zarantonello symmetrization, respectively.

Finally, the first summand in (3.3) states η�(u
�
�) = η�(u

k,j
� ) = 0 and hence u

k,j
� = u�

� = u� by reliability
(A3) of the estimator.

Remark 3.4. Up to the algebraic stopping criterion in Algorithm A(i.b.II), the AISFEM algorithm
coincides with the adaptive algorithm from Haberl et al. (2021), where the (perturbed) Zarantonello
iteration is employed for an adaptive iteratively linearized finite element method for the solution of an
energy minimization problem with strongly monotone nonlinearity. However, the present analysis is
much more refined than that of Haberl et al. (2021):

(i) To guarantee full linear convergence, Haberl et al. (2021, Theorem 4) requires θ sufficiently small,
λsym sufficiently small with respect to θ and λalg sufficiently small with respect to λsym. In contrast, we
require λalg to be sufficiently small with respect to 0 < qalg < 1 and 0 < qsym < 1 to preserve the
contraction of the perturbed Zarantonello iteration (see Lemma 5.1 below in comparison to Haberl et al.,
2021, Lemma 6), while θ and λsym can be arbitrary.

(ii) Despite the linear model problem, our analytical setting is more involved: the compact perturba-
tion in (2.1) prevents the use of energy arguments that guarantee a Pythagorean-type identity in terms
of the energy error (see, e.g., Haberl et al., 2021; Heid et al., 2021). Instead, we first need to show plain
convergence of Algorithm A (see Proposition 5.3) to deduce a quasi-Pythagorean estimate in Lemma
5.4, which then allows proving linear convergence (Theorem 4.1). As a consequence (and beyond the
results of Haberl et al., 2021), this finally yields that, for arbitrary θ and λsym, the convergence rates
with respect to the number of the degrees of freedom and with respect to the overall computational work
coincide (Corollary 4.2).

The following proposition provides a computable upper bound for the energy error
∣∣∣∣∣∣u� − uk,j

�

∣∣∣∣∣∣.
Since Algorithm A follows the structure of Haberl et al. (2021, Algorithm 1), the proof can be obtained
analogously to Haberl et al. (2021, Proposition 2) and is thus omitted here.

Proposition 3.5. (reliable error control) Suppose that the estimator satisfies (A1) and (A3). Then, for
all (�, k, j) ∈ Q, it holds that

∣∣∣∣∣∣u� − uk,j
�

∣∣∣∣∣∣ ≤ C′
rel

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η�

(
uk,j
�

) + ∣∣∣∣∣∣uk,j
� − uk,0

�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,j
� − uk,j−1

�

∣∣∣∣∣∣ if 1 ≤ k ≤ k[�] and 1 ≤ j < j[�, k],

η�

(
u

k,j
�

) + ∣∣∣∣∣∣uk,j
� − uk,0

�

∣∣∣∣∣∣ if 1 ≤ k ≤ k[�] and j = j[�, k],

η�

(
u

k,j
�

)
if k = k[�] and j = j[�, k],

η�−1

(
u

k,j
�−1

)
if � > 0 and k = 0.

(3.4)

The constant C′
rel > 0 depends only on Crel, Cstab, qalg, λalg, qsym and λsym.
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1570 M. BRUNNER ET AL.

4. Main results

In the following, we formulate the main results of the present work. We refer to Section 5 for the proofs
and Section 6 for numerical experiments, which underline these theoretical results. First, recall from
(2.7) that a sufficiently small parameter δ > 0 ensures contraction of the Zarantonello mapping and
hence

∣∣∣∣∣∣u�
� − uk,�

�

∣∣∣∣∣∣ ≤ qsym

∣∣∣∣∣∣u�
� − u

k−1,j
�

∣∣∣∣∣∣ for all (�, k, 0) ∈ Q (4.1)

with 0 < qsym < 1. The following theorem states full linear convergence of the quasi-error.

Theorem 4.1. (full linear convergence of AISFEM) Suppose that δ > 0 is sufficiently small and that
the estimator satisfies (A1)–(A3). Choose λ�

alg > 0 depending only on qalg from (2.9) and qsym from
(4.1) such that

0 < qsym :=
qsym + 2

qalg
1−qalg

λ�
alg

1 − 2
qalg

1−qalg
λ�

alg

< 1. (4.2)

Then, for arbitrary 0 < θ ≤ 1 and λsym > 0, but sufficiently small λalg, satisfying 0 < λalg ≤ λ�
alg,

Algorithm A guarantees full linear convergence: there exist constants Clin > 0 and 0 < qlin < 1 as well
as an index �0 ∈ N0 with �0 ≤ � such that the quasi-error

Δ
k,j
� := ∣∣∣∣∣∣u� − uk,j

�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,�
� − uk,j

�

∣∣∣∣∣∣ + η�

(
uk,j
�

)
for all (�, k, j) ∈ Q (4.3)

satisfies that, for all (�, k, j), (�′, k′, j′) ∈ Q with |�, k, j| > |�′, k′, j′| and �′ ≥ �0,

Δ
k,j
� ≤ Clinq|�,k,j|−|�′,k′,j′|

lin Δ
k′,j′
�′ . (4.4)

The constants Clin and qlin as well as the index �0 depend only on Cstab, Crel, qred, qsym, qalg, θ , λsym,
λalg and CCéa = L/α.

While the proof of Theorem 4.1 is postponed to Section 5.5, we shall immediately prove the
following important consequence of Theorem 4.1: Algorithm A guarantees that rates with respect to
the number of degrees of freedom coincide with rates with respect to the overall computational cost.

Corollary 4.2. Let s > 0. Under the assumptions of Theorem 4.1, the output of Algorithm A
guarantees that

M(s) := sup
(�,k,j)∈Q

�≥�0

(#T�)
s Δ

k,j
� ≤ sup

(�,k,j)∈Q
�≥�0

( ∑
(�′,k′,j′)∈Q

|�′,k′,j′|≤|�,k,j|
�′≥�0

#T�′

)s

Δ
k,j
� ≤ Clin(

1 − q1/s
lin

)s M(s). (4.5)
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ADAPTIVE FEM WITH QUASI-OPTIMAL OVERALL COST 1571

This yields the equivalence

sup
(�,k,j)∈Q

(#T�)
s Δ

k,j
� < ∞ ⇐⇒ sup

(�,k,j)∈Q

( ∑
(�′,k′,j′)∈Q

|�′,k′,j′|≤|�,k,j|

#T�′

)s

Δ
k,j
� < ∞. (4.6)

Proof. The lower bound in (4.5) is obvious. To prove the upper bound, without loss of generality, we
may assume that M(s) < ∞. By definition of M(s), it follows that

#T�′ ≤ M(s)1/s[Δk′,j′
�′

]−1/s for (�′, k′, j′) ∈ Q with �′ ≥ �0. (4.7)

For |�, k, j| ≥ |�′, k′, j′| and �′ ≥ �0, full linear convergence (4.4) can be rewritten as

[
Δ

k′,j′
�′

]−1/s ≤ C1/s
lin

[
q1/s

lin

]|�,k,j|−|�′,k′,j′| [
Δ

k,j
�

]−1/s. (4.8)

The geometric series yields that

∑
(�′,k′,j′)∈Q

|�′,k′,j′|≤|�,k,j|
�′≥�0

#T�′
(4.7)≤ M(s)1/s

∑
(�′,k′,j′)∈Q

|�′,k′,j′|≤|�,k,j|
�′≥�0

[
Δ

k′,j′
�′

]−1/s (4.8)≤ M(s)1/s C1/s
lin

1

1 − q1/s
lin

[
Δ

k,j
�

]−1/s.

Rearranging this estimate, we see that

( ∑
(�′,k′,j′)∈Q

|�′,k′,j′|≤|�,k,j|
�′≥�0

#T�′

)s

Δ
k,j
� ≤ M(s) Clin

1(
1 − q1/s

lin

)s .

Taking the supremum over all (�, k, j) ∈ Q with � ≥ �0, we prove the second estimate in (4.5). Moreover,

Q\{(�, k, j) ∈ Q : � ≥ �0} = {(�, k, j) ∈ Q : � < �0} is finite,

i.e., the sets over which we compute the suprema in (4.5)–(4.6) differ only by finitely many index triples.
This and (4.5) thus prove the equivalence in (4.6). �

To present our second main result, we first introduce the notion of approximation classes. For T ∈ T

and s > 0, define

||u�||As(T ) := sup
N∈N0

((
N + 1

)s min
Topt∈TN (T )

[∣∣∣∣∣∣u� − u�
opt

∣∣∣∣∣∣ + ηopt

(
u�

opt

)])
, (4.9)

with ηopt denoting the estimator on the optimal triangulation Topt ∈ TN(T ). When (4.9) is finite, this
means that a decrease of the error plus estimator with rate s is possible along optimal meshes obtained
by refining T .
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1572 M. BRUNNER ET AL.

Theorem 4.3. (optimal computational complexity) Suppose that δ > 0 is sufficiently small and that the
estimator satisfies (A1)–(A4). Consider λ�

alg > 0 and 0 < qsym < 1 as in Theorem 4.1. Let 0 < λalg ≤
λ�

alg. Define λ�
sym := (1 − qsym)/(qsym Cstab). Let 0 < θ < θ� := (1 + C2

stab C2
rel)

−1 < 1 and choose
0 < λsym < λ�

sym sufficiently small such that

0 < θmark :=
(

θ1/2 + λsym/λ�
sym

1 − λsym/λ�
sym

)2

< θ�. (4.10)

Then, Algorithm A guarantees, for all s > 0, that

copt ||u�||As(T0)
≤ sup

(�,k,j)∈Q

( ∑
(�′,k′,j′)∈Q

|�′,k′,j′|≤|�,k,j|

#T�′

)s

Δ
k,j
� , (4.11a)

sup
(�,k,j)∈Q

�≥�0

( ∑
(�′,k′,j′)∈Q

|�′,k′,j′|≤|�,k,j|
�′≥�0

#T�′

)s

Δ
k,j
� ≤ Copt max

{||u�||
As(T�0 ), Δ

0,0
�0

}
, (4.11b)

where �0 ∈ N is the index from Theorem 4.1. The constant copt > 0 depends only on CCéa = L/α, Cstab,
Crel, Cchild and s; Copt > 0 depends only on Cstab, Crel, Cmark, CCéa = L/α, C′

rel, Cmesh, Clin, qlin, #T�0
,

qred, λsym, qsym, θ and s. In particular, this proves the equivalence

||u�||As(T0)
< ∞ ⇐⇒ sup

(�,k,j)∈Q

( ∑
(�′,k′,j′)∈Q

|�′,k′,j′|≤|�,k,j|

#T�′

)s

Δ
k,j
� < ∞, (4.12)

which yields optimal complexity of Algorithm A.

The proof is postponed to Section 5.6.

5. Proofs

5.1 Contraction of perturbed Zarantonello symmetrization

Recall that, for δ < 2 δ�, the Zarantonello mapping is a contraction (2.7). However, Algorithm A

does not compute uk,�
� := Φ�(δ; u

k−1,j
� ) exactly, but relies on an approximation u

k,j
� ≈ uk,�

� . The next
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ADAPTIVE FEM WITH QUASI-OPTIMAL OVERALL COST 1573

lemma states that, for a sufficiently small stopping parameter λalg > 0 in Algorithm A, the Zarantonello
symmetrization remains a contraction under this perturbation. Its proof essentially follows along the
lines of Haberl et al. (2021, Lemma 6). However, the present work considers a stopping criterion of the
algebraic solver in Algorithm A(i.b.II), which allows to choose λalg independently of λsym.

Lemma 5.1. Let λ�
alg > 0 and 0 < qsym < 1 as in Theorem 4.1. Then, for all stopping parameters

0 < λalg ≤ λ�
alg and λsym > 0, it holds that

∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣ ≤ qsym

∣∣∣∣∣∣u�
� − u

k−1,j
�

∣∣∣∣∣∣ for all (�, k, 0) ∈ Q with 1 ≤ k < k[�]. (5.1)

Proof. By using the triangle inequality and the contraction (4.1) of the unperturbed Zarantonello
iteration, we obtain that

∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣u�
� − uk,�

�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,�
� − u

k,j
�

∣∣∣∣∣∣ (4.1)≤ qsym

∣∣∣∣∣∣u�
� − u

k−1,j
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,�
� − u

k,j
�

∣∣∣∣∣∣. (5.2)

It remains to treat the algebraic error term and to show that it is sufficiently contractive. We use the
contraction (2.9) of the algebraic solver, i.e.,

∣∣∣∣∣∣uk,�
� − u

k,j
�

∣∣∣∣∣∣ ≤ qalg

∣∣∣∣∣∣uk,�
� − u

k,j−1
�

∣∣∣∣∣∣, (5.3)

the met algebraic stopping criterion of Algorithm A(i.b.II), and the not met stopping criterion of
Algorithm A(i.d.), to obtain that

∣∣∣∣∣∣uk,�
� − u

k,j
�

∣∣∣∣∣∣ (5.3)≤ qalg

1 − qalg

∣∣∣∣∣∣uk,j
� − u

k,j−1
�

∣∣∣∣∣∣ (i.b.II)≤ λalg

qalg

1 − qalg

[
λsym η�

(
u

k,j
�

) + ∣∣∣∣∣∣uk,j
� − uk,0

�

∣∣∣∣∣∣]

< 2 λalg

qalg

1 − qalg

∣∣∣∣∣∣uk,j
� − uk,0

�

∣∣∣∣∣∣ ≤ 2 λalg

qalg

1 − qalg

[∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣u�
� − u

k−1,j
�

∣∣∣∣∣∣].
Combining the last estimate with (5.2) and rearranging the terms lead us to

∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣ ≤
qsym + 2 λalg

qalg
1−qalg

1 − 2 λalg
qalg

1−qalg

∣∣∣∣∣∣u�
� − u

k−1,j
�

∣∣∣∣∣∣ ≤ qsym

∣∣∣∣∣∣u�
� − u

k−1,j
�

∣∣∣∣∣∣.

This concludes the proof. �
An important consequence of the contraction (5.1) of the perturbed Zarantonello iteration is that

k[�] = ∞ implies that the exact solution is already discrete u� = u�
� ∈ X�.

Lemma 5.2. Suppose that the estimator satisfies stability (A1) and reliability (A3), and that the perturbed
Zarantonello iteration is contractive (5.1). Then, � < ∞ implies that k[�] = ∞ as well as u� = u�

� with
η�(u

�
�) = 0.
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Proof. Since j[�, k] < ∞ by virtue of Lemma 3.2, it follows for � < ∞ that k[�] = ∞ and hence

η�

(
u

k,j
�

)
< λ−1

sym

∣∣∣∣∣∣uk,j
� − uk,0

�

∣∣∣∣∣∣ for all k ∈ N.

Since the perturbed Zarantonello iteration is convergent with limit u�
� (and thus (u

k,j
� )k∈N0

is a Cauchy
sequence), we infer that

η�(u
�
�)

(A1)≤ η�

(
u

k,j
�

) + Cstab

∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣ k→∞−−−→ 0.

This proves η�(u
�
�) = 0, whence with reliability (A3), we conclude u�

� = u�. �

5.2 Plain convergence

For general second-order linear elliptic PDEs, a plain convergence result (for the exact Galerkin
solutions) is required to ensure that there holds a quasi-Pythagorean estimate; see Lemma 5.4 below.

Proposition 5.3. (plain convergence) Suppose that the perturbed Zarantonello iteration is contractive
(5.1) and that the estimator satisfies (A1)–(A3). Then, it follows that

∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣u� − u
k,j
�

∣∣∣∣∣∣ + η�

(
u

k,j
�

) k→k−−→ 0 for � < ∞,

∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣u� − u
k,j
�

∣∣∣∣∣∣ + η�

(
u

k,j
�

) �→∞−−−→ 0 for � = ∞.

(5.4)

Proof. Case 1 (� < ∞). According to Lemma 5.2, it follows that k[�] = ∞ and u� = u�
�, thus leading

us to

∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣u� − u
k,j
�

∣∣∣∣∣∣ = ∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣ k→k−−→ 0,

where convergence follows from contraction (5.1). Estimator convergence follows from the not met
stopping criterion in Algorithm A(i.d.), yielding that

η�

(
u

k,j
�

)
< λ−1

sym

∣∣∣∣∣∣uk,j
� − uk,0

�

∣∣∣∣∣∣ k→k−−→ 0.

This concludes the first case.
Case 2 (� = ∞). The proof for the remaining case is split into four steps.

Step 1. We introduce the discrete limit space X∞ := closure
(⋃∞

�=0 X�

)
. The Lax–Milgram lemma

guarantees the existence and uniqueness of u�∞ ∈ X∞ such that

b
(
u�∞, v∞

) = F(v∞) for all v∞ ∈ X∞.
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Since u�
� ∈ X� ⊆ X∞ is a Galerkin approximation of u�∞, the Céa lemma (2.5) holds with u� being

replaced by u�∞, and the definition of X∞ proves that

∣∣∣∣∣∣u�∞ − u�
�

∣∣∣∣∣∣ (2.5)≤ CCéa min
v�∈X�

∣∣∣∣∣∣u�∞ − v�

∣∣∣∣∣∣ �→∞−−−→ 0. (5.5)

Step 2. Note that k[�] ≥ 1 for all � ∈ N0, i.e., at least one step of the perturbed Zarantonello iteration is

performed. With contraction (5.1) and nested iteration u
0,j
�+1 = u

k,j
� , we obtain that

∣∣∣∣∣∣u�
�+1 − u

k,j
�+1

∣∣∣∣∣∣ (5.1)≤ qk
sym

∣∣∣∣∣∣u�
�+1 − u

0,j
�+1

∣∣∣∣∣∣ = qk
sym

∣∣∣∣∣∣u�
�+1 − u

k,j
�

∣∣∣∣∣∣
≤ qsym

∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣ + qsym

∣∣∣∣∣∣u�
�+1 − u�

�

∣∣∣∣∣∣.
With the definitions a� := ∣∣∣∣∣∣u�

� −u
k,j
�

∣∣∣∣∣∣ and b� := qsym

∣∣∣∣∣∣u�
�+1 − u�

�

∣∣∣∣∣∣, and 0 < qsym < 1, the last estimate
is of the form

0 ≤ a�+1 ≤ qsym a� + b� for all � ∈ N0 with lim
�→∞ b�

(5.5)= 0. (5.6)

Elementary calculus (see, e.g., Carstensen et al., 2014, Lemma 4.7) then proves that

a� = ∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣ �→∞−−−→ 0. (5.7)

Therefore, (5.5) and (5.7) yield convergence

∣∣∣∣∣∣u�∞ − u
k,j
�

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣u�∞ − u�
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣ �→∞−−−→ 0. (5.8)

Step 3. With stability (A1), reduction (A2) and the Dörfler marking in Algorithm A(iii), we see that

η�+1

(
u

k,j
�

)2 = η�+1

(
T�+1 ∩ T�; u

k,j
�

)2 + η�+1

(
T�+1\T�; u

k,j
�

)2

(A1)= η�

(
T�+1 ∩ T�; u

k,j
�

)2 + η�+1

(
T�+1\T�; u

k,j
�

)2

(A2)≤ η�

(
T�+1 ∩ T�; u

k,j
�

)2 + q2
red η�

(
T�\T�+1; u

k,j
�

)2

= η�

(
u

k,j
�

)2 − (
1 − q2

red

)
η�

(
T�\T�+1; u

k,j
�

)2

≤ η�

(
u

k,j
�

)2 − (
1 − q2

red

)
η�

(
M�; u

k,j
�

)2 ≤ [
1 − (

1 − q2
red

)
θ
]
η�

(
u

k,j
�

)2. (5.9)
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With stability (A1), the Young inequality proves, for arbitrary ε > 0, that

η�+1

(
u

k,j
�+1

)2 (A1)≤ (1 + ε) η�+1

(
u

k,j
�

)2 + (1 + ε−1)C2
stab

∣∣∣∣∣∣uk,j
�+1 − u

k,j
�

∣∣∣∣∣∣2
(5.9)≤ (1 + ε)

[
1 − (

1 − q2
red

)
θ
]
η�

(
u

k,j
�

)2 + (1 + ε−1)C2
stab

∣∣∣∣∣∣uk,j
�+1 − u

k,j
�

∣∣∣∣∣∣2.

Since (1 − q2
red) θ < 1, we can choose ε > 0 sufficiently small such that 0 < q := (1 + ε) [1 − (1 −

q2
red) θ ] < 1. By defining a� := η�(u

k,j
� )2 and b� := (1 + ε−1) C2

stab

∣∣∣∣∣∣uk,j
�+1 − u

k,j
�

∣∣∣∣∣∣2, which tends to zero
as � → ∞ by (5.8), the last estimate takes the form of equation (5.6). Therefore, elementary calculus
proves convergence

a� = η�

(
u

k,j
�

)2 �→∞−−−→ 0. (5.10)

Step 4. With the triangle inequality, reliability (A3) and stability (A1), it holds that

∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣u� − u
k,j
�

∣∣∣∣∣∣ + η�

(
u

k,j
�

) ≤ 2
∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣ + ∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣ + η�

(
u

k,j
�

)
(A3)≤ 2 Crel η�

(
u�
�

) + ∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣ + η�

(
u

k,j
�

)
(A1)≤ (2 Crel + 1) η�

(
u

k,j
�

) + (1 + 2 Crel Cstab)
∣∣∣∣∣∣u�

� − u
k,j
�

∣∣∣∣∣∣ �→∞−−−→ 0,

where we used (5.10) and (5.7) in the last step. This concludes the proof. �

5.3 Quasi-Pythagorean estimate

While symmetric PDEs satisfy a Pythagorean identity in the energy norm (with ε = 0 and �0 = 0
in (5.11)), the situation is more involved for nonsymmetric PDEs. The following result generalizes
Bespalov et al. (2017, Lemma 18) by considering general v� ∈ X� and by additionally proving the
lower bound. Although the proof follows essentially that of Bespalov et al. (2017), we include it for the
sake of completeness.

Lemma 5.4. (quasi-Pythagorean estimate) Suppose that the estimator satisfies the axioms (A1)–(A3).
Suppose that the exact Galerkin approximations satisfy convergence

∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣ → 0 along the sequence
of nested spaces X� ⊆ X�+1 as � → �. Then, for all 0 < ε < 1, there exists an index �0 ∈ N0 with
�0 ≤ � such that, for all �0 ≤ � ≤ �,

1

1 + ε

∣∣∣∣∣∣u� − v�

∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣2 + ∣∣∣∣∣∣u�
� − v�

∣∣∣∣∣∣2 ≤ 1

1 − ε

∣∣∣∣∣∣u� − v�

∣∣∣∣∣∣2 for all v� ∈ X�. (5.11)

Proof. The proof is split into four steps.
Step 1. If � < ∞, Lemma 5.2 proves that u� = u�

�. We choose �0 = � and obtain that (5.11)
holds with equality and ε = 0, since � = � and hence u� = u�

�. Consequently, (5.11) holds also for all
0 < ε < 1. Therefore, it only remains to prove (5.11) for � = ∞.
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Step 2. Let � ∈ N0 and v� ∈ X�. The weak formulation (2.1) yields that

∣∣∣∣∣∣u� − v�

∣∣∣∣∣∣2 = ∣∣∣∣∣∣u�
∣∣∣∣∣∣2 + ∣∣∣∣∣∣v�

∣∣∣∣∣∣2 − 2 Re a
(
u�, v�

) (2.1)= ∣∣∣∣∣∣u�
∣∣∣∣∣∣2 + ∣∣∣∣∣∣v�

∣∣∣∣∣∣2 − 2 Re
[
F(v�) − 〈

K u�, v�

〉]
.

(5.12)

Analogously, from the discrete counterpart (1.3) of formulation (2.1) and the linearity of K , we obtain
that

∣∣∣∣∣∣u�
� − v�

∣∣∣∣∣∣2 = ∣∣∣∣∣∣u�
�

∣∣∣∣∣∣2 + ∣∣∣∣∣∣v�

∣∣∣∣∣∣2 − 2 Re a
(
u�
�, v�

)
(1.3)= ∣∣∣∣∣∣u�

�

∣∣∣∣∣∣2 + ∣∣∣∣∣∣v�

∣∣∣∣∣∣2 − 2 Re
[
F(v�) − 〈

K u�
�, v�

〉]
= ∣∣∣∣∣∣u�

�

∣∣∣∣∣∣2 + ∣∣∣∣∣∣v�

∣∣∣∣∣∣2 − 2 Re
[
F(v�) − 〈

K u�, v�

〉 + 〈
K

(
u� − u�

�

)
, v�

〉]
(5.13)

as well as

F(u�
�)

(1.3)= a
(
u�
�, u�

�

) + 〈
K u�

�, u�
�

〉 = ∣∣∣∣∣∣u�
�

∣∣∣∣∣∣2 + 〈
K u�

�, u�
�

〉
. (5.14)

For v� = u�
�, we see that

∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣2 (5.12)= ∣∣∣∣∣∣u�
∣∣∣∣∣∣2 + ∣∣∣∣∣∣u�

�

∣∣∣∣∣∣2 − 2 Re
[
F
(
u�
�

) − 〈
K u�, u�

�

〉]
(5.14)= ∣∣∣∣∣∣u�

∣∣∣∣∣∣2 − ∣∣∣∣∣∣u�
�

∣∣∣∣∣∣2 + 2 Re
〈
K

(
u� − u�

�

)
, u�

�

〉
. (5.15)

Summing (5.13) and (5.15), we obtain that

∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣2 + ∣∣∣∣∣∣u�
� − v�

∣∣∣∣∣∣2 = ∣∣∣∣∣∣u�
∣∣∣∣∣∣2 + ∣∣∣∣∣∣v�

∣∣∣∣∣∣2 − 2 Re
[
F(v�) − 〈

K u�, v�

〉 − 〈
K

(
u� − u�

�

)
, u�

� − v�

〉]
(5.12)= ∣∣∣∣∣∣u� − v�

∣∣∣∣∣∣2 + 2 Re
〈
K

(
u� − u�

�

)
, u�

� − v�

〉
.

(5.16)

Step 3. We recall from Bespalov et al. (2017, Lemma 17) that plain convergence (5.4) of Proposition
5.3 yields that

e� :=

⎧⎪⎨
⎪⎩

u� − u�
�∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣ if u� �= u�
�,

0 otherwise

defines a weakly convergent sequence in X with e� ⇀ 0 as � → ∞. We recall that compact operators
turn weak convergence into norm convergence. With the operator norm |||φ|||′ := sup

v∈X \{0}
|φ(v)| / |||v||| of

φ ∈ X ′, it thus follows that

∣∣〈K (u� − u�
�), u�

� − v�

〉∣∣ ≤ ∣∣∣∣∣∣K e�

∣∣∣∣∣∣′ ∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣ ∣∣∣∣∣∣u�
� − v�

∣∣∣∣∣∣ and
∣∣∣∣∣∣K e�

∣∣∣∣∣∣′ �→∞−−−→ 0.
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Given ε > 0, this provides an index �0 ∈ N such that
∣∣∣∣∣∣K e�

∣∣∣∣∣∣′ ≤ ε for all � ≥ �0 and hence

2
∣∣Re

〈
K

(
u� − u�

�

)
, u�

� − v�

〉∣∣ ≤ 2ε
∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣ ∣∣∣∣∣∣u�
� − v�

∣∣∣∣∣∣
≤ ε

[∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣2 + ∣∣∣∣∣∣u�
� − v�

∣∣∣∣∣∣2] .
(5.17)

Step 4. Rearranging the identity (5.16) and estimating the compact perturbation via (5.17), we obtain
that

∣∣∣∣∣∣u� − v�

∣∣∣∣∣∣2 (5.16)= ∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣2 + ∣∣∣∣∣∣u�
� − v�

∣∣∣∣∣∣2 − 2 Re
〈
K

(
u� − u�

�

)
, u�

� − v�

〉
(5.17)≤ (1 + ε)

[∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣2 + ∣∣∣∣∣∣u�
� − v�

∣∣∣∣∣∣2] .

This proves the lower estimate in (5.11), and the upper estimate is proved analogously. �

5.4 Auxiliary contraction estimates

The following lemma extends (Gantner et al., 2021, Lemma 10) to the present setting with a quasi-
Pythagorean estimate.

Lemma 5.5. (combined discretization-symmetrization error) Suppose that the perturbed Zarantonello
iteration satisfies contraction (5.1) and that the estimator satisfies (A1)–(A3). Then, for all 0 < θ ≤ 1
and λsym > 0, there exists an index �0 ∈ N0 with �0 ≤ � and scalars ν > 0 and 0 < qlin < 1 such that

Λk
� :=

[ ∣∣∣∣∣∣u� − u
k,j
�

∣∣∣∣∣∣2 + ν η�

(
u

k,j
�

)2
]1/2

for all (�, k, j) ∈ Q (5.18)

satisfies

Λk+1
� ≤ qlin Λk

� for all (�, k + 1, 0) ∈ Q with � ≥ �0 and k + 1 < k[�], (5.19a)

Λ0
�+1 ≤ qlin Λ

k−1
� for all (� + 1, 0, 0) ∈ Q with � ≥ �0. (5.19b)

Proof. Let 0 < ε < 1 as well as ν, ω > 0 be free parameters to be fixed below. The proof consists of
seven steps.

Step 1. Lemma 5.4 provides an index �0 = �0(ε) such that for all �0 ≤ � ≤ � the quasi-Pythagorean
estimate (5.11) holds true. For (�, k + 1, 0) ∈ Q with �0 ≤ �, we get that

(
Λk+1

�

)2 = ∣∣∣∣∣∣u� − u
k+1,j
�

∣∣∣∣∣∣2 + ν η�

(
u

k+1,j
�

)2

(5.11)≤ (1 + ε)
∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣2 + (1 + ε)
∣∣∣∣∣∣u�

� − u
k+1,j
�

∣∣∣∣∣∣2 + ν η�

(
u

k+1,j
�

)2. (5.20)
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Analogously, for (� + 1, 0, 0) ∈ Q with � ≥ �0, nested iteration u
0,j
�+1 = u

k,j
� shows that

(
Λ0

�+1

)2 = ∣∣∣∣∣∣u� − u
k,j
�

∣∣∣∣∣∣2 + ν η�+1

(
u

k,j
�

)2

(5.11)≤ (1 + ε)
∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣2 + (1 + ε)
∣∣∣∣∣∣u�

� − u
k,j
�

∣∣∣∣∣∣2 + ν η�+1

(
u

k,j
�

)2. (5.21)

Step 2. Define C1 := 6C2
rel and C2 := 6C2

relC
2
stab. Then, stability (A1) and reliability (A3) prove that,

for all v� ∈ X�,

3
∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣2 (A3)≤ 3 C2
rel η�

(
u�
�

)2 (A1)≤ 6 C2
rel η�(v�)

2 + 6 C2
rel C2

stab

∣∣∣∣∣∣u�
� − v�

∣∣∣∣∣∣2
= C1 η�(v�)

2 + C2

∣∣∣∣∣∣u�
� − v�

∣∣∣∣∣∣2 . (5.22)

Step 3. This step concerns estimator reduction via mesh refinement and thus applies only to the case
(� + 1, 0, 0) ∈ Q. Stability (A1) and reduction (A2) in combination with the Dörfler marking criterion
in Algorithm A(iii) as in Step 3 of the proof of Proposition 5.3 show that

η�+1

(
u

k,j
�

)2 (5.9)≤ [
1 − (

1 − q2
red

)
θ
]
η�

(
u

k,j
�

)2 =: qθ η�

(
u

k,j
�

)2 with 0 < qθ < 1. (5.23)

Step 4. For (�, k + 1, 0) ∈ Q, contraction (5.1) of the perturbed Zarantonello iteration proves that

∣∣∣∣∣∣uk+1,j
� − u

k,j
�

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣u�
� − u

k+1,j
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣ ≤ (1 + qsym)
∣∣∣∣∣∣u�

� − u
k,j
�

∣∣∣∣∣∣.
Define C3 := λ−2

sym(1 + qsym)2. Using this with the not met stopping criterion in Algorithm A(i.d.) for
(�, k + 1, 0) ∈ Q with k + 1 < k[�] shows that

η�

(
u

k+1,j
�

)2
< λ−2

sym

∣∣∣∣∣∣uk+1,j
big� − u

k,j
�

∣∣∣∣∣∣2 ≤ C3

∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣2. (5.24)

Analogously, for (� + 1, 0, 0) ∈ Q it holds that

∣∣∣∣∣∣uk,j
� − u

k−1,j
�

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣u�
� − u

k−1,j
�

∣∣∣∣∣∣ ≤ (1 + qsym)
∣∣∣∣∣∣u�

� − u
k−1,j
�

∣∣∣∣∣∣.
Define C4 := C2

stab(1 + qsym)2. Stability (A1) and the Young inequality in the form (a + b)2 ≤ (1 +
ω)a2 + (1 + ω−1)b2 for a, b ∈ R and ω > 0 show that

η�

(
u

k,j
�

)2 (A1)≤ (1 + ω) η�

(
u

k−1,j
�

)2 + (1 + ω−1) C2
stab

∣∣∣∣∣∣uk,j
� − u

k−1,j
�

∣∣∣∣∣∣2
≤ (1 + ω) η�

(
u

k−1,j
�

)2 + (1 + ω−1) C4

∣∣∣∣∣∣u�
� − u

k−1,j
�

∣∣∣∣∣∣2. (5.25)
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Step 5. For (�, k + 1, 0) ∈ Q with � ≥ �0 and k + 1 < k[�], we have

(Λk+1
� )2 (5.20)≤ (1 − 2ε)

∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣2 + 3ε
∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣2 + (1 + ε)
∣∣∣∣∣∣u�

� − u
k+1,j
�

∣∣∣∣∣∣2 + ν η�

(
u

k+1,j
�

)2

(5.22)≤ (1 − 2ε)
∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣2 + (ν + ε C1) η�

(
u

k+1,j
�

)2 + (1 + ε(1 + C2))
∣∣∣∣∣∣u�

� − u
k+1,j
�

∣∣∣∣∣∣2
(5.1)≤ (1 − 2ε)

∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣2 + (ν + ε C1) η�

(
u

k+1,j
�

)2 + (1 + ε(1 + C2)) q2
sym

∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣2
(5.24)≤ (1 − 2ε)

∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣2 + [
(ν + ε C1)C3 + (1 + ε(1 + C2)) q2

sym

] ∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣2.

Provided that

(ν + ε C1)C3 + (1 + ε(1 + C2)) q2
sym = q2

sym + νC3 + ε [C1C3 + (1 + C2) q2
sym] ≤ 1 − 2ε,

the quasi-Pythagorean estimate (5.11) proves that

(
Λk+1

�

)2 ≤ (1 − 2ε)
[∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣2 + ∣∣∣∣∣∣u�
� − u

k,j
�

∣∣∣∣∣∣2] 5.11≤ 1 − 2ε

1 − ε

∣∣∣∣∣∣u� − u
k,j
�

∣∣∣∣∣∣2 ≤ 1 − 2ε

1 − ε

(
Λk

�

)2.

This proves (5.19a) up to the choice of the parameters ε, and ν.
Step 6. For (� + 1, 0, 0) ∈ Q with � ≥ �0, we have that

(
Λ0

�+1

)2 (5.21)≤ (1 − 2ε)
∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣2 + 3ε
∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣2 + (1 + ε)
∣∣∣∣∣∣u�

� − u
k,j
�

∣∣∣∣∣∣2 + ν η�+1

(
u

k,j
�

)2

(5.22)≤ (1 − 2ε)
∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣2 + ε C1 η�

(
u

k−1,j
�

)2 + [
ε C2 + (1 + ε) q2

sym

] ∣∣∣∣∣∣u�
� − u

k−1,j
�

∣∣∣∣∣∣2
+ ν η�+1(u

k,j
� )2

(5.23)≤ (1 − 2ε)
∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣2 + ε C1 η�

(
u

k−1,j
�

)2 + [
ε C2 + (1 + ε) q2

sym

] ∣∣∣∣∣∣u�
� − u

k−1,j
�

∣∣∣∣∣∣2
+ qθ ν η�

(
u

k,j
�

)2

(5.25)≤ (1 − 2ε)
∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣2 + [
ε C2 + (1 + ε) q2

sym + C4qθ ν(1 + ω−1)
] ∣∣∣∣∣∣u�

� − u
k−1,j
�

∣∣∣∣∣∣2
+ [

ε C1ν
−1 + qθ (1 + ω)

]
ν η�

(
u

k−1,j
�

)2.

Provided that

ε C1ν
−1 + qθ (1 + ω) ≤ 1 − 2ε

and

ε C2 + (1 + ε)q2
sym + C4qθ ν(1 + ω−1) = q2

sym + νC4qθ (1 + ω−1) + ε
(
C2 + q2

sym

) ≤ 1 − 2ε,
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the quasi-Pythagorean estimate (5.11) shows that

(Λ0
�+1)

2 ≤ (1 − 2ε)
[∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣2 + ∣∣∣∣∣∣u�
� − u

k−1,j
�

∣∣∣∣∣∣2 + ν η�

(
u

k−1,j
�

)2
]

(5.11)≤ 1 − 2ε

1 − ε

∣∣∣∣∣∣u� − u
k−1,j
�

∣∣∣∣∣∣2 + (1 − 2ε)ν η�

(
u

k−1,j
�

)2 ≤ 1 − 2ε

1 − ε

(
Λ

k−1
�

)2.

This proves (5.19b) up to the choice of the parameters ω, ν and ε in the following step.
Step 7. A suitable choice of the parameters ω, ν and ε can be obtained as follows:

• first, we choose ω such that (1 + ω)qθ < 1;

• second, we choose ν such that q2
sym + νC3 < 1 and q2

sym + νqθ C4(1 + ω−1) < 1;

• finally, we choose ε > 0 sufficiently small so that all constraints in Step 5 and Step 6 are satisfied.

This concludes the proof with q2
lin := 1−2ε

1−ε
< 1. �

5.5 Proof of Theorem 1

The proof is split into five steps. Recall the definitions

Δ
k,j
�

(4.3)= ∣∣∣∣∣∣u� − u
k,j
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,�
� − u

k,j
�

∣∣∣∣∣∣ + η�

(
u

k,j
�

)
and Λk

�

(5.18)=
[ ∣∣∣∣∣∣u� − u

k,j
�

∣∣∣∣∣∣2 + ν η�

(
u

k,j
�

)2
]1/2

.

Step 1. In the first step, we prove that

Δ
k,j
� �

∣∣∣∣∣∣uk,�
� − uk,j−1

�

∣∣∣∣∣∣ for all (�, k, j) ∈ Q with 1 ≤ k ≤ k[�] and 1 ≤ j < j[�, k]. (5.26)

Together with reliability (A3) and stability (A1), the definition of Δ
k,j
� shows that

Δ
k,j
�

(4.3)= ∣∣∣∣∣∣u� − uk,j
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,�
� − uk,j

�

∣∣∣∣∣∣ + η�

(
uk,j
�

)
≤ ∣∣∣∣∣∣u� − u�

�

∣∣∣∣∣∣ + ∣∣∣∣∣∣u�
� − uk,j

�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,�
� − uk,j

�

∣∣∣∣∣∣ + η�

(
uk,j
�

)
(A3)≤ Crel η�

(
u�
�

) + ∣∣∣∣∣∣u�
� − uk,j

�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,�
� − uk,j

�

∣∣∣∣∣∣ + η�

(
uk,j
�

)
(A1)≤ (1 + Crel) η�

(
uk,j
�

) + (1 + CstabCrel)
∣∣∣∣∣∣u�

� − uk,j
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,�
� − uk,j

�

∣∣∣∣∣∣.
The contraction of the (unperturbed) Zarantonello iteration (4.1) proves that

∣∣∣∣∣∣u�
� − uk,j

�

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣u�
� − uk,�

�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,�
� − uk,j

�

∣∣∣∣∣∣ (4.1)≤ qsym

1 − qsym

∣∣∣∣∣∣uk,�
� − u

k−1,j
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,�
� − uk,j

�

∣∣∣∣∣∣
�
∣∣∣∣∣∣uk,�

� − uk,j
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,j
� − u

k−1,j
�

∣∣∣∣∣∣.
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Furthermore, the contraction of the algebraic solver (5.3) proves that

∣∣∣∣∣∣uk,�
� − uk,j

�

∣∣∣∣∣∣ (5.3)≤ qalg

1 − qalg

∣∣∣∣∣∣uk,j
� − uk,j−1

�

∣∣∣∣∣∣.
Combining the last three estimates with the not met stopping criterion of the algebraic solver in
Algorithm A(i.b.II) for 1 ≤ j < j[�, k], we conclude that

Δ
k,j
� � η�

(
uk,j
�

) + ∣∣∣∣∣∣uk,j
� − u

k−1,j
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,j
� − uk,j−1

�

∣∣∣∣∣∣ (i.b.II)
�

∣∣∣∣∣∣uk,j
� − uk,j−1

�

∣∣∣∣∣∣.
Finally, the triangle inequality and the contraction (2.9) imply (5.26).

Step 2. Next, we show that

Δ
k,j
� � Δ

k,j
� for all (�, k, j) ∈ Q, (5.27)

which is trivial for j = j[�, k]. To deal with j = j[�, k] − 1, note that the definition of Δ
k,j
� shows that

Δ
k,j
�

(4.3)= ∣∣∣∣∣∣u� − u
k,j
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,�
� − u

k,j
�

∣∣∣∣∣∣ + η�

(
u

k,j
�

)
≤ ∣∣∣∣∣∣u� − u

k,j−1
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,�
� − u

k,j−1
�

∣∣∣∣∣∣ + 2
∣∣∣∣∣∣uk,j

� − u
k,j−1
�

∣∣∣∣∣∣ + η�

(
u

k,j
�

)
.

Stability (A1) and the algebraic solver contraction (5.3) lead us to

2
∣∣∣∣∣∣uk,j

� − u
k,j−1
�

∣∣∣∣∣∣ + η�(u
k,j
� )

(A1)≤ (2 + Cstab)
∣∣∣∣∣∣uk,j

� − u
k,j−1
�

∣∣∣∣∣∣ + η�

(
u

k,j−1
�

)
(5.3)≤ (2 + Cstab)(1 + qalg)

∣∣∣∣∣∣uk,�
� − u

k,j−1
�

∣∣∣∣∣∣ + η�

(
u

k,j−1
�

)
.

Combining the last two estimates verifies (5.27) for j = j[�, k] − 1, i.e.,

Δ
k,j
� �

∣∣∣∣∣∣u� − u
k,j−1
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,�
� − u

k,j−1
�

∣∣∣∣∣∣ + η�

(
u

k,j−1
�

) = Δ
k,j−1
� . (5.28)

We prove the remaining case j < j[�, k] − 1 by (5.26) from Step 1 and the algebraic solver contraction
(5.3), i.e.,

Δ
k,j
�

(5.28)
� Δ

k,j−1
�

(5.26)
�

∣∣∣∣∣∣uk,�
� − u

k,j−2
�

∣∣∣∣∣∣ (5.3)≤ q
(j[�,k]−2)−j
alg

∣∣∣∣∣∣uk,�
� − uk,j

�

∣∣∣∣∣∣ ≤ Δ
k,j
� .

This concludes the proof of (5.27).
Step 3. In this step, we prove that

Λ0
� � Δ

0,0
� = Δ

0,j
� and Λk

� � Δ
k,j
�

(5.27)
� Δ

k,0
� � Λk−1

� for all (�, k, j) ∈ Q with k ≥ 1. (5.29)
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Together with u0,�
� = u

0,j
� = u0,0

� , the definition of Λ0
� and Δ

0,0
� proves that Λ0

� � Δ
0,0
� = Δ

0,j
� as well as

Λk
� � Δ

k,j
� for all (�, k, j) ∈ Q, where the hidden constants depend only on ν. Together with (5.27) from

Step 2, it thus only remains to prove Δ
k,0
� � Λk−1

� for k ≥ 1.
To this end, let (�, k, j) ∈ Q with k ≥ 1. From contraction (4.1) of the unperturbed Zarantonello

symmetrization and nested iteration uk,0
� = u

k−1,j
� , we get that

Δ
k,0
� = ∣∣∣∣∣∣u� − u

k−1,j
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣uk,�
� − u

k−1,j
�

∣∣∣∣∣∣ + η�

(
u

k−1,j
�

)
(4.1)≤ ∣∣∣∣∣∣u� − u

k−1,j
�

∣∣∣∣∣∣ + (1 + qsym)
∣∣∣∣∣∣u�

� − u
k−1,j
�

∣∣∣∣∣∣ + η�

(
u

k−1,j
�

)
.

The Céa lemma (2.5) proves that

∣∣∣∣∣∣u�
� − u

k−1,j
�

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣u� − u�
�

∣∣∣∣∣∣ + ∣∣∣∣∣∣u� − u
k−1,j
�

∣∣∣∣∣∣ � ∣∣∣∣∣∣u� − u
k−1,j
�

∣∣∣∣∣∣.
Combining the last two estimates, we arrive at

Δ
k,0
� �

∣∣∣∣∣∣u� − u
k−1,j
�

∣∣∣∣∣∣ + η�

(
u

k−1,j
�

) � Λk−1
� .

This concludes the proof of (5.29).
Step 4. In this step, we prove that

j[�,k]∑
j′=j

Δ
k,j′
� � Δ

k,j
� + Δ

k,j
� for all (�, k, j) ∈ Q. (5.30)

According to the right-hand side of (5.30), it remains to consider the sum for j′ = j + 1, . . . , j[�, k] − 1.
With (5.26) and contraction (5.3) of the algebraic solver, we get that

j[�,k]−1∑
j′=j+1

Δ
k,j′
�

(5.26)
�

j[�,k]−1∑
j′=j+1

∣∣∣∣∣∣uk,�
� − uk,j′−1

�

∣∣∣∣∣∣ (5.3)≤ ∣∣∣∣∣∣uk,�
� − uk,j

�

∣∣∣∣∣∣ j[�,k]−2∑
j′=j

qj′−j
alg .

With the geometric series and
∣∣∣∣∣∣uk,�

� − uk,j
�

∣∣∣∣∣∣ ≤ Δ
k,j
� , this concludes the proof of (5.30).

Step 5. For (�, k, j) ∈ Q with � ≥ �0, the preceding steps show that

∑
(�′,k′,j′)∈Q

(�′,k′,j′)>(�,k,j)

Δ
k′,j′
�′ =

j[�,k]∑
j′=j+1

Δ
k,j′
� +

∑
(�′,k′,0)∈Q

(�′,k′,0)>(�,k,0)

j[�′,k′]∑
j′=0

Δ
k′,j′
�′

(5.30)

�
[
Δ

k,j
� + Δ

k,j
�

]
+

∑
(�′,k′,0)∈Q

(�′,k′,0)>(�,k,0)

[
Δ

k′,j
�′ + Δ

k′,0
�′

] (5.27)
� Δ

k,j
� +

∑
(�′,k′,0)∈Q

(�′,k′,0)>(�,k,0)

Δ
k′,0
�′ .
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With the linear convergence (5.19) of Λk
� from Lemma 5.5 and the geometric series, we thus see that

∑
(�′,k′,0)∈Q

(�′,k′,0)>(�,k,0)

Δ
k′,0
�′ =

k[�]∑
k′=k+1

Δ
k′,0
� +

�∑
�′=�+1

k[�′]∑
k′=0

Δ
k′,0
�′

(5.29)
�

k[�]−1∑
k′=k

Λk′
� +

�∑
�′=�+1

k[�′]−1∑
k′=0

Λk′
�′

(5.19)
� Λk

� + Λ0
�+1

(5.27)
� Λk

�

(5.29)
� Δ

k,j
�

(5.27)
� Δ

k,j
� .

Altogether, this proves that

∑
(�′,k′,j′)∈Q

(�′,k′,j′)>(�,k,j)

Δ
k′,j′
�′ � Δ

k,j
� for all (�, k, j) ∈ Q.

According to basic calculus (see, e.g., Carstensen et al., 2014, Lemma 4.9), this is equivalent to the
claimed linear convergence (4.4) with respect to the lexicographic ordering on Q.

5.6 Proof of Theorem 2

Thanks to Corollary 4.2, it is sufficient to show that

||u�||
As(T0)

� sup
(�,k,j)∈Q

(#T�)
s Δ

k,j
� , (5.31a)

sup
(�,k,j)∈Q

�≥�0

(#T�)
s Δ

k,j
� � max

{
||u�||As(T�0 ), Δ

0,0
�0

}
. (5.31b)

We split the proof into six steps.
Step 1. We first show (5.31a) for the case � = ∞. Algorithm A ensures that #T� → ∞ as � → ∞.

We recall that in NVB refinement an element is split into at least two, but at most Cchild child elements.
In particular, for all � ≥ 0, we have that

#T�+1 ≤ Cchild #T�. (5.32)

For any given N ∈ N, we can argue similarly as in the proof of Carstensen et al. (2014, Proposition 4.15).
Choose the maximal index �′ ∈ N0 such that #T�′ − #T0 ≤ N. The maximality of �′ leads us to

N + 1 ≤ #T�′+1 − #T0 + 1 ≤ #T�′+1

(5.32)≤ Cchild #T�′ . (5.33)

Since T�′ ∈ TN(T0), we have that

min
Topt∈TN (T0)

[∣∣∣∣∣∣u� − u�
opt

∣∣∣∣∣∣ + ηopt

(
u�

opt

)] ≤ ∣∣∣∣∣∣u� − u�
�′
∣∣∣∣∣∣ + η�′

(
u�
�′
)
, (5.34)
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and stability (A1) and the Céa lemma (2.5) show, for (�′, k′, j′) ∈ Q, that

∣∣∣∣∣∣u� − u�
�′
∣∣∣∣∣∣ + η�′(u�

�′)
(A1)≤ ∣∣∣∣∣∣u� − u�

�′
∣∣∣∣∣∣ + η�′

(
uk′,j′
�′

) + Cstab

∣∣∣∣∣∣u�
�′ − uk′,j′

�′
∣∣∣∣∣∣

≤ (1 + Cstab)
∣∣∣∣∣∣u� − u�

�′
∣∣∣∣∣∣ + η�′

(
uk′,j′
�′

) + Cstab

∣∣∣∣∣∣u� − uk′,j′
�′

∣∣∣∣∣∣
(2.5)≤ (

CCéa (1 + Cstab) + Cstab

) ∣∣∣∣∣∣u� − uk′,j′
�′

∣∣∣∣∣∣ + η�′
(
uk′,j′
�′

)
≤ (

CCéa (1 + Cstab) + Cstab

)
Δ

k′,j′
�′ . (5.35)

A combination of the previous estimates leads us to

(
N + 1

)s min
Topt∈TN (T0)

[∣∣∣∣∣∣u� − u�
opt

∣∣∣∣∣∣ + ηopt

(
u�

opt

)] (5.34)≤ (
N + 1

)s [∣∣∣∣∣∣u� − u�
�′
∣∣∣∣∣∣ + η�′

(
u�
�′
)]

(5.33)≤ Cs
child

(
#T�′

)s [∣∣∣∣∣∣u� − u�
�′
∣∣∣∣∣∣ + η�′

(
u�
�′
)] (5.35)

�
(
#T�′

)s
Δ

k′,j′
�′ ≤ sup

(�,k,j)∈Q

(
#T�

)s
Δ

k,j
� .

Finally, taking the supremum over all N yields the sought result

||u�||As(T0)
� sup

(�,k,j)∈Q

(
#T�

)s
Δ

k,j
� .

Step 2. We proceed to show (5.31a) for the case � < ∞. Recall from Lemma 5.2 that η�(u
�
�) = 0 and

u�
� = u�. Without loss of generality, we may assume � > 0, since otherwise ||u�||As(T0)

= 0. Combined
with reliability (A3), this yields that

||u�||As(T0)

(4.9)= sup
N∈N0

((
N + 1

)s min
Topt∈TN (T0)

[∣∣∣∣∣∣u� − u�
opt

∣∣∣∣∣∣ + ηopt

(
u�

opt

)])

(A3)≤ (1 + Crel) sup
0≤N<#T�−#T0

(
(N + 1)s min

Topt∈TN (T0)
ηopt

(
u�

opt

))
. (5.36)

We argue as in Step 1 above: let 0 ≤ N < #T� − #T0. Choose the maximal index 0 ≤ �′ < � with
#T�′ − #T0 ≤ N. Arguing along the lines of (5.33)–(5.35), we see that

sup
0≤N<#T�−#T0

((
N + 1

)s min
Topt∈TN (T0)

ηopt

(
u�

opt

))
� sup

(�,k,j)∈Q

(
#T�

)s
Δ

k,j
� .

Combining this with (5.36), we conclude the lower bound (5.31a) also in this case.
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1586 M. BRUNNER ET AL.

Step 3. We prove (5.31b) for ||u�||As(T�0 ) < ∞, since the result becomes trivial if ||u�||As(T�0 ) = ∞.

First, we show that for all �′ ≥ �0 with (�′ + 1, 0, 0) ∈ Q, there exists R�′ ⊆ T�′ such that

#R�′ � ||u�||1/s
As(T�0 )

(
Δ

0,j
�′+1

)−1/s
and θmarkη�′

(
u�
�′
)2 ≤ η�′

(
R�′ , u�

�′
)2 . (5.37)

Since 0 < θmark = (θ1/2 + λsym/λ�
sym)2 (1 − λsym/λ�

sym)−2 < θ�, and because there holds (A4),
(Carstensen et al., 2014, Lemma 4.14) ensures, for all �′ ≥ �0, the existence of a set R�′ ⊆ T�′ , satisfying

#R�′ � ||u�||1/s
As

(
T�0

) η�′
(
u�
�′
)−1/s and θmarkη�′

(
u�
�′
)2 ≤ η�′

(
R�′ , u�

�′
)2 . (5.38)

Stability of the estimator (A1), the contraction of the perturbed Zarantonello symmetrization (4.2) and
the stopping criterion in Algorithm A(i.d.) show that

η�′
(
u

k,j
�′
) (A1)≤ η�′(u�

�′) + Cstab

∣∣∣∣∣∣u�
�′ − u

k,j
�′
∣∣∣∣∣∣

(4.2)≤ η�′(u�
�′) + Cstab

qsym

1 − qsym

∣∣∣∣∣∣uk,j
�′ − u

k,j−1
�′

∣∣∣∣∣∣ ≤ η�′
(
u�
�′
) + λsym

λ�
sym

η�′
(
u

k,j
�′
)
.

Since λsym/λ�
sym < 1 by assumption, we thus obtain that

(
1 − λsym/λ�

sym

)
η�′

(
u

k,j
�′
) ≤ η�′

(
u�
�′
)
, (5.39)

which leads us to

#R�′
(5.38)
� ||u�||1/s

As
(
T�0

) η�′
(
u

k,j
�′
)−1/s.

Moreover, thanks to nested iteration, Step 3 of the proof of Theorem 4.1, Step 3 of the proof of Lemma 5.5
and reliability (3.4) of Proposition 3.5, there holds that

Δ
0,j
�′+1

(5.29)� Λ0
�′+1 =

(∣∣∣∣∣∣u� − u
k,j
�′
∣∣∣∣∣∣2 + ν η�′+1

(
u

k,j
�′
)2
)1/2

(5.23)
�

(∣∣∣∣∣∣u� − u
k,j
�′
∣∣∣∣∣∣2 + η�′

(
u

k,j
�′
)2
)1/2 (3.4)

� η�′
(
u

k,j
�′
)
. (5.40)

By summarizing the last two estimates, we obtain (5.37).
Step 4. For (�′ + 1, 0, 0) ∈ Q with �′ ≥ �0, we show that

#M�′ ≤ Cmark #R�′ , (5.41)
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with the constant Cmark ≥ 1 from Algorithm A. Recall the definition θmark = (θ1/2 + λsym/λ�
sym)2 (1 −

λsym/λ�
sym)−2 with λ�

sym = (1 − qsym)/(qsym Cstab). This shows that

∣∣∣∣∣∣u�
�′ − u

k,j
�′
∣∣∣∣∣∣ (5.1)≤ qsym

1 − qsym

∣∣∣∣∣∣uk,j
�′ − u

k−1,j
�′

∣∣∣∣∣∣ ≤ qsym

1 − qsym
λsym η�′

(
u

k,j
�′
)

= C−1
stab

λsym

λ�
sym

η�′
(
u

k,j
�′
) = C−1

stab

[
θ

1/2
mark

(
1 − λsym

λ�
sym

)
− θ1/2

]
η�′

(
u

k,j
�′
)
. (5.42)

Now, we can estimate

θ
1/2
mark

(
1 − λsym

λ�
sym

)
η�′

(
u

k′,j′
�′

) (5.39)≤ θ
1/2
markη�′

(
u�
�′
) (5.38)≤ η�′

(
R�′ , u�

�′
)

(A1)≤ η�′
(
R�′ , u

k′,j′
�′

)
+ Cstab

∣∣∣∣∣∣u�
�′ − u

k′,j′
�′

∣∣∣∣∣∣
(5.42)≤ η�′

(
R�′ , u

k′,j′
�′

)
+
[
θ

1/2
mark

(
1 − λsym

λ�
sym

)
− θ1/2

]
η�′

(
u

k′,j′
�′

)
.

Rearranging the terms, we obtain that R�′ from Step 3 satisfies the Dörfler marking criterion of
Algorithm A(iii) with the same parameter θ , i.e., there holds

θ η�′
(

u
k′,j′
�′

)2 ≤ η�′
(
R�′ , u

k′,j′
�′

)2
. (5.43)

Hence, quasi-minimality of the set of marked elements M�′ implies (5.41).
Step 5. Consider the case (�, k, j) ∈ Q with � ≥ �0. Full linear convergence from Theorem 4.1 yields

that

∑
(�′,k′,j′)∈Q

|�′,k′,j′|≤|�,k,j|
�′≥�0

(
Δ

k′,j′
�′

)−1/s (4.4)
�

(
Δ

k,j
�

)−1/s ∑
(�′,k′,j′)∈Q

|�′,k′,j′|≤|�,k,j|
�′≥�0

(
q1/s

lin

)|�,k,j|−|�′,k′,j′| �
(
Δ

k,j
�

)−1/s. (5.44)

Recall that NVB refinement satisfies the mesh-closure estimate, i.e., there holds that

#T� − #T0 ≤ Cmesh

�−1∑
�′=0

#M�′ for all � ≥ 0, (5.45)
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1588 M. BRUNNER ET AL.

where Cmesh > 1 depends only on T0. Thus, for (�, k, j) ∈ Q with � > �0, we have by the mesh-closure
estimate (5.45), optimality of Dörfler marking (5.41) and full linear convergence (5.44) that

#T� − #T�0

(5.45)≤ Cmesh

�−1∑
�′=�0

#M�′
(5.41)≤ CmeshCmark

�−1∑
�′=�0

#R�′

(5.37)
� ||u�||1/s

As(T�0 )

�−1∑
�′=�0

(
Δ

0,j
�′+1

)−1/s

� ||u�||1/s
As(T�0 )

∑
(�′,k′,j′)∈Q

|�′,k′,j′|≤|�,k,j|
�′≥�0

(
Δ

k′,j′
�′

)−1/s (5.44)
� ||u�||1/s

As(T�0 )

(
Δ

k,j
�

)−1/s
.

Rearranging the terms and noting that #T� − #T�0
+ 1 ≤ 2 (#T� − #T�0

), we obtain that

(#T� − #T�0
+ 1)sΔ

k,j
� � ||u�||

As(T�0 ) for � > �0.

Trivially, full linear convergence proves that

(#T� − #T�0
+ 1)sΔ

k,j
�0

= Δ
k,j
�0

� Δ
0,0
�0

for � = �0.

We recall from Bespalov et al. (2017, Lemma 22) that for all TH ∈ T and all Th ∈ T(TH), it holds that

#Th − #TH + 1 ≤ #Th ≤ #TH (#Th − #TH + 1). (5.46)

Overall, we have thus shown that

(#T�)
sΔ

k,j
�

(5.46)
� (#T� − #T�0

+ 1)sΔ
k,j
� � max

{
||u�||As(T�0 ), Δ

0,0
�0

}

for all (�, k, j) ∈ Q with � ≥ �0. This concludes the proof of the upper bound in (5.31b) and hence that
of (4.11).

Step 6. We prove the equivalence in (4.12) by combining the steps above. Recall that

Q\{(�, k, j) ∈ Q : � ≥ �0} = {(�, k, j) ∈ Q : � < �0} is finite

and that ||u�||
As(T0)

< ∞ is equivalent to ||u�||
As(T�0 ) < ∞. Thus, the claim follows immediately by the

equivalence in (4.11). This concludes the proof.

6. Numerical experiments

We consider the model problem (1.1) from the introduction. The Matlab implementation of
the following experiments is embedded into the open source software package MooAFEM from
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ADAPTIVE FEM WITH QUASI-OPTIMAL OVERALL COST 1589

Fig. 2. Optimality of AISFEM for the diffusion–convection–reaction problem on the L-shaped domain from Section 6.1.

Convergence history plot of the error estimator η�(u
k,j
�

) over the computational costs (left) and the elapsed computational time
(right) for different polynomial degrees m.

Innerberger & Praetorius (2023). In the following, Algorithm A employs the optimal local hp-robust
multigrid method from Innerberger et al. (2022) as algebraic solver and the standard residual error
estimator η�. Given T ∈ T� and v� ∈ X�, the local contribution of η� reads

η�(T; v�)
2 := h2

T ||−div(A ∇v� − f ) + b · ∇v� + c v� − f ||2L2(T)
+ hT ||[[(A ∇v� − f ) · n]]||2L2(∂T∩Ω)

.

It is well known (see, e.g., Carstensen et al., 2014, Section 6.1) that η� satisfies the axioms (A1)–(A4)
from Section 2.3.

6.1 Diffusion–convection–reaction on L-shaped domain

In this subsection, we consider the problem (1.1) on the L-shaped domain Ω = (−1, 1)2 \ (
[0, 1] ×

[−1, 0]
) ⊂ R

2 with coefficients A(x) = Id, b(x) = x and c(x) = 1, and right-hand side f (x) = 1, i.e.,

−Δu�(x) + x · ∇u�(x) + u�(x) = 1 for x ∈ Ω subject to u�(x) = 0 for x ∈ ∂Ω .

Optimality of AISFEM. We first display the optimality of Algorithm A with respect to the computa-
tional cost stated in Theorem 4.3 using the equivalence #T� � dim X�. Numerically, we test with the
parameters λsym = λalg = 0.1, δ = 0.5 and θ = 0.5 and, unless stated explicitly, the stopping criterion

dim X� > 107. Note that both the total error and the algebraic error are unknown in all practical purposes.
Therefore, we cannot study the decay of the quasi-error, but rather consider the equivalent error estimator

η�(u
k,j
� ); see (5.40). Figure 2 shows that the proposed algorithm achieves optimal rates −m/2 for several

polynomial degrees m both with respect to the computational costs and the elapsed computational time
after a short preasymptotic phase.

Optimality of the iteratively-symmetrized solver. Optimality of AISFEM is possible when the inherent
symmetrization and algebraic procedures are treated efficiently. In Fig. 3, we present the time required for
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1590 M. BRUNNER ET AL.

Fig. 3. Optimality of the combined iterative solver for the diffusion–convection–reaction problem on the L-shaped domain from
Section 6.1. Cumulative time for the direct solve and AISFEM over the computational costs.

our iteratively symmetrized solver compared to the Matlab built-in direct solver (backslash) of the linear
system related to (1.3). We note that the displayed timings are comparing the direct solve time itself with
the remaining time (including the setup of the Zarantonello system, computation of the error estimator
and mesh refinement). Hence, the presented numbers favor the built-in direct solver over the Matlab-
implemented multigrid code. Nevertheless, the combination of the Zarantonello symmetrization with
the optimal local multigrid solver from Innerberger et al. (2022) appears to be of comparable speed to
the built-in direct solver with the observation that as the dimension of the linear system increases, the
backslash performance begins to degrade. Moreover, Fig. 4 shows that the iteration numbers of the solver
remain uniformly bounded in the levels for various choices of the parameters λsym and θ . Note that when
λsym decreases, a higher accuracy of the Zarantonello symmetrization is required. Therefore, the iteration
numbers are expected to increase with smaller λsym as seen in Fig. 4 (left). Moreover, the iteration
numbers are also expected to increase as θ becomes larger. This is due to the aggressive refinement
leading to hierarchies of low numbers of levels, but with considerable increase in the dimension of the
linear systems. This may lead to the conclusion that θ should be chosen very small in order to have less
iterations per level, but studying the cumulative solver steps in Fig. 4 (right) shows that this is not the
best strategy.

Parameter study of AISFEM. We now investigate which parameters yield the best contraction in the
iterativelysymmetrized step A(ii)–(iii). Since the parameters depend on the contraction factors qalg from
(2.9) and qsym from (4.1), we study a setting where the exact discrete solution u�

� to (1.3) and the exact

Zarantonello solution uk,�
� to (1.5) are computed. Then, we compute qalg(�, k, j) for (�, k, j) ∈ Q and

define the level-wise contraction factors qalg(�) as the maximum over all qalg(�, k, j) for fixed � ∈ N0
and analogously for qsym. From now on, we fix the polynomial degree m = 2 and the parameters

λalg = 10−2 for the numerical experiments. We investigate the behavior of the combined solver for

various choices of λsym ∈ {10−1, 10−2, 10−3, 10−4} and θ ∈ {0.1, 0.2, . . . , 0.8, 0.9}. Figure 6 shows

upper bounds λalg < λ
�

alg = (1 − qsym)(1 − qalg)/(4 qalg) (see the implicit definition of λ
�

alg in (4.2))
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ADAPTIVE FEM WITH QUASI-OPTIMAL OVERALL COST 1591

Fig. 4. Uniform bound on the iteration numbers for the diffusion–convection–reaction problem on the L-shaped domain from
Section 6.1 and the strong convection problem on the Z-shaped domain from Section 6.2. Number of total solver steps |�, k, j| −
|�, 0, 0| on the level � for various selections of the symmetrization stopping parameter λsym with fixed θ = 0.5 (left) and the
cumulative solver steps for different marking parameter θ with fixed λsym = 0.1 (right).

Table 1 Optimal selection of parameter with respect to the computational costs for the experiment from

Section 6.1. For the comparison, we consider
∑

|�′,k′,j′|≤|�,k,j| dim X�′ × η�(u
k,j
� ) with stopping criterion

η�(u
k,j
� ) < 10−5 for various choices of λsym and θ with the optimal choice highlighted in color

λsym/θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10−1 533 470 402 424 497 608 801 971 1513
10−2 3084 1878 1566 1482 1524 1624 1869 2485 4266
10−3 6543 4490 3478 2831 2894 3371 3826 4729 6956
10−4 10791 6621 5211 4381 4475 4777 5979 7398 10901

and Fig. 5 displays contraction factors qsym ≈ 1/2 and qsym ≈ 1/2, independently of the choice of
θ and λsym. Note that qsym being close to qsym means that the perturbed, i.e., iteratively symmetrized,
Zarantonello step is of comparable performance to the unperturbed Zarantonello iteration. Moreover,
Table 1 shows that the optimal combination of the parameters with respect to the computational costs is
θ = 0.3 and λsym = 10−1. Furthermore, it appears that the choice of θ has a stronger impact on the costs
than the selection of λsym.

6.2 Strong convection on Z-shaped domain

In this subsection, we consider the problem (1.1) on the Z-shaped domain Ω = (−1, 1)2 \
conv{(0, 0), (−1, 0), (−1, −1)} ⊂ R

2 with coefficients A(x) = Id and b(x) = (5, 5)�, and right-hand
side f (x) = 1, i.e.,

−Δu�(x) + (5, 5)� · ∇u�(x) = 1 for x ∈ Ω and u�(x) = 0 for x ∈ ∂Ω .
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1592 M. BRUNNER ET AL.

Fig. 5. Uniform contraction of the iterative solver for the diffusion–convection–reaction problem on the L-shaped domain from
Section 6.1. Experimental contraction factors qalg, qsym and qsym for various choices of the symmetrization stopping parameter
λsym with fixed θ = 0.5 (left) and different marking parameter θ with fixed λsym = 0.1 (right).

Fig. 6. Computed upper bounds for λ�
alg < λ

�
alg for various choices of the symmetrization stopping parameter λsym with fixed

θ = 0.5 (left) and different marking parameter θ with fixed λsym = 0.1 (right), where we emphasize the double scaling of the
y-axis for λ�

alg resp. qsym in both figures.

Figure 7 shows that even for a strong convection combined with a strong singularity at the origin,
the adaptive algorithm recovers the optimal convergence rates −m/2 for several polynomial degrees m
both with respect to the cumulative costs and computational time. In Fig. 4, we see that the number of
solver steps per level � behaves similarly to the diffusion–convection–reaction problem on the L-shape
from Section 6.1 with an increase due to the stronger singularity. Furthermore, Fig. 8 displays upper
bounds on λalg ≤ λ�

alg < λ
�

alg and the contraction factor qsym ≈ 1/2 (after an initial phase of reduced
contraction) for the perturbed Zarantonello system in (4.2).

7. Conclusion and future work

In this work, we have developed and analyzed an adaptive finite element method for nonsymmetric
second-order linear elliptic PDEs (1.1). From a conceptual point of view, the crucial assumption is that
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Fig. 7. Optimality of AISFEM for the strong convection problem on the Z-shaped domain from Section 6.2. Convergence history

plot of the error estimator η�(u
k,j
�

) over the computational cost (left) and the elapsed computational time (right).

Fig. 8. Uniform contraction of the combined solver for the strong convection problem on the Z-shaped domain from Section 6.2.
Contraction factor qsym and computed upper bound for λ�

alg < λ
�
alg for various symmetrization stopping parameter λsym with

fixed θ = 0.5 (left) and different marking parameter θ with fixed λsym = 0.1 (right), where we emphasize the double scaling of
the y-axis for λ�

alg resp. qsym in both figures.

the weak formulation takes the form

b(u�, v) := a(u�, v) + 〈
K u�, v

〉 = F(v) for all v ∈ X , (7.1)

where F ∈ X ′ is a linear and continuous functional, a(·, ·) is a symmetric, continuous and elliptic
bilinear form on X , and K : X → X ′ is a compact operator such that the bilinear form b(·, ·) is still
elliptic on X . Let ||| · ||| denote the a(·, ·)-induced energy norm. For the discrete formulation

b
(
u�
�, v�

) = F(v�) for all v� ∈ X�, (7.2)
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we require an (abstract) inexact iterative solver whose iteration map is given by Φ�(F; ·) : X� → X�

contracting the error in the energy norm, i.e.,

∣∣∣∣∣∣u�
� − uk+1

�

∣∣∣∣∣∣ ≤ qsym

∣∣∣∣∣∣u�
� − uk

�

∣∣∣∣∣∣ with uk+1
� := Φ�

(
F; uk

�

)
for all k ∈ N, (7.3)

where the contraction constant 0 < qsym < 1 is independent of u0
� ∈ X�. Under such assumptions and

with the usual residual a posteriori error estimator η�(·) (satisfying the abstract assumptions (A1)–(A4))
on nested conforming discrete spaces X� ⊆ X�+1 ⊂ X , the present work proves that the analysis from
Gantner et al. (2021) can be generalized from symmetric PDEs (with K = 0) to the general formulation
(7.1): Restricting Algorithm A to the outer �-loop (for mesh refinement) and the inner k-loop (for the
solver associated to Φ�), we obtain a simplified index set

Q := {
(�, k) ∈ N

2
0 : uk

� is computed by the simplified algorithm
}

(7.4)

together with the canonical step counter |�, k| ∈ N0 on Q defined analogously to (3.2). Then,
Lemma 5.2 (lucky nontermination of the solver), Proposition 5.3 (plain convergence), Lemma 5.4
(quasi-Pythagorean estimate) and Lemma 5.5 (contraction of weighted discretization and solver error)

hold verbatim (and the proof of Lemma 5.4 indeed relies on the compactness of K ) if we replace u
k,j
� in

the given proofs by uk
� in the current solver setting. Therefore, we obtain full linear convergence in the

spirit of Theorem 4.1: for arbitrary adaptivity parameters 0 < θ ≤ 1 and λsym > 0, there exist constants
Clin > 0 and 0 < qlin < 1 as well as an index �0 ∈ N0 such that

Δ
k
� ≤ Clin q|�,k|−|�′,k′|

lin Δ
k′
�′ for all (�′, k′), (�, k) ∈ Q with |�′, k′| ≤ |�, k| and �′ ≥ �0, (7.5)

where Δ
k
� := ∣∣∣∣∣∣u� − uk

�

∣∣∣∣∣∣+η�(u
k
�) denotes the corresponding quasi-error. In particular, also Corollary 4.2

holds verbatim with Q replaced by Q and Δ
k,j
� replaced by Δ

k
�, i.e., convergence rates with respect to the

number of degrees of freedom coincide with rates with respect to the overall computational cost. Finally,
it is easy to check that also Theorem 4.3 holds verbatim and proves that, for sufficiently small adaptivity
parameters 0 < θ � 1 and 0 < λsym � 1 in the sense of (4.10), it holds that

||u�||As(T0)
< ∞ ⇐⇒ sup

(�,k)∈Q

( ∑
(�′,k′)∈Q

|�′,k′|≤|�,k|

#T�′

)s

Δ
k
� < ∞, (7.6)

which yields optimal complexity of the simplified algorithm.
In the current analysis, the combined Zarantonello symmetrization with a contractive SPD algebraic

solver is used as one solver module to guarantee (7.3) for uk
� := u

k,j
� (see Lemma 5.1), leading to all

results being formulated over the triple index set Q ⊂ N
3
0 (see Section 3–4).

We note that another choice for solving the arising nonsymmetric FEM systems would be precon-
ditioned GMRES (see, e.g., Saad & Schultz, 1986; Saad, 2003), where an optimal preconditioner for
the symmetric part would be employed. Then, it is well-known from the field-of-value analysis (see,
e.g., Starke, 1997) that the algebraic solver would satisfy a generalized contraction for the algebraic
residual (in a discrete vector norm). However, the link between the algebraic residual and the functional
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setting appears to be open. Moreover, the a posteriori error control of the algebraic error for such a
GMRES solver is still to be developed.

While these questions are left for future work, we already note some results that can be achieved
along the arguments of Gantner et al. (2021): if the solver Φ�(F; ·) provides iterates (uk

�)k∈N0
, satisfying

only the generalized contraction

∣∣∣∣∣∣u�
� − uk

�

∣∣∣∣∣∣ ≤ Csym qk
sym

∣∣∣∣∣∣u�
� − u0

�

∣∣∣∣∣∣ for all k ∈ N (7.7)

together with the a posteriori error control

∣∣∣∣∣∣u�
� − uk

�

∣∣∣∣∣∣ ≤ C
′
sym

∣∣∣∣∣∣uk
� − uk−1

�

∣∣∣∣∣∣ for all k ∈ N, (7.8)

where Csym, C
′
sym > 0 and 0 < qsym < 1 are given constants independently of u0

� ∈ X�, then full linear
convergence (7.5) can be proved for all 0 < θ ≤ 1 under the additional assumption that λsym has to
be sufficiently small. However, the proof of full linear convergence (7.5) for arbitrary 0 < θ ≤ 1 and
arbitrary λsym > 0 is open, while optimal complexity (7.6) for sufficiently small 0 < θ < 1 and λsym in
the sense of (4.10) remains valid (even with the same proof).
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Kufner, A., John, O. & Fučík, S. (1977) Function Spaces. Monographs and Textbooks on Mechanics of Solids
and Fluids, Mechanics: Analysis. Leyden: Noordhoff International Publishing, Prague: Academia, pp. xv+454.

Saad, Y. (2003) Iterative Methods for Sparse Linear Systems, 2nd edn. Philadelphia, PA: Society for Industrial and
Applied Mathematics. ISBN 0-89871-534-2.

Saad, Y. & Schultz, M. H. (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric
linear systems. SIAM J. Sci. Statist. Comput, 7, 856–869. ISSN 0196-5204.

Starke, G. (1997) Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems.
Numer. Math., 78, 103.

Stevenson, R. (2007) Optimality of a standard adaptive finite element method. Found. Comput. Math., 7, 245–269.
Stevenson, R. (2008) The completion of locally refined simplicial partitions created by bisection. Math. Comp.,

77, 227–241.
Jinbiao, W. & Zheng, H. (2017) Uniform convergence of multigrid methods for adaptive meshes. Appl. Numer.

Math., 113, 109–123.
Zarantonello, E. H. (1960) Solving functional equations by contractive averaging. Math. Research Center Report,

160, 1–17.
Zeidler, E. (1990) Nonlinear functional analysis and its applications. Part II/B—Nonlin. Monotone Oper. New

York: Springer-Verlag, pp. i–xvi and 469–1202.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/44/3/1560/7198102 by TU
 W

ien Bibliothek user on 21 June 2024


	 Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs
	 1.Introduction
	 2.Preliminaries
	 3.Completely adaptive algorithm
	 4.Main results
	 5.Proofs
	 6.Numerical experiments
	 7.Conclusion and future work


