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Preface. 

The invention of semiconductor devices 
considering classical time scales in 

has 
human 

been 
life. 

fairly 
The 

recent 
bipolar 

transistor was announced in 1947, and the MOS transistor, in a 
practically usable manner, was demonstrated in 1960. From these 

beginnings the semiconductor device field has grown rapidly. The 
first integrated circuits which contained just a few devices became 

commercially available in the early 1960's. Immediately following, an 
evolution has taken place so that today, not even 25 years later, the 

manufacture of integrated circuits with over 400.000 devices per 
single chip is possible. 

Coincident with the growth in semiconductor device development, 

the literature concerning semiconductor device and technology issues 

has literally exploded. In the last decade about 50.000 papers have 

been published on these subjects. 

The advent of so called Very-Large-Scale-Integration (VLSI) has 

certainly revealed the need for a better understanding of basic device 
behavior. The miniaturization of the single transistor, which is the 

major prerequisite for VLSI, has almost led to a breakdown of the 

classical models of semiconductor devices. 

The characteristic feature of early (classical) device modeling 

is primarily the separation of the interior of the device under 
consideration into different regions, the treatment of which is done 

by closed form solutions based on restrictive and sometimes drastic 
assumptions. The solutions in the independently treated regions are 

simply connected and matched at boundaries to produce a global 
solution. Any other approach is obviously prohibitive if results with 

an analytic appearance are intended. For the purpose of analysis, 

however, this classical approach has 

limited applicability, particularly 

been recognized to have only 

when a technically acceptable 

prediction of device performance is desired. 

As a consequence numerical analysis and simulation based on 

comparatively fundamental differential equations has become necessary 
and popular. This trend has been supported considerably by the 

enormous progress in technology and performance of digital computers. 

Contemporary modeling of semiconductor devices has attained such a 



high level of sophistication that two-dimensional simulation of the 
static behavior is almost standard in the development stage of device 
prototypes. Even three-dimensional transient simulations have been 
reported very recently, but these are at the moment more of academic 
importance than of practical relevance due to a still too extensive 
consumption of computer resources. 

Numerical analysis of semiconductor devices can be expected to 
become a basic methodology of research and development engineers. 
However, one must not expect that people using computer programs as 

numerical analysis tools are specialists considering the complexity of 
the assumptions, algorithms and implementation details of the programs 
they use. In particular, this book has been written with two primary 
objectives: First, the interested device engineer should be introduced 
to the physical and mathematical problems an analysis program has to 
solve. This category of readers should gain a more fundamental 
understanding concerning the applicability of device simulation 
programs. Secondly, this book will benefit authors of device 
simulation programs by providing a compact reference with many 
citations and an critical overview of the various physical and 
mathematical approaches which are presently in use worldwide. 

The chapters in this book are arranged in a logical sequence 
without many 
independent 

crossreferences. Each chapter is more or less 
of the other chapters. Readers with interest in 

subjects only should be able to easily extr?ct the particular 
information they require. 

In preparing the material for this book many people have assisted 
me considerably. I am extremely grateful to Prof .H.Potzl for many 
endless dissusions and suggestions from reviewing my manuscripts. I 

am indebted to my colleagues at the university for many discussions 
and the friendly atmosphere:Drs. W.Agler, J.Demel, A.Franz, G.Franz, 
E.Guerrero, W.Jilngling, M.Kowatsch, H.Lafferl, E.Langer, W.Mader, 
P.Markowich, Prof.F.Paschke, P.Pichler, C.Ringhofer, A.Schiltz, 

Prof.F.Seifert, Prof.H.Stetter, F.Straker, Doz.Ch.Uberhuber, 
Prof .R.WeiB. I would like to express my sincere appreciation to 
Dr.S.E.Laux, IBM T.J.Watson Research Center, for proofreading my 
manuscript. I would like to thank the Austrian "Fonds zur Forderung 

der wissenschaf tlichen Forschung" and the Research Laboratory of 



Siemens AG, Munich FRG, for supporting many projects which have 

evolved into much of the material presented in this book. Last but 

not least I would like to gratefully acknowledge the generous amount 
of computer resources provided by Dipl.Ing.D.Schornbock and the 

excellent computer access made possible by the whole staff of the 
local computer center. 

I hope that my book will be used by many engineers and scientists 

who wish to gain insight into the subject of numerical device 
modeling. It is my sincere wish that this book will contribute to 

bridging the gaps between solid-state physicists, numerical 

analysists, computer scientists and device engineers. 

Vienna, 1983 Siegfried Selberherr 
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Notation. 

A vector potential 

B magnetic induction vector 

C net ionized impurity concentration 

CI total ionized impurity concentration 

CN total neutral impurity concentration 

     optical capture coefficient 

Cci electrically inactive concentration of i-th impurity 

    Auger capture coefficient 

    Shockley-Read-Hall capture coefficient 

     optical emission.coefficient 

    Auger emission coefficient 

    Shockley-Read-Hall emission coefficient 

Cti total concentration of i-th species 

D electric displacement vector 

Dr diffusivity of i-th impurity due to singly positive charged 

vacancies 

Di diffusivity of i-th impurity due to singly negative charged 

vacancies 

Di diffusivity of i-th impurity due to doubly negative charged 

vacancies 

D? diffusivity of i-th impurity due to neutral vacancies 
1 

   diffusivity of i-th impurity due to singly negative charged 

vacancies 

Di effective diffusivity of i-th impurity 

   thermal diffusion coefficient 

Dll' effective diffusivity 

E electric field vector 

Ell' effective field 

Notation 



N.2 

E energy 

E electric field 

Eac acoustic deformation potential of conduction band 

E acoustic deformation potential of valence band av 

Ec conduction band energy 

Eco conduction band edge 

EflT quasi-Fermi energy 

Eg band gap 

E. ionization energy 
1 

E. intrinsic Fermi energy 
1 

Ecrit critical field l7 
EY driving force 

Er average energy loss per high energetic collision 

E valence band energy v 

Evo valence band edge 

El electric field component perpendicular to current flow 

direction 

El I electric field component parallel to current flow direction 

F force vector 

Fl.re external force 

FlTi internal force 

Fermi integral of order 

magnetic field vector 

carrier current density 

H 

J 

J. 
1 

   

N+ 
D 

thermal generation 

total electric current 

flux of i-th impurity 

concentration of singly 

concentration of singly 

1/2 

density 

ionized acceptors 

ionized donors 

Nc effective density of states in conduction band 

Notation 



N.3 

Nd implantation dose 

Nt concentration of traps 

Nv effective density of states in valence band 

R net carrier generation/recombination 

RAU 

RII 

ROPT 

RSRH 

RSURF 

net 

net 

net 

net 

net 

Auger GR 

impact ionization 

optical GR 

Shockley-Read-Hall 

surf ace GR 

RP projected range 

S»' scattering probability 

T lattice temperature 

T»' carrier temperature 

generation 

GR 

Ut thermal voltage (= k·T/q 

rate 

v+ normalized concentration of singly positive charged vacancies 

v- normalized concentration of singly negative charged vacancies 

v= normalized concentration of doubly negative charged vacancies 

Zi charge state of i-th impurity 

a crystal lattice constant 

aB Bohr radius (= 5.2917706•10-ll m ) 

flv ionization rate 

, 2 kurtosis 

,c equlibrium cluster coefficient 

c speed of light in vacuum (= 2.99792458·10 8 ms-l ) 

c specific heat 

JEc shift energy for conduction band edge 

JE shift energy for valence band edge v 

df field enhancement factor 

( absolute permittivity 

( 0 permittivity constant in vacuum (= 8.854187818·10-12 Asv-lm-l ) 

Notation 



k 

k 

kc 

kd 

m 

p. 
1 

* 
  

  
Po 

n 

n. 
1 

n. ie 

p 

q 

N.4 

relative permittivity 

distribution function 

quasi-Fermi potential 

fraction of occupied traps 

skewness 

-34 2 Planck constant (= 6.626176·10 VAs ) 

momentum vector 

thermal conductivity 

Boltzmann constant (= 1.380662·10-23 VAsK-l ) 

clustering rate 

declustering rate 

mean free path between high energetic collisions 

          length 

cluster size 

i-th central moment 

effective mass 

carrier mobility 

permeability constant in vacuum {= 4•1t ) 

-31 3 -2 electron rest mass (= 9.109534·10 VAs m 

electron concentration 

intrinsic carrier concentration 

effective intrinsic carrier concentration 

equilibrium concentration of electrons 

hole concentration 

equilibrium concentration of holes 

elementary charge (= 1.6021892·10-19 As ) 

specific mass density 

space charge 

density of states in acceptor band 

density of states in donor band 

Notation 



N.5 

qc density of states in conduction band 

'v density of states in valence band 

    standard deviation for donor and acceptor band 

    standard deviation for conduction and valence band tails 

ap standard deviation 

t time 

tmask mask thickness 

l»' relaxation time 

l»' lifetime 

u»' group velocity 

'fl electrostatic potential 

'f1:i built-in potential 

v»' drift velocity 

v;at saturation velocity 
  

x space vector 

x oxide thickness ox 

Notation 



N. 6 

Subscript 111'" stands for "n" or "p" denoting the respective quantity 

for electrons or holes. 

Superscript 11t 11 in the carrier mobility stands for any combination of 

the following list. 

C carrier-carrier impurity scattering 

E velocity saturation 

I ionuized impurity scattering 

L lattice scattering 

N neutral impurity scattering 

S surface scattering 

A superscript "*" or no superscript indicates the effective mobility 

which is comprised of all above given effects. 

Landau Symbols. 

A) f(x) = O(g(x)) as x+x means that 
0 

      I < const. 

for x sufficiently close to x
0

• 

B) f (x) = o(g(x)) as x+x means that 
0 

f (x) 
lim -- = 0 

x+x g(x) 
0 

C) Sometimes we say (sloppily) that "a quantity f is O(g)" which means 

that !fl is of approximate order of magnitude jgj. 

/ 
Notation 
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1. Introduction. 

1.1 The Goal of Modeling. 

At the outset it seems necessary to clarify the frequently used 

terms analysis, simulation and modeling. By tracing the literature 
one often has the impression that authors use these terms in a fairly 

arbitrary manner. A while ago I picked up a heavy dictionary and, 
among many others, I have found the following interpretations to be 

quite appropriate: 

Analysis 

• separation of a whole into its component parts, possibly with 
comment and judgement 

• examination of a complex, its elements, and their relations in 

order to learn about 

Simulation 

• imitative representation of the functioning of one system or 
process by means of the functioning of another 

• examination of a problem not subject to experimentation 

Modeling 

• to produce a representation or simulation of a problem or 

process 
• to make a description or analogy used to help visualize 

something that cannot be directly observed 

Therefore, as difficult as it might be to decide in an individual 
case, analysis is at least intended to mean "exact analysis" and 

simulation must mean "approximate simulation" by inference. Modeling 
is obviously a necessity for analysis and simulation. 

With a model one can analyse some phenomena, provided that the 
effects one wants to extract are built in the model, possibly in a 

very complex manner. A model for the purpose of pure simulation (like 
a curve fitting model) is usually much more simple than a model for 

analysis. Many effects can be treated in a very heuristic manner for 
the purpose of simulation,· just reflecting the underlying physics in a 

qualitative way. 

The Goal of Modeling 
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An excellent example to highlight these aspects can be found in 
the application of a Monte Carlo method. "Modeling" with a Monte 

Carlo method is equivalent to "producing an imitative representation 
of the functioning of a system". But the purpose of a Monte Carlo 

model is strictly analysis and not just simulation, because the 
underlying basis is "a separation of a whole into its component 
parts". 

However, one has to keep foremost in mind the limitations of any 
model in order not to interprete too naively results which are just 

obtained by improper application of a model. 

I feel obliged to explicitly state my personal opinion about the 

quality of the results which can be obtained by contemporary device 
modeling. The development of devices involves several iterations of 

trial and error in fabrication until a specified goal in terms of 

design conditions is reached. The application of device models can 

now, and sometimes fairly substantially, decrease the number of trial 

and error steps during the development. A serious speculation about 

the average savings in development effort could be on the order of 

forty percent. Obviously, this number depends strongly on the 

individual conditions of a specific project. The total elimination of 

trial and error in device development is not possible nowadays, 
because the uncertainties of several parameters of the available 

models, although they are already very sophisticated, are still too 

large. I absolutely expect not being wrong in claiming that device 
modeling will become more and more important in the near future. This 

assumption is also supported by the fact that computer resources are 

going to be cheaper compared to drastically increasing costs for 
I 

experimental investigations. Hence, many more engineers will have to 

face the problem of numerical device modeling in order to stay 
competitive. 

It remains to say that the main power of higher dimensional 
device models lies in its capability to provide insight into the 

functioning of devices by means of distributions of the various 
physical quantities in the interior of a device. However, many device 

engineers are not at all used to interpreting those results; they 

prefer global quantities like current-voltage characteristics. A 

properly tuned higher dimensional device model is certainly able to 

The Goal of Modeling 
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predict global device parameters with a desired accuracy, but much 
simpler and cheaper (in terms of computer resources) models will often 

be able to deliver global results with equally good reliability. For 

miniaturized devices, however, higher dimensional models are often the 

only existing and imaginable tool for the accurate prediction of 
device performance. 

The Goal of Modeling 
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1.2 The History of Numerical Device Modeling. 

Fully numerical modeling of a semiconductor device based on 
partial differential equations [1.87] which describe all different 

regions of a device in one unified manner was first suggested by 

Gummel (1.29] in 1964 for the one dimensional bipolar transistor. 
This approach was further developed and applied to pn-junction theory 
by De Mari [1.18], (1.19] and to IMPATT diodes by Scharfetter and 
Gummel [l.75]. A two dimensional solution of Poisson's equation with 
application to a MOS structure was first published by Loeb et al. 
[1.49] and Schroeder and Muller [1.76] in 1968. Kennedy and O'Brien 
[l.39] investigated in 1969 the junction field effect transistor by 

means of a two dimensional numerical solution 
and one continuity equation. At the same 

of Poisson's equation 
time Slotboom [1.82] 

presented a two dimensional analysis of the bipolar transistor solving 
Poisson's equation and both continuity equations. Since then two 

dimensional modeling has been applied to nearly all important devices. 
It is not possible to cite here all relevant papers in the field; 

however, to present at least a comprehensive menu of key papers is 
worthwile. 

The junction field effect transistor has been investigated in two 
dimensions by solving the Poisson equation and one continuity equation 
by, e.g., Himsworth [1.34], Kennedy and O'Brien [1.40] and Yamaguchi 

et al. [1.91]. The transient behavior in two dimensions of those 
devices has been simulated by, e.g., Reiser [1.69]. 

MESFETs have been analyzed also by Reiser [1.70] and by, e.g., 
Barnes et al. [1.8], [1.9]. More sophisticated equations for the 

physical and mathematical model of MESFETs have been solved by Cook 
and Frey [1.17] (energy transport equations) and by Moglestue [1.58], 

[1.59] and Pone et al. [1.65] (particle equations). 

Many activities have been concentrated on the simulation of MOS 
decvices due to their intrinsically two dimensional nature, e.g.: in 

1971 [1.88], in 1972 [1.89], in 1973 [1.41], [1.55], in 1976 [1.35], 
in 1977 [1.24], in 1978 [1.63], [1.83], in 1979 [1.43], [1.77], in 

1980 [1.16], [1.64], [l. 78], [1.84], in 1981 [1.44], [l. 71], [1.92], 
in 1982 [1.67], [1.73], [1.74], [1.90] and in 1983 [1.60]. Two 

dimensional transient simulations of MOSFETs have been carried out by, 

The History of Numerical Device Modeling 
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e.g., Mock [1.56], Oh et al. [1.62] and Yamaguchi [1.93]. Three 

dimensional static modeling has been published in, e.g.: [1.13], 

[1.15] t [1.81] o 

Out of the many papers which have been published on modeling 

bipolar transistors and thyristors it seems worthwhile to cite, e.g.: 

in 1970 [1.21], in 1971 [1.42], in 1973 [1.33], [1.94], in 1974 

[1.51], [1.80], in 1975 [1.53) (two dimensional transient simulation), 

in 1976 [1.27], in 1978 [1.2], in 1979 [1.1], [1.3] in 1981 [l.45), 

[1.47], [1.85] and in 1983 [1.26], [1.50] (nonlinear small signal 
simulation). 

Several non standard and unusual devices have been simulated 

during their development, e.g.: the permeable base transistor (1.10), 

the insulating gate rectifier (1.6], and the "dielectric surface 

loaded GaAs bulk element" (1.38]. However, only a very few computer 

programs which allow the simulation of a fairly arbitrary device 

structure have been published, e.g.: [1.14], (1.25], (1.28], (1.30), 
[1.31]. 

As it can be obviously expected, many dissertations on numerical 

modeling of semiconductor devices have been undertaken, e.g. (in order 

of a pp ea r an c e ) : [ 1. 6 8 ] , [ 1. 3 2 ] , [ 1. 5 2 ] , [ 1. 7 ] , [ 1. 3 6 ] , [ 1. 6 6 ] , [ 1. 4 8 ] , 
(1. 79], [l. 72]. 

Kurata [1.46] and Mock [1.57] have published a monograph in 1982 

and 1983 respectively. Various conferences with proceedings published 

as books, e.g.: [1.11], (1.12], [1.54] have taken place, and summer 

courses, e.g.: (1.5], [1.20], [1.86] have been held. 

Among many more the following outstanding review papers have been 

published [1.22], [1.23], [1.37] and [1.61]. In 1975 Agajanian (1.4] 

has published a bibliography on device modeling (not only numerical 

modeling) with about 500 references selected from the most important 

papers of the preceeding four years. 

The History of Numerical Device Modeling 
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2. Some Fundamental Properties. 

To accurately analyze an arbitrary semiconductor structure which 

is intended as a self contained device under various operating 

conditions, a mathematical model has to be given. The equations which 

form this mathematical model are commonly called the basic 
semiconductor equations. 

(2-1), (2-2), (2-3) and 
They can be derived from Maxwell's equations 

(2-4), several relations obtained from 

solid-state physics knowledge about semiconductors 

- sometimes overly simplistic - assumptions. 

an 
rot H = J + at 

rot E as = -at 
div D = q 

div B = 0 

and various 

(2-1) 

(2-2) 

(2-3) 

(2-4) 

E and D are the electric field and displacement vector; H and B 

are the magnetic field and induction vector, respectively. J denotes 
the conduction current density, and q is the electric charge density. 

The next sections will be devoted entirely to an outline of the 

procedures which have to be carried out in order to derive the basic 
semiconductor equations. 

Some Fundamental Properties 
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2.1 Poisson's Equation. 

Poisson's equation is 

(2-3). However, to make 

essentially the third Maxwell equation 

this equation directly applicable to 

semiconductor problems, some manipulations have to be undertaken. We 

first introduce a relation for the electric displacement vector D and 

the electric field vector E (2.1-1). 

D = (·E (2.1-1) 

t denotes the permittivity tensor. This relation is valid for 

all materials which have a time independent permittivity. 

Furthermore, polarization by mechanical forces is neglected [2.44). 

Both assumptions hold relatively well considering the usual 

applications of semiconductor devices. However, an investigation of 

piezoelectric phenomena, ferroelectric phenomena and nonlinear optics 

is impossible when using only (2.1-1). 

As the next step it is desirable to relate the electric field 

vector E to the electrostatic potential qi. For that purpose we solve 

(2-4) by introducing a vector field X and remembering that "div rot" 

applied to any vector quantity is always zero. 

B = rot A , div A = 0 (2.1-2) 

We substitute (2.1-2) into (2-2) and we obtain readily (2.1-3). 

rot ( E +    = 0 (2.1-3) 

If "rot i = O" holds for a vector field -z we know from basic 
-differential calculus that z can be expressed as a gradient field. 

Therefore, the electric field vector E can be expressed as: 

8A 
E = -8t - grad qi (2.1-4) 

Now we substitute (2.1-4) into (2.1-1) and then the result into 

(2-3). 

ax D = -(·3t - (·grad qi (2.1-5) 

div        +div (C·grad qi) = -q (2.1-6) 

The first term in (2.1-6) is zero if the permittivity C can be 

considered to be homogenous. Thus, we finally end up with (2.1-7) 

which is the well known form of Poisson's equation. 

Poisson's Equation 
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div (C·grad qi) = -q (2.1-7) 

The space charge density q can be further broken apart (2.1-8) 

into the product of the elementary charge q times the sum of the 

positively charged hole density p, the negatively charged electron 

density n and an additional concentration C which will be subject of 

later investigations. 

  = q• ( p - n + C ) (2.1-8) 

From a purely mathematical point of view (2.1-8) represents a 

substitution only, without introducing any assumptions. However, 

additional assumptions are brought about by modeling the quantities n, 

p etc. as will become clearly apparent in sections 2.3 and 2.4. 

The permittivity C will be treated here in all further 

investigations as a scalar quantity. In principle it has to be 

represented as a tensor of rank two. However, the materials currently 

in use for device fabrication do not show a significant anistropy of 

the permittivity owing to their special composition, e.g. cubic 

lattice or amorphous structure. Inhomogeneity effects of the 

permittivity have been neglected in (2.1-7). There does not exist 

pronounced experimental evidence for inhomogeneity effects. For some 

materials the relative permittivity constants Cr=t/C 0 are summarized 

in Tab. 2.1-1. 

material tr_[_) 
Si ll. 7 

Si02 3.9 

Si 3N4 7.2 typical 

GaAs 12.5 

Ge 16.1 

Tab. 2.1-1: relative permittivity constants 

In particular for Si 3N4 the value of Cr depends strongly on the 

individual processing conditions; it can vary quite significantly. 

If we introduce (2.1-8) and the assumption of a homogeneous 

scalar permittivity into (2.1-7) we obtain the final form of Poisson's 

equation to be used for semiconductor device modeling. 

q 
div gr ad qi = C · ( n - p - C ) (2.1-9) 

Poisson's Equation 
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2.2 Continuity Equations. 

The continuity equations can be derived in a straightforward 
manner from the first Maxwell equation (2-1). If we apply the 
operator "div" on 

div rot H = div J 

this equation 

+ a, = o 
it 

we obtain: 

( 2. 2-1) 

Now we split the conduction current density J into a component J 
- p 

caused by holes and a component J caused by electrons: n 
(2.2-2) 

Furthermore, we assume that all charges in the semiconductor, 

except the mobile carriers electrons and holes, are time invariant. 

Thus we neglect the influence of charged defects, e.g. vacancies, 
dislocations, deep recombination traps, which may change their charge 
state in time. 
ac 
it= 0 (2.2-3) 

If we substitute (2.1-8) and (2.2-2) into (2.2-1) and if we make 
use of (2.2-3) we obtain: 

div ( Jp + Jn ) +      p - n ) = 0 (2.2-4) 

This result is interpreted fairly trivially. It just means that 
sources and sinks of the total conduction current are fully 
compensated by the time variation of the mobile charge. In order to 

obtain two continuity equations a few formal steps have to be carried 
out. We first define a quantity R in (2.2-5) and, secondly, we 
rewrite (2.2-4) by making use of the definition R. 

div Jn -     = q·R (2.2-5) 

div J + q·aP = -q·R 
p at (2.2-6) 

It is obvious that we can not gain information by writing one 
equation (2.2-4) in two different ways (2.2-5), (2.2-6). However, 
these formal steps enable us to interprete the equation more easily. 

The quantity R can be understood as a function describing the net 
generation or recombination of electrons and holes. Positive R means 
recombination and negative R means generation. So far we have no 
information about the structure of R except equations (2.2-5) and 

Continuity Equations 
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(2.2-6). R has to be modeled carefully (cf. section 4.2) using 

knowledge from the solid-state physics of semiconductors. If we have 
a model for R, equations (2.2-5) and (2.2-6) can really be considered 
as two equations. It seems worthwhile to note explicitly here that 

there is no necessity or even evidence that R can be expressed as a 
function depending only upon local quantities and not upon integral 
quantities; non 
certainly take 

local 
place 

generation or recombination phenomena may 
in semiconductor devices considering only the 

derivation of the continuity equations. 

Continuity Equations 
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2.3 Carrier Transport Equations. 

The derivation of current relations for the semiconductor 

equations is a very cumbersome task. It is not the intention of this 

book to cover the extraordinarily wide field of physics behind all the 

considerations necessary to derive the current relations in detail. 

Therefore, some of the required relations will be given without proof, 

but with reference to a text more specialised in that field. 

Without loss of generality the current density of charged 

particles is the product of the charge constant per particle, the 

particle density and the average velocity (drift velocity) of the 

particles. So the hole current density and the electron current 

density can be written as (2.3-1) and (2.3-2), respectively. 

(2.3-1) 

(2.3-2) 

The major problem is to find expressions which relate the average 

carrier velocities to the electric field vector E and to the carrier 

density. In order to obtain information about the drift velocity we 

have to describe the carrier density by means of a distribution 

function fl! in phase space which is the space of spatial coordinates 

x=(x,y,z)T momentum coordinates k=(kx,ky,kz)T and time t, thus a 

seven dimensional space. The distribution function determines the 

carrier density per unit volume of phase space. By integrating the 

distribution function over the entire momentum volume Vk we obtain the 

carrier density V(x,t). V stands for n or p, denoting electrons or 

holes. 

                 ·dk = V(x,t) 

This normalization (2.3-3) defines fl! as a probability. 

literature various different normalizations can be found, e.g. 

[2.49]. 

(2.3-3) 

In the 
[2.42], 

The distribution function has the property that its derivative 

along a particle trajectory xv(t), kv(t) with respect to time vanishes 

in the entire phase space in compliance with the Liouville theorem 

about the invariance of the phase volume for a system moving along the 

phase paths or an account of the conservation of the number of states 

[2.49]. 

Carrier Transport Equations 
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(2.3-4) 

Equation (2.3-4) is the Boltzmann transport equations in implicit 

form. By expanding the total derivative we obtain: 

3fv ak"iT axil 
(tt + gradk fiT· dt + gradx fiT· dt = 0 (2.3-5) 

Here gradk denotes the gradient operator with respect to the 

momentum coordinates k; grad is the gradient operator with respect to x 
the spatial coordinates x. Equation (2.3-5) shows that the variation 

of the distribution function at each point of phase space (x,k) with 

time is caused by the motion of particles in normal space (x) and in 

momentum space k. 

The derivative of kv with respect to time multiplied with 

Planck's           equals the sum of all forces F. These forces have 

to be devided into two classes (2.3-7). 

'fi = (2.3-6) 

(2.3-7) 

Fl1'e comprises forces due to macroscopic external fields and Fl1'i 

denotes forces due to internal localized crystal attributes like 

impurity atoms or ions, vacancies, and thermal lattice vibrations. It 

is quite impossible to calculate the effect of internal forces Fl1'i 

upon the distribution function from the laws of dynamics [2.49]. 

Statistical laws have to be invoked instead. By introducing the 

quantity Sv(k,k') ·dk' which is the probability per unit time that a 

carrier in the state k will be scattered into the momentum volume dk', 

we can write the internal collision term as follows: 

Fl1'i 
gradk      = 

=v[, { fv<x,k,t) • r1-f:.r<x,k' ,t)J ·s:.r<k,k')-

(2.3-8) 

(2.3-8) is termed the collision integral. The first term in the 

integrand describes the number of carriers scattered from the state k 

Carrier Transport Equations 
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into the volume element dk' per unit time. flT(x,k,t) gives the 
probability that a carrier initially occupies the state k. 
[l - flT(x,k' ,t)] gives the probability that the volume element dk' is 

initially unoccupied and can, therefore, accept a carrier. SlT(k,k') 

gives an a priori probability of the scattering event. 
Correspondingly, the second term in the integrand of (2.3-8) equals 

the number of electrons scattered from volume element dk' into state k 

per unit time. Thorough investigations about the scattering 

probability SlT(k,k') can be found in, e.g., [2.21]. 

The derivative of x;. with respect to time represents the group 
velocity of the carriers. 

dxlT 
dt = ulT (2.3-9) 

We have now to substitute the relations (2.3-6) to (2.3-9) into 

(2.3-5), and we obtain the Boltzmann transport equation in explicit 

form. 

8flT Fl.ie 
-at +         f>T + ulT·gradx f>T = 

-vf. { flT(x,k,t). [1-flT(x,k' ,t)] ·SlT(k,k')-

(2.3-10) 

A fairly accurate approach would be to directly solve (2.3-10) in 

order to calculate carrier densities and drift velocities. However, 

this is an extraordinarily difficult task to accomplish. (2.3-10) 

represents an integro-differential equation with seven independent 

variables. This equation does not admit a closed solution. It rather 

requires the use of iterative procedures which, moreover, are scarcely 

suitable for numerical approaches [2.10], or additionally, invoke very 

stringent assumptions [2.42]. 

An alternative approach to solving the Boltzmann equation 

consists in simulating the motion of one or more carriers at 

microscopic level with Monte Carlo methods, e.g. [2.43]. However, 

this category of simulations is very computationally intensive [2.64], 

[2.65] and therefore, with a few exceptions only, not suitable for 

engineering application. 

Carrier Transport Equations 
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One should be aware of the fact that the validity of the 

Boltzmann equation (2.3-10) implies already several assumptions (cf. 

(2.10]' (2.17]). 

• The scattering probability is independent of external forces. 

• The duration of a collision is much shorter than the average time of 

motion of a particle; collisions are instantaneous. 

• Carrier-carrier interaction is negligible. This effect would change 

the integrand of the right hand side integral in (2.3-10) highly 

nonlinear in flT (2.4]. 

• External forces are almost constant over a length comparable to the 

physical dimensions of the wave packet describing the motion of a 

carrier. 

• The band theory and the effective mass theorem apply to the 

semiconductor under consideration (2.76]. 

However, it is my intention here to outline the derivation of the 

classical current relations and only to pinpoint the problems 

associated with much more basic and error-prone models. 

By assuming that all scattering processes are elastic and by 

neglecting all effects caused by degeneracy the scattering integral 

can be approximated and the Boltzmann equation is reduced to a pure 

differential equation (2.21], (2.42], (2. 76]. 

(2.3-11) 

The physical motivation for the right hand side of (2.3-11) is as 

follows: Suppose that at some moment of time t=O all external forces 

are switched off and flT is homogenous. 

Fl.Te 
        flT + u;.,r·gradx flT = 0 (2.3-12) 

It follows from (2.3-11) that the distribution function will 

change as a result of collisions only. (2.3-13) will reduce to: 

a f ;.,r f lT - f lfo 

-at = tlT (2.3-13) 

The solution of this differential equation is quite simple. 

- - - - - - - - -t/t flT(x,k,t) = f;.,r
0

(x,k) + [f;.,r(x,k,O) - f;.,r
0

(x,k)]·e lT (2.3-14) 

Carrier Transport Equations 
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flfo is the equilibrium distribution function, and the quantity tl.1 

shows the rate of return to the state of equilibrium from the 

disturbed state, therefore, it is termed the relaxation time. Under 

the very restrictive assumptions stated above the problem of solving 

the Boltzmann equation can be eased drastically by modeling the 

relaxation time as only a function of energy [2.42). 

In order to obtain the current relations from (2.3-11) we 

multiply this equation with the group uelocity ul.1, and then we 

integrate the equation over momentum space. 

f - f 

! - )1 l.lo -
ul.1• t •dk 

k .,, 
(2.3-15) 

For the solution of (2.3-15) we make use of the following four 

solutions to integrals, the verification and discussion of which is 

not necessarily trivial, but well established in the literature, e.g. 

[2.13), [2.21], [2. 71). 

! 
af.,, a 

u       =              ) 
k lT vt vt l.1 

4·n3 
=            (lT•k•T) 

ny 

f - f 

! _ lT )lo _ 
ul.1• t • dk = 

k lT 

(2.3-16) 

(2.3-17) 

(2.3-18) 

(2.3-19) 

* lT denotes the carrier density, vl.1 is the drift velocity, ml.I 
represents the effective mass, T denotes the lattice temperature and 

tl.1 in the right hand sides of (2.3-19) is an average collision time. 

The constant k on the right hand side of (2.3-18) denotes the 

Boltzmann constant. The external forces Fl.le can be expressed in terms 

of the electric field E if the magnetic induction B (Lorentz force) is 

neglected which is a requirement also for the validity of (2.3-16). 
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(2.3-20) 

In (2.3-18) it has been assumed that the drift energy of the 

carriers is negligibly small compared to the thermal energy. 

Therefore, relation (2.3-18) is invalid for hot carriers (cf. [2.67)). 

We obtain ordinary differential equations for the drift 

velocities of electrons and holes using the above given integrals and 

the force relations (2.3-20). 

a q - 1 n·vn 
at(n·vn> + *·n·E + *·grad (n·k·T) = -

  mn mn 
(2.3-21) 

a q - 1 p·vp 
at(p·vp) - *·p·E + *·grad (p·k·T) = --,-p 

mp mp 
(2.3-22) 

These equations can be regarded also as macroscopic force balance 

equations. A "closed solution" of these equations is, unfortunately, 

not possible. In order to obtain an approximate solution we introduce 

effective carrier mobilities p and p . n p 

--*-
m n 

= q·tp 
--*-

mp 

(2.3-23) 

(2.3-24) 

We rewrite (2.3-21) and (2.3-22) after multiplication with the 

corresponding average collision times t)f and charge constant ±q, and 

- remembering (2.3-1) and (2.3-2) - we end up with: 

3Jn 1 k •T 
tn·--crt +Jn= q·Pn·n· [ E + n·grad( n·-q->l (2.3-25) 

3Jp 1 k •T 
tp·--crf +JP = q·Pp·P· [ E - P·grad( P·-q-)l (2.3-26) 

The average collision times t)f are very small, typically in the 

order of tenth of picoseconds. Therefore, equations (2.3-25) and 

(2.3-26) can be understood as being singularly perturbed. This 

suggests to expand the solution into powers of the perturbation 

parameter which is the collision time. 
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(2.3-27) 

(2.3-28) 

We have an algebraic equation for the zero order term of the 

current density. 

1 k•T 
Jno = q·Pn·n· [ E + -·grad(n·--)] n q (2.3-29) 

(2.3-30) 

These equations are formally approximations of order tli'. 

Jn = J no + 0 ( t n) (2.3-31) 

(2.3-32) 

We further assume that the lattice temperature is constant. 

T = const. (2.3-33) 

Then we can use the substitutions (2.3-34) and (2.3-35) which by 

means of physical interpretation are termed the Einstein relations 

k•T 
Dn = Pn·--

q 

k•T 
= Pp·-

q 

(2.3-34) 

(2.3-35) 

to define the diffusion constants Dli'' and, finally, we are able to 

write down the current relations in the well known, established form 

as sums of a drift and a diffusion component. 

(2.3-36) 

(2.3-37) 

In the following I should like to summarize the most important 

assumptions which had to be performed over and above to the ones 

necessary for the validity of the Boltzmann equation to obtain the 

current relations (2.3-36) and (2.3-37). 

e All scattering processes have been assumed to be elastic. 

Therefore, for instance, polar optical phonon scattering which is a 

major scattering mechanism in GaAs has been neglected. 
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o The spatial variations of the collision time and the band structure 
are neglected. This implies a slowly varying impurity concentration 

over a carrier mean free path. 

• Effects of degeneracy have been neglected in the approximation for 

the scattering integral. 

• The spatial variation of the external forces is neglected which 
implies a slowly varying electric field vector. 

• The influence of the Lorentz force is ignored by assuming zero 

magnetic induction. 

• The time and spatial variation of carrier temperature is neglected 

and, furthermore, lattice and carrier temperature are assumed to be 
equal. Therefore, the diffusion of hot carriers is improperly 

described. Several authors have tried to overcome this problem by 
using modified Einstein relations [2.9], [2.52], [2.53], [2.67], 

[2.68]' [2.69]' [2.85]. 
• Parabolic energy bands are assumed which is an additional reason why 

properly. 
of various 

• 

degenerate 
Calculations 

semiconductor 
of the 

materials 

realistic 

cannot 

band 

be treated 

structure 

semiconductors can be found in, e.g., [2.20]. However, for a 

realistic band structure it can become necessary to use a system of 

Boltzmann equations to describe the carrier distribution instead of 

just one (cf. [2.96]). 
The zero order term of the series expansions of J n and JP into 
powers of the collision time only has been taken into account. 

Thus, all time dependent conductivity phenomena, like velocity 

overshoot, are not included. 

• The semiconductor has been assumed to be 
real device the distribution function 

infinitely large. In a 
is changed in a complex, 

highly irregular manner in the vicinity of boundaries, for instance 

contacts [2.58] and interfaces [2.36]. It can be expected that the 
drift-diffusion approximation fails within a few carrier mean free 

paths of boundaries. 

In the literature we can find quite a few papers and books whose 

authors use a different form of the current relations. These are 

based upon special 

approximations. The 

relations will be 

assumptions equivalent to the drift-diffusion 

procedure to derive these slightly different 

outlined next. We know from semiconductor 

statistics that the equilibrium distribution functions for electrons 

and holes are Fermi functions. 
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fn 0 (x,k) = 1 

Ee (x, k) -Efn (x) 
(2.3-38) 

1 + exp( ) 
k•T(x) 

1 

Efp(x)-Ev(x,k) 
1 + exp{ ) 

k • T (x) 

(2.3-39) 

E and E denote the conduction and the valence band energy, c v 
respectively. 

(2.3-40) 

(2. 3-41) 

E and co 
respectivel t; 

E 
VO 

'fl<x) 
are the conduction band and the valence band edge, 
is the electrostatic potential as defined in 

sec ti on 2 .1. 

Efn and Efp in (2.3-38) and (2.3-39) determine the Fermi energy 
for electrons and holes. We shall try now to calculate a correction 
term (2.3-42) to the equilibrium distribution function. 

f 17 <x,i<,t) = f»'
0

<x,k) + fl11.(x,k,t) (2.3-42) 

We recall the Boltzmann equation with the relaxation time 
approximation: 

3 fl7 F l7e f l,J' - fl,J'o 
----at + """"fl·gradk f17 + u17·gradx f17 = - tl7 (2.3-43) 

By assuming 

(2.3-44) 

we obtain a simplified form of the Boltzmann equation. 

(2.3-45) 

(2.3-45) is valid only for small perturbations from equilibrium. 
Then we estimate the correction term flr.L to the equilibrium 
distribution: 
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(2.3-46) 

The spatial gradients of the equilibrium distribution functions 

for electrons and holes are: 

gradx fno = (2.3-47) 

(2.3-48) 

The gradient of the equilibrium distribution functions with 

repect to k evaluates to: 

1'i2·k 
gradkf = -f • (1-f )      

Vo Vo Vo m * . k • T 
»" 

(2.3-49) 

The group velocity can be expressed for a parabolic, isotropic 

band as: 

(2.3-50) 

By assuming vanishing variation of temperature grad T=O and x 
substituting relations (2.3-47) to (2.3-50) into (2.3-46) we obtain 

expressions (2.3-51) and (2.3-52) for the distribution functions for 

electrons and holes, respectively. 

(2.3-51) 

Up 
fp - fpo + tp·fpo· (1 - f ) ·-·grad Efp po k•T x (2.3-52) 

The current densities can now be evaluated as the integrals of 

the product of group velocity and distribution function over momentum 

space by further assuming fv
0

<<1. 

-q i- -Jn =     u ·f ·dk = -q·Pn·n·grad 'Pn 4·1t3 k n n 
(2.3-53) 

JP=       u ·f ·dk = -q·P •p•grad   
4 · 1t3 ik p p p p 

(2.3-54) 

'Pn and denote the quasi-Fermi potentials for electrons and 
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holes which are related to the Fermi energies for small external 
forces by: 

grad   = -q·gradx Efy (2.3-55) 

The simplifying assumptions necessary to derive (2.3-53) and 
(2.3-54) are quite similar to those required for the derivation of the 

drift-diffusion current relations (2.3-36) and (2.3-37). However, if 
we introduce an effective intrinsic concentration to fit moderate 
heavy doping effects (cf. section 2.4) 

(2.3-56) 

(2.3-57) 

in (2.3-53), (2.3-54) we obtain directly the drift-diffusion 
formulation of the current densities. We get after straightforward 
calculation using (2.3-56) and (2.3-57) the following expressions for 
the quasi-Fermi potentials 'Py: 

'Pn = 'fl - k·T 
    __ •ln 

q nie 
(2.3-58) 

'Pp 'fl + k•T (-1:._) = __ •ln 
q nie 

(2.3-59) 

We substitute these expressions into (2.3-53) and (2.3-54). 

Jn = -q·Pn·n·grad ( qi -           (2.3-60) 
q nie 

(2.3-61) 

Then we evaluate the "grad" operator and obtain relations 
(2.3-62) and (2.3-63) for the electron and hole current, respectively. 

(2.3-62) 

(2.3-63) 

The last term in these relations represents a current which is 
caused by a possible dependence on position of the intrinsic density. 
It thus accounts for variations in the bandgap, and it will describe 
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the bandgap narrowing effect observed in heavily doped semiconductors 

(see also [2.91]). If we assume a constant intrinsic density we 
obviously do not have a gradient of the intrinsic density, and then 

relations (2.3-62) and (2.3-63) are indeed identical to (2.3-36) and 
(2.3-37). 

For practical purpose it is often useful to define effective 
fields for the drift current components of the electron and hole 
current density. 

En = E k•T 
ln(nie) - __ •grad 

q 
(2.3-64) 

Ep E k•T 
ln(nie) = + __ •grad 

q 
(2.3-65) 

and (2.3-63) we obtain a form of the 

very similar to the classical 

drift-diffusion approximations but which can, as in our example, take 

into account positional variations of the band gap. 

By rewriting (2.3-62) 

current relations which is 

(2.3-66) 

(2.3-67) 

It is worth noting that Boltzmann statistics for the carrier 

densities have been used in (2.3-66) and (2.3-67). With Fermi 

statistics for the carrier densities an equally simple form of the 

current relations compared to the classical drift-diffusion 

approximations is not derived so easily. 

In the following I would like to summarize some of the 
simplifying assumptions which became clear in the derivations of 

(2.3-51) and (2.3-52), and which, additionally have been implicitly 

used for the derivation of the drift diffusion relations (2.3-34) and 

(2.3-35) (see also [2.10]). 

• Higher order derivatives of the quasi-fermi potentials have been 

neglected (cf. (2.3-46) ) • This means that we tiansform a non-local 

solution of the Boltzmann equation into an approximate one depending 

only upon the local gradient of the quasi-Fermi potential. 
• The dependence of the distribution function upon the gradient of the 

quasi-Fermi potential has been linearized. That means that the 
scale of length over which the quasi-Fermi potential varies by k•T/q 

must be large compared to the carrier mean free path. 
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• Only to first order is the carrier transport driving force the 

gradient of the quasi-Fermi potential. Away from equilibrium the 

electric field vector will become important. 

Various authors have published approaches for a more 
sophisticated treatment of carrier transport in semiconductors. 
Froelich and Blakey, for instance, have carried out a one dimensional 
simulation using energy and momentum conservation laws [2.31]. They 
use for the description of electron transport: 

3v av q•E 2 . a { * ·v2 = -v· + n· [w - m ] } v 
rt ax --* 3·m*·n ax 2 lv m 

(2.3-68) 

aw aw 2 . a { * • v2 w - Wo m ] } = -v· + q•E•v n·v· [w - -rt ax 3·n ax 2 lw (2.3-69) 

v denotes the electron drift velocity, tv is the momentum 

relaxation time, w is the electron energy and lw represents the energy 
relaxation time. It can be seen that (2.3-68) is almost equivalent to 

(2.3-21) which is an intermediate result we had obtained during the 

derivation of the drift-diffusion relations. 

energy w has been assumed to be: 

The total electron 

w = 3·k·Tn + m*·v2 
2 2 

(2.3-70) 

Equation (2.3-69) is obtained by multiplying the Boltzmann 
equation with the energy E and then 

space [2.14], fairly similar to the 

derive (2.3-21). However, in order 

integrating the result over K 
procedure we had to go through to 

to avoid terms of the order 

u• (u·u) one has to specify the form of the distribution function to be 
a "displaced" Maxwellian. 

E(x,k-<k> 
f»'(x,k) - exp{- ) 

k • Tl1' 
(2.3-71) 

If one uses such a model based on energy and momentum 
conservation, one circumvents the assumption that the carrier energy 

and momentum distribution are always in equilibrium with the local 

electric field. However, the assumptions required to derive (2.3-69), 

e.g. a displaced Maxwellian distribution function (cf. [2.42], 
[2.95]), and the additional parameters to model, e.g. energy 

relaxation time, lead to many open questions which will have to be 

discussed quite thoroughly until these types of models become suitable 
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for engineering applications. A comparison of such an electron 
temperature model, a classical drift-diffusion model and first 
principles particle model has been published by, e.g., Curtice [2.23], 
the summary of which is that simulation results differ quite 
significantly when using a model based upon classical current 

relations, an electron temperature model or a particle model. A two 
dimensional simulation with this type of equations has been presented 
in [2.16], [2.22]. 

Thornber [2.88] has published a generalized current equation for 
the simulation of submicron devices by supplementing the drift and 
diffusion current components with so-called gradient, rate and 
relaxation current components in order to include the most important 

features of velocity overshoot. 

8E 8E 8n 8n 
Jn = q•n• [ v(E) + W(E) ·ax+ B(E) •at ] - q•D(E) ·ax - q•A(E) •at (2.3-72) 

Graphs of the gradient coefficient W(E), the rate coefficient 
B(E) and the relaxation coefficient A(E) have been presented by 
Thornber for electrons in silicon at room temperature. v(E) and D(E) 
are the well known terms for the drift velocity and the diffusion 
coefficient. In the classical drift-diffusion current approximations 
all terms except those two are assumed to be negligibly small. 
Thornber stated in his article [2.88] that relations of the form 
(2.3-72) are adequate to represent current densities whenever the 

characteristic distances over which the particle density or electric 
field changes exceed 20nm in silicon (200nm in GaAs) and the 

characteristic time intervals of such changes exceed about 0.4 
picoseconds in silicon (2 picoseconds in GaAs). However, as far as I 

know, relations of the form (2.3-72) - a generalisation of which to 
higher dimensional form is supposed to be straightforward- have not 
been tested for practical applicability, although it can be speculated 
that the range of validity of such treatments is greatly extended. 

In recent work a new concept of device operation has been brought 

about, namely ballistic transport. It was argued that by properly 

selecting the material, temperature, geometry and bias, a device could 

be built which is much smaller than the mean free path between 

scattering events [2.41], [2.78]. This question, however, is still 
open, although quite a few activities in that field can be observed 
[2.3], [2.6], [2.7], [2.37], [2.45], [2.74], [2.78), [2.87], [2.93]. 
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As review papers on which kind of problems have to be faced 

especially for the simulation of miniaturized devices, references 
[2.10], [2.29], [2.30] can be suggested. Investigation on how the 

carrier transport equations, i.e. current relations, are changed, 

particularly by heavy doping effects, are presented in [ 2. 59] , [ 2. 63] , 

[2.70], [2.73], [2.90], [2.91]. In the next section we shall address 

these problems with emphasis on adequate models for the carrier 
densities. However, considering the current relations, throughout 

this text we shall favour current relations which have a structural 

appearing like (2.3-66) and (2.3-67). These formulations will allow 
us to best characterize, in a more mathematical sense, the problem of 

carrier transport. From a pragmatic physical point of view equations 
(2.3-66) and (2.3-67) offer, considering the state of the art in 

understanding their background, a sufficiently large set of parameters 

(effective mobilities plf' effective fields Elf, effective diffusivities 

Dlf) to be invoked in order to reach a specific goal for agreement 
between results obtained by simulation and measurement. One must keep 
in mind that all these equations are just models in any case, which 

only imitatively simulate a real process, more or less accuratly, in a 

qualitative and quantitative sense. 
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2.4 Carrier Densities. 

Accurate models for the carrier densities in semiconductor 

devices are a necessity if qualitatively and quantitatively correct 
simulation results are to be obtained. I first shall review the 
"classical" approaches of modeling the carrier densities, which give 
fairly simple, closed form algebraic results. These approaches are 
certainly well documented in many books on semiconductor physics. 
However, I shall place particular emphasis on properly pointing out 

assumptions which are very possibly going to be violated when device 
sophistication keeps pace with the current trends. 

Assuming a parabolic and isotropic band structure the density of 
possible states for the conduction band (2.4-1) and the valence band 

(2.4-2) as a function of energy E are given in the well known form 
with properly averaged effective masses [2.42]: 

4 ·tt· (2 ·m*) 3 / 2 

      = n .\I E-Ec (2.4-1) 
h3 1 

(2.4-2) 

I have avoided in (2.4-1), (2.4-2) - as I shall do for all other 
formulae in this section - introducing a reference energy with a 
specific absolute value, because only energy differences are of 

relevance. One should, however, be quite careful in reading the 

literature because that problem is absolutely not treated in a unique 
manner. It seems to be very convenient, a matter of taste, to some 

people to introduce an arbitrary reference point with zero energy on 

the energy scale. 

E and E are the c v 
denotes the band gap, i.e. 

so-called band edges. Their difference Eg 
the width of the forbidden band between 

conduction band and valence band. 

Eg = Ee - Ev (2.4-3) 

Numerical values of the band gap and its linear temperature 

coefficient for the most frequently used materials semiconductor 

devices are made of are summarized in Tab. 2.4-1. 
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Si 1.12 

GaAs 1. 35 

Ge 0.67 

- 32 -

dE /dT [eVK-l] 
g 

-2.7·10 -4 

-5.0•10 -4 

-3.7·10 -4 

Tab. 2.4-1: Band gaps in undoped material at T=300K 

For silicon the temperature dependence of the band gap can be 

modeled more accurately with (2.4-4) or (2.4-5) [2.32), [2.34). 

T 
7 ,02-10-4. ('K) 2 

Eg = 1,17 - [eV] T (2.4-4) 
1108 + (-) K 

T T 
Eg = 1,1785 - 9, 025 • 10-5 • ('K) - 3, 05·10-7 • ('K) 2 [eV] (2.4-5) 

(2.4-4) is the older formula; it has been also published with 

slightly different constants, e.g. [2.5), [2.33]. 

* * The temperature dependence of the effective masses m and m of n p 
electrons and holes for the density of states in silicon can be 

modeled with polynomals which are fitted to experimental data [2.32], 

[2.34]. 

(2.4-6) 

(2.4-7) 

Values for the effective masses at room temperature are 

summarized for some of the relevant semiconductor materials in 

Tab. 2.4-2. 

Si 1.18 

GaAs 0.068 

0.5 

0.5 

0.3 Ge 0. 55 

Tab. 2.4-2: Effective mass ratios at T=300K 

In order to obtain expressions for the carrier densities we have 

to integrate the density of states function multiplied with the 

corresponding carrier distribution function over the energy space. 
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(2.4-8) 

(2.4-9) 

The lower integration bound in (2.4-8) is Ee because no possible 

states for electrons do exist for energies below the conduction band 

edge. For a similar reason the upper bound in (2.4-9) is Ev. The 

f {E) and f (E) are Fermi functions. n p distribution functions 

fn(E) 1 = 
E-Ef n 

1 + exp( ) 

(2.4-10) 

k·T 

fp(E) 1 = 
Ef -E 

1 + exp( P ) 
(2.4-11) 

k•T 

Efn and Efp denote the Fermi energies for electrons and holes, 
respectively. Their exact meaning will be discussed later. The 

integrals in (2.4-8) and (2.4-9) can be evaluated to 

2 Ef n-Ec 
n = Nc·--·F1/2( ) (2.4-12) 

  k•T 

(2.4-13) 

where N and N denote the effective density of states in the c v 
conduction band and in the valence band, respectively. 

* 2 • 11· k • T • m I 
Ne = 2· ( n)3 2 

h2 
(2.4-14) 

(2.4-15) 

F1; 2 (x) is the Fermi integral of order 1/2 which, unfortunately, 

does not have a closed form solution. 

Fl/2 (x) = r   •dy (2.4-16) 
l + eY-X 

The asymptotic behavior of F112 (x) for large negative and large 

positive argument, however, is analytic. 
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x<<-1 

F1/2(x) =        , x>>l 
3 
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(2.4-17) 

(2.4-18) 

The qualitative behavior 
are shown in Fig. 2.4-1. For 
shown that F112 (x) can be 
following type: 

of F112 (x) and its asymptotic expansions 
arguments close to zero it has been 

approximated with an expression of the 

F1/2(x) : 
c (x) 

(2.4-19) 

Quite a few suggestions have been made in the literature for 
c(x). A most simple but very crude approximation reads: 
c(x) = 1/4 , -l<x<2,5 (2.4-20) 

However, due to this simplicity it is possible to perform 
analytical investigations on expressions where F112 (x) is involved 
[2.61], [2.82). Another formula for c(x) has been proposed and used 
in [2.58], [2.77]. 

c(x) = 0,31 - 0,044·x x<2 (2.4-21) 
c(x) = exp(-0,88 - 0,32·x + 0,0086·x2) , 2<x<l2 

The error associated with (2.4-21) is always smaller than four 
percent in the specified range for the argument. There is obviously a 
need for approximations which are valid over the entire range of 
possible arguments [-<XJ,<X>]. Two formulae with this property are: 

    4 c(x) =                                       
(50 + x4 + 33,6•x•(l - 0,68·exp(-0,17•(x+l)2))3/8 

(2.4-22) 

c(x) = 
3·t 2 (2.4-23) 

(2,13 + x + (jx-2,13112/5 + 9,6)5/12)3/2 

(2.4-22) has been pointed out to be useful in [2.12], and 
(2.4-23) has been presented in [2.8]. The maximum error associated 
with both expressions is in the 
formulae nicely accommodate 
(2.4-18). 

order of 0.5 percent only. Both 
the asymptotic behavior (2.4-17), 

Another approach to approximating F112 (x) has been suggested in 
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[2.12]. The method of least squares has been used to calculate 
coefficients of polynomals the exponential of which represents the 
fitting function. 

F1;2(x) = ep(x) (2.4-24) 

However, this approach will only deliver formulae which are valid 

for a restricted range of arguments. A review on approximations for 
Fermi integrals and their inverse function is presented in [2.12]. 

For the purpose of implementation of formulae with high accuracy on 

large computers it is better to use rational Chebyshev approximations 

as demonstrated in [2.19]. 

To come back to the carrier densities, we can use the asymptotic 
expansion (2.4-17) for the Fermi integral in_ the expressions (2.4-12), 

(2.4-13) if 

Ef n-Ec 
<< -1 (2.4-25) 

(2.4-26) 

holds. The validity of these assumptions thus requires that the Fermi 

energy for electrons is sufficiently smaller than the conduction band 
edge and that the Fermi energy for holes is sufficiently larger than 
the valence band edge. These assumptions are equivalent to the use of 
Boltzmann statistics for the carrier densities which will then 

simplify to 

Efn-Ec 
n = Nc·exp( ) (2.4-27) 

k•T 

E -Ef 
p = Nv·exp( v P) (2.4-28) 

k•T 

In order to be able to investigate the expressions for the 
carrier densities more thoroughly, (with Fermi statistics (2.4-12), 

(2.4-13) and with Boltzmann statistics (2.4-27), (2.4-28)) we have to 

define precisely the meaning of the band edges Ec' Ev and the Fermi 

energies Efn' Efp• The band edges can be split into essentially three 
parts: 

(2.4-29) 
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the band edges for 

aEc and OEv describe 

(2.4-30) 

pure material, i.e. an 

shifts of the band 
edges caused by a nonuniform composition of the semiconductor under 

consideration such as dopants. These quantities have to be assumed to 

be functions of position, whereas E , E are usually not position 
CO VO 

dependent, except for devices which include heterojunctions [2.60]. 
However, for this type of devices it is also possible to introduce 

artificial band edges E , E which are not position dependent and to 
CO VO 

account for rigid bands with shift energies JEc' JEv [2.91]. 'fl 
represents the elctrostatic potential as already used in the previous 
sections. 

The Fermi energies Efn' Efp are usually seperated into two parts: 

(2.4-31) 

(2.4-32) 

•n and 'Pp are the quasi-Fermi potentials of electrons and holes. 
They describe deviations of the corresponding distribution function 
from the equilibrium state. The gradients of the quasi-Fermi 

potentials are first order approximations to the driving forces of the 
current densities (cf. section 2.3). Note that only differences 
between the quasi-Fermi potentials and the electrostatic potential are 
relevant for the carrier densities. One may again define a reference 

point arbitrarily. It is sound, although arbitrary, to define the 
quasi-Fermi potentials to be zero if the distribution functions are in 
equilibrium, which is the case for a structure to which no external 

forces are applied. We define the electrostatic potential to be zero 
for the intrinsic semiconductor when the distribution functions are in 

equilibrium. Thus, Ei denotes the Fermi energy for the intrinsic 
semiconductor. It will be calculated in the following. For that 
purpose we rewrite the carrier density expressions using the above 
given nomenclature. 

Ei-Eco+4Eco q· ('f'-'Pn> 
n = Nc·exp( )           

k•T k•T 
(2.4-33) 

(2.4-34) 

Then we recall Poisson's equation from section 2.1. 
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q 
div grad 'fl = t" ( n - p - C ) (2.4-35) 

In the absence of dopants and external forces Poisson's equation 
reduces to the trivial form: 

            -             = O (2.4-36) 

Using the expressions just derived for the carrier densities we 
obtain: 

(2.4-37) 

from where we can calculate the intrinsic Fermi energy Ei with a small 
amount of algebra. Note, we sloppily say that we calculate the 

intrinsic Fermi energy, but clearly we can only calculate the 
difference of the intrinsic Fermi energy to one of the band edges. 

= k·T·ln(Nv) 
2 Ne 

(2.4-38) 

In case that the assumptions (2.4-25), (2.4-26) are violated we 

need to solve (2.4-39) instead of (2.4-38) for Ei. 

Ei-Ec Ev-Ei 
Nc·F1;2( ) = Nv·F1/2( ) (2.4-39) 

k•T k•T 

Ei can only be found from equation (2.4-39) by means of numerical 
methods. However, in almost all semiconductors Ei lies in about the 
middle of the forbidden band and it is, therefore, well separated from 
both band edges. Thus Boltzmann statistics for intrinsic 
semiconductors in equilibrium are usually valid. 

For many applications it is convenient to define a so-called 

intrinsic concentration ni as the geometric avarage of the carrier 
densities in a semiconductor in equilibrium. 

(2.4-40) 

The existence of dopants is allowed in (2.4-40). If Boltzmann 

statistics are valid for describing 

evaluated with small algebraic effort: 

n· = l. 

Eg 
\1,.1 ·N ·exp(- ) 
     v 2 • k • T 

the carrier densities, n. is 
l. 

(2.4-41) 

We see that 

position            
ni is position dependent if the band gap Eg is 

The carrier densities can now be rewritten into 
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the well known form with five parameters: intrinsic concentration ni, 

electrostatic potential 'fl, quasi-Fermi potentials        and 
temperature T. 

(2.4-42) 

(2.4-43) 

In the presence of dopants we can again calculate from Poisson's 

equation the so-called "built-in" potential   which will shift the 

Fermi energies Efn' Efp' depending on the sign of the fixed charges C. 
In many textbooks one reads that in the presence of dopants the Fermi 

energies are shifted towards one of the band edges. This is simply 

wrong; it could be accepted in viewing the relative change of 

position, but such an interpretation should be strictly avoided for 

ditactical reasons. 

For the calculation of the built-in potential we have to assume a 

homogeneously doped semiconductor and no external forces. Then the 

Laplacian of the electrostatic potential is identically zero and 
Poisson's equation reduces to (2.4-44), still assuming the validity of 

Boltzmann statistics. 

(2.4-44) 

For the sake of clearity we assume that the fixed charges C are 

composed only of singly ionized donors N; and singly ionized 

acceptors     

+ -C = ND - NA (2.4-45) 

From (2.4-44) the built-in potential is evaluated to: 

k•T .    - N-
=            A) (2.4-46) 

q 2·ni 

If we have one type of dopants dominating the other type, 

(2.4-46) can be simplified in order to obtain a even simpler result. 

N+ 
          

q ni 
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(2.4-48) 

However, it is to note that the validity of Boltzmann statistics 

becomes a very poor assumption for high doping concentrations, 
because, as already mentioned, the 

towards one of the band edges. 
Fermi energies Efn' Efp are shifted 
If the error introduced by the 

assumption of Boltzmann statistics is not acceptable, one has to solve 

(2.4-49) for the built-in potential. 

2 Ev-Efp 2 Efn-Ec 
Nv·--·F1/2( ) - N          ) + N0+ - NA= 0 (2.4-49) 
  k•T c   k•T 

Again, this can only be done with numerical methods. It is 

obvious that the sum of the intrinsic Fermi energy Ei and built-in 

potential    which is often termed the extrinsic Fermi energy, can be 
calculated simultaneously from (2.4-49). 

Most semiconductor devices 
18 -3 above 10 cm and the transport of 

contain regions with doping levels 

carriers through these heavily 

doped parts can play an essential role in determining device behavior 
and performance. Therefore, the models for the carrier densities have 
to properly reflect the underlying physics of heavy doping effects. 
In the preceding considerations we only addressed the problem of 
carrier statistics in this context. All of the possible problems 
associated with the density of states functions have been ignored, 

except that shift energies for the conduction and the valence band, 

which have been assumed to be parabolic, have been allowed. In the 
following we shall examine more in depth why and how the band 

structure is changed in heavily doped semiconductors. However, the 
statements we shall make have to some extent a speculative character, 
because, as it has to be said, our understanding of the physics of 

heavily doped semiconductors is fairly limited. 

The density of states function for electrons and holes is 

influenced by essentially two categories of phenomena [2.62]. The 
first category consists of interactions between carriers and between 

carriers and ionized impurity atoms. The second category comprises 
the effects of electrostatic potential fluctuations which account for 
the random distribution of impurities together with the overlap of the 
electron wave functions at the impurity states causing bandtails 
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[2.48] and impurity bands [2.66]. While the second category of heavy 

doping phenomena alters the shape of the density of states functions 

for electrons and holes, the first category produces only rigid shifts 

of both the conduction and the valence bands towards each other. To 

give an example we shall discuss the possible carrier interaction 

phenomena in n-type silicon. For p-type material the facts are 

analogous. In n-type semiconductors three phenomena become apparent: 

electron-donor interaction, electron-electron interaction and 

electron-hole interaction. The electron-donor interaction does not 

yield changes in the band edges, but the number of electrons in the 

semiconductor becomes so large that they screen the donor ions, which 

effectively reduces the impurity ionization energy so that the donor 

levels ultimately disappear into the conduction band (see also 

[2.62]). Electron-electron interaction yields a rigid shift IE of c 
the conduction band towards the valence band. Electron-hole 

interaction causes a shift 4Ev of the valence band towards the 

conduction band, because the majority electrons also screen the mobile 

minority holes in addition to the immobile donor ions. As already. 

said, completely analogous statements hold for the description of the 

interaction phenomena in p-type material. An excellent review on 

these subjects can be found in [2.57]. We shall primarily concentrate 

in the following on the results which are established without going 

very much into details of their derivation. 

Kane [2.48] has derived approximations for the density of states 

function for the conduction and the valence bands in heavily doped 

semiconductors by assuming that the local potential fluctuations are 

sufficiently slow that a local density of states function can be 

defined as if the local potential were constant. The macroscopic 

density of states functions which are the statistical average of the 

local density of states functions over the lattice can then be 
expressed as: 

     (2·m*)3/2 E-E 
qc (E) = 3 n      ( __ c) 

h acv 
(2.4-50) 

(2.4-51) 

with: 
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y (x) (2.4-52) 

A simple approximation for the unwieldy equation (2.4-52) has 
been suggested by Slotboom [2.81]. 

x < 0.601 

y (x) - (2.4-53) 

x ? 0.601 

Results which are fairly similar to (2.4-50), (2.4-51) have been 
presented at almost the same time by Bonch-Bruevich [2.15]. These 
density of states functions include infinite tails for the conduction 
and the valence bands. That means the density of states functions are 
principally different from zero everywhere in the forbidden band, but 
they fall off rapidly with increasing distance from the corresponding 
band edge. As expected (2.4-50) and (2.4-51) are for small doping 
concentrations asymptotically equivalent to the parabolic density of 

states functions (2.4-1) and (2.4-2), respectively. A more rigorous 
approach to the derivation of density of states functions has been 
carried out by Halperin and Lax [2.38). However, their results are 
remarkably more complex. For strongly compensated, heavily doped 

semiconductors              only, the Halperin and Lax theory is 
expected to be superior to Kane's method (cf. [2.72]). 

acv is the characteristic standard deviation of the Gaussian 
tails of the density of states functions (2.4-50), (2.4-51). The best 

established model for a has been published by Morgan [2.66]. 
CV 

q2 J(N; +       a 
acv =     ·exp(--) (2.4-54) c 4·1t 2·l 

l denotes the screening length, and "a" is the crystal lattice 
constant, numerical values of which are summarized in Tab. 2.4-3. 
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material a [lo-9m] 

Si 0.543072 

GaAs 0.565315 

Ge 0.565754 

Tab. 2.4-3: Crystal lattice constants 

Kane [2.48] as well as Morgan [2.66] in their original work have 

used a so-called cutoff radius instead of a/2 in the exponential term 

of (2.4-54). However, there is evidence to relate this quantity to 

the lattice constant [2.66). VanOverstraeten et al. [2.90] and 

Slotboom [2.81] have in their investigations fully neglected the 

exponential factor of (2.4-54). For the screening length l two models 

are most frequently in use. The first one has been proposed by Stern 

[2.84). 

l = 1 
q N+ + N-8 8 D A I n I + I P I + 

8Efn 3Efp k·Tion 

For non-degenerate material when Boltzmann statistics 

applied this formula reduces to the well known Debye length. 

!:.·IC*T   = q li1+P 

(2.4-55) 

can be 

(2.4-56) 

T. in (2.4-55) represents an effective temperature for ion ion 
screening. In the original paper of Stern [2.84] this quantity is 

treated as adjustable parameter in order to fit experimental data. 

Stern has speculated that at room temperature Tion should be in the 

range from about 7000K to 9000K. Mock [2.63) and Polsky et al. [2.73] 

have used 9000K in their work; Nakagawa [2.70] has claimed that 6000K 

is more appropriate to obtain quantitatively correct results; and 

Slotboom [2.81] has assumed Tion to be infinite so that the last term 

in the denominator of (2.4-55) vanishes. In [2.51] and [2.90] a 

different model for the screening length which has also been suggested 

by Stern [2.83] in an early work has been used. 

l = 1 (2.4-57) 

q .Jm* 3•     -     )l/6 2·-·h· ( _____ _ 
h c 'It 

For the derivation of this formula it has been assumed that the 
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conduction and valence band structures are parabolic so that (2.4-57) 
seems to be inconsistent with (2.4-50), (2.4-51). Fermi statistics 

for the carrier distribution functions have been accounted for in the 
calculation of (2.4-57) which can also be identified as the screening 
length in metals [2.50]. A requirement for the applicability of 

(2.4-57) is that the Fermi energy lies in one of the carrier bands, 
and not as usual in the forbidden band. This does not happen unless 
the doping concentration is extraordinarily high which should lead to 
the conclusion that (2.4-57) is inappropriate for semiconductor device 
modeling. 

In Fig. 2.4-2 a comparison of the models for the screening length 

in n-type silicon is given. The solid line corresponds to (2.4-55) 

with T. equal to 9000K (the model of Mock, Polsky et al.); the ion 
dashed line is also (2.4-55) but with Tion assumed to be infinte (the 
model of Slotboom); and the dot-dashed line corresponds to (2.4-57) 
(the model of VanOverstraeten et al.). The dotted line denotes the 
classical Debye length (2.4-56) as a reference. 

When the doping concentration is large, the impurity energy level 
cannot be described by a delta function as it is the case in simple 
theory. The wave function of the electrons of the impurity atoms 
overlap, thus causing the formation of an impurity band. Morgan 

[2.66] has developed a theory which predicts a Gaussian shape for the 
impurity band. 

2•N+ 
D to = ·exp(-

       

2·N-
A 

-=----·exp(-
       

(E-ED)2 
----) 

0'2DA 

(E-EA) 2 
----) 

0'2DA 

ED and EA are the activation energies for 
acceptor atoms, respectively. Numerical values 

documented in the literature, e.g. [2.86]. 

like equation (2.4-54) for O'cv has been also 
[2.66]. 

1 

(2.4-58) 

(2.4-59) 

specific donor and 

for E0 and EA are well 
The expression for O'DA 

proposed by Morgan 

q2     +     .). 
= -c-·'11------·l,0344·exp(-                             4 ·n                  +         

(2.4-60) 
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Some discussion about the models for u0 A can be found in, e.g., 
[2.39), [2.72). 

In order to obtain a density of states function for electrons and 
holes, the density of states functions of the conduction band 
(2.4-50), the valence band (2.4-51) and the impurity bands (2.4-58), 

(2.4-59) have to be combined. Kleppinger and Lindholm [2.51) have 
simply added up the corresponding functions for that purpose. 
VanOverstraeten et. al. [2.30), however, have assumed that the total 
density of states function of the mobile carriers is composed of the 

envelope of the conduction (valence) density of states and the 
corresponding impurity band density of states function. This approach 
is physically much more sound since adding up the density of states 
functions implies that a substitute impurity atom and a silicon atom 
that were at that same lattice site both contribute to the density of 
states (cf. [2. 72)). 

The concentration of electrons and holes can now, finally, be 
calculated by: 

n = lmax(fc(E) ,f0 (E))·fn(E) ·dE (2.4-61) 

(2.4-62) 

The integration bounds are now -ro and en in contrast to (2.4-8) 
and (2.4-9) because of the infinite tails of the density of states 

functions. It is obvious that the integrals (2.4-61), (2.4-62) do not 
have a closed form algebraic solution; they have to be solved with 
numerical methods. Details on how to design efficient algorithms for 
the self-consistent solution of the carrier densities and the built-in 

potential are given in, e.g., [2.46). 

Fig. 2.4-3, Fig. 2.4-4 and Fig. 2.4-5 summarize the results we 
have obtained in a graphical way. They show the density of states 

function for electrons max(fc(E) ,f0 (E)) and the density of states 

function for holes max (fv(E) ,fA(E)). The dashed line in the 
conduction band denotes the distribution function of electrons, i.e. 
the integrand of (2.4-61). Fig. 2.4-3 corresponds to a doping of 
+ 16 -3 - . . N0 =10 cm , NA=O, 1.e. fairly low doping concentration. Fig. 2.4-4 

has been calculated for medium large doping N;=10 18cm- 3 ,      and 
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Fig. 2.4-5 corresponds to extremely heavy doping, i.e. N;=10 21cm- 3 , 

      One can see quite nicely how the impurity band is formed for 
increasing doping and how it even dominates the conduction band in 
Fig. 2.4-5. The sharp kink at the transition from the donor band to 

the conduction band is caused by taking the envelope of both 

individual bands for the overall density of states function. This 

kink is indeed unrealistic but I am not aware of 
model for the transistion. It should 

any more 
be noted 

realistic 

that the 
extraordinarily heavy doping in Fig. 2.4-5 is almost unobtainable in 

real processing. The distribution function of holes is too small to 

have been drawn within the same scales. 

Fig. 2.4-6 shows the same quantities as the previous figures for 

strongly compensated material                 Obviously, we can now 

see two impurity bands which narrow remarkably narrow the effective 
band gap. The effect of band gap narrowing is much more pronounced in 

Fig. 2.4-6 compared to Fig. 2.4-3, although the total doping 

concentration is only higher by a factor of two. In compensated 

material screening is weaker and the screening length is larger which 
leads to a stronger influence of the potential fluctuations on the 

band tails. The distribution functions of electrons and holes are too 
small to be drawn within the scale of Fig. 2.4-6. 

The models for the carrier densities which account for Fermi 

statistics, deformation of the conduction and valence band and the 
formation of impurity bands are, unfortunately, so complex, in a 

mathematical sense, that it is very cumbersome to implement these in 
device modeling programs, although it can be done in principle, e.g. 

[2.70], [2.73]. It is instead most attractive to use a so-called 
effective intrinsic concentration and an exponential dependence upon 

the potentials for the carrier densities. 

(2.4-63) 

(2.4-64) 

These expressions are quite similar to (2.4-42), (2.4-43) which 

have been derived based upon the assumptions of Boltzmann statistics 

and parabolic band structure. Probably the first empirical formula 

for nie has been proposed by Slotboom [2.79], [2.80], [2.81]. 
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{2.4-65) 

with: 

V1 = 9 • lo-3 [V] c = 0.5 [ ] 

This formula has been derived by a fit to experimental values of 
the intrinsic concentration obtained from measurements of bipolar 

transistors. In [2.26] the structure of Slotboom's formula has been 
made plausible by theoretical investigations. (2.4-65) and formulae 

which are very similar, e.g. [2.61], have proved by many authors to be 
extraordinarily valuable in the simulation of bipolar devices , e.g. 

[2.2], [2.24], [2.28]. In [2.46] the range of validity of an approach 

with {2.4-63), {2.4-64) has been investigated very thoroughly. One 

can state that the concept of an effectice intrinsic concentration is 
valid {error<l0%) for total impurity concentrations smaller than about 

8·10 19cm- 3 when the amount of compensation is not too large {<10%). 
For heavily doped and compensated material any approach with an 
effective intrinsic concentration fails dramatically. It is to note 
that for degenerate material the product n·p of electrons and holes 

away from equilbrium is always smaller as it would be predicted by 
{2.4-63), {2.4-64). The reason can be found in the strong bending of 
the Fermi integral (cf. Fig. 2.4-1, [2.40]) compared to the 
exponential function. 

Another formula for the purpose of fitting an effective intrinsic 

concentration has been derived by Lanyon and Tuft [2.55], [2.56]. 

3·q3 ,L+ -
nie = ni(T)·exp( I "1N +NA) (2.4-66) 

3 2 •'ft• ( C • k • T) 3 2 D 

This expression is claimed to be in excellent agreement with 

experimental data up to doping concentrations of 3,3·lo19cm- 3 • For 

larger concentrations the theoretical constants in (2.4-66) have been 
replaced by empirical values to fit experimental results [2.56], 
[2.75]. A similar expression has been presented in [2.11]. 

A point of uncertainty has been in recent years that optically 
measured band gaps and electrically measured band gaps differ quite 

significantly for heavily doped material. The reason for that fact is 
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that by optical measurement only the rigid shifts of the band edges 

can be detected [2.25], whereas all effects due to lattice disorder, 

e.g. band tails, cannot be found. By electrical measurements both 
contributions to the band gap narrowing are seen (cf. [2.62]). 
Therefore, the effective electrical band gap is always smaller than 
the one predicted by optical investigations. 

Formulae which fit the effective intrinsic concentration to the 

complex models of Mock [2.63), Slotboom [2.81) and VanOverstraeten 
et al. [2.90) which have been discussed above, have been developed in 

[2.46]. The following structure for the empirical expression has been 
used. 

N+ 
= exp(al(T) + a2(T)• ( D )a3 (T)) cm-3 

lol7cm-3 
(2.4-67) 

with: 

(2.4-68) 

The coefficients a2(T) and a3(T) which fit the empirical formulae best 

to Mock's model in the doping range [lo 12 ,10 20 ]cm-3 are: 

a2(T) = 9.60563•10-l 3.94127•10-3 ·T + 4.41488•10-6 ·T2 

a3(T) = 1.29363•10-l + l.10709•10-3 ·T - 9.56981•10-7 •T2 
(2.4-69) 

whereas for Slotboom's model in the doping range [lo12 ,3·10 20 Jcm-3 

they read: 

a2(T) = 

a3 (T) = 
7.95811·10-l 3.20439•10-3 ·T + 3.54153·10-6 ·T2 

2.97104•10-l + 6.75707•10-4 •T 4.90892•10-7 ·T2 
(2.4-70) 

and for VanOverstraeten's et al. model 

[10 17 ,10 21 ]cm-3 they evaluate to: 

in the doping range 

a2(T) = 

a3 (T) = 

The 
(2.4-71). 

2.38838·10-l 9.57814·10-4 •T + l.07551•10-6 ·T2 

5.10190•10-l + 5.75190·10-4 •T 7.01029•10-7 ·T2 
(2.4-71) 

temperature T has to be given 
The maximum relative difference of 

in Kelvin in (2.4-68) to 
formula (2.4-67) with 

the above given coefficients and 

always smaller than ten percent 

the exactly evaluated models is 

(cf. [2.46], [2.47]) in the 

temperature range [250,400]K. Formulae for an effective intrinsic 
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concentration for compensated material are also given in [2.46], 

however, they are much more complicated. 

In Fig. 2.4-7 the effective intrinsic concentration for Mock's 

model (solid line) 
shown 

and 
in VanOverstraeten's 

conjunction with 
Slotboom [2.81], 

line), Slotboom's model (dashed 
et al. model (dot dashed line) are 

the experimental values of Mertens 
Wieder [2.92] and Wulms [2.94]. 

et al. [2.61], 

agreement between the models and the experimental 
overwhelming, it can be considered pragmatically to be 

because of the fairly pronounced scatter of the 

Although 

data is 

quite 
measured 

the 

not 
good, 

data. 
However, a judgment as to which of the models is to be prefered can 
not, therefore, be given. 
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2.5 Heat Flow Equation. 

For the design of power devices it is often desired to simulate 
interaction of electrothermal phenomena. 
and its distribution in the interior 

Changes in the temperature 
of a device can influence 

significantly the electrical device behavior. Particularly, two 
effects usually have to be considered. Thermal runaway is one, a 
rather common mechanism where the electrical energy dissipated causes 
a temperature rise over an extended area of a device resulting in 

increased power dissipation. The device temperature increases which 

leads to an irrecoverable device failure (burn out) , unless an 
equilibrium situation can occur with a heat sink removing all of the 
energy dissipated. The existence of such an equilibrium situation is 

the second question which is sometimes quite difficult to answer 
[2.54]. In order to account for thermal effects in semiconductor 

devices the heat flow equation (2.5-1) has to be solved. 

q.c.8T - H = div k(T) ·grad T 
  

(2.5-1) 

q and c are the specific mass density and specific heat of the 

material. Numerical values for q and c at room temperature are 

summarized in Tab. 2.5-1 for the most frequently used materials in 
device processing. 

material c [m2s-2K-l] q [VAs 3m- 5] 

Si 703 2328 
Si02 782 2650 typical 
Si 3N4 787 3440 typical 
GaAs 351 5316 
Ge 322 5323 

Tab. 2.5-1: Specific heat and density constants at T=300K 

The temperature dependence of q and c can be assumed to be 

negligibly small in consideration of practical device applications 
[2.50]. If one is not interested in thermal transients one can assume 
for the simulation that the partial derivative of the temperature with 

respect to time vanishes, which eases the problem of solving the heat 

flow equation by one dimension. However, one is absolutely incorrect 

in using this assumption in a simulation for which an equilibrium 
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condition does not exist. The simulation program will "blow up" in a 

manner analogous to the real device. 

k(T) and H denote the thermal conductivity and the locally 
generated heat. Models for these quantities will be given and 

discussed in section 4.3 and section 4.4, respectively. 

To just calculate the temperature distribution and the associated 
thermal power dissipation without taking into account the current 
induced by gradients of the temperature is a fairly crude approach 

which is only appropriate for limited application [2.35]. In a more 
rigorous approach the current density equations have to be 
supplemented by additional terms. 

(2.5-2) 

(2.5-3) 

The last expression in ( 2. 5-2) , ( 2. 5-3) represents a drift 

current component with the temperature field as the driving force. In 
section 2.3 we did assume temperature being constant for the 
derivation of the classical drift-diffusion relations (cf. (2.3-33)). 
As can be proved with minor algebraic effort, by assuming non constant 

temperature in (2.3-29), (2.3-30) we obtain equations (2.5-2), 
(2.5-3). Stratton [2.85] has verified these relations with a much 
more rigorous approach, from a perturbation solution of the Boltzmann 

equation. He also derived in his paper approximations for the thermal 

diffusion coefficients     

DT Dn -n 2•T 
(2.5-4) 

DT - Dp 
p 2•T 

(2.5-5) 

These coefficients are smaller by a factor of two compared to 
those we obtain with the procedure just sketched above. However, as 

pointed out in [2.85] a more exact result owing to the complexity of 
the problem is cumbersome, if at all possible, to obtain and 

discrepancies of that order are not at all surprising. Dorkel [2.27] 
demonstrated that Stratton's result is applicable for intrinsic 

semiconductors; in the presence of dopants the thermal diffusion 
coefficient is underestimated by at most a factor of five. Some more 
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considerations on this subject can be found in, e.g. [2.14], [2. 76]. 

However, one need not worry as all publications on nonisothermal 
effects in the context of semiconductor device modeling certify more 
or less the applicability of these relatively rough models for 
describing the feedback of temperature gradients on the current 

densities, e.g. [2.1], [2.18]. 
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2.6 The Basic Semiconductor Equations. 

We shall now summarize the results which we have obtained in the 

previous sections in order to be able to write down a set of 

equations, the "basic" semiconductor equations, which we shall use in 

all further investigations. It is obvious that for the sake of 

shall perform a trade-off 

our model. The equations we 

between 

shall 

transparency and efficiency, we 

accuracy and complexity of 

concentrate on are valid for the major number of engineering 

applications, particularly for silicon devices. Certainly, conditions 

do exist for which their validity is not guaranteed, or at least in 

doubt. However, as I tried to express in the previous sections, the 

more sophisticated results in semiconductor physics are too complex to 

give a rigorous, generally applicable and still sufficiently simple 

model for the purpose of device simulation. 

The basic semiconductor equations consist of Poisson's equation 

(2.6-1), the continuity equations for electrons (2.6-2) and holes 

(2.6-3) and the current relations for electrons (2.6-4) and holes 

(2.6-5). For some applications it is desired to add to this set the 

heat flow equations (2.6-6). 

q 
div grad 'fl = c· ( n - p - c ) 

an 
div Jn - q·at = q·R 

div Jp + q·aP = -q·R Ot 

JP = q·p·Pp"Ep - q·Dp·grad p 

o 8T a· k( d        - H = 1V T) ·gra T 

To almost this level of completeness, these equations were 

presented by VanRoosbroeck [2.89]. 

(2.6-1) 

(2.6-2) 

(2.6-3) 

(2.6-4) 

(2.6-5) 

(2.6-6) 

first 

Models for C, the net doping concentration, for R, the net 

generation/recombination, for pn' pp' the carrier mobilities, for H, 

the thermal generation and for k(T), the thermal conductivity will be 

discussed in the following chapters. En and Ep, the effective fields 
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in the current relations are to first order the electric field, 

however, we may use supplementary correction terms to account for 
heavy doping (cf. section 2.3, section 2.4) or thermally induced 
currents (cf. section 2.5). For such mathematical investigations, 
relatively slight perturbations are of only secondary importance. 

Hence, for most applications, accounting for some specific effect is 
possible by properly modeling the parameters in the basic equations. 

The Basic Semiconductor Equations 
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3. Process Modeling. 

To enable the simulation of the electric behavior of a device the 
configuration of the device (i.e. geometry and composition of the 
material it is made of) is, obviously, one of the prerequisite pieces 
of input information. Optimal design of a device necessitates the 

capability to predict the effect of modifying any of the various 
process steps involved in device fabrication. One principle barrier 
for predictive device simulation is the uncertainty of the results of 
process models due to still inadequate understanding of their 

underlying solid-state physics and chemistry. Particularly in the 
development of devices for integrated circuits and their technology, 
the need for process models is growing dramatically due to the tight 
coupling of two and three dimensional device effects with the doping 

profile [3.18). Owing to these purposes, many computer programs 
capable of modeling quite generally the various processing steps of 

device fabrication have been developed, and they have proven to be 
extremely valuable tools, e.g. ICECREM [3.64), [3.67); LADIS [3.76]; 

MEMBRE [3.54); RECIPE [3. 73]; SUPRA [3.15), [3.38), [3.39), [3.50] and 

the extraordinarily well established SUPREM program [3.4], [3.5), 

[3.50), [3.51), [3.59]. 

Apart from lithography which may be viewed as a fixed process 
that simply provides flexibility in layout [3.56], [3.57], the primary 
fabrication processes which determine the electrical characteristics 
of semiconductor devices, in particular silicon devices, are ion 

implantation, diffusion and thermal oxidation. Epitaxy, etching and 
deposition can certainly play an essential role in device fabrication 

as well. However, as the field of process modeling is extraordinarily 

wide and difficult, only the above cited process steps will be 
discussed here. Furthermore, it should be noted that only a review of 

the most important models can be presented here due to the complexity 

of the underlying phenomena. The aim here is just to give a flavor on 
what problems have to be dealt with in providing this all-important 
input for device simulation. We also shall restrict ourselves to 
silicon processing. 

Process Modeling 



- 60 -

3.1 Ion Implantation. 

Ion implantation is the most applied doping technique in the 
fabrication of silicon devices, particularly integrated devices. A 
highly energetic beam of ions strikes and penetrates into a target of 
coated or uncoated semiconductor. The final distribution of particles 

within the semiconductor will be discussed in this section. The only 
exact procedure one can imagine for calculating the distribution of 
implanted ions would be a Monte Carlo simulation of the implantation 
process itself [3.48] by invoking the laws of statistical mechanics, 

or perhaps at a minimum solving a Boltzmann transport equation 
- similar to the one describing the movement of electrons - [3.16] for 
the penetrating ions. Both methods allow a treatment based on first 

principles of the undesirable parasitic effects of ion implantation 

like lattice disorder and defects [3.16], [3.77], [3.78], back 
scattering and target sputtering [3.74] and channeling [3.24]. 

However, for many practical applications it is sufficient to assume a 
distribution function and to calculate or, even better, to measure its 

parameters so that good agreement between experimentally determined 
and simulated profiles is established. Such a procedure does, 
obviously, not contribute to the understanding of the underlying 
physical phenomena but it can prove - it has already proved - to be 

adequate for many engineering applications, although in some novel 
processing techniques (e.g. multilayered mask structures) the 

disadvantages become quite evident and lead to frustration. 

We first shall consider only one dimensional distributions. In 
order to describe the distribution of implanted ions by means of 
distribution functions we have to remember some of the mathematical 

properties of probability functions. 
cummulative distribution function if: 

a) F (x) is non-decreasing, i.e., 

F(x) is termed a univariate 

F(xl)   F(x2) , for xl < x2 

b) F(x) is everywhere continous from the right, i.e., 

F(x) = lim F(x+h) 
h+o+ 

c) F (x) fulfills: 

F ( -m) = 0 , F (ro) = 1 

(3.1-1) 

(3.1-2) 

(3.1-3) 

Only distribution functions with these properties are suitable 
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for the description of implantation profiles. We further allow only 

continuous distributions so that F(x) can be written as: 

F(x) =   f(t)•dt (3.1-4) 

f (x) is termed the "probability density function" or "frequency 

function". With these definitions the real ion distribution is given 

as: 

c (x) = Na· f (x) (3.1-5) 

Nd is the total implant dose per unit area. The properties of 

the distribution function F(x) guarantee that the profile is 

consistent in a physical sense, e.g. the total dose must be 

incorporated in the target. The frequency function f (x) is, in 

practice, assumed in its structure to be one of the well established 

functions from statistical mathematics, and its associated parameters 

are calculated with knowledge about some characteristic quantities of 

the distribution. These are the mean value or projected range RP: 

Rp = J x • f ( x) • dx 
-ro 

the standard deviation 

O'p =   r (x-Rp) 2 • f (x) • dx 
-ro 

the skewness l\: 

J (x-Rp) 3. f (x) ·dx 

1'1 = -ro 
a 3 p 

" . p· 

and the excess or kurtosis lt 2 : 

J (x-Rp) 4 • f (x) • dx 

P2 = -ro 
a 4 p 

(3.1-6) 

(3.1-7) 

(3.1-8) 

(3.1-9) 

These characteristic quantities can either be calculated or 

measured in order to fit an assumed frequency function to 

experimentally determined doping profiles [3.64]. The oldest theory 

is termed LSS theory after the authors Lindhard, Scharff and Schiott 
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(3.40]. The detailed physics of the ion range theory are covered 

rather extensively in the literature. Hence, I shall only give some 

important references and some qualitative discussion here. Numerical 

values for the projected range RP, the standard deviation ap and the 

skewness f 1 after the LSS theory are tabulated in the book of Gibbons 
et al. (3.25]. Values for the kurtosis , 2 have certainly been 

calculated by somebody, however, I am not aware of any tabulated 

results or closed form expressions. The LSS theory has been 

thoroughly discussed in, e.g., (3.82]; it has been refined for 

multilayered targets in (3.16]. In Fig. 3.1-1 the projected range RP 
is shown for the most frequently used dopants in silicon. 

Correspondingly, Fig. 3.1-2 and Fig. 3.1-3 show the standard deviation 

ap and the skewness f 1 • As results in form of tables or graphs are 
tedious to handle, some sort of functional fit might be very 

attractive. The easiest approach for that task is a simple polynomial 

fit (3.71]. 

Rp = (3.1-10) 

ap = (3.1-11) 

E denotes the implantation energy. Coefficients for such 

polynomials are given in Tab. 3.1-1, Tab. 3.1-2 for silicon as target, 

in Tab. 3.1-3, Tab. 3.1-4 for silicon dioxide and in Tab. 3.1-5, 

Tab. 3.1-6 for silicon nitride (Si 3N4 ) as target. 

Element B 

3.338·10-3 

-6 -3.308·10 

p 

1.259•10-3 

-7 -2.743•10 
1. 290·10-9 

Sb 

8.887·10-4 

-5 -1. 013·10 
8.372·10-8 

-3.056•10-lO 

4.028·10-13 

As 

9.818·10-4 

-5 -1.022·10 
9.067·10-8 

-3.442·10-10 

4.608·10-13 

Tab. 3.1-1: Coefficients for Rp in silicon 
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Element 

Element 

al 

a2 

a3 

a4 

as 

Element 

Element 

al 

a2 

a3 

a4 

as 

B 

1. 781•10_3 

-s -2.086·10 
1.403·10-7 

-4.S4S·lo-10 

S.S2S·lo-13 

- 63 -

p 

6.S42·10-4 

-6 -3.161·10 

1.371·10-8 

-2.2S2·10-11 

Sb 

2.674·10-4 

-6 -2.88S•l0 

2.311·10-8 

-8.310·10-11 

l.084·10-13 

As 

3.6S2·10-4 

-6 -3.820•10 
3.23S•l0-8 

-1.202·10-10 

l.601·10-13 

Tab. 3.1-2: Coefficients for •p in silicon 

B p Sb As 

3.2S8·10-3 9.842·10-4 7.200·10-4 7.806•10-4 

-2.113·10 -6 2.240•10-7 -8.0S4·10 -6 -7.899•10 -6 

6.641·10-8 7.029•10-8 

-2.422·10-10 -2.6S3·10-10 

3.191•10-13 3.S73•lo-13 

Tab. 3.1-3: Coefficients for Rp in silicon dioxide 

B 

1.433·10-3 

-s -1. 077•10 

4.190·10-8 

-6.000•l0-11 

p 

4.S91•10-4 

-6 -1.983·10 

8.383·10-9 

-1.382·10-11 

Sb 

2.018·10-4 

-6 -2.328•10 

1.917·10-8 

-6.997•10-11 

9.211·10-14 

As 

2.637·10-4 

-6 -2.762·10 

2.373·10-8 

-8.899·10-11 

l.193·10-13 

Tab. 3.1-4: Coefficients for •p in silicon dioxide 

B p Sb As 

2.S14·10-3 7.617·10-4 S.660·10-4 6.094·10-4 

-1. 618·10 -6 1.681·10-7 -6.440·10 -6 -6.213·10 -6 

S.323·10-B S.Sl6·10-8 

-1.944·10-10 -2.080·10-lO 

2.S63·1o-13 2.799·10-13 

Tab. 3.1-S: Coefficients for Rp in silicon nitride 
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Element B 

1.115•10-3 

-6 -8.328•10 
3.228•10-8 

-4.612·10-11 

- 64 -

p 

3.542•10-4 

-6 -1.488·10 

6.204·10-9 

-1.019•10-ll 

Sb 

1.516•10-4 

-6 -1.655·10 

1.345•10-8 

-4.878·10-11 

6.401·10-14 

As 

2.035•10-4 

-6 -2.092·10 

1.787·10-8 

-6.678·10-11 

8.932•10-14 

Tab. 3.1-6: Coefficients for •p in silicon nitride 

The dimensions of the coefficients ai' bi are micrometer per i-th 
power of the units used for the implantation energy, usually keV. The 

maximum error of RP and •p calculated with these coefficients and 

formulae (3.1-10), (3.1-11) in the range [5,300]keV is only a few 

percent compared to the tabulated data in [3.25]. The skewness r 1 has 

not been approximated in this way, although there is in principal no 

problem, but for the construction of distributions for which an 

accurate value of the skewness is required, one possibly has to modify 

the values obtained by the LSS theory (cf. [3.64]). A slightly 

different approach to the LSS concept about ion range theory has been 

proposed by Biersack [3.10], [3.11]. Comparisons of measured and 

calculated quantities according to the Biersack theory look quite 

convincing [3.66]. Tabulated values are given in the book by Ryssel 

and Ruge [3.63]. Measured values for the parameters (3.1-6) to 

(3.1-9) for boron implanted into silicon have been given in [3.65]. A 

thorough discussion and comparison of various other concepts on ion 

range theory can be found in, e.g., [3.41]. 

The distributions which are most frequently used for describing 

doping profiles are the simple Gaussian or normal distribution, the 

joined half Gaussian distribution, Edgeworth asymptotic expansions of 

the Gaussian distribution and the Pearson type IV distribution. 

The Gaussian distribution makes use only of the projected range 

RP and the standard deviation •p· 
Gaussian distribution reads: 

1 (x-R )2 
f (x) = ·exp(- P ) 

        2·up2 

The frequency function for a 

(3.1-12) 

A Gaussian distribution has a skewness r 1 =o and a kurtosis P2=3. 

Ion Implantation 



- 65 -

The approximation of a true profile with a Gaussian distribution is 
only accurate to first order. However, the simplicity of the 
calculation justifies to some degree its use when the primary concern 
is the average location and average extent of a distribution. 

If one wants to fit more accurately the asymetrical distributions 
usually found in practice, it is necessary to at least account for the 

skewness. Such an approach was suggested in [3.26] and it has been 
used quite extensively. The frequency function is defined to consist 
of two half Gaussian distributions that join at a modal projected 

range Rm. For distances x<Rm the distribution has standard deviation 
a 1 , while for x>Rm the distribution has standard deviation a2 • 

( 2 (x-Rm) 2 
x <Rm _ • exp ( - ) 

         (a1+a2) 2·a12 
f (x) = ( 

( 
(      

2 (x-Rm) 2 
            ) 

(                2·0'22 

The modal projected 

deviations a1 , a 2 can be 
quantities (3.1-6), (3.1-7) 
these integrals evaluate to: 

Rp = Rm +    (0'2 - 0'1) 

range Rm and 
calculated by 

and ( 3 .1-8) • 

=        - 0'1·0'2 + 0'2 2 ) -    (0'2 - 0'1) 2 
1t 

(3.1-13) 

the "one-sided" standard 

using the characteristic 
With some amount of algebra 

(3.1-14) 

(3.1-15) 

=    (0'2 - 0'1).     - 1). (0'1 2 + 0'2 2 ) + (3 -    ·0'1·0'2) 

O'p3 
(3.1-16) 

The kurtosis P2 can not be used to match a profile, because one 

has only three parameters (Rm' a1 , a2 ) available which are already 
fully determined by R , O' and f 1 through relations (3.1-14) to 
(3.1-16). The kurtosis P2 ofpa joined half Gaussian distribution can 

be demonstrated to depend only on the square of the skewness. 

Fig. 3.1-4 shows the value of the kurtosis one automatically obtains 
for a given value of the skewness. It is satisfying that over the 
entire range of validity for the skewness f 1 , (cf. 3.1-17) the value 

for the kurtosis is reasonable. 
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It would be very attractive to have explicit formulae for Rm' a1 
and a2 • However, such formulae do not exist. With some algebra one 

will end up with a cubic equation for the difference (a1-a2 ) and a 
quadratic equation for the sum (a1 +a2 ). These equations could, in 
principle, be solved analytically, however, this approach can not be 
recommended for implementation in a computer program because of 

cancellation problems associated with the specific structure of the 
analytical solutions of cubic equations. An iterative method is much 

more feasible. It is to note that a joined half Gaussian distribution 

only exists for a restricted range of values for the skewness f 1 • In 
particular condition (3.1-17) must hold. 

111 1 <         = o,99s21 (3.1-11) 
11:-2 1it:2 

I feel obliged here to warn the reader about the various papers 
on joined half Gaussian distributions; in many of these the various 

constants are indisputably incorrect. 

For distributions whose skewness 
given in (3.1-17) (cf. Fig. 3.1-3) it 

has a magnitude larger than 
is necessary to take into 

account higher order characteristic quantities of the distribution, 
minimally, the kurtosis , 2 (3.1-9). In [3.22) an Edgeworth asymptotic 

expansion has been suggested for that purpose. The first three terms 

of the Edgeworth expansion are: 

f1 d3g f(y) = [g(y)) - [_•_(y)) + 
6 dy3 

+ r'2-3.d4g(y) + f12.d6g(y)J + •• $ 

24 dy4 12 dy6 
(3.1-18) 

f (y) is the frequency function to be expanded in terms of g(y) 
and its derivatives. In our case g(y) is the Gaussian frequency 
function. 

g(y) = 

y = 
x-R p 
ap 

(3.1-19) 

(3.1-20) 

Terms in brackets in (3.1-18) are terms of the same order with 
respect to the expansion index. If the derivatives of g(y) are 

evaluated and substituted into (3.1-18) we obtain: 
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f (y) 
1 y2 = _ ·exp (- _) · 

         2 

P2-3 
(1 + --

8 
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(3.1-21) 

If no values for the kurtosis P2 are available, which is 

unfortunately very often the case, Gibbons et al. [3.25] suggests 

using relation (3.1-22) which guarantees that (3.1-21) is positive for 

y=O. 

(3.1-22) 

The expansion (3.1-21) is only applicable for a limited range of 

values for f 1 , , 2 and also y. The condition which has to be fulfilled 

is that the multiplying polynomial in (3.1-21) is positive. The 

procedure of performing an Edgeworth asymptotic expansion into 

Gaussian frequency functions is, from a mathematical point of view, a 

very elegant way to introduce the influence of higher order 

characteristic quantities of the distribution function. However, due 

to the fact that only the very low order terms of the expansion can be 

accounted for, the frequency function exhibits an oscillatory behavior 

for distributions whose skewness f 1 is of large magnitude. 

An approach followed by Hofker [3.30] for fitting a frequency 

function to experimental data is to use a Pearson type IV distribution 

function. The whole family of Pearson distributions [3.26] is based 

on the differential equation 

df (y) = 
dy 

y-a • f (y) 

bo+b1·y+b2·y2 
y = x - Rp (3.1-23) 

where f(y) is, as defined before, the frequency function. The four 

constants a, 

quantities 
b 0 , b1 and b 2 can be expressed in the four characteristic 

projected range (3.1-6), standard deviation (3.1-7), 

(3.1-8) and kurtosis (3.1-9) as we shall demonstrate in the skewness 
following. 

The i-th central moments of any distribution are defined as: 
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(3.1-24) 

These central moments are related to the characteristics which we 
prefer to use by: 

(3.1-25) 

O'p =    - P12 (3.1-26) 

P3 - 3·P2·P1 + 2·P13 
f 1 = <P2 - P12)3/2 

(3.1-27) 

,2 
P4 - 4·P3·P1 + 6·P2·P1 3 - 3. P14 

= 
<P2 - P12 ) 2 (3.1-28) 

We further remember that p0=1 (cf. 3.1-3). Then we rearange 
(3.1-23) after multiplying both sides by yn. 

yn·(bo + b1·y + b2·y2)·f'(y) = yn·(y - a)·f(y) (3.1-29) 

By integrating both sides of (3.1-29) between -co and co and 
assuming that 

lim yn•f (y) = 0 , n<6 
y+:i!:O 

we obtain: 

(3.1-30) 

(3.1-31) 

By putting n=0,1,2,3 in (3.1-31) we have four simultaneous linear 
equations for a, b0 , b1 and b 2 with coefficients which are functions 
of the central moments. Note that we may introduce without loss of 

generality a coordinate transformation y+z prior to integrating 
(3.1-29), which eminently eases the calculus, such that: 

( i=l 0 
Pi I = ( (3.1-32) 

a = 

bo = 

<     Pi 

The expressions for a, b0 , b 1 and b 2 are then evaluated to: 

1'1 ·0'p· (,2+3) 

io·, 2-12-r1 2-1s 

ap 2 · <4·P2-3·f1 2 ) 

io·, 2-12-f12-1s 

(3.1-33) 

(3.1-34) 
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2·P 2-3·f1 2-6 

io·P2-12·f1 2-1s 
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(3.1-35) 

(3.1-36) 

The shape of f (y) varies considerably with b0 , b1 and b 2 • 

Pearson has classified the different shapes into seven types. I shall 

give here a short resume of this classification because one can find 

some inconsistencies on that subject in some papers authored by 

engineers. I shall follow Pearson's numbering of the individual types 

of distributions, although it does not exhibit a clear systematic base 

[3.34]. The form of solution of (3.1-23) evidently depends on the 

nature of the roots of the equation: 

However, I first should like to note 

which corresponds to: 

( 11 = 0 
( 
(    = 3 

Gaussian 

that if we have 

(3.1-37) 

b =b =O 1 2 

(3.1-38) 

the solution of (3.1-23) is the Gaussian frequency function 

which, in fact, is a limiting case for all types of Pearson 

distributions. 

We have a Pearson type I distribution if the roots of (3.1-37) 

are real and of opposite sign. This is the case for: 

( f 1 .;. 0 ) 
( ) Type I (3.1-39) 
< P2 < 3 + l,S·f12 ) 

A degenerate case is the Pearson type II distribution. 

f 1 = 0 
Type II 

P2 < 3 
(3.1-40) 

The Pearson type III distribution corresponds to the case b 2=o 
and b1fo which can be expressed as: 

( f1 .;. 0 
( Type III (3.1-41) 
< P2 = 3 + 1, 5 ·f1 2 

The case when (3.1-37) dose not have real roots corresponds to 

the Pearson type IV distribution. This cases arises when: 
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( 39 ·f1 2 + 
  P2 > 32 - f12 
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Type IV (3.1-42) 

If (3.1-37) is a perfect square we have the Pearson type V 

distribution. 

0 < r-12 < 32 

39·f12 + 48 + 6· (f12+4)3/2 

32 - r-12 

Type V (3.1-43) 

The Pearson type VI distribution corresponds to the case when the 

roots of (3.1-37) are real and of the same sign. 

( f1 :;' 0 
( 
( 
( 
( 

3 + l,5·r1 2 < P2 < 
39·f12 + 48 + 6· (f12+4)3/2 Type VI (3.1-44) 

32 - r-12 

Finally, the Pearson type VII distribution corresponds to the 

case when b0 >0, b1 =o and b 2 >0 which can also be expressed as: 

( f1 = 0 ) 
( ) Type VII (3.1-45) 
( P2 > 3 ) 

The conditions (3.1-38) to (3.1-45) are graphically summarized in 

Fig. 3.1-5. Only the types I, IV and VI correspond to areas in the 

(f1
2 ,P 2 ) plane. The remaining types correpond to lines and are 

sometimes called transition types. The Gaussian distribution which, 

as mentioned, is a limiting case for all distributions is denoted by 

an asterisk in Fig. 3.1-5. Note that for any distribution condition 

(3.1-46) holds as can easily be proved. 

P2 > 1 + r-1 2 (3.1-46) 

With regard to the conditions (3.1-38) to (3.1-45), respectively, 

it is just a matter of a simple calculus to solve the differential 

equation (3.1-23) for the frequency function of the specific type. 

However, for the description of implantation profiles only the Pearson 

type IV and type VII distribution can be generally applied. These 

frequency functions have a single maximum at y=a and decay 

monotonically to zero on both sides. The type VII distribution is not 

skewed which results in a very limited applicability, if any. I have 
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frequency functions, seen some attempts to use other Pearson 
particularly type V and type VI, to fit 

implantation profiles. Such approaches are 
underlying mathematics and should be strictly 

in a piecewise manner 
inconsistent with the 

avoided. 

The general solution of the differential equation (3.1-23) is 
given in (3.1-47) when the restriction (3.1-42) which characterizes 
the Pearson type IV distribution is obeyed. 

1 
f(x) = K· (-(bo+b1· (x-Rp)+b2· (x-Rp)2)) (2 .b/ • 

b1/b2 + 2·a 2·b2· (x-Rp) + b1 
·exp(- ·atan( )) 

         - b1 2          - b12 
(3.1-47) 

The constant K is the normalization constant to fulfill (3.1-3). 

It can usually be determined only by numerical integration. Ryssel 
[3.64], [3.67] favours the Pearson type IV distribution very much. It 
is his experience that almost all practically arising profiles can be 
fitted rather accurately. A similar experience has been documented in 
[3.81]. 

Some authors, e.g. [3.4], [3.30], have added so-called 

exponential tails to the Pearson type IV frequency function. 

f ( x) = f ( x) + A· exp ( -l · ( x-x 2 ) ( 3 • 1-4 8 ) 0) 

The constants A, land x 0 are determined by fitting the value, 
the first and the second derivative at a matching point. However, I 
feel such a procedure is not really to be recommended: on the one hand 
to use the elaborate mathematical approach with the Pearson type IV 
distribution function and on the other hand to modify the results with 

quite arbitrary extensions. A completely arbitrary distribution can 

be expected to work as well. 

If no values for the kurtosis are available, a universal 
expression (3.1-49) is often used to overcome this problem 
(cf.[3.67]). 

P2 = 2.8 + 2.4·r1 2 (3.1-49) 

A similar approach has been suggested in, e.g., [3.64]. 

Certainly quite a few other frequency functions have also been 
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suggested to describe doping distributions, e.g. the Gram-Charlier 

series [3.82) which is based on an expansion of the Gaussian frequency 

function into Hermite polynomials. However, the disadvantages of most 

of the more sophisticated frequency functions like the tendency to 
oscillate (which we have already mentioned for the Edgeworth 
expansions) , or 

evaluation are 
a very complicated calculus for the coefficient 

usually too severe for practical application [3.29], 
[3.66). 

In Fig. 3.1-6 a comparison of a Gaussian (dashed line), a 

half Gaussian (dot-dashed line), a Pearson type IV (solid 

joined 

line) 

The distribution and an experimentally determined profile is given. 

range parameters have been taken from results of the Biersack theory. 

Fig. 3.1-7 shows the shape of the Pearson type IV distribution as 

it changes with the implantation energy as parameter. 

Another problem one has to face is the implantation through a 

coating layer, typically an oxide mask. Let us assume that we have a 

semiconductor, material 2 in this context, covered by a layer of 

material 1 of thickness tmask" All of the distribution functions 
which we have discussed above have to be modified in order to be able 

to account for such a configuration. The easiest procedure one can 

carry out is to use transformed coordinates for the distribution in 
material 2. 

x<tmask 
C (x) = (3.1-50) 

C1 (x) is the doping distribution in material l; c2 (x) in 
material 2. J is a translation quantity which reflects a density 
transformation. It can be modeled after, e.g., [3.4) as: 

J = tm ask • ( 1 - Rp 2 ) ( 3 • 1-51 ) 
Rpl 

or after, e.g., [3.67) as: 

O'p2 J = tmask • (1 - _) (3 .1-52) 
O'pl 

Rpl'    and O'pl' ap 2 are the projected range and 
deviation in material 1, 2, respectively (cf. (3.1-6), 

approaches work comparatively well if the thickness of 
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sufficiently large. For thin coating layers none of these procedures 
is satisfactory. Ryssel [3.66] suggested, pragmatically, a procedure 
where just the distribution in the semiconductor (material 2) is 
needed. 

x< tmask 

C(x) = 
C2 (x - tmask • ( 1 - Cfp 2 ) ) 

O'pl 

(3.1-53) 

This approach gives excellent results for thin coating layers if 
the distribution is concentrated in the substrate (cf. [3.67]). 

The best procedure, from my personal point of view, has been 
suggested also by Ryssel [3.66], [3.67]. Here, the concentration 

C1(x) is calculated first for infinitely thick material 1. Then the 

total number of ions Ndl in the layer of thickness tmask is calculated 
by integration. By assuming no coating layer, the concentration C2 (x) 

is calculated in material 2, and the thickness t' which contains Ndl 
ions is determined. The final profile is composed of profile C1 (x) in 

material 1 up to tmask and profile c2 (x) starting from t'. Thus, the 
resulting profile incorporates the total implantation dose Na· This 
approach can be generalized to multi layer structures in a 
straightforward manner. 

The profile obtained with any of the above given procedures is 

discontinuous at the interface x=tmask· This seems to be in 
to Monte Carlo simulations, however, the discontinuity is 
pronounced if the mass density of material 1 differs little 
mass density of material 2. 

contrast 
not very 

from the 

Several problems like recoil or 

arise with the implantation through 
and many more are dealt with in the 

knock-on implantation of ions 
masking layers. These problems 

specialized literature. The 
articles [3.41], [3.66], [3.74] and of a more general interest, the 
books [3.2], [3.25], [3.63], [3.80] can be recommended for a more in 
depth study. 

The last problem regarding ion implanation which I would like to 
discuss here is the two dimensional distribution of implanted ions for 
a non constant mask thickness tmask across the lateral dimension 
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Cy-coordinate) . The idea for the solution to this problem is based on 

the work of Furukawa et al. [3.50], who considered only Gaussian 

distributions near an infinitely steep mask edge. Runge [3.62] has 

refined that approach for arbitrarily shaped mask edges, but still 

considering only Gaussian distributions. However, the idea behind the 

approach is a simple convolution of a quasi-one dimensional profile 

C(x;tmask(y)) with a Gaussian distribution in the y-direction. 

tmask(y) is to be considered as a parameter. A general formula can, 

therefore, be given. 

C(x,y) = 1 ·T C(x;tmaskCY'))•exp(-
       O'py -a::> 

(y-y')2)·dy' 
2 ·O' 2 PY 

(3.1-54) 

is the lateral standard deviation. 

are given in, e.g. [3.23], [3.25], [3.63]. 

Tabulated values for O'py 
Fig. 3.1-8 shows a graph 

of O'py in silicon obtained from the LSS theory. This convolution 

(3.1-54) can usually be carried out only with numerical methods. In 

case of an infinitely high mask extending to the point y=a, the 

convolution can be performed analytically. We have: 

y<a 0 
C(x;tmask(Y)) = 

    C (x) 

The integral (3.1-54) evaluates to: 

erfc( a-y ) 

C(x) • 'i2·0'py C(x,y) = 
2 

(3.1-55) 

(3.1-56) 

where erfc(x) denotes the complementary error function defined as: 

erfc(x) =            (3.1-57) 

All two dimensional process modeling programs, to my knowledge, 

use the convolution integral (3.1-54) in a more or less simplified 

manner to calculate two dimensional distributions (cf. [3.50], [3.54], 

[3.66], [3.73], [3.75], [3.76]). One problem, however, associated 

with that formulation is the assumption that the lateral standard 

deviation O' is independent of the depth (x-coordinate). Considering 
PY 

two dimensional calculations of the damage distribution formed by ion 

implantation [3.47], which have been confirmed experimentally [3.36], 

one could speculate that this is a poor assumption. Examples of 

calculated two dimensional implantation profiles are shown in 
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Fig. 3.1-9 and Fig. 3.1-10. An vertical mask edge has been assumed 

for Fig. 3.1-9, whereas a mask tapered at 45 degrees has been used for 
Fig. 3.1-10. 
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3.2 Diffusion. 

Diffusion is the physical mechanism which is responsible for the 

redistribution of impurity atoms in semiconductor processing. By 

means of diffusion processes one can obtain a desired shape of the 

distribution of dopants incorporated into the semiconductor by, e.g., 

ion implantation or which are deposited at the surface as a paste, 

fluid or gas of high concentration. The latter process is usually 

termed a predeposition process. The former process, diffusing a 

profile which has been produced by ion implantation, always has to be 

carried out in order to "recreate" the semiconductor lattice from the 

bombardment damage caused by ion implantation. 

diffusion is usually termed "annealing". 

In this context 

The diffusion of dopants in semiconductors is described by the 

two laws of Fick, which read: 

Ji= -Di· (grad Cti -       (Cti - Cci) ·grad qJ) 
k•T 

3ct· 1 
  + div Ji = 0 

(3.2-1) 

(3.2-2) 

Ct. is the total concentration; Cc. is the electrically inactive 
1 1 

part of the concentration, i.e. the concentration of dopants which is 

not well incorporated in the silicon lattice and, thus, is not ionized 
(e.g. neutral clusters). J. denotes the impurity flux; z. is the 

1 1 
charge state of the impurity (+l for singly ionized acceptors, -1 for 

singly ionized donors). D. represents the diffusion coefficient which 
1 

depends, in general, on all sorts of quantities as we shall discuss 
later. qJ is the electrostatic potential. The index i of all above 

cited quantities denotes the i-th impurity type as there is usually 

more than one kind of impurity incorporated into the silicon when a 

diffusion process is performed. 

By substituting (3.2-1) into (3.2-2) we obtain the classical form 

of the diffusion equation, a continuity equation, for the i-th dopant. 

8ct· 
-lj-;--t1 =div [Di· (grad Cti -       (Cti - Cci)·grad qJ )] (3.2-3) 

Vt k•T 

The electrostatic potential qi is determined by the Poisson 

equation which we have discussed in section 2.1. 
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q 
div gr ad 'fl = t • ( n - p - C ) (3.2-4) 

The quantity C represents the total net concentration of all 

ionized impurities. For a system with n impurities we have: 

n 
C = - t Zi• (Cti - Cci) 

i=l 
(3.2-5) 

Note that in (3.2-5) the influence of, e.g., charged vacancies is 

neglected. In all process modeling programs I am familiar with the 

Poisson equation is not solved as an elliptic differential equation, 
but rather assuming vanishing space charge and Boltzmann statistics. 

The electrostatic potential can then be calculated explicitly (cf. 
section 2.4). 

k•T C 
'fl = --· arsinh ( --) 

q 2·ni 
(3.2-6) 

The electrostatic potential qi is identical to the built-in 
potential which we have 
semiconductor structure is 
process. n. denotes the 

1 

derived in section 2.4, because the 

not electrically biased during a diffusion 

intrinsic concentration at the process 

temperature. It may be modeled as depending on the concentration of 
dopants, thus, representing an effective intrinsic concentration 

(cf. section 2.4). The assumption of vanishing space charge is very 

poor when considering the coupled diffusion in a structure with 

pn-junctions. Obviously, the exact location of the pn-junction, which 

is one of the most important results one should like to obtain from 

process modeling, will depend on the interaction of the space charge 

layer at the pn-junction with the electrostatic potential, 

particularly if one deals with steeply graded junctions. This problem 
is stressed also in [ 3 .1] • 

In the literature one can often find that field enhanced 

diffusion is accounted for with a so-called field enhancement factor 

multiplying the diffusion coefficient. In the case of just one type 

of impurity - we can drop the index i - and under the assumption that 

the total concentration of impurities is electrically active we may 

take the electrostatic potential as: 

'II= k·T·arsinh(- Z·Ct) (3.2-7) 
q 2 • ni 

The gradient of 'I' reads: 
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Ct (3.2-8) 

By substituting (3.2-8) into (3.2-3) and with a small amount of 
algebra we obtain: 
Set (Jt = div(Di•df·grad Ct) (3.2-9) 

with the field enhancement factor df: 

df = l + Ct (3.2-10) 

It should be noted that the approach using a field enhancement 
factor is only correct if just one species 
in the diffusion process. Although it has 
tracing the literature, I can not see 
introduce such a field enhancement factor. 

of impurities is involved 
been used quite frequently, 

any plausible reason to 

In (3.2-7) we have assumed the validity of Boltzmann statistics 
for the description of the mobile carriers. This seems to be 
justified at typical process temperatures even for doping 
concentrations up to the solubility limit [3.64]. However, if one 
wants to avoid the assumption of Boltzmann statistics, it is just a 
matter of the complexity of the calculus to do so (cf. section 2.4). 
This problem has been treated in, e.g. [3.33], [3.55]. 

In the following I should like to discuss models for the 
diffusion coefficient Di. It is well established that the diffusion 
vehicles are the intrinsic point defects of the lattice, i.e. 
vacancies and interstitials [3.68]. In section 3.3 evidence will be 
given showing both kinds of defects are important for the diffusion of 
dopants in silicon. However, at this time there is a lack of 
mathematical models describing the diffusion by interstitials. 
Therefore, the following considerations are based on the vacancy 
mechanism. Hence, the diffusion coefficient D. is assumed to be the 

1 
sum of several diffusivities [3.8], where each accounts for the 
impurity 
vacancies. 

interactions with different charge states of lattice 

Di=    + D.·v- +       + D'.-v+ 
l l l l 

(3.2-11) 
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n? is the diffusion coefficient for the dopants of the i-th 
l 

species diffusing with neutral vacancies, Di for those diffusing with 

singly negative charged vacancies,    for those diffusing with doubly 

negative charged vacancies, and D: for those diffusing with singly 
l 

positive charged vacancies. Other types of configurations are 

certainly also imaginable; however, the cited ones are considered to 

be most relevant. v-, v= and v+ are the concentrations of singly 

negative, doubly negative and singly positive charged vacancies 

normalized by the concentration of neutral vacancies. These 

concentrations can be modeled under the validity of Boltzmann 

statistics as: 

v+ = P 
ni 

(3.2-12} 

n and p denote the electron and hole concentration, respectively. 

The individual diffusion coefficients    are usually given as 
l 

expressions in Arrhenius form: 

   
l 

Ex. 
= Dx . • exp (-    

o1 k·T 

Numerical values 

activation energies Ex. a1 

for the prefactors Dx. and 
01 

are summarized in Tab. 3.2-1. 

(3.2-13) 

the so-called 

These data have 

been compiled from [3.19], (3.20]; they are also nicely summarized in 

[3.59]. More numerical values for different dopants are reviewed in 
[3.72]. 

element Do Eo    
= D+ E+ 

0 a Do Ea Ea 0 a 
[ cm2s -l] [eV] [cm2s-1 ] [eV] [cm2s-1 ] [eV] [cm2s-1 J [eV] 

B 0.037 -3.46 0.72 -3.46 
p 3.85 -3.66 4.44 -4.00 44.20 -4.37 

Sb 0.214 -3.65 15.0 -4.08 
As 0.066 -3.44 12.0 -4.05 

Tab. 3.2-1: Diffusion coefficients 

Boron mainly diffuses with neutral and positively charged 

vacancies, the latter being the dominant effect. Fig. 3.2-1 shows the 

total diffusivity of Boron versus doping concentration for various 

temperatures. 
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The examination of the diffusivity of phosphorus is most 

difficult. One tends to assume that phosporus diffuses with neutral, 
singly negative and doubly negative charged vacancies. For low 
concentrations the diffusion with neutral vacancies is dominant, 

whereas for high concentrations the doubly negative charged vacancies 

are considered to dominate the overall diffusivity. Particularly for 
high concentrations the diffusion of phophorus shows various unusual 
phenomena [3.21], like kink formation, enhanced tail diffusion, 
enhancement of the diffusion of other impurities (e.g. boron). No 
unified treatment of the diffusion of phosphorus has been found so 
far, and many fairly detailed modifications to the effective diffusion 

coefficient have to be undertaken to obtain acceptable simulation 
results [3.59]. Some of the features of phosphorus diffusion have 

been discussed in, e.g., the work of Matsumoto et al. [3.44], [3.45], 

[3.46]. A plot of the total diffusivity of phosphorus after (3.2-11) 
versus doping concentration is shown in Fig. 3.2-2. 

Antimony diffuses with neutral and singly negative charged 
vacancies. At process temperatures the diffusion with the negatively 

charged vacancies is somewhat greater. Fig. 3.2-3 shows the total 
diffusivity of antimony versus doping concentration. 

Arsenic as a donor diffuses primarily with neutral and singly 

negative charged vacancies. Both mechanisms are comparable throughout 
the process temperature range. A plot of the diffusivity of arsenic 

versus doping concentration is given in Fig. 3.2-4. 

In some papers one can find a slightly different form for the 

diffusion coefficient (3.2-11). 

(3.2-14) 

intr Di denotes the diffusion coefficient for intrinsic conditions 

which exist at relatively low doping concentrations. The    can be 
understood as parameters describing the effectiveness of charged 
vacancies relative to neutral ones in impurity diffusion. The 

expressions (3.2-11) and (3.2-14) can, obviously, be made equivalent 
by a proper choice of the parameters. However, I feel that (3.2-11) 

is more reasonable. 
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Fig. 3.2-5 shows the intrinsic diffusion coefficient (n=p=n.) for 
1 

boron (fully drawn line), phosphorus (dashed line), arsenic 

(dot-dashed line) and antimony (dotted line) versus temperature. 

Another formulation which has been used especially in older work 

is based on a different formulation of the diffusion equation: 

8cti ? -,n:- =div grad ( Di•Cti (3.2-15) 

? 
Here o: is supposed to be an effective diffusion coefficient 

1 
which accounts by a proper model for field enhancement as well as for 
interaction phenomena between mobile carriers and dopants and between 
dopants of different species. This formulation, however, is not at 

all physically reasonable, and it should therefore be avoided for 
careful simulations. In the case when one can use a constant 
diffusion coefficient this question is, obviously, irrelevant. 

Although the model (3.2-11) for the diffusion coefficient is 

already quite sophisticated, it has to be applied very carefully. An 
additional modification, usually an              of the diffusivity 

takes place in oxidizing ambients as will be discussed in the next 
section. If the dopant concentration becomes so high that it 

approaches its solubility limit in silicon - this is the case in many 

practical applications - the impurities are considered to precipitate 
or to cluster, and they will, supposingly, not diffuse. However, 
quantitative statements are very difficult to make at the moment. The 

interested reader should carefully check the, hopefully, forthcoming 
literature on that and related problems. Currently, the most 

frequently used model which describes the relation between the total 
concentration Ct and the electrically inactive (e.g. cluster) 

concentration Cc is based on the following differential equation. 
ace CJt = m·kc· (Ct - Cc)m - kd·Cc (3.2-16) 

kc and kd are the clustering and declustering rate, respectively. 
These are usually assumed to be temperature dependent. m is the 

cluster size, i.e., the number of impurity atoms which form an 
electrically inactive complex, the cluster. However, in [3.79] it is 

explained, particularly for arsenic, that the allowence for 
electrically charged clusters seems to improve the agreement with 

experimental results. Different types of charged and uncharged 

Diffusion 



- 82 -

clusters are further considered in [3.28]. These effects become 
significant when the dopant concentration reaches the solubility limit 

20 -3 (e.g. 3•10 cm for arsenic at 1000 Celsius). I should like to 
speculate that in essence these statements are correct, but in order 
to derive models which are applicable for engineering purposes much 

more investigatory work has still to be carried out. 

Very often it is assumed that the effect of dynamic clustering 
and declustering is negligible. Then we obtain an algebraic, 

equilibrium cluster relation between the total and the electrically 
active concentration. 

Ct = (Ct - Cc) + Pc· (Ct - Cc)m (3.2-17) 

Pc = m• kc 
kd 

(3.2-18) 

Numerical values and the temperature dependence of the 
equilibrium cluster coefficient ,c are presented in the report [3.59]. 

So far we have discussed diffusion models, the complexity of 

which grew in turn as each detail was considered in just slightly more 
depth. We have ended up with a model capable of quite accurately 
describing diffusion in silicon, but it requires the solution of a 
system of equations for the coupled diffusion of n dopants, which is 
composed of n parabolic partial differential equations (3.2-3), n 

ordinary differential equations (3.2-16) and the Poisson equation, an 
elliptic partial differential equation (3.2-4). This system 

represents a mixed initial boundary value problem, and it, 
unfortunately, has incorporated an enormous amount of very uncertain 
parameters in the physical sense. Particularly the models for the 
boundary conditions (e.g. segregation), which we shall not discuss 
here but only sketch in section 3.3, are fairly poor because of the 
lack of understanding in the underlying physics and chemistry. A 
thorough discussion of the great many problems associated with 
diffusion is beyond the scope of this text which is primarily devoted 

to device modeling. In the following we shall only consider 
simplifications to the diffusion models which have proved to be quite 
valuable in the context of engineering problems. 

If the diffusion coefficient can be treated as a constant and if 
field enhancement of the diffusivity can be neglected, which is the 
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case only for low doping concentrations, the diffusion equation 
simplifies to: 

8c D • ( a2c 82c (3.2-19) = -- + 3y2 ) it 3x2 

For an inert diffusion we can assume at the surface of the 
semiconductor the boundary condition: 

ac = 0 axlx=O (3.2-20) 

This boundary condition guarantees that no impurity atoms diffuse 

through the surface. It is just correct to first order. However, by 

assuming the applicability of (3.2-19) and (3.2-20), the solution of 

the diffusion problem can be carried out analytically for a unit 

impulse source J(x' ,y') as the initial condition. 
" 
C(x,y,0) = J(x',y') (3.2-21) 

J(x' ,y') denotes the Dirac delta function. The solution of 

(3.2-19) in the half-plane xe[O,ro], y€[-co,oo] with boundary condition 
(3.2-20) and inittial condition (3.2-21) is a classical result. 

C (x, y, t) = 1 ·exp (- (y-y') 
2

) • 
2•Tt•D•t 4•D•t 

• [ (x-x') 2 (x+x') 2) exp(- ) + exp(- (3.2-22) 
4·D·t 4·D·t 

With (3.2-22) we can solve the diffusion problem for an arbitrary 

intitial condition C(x,y,O) by convolution. 

C(x,y,t) =LT C(x' ,y' ,O)           ·dy' ·ax• (3.2-23) 

In some cases (3.2-23) can be solved in closed form, for 

instance, for a Gaussian implantation profile. 

( y<a 0 
( 

(x-Rp) 2 C(x,y,O) = ( Na (3.2-24) 
(     •exp{- ) 

      2 ·O' 2 ( p 

For the sake of simplicity, we ignore the lateral spread of the 
implanted profile (3.2-24). After substitution of the initial 

condition (3.2-24) and the unit impulse source solution (3.2-22) into 

(3.2-23) the diffused profile reads: 
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C(x,y,t) = 

· [ fexp(- (x'-Rp)2 (x-x') 2 
) 0 dX I 

2 ·er 2 
+ 

p 4·D·t 
(3.2-25) 

+fexp (- (x'-Rp)2 (x+x')2 
) • dX I ) 

2 ·er 2 4•D•t p 

The two integrals in (3.2-25) can be evaluated with some algebra 

so that the final solution becomes: 

Na a-y C(x,y,t) = ·erfc( ·[ H(x,t)+H(-x,t) ] (3.2-26) 
        (erp2+2·D•t)     

with: 

(z-R )2 
H ( z, t) = exp (- P ) • 

2•0'p2+4·D·t 

(3.2-27) 

This solution strategy was introduced by Lee et al. [3.37], 

[3.38]. It has been refined 
conditions [3.14] I [3.15) f 

to account 

[3.39] I 

for more general 

[3.50) and to 

initial 

account, 

qualitatively, for a non constant diffusivity [3.73]. There have also 

been published slightly different approaches for analytic solutions of 

(3.2-19) with different boundary conditions at the semiconductor 

surface, e.g. [3.12], [3.35], however, these are more complex. 
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3.3 Oxidation. 

The thermal oxidation of silicon is one of the most important 
processing steps for the fabrication of modern devices. All existing 
models for oxide growth are based on the work of Deal and Grove in 
1965 [3.17]. Their basic idea was the assumption of a steady state 
situation between three fluxes. 

Fl = h · (C* - co) (3.3-1) 

F2 -n·ac co - ci 
(3.3-2) = - D· ax Xox 

F3 = ks·ci (3.3-3) 

Fl is the flux of oxidant from the bulk of the gas to the 
gas-oxide interface. co is the concentration of the oxidant at the 

* oxide surface; C is the concentration of the oxidant in the oxide, 
which will be in equilibrium with the partial pressure in the bulk of 

the gas; and h is the gas phase mass transfer coefficient. 

F2 denotes the flux across the oxide, which is assumed to be 

purely diffusive. Ci is the oxidant concentration in the oxide at the 

oxide-silicon interface; x
0

x represents the oxide thickness. 

F3 is the flux 

oxide-silicon interface. 

rate [3.27]. In the 

corresponding to the oxidation reaction at the 

k represents the chemical surf ace reaction s 
steady state condition these three fluxes are 

identical and can be expressed: 

F = (3.3-4) 

The flux of oxidant reaching the oxide-silicon interface is 
described by the differential equation: 

(3.3-5) 

N1 is the number of oxidant molecules incorporated into a unit 

volume of oxide. The solution of (3.3-5) is: 

x 0 x(t) =               + B•t - A , 2 2 (3.3-6) 

with: 
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A 1 +    = 2 · D· (_ 
ks h 

(3.3-7) 

B = 2·D·C* 
N1 

(3.3-8) 

(3.3-6) is frequently written in a slightly different form: 

x 0 x2(t) + A·x 0 x(t) = B•(t + t) (3.3-9) 

t = 

with: 

Xox2(0) + A·xox(O) 
B 

B is refered to as the parabolic 

for large t (3.3-9) approaches: 

A2 
x0 x 2 ( t) = B • t , 

4•B 
t >> 

(3.3-10) 

growth rate coefficient because 

(3.3-11) 

For small time we observe that B/A describes a linear growth 
rate: 

Xox ( t) =    (t + t) , 
A 

A2 
t << - t (3.3-12) 

4•B 

By proper modeling of the growth rate coefficients, many ambient 

attributes can be accounted for (composition, pressure, ••• ). 
However, for very thin oxides the flux models (3.3-1) to (3.3-3) 

appear to be oversimplified and have to be modified [3.32], [3.59). 

An empirical formula for thin oxide thicknesses corresponding to 

(3.3-5) reads: 

B + K1·exp(-    + K2·exp(-    
t1 t2 = (3.3-12) 

2·x0 x + A 

A and B are defined in (3.3-7) and (3.3-8), respectively. The 
two supplementary terms compared to (3.3-5) involve functions decaying 

exponentially in time which dominate, as it has been confirmed by 

observation of an extensive collection of experimental data [3.59], 

oxide growth in the 2nm and 20nm regime, respectively. One can 

expect, however, that many more modifications of this type will be 

introduced in order to account heuristically for effects which can be 

seen experimentally but have not been understood completely on a 

theoretical basis. As excellent reviews on the many problems of 
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oxidation [3.59], [3.60] can be recommended. A more fundamental 
treatment of the kinetics of oxide growth, which is based on the 
solution of the Navier-Stokes hydrodynamic equation, has fortunately 
begun [3.13]; however, to keep track with present and future device 
technology many advances in understanding the underlying kinetics 
still have to be made. A worthwhile approach, particularly for thin 
oxides, should be a microscopic simulation of oxide growth with Monte 
Carlo methods [3.53]. 

The most complete models for the growth rate coefficients B/A and 
B have been summarized in [3.52), [3.59]. In these models the oxidant 
pressure dependence, the substrate doping dependence, and the 
dependence on the orientation of the silicon surface are acccounted 
for in dry and wet ambients with and without HCl. 

Another effect which has to be considered in the context of 
oxidation is the impact on the diffusion coefficient. It has been 
observed by several authors, e.g. [3.3), [3.42), [3.43), that the 
diffusivity is enhanced. This enhancement is, most plausibly, based 
on diffusion mechanisms additional to the vacancy diffusion mechanisms 
which we have outlined in the last section. The additional mechanism 
is due to intrinsic interstitials emitted from the oxidized surface as 
suggested by Hu [3.31] and proved experimentally by, e.g. Antoniadis 
and Moskowitz [3.6], [3.7). Some theoretical considerations on this 
subject can be found in [3.49]. It is not clear at present how the 
vacancy and the interstitialcy mechanism interact, or which one 
dominates, in the temperature range [800,lOOO]C [3.21]. Therefore, we 
have restricted ourselves solely to the vacancy diffusion mechanism in 
the last section. However, by postulating an enhancement of the 

interstitial concentration and their self diffusion during oxidation 
[3.3), [3.8], [3.9] an increase in the diffusivity of dopants is 
sound. Taniguchi et al. [3. 75] have suggested modifying the 
diffusivity of boron and phosphorus, particularly, with the following 
empirical expression: 

3xox 0 3 
D = Dv + K· ( ) ' ·exp(-

  
(3.3-14) 
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( cml,7 
( <100> 3,08·lo-3 
( s0,7 

K. = ( 
( 

2,67·10-3 cml, 7 
( <111> 

s0,7 

D is the effective diffusion coefficient for inert ambients; x v 
denotes the distance to the oxide-silicon interface; K is a constant 
derived from fits to experimental data. Watch the dimension of K 
because in all publications I am aware of it is given in a very sloppy 
manner. The qualitative dependence of the oxidation enhanced 
diffusion coefficient upon the oxide growth rate, the distance to the 
interface and temperature is plausible. Therefore, pragmatically, 
such a model can prove to be very valuable, but it clearly 
demonstrates how poorly the diffusion kinetics are understood. It 
should be noted that oxidation retarded diffusion has also been 

observed experimentally, e.g. [3.59]. This effect can be made 
plausible by the allowance of vacancy consumption by interstitials 

during oxidation. Similar models to (3.3-14) can be found in [3.5], 
[3.59]' [3.64)' [3.67). 

From a numerical analyst's point of view the simulation of 

diffusion in oxidizing ambients is quite a tough problem. As 
particular difficulty the moving oxide-silicon interface boundary is 
evident. For a one dimensional simulation that problem is usually 
solved by means of a reorganization of the simulation domain during 

time integration. For a two dimensional simulation, however, a 
reorganization of the domain is rather difficult [3.61] and costly in 
terms of computer resources. To overcome this problem Penumalli 
[3.58) has introduced a coordinate transformation which maps the 
moving boundary in the physical domain into a stationary 
the transformed domain. Consider the diffusion equation: 
ac 
8t = 

in the domain: 

I x (y, t)   x < 00 I 
-ro<y<ro 

boundary in 

(3.3-15) 

(3.3-16) 

which is a function of time. x=X(y,t) denotes the oxide-silicon 
interface in parameterized form. A drift term has been neglected in 
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(3.3-15) only for the sake of simplicity. 
transformation: 
(   ) ( x-X(y,t) ) 
( ) ( ) 
(l\)=(y ) 
( ) ( ) 
( t ) ( t ) 

ac 
if 

will change (3.3-15) 

= [l +                 

into: 

D·a2x1 .ac + 
81\2 Sf 

The coordinate 

(3.3-17) 

(3.3-18) 

(3.3-16) will be transformed into the time invariant domain 
(3.3-19). 

       ::J (3.3-19) 

The proper treatment of the boundary condition for oxidation at 
the silicon-oxide interface can be found in, e.g. [3.50], [3.69]. For 
the treatment of the lateral oxidation under a mask edge which gives 
rise to the "Bird's Beak", no established theory is available at this 
time. The function X(y,t) is usually modeled as (cf. [3.58]): 

X(y,t) = b•x0 x(t)            (y-a) ) (3.3-20) 
2 k1 ·xox (t) 

"b" is the amount of silicon consumed to produce one unit of 
oxide. x (t) is the oxide thickness as a function of time given by ox 
the one dimensional theory which we have sketched above. "a" 
determines the location of the mask edge (y>a is the free, oxidizing 
surface); k1 denotes the ratio of lateral to vertical oxidation and is 
considered to be a function of the mask thickness. 

The cross derivatives in (3.3-18) have been introduced by the 
coordinate transformation (3.3-17) because of the lack of 
orthogonality between lines of constant   and lines of constant I\. 
They do not cause in principal a complication of the solution of 
(3.3-18), but they have a non negligible impact on the efficiency of 
numerical procedures. Murphy et al. [3.54] have estimated that the 
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treatment of the cross derivatives nearly triples the required 
computer resources. However, the coordinate transformation of 
Penumalli [3.58] seems to be a very feasible approach to the two 
dimensional simulation of oxidation at the moment (cf. [3.54]); it has 

been also used successfully by several other authors, e.g. [3.54], 
[3.70], [3.76). 
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4. The Physical Parameters. 

The basic semiconductor equations, the derivation of which we 

have thoroughly discussed in chapter 2, just determine the structure 
of the set of equations which we shall have to solve in order to 

simulate the internal behavior of a device. Process modeling, as 
sketched in chapter 3, delivers information about the geometry of a 

device and the distribution of dopants, which can also be considered 

to be a physical parameter. As we have already noticed, a couple of 

additional physical parameters are inherently associated with the 

basic semiconductor equations. Any quantitative, or even qualitative, 

simulation of a device relies heavily on applicable models for these 

parameters. In addition, a mathematical characterization of the 

problem of solving the basic semiconductor equations is only feasible 
with at least qualitative knowledge of the associated parameters (e.g. 

sign, smoothness, order of magnitude). Therefore, we shall discuss in 

this chapter the most important models for the physical parameters. A 

review has also been presented in [4.41]. 

In section 4.1 models for the mobility of electrons and holes are 

summarized. Quantitatively accurate mobility values are required for 

the purpose of predictive simulation because of the multiplicative 

dependence of the current upon mobility, which is, obviously, one of 
the results most desired. 

In section 4.2 

dealt with. These 

carrier generation/recombination phenomena are 

determine many essential effects associated with 
parasitic currents and device breakdown. 

Section 4.3 and section 4.4 are devoted to models for the thermal 

conductivity and heat 
becomes apparent when 

phenomena by solving 

generation, 

accounting 

consistently 
the basic semiconductor equations. 

respectively. Their influence 

for electrothermal interaction 

the heat flow equation as part of 
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4.1 Carrier Mobility Modeling. 

In section 2.3 we have introduced relaxation times tn, tp in 

order to be able to derive the current relations. These relaxation 

times determine the rate at which electrons and holes are caused to 

change their momentum vector; therefore, they describe the average 

time between the scattering events electrons and holes undergo. We, 

additionally, have made use of the definitions of carrier mobilities 

because these are intuitively much easier to imagine than relaxation 

times. In this section we shall discuss the various mechanisms which 

determine the carrier mobilities and, obviously, also the relaxation 

times. In particular electrons and holes can be scattered by thermal 

lattice vibrations, ionized impurities, neutral impurities, vacancies, 

interstitials, dislocations, surfaces and electrons and holes 

themselves. A further mobility reduction is due to the saturation of 

the drift velocity of warm and hot carriers which is caused by lattice 

vibrations. Unfortunately, many of these mechanisms, especially their 

interactions, are extremely complicated and hence difficult to model 

exactly. Therefore, we shall discuss several approaches which have 

been published to model with phenomenological expressions the various 

experimentally observed mobility phenomena. A review on that subject 

can also be found in [4.58]. 

The most fundamental process by which carriers in a pure crystal 

are scattered is their interaction with the thermally generated 

vibrations of the atoms of the crystal. These lattice vibrations are 

a function of temperature. The theoretical result 

caused by so-called "acoustic deformation 

scattering"          for electrons and holes) reads: 

PL =      q·fi4·c1 

n 3 (m*) 5/2.E 2. (k•T) 3/2 n ac 

for the mobility 

potential lattice 

(4.1-1) 

(4.1-2) 

c1 is 

semiconductor; 
the average longitudinal elastic 

its numerical value lies in the order 

constant of the 
of l0 5VAScm- 3 • 

Eac and Eav are the deformation potential constants of the conduction 
band and the valence band, respectively. They have a numerical value 
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of a few eV. A concise derivation of (4.1-1), (4.1-2) can be found 
in, e.g., (4.108) and a rigorous treatment of lattice scattering has 
been published in, e.g. (4.55), (4.127]. Since silicon and germanium 
have a multivalley band structure and since high energetic phonons 
take part in the lattice scattering processes, (especially in gallium-

arsenide where this effect is even dominant) the behavior of the 
mobility cannot be correctly described by (4.1-1), (4.1-2). Band 
structure and optical phonons give rise to additional scattering 
mechanisms (4.15], (4. 70], (4.108), (4.117]. A detailed discussion of 
these effects is beyond the scope of this text. For the purpose of 
simulation one usually takes a simple power law whose coefficients are 
obtained by fitting experimental mobility values. 

L = o. T -dn 4 1 Pn Pn (300K) ( • - 3 ) 

PL = Po. (_T_) -dp 
P P 300K 

(4.1-4) 

The published numerical values for the constants in (4.1-3), 
(4.1-4) show some scatter. A menu of these coefficients compiled from 
varios sources are summarized in Tab. 4.1-1. A judgement of the data 

and a recommendation is rather difficult. 
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Si 

GaAs 

Ge 

1388,157 
1448 
1438 
1330 
1407,3 
1430 
1360 
1350 
1450 
1448 
1400 
1354 
1400 
1240 
1500 
1600 
1500 
8500 
8600 
7500 
8500 
9000 
3900 
3800 
3900 
2694 
3900 
3800 

2,33 
2,42 

2,2 

2,5 
2,6 
2,42 

2,5 
2,5 

2,6 

1 
1 

1,66 

1,6 
1,66 
1,66 
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467,729 
473 
465 
495 
467,73 
495 . 
520 
480 
500 
479 
500 

480 
438 
600 
600 
500 

250 

400 
500 
1900 
1800 
1800 
1818 
1900 
1820 

2,23 
2,2 

2,2 

2,5 
2,3 
2,2 

2,7 
2,7 

2,3 

2,1 
2,1 

2,33 

1,3 
2,33 
2,33 

Tab. 4.1-1: Lattice mobility constants 

reference 

[ 4. 8] 
[4.9) 
[4.19) 
[4.21) 
[4.33] 
[4.38) 
[ 4. 41) 
[4.50) 
[4.57) 
[4.58) 
[4.90) 
[4.96) 
[4.106) 
[4.117) 
[4.123] 
[4.131], [4.139] 
[4.136] 
[ 4. 6] 
[4.50] 
[4.80] 
[4.123] 
[4.136] 
[4.50] 
[4.57] 
[4.90] 
[4.117] 
[4.123] 
[4.136] 

Sah et al. have published a different model [4.102] which is 

claimed to predict reliably 
temperature range [4.2,600]K. 

mobility values 

1 
JIL = n                         

+ 
                                   

JIL = 
p 1 

                 

1 
1 +            

                 

in silicon in the 

(4.1-5) 

(4.1-6) 

This model combines the theoretical lattice scattering mobility 

caused by acoustical phonons with 

optical or intervalley phonons by the 

stated in [4.102] that more elaborate 

theoretical models do not justify 

a mobility component caused by 

simple Mathiessen's rule. It is 

formulae based on complicated 

the additional effort for the 
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purpose of simulation. I fully agree with that statement from my 
personal experience. 

Fig. 4.1-1 and Fig. 4.1-2 show the lattice mobility for electrons 
and holes in silicon versus temperature after the model of Sah et al. 

(4.1-5), (4.1-6) (solid line), the model (4.1-3), (4.1-4) with 

parameters of Arora et al. [4.9] (dashed line) and with parameters of 

Dorkel et al. [4.38] (dot dashed line) together with experimental 
values of Norton et al. [ 4. 81] and Li [ 4. 70] , respectively. 

The next scattering mechanism we shall consider for mobility 
modeling is ionized impurity scattering. The first useful model which 
was derived by theoretical investigations has been published by 

Conwell and Weiskopf [4.28]. Their formula reads: 

I _ 64·c2 • (2"k"T) 3/ 2   12°ft°C 0 k 0 T P - • • gcw ( ) 
n,p q3•CI m* q2·cil/3 

n,p 

with: 

1 
gcw (x) = ---....-

ln (l+x2) 

(4.1-7) 

(4.1-8) 

CI is the sum of all ionized impurity species times the magnitude 
of their charge state. 

n 
CI=          

i=l 
{4.1-9) 

The dopants usually taken in semiconductor processing have a 
charge state with magnitude one. However, for some applications such 
as solar cells, zinc can be used [4.102] which has two acceptor 
levels, one ofwhich is doubly ionized, thus corresponding to Z=2. 

Expression (4.1-7) reflects a reciprocal dependence of the 
mobility upon the total concentration of ionized impurities for 
moderately high concentrations, which becomes weaker (-CI-1/3) for 

very large concentrations. The function gcw(x) models the influence 
of "neighboring" ionized impurities which screen each other due to 

their Coulomb potential and, therefore, are inactive as scattering 
centers. However, the model for this effect is relatively crude 

(cf. [4.28]). A refinement of the influence of charge screening has 
been introduced by Brooks [4.17]. He has also accounted for the fact 
that free electrons and holes screen the impurities. 
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* _ 64·t2· (2 ·k·T)3/2   24·mn ·t· (k·T)2 
- • • gB ( Ip ) 

q3·cr *        (n+p) 
n,p 

with: 

gB (x) = 1 

ln(l+x) - x 
l+x 

(4.1-10) 

(4.1-11) 

(4.1-10) is claimed to be more accurate for moderately heavy 
doped semiconductors (CI<l0 19cm-3). For degenerate semiconductors, 

however, no applicable theoretical models have been published so far 
and heuristic models have to be used instead. (4.1-7) and (4.1-10) 

give nearly the same results as long as the free carrier concentration 

about equals the ionized impurity concentration. When the free 

carrier density is appreciably smaller, which is the case for 
compensated material [4.16) and space charge regions, (4.1-10) gives a 
lower mobility due to the fact that less screening will take place, 
and, therefore, the ionized impurities will scatter more efficiently 
(cf. [4.35]). Some more considerations on this subject have been 
given in, e.g. [4.94], [4.95], [4.103]. 

The mobility components due to lattice sattering and due to 
ionized impurity scattering have to be combined in some way to obtain 

an effective mobility. The Mathiessen rule is inappropriate for that 
purpose, because lattice scattering and ionized impurity scattering 

can not be considered to be fully independent mechanisms, which is a 
definite requirement for the applicability of the Mathiessen rule 
[4.108]. Debye and Conwell [4.35) have derived from theoretical 
reasoning the following expression for the combined mobility PL! • n,p 
pL 1 = pL • [ 1 + x 2 • (Ci ( x) · cos ( x) + s i ( x) • s in ( x) ) ] ( 4 • 1-12 ) n,p n,p 

x = 

Ci (x) 

with: 

I 
Pn,p 

= _ f           
x 

(4.1-13) 

(4.1-14) 
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. ( ) J sin ( t) dt Sl X = - • 
x t 

(4.1-15) 

A discussion of that model can be found in [4.35), [4.108). 
(4.1-12) is quite tedious to handle. In [4.38) an approximation to 
(4.1-12) has been presented, which is quite simple: 

JIL I = JIL ( 1, 0 2 5 _ O • O 2 5 ) ( 4 • 1-16 ) 
n,p n,p· PL 

1 + (2,126· n,p)0,715 
I 

Pn,p 

This approximation is claimed to be accurate to within a 2% 
maximum error if: 

(4.1-17) 

(4.1-17) is not really a serious restriction because the 
expressions for the ionized impurity 
(4.1-10) are already invalid if 
violate (4.1-17). 

mobility component (4.1-7) and 
they produce results which would 

There is, unfortunately, some uncertainty which numerical values 
* * one should pick for the effective masses m , m in (4.1-10). Dorkel 
n p * 

et al. [4.38) use in the case of silicon 0,953·m
0 

and l,0048·m
0 

for mn 
in the leading term and in the argument of gb in (4.1-10), 
                   equivalently, 20,25·m

0
, which is rather large, and 

0,413·m for m • Evaluating all the dependent constants with these 
0 p 

recommendations, (4.1-10) will read: 

2,4·1021_1_· (_T_)3/2 l,37·1020cm-3· (_T_)2 
Jin! = cmVs 300K • gB ( 300K 

CI n + p 

pl = 
p 

5,2·1020_1_. (_T_)3/2 5,63·1019cm-3· (_T_)2 
cmVs 300K ( 300K 

                       CI n + p 

(4.1-18) 

(4.1-19) 

A more pragmatic approach for modeling the combined lattice and 
ionized impurity mobility has been introduced by Caughey and Thomas 
[4.21). They have used a Fermi like function, or hyperbolic tangent, 
to fit experimental data: 
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PL _ Pmin 
= µmin + n,p n,p 

n,p             

1 + (_)v.n,p 
cref 

n,p 

(4.1-20) 

(4.1-20) incorporates a saturation effect of the mobility 

reduction for high impurity concentrations, which has been observed by 

experimental investigations. Numerical values for the parameters for 

silicon at 300K temperature which are involved in (4.1-20) are 

summarized in Tab. 4.1-2 for electrons and in Tab. 4.1-3 for holes. 

pmin ct cref reference 
            

n n 
[ ] [cm-3 ] 

55,24 0,733 1,072·1017 [ 4. 8] 
92 0,91 1,3 •1017 [4.10] I [4.41], [4.58] 

65 0,72 8,5 ·1016 [4.21], [4.54], [4.72] 

71,12 0,7291 1,059•1017 [4.33] 

52,2 0,680 9,68 ·1016 [4.73] (arsenic) 
68,5 0,711 9,20 ·1016 [4.73] (phosphorus) 

Tab. 4.1-2: Coefficients for ionized impurity scattering of electrons 

pmin 
dp 

cref reference 
  -1 -1 P_3 

[cm V s ] [ ] [cm ] 

49,705 0,7 1,606·1017 [4.8) I [4.33] 
47,7 0,76 6,3 ·1016 [4.21] I [4.54] I [4.58], [4.72] 

65 0,61 2,4 ·1017 [4.41] 
44,9 0,719 2,23 ·1017 [4.73] 

47,7 0,76 1,9 •1017 [4.91] 

Tab. 4.1-3: Coefficients for ionized impurity scattering of holes 

The various publications again have some scatter in these data; 

however, in all of the references a perfect fit to experimental 

results has been claimed! 

The saturation of mobility reduction for high impurity 

concentration has been treated more sophisticatedly than (4.1-17) by 

some authors. In [4.91], [4.119] the mobility of electrons is modeled 

with: 
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Vs 

l + ( CI ) 1, 5 
5•lo20cm-3 

+ 
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(4.1-21) 
1 + ( CI )0,72 

8,5·1016cm-3 

Roulston et al. [4.96] have used (4.1-22) for the electron 
mobility with good success: 

2 
= 86      (1 

Vs 
CI ) + 

6,18•1020cm-3 1 + 

2 
      

Vs 
CI ) 

l,3•lol7cm-3 

A similar treatment can be found in, e.g. [4.73). 

(4.1-22) 

Another formula for modeling 

silicon at 300K temperature with just 
by Scharfetter and Gummel [4.106]. 

ionized impurity scattering in 

two parameters has been proposed 

= 
1 + 

L 
Pn,p 

CI 
cref + CI 

n,p Sn,p 

Sn = 350 

     = 4•10l6cm-3 , Sp = 81 

(4.1-23) 

(4.1-23) has been widely used by, e.g. [4.47], [4. 79), [4.131), 
[4.139), [4.140) and, again, excellent agreement between experimental 

and calculated results has been claimed. A discussion on a 
theoretical basis of this equation has been carried out by Thornber 
[4.129). 

Arora et al. [4.9) have published formulae with a very similar 

structure to the Caughey and Thomas expression (4.1-20) with 
coefficients for silicon which depend on temperature. 

2 =      (_T_) -0 I 57 + 
Vs 300K 1 + 

1252cm2 • (_T_)-2,33 
Vs 300K 

CI 

1 432·lol7cm-3.            
I 300K 
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= 54,3cm
2

.           + 
Vs 300K 1 + 
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407cm2. (_T_)-2,23 
Vs 300K 

CI 

2 67·1017cm-3· (_T_)2,546 
' 300K 

(4.1-25) 

These formulae are supposed to be accurate to within a maximum 
error of 13% in a temperature range [250,500]K and a total ionized 
impurity concentration range [10 13 ,10 20 ]cm-3 • 

The last approach for combined lattice and ionized impurity 
scattering in silicon which I should like to present here has been 
proposed by Sah et al. [4.102). 

pI = 90cm2. (1 + 2·1018cm-3. (_T_)) ( 4 .1-26) 
n Vs CI 300K 

pI = 45 cm2. (l + l,2·1018cm-3. ( T )) 
P Vs CI 300K 

(4.1-27) 

= 1 (4.1-28) 
1 + 1 

-L- -I-
Jln,p Jln,p 

(4.1-28) is the simple Mathiessen rule which is not applicable 
based on theoretical reasoning as described previously. For the 
lattice mobilities JIL expressions (4.1-5), (4.1-6) are used. These n,p 
formulae are claimed to be accurate for ionized impurity 
concentrations in the range [1011 ,10 20 ]cm-3 • 

More theoretical considerations can be found in the various books 
on semiconductor physics, e.g. [4.15), [4.29), [4.61), [4.108). It is 
to note that usually no difference is maid between ionized impurity 
scattering of minority or majority carriers. For high impurity 
concentrations the thereby introduced error can be quite significant 
[4.14). 

Fig. 4.1-3 and Fig. 4.1-4 show, respectively, the mobility of 
electrons and holes caused by combined lattice and ionized impurity 
scattering versus concentration of ionized impurities at 300K 
temperature in silicon. The solid line corresponds to the model of 
Dorkel et al. (4.1-16), (4.1-18), (4.1-19); the dashed line denotes 
the model of Scharfetter and Gummel (4.1-23); the dot-dashed line 
corresponds to the Caughey and Thomas like model of Arora et al. 
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(4.1-24), (4.1-25) i and the dotted line denotes the model of Sah 

et al. (4.1-26), (4.1-27), (4.1-28). Experimental data have not been 
included in these figures because their scatter is even larger than 
the differences between the models. That can lead to the pragmatical 
conclusion that it does not make much difference which model to 
choose. More experimental and theoretical investigations have to be 
carried out in order to get rid of these quite significant 
uncertainties. Comparisons between experimental and model mobility 
values are given in, e.g. [4.58], [4.91], [4.119]. 

I am aware of no specific models for ionized impurity scattering 

in GaAs. Supposedly, there has not been an urgent need for such 
models. For germanium the models for silicon should work quite well 

with minor changes in some constants. However, as there is presently 
little activity in the development of germanium devices except some 
very special power devices, the question of modeling in Germanium is 

more or less irrelevant. 

Another scattering mechanism which we have to consider for device 

modeling is carrier-carrier scattering. Particularly in power devices 
operating in the on-state this effect becomes pronounced because the 

free carrier densities may increase far above the doping 

concentration. 

A very simple approach to account for carrier-carrier scattering 
has been suggested by Engl and Dirks [4.41]. They use the Caughey and 

Thomas expression (4.1-20) for ionized impurity scattering with an 
effective concentration of scattering centers depending not only on 
the ionized impurity concentration CI but also on the free carrier 

density n+p. 

Cieff = 0, 34 ·CI + 0, 66 • (n + p) (4.1-29) 

In one paper Adler [4.1] has suggested a similar approach. He 
has simply added an extra term in the denominator of the Caughey and 
Thomas formula. 

(4.1-30) 

In another paper [4.3] Adler has suggested a different treatment 
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as being more accurate. Here, the mobility component due to 
carrier-carrier 

pc = 

scattering is modeled as: 

1, 428•10 20_1_ 
cm Vs (4.1-31) 

This component is combined with the original Caughey and Thomas 
model (4.1-20) for lattice and ionized impurity scattering with the 
simple 

PLIC = 
n,p 

Mathiessen rule. 

1 

1 + 1 
pLI pC 

n,p 

(4.1-32) 

A 

proposed 
structurally equivalent expression to (4.1-31) for PC has been 

in [4.38) with temperature dependent coefficients. 

pc = 
1, 04•1021_1_. (_T_) 3/2 

cmVs 300K 

       + 7,45·lol3cm-2.          (n•p)-1/3) 
(4.1-33) 

These authors combine (4.1-33) with the mobility component p1 
IC 1:1 1 P 

due to ionized impurity scattering (4.1-18), (4.1-19) to P using n,p 
the Mathiessen rule. This result is then used in formula (4.1-16) 
instead of p1 to calculate the global mobility PLIC. This approach n,p n,p 
seems to be physically very sound. 

Li and Thurber [4.69) have investigated carrier-carrier 

scattering at low injection levels for uncompensated silicon, where 

the free carrier density equals the ionized impurity concentration. 
In this approach both the mobility component due to lattice scattering 

and due to impurity scattering are multiplied with a correction 
factor. 

=PL •min(max(0.88,1.0133 n,p 
CI ) , l) 

l.5·lol8cm-3 

p1c = p1 •min(max(0.632,1.0409 - CI ) ,1) 
n ' P n ' P 4 • 8 9 • 101 7 cm-3 

(4.1-34) 

(4.1-35) 

These components are then combined with the Debye and Conwell 

formula (4.1-12) to obtain an effective mobility. 
mentioned above, 
conditions, where 

this approach is restricted to 
the influence of carrier-carrier 

However, as 
low injection 
scattering is 

relatively small and unimportant. Therefore, (4.1-34), (4.1-35) have 
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to be seen only as an improvement to the theoretical model of ionized 
impurity scattering. 

Fig. 4.1-5 and Fig. 4.1-6 show the mobility due to lattice, 
ionized impurity and carrier-carrier scattering versus free carrier 

concentration in silicon at 300K temperature. The solid line 
corresponds to the model of Dorkel et al. (4.1-33); the dashed line 
denotes (4.1-31), 
(4.1-30); and the 

(4.1-32); the dot-dashed line corresponds to 
dotted line to (4.1-29). Electron and hole 

concentrations have been assumed to be equal which is usually the case 
when the free carrier concentration strongly exceeds the doping 
concentration. The ionized impurity concentration CI has been assumed 
to be l0 14cm-3 • 

Another scattering mechanism which possibly has to be taken into 
account is neutral impurity scattering. This effect is not very 
pronounced at room temperature and can usually be ignored. However, 

it can become relevant for simulations at low temperatures (T<77K). 
Early theoretical results predict that the mobility component due to 

neutral impurity scattering is temperature independent (cf. [4.16), 
[4.108]). 

(4.1-36) 
                

aB is the Bohr radius (5,2917706·10-11m) and CN denotes the 
concentration of neutral impurities. More recent investigations (cf. 
[4.69]) predict a weak temperature dependence for temperatures below 
SOK. 

with: 

* mn p Co 2 
ENn,p =                  

m0 C 

(4.1-37) 

(4.1-38) 

The mobility component due to neutral impurity scattering can be 
combined with the mobility due to lattice, ionized impurity and 
carrier-carrier scattering with the Mathiessen rule. A more elaborate 
treatment is not known at the moment. 
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1 

+ 1 
-N-

>'n,p 

(4.1-39) 

The next effect we shall consider for mobility modeling is the 
saturation of the drift velocity for high electric field. This effect 
has to be accounted for by a reduction of the effective mobility since 
the magnitude of the drift velocity is the product of the mobility and 
the electric field component in the direction of current flow. 

lvnl = -p*·E·Jn 
n IYnl 

lvpl = 

(4.1-40) 

(4.1-41) 

However, the above given statement holds only if the diffusion 
current component is negligibly small. ciinstead of the electric 
field component in the direction of current flow it is more 
appropriate to use the magnitude of the gradient of the repective 

quasi-Fermi potential, which to first order is the driving force for 
the carriers (cf. section 2.3). 

(4.1-42) 

(4.1-43) 

The gradient of the quasi-Fermi potential points always in the 

direction of the flow of the corresponding current density. Note 
also, that there arises a non-trivial problem when the inner product 
of electric field and current density is positive in (4.1-40), or 

negative in (4.1-41). Such a situation can locally arise in a device 
when the diffusion current component dominates the drift current 
component. The use of (4.1-42) and (4.1-43) has to be strongly 
recommended as, probably, first pointed out in the various 
publications of Engl et al., e.g. [4.41]. However, in most 

publications the electric field is considered to be relevant for the 
saturation of the drift velocity. The differences which arise in 

simulation results between taking the electric field or the gradient 

of the quasi-Fermi potentials as responsible for carrier heating are, 
luckily, not very pronounced in many applications because the electric 

field and the gradient of the quasi-Fermi potentials are almost 
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parallel in critical device areas. Therefore, the question of which 

quantity to take is not really as important as it looks at first 

glance. In the following we shall use the symbols En and Ep for the 

magnitude of the driving forces for electrons and holes, respectively. 

In 1951 Shockley [4.114] derived theoretically probably the first 

useful equation for the influence of carrier heating on the drift 

velocity and, thus, the mobility. 

PLICNE = 
n 

PLICN 
n 

pLICN E 
1 + 1. 3•11: n • n 2 
2 -2 1 + -· ( } 8 Cs 

(4.1-44) 

Cs denotes 
6 -1 (-1,66•10 ems ) • 

the speed of longitudinal acoustic phonons 

Thornber [4.129] has stated more recently that this 

equation is very reasonable for not too large driving forces, which 

was Shockley's intention. The drift velocity associated with (4.1-44) 

does not saturate. 

A widely used expression for mobility reduction due to carrier 

heating reads: 

pLICNE = 
n,p 

(1 + 

pLICN 
n,p 

      )Pn,p)l/Pn,p 
Ecr1t 

n,p 

(4.1-45) 

Some numerical values which have been found in the literature for 

the critical fields Ecrpit and the exponent P for silicon at 300K n, n,p 
temperature are summarized in Tab. 4.1-4. 

We shall not differentiate between carrier heating taking place 

in the bulk of a semiconductor or in an inversion channel, which was 

done intuitively some years ago. Recent experiments, e.g. [4.101], 

indicate reliably that, if there is any difference at all, it is very 

small. The former opinion is the reason, I suspect, why some of the 

numerical constants published in the literature show an unexpectedly 

pronounced scatter. 
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Ecrit 
pn n 

[Vcm-1 ] [ ] 

8,57 ·10 3 1,11 
8,7 ·10 3 2,9 

1,4 ·10 4 2,8 
7,396·10 3 1 
8,0 ·10 3 2 
2 ·10 4 1 
7,22 ·10 3 2 
7,1 ·10 3 1,4 

Ecrit 
p 

·[vcm-1 ] 

1,8 ·10 4 

1,2 ·10 4 

2 ·10 4 

1,95·10 4 
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ftp 
[ ] 

1,21 
2,6 

1 
1 

reference 

[4.19] 
[4.25] for <100> material 

[4.25] for <111> material 

[4.33] 

[4.54]' [4.72] 
[4.84]' [4.85] 
[4.89] 
[4.135] 

Tab. 4.1-4: Coefficients for velocity saturation of (4.1-15) 

The temperature dependence 
been investigated in [4.19]. 

of these coefficients for silicon has 

Ecrit =                      
n cm 300K 

Ecrit = 
p 

           (_T_)l,68 
cm 300K 

= l,ll•(_T_)0.66 
300K 

An = l 21 • (_T_) 0 .17 
t" ' 300K 

(4.1-46) 

Thornber [4.129] has pointed out that (4.1-45) is incorrect to 

use, although the formula is exceedingly simple and might have proven 
to be useful. The value of the saturation velocity associated with 
(4.1-44) can be calculated as: 

(4.1-47) 

This means that the saturation velocity depends on, e.g., 
impurity scattering which is totally implausible by physical 
reasoning. The experiments of Sabnis and Clemens [4.101] have clearly 

demonstrated that the saturation velocity is almost independent of the 

doping concentration. However, this problem can be easily overcome 
[4.21] by eliminating in (4.1-45) the critical field in relation 

(4.1-47) and introducing instead the saturation velocity as new 
parameter. 

pLICNE = 
n,p 

(1 + 

pLICN 
n,p 

pLICN.E 
( n,p n,p)ftn,p)l/Pn,p 

vs at 
n,p 

(4.1-48) 

Numerical values for the coefficients vsat and P for silicon n,p n,p 
at 300K temperature are given in Tab. 4.1-5. 
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vs at 
pn n 

[cms-1 ) [ ] 

l,1·10 7 2 
l,0·10 7 1 

sat 
VP 

[cms-1 ) 

9,5·10 6 

- 112 

tlp 
[ ] 

1 

reference 

[4.21), [4.41) 

[4.34), [4.62) 

Tab. 4.1-5: Coefficients for velocity saturation of (4.1-48) 

Another formulation has been suggested by Scharfetter and Gummel 

[4.106) and has been successfully used by various authors, e.g. 

[4.47), [4.139), [4.131). 

pLIE = pLI 

1 + (pLI)2• ( (E/(pL•A))2 
pL•E/(J'L•A) + F 

(4.1-49) 

All quantities in (4.1-49) have to be imagined with index n or p 
f 1 t h 1 F uLI ' ( 4 1 2 3) ' d F th or e ec rons or o es. or r expression . - is use • or e 
constants A, F and B the following values have been recommended in 
(4.106) for silicon at 300K temperature. 

3V 3V An= 3,5·10 _, Fn = 8,8 , Bn = 7,4·10 _ 
cm cm 

=          
cm 

Fp = 1,6 , =          
cm 

(4.1-50) 

Formula (4.1-49) is usually written in a different manner which 
might be more familiar to some readers: 

pLIE = pLI 
(4.1-51) 

CI 
1 + ---,,,-----

cr e f + CI/S 
+ (E/A)2 +      

E/A + F B 

Again all quantities, except CI, have to be imagined with index n 

or p. However, ( 4 .1-49) allows a nice interpretation of its 

parameters. As Thornber [4.129) has already shown, this formula is 

very attractive for several reasons. The term PL·B can be interpreted 

as a saturation velocity which is independent of impurity scattering. 

Using the original data of [4.106) these saturation velocities 
evaluate to: 

vsat = 
n 

vsat = 
p 

l,20·107cm 
s 

(4.1-52) 
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These values are quite plausible. One probably would expect a 

smaller value for the saturation velocity of holes. The term PL·A 
represents a velocity which can be identified as an acoustic phonon 
velocity. Such a quantity is responsible for the behavior of warm 
carriers which is nicely reflected by (4.1-49). It can also be 

expected that this velocity is to first order independent of impurity 
scattering. The only modification which has to be recommended for 
(4.1-49) is to replace the term PL·E by PLI.E in order to stay 

consistent with the elaborate scattering scaling results of Thornber 

[4.129]. By rewriting (4.1-49) with the above obtained interpretative 
results we obtain: 

pLIE = 
pLI 

(4.1-53) 

F in (4.1-53) is not straightforward to interprete by physical 
reasoning; it should be considered as a fitting parameter. If 

carrier-carrier scattering has to be taken into account, PLI should be 
replaced by pLICN calculated with any of the previously discussed 

models of preference. 

The temperature dependence of vac and vsat is expected to be 

fairly weak. In the case of vac I am not aware of any results. By 

interpretating the temperature dependent critical fields (4.1-46) of 
[4.19] as the ratio of the saturation velocity vsat over the lattice 

mobility PL we obtain: 

=       (_T_)-0 ,87 
s 300K 

(4.1-54) 

These values are very sound since, by theoretical investigations, 
one predicts a T-o. 5 dependence [4.61] in vsat which is quite close to 

(4.1-54). 

A different expression for the saturation velocity depending on 

temperature has been suggested in [4.58]. 

vsat = 
n 

2,4·107cm 
s 

T 1 +             
600K 
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Several other formulae can be found in the literature for 

modeling the influence of velocity saturation upon mobility. In 
[4.6], [4.59], [4.60] expression (4.1-56) has been suggested for 
electron mobility in silicon at 300K temperature. 

PLIE 
PLI 

n = n 
2•PLI·En 

1 1 + . 1 + ( n )2 
2 2 sat 

vn 

(4.1-56) 

          [ 4. 6] 
sat cm 

vn = 
          [4.59], [ 4. 60] 

(4.1-57) 

cm 

The associated saturation velocity (4.1-57) is properly attained 
by (4.1-56). In [4.93], quite a similar expression has been used: 

PLIE 
PLI 

n = n 
2·PLI.E 

1 1 + . 1 + 
n n 

2 2      

However, this equation, although it 
      does not attain a saturation velocity; 

this equation does not make any sense at all. 

(4.1-58) 

makes use of a parameter 

from my point of view 

In [4.97] an equation has been proposed which should take care of 
warm and hot carriers properly: 

pLI 
n (4.1-59) 

It is interesting to note that, although unfortunately not stated 
in [4.97), the associated saturation velocity vsat=v ·U'2. n o 1"" 

Fig. 4.1-7 and Fig. 4.1-8 show the mobility versus driving force 

En and Ep in silicon at 300K temperature for electrons and holes, 
respectively. A lattice mobility of 1430 cm2v-ls-l for electrons and 

480cm2v-ls-l for holes has been assumed. Impurity scattering and 

carrier-carrier scattering has been assumed to be negligibly small. 
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The solid line denotes the model of Scharfetter and Gummel (4.1-51); 

the dashed line corresponds to the model (4.1-48) with parameters of 
Caughey and Thomas [4.21]; and the dot-dashed line corresponds to the 

model (4.1-45) with parameters of Canali et al. [4.19]. 

For GaAs the influence of velocity 
modeled with the following expression: 

saturation is most frequently 

LI t (En) 3 
Jin +     ---,---

1 + 

(Ecr it) 4 
n (4.1-60) 

Numerical values for the parameters of (4.1-60) at 300K 
temperature have been compiled from literature data in Tab. 4.1-6. 

8,5 -10 6 

1,0 ·10 7 

1,0 ·10 7 

1,12·10 7 

7,5 -10 6 

Ecrit 
n 

[Vcm-1 ] 

4,0 -10 3 

4,0 -10 3 

2,691·10 3 

5,7 ·10 3 

4,0 ·10 3 

reference 

[4.13] 

[4.32] 

[4.66] 

[4.67] 

[ 4. 80] 

Tab. 4.1-6: Coefficients for velocity saturation of (4.1-60) 

Alley [4.6] has used a slightly different relation. 
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cm ULI. 

rn ---------
__ E_n_) 5 

      
8 + 

cm 

      
PLI. cm 

n En 

(4.1-61) 

Fig. 4.1-9 compares the model (4.1-60) with parameters of Laux 
and Lomax [4.66] (solid line) with the model (4.1-61) (dashed line). 

A zero field mobility of 7500cm2v-ls-l has been assumed. Fig. 4.1-10 

shows the drift velocity for the same data together with experimental 
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values by Ruch and Kino [4.98], [4.99]. These experimental results 

have been verified with Monte Carlo calculations in [4.100]. 

Particularly for compound semiconductors like GaAs such heuristic 
models can only qualitatively reflect the underlying phsyics. It 

should not be expected that these models enable a satisfying 
prediction of device performance for many cases. As pointed out in 

section 2.3 the models for the current relations will have to be 
refined in order to more accurately simulate miniaturized GaAs 

devices. 

The last scattering mechanism we shall discuss here is termed 
surface scattering. This effect is of obvious fundamental importance 

in all devices where current flow takes place primarily along a 
surface of the devices. The most prominent devices of that category 
are the MOS transistors. Theoretically, surface scattering is 
comprised of a good many different mechanisms like surface roughness 

scattering, scattering by interface charges, scattering by surface 
phonons and various quantum effects. Although the application of MOS 

structures has recieved a great deal of attention in recent years, the 
problems associated with conduction at surfaces have not been 
investigated as deeply as one would expect. Many physics oriented 
investigations are carried out at low temperatures because the results 
can be interpreted much more easily. Therefore, all models which are 
presently used have been constructed on a fully empirical basis with a 

scope to reflect the main experimental findings as well as possible. 

One of the earliest models has been suggested by Yamaguchi 
[4.139]. He has used the formula of Scharfetter and Gummel (4.1-51) 
for impurity scattering and mobility reduction due to velocity 
saturation and an additional factor to reduce the mobility in the 

presence of an electric field component perpendicular to the current 
flow direction. 

PLIES = PLIE. 1 
n,p n,p -;:::================== 

IExJn,pl 
(4.1-62) 

1 + 
Ecrit. IJ I n,p n,p 
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Ecrit =           n cm 
(4.1-63) 

Ecrit =           p cm 

This model has been used and recommended by many others, too, 
e.g. [4.33], [4.40], [4.41], [4.83], because it has been claimed that 
excellent agreement with experimental results is obtained. However, 
Thornber [4.129] has strongly criticized Yamaguchi's treatment using 
theoretical arguments. The saturation velocity vsat associated with n,p 
pLIE is scaled with the same factor, obviously, as the mobility. n,p 
Sabnis and Clemens [4.101] have experimentally proved that surface 
scattering is almost independent of the doping concentration. Cooper 

and Nelson [4.30] have shown with elaborate measurements that the 
influence of surface fields on the saturation velocity is relatively 
small, which is in contrast to former opinions (cf. [4.58]) but which 
is quite believable considering their experiments. Very careful 
measurements on that subject have been published in [4.120], too. 
Thornber [4.129] has made a suggestion, which is well accepted today, 
to use a relation of the form (4.1-64) for the total effective 

* mobility p . 
p* = p*( pLICNS(pLICN, El), El I, vsat(El) ) (4.1-64) 

The function pLICNS combines the mobility due    lattice, ionized 
impurity, carrier-carrier and neutral impurity scattering with the 

influence of surface scattering (El denotes the field component 
responsible for surface scattering) to a cold carrier mobility, which 
is then combined with the driving force (here denoted by El I) and the 
saturation velocity which might be a function of El to the total 
effective mobility p*. pLICNS may have the functional form of 

(4.1-62) as long as good agreement between simulated and measured 
* results is obtained. p should be a function of the type (4.1-48) or 

(4.1-53). Yamaguchi, as a matter of fact, has revised his model in a 
later paper [4.140] by exactly following the suggestions of Thornber. 

I have suggested the following expression for the influence of 
surface scattering [4.109], [4.110]. 

JILICNS = 
n,p 

x + xref 
11LICN. n, p 
rn,p       f 

x + b ·xre n,p n,p 
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x denotes the distance perpendicular to the interface. Directly 

at the interface (x=O) the mobility is reduced by a factor l/b; at a 

distance x=xref it is reduced by the factor 2/(l+b); and at greater 

distance from the surface it naturally follows that the reduction 

factor approaches unity. xref represents a characteristic length 

which describes the range of influence of the surface. 

ref 
xn,p = 

XO 
n,p 

1 + En,p 
Ecrit 

n,p 

Ecrit 
n 

Ecrit 
p 

(4.1-66) 

=      
cm 

(4.1-67) 

=        
cm 

This range is modeled as a function of the carrier driving force 

(field component parallel to current flow or magnitude of the gradient 

of the corresponding quasi-Fermi potential). The formulation of xref 

produces a reduction in the range of influence of 

for greater driving forces, thereby velocity 

Carriers already traveling with the saturation 

surface scattering 

saturation appears. 

velocity can be 

considered not to experience the influence of the surface as much as 

cold carriers [4.71]. The parameter "b" in (4.1-63) describes the 

strength of the influence of surface scattering. 

Ecrit _ 5V 

l n - 1,8·10   , 
cm 

(4.1-68) 

(4.1-69) 

It is modeled as a function of El which can be the electric field 
component perpendicular to current flow, or the electric field 

component perpendicular to the interface, or, what I suggest, the 

projection of the electric field component perpendicular to the 

current flow direction onto the direction perpendicular to the 

surface. The formulation of b rests upon the consideration that the 

charge carriers are pressed against the surface by an electric field, 

which results in a greater scattering, in such a way that a greater 

mobility reduction occurs. Without any electric field we also observe 

a mobility reduction due to surface roughness scattering (b=2). 
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However, I am absolutely aware that (4.1-63) is a fully 

phenomenological expression neither of which the structure nor the 
associated parameters may be claimed to be correct in a theoretical 

sense. It simply represents my experience which has been confirmed 

over several years by many users of our simulation tools that an 

expression with such a structure nicely reflects the experimental 

observations. 

There are plenty more suggestions on how to treat surface 

scattering phenomenologically. The interested reader could have a 
1 oo k at , e . g • [ 4 • 4 ] , [ 4 • 11 ] , [ 4 • 2 5 ] , [ 4 . 4 2 ] , [ 4 • 12 0 ] , [ 4 • 13 4 ] • 
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4.2 Carrier Generation-Recombination Modeli!:!.9...!.. 

In section 2.2 we have introduced in a very formal manner a 

quantity R which has been interpreted as a function describing the 

balance of generation and recombination of electrons and holes. This 

section is now devoted to the discussion of the physical phenomena 

which have to be considered to derive models for R. The various 

physical mechanisms 

phenomenologically 

will be indicated. 

responsible for generation/recombination will be 
described, and their expected contribution to R 

Let us assume a homogeneously doped semiconductor which is in 

thermal equilibrium with its ambient. Due to the thermal energy the 

concentration of electrons and holes will continuously fluctuate 

because of generative and recombinative processes. However, as the 

semiconductor is in equilibrium, there will be a dynamic balance 

between the generation and recombination rates, which leads to an 

equilibrium concentration n
0 

of electrons and p
0 

of holes. These 

concentrations are related by: 

(4.2-1) 

n. 
l denotes the intrinsic concentration which we have already 

appropriate for non discussed in section 2.4. (4.2-1) is only 

degenerate semiconductors; for moderate degeneracy, however, ni can be 

replaced by nie' an effective intrinsic concentration 
(cf. section 2.4). When the semiconductor is excited by some external 

stimulus, the balance between generation and recombination is 

disturbed as the electron and hole concentrations depart from their 

equilibrium values n0 and p
0

• If excess carriers have been generated, 
recombination will prevail, whereas, if carriers have been removed, 

generation will dominate, so that a steady state situation between 

generation/recombination and the external stimulus is established. 

Generation/recombination phenomena can be seen from two different 

points of view: either from the energy levels between which the 

various mechanisms take place or, 

physical effect. Viewed in terms 

recombination may take place either 

direct generation/recombination or 

directly, 

of energy 

from the underlying 

in one step, 

levels, generation/ 

which is termed 

in two or more steps which is 

called indirect generation/recombination. In consideration of the 
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physical mechanisms we divide generation/recombination into primarily 

phonon transitions, photon transitions, Auger or three particle 
transitions and impact ionization. In principle several more 
mechanisms like transitions caused by plasma oscillations, excitons 
and spin waves do exist, but these are usually not so important as the 
ones cited above [4.77). 

Phonon transitions take place primarily in two steps by way of 
defects (traps). A theory of this effect has been established by 

Shockley and Read [4.115] and Hall (4.51]. Therefore, the mechanism 
is most frequently termed Shockley-Read-Hall generation/recombination. 

In detail four partial processes are involved. 

SRH.a) electron capture: an electron from the conduction band is 
trapped by an unoccupied defect which becomes occupied. 

SRH.b) hole capture: an electron from an occupied trap moves to the 

valence band and neutralizes a hole. The trap becomes 
unoccupied. 

SRH.c) hole emission: an electron from the valence band is trapped by 
a defect, thus leaving a hole in the valence band and an 
occupied trap. 

SRH.d) electron emission: an electron from an occupied trap moves to 
the conduction band. The trap becomes unoccupied. 

By assuming that process SRH.a and SRH.b take place sequentially, 

an electron-hole pair will only recombine with the help of a trap 
which is occupied during the processes. Analogously, by assuming that 
process SRH.c and SRH.d take place sequentially, an electron-hole pair 
is only generated with the help of a trap which, again, is occupied 
during the processes. We see nicely that the overall generation/ 

recombination process takes place in two steps with the aid of traps. 

The traps can be characterized as follows. They are defects with 

an energy level Et, a concentration Nt and capture cross sections Kn 
and KP for electrons and holes, respectively. A trap is most 
effective for generation/recombination if its energy level Et is in 
about the middle of the gap between valence band and conduction band. 
This is easy to imagine by remembering the involved partial processes. 

To generate an electron-hole pair, thermal energy is first consumed to 
move an electron from the valence band to the trap (process SRH.c) and 
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energy is again required to move the electron from the trap to the 
conduction band (process SRH.d). The total energy required for such a 
process is obviously independent from the energetic location of the 
trap, which is the width of the band. However, the maximum energy of 
the partial processes is obviously a minimum if the trap level is 

exactly in the middle of the band. We can, therefore, deduce that 
impurities for the purpose of doping are very ineffective as 
generation/recombination centers, because these are located 
energetically close to one of the band edges in order to be effective 
as doping centers. These impurities are frequently called "shallow" 
impurities whereas impurities which are put into a semiconductor to 
increase the recombination rate (like gold in power devices) are 
termed "deep" impurities. Some deep .impurities lead to multiple 
energy levels but one of these levels dominates the carrier 
generation/recombination in most cases [4.92]. 

With the above given phenomenological description of the 
generation/recombination mechanism it is rather straightforward to 
derive for single level traps an expression for the purpose of 
simulation. Following the ideas of Shockley et al. we assume the 

SRH SRH SRH SRH SRH SRH rates C , C , C and C • C , C are the capture rates for en en cp ep en cp 
electrons and holes per electron and hole, respectively, when all 
traps are unoccupied. c8RH, CSRH are the emission rates for electrons en ep 
and holes per electron and hole, respectively. Let further ft denote 
the fraction of traps which is occupied. Then we may write the 

capture rates per unit volume for electrons and holes as: 

RSRH = CSRH·n· (1 f ) n en - t (4.2-2) 

SRH c •p•ft cp . (4.2-3) 

Analogously we may write the emission rates per unit volume for 
electrons and holes as: 

= CSRH. (1 
ep 

(4.2-4) 

(4.2-5) 

The total generation/recombination rate evaluates to (4.2-6) 
since electrons and holes always act in pairs, and, thus, their net 
generation/recombination rate must be identical. This statement will 
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not hold for transient situations where the carrier densities change 

rapidly [4.26]. However, as there are no results available on that 

subject which could be used for device modeling, we have to leave that 
problem open. 

RSRH = RSRH _ GSRH = RSRH _ GSRH ( 4 . 2_6 ) 
n n p p 

In thermal equilibrium where we have no net generation/ 

recombination it follows that the capture rates of electrons and holes 
must be equal to the corresponding emission rates, which enables us to 

calculate, for instance, the emission rates: 

CSRH C SRH l - fto 
en = en ·no· fto 

CSRH = 
ep 

CSRH 
cp ·po·1 - fto 

Index "o" indicates equilibrium quantities. 

convenient to define densitites n1 and p 1 : 

l - fto 
n1 = no· 

(4.2-7) 

(4.2-8) 

It is very 

(4.2-9) 

(4.2-10) 

With these definitions the net generation/recombination rates 

become: 

of 

ft 

SRH = c ·(p•ft cp 

(4.2-11) 

P1·(l - ft)) (4.2-12) 

These two rates are equal so that we can calculate the fraction 

occupied traps ft. 

CSRH SRH n· + P1·C en cp 
= (4.2-13) SRH + CSRH. ( c · (n + n1) + P1) en cp p 

The SRH net generation/recombination rate R is therefore given by 
the following equation: 

n·p - ni2 
(4.2-14) 

with: 
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It is very common to define carrier lifetimes 

reciprocals of the corresponding capture rates per 

The capture rates can be assumed quite generally to be 

CSRH = Kn•vth•Nt en 

(4.2-15) 

(4.2-16) 

t and t as n p 
single carrier. 

expressed as: 

(4.2-17) 

(4.2-18) 

Kn and KP denote, as already mentioned, the capture cross 

sections for electrons and holes; vth is the thermal velocity; and Nt 

is the concentration of traps. As long as the trap density Nt remains 

independent of doping, the lifetimes t , t do not vary with doping. n p 
However, at high doping concentrations additional generation/ 

recombination centers can be created. In the literature one can find 

empirical expressions of the following type for the doping dependence 

of the lifetimes, which are claimed to fit experimental findings. 

lno 
(4.2-19) 

1 + 
Nref 

n 

tp 
lpo 

(4.2-20) = 
No + NA 

1 + 
Nref 

p 

Numerical values for the parameters t t and Nref N ref no' po n ' p are 

compiled from literature data in Tab. 4.2-1. 
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no n 

[ s] [cm- 3 ] 

5,0 ·10-5 5,0·1016 

3,94·10-4 7,1·10 15 
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tpo 
Nref 

P_3 
[s] [cm ] 

5,0 ·10-5 5,0·1016 

3,94•10-5 7,1·1015 

reference 

(4.33] 
(4.36] 

3,95·10-4 7,1·10 15 

4,0 • 10-4 7,1·10 15 
3,52·10-5 7,1·1015 (4.43], [4.137] 

[4.44] 
1,0 ·10-5 3,0°1017 1,0 ·10-5 3,0·1017 (4.78] 

Tab. 4.2-1: Coefficients for (4.2-19), (4.2-20) 

Similar expressions for the doping dependence of the lifetimes 
like: 

Nref 

l 
o n,p d 

0,3 dn,p 0,6 (4.2-21) n p = t • ( ) n,p , < < , n,p No + NA 

can also be found in the literature, e.g. (4.1], (4.41]. 

In the derivation of (4.2-14) it has been assumed that the number 
of available traps is much larger than the number of carriers involved 
in a generation/recombination process. Furthermore, the time of 
readjustment of an electron in a trap once it is trapped has been 

assumed to be negligibly small. Dhariwal, Kothari and Jain (4.37] 
have investigated these problems and they have obtained a very nice 
result. 

n•p - ni2 
RDKJ =                                 

l • (a·n + b·n1) + l • (b•p + a•p1) + c• (n·p - ni2) p n 

with: 

4tn 
a = 1 + 
  

4tp 
b = 1 +   

p 

4tn + 4tp 
c = 

(4.2-22) 

(4.2-23) 

I shall not review in detail the derivation of (4.2-22), but we 

shall perform a qualitative discussion. 4t , 4t denote the times of n p 
transition for an excited electron in a state close to the conduction, 

valence band to the trap level. 4t'n' 4t'p are the times for 
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transition in the reverse direction. If the transitions are 

infinitely fast we obtain a=b=l and c=O (cf. [4.37]) and (4.2-22) is 
*           to (4.2-14), the original Shockely-Read-Hall formula. lp' 

t are then also equivalent to (4.2-15), (4.2-16). The general 
n * * formulae for the lifetimes t , t are more complex; however, as one p p 

preferably uses experimental data for calibration due to the 
uncertainty in the values of various "theoretical" quantities involved 
in the formulae, a discussion will be skipped. The most attractive 
feature of (4.2-22) compared to (4.2-14) is the saturation of 

recombination for large carrier densities. Such a saturation will, 
obviously, happen; for instance, it can play a role in devices where 
breakdown is retarded by extraordinarily strong recombination [4.105]. 

However, I am not aware of any simulations which have corroberated 

this effect. 

The next physical mechanisms we have to consider for generation/ 
recombination are photon transitions. This mechanism takes place 
primarily in one step; it is thus a direct generation/recombination 
mechanism. There are two partial processes involved. 

OPT.a) an electron loses energy on the order of the band gap, which is 
emitted as a photon, and moves from the conduction band to the 

valence band (radiative recombination) • 
OPT.b) an electron gains energy from incident photons and moves from 

the valence band to the conduction band (optical generation) • 

This effect is important for narrow gap semiconductors and 
semiconductors whose specific band structure allows direct transitions 
like GaAs [4.57]. In silicon and germanium band to band generation/ 
recombination is insignificant for all imaginable conditions. An 

expression for modeling is easy to derive. By assuming a capture rate 

     and an emission rate       the involved partial processes can be 

written: 

(4.2-24) 

(4.2-25) 

These rates must be equal in thermal equilibrium so that: 

(4.2-26) 
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The total band to band generation/recombination is the difference 

of the partial rates, which evaluates to: 

(4.2-27) 

Some guidelines on how to evaluate the capture rate      can be 
found in, e.g. , [ 4 .117] • 

The next physical mechanisms for generation/recombination we 
shall consider here are Auger or three particle transitions. The 

partial processes involved in Auger recombination are still a matter 
of investigation (cf. [4.45], [4.64], [4.132]) and only more or less 

qualitatively understood. However, qualitatively the partial 

processes will take place about as follows. 

AU.a) electron capture: an electron from the conduction band moves to 
the valence band, transmitting the excess energy to another 

electron in the conduction band. 

electron recombines with a hole. 

In the valence band the 

AU.b) hole capture: an electron from the conduction band moves to the 
valence band transmitting the excess energy to a hole in the 
valence band, which moves away from the valence band edge. The 

electron recombines with a hole. 
AU.c) electron emission: an electron from the valence band moves to 

the conduction band by consuming the energy of a high energetic 
electron in the conduction band and leaving a hole in the 

valence band. 
AU.d) hole emission: an electron from the valence band moves to the 

conduction band by consuming the energy of a high energetic hole 

in the valence band. A hole is left at the valence band edge. 

In any of these partial processes three carriers are involved. 

In process AU.a and AU.c these are two electrons and one hole; in 
process AU.b and AU.d these are one electron and two holes. However, 
these processes describe only the direct band to band Auger 

generation/recombination. More recent investigations [4.107] indicate 
that trap assisted partial processes have a higher probability than 
direct band to band processes. This changes the partial processes 

AU.a to AU.d such that the carriers move from one of the bands to a 

trap instead to the other band. As additional partial processes the 
Shockley-Read-Hall transitions which we have formerly discussed will 
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interfere. A fully consistent treatment of the interaction of trap 

assisted Auger generation/recombination and Shockley-Read-Hall 

generation/recombination has been carried out in [4.45]. The 

influence of a specific band structure of a semiconductor upon Auger 

generation/recombination has been reviewed in [4.27]. 

The partial processes AU.c and AU.d are refered to in many 

textbooks as impact ionization which is stated to be the antagonism of 

Auger recombination. However, this is wrong or at least enormously 

inexact. To clarify the situation we have to consider the rates per 
unit volume of the partial processes AU.a to AU.d. 

AU AU 2 R = C •n •p n en 

AU 2 = C ·n·p cp 

(4.2-28) 

(4.2-29) 

(4.2-30) 

(4.2-31) 

Rate     corresponding to the partial process AU.a is 
proportional to the square of the electron concentration times the 

hole concentration with the Auger capture coefficient for electrons. 

Similarly     corresponding to partial process AU.b is proportional to 
the electron concentration times the square of the hole concentration 

with the Auger capture coefficient for holes. Rate Gncorresponding to 

partial process AU.c is proportional only to the electron density with 

the Auger emission coefficient for electrons. Here is a big 

difference to impact ionization, the corresponding generation rate of 

which would be proportional to the electron current density instead of 

the electron concentration. That means Auger generation may take 

place in regions with a high concentration of mobile carriers with 

negligible currrent flow, whereas impact ionization requires non 

negligible current flow as a prerequisite. Some practical 

implications of that statement on the operation of MOS devices have 

been given in [4.71]. Finally, rate     corresponding to partial 

process AU.d is proportional only to the hole density with the Auger 

emission coefficient for holes. The same statement of comparison 

between Auger generation of holes and impact ionization of holes is 

valid as given above for electrons. However, I have to admit that 
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viewed microscopically there is no difference between Auger generation 

and impact ionization. The enormous difference lies in the source of 

energy for the partial processes as I have outlined above. 

In thermal equilibrium no generation/recombination exists so that 

we can calculate the Auger emission rate by equating (4.2-28) to 

(4.2-30) and (4.2-29) to (4.2-31). 

CAU = 
en 

CAU = 
ep 

AU 2 C •ni en 

AU 2 C ·n · cp l 

(4.2-32) 

(4.2-33) 

The total net Auger generation/recombination rate is the sum of 

the net rates for electrons and holes. 

+ (4.2-34) 

If we substitute the partial rates (4.2-28) to (4.2-31) and the 

Auger emission coefficients (4.2-32), (4.2-33) into (4.2-34) we 

obtain: 

(4.2-35) 

The numerical values of the Auger capture coefficients CAU and en 
CAU show a remarkable cp scatter in the literature. Quite frequently 

used in modeling programs are the data of Dziewior and Schmid [ 4 • 3 9 ] 

which are summarized in Tab. 4.2.-2. 

temperature CAU CAU 

[K]                   

77 2,3·10-31 7,8·10-32 

300 2,8·10-31 9,9·10-32 

400 2,8·10-31 l,2·10-31 

Tab. 4.2-2: Auger coefficients in silicon 

The temperature dependence of the Auger coefficients is fairly 

weak as we can        from Tab. 4.2-2. An extensive collection of 

Auger coefficients from literature data can be found in [4.132). The 

dependence on doping concentration is speculated also to be weak. 

As excellent reviews about the present understanding of the 

generation/recombination mechanisms we have treated so far, [4.45), 

[4.52), [4.132) can be recommended. 
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In addition to generation/recombination in the bulk of a 

semiconductor, electrons and holes may also be generated/recombined at 

surfaces. The rate of surface generation/recombination can even be 
much greater under some conditions than the bulk generation/ 
recombination rate. For the purpose of modeling one usually assumes a 
formula which is structurally equivalent to the Shockley-Read-Hall 
expression for bulk generation/recombination. 

n·p - ni2 
RSURF =                      (4.2-36) 

-· (n + n1) + -· (p + Pl) Sp Sn 

sp and sn denote the surface recombination velocities for 
electrons and holes, respectively. Their numerical values are on the 
order of 100cm2/s. It is more established to use velocities instead 
of lifetimes for surface generation/recombination. 4(x ) is the 
Dirac-delta function and x =O denotes the surface. This means surface 

generation/recombination is only existing exactly at the surface. The 
transition between surface generation/recombination and bulk 

generation/recombination has not been implemented in any modeling 
progtam, as far as I know. However, theoretically it is not fully 
clear what one should expect; some considerations are given in [4.90), 

[4.117]. My suggestion, which a few others agree to, e.g. [4.65], is 

that one should not treat generation/recombination phenomena at 
surfaces differently than in bulk material, but one should care more 
thoroughly about the various generation/recombination parameters at 
surfaces. (4.2-36) obviously reflects an indirect generation/ 

recombination mechanism with just a different interpretation of the 
capture rates (cf. (4.2-15) to (4.2-18)) in comparison with (4.2-14). 

The last physical mechanism we shall discuss in the context of 

generation/recombination modeling is impact ionization. This effect 
is a pure generation process which, as already mentioned, is seen to 
be microscopically identical to the Auger generation process. Two 

partial processes have to be considered. 

II.a) electron emission: an electron from the valence band moves to 
the conduction band by consuming the energy of a high energetic 

electron in the conduction band and leaving a hole in the 
valence band. 

II.b) hole emission: an electron from the valence band moves to the 
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conduction band consuming the energy of a high energetic hole in 

the valence band. A hole is left at the valence band edge. 

These partial rates can be written: 

JYnl 
= ct ·--n q 

The total rate is simply the sum. 

(4.2-37) 

(4.2-38) 

RII = -GII _ GII 
n p (4.2-39) 

ctn and ctp are the ionization rates for electrons and holes 

defined as generated electron-hole pairs per unit length of travel and 

per electron 

generates over 

energy which 

and hole, respectively. For instance, an electron 

a distance l/ctn one electron-hole pair on average. The 

is consumed from the ionizing carrier is termed 

ionization energy or threshold energy for ionization E.. This 
1 

quantity has been a topic of many investigations in the past years 

with absolutely nonunique results (cf. summary in Tab. 4.2-5, 

Tab. 4.2-6). Similarly, the theoretical results for the ionization 

rates ctn' ctp are not unique. However, both theoretical and 
experimental investigations indicate a good approximation to be an 

exponential dependence of the ionization rates upon the electric field 

component E in direction of current flow. 

Ecrit 

ctn = F· exp (- ( n ),n) 
n E (4.2-40) 

Ecrit 

ctp = F· exp (- ( p ),P) 
p E (4.2-41) 

The exponents 'n' ,p are found in the range [1,2]. As a matter 
of fact fairly early theoretical considerations by Shockley [4.116] 

predict the exponents to be one, which has been also the very old 

experimental finding by Chynoweth [4.24]. A different treatment by 

Wolff [4.138] predicts the exponents to be two. Numerical values for 

the coefficients of (4.2-40) and (4.2-41) compiled from literature 

data are summarized in Tab. 4.2-3 for electrons and in Tab. 4.2-4 for 

holes. 
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material   
n 

[cm-1 ] 

Si 

GaAs 

Ge 

1,0 -10 6 

6,2 ·10 5 

1,28•10 6 

1 -10 6 

1, 6 • 10 6 

3, 8 • 10 6 

2,2 ·10 6 

7 ·10 5 

7,03·10 5 

2,0 ·10 6 

2,994•10 5 

3, 5 • 10 5 

1,34·10 6 

1,55·10 7 

1,55·10 7 

6 1,66·10 
6 1,08·10 
6 2,54•10 
6 5,87·10 

1.65•106 
6 1,75·10 

1,54·106 

6 1, 4 • 10 
6 1,231•10 

6 2, 0 • 10 
6,848•10 5 

5 6,85·10 
6 2,03•10 
5 1,56·10 

l,56•10 6 
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A reference I' n 
[ ] 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1,6 

2 

2 

1 

1 

[4.39] l,l·l0 5v/cm <E< 5·10 5V/cm 

[4.49] 2,4·lo 5v/cm <E< 5,3·10 5V/cm 

[ 4 • 6 3 ] E < 5 • 10 5 VI cm 
[ 4 • 6 3 ] E > 5 • 10 5 VI cm 
[4.76] 2•10 5v/cm <E< 6,7·10 5V/cm 
[4.122], [4.123] 

[4.124] 
[4.131] 

[4.133] l,75·10 5V/cm <E< 6·10 5V/cm 
[ 4. 6] 

[4.18] 2,22·105v/cm <E< 6,25•10 5V/cm 

[4.122] 

[4.123] 
[4.118] 

[4.122], [4.123] 

Tab. 4.2-3: Constants for impact ionization of electrons 

material _co CICP 
[cm-1 ] 

Si 

GaAs 

Ge 

2,0 -10 6 

5 5 • 10 5 , 
1,0 ·10 6 

2,25·10 7 

1,0 ·10 6 

1,3 -10 6 

4,4 ·10 5 

1,582•10 6 

6,71·10 5 

2,215•10 5 

3,5 ·10 5 

1,34·10 6 

1,0 ·10 7 

1,0 ·10 6 

1,98•10 6 

1.65·106 

6 1,66·10 
6 3,26·10 
6 2,22·10 
6 2,09•10 
6 1, 4 • 10 

2,036·10 6 

1,693·10 6 

6,57·10 5 

5 6,85·10 
6 2,03•10 
6 1,28·10 
6 1,28•10 

A reference I" p 
[ ] 

1 [4.49] 2,4·lo 5v/cm <E< 5,3·10 5V/cm 

1 [4.76] 5·10 5v/cm <E< 8•10 5V/cm 
1 [4.82] l,l·l0 5v/cm <E< 5·10 5V/cm 

1 [4.122], [4.123] 

1 [4.124] 

1 [4.131] 

1 [4.131] 

1 [4.133] 

1 [4.133] 

1,75 [4.18] 

2 [4.122] 

2 [4.123] 

   6,07·10 5V/cm 

E> 6,07·10 5V/cm 

l,75•10 5V/cm     4•10 5V/cm 

4·10 5v/cm <E< 6·10 5V/cm 

2,22•10 5V/cm <E< 6,25•10 5V/cm 

1 [4.118], [4.122] 

1 [4.123] 

Tab. 4.2-4: Constants for impact ionization of holes 
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Investigations by Baraff [4.12) have predicted that these 

theories can be interpreted as the two limiting cases of a much more 
rigorous model. For low fields Shockley's model is more appropriate, 

whereas for high fields Wolff's model is asymptotically correct. 
Baraff's results can, unfortunately, not be given in closed form; they 

have been obtained by a numerical solution of the Boltzmann transport 
equation, however, restricted to the assumption of an unrealistic band 

structure. However, a universal plot for both electrons and holes has 

been presented, which shows 

Er Ei 
ct· A = f ( -E. ' A ) 

1 q• •E 
(4.2-42) 

A is the mean free path between collisions with high energetic 

phonons; Er is the average loss of energy defined per such collision; 

and Ei denotes the ionization energy, as already defined. Numerical 
values collected from miscellaneous publications are summarized in 

Tab. 4.3-5 for electrons and in Tab. 4.3-6 for holes. 

material '-. E E. reference r 1 
[nm] [eV] [eV] 

Si 6 0.063 1,68 [4.5] 
1,1 [4.7] 

6,2 0,063 [4.31) 
1,4 [4.53] 

6,9 0,61 1,6 [4.68] 
7,0 1,5 [4.75] 

1,8 [4.76) 
4,8 0,051 1,1 [4.86), [4.87) 
4,8 0,053 1,1 [4.88] 
5,0 0.063 1,1 [4.116) 

1,8 [4.126) 
GaAs 3,5 0,035 2,15 [ 4. 5] 

1. 7 [4.7] 
3,5 0,036 [4.31) 

1,5 [4.53) 
3,3 0,022 1,7 [4.86], [4.87], [4.88) 

2,0 [4.126) 
Ge 6,5 0,037 1,01 [ 4. 5] 

0,8 [4.7) 
6,5 0,036 [4.31) 

0,91 [4.53) 
3,6 0,019 0,8 [4.86) 
3,9 0,019 0,8 [4.87) 
3,9 0,022 0,8 [4.88] 

Tab. 4.2-5: Constants for impact ionization of electrons 
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material A 
[nm] 

Si 
3,8 

4,4 
1,0 

4,4 
4,7 
4,7 

GaAs 
3,5 

3,3 
Ge 

6,5 

4,7 
5,1 
5,1 

' - 134 -

E E. reference r 1 
[eV] [eV] 

0,063 

0,61 

0,051 
0,051 
0,053 
0.063 

0,036 

0,022 

0,036 

0,019 
0,019 
0,022 

1,8 [4.7] 
[4.31] 

1,6 [4.53] 
1,6 [4.68] 
3,5 [4.75] 
2,4 [4.76] 
1,8 [4.86] 
1,8 [4.87] 
1,8 [4.88] 
1,1 [4.116] 
1.4 [4.7] 

[4.31] 
2,7 [4.53] 
1,7 [4.86] f [4.87] I [4.88] 
0,9 [4.7] 

[4.31] 
1,3 [4.53] 
0,9 [4.86] 
0,9 [4.87] 
0,9 [4.88] 

Tab. 4.2-6: Constants for impact ionization of holes 

Baraff's universal curves have been approximated with compact 
formulae so 
facilitated. 
expression: 

that an application for 
Crowell and Sze [4.31] 

d·l = exp( C0 (r) + C1(r) ·x + C2(r) ·x2 ) 

with: 

C0 (r) = -1,92 + 75,5·r - 757·r2 

where: 

Er 
r = 

Ei 

x = 

the purpose of simulation is 
have proposed the following 

(4.2-43) 

(4.2-44) 

(4.2-45) 

This approximation is claimed to be accurate within two percent 
maximum error over the range re[0.01,0.06) and xe[S,16]. A more 
accurate approximation has been given in [4.121): 
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(4.2-46) 

with: 

C0 (r) = -7,238·10-2 - 51,5•r + 239.6·r2 + 3357·r3 

C1(r) = -0.4844 + 12,45·r + 363·r2 - 5836•r3 
(4.2-47) 

C3(r) = -1.841·10-5 - 0.185l·r + 10,4l·r2 - 95,65·r3 

This approximation fits Baraff's curves perfectly over the range 
re[0.01,0.07] and x€[3,14J. The result is shown in Fig. 4.2-1. The 
question, obviously, remains if these theoretically obtained results 

agree with experimental results. An answer to this question is, most 
unfortunately, not easy. The measured results of Lee et al. [4.94], 

for instance, agree nicely with Baraff's results when the numerical 
values for A, E and E. are taken from [4.31]. The experimental r J. 

results of, e.g. Van Overstraeten et al. [4.133] and Grant [4.49], 
would require totally unrealistic values for A, E and E. to agree r J. 
with Baraff's results. On the other hand, in, e.g. [4.104], [4.118], 
[4.128] the ionization rates of Van Overstraeten et al. have been 

used, whereby good agreement between experimental and simulation 

results on device breakdown phenomena has been obtained. The 
influence of the models for the ionization coefficients upon simulated 

device performance can be indeed very pronounced [4.2]. 

Chwang et al. [4.23] have rigorously obtained the same results as 
Baraff with a completely different approach for the calculation, 
however, with essentially the same assumptions. 

Thornber [4.130] has suggested an empirical expression which has 
been proved to be consistent with an elaborate momentum and energy 
scaling theory. 

E Fj 
d = -E· ·exp(- ) 

i k·T·F· E2 
-=--J + E + 

Ei Fr 

(4.2-48) 

F. and F are interpreted as threshold fields describing the 
J r 

field at which the ionization energy is reached in one mean free path 
and the field at which the phonon energy is reached in one mean free 
path (cf. [4.130]). (4.2-48) includes the asymptotic behavior of the 
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ionization rate, which has been predicted by Baraff. Thornber 

believes that (4.2-48) is the first simple, physical, analytical 
expression for the ionization coefficient valid for all fields. 
However, by fitting this expression to the experimental data of, e.g. 
[4.49], [4.133], Thornber himself has obtained unexpected large values 
for the ionization energies. 

Okuto and Crowell [4.88] have proposed an empirical expression 
which are supposed to fit the theoretical results of Baraff as well as 
measurements. 

T (4.2-49) 
T b3oo· (1 + d· (K - 300K)) 

d = a3oo· (1 + c· (K - 300K)) ·E·exp(- ( E ) 2 ) 

The coefficients of formula (4.2-49), which is temperature 
dependent, are summarized in Tab. 4.2-7. 

material 
     b300 c d 
[V ] [Vcm-1 ] [ ] [ ] 

Si 0,426 4,81·10 5 3,05·10-4 6,86·10 -4 electrons 

0,243 6,53·10 5 5,35·10-4 5,87·10 -5 holes 
GaAs 0,294 5,86·10 5 8,5·10-4 7,17·10-4 electrons and holes 

Ge 0,569 3,32·10 5 6,33·10-4 9,34·10-4 electrons 
0,559 2,72·10 5 7,87·10-4 8,82·10-4 holes 

Tab. 4.2-7: Coefficients of (4.2-7) 

Fig. 4.2-2 and Fig. 4.2-3 show the ionization rates for electrons 
and holes in silicon at 300K temperature, respectively. The solid 
line corresponds to the data of Van Overstraten et al. [4.133]; the 

dashed line denotes the data of Grant [4.49]; the dot-dashed line 
corresponds to the model of Okuto and Crowell (4.2-29); and the dotted 
line has been calculated with the approximation (4.2-46) to Baraff's 
model with parameters from [4.31] and [4.53]. 

Fig. 4.2-4 and Fig. 4.2-5 show the ionization rates for electrons 
and holes in GaAs at 300K temperature. The solid line corresponds to 
the data of Bulman et al. [4.18]; the dashed line denotes the data of 

Sze and Gibbons [4.122]; and the dotted line has been calculated, 

again, with the approximation (4.2-46) to Baraff's model with 

parameters from [4.7] and [4.31]. 

Carrier Generation-Recombination Modeling 



- 137 -

Recently attempts have been made to calculate the impact 
ionization coefficients by Monte Carlo methods taking into account a 
realistic band structure [4.112], [4.113], [4.125]. This interesting 
work, however, is subject to considerable controversy [4.20], [4.56]. 

One problem which arises in the context of impact ionization in 
very small devices and for low bias applications is the dark space 

phenomenon. In regions of a device with a large gradient of the 
electric field component parallel to current flow all models of impact 

ionization which we have discussed can be expected to overestimate the 
ionization rates. The carriers first have to gain an energy on their 
path through the device which is larger than the threshold energy for 
ionization before impact ionization can take place. The ionization 

rate at a specific place, thus, will depend, qualitatively spoken, not 
only on the local field, but also upon the field distribution in that 
vicinity. Therefore, the dark space phenomenon is frequently termed a 
non-local effect, e.g. [4.87]. A rigorous treatment of this and 

related phenomena [4.111] with models consisting of pure differential 
equations is impossible; it is also inconsistent with the usually 

assumed current relations because for their derivation moderate 
gradients for the electric field have been assumed (cf. section 2.3)). 

It has to be stated that much more experimental and theoretical 
investigations have to be carried out in order to understand the many 

detailed effects of impact ionization. 

Finally, it should be noted that for the purpose of device 
modeling the individual generation/recombination rates are usually 

added up in the most simple manner. 

R = RSRH + ROPT + RAU + RSURF + RII (4.2-50) 

Interaction phenomena 
obviously do exist are 

between the various mechanisms which 

fully ignored in (4.2-50). A more concise 
treatment of interaction phenomena as demonstrated in [4.45] for 

Shockley-Read-Hall and trap assisted Auger generation/recombination 
can be expected to contribute to a great extent to answering many of 
the open questions. 
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4.3 Thermal Conductivity Modeling. 

Most currently available models for the thermal conductivity of 
silicon and germanium are based on the early measurements of 
Glassbrenner and Slack [4.48]. The same authors have also presented 

theoretical investigations which led to the following formula for the 
thermal conductivity in semiconductors. 

1 
k (T) = 

a + b·T + c·T2 
(4.3-1) 

The constants a,b and c are summarized for silicon and germanium 
in Tab. 4.3-1. The agreement between measured thermal conductivity 
values and the results of (4.3-1) is within five percent for silicon 

and germanium in the range T€[250,1000]K and T€[50,700]K, 
respectively. 

a 

b 

c 

Quite 

Si 

0,03 

l,56·10-3 

l,65·10-6 

Ge 

0,17 

3,95·10-3 

3,38·10-6 

dimension 

v-lA-1cm 
v-lA-1cmK-l 

V-lA-1cmK- 2 

Tab. 4.3-1: Coefficients for (4.3-1) 

frequently one can find for the purpose of device 
simulation a simple power law for the thermal conductivity in silicon, 

e.g. [4.1] I [4.22] I [4.46] • 
VA T 

k (T) = 1 5486-• (--) -4/3 ( 4. 3-2) ' cm 300K 

(4.3-2) is a fairly good approximation to (4.3-1) as can be seen 
from Fig. 4.3-1. The solid line corresponds to (4.3-1); and the 
dashed line denotes (4.3-2). 

The thermal conductivity of heavily doped semiconductors 

(>l0 19cm-3 ) might be expected to be higher than of pure material 
because of the large number of carriers available for transporting 
heat. The opposite is true (cf. [4.74]). Measurements indicate that 
the thermal conductivity is lowered by as much as thirty percent in 
the presence of a high doping concentration. 

A critical review of published data on the thermal conductivity 
of silicon, germanium and III-V compound semiconductors has been 
presented by Maycock [4.74]. 
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4.4 Thermal Generation Modeling. 

Heat generation has been modeled in various ways in the 

literature. The simplest form has been used by, e.g., Gaur and Navon 
[4.46]. 

(4.4-1) 

However, this expression is inappropriate for general application 

because it predicts heat sinks in device regions where the inner 

product of total current density and electric field is negative. 

Adler [4.79] has suggested a formulation which is more sound. 

Ee - Ev -
H = div (-q·Jn + -q·Jp) (4.4-2) 

E and c E are the conduction band edge energy and the valence v 
band edge energy, respectively. This formulation takes into account 

the energy loss/gain to the lattice through recombination/generation 

as one can see by expanding the "div" operator. 

1 - 1 -
H = -·J ·grad E + -·J ·grad E + R· (Ee - Ev) q n c q p v (4.4-3) 

R stands for 

difference E -E c v is 

the recombination/generation rate1 and the 

the local band gap. Adler's formulation of the 

heat generation takes also into account the effects of band gap 

narrowing caused by heavy doping where the gradients of the band edges 

are not necessarily equal. For non-degenerate material (4.4-3) 

simplifies to: 

(4.4-4) 

The heat generated/consumed by recombination/generation becomes 

nicely apparent in (4.4-4) compared to (4.4-1). 

A different formulation for heat generation has been recommended 

by Chryssafis and Love [4.22]. Their considerations are based on the 

fact that the total power dissipation in a device is equivalent to the 

Joule heating. This quantity has been expressed in [4.22] as an 

integral over the entire surface of the device. 

p =-I [•n·Jn +           (4.4-SJ 

  and w, are the quasi-Fermi potentials of electrons and holes, TD p 
respectively. The major assumption in (4.4-5) is that electrons and 
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holes contribute additively to the total power dissipation in a 

device. Using one of Green's theorems (4.4-5) can be transformed into 
an integral over the volume of the device. 

P = -! [·0 ·div J 0 + grad •n·J0 + ·p·div JP + grad .p.Jp] •dV (4.4-6) 

The integrand of (4.4-6) 
unit volume, thus, it denotes H. 
obtain: 

is obviously the heat generation per 
By rewriting the integrand we 

(4.4-7) 

(4.4-7) does account for heavy; doping effects as no specific 
assumptions have been made. Microscopically seen (4.4-2) is more 
attractive as the energy involved in a generation/recombination 

process is on the order of the band gap. The last term in (4.4-7) 
also predicts a heat consumption for dominant thermal recombination, 

which is absolutely implausible. (4.4-5), which is the basis for 
(4.4-7), has to be stated to be at least somewhat nonobvious. One 

should give preference to (4.4-2). 
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5. Analytical Investigations about the Basic Semiconductor Equations. 

In this chapter we review some of the existing analytical results 

which characterize the basic semiconductor equations. Of particular 

concern will be the questions of existence, uniqueness and structure 

and smoothness of solutions. These are of importance in both the 

theoretical context and the practical context, since the knowledge of 

the structure and smoothness properties of solutions is indeed 

essential for the selection of appropriate numerical solution 

procedures. The basic semiconductor equations as given in chapter 2 
are: 

div grad 
q 

'fl = t" (n - p - C) (5-1) 

8n 
div Jn - q•at = q • R ('fl, n, p) (5-2) 

div Jp 
8p 

-q • R ('fl, n, p) + q•at = (5-3) 

Jn = -q· (Pn • n ·grad 'fl - Dn•grad n) (5-4) 

Jp = -q· (Pp·p·grad 'fl+ Dp·grad p) ( 5-5) 

We have omitted in the current relations (5-4) and (5-5) terms 

which account for current components caused by bandgap narrowing and 

temperature gradients. All these effects are considered to be only 

small perturbations which just make the essential analytical results 

about the basic semiconductor equations less transparent. One should 

also bear in mind that the current relations will become potentially 

incorrect if one of the above cited effects would change the equations 

in a dominating manner (cf. section 2.3). We shall also ignore the 

impact of a non homogenous temperature distribution on the basic 

semiconductor equations for the following analytical investigations. 

By substituting the current relations (5-4) and (5-5) into the 

continuity equations (5-2) and (5-3), respectively, we obtain a system 

of three partial differential equations with the dependent variables 

qJ, n and p. 

q 
div gr ad 'I' - t · ( n - p - C) = 0 ( 5-6) 
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div (Dn·grad n - Pn·n·grad'fl) - R(\fi,n,p) (5-7) 

div (Dp·grad p + Pp·p·gradql ) - R(qJ,n,p) (5-8) 

This system will be the basis for all further considerations. 

For the purpose of analysis it is worthwhile to note that the 

parameters D , D , p and p are always positive. Therefore (5-7) and n p n p 
(5-8) can be identified as parabolic partial differential equations 
under the additional assumption that R(ql,n,p) does not contain 

differential spatial second order and temporal first order operators 
applied to n and p. It is obvious that higher order differential 

operators than the above given for R are also not allowed. (5-6) 

represents an elliptic differential equation. 

For all mathematical investigations we need a priori information 

about the domain in which (5-6) to (5-8) hold and the boundary 
conditions. These questions has not been dealt with in the preceeding 

chapters, although it is obvious that domain and boundary conditions 

are subjects to be first investigated by physical reasoning and then 

classified by mathematical considerations. However, I feel that these 
two tasks are so intensively connected that they should be carried out 

together. A minor modification of a boundary condition in the 

physical sense can change the mathematical problem drastically. 
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5.1 Domain and Boundary Conditions. 

The basic semiconductor equations (5-6), (5-7) and (5-8) are 
posed in a bounded domain D e Rn (n=l,2,3) representing the device 
geometry. In principle, all semiconductor devices are three 
dimensional structures. However, in many cases the device under 

consideration is intrinsically two or even one dimensional and then 
one can assume that the partial derivatives of the parameters and of 
the dependent variables of the basic equations perpendicular to a 
plane (line) vanish, so reducing the problem by one (two) space 

dimensions, and, thus, simplifying the numerical solution drastically. 
Most   of the existing simulation programs are restricted to a 
rectangular geometry. This is, however, not essential as far as the 

analysis of the equations is concerned, but it can simplify the 
numerical solution quite significantly. 

The boundary 3D of D is piecewise smooth for the two or three 
dimensional problem; it is represented, trivially, by two points for 

the one dimensional problem. The boundary can be split in principle 
into two parts. 

80 = 3Dp U 8DA (5.1-1) 

3op represents those parts of the boundary which correspond to 

real "physical" boundaries like contacts and interfaces to insulating 
material. 8DA consists of artificial boundaries which have to be 
introduced, 
integrated 

for instance, 
circuits. This 

to separate neighboring devices in 
second category of boundaries does, 

therefore, not correspond to boundaries in the physical sense. 

In order to illustrate this classification refer to Fig. 5.1-1 

which shows the idealized two-dimensional simulation geometry for a 
planar MOS transistor. The total domain for the simulation is bounded 

by the polygon A-B-C-D-E-F-G-H-A. It is to note that the basic 
equations (5-6) to (5-8) are only posed in the subdomain 
A-B-E-F-G-H-A. For the insulator (subdomain bounded by B-C-D-E-B) , 

one usually specifies the Laplace equation for the electrostatic 

potential, and one neglects the existence of any mobile carriers. 

div grad 'fl= 0 

n = p = C = O 

(5.1-2) 

(5.1-3) 

One should be aware that by assuming (5.1-2) and (5.1-3) no gate 
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currents can be calculated and the influence of oxide charges is also 
neglected. However, physical considerations are beyond the scope of 
our present discussion. 

The boundaries A-B, E-F, C-D and B-E can be interpreted as 
physical boundaries denoting three idealized contacts and an interface 

between the semiconductor and the insulator, respectively. These 
boundaries form 8Dp. As artificial boundaries A-H, B-C, D-E, F-G and 
G-H can be identified. These boundaries do not exist in the real 
device and are only introduced to 
obvious that these boundaries 

enable the 

are not 

simulation. It is 

introduced completely 
arbitrarily. 
device it is 
which separate 

environment. 

Having a priori information about the functioning of a 
usually possible to define somewhat natural boundaries 
the device in a self contained manner from its 

It should be noted that artificial boundaries are 
sometimes also introduced to simplify the numerical solution of the 

basic equations. The boundary G-H represents such a boundary piece. 
Considering the real dimensions of a MOS transistor we know that the 

length of the interface B-E is on the order of ljlm whereas the 

thickness of the wafer, i.e. the distance between the interface and 
bulk, is about 500Jlm. Thus, the real geometry is a long, small stripe 
which has a disastrous impact on many classical numerical solution 

methods for the basic equations. From knowledge about the operation 
of the MOS transistor we can deduce that by cutting off the simulation 

geometry at some sufficiently large distance from the interface (G-H) 

we introduce only a small error for most operating conditions of the 
MOS transistor. In particular, the voltage drop between G-H and the 
bulk contact and the potential distribution along G-H has to be known 

such that the artificial boundary G-H is an acceptable simplification 
[5.31]. 

anp, the physically motivated part of the boundary, can be 
roughly split into three classes. 

3op = 800 U 3os U 3oI (5.1-4) 

300 denotes the parts of the boundary corresponding to ohmic 

contacts; 3n8 are the parts of the boundary denoting Schottky contacts 
and 3oI are the interfaces to insulating material. 

We shall first investigate the ohmic contacts. As a boundary 
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condition for the electrostatic potential we have in general a 

functional relation between the electrostatic potential and the total 
current density, which can include first order derivatives with 

respect to time and the unit vector perpendicular to the boundary and 
integrals with respect to time and the area of the ohmic contact. We 

denote this formally with the following implicit relation: 

8'11 3r 
g('fl,at,I,at) = 0 (5.1-5) 

with: 

I= a!o(Jn + Jp)·dA (5.1-6) 

n denotes 
everywhere (that 

measure zero) • 

number of edges. 

the unit normal vector on an which exists almost 

is, everywhere except on a subset of 8n of Lebesque 

Practically, n possibly does not exist on a finite 

The simplest boundary conditions are obtained for purely voltage 

or purely current controlled contacts. 

For a contact 3n0 which is voltage controlled (5.1-5) simplifies 

to an explicit boundary condition for the electrostatic potential. 

'fl< t) - w - w.. ( t) I a - o ( 5 • i - 1 ) TD   Do -

'fbCt) denotes the externally applied bias      represents the 
built-in potential as defined in section 2.4. (5.1-7) is a Dirichlet 

boundary condition for the electrostatic potential. 

For a contact 3n0 which is current controlled in an ideal manner 

(5.1-5) can be given as: 

( (Jn + Jp) ·dA - In(t) = O (5.1-8) 
    

I 0 (t) is the total current which is forced to flow through the 

contact. Substituting the current relations (5-4) and (5-5) into the 

boundary condition (5.1-8) one obtains an integral boundary condition 

for the electrostatic potential. However, an additional condition is 
required to avoid ambiguities. One usually assumes that the ohmic 

contact is ideally conducting which means that there is no voltage 

drop in the boundary. 
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qJ(t) -   laDo = const. (5.1-9) 

The derivatives with respect to time of the electrostatic 

potential and the total current enter into the boundary condition for 

the case of a capacitive, or inductive load. The boundary conditions 

for a given external load circuit are straightforward to derive with 

minimal knowledge about circuit theory and, therfore, we skip them. 

In the mathematical sense one will obtain a fairly complex time 

dependent boundary condition for the electrostatic potential. 

So far we have only a boundary condition for the electrostatic 

potential at ohmic contacts. We additionally need conditions for the 

carrier densities. It is well established, although a matter open to 

physical criticism, to assume thermal equilibrium (which corresponds 

to infinite surface recombination velocities) and vanishing space 

charge at ohmic contacts. 

(5.1-10) 

n - p - c = 0 (5.1-11) 

These two conditions can be rearranged into Dirichlet boundary 

conditions for electrons and holes. 

    + 4·n·2 + c 1 
n = 2 (5.1-12) 

    + 4·ni2 - c 
p = 2 (5.1-13) 

Summarizing, under certain conditions (pure voltage drive), we 

have at 8n0 , the ohmic contacts, a Dirichlet boundary condition for 

the electrostatic potential, and Dirichlet conditions for the carrier 

densities. For more general applications (current drive or external 

load circuit) the boundary condition for the electrostatic potential 

is given in integral form. 

ans in (5.1-4) denotes, as mentioned, the parts of the boundary 

corresponding to Schottky contacts. The physics of Schottky contacts 

is extraordinarily complex and difficult. For the purpose of 

simulation a highly simplified model is commonly in use. For the 

electrostatic potential in the case of a voltage drive one can assume 

the Dirichlet boundary condition: 
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q!(t) - 'fb + 'fis - 'fb(t) = 0 (5.1-14) 

'fbCt) denotes again the externally applied bias; 'i's represents 
the Schottky barrier height, which is a characteristic quantity of the 
metal and the semiconductor with which the Schottky contact is 
fabricated. The numerical value of   is usually on the order of half s 
a volt to one volt. A comprehensive summary can be found in the book 

by Sze [5.39].   is again the built-in potential which in this 
context is frequently omitted and implicitly accounted for with a 

properly adjusted value for 'i's· For the continuity equations it is 
more difficult to give boundary conditions which are physically 
reasonable and still sufficiently simple for the purpose of modeling. 

The carrier concentrations at a Schottky contact depend in general on 

the current density passing through the contact. Investigations about 
the interplay of the thermionic emission and diffusion theories have 
been presented in [5.4], which lead to the following boundary 
conditions [5.8].: 

    + 4•ni2 + c 
Jn·n = -q·vn • (n - ) 2 (5.1-15) 

    + 4·n·2 - c J. 
Jp·n = q·vp· (p - ) 2 (5.1-16) 

vn' vp denote the thermionic recombination velocities for 
electrons, holes at the contact. Note that (5.1-15), (5.1-16) reduce 
to ( 5 • 1-12) , (5.1-13) for infinite 

velocities. However, in, e.g. [5.40], it 

simulation of FETs that vn and vp are zero 
assume that no current at all flows through 

Jn·n = 0 

thermionic recombination 

has been assumed for the 
which is equivalent to 

the Schottky contact. 

(5.1-17) 

(5.1-18) 

This assumption is at first glance reasonable since for most of 

the practical operating conditions the Schottky contact operates in 
the reverse biased mode, where the current flow is indeed relatively 
small. However, one will find an unrealistic decrease of the carrier 

concentrations in the vicinity of the contact which gives rise to 

numerical problems. It is obvious that (5.1-15) and (5.1-16) are only 

applicable for a reverse biased contact. These boundary conditions 
transform after straightforward calculations into mixed boundary 

conditions for the carrier densities. 
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In his dissertation Laux [5.16] has used another model for the 

boundary conditions for the continuity equations. 

% > 0 

n = 

'lb< 0 Nc·exp(-
q·Qls 1 
                              

k•T J'J" (Q's - 'fb) 14. ,_ ________ _ 
k•T 

Ne 
- ln- + 1 

ND 

(5.1-19) 

(5.1-20) 

These conditions are appropriate only, as it has been the 

intention of the author, for Schottky contacts on n-doped material. 

It is interesting to note that in this model the hole density (the 

minority carrier density) is independent of the applied bias. This 
corresponds to an infinite thermionic recombination velocity for holes 

at the Schottky contact. 

The last category of boundaries in (5.1-4) are the interfaces 8n1 
between the semiconductor and insulating material. At such interfaces 

the law of Gauss in differential form must be obeyed. 

8q1 8'i' 
tsem·3-lsem + tins·a-lins = Oint (5.1-21) 

nlsel'Y\ n1it1s 
t and t. denote the permittivity in the semiconductor and sem ins 

the insulator, respectively. Qint represents charges at the 
interface. For interfaces to a thick insulator, e.g. field oxide, one 

frequently assumes in the insulator a vanishing electric field 

component perpendicular to the interface, so that (5.1-21) simplifies 

to: 
8q1 

tsem·anlsem = Oint (5.1-22) 

Quite often the existence of interface charges is also neglected. 

(5.1-22) then reduces to a Neumann boundary condition for the 
electrostatic potential. 

(5.1-23) 

In Fig. 5.1-1 B-E denotes an interface, as mentioned. In several 
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MOS simulation programs the Laplace equation is not solved explicitly 
in the insulator. Instead a one dimensional potential drop 

perpendicular to the interface is assumed which leads to a mixed 
boundary condition for the electrostatic potential at the interface: 

8\fl UG - 'ii 
            - tins· t· = Oint (5.1-24) vn ins 

Ug denotes the electrostatic potential at the gate contact C-D; 
t. is the thickness of the insulator C-B. It is obvious that it is ins 
much easier to program the mixed boundary condition (5.1-24) instead 

of solving the Laplace equation in the insulator. However, if the 
length of the interface B-E is not extraordinarily large compared to 

the thickness of the insulator the error introduced is, from my own 
personal experience, intolerably large. 

For the continuity equations the current components perpendicular 
to the interface must equal the surface recombination rate RSURF which 

we have discussed in section 4.2. 

(5.1-25) 

(5.1-26) 

Quite frequently the existence of surface recombination is simply 
ignored by assuming infinite surface recombination velocities which 
leads to the boundary conditions ( 5 .1-17) , ( 5 .1-18) . Under certain 

circumstances, depending on the specific device and its operating 
conditions, this can be justified. 

The second category we have to deal with is, as outlined, the 
artificial boundary conditions. Here one assumes either the natural 
boundary conditions which guarantee that the domain under 

consideration, i.e. the simulated device area, is self contained 
(5.1-27) to (5.1-29), or one specifies Dirichlet values for the 

electrostatic potential and the carrier densities, which are a priori 
estimated (e.g. at G-H in Fig. 5.1-1). 
3q1 
311 = o (5.1-27> 

3n 
a11 = 0 (5.1-28) 
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(5.1-29) 

The applicability of these boundary conditions has to be 
justified by physical and mathematical reasoning. In Fig. 5.1-1, for 

instance, the distances A-B and E-F must be sufficiently large that 
the error introduced by the artificial boundary conditions at A-H and 

F-G is tolerably small. A definite requirement for the applicability 
of the boundary conditions (5.1-27) to (5.1-29) is that the 

derivatives of the parameters c, Dn' DP, Pn and Pp with respect to the 
unit normal vector at the boundary vanish along the artificial 
boundary. 

It is to note that the basic semiconductor equations only 
constitute a time dependent problem if the boundary condition for the 

electrostatic potential is time dependent. If the boundary condition 
for the electrostatic potential is time invariant the semiconductor 

equations reduce to a system of three coupled elliptic equations. 
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5.2 Dependent Variables. 

For analytical purposes it is often helpful to use dependent 

variables other than n and p in the basic equations. One set of 

variables which is frequently employed is ('fl,u,v) which relates to the 

set ('fl,n,p) by: 

n = 

p = 

Ut = 

div 

'II 
n 1· ·exp(-) • u Ut 

ni·exp(-
'II 
-) ·v Ut 

with: 

k•T --q 

Substituting (5.2-1) and (5.2-2) into (5-6) to (5-8) 

q 'II • 
grad. - c· (ni·exp(Ut) ·u - ni·exp(- Ut) ·v - C) = 0 

• div (Dp·ni·exp(- Ut) ·grad v) - R(.,u,v) = 

The current relations transform to: 

(5.2-1) 

(5.2-2) 

(5.2-3) 

yields: 

(5.2-4) 

(5.2-5) 

(5.2-6) 

(5.2-7) 

(5.2-8) 

We have made use in (5.2-5) to (5.2-8) of the simple Einstein 

relations ( 5. 2-9) , ( 5. 2-10) which are cons is tent with the assumed 

current relations (cf. section 2.3). 

(5.2-9) 

(5.2-10) 

The main advantage of the variables ('fl,u,v) becomes apparent if 

one considers the static semiconductor equations. Then the right hand 
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sides of (5.2-5) and (5.2-6) are zero and the continuity equations are 

self-adjoint partial differential equations. The theory and solution 

methods for systems of self-adjoint partial differential equations 

have reached at present a very high standard such that a solution of 

the static semiconductor equations in {'fl,u,v) can be carried out very 
efficiently. Therefore, the dependent variables {'fl,u,v) have been 

used quite intensively, e.g. [5.1], [5.3], [5.14], [5.18], [5.36], 
[5.37]. However, the major drawback of the variables u and v lies in 

the enormous dynamic range required for real number representation in 
actual computations. By recalling the definitions (5.2-1) and (5.2-2) 

we find: 

(5.2-11) 

p "' v =-·exp(-) ni Ut (5.2-12) 

At 300K temperature Ut equals 0.02585V. Thus the exponential 
terms in (5.2-11), (5.2-12) vary more than 32 orders of magnitude for 

qi e [-1,l]V. It is therefore obvious that computations with the 

variables u and v are strictly limited to low voltage applications. 

However, for analytical investigations the set (ql,u,v) is in many 

situations superior to other variables. 

Another set of dependent variables, namely (ql,'f>n,'f>p), is used as 
a natural consequence of the derivations of the current relations 

(cf. section 2.3). This set relates to ('f',n,p) through the well known 

Boltzmann approximations for the carrier densities. 

'I' - 'Pn 
n = ni·exp( Ut ) (5.2-13) 

(5.2-14) 

'Pn and 'Pp can be interpreted as the quasi-Fermi potentials of 
electrons and holes, respectively. However, (5.2-13) and (5.2-14) can 
certainly be regarded purely as a mathematical change of variables, so 

that the question of the validity of Boltzmann statistics is misplaced 
at this point. It has to be considered earlier, in the derivation of 

the current relations. The basic equations in the variables ('fl,'f>n,'f>p) 

read: 
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q; - 'Pn - q; q ifip 
div grad tp - ....-•(ni·exp( ) - ni•exp( Ut ) - C) = 0 

  Ut (5.2-15) 

tp - 'Pn 
div (Jin· n i · exp ( ) ·grad 'Pn> + R (tp,fi>n ,'f>p) = Ut 

1 tp - 'Pn 8'Pn 8q1 
-·n· •exp ( ) . (Ot - at> Ut 1 Ut (5.2-16) 

'Pp - qi 
div (Pp·ni•exp( Ut ) ·gr ad 'Pp) - R (ql,'f>n ,'f>p) = 

(5.2-17) 

The current relations transform to: 

Jn 
qi - 'Pn 

= -q·Pn·ni•exp( ) ·grad 'Pn Ut 
(5.2-18) 

'Pp - qi 
'Pp Jp = -q·Pp·ni·exp( Ut ) ·grad (5.2-19) 

Again we have made use of the Einstein relations 

(5.2-10). 

of the 

( 5. 2-9) and 

An advantage of the set (ql,'f> ,'f> ) is that all variables are n p 
same order of magnitude. Furthermore, negative carrier 

densities n and p are a priori excluded, which may appear due to 

numerical roundoff errors as undesired nonphysical solutions if one 

uses (ql,n,p) or (ql,u,v) as dependent variables. As a drawback of the 

set (ql,'f> ,'f> ) , it can be clearly seen that the current relations, and n p 
thus the continuity equations, are exponentially nonlinear in •n and 

tpp. The dependent variables (ql,'f> ,tp ) have been used for numerical n p 
computations by, e.g. [5.12), [5.13), [5.16], [5.17). A comparison of 

the sets (ql,'f> ,'f> ) and (ql,u,v) for computations has been performed in n p 
[5.10) with the anticipated result that for low bias problems the set 

(ql,u,v) is preferable. I personally favor the set (ql,n,p) for 

computations and I feel that this set should be recommended for that 

purpose. 

We have not transformed the boundary conditions given in 

section 5.1 to the above given sets of dependent variables. However, 

this is only a matter of straightforward calculations. It can 

therefore be omitted here. 

The last set of dependent variables we shall briefly discuss are 
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the stream functions which have been introduced for modeling 

from fluid semiconductor devices by Mock [5.25] using 

dynamics. The stream function technique has been 

Toyabe et al. [5.41] for application to bipolar 

methods 

further developed by 

devices. The basic 

idea is as follows. Assume we have a device domain D bounded by N 

smooth ideal ohmic contacts with Dirichlet boundary conditions and N 

piecewise smooth simplified interfaces (or artificial boundaries) with 

Neumann boundary conditions. 

80 = 
N 
u 8noi u 

i=l 

N 
u 8ori = 8n0 u 8nr 

i=l 
(5.2-20) 

Recalling the basic equations in the variables (ql,u,v) we may 

readily split u and v into a recombination and a solenoidal part. 

u = ur + Us (5.2-21) 

v = vr + Vs (5.2-22) 

By just considering the static problem (i.e., right hand sides of 

(5.2-5), (5.2-6) are zero) we may require for ur, the recombination 

part of u: 

div                •grad ur) - R(ql,u,v) = 0 

div 

and for us, the solenoidal part: 
qi 

(Dn·ni·exp(Ut) ·grad Us) = 0 

Similarly we have for v : r 
qi 

div (Dp·ni·exp(- Ut) ·grad vr) - R(ql,u,v) = 0 

and for v : s 
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Vs laDo = VD (5. 2-33) 

The solenoidal part of the current densities for a device with N 

contacts is conveniently split into N-1 components. 

'ii N-1 
q•Dn•ni•exp(Ut) •grad Us= r Ini·grad x Qni (5.2-35) 

i=l 

The scalars I . and I . are the respective electron and hole n1 p1 
current components flowing from an arbitrarily chosen ohmic contact 

      the source contact, to the N-1 other ohmic contacts 8Dom· Qni 
and 9pi are the corresponding normalized stream functions. Fig. 5.2-1 
shows an example for the possible arrangement of the source contacts 

and the current components I . and I . in a lateral bipolar n1 p1 
transistor. As it is arbitrary, the reference contact has been chosen 

to be the emitter for the electron current components and the base for 

the hole current components, a choice which is physically motivated. 

It follows from (5.2-35), (5.2-36) and (5.2-26), (5.2-32) that 

each of the stream functions 9 . and 9 . satisfies: n1 p1 

x Bni) = o 1 'ii 
grad x             ·grad 

Dn Ut 
(5.2-37) 

(5.2-38) 

Furthermore, one has to chose calibration conditions for the 

stream functions which most conveniently are taken to be: 

div Sni = 0 (5.2-39) 

div epi = 0 (5.2-40) 

The boundary conditions for the stream functions are very 
complex, particularly for the three dimensional problem. Therefore, 

we shall specialize here to the two dimensional problem. In that case 

the stream function vectors simplify highly as only one component of 

the full vector remains significant. 
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( 0 ) 

eni 
( ) 

= ( 0 ) (5.2-41) 
( 

9ni 
) 

( ) 

0 ) 

Bpi 
) 

= 0 ) 

9pi 
) 
) 

(5.2-42) 

The boundary conditions for the stream functions read then: 

n·grad 9nil8oo = 0 (5.2-43) 

9nil8or = O or 1 

n·grad 9pilaoo = 0 

9pil8or = o or 1 

(5.2-44) 

(5.2-45) 

(5.2-46) 

Whether a stream function is 0 or 1 on an insulating boundary 

segment is most easily explained verbally. If we choose arbitrarily 

the ohmic contact aooj as source contact for all current components 
flowing to the N-1 other ohmic contacts 8DOi' the stream functions are 
one (zero) on all insulating segments which are on the right (left) 

hand side on the path from 8o0 j to 8DOi" Fig. 5.2-2 summarizes the 
boundary conditions for the example of Fig. 5.2-1. An extensive 
treatment of the theory of stream functions and the associated 
problems can be found in the book by Mock [5.29]. From my personal 
point of view the stream function approach is effective only for 
fairly simple problems, e.g. two dimensional simulation of MOS 
transistors where majority carrier current flow is neglected. For 
general application the complexity of the stream function approach 

becomes overwhelming and is not competitive with the approach of 
directly using the carrier densities as dependent variables. 
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5.3 The Existence of Solutions. 

The question about existence of solutions of the basic 
semiconductor equations with their associated boundary conditions for 
a specific device is important in view of mathematical considerations 
only. Physically, of course, solutions obviously exist. However, 
since the equations are models they are never exactly correct. How 

well posed mathematically a model is, gives in some sense a measure of 

the quality of the model. For instance, if one has a mathematical 
proof that no solutions exist for some model, this in general 

indicates that the model is wrong. 

For the semiconductor equations it is impossible to prove the 
existence of solutions without restrictions on the parameters 
involved. These restrictions apply primarily to the recombination 

rate and the carrier mobilities. We shall first consider the 
stationary problem. The boundary conditions for all dependent 
variables have been assumed in all investigations I am aware of to be 

piecewise Dirichlet and Neumann conditions. In [5.27] Mock has given 

an existence proof for zero recombination and constant mobilities. 
Similar results have been obtained by Bank et al. [5.2], where the 
mobilities are allowed to be smooth functions of position. Zero 
recombination, however, was still a requirement. In [5.29] an 

existence proof has been given for a bounded recombination rate and 
constant carrier mobilities. Seidman [5.33] has shown the existence 

of solutions for Shockley-Read-Hall recombination and virtually no 

restrictions on the carrier mobilities (except for being bounded 

uniformly away from zero) • Existence theorems which account for 
avalanche generation have not been published so far. 

For the transient problem all important results concerning the 
existence of solutions have been presented by Mock [5.26], [5.29]. 
Solutions exist when the recombination rate is bounded and independent 
of the electrostatic potential. Furthermore the carrier mobilities 
have to be assumed to be smooth functions of position only, and the 

ratio of electron and hole mobility must be constant. Under these 

assumptions a solution exists for arbitrarily long time. If the 
carrier mobilities are constant, the solution is bounded. In case 

that the carrier mobilities depend on the electric field Mock could 
only show that solutions exist for t<tl, tl sufficiently small. 
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It is interesting to note that the existence of solutions for the 

static problem depends primarily upon restrictions on the 

recombination rate, whereas for the transient problem the restrictions 
on the carrier mobilities are much stronger. 
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5.4 Uniqueness or Nonuniqueness of Solutions. 

For the static semiconductor equations it cannot be expected that 
it is possible to prove generally the uniqueness of solutions. 
Physical mechanisms like avalanche generation and field dependent 
carrier mobilities are potential sources for multiple stationary 

solutions, e.g. [5.15], [5.17], [5.32]. Positive results on the 
uniqueness of a stationary solution can be expected only in a few 
situations. Mock [5.24] has proved the uniqueness of the equilibrium 
solution (homogeneous boundary conditions, i.e., no bias). Under the 

assumption of zero recombination and constant carrier mobilities Mock 
[5.28] could further show the uniqueness of the solution for 
sufficiently small bias. This proof has been extended in [5.29] for a 

bounded recombination rate which is independent of the electrostatic 

potential and has positive and bounded partial derivatives with 
respect to the carrier densities. Similar results have been obtained 
by Seidman [5.42]. More results, to my knowledge, are not available. 

For the dynamic problem it is much easier to show uniqueness of 
solutions. It can generally be expected that a solution is unique for 
specified initial data (ql,n,p) which fulfill the Poisson equation 
[5.26], [5.29]. 
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5.5 Scalin9...:_ 

Since the dependent variables ('{J,n,p) in the basic equations 
(5-6), (5-7) and (5-8) are of greatly different orders of magnitude 

and show a strongly different behavior in regions with small and large 
space charge, the first step towards a structural analysis of the 

basis equations has to be appropriate scaling. A standard way of 
scaling has been given by DeMari [5.5], [5.6], The scaling factors are 

summarized in Tab. 5.5-1. 

quantity 

  

x 

'I' 
n,p,C 

Dn,Dp 
pn,pp 
R 

t 

symbol 

XO 

  
co 

Do 

value 

  C·k·T/(q2 ·ni) 
k•T/q 

ni 
1 

     

D ·C /x 2 
02 0 0 

XO /DO 

Tab. 5.5-1: Scaling Factors after DeMari 

x denotes the independent spatial variables. 
equations will then read: 

div grad 'fl - (n - p - C) = 0 

div (Dn·grad n - Pn·n·grad 'I') - R('fl,n,p) 

div (Dp·grad p + Pp·p·grad 'I') - R('fl,n,p) 

The scaled current relations are: 

Jn = Pn·n·grad 'fl - Dn·grad n 

Jp = Pp·p·grad 'fl+ Dp·grad p 

The scaled basic 

(5.5-1) 

(5.5-2) 

(5.5-3) 

(5.5-4) 

(5.5-5) 

All quantities in (5.5-1) to (5.5-5) are scaled. The 
differential operators are taken with respect to the scaled 

independent variables. For the sake of transparency, however, an 
explicit indication (e.g. an index) has been omitted. It should 

further be noted that the equations (5.5-1) to (5.5-5) have been 

multiplied with a combination of the scaling factors, i.e.: 

Scaling 



x 2 
0 

'?; 

- 169 -

for (5.5-1) 

for (5.5-2), (5.5-3) 

for (5.5-4), (5.5-5) 

The scaled equations are very attractive from one computational 

point of view, namely, there are no operations with constants involved 
in their evaluation. However, from a mathematical point of view this 

scaling is not satisfying. The scaled dependent variables are not at 
all of the same order of magnitude and the scaled space charge may 

take considerably large values. 

A scaling which is more rigorous from the mathematical point of 
view has been introduced in [5.43], [5.45] and further developed in 

[5.19], [5.20]. The factors for this scaling are summarized in 

Tab. 5.5-2. 
quantity 

-x 

n,p,C 

Dn,Dp 
pn,pp 
R 

t 

symbol value 

max (x-y) , x, yen 

k•T/q 

max!C(x) I, xeD 

max(Dn(x) ,Dp(x)), xeD 

0 ol'l'o 
2 

Do·Co/xo 
x 2/D 

0 0 

Tab. 5.5-2: "Better" Scaling Factors 

The basic equations will transform with this scaling into: 

A2 ·div grad 'fl - (n - p - C) = 0 

8n 
div (Dn·grad n - Pn·n·grad 'ii) - R(ql,n,p) = at 

8p 
= at div (Dp·grad p + Jlp·p·grad   - R('f',n,p) 

with: 

Scaling 

(5.5-6) 

(5.5-7) 

(5.5-8) 
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'Po ·c 
(5.5-9) 

The current relations after scaling appear formally identical to 

(5.5-4), (5.5-5). Analogously, the scaled continuity equations 

(5.5-7), (5.5-8) are formally identical to (5.5-2), (5.5-3). However, 

some of the scaling factors differ by orders of magnitude. The 

equations (5.5-6) to (5.5-8) and the current relations have also been 

multiplied with combinations of the scaling factors, namely: 

t 

x 2 
0 

for (5.5-1) 

for (5.5-2), (5.5-3) 

for (5.5-4), (5.5-5) 

In order to illustrate the differences of these two scaling 

approaches a summary of the numerical values of the scaling factors is 

given in Tab. 5.5-3. A device with a 30Jlm diameter of the simulation 

geometry, a maximum doping concentration of lo 20cm- 3 and a maximum 

mobility of 1400cm2v-ls-l has been assumed. The scaling factors are 

calculated for 300K temperature. 

quantity Tab. (5.5-1) Tab. (5.5-2) 

x 4,09·10-3cm 3·10-3cm 

'I' 0,0259V 0.0259V 
n,p,C lo 10cm-3 lo 20cm-3 

Dn,Dp 1 36,2cm2s-l 

Jln,Jlp 2 -1 -1 1400cm2v-ls-l 38.7cm V s 
R 6·10 14cm-3s-l 4·10 26cm-3s-l 

t -5 1,67·10 s 2,49·10-7 s 

Tab. 5.5-3: Numerical Values of the Scaling Factors 

Most pronounced is the difference of the scaling factors for the 

carrier densities and the doping concentration. It is to note that in 

the scaled Poisson equation (5.5-6) the space charge is scaled to 

unity which allows one to take directly the residuals of (5.5-6) as a 

measure of the computational accuracy for actual computations. 

Scaling 
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Analogous statements hold for the continuity equations. A comparison 

of the numerical values of the multiplication factors for the above 

given example is given in Tab. 5.5-4. 

Poisson equation 

Continuity equations 

Current relations 

Tab. (5.5-1) 

-4 6,47·10 

l,67·10-15 

6 2,55·10 

Tab. (5.5-2) 

6,47·10-14 

2,49·10-27 

5,17·10-6 

Tab. 5.5-4: Numerical Values of Multiplying Factors 

The parameter ).2 in (5.5-6) is a very 

numerical value for the above given example 

small constant; its 
is 1,86·10-lO. By 

physically reasoning ). can be identified as the scaled minimum Debye 

length in the device. The fact that the Laplacian in the Poisson 

equation is multiplied with a very small constant enables an 

asymptotic analysis of the basic semiconductor equations by means of 

singular perturbation theory. This will be the topic of the next 

section. 

It should be noted 

preferable to scale the 

applied bias instead 

that for high voltage problems 

electrostatic potential with the 

of the thermal voltage k·T/q. 

it is 

maximum 

Such a 

modification of the scaling has only 

analysis of the basic equations. 

aspects it is advantageous since all 

then maximally 0(1). 

a minor impact on the following 

However, in view of computational 

scaled dependent variables are 

Scaling 
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5.6 The Singular Perturbation Approach. 
' 

The scaled basic semiconductor 

constitute a singularly perturbed 

perturbation parameter A [5.21]. 

because it allows the application 

equations (5.5-6) to (5.5-8) 

boundary value problem with 

qualitative analysis of the basic 

This interpretation is attractive 

of classical strategies for the 

equations, e.g. [5. 7], [5.9]. 

At first it seems intriguing to try to solve the singularly 

perturbed semiconductor equations by a regular expansion in A. 
00 - . 

w(x,t,A) = r Wi(X,t) ·A1 

i=O 

with: 

( 'I' ) 
( ) 

w = ( n ) 
( ) 
( p ) 

(5.6-1) 

(5.6-2) 

It is to remark that the w. (x,t) are independent of land shall 
1 

represent "slowly varying" quantities (slow compared to the variation 

of the doping profile across pn-junctions). Such an expansion implies 

a smooth dependence of the solution upon l. By inserting (5.6-1) into 

equations (5.5-6) to (5.5-8) and setting l equal to zero we obtain the 

so-called reduced problem. 

n0 - Po - C = O (5.6-3) 

8n0 
div (Dn·grad n0 R <'Po' no, Po) = Tt (5.6-4) 

8po 
div (Dp·grad Po + Pp·p0 ·grad '1'0 ) R <'Po, no, Po) = Tt (5.6-5) 

In semiconductor device physics this problem is called the 

charge-neutral approximation and has proved to be very valuable. 

Note, that it has been derived here very formally. owever, as we have 

mentioned before the net doping distribution C varies rapidly; 

actually, it changes almost abruptly at pn-junctions. Therefore, the 

expansion (5.6-1) is insufficient to describe solutions of the basic 

equations completely. We can see this from relation (5.6-3) which - -cannot be fulfilled with slowly varying quantities n , p for rapidly 
0 0 

changing c. 

The Singular Perturbation Approach 
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A pn-junction can be described in more mathematical terms as a 

n-1 dimensional manifold r (n denotes the number of space dimensions) 

which splits the domain into two subdomains. If there exists more 

than one pn-junction in a device, which usually is the case, the 

simulation domain has to be split into subdomains whose "inner" 
boundaries represent the pn-junction. Since the procedure to be 

outlined in the following is the same for each of the junctions it is 

demonstrated for one pn-junction only, without loss of generality. By 

partitioning the simulation geometry along the pn-junction into 

subdomains it is asured that the net doping concentration C does not 

change sign within each of the subdomains. We, furthermore, split the 

doping profile within each subdomain into two parts: 

c = c + c (5.6-6) 

C represents the slowly varying (within the subdomain) 
" contribution to the doping concentration, and C is rapidly (typically 

exponentially) decaying to zero away from the pn-junction. For an 
" ideal abrupt junction C would be zero. We replace now the total 

doping concentration C in (5.4-3) by the smooth part c. 
n0 - Po - C = 0 (5.6-7) 

As the expansion (5.6-1) is inappropriate to describe the full 

solution in the vicinity of a pn-junction r it has to be supplemented 

by "layer" terms according to singular perturbation theory. 

w ex, t ,A) = (5.6-8) 

The following coordinates have been employed. r=r(x) is the 

point on the pn-junction r closest to x ; s=s(x) denotes the distance 

between x and r. These coordinates are illustrated in Fig. 5.6-1. 

If 

(5.5-8) 
one evaluates the 
after substituting 

scaled continuity equations (5.5-7) and 

(5.6-8) and carrying out the 

differentiation, one obtains, by comparing coefficients of order 
" " " O(A-1 ), a system of ordinary differential. equations in ('1'

0
,n1 ,p1 ) (cf. 

" " [5.23]). The quantities n
0

, p
0 

vanish which means that no zero order 
internal layers exist. 

However, my concern here is only the reduced problem. In order 

The Singular Perturbation Approach 
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to define this problem completely, four "interface conditions" have to 

be additionally imposed on the two second order equations (5.6-4) and 

(5.6-5) at the pn-junction r. These are obtained by matching the full 

solution (5.6-8) at the pn-junction. 

- -'th 
no· exp( Ut) Ix- = 

- -% 
n0 ·exp(-) 1-Ut x+ 

- 'Po 
Po" exp(-) 1-Ut x-

- 'Po 
= Po·exp(Ut) Ix+ 

(5.6-9) 

(5.6-10) 

(5.6-11) 

(5.6-12) 

wlx- and wlx+ denote the onesided limits of w as x tends tor 
from each side of the junction. n denotes the unit normal vector on 

r.     and Jpo are the zeroth order terms of the slowly varying parts 
of the scaled electron and hole current densities. 
--
Jno = Pn·n0 ·grad 'Po Dn·grad no (5.6-13) 

J;o = Pp·p0 ·grad 'Po + Dp·grad Po (5.6-14) 

Equations (5.6-7) and (5.6-4), (5.6-5) together with the 

interface conditions (5.6-9) to (5.6-12) and the boundary conditions 

defined in section 5.1 represent the final reduced problem whose 

solution is an O(l) approximation to the full solution away from r and 

away from the boundary segments 808 , (8D 1 ) as will be explained 
subsequently [5.19], [5.20], [5.38]. This reduced problem is a 

valuable tool for the development and analysis of numerical solution 

methods for the _full problem, since the reduced problem, particularly 

conditions (5.6-9) to (5.6-12), has to be solved implicitly by any 

discretization method which should deliver sufficient accuracy for a 

reasonable number of grid points [5.30], [5.34], [5.35]. 

One crucial point in these considerations is the behavior of the 

solution of the full problem and of the expansion (5.6-8) close to the 

boundary 8n. By setting A equal to zero we lose one degree of freedom 
in imposing boundary conditions. Therefore, the reduced solution will 

only be close to the full solution (i.e., the solution of the singular 

perturbation problem (5.4-14)) near those parts of the boundary OD 
where the boundary conditions do not contradict the algebraic equation 
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(5.6-7) [5.23]. This is the case for ideal ohmic contacts, but not 

for Schottky contacts and interfaces where large normal components of 

the electric field occur, which lead to boundary layers [5.22). 
However, one can overcome this problem by adding to the boundary 

layers at Schottky contacts and interfaces layer terms in (5.6-8) in a 
similar manner as has been done for the internal layers at 

pn-junctions [5.23). Anyway, the reduced solution will for many 
applications (numerical computations) constitute an excellent initial 

guess for the full solution, as has been confirmed by numerical 
experiments [5.11). 
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6. The Discretization of the Basic Semiconductor Equations. 

The system of partial differential equations which forms the 

basic semiconductor equations together with appropriate boundary 

conditions has been investigated and characterized analytically in the 

previous chapter. This system cannot be solved explicitly in general. 

Therefore, the solution must be calculated by means of numerical 

approaches. We shall consider in this chapter such solution 

procedures for the scaled equations which read: 

·).2·div grad 'I'- (n - p - C} = 0 

8n 
div (Dn·grad n - Pn·n·grad   - R('f',n,p} = Ot 

8p 
div (Dp•grad p + Pp·p·grad   - R('f',n,p} = 8t 

(6-1} 

(6-2} 

(6-3) 

Any numerical approach for the solution of such a system consists 

essentially of three tasks. First, the domain, i.e. the simulation 

geometry of the device, has to be partitioned into a finite number of 

subdomains, in which the solution can be approximated easily with a 

desired accuracy. Secondly the differential equations have to be 

approximated in each of the subdomains by algebraic equations which 

involve only values of the continuous dependent variables at discrete 

points in the domain and knowledge of the structure of the chosen 

functions which approximate the dependent variables within each of the 

subdomains. In that way one obtains a fairly large system of, in 

general nonlinear, algebraic equations with unknowns comprised of 

approximations of the continuous dependent variables at discrete 

points. The solution of this system is the final third task to be 

carried out. As this problem can be viewed rather independently it 

will be treated separately in chapter 7. 

It should be noted a priori that with the above outlined 

procedure it is impossible to obtain an exact solution of the 

analytically formulated problem. Instead one can obtain in the best 

case an exact solution of the nonlinear algebraic equations which form 

the discrete problem. Such a solution represents a good approximation 

to the solution of the analytically formulated problem depending upon 

the fineness of the partitions of the simulation subdomains and the 

suitability of the approximating functions for the dependent variables 

within the subdomains. 
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There are many classical methods which propose constructive 
possibilities for the partitioning of the domain (discretization) and 

the choice of functions to approximate the dependent variables within 
the subdomains. However, many techniques have been developed 

especially for the semiconductor equations. These techniques are 
probably not essential from a mathematical analysis point of view, but 

they allow an enormous gain in computational efficiency, which for the 

purposes of engineering can be indeed essential. 

For the derivation of the discrete problem we shall discuss in 

this chapter the "finite difference method", the "finite box method" 
which indeed is just a more general finite difference method and the 

"finite element method". We shall concentrate somewhat more on the 

finite difference method as it has proved to be in some sense 

advantageous for the solution of the semiconductor equations compared 

to the finite element method. However, this statement is not rigorous 

in a mathematical sense; a serious mathematical preference for one 

method    the other cannot be given. The finite difference method and 

the finite element method are frequently considered mutually 

independent from the very beginning. However, it is often a matter of 

interpretation only to obtain exactly the same discrete equations from 

either a finite difference approach or a finite element approach 

[6.51]. 

For the sake of simplicity in nomenclature we shall primarily 

consider the case of two space dimensions in this chapter. Most 

results can be generalized to three space dimensions in a 

straightforward manner. 

We shall first consider the solution of the static semiconductor 
equations which are obtained automatically if the boundary conditions 

for the electrostatic potential are time invariant. The partial 
derivatives of the electron and hole density vanish identically in 

that case. Then we have to deal with an elliptic system of partial 

differential equations which reads in scaled form: 

       grad 'fl - n + p + C = 0 ( 6-4) 

div (Dn·grad n - Pn·n·grad   - R('f',n,p) = 0 ( 6-5) 

R ('fl, n, p) = 0 ( 6-6) 
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These static semiconductor equations are considered in 
section 6.1, section 6.2 and section 6.3 for a specialized finite 
difference method, a finite box method and the finite element method, 
respectively. The transient problem given by (6-1), (6-2) and (6-3) 

is dealt with in section 6.4 The heat flow equation is not considered 
explicitly, since its 
constructive remarks for 

treatment is analogous in 

the design of appropriate 
meshes are given in section 6.5. 

concept. Some 
discretization 
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6.1 Finite Differences. 

In the classical method of finite differences the domain, in 
which a solution of a differential equation is sought, is partitioned 
into subregions by a mesh which is a set of meshlines parallel to the 
coordinate axes. This task is most easily accomplished for a 
rectangular domain because the boundaries of the domain are then 
straight lines parallel to the coordinate axes too; they coincide 
therefore with mesh lines. We put NX lines parallel to the y-axis and 
NY lines parallel to the x-axis through a rectangular domain. The 
first and the last line coincide with the boundaries. We have NX·NY 
intersection points of these lines on which an approximate solution 
for the differential equations (6-4), (6-5) and (6-6) is sought. An 
example of such a mesh is given in Fig. 6.1-1. In this example NX=41 
and NY=22. The x-axis lies parallel to the surface with positive 

direction from emitter to collector and the y-axis is perpendicular to 
the surface with negative direction into the bulk. The total number 
of points is 902; 122 points are on the boundaries; 6 points lie on 
the emitter A-B; 9 points on the base C-D and 6 points on the 
collector E-F. In the following we shall derive the algebraic 
equations for each of the meshpoints. 

At first we replace the differential equations at the inner 
points by difference equations where only the nearest neighboring 

points for each of the inner points are invoked. We restrict 

ourselves here to the classical five point discretization. 
adopted nomenclature is shown in Fig. 6.1-2. xi (yj) is assumed to 
the distance from the origin to the i-th (j-th) mesh line parallel 
the y-axis (x-axis). We shall use the following abbreviations: 

The 
be 
to 

k· = J 

Xi+l - Xi 

Yj+l - Yj 

i=l,NX-1 

j=l,NY-1 

To simplify the notation we further use: 
u· . l,J i=l,NX j=l,NY 

Xi+Xi+l 
Ui+l/2,j = u ( , Yj) i=l,NX-1, j=l,NY 2 

Yj+Yj+l 
i=l,NX j=l,NY-1 Ui,j+l/2 = u(xi, 2 ) 

/ 
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There exist several strategies to derive the difference equations 
from the differential equations. The first one which we shall discuss 
here is, in my personal opinion, the simplest one where the 
differential operators are directly replaced by difference operators. 
We first write explicitly "div" and "grad" in the basic equations. 

2 S2tp S2tp 
.1. • (D + 8y2) - n + p + c = 0 (6.1-6) 

s Sn S• s Sn s.., 
3X(Dn•JX Pn·n·ax) + Oy(Dn·ay Pn·n·ay) - R(tp,n,p) = 0 (6.1-7) 

a Sp a. a 8p a. 
ax(Dp·ax + Pp·P·ax) + Oy(Dp·ay + Pp·P·ay) - R('fl,n,p) = 0 (6.1-8) 

We have assumed, as already mentioned at the outset, that the 
problem is intrinsically two-dimensional which means that the partial 
derivatives of all parameters with respect to the third independent 
space variable are zero. 

         that u is three times continously differentiable we 
replace all first order partial derivatives by: 

au Ui+l/2,j-Ui-1/2,j hi-1-hi 82u hi3+hi-13 
axl i, j = + 4 ·1x2I i,j + 0 ( 

hi+hi-1 
) 

hi+hi-1 
(6.1-9) 

2 

au Ui,j+l/2-Ui,j-1/2 kj-1-kj 82u kj3+kj-13 
ayl i,j = + 4 ·ay2li,j + 0( kj+kj-1 ) kj+kj-1 

(6.1-10) 

2 

We shall use in the following a pessimistic estimation of local 
truncation errors, which greatly simplifies the notation. The local 
truncation error is the residuum which occurs when inserting the 
solution of the continuous problem into the discrete scheme. We 
define: 

h = max(hi;i=l,NX-1) (6 .1-11) 

k = max(kj;j=l,NY-1) (6.1-12) 

We write O(h), O(h2 ) etc. for the quantities in the truncation 
error which are controlled by linear, quadratic etc. expressions in 
the local x-mesh spacing and similarly O(k), O(k2 ) etc. The local 
truncation error in (6.1-9), (6.1-10) for an equidistant mesh or even 
for a quasiuniform mesh is of second order in the mesh spacing 
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weighted with the third partial derivatives. A quasiuniform mesh is a 

mesh for which (6.1-13), (6.1-14) holds: 

i=l,NX-2 (6.1-13) 

kj+l = kj• (1 + O(kj)) j=l,NY-2 (6.1-14) 

However, as outlined in the previous chapter, the solution of the 

semiconductor equations exhibits a smooth behavior in some regions of 

the device domain whereas in others it varies rapidly. Thus a 

strongly nonuniform mesh is often mandatory. We can therefore only 

expect, pessimistically, a truncation error of first order in the mesh 

spacing and we shall assume throughout the following a nonuniform 

mesh. 

With the difference approximations (6.1-9) and (6.1-10) we 
rewrite the basic equations (6.1-6) to (6.1-8) at all inner points 

l<i<NX, l<j<NY. We obtain for the Poisson equation: 

a. a. 
axli+1;2,j - axli-1;2,j 33• 

A2· ( hi+hi-1 + O(h) "a;Jli,j + 

2 

a. a. 
ayli,j+l/2 - ayli,j-1/2 33q1 

+ kj+kj-1 + O(k) ·3y3li,j ) -

2 

- ni,j + Pi,j + ci,j = O (6.1-15) 

The continuity equation for electrons reads: 

(-Jnx) li+l/2,j - (-Jnx) li-1/2,j 32 
hi+hi-1 +              + 

2 

(-Jny) li,j+l/2 - (-Jny) li,j-1/2 +                  
kj+kj-1 

2 

- R (qi, n ' p) I i , j = 0 (6.1-16) 

Jnx and Jny are the scaled electron current density components in 

x and y direction, respectively. 

a. 8n 
Jnx = Pn·n·ax - Dn·ax (6.1-17) 
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(6.1-18) 

Similarly, the continuity equation for holes reads: 

Jpxli+l/2,j - Jpxli-1/2,j a2 
hi+hi-1 + O(h) ·ax2Jpxli,j + 

2 

- R ('fl, n , p) I i , j = O (6.1-19) 

and 
Jpx and Jpy are the scaled hole current density components 

y direction, respectively. 

in x 

a.,, ap 
= Pp·P·ax + Dp·ax 

a.,, 
= Pp·P·ay + 

8p 
D    P vy 

(6.1-20) 

(6.1-21) 

The next step 

quantities 8'1'/8x, 
difference approximation. 

are constant within each 

replace the midinterval values of the 

Jnx' Jny' Jpx' JPY with an appropriate 
We use the assumption that these quantities 

interval. We obtain for the partial 

derivatives of the electrostatic potential: 

a.,, 'Pi+ 1 I j 4Pi f j 8 3"' 
8Xli+l/2,j = hi +                 (6.1-22) 

8'1' 
ayl i,j+l/2 = (6.1-23) 

These approximations substituted into (6.1-15) do not increase 

the order of the local truncation error. We obtain after the 
substitution: 

+ 

'Pi + 1 , j 4Pi , j 
hi 

'Pi,j+1-'Pi,j 
k· J 

'Pi, j-'Pi-1, j 

hi-1 

'Pi,j-'Pi,j-1 

kj-1 

+ 

) - n· · + p· · + C· · l,J 1,J l,J 
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The discrete Poisson equation (6.1-24) has a local truncation 
error linearly proportional to the mesh spacing and the third partial 
derivatives of the electrostatic potential for a nonuniform mesh. As 
mentioned earlier this statement might be too pessimistic for some 
applications. We have assumed that the electrostatic potential varies 
linearly on the paths to the four nearest neighboring mesh points. 
This implies that the electric field components on these paths are 
constant. It is to remark explicitly that we have no information 
about the variation of the electrostatic potential off these paths. 

The discretisation of the continuity equations is much more 
crucial. First, we write the approximations (6.1-25) to (6.1-28). 

hi a 
Jnx(x€[xi,Xi+ll1Yj) = Jnxli+l/2,j +          "gxJ'nxli+l/2,j + 

(6.1-25) 

(6.1-26} 

{6.1-27) 

kj a 
= Jpyli,j+l/2 +          "ayJ°pyli,j+l/2 + 

32 
+ O(k2 ) ·ay2Jpyli,j+l/2 (6.1-28) 

We obtain differential equations for the carrier Concentrations n 
2 . 2 

and p for each meshinterval by ignoring the O(h ) , O(k ) terms. For 

instance, for the interval [xi,xi+l] we have for the electron 
concentration: 

(6.1-29) 

' n(Xi+l1Yj) = Ili+l,j (6.1-30) 
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This equation is solved to determine the variation of the 

electron concentration along the path (xe[xi,xi+l],yj]. We have to 
assume that the partial derivative of the electrostatic potential is 

constant on the path under consideration, which is the assumption we 

have already invoked for the Poisson equation (cf. (6.1-22)). 
Furthermore, a scaled Einstein relation is assumed to hold for the 

scaled carrier diffusivities and mobilities; both quantities are 

assumed to be constant on the integration path. (6.1-29) represents a 

first order differential equation with one parameter (Jnxli+l/2 ,j) 
subject to two boundary conditions (6.2-30). The solution· to this 

problem (the boundary conditions are not matched so far) reads: 

'f'(x, y j) 
ql(x,yj) Jnxl i+l/2,j l-exp( Ut--) 

n(xe[xi,Xi+ll ,yj) = C·exp( Ut ) +hi· Pnli+l/2,j. 4'i+l,j-'Pi,j + 
(6.1-31) 

3 Ut l 'f'(x,yj) x-xi 
      i+l/2 J. (m.+l .::m .. -2) • (l-exp( Ut ) )+-h-.-

2 CJ X 1 Tl 1 J Tl 1 J l 
+ h. • I . 1 Pn i+1;2, j 'Pi+l, j-'Pi, j 

Note that Ut in (6.1-31) represents the scaled thermal voltage. 

This quantity is, obviously, one if the electrostatic potential is 

scaled with the thermal voltage. However, as it is sometimes 
advantageous to scale the electrostatic potential differently 

(cf. section 5.5) I shall not make use of such a simplification here. 

Assuming that l'l'·+l .-'fl. ·l=O(h) a laborious but simple calculation 
l ,J l,J 3 

shows that the last term in (6.1-31) is O(h ) • By ignoring this term 

and matching the boundary conditions (6.1-30) we obtain: 

x x n(x€[xi,Xi+l],yJ·) = (1 - g ..          J' + g ..           J' l,J , l,J , 

with: 

x g .. (x,'fl) = l,J 

'l'i + 1, j-qJi, j x-x i 
1 - exp( Ut     

l 

'Pi+ l , j -'l'i , j 
l - exp( Ut ) 

(6.1-32) 

(6.1-33) 

Note that the growth function (6.1-33) degenerates (as expected) 

for 'l'·+l .='fl . . to a linear function. l ,] l,J 
X X-Xi 

g .. (x,'fl) = -h· 
l, J l 

(6.1-34) 

Fully analogously we obtain from (6.1-26), (6.1-27) and (6.1-28) 

the following expressions: 
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= (1 - g'¥ .(y,'fl))·ni J. + g¥ .(y,'fl)·ni J'+l 1,J , l,J , (6.1-35) 

with: 

1 -
'i'i,j+1-'Pi,j y-yj 

exp( Ut ·-k-.-) 
J (6.1-36) g'¥ . (y,'fl) = 1,J 'Pi, j+1-'Pi, j 

1 - exp( Ut ) 

p(xe[xi,Xi+l] ,yj) = (1 -      (x,-'fl)) "Pi,j +            "Pi+l,j (6.1-37) 

p(xi,ye[yj,Yj+l]) = (1 - gl,j(y,-'fl))•pi,j +                  (6.1-38) 

The growth function (6.1-33) is shown in Fig. 6.1-3 in a 

normalized interval with (qi. +l . -qi. . ) /Ut as parameter. 1 ,J l,J 

The required current density components for each of the 

intervals, which are the parameters of the respective differential 

equations for the carrier concentrations, are evaluated to (including 

the last term in, e.g., (6.1-31)): 

'l'i,j-'Pi+l,j 'l'i+l,j-'l'i,j 
B( )•n· ·-B( )·n·+1 · Ut 1 1 J Ut 1 'J 

                                                     + 
1 

1 'Pi+ 1 , j -'Pi , j u t a ( 6 • 1-3 9 > 
+hi· (2·coth( 2 ·ut > - 'Pi+l,j4Pi,j>·axJnxli+l/2,j 

'l'i,j-'Pi,j+l 'Pi,j+1-'Pi,j 
B( )•n· ·-B( )·n· ·+1 Ut l,J Ut l,J 

Jnyli,j+1;2=Dnli,j+l/2° k· + 
J 

1 'Pi , j + 1 -'Pi , j u t a ( 6 • 1-4 o > 
+kj• (2:coth( 2 ·Ut ) - 'Pi,j+l4Pi,j) ·ayJnyl i,j+l/2 

'Pi,j-'Pi+l,j 'l'i+l,j-'Pi,j 
B( Ut ) "Pi+l,j-B( Ut )•Pi,j 

Jpxli+l/2,j=Dpli+l/2,j 0 h· + 
1 

'l'i , j -'Pi , j + 1 'Pi , j + 1 -'Pi , j 
B( Ut )"Pi,j+1-B( Ut ) "Pi,j 

Jpyli,j+l/2=Dpli,j+l/2° k· + 
J 
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1 'Pi,j-'l'i,j+l Ut 8 (6.1-42) 
Ql· . -tp· . +l) "8VyJPY Ii, j+l/2 +k · • (-· coth ( ) 

J 2 2•Ut 1,J 1,J 

B(x) is the Bernoulli function which is defined as: 
x 

B (x) = 
ex - 1 

(6.1-43) 

These approximations have been first suggested by Scharfetter and 
Gummel [6.48); they have been derived more heuristically though. 
Again, under the assumption that qi . . only differs by O(h) and O(k), 1,J 
respectively, from any of its nearest neighbors, one can easily show 
that the last terms in (6.1-39) to (6.1-42) are O(h2 ) and O(k2), 
respectively. By ignoring these terms and by substituting (6.1-39) 
and (6.1-40) into (6.1-16) we obtain the discrete form of the 
continuity equation for electrons. 

'Pi+ 1 I j -'Pi I j 'Pi I j -'Pi+ 1 I j 
B ( ) • n · +l · - B ( ) • n · · Ut 1 I J Ut 1, J 

Dnli+l/2,j
0 

hi+hi-1 
hi. 2 

+ 

'Pi,j+l-'Pi,j 'Pi,j-'Pi,j+l 
B( Ut )•ni,j+l - B( Ut )•ni,j 

+ D I . . 1/2                           n 1,J+ kj+kj-1 
kj. 2 

'Pi I j-'Pi I j-1 'Pi I j-1-'Pi I j 
B( Ut )•ni,j -     Ut ) •ni,j-1 

-                                                   

kj-1" 2 

- R (qi, n, p) I i, j = O (6.1-44) 

Fully analogously we obtain the discretized continuity equation 
for holes. 

'Pi I j-'Pi+l, j 'Pi+l, j-'Pi I j 
B( Ut ) "Pi+l,j - B( Ut ) "Pi,j 

                                                     
hi+hi-1 

hi· 2 
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'Pi-1, j-'l'i' j . 'Pi' j-'l'i-1, j 
B( Ut )"Pi,j - B( Ut )"Pi-1,j 

-                                               + 

hi-1" 2 

'Pi , j -'Pi , j + 1 'Pi ' j + 1 -'Pi , j 
B( Ut ) "Pi,j+l - B( ut ) "Pi,j 

+ Dpl i,j+l/2" kj+kj-1 
kj· 2 

'Pi' j-1 -'Pi' j 'Pi' j-'l'i' j-1 
B( Ut )"Pi,j - B( Ut )"Pi,j-1 

- Dp I i' J0 -1/2. k k j+ j-1 
kj-1" 2 

- R (qi, n, p) I i , j = 0 (6.1-45) 

The discrete continuity equations (6.1-44), (6.1-45) have a local 

truncation error linearly proportional to the mesh spacing and the sum 

of the first and second partial derivatives of the respective current 

density components, provided the electrostatic potential is resolved 

by the mesh to first order accuracy. However, if the mesh is 

quasiuniform (cf. (6.1-13)) the assumption on the resolution of the 
electrostatic potential cane be waved. This can be seen by 

considering, e.g., (6.1-16), (6.1-39) and (6.1-40). Such 

discretization schemes which exponentially fit the dependent variables 

have been investigated also by, e.g., Kellogg [6.22], Kellogg et.al. 

[6.23] and Doolan et.al. [6.10]. 

The local truncation errors for all three equations are 

summarized in (6.1-46) to (6.1-48). The index denotes the respective 

equation. 

cP'i' 83q1 
TqJ < o(h) • 1ax31 + o(k) • lay31 (6.1-46) 

8Jnx 8Jny 82Jnx 82Jny 
O(h) ·1-ax--l+O(k) ·1-ay-l+O(h) ·I 8x2 l+O(k) ·I 8y2 I (6.1-47) 

(6.1-48) 

A thorough investigation of these errors and the associated 

convergence properties, which is beyond the scope of this more towards 

engineering oriented text, can be found in e.g. [6.32], [6.33]. 
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Another approach for deriving difference approximations to 

differential equations is the box integration method [6.13). The 

differential equation is integrated over each of the following 

subdomains: 

(6.1-49) 

These subdomains partition the interiour of the domain without 

overlap or exclusion. 

For the Poisson equation we obtain: 

k· J y·+-
A ·div J{ 2 2 grad 'f'-dy•dx -

j-1 
Yj--2-

k· J 
Yj(+2 (n 

j-1 
Yj--2-

- p - C) ·dy·_dx = 0 (6.1-50) 

The first integral in (6.1-50) is transformed into a boundary 

integral by using one of Green's theorems: 

ff div (P·grad u)·dx•dy = f (P·li·dy -         (6.1-51) 
D1 ,j 80 1 ,j 

The right hand side integral has to be split into four parts 

because of the discontinuous edges of the domain D. J .• We obtain for 
1, 

(6.1-51) in more explicit form: 

= 

k· J 

Yjl+2 div 

j-1 
Yj--2-

(P(x,y) ·grad u(x,y)) ·dy·dx = 
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x·+-1[ 2 kj-1 a kj-1 
                          ·dx 

. 1 y 1-
x · --J 2 

(6.1-52) 

The integrals on the right hand side of (6.1-52) are now 
approximated with finite differences. This is done frequently under 
the following assumptions: 

hi a hi 
                     = 

Ui+l,j-Ui,j 
p. 1/2 .• 1+ , J h. 

1 

Ui,j+l-Ui,j 
p. . 1/2. 1, J+ k. 

J 

Ui,j-Ui,j-1 
P· ' l/2·---=---1,J- kj-1 

(6.1-53) 

(6.1-54) 

(6.1-55) 

(6.1-56) 

However, it is to remark that these approximations have to be 
used with care. For instance, for the continuity equations we shall 
find that they are absolutely inappropriate. 

By substituting (6.1-53) to (6.1-56) into (6.1-52) we obtain: 

hi kj 

Xif 
2 

Yj[+-i- div (P(x,y) ·grad u(x,y))) •dy·dx -
Ai-1 j-1 

xi ---2- y j---2-
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u · · +1-u · · h · 1 +h · 1,J 1,J 1- 1 
+ Pi,j+l/2• k· • 2 -

J 

(6.1-57) 

In case of the Poisson equation we have P(x,y)=l which liberates 
us from the problem of approximating midpoint values. The second 
integral in (6.1-50) is quite a difficult problem to be solved 
elegantly. The most trivial approach is to use the assumption that 
the carrier densities and the net doping concentration are constant 
within the integration domain which yiels: 

hi kj 
x·+--::- y·+-1( 2 J ( 2 kj-1 +kj hi-1 +hi A l (n-p-C) ·dy•dx=(ni,j-Pi,j-Ci,j) • 2 • 2 

i-1 j-1 
(6.1-58) 

xi ---2- y j---2-

This approximation is rather poor since we know that the 
quantities n,p and C can vary rapidly. However, for the 
two-dimensional problem I am not aware of any better approach. For 
the one-dimensional problem a better approximation and its derivation 
can be found in the book by Mock [6.43]. 

By substituting (6.1-57) and (6.1-58) into (6.1-50) we obtain the 
final discrete form of the Poisson equation derived by box 
integration. 

l 2 • ( 'Pi+ 1 , j -'Pi , j 
hi 

kj-1+kj hi-1+hi 
- (ni,j - Pi,j - ci,j) • 2 2 (6.1-59) 

It is a trivial exercise to show that the previously derived 
discrete equation (6.1-24) is equivalent to (6.1-59). 

For the continuity equations the situation is again, as could 
have been expected, more difficult. In a formal manner we may 
integrate the continuity equation for electrons over a box. 

I 
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k· J 

Yj(+'2 div 

j-1 
(Dn·grad n) ·dy·dx -

y·---J 2 

kj Yjt:l div 

Yj--2-

kj 
Yj+-

( 
2 

R(ljl,n,p) •dy·dx = O 
j-1 

y·---J 2 

(6.1-60) 

Fully analogous is the treatment of the continuity equation for 

holes. 

+ 

h· 1 
x·+-1C1 

x·---1 2 

k· J 
Yj+2 

[ 
div 

j-1 
Yj-·-2-

hi kj xl:l Yjtl div 

Xi--r Yj---2-

h· 1 kj . 

(Dp·grad p) ·dy·dx + 

Xi(2 

Ai-1 

Yj+-
( 

2 
R(ljl,n,p) ·dy·dx = O 

j-1 x·---1 2 Yj--2-

(6.1-61) 

The evaluation of the integrals, particularly the first two, in 

( 6 .1-60) , ( 6 .1-61) has to be done very carefully. The approximation 

(6.1-57) is inappropriate for the first integral in (6.1-60), (6.1-61) 

as it assumes a linear behavior of u (which corresponds to n and p 

here) perpendicular to the four integration paths and a constant 

normal derivative along the integration paths. One may keep the 

assumption that the partial derivatives of n and p perpendicular to 

the integration paths are constant along the integration paths as I do 

not know a better choice. However, we have shown that the carrier 
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densities exhibit in general an exponential behavior between 
neighboring mesh points (cf. (6.1-32) to (6.1-38)) depending upon the 
electrostatic potential. Recalling these results it is 
straightforward to calculate the various required partial derivatives 
and midinterval values of the carrier densities. We obtain for the 
electron concentration: 

n· . l,J ni+l,j 
+                                 

1 + exp( ) 
2•Ut 

ni+l/2,j = 
1 + 

'Pi,j-'Pi+l,j 
exp ( ) 

2•Ut 

n· . 1,J 
+ ni,j+l/2 = 

1 + 'Pi ' j 4Pi ' j + 1 
exp( ) 

2•Ut 
1 + 

'Pi ' j + 1 ::qJi ' j 
exp ( ) 

2•Ut 

'Pi + 1 , j -'Pi ' j an 
axl i+1;2, j = 

Ut ni+l,j-ni,j 

'Pi+ 1 ' j 4Pi ' j *Pi ' j-'Pi + 1 ' j • hi 
exp( )-exp( ) 

2•Ut 2•Ut 

'Pi' j+l -'l'i' j 
8n 
axl i, j+1;2 = 

Ut ni,j+1-ni,j ---rz, ..... i-,_j_+_1_4P-.=-i-,-j----., ..... i-,-J-. -"""'qi=l-. ,-]-. +-1-. k j 
exp( )-exp( ) 

2·Ut 2·Ut 

We have similar results for the hole concentration: 

Pi,j 
+ 

Pi+l,j 
Pi+l/2,j = 

1 + 
'Pi + 1 ' j 4Pi ' j 

exp ( ) 
2·Ut 

1 + 

Pi, j+l/2 = 
Pi,j Pi,j+l 

                        + -----------......------
.i ' j + 1 -,ri ' j 'l'i ' j-'Pi ' j + 1 exp ( ) 1 + exp ( ) 

2·Ut 2·Ut 
1 + 

'l'i+l, j-'Pi' j 
8p Ut Pi+l,j-Pi,j 
axl i+l/2' j =                                h 

8p 
axl i, j+1;2 = 

· Ti+l,j-,ri,j Ti,j-,ri+l,j i 
exp( )-exp( ) 

2•Ut 2•Ut 

'l'i ' j + 1 -'Pi ' j 
Ut 

'Pi,j+l::qli,j 'l'i,j-'lli,j+l 
exp( )-exp( ) 

2 • Ut 2 • Ut 

Pi,j+l-Pi,j 
k· J 

(6.1-62) 

(6.1-63) 

(6.1-64) 

(6.1-65) 

(6.1-66) 

(6.1-67) 

(6.1-68) 

(6.1-69) 

Note, that the weights for the partial derivatives of the 
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electron concentration in (6.1-64), (6.1-65) are identical to the 

corresponding weights for the partial derivatives of the hole 

concentration in (6.1-68), (6.1-69). 

With the 

straightforward 
approximations (6.1-62) to (6.1-69) it is 

to evaluate the integrals (6.1-60), (6.1-61). Under 

the additional assumtions that the carrier mobilities (diffusivities) 

are constant along the integration paths and that the recombination 

rate is constant within the integration domain we obtain for the 

continuity equation for electrons: 

'Pi+ 1 , j -qli , j 
Ut 

Dnl i+l/2,j" 'f''+l ·-qi· · 'f'· ·-'1'·+1 · 1 ,J 1,J 1,J 1 ,J 
exp( )-exp( ) 

2·Ut 2•Ut 

'Pi , j + 1 -qli , j 
Ut 

+ Dnli,j+l/2" 'Pi,j+l-qli,j 'Pi,j-'Pi,j+l 
exp( )-exp( ) 

2·Ut 2·Ut 

'Pi-1, j-qli, j 
Ut 

+ D I . 1/2 .•                ...... OTP--......---
n l - f J 'Pi -1 I j-'Pi I j 'Pi I j-'Pi -1 I j 

exp( )-exp( ) 
2•Ut 2•Ut 

- Pnli+l/2,j"( 

   Pnl i,j+1;2· ( 

- Pnl i-1/2,j" ( 

Finite Differences 



- 197 -

ni,j-1 ni,j 'Pi,j-1-'l'i,j hi+hi-1 
- Pn I i, j-1/2 • ( w1. . _1::w1. . +------m-. -. _...,.,m ...... -.-1-) • k . 1 • --2.---

T· 1 J T 1 J Tl 1 J Tl 1 J - J -
l+exp( ) l+exp( ) 

2·Ut 2•Ut 

(6.1-70) 

Fully analogously reads the discretized continuity equation for 
holes: 

'Pi+ 1 ' j - 'l'i ' j 

Dp I i+l/2, j" 'I'· +l . .... . l ,J l,J 
exp( ) -

2•Ut 

Ut Pi+l,j - Pi,j kj-1+kj 
m m • h

1
· • 2 + Ti 1 j-Ti+l, j 

exp ( ) 
2·Ut 

'l'i ' j + 1 -'Pi ' j 
Ut Pi,j+l-Pi,j hi-1+hi 

+                                                                            kj • 2 + 
exp( )-exp( ) 

2•Ut 2·Ut 

'l'i -1 , j -'Pi , j 
Ut Pi-1,j-Pi,j kj-1+kj 

+ Dp I i-1/2' J'. Ill. 1 . -HI. . 111. • -Ill. 1 . • h. 1 • 2 + 
Tl- 1 J Tl 1 J Tl 1 J-Tl- 1 J l-

exp( )-exp( ) 
2 • Ut 2 •Ut 

'l'i, j-1-'l'i, j 
Ut Pi,j-1-Pi,j hi-1+hi 

+ D I . . 1/2                                           . + p l , J - 'l'i , j -1 -'Pi , j 'l'i , j -'l'i , j -1 k j -1 2 
exp( )-exp( ) 

2 • Ut 2 ·Ut 

Pl'+l )0 Pi' )0 1111'+1,J'_.111',J' kJ·-1+kJ· 1 1 
T -T 

+ Pp I i + 1/2 , j • ( q11. . -q>1. +l . +----...q>"'"".-1-. ::q1-rrr.-.-) • h . • 2 + 
1 +ex ( , J , J ) i + , J i , J i 

p 2·Ut l+exp( 2·Ut ) 

+ Pp Ii I j+l/2. ( 
Pi,j+l Pi,j 
                'Pi,j+14Pi,j 

l+exp ( l+exp ( ) 
2•Ut 2•Ut 

Pi-1,j Pi,j 'l'i-1,j-'Pi,j kj+kj-1 + 
+Pp! i-1/2,j" ( q11. ·-qJ1._1 . + 'IJ· 1 .::q1 .. ) • h· 1 • 2 

1 +exp ( ' J ' J ) 1 +exp ( i - ' J 1 ' J ) i -
2 • Ut 2 •Ut 

Pi,j-1 Pi,j 'Pi,j-1-'Pi,j hi+hi-1 
+ Jlp I i I j-1I2 • ( 'Pi . -'Pi . -1 + 'Pi ' J' -1 ::qli I ]' ) • k J' -1 • 2 

1 ( ,J ,J ) 1 ( ) +exp +exp 
2·Ut 2·Ut 
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(6.1-71) 

The assumption that the recombination rate is constant within the 

integration domain is indeed a very poor one. However, a better 

treatment is only possible for the one-dimensional problem as has been 

demonstrated in [6.11]. 

It is a recommended exercise to show that the difference schemes 

(6.1-70),          are fully equivalent to (6.1-44), (6.1-45). 

In the following we summarize the discretization schemes for the 

Poisson and the continuity equation in a form which is more suitable 

for computer implementation. We obtain, after collecting all factors 

for the discrete dependent variables, the following three equations: 

2 hi-1+hi 
'Pi ·-1·l. + 

,J 2·kj-l 

(6.1-72) 

'Pi-1,j-'l'i,j kj-1+kj 
+ n · -1 · • D I · -1/2 · • B ( ) • -- -1 ,J n 1 ,J Ut 2•hi-l 

W. ._W, • 1 h • l+h • HI. J'-IUl. 1 J' kJ• 1+kJ• Tl 1 J Tl 1 J- 1- 1 Tl 1 T - 1 -

- ni,j"(Dnli,j-l/2"B( Ut )·-2 .k-· -+Dnli-1/2,j"B( Ut )• 2 .h. 
J-1 1-1 
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'l'i,j-'l'i,j-1 hi-1+hi 
Pi,j-l"Dpli,j-l/2"B( Ut ) • 2 .kj-l + 

'l'i,j-'l'i-1,j kj-1+kj 
+ Pi-1,j"Dpl i-1/2,j•B( Ut ) • 2 .hi-l -

lll. • -ISi, +l • k • l+k • Tl,J-Tl 1 J J- J 
+ Pi+l,j"Dpl i+l/2,j•B( Ut ) • 2·h· + 

l. 

hi-1+hi kj-1+kj 
- R· · • • - 0 l.,J 2 2 -

The midinterval values of the carrier 

carrier mobilities can be obtained, if 

available, by a simple interpolation. One 

linear interpolation, e.g.: 

Dnli,j + Dnli+l,j 
Dnli+l/2,j = 2 

(6.1-73) 

(6.1-74) 

diffusivities and the 

they are not explicitly 

may use, for instance, 

(6.1-75) 

It might be more physically motivated to assume that the 

relaxation times, which are proportional to the reciprocals of the 

carrier diffusivities, are linear functions between neighboring mesh 

points which leads to the following interpolation scheme, e.g.: 
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Dnli+l/2,j = 
2 

1 1 (6.1-76) 

Dnli,j+Dnli+l,j 

The impact of any of these interpolation schemes on the final 
solution, however, is small. 

The Bernoulli function (6.1-43) has to be implemented very 
carefully for numerical computations. A rational approximation can be 
used for the most efficient implementation on a particular computer 
[6.19]. If, however, the easier way of implementation via the 
exponential function of a supplied runtime library and basic 
arithmetic is chosen, some effort has to be spent to avoid potential 
underflow and overflow traps. It can be suggested to implement the 
Bernoulli function as follows: 

B (x) 

( 
( 
( 
( 
( 
( 
( 

= ( 
( 
( 
( 
( 
( 
( 
( 

xl<x<x2 

x3<x<x4 

        

     

-x 

x 
exp(x) - 1 

x 
1 - 2 

x·exp(-x) 
1 - exp(-x) 

x·exp{-x) 

0 

(6.1-77) 

The constants xl to x5 depend on the individual computer 
hardware. They are defined by: 

'exp{xl)' '-'l '=' -1 

x 2 ' I ' ( ' exp ( x 2 ) ' ' - ' 1 ) ' = ' 1 ' - ' ( x 2 ' I ' 2 ) A x 2 < 0 

(6 .1-78) 

(6.1-79) 

(6.1-80) 
l'-' (x3'/'2) '=' x3'·' 'exp('-'x3)' '/' (l'-' 'exp('-'x3) ') A x3>0 

1 I - I I exp ( I - I x4) I I= I 1 

I exp ( I - I x5) I I= I 0 

(6.1-81) 

(6.1-82) 

The quoted operators and the quoted exponential function denote 
the finite and discrete implementation of operators and exponential 
function on a digital computer. It is an easy and straightforward 
task to calculate these constants once on a given computer. 
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So far we have derived the discrete equations at all inner points 
of a given mesh. In the following we shall discuss the discretization 
of boundary conditions. We recall for that purpose the mesh shown in 
Fig. 6.1-1, which was described in the very beginning of this section. 
Let us assume that the emitter A-B, base C-D and collector E-F 
represent ideal ohmic contacts. The boundary pieces B-C and D-E which 
separate the contacts are assumed to be simplified interfaces to 

insulating          (cf. section 5.1). The remaining boundary pieces 
F-G, G-H and H-A represent artificial boundaries. 

For the ohmic contacts it depends upon the application which 
boundary condition has to be satisfied. We shall consider here purely 
voltage controlled and purely current controlled ohmic contacts. For 
the former boundary condition we have: 

n = 
+ 4·n·2 + C 1 

(6.1-83) 

(6.1-84) 

(6.1-85) 

A discretization of these equations is trivial as only point 
values are involved. We obtain directly: 

(6.1-86) 

ic· .2 + 4·n·2 + C· . 1,J 1 1,J n· . = l,J 2 
(6.1-87) 

ic· .2 + 4•n·2 - C· . 1,J 1 1,J 
Pi,j = 2 (6.1-88) 

In the specific example shown in Fig. 6.1-1 we have the following 
subset of points for the three contacts: 

emitter       j=22 %1 i,j = Ue (6.1-89) 

base         j=22 

collector         j=22 

'M:>li,j = ub 

'M:>li,j =Uc 

(6.1-90) 

(6.1-91) 

It should be noted that (6.1-87), (6.1-88) should not be 
evaluated directly because of inherent problems with cancellation. 
One should preferably use: 
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if ci,j > 0 then 

    .2 1,J 

Pi,j = 

else 

    .2 l,J 
Pi,j = 

+ 4•n 1·2 + C· · 1,J 
2 

+ 4·n 1·2 - C· · 1,J 
2 
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(6.1-92) 

In the case of an ideal current controlled contact (6.1-83) is 
replaced by: 

( (Jn + Jp) ·dA - Io = o aio 
('fl -    13oo = const. 

(6.1-93) 

(6.1-94) 

The boundary conditions (6.1-84), (6.1-85) for the carrier 
densities are not altered for the case of an ideal contact. The 

integral (6.1-93) can be approximated by, for instance, the midpoint 
integration rule. To outline the procedure it is most convinient to 
take an example. Let us assume that the base contact C-D in the 
example of Fig. 6.1-1 is ideally current controlled. We then obtain 
for the discretized equation at this boundary: 

k21 
(Jnxll5+1/2,22 + Jpxl15+1;2,22> ·--2-- + 

24 hm + hm-1 
+ r [(Jnylm,22-1/2 + Jpylm,22-1;2>· 2 ] -

m=l6 

k21 
- (Jnxl24+1/2,22 + Jpxl24+1/2,22) ·--2-- -

= 0 w (6.1-95) 

'f.h+l,22 -          -      +        = 0 , h=(l6,17, ••• 23) (6.1-96) 

W in (6.1-95) denotes the width of the contact, which is the 

/ 
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artificial extent of the contact in the third dimension. (6.1-95) and 
(6.1-96) form nine equations for the electrostatic potential at the 
nine boundary points. The current density components at the 
midinterval points are defined in (6.1-39) to (6.1-42). It should be 
noted that in the discrete equation (6.1-95) the dependent variables 
at all mesh points which surround the contact are involved. This fact 
complicates the numerical solution of the final nonlinear algebraic 
system as the regular structure which is obtained by the 
discretization at all inner points is disturbed. This regular 
structure arises since only four neighboring meshpoints are involved 
in the discrete equations at a specific meshpoint. 

The next category of boundary conditions to discretize are the 
interfaces. In our example these are, as mentioned, the boundary 
pieces B-C and D-E. We shall first consider the (physically) 
simplified boundary conditions which then read: 
a., an= o (6.1-97) 

Jn·n = O (6.1-98) 

Jp·n = 0 (6.1-99) 

In our example these equations evaluate for the boundary pieces 
B-C and D-E to: 
a., 
   .. - 0 (6.1-100) vy l,J -

0 Jnyli,j 

Jpyli,j = 0 

B-C 

D-E 

These equations hold for the following subset of points: 

       j=22 

        j=22 

(6.1-101) 

(6.1-102) 

(6.1-103) 

(6.1-104) 

The discretization of the Neumann boundary conditions (6.1-100) 
to (6.1-102) is elegantly performed by so called "mirror imaging". 
Without any loss of generality we may write the linear interpolation 
scheme for an equidistant grid (k.=k. 1 ): 

J J-
U i, j+l/2 + Ui,j-1/2 82u 

+ O(k2)·-li J' 2 8y2 , Ui,j = (6.1-105) 
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If we substitute successively the quantities 8'1'/8y, Jny and Jpy 
for u into (6.1-105) we obtain, by remembering the boundary conditions 
( 6 • 1-1 O O ) to ( 6 .1-1O2) : 

8'1' 8'1' 
ayli,j+l/2 = - ayli,j-1/2 

Jny I i, j+1;2 
32 

= - Jnyli,j-1/2 + ock2 ) ·ay2Jnyli,j 

32 
Jpyli,j+l/2 = - Jpyli,j-1/2 + O(k2 ) "8y2Jpyli,j 

(6.1-106) 

(6 .1-107) 

(6.1-108) 

The quantities defined by (6.1-106) to (6.1-108) do not really 

exist; they represent artificial images which implicitly resolve the 
boundary conditions (6.1-100) to (6.1-102) with a local truncation 

error of the same order as we have for the midinterval values at inner 

points (cf. (6.1-22), (6.1-25) with (6.1-39), (6.1-27) with (6.1-41)). 

By substituting (6.1-106) to (6.1-108) into (6.1-15), (6.1-16) and 
(6.1-19), respectively, we obtain the discrete Poisson equation and 

continuity equation at the boundary. 

a. 8• 
2 axli+1;2,j - axli-1;2,j 

). • < h. +h. 1 + 
l l-

2 

8• 
-2·ayl i,j-1/2 

+ ---.,-----
kj-1 

- ni,j + Pi,j + ci,j = o 

2·Jnyli,j-l/2 
+ 

kj-1 

- R ('fl, n, p) I i, j = 0 

Jpxli+l/2,j - Jpxli-1/2,j 
h·+h· 1 + l l-

2 
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-2·Jpyli,j-l/2 
+ ---.------

k · 1 J-

- R ('fl, n, p) I i, j = 0 
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(6.1-111) 

In case of non negligible interface charge and surface 

recombination (6.1-97) to (6.1-99) are replaced by: 

Jp·n + RSURF = 0 

In our example these equations read explicitly: 

8• 
ayli,j - Ointli,j = O 

Jnyli,j - RSURFli,j = 0 

Jpyli,j + RSURF!i,j = 0 

(6.1-112) 

(6.1-113) 

(6.1-114) 

r6 .1-115> 

(6.1-116) 

(6.1-117) 

We may again use the interpolation scheme (6.1-105) which yields 

for the artificial quantities: 

3'1' 
ayl i,j+l/2 = -

8'1' 83'1' 
a-yli,j-1/2 + 2·ointli,j + O(k 2 > •8Y3 li,j (6.1-118) 

Jny Ii, j+1;2 
82 

= - Jnyli,j-1/2 + 2·R5URF!i,j + O(k2) ·ay2Jnyli,j (6.1-119) 

The remaining steps are fully analogous as for the homogenous 

boundary conditions. We obtain for the discrete equations after 

straightforward calculations: 

8'1' 3'1' 
2 axli+1;2,j - axli-1;2,j 

l: . ( + 
hi+hi-1 

2 

3'1' 
-2·ayli,j-l/2 + 2·0intli,j 

+               
j 
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- ni,j + Pi,j + ci,j = O 

(-Jnx) I i+l/2,j - (-Jnx) I i-1/2,j 

j 

- R(ql,n,p) I i,j = 0 

Jpxli+l/2,j - Jpxli-1/2,j 
h·+h· 1 1 1-

2 

+ 

-2·Jpyli,j-l/2 - 2•RSURFli,j 
+ 

kj 

- R (qi, n, p) I i, j = 0 

+ 

(6.1-121) 

(6.1-122) 

(6.1-123) 

If the electrostatic field in an insulator cannot be assumed to 

be negligibly small we have to account for Gauss's law in differential 
form: 

a.., 
tsem·a I 

n sem 

a.., 
+ c ins ·a I . - o int = o 

n ins 
(6.1-124) 

We must also account for that insulator as an explicit part of 

the simulation. Note that the Poisson equation is only valid in the 
semiconductor whereas in the insulator the Laplace equation holds. In 

the following we assume to have an interface at y=ym. A meshline must 

be put exactly on that location. y<y denotes the semiconductor; y>ym m 
is the insulator. Under this assumption (6.1-124): 

a.., a.., 
Csem·ay - tins·ay - Oint = 0 (6.1-125) 

The partial derivatives can be replaced by the following, simple 

difference expressions: 

8'1' 'l'i Im - 'l'i ,m-1 km-1 82'1' 
+ O(k2) aylsemli,m = + -2-·ay2 I semi i,m km-1 

(6.1-126) 

a.., 'Pi , m+ 1 - 'l'i , m km a2q1 
+ O(k2) ayl ins I i,m = 2· 8y2 I ins I i, m km 

(6.1-127) 

These expressions can be proved by straightforward Taylor series 

expansions. In principle, it would suffice to substitute (6.1-126) 
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and (6.1-127) into (6.1-125) to have a discrete boundary condition for 

the electrostatic potential at meshpoint (x.,y). However, it is not 
i m 

attractive, although consistent for the boundary condition, that the 

second order partial derivative of the electrostatic potential is in 

the truncation error of (6.1-126), (6.1-127). This can be overcome by 

substituting the differential equations, the Poisson equation and the 

Laplace equation, into (6.1-126) and (6.1-127), respectively. We can 

see immediately that we then obtain a local truncation error of second 

order if the discrete approximations for the differential equations to 

be substituted have a local truncation error of second order. This is 

the case, as mentioned, for an equidistant or a quasiuniform mesh. By 

recalling results which we have obtained earlier in this section we 

may write: 

32'1' 
8y2lsemli,m = -

'Pi+ 1 , m-'Pi , m 
hi 

1 

'Pi, m-'Pi-1, m 

hi-1 
+ 

+ A2· (ni,m - Pi,m - Ci,m> 

= -

Substituting (6.1-128) 

'Pi , m-'Pi -1 , m 
hi-1 

and (6.1-129) 

(6.1-128) 

(6.1-129) 

into (6.1-126) and 

(6.1-127), respectively, and the results into (6.1-125) it is a matter 

of straightforward calculations to obtain the final discrete boundary 

condition. 
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+ 

'Pi,m+l-qli,m 'Pi,m-qli,m-1 
tins· k - tsem· k + Ointl i,m m m-1 

Cins·km+tsem·km-1 
2 

) -

(6.1-130) 

As I have demonstrated it is quite easy to derive the discrete 
interface condition. - It is obvious that in using a different 
discretization approach the result obtained must be identical up to 
higher order terms of the truncation error. Applying the box 
integration approach yields results fully identical to (6.1-130) 
(cf. [6.13]). However, this almost trivial task of discretizing an 
interface condition must exhibit some intransparent spots (which 
hopefully have become clear now) because the interface condition has 
been dealt with even in the recent literature, e.g. [6.52], [6.53], 
although the basic strategy has been known for more than 100 years! 

The method of improving the local truncation error of a "naively" 
discretized boundary condition with the aid of the differential 
equation can certainly be used for any boundary condition which 
involves normal derivatives. In fact, this approach is the basis for 
the mirror imaging method which has been outlined above for the 
discretization of simplified interfaces. 

The last category of boundaries we have to consider are the 
artificial boundaries. There we have in general Neumann boundary 
conditions which are exactly identical with (6.1-97) to (6.1-99) for 
the simplified interfaces, the treatment of which has already been 
outlined. 

For curved boundaries it is not possible to give a generally 
applicable procedure for the discretization of boundary conditions. A 
five-point scheme which accounts for the boundary condition as well as 
for the differential equation exists only in rare cases [6.34]. If 
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the boundary condition is a Dirichlet condition the discretization of 

differential equations at points near the boundary is straightforward; 

it can be found in, for instance, [6.50]. However, finite difference 

formulae accounting for normal derivatives at a curved boundary are 

extremely awkward. Details on that subject can be found in [6.20]. A 
discretization of interface conditions at beveled boundaries has been 

presented in, e.g., [6.27], [6.28] for a special case though. 
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6.2 Finite Boxes. 

In the classical finite difference approach for the solution of 
partial differential equations the meshlines introduced to partition 
the simulation domain start out at the boundary of the domain and are 
continued throughout the domain up to the opposite part of the 
boundary. As already stressed previously, a rapidly varying behavior 
of the solution of the basic semiconductor equations is, in case of 
many devices, confined to small regions of the simulation domain. 
This can result in an enormous number of superfluous points located in 
regions where the solution exhibits a smooth behavior, thus, wasting 
computer storage and time. Adler [6.1], [6.2] has introduced the 
(theoretically already known [6.13]) method of terminating meshlines 
in the finite difference approach in order to avoid this problem. 
Adler restricted himself 

coordinate direction. An 
to allow terminating lines only in one 

example of such a mesh is shown in 
Fig. 6.2-1. The simulation domain and the point allocation is the 
same as in the previously shown finite difference mesh (Fig. 6.1-1). 
The total number of meshpoints is reduced by the terminating lines 

from 902 to 687. 88 points lie on the boundary and 34 points are at 
terminations of meshlines in the interior of the simulation domain. 

This approach has been further generalized, as Adler speculated 
in [6.2], by Franz et al. [6.15] to the concept of finite boxes. 
There meshlines are allowed to start and to terminate in either 
direction. Fig. 6.2-2 shows an example of a finite boxes mesh in 
which points have been removed compared to Fig. 6.2-1. The total 

number of meshpoints is thereby decreased to 583. 64 points are 
located at the boundary and 66 points are at terminations of meshlines 
in the interior of the domain. 

It is obvious that the advantage obtained through the reduction 
of meshpoints by the terminating lines or finite boxes approach has to 
be paid for at a different place. In the case of classical finite 
differences it is a trivial task to find the location of quantities at 
neighboring points if the quantities are stored by columns or rows, 

because the number of points in a column or row is a mesh specific 
constant. In the case of terminating lines one needs four additional 
variables for each point, i.e., two indices for the neighboring points 
in the direction perpendicular to the direction in which mesh lines 
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may terminate and the space coordinates. For finite boxes six 
variables per meshpoint are required to fully describe the mesh. 
These are the four indices for all neighboring points and the space 
coordinates. 

In the following we shall derive the difference approximations 
for the basic semiconductor equations at the terminatination point of 
a meshline. We shall use the nomenclature adopted in Fig. 6.2-3. In 
this example a meshline terminates in the x-direction. Thus, the 

endpoint (xi,yj) does not have a neighboring point at (xi+l'Yj). It 
should be noted that one has to prohibit two neighboring meshlines 
terminating such that the termination points are nearest neighboring 
points. This would complicate the derivation of consistent difference 
schemes significantly. 

In the previous section we have reduced the problem of finding 
difference approximations into supplying appropriate midinterval 
quantities (cf. (G.1-15), (6.1-16) and (6.1-17)). In our example 

(Fig. 6.2-3) we have to derive proper expressions for 8'f'/8x, Jnx and 

Jpx at location (x.+h./2,y.). 
1 1 J All other midinterval quantities can be 

calculated from the results of the previous section. 
We first recall the simple formula for linear interpolation and 

write: 

kj-1 kj 82u (6.2-1) 
U1'+1/2,J' = ·u· 1/2 · 1 + ·u· 1/2 · 1 + O(k2 )      '+1/2 · kj-1+kj i+ ,J+ kj-1+kj i+ ,J- 8y2 1 ,J 

Substituting successively 8'1'/8x, J and nx 
obtain the required midinterval quantities. 

a.., 
rxli+1;2,j = 

a.., a.., 
kj-1·axli+1;2,j+1 + kj·axli+1;2,j-1 

into (6.2-1) we 

Jnxli+l/2,j = 
kj-l"Jnxli+l/2,j+l + kj·Jnxli+l/2,j-1 82 (6 • 2- 3 ) 

kj-l + kj + O(k2 ) ·ay2Jnxli+1;2,j 

kj-l"Jpxli+l/2,j+l + kj·Jpxli+l/2,j-1 82 (6 • 2- 4 ) 
Jpxli+l/2,j = kj-l + kj + O(k2 ) ·ay2Jpxli+l/2,j 

In (6.2-2) to (6.2-4) we have introduced two midinterval 

quantities which have not been required so far, but which can be 
approximated with (6.1-22), (6.1-39) and (6.1-41), respectively. For 

instance, for (6.2-2) we obtain finally: 
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'Pi+l,j+l - 'Pi,j+l 'Pi+l,j-1 - 'Pi,j-1 
kj-1" h· + kj· h· 

l l 
+ 

The discrete approximation for the Poisson equation can then be 

expressed after some algebraic manipulation, as: 

     (hi-1+hi kj 
'i'i,j-1 A - --) + 

2·kj-l 2·hi 

2 kj 
+ 'Pi+l J0 -1 ·l ·-- + 

' 2·hi 

+ 'Pi-1, j 

- 'I'· . l,J 

+ 'I'· +l . l 'J 

+ 'I'· . +l l,J 

·l2· (hi-1+hi kj-1+kj hi-1+hi) + 

2·kj-l 2·hi-l 2·kj 

2 kj-1+kj 
·l . + 

2·hi 

hi-1+hi kj-1+kj 
- (ni,j - Pi,j - ci,j)" 2 • 2 = o (6.2-6) 

The treatment of the continuity equations is fully analogous. 

First, one has to substitute (6.2-3) and (6.2-4) into (6.1-16) and 

(6.1-17), respectively, and then (6.1-39), (6.1-40) and (6.1-41), 
(6.1-42) into the intermediate results. 

If a meshline terminates in any other direction the treatment for 

the required midinterval quantities is absolutely equivalent as in our 
example; it needs, therefore, not to be dealt with here explicitly. 

One drawback of the terminating lines and the finite boxes 

approach becomes directly visible in (6.2-6). For a point which is 
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not the termination point of a meshline quantities at four neighboring 

points are involved in the discrete approximation of the differential 
equation (cf. 6.1-72) whereas for a point at the termination of the 

meshline quantities at five neighboring points are involved. 
Furthermore, the influence of points is not "reciprocal". For 

instance, in equation (6.2-6) for qi . . the quantities 'l'·+l . 1 and 1,J 1 ,]-
'l'i+l, j+l 
qi. +l . 1 

1 'J-

have nonzero entries whereas in the respective equation for 

that the 
and 'l'i+l,j+l the quantity 'l'i,j does not enter. This means 

system of equations comprised of the individual equations at 
all mesh points is structurally unsymmetric which complicates the 
solution. 

The local truncation errors for the three equations are altered 

compared to (6.1-46), (6.1-47) and (6.1-48). For a point at a 
terminating meshline in x-direction we have: 

k2 82Jnx 
+ o 'n-) . I 8y2 I 

8Jpx 8Jpy 82Jpx 82Jpy 
Tp < O(h)· 1-rx-l+O(k) ·1-a-y-l+O(h) ·I 

8
x 2 l+O(k) ·I 

8
y 2 lh+ 

k2 82Jpx 
+ o 'n-) . I 8y2 I 

(6.2-7) 

(6.2-8) 

(6.2-9) 

Similarly, we obtain for a point at a terminating meshline in 
y-direction: 

83'1' 83q1 h2 83'1' 
T'fl < O(h) • 18x31 + o(k) • 1ay31 + o("k) • lax2·yl (6.2-10) 

(6.2-11) 

I 
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3J x 8J 82J x 82J 
Tp < O(h)· 1-af-1+o(k) ·I           ·I     l+O(k) ·I        

h2 82Jpy 
+o ( k) · 1 ax 2 1 (6.2-12) 

From these expressions we can 
introduce a terminating meshline 

directly deduce that we should 
only where the respective mixed 

derivatives are small or, in other words, where the solution is almost 
constant in the direction perpendicular to the terminating meshline. 
In order to get consistency between the discrete approximations at 
regular points and those at terminations it has been shown in [6.32] 
to be necessary to assume mesh-spacing ratio restrictions at 
terminating meshlines. For a terminating meshline in the x-direction 
it is required that: 

kj-1 
-- < c k· J 

(6.2-13) 

Analogously, the prerequiste conditions for a terminating 
meshline in 
h· 1 

k-J 
< c 

y-direction 

hi-1 
-- < c h· 1 

are: 

(6.2-14) 

"c" is a moderate constant. As an additional more qualitative 
criterion one may prohibit meshlines from terminating inside of layer 
regions (space charge regions, inversion layers etc.). 

_ Finally, it should be noted that it is completely incorrect to 
directly interpolate the dependent variable in order to get a value 
for a missing neighbor. Recalling (6.2-1) we would obtain, for 
instance for the electrostatic potential, at the missing point 

(xi+l'yj): 
kj-1 

'i'1'+l,J' = .ua. 1 · 1 + kj-1 +kj T1+ ']+ 
k j a 2"' ( 6 • 3-15 ) 

·'1'·+1 . 1 + O(k2) ·ay2l1'+l,J' kj-1+kj 1 ,J-

The interpolation error in 
product of the second partial 

(6.2-15) is proportional to the 
derivative of the electrostatic 

potential and the square of the mesh spacing. It is incorrect to use 
an interpolation for the approximation of a point value in a finite 
difference approximation of a second order differential equation, 
which includes an error term of second order. 
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6.3 Finite Elements. 

The finite element method is a very new method. The modern use 

of finte elements started in the early 1940's with attempts by 

Hrenikoff [6.21] and McHenry [6.35] in the field of structural 

engineering. The term "finite element" was introduced by Clough [6.7] 

in 1960 in view of the direct analogy to engineering. Since then the 

finite element method has developed enormously and it can be seen as 

"a general discretization procedure of continuum problems posed by 

mathematically defined statements" [6.55]. A further historical 

introduction can be found in, e.g., [6.9] •. 

In order to apply the finite element method we have, similarly to 

the finite difference method, to partition the simulation domain 

without overlap or exclusion into a finite number of subregions, or 

finite elements. Probably the most frequently chosen shape for the 

individual element is the triangle. Fig. 6.3-1 shows the partitioning 

of the simulation geometry of a lateral bipolar transistor. The 

domain is the same as already chosen for the mesh example in the 

finite difference section and the finite boxes section of this 

chapter. The mesh point allocation is identical to the one for the 

finite boxes method shown in Fig. 6.2-2. The number of elements (i.e. 

triangles) is 968 in this example. 

The finite element method seeks an approximation ua to the exact 

solution u in each of the elements. Thus, in the i-th element an 

approximation (partial solution) is sought in such a manner that 

outside the element the contribution to the total approximate solution 

is zero. The total approximate solution is then simply the sum of the 

partial solutions over all elements. 

n a r u. 
j=l J 

Next one has to choose 

approximation     The most 
J 

a representation 

common form is 

of 

the 

(6.3-1) 

the element 

polynomial 
approximation probably due to the fact that polynomials are easy to 

manipulate algebraically and computationally, and, most importantly, 

smooth functions can be approximated arbitrarily accurately by an 

appropriate polynomial. We drop the subscript "j" in the following 

since we consider at first only a single element. 

The simplest polynomial suitable for triangular elements is: 
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(6.3-2) 

(6.3-2) is a linear approximation to the solution within the j-th 
element. To determine uniquely the coefficients a. of this 

1 
approximation three values of the approximate solution 
These are in general taken at the nodes of 
(cf. Fig. 6.3-2). 

are 
the 

required. 
triangle 

A more accurate approximation gives a complete quadratic 
polynomial. 

ua(x,y) = ao+a1·x+a2·y+a3·x2+a4·x·y+a5•y2 (6.3-3) 

Six values of the approximate solution are required to fully 

determine the coefficients ai. As shown in Fig. 6.3-3, these may be 
taken at the nodes and in the middle of the edges of the triangle. 

It can be imagined that the degree of the polynomial can be 
further increased, almost arbitrarily high. Incomplete polynomials 
may be used too. One may essentially prescribe an almost arbitrary 
functional behavior; only a few restrictions must be obeyed. There 
should be no preference for either the x- or the y-direction; the 
approximation should have geometrical invariance. Furthermore, the 
approximation must be continuous and must be capable of assuming an 
arbitrary linear shape [6.9], [6.55]. Lastly, the approximation 

should be conformal, i.e., the approximate solution should be 
continuous at the transition between adjacent elements. This is not a 
necessary condition; however, it significantly eases efforts towards a 
convergence and consistency analysis [6.49]. 

Any triangle with nodes P1 (x1 ,y1 ), P2 (x2 ,y2 ) and P3 (x3 ,y3 ) which 
are numbered counter clockwise can be transformed with the linear 
transformation (6.3-4) into a right unit triangle. 

x = x1+(x2-x1)               
(6.3-4) 

We shall therefore consider in the following the unit triangle 
which enables a significantly simpler notation. The linear 
approximation (6.3-2) transforms in the coordinates       to: 

        = u1+(u2-u1) ·f+(u3-u1) ·q (6.3-5) 

ui, i=l,3 are the values of the approximate solution at the 
respective nodes of the triangle. 
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Analogously the quadratic approximation (6.3-3) transforms in the 
coordinates       to: 

        = u1+(4·u2-3·u1-u3)                   ·q+ 
(6.3-6} 

Particularly for the semiconductor equations rectangular elements 
have proved to be suitable. The solution is most simply approximated 
in a rectangle with a bilinear form. 

ua(x,y) = ao+a1·x+a2·y+a3·x·y (6.3-7) 

By numbering the nodes of the general rectangular element 
counter-clockwise (cf. Fig. 6.3-4) we may transform it with (6.3-8) 
into the unit square. 

x = x1+(x2-x1)            ·q 

(6.3-7) evaluates after transformation to: 

        = u1+(u2-u1)                            .,.q 

(6.3-8) 

(6.3-9) 

The coefficients ai, i=l,4 have 
combination of the nodal values of the 

been replaced by the proper 
approximate solution. The 

rectangular elements with bilinear approximation and the triangular 
elements with linear approximation can be very efficiently combined to 
minimize the number of elements which essentially determines the 
overhead costs of a computer program. Such an approach has been 
investigated in [6.31]. An example of a finite element mesh with both 
triangular and rectangular elements is shown in Fig. 6.3-5. Compared 
to the triangular mesh in Fig. 6.3-1 all pairs of triangular elements 
which form a rectangle parallel to the coordinate axes have been 
replaced by a rectangular element. The total number of elements has 
been reduced thereby from 968 triangles to 451 rectangles plus 198 

triangles, or, 649 elements in total. Note that the allocation of the 
nodes has not been changed. Higher order approximations for 
rectangular elements certainly exist (cf. [6.49], [6.55]). However, 

in view of our application to the semiconductor equations I speculate 
that these will bring about only an insignificant improvement. Some 
investigations on the impact of the various possible approximations 
upon the semiconductor equations has been presented in, e.g., [6.5], 
[6.17], [6.18], [6.29]. A rigorous judgement of the results of these 

investigations is quite difficult, if at all possible. 
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We have given examples of approximations to the solution in 
triangular elements (6.3-5), (6.3-6) and rectangular elements (6.3-9). 
These approximations are more attractively formulated by the aid of so 

called shape functions 'f>i(f,q) in such a manner that the 
approximations transform into: 

m 
ua(f ,q) = r u1"'Pi(f ,q) 

i=l 
(6.3-10) 

"m" is the number ofvariable degrees of freedom in an element. 
The shape functions for our examples can be calculated with only small 
effort. For the linear approximation in triangles (6.3-5) they 
evaluate to: 

•1    '") = 1-f-" 

•2 cf,,.) = f 

'P)Cf,,.) =" 
C6.3-ll) 

For the quadratic approximation in triangles C6.3-6) the shape 
functions read: 

'Pi cf'") =              {1-f-'l) 

"2 cf'"> 4·f· (1-f-'l) -= 

'1>3 cf'"> = f· c2·f-l) 
C6.3-12) 

'P4 cf ,fl) = 4·f·q 

'Ps cf,,.> = ,.. c2·,.-1) 

'1>6 Cf ,q) = 4·q· Cl-f-") 

For the bilinear approximation in rectangular elements (6.3-9) 
the shape functions are: 

'Pi cf'") = c 1-f ) • c 1-'l ) 

"2 cf'"> = f. ( 1-'l) 
(6.3-13) 

'P3 cf,,.> = f ... 

'P4 cf,,.) = ( 1-f) • " 

Note that the shape functions outside of their specified element 
are identically zero. The shape functions are only non vanishing 
within the element for which they are defined. 
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In order to proceed with our discussion of the finite element 
method we first shall note a few results from functional analysis. We 

define F(u) to be a system of k differential equations. 
f Fl ( u)   

  F2 ( u)   
( ) 
( ) 

F(u) = ( ) = 0 (6.3-14) 
( ) 
( ) 
( ) 
( ) 

( Fk(u) ) 

u is a vector function defining k components (dependent 

variables) for the k differential equations. 
( u1 ) 
( ) 
( 

u2 
) 

( ) 
( ) 
( ) 

u = ( ) = 0 (6.3-15) 
( ) 
( ) 
( ) 
( ) 
( 

Uk 
) 

This system is posed in a domain D subject to boundary 

conditions: 
( f1 (u) ) 
( ) 
( f2 (u) ) 
( ) 
( ) 
( ) 

f ( u) = ( ) Ian = 0 (6.3-16) 
( ) 
( ) 
( ) 
( ) 
( fk(U) ) 

As the system (6.3-14) has to be satisfied in the domain D and 

simultaneously the boundary condition (6.3-16) has to be fulfilled on 

80, it follows that: 

[vT·F(u)·dx + I
0
vT·f(u)·dA = o (6.3-17) 
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v and v are vectors of arbitrary functions with 
rank(V)=rank(v)=k. 

( V1 ) ( v1 ) 
( ) ( ) 
( 

V2 
) ( 

v2 
) 

( ) ( ) 
( ) ( ) 
( . ) ( . ) 

v = ( ) v = ( ) (6.3-18) 
( . ) ( . ) 
( ) ( ) 
( ) ( ) 
( ) ( ) 
( 

vk 
) ( 

Vk 
) 

However, in general one has to restrict the possible families of 

functions in {6.3-18) such that the integrals in {6.3-17) can be 
evaluated. This integral formulation is termed the "weak formulation" 

of the system of differential equations {6.3-14), {6.3-16). 

With {6.3-1) we have introduced an approximation ua for the exact 
solution u. 

u=ua = 
n r u': 

j=l J 
{6.3-19) 

We have furthermore described the solution u': within each finite 
J 

element as a sum of nodal values times shape functions. We obtain 

therefore for the total approximate solution: 

ua = f { f Ui ·•i) j 
j=l i=l 

(6.3-20) 

The integral equation (6.3-17) is clearly never satisfied with 
the approximate solution (6.3-20) for arbitrary functions V and v. 

However, we may use, instead of "arbitrary" function V and v, a finite 

set of prescribed linearly independent functions. 

V = Vy v = vy Y=l,N (6.3-21) 

N denotes the total number of unknowns in (6.3-20), i.e. the 

total number of nodal values, involved in the approximation of the 

solution. (6.3-17) thus gives a system of N equations in N unknowns. 

(6.3-22) 
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This approach is called the "method of weighted residuals" 

because F(ua) represents the residual obtained by substituting the 

approximate solution ua into the differential equation; f (ua) is the 

residual of the boundary condition. V"ll and v"ll are called weight 
functions. Depending on the choice of weight functions various names 

are associated with the method of weighted residuals [6.55]. 
Frequently the shape functions 'f>. . are used directly to determine the 1,J 
       functions. This approach is then called the Galerkin method. 

In detail the components of V"ll and v"ll are composed of the union of all 

elemental shape functions of node "II. 

(6.3-22) may now be directly applied to the basic semiconductor 

equations. We choose shape functions for the dependent variables 
(ql,n,p): 

f m 
'IJ:l = ( r 'Pi • .;11 i ) j 

j=l i=l 

n m 
na = r ( r ni"'11i)j 

j=l i=l 

The Poisson equation substituted into (6.3-22) gives: 

l 2 ·(V"lf·div grad ( f ( f 'l'i·.;i'i)j) ·dx -
A j=1 i=1 

'·V"lf· ( f ( f                  - C) •dx + A j=1 i=1 

(6.3-23) 

(6.3-24) 

(6.3-25) 

+ l
0

vir·t'i'(qll,na,pa) ·dA = O (6.3-26) 

f'I' denotes the boundary condition for the electrostatic 

potential. The first integral in (6.3-26) has to be transformed using 

Greens's theorem in order to get rid of the second partial 

derivatives. 

(6.3-27) 
[v·div (P·grad u) ·ax= J

0
v·P·grad u·dA - !grad v· (P·grad u) ·dx 

The calculation of the first integral is then straightforward for 

a particular choice of shape functions and weight functions. This 
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procedure will not be outlined further here because it depends too 
heavily upon the choice for the above cited quantities and the actual 
configuration of the elements. The second integral in (6.3-26) is 
indeed much more crucial. To highlight this fact we have to consider 
first some elementary estimates for the errors associated with the 
finite element method. 

The error induced by the polynomial approximations can be 
estimated with the following inequality: 

with 11·110 , 2 denoting the energy norm defined as: 

llf(x)llo,2 =              

(6.3-28) 

(6.3-29) 

k is the degree of the approximating polynomials; h is the 
maximal length of the edges of the elements; u(k) denotes the maximum 

of the k-th partial derivatives. 
the arcs between the edges of the 
bounded by: 

const. c < sin Clf 

C represents a constant depending on 
elements: This constant can be 

(6.3-30) 

Clf denotes the lower bound for all angles in the discretization. 
It is therefore mandatory to avoid elements with very acute angles. 
For a more elaborate error analysis we refer to, e.g., [6.4), [6.51). 

Remembering the results of our analytical investigations in 
chapter 5 we know that the carrier concentrations exhibit a rapidly 
varying behavior in layer regions. We furthermore know from the 
results about the discretization with finite differences that the 
carrier densities can be              better with exponential 
functions than with low order polynomials. That leads to the 
conclusion that the finite element mesh must be extraordinarily fine 
in order to limit reasonably the error of the approximate solution, 

i.e. the right hand side of (6.3-28). 

In view of these considerations the classical finite element 
methodas described here can be seen to be significantly inferior to 
the exponentially fitted difference method in treating the 
semiconductor equations. However, it is fair to note that the 
classical finite difference method, where the carrier concentrations 
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would be approximated piecewise linearly, behaves as badly as the 

classical finite element method. Only the exponential fitting of the 

carrier concentrations is responsible for the superiority of the 
special finite difference scheme. 

For the one-dimensional semiconductor equations an exponentially 

fitted finite element method has been given in [6.11] and Mock [6.43] 
has analyzed this scheme thoroughly. An extensions of this scheme to 

two or three space dimensions is not known at present. In [6.24]; 
[6.45] this subject has been treated too, for different applications 
though. 

For these reasons we shall not discuss the discretization of the 

continuity equations by the classical finite element method. Several 

workers (whom I will not name) have tried hard - and I guess there are 

still some activities - to circumvent the above sketched problems and 
to develop special finite element schemes which are competitive with 

the exponentially fitted finite difference method. In principle there 

are three posibilities to tackle the problem. One can use a different 

set of dependent variables, different elemental shape functions or 

different weight functions for the residual integrals. 

Considering the dependent variables (cf. section 5.2) it may look 
attractive to use the set (qi,. ,. ) instead of (ql,n,p). However, two 

n P 
drawbacks are associated with these dependent variables. First, the 
various residual integrals arising in the discretization cannot be 

solved easily in case of more than one space dimension. Therefore, 

numerical integration usually is performed which behaves in general 

very poorly for exponentially varying integrands. Secondly, a 

polynomial approximation for • and • does not properly reflect pure n p 
diffusion currents unless a very fine mesh is used. The carrier 

densities tend to have a linear behavior and not an exponential 

variation which would be predicted by, for instance, linearly varying 

•n' •p· 
The use of exponentially fitted weight functions for the residual 

integrals may be an appropriate way to design a finite element method 

suitable for the semiconductor equations [6.55]. However, I am not 

aware at present of any investigations in this direction. 

Some activities can be observed in the use of appropriate shape 
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functions. In the development of the FIELDAY program [6.6], [6.8] the 

authors have used a hybrid method to link exponentially fitted carrier 
concentrations to the finite element method. A triangular mesh is 
used in this approach, and the carrier densities are assumed to be 
similar to those used in the exponentially fitted finite difference 

method. By adopting the nomenclature shown in Fig. 6.3-6 the scaled 

electron current (the treatment for holes is fully analogous) flowing 
along the edges is assumed to be: 

Inil2 (6.3-31) 

Inl23 (6.3-32) 

Inl31 = (6.3-33) 

The 

the 

B(x) denotes the Bernoulli function as defined in section 6.1. 

lij are the lengths of the edges and the dij are the lengths of 
perpendicular bisectors. With the approximations (6.3-31) to 

(6.3-33) the elemental continuity equations are formed by associating 

element to the node Pi closest to an incremental area D. 
1 

within each 
that area. 

Inl31 - Inl12 = D1·R1 (6.3-34) 

Inil2 - In123 = D2·R2 (6.3-35) 

Inl23 - In131 = D3 •R3 (6.3-36) 

Ri denotes the scaled generation/recombination rate at node Pi. 
This hybrid method, which should be understood as a finite difference 

method on a triangular mesh, has proved 
many applications. One prerequisite 

to work satisfactorily for 
is that the triangulation be 

performed in such a manner that none of the triangles is obtuse. For 

an obtuse triangle one of the perpendicular bisectors falls outside 

the element which gives the respective current component a negative 

weight thus causing an inconsistent formulation of current continuity. 

However, triangulation of a domain without obtuse triangles can 

certainly be achieved. An analysis of the convergence properties of 
this hybrid method is not known at present. 

Finite Elements 
I 



- 225 -

In [6.31] an attempt to derive an exponentially fitted finite 
element method from a more mathematical basis has been discussed. In 
this approach rectangular elements and transition bands composed of 
three triangles have been used (cf. Fig. 6.3-5). The electrostatic 
potential is approximated with bilinear and linear shape functions in 
the rectangular and triangular elements, respectively. For the 
carrier concentrations in rectangular elements the following shape 
functions, which are bilinear in Bernoulli-like functions, have been 
suggested. 

"11    '") = 

"12    '") = 

'P°13    '") = 

'Pf14    '") = 

'PP1    '") = 

8q1 
(1 - c    '8f)) . (1 

8q1 8q1 
c    '8f). (1 c (I} '81r)) 

8q1 8q1 
C    '8f) •C (I} '&if) 

8q1 8q1 
(1 -          •C("'fir) 

8q1 
(1 -      8f)) •(l C (" 

8q1) ) ,- fir 

'PP2    '") = 
8q1 

c    ,- 8f>. (1 c (I},- ::'>) 

with: 

1 - exp(x·y) 
C(x,y) = 1 - exp(y) 

(6.3-37) 

(6.3-38) 

(6.3-39) 

For the triangular elements in the transistion bands the hybrid 
formulation (6.3-31) to (6.3-36) has been used. This method seems to 
be quite convincing at first         however, several drawbacks become 
visible by closer inspection. First, the electric field components 
have been assumed to be constant within the elements which is 
inconsistent with the bilinear shape functions for the electrostatic 
potential. Furthermore, the shape functions (6.3-37) and (6.3-38) 

depend, even nonlinearly, on the electrostatic potential which itself 
is a dependent variable. This is indeed uncommon in the concept of 
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element method (cf. [6.51]) as has been pointed out 
in [6.12]. This method has been used with limited success 
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6.4 The Transient Problem. 

In this section we consider the treatment of the basic 

semiconductor equations for the case when the boundary condition for 

the electrostatic potential becomes time dependent. The partial 

derivatives with respect to time of the carrier concentrations then 
not vanish and the basic equations in scaled form will then read: 

0 = l.2 ·div grad qi - (n - p - C) (6.4-1) 

8n 
8t = div (On·grad n - Pn·n·grad qi) - R(ql,n,p) (6.4-2) 

8p 
div (Op·grad p + Pp•p•grad qi) - R(ql,n,p) (6.4-3) 8t = 

These equations are posed in a "cylindrical" domain Ox[O,T] 

subject to initial conditions at t=O: 

'fl(x, o> = 'Ml 

n(x,0) = no 

p(x,o> = Po 

and boundary conditions on 80, O<t<T: 

f 1 ('fl,n,p,x,t) 18o = o 

f 2 ('fl,n,p,x) lao = o 

f3 ('fl,n,p,x) 180 = o 

(6.4-4) 

(6.4-5) 

A discussion of the various possible boundary conditions has been 
given in section 5.1. Therefore, we use the implicit notation (6.4-5) 

here. 

The spatial operators, i.e., the right hand sides of (6.4-1), 

(6.4-2) and (6.4-3), have been dealt with in the previous sections. 

We, therefore, shall frequently use the abbreviated notation: 

0 = F1 ('f', n, p) (6.4-6) 

8n 8t = F2 ('f',n,p) (6.4-7) 

8p 8t = F3 (ql,n,p) (6.4-8) 

One difficulty considering the solution of (6.4-6) to (6.4-8) is 
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that the Poisson equation (6.4-6) does not contain time derivatives of 
the dependent variables. Therefore, the direct application of simple 
"black box" methods for a solution is not feasible [6.25]. Several 
authors, e.g. [6.26], have circumvented this problem via brute force 
by introducing an artificial time derivative into (6.4-6). 

8q1 
f•at = F1('fl,n,p) (6.4-9) 

f is a "sufficiently" small parameter. However, such an approach 
can not really be recommended since the error introduced thereby is 
independent of the time discretization to be used and, therefore, 
cannot be controlled by, for instance, properly choosing the size of 
the timesteps. 

Mock [6.39] has suggested a rigorous approach to introduce time 
derivatives into the Poisson equation. By differentiating (6.4-1) 
with 

0 = 

respect to time we obtain: 

   8q1 8n 8p 
A ·div grad at - at + at (6.4-10) 

Then one substitutes (6.4-7) and (6.4-8) into (6.4-10) and 
rearranges terms: 

   8q1 
A •div grad at= F2('f',n,p) - F3('f',n,p) 

The system comprised of (6.4-11), (6.4-7), (6.4-8) 
to (6.4-6), (6.4-7), (6.4-8) provided that the initial 

(6.4-11) 

is equivalent 
data (6.4-4) 

satisfy the Poisson equation and the boundary conditions (6.4-5) at 
t=O. A mathematical analysis of this method can be found in [6.39], 
[6.42], [6.43]. 

In the following we shall discuss the time discretization of the 
basic equations. However, all algorithms will be presented in 
semidiscrete form, i.e. the dependent variables are discretized with 
respect to time but they are left continous in the space variables. 
To simplify the notation we shall use the following abbreviations: 

(6.4-12) 

(6.4-13) 

The simplest time discretization scheme is the (fully explicit) 
forward Euler method (cf. [6.36]). However, this method requires a 
severe restriction on the time step d =O (h2+k 2 ) (cf. [ 6. 50]) which is m 
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not feasible in practice. Therefore, one should refrain from using 

the fully explicit method. 

The probably simplest semi-implicit time discretization 

to solve repeatedly each of the the basic equations using 

available" values for the dependent variables (except 
recombination term cf. [6.43]) as follows: 

nm+1-nm 
- div(Dn·grad nm+1-Pn·nm+1·grad'ifu) + R(tifu,nm,Pm) = 0 

dm 

Pm+1-Pm 
- div(Dp·grad Pm+1+Pp·Pm+1·grad'ifu) + R ('ifu, nm, Pm) = 0 

dm 

A2
·div grad 'Mn+l - (nm+l - Pm+l - C) = O 

method is 
the "best 

in the 

(6.4-14) 

(6.4-15) 

(6.4-16) 

For this method one has to solve three linear equations at each 
timestep. However, a strong condition on the timesteps dm is also 

required to guarantee stability [6.43], namely: 

2·A2 
dm < min( ) 

Pn·n + Pp·P 
(6.4-17) 

This restriction is in general so             that the method is 

inapplicable for practical purpose, too. 

A stable, uncoupled scheme can be obtained from the equivalent 
system (6.4-11), (6.4-7) and (6.4-8). The discretized equations read: 

%+1-'Mn A2 ·div grad (6.4-18) 

(6.4-19) 

(6.4-20) 

Mock [6.43] has proved that this method is stable independently 

of the size of the timesteps dm. However, computational experiments 

indicate that this method tends to damp transients too rapidly [6.41]. 

One has to require that the residual of the Poisson equation remains 

small during the iterations, i.e.: 

Em+l = A2
·div grad 'ifu+l - (nm+l - Pm+l - C) (6.4-21) 

The timestep dm has to be chosen in such a way that (6.4-21), 
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which is initially zero since the initial data are required to satisfy 
the Poisson equation, always remains below a prescribed accuracy 
bound. Note that (6.4-18) is nonlinear in 'l'm+l and the continuity 
equations (6.4-19), (6.4-20) are linear in nm+l' Pm+l' respectively. 

Another uncoupled scheme makes use of a "stabilizing" term in the 
Poisson equation. The continuity equations are discretized like 
(6.4-14)' (6.4-15). 

(6.4-22) 

(6.4-23) 

(6.4-24) 

r is an appropriate positive and bounded damping function [6.46], 
[6.54]. During the iterations one has to keep, in analogy to the 
previous method, the residual of the Poisson equation, i.e. the 
stabilizing term, small by using sufficiently small timesteps. 

Em+l = r· ('lfu+l - 'lfu) (6.4-25) 

One particular choice for r which is motivated by the well known 
iterative scheme by Gummel [6.16] has been given in [6.39] (see also 
section 7.2). 

nm+l + Pm+l 
r = Ut 

(6.4-26) 

The method (6.4-22) to (6.4-24) with r given by (6.4-26) is 
unconditionally stable. However, an unphysical oscillatory behavior 
of the solution can be observed [6.3], [6.40] which makes the method 
almost unusable for practical applications. 

A slightly different stabilizing function r has been tested in 
[6.3]. 

1 nm+l 
r = ut" ( %+1-% + 

B ( Ut ) 

Pm+l 
%1-=%+1 ) 

B ( Ut ) 

(6.4-27) 

B(x) denotes the Bernoulli function (cf. section 6.1). The 
Poisson equation (6.4-24) is, most unattractively, changed to a 

nonlinear equation in 'l'm+l which can be regarded as a substantial 
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drawback. However, the oscillatory behavior of the solution is 

significantly reduced although it can still be observed. 

If one is willing to spend considerable computer resources, full 

backward time differencing (backward Euler method) gives most 

satisfactory results. The discretized equations read in this case: 

F1('1fu+1rnm+lrPm+l) = 0 (6.4-28) 

(6.4-29) 

(6.4-30) 

This classical approach is well known to be unconditionally 

stable for arbitrarily large timesteps dm. The accuracy in time is 

readily monitored [6.38] by the local truncation error of the discrete 

approximations for the 

concentrations in (6.4-29), 

partial 

(6.4-30). 

derivatives of the carrier 

The main drawback of this fully 

implicit method can be seen in the large system of nonlinear algebraic 

equations which has to be solved at each timestep. For the uncoupled 

approaches it is instead only necessary to solve three systems each of 

which has a rank of only one third of the rank of the full system, 

and, additionally, at least two systems (continuity equations) are 

linear. However, from my personal experience I have the opinion that 
the implicit method is worth the extra computational burden since the 

results obtained using the fully implicit scheme achieve the desired 

"numerical" reliability required for practical applications which are 
above purely academic examples. 

If we substitute for the spatial operators in (6.4-28), (6.4-29), 
(6.4-30) the discretization schemes obtained by the exponentially 

fitted finite differences, we end up with the completely discretized 

equations (6.4-31), (6.4-32), (6.4-33). 

2 hi-1+hi 
qi· . 1 l "l . + i,J- ,m+ 2•kj-l 
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- (ni, j ,m+l _ . . hi-1 +hi kj-1 +k · P1,J,m+1)· 2 2 J = 

+ n1· 1 · • D I 'Pi-1 J' m+l-111. · k - ,J,m+l n i-1/2, · m·B( ' ' · T1,J,m+l j-1+k· J' Ut ) • J 
2·hi-l 

- ni,j,rn+1· (Dnli,j-1/2 m·B('l'i,j,rn+l-qli,j-1,rn+l hi-1+hi 
' Ut ) ·----.i. 

2 • kj-1 

qi· . -Ill 
+Dnli-1/2 · ·B( i,J,m+l Ti-1,j,m+l kj-1+k· 

,J,m Ut )• J 
2·hi-l 

+Dnli+l/2 · m·B('l'i,j,m+l-'l'i+l,j,m+l kj-1+k· 
'J' Ut ) • J 2·hi 

..,. . -'I' 
+Dnli,j+l/2 rn·B( i,J,m+l i,j+l,rn+l hi-1+hi 

' Ut ) ·-----i-2 • kj 

+ n · · 1 • D I 'Pi j + 1 + 1 -'I'· · l,J+ ,m+l n i,j+l/2 m·B( ' ,m l,J,rn+l hi-1+hi ' Ut       2•kj 
= 

n· . h = (R l,J,ID i-1+hi kJ·-1+k· 
i , j 'rn - dm ) • 2 2 J (6.4-32) 
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'Pi,j,m+1-'l'i-l,j,m+l kj-1+kj 
+ p. 1 . +1 • D I . 1/2 . • B ( ) • -1- ,J,m p 1- ,J,m Ut 2•hi-l 

'l'i,j-1,m+l-'l'i,j,m+l hi-1+hi 
Pi,j,m+l" (Dpli,j-1/2,m"B( Ut ) 0 2•kj-l 

I 
'Pi-1,j,m+l-'l'i,j,m+l kj-1+kj 

+Dp i-1/2,j,m•B( Ut )• 2•hi-l 

I 
'Pi+l,j,m+l-'Pi,j,m+l kj-1+kj 

+Dp i+l/2,j,m•B( Ut               

I 
'Pi,j+l,m+l-'l'i,j,m+l hi-1+hi 

+Dp i J'+l/2 m·B( Ut )• + , , 2·k· 
J 

= 

(6.4-33) 

The expressions for the carrier mobilities and the 

generation/recombination rate can in general be discretized at the 

m-th time level in any of the schemes when the solution at the m+l-st 

time level is sought. The time scales associated with carrier 

mobilities and generation/recombination are usually significantly 

larger than the timesteps required to obtain acceptable truncation 
errors. 

It is to note that the system of algebraic equations arising from 

the discretization of the transient problem is significantly easier to 

solve. One reason is that the partial time derivatives help to 

stabilize the center point coefficient of the spatial discretization. 

Furthermore, the solution at the previous time step is usually a very 

good initial guess for the solution at the next time step. Note also 

that a solution module for the static problem can be straightforwardly 

used for the transient problem because the discretized equations have 

I 
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exactly the same structure: only minor modifications in the assembly 

of the coefficients have to be performed. 

All algorithms which have been presented in this section are 
accurate to first order in time, i.e. the local truncation error is 

O(d). It is certainly possible to construct schemes which are of 
higher of accuracy in time, e.g., the Crank-Nicholson method, [6.34), 

[6.36], [6.47), [6.50). However, it is fairly difficult to keep the 
discretization of the spatial operators consistent with higher order 

time discretizations. I shall therefore refrain from discussing such 
algorithms. 
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6.5 Designing a Mesh. 

Since subregions of strong variation of the dependent variables 
(ql,n,p) alternate with regions where these quantities behave smoothly 
(i.e. their gradients are of moderate size) different orders of 
magnitude of mesh sizes are mandatory for these regions. Any 
discretization scheme for the spatial operators must therefore be 
capable of locally switching from a coarse mesh to a fine mesh. For 
the finite difference method outlined in section 6.1 this is 
accomplished by the generalization to finite boxes (cf. section 6.2). 
For the finite element methqd it is implicit from the concept to have 
a nonuniform mesh. 

It is impossible for most applications of the basic semiconductor 
equations to specify an efficient and appropriate mesh a-priori. The 
solution has to be known in order to design a numerically suitable 
mesh with as few as possible mesh points. Furthermore, the user of a 
device simulation program, usually an engineer, is not interested (and 
certainly not paid for) to quarrel with the design of a mesh. 
Therefore an adaptive mesh selection is desired and mathematically 
formulated criteria are, obviously, required. Such criteria have to 

satisfy two conditions in general. First they should not cause more 
meshpoints than are really necessary to achieve a certain accuracy. 
Secondly, they should guarantee that a prescribed accuracy is really 
obtained once they are fulfilled. 

The classical way to design adaptive mesh refinement procedures 
is to equidistribute the local truncation error of the discretization 
scheme. This statement, however, is about all what can be said in a 
rigorous manner. In practice, additional or more expedient criteria 

are required which can be straightforwardly implemented in a computer 
program; these criteria might be inexact mathematically, though. It 
has been shown in [6.32] that it is not possible in practice to 
equidistribute the local truncation error in layer regions because too 
many meshpoints are required. However, the singular perturbation 
analysis (cf. section 5.6) shows that the exponentially fitted finite 
difference scheme which we have disussed in section 6.1 approximates 
the reduced problem (A=O i.e. zero space charge approximation) 
implicitly even when the local truncation error is not equidistributed 

inside the layer regions. Therefore, the solutions obtained are 
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qualitatively correct in the whole simulation domain and 
quantitatively acceptable if the local truncation error is only 
equidistributed outside the layer regions. The currents flowing 
through the contacts are only affected to a minor degree by the local 
truncation error in the layer regions [6.37], [6.44]. 

Note that the concept of equidistributing the local truncation 
error is certainly applicable for any discretization scheme. However, 
for the classical finite difference scheme (i.e., linear behavior 
assumed for the carrier concentrations between adjacent mesh points) 
or the classical finite element method the number of required mesh 
points is overwhelmingly large. 

From the above given considerations we can deduce the following 
practical guidelines: 

• Introduce a minimum mesh spacing on the order of the perturbation 
parameter .1.. 

• Calculate for each mesh point the maximum modulus of the partial 
derivatives of the scaled space charge and the scaled 

generation/recombination rate. 
• Multiply these numbers with the scaled area associated with the 

respective mesh point. One obtains thereby a pessimistic estimate 
for the local truncation error of the exponentially fitted scheme. 

• Insert mesh points wherever the estimates of the local truncation 
error are above a prescribed desired final accuracy and the minimum 

mesh spacing has not been reached. Practical values for the final 
accuracy are 0(10-2). 

• Recompute the solution and adapt the mesh again if necessary. 

These guidelines only qualitatively take into 
discretization errors from the continuity equations (by 
mesh to the magnitude of the generation/recombination 
accurately (but rather cumbersome) the magnitude of 

second derivatives of the current densities should 
designing the mesh (cf. (6.1-47), (6.1-48)). 

account 
adjusting 
rate) • 
the first 

be used 

the 
the 

More 
and 
for 

From practical experience I can recommend introducing not too 
many new mesh points at every adaption step. A good value should be 
on the order of ten percent new points. The initial mesh can indeed 
be very coarse in the case of adaptive mesh refinement. It has been 
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proven in [6.32] that even for a very coarse mesh the reduced problem 
is approximated by the exponentially fitted scheme. Therefore, it 
suffices that the initial mesh be fine enough to resolve the geoemtry 
and the doping profile. It is certainly possible to minimize the 
number of adaption processes by specifying the initial mesh with 
a-priori knowledge about the solution, which is available for almost 
all classical devices, e.g., MOS transistors, bipolar transistors. 
However, for structures like the parasitic thyristor in CMOS which is 
responsible for latch-up I cannot imagine where an appropriate and 
efficient mesh is designed a-priori and does not require an adaption 
step. 

A comment should be given on the edges of a boundary (e.g., 

points A to Hin Fig. 6.1-1). Such points represent singular points 
at which the local truncation error has to be expected, in general, to 
be much larger than at all other points. A discussion of this problem 
together with a splendid review of the literature has been given in 
[6.14]. However, the basic results indicate that the best pragmatic 
and feasible approach should be to use a very fine mesh in the 
vicinity of such points. This, non rigorous, strategy is supported by 
the results obtained by careful investigations by Laux and Lomax 
[6.30]. 

One problem which arises when inserting new mesh points is that 
the solution has to be interpolated for the new mesh points in order 

to have an initial guess for the subsequent computations. The only 
interpolation scheme I can recommend is to use directly the difference 
scheme for the newly introduced mesh points with the solution at the 
"old" mesh points interpreted as Dirichlet data. This interpolation 
requires in general the solution of a nonlinear system of algebraic 
equations with a rank equal to the number of newly introduced mesh 
points times the number of variables at each node •• However, the 
equations in this scheme are only weakly coupled, if at all, which 
simplifies the solution significantly. A naive linear interpolation 
of the dependent variables to obtain an initial guess at the new mesh 
points will greatly increase the effort to be spent for the subsequent 
solution of the nonlinear equations on the entire mesh; it should 
therefore be avoided. 

A final remark should be given on the first initial guess for the 
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iterative solution of the discretized semiconductor equations. The 

best recommendable procedure is to solve first the reduced problem, 
i.e., to assume zero space charge for the initial solution. Many 

computer experiments have proved that the solution of the full problem 

will then be determined with a minimum on computational effort. This 

approach can be elaborated further by successively increasing the 
complexity of the full problem caused by the fairly expensive 

evaluation of the various models for the physical parameters (carrier 

mobilities, generation/recombination). A very sophisticated and 

constructive approach to tackle this problem for the simulation of 
bipolar transistors is called STEPSOLVING [6.11]. However, a concept 

applicable for arbitrary devices cannot be given straightforwardly and 

has to be developed guided by physical knowledge about the behavior of 

the solution for the specific structure under consideration. 
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7. The Solution of Systems of Nonlinear Algebraic Equations. 

The main result obtained in the preceeding chapter is that 

discretization of the basic semiconductor equations yields a large 

system of nonlinear algebraic equations with the values of the 

dependent variables of the differential equations at discrete points 

as unknowns. For the considerations in this chapter we adopt the 

following nomenclature for the system of discretized equations: 

F(w) = o (7-1) 

with 

  'f'f'Cw) ) 
) 

( ) 
if = ( fn {w) ) (7-2) 

( ) 
( IP cw) ) 

and 

( iii ) 
( ) 

w = ( - ) n (7-3) 
( ) 
( p ) 

if is a vector function of rank three which itself consists of the 

vector functions flJ., f and f • ,.. n p 
the discrete approximations 

These vector functions correspond to 

for the Poisson equation and the 

continuity equations, respectively. 

comprised by three vectors which 

The vector of unknowns w is also 

are formed by the values of the 

electrostatic potential ip, electron -concentration n and hole 

concentration p at discrete points of the simulation geometry. We 

shall assume that the rank of all three vector functions f'I" fn' fp 

and the three vectors ip,- n, p equals n. This is not a necessary 

assumption but it will simplify the notation. It may well happen for 

practical applications that the rank of • differs from the rank of n 
and p (e.g., when the Laplace equation is solved in an insulator). 

For our purpose, the scalar rank of F and w is 3·n=m. 

The unknowns represent, of course, different quantities if other 

dependent variables for the differential equations are        

(cf. section 5.2). However, we restrict ourselves to (ql,n,p) as set 

of dependent variables, which indeed is not essential for the 

following discussion. 
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In general, only iterative methods are applicable for the 

solution of systems of nonlinear algebraic equations. The most 

important method, without any doubt, is Newton's method together with 

some modifications. In the following section I shall review the 

mathematics required for the understanding of nonlinear iteration with 

particular emphasis on Newton's method and Newton-like methods. In 

the second section of this chapter we will discuss some iterative 

methods which have proven to be valuable for the semiconductor 

equations, which, however, exhibit some heuristic nature such that a 

rigorous mathematical characterization is not possible. Continuation 
methods, e.g. [7.17], which might be applicable for the semiconductor 

equations [7.5] are not considered here. 

For the sake of simplicity in notation the vector arrows will be 
omitted in the following. Ambiguities in the notation have not to be 

feared. 

The Solution of Systems of Noniinear Algebraic Equations 
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7.1 Newton's Method and Extensions. 

First I will give a qualitative introduction to the theory of 

nonlinear iterative methods, which naturally leads to Newton's method. 
A rigorous treatment of this subject is beyond the scope of this text; 

the interested reader is referred to the elaborate book by Ortega and 
Rheinboldt [7.16]. 

* We assume for the sake of simplicity that a solution w exists 

for the system (7-1). Furthermore, we assume that there exists a 

neighborhood of w* within which no other solution exists, i.e. within 
which the solution is unique. 

All iterative methods are based on a fixpoint equation. 
w = M (w) (7.1-1) 

M(w) must be constructed in such a way that the fixpoint w* of 

(7.1-1) is a solution to (7-1). The fixpoint equation is then used 

directly for iteration. 

wk+l = M(wk) , k=0,1,2, ••• 

with: 

limllwk - w*ll = 0 
k-ito 

(7.1-2) 

(7.1-3) 

(7.1-3) certainly requires specific properties of M(w) and, in 
general, of w0 , the initial "guess" too. These prerequisites can be 

formulated more mathematically as follows. Suppose, there is a 

neighbourhood S(w*), M(w)es for wes and a constant de[O,l[ such that 

for some norm 11· llM: 

I IM ( w) - w * II   d · llw - w * II ¥ we s ( 7 • 1-4 ) 

Then the iteration (7.1-2) will converge for any w0es(w*) tow*. 

The iteration is locally convergent and M(w) is called a "contractive" 

mapping. One way to ensure that condition (7.1-4) is satisified is to 

assume that the Frechet derivative M' (w) of M(w) exists at the 

fixpoint w* and that its eigenvalues are less than one in modulus. To 
put it more precise, the Ostrowski theorem [7.25] says if: 

f(M'(w*)) <l (7.1-5) 

then the mapping M(w) is contractive and has a locally uniquely 
* defined fixpoint w es. f (A) denotes the spectral radius of the linear 

operator A; it is defined as the maximal modulus of all eigenvalues of 

I 
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M. M(w) is Frechet differentiable at w* if there exists a linear 
operator A such that: 

. llM ( w * + h) - M ( w * ) - A. h 11 
                    = 0 (7.1-6) 

The linear operator A is then called the Frechet derivative and 
is usually denoted by: 

M'(w*) =A (7.1-7) 

The Frechet derivative is unique if it exists and its concrete 
representation is the Jacobian matrix of M. The condition (7.1-6) can 
be viewed as a uniformity condition which ensures that M(w) has a 

tangent space at w*. It is to note that the usual properties and 
formalisms of derivatives in one space dimension can be carried over 
to the n-dimensional case, arthough their exact definition is more 
complex. 

The preceeding mathematical statements will allow us to elegantly 
characterize iterative methods (although they seem to be rather 
formal). Guided by practical aspects the iterative methods (7.1-8) 
are usually given preference. 

wk+l = MCwk) =wk - BCwk)-l•FCwk) C7.l-8) 

We shall now characterize the requirements on BCw) such that the 
iterative scheme C7.l-8) converges. The Frechet derivative of the 
right hand side of (7.1-8) evaluates to: 

M' Cw) = I - CBCw)-1) '•FCw) - B(w)-l·F' Cw) C7.l-9) 

In order to apply the Ostrowski theorem C7.l-5) we have to 
evaluate C7.l-9) at the solution w* of FCw). This yields: 

M' Cw*) =I - BCw*)-1.F' Cw*) (7.1-10) 

From C7.l-10) we can deduce that a variety of operators BCw) 
exist such that C7.l-5) is fulfilled. The classical Newton method is 
defined by: 

B(w) = F' Cw) C7.l-ll) 

We can directly see that M' Cw*) for Newton's method has a 
spectral radius equal to zero which gives convergence for initial 
guesses sufficiently close to the solution. However, we furthermore 
can see that MCw) does not need to be the exact Frechet derivative of 
FCw) in order to have a convergent scheme: it suffices in general to 
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have an approximate Jacobian. To give an example we assume that B(w) 

is proportional by a constant r to the exact Jacobian. 

B (w) = r· FI (w) (7.1-12) 

The Frechet derivative (7.1-10) evaluates in this case to: 

1 
M'(w*) = (1 - f)•I (7.1-13) 

We can deduce trivially from (7.1-13) that the eigenvalues of 
M' (w*) are (1-1/v.). h f (7 1 12) · 1 11 • T ere ore, • - gives a oca y convergent 
iteration scheme with reJ0.5,a>[ since then the Ostrowski theorem 
(7.1-5) is satisfied. It is obvious, however, that the convergence 

properties are significantly influenced by the quality of the 
approximation B(w) to F' (w). 

It should be noted, though trivial, that the iterative scheme 

(7.1-8) will certainly not be implemented in that form. In order to 
avoid the expensive inversion of the linear operator B(w) we write 

instead: 

(7.1-14) 

For the solution of (7.1-14) it is necessary to solve a system of 

linear algebraic equations. This problem will be the topic of 
chapter 8. 

In the following we consider modifications of the Jacobian matrix 

which give a linear operator B(w) in such a manner that the 

corresponding modified Newton method (7.1-14) exhibits improved 

convergence properties for an initial guess which is not sufficiently 

close to the solution w* that the classical Newton method (7.1-11) can 

be applied without difficulties. The main problem associated with the 

classical Newton method is the tendency to overestimate the length of 

the actual correction step for the iterate. This phenomenon is 

frequently termed overshoot. In the case of the semiconductor 

equations tnis overshoot problem has been often treated by simply 

limiting the length of the correction vector determined by Newton's 

method, e.g. [7.23], or by applying some nonlinear damping function on 

the correction vector, e.g. [7.3]. However, these approaches have in 

common that not only the length of the correction vector is adapted 

but also the direction is altered. This leads to unpredictable 

convergence properties which are in general poor compared to the more 

mathematically founded procedures to be described below. 
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It may also happen that the initial guess with which the 
classical Newton method is started does not lie in the region of 
attraction. Newton's method will then not converge at all. The 
modifications to the classical Newton method are therefore also 
intended to enlarge the region of convergence for the initial guess. 

Another reason for allowing a deviation of B(w) from F' (w) is 
that it can be quite difficult and expensive in terms of computer 
resources to evaluate the Jacobian matrix accurately. An approximate 

Jacobian can be appropriate for a given problem as well. 

The best established modifications to avoid overshoot of the 
classical Newton method are given by (7.1-15) and (7.1-16), 

respectively. 

(7.1-15) 

(7.1-16) 

tk and sk are properly chosen positive parameters. For tk=l, 
sk=O these modified Newton methods reduce to the classical Newton 
method. We have now to deal with the question how to choose tk or sk 
that the modified Newton methods with (7.1-15) or (7.1-16) exhibit 
superior convergence properties compared to the classical Newton 
method. 

(7.1-15) has been investigated by Deuflhard who suggested to use 

tk from the interval ]0,1] in such a manner that for any norm: 

llF' (wk)-l•F(wk-tk·F' (wk)-l•F(wk)) II < llF' (wk)-l•F(wk) II (7.1-17) 

Condition (7.1-17) guarantees that the correction of the k-th 

iterate is an improved approximation 
condition can be easily evaluated 

to the 
only 

final solution. This 
if the Jacobian matrix is 

factored into triangular matrices because the evaluation of the 
argument of the norm on the left hand side of (7.1-17) is then reduced 
to a forward and backward substitution and the evaluation of F(w). 
However, the value to use for tk is a question of trial and error. 
Frequently one chooses the following sequence: 

1 
i=0,1,2, ••• (7.1-18) 

or the more rapidly decreasing sequence: 
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1 

i· (i+l) 
i=0,1,2, ••• (7.1-19) 

2 2 

It is obvious that the largest value of tk should be taken with 

which (7.1-17) is fulfilled. Sufficiently close to the solution 

(7.1-17) will be satisfied with tk=l so that the convergence 
properties of the classical Newton method are retained in its limit. 
If the triangular factors of the Jacobian matrix are not available 

because an iterative method is used for the solution of the linear 

system, (7.1-17) cannot be readily applied. One may then use (7.1-20) 
where D(wk) denotes the main diagonal of F' (wk) [7.5]. 

llD(wk)-l•F(wk-tk·F' (wk)-1.F(wk)) II < llD(wk)-1.F(wk) II (7.1-20) 

Bank and Rose [7.1], [7.2] have presented 

investigation about the proper choice of tk and 
convergence properties of the modified Newton method. 

use: 

with Kk such that: 

1 - llF(wk+l)ll < J·tk Je]O,l[ 
I IF (wk) 11 ' 

an elaborate 

the associated 
They suggest to 

(7.1-21) 

(7.1-22) 

Note that tk approaches unity in (7.1-21) when wk approaches the 

solution and Kk is bounded. Actually, only if tk approaches unity 
* sufficiently fast as w+w , the modified Newton method can anticipate 

superlinear convergence [7.2]. For further details of this method and 
the prerequisite assumptions on F(w) and its Jacobian matrix, refer to 

the papers [7.1], [7.2]. Practical experience with this method 

applied to the semiconductor equations with indeed convincing results 

has been reported by Fichtner and Rose [7.6], [7.7]. 

The modified Newton method (7.1-16) has been investigated by, 
e.g., Meyer [7.13] and with application to the semiconductor equations 

also by Bank and Rose [7.1]. The required assumptions on F(w) and its 

Jacobian are usually less stringent for (7.1-16) than for (7.1-15) 

which gives a larger field of applications for (7.1-16). Meyer has 
* shown that (7.1-16) will converge monotonically to the solution w of 

F(w)=O if sk is chosen in such a manner that (7.1-16) is diagonally 
dominant. Bank and Rose suggest to use: 

Newton's Method and Extensions 



- 249 -

The qk are chosen such that: 

llF(wk+l)ll < llF(wk)ll 

(7.1-23) 

(7.1-24) 

However, considering the computer experiments given in [7.1] the 

modified Newton method with (7.1-15) appears to be superior to 

(7.1-16) in the special application of the semiconductor equations. 
This statement coincides also with my personal experience. 

Experiments [7.9] indicate that it can be quite advantageous to 

combine (7.1-15) and (7.1-16) as has been also anticipated in [7.2]. 
This leads to the iteration operator: 

(7.1-25) 

( 7 .1-25) is in particular superior to ( 7 .1-15) if 

represents an ill conditioned matrix. 

One 

Newton's 
question which 
method or any 

ultimately arises 

of its extensions 

in the programing of 

is the adequacy of an 

approximation or the correctness of the Jacobian matrix. Particularly 

if parameters are involved in F(w} which are complex functions of w, 

one most likely intends to ignore some of the partial derivatives as 

these can be very awkward to evaluate. One example in the case of the 
semiconductor equations represents the carrier mobilities which in 

general are functions of the dependent variables. For the simulation 

of silicon devices it is usually possible to neglect the partial 
derivatives of the carrier mobilities with an insignificant loss in 
the rate of convergence. However, for simulations with negative 

differential carrier mobilities (e.g. GaAs devices) the convergence 

may be significantly retarded [7.8]. Condition (7.1-26) can be very 

useful in checking the quality of the iteration operator B(w). 
1 

lim cfllF<wk-ae·B(wk)-l•F(wk)) - F(wk)ll = const. > o (7.1-26) 
ct+O 

Some further remarks on checking the calculation of iteration 

operators and gradients can be found in [7.22]. 

In order to enable a maximum of flexibility in the specification 

of the models for {physical) parameters, for instance user supplied 
external functions, it may be necessary to calculate derivatives by 
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numerical differentiation. From practical experience I can recommend 

the algorithm by Curtis and Reid [7.4] for the automatic choice of the 

step lengths when approximating first derivatives by first 

differences. This algorithm seeks a moderate value for the ratio of 
the truncation error of the difference approximation divided by the 
round-off error due to finite computer arithmetic. For details one is 

referred to the original work [7.4]. 

A final remark should be given on termination criteria for 
modified Newton methods. Usually one can find: 

(7.1-27) 

t is a properly chosen relative accuracy parameter. However, 

(7.1-27) alone may be inadequate since it can be satisfied far too 

early in the case of a strongly damped iteration scheme. In [7.1] the 

following additional criterion has been used: 

1 
llwk+l - wkll < 2· llwk - wk-1 11 (7.1-28) 

This criterion guarantees that the actual correction step is 

sufficiently (half) small compared to the last correction step. 

Another possibility which I recommend is to check directly the 

residual of the nonlinear system. 

I IF (wk+ 1) 11 < 4 ( 7 • 1-2 9) 

4 is a properly chosen absolute accuracy. It has to be defined 

in consistency with the scaling of F(w)=O. For the semiconductor 
equations scaled by the factors given in section 5.5 4 is 0(10-lO). 
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7.2 Iterative Methods. 

For Newton's method or its variants it is required to solve a 
system of linear algebraic equations at each iteration step. The 
question arises naturally how accurately these linear systems have to 
be solved since the results obtained thereby is just an incremental 
correction to the intermediate approximation of the solution. The 
accuracy of the solution of the linear systems required to preserve 
the convergence properties of Newton's method has been investigated 
in, e.g., [7.19]. However, with some modifications the solution of 
the linear systems for each Newton step can be significantly 
simplified with an often acceptable decrease of the convergence rate. 
The overall solution of the nonlinear system can be much cheaper 
because of the simplifications for the linear systems although the 
number of iterations required to solve the nonlinear system is usually 
increased. 

We       first discuss the derivation of an SOR-Newton method 
[7.16] for the semiconductor equations. To simplify the notation we 

define the nonlinear system: 
F1('1',n,p) 

F('f',n,p) = = 0 (7.2-1) 

F3 ('I', n, p) 

F1 denotes the Poisson equation: F2 and F3 are the continuity 
equations for electrons and holes, respectively. The correction 
vector for the k-th iterate is given by: 

Jqi< = qi<+ 1 qi< 

(7.2-2) 

Newton's method at the k-th step can then be formally written as: 
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( 8F1 8F1 3F1 k (7.2-3) 

3qJ 8n- 8p # F1           

8F2 8F2 8F2 
cf nk F2           3qJ an- 8p 

. = -

8F3 8F3 8F3 cf pk            3qJ an- 8p 

Under the assumption that the Jacobian matrix is definite and 
that all blocks in the main diagonal of (7.2-3) are nonsingular one 
can use a classical block iteration scheme (iteration index m) for the 
solution of the k-th Newton step (cf. section 8.3): 

8F1 k m+l 8F1 8F1 k m (7.2-4) 

3qJ 0 0 #            0 8n 8p   

8F2 8F2 
0 cf nk F2          0 0 

8F2 cfnk 3qJ an-
. = - 8p 

8F3 8F3 8F3 clpk            0 0 0 cf pk 3qJ 8n- 8p 

Since the coefficient matrix of (7.2-4) is block lower triangular 
one can decouple the system into three linear systems (7.2-5), (7.2-6) 
and (7.2-7) which have to be solved sequentially. 

(7.2-5) 

(7.2-6) 

(7.2-7) 

This iteration method has the advantage that the equations can be 
solved sequentially. To end up with the Block-SOR-Newton method one 
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has to resubstitute the series expansions on the right hand side of 
(7.2-5), (7.2-6), (7.2-7) and to introduce a relaxation parameter 

UE]0,2[: 

(7.2-8) 

(7.2-9) 

(7.2-10) 

This method converges linearly [7.16]. However, thorough 
investigations need still be performed in order to properly judge the 
convergence properties of this method applied to the semiconductor 

equations. Experiments have proven that it can be applied to the 
semiconductor equations [7.9]. A similar algorithm has been proposed 
in [7.21]. However, the convergence properties are not too convincing 
if the set ('fl,n,p) is used as dependent variables. Note that the 
block 8F1 /8'1' is zero for the reduced problem which is the reason for 
the poor performance of this method on the full problem. It can be 
speculated that a suitable linearization scheme should implicitly be 
able to solve the reduced problem. With the set ('fl,u,v) as dependent 
variables the performance of this Block-SOR-Newton method is expected 
to be much better. 

Particularly suited for the semiconductor equations is a block 
nonlinear iterative algorithm which has been first suggested by Gummel 
[7.11]. This algorithm is therefore most frequently called Gummel's 
method. It is motivated by the semiconductor equations in the 
dependent variables ('fl,u,v), which read in scaled semi-implicit form: 

2 'II 'II A •div grad 'II -                        = 0 (7.2-11) 
Ut Ut 

div Jn - R = O (7.2-12) 

div Jp + R = 0 (7.2-13) 

/ 
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follows: Given •• k k k ('f' , u , v ) , 

2 qi<+l qi<+l A ·div grad qi<+l -         •uk - exp(-       - C) = 0 

qJ<+l is 

(7.2-14) 

subject to the given boundary conditions for the electrostatic 
potential. The uk+l and vk+l are computed from the continuity 

equations (7.2-12), (7.2-13) together with the corresponding boundary 
conditions. 

(7.2-15) 

(7.2-16) 

To avoid the numerical problems associated with the dependent 
variables ('fl,u,v), it is recommended to resubstitute the expressions 
for the carrier concentrations which gives: 

2 qi<+l-qi< qi<-qi<+l (7.2-17) 
l. ·div gradqi<+l-[nk. (exp( Ut )-1)-pk. (exp( Ut )-1)]-(nk-pk-c)=O 

(7.2-18) 

(7.2-19) 

(7.2-17) represents a nonlinear differential equation which 
itself has to be solved iteratively in each step by a Newton-like 
method. Actually, in the original work of Gummel [7.11] only one 
Newton iteration has been considered for the solution of (7.2-17) 
which is equivalent to solving the linearized problem: 

2 nk+pk l. ·div grad qi<+l - [ Ut • (qi<+l-qi<)] - (nk-pk-c) = o (7.2-20) 

The continuity equations (7.2-18) and (7.2-19) are decoupled 
1 . d'ff t' 1 t' . k+l d k+l t' 1 'f inear i eren ia equa ions in n an p , respec ive y, i any 
existing nonlinearities caused by the carrier mobilities are 
neglected. In the original form [7.11] the generation/recombination 
rate is evaluated at the beginning of each step with the best 
available values for n and p (cf. (7.2-18), (7.2-19)). It has been 
frequently observed that this procedure causes difficulties when the 

generation/recombination rate is substantial. 
(7.2-19) should be replaced by: 

div Jn(qi<+l,nk+l) - R(qi<+l,nk+l,pk) = o 
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(7.2-22) 

At present this form is commonly established (cf. [7.15]). 

Gummel's method has proven 
practice. Convergence can be 

to be extraordinarily valuable in 
observed starting with a fairly poor 

initial guess with a sometimes spectacular rate in many applications. 
For some applications, e.g., high injection, onset of avalanche, 
however, it may fail to converge. An investigation of the underlying 
reasons for its performance has therefore been the goal of various 
mathematicans, e.g., [7.12], [7.14], [7.15], with limited success 
though. Following the treatment by Mock [7.15] Gummel's method can be 
classified as iterating a mapping of the following type: 

.)..2·div grad .p<+l - r· (qi<+l-qi<) - (nk-pk-c) = o (7.2-23) 

with the side conditions (7.2-21), (7.2-22). r is a suitably chosen 
positive damping function. Problems of this category have been 
investigated in [7.24]. The particular damping function for Gummel's 
method is: 

1 
r = Ut. (nk + pk) (7.2-24) 

For biasing conditions close to thermal equilibrium one can prove 
mathematically that iteration methods of the type (7.2-23) converge 
for appropriate choices of damping functions r. Most unfortunately, 
the damping function (7.2-24) violates the required assumptions (even 
close to the equilibrium solution (cf. [7.15])). Thus, a general 
proof of the convergence of Gummel's method or constructive statements 
about the region of attraction for the initial guess are still 
missing. 

An alternate choice for r is directly motivated by (7.2-17): 

r = + q;<-qi<+l ) 
B ( Ut ) 

(7.2-25) 

B(x) is the Bernoulli function (cf. section 6.1). With this 
damping function (7.2-23) is changed to a nonlinear differential 
equation. However, the region of attraction and the rate of 
convergence have been observed to be positively affected, e.g., 
[7.10]. Some further remarks on that subject can be found in [7.15]; 
a general theory, however, does not exist at present. 

I 
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Several attempts have been made to improve the rate of 
convergence of Gummel's method which, as mentioned, can become small 

for high levels of the current densities. In [7.20] an overrelaxation 

technique has been combined with Gummel's method for the simulation of 
MOSFETs. In [7.18] some modifications have been performed to obtain 
improved convergence properties for the simulation of MOSFETs at the 
onset of avalanche breakdown. In [7.6], [7.7] a block nonlinear 

iterative scheme has been used which is strongly related to Gummel's 
method. However, a general concept for improving Gummel's method 

cannot be given since all claimed improvements, which is at least my 
impression, are limited to very specific applications. 
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8. The Solution of Sparse Systems of Linear Equations. 

For the solution of the nonlinear equations representing the 
discretized semiconductor equations it is required to solve repeatedly 

a linear system of algebraic equations. The coefficient matrices of 
these systems are said to be sparse because sufficiently many zero 

elements exist making it worthwhile to use.special techniques which 

avoid storing and calculating with the zero elements. Actually, there 
are only very few nonzero elements and it is almost mandatory to 

account specifically for these elements. Unfortunately, this implies 

a significant overhead on organization for the nonzero elements, which 

is a well-feared source of problems in the design and coding of actual 

programs. 

In this chapter we deal with questions about sparse matrices, 

which are of particular relevance for the semiconductor equations. In 

the first section a few comments on the direct solution (Gaussian 
elimination) of sparse systems are made. In section 8.2, which is 

closely related to the direct methods, important symmetric permutation 

procedures are reviewed, i.e., ordering methods, which contribute 
essentially or even determine the efficiency of direct methods. 

Iterative methods, particularly relaxation methods, are outlined in 

section 8.3 with emphasis on the underlying principles. Some comments 

on highly specialized iterative methods are given in section 8.4 and 

section 8.5. The final considerations are devoted to acceleration 

methods which can be applied to some basic iterative schemes in order 

to improve their convergence properties. 
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8.1 Direct Methods. 

All direct methods for the solution of sparse systems of linear 
equations 

A·x = b (8.1-1) 

are based on variants of Gaussian elimination. One seeks in common 

with all methods a factorization of the coefficient matrix A of the 
form: 

P•A•Q = L•U (8.1-2) 

P and Q are permutation matrices; and L and U is a lower and an 
upper triangular matrix, respectively. If A is symmetric the 

so-called Cholesky decomposition can be used. 

P•A·PT = L•D•LT (8.1-3) 

P is again a permutation matrix; L is a lower triangular matrix 

and D is a diagonal matrix. If A is indefinite D may need to be a 
block diagonal matrix with blocks of order 1 and 2. 

The linear systems arising in the iterative solution of the 

nonlinear discretized semiconductor equations can usually be 
decomposed without taking care for numerical stability 5y pivoting. 

However, the general criterion to omit pivoting, that the matrix A is 

positive definite, is not necessarily given if an exponentially fitted 
discretization scheme is used. Nevertheless, many years of experience 

by various researchers certify the above given statement. Therefore, 

one can fully decouple the computation of a suitable permutation 
matrix P from the numerical decomposition. The permutation of A can 

be sought only for minimizing the fill (cf. section 8.2). However, 
the permutation must be symmetric, since the coefficients originally 

on the main diagonal of A must stay on the main diagonal in order to 

maintain stability, i.e., Q=PT in (8.1-2). 

Prior to starting the factorization of a matrix all nonzero 
elements should be of comparable size in order to minimize 

difficulties with finite computer arithmetic. The simplest approach 

which is sufficient for the semiconductor problem is diagonal scaling. 

(8.1-4) 

or: 
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(8.1-5) 

The matrix D is a diagonal matrix formed by the main diagonal of 
A. (8.1-4) is a simple row scaling; (8.1-5) is a row and column 
scaling, and it is only applicable if all main diagonal elements of A 
are positive which certainly can be achieved easily. Note that the 

1 d t ' D-l/2 A -l/2 ' ' 'f A ' t . B th sea e ma rix • ·D remains symmetric i is symme ric. o 
scaling procedures, (8.1-4) and (8.1-5) produce a coefficient matrix 
with the main diagonal elements scaled to unity. A more sophisticated 
scaling has been presented in, e.g., [8.8], however, this should not 
be required for the semiconductor problem. Scaling of the coefficient 
matrix is not only recommended for direct methods, but also for 
iterative methods as convergence properties will be improved in 
general. It should be noted furthermore, that it is not necessary to 
store the main diagonal elements of the scaled matrix since all are 
equal to unity. 

In recent years research on sparse matrix problems has indeed 
reached a healthy state. It is difficult, if not arrogant, to try to 
summarize the results about data structures, decomposition details, 
etc. for the multitude of existing variants spanning wide a range. 
Duff has given a (compressed) survey in 1977 with more than 600 
references [8.17]. I will therefore restrict myself to the citation 
of key publications. The present state of the art is well documented 
in [ 8 .19] , [ 8. 22] • Indexing techniques and data structures for 
decomposition have been specifically reviewed in [8.27], [8.75]. An 
excellent survey about the available software for sparse matrices is 
presented in [8.23]. Experience and algorithmic details for 
implementation of sparse matrix software on vector computers are 
documented in, e.g., [8.20], [8.21], [8.53]. 

It should probably be noted that various sophisticated algorithms 
have been developed for linear systems arising from the discretization 
of the Poisson equation, e.g., [8.6], [8. 7], [8.13], [8.29], [8.52], 

more general elliptic equations with constant coefficients, e.g., 
[8.5] and separable elliptic equations, e.g., [8.4], [8.85]. However, 
these algorithms will not be discussed here because of their fairly 
strong specialization. 
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8.2 Ordering Methods, 

A crucial question for the direct solution of a sparse linear 
system is the order of the equations for factorization or elimination. 

When a sparse matrix is factored, it normally suffers fill. Under the 
usual assumption that exact numerical cancellation does not occur, the 

factors of a matrix taken together are usually not as sparse as the 
matrix itself. In this subsection I shall review some of the most 

important strategies in computing a permutation matrix P for 
transforming a linear system A·X=B into: 

(P•A•PT) • (P•X) = (P·B) (8.2-1) 

We use capital letters X and B for the solution vector and the 

right hand side. The rank of the permutation matrix P must, 

obviously, equal the rank of A. Note that for any permutation matrix 

the transformed coefficient matrix P·A·PT is symmetric or definite if 

and only if A is symmetric or definite. In general, the permuted 
matrix P·A·PT exhibits a different fill, and an appropriate choice of 

P can often reduce the fill enormously. 

We shall demonstrate the impact of reordering the equations 

(i.e., permuting the matrix) with two simple examples. Fig. 8.2-1 
shows a rectangular mesh with NX=8 vertical and NY=5 horizontal. 

meshlines. The meshpoints have been numbered sequentially by rows. 
The total number of points which equals the rank of the matrix is 40. 

I have to digress to review a minimum of notion from graph theory 

in order to compactly describe the various ordering algorithms. An 

excellent introduction to that subject can be found in [8.18]. Let 

N={N1 ,N2 , ••• ,Nn} be the set of n nodes numbered from 1 ton. The pair 

(Ni,Nj) of two different nodes is called an edge between node Ni and 
node Nj. A graph G consists of the set Nanda subset of all possible 

edges. A graph G is termed "undirected" if, for all edges (Ni,Nj), 

the edges (N.,N.) belong to the graph too. Otherwise, if an edge 
J 1 

(Ni,Nj) belongs to the graph but not edge (Nj,Ni), G is called a 
"directed" graph. We shall, in the following, consider only 

undirected graphs. Any structurally symmetric matrix A, i.e., Ai,jto 

if and only if A . . to, can be associated with an undirected graph J,1 
G(A). Each nonzero matrix element A .. (itj) corresponds to the edge 1,J 
(N.,N.). 

1 J 
The entries A .. 

1,1 
on the main diagonal of A have to be 
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treated explicitly. 

linear systems 

We assume A.     which is always 1,1 
arising from the linearization 

fulfilled for 
of a discrete 

approximation to elliptic partial differential equations. 

Fig. 8.2-1 can now be interpreted also as a graph (to come back 

to our examples) for a linear algebraic system. This linear system 

would have the following regular structure for an individual equation: 

(8.2-2) 

¥ k=l,NX·NY 

The coefficients ak,bk,ck,dk,ek do not exist for every equation. 
In particular we have: 

ak = Ak,k-NX exists for k=NX+l,NX·NY 

bk = Ak,k-1 exists for k=2,NX•NY A (k-1) mod NX   O 

Ck = Ak,k exists for k=l,NX•NY (8.2-3) 

dk = Ak,k+l exists for k=l,NX•NY A k mod NX   0 

ek = Ak,k+NX exists for k=l,NX• (NY-1) 

In a probably more transparent, two-dimensional mesh oriented 

notation the individual equation reads: 

ai,j 0 Xi,j-1+bi,j 0 Xi-1,j+Ci,j 0 Xi,j+di,j 0 Xi+l,j+ei,j 0 Xi,j+l = Bi,j 

(8.2-4) 

¥ i=l,NX A j=l,NY 

a· . 1,J 

b· . l,J 

c· . l,J 

d· . l,J 

e .. 1,J 

The conditions for existence of the coefficients are then: 

= A(j-1) •NX+i,(j-2) •NX+i exists for i=l,NX A j=2,NY 

= A(j-1) ·NX+i,(j-1) ·NX+i-1 exists for i=2,NX A j=l,NY 

= A(j-1) •NX+i,(j-1) ·NX+i exists for i=l,NX A j=l,NY (8.2-5) 

= A(j-1) •NX+i,(j-1) ·NX+i+l exists for i=l,NX-1 A j=l,NY 

= A(j-1) •NX+i,j·NX+i exists for i=l,NX A j=l,NY-1 

The main diagonal elements ck or c. . exist, of course, for all 1,J 
equations. This structure of the equations is always obtained by 

discretization of elliptic partial differential equations in two space 
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dimensions with classical five-point finite differences 
(cf. section 6.1.1). The existing coefficients a. . , b. . , d. . and 1,) l,J 1,J 
ei,j can be described by edges (Ni,j'Ni,j-l), (Ni,j'Ni-l,j), 
(N .. ,N.+l ·) and (N .. ,N. '+l), respectively. In Fig. 8.2-1 it is l,J 1 ,J 1,J 1,J 
impossible to distinguish between, for instance, an edge (N. . ,N. '+l) 1,J 1,J 
and edge (N. '+l'N. . ) as this figure is a representation of an l,J l,J 
undirected graph. However, both edges correspond to a nonzero element 
in a structurally symmetric matrix A. In addition, for a 
(numerically) symmetric matrix, A=AT and the two nonzero elements 
corresponding to these two edges are equal, too. The coefficient 
matrix corresponding to the graph in Fig. 8.2-1 is shown in 
Fig. 8.2-2. The first column in front of the matrix denotes the 
numbering of the equations. The pair in the second column are the 
indices of the equations from a two-dimensional mesh interpretation. 

The asterisks above the main diagonal denote elements which become 
nonzero during a factorization, if the equations are treated in 
exactly the order given in the first column without row or column 
interchange during the factorization. As the matrix is structurally 
symmetric I have decided to show in the upper triangular part of the 
matrix the coefficients and the fill whereas in the lower triangular 
part only the nonzero elements prior to factorization are shown. The 
fill is certainly structurally symmetric too. All coefficients of the 
matrix in Fig. 8.2-2 should have the index pair given in the second 
column of each row. However, to have a more transparent 

representation of the overall pattern, this index pair has been 
omitted. 

The graph corresponding to the second example which we shall 
consider here and the coefficient matrix are shown in Fig. 8.2-3 and 
Fig. 8.2-4, respectively. The conventions 
same as outlined above for the first example. 
for this linear system reads: 

fi,j"Xi-1,j-l + ai,j"Xi,j-1 + gi,j"Xi+l,j-1 + 

+ b· · ·X· 1 · l,J 1- ,J + c · · •X · · l,J 1,J + d. . • x. +l . 1,J 1 ,J + 

for the figures are the 
The individual equation 

(8.2-6) 

+ hi,j"Xi-1,j+l + ei,j"xi,j+l + ii,j"Xi+l,j+l = Bi,j 

¥ i=l,NX A j=l,NY 

with: 

I 
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fi,j = A(j-1) ·NX+i,(j-2) ·NX+i-1 exists for i=2,NX A j=2,NY 

ai,j = A(j-l)•NX+i,(j-2) •NX+i exists for i=l,NX A j=2,NY 

gi,j = A(j-l)•NX+i,(j-2) ·NX+i+l exists for i=l,NX-1 A j=2,NY 

bi,j = A(j-1) •NX+i,(j-1) •NX+i-1 exists for i=2,NX A j=l,NY 

ci,j = A(j-l)•NX+i,(j-1) •NX+i exists for i=l,NX A j=l,NY 

di,j = A(j-1) ·NX+i,(j-1) ·NX+i+l exists for i=l,NX-1 A j=l,NY 

hi,j = A(j-1) •NX+i,j•NX+i-1 

ei,j = A(j-l)•NX+i,j•NX+i 

ii,j = A(j-1) •NX+i,j•NX+i+l 

exists for i=2,NX A j=l,NY-1 

exists for i=l,NX A j=l,NY-1 

exists for i=l,NX-1 A j=l,NY-1 

(8.2-7) 

Such a structure of equations is obtained by, for instance, 
discretization with nine-point finite differences or rectangular 
finite elements using bilinear shape functions. We shall term this 

example the nine-point example whereas the previous example will be 

called the five-point example. 

The number of nonzero elements prior to factorization is 174 and 

286 for the matrices in Fig. 8.2-2 and Fig. 8.2-4, respectively. Both 

matrices are banded for the case of the natural ordering of the 

equations which allows the application of classical algorithms for 
banded linear systems. The total number of nonzero elements after 

factorization is 566 and 622, respectively. The bandwidth '(A) of a 
matrix A is defined as: 

P(A) = max li-jl 
       

(8.2-8) 

In the first example the bandwidth evaluates to       in the 

second example it is NX+l=9. By reducing the bandwidth of a matrix 

through renumbering of the equations, we also reduce, in general, the 
fill. Therefore, it is always preferable if a natural ordering of the 

equations is performed such that reordering runs in that direction in 
which the maximum length of the columns or rows is smaller. For our 

examples all rows have a length of NX=8 and all columns have a length 
of NY=5. This is certainly not the case if the simulation geometry is 

non-rectangular. Fig. 8.2-5 and Fig. 8.2-6 show the numbered graph 

and the permuted matrix for the five-point example where the equations 
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are ordered by columns. The bandwidth is reduced to 5 and the total 

number of nonzero elements after factorization is 410 which is 
significantly smaller than in case of ordering by rows. The situation 
for the nine-point example is fully analogous. We obtain a bandwidth 
of 6 and 454 nonzero elements after factorization. The numbered graph 

and the permuted coefficient matrix are shown in Fig. 8.2-7 and 
Fig. 8.2-8, respectively. The numbering of the nodes is obviously 
identical to the one shown in Fig. 8.2-5. This ordering is, 

considering all bandwidth oriented ordering procedures, an optimal 
ordering. The bandwidth cannot be further reduced for the nine-point 
example. The (maximum) bandwidth in the case of the five-point 
example cannot be reduced either; however, the average bandwidth which 

may influence the fill significantly can be reduced. To measure the 
average bandwidth a quantity termed the "profile" of a matrix is 

frequently used. The profile P(A) of a structurally symmetric matrix 
A with rank(A)=n is defined as: 

n 
P(A) = r [i - min (j:Ai       

i=l , 
(8.2-9) 

A matrix permuted to have a small bandwidth does not necessarily 
have a small profile and vice versa. If one uses a classical band 
elimination technique which does not account for the local bandwidth 

of an individual equation, the optimum ordering has already been 
attained by the natural ordering by columns. However, to account for 

the profile during factorization is not at all a problem in principle 
but just a matter of programming effort which might be strongly 

rewarded by the additional reduction in the fill. 

For all ordering methods used in our examples the node at mesh 
location (1,1) is the starting node. Equally well qualified starting 

nodes are those at locations (1,5), (8,1) and (8,5). However, the 
sparsity pattern of the factored matrix would not be altered by 

choosing any other starting node from the qualified set. 

One well established algorithm to reduce bandwidth and profile 

has been proposed by Cuthill and McKee [8.9]. This algorithm works as 
follows. First, one takes a node with small (minimum) degree from the 

graph G(A) and labels this node as the starting node with number one. 

The degree of node N. is the number of edges which start from this 
l 

node; it is thus the number of nonzero off-diagonal elements of the 
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i-th equation. Secondly, one determines all neighboring nodes of the 
starting node. These are the nodes which are connected by edges to 
the starting node. These nodes are numbered sequentially with 
increasing degree. If nodes have the same degree they are numbered in 
arbitrary order. The nodes which have been numbered in this step form 
the first "level". In the next step one determines succcesively for 
all nodes of the first level (in the order of their numbering) their 
neighboring nodes which have not yet been numbered. These nodes are 
again numbered in order of increasing degree by arbitrarily breaking 
ties; they form the second level. In subsequent steps one proceeds 
analogously until all nodes are numbered. Then the bandwidth obtained 
by the ordering is calculated and the whole ordering procedure is 
carried out again with a different starting node from a set of 
possible candidates with small degree until an ordering with a 

satisfactory small bandwidth is obtained. 

The major shortcoming of this algorithm is that it has to be 
applied repeatedly for different starting nodes in order to find an 
ordering with minimimal bandwidth. It is a matter of experience to 
suggest checking all nodes with minimum degree as being appropriate 
starting nodes for the Cuthill-McKee algorithm. However, there exist 
graphs of linear systems for which the minimum bandwidth is not 
obtained when starting with a node with minimum degree [8.9]. 

Fig. 8.2-9 and Fig. 8.2-10 show the numbering of the nodes and 
the permuted coefficient matrix for the five-point example. The total 
number of nonzero elements after factorization is 370 which · is 
significantly lower than the value obtained for the best natural 
ordering. One can observe that the nodes are numbered by diagonals of 
the graph. The numbering by diagonals has been known to be superior 

to the ordering by rows or columns for five-point problems on 
rectangular domains prior to the existence of the Cuthill-McKee 
algorithm [8.66]. However, the Cuthill-McKee algorithm is generally 
applicable whereas an extension of diagonal indexing to general 
problems is not possible. 

Fig. 8.2-11 and Fig. 8.2-12 show the numbered graph and the 
permuted matrix for the nine-point example. The total number of 
nonzero elements after factorization is 518. Thus the natural 
ordering by columns is preferable; the effort spent for the 
Cuthill-McKee algorithm is not rewarded in this example. 
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George [8.35] observed that the profile of a matrix could 
frequently be further reduced by reversing the ordering obtained by 
the Cuthill-McKee algorithm (i+n-i+l, i=l,2, ••• ,n). This algorithm is 
then called the "reverse" Cuthill-McKee algorithm. It has been proved 
in [8.63] that the reverse Cuthill-McKee algorithm can never increase 
the profile compared to the Cuthill-McKee algorithm; it produces an 
ordering which is at least as good. The bandwidth, of course, is not 
affected by reversing the ordering. In the case of the five-point 
example the sparsity pattern is not influenced by reversing the 
Cuthill-McKee ordering. The profile and fill are therefore, 
obviously, the same too. 

Fig. 8.2-13 and Fig. 8.2-14 show the numbered graph and the 
permuted matrix for the nine-point example. The number of nonzero 
elements after factorization is now 464 which is indeed a significant 
improvement compared to the unreversed ordering. The fill is now 
almost as small as for the best natural ordering. 

An ordering algorithm which produces a bandwidth and profile 
which are comparable and often even better than these obtained with 
the reverse Cuthill-McKee algorithm has been proposed by Gibbs et al. 
[8.45]. This algorithm, in general, requires significantly less 
computation time. Excellent explanations of the algorithm can be 
found in [8.45] and [8.67]; I shall refrain from a repetition here. 
Hints on the implementation of this algorithm and FORTRAN code have 
been given in [8.59], [8.60], [8.67]. The results obtained by this 

algorithm for the five-point example are identical to the reverse 
Cuthill-McKee ordering. For the nine-point example the (reversed) 
natural ordering by columns will be obtained which is indeed better 
than the reverse Cuthill-McKee ordering. 

A further decrease of the bandwidth and profile of a matrix can 
sometimes be obtained with the iterative algorithm by Rosen [8.77]. 
The basic step of this algorithm consists of interchanging the 

row-column pair(s) of the matrix, which determines the bandwidth, with 
other row-column pairs such that the profile, or bandwidth if 
possible, is reduced. In the case of our examples a further reduction 
of the profile (bandwidth) as already obtained is not possible. 

Another class of ordering algorithms are the so called dissection 
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algorithms. These algorithms do not minimize the bandwidth or profile 

of a matrix but seek directly to make the fill small. 

The first algorithm we shall briefly discuss here is the one-way 
dissection algorithm [8.40]. First, one chooses m so-called 
separators with as few nodes as possible which partition the graph 
into m+l independent parts which all have about the same size. The 
nodes in the m+l independent parts are numbered first with, for 
instance, the reverse Cuthill-McKee algorithm. Then the nodes on the 
m separators are numbered sequentially. Fig. 8.2-15 shows the graph 
for the five-point example numbered after the one-way dissection 
algorithm. As separators the third and sixth column have been taken. 
The permuted matrix is shown in Fig. 8.2-16. The total number of 
nonzero elements after factorization is 452 which is indeed not small. 
The permuted matrix for the nine-point example is shown in 
Fig. 8.2-17. The numbering of the nodes is identical to the one shown 
in Fig. 8.2-15 for the five-point example. The total number of 
nonzero elements after factorization is 540. However, our examples 

are not very well suited for the one-way dissection algorithm. They 
should only be considered here to help understand the underlying ideas 
of the algorithm. -An automatic algorithm to find the one-way 
dissection ordering for an irregular graph is described in [8.40]. 
Very efficient schemes on how to store the matrix to be factored in 
block form and it's factors are discussed in [8.37]. For very large 
problems the one-way dissection ordering is asymptotically inferior to 
the nested dissection ordering which will be described next. 

In essence, in the nested dissection algorithm, one basic step is 
applied repeatedly. This step consists of choosing a separator which, 
as nearly as possible, equally partitions a graph into two parts. The 
nodes in the two parts are numbered before those on the separator. 
This basic step is applied successively for the subgraphs until no 
further partitioning is possible. Fig. 8.2-18 shows the numbering of 
the nodes obtained by nested dissection for the five-point example. 

The numbering for the nine-point example is identical. The first 
separator is the verical line at location four. The nodes on this 
separator are numbered last. The separators for the two subgraphs lie 
on the horizontal line at location three; the next, final for this 

example, separators lie on the vertical lines at location two and six. 
The total graph has thus been split into eight parts which cannot be 

Ordering Methods 



- 270 -

further dissected. The nodes in these parts are numbered first 
followed successively by the separators. Fig. 8.2-19 and Fig. 8.2-20 
show the permuted matrix for the five-point and nine-point example, 
respectively. The total number of nonzero elements after 
factorization is 358 and 452, respectively. These are the lowest 
values we have obtained so far. An algorithm for automatic nested 
dissection of irregular graphs has been given in [8.36] together with 
an efficient storage scheme for the factorization. The impact of the 
nested dissection ordering on Gaussian elimination has been studied in 
[8.33], [8.62], [8. 79]. Remarks on incomplete nested dissection, 
i.e., stopping partitioning of the subgraphs prior to natural 
termination, have been given in [8.39J. 

Another ordering algorithm which has proven to be very valuable 

is called the minimum degree algorithm. For this algorithm the 
factorization of the matrix is first carried out symbolically. At 
each elimination step the part of the matrix remaining to be factored 
is permuted such that a column with the fewest nonzero elements is 
eliminated next. More in detail, one starts with the graph of the 
matrix, and one picks a node with minimum degree. Then one eliminates 
this node and properly updates the graph of the matrix by introducing 
new edges which represent the created fill. The rank of the matrix to 

be factored, which is the number of nodes, has obviously been reduced 
by one by this step. Then one picks again a node with minimum degree 
from the new (updated) graph and proceeds with the symbolic 
elimination as just described until all nodes have been removed, i.e., 
the matrix has been completely factored in symbolic form. The order 
of the nodes used for this symbolic factorization is then the ordering 
to be taken for the actual factorization. One problem occuring during 
symbolic elimination is that frequently several nodes with minimum 
degree exist as candidates for the next elimination step. These ties 
are usually broken arbitrarily [8.38]. For some applications, 
however, my own experience indicates that breaking ties by looking 
ahead one elimination step for each of the nodes with minimum degree 
can significantly decrease the fill. The computational effort to be 
spent, unfortunately, increases nonnegligibly. The implementation of 
the minimum degree algorithm is indeed a nontrivial task. Some 
constructive investigations can be found in, e.g., [8.38], [8.42], 
[8.43]. Storage schemes for the factorization of a matrix obeying the 
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minimum degree ordering can be found in [8.38]. The numbered graph 

and the permuted matrix for the five-point example are given in 
Fig. 8.2-21 and Fig. 8.2-22, respectively. The total number of 
nonzero elements after factorization is 326 which is by far the 
smallest value of all ordering methods we have dealt with here. The 
situation is analogous for the nine-point example. The ordered graph 
and the permuted matrix are shown in Fig. 8.2-23 and Fig. 8.2-24, 
respectively. The total number of nonzero elements after 
factorization is 428 which, again, is the best value we have obtained. 

One drawback of the minimum degree algorithm obtained by 
minimizing only the fill is that the permuted matrix appears with its 
nonzero elements widely spread. This can cause many "paging 
operations" during the actual elimination on a computer with a virtual 
memory operating system. However, with special programming techniques 
it should be possible to solve this problem. 

Many linear systems arising from discretization of partial 
systems. A differential equations can be identified as "red/black" 

linear sys ten A·X=B is said to be a red/black system if it can be 
permuted such that: 

( DR CR ) 
P•A•PT = ( ) (8.2-10) 

( CB DB ) 

DR and DB are diagonal matrices of rank nR and nB, 
rank(A)=nR+nB=n, respectively. Matrices which can be permuted to a 
red/black system are frequently termed to posses "property A" [8.92]. 
Theoretical investigations of the properties of such matrices can be 
found in the books by Varga [8.88] and by Young [8.92]. The matrix of 
the five-point example can be permuted into red/black form. Such a 
permutation is very desirable for elimination since no fill will occur 

in the upper red part of the matrix as the block DR is diagonal. One 
ordering which produces a red/black structure in case of the 
five-point example is the so-called "checkerboard" ordering. The 
numbering of the graph is shown in Fig. 8.2-25. The nodes have been 
marked alternatingly red and black (like a checkerboard) such that the 
edges starting at "red" nodes terminate only at "black" nodes. Then 
the red nodes are numbered before the black nodes by rows or columns, 
whatever consists of less nodes. The permuted matrix is shown in 
Fig. 8.2-26. As already mentioned, fill occurs only in the black 
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diagonal part of the system. Furthermore the fill exhibits a banded 

structure which allows the application of a band elimination 
technique. The bandwidth of the submatrix generated by the fill is 

identical to the bandwidth obtained by the best natural ordering (by 

columns in our case), however, the rank of the submatrix is only half 

as large as the rank of the original matrix. The number of algebraic 

operations required for factorizing the banded submatrix is, 

therefore, also just half. The total number of nonzero elements after 
factorization is 342 which is larger than the value obtained with the 

minimum degree ordering. 

Another red/black ordering applicable for the five-point example 
is the "alternating diagonal" ordering. Fig. 8.2-27 and Fig. 8.2-28 

show the numbered graph and the permuted matrix. The total number of 

nonzero elements after factorization is 336 which does not seem to be 

a very significant improvement compared to the checkerboard ordering. 

However, for larger and more realistic systems the improvement in 

absolute numbers can be quite convincing. It should be noted that the 

alternating diagonal ordering can be obtained from the checkerboard 

ordering without moving nodes from the red to the black subsystem and 

vice versa. The red/black partitioning is unique considering the 
nodes in the red and black subsystem for a given graph if it exists. 

The numbering of the nodes, however, within the subsystems can be 

changed. Of course, one can also interchange the red and black blocks 

          one should always use the larger block for the red 

subsystem. In our example both blocks have the same size, however. 

For the nine-point example no red/black permutation exists. An 

automatic algorithm for finding the possible existance of a red/black 
permutation of a general sparse matrix has been given in the ITPACK 

subroutine package [8.47], [8.48], [8.57]. 

Tab. 8.2-1 and Tab. 8.2-2 summarize the results we have obtained 

with the ordering algorithms described for the five-point and the 

nine-point example, respectively. 
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method nonzeros fill [ % ] bandwidth profile 

natural by 566 225 8 263 
rows 

natural by 398 129 5 179 
columns 

Cuthill-McKee 370 113 5 165 

reverse same as Cuthill-McKee 
Cuthill-McKee 

Gibbs-Poole- same as Cuthill-McKee 
Stockmeyer 

one-way 452 160 
dissection 

nested 358 106 
dissection 

minimum 326 87 
degree 

checkerboard 342 97 

alternating 336 93 
diagonal 

Tab. 8.2-1: Results of Ordering Algorithms for the 
Five-Point Example. 
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method non zeros fill [%] bandwidth profile 

natural by 622 117 9 291 
rows 

natural by 454 59 6 207 
columns 

Cuthill-McKee 506 77 9 233 

reverse 458 60 9 209 
Cuthill-McKee 

Gibbs-Poole- same as natural by columns 
Stockmeyer 

one-way 540 89 
dissection 

nested 452 58 
dissection 

minimum 428 50 
degree 

Tab. 8.2-2: Results of Ordering Algorithms for the 
Nine-Point Example. 

It should be noted explicitly again that all ordering procedures 
presented here are designed only to make the fill which occurs during 
factorization small. It is assumed that column and/or row 
interchanges to maintain numerical stability are not necessary for the 
factorization. This is true only for special classes of linear 
systems e.g., positive definite matrices. However, the linear 
systems arising from the discretization of partial differential 
equations by finite differences, finite boxes or finite elements 
usually exhibit this property. Some comments on combining the, in 
general contrary, constraints of minimizing the fill and maintaining 

numerical stability by a proper permutation matrix can be found in, 
e.g., [8.16], [8.93]. Algorithms for sparse Gaussian elimination with 
column interchanges during elimination to support numerical stability 
have been presented in, e.g., [8.81]. 

A thorough comparison of the performance of different ordering 
algorithms is an absolutely nontrivial task. Some comparisons using 
the algorithms available in the SPARSPACK subroutine package [8.34], 
[8.41] have been given in [8.61]. It has to be noted again that the 
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small examples given here for didactical purpose should not mislead 

the reader as the absolute differences among the various methods are 

rather small. This issue is delightfully addressed in [8.61) and the 
results in this paper should contribute to raise the level of 

understanding concerning the complexity which real life problems can 
exhibit. 

A final 

discretization 

remark should be given on systems arising from the 

by finite boxes. These systems are structurally 

Therefore the above outlined algorithms are not directly 
This problem can be circumvented by adding elements which 

unsymmetric. 

applicable. 

indeed are zero to the nonzero pattern of the coefficient matrix such 

that the resulting matrix is structurally symmetric. In other words 

that means to use the graph of A+AT for the ordering which is 

certainly symmetric instead of using just the graph of A. The number 
of nonzero elements artificially introduced thereby is usually small; 
it is two times the number of termination points. For the work 

presented in [8.31) the minimum degree algorithm has been generalized 
to be applicable for unsymmetric systems. This is indeed 

straightforward, theoretically, as only the elimination graphs have to 
be considered for this ordering. The complexity in efficently coding 

the algorithm, however, rises significantly as one has to deal with 
two directed graphs instead of one undirected graph in each 

factorization step. Nevertheless, this effort seems to be rewarded as 

the obtained fill has been observed to remain surprisingly small. 

I 
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8.3 Relaxation Methods. 

Before we can discuss iterative methods in detail it is necessary 
to review some of the fundamental properties of one-step stationary 
iterative schemes. The linear system 

A•x = b (8.3-1) 

may be rewritten with an arbitrary non-singular matrix B with 
rank (B) =rank {A) as: 

B·x + (A-B) ·x = b (8.3-2) 

With (8.3-2) it is straightforward to obtain an iterative scheme 
by setting: 

B·xk+l = (B-A)•xk + b (8.3-3) 

8 3 ·-k+l ( • -3) can be solved, trivially, for x 

xk+l = (I-B-l•A) •xk + B-1.b 

For actual computations one always 
{8.3-4) to avoid the costly inversion of B. 

convenient for the characterization of the 

(8.3-4) 

uses (8.3-3) instead of 
However, (8.3-4) is more 

properties of an iterative 

scheme. Fixpoint schemes like {8.3-4), for the nonlinear case though, 

have already been dealt with in chapter 7, and we may carry over the 

results about the convergence properties. Thus, a necessary condition 

for the convergence of {8.3-4) is that the Frechet derivative, i.e. 

the Jacobian matrix, of the right hand side has a spectral radius 

smaller than unity. 

{8.3-5) 

{8.3-5) is indeed a necessary and sufficient condition for the 
0 convergence of {8.3-3) or {8.3-4) with arbitrary initial guess x 

k since the Jacobian does not depend on the itermediate solutions x • 

Therefore, the 

to take for the 

assumption that a solution exists, which is necessary 

nonlinear case, can be dropped. If {8.3-5) is 

fulfilled the iteration (8.3-3) will converge to the unique solution 

of A·x=b. 

To simplify the notation we define the matrix: 

M = I-B-1. A (8.3-6) 

ek shall denote the error vector of the k-th interate; x* is the 

exact solution. 
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By simple calculations we obtain: 

ek = M·ek-1 = ••• =Mk·eO 

Using norms on (8.3-8) we obtain: 

llekll2   11Mkll2 • l!e 0 112 

with the vector norm: 

llxllz =       =        

and the matrix norm: 

Note that if A is symmetric A=AT (8.3-11) simplifies to: 

(8.3-7) 

(8.3-8) 

(8.3-9) 

(8.3-10) 

(8.3-11) 

llAll2 = 9 (A) (8.3-12) 

( 8. 3-9) suggests to us llMkl I as a measure for the rate of 

convergence. Following the treatment of Varga [8.88) we define: 

-lnl1Mkll2 
R(M,k) = k (8.3-13) 

R(M,k) is the average rate of convergence for k iterations of the 

matrix M. A prerequisite for the applicability of (8.3-13) is that k 
is sufficiently large such that 11Mkll2 <1. If R(M1 ,k)<R(M2 ,k), then M2 
is iteratively faster for k iterations than M1 • The average rate of 

convergence gives a direct measure for the number of iterations k 

required to reduce the initial error vector by a factor of d. 

-ln d 
k   R(M,k) 

(8.3-13) simplifies significantly if M is symmetric: 

R(M,k) = -ln 9CM) 

(8.3-14) 

(8.3-15) 

For non-symmetric matrices we have the following theorems 
available for the characterization of (8.3-13): 

limR(M,k) = -ln '(M) 
k-ito 

R(M,k)   -ln '(M) 

(8.3-16) 

(8.3-17) 

The spectral radius '(M) is the asymptotic rate of convergence. 

Considering practical aspects it is the simplest measure for the 
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convergence of a given scheme; however, it can give quite misleading 
information in some cases [8.76]. 

It is worth noting explicitly that two iterative schemes which 

exhibit the same asymptotic rate of convergence can behave quite 
differently considering the average rate of convergence. The 

asymptotic rate of convergence gives, obviously, no information about 

the path on which it is attained. In general the sequence jjMkjj2 is 

not monotone. For many iterations it may even look as if a specific, 
indeed convergent, iterative scheme is not convergent. For a 

symmetric iterative scheme we do not have to face this problem as the 

average convergence rate is equal to the asymptotic convergence rate 

(8.3-15). However, most of the symmetric iterative schemes for 

unsymmetric linear systems are so slowly converging f (M)=l-t=l that 

monotone convergence can be indeed frustrating in actual applications. 

Considering the great variety of available iterative methods for 

the solution of systems of linear equations, the relaxation methods 

are probably most popular. The basis for relaxation methods applied 

to a system A·x=b is a splitting of the coefficient matrix A: 
A = D - L - U ( 8. 3-18) 

with: 

D: a non-singular matrix 

L: a strict lower triangular matrix (8.3-19) 

U: a strict upper triangular matrix 

In many textbooks it can be found that D is required to be a 

diagonal matrix. This prerequisite is in fact too strong. It 

suffices that: 

n-1. L: a strict lower triangular matrix 
(8.3-20) 

n-1.u: a strict upper triangular matrix 

However, the choice of D should be such that linear systems with 
D as the coefficient matrix can be easily solved. We also allow that 

the elements A .. of A are interpreted as matrices instead of simple 
1,J 

scalars. In that case it is only required that the main diagonal 

elements A. . are non-singular square matrices. By allowing this 
1,1 

interpretation we can refrain from dealing explicitly with block 

interative methods [8.2], [8.10], [8. 71], [8. 72], [8.89]. All results 
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to be given here hold for the case when the elements A. . are matrices l,J 
(8. 73], (8.88]. 

The various relaxation methods are obtained by choosing the 

matrix B in (8.3-3) with the matrice D, L and U obtained by the 

splitting (8.3-18) of A. Basically four different methods of setting 

Bare established. The simplest scheme is the Jacobi method (8.54]. 

Frequently this method is also termed the method of simultaneous 
displacements after (8.32]. The matrix D is used for B and the 
iteration matrix M can be straightforwardly evaluated: 

(8.3-21) 

MJ = o-1. (L+U) (8.3-22) 

The convergence properties of this method are rather poor as a 

matter of fact. However, if D is a (scalar) diagonal matric, the 

solution of (8.3-3) with (8.3-21) can be vectorized easily which 
brings about an enormous gain in execution speed on vector computers 

in such a way that this method can be superior to more sophisticated 

and complex ones. Furthermore, if MJ is symmetric - which can easily 

be achieved when A is symmetric - MJ has only real eigenvalues which 
allows the application of many convergence acceleration methods 
(cf. section 8.6). 

For the Gauss-Seidel method (8.69], which is also called the 

method of successive displacements (8.32], B and M are defined as: 

BGS = D-L (8.3-23) 

MGs = (D-L)-l·u (8.3-24) 

As L is a strict lower triangular matrix it is still simple to 

solve (8.3-3) very efficiently. However, in order to vectorize the 

iteration much more effort has to be spent than for the Jacobi method. 

The successive overrelaxation method (SOR) has been derived and 
characterized simultaneously by Frankel (8.30] and Young (8.91]. This 

method makes use of an iteration parameter w, the overrelaxation 

parameter, which will be characterized later. 

BsoR 
1 

= -·D-L w 

= (D-W-L)-1• (W-U+(l-W) •D) 
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For W=l the SOR method degenerates to the Gauss-Seidel method 

which indeed was. the basis for the development of the SOR method. The 

matrix BSOR is structurally identical with the matrix BGS" 

The symmetric successive overrelaxation method (SSOR), which was 
first considered by Aitken [8.1] and Sheldon [8.80], consists of one 

forward SOR sweep and one backward SOR sweep for each of its 
iterations. This may be written as: 

BssoR.1·xk+l/2 = (BssoR.1-A) ·xk + b 

BssoR.2·xk+l 

with: 

1 
BssoR.l = iiiD-L 

1 
BssoR. 2 = iii D-U 

= (BssoR.2-A) ·xk+l/2 + b 

The iteration matrix evaluates to: 

MssOR = (D-W-U)-1 • (W-L+(l-W) •D). (D-W•L)-1. (W-U+(l-W) •D) 

(8.3-27) 

(8.3-28) 

(8.3-29) 

The convergence properties of SSOR are very similar to those of 

SOR. However, MSSOR is symmetric if A is symmetric which enables the 
successful application of acceleration methods, whereas MSOR is always 
unsymmetric. The SSOR method should only be used in conjunction with 
acceleration methods because the convergence properties differ just 

marginally, as mentioned, from those of the SOR method. 

In the following we shall compare some of the results on 
convergence and the prerequisites on A for these four methods. 

However, we first have to recall some notions of basic linear algebra. 

A matrix A=D-L-U is termed consistently ordered if all the 
eigenvalues of: 

(8.3-30) 

are independent of   for arbitrary complex      A matrix with 

property "A" {cf. section 8.2) can always be permuted in such a way 
that it is consistently ordered. However, consistently ordered 

matrices do not necessarily exhibit property "A". 

A matrix is termed reducible if there exists a permutation matrix 

P such that 
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(8.3-31) 

where ct11 and ct22 are square matrices. If a matrix is not reducible 
it is irreducible. 

The first theorem I shall review here gives relations between the 

spectral radii of MJ and MGS [8.82]. If all elements of MJ (8.3-22) 
are non-negative, one and only one of the following relations is 
valid: 
1.) t (MJ) = f (MGs) = 0 

2.) o < t      < f (MJ) < 1 
(8.3-32) 

3.) f (MJ) = f (MGs) = 1 

4.) 1 < f (MJ) < f (MGs) 

Thus, if the Jacobi method is convergent, then the Gauss-Seidel 
method is convergent too and its asymptotic convergence rate is 
superior. 

If A is consistently ordered then: 

f      = f (MJ)2 (8.3-33) 

That means that the asymptotic rate of convergence for the 
Gauss-Seidel method is twice as large as for the Jacobi method. 

If all elements of MJ are non-negative, A is irreducible and 

t(MJ)<l, then there exists a constant wopt?l such that f (MSOR) 
decreases strictly monotonously for          If additionally all 

eigenvalues of MJ are real, wopt can be computed to: 
2 

Uf:> t = (8.3-34) 
p 1 +    - f (MJ)2 

Furthermore, the spectral radius f (MSOR)<l for O<W<2 can be given 
explicitly: 

         W-1 

For W=Wopt we obtain for the spectral radius: 
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(8.3-36) 

If A is symmetric, US]0,2[ and D positive definite and symmetric, 
then q(MSOR)<l if and only if A is positive definite [8.70]. This 
theorem is probably the best established estimate as to whether the 
SOR method should converge or not. However, the prerequisite that A 
must be symmetric is indeed too strong as can be shown with a simple 
example. Assume that we have a linear system with A, D symmetric, 
positive definite such that the above given theorem is fulfilled. 
Then we pick an arbitrary non-singular diagonal matrix H and we 
rewrite the linear system: 

A·x = b = A·H-l•H•x = b = A•x = b (8.3-37) 

A is obviously not symmetric if A is symmetric.The iteration 

matrix M§OR    given_by: _ 

     = (D-W- L) -1. (W-U+ ( 1-W) • D) (8.3-38) 

Remembering 
diagonal: 

. - -1 
that A is A·H (8.3-38) can be rewritten since H is 

MsoR = H· (D-W-L)-1. (W-U+ (1-W) ·D) ·H-1 (8.3-39) 

We can deduce directly that MSOR has the same eigenvalues as MSOR 
because H transforms MSOR "similar" into MsoR· This result is 
extraordinarily important because the often found prerequisite on A to 
be positive definite and symmetric is not fulfilled for the matrices 
arising from the discrete approximations to the continuity equations 
(cf. section 6.1). However, it should be a simple exercise to show 
that these linear systems can be transformed into symmetric, positive 
definite form with a diagonal matrix. That means that the frequently 
found statement that the discretized continuity equations cannot be 

solved by relaxation methods is simply wrong. 

In general it is difficult to determine precisely the spectral 
radius of a given matrix. Therefore, some constructive remarks will 
be given in the following to estimate the spectral radius. 

An upper bound for the spectral radius is obtained with the 
theorem by Gerschgorin [8.44]. For an arbitrary matrix A all its 

eigenvalues lie in the union of the disks: 
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, l<i<n (8.3-40) 

(8.3-40) can be calculated easily; however, it can be made more 

explicit for the iteration matrices of the relaxation methods. These 

are convergent if (8.3-41) holds for A. 

n n n n 
max(min(!Ai ii- r !Ai . !)_,min(!Ai ii- r IA· ii) ) > 0 . 1 , . 1 ,J . 1 ' . 1 J, 

l= J= l= J= 
(8.3-41) 

jf i jf i 

The equal sign in (8.3-41) is allowed only if A is consistently 

ordered and if not all minima are exactly zero [8.88]. 

A final remark should be given on termination criteria. For 

practical purposes one can frequently find (8.3-42) with a properly 

chosen relative accuracy C. 

However, really intended is the convergence criterion: 

llxk+l_x*l'2 < C· llxk+lll2 

(8.3-42) 

(8.3-43) 

* The exact solution x is obviously not known during the iteration 

such that (8.3-43) can not be evaluated. However, (8.3-42) is indeed 

extremely missleading for many iterative schemes. It can be 
recommended to use instead of (8.3-42) the following slightly more 

sophisticated criterion: 

t(M) can be 

- I lxk+l-xkl I 
= llxk-xk-1'11 

roughly estimated with: 

for k sufficiently large 

(8.3-44) 

(8.3-45) 

For the vector norm in (8.3-45) any norm is suitable. It can be 

quite informative to evaluate this approximation with different norms 

to have some measure for the uncertainty. The II· 11 2 can be used as 

defined in (8.3-10), or the II· 111 and the II· lb, norm. 

n 
!Ix 111 = r Ix i I 

i=l 

n 
!Ix I b = max I x i I 

i=l 

(8.3-46) 

(8.3-47) 
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The approximation (8.3-45) of the spectral radius of the 
iteration matrix can also be used to estimate adaptively the optimum 

SOR parameter w with (8.3-35) and (8.3-34). However, the 
approximation (8.3-45) should be evaluated very accurately before a 
parameter adaption is performed. A thorough discussion of this 
subject can be found in, e.g., [8.47], [8.67] and error bounds are 
elaborately discussed in [8.50]. 

I 
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8.4 Alternating Direction Methods. 

A widely used category of iterative methods which is particularly 
well established for the solution of systems arising from the 

discretization of partial differential equations are the so-called 

(ADI) iterative methods. "alternating direction implicit" 

methods have been considered first in [8.15], [8.74]. Since 

These 

then 
several variants have been developed. The basic idea is again a 

splitting of the coefficient matrix of the linear system A·x=b: 
A = H+V (8.4-1) 

This splitting suggests the following iterative scheme: 

(H+ctk+1•I) ·xk+l/2 = (ctk+1·I-V) ·xk +b 
(8.4-2) 

(V+ctk+1·I)•xk+l 

ctk+l is a positive constant acting as an acceleration parameter. 

The iteration matrix MADI can be readily computed to: 

MADI= (V+cll!k+l•I)-1• (ctk+1·I-H) · (H+cll!k+l•I)-1• (ctk+1·I-V) (8.4-3) 

The ADI method is convergent for arbitrary positive ctk+l when the 
matrices H and v are positive definite or at least one of the matrices 
is positive definite and the other one is not negative definite. 

The ctk+l could be chosen in such a way that the spectral radius 
of (8.4-3) is mimimal which would minimize the asymptotic rate of 

convergence. However, an "optimum" sequence of the ctk+l may greatly 
improve the average rate of convergence [8.88], [8.89]. An algorithm 

for calculating an (in some sense) optimal sequence ctk+l for a given 
problem has been presented in, e.g., [8.14], [8. 78]. 

The name "alternating direction implicit" is based on the way the 

splitting (8.4-1) has been defined in [8.15], [8.74). The method has 

been developed for the solution of elliptic differential equations in 

two dimensions discretized with five-point differences on a 

rectangular mesh. The coefficients of A which describe the influence 

of the horizontal neighbors in the mesh have been put into H whereas 

the coefficients describing the influence of the vertical neighbors 

have been put into V. The main diagonal of A, i.e., the coefficients 
of the center points, has been equally divided and put into H and V. 

The coefficient matrices (H+cll!k+l·I) and (V+ctk+l·I) are, after suitable 
permutations, tridiagonal matrices such that the solution of the 

systems (8.4-2) can be carried out with direct (implicit) methods. 
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Sharp bounds on the convergence properties of the ADI method are 

only available if the matrices V and H commute [8.88]. 

V·H = H·V (8.4-4) 

One variant of the ADI method is to use a positive definite 

tridiagonal matrix [8.89] instead of the identity matrix in (8.4-2). 

In some cases this may greatly improve the convergence properties; 

however, a rigorous analysis mandating general application of this 

technique does not exist at present. 
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8.5 Strongly Implicit Methods. 

The basic idea of strongly implicit iterative methods is fully 
analogous to the concept used for any iterative method, however, with 

probably a slightly different interpretation. By choosing a matrix B 
which is a "good" approximation for A we can expect the following 

iterative scheme to be rapidly convergent: 

B·xk+l = (B-A)·xk + b (8.5-1) 

It is obvious that by choosing B=A this iterative scheme 

degenerates to the original system and will "converge" in one step 

(ignoring round-off errors). However, the prerequisite on B is that 

it can be factored significantly more easily than A because otherwise 
there would not be any advantage of the iterative scheme over the 

direct solution. The convergence properties and prerequisites f6r 

(8.5-1) have already been discussed in section 8.3; any further 

discussion will be omited here. 

The strongly implicit iterative method by Stone [8.83] has·proven 

to be extraordinarily useful for the semiconductor equations. Stone's 

algorithm is designed for linear systems arising from a five-point 
finite difference discretization of an elliptic equation in two space 

dimensions on a rectangular mesh (NXxNY). These problems lead to a 

linear system A·x=b where the individual equation in the case of 
natural ordering is given by: 

Ak,k-NX"Xk-Nx+Ak,k-l"Xk-1+Ak,k"Xk+Ak,k+l"Xk+l+Ak,k+NX 0 Xk+NX=bk (8.5-2) 

A discussion of this type of equation has aiready been given in 

section 8.2. Stone's idea was to modify the matrix A in such a manner 
"' that the modified matrix A can be factored easily. 

A = A+N = L•U (8.5-3) 

If llNll<<llAll then the choice B=L·U in (8.5-1) can be intuitively 
expected to give a rapidly converging iterative scheme. 

L·U·xk+l = N•xk + b (8.5-4) 

Stone decided that L and U should each have only three diagonals 

with nonzero elements. 

L = (Lk,k-NXrLk,k-lrLk,k) (8.5-5) 

U = (Uk,k=l,uk,k+lruk,k+Nx) (8.5-6) 

The product L·U=A has seven nonzero diagonals. 
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A A A A A A A A 

A = (Ak,k-NX,Ak,k-NX+l1Ak,k-l1Ak,k,Ak,k+l1Ak,k+NX-l1Ak,k+NX) (8.5-7) 
A 

The coefficients of A are fully determined by the following 
relations. 

= Lk,k-NX (8.5-8) 

Ak,k-NX+l = Lk,k-NX 0 Uk-NX,k-NX+l (8.5-9) 

(8.5-10) 

(8.5-11) 

(8.5-12) 

Ak,k+NX-1 = Lk,k-l"Uk-1,k+NX-l (8.5-13) 

Ak,k+NX (8.5-14) 
A 

Five diagonals of A coincide in position with diagonals of A. 
One would expect to have a good approximation to the matrix A if the 

A 

diagonals of A and A, which coincide in position, have also the same 
values. In this case the Matrix N would consist only of two 
diagonals. 

(8.5-15) 

The coefficients of L, U and N are then easily evaluated from the 
relations (8.5-8) to (8.5-14). 

However, Stone has found that the iteration obtained by this 
choice does not converge as rapidly as one would expect. Therefore, 
he decided to decrease the magnitude of N by subtracting an 
approximation to N. By series expansion one can obtain (8.5-16) and 
(8.5-17) since the components of the solution vector are nodal values 
on a rectangular mesh. 

(8.5-16) 

(8.5-17) 

Then a matrix H is introduced which exhibits the following 
structure of nonzero elements: 

(8.5-18) 

This is identical to the structure of A. The coefficients of H 
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are determined in view of (8.5-16) and (8.5-17) in such a manner that 

(N-H) •x can be expected to be small. We obtain the relations: 

Hk,k-NX = d"Nk,k-NX+l (8.5-19) 

(8.5-20) 

(8.5-21) 

(8.5-22) 

Hk,k+NX = •·Nk,k+NX-1 (8.5-23) 

Clfe[O,l[ 
Then one uses 
after some 

is a suitably chosen iteration parameter (cf. [8.83]). 
B=A+N+H in         which gives the following scheme 

algebraic manipulation to enable an efficient 
implementation: 

L·U·4k = b-A·xk ' xk+l = xk+lk (8.5-24) 

Since llN-Hll is expected to be smaller than llNllr A+N-H can be 
considered to represent an improved approximation to A compared to 

A+N. The coefficients of L and u which have the same structure as L 
(8.5-5) and U (8.5-6), respectively, relate to the coefficients of A 
by: -

Lk,k-NX = 

= 

= 

Uk,k+NX = 

l+d•Uk-NX,k-NX+l 

Ak,k-1 

l+ar•Uk-1,k+NX-l 

Ak,k+1-d·Lk,k-NX 0 Uk-NX,k-NX+l 

Lk,k 

Ak,k+Nx-ar·Lk,k-l 0 Uk-l,k+NX-l 

Lk,k 

(8.5-25) 

(8.5-26) 

(8.5-27) 

(8.5-28) 

(8.5-29) 

Theoretical investigations about the optimal value of the 

iteration parameter cir are, most unfortunately, not known at present. 
Stone has given some suggestions in [8.83]. However, as far as I 

know, most authors using Stone's method have their own recipe for 
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choosing d. Jesshope [8.55] has recommended by heuristically - -
reasoning to use different values of d for every row of L and U in 
(8.5-24) to (8.5-27), which, as stated, increases the average rate of 
convergence significantly. However, the success of Stone's method has 

not been fully understood yet. 

There exist numerous strongly implicit iterative methods which 
are similar in concept to Stone's method but better founded 
mathematically, e.g., [8.11], [8.12], [8.24], [8.25), [8.28], [8.94]. 
However, none of these algorithms is competitive in practice. 
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8.6 Convergence Acceleration of Iterative Methods. 

The acceleration of iterative methods has always been a desire of 

engineers when a specific program making use of an iterative method 

becomes exceedingly time consuming and therefore expensive. Several 

methods have been developed for the purpose of accelerating iterative 

methods, all of which require that the eigenvalue with maximum modulus 

of the iteration matrix be purely real. This prerequisite reduces the 

number of iterative methods which can be accelerated quite 

significantly. From the methods we have considered so far the Jacobi 

method, the SSOR method and the ADI method can possibly be accelerated 

since only these methods submit to the given prerequisite in theory. 

The most simple acceleration method has been suggested by 

Lyusternik [8.64]. With the notions given in section 8.2 we may write 

for the exact solution: 

* x 

or: 

= xk+l _ ek+l 

The error vector ek+l fulfills: 

ek+l = M·ek 

(8.6-3) may be written as: 

ek+l = A·ek + 4k 

l. is the maximum eigenvalue of M. 

vector in (8.6-2) with (8.6-1) and (8.6-4) 

xk+l _ xk 4k 
x* = xk + + 

1 - x 1 - l 

By eliminating 

we obtain: 

(8.6-1) 

(8.6-2) 

(8.6-3) 

(8.6-4) 

the error 

(8.6-5) 

If 114kll is small compared to 1-l. (that means k is sufficiently 

large), (8.6-5) suggests the following extrapolation: 

xk+l _ xk 
x* - xk + 1 _ X - (8.6-6) 

As all eigenvalues of the iteration matrix are required to be 

real and positive for this acceleration method, l. is the spectral 

radius of the iteration matrix, which can be estimated as sketched in 

section 8.3. 

A very similar approach has been suggested by Aitken [8.1]. By 

writing the error vector of two successive iterations we obtain: 
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(8.6-7) 

(8.6-8) 

Dividing componentwise (8.6-7) by (8.6-8) yields the following 
extrapolated results for the i-th component. 

* x. = 
1 

   + 
1 

k+l k x. - x. 
1 1 

k+l k {8.6-9) 
x. -x. 

1 1 
1 - k k-1 x.-x. 

1 1 

If we compare (8.6-9) to (8.6-6) we observe that Aitken's method 
makes use of a componentwise estimation of the maximum eigenvalue. 

Practical comparisons of these two methods do not yield any results 
such that preference can be given to one or the other method. 
Aitken's method is more likely to produce oscillatory results if 
repeatedly applied. 

All iterative methods considered so far are one-step stationary 
methods which consist essentially in iterating the mapping: 

xk+l = M·xk + b (8.6-10) 

One may speculate that optimal methods cannot have the structure 
(8.6-1) because information obtained from previous iterations is not 
used as feedback to improve the iteration. This idea leads to the 
study of more general schemes which are frequently termed 
semi-iterative methods [8.87]. 

yk = Nk(xk,xk-1, ••• ,xO) (8.6-11) 

with: 

lim(yk - x*) = 0 
k-ib:> 

(8.6-12) 

Specifically, methods which use a properly weighted sum (with 
real coefficients) of all preceeding iterates of (8.6-10) have been 
established. 

k k • 
yk = I c. ·x1 

i=O 1 
(8.6-13) 

An almost obvious restriction on the coefficients    arises 
because (8.6-13) must be, in general, solution preserving. If the 
iteration is started with the exact solution, the iterates must not 
deviate from the exact solution. We obtain therefore: 
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The error vector of (8.6-13) is given by: 

yk - x* =   k i * ' c. ·x - x 
i=O 1 

With (8.6-14) we may rewrite (8.6-15) to: 

   - x* = k k • r c .• (x1 

i=O 1 x*) 

By introducing the polynomial notation 

k k . 
pk(z) = r c.z 1 

i=O 1 

(8.6-16) can be expressed with a matrix polynomial. 

yk - x* = pk(M). (XO - x*> 

(8.6-14) 

(8.6-15) 

(8.6-16) 

(8.6-17) 

(8.6-18) 

We now have to determine polynomials in such a manner that the 
spectral radius of Pk(M) ·ls minimal and Pk(l)=l (cf. (8.6-14)). This 

choice optimizes the average rate of convergence. It has been shown 

(probably first) in [8.58] that the polynomials (8.6-18) are optimal 

for (8.6-13) if all eigenvalues 

2·z-l,max_l,min 
ck( l,max_l,min ) 

2-l,max_l,m1n 
pk ( z) = 

ck( l,max_l,min ) 

of M are real. 

(8.6-19) 

    and     are the minimal and maximal eigenvalue of M; Ck(z) 
are the Chebyshev polynomials which are defined by: 

ck(z) = cos(k·acos(z)) , ze[-1,1] , k>O (8.6-20) 

Assuming a symmetric spectrum of M 

l,max = - l,min = f (M) = t (8.6-21) 

we obtain for (8.6-19): 

pk ( z) = (8.6-22) 

With the trigonometric identity 

cos ( (k-1) •elf) + cos ( (k+l) ·d) = 2 ·cos (d) ·cos (k•d) (8.6-23) 
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the well known three term recurence relation (8.6-24) is immediately 
obtained for the Chebyshev polynomials (8.6-20). 

ck+l(z) = 2·z·ck{z) - ck-l(z) 

where: 

cO(z} =l 

Substituting (8.6-22) into (8.6-18), remembering 
and using (8.6-24) we obtain after laborious 
following iterative scheme: 

yk+l =      (M•yk + b) + (1 -           

with: 

    = 1 + , = 1 

(8.6-24) 

(8.6-25) 

* * that x =M·x +b 
calculations the 

(8.6-26) 

(8.6-27) 

(8.6-26) is a non-stationary two-step iterative method because 

the iteration parameter     changes from iteration to iteration and 
the last two iterates determine the next iterate. The recursive 
scheme (8.6-26) shows that it is not necessary to form the iterates xk 

explicitly to determine the accelerated solutions yk. Compared to the 
SOR method, for instance, the Chebyshev semi-iterative method applied 
to the Jacobi method requires one additional vector of storage for 

k-1 y • However, the average rate of convergence is significantly 
improved in many applications. The asymptotic rate of convergence, in 
contrast, is not better than for the SOR method because (cf. [8.46], 
[8.88]): 

2 
liJnU4< = 
k-lto 1 + ,1 - '2 

(8.6-28) 

The adaptive calculation of 9 or "max' "min for the optimal 
sequence of iteration parameters   is dealt with in some detail in 
[8.47], [8.65]. We have required for the applicability of the 
Chebyshev semi-iterative method that all eigenvalues of M are real. 
Actually this is too severe a restriction. With minor modifications 
to the iteration parameters the Chebyshev method may also be applied 
to many matrices with complex eigenvalues [8.3]. 

The last acceleration method we are going to consider here is the 
conjugate gradient method. This method is frequently understood as a 
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stand alone iterative method after its inventors Hestenes and Stiefel 
[8.51). The basic idea of the conjugate gradient method is the 
minimization of the following functional: 

1 
F(z) = 2 . (A•z - b)T·A-1• (A•z - b) (8.6-29) 

If A is positive definite (8.6-29) is zero (and minimal) only for 
* z=x , the solution of A•x=b. We define the residual vector: 

(8.6-30) 

(8.6-29) can now be minimized with a sequence (8.6-31) where dk 

is a chosen search direction and   a parameter describing the optimal 
length for the given search direction. 

We immediately obtain with (8.6-30): 

rk+l = rk + lk·A·dk 

(8.6-31) 

(8.6-32) 

Since the optimal value     makes (rk+l)T orthogonal to dk we 

have: 

o = (rk+l)T.dk 

and hence we can calculate   from (8.6-32), (8.6-33). 

  = -
(dk)T•rk 

(dk)T·A·dk 

(8.6-33) 

(8.6-34) 

The search direction is determined by the residual of the last 

iterate and the previously used search direction. 

dk+l = -rk+l + Pk·dk do = -ro (8.6-35) 

Furthermore, all search directions are required to be conjugately 

orthogonal with respect to the matrix A. 

(dk+l)T·A·dj = 0 j=O,k (8.6-36) 

From (8.6-36) we obtain in particular the sequence Pk for 

( 8. 6-35) since 

(ak+l)T·A·ak = o 

Substituting 

(rk+l)T·A·dk 

(dk)T•A•dk 

(8.6-37) 

(8.6-35) into (8.6-37) gives: 

(8.6-38) 

The basic conjugate gradient algorithm is thus completely defined 
by equations (8.6-30), (8.6-31), (8.6-34), (8.6-35) and (8.6-38). It 

I 
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is to note that the conjugate gradient algorithm would terminate 
theoretically after rank(A) iterations since not more orthogonal 
search directions exist (cf. (8.6-36)). However, in practice 
round-off errors due to the finite computer arithmetic may necessitate 
further iterations until the residual (8.6-30) is sufficiently small. 

In the following we consider the conjugate gradient method for 
the acceleration of iterative methods: 

B•xk+l = (B - A) ·xk + b (8.6-39) 

with: 

'(I - B-l·A) < 1 (8.6-40) 

B is furthermore assumed to be symmetric and positive definite. 
Under these assumptions B can be understood also as an approximation 
for A. Since B is symmetric and positive definite there exists a 
symmetric factorization of B. 

B = C•CT (8.6-41) 

·c is a lower triangular matrix. With the factors of B we may 
write the equivalent linear system: 

(8.6-42) 

We speak now of an iterative method accelerated by the conjugate 
gradient method if we minimize the functional of the equivalent 
(frequently termed preconditioned) linear system (8.6-42). After some 
calculations we obtain the following equations for the acceleration 
algorithm. 

B·sk = rk (8.6-43) 

(8.6-44) 

(8.6-45) 

(8.6-46) 

with the sequence of parameters: 

(ek)T.rk 

(ek)T·A·ek 
(8.6-47) 

(sk+l)T·A·ek 
pk = (ek)T·A·ek 

(8.6-48) 

Note that the factors of B are not explicitly required in this 
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algorithm. One can show that (8.6-43) to (8.6-46) simplify to the 

unaccelerated iterative scheme (8.6-39) for     and Pk=O. The effort 
per iteration for this algorithm lies in the solution of one linear 
system with B as coefficient matrix, a multiplication of a vector with 
the original coefficient matrix A and a few operations on vectors. 
This acceleration algorithm degenerates into the basic conjugate 
gradient algorithm if one chooses the identity matrix for B. Thus, 
the basic conjugate gradient algorithm can be interpreted as the 

accelerated Jacobi method for the preconditioned system: 

(8.6-49) 

D is the main diagonal of A. 

I personally am absolutely convinced of the success of the 
conjugate gradient method for accelerating iterative methods. It is a 
very attractive feature that no parameters have to be estimated a 
priori for this method. This method is probably most efficient 
together with an incomplete Choleski factorization of A used for B 
(cf. [8.56], [8.68], [8.86]). This algorithm has been used for the 
linear systems arising from the semiconductor equations in [8.90] 

with, as stated, extraordinary success. 
conjugate gradient method for non-symmetric 
discussion on that subject can be found in, 

A generalization of the 
systems is possible; some 
e.g., [8.84]. Details 

about efficient implementation have been presented in [8.26]. A 
comparison between acceleration by Chebyshev semi-iteration and the 
conjugate gradient method has been carried out in [8.49] with the 
conclusion that no general theoretical preference can be given. 
Moreover, conditions are presented in [8.49] for which these 
acceleration 
properties. 

methods are equivalent considering 
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9. A Glimpse on Results. 

Actually, it is rather difficult to present examples of 
simulations which are both interesting for readers with experience in 
numerical modeling and informative for readers with just general 
interest in modeling but without specialized knowledge of device 

physics. I have chosen two examples which are intended as a fair 
trade-off between these objectives. 

The first example (section 9.1) will highlight problems 

associated with breakdown phenomena in miniaturized MOS transistors. 
Results of two-dimensional simulations are presented for this purpose. 

The influence of channel implantation on the punch through effect is 
shown, which actually is a classical example for two-dimensional 

MOS-transistor simulation. Furthermore, the importance of adequate 
models for the physical parameters of the basic semiconductor 
equations is stressed. 

In the second example (section 9.2) a thyristor is investigated. 
Particularly the impact of a short between cathode and gate on the 
rate effect is demonstrated. Snapshots of the electrostatic 
potential, the electron concentration and the hole concentration 
obtained by a quasi-three-dimensional (cylindrical symmetry) transient 
simulation are presented in order to give evidence of parasitic 
triggering. 

Thus, the ability of simulating both miniaturized devices and 

power devices is demonstrated. 
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9.1 Breakdown Phenomena in MOSFETs. 

Computer-aided simulation has become an urgent requirement for 
the design of modern MOS transistors since the upcoming of VLSI. Pure 
experimental investigations are very expensive, time consuming and for 

some problems not at all feasible. For the simulations presented in 
this section two state-of-the-art simulation programs have been 
coupled. The SUPREM program [9.2] has been used to calculate the 
doping profile and the MINIMOS program [9.13], [9.15] to simulate the 
electric behavior. 

We investigate two MOS transistors with a slightly different 
doping profile in the channel region. Fig. 9.1-1 and Fig. 9.1-2 show 

the doping profile for these devices, respectively. The geometrical 
channel length (i.e. the width of the mask) is l.4pm. The junction 

depth is about 0.3pm and the lateral subdiffusion of the source and 
the drain region is about 0.2pm. Thus, the metallurgical channel 

length is about lpm. The doping profile in the highly (arsenic) doped 
source/drain regions has been fitted empirically in the lateral 
direction (cf. section 3.2) since the SUPREM program is at present 
only capable of computing one-dimensional profiles. The difference 
between these two devices can be found, as mentioned, in the doping 
profile in the channel region. For device 1 (Fig. 9.1-1) a single 
channel implantation with boron has been performed, followed by a low 
temperature anneal. An additional second channel implantation (also 
boron) with a higher energy and lower dose has been simulated for 
device 2 (Fig. 9.1-2). This implantation has been designed to 

smoothly extend the first implant into the depth. 

In the following we shall discuss the threshold voltage of these 
devices, which is obviously one of the most important design 
parameters. First, the threshold voltage has to be adequately defined 
in order to investigate its behavior. The most common definitions are 

based on an extrapolation of a tangent to the drain current. These 
methods are relatively inexact and not suitable for numerical 
simulation because several points of a characteristic have to be 
computed to allow an extrapolation. Therefore, I have chosen the 

following definition [9.16] which at present is also quite 

established. The threshold voltage Uth is that gate voltage at which 
the transistor sinks O,lpA times the channel width per channel length. 

Breakdown Phenomena in MOSFETs 
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(9.1-1) 

The threshold voltage obtained by this definition is therefore a 
function of the drain bias and the bulk bias. It is ensured that no 
threshold voltage shift versus channel length occurs for long channel 
transistors, which enables a quantitative characterization of the 
influence of short-channel effects [9.16]. Furthermore, it is easy to 
determine the threshold voltage using this definition by experimental 
investigations as well as by simulation. The appropriateness of the 

constant (0,lJlmA) in definition (9.1-1) can certainly be argued. 
However, this value has been chosen arbitrarily in view of practical 
experience; any other value derived by proper reasoning is just as 
good. 

Fig. 9.1-3 shows the threshold voltage versus drain voltage for 
device 1 (solid line) and device 2 (dashed line) at a bulk bias 

UB=-UsB=2V. For low drain bias both characteristics are parallel. 
The characteristic for device 2 is shifted by about 200mV upwards due 
to the additional channel implantation. Both characteristics are 
decreasing for increasing drain bias. 
dramatic for device 1. For a drain 

However, this decrease is only 
bias higher than about 4.75V 

device 1 is "normally on" (i.e. Uth<O), which makes this device unfit 
for applications in circuits with a 5V supply. The threshold voltage 
for device 2 is slightly below 500mV for a drain bias of 5V, which is 

about the limit for applicability. A higher value is desirable in 
order to 
tolerances. 

have a sufficiently large 
The decrease of the threshold 

margin for technological 
voltage for device 2 is 

caused by drain induced barrier lowering which can be understood as a 
weak (acceptable) form of the punch-through effect (9.19]. Device 1 
significantly exhibits the punch-through effect for high drain bias as 
will be illustrated in the following. 

I have now chosen the operating conditions u08=6V, UGs=OV, u8 B=2V 
and we shall discuss the distribution of various physical quantities 
in the interior of the devices. 

Fig. 9.1-4 and Fig. 9.1-5 show contourlines of the electrostatic 
potential at the above specified operating conditions. The source 

contact is at the left hand side of the figures and the drain contact 
at the right hand side. The 0,5V and the 6,5V contourline give an 
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impression of the shape of the source and the drain region, 
respectively. One can nicely observe a saddle point and a potential 
isle in Fig. 9.1-4, which is a typical indication of punch through in 
weak inversion. This phenomenon has been reported for many years by 

authors working on two- and three-dimensional MOS 
e.g., [9.3], [9.4], [9.6], [9.9], [9.10], [9.17]. 

transistor models, 
This saddle point 

only as diffusion is a field free point in which current can 
current. From the contourlines in Fig. 
significantly pronounced potential barrier 
drain to guarantee a proper subthreshold 

flow 
9.1-5 one can deduce that a 

exists between source and 

behavior. However, one can 
also see that the depletion region of the reverse biased drain-bulk 
diode extends closely to the source region below the pn-junctions, 
thus causing a parasitic current by weak punch through. This effect 
can be suppressed by a deeper channel implant which, however, 
increases the capacitances. For a good transistor design it is one 
objective to find an appropriate trade-off between these contrary 
effects. 

Fig. 9.1-6 and Fig. 9.1-7 show the distribution of the electron 
concentration for device 1 and device 2, respectively. The magnitude 
of the electron concentration in the channel region is several orders 
lower for device 2 than for device 1. In both figures one can imagine 
the pinch-off region close to the drain. One can also observe the low 
level of the electron concentration in the bulk corresponding to the 
depletion regions of the reverse biased source-bulk and drain-bulk 
diodes. 

Fig. 9.1-8 and Fig. 9.1-9 show the lateral component of the 
electron current density for device 1 and device 2, respectively. 

These figures are qualitatively very similar. However, the current 
density level for device 1 is larger by about a factor of 1000. The 

maximal value of less than 3,SA·cm-2 for device 2 is small enough for 
an acceptable operation. The parasitic channel almost vanishes by 
reducing the drain bias to 5V. 

At the bias point considered so far no significant impact 
ionization takes place in both devices. The reason for this fact can 

be found in the absolute current level which is simply too low [9.14], 
[9.16]. One has to remember that 
proportional to the (inner) product of 

the impact ionization rate is 
electric field and current 

/ 
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density (cf. section 4.2). To demonstrate the influence of impact 

ionization I have chosen the bias point u08=6V, UGs=2V and u8 B=2V for 
device 2, which lies in the regime of strong inversion. All figures 
shown in the following correspond to this operating condition. 

Actually, the simulation has been carried out twice: first with the 
standard model for impact ionization by Chynoweth [9.5] with the 
parameters by VanOverstraeten et al. [9.20] and, secondly, with impact 
ionization fully neglected. 

Fig. 9.1-10 and Fig. 9.1-11 show the contourlines of the 
electrostatic potential. Almost no barrier exists between source and 
drain in Fig. 9.1-11, whereas an acceptable barrier is still simulated 
when neglecting avalanche generation. The device can practically not 
be operated since the amount of impact ionization is t°.? large as will 
become visible from the figures discussed in the following. Note that 
approaches for the estimation of avalanche generation based on the 
evaluation of ionization integrals can be quite misleading and, 
therefore, have to be performed very carefully, .e.g., [9.11], [9.18] 
since the feedback of avalanche generation on the electrostatic 
potential, and hence the electric field, cannot be accounted for by 
those methods. 

The electron concentration with and without avalanche generation 
is shown in Fig. 9.1-12 and Fig. 9.1-13, respectively. One can see an 
enormous increase of the electron concentration in Fig. 9.1-12, which 
is partly caused by avalanche generation and partly by the rigid 
lowering of the source-bulk barrier (cf. Fig. 9.1-10). Note that the 
electron concentration is far above the intrinsic concentration in the 
whole figure. The distribution obtained by neglecting avalanche 

generation pretends a properly operating device. The behavior of the 
electron concentration in the inversion channel and in the pinch-off 
region is not influenced by neglecting impact ionization. 

Fig. 9.1-14 and Fig. 9.1-15 show the hole concentration obtained 
with and without avalanche generation, respectively. First one has to 
note that the scale is significantly different for these figures. 
With avalanche generation the hole concentration is extraordinarily 

high with a maximum of about 4·lo 16cm- 3 close to the pinch-off region. 
The hole concentration in Fig. 9.1-15 reaches only a very small 
maximal value. The part of the device shown in this figure is fully 
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depleted. The plateau in the bulk and the various little peaks and 
dents are typical for the assumed operating condition if impact 
ionization is neglected. A discussion is irrelevant since the 
underlying model without avalanche generation is unrealistic. 

Fig. 9.1-16 shows the net generation/recombination 
ionization is included. A graphical representation of 
is not straightforward indeed since it may have large 
either sign and steep gradients. I usually apply 
transformation: 

z = 

rate; impact 
this quantity 
values with 

the following 

(9.1-2) 

The quantity obtained by the transformation (9.1-2) is positive 
if generation is dominant and negative if recombination is dominant. 
For values sufficiently large compared to lo18cm-3s-1 the 
representation becomes asymptotically logarithmic with proper sign 
adjustment. Thus, the value 10 in Fig. 9.1-16, which is about the 
maximum, corresponds to a generation rate of lo 28cm-3s-1 • Note that 
generation is restricted to a small part of the shown region. In most 
parts recombination is dominant since the electron and the hole 
concentration are well above the intrinsic concentration 
(cf. Fig. 9.1-12, Fig. 9.1-14). This interesting phenomenon which 
essentially determines all device parameters relevant for the 
characterization of avalanche breakdown (e.g. snap-back voltage, 

sustain voltage) has been thoroughly discussed in [9.14]. Some 
further comments can be found in [9.12]. The maximal value of the 
recombination rate is about lo 23 cm- 3s-1 which is quite large. By 
reducing the drain bias to 5V the influence of impact ionization is 
significantly decreased. From Fig. 9.1-17 we see that the maximum 
generation rate has dropped by about six orders of magnitude. The 
reason for the two peaks in the generation rate can be found in the 
local distribution of the electric field and the current densities 
whose inner product has two maxim·a for this biasing 
moderately pronounced dent at the source-channel 
recombination in this forward biased diode. 
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9.2 The Rate Effect in Thyristors. 

In this section I present a quasi-three-dimensional transient 
simulation of a thyristor which has been performed with the program 
SCDSS [9.7]. The simulation is termed quasi-three-dimensional because 
the thyristor under consideration exhibits cylindrical symmetry which 
allows a two-dimensional treatment after a reformulation of the basic 
semiconductor equations in cylindric coordinates. The discretization 
of the basic semiconductor equations in cylindric coordinates is 
analogous to the procedures given in chapter 6 for cartesian 
coordinates. Some remarks on this subject and implementation details 
can be found in, e.g. , [ 9 .1] , [ 9. 8] • 

Fig. 9.2-1 and Fig. 9.2-2 show the geometry and the doping 
profile of the thyristor structure which will be considered here. The 
cathode contact is assumed to be a circular area with 96pm radius. 
The pn-junction between the cathode and the p-base is very shallow, 
i.e. 3Pm, considering the total dimensions of the device. 

In the following we discuss the influence of a rapid rate, i.e. 
dUA/dt, upon the performance of the thyristor. For that purpose we 
apply a steep ramp voltage to the anode: 

v 
UA(t) = lOOOps·t (9.2-1) 

Two devices are considered; device 1 is assumed to have a 
floating gate and device 2 has a short between cathode and gate which 
is an established method to reduce the sensitivity with respect to 
unwanted dU/dt triggering. Fig. 9.2-3 shows the anode current versus 

time characteristic for device 1 (solid line) and device 2 (dashed 
line). The initial phase of exponentially increasing current, which 

represents the loading of the depletion capacitances, is identical for 
both devices. At about 50ns (which corresponds to an anode bias of 
50V) the characteristics visually depart from each other. For 
device 1 we can first observe a linear increase of the anode current 

with a slope of about 15mA/Ps. This increase tends to become 
exponential and leads to triggering at about t=450ns (UA=450V ! ) • In 
the following we discuss snapshots of the electrostatic potential, the 
electron concentratiion and the hole concentration for both devices. 

Fig. 9.2-4, Fig. 9.2-5 and Fig. 9.2-6 show the electrostatic 
potential, the electron               and the hole concentration at 
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t=O, i.e. at 
determined by 
concentration. 

equilibrium. 
the built-in 

The electrostatic potential is basically 
potential caused by the doping 

The electron concentration 
hole concentration follow, 
The equilibrium solution 
device 2. 

obviously, the 
is certainly 

and, complementary, the 
electrostatic potential. 

identical for device 1 and 

The first snapshot is taken at t=25ns (UA=25V). Fig. 9.2-7 shows 
the electrostatic potential which looks identical in the 
bird's-eye-view presentation for both devices. The total voltage drop 
occurs at the pn-junction between the p-base and the n-bulk. 
Fig. 9.2-8, Fig. 9.2-9 and Fig. 9.2-10, Fig. 9.2-11 show the electron, 
hole concentration for device 1 and device 2, respectively. We 
observe that the electron concentration for device 1 is significantly 
higher in the pn-junction which is intended to block compared to the 
same quantity for device 2. From the hole concentrations we can 
deduce that the injection from the anode is markedly higher for 
device 1 than for device 2. Note that for device 2 the hole 
concentration close to the blocking pn-junction is not affected at 
this time by the injected holes. However, the total current is 
identical at time t=25ns (cf. Fig. 9.2-3). 

The next snapshot is taken at t=l70ns (UA=l70V). The 
electrostatic potential (Fig. 9.2-12) looks qualitatively similar to 
the one at the previous snapshot. The scale, however, has changed by 
more than a factor of six. The electron concentration for device 1 
(Fig. 9.2-13) shows a slightly more extended depletion region. 

Nevertheless, close to the cathode the electron concentration is 
already above the intrinsic concentration such that one should not 
speak of a depletion region. The injection of holes (Fig. 9.2-14) 
from the anode is now so strong that the entire n-bulk is flooded. 
The electron concentration for device 2 (Fig. 9.2-15) has only 
insignificantly changed compared to the previous snapshot. The holes 

injected from the anode have now reached the depletion region 
(Fig. 9.2-16). 

The last snapshot is taken close to the triggering of device 1 at 

t=430ns (UA=430V) • The electrostatic potential is given in 

Fig. 9.2-17. The total voltage drop certainly takes place at the 

pn-junction between the p-base and the n-bulk. The carrier 
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concentrations in device 1 (Fig. 9.2-18, Fig. 9.2-19) have reached 
enormously high values at.this operating condition. There is almost 
no barrier left considering in particular the hole concentration. In 
device 2 we can see the formation of a wide depletion region instead 
(Fig. 9.2-20, Fig. 9.2-21). The level of the hole concentration due 
to injection from the anode did not markedly increase compared to the 
distribution at the previous snapshot (cf. Fig. 9.2-16). Further 
computations for device 1 have been stopped here because an enormous 
increase of the total current for t>430Ps necessitated impractically 
short time steps for the actual computation. The transient 
characteristic for device 2 has been calculated without difficulties 

up to t=lps which corresponds to an anode voltage of lkV. The 
electrostatic potential, the electron concentration and the hole 
concentration for this final snapshot are given in Fig. 9.2-22, 
Fig. 9.2-23 and Fig. 9.2-24, respectively. One can observe nicely the 
wide depletion region which is capable to block lOOOV reverse bias. 

Note that the niveaus of the carrier concentrations in the depletion 
region have increased due to relatively strong thermal generation 
compared to the niveaus at UA=430V. 

The SCDSS program uses the finite boxes method for the spatial 
discretization as oulined in section 6.2. For the time discretization 
the backward Euler method (cf. section 6.4) is implemented. The mesh 
is updated during the time integration in order to equidistribute the 
local truncation error of the difference approximations 
(cf. section 6.5). A typical mesh used in the computations given 
above is shown in Fig. 9.2-25. One can see that the cathode region 
appears only as a black stripe since many mesh points have been 
required there. Fig. 9.2-26 and Fig. 9.2-27 show enlarged details of 
the mesh. The resolution of the steeply graded pn-junction between 
the cathode region and the p-base becomes nicely apparent. 

The Rate Effect in Thyristors 



- 312 -

9.3 References. 

9.1 

9.2 

9.3 

9.4 

9.5 

9.6 

9.7 

9.8 

9.9 

9.10 

9.11 

9.12 

9.13 

9.14 

9.15 

9.16 

9.17 

Adler M.S., Temple V.A.K., Rustay R.C., "Theoretical Basis for 
Field Calculations on Multi-dimensional Reverse Biased 
Semiconductor Devices", Solid-State Electron., Vol.25, No.12, 
pp . 1179-118 6 , ( 19 8 2) • 
Antoniadis D.A., Hansen s., Dutton R.W., "SUPREM II - a 
Program for IC Process Modeling and Simulation", Report 
5019-2, Stanford University, (1978). 
Barnes J.J., Shimohigashi K., Dutton R.W., "Short-Channel 
MOSFET's in the Punchthrough Current Mode", IEEE 
Trans.Electron Devices, Vol.ED-26, pp.446-453, (1979). 
Chamberlain S.G., Husain A., "Three-Dimensional Simulation of 
VLSI MOSFET's", Proc.Int.Electron Devices Meeting, pp.592-595, 
(1981). 
Chynoweth A.G., "Ionization Rates for Electrons and Holes in 
Silicon", Physical Review, Vol.109, pp.1537-1540, (1958). 
Demoulin E., Greenfield J.A., Dutton R.W., Chatterjee P.K., 
Tasch A.F., "Process Statistics of Submicron MOSFET's", 
Proc.Int.Electron Devices Meeting, pp.34-37, (1979). 
Franz A.F., Franz G.A., Selberherr s., Ringhofer C., Markowich 
P., "Finite Boxes - A Generalization of the Finite Difference 
Method Suitable for Semiconductor Device Simulation", IEEE 
Trans.Electron Devices, Vol.ED-30, No.9, pp.xxx-xxx, (1983). 
Franz G.A., Franz A.F., Selberherr S., Markowich P., "A Quasi 
Three Dimensional Semiconductor Device Simulation using 
Cylindrical Coordinates•, Proc.NASECODE III Conf., pp.122-127, 
(1983). 
Greenfield J.A., Dutton R.w., "Nonplanar VLSI Device Analysis 
Using the Solution of Poisson's Equation", IEEE Trans.Electron 
Devices, Vol.ED-27, pp.1520-1532, (1980). 
Kotani N., Kawazu S., "Computer Analysis of Punch-Through in 
MOSFET's", Solid-State Electron., Vol.22, pp.63-70, (1979). 
Kotani N., Kawazu s., •A Numerical Analysis of Avalanche 
Breakdown in Short-Channel MOSFETS", Solid-State Electron., 
Vol. 24, pp. 681-687, (1981). 
Muller w., Risch L., Schutz A., "Analysis of Short Channel MOS 
Transistors in the Avalanche Multiplication Regim", IEEE 
Trans.Electron Devices, Vol.ED-29, No.11, pp.1778-1784, 
(1982). 
Schutz A., Selberherr s., Potzl H.W., "A Two-Dimensional Model 
of the Avalanche Effect in MOS Transistors•, Solid-State 
Electron., Vol.25, pp.177-183, (1982). 
Schutz A., Selberherr s., Potzl H.W., "Analysis of Breakdown 
Phenomena in MOSFET's", IEEE Trans.Computer-Aided-Design of 
Integrated Circuits, Vol.CAD-1, pp.77-85, (1982). 
Selberherr s., Schutz A., Potzl H.W., "MINIMOS a 
Two-Dimensional MOS Transistor Analyzer", IEEE Trans.Electron 
Devices, Vol.ED-27, pp.1540-1550, (1980). 
Selberherr s., Schutz A., Potzl H., "Investigation of 
Parameter Sensitivity of Short Channel MOSFETS", Solid-State 
Electron., Vol.25, pp.85-90, (1982). 
Selberherr s., Schutz A., Potzl H., "Two Dimensional 
MOS-Transistor Modeling", in: Process and Device Simulation 
for Integrated Circuit Design, pp.490-581, Martinus Nijhoff, 
The Hague, (1983). 

References 



9.18 

9.19 

9.20 

- 313 -

Toyabe T., Yamaguchi K., Asai s., Mock M., "A Numerical Model 
of Avalanche Breakdown in MOSFET's", IEEE Trans.Electron 
Devices, Vol.ED-25, pp.825-832, (1978). 
Troutman R.R., "VLSI Limitations from Drain-Induced Barrier 
Lowering", IEEE Trans.Electron Devices, Vol.ED-26, pp.461-469, 
(1979). 
VanOverstraeten R., DeMan H., "Measurement of the Ionization 
Rates in Diffused Silicon p-n Junctions•, Solid-State 
Electron., Vol.13, pp.583-608, (pp.1970). 

References 



- 314 -

Author Index. 

Abrahams 4.65 
Adachi 1.1, 5.1 
Adler 1. 2, 1. 3, 1.6, 2.1, 2.2, 4.1, 4.2, 4.3, 4.128, 6.1, 

6. 2, 9.1 
Agajanian 1. 4 
Agler 6.3 
Aitken 8.1 
Akao 3.46 
Akers 4.4 
Albrecht 4.5 
Alley 1.10, 4.6 
Anderson 4.7 
Andrew 1. 49 
Ankri 2.3 
Anselm 2.4 
Anthony 3.1 
Antognetti 1. 5, 3.2 
Antoniadis 1. 5, 2.5, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.8, 

9.2 
Arai 3.45 
Arms 8.2 
Arnodo 1. 65 
Arora 4.9, 4.96 
Asai 1.83, 1.84, 4.131, 5.40, 9.18 
Astle 4.136 
Awano 2.6, 2.7 
Axellsson 8.3 
Aymerich-Humett2.8 
Babuska 6.4 
Baccarani 2.9, 2.10, 4.10, 4.11 
Eaglin 3.79 
Baliga 1.6 
Bank 5.2, 7.1, 7.2, 8.4, 8.5 
Baraff 4.12 
Barnes 1. 7, 1. 8, 1. 9, 4.13, 6. 5, 9.3 
Basu 4.97 
Batdorf 4.68 
Beard 1. 58, 2.64 
Beguwala 5.4 
Bennett 2.11, 4.14 
Bergstresser 2.20 
Biersack 3.10, 3.11 
Blakemore 2.12 
Blakey 2.31 
Blatt 2.13, 4.15 
Blotekjaer 2.14 
Blue 1. 90 
Bonch-Bruevich 2.15 
Borel 1. 89 
Bourgoin 4.16 
Bozler 1.10 
Bragg ins 4.81 
Brennan 4.18 
Brooks 4.17 
Brown 7.3 
Browne 1.11, 1.12 
Bryant 1. 4 7 
Bulman 4.18 

Author 'Index 



- 315 -

Buot 2.16 
Buturla 1.13, 1.14, 6.6, 6.8 
Butuzov 5.44 
Buzbee 8.6, 8.7 
Canali 4.19, 4.58 
Capasso 2.17, 4.20 
Carter 3.77 
Castagne 1.65 
Caughey 4.21 
Chakravarti 2.68 
Chamberlain 1.15, 4.96, 6.27, 6.28, 9.4 
Chan 4.102 
Chatterjee 9.6 
Chattopadhyay 2.74 
Cheney 6.19 
Cherednichenko 3.12 
Chick 3.68 
Chin 3.13, 3.14, 3.15 
Christel 3.16, 3.59 
Christodoulides3.77 
Chryssafis 2.18, 4.22, 5.3 
Chung-Whei 4.23 
Churchill 4.26 
Chwang 4.23 
Chynoweth 4.24, 9.5 
Clemens 4.101 
Clough 6.7 
Cody 2.19 
Coen 4.25 
Cohen 2.20 
Colak 1.16 
Collins 4.26 
Conradt 4.27 
Conwell 2.21, 4.28, 4.29, 4.35 
Cook 1.17, 2.22 
Cooper 4.30 
Cottrell 1.13, 1.14, 6.6, 6.8 
Courat 1.65 
Crowell 4.7, 4.23, 4.31, 4.86, 4.87, 4.88, 5.4 
Curtice 2.23, 4.32 
Curtis 7.4, 8.8 
Cuthill 8.9, 8.10 
D'Avanzo 4.33 
Dlimcke 3.64 
Dang 1.81, 4.34, 8.90 
Davies 6.9 
Decarlo 7.17 
DeGraaff 2.79, 2.80 
DeLaVallee-Pous8.ll 
DeMan 2.24, 2.90, 4.133, 9.20 
DeMari 1.18, 1.19, 5.5, 5.6 
DeMeyer 1.20 
Deal 3.17, 3.52, 3.59, 3.60 
Debney 2.45 
Debye 4.35 
DelAlamo 2.25 
Demoulin 9.6 
DenHeijer 7.5 
Dhanasekaran 4.36 
Dhariwal 2.26, 4.37 

Author Index 



Diamond 
Dirks 
Doolan 
Dorkel 
Dorr 
Doss 
Douglas 
Dubock 
Duff 
Dupont 
Dutton 

Dziewior 
Eastman 
Eastwood 
Eckhaus 
Eisenstat 
Engl 

Evans 
Even 
Ezawa 
Fair 
Fawcett 
Ferry 
Fichtner 
Fife 
Fix 
Fontana 
Forsythe 
Fortino 
Fossum 
Fox 
Frank 
Frankel 
Franklin 
Franz 
Frey 
Froelich 
Fulop 
Furukawa 
Gose le 
Gaensslen 
Gates 
Gaur 
Geiringer 
Gemmel 
Gentleman 
George 

Gerschgorin 
Gibbons 
Gibbs 
Glasbrenner 
Glisson 
Gnadinger 
Golub 
Gonzales 
Gopalam 

- 316 -

8.12 
1.22, 2.28, 4.40, 4.41, 5.8, 6.11, 6.12 
6.10 
2.27, 4.38 
8.7, 8.13 
8.14 
8.15 
1.21, 1.94, 7.23 
8.16, 8.17, 8.18, 8.19, 8.20, 8.21, 8.22, 8.23 
8.24, 8.25 
1.5, 1.28, 1.62, 2.5, 3.2, 3.3, 3.4, 3.5, 3.13, 3.14, 
3.15, 3.18, 3.37, 3.39, 3.50, 3.51, 3.52, 3.59, 4.8, 
4.33, 4.83, 7.10, 9.2, 9.3, 9.6, 9.9 
4.39 
2.3, 2. 78 
6.20 
5.7 
8.26, 8.27 
1.22, 1.23, 1.51, 1.53, 1.86, 2.28, 4.40, 4.41, 5.8, 
5.18, 6.11, 6.12 
8.28 
8.29 
4.42 
3.19, 3.20 
4.100 
2.37, 4.80 
1.77, 7.6, 7.7 
5.9 
6.51 
5.10 
6.13 
1. 24 
2.57, 4.43, 4.44, 4.45 
6.14 
3.21 
8.30 
8.49 
1.25, 1.25, 1.26, 5.11, 6.15, 7.8, 7.9, 8.31, 9.7, 9.8 
1.17, 2.16, 2.22, 2.29, 2.30 
2.31 
1. 50 
3.22, 3.23, 3.47 
3.21 
2.32, 2.33, 2.34 
8.2 
1. 27, 2.35, 4.46, 4.47 
8.32 
3.24 
8.33 
8.7, 8.34, 8.35, 8.36, 8.37, 8.38, 8.39, 8.40, 8.41, 
8.42, 8.43 
8.44 
3.16, 3.25, 3.26, 3.52, 3.59, 4.122 
8.45 
4.48 
2.93 
2.36 
8.6, 8.7, 8.46 
3.3, 4.8 
4.36 

Author Index 



Grant 
Grasserbauer 
Gray 
Greenfield 
Grimes 
Grondin 
Grossman 
Grove 
Grubin 
Gruenberg 
Grung 
Guerrero 
Gumm el 
Haberger 
Hach tel 
Haddad 
Hageman 
Hall 
Halperin 
Han 
Hansen 
Hart 
Hashizume 
Hatcher 
Haug 
Hauser 
Heasell 
Heimeier 
Helms 
Henkelmann 
Herring 
Hess 
Hestenes 
Heywang 
Hillbrand 
Himsworth 
Ho 
Hockney 
Hoffmann 
Hofker 
Hofmann 
Holden 
Hope 
Hori 
Hrenikoff 
Hu 
Huang 
Husain 
Iafrate 
Ishikawa 
Ishiwara 
Iwai 
JUngling 
Jacobi 
Jacoboni 
Jaeger 
Jaggi 
Jain 
Jerome 
Jespers 

4.49 
3.28 
1.6, 2.59 

- 317 -

1.28, 3.50, 7.10, 9.6, 9.9 
8 • .47, 8.48, 8.57 
2.37 
1.13, 1.14, 6.6 
3.17, 3.27, 4.50 
6.26 
3.12 
4.135 
2.47, 3.28, 3.71 
1.29, 1.75, 4.106, 6.16, 6.48, 7.11 
3.29, 3.64, 3.65 
1.30, 1.31, 5.12, 5.13, 6.17, 6.18 
1.8, 4.13 
8.49 
3.54, 4.51 
2.38 
6.24 
3.4, 3.18, 3.50, 7.10, 9.2 
6.19 
2.6, 2.7 
8.50 
4.52 
2.93, 4.9, 4.53 
2.39, 2.40 
1.32, 1.33, 1.51, 4.54, 5.14, 5.18 
3.52, 3.59 
3.65 
4.55 
2.41, 4.18, 4.56, 4.112, 4.113, 4.125, 4.126, 4.134 
8.51 
2.42, 4.57 
2.43 
1. 34 
3.52, 3.59 
6.20, 8.52 
3.29, 3.64, 3.65, 3.66 
3.30 
2.44 
2.45 
2.52, 2.53 
1.35 
6.21 
3.13, 3.31, 3.32 
8.53 
1.15, 9.4 
4.125, 4.126 
1.63, 1.64, 4.84, 4.85 
3.22, 3.23 
3.75 
2.46, 2.47 
8.54 
4.58 
2.32, 2.34 
4.59, 4.60 
3.33, 4.37 
5.2 
1. 86 

Author Index 



Jess hope 
Johnson 
Ju 
Kamins 
Kane 
Kani 
Kashiwagi 
Kataoka 
Kawashima 
Kawazu 
Kellogg 
Kemhadhan 
Kendall 
Kennedy 
Kershav 
Khokle 
Kidron 
Kilpatrick 
Kincaid 
Ki no 
Kireev 
Kittel 
Kleimack 
Kleppinger 
Kodera 
Kohiyarna 
Konaka 
Kotani 
Kothari 
Kotz 
Kraut 
Kreskowsky 
Krimrnel 
Kubo 
Kumar 
Kump 
Kura ta 
Lanczos 
Landsberg 
Langer 
Lannoo 
Lan yon 
Latif 
Laux 
Law 
Lawlor 
Lawson 
Lax 
Lee 
Lentini 
Leturcq 
Leu 
Levinstein 
Lewis 
Li 
Lietoila 
Lindhard 
Lindholm 
Lindsay 
Lipton 

1.36, 
3.25, 
4.135 
3.52, 
2.48 
1. 37 
3.75 
1.38 
1. 38, 
1.43, 
6.22, 
1. 94, 
8.25 
1. 39, 
8.56 
4.111 
1. 80 
1.42 
8.47, 
4.98, 
2.49, 
2.50 
4.68 
2.51 
1. 91 
3.46 
1. 81, 
1. 43, 
4.37 
3.34 
6.25 
6.26 
3.36 
1. 35 
6.27, 
3.14, 
1. 45, 
8.58 
2.52, 
2.54, 
4.16 
2.55, 
1.47 
1. 48, 
4.67 
1.13 
6.19 
2.38 
2.57, 
6.32 
4.38 
4.91 
4.81 
8.59, 
4.69, 
2.25 
3.40 
2.51 
7.3 
8.62 

8.55 
3.34 

3.59 

2.6, 2.7 

- 318 -

1.44, 4.62, 4.63, 9.10, 9.11 
6.23, 6.24 
7.23 

1.40, 1.41, 3.35 

8.48, 8.57 
4.99 
4.61 

4.34 
1.44, 4.62, 4.63, 9.10, 9.11 

6.28 
3.15, 3.50 
1.46, 5.15 

2.53, 4.64, 4.65 
5.19, 5.20 

2.56 

4.66, 5.16, 5.17, 6.29, 6.30 

3.14, 3.15, 3.37, 3.38, 3.39, 4.44, 4.45, 4.68 

8.60, 8.61 
4.70 

Author Index 



- 319 -

Littlejohn 2.93 
Liu 8.34, 8.36, 8.37, 8.41, 8.42, 8.43, 8.63 
Loeb 1. 49 
Logan 4.68 
Lomax 1. 8 , 1.9, 4.13, 4.66, 5.17, 6.30 
Louie 3.54 
Love 1. 6, 1. 49, 2.18, 4.22, 5.3 
Lowther 5.10 
Lue 2.58 
Lugli 2.37 
Lundstrom 2.59, 2.60 
Lutwack 4.102 
Lyusternik 8.64 
MUller 3.65, 4.5, 4.71, 9.12 
Machek 1.50, 6.31 
Mack 1. 30, 1. 31, 5.12, 5.13, 6.17, 6.18 
Maehly 6.19 
Maes 3.41 
Majni 4.19 
Maldonado 3.54 
Manck 1. 23, 1. 51, 1.52, 1.53, 4.72, 5.18 
Manteuffel 8.65 
Marcowitz 6.36, 8.67 
Markewich 1. 25, 1. 26, 5.11, 5.19, 5.20, 5.21, 5.22, 5.23, 6.15, 

6.32, 6.33, 7.8, 7.9, 7.12, 8.31, 9.7, 9.8 
Mars al 6.34, 8.66 
Masetti 3.42, 3.43, 4.73 
Masuda 1.35 
Matsumoto 3.44, 3.45, 3.46 
Matsumura 3.23, 3.47 
Maycock 4.74 
Mazzone 2.9, 3.48 
McGregor 5.10 
McHenry 6.35 
Mcintrye 8.38 
McKee 8.9 
McLellan 3.49 
McMullen 1.13 
Mehrer 3.21 
Mei 3.50, 3.51, 3.59 
Meindl 3.52, 3.59 
Meinerzhagen 1. 22, 2.28, 4.40, 5.8, 6.12 
Meis 6.36, 8.67 
Merckel 1. 89 
Mertens 2.61, 2.62, 2.90, 4.45 
Meyer 7.13 
Michel 3.79 
Millan 2.8 
Miller 1.11, 1.12, 1. 54, 4.75, 6.10, 8.14 
Minato 1. 35 
Minder 4.19 
Mock 1. 55, 1.56, 1.57, 1. 83, 1.84, 1.85, 2.63, 5.24, 5.25, 

5.26, 5.27, 5.28, 5.29, 5.41, 6.37, 6.38, 6.39, 6.40, 
6.41, 6.42, 6.43, 6.44, 7.14, 7.15, 9.18 

.Moglestue 1. 58, 1. 59, 2.64, 2.65 
Moll 3.13, 3.37, 4.76, 4.124 
Morehead 3.79 
Morgan 2.66 
Moskowitz 3.6, 3.7 
Mott 4.77 

Author Index 



Muller 
Munksgaard 
Murch 
Murley 
Murphy 
Mylroie 
Nadan 
Nag 
Nagata 
Nakagawa 
Nakamura 
Nandgaonkar 
Nasby 
Navon 
Negrini 
Nekrasov 
Nelson 
Neureuther 
Newman 
Newton 
Ng 
Nieder 
Nielson 
Niimi 
Nijs 
Nishimatu 
Nishiuchi 
No bes 
Norton 
Nuyts 
O'Brien 
O'Riordan 
O'Toole 
Ogawa 
Oh 
Ohwada 
Ojha 
Oka 
Oka be 
Okuto 
Oldham 
Omura 
Oppolzer 
Ortega 
Ostoja 
Ostrowski 
Ottaviani 
Potzl 

Parter 
Paul 
Peaceman 
Pearsall 
Penumalli 
Phillips 
Plummer 
Plunkett 
Polak 
Polsky 

- 320 -

1. 76, 4.25 
8.68 
3.53 
1.41 
3.54, 6.25 
3.16, 3.25, 3.26 
1. 24 
2.67, 2.68, 2.69 
1.85, 5.41 
2.70, 4.78 
1.63, 1.64, 3.45, 4.84, 4.85 
3.56, 3.57 
4.137 
1.27, 1.60, 2.35, 4.46, 4.79 
3.42 
8.69 
4.30 
3.56, 3.57 
4.80 
1. 61 
8.34 
8.75 
8.6 
3.44, 3.45, 3.46 
2.61, 4.45 
1.35 
1.63, 1.64, 4.84, 4.85 
3.77 
4.81 
3.55 
1.30, 1.31, 1.39, 1.40, 3.35, 5.12, 5.13, 6.17, 6.18 
6.45 
3.56 
4.82 
1.62, 3.13, 4.83 
4.89 
2.26 
1.63, 1.64, 4.84, 4.85 
1.85, 5.41 
4.86, 4.87, 4.88 
1.5, 3.2, 3.56, 3.57 
4.89 
3.36 
6.46, 7.16 
4.10 
8.70 
4.19, 4.58 
1.71, 1.73, 1.74, 1.77, 1.78, 2.42, 3.28, 4.57, 4.104, 
4.105, 4.110, 5.31, 5.32, 7.18, 9.13, 9.14, 9.15, 9.16, 
9.17 
6.47, 8.71, 8.72, 8.73 
2.71, 4.90 
8.74 
2.17, 4.20 
3.58 
2.72 
3.52, 3.59, 3.60, 4.120 
3.74, 4.91, 4.119 
7.5 
2.73 

Author Index 



Poncet 
Pone 
Pooch 
Poole 
Portnoy 
Price 
Prinke 
Quaranta 
Queisser 
Rachf ord 
Rahali 
Rauch 
Raychaudhuri 
Read 
Regier 
Reid 
Reiser 
Res ca 
Respess 
Rest a 
Reynolds 
Rheinboldt 
Richardson 
Richter 
Rideout 
Rimshans 
Ringhofer 

Risch 
Robbins 
Robinson 
Rodriguez 
Rose 
Rosen 
Rosenberg 
Roulston 
Roychoudhury 
Ruch 
Ruge 
Runge 
Ru stay 
Ryan 
Ryssel 
Sabnis 
Sachs 
Sah 
Saintot 
Salsburg 
Sanders 
Sano 
Sansbury 
Saraswat 
Sarkar 
Sato 
Saylor 
Scarfone 
Schutz 

Scharfetter 

3.61 
1. 65 
8.75 
8.39, 8.45 
4.4 
1.66, 3.50 
3.29, 3.64, 3.65 
4.58 
4.92 
8.15, 8.25, 8.74 
1. 67 
4.124 
2.74 
4.115 
1. 68 

- 321 -

7.4, 8.8, 8.16, 8.20 
1.69, 1.70, 4.93 
4.94 
8.57 
4.94 
3.57 
6.4, 6.46, 7.16, 8.76 
4.103 
7.17 
2.33 
2.73 
1.25, 5.11, 5.19, 5.20, 5.21, 5.30, 5.34, 5.35, 6.l5, 
6.32, 6.33, 7.9, 8.31, 9.7 
4.71, 9.12 
4.18, 4.64 
2.75, 4.95 
2.75, 4.95 
5.2, 7.1, 7.2, 7.6, 7.7, 8.5, 8.62 
8.77 
8.82 
4.9, 4.96, 6.27, 6.28 
4.97 
4.98, 4.99, 4.100 
3.63 
3.36, 3.62 
4.2, 9.1 
1. 42 
3.29, 3.63, 3.64, 3.65, 3.66, 3.67 
4.101 
3.64 
4.102, 4.102 
1.89 
1.13, 1.14, 6.6 
3.82 
4.89 
3.37 
3.52, 3.59 
3.12 
1. 35 
8.78 
4.103 
1.71, 1.72, 1.73, 1.74, 1.78, 4.71, 4.104, 4.105, 
4.110, 5.31, 5.32, 7.18, 9.12, 9.13, 9.14, 9.15, 9.16, 
9.17 
1.75, 4.106, 6.48 

Author Index 



Scharff 
Schaumburg 
Schilders 
Schiott 
Schmid 
Schreiber 
Schroeder 
Schuelke 
Schultz 
Schwartz 
Schwarz 
Sebastian 
Seeger 
Seidl 
Seidman 
Selberherr 

Seltz 
Serra-Mestres 
Severi 
Shaw 
Shekhar 
Sheldon 
Sherman 
Shibib 
Shichijo 
Shigyo 
Shimohigashi 
Shockley 
Shubin 
Shur 
Sigmund 
Singer 
Sites 
Slack 
Slot boom 
Smith 
Solmi 
Soncini 
Speelpennig 
Spirito 
Stec kl 
Stein 
Stel'makh 
Stephens 
Stern 
Steuerwalt 
Stewart 
Stief el 
Stillman 
Stingeder 
Stockmeyer 
Stone 
Strang 
Stratton 
Strickwerda 
Stupp 

3.40 
8.94 
6.10, 7.5 
3.40 
4.39, 4.107 
8.79 
1. 76 
2.60 
8.27 
2.59 
6.49 
8.78 

- 322 -

2.76, 3.21, 3.68; 4.108 
3.69, 3.70 
5.33 
1.25, 1.26, 1.71, 1.73, 1.74, 1.77, 1.78, 1.79, 2.47, 
3.71, 4.104, 4.105, 4.109, 4.110, 5.11, 5.19, 5.20, 
5.21, 5.30, 5.31, 5.32, 5.34, 5.35, 6.15, 6.31, 6.32, 
6.33, 7.8, 7.9, 7.18, 8.31, 9.7, 9.8, 9.13, 9.14, 9.15, 
9.16, 9.17 
1. 80 
2.8 
4.73 
3.72 
4.111 
8.80 
7.19, 8.27, 8.63, 8.81 
2.77 
4.112, 4.113, 4.125, 4.126 
1. 81 
9.3 
4.114, 4.115, 4.116 
6.23 
2.78 
3.82 
1.16 
4.80 
4.48 
1.82, 2.79, 2.80, 2.81, 5.36, 5.37 
2.82, 3.73, 4.117, 5.38, 6.50 
3.42, 3.43, 4.73 
3.42, 3.43 
1.30, 5.12, 6.17 
4.118 
3.73 
8.82 
5.43 
6.23 
2.83, 2.84 
8.73 
8.18 
8.51 
4.18, 4.113 
3.28 
8.45 
3.74, 4.91, 4.119, 8.83 
6.51 
2.85 
8.84 
1.16 

Author Index 



- 323 -

Sudo 1. 1 , 5 • 1 
Sun 4.120 
sung 3.57 
Sutherland 4.121, 6.52, 7.20 
Swanson 2.25 
Swarztrauber 8.85 
Sweet 8.85 
Sze 2.86, 4.31, 4.122, 4.123, 5.39 
szuhar 6.53 
Takahashi 1.92 
Talley 2.36 
Tamer 4.124 
Tang 4.125, 4.126 
Taniguchi 3.75 
Tarjan 8.62 
Tasch 9.6 
Tateno 1.38 
Tauber 4.127 
Teitel 2.87 
Temple 4.2, 4.128, 9.1 
Thacher 2.19 
Thomas 4.21 
Thornber 2.17, 2.88, 4.20, 4.129, 4.130 
Thurber 4.69 
Tielert 3.28, 3.76 
Tihanyi 2.89 
Tiller 3.52, 3.59 
Titov 3.77 
Tomizawa 2.6, 2.7 
Toyabe 1.83, 1.84, 1.85, 1.91, 4.131, 5.40, 5.41, 9.18 
Troutman 9.19 
Troxell 3.78 
Tsai 3.19, 3.79 
Tuft 2.55, 2.56 
Tyagi 4.132 
Ujiie 1.85, 5.41 
vanDeWiele 1.86 
VanDell 5.42 
vanDerVorst 8.86 
VanMeerbergen 2.61 
van0verstraeten2.61, 2.90, 3.33, 3.41, 3.55, 4.76, 4.132, 4.133, 9.20 
vanRoosbroeck 
Vanvliet 
vandervorst 
Vandorpe 
vanzi 
Varga 
vasil'eva 
Vass 
Voigt 
wachspress 
Wada 
Walker 
Wallach 
Wang 
ward 
warner 
wasniewski 
wasow 
Weast 

1. 87 
2.91 
3.41 
1.88, 1.89 
4.33 
8.46, 8.87, 8.88 
5.43, 5.44 
4.134 
8.39 
8.89 
8.90 
2.32, 2.33, 2.33 
8.29 
1.60, 3.80, 4.79, 4.102, 7.21 
1.62, 4.83 
4.135 
8.94 
6.13 
4.136 

Author Index 



Weaver 
Weibel 
Weisskopf 
Wieder 
Wiegmann 
Wilkins 
Williams 
Wilson 
Wing 
Winterbon 
Wolfe 
Wolff 
Wordeman 
Wulms 
Xuong 
Yamaguchi 

Yamakawa 
Yoshii 
Young 
Zaluska 
Zarantonello 
Zienkiewicz 
Ziman 
Zirnrnerl 
Zlatev 
Zommer 
Zondek 

4.137 
4.60 
4.28 
1.23, 2.92 
4.68 
2.87 
2.93 
1.90, 3.81 
8.53 
3.82 
7.22 
4.138 
4.11 
2.94 
1. 88 

- 324 -

1.83, 1.84, 1.91, 1.92, 1.93, 4.131, 4.139, 4.140, 
5.40, 9.18 
4.102 
1.1, 5.1 
8.47, 8.48, 8.49, 8.57, 8.91, 8.92 
1.94, 7.23 
6.54, 7.24 
6.55, 7.25 
2.95 
2.96 
8.93, 8.94 
1. 6 
8.2 

Author Index 



- 325 -

F I G U R E S 






























































































































































































































































	4528_001
	4529_001
	4530_001
	4531_001
	4532_001
	4533_001
	4534_001
	4535_001
	4536_001

