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Preface.

The invention of semiconductor devices has been fairly recent
considering classical time scales in human 1life. The bipolar
transistor was announced in 1947, and the MOS transistor, in a
practically usable manner, was demonstrated in '1960. From these
beginnings the semiconductor device field has grown rapidly. The
first integrated «circuits which contained just a few devices became
commercially available in the early 1960's. Immediately following, an
evolution has taken place so that today, not even 25 years later, the
manufacture of integrated circuits with over 400.000 devices per
single chip is possible.

Coincident with the growth in semiconductor device development,
the literature concerning semiconductor device and technology issues
has 1literally exploded. 1In the last decade about 50.000 papers have

been published on these subjects.

The advent of so called Very-Large-Scale-Integration (VLSI) has
certainly revealed the need for a better understanding of basic device
behavior. The miniaturization of the single transistor, which is the
major prerequisite for VLSI, has almost led to a breakdown of the

classical models of semiconductor devices.

The characteristic feature of early (classical) device modeling
is primarily the separation of the interior of the device under
consideration into different regions, the treatment of which is done
by closed form solutions based on restrictive and sometimes drastic
assumptions. The solutions in the independently treated regions are
simply connected and matched at boundaries to produce a global
solution. Any other approach is obviously prohibitive if results with
an analytic appearance are intended. For the purpose of analysis,
however, this classical approach has been recognized to have only
limited applicability, particularly when a technically acceptable
prediction of device performance is desired.

As a conseqguence numerical analysis and simulation based on
comparatively fundamental differential equations has become necessary
and popular. This trend has been supported considerably by the
enormous progress in technology and performance of digital computers.
Contemporary modeling of semiconductor devices has attained such a
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high level of sophistication that two-dimensional simulation of the
static behavior is almost standard in the development stage of device
prototypes. Even three-dimensional transient simulations have been
reported very recently, but these are at the moment more of academic
importance than of practical relevance due to a still too extensive
consumption of computer resources.

Numerical analysis of semiconductor devices can be expected to
become a basic methodology of research and development engineers.
However, one must not expect that people using computer programs as
numer ical analysis tools are specialists considering the complexity of
the assumptions, algorithms and implementation details of the programs
they use. 1In particular, this book has been written with two primary
objectives: First, the interested device engineer should be introduced
to the physical and mathematical problems an analysis program has to
solve. This category of readers should gain a more fundamental
understanding concerning the applicability of device simulation
programs. Secondly, this book will benefit authors of device
simulation programs by providing a compact reference with many
citations and an critical overview of the various physical and

mathematical approaches which are presently in use worldwide.

The chapters in this book are arranged in a logical sequence
without many crossreferences. Each chapter is more or less
independent of the other chapters. Readers with interest 1in
particular subjects only should be able to easily extract the
information they require.

In preparing the material for this book many people have assisted
me considerably. I am extremely grateful to Prof.H.Pd8tzl £for many
endless dissusions and suggestions from reviewing my manuscripts. I
am indebted to my colleagues at the university for many discussions
and the friendly atmosphere:Drs. W.Agler, J.Demel, A.Franz, G.Franz,
E.Guerrero, W.Jlngling, M.Kowatsch, H.Lafferl, E.Langer, W.Mader,
P.Markowich, Prof.F.Paschke, P.Pichler, C.Ringhofer, A.Schiitz,

Prof.F.Seifert, Prof .H.Stetter, F.Straker, Doz .Ch.Uberhuber,
Prof.R.Weifl. I would 1like to express my sincere appreciation to
Dr.S.E.Laux, IBM T.J.Watson Research Center, for proofreading my
manuscript. I would like to thank the Austrian "Fonds zur Forderung

der wissenschaftlichen Forschung” and the Research Laboratory of
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Siemens AG, Munich PFRG, for supporting many projects which have
evolved into much of the material presented in this book. Last but
not least I would like to gratefully acknowledge the generous amount
of computer resources provided by Dipl.Ing.D.Schornbdck and the
excellent computer access made possible by the whole staff of the
local computer center.

I hope that my book will be used by many engineers and scientists
who wish to gain insight into the subject of numerical device
modeling. It is my sincere wish that this book will contribute to
bridging the gaps between solid-state physicists, numerical

analysists, computer scientists and device engineers.

Vienna, 1983 Siegfried Selberherr
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Notation.

A vector potential

B magnetic induction vector

c net ionized impurity concentration

CI total ionized impurity concentration

CN total neutral impurity concentration

Cng optical capture coefficient

Cec, electrically inactive concentration

Cﬁg Auger capture coefficient

Cgﬁﬁ Shockley-Read~Hall capture coefficie

CgPT optical emission.coefficient

ng Auger emission coefficient

Czﬁﬁ Shockley~Read-Hall emission coeffici

Cti total concentration of i~th species

D electric displacement vector

D; diffusivity of i-th impurity due to
vacancies

DI diffusivity of i-th impurity due to
vacancies

D: diffusivity of i-th impurity due to
vacancies

D? diffusivity of i-th impurity due to

D? diffusivity of i~th impurity due to
vacancies

D; effective diffusivity of i-th impuri

Dg thermal diffusion coefficient

Dy effective diffusivity

E electric field vector

EF effective field

Notation

of i-th impurity

nt

ent

singly positive charged

singly negative charged

doubly negative charged

neutral vacancies

singly negative charged

ty
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energy
electric field

acoustic deformation potential of conduction band
acoustic deformation potential of valence band
conduction band energy

conduction band edge

quasi-Fermi energy

band gap

-ionization enerqgy

intrinsic Fermi energy

critical field

driving force

average energy loss per high energetic collision
valence band energy

valence band edge

electric field component perpendicular to current flow
direction

electric field component parallel to current flow direction
force vector

external force

internal force

Fermi integral of order 1/2

magnetic field vector

carrier current density

thermal generation

total electric current density

flux of i-th impurity

concentration of singly ionized acceptors
concentration of singly ionized donors

effective density of states in conduction band

Notation
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implantation dose

concentration of traps

effective density of states in valence band
net carrier generation/recombination
net Auger GR

net impact ionization generation rate
net optical GR

net Shockley~Read-Hall GR

net surface GR

projected range

scattering probability

lattice temperature

carrier temperature

thermal voltage (= k:T/q )

normalized concentration of singly positive charged vacancies
normalized concentration of singly negative charged vacancies

normalized concentration of doubly negative charged vacancies

charge state of i-th impurity
crystal lattice constant

11 m )

Bohr radius (= 5.2917706-10"
ionization rate |
kurtosis

equlibrium cluster coefficient

speed of light in vacuum (= 2.99792458-10%
specific heat

shift energy for conduction band edge
shift energy for valence band edge

field enhancement factor

absolute permittivity

permittivity constant in vacuum (= 8.854187818:10

Notation

)



Die approbierte gedruckte Originalversion dieser Habilitationsschrift ist an der TU Wien Bibliothek verflgbar

The approved original version of this habilitation thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub
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kc

kd

R
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o

relative permittivity
distribution function
quasi-Fermi potential

fraction of occupied traps

skewness

Planck constant (= 6.626176-10 2% vas? )
momentum vector

thermal conductivity

Boltzmann constant (= 1.380662-10 2> vVAsKk™1 )

clustering rate

declustering rate

mean free path between high energetic collisions
screening length

cluster size

i~-th central moment

effective mass

carrier mobility

permeability constant in vacuum (= 4% )

-31 3

vas3m~2

electron rest mass (= 9.109534-10 )
electron concentration

intrinsic carrier concentration

effective intrinsic carrier concentration
equilibrium concentration of electrons

hole concentration

equilibrium concentration of holes

19 ¢ )

elementary charge (= 1.6021892:10
specific mass density
space charge

density of states in acceptor band

density of states in donor band

Notation
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N.5

density of states in conduction band

density of states in valence band

standard deviation for donor and acceptor band
standard deviation for conduction and valence band tails
standard deviation

time

mask thickness

relaxation time

lifetime

group velocity

electrostatic potential

built-in potential

drift velocity

saturation velocity

space vector

oxide thickness

Notation
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Subscript "¥" stands for "n" or "p" denoting the respective quantity

for electrons or holes.

Superscript "$" in the carrier mobility stands for any combination of

the following list.

carrier—carrier impurity scattering
velocity saturation

ionuized impurity scattering
lattice scattering

neutral impurity scattering

0 Z o+ A0

surface scattering

A superscript "*" or no superscript indicates the effective mobility
which is comprised of all above given effects.

Landau Symbols.

A) f(x) = 0(g(x)) as X"xo means that

< const.

lf(x)
g (x)

for x sufficiently close to Xoe

B) f(x) = o(g(x)) as x*xO means that
f
lim Ex; =0
x¥x og X

C) Sometimes we say (sloppily) that "a quantity f is O(g)" which means
that |f| is of approximate order of magnitude |[g|.

Notation
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l. Introduction.

1.1 The Goal of Modeling.

At the outset it seems necessary to clarify the frequently used
terms analysis, simulation and modeling. By tracing the literature
one often has the impression that authors use these terms in a fairly
arbitrary manner. A while ago I picked up a heavy dictionary and,
among many others, I have found the following interpretations to be

quite appropriate:

Analysis

e separation of a whole into its component parts, possibly with
comment and judgement

® examination of a complex, its elements, and their relations in

order to learn about

Simulation
e imitative representation of the functioning of one system or
process by means of the functioning of another

e examination of a problem not subject to experimentation

Modeling

e to produce a representation or simulation of a problem or
process

e to make a description or analogy used to help visualize

something that cannot be directly observed

Therefore, as difficult as it might be to decide in an individual
case, analysis 1is at least intended to mean "exact analysis" and
simulation must mean "approximate simulation" by inference. Modeling

is obviously a necessity for analysis and simulation.

With a model one can analyse some phenomena, provided that the
effects one wants to extract are built in the model, possibly in a

very complex manner. A model for the purpose of pure simulation (like
a curve fitting model) is usually much more simple than a model for
analysis. Many effects can be treated in a very heuristic manner for

the purpose of simulation, just reflecting the underlying physics in a

gqualitative way.

The Goal of Modeling
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An excellent example to highlight these aspects can be found in
the application of a Monte Carlo method. "Modeling™ with a Monte
Carlo method 1is equivalent to "producing an imitative representation
of the functioning of a system". But the purpose of a Monte Carlo
model 1is strictly analysis and not Jjust simulation, because the
underlying basis is "a separation of a whole 1into 1its component

parts”.

However, one has to keep foremost in mind the limitations of any
model in order not to interprete too naively results which are just

obtained by improper application of a model.

I feel obliged to explicitly state my personal opinion about the
guality of the results which can be obtained by contemporary device
modeling. The development of devices involves several iterations of
trial and error in fabrication until a specified goal in terms of
design conditions is reached. The application of device models can
now, and sometimes fairly substantially, decrease the number of trial
and error steps during the development. A serious speculation about
the average savings in development effort could be on the order of
forty percent. Obviously, this number depends strongly on the
individual conditions of a specific project. The total elimination of
trial and error in device development 1is not possible nowadays,
because the uncertainties of several parameters of the available
models, although they are already very sophisticated, are still too
large. I absolutely expect not being wrong in claiming that device
modeling will become more and more important in the near future. This
assumption is also supported by the fact that computer resources are
going to be cheaper compared to drastically increasing costs for
éxperimental investigations. Hence, many more engineers will have to
face the problem of numerical device modeling in order to stay

competitive.

It remains to say that the main power of higher dimensional
device models lies in its capability to provide 1insight into the
functioning of devices by means of distributions of the various
physical quantities in the interior of a device. However, many device
engineers are not at all used to interpreting those results; they
prefer global guantities 1like current-voltage characteristics. A
properly tuned higher dimensional device model is certainly able to

The Goal of Modeling
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predict global device parameters with a desired accuracy, but much
simpler and cheaper (in terms of computer resources) models will often
be able to deliver global results with equally good reliability. For
miniaturized devices, however, higher dimensional models are often the
only existing and imaginable tool for the accurate prediction of

device performance.

The Goal of Modeling
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1.2 The History of Numerical Device Modeling.

Fully numerical modeling of a semiconductor device based on
partial differential equations [1.87] which describe all different
regions of a device in one unified manner was first suggested by
Gummel [1.29] 1in 1964 for the one dimensional bipolar transistor.
This approach was further developed and applied to pn-junction theory
by De Mari [1.18], [1.19] and to IMPATT diodes by Scharfetter and
Gummel [1.75]. A two dimensional solution of Poisson's equation with
application to a MOS structure was first published by Loeb et al.
[1.49] and Schroeder and Muller [l.76] in 1968. Kennedy and O'Brien
[1.39] investigated in 1969 the junction field effect transistor by
means of a two dimensional numerical solution of Poisson's equation
and one continuity equation. At the same time Slotboom [1.82]
presented a two dimensional analysis of the bipolar transistor solving
Poisson's equation and both continuity equations. Since then two
dimensional modeling has been applied to nearly all important devices.
It 1is not possible to cite here all relevant papers in the field;
however, to present at least a comprehensive menu of key papers is

worthwile,

The junction field effect transistor has been investigated in two
dimensions by solving the Poisson equation and one continuity equation
by, e.g., Himsworth [l1.34], Kennedy and O'Brien [1.40] and Yamaguchi
et al. [1.91]. The transient behavior in two dimensions of those

devices has been simulated by, e.g., Reiser [1.69].

MESFETs have been analyzed also by Reiser [1.70] and by, e.g.,
Barnes et al, [1.8], [1.9]. More sophisticated equations for the
physical and mathematical model of MESFETs have been solved by Cook
and Frey [l1.17] (energy transport equations) and by Moglestue [1.58],
[1.59] and Pone et al. [1l.65] (particle equations).

Many activities have been concentrated on the simulation of MOS
decvices due to their intrinsically two dimensional nature, e.g.: in
1971 [1.88], in 1972 [1.89], in 1973 [1.41], [1.55], in 1976 [1.35],
in 1977 [1.24], in 1978 [1.63], [1.83], in 1979 [1.43]), [1.77], in
1980 [1.16], [l1.64], [1.78], [l1.84], in 1981 [1.44], [1.71], [l.92],
in 1982 [1.67], [1.731, [1.74]1, [1.90] and in 1983 [1.60]. Two

dimensional transient simulations of MOSFETs have been carried out by,

The History of Numerical Device Modeling



Die approbierte gedruckte Originalversion dieser Habilitationsschrift ist an der TU Wien Bibliothek verfiigbar

The approved original version of this habilitation thesis is available in print at TU Wien Bibliothek.

thelo

(]
lio
nowledge

b

o
i
r

M You

e.g., Mock [1.56], Oh et al. [l1.62] and Yamaguchi [1.93]. Three
dimensional static modeling has been published in, e.g.:[1.13],
[1.15], [1.81].

Out of the many papers which have been published on modeling
bipolar transistors and thyristors it seems worthwhile to cite, e.g.:
in 1970 [1.21], in 1971 [1.42], in 1973 [1.33], [1.94], in 1974
[1.51], [1.80], in 1975 [1.53] (two dimensional transient simulation),
in 1976 [1.27], in 1978 [1.2], in 1979 [1.1], [1.3] in 1981 [1.45],
[1.47], [1.85] and in 1983 [1.26], [1.50] (nonlinear small signal

simulation).

Several non standard and unusual devices have been simulated
during their development, e.g.: the permeable base transistor [1.10],
the 1insulating gate rectifier [1.6], and the "dielectric surface
loaded GaAs bulk element" [1.38]. However, only a very few computer
programs which allow the simulation of a fairly arbitrary device
structure have been published, e.g.:[1.14], [1.25], [1.28], [1.30],
[1.31].

As it can be obviously expected, many dissertations on numerical
modeling of semiconductor devices have been undertaken, e.g. (in order
of appearance): [1.68], [1.32], [l.52], [1.7]1, [(1.36], [1.66]1, [1.48],
[1.79]1, [1.72].

Kurata [1.46] and Mock [1.57] have published a monograph in 1982
and 1983 respectively. Various conferences with proceedings published
as books, e.g.:[1.11], [1.12], [1.54] have taken place, and summer
courses, e.g.:[1.5], [1.20], [1.86] have been held.

Among many more the following outstanding review papers have been
published [1.22], [1.23], [1.37] and [l1.61]. 1In 1975 Agajanian [1l.4]
has published a bibliography on device modeling (not only numerical
modeling) with about 500 references selected from the most important

papers of the preceeding four years.

The History of Numerical Device Modeling
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2. Some Fundamental Properties.

To accurately analyze an arbitrary semiconductor structure which
is intended as a self contained device under various operating
conditions, a mathematical model has to be given. The equations which
form this mathematical model are commonly called the basic
semiconductor egquations. They can be derived from Maxwell's equations
(2-1), (2-2), (2-3) and (2-4), several relations obtained from
solid-state physics knowledge about semiconductors and various

- sometimes overly simplistic - assumptions.

rot H =7 + gg (2-1)
rot E = —g_'g / (2-2)
div D = @ (2-3)
div B = 0 (2-4)

E and D are the electric field and displacement vector; H and B
are the magnetic field and induction vector, respectively. J denotes

the conduction current density, and @ is the electric charge density.

The next sections will be devoted entirely to an outline of the
procedures which have to be carried out in order to derive the basic

semiconductor eguations.

Some Fundamental Properties
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2.1 Poisson's Equation.

Poisson's equation 1is essentially the third Maxwell equation
(2-3). However, to make this equation directly applicable to
semiconductor problems, some manipulations have to be undertaken. We
first introduce a relation for the electric displacement vector D and
the electric field vector E (2.1-1).

D = £E (2.1-1)

€ denotes the permittivity tensor. This relation is valid for
all materials which have a time independent permittivity.
Furthermore, polarization by mechanical forces 1is neglected [2.44].
Both assumptions hold relatively well considering the usual
applications of semiconductor devices. However, an investigation of
piezoelectric phenomena, ferroelectric phenomena and nonlinear optics

is impossible when using only (2.1-1).

As the next step it is desirable to relate the electric field
vector E to the electrostatic potential Y. For that purpose we solve
(2-4) by introducing a vector field A and remembering that "div rot"

applied to any vector quantity is always zero.
B=rotA, divA =0 (2.1-2)

We substitute (2.1-2) into (2-2) and we obtain readily (2.1-3).

= _9a
rot E + =0 2.1-3
( 3?) ( )
If "rot z = 0" holds for a vector field z we know from basic
differential calculus that 2z can be expressed as a gradient field.
Therefore, the electric field vector E can be expressed as:
= _ daa
E = - - grad (2.1-4)
Jc 9 L 4
Now we substitute (2.1-4) into (2.1-1) and then the result into
(2-3).

D = —C-g% - €.grad @ (2.1-5)
iy N . _ _
iv (i-ﬁ) + div (€E-grad @) = -¢ (2.1-6)

The first term in (2.1-6) is zero if the permittivity &€ can be
considered to be homogenous. Thus, we finally end up with (2.1-7)

which is the well known form of Poisson's equation.

Poisson's Equation
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div (E-grad @) = -¢ (2.1-7)

The space charge density € can be further broken apart (2.1-8)
into the product of the elementary charge g times the sum of the
positively charged hole density p, the negatively charged electron
density n and an additional concentration C which will be subject of

later investigations.
¢ =q-(p-n+cC) (2.1-8)

From a purely mathematical point of view (2.1-8) represents a
substitution only, without introducing any assumptions. However,
additional assumptions are brought about by modeling the quantities n,
p etc. as will become clearly apparent in sections 2.3 and 2.4.

The permittivity € will be treated here in all further
investigations as a scalar quantity. In principle it has to be
represented as a tensor of rank two. However, the materials currently
in use for device fabrication do not show a significant anistropy of
the permittivity owing to their special composition, e.g. cubic
lattice or amorphous structure. Inhomogeneity effects of the
permittivity have been neglected in (2.1-~7). There does not exist
pronounced experimental evidence for inhomogeneity effects. For some
materials the relative permittivity constants €r=€/€0 are summarized
in Tab. 2.1-1.

material Cr [ ]
Si 11.7
SiO2 3.9
Si3N4 7.2 typical
GaAs 12.5
Ge 16.1

Tab. 2.1-1: relative permittivity constants

In particular for Si3N4 the value of ir depends strongly on the

individual processing conditions; it can vary quite significantly.

If we introduce (2.1-8) and the assumption of a homogeneous
scalar permittivity into (2.1-7) we obtain the final form of Poisson's

equation to be used for semiconductor device modeling.

div grad ¥ = g-( n-p-20C) (2.1-9)

Poisson's Equation
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2.2 Continuity Equations.

The continuity equations can be derived in a straightforward
manner from the first Maxwell equation (2-1). If we apply the

operator "div" on this equation we obtain:

, = _ o=, 8%
div rot H = div J + =0 (2.2-1)
dt
Now we split the conduction current density J into a component jp
caused by holes and a component En caused by electrons:
J =J, + Jy (2.2-2)

Furthermore, we assume that all charges in the semiconductor,
except the mobile carriers electrons and holes, are time invariant.
Thus we neglect the influence of charged defects, e.g. vacancies,
dislocations, deep recombination traps, which may change their charge

state in time.

ac _
gt = O (2.2-3)

If we substitute (2.1-8) and (2.2-2) into (2.2-1) and if we make
use of (2.2-3) we obtain: )

div ( Ep + En )y + q-%z( p-n) =20 (2.2-4)

This result is interpreted fairly trivially. It just means that
sources and sinks of the total conduction current are fully
compensated by the time variation of the mobile charge. In order to
obtain two continuity equations a few formal steps have to be carried
out. We first define a quantity R in (2.2-5) and, secondly, we
rewrite (2.2-4) by making use of the definition R.

div J, - q-g% = g°R (2.2-5)
dp
div J, + g- = —-gq*R (2.2-6)
pt gy T e

It 1is obvious that we can not gain information by writing one
equation (2.2-4) in two different ways (2.2-5), (2.2-6). However,
these formal steps enable us to interprete the equation more easily.
The quantity R can be understood as a function describing the net
generation or recombination of electrons and holes. Positive R means
recombination and negative R means generation. So far we have no
information about the structure of R except equations (2.2-5) and

Continuity Equations
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(2.2-6). R has to be modeled carefully (cf. section 4.2) using
knowledge from the solid-state physics of semiconductors. If we have
a model for R, eguations (2.2-5) and (2.2-6) can really be considered
as two equations. It seems worthwhile to note explicitly here that
there is no necessity or even evidence that R can be expressed as a
function depending only upon local quantities and not upon integral
quantities; non local generation or recombination phenomena may
certainly take place 1in semiconductor devices considering only the

derivation of the continuity equations.

Continuity Equations
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2.3 Carrier Transport Equations.

The derivation of current relations for the semiconductor
equations 1is a very cumbersome task. It is not the intention of this
book to cover the extraordinarily wide field of physics behind all the
considerations necessary to derive the current relations in detail.
Therefore, some of the required relations will be given without proof,
but with reference to a text more specialised in that field.

Without 1loss of generality the current density of charged
particles 1is the product of the charge constant per particle, the
particle density and the average velocity (drift velocity) of the
particles. So the hole current density and the electron current

density can be written as (2.3-1) and (2.3-2), respectively.

p - q'P'Vp (2.3-1)

.—q.n--‘;n (2.3-2)

o
o]
n

The major problem is to find expressions which relate the average
carrier velocities to the electric field vector E and to the carrier
density. 1In order to obtain information about the drift velocity we
have to describe the carrier density by means of a distribution
function fp in phase space which is the space of spatial coordinates
y,kz)T and time t, thus a

seven dimensional space. The distribution function determines the

§=(x,y,z)T, momentum coordinates E=(kx,k

carrier density per unit volume of phase space. By integrating the
distribution function over the entire momentum volume vV, we obtain the

carrier density ¥(X,t). ¥ stands for n or p, denoting electrons or

holes.
! X,k k X (2.3-3
Z:—u—j kfl’(x,k,t) dk = ¥(x,t) . )
This normalization (2.3-3) defines fV as a probability. In the

literature various different normalizations can be found, e.g. [2.42],
[2.49].

The distribution function has the property that 1its derivative
along a particle trajectory §v(t), Ev(t) with respect to time vanishes
in the entire phase space in compliance with the Liouville theorem
about the invariance of the phase volume for a system moving along the
phase paths or an account of the conservation of the number of states

[2.49].

Carrier Transport Equations
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() ,t) =0 (2.3-4)

Equation (2.3-4) is the Boltzmann transport equations in implicit
form. By expanding the total derivative we obtain:
af,, dRyp dXyp
—a—E + gradk fv'—a‘—t‘ + gradx fV'——d—E = 0 (2.3—5)
Here gradk denotes the gradient operator with respect to the
momentum coordinates k; grad is the gradient operator with respect to
the spatial coordinates x. Equation (2.3-5) shows that the variation
of the distribution function at each point of phase space (X,k) with
time is caused by the motion of particles in normal space (Xx) and in

momentum space K.
The derivative of EV with respect to time multiplied with
Planck's constant #i equals the sum of all forces F. These forces have

to be devided into two classes (2,.3-7).

dky Fy P

dt ~ h ' T oem (2.3-6)

Fp = FFé + FFi (2.3-7)
Fpé comprises forces due to macroscopic external fields and ﬁVi

denotes forces due to internal localized «crystal attributes like
impurity atoms or ions, vacancies, and thermal lattice vibrations. It
is quite impossible to calculate the effect of internal forces FVi
upon the distribution function from the laws of dynamics [2.49].
Statistical laws have to be invoked instead. By introducing the
quantity SV(E,E')-dE' which is the probability per unit time that a
carrier in the state k will be scattered into the momentum volume dk',

we can write the internal collision term as follows:

fy.(E,E' L) [1-fv(§£,T<’,t)] -sV(E' LK) }edk (2.3-8)

(2.3-8) 1is termed the collision integral. The first term in the

integrand describes the number of carriers scattered from the state k

Carrier Transport Equations
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into the volume element dk' per unit time. fr(i,i,t) gives the
probability that a carrier initially occupies the state k.
(1 - fr(§,f',t)] gives the probability that the volume element dk' is
initially unoccupied and can, therefore, accept a carrier. Sv(k,i')
gives an a priori probability of the scattering event.
Correspondingly, the second term in the integrand of (2.3-8) equals
the number of electrons scattered from volume element dk' into state k
per unit time. Thorough investigations about the scattering

probability SpJE,E') can be found in, e.g., [2.21].

The derivative of x; with respect to time represents the group

velocity of the carriers.

dxv .

dt Gr (2.3-9)
We have now to substitute the relations (2.3-6) to (2.3-9) into

(2.3-5), and we obtain the Boltzmann transport equation in explicit

form,

3fv' Fe -

—§t t ®-gradg fV + uyprgrady fV =

—V!'{ fv-(xlklt) ° [l—fv.(x,k',t)]-Sr(k,k')—

fv(’i,i{' St) . [l—f”.&,_ﬁ,t)] -sv(i' , k) }edk (2.3-10)

A fairly accurate approach would be to directly solve (2.3-10) in
order to calculate carrier densities and drift velocities. However,
this 1is an extraordinarily difficult task to accomplish. (2.3-10)
represents an integro-differential equation with seven independent
variables. This equation does not admit a closed solution. It rather
requires the use of iterative procedures which, moreover, are scarcely
suitable for numerical approaches [2.10], or additionally, invoke very

stringent assumptions [2.42].

An alternative approach to solving the Boltzmann equation
consists in simulating the motion of one or more carriers at
microscopic level with Monte Carlo methods, e.g. [2.43]. However,
this category of simulations is very computationally intensive [2.64],
[2.65] and therefore, with a few exceptions only, not suitable for

engineering application.
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One should be aware of the fact that the wvalidity of the
Boltzmann equation (2.3-10) implies already several assumptions (cf.
[2.10], [2.17]).

e The scattering probability is independent of external forces.

® The duration of a collision is much shorter than the average time of
motion of a particle; collisions are instantaneous.

@ Carrier-carrier interaction is negligible. This effect would change
the integrand of the right hand side integral in (2.3-10) highly
nonlinear in fF [2.4].

@ External forces are almost constant over a length comparable to the
physical dimensions of the wave packet describing the motion of a
carrier.

@ The band theory and the effective mass theorem apply to the

semiconductor under consideration [2.76].

However, it is my intention here to outline the derivation of the
classical current relations and only to pinpoint the problems

associated with much more basic and error-prone models.

By assuming that all scattering processes are elastic and by
neglecting all effects caused by degeneracy the scattering integral
can be approximated and the Boltzmann equation is reduced to a pure
differential equation [2.21], [2.42], [2.76].
¥ty Fye _ fr -~ fwo
—% +t g gradg fy, + uv-gradx fy, = - ——-——-t-v—————- (2.3-11)

The physical motivation for the right hand side of (2.3-11l) is as
follows: Suppose that at some moment of time t=0 all external forces

are switched off and fF is homogenous.

F
Ve -
ﬁﬁ—-gradk fF + u.‘r'gradx fF =0 (2.3-12)

It follows from (2.3-11) that the distribution function will

change as a result of collisions only. (2.3-13) will reduce to:

Aty fr ~ fuo

_ (2.3-13)
a9t T,

The solution of this differential equation is quite simple.

fv(%‘,k,t) = fVO(SE,E) + [fv(SE,E,O) - fvo(E,E)]-e't/tr (2.3-14)
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fvb is the equilibrium distribution function, and the quantity tV
shows the rate of return to the state of equilibrium from the
disturbed state, therefore, it is termed the relaxation time. Under
the very restrictive assumptions stated above the problem of solving
the Boltzmann equation can be eased drastically by modeling the

relaxation time as only a function of energy [2.42].

In order to obtain the current relations from (2.3-11l) we
multiply this equation with the group uelocity EV' and then we

integrate the equation over momentum space.
u, afde+ G e dx £,y -dk Uy (T dx £,y) *dk =
A Sy (Tgrgrad fp dko vy (uyrgrady £y tdk =

¢ ——s—-dk (2.3-15)

g._ fv = fyo _
- u
s VR

For the solution of (2.3-15) we make use of the following four
solutions to 1integrals, the verification and discussion of which is
not necessarily trivial, but well established in the literature, e.g.
[(2.131, f[2.21], [2.71].

ar. :

A A D L6
kuv-—az-dk = 4.1 -aE(V-vv) (2.3-16)

_ Fye _ Twe ¢ _ _ 3w ¥
kuv-(fﬁ—-gradk fv)-dk = fﬁ—-lkuv-gradk fv-dk = —-4-T -Fvé-—; (2.3-17)

Ty

— —_ — 4-':3

uv-(uv-gradX fv)-dk = +—°grady (¥-k-T) (2.3-18)
k My
i“‘ W ak 1 \L‘ (f fi. )+dk = 4-m3 Ty (2.3-19)

u L e - m——— u 3 — . = L3 » - —

K v l'v, IV K Vv 'y Yo tV

— . *
¥ denotes the carrier density, Vyr is the drift wvelocity, Myy

represents the effective mass, T denotes the lattice temperature and
Ir in the right hand sides of (2.3-19) is an average collision time.
The constant k on the right hand side of (2.3-18) denotes the
Boltzmann constant, The external forces fpé can be expressed in terms
of the electric field E if the magnetic induction B (Lorentz force) is

neglected which is a requirement also for the validity of (2.3-16).
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Fhe = =q-E , Fhe = Q-E (2.3-20)
In (2.3-18) it has been assumed that the drift energy of the
carriers 1is negligibly small compared to the thermal energy.

Therefore, relation (2.3-18) is invalid for hot carriers (cf. [2.67]).

We obtain ordinary differential equations for the drift
velocities of electrons and holes using the above given integrals and
the force relations (2.3-20).

- q — 1 n®*vnp
(n*vp) + —*n*E + —g+grad (n-k*T) = - (2.3-21)
ac m: m: T,
9 - q — 1 P'-Gp
aE(p-vp) -~ —5°*'pP*E + —-grad (p-k-T) = - T (2.3-22)
mp mp p

These equations can be regarded also as macroscopic force balance
equations. A "closed solution" of these equations is, unfortunately,
not possible. In order to obtain an approximate solution we introduce

effective carrier mobilities Pn and Pp.

-
By =2 n (2.3-23)
m
n
-5
Po = 2 (2.3-24)
m
P

We rewrite (2.3-21) and (2.3-22) after multiplication with the
corresponding average collision times tV and charge constant g, and

- remembering (2.3-1) and (2.3-2) - we end up with:

ajn - — 1 kT
Tno—g¢ * Jn = @*Ppn-[ E + —-grad( n-—a—)] (2.3-25)
Pp E - = k-T 3-26
o9t * Jp = A Pprpr[ E - grgrad( pr—g)] (2.3726)

The average collision times tV are very small, typically in the
order of tenth of picoseconds. Therefore, equations (2.3-25) and
(2.3-26) can be understood as being singularly perturbed. This
suggests to expand the solution into powers of the perturbation

parameter which is the collision time.
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Ta(Ty) = 2 Tpi- (4t (2.3-27)

Tp(Tp) = 2 Tpi- (o)t (2.3-28)

We have an algebraic equation for the =zero order term of the

current density.

— — 1 kT

Jno = Q*¥p°n-[ E + ;-grad(n-—-&—)] (2.3-29)

— — 1 kT

Jpo = q-¥p'p-[ E - B-qrad(p-—qn)] (2.3-30)
These equations are formally approximations of order tV'

Jn = JIpo + O(Ty) (2.3-31)
Jp = Jpo *+ O(Tp) (2.3-32)
We further assume that the léttice temperature is constant.

T = const. (2.3-33)

Then we can use the substitutions (2.3-34) and (2.3-35) which by

means of physical interpretation are termed the Einstein relations

D, = BB T (2.3-34)
g
_ kT -
Dy = By £z (2.3-35)

to define the diffusion constants DV’ and, finally, we are able to
write down the current relations in the well known, established form

as sums of a drift and a diffusion component.

Jn 2 g'n-Py'E + q-Dyrgrad n (2.3-36)

Jp E q-p-PP~E - q-Dp+grad p (2.3-37)

R

In the following I should like to summarize the most important
assumptions which had to be performed over and above to the ones
necessary for the wvalidity of the Boltzmann equation to obtain the
current relations (2.3-36) and (2.3-37).

e All scattering processes have been assumed to be elastic.
Therefore, for instance, polar optical phonon scattering which is a

major scattering mechanism in GaAs has been neglected.
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®© The spatial variations of the collision time and the band structure
are neglected. This implies a slowly varying impurity concentration
over a carrier mean free path.

® Effects of degeneracy have been neglected in the approximation for
the scattering integral.

e The spatial variation of the external forces is neglected which
implies a slowly varying electric field vector.

® The influence of the Lorentz force 1is ignored by assuming =zero
magnetic induction.

e The time and spatial variation of carrier temperature is neglected
and, furthermore, lattice and carrier temperature are assumed to be
equal. Therefore, the diffusion of hot <carriers 1is improperly
described. Several authors have tried to overcome this problem by
using modified Einstein relations [2.9], [2.521, [2.53], [2.67],
[2.68], [2.69], [2.85].

® Parabolic energy bands are assumed which is an additional reason why
degenerate semiconductor materials cannot be treated properly.
Calculations of the realistic band structure of wvarious
semiconductors can be found 1in, e.g., [2.20]. However, for a
realistic band structure it can become necessary to use a system of
Boltzmann equations to describe the carrier distribution instead of
just one (cf. [2.96]).

® The zero order term of the series expansions of En and Ep into
powers of the <collision time only has been taken into account.
Thus, all time dependent conductivity phenomena, like velocity
overshoot, are not included.

The semiconductor has been assumed to be infinitely 1large. In a

real device the distribution function 1is changed in a complex,
highly irregular manner in the vicinity of boundaries, for instance
contacts [2.58] and interfaces [2.36]. It can be expected that the
drift-diffusion approximation fails within a few carrier mean free

paths of boundaries.

In the literature we can find quite a few papers and books whose

authors wuse a different form of the current relations. These are
based upon special assumptions equivalent to the drift-diffusion
approximations. The procedure to derive these slightly different
relations will be outlined next. We know from semiconductor

statistics that the equilibrium distribution functions for electrons

and holes are Fermi functions.
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- — 1
£ k) = — — 2.3-
no (%K) e R R (R (2.3-38)
1 + exp( =
k*T (%)
£__(%,k) L 2,3-39
X, = — B —— . 3-
PO Efp(X)‘Ev(xlk) ( )
1 + exp( —
kT (x)

Ec and Ev denote the conduction and the valence band energy,

respectively.
- — _ f2.-Kk
Ec (x,k) = Ego - g-H(x) + - (2.3-40)
2+°m
n
- — _ $%2.K-k
Ey (x,K) = Eyo — g-§(x) - " (2.3-41)
2-m
p
E and E are the conduction band and the valence band edge,

coO

Vo
respectivelt; ¥(x) is the electrostatic potential as defined in

section 2.1.

Efn and Efp in (2.3-38) and (2.3-39) determine the Fermi energy
for electrons and holes. We shall try now to calculate a correction

term (2.3-42) to the equilibrium distribution function.

fo . (x,k,t) = f

v (x,k) + f... (X,k,t) (2.3-42)

Yo 1

We recall the Boltzmann equation with the relaxation time

approximation:

3ty P _ tv = two
£ t —ggradg fy + ugpegrady fp = - —__ﬁ;__— (2.3-43)

By assuming
Aty Fyre _
|—g¢! << |—g—-gradk i + Uyrgrady fy (2.3-44)

we obtain a simplified form of the Boltzmann equation.

Fare _ fytwo
—grgradg fi + Ugpsgrady far = - T (2.3-45)
v
(2.3-45) 1is valid only for small perturbations from equilibrium.
Then we estimate the correction term fv1 to the equilibrium

distribution:
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Fﬂé

fp = - Ty (—g—-gradg fo  + Gvngradx furo) (2.3-46)

The spatial gradients of the equilibrium distribution functions

for electrons and holes are:

q-§ + Efn
q-@¥+ Efp
gradyg fpo = —fpo-(l—fpo)-gradx (———;:;~——) (2.3-48)

The gradient of the equilibrium distribution functions with
repect to k evaluates to:
f2-k
gradkf‘.l’.o = —fyb-(l—fyb)-—;———~ (2.3-49)
mv-k-T

The group velocity can be expressed for a parabolic, isotropic

band as:
- Ak
Uy = - (2.3-50)

Ty

By assuming vanishing variation of temperature gradX T=0 and
substituting relations (2.3-47) to (2.3-50) into (2.3-46) we obtain
expressions (2.3-51) and (2.3-52) for the distribution functions for

electrons and holes, respectively.

un
Il-p

The current densities can now be evaluated as the integrals of
the product of group velocity and distribution function over momentum

space by further assuming fvb<<l'

— -q — —
Jp = —=x°*| up*fp*dk = -q-P,°n-grad (2.3-53)
n PG lk n"tn q-Pp-n-g ¥n
—J- = ___q_...... E o f -d}_(. = - .p *pDegrad v (2 3—-54)
P~ 1wl p'tp " Fprpe9 P .
k
?n and @b denote the quasi-Fermi potentials for electrons and
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holes which are related to the Fermi energies for small external

forces by:

grad @y = -q-grady Efy (2.3-55)

The simplifying assumptions necessary to derive (2.3-53) and
(2.3-54) are quite similar to those required for the derivation of the
drift-diffusion current relations (2.3-36) and (2.3-37). However, if
we introduce an effective intrinsic concentration to fit moderate
heavy doping effects (cf. section 2.4)
q- (Y - 'Pn))

kT

ap - W, (2.3-57)
k-T

(2.3-56)

n nje*exp(

i

P = njeexp(
in (2.3-53), (2.3~-54) we obtain directly the drift-diffusion
formulation of the current densities., We get after straightforward
calculation using (2.3-56) and (2.3-57) the following expressions for

the quasi-Fermi potentials Qv:

¥, = - k_;.ln (H-E“') (2.3-58)
le

Yo =W+ K'T.1n (—51,3— (2.3-59)
le

We substitute these expressions into (2.3-53) and (2.3-54).

En = -q*pP,°n-grad ( Y - E;E'ln(_ﬁ_) ) (2.3-60)
q Nje

Jy = -q-Pop-grad + B Ton( P 2.3-61

p = ~9-Pp-pegrad ( Y+ ~__-In(_=) ) (2. )
q Nje

Then we evaluate the "grad" operator and obtain relations
(2.3-62) and (2.3-63) for the electron and hole current, respectively.

4l
o]

= q-n-Pn-E + q*Dpe.grad n - q-Pn-n-(E;E-grad In(nie) ) (2.3-62)
q

— — keT
Jp = q-p-PP-E - q-Dp-grad p + q-pp-p-(_a_-grad In(nje) ) (2.3-63)

The last term in these relations represents a current which 1is
caused by a possible dependence on position of the intrinsic density.

It thus accounts for variations in the bandgap, and it will describe
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the bandgap narrowing effect observed in heavily doped semiconductors
(see also [2.91]). If we assume a constant intrinsic density we
obviously do not have a gradient of the intrinsic density, and then
relations (2.3-62) and (2.3-63) are indeed identical to (2.3-36) and
(2.3-37).

For practical purpose it is often wuseful to define effective
fields for the drift current components of the electron and hole

current density.

k+T

E, = E - _a_-grad In(nje) (2.3-64)
E, =E + = T-grad 1n(n; 2.3-65)
p = = gra n(nje) (2.

By rewriting (2.3-62) and (2.3-63) we obtain a form of the
current relations which is very similar to the classical

drift-diffusion approximations but which can, as in our example, take

into account positional variations of the band gap.

Jn = g'n*Pa"Ey + g°Dp°grad n (2.3-66)

It is worth noting that Boltzmann statistics for the carrier
densities have been wused 1in (2.3-66) and (2.3-67). With Fermi
statistics for the carrier densities an equally simple form of the
current relations compared to the classical drift-diffusion

approximations is not derived so easily.

In the following I would 1like to summarize some of the
simplifying assumptions which became clear in the derivations of
(2.3-51) and (2.3-52), and which, additionally have been implicitly
used for the derivation of the drift diffusion relations (2.3-34) and
(2.3-35) (see also [2.101]).

e Higher order derivatives of the quasi-fermi potentials have been
neglected (cf. (2.3-46) ). This means that we transform a non-local
solution of the Boltzmann equation into an approximate one depending

only upon the local gradient of the quasi-Fermi potential.

® The dependence of the distribution function upon the gradient of the

quasi-Fermi potential has been 1linearized. That means that the
scale of length over which the quasi-Fermi potential varies by k-:T/g

must be large compared to the carrier mean free path.
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e Only to first order 1is the <carrier transport driving force the
gradient of the quasi-Fermi potential. Away from equilibrium the

electric field vector will become important.

Various authors have published approaches for a more
sophisticated treatment of carrier transport in semiconductors.
Froelich and Blakey, for instance, have carried out a one dimensional
simulation wusing energy and momentum conservation laws [2.31]. They

use for the description of electron transport:

v dv . q'E 2 a m®* -2 v
= —yenl + - . nelw - 1} -2 (2.3-68)
aft- a; m* 3-m*.n a;{ 2 tv
v v 2 9 m* - v2 W = Wo
=~y + gq*Eev - __.° neve[w - - (2.3-69)
gt gx * ¢ e [ — - —
v denotes the electron drift velocity, tv is the momentum

relaxation time, w is the electron energy and tw represents the energy
relaxation time. It can be seen that (2.3-68) is almost equivalent to
(2.3-21) which is an intermediate result we had obtained during the
derivation of the drift-diffusion relations. The total electron

energy w has been assumed to be:

3ok T *. g2
W = n,m-v (2.3-70)
2 2

Equation (2.3-69) 1is obtained by multiplying the Boltzmann
equation with the energy E and then integrating the result over X
space [2.14], fairly similar to the procedure we had to go through to
derive (2.3-21). However, in order to avoid terms of the order
U- (u-u) one has to specify the form of the distribution function to be

a "displaced" Maxwellian.
g (XrK) ~ exp(- Eﬁ{—}:%f-}fi) (2.3-71)
¥

If one wuses such a model based on energy and momentum
conservation, one circumvents the assumption that the carrier energy
and momentum distribution are always in equilibrium with the local
electric field. However, the assumptions required to derive (2.3-69),
e.g. a displaced Maxwellian distribution function (cf. [2.42],
[2.95]), and the additional parameters to model, e.g. energy
relaxation time, lead to many open questions which will have to be
discussed quite thoroughly until these types of models become suitable
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for engineering applications. A comparison of such an electron
temperature model, a <classical drift-diffusion model and first
principles particle model has been published by, e.g., Curtice [2.23],
the summary of which 1is that simulation results differ guite
significantly when using a model based upon classical current
relations, an electron temperature model or a particle model. A two
dimensional simulation with this type of equations has been presented
in [2.16], [2.22].

Thornber [2.88] has published a generalized current equation for
the simulation of submicron devices by supplementing the drift and
diffusion current components with so-called gradient, rate and
relaxation current components in order to include the most important

features of velocity overshoot.
E 3o n n
Jn = g*n*[ v(E) + W(E) ‘o<t B (E) ‘9% ] - g*D(E) ¥ i q-A(E) ‘gt (2.3-72)

Graphs of the gradient coefficient W(E), the rate coefficient
B(E) and the relaxation coefficient A(E) have been presented by
Thornber for electrons in silicon at room temperature. v(E) and D(E)
are the well known terms for the drift velocity and the diffusion
coefficient. 1In the classical drift~diffusion current approximations
all terms except those +two are assumed to be negligibly small.
Thornber stated in his article [2.88] that relations of the form
(2.3-72) are adequate to represent current densities whenever the
characteristic distances over which the particle density or electric
field changes exceed 20nm in silicon (200nm in GaAs) and the
characteristic time intervals of such changes exceed about 0.4
picoseconds in silicon (2 picoseconds in GaAs). However, as far as I
know, relations of the form (2.3-72) - a generalisation of which to
higher dimensional form is supposed to be straightforward- have not
been tested for practical applicability, although it can be speculated
that the range of validity of such treatments is greatly extended.

In recent work a new concept of device operation has been brought
about, namely ballistic transport. It was argued that by properly
selecting the material, temperature, geometry and bias, a device could
be built which is much smaller than the mean free path between
scattering events [2.41], [2.78]. This question, however, is still
open, although quite a few activities in that field can be observed
(2.31, [(2.6]1, [2.7), [2.37], [2.451, [2.74], [2.78], [2.87], [2.93].
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As review papers on which kind of problems have to be faced
especially for the simulation of miniaturized devices, references
[2.10], [2.29], [2.30] can be suggested. Investigation on how the
carrier transport equations, 1i.e. current relations, are changed,
particularly by heavy doping effects, are presented in [2.59], [2.63],
[2.701, [2.73], [2.90], [2.91]. In the next section we shall address
these problems with emphasis on adequate models for the carrier
densities. However, considering the <current relations, throughout
this text we shall favour current relations which have a structural
appearing like (2.3-66) and (2.3~67). These formulations will allow
us to best characterize, in a more mathematical sense, the problem of
carrier transport. From a pragmatic physical point of view equations
(2.3-66) and (2.3-67) offer, considering the state of the art in
understanding their background, a sufficiently large set of parameters
(effective mobilities Py, effective fields EV' effective diffusivities
DF) to be invoked in order to reach a specific goal for agreement
between results obtained by simulation and measurement. One must keep
in mind that all these equations are just models in any case, which
only imitatively simulate a real process, more or less accuratly, in a

qualitative and quantitative sense.
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2.4 Carrier Densities.

Accurate models for the carrier densities in semiconductor
devices are a necessity if qualitatively and quantitatively correct
simulation results are to be obtained. I first shall review the
"classical" approaches of modeling the carrier densities, which give
fairly simple, closed form algebraic results. These approaches are
certainly well documented in many books on semiconductor physics.
However, I shall place particular emphasis on properly pointing out
assumptions which are very possibly going to be violated when device

sophistication keeps pace with the current trends.

Assuming a parabolic and isotropic band structure the density of
possible states for the conduction band (2.4-1) and the valence band
(2.4-2) as a function of energy E are given in the well known form

with properly averaged effective masses [2.42]:

cype (2.m ) 372
4.9 (2 mn)

(E) = Y E-E (2.4-1
% S )
*
0 4-'!!:-(2-mp)3/2
(E) = 'ﬂ E,-E (2.4-2)
v 03 v
I have avoided in (2.4-1), {(2.4-2) - as I shall do for all other
formulae in this section ~ introducing a reference energy with a

specific absolute value, because only energy differences are of
relevance. One should, however, be quite <careful 1in reading the
literature because that problem is absolutely not treated in a unique
manner. It seems to be very convenient, a matter of taste, to some
people to introduce an arbitrary reference point with zero energy on

the energy scale.

Ec and Ev are the so-called band edges. Their difference Eg
denotes the band gap, i.e. the width of the forbidden band between
conduction band and valence band.

Egy = E¢c - Ey (2.4-3)

Numerical values of the band gap and its linear temperature
coefficient for the most frequently used materials semiconductor

devices are made of are summarized in Tab. 2.4-1.

Carrier Densities
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material Eg [eV] dEg/dT [eVK'l]
si 1.12 ~2.7-10"%
GaAs 1.35 ~5.0-10"%
Ge 0.67 -3.7-10"%

Tab. 2.4-1: Band gaps in undoped material at T=300K

For silicon the temperature dependence of the band gap can be
modeled more accurately with (2.4-4) or (2.4-5) [2.32], [2.34].

T
7,02.10-4.(E)2
Eg = 1,17 - = [eV] (2.4-4)
1108 + ()
T T
Eg = 1,1785 - 9'025'10_5'(E) - 3,05.10—7.(E)2 [eV] (2.4-5)

(2.4-4) 1is the older formula; it has been also published with
slightly different constants, e.g. [2.5], [2.33].

* *
The temperature dependence of the effective masses m_ and mp of

electrons and holes for the density of states 1in silicon can be
modeled with polynomals which are fitted to experimental data [2.32],
[2.34].

* T
m = moe (1,045 + 4,5-1074- () (2.4-6)
* T T
m, = moe (0,523 + 1,4:1073- (x) - 1,48-1076. () 2) (2.4-7)
Values for the effective masses at room temperature are

summarized for some of the relevant semiconductor materials 1in
Tab. 2.4-2.

. * *
material mn/mo [ ] mp/mO [ ]

Si 1.18 0.5
GaAs 0.068 0.5
Ge 0.55 0.3

Tab. 2.4-2: Effective mass ratios at T=300K

In order to obtain expressions for the carrier densities we have
to integrate the density of states function multiplied with the

corresponding carrier distribution function over the energy space.

Carrier Densities
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n =IQC(E)-fn(E)'dE (2.4-8)
C

= L?v (E) *£5,(E) -dE (2.4-9)

The lower integration bound in (2.4-8) is Ec because no possible

yo)
!

states for electrons do exist for energies below the conduction band

edge. For a similar reason the upper bound in (2.4-9) is Ev‘ The
distribution functions fn(E) and fp(E) are Fermi functions.
£, (E) = ! (2.4-10)
E-Efn
1 + exp( )
kT
fo(E) = - (2.4-11)
Efp—E
1 + exp( )
kT
Efn and Efp denote the Fermi energies for electrons and holes,

respectively. Their exact meaning will be discussed later. The
integrals in (2.4-8) and (2.4-9) can be evaluated to

2 Efn—E

n = Ng+2_+Fp/p (L2 %) (2.4-12)
KeT
E,~E

p = NV-%-Fl/z(_‘_’.__fE) (2.4-13)
kT

where Nc and Nv denote the effective density of states in the

conduction band and in the valence band, respectively.

*
2'1t°k-T°mn 3/2

Ng = 2°(—_ 1 (2.4-14)

(2.4-15)

Fl/z(x) is the Fermi integral of order 1/2 which, unfortunately,

does not have a closed form solution.

F1/2(x) = _____L-dy (2.4~16)
L/ 1 + eY—X

The asymptotic behavior of Fl/z(x) for large negative and large

positive argument, however, is analytic.

Carrier Densities



Die approbierte gedruckte Originalversion dieser Habilitationsschrift ist an der TU Wien Bibliothek verfiigbar

The approved original version of this habilitation thesis is available in print at TU Wien Bibliothek.

thelo

(]
lio
nowledge

b

o
i
r

M You

- 34 -

IR

Fl/Z(X) Eﬁ'ex ;  X<<=1 (2.4-17)

Y

.;:-x3/2 , x>>1 (2.4-18)

F1/2(x)

The qualitative behavior of Fl/z(x) and its asymptotic expansions
are shown in Fig. 2.4-1. For arguments close to zero it has been
shown that Fl/z(x) can be approximated with an expression of the
following type:

i

Flop(x) 8 2 (2.4-19)

c(x) + e7%
Quite a few suggestions have been made in the literature for
c(x). A most simple but very crude approximation reads:
c(x) =1/4 , -~-1<x<2,5 (2.4-20)

However, due to this simplicity it 1is possible to perform
analytical investigations on expressions where Fl/z(x) is 1involved
[2.61], [2.82]. Another formula for c(x) has been proposed and used
in [2.58], [2.77].

c(x) =0,31 - 0,044-x , x<2 (2.4-21)
c (%) exp(-0,88 - 0,32-x + 0,0086'x2) r  2<x<12

The error associated with (2.4-21) is always smaller than four
percent in the specified range for the argument. There is obviously a
need for approximations which are wvalid over the entire range of
possible arguments [-oo,00]. Two formulae with this property are:

3

- 4 =

c(x) = (2.4-22)
(50 + x4 + 33,6°x-(1 - 0,68-exp(-0,17+ (x+1)2))3/8

3T

(2,13 + x + (|x-2,13]12/5 + 9,6)5/12)3/2

(2.4-23)

c(x)

(2.4-22) has been pointed out to be wuseful in ([2.12], and
(2.4-23) has been presented in [2.8]. The maximum error associated
with both expressions is in the order of 0.5 percent only. Both
formulae nicely accommodate the asymptotic behavior (2.4-17),
(2.4-18).

Another approach to approximating Fl/z(x) has been suggested in

Carrier Densities
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[2.12]. The method of 1least squares has been used to calculate
coefficients of polynomals the exponential of which represents the

fitting function.

Fp/p(x) 2 eP () (2.4-24)

However, this approach will only deliver formulae which are valid
for a restricted range of arguments. A review on approximations for
Fermi integrals and their inverse function 1is presented in [2.12].
For the purpose of implementation of formulae with high accuracy on
large computers it is better to use rational Chebyshev approximations

as demonstrated in [2.19].

To come back to the carrier densities, we can use the asymptotic
expansion (2.4-17) for the Fermi integral in the expressions (2.4-12),
(2.4-13) 1if

Efpn-E
fnBe (2.4-25)
kT
Ey-E
vEfp (2.4-26)
kT

holds. The validity of these assumptions thus requires that the Fermi
energy for electrons is sufficiently smaller than the conduction band
edge and that the Fermi energy for holes is sufficiently larger than
the valence band edge. These assumptions are equivalent to the use of
Boltzmann statistics for the <carrier densities which will then

simplify to

Ef.~E
n = No-exp(_tD —C) (2.4-27)
KeT
E,-E
p = Ny-exp (L' __IP) (2.4-28)
kT

In order to be able to investigate the expressions for the
carrier densities more thoroughly, (with Fermi statistics (2.4-12),
(2.4-13) and with Boltzmann statistics (2.4-27), (2.4-28)) we have to
define precisely the meaning of the band edges Ec’ E, and the Fermi

energies Efn’ Er The band edges can be split into essentially three

p*
parts:

Ec = Ego - dEc-q- W (2.4-29)

Carrier Densities
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E, = E;q + dE,~q @ (2.4-30)

Eoor E,, denote the band edges for pure material, i.e. an

intrinsic semiconductor. JEC and JEV describe shifts of the band
edges caused by a nonuniform composition of the semiconductor under
consideration such as dopants. These quantities have to be assumed to
o’ EVo are usually not position
dependent, except for devices which include heterojunctions [2.60].

be functions of position, whereas Ec

However, for this type of devices it is also possible to introduce

artificial band edges E E which are not position dependent and to

co’ “vo
account for rigid bands with shift energies JEC, JEV [2.91]. W
represents the elctrostatic potential as already used in the previous

sections.

The Fermi energies Efn’ Efp are usually seperated into two parts:

Efn = Ef - a'¥y (2.4-31)
Efp = Ef - a-¥p (2.4-32)
Pn and vb are the quasi-Fermi potentials of electrons and holes.

They describe deviations of the corresponding distribution function
from the equilibrium state. The gradients of the quasi-Fermi
potentials are first order approximations to the driving forces of the
current densities (cf. section 2.3). Note that only differences
between the quasi-Fermi potentials and the electrostatic potential are
relevant for the carrier densities. One may again define a reference
point arbitrarily. It 1is sound, although arbitrary, to define the
quasi-Fermi potentials to be zero if the distribution functions are in
equilibrium, which is the case for a structure to which no external
forces are applied. We define the electrostatic potential to be zero
for the intrinsic semiconductor when the distribution functions are in
equilibrium. Thus, Ei denotes the Fermi energy for the intrinsic
semiconductor. It will be calculated in the following. For that
purpose we rewrite the carrier density expressions wusing the above

given nomenclature.

Ei"Eco"'JEco q- (4-)

n = Ngoeexp( T )~exp(———ETE~—) (2.4~33)
EyotdEyo-Ej q (P-4

P = Nycexp( T )-exp(——ﬂETE——) (2.4-34)

Then we recall Poisson's equation from section 2.1.

Carrier Densities
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div grad @ = g-( n-p-2=2C) (2.4-35)

In the absence of dopants and external forces Poisson's equation

reduces to the trivial form:

P (4=¥,=0) - n(§=P,=0) = 0 (2.4-36)
Using the expressions just derived for the carrier densities we
obtain:
E;-E E,-E;
Nerexp (> _C) = Ny-rexp(—~_1) (2.4-37)
keT keT

from where we can calculate the intrinsic Fermi energy Ei with a small
amount of algebra. Note, we sloppily say that we calculate the
intrinsic Fermi energy, but clearly we can only calculate the

difference of the intrinsic Fermi energy to one of the band edges.

k+T N E
Ei - Ec = ~5_-1n(ﬁ3) - _% (2.4-38)
C

In case that the assumptions (2.4-25), (2.4-26) are violated we
need to solve (2.4-39) instead of (2.4-38) for Ei’
Ej-E¢ Ey-Ej

) = Ny-Fy1/2(
keT keT

Ne*F1/2( ) (2.4-39)

E; can only be found from equation (2.4-39) by means of numerical
methods. However, in almost all semiconductors Ei lies in about the
middle of the forbidden band and it is, therefore, well separated from
both band edges. Thus Boltzmann statistics for intrinsic

semiconductors in equilibrium are usually valid.

For many applications it 1is convenient to define a so-called
intrinsic concentration n; as the geometric avarage of the carrier

densities in a semiconductor in equilibrium.
nj = ¥n*p (2.4-40)

The existence of dopants is allowed in (2.4-40). If Boltzmann
statistics are wvalid for describing the carrier densities, n, is
evaluated with small algebraic effort:

E

q g

We see that n, 1s position dependent if the band gap Eg is

position dependent. The carrier densities can now be rewritten into

Carrier Densities
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the well known form with five parameters: intrinsic concentration n,,

electrostatic potential W, guasi-Fermi potentials @n, $b and
temperature T,
< (Y - )
n = ni-exp(g__gi__fé_) (2.4-42)
kT
.( -
p = nyexp(g__fg____.ﬂ) (2.4-43)
kT

In the presence of dopants we can again calculate from Poisson's
equation the so-called "built-in" potential q% which will shift the
Fermi energies Efn' Efp' depending on the sign of the fixed charges C.
In many textbooks one reads that in the presence of dopants the Fermi
energies are shifted towards one of the band edges. This is simply
wrong; it could be accepted in viewing the relative change of
position, but such an interpretation should be strictly avoided for

ditactical reasons.

For the calculation of the built-in potential we have to assume a
homogeneously doped semiconductor and no external forces. Then the
Laplacian of the electrostatic potential is identically zero and
Poisson's equation reduces to (2.4-44), still assuming the validity of
Boltzmann statistics.
ni-exp(-g_gé) - ni-exp(q e

)+ N; -N_ =0 (2.4-44)
KT k-T

A

For the sake of clearity we assume that the fixed charges C are
composed only of singly ionized donors Ng and singly 1ionized
acceptors N;.

— +_ - p—
C =N, N, (2.4-45)

From (2.4-44) the built-in potential is evaluated to:
+

N - N
w o= X Toarsinn( BB (2.4-46)

q 2°n4

If we have one type of dopants dominating the other type,
(2.4-46) can be simplified in order to obtain a even simpler result.

+
N
+ - ~ T D
NS> Ny o+ gy KTanD) (2.4-47)
g nj

Carrier Densities
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N

A D = - K Ton B (2.4-48)
q nj

2
i
v
Y
2
+
%
n

However, it is to note that the validity of Boltzmann statistics
becomes a very poor assumption for high doping concentrations,
because, as already mentioned, the Fermi energies Efn' Efp are shifted
towards one of the band edges. If the error introduced by the
assumption of Boltzmann statistics is not acceptable, one has to solve
(2.4-49) for the built-in potential.

Ny o+ F (Ev_Efp) Ne® o F Efn-Ec) NS - ND =0 (2.4-49)
[ Je— 1 it - Y — [ —— + — ] . -
ViR V2T ke o /2T D~ Ma

Again, this can only be done with numerical methods. It 1is

obvious that the sum of the intrinsic Fermi energy Ei and built-in
potential 4%, which is often termed the extrinsic Fermi energy, can be

calculated simultaneously from (2.4-49).

Most semiconductor devices contain regions with doping levels
above lOlscm“3 and the transport of carriers through these heavily
doped parts can play an essential role in determining device behavior
and performance. Therefore, the models for the carrier densities have
to properly reflect the underlying physics of heavy doping effects.
In the preceding considerations we only addressed the problem of
carrier statistics in this context. All of the possible problems
associated with the density of states functions have been ignored,
except that shift energies for the conduction and the wvalence band,
which have been assumed to be parabolic, have been allowed. In the
following we shall examine more in depth why and how the band
structure is changed 1in heavily doped semiconductors. However, the
statements we shall make have to some extent a speculative character,
because, as it has to be said, our understanding of the physics of

heavily doped semiconductors is fairly limited.

The density of states function for electrons and holes is
influenced by essentially two categories of phenomena [2.62]. The
first category consists of interactions between carriers and between
carriers and ionized impurity atoms. The second category comprises
the effects of electrostatic potential fluctuations which account for
the random distribution of impurities together with the overlap of the
electron wave functions at the impurity states causing bandtails

Carrier Densities
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[2.48] and impurity bands [2.66]. While the second category of heavy
doping phenomena alters the shape of the density of states functions
for electrons and holes, the first category produces only rigid shifts
of both the conduction and the valence bands towards each other. To
give an example we shall discuss the possible carrier interaction
phenomena in n-type silicon. For p~type material the facts are
analogous. In n~type semiconductors three phenomena become apparent:
electron-donor interaction, electron-electron interaction and
electron-hole interaction. The electron-donor interaction does not
yield changes in the band edges, but the number of electrons in the
semiconductor becomes so large that they screen the donor ions, which
effectively reduces the impurity ionization energy so that the donor
levels ultimately disappear into the conduction band (see also

[2.62]). Electron-electron interaction yields a rigid shift JEC of
the conduction band towards the valence band. Electron-hole
interaction causes a shift JEV of the valence band towards the
conduction band, because the majority electrons also screen the mobile
minority holes in addition to the immobile donor ions. As already
said, completely analogous statements hold for the description of the
interaction phenomena in p-type material. An excellent review on
these subjects can be found in [2.57]. We shall primarily concentrate
in the following on the results which are established without going

very much into details of their derivation.

Kane [2.48] has derived approximations for the density of states
function for the conduction and the valence bands in heavily doped
semiconductors by assuming that the local potential fluctuations are
sufficiently slow that a local density of states function can be
defined as 1if the 1local potential were constant. The macroscopic
density of states functions which are the statistical average of the
local density of states functions over the lattice can then be

expressed as:

*

E) = . . 2.4-50
Rc (E) — ch v ( ’cv) ( )
4 - (2-m*)3/2 By-E 4
Ry (E) = P Nocv v ( ) (2.4-51)
h3 Tcvy
with:
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=0

y(x) = %T ‘gx—u'eXp(-uz)'du (2.4-52)

A simple approximation for the unwieldy equation (2.4-52) has
been suggested by Slotboom [2.81].
( L. omx2 2
( X < 0.601 z.qﬁ-e X®e (1,225 = 0,906 (1 - e<%))
( (2.4-53)
Ex > 0.601  ¥x- (1 - )

n

y (X)

16+x2

Results which are fairly similar to (2.4-50), (2.4-51) have been
presented at almost the same time by Bonch-Bruevich [2.15]. These
density of states functions include infinite tails for the conduction
and the valence bands. That means the density of states functions are
principally different from zero everywhere in the forbidden band, but
they fall off rapidly with increasing distance from the corresponding
band edge. As expected (2.4-50) and (2.4-51) are for small doping
concentrations asymptotically equivalent to the parabolic density of
states functions (2.4-1) and (2.4-2), respectively. A more rigorous
approach to the derivation of density of states functions has been
carried out by Halperin and Lax [2.38]. However, their results are
remarkably more complex. For strongly compensated, heavily doped
semiconductors ]N;|§|N;|>>O only, the Halperin and Lax theory is
expected to be superior to Kane's method (cf. [2.72]).

e, is the characteristic standard deviation of the Gaussian
tails of the density of states functions (2.4-50), (2.4-51). The best
established model for ¢, has been published by Morgan [2.66].

+ -
q2 J(ND + NA)-A ( s o
4w exp 2-2.) )

Ocv = —F

A denotes the screening length, and "a" is the crystal lattice

constant, numerical values of which are summarized in Tab. 2.4-3.

Carrier Densities
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material a [lO—gm]

Si 0.543072
GaAs 0.565315
Ge 0.565754

Tab. 2.4-3: Crystal lattice constants

Kane [2.48] as well as Morgan [2.66] in their original work have
used a so-called cutoff radius instead of a/2 in the exponential term
of (2.4-54). However, there is evidence to relate this gquantity to
the 1lattice constant [2.66]. VanOverstraeten et al. [2.90] and
Slotboom [2.81] have in their investigations fully neglected the
exponential factor of (2.4-54). For the screening length A two models
are most frequently in use. The first one has been proposed by Stern
[2.84].

A = 1.4 € (2.4-55)
a 3 3 N; + N
lgg—| * lgil ¥ =2
Efn Efp k*Tion

For non-degenerate material when Boltzmann statistics can be
applied this formula reduces to the well known Debye length.

1 ’Eﬂ('T
A = S (2.4-56)

Tion in (2.4-55) represents an effective temperature for ion
screening. In the original paper of Stern [2.84] this quantity is
treated as adjustable parameter in order to fit experimental data.
Stern has speculated that at room temperature Tion should be in the
range from about 7000K to 9000K. Mock [2.63] and Polsky et al. [2.73]
have used 9000K in their work; Nakagawa [2.70] has claimed that 6000K
is more appropriate to obtain gquantitatively correct results; and
Slotboom [2.81] has assumed T,on to be infinite so that the last term
in the denominator of (2.4-55) wvanishes. In [2.51] and [2.90] a
different model for the screening length which has also been suggested

by Stern [2.83] in an early work has been used.

A= 1 (2.4-57)

+ —-
3+ (N, - N
z.g.\lm*.( "p A))1/6
h & n

For the derivation of this formula it has been assumed that the
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conduction and valence band structures are parabolic so that (2.4-57)
seems to be inconsistent with (2.4-50), (2.4-51). Fermi statistics
for the carrier distribution functions have been accounted for in the
calculation of (2.4-57) which can also be identified as the screening
length in metals {[2.50]. A requirement for the applicability of
(2.4-57) 1is that the Fermi energy lies in one of the carrier bands,
and not as usual in the forbidden band. This does not happen unless
the doping concentration is extraordinarily high which should lead to
the conclusion that (2.4-57) is inappropriate for semiconductor device

modeling.

In Fig. 2.4-2 a comparison of the models for the screening length
in n-type silicon 1is given. The solid line corresponds to (2.4-55)
with Tion equal to 9000K (the model of Mock, Polsky et al.); the
dashed 1line is also (2.4-55) but with Tion assumed to be infinte (the
model of Slotboom); and the dot—-dashed line corresponds to (2.4-57)
(the model of VanOverstraeten et al.). The dotted line denotes the

classical Debye length (2.4-56) as a reference.

When the doping concentration is large, the impurity energy level
cannot be described by a delta function as it is the case in simple
theory. The wave function of the electrons of the impurity atoms
overlap, thus causing the formation of an impurity band. Morgan
[2.66] has developed a theory which predicts a Gaussian shape for the

impurity band.

+
¢ i ( (=-p) ° (2.4-58)
= ge———cexp (- ——5—) o 4=
P "F!'UDA UZDA
2'N1: (E-EA)Z
) (2.4-59)

p = g=—exp(- ———
‘E'VDA ¢2DA

ED and E, are the activation energies for specific donor and
acceptor atoms, respectively. Numerical values for En and Ep are well
documented in the literature, e.g. [2.86]. The expression for cDA
like equation (2.4-54) for e, has been also proposed by Morgan
[2.66].

+ pa—
g2 o ¥ Ny) - A 1
opa = g -1,0344-exp (- = ) (2.4-60)
4rm 11,3206 7 (N + N,) -A3
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Some discussion about the models for Fpp can be found in, e.qg.,
[2.39], [2.72].

In order to obtain a density of states function for electrons and
holes, the density of states functions of the conduction band
(2.4-50), the wvalence band (2.4-51) and the impurity bands (2.4-58),
(2.4-59) have to be combined. Kleppinger and Lindholm [2.51] have
simply added up the corresponding functions for that purpose.
VanOverstraeten et. al. [2.30], however, have assumed that the total
density of states function of the mobile carriers is composed of the
envelope of the conduction (valence) density of states and the
corresponding impurity band density of states function. This approach
is physically much more sound since adding up the density of states
functions implies that a substitute impurity atom and a silicon atom
that were at that same lattice site both contribute to the density of
states (cf. [2.72]).

The concentration of electrons and holes can now, finally, be

calculated by:

n = tomax (R (E) ,@p(E)) £, (E) *dE (2.4-61)

p =tomax(ev(E),QA(E))-fp(E)-dE (2.4-62)

The integration bounds are now -co and oo in contrast to (2.4-8)
and (2.4-9) because of the infinite tails of the density of states
functions. It is obvious that the integrals (2.4-61), (2.4-62) do not
have a <closed form algebraic solution; they have to be solved with
numerical methods. Details on how to design efficient algorithms for
the self-consistent solution of the carrier densities and the built-in

potential are given in, e.g., [2.46].

Fig. 2.4-3, Fig. 2.4-4 and Fig. 2.4-5 summarize the results we
have obtained 1in a graphical way. They show the density of states
function for electrons max(Qc(E) 85(E)) and the density of states
function for holes max (QV(E),?A(E)). The dashed 1line in the
conduction band denotes the distribution function of electrons, 1i.e.
the integrand of (2.4-61). Fig. 2.4-3 corresponds to a doping of

Ng=1016cm—3, N;=0, i.e. fairly low doping concentration. Fig. 2.4-4
18 -3
cm

has been calculated for medium large doping N;=lo ’ N;=O and
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Fig. 2.4-5 corresponds to extremely heavy doping, 1i.e. N$=10210m_3,

NA=0' One can see quite nicely how the impurity band is formed for
increasing doping and how it even dominates the conduction band in
Fig. 2.4-5. The sharp kink at the transition from the donor band to
the conduction band is caused by taking the -envelope of both
individual bands for the overall density of states function. This
kink is indeed unrealistic but I am not aware of any more realistic
model for the transistion. It should be noted that the
extraordinarily heavy doping in Fig. 2.4-5 is almost wunobtainable in
real processing. The distribution function of holes is too small to

have been drawn within the same scales.

Fig. 2.4-6 shows the same quantities as the previous figures for
strongly compensated material NS=N;=1016cm_3. Obviously, we can now
see two impurity bands which narrow remarkably narrow the effective
band gap. The effect of band gap narrowing is much more pronounced in
Fig. 2.4-6 compared to Fig. 2.4-3, although the total doping
concentration is only higher by a factor of two. In compensated
material screening is weaker and the screening length is larger which
leads to a stronger influence of the potential fluctuations on the
band tails. The distribution functions of electrons and holes are too

small to be drawn within the scale of Fig. 2.4-6.

The models for the <carrier densities which account for Fermi
statistics, deformation of the conduction and valence band and the
formation of impurity bands are, unfortunately, so complex, in a
mathematical sense, that it is very cumbersome to implement these 1in
device modeling programs, although it can be done in principle, e.g.
[2.70], [2.73]. It is instead most attractive to use a so-called
effective intrinsic concentration and an exponential dependence upon

the potentials for the carrier densities.

n = nje-exp (o W~ ) (2.4-63)
keT

p = nie-exp(g;ifg_:_EZ) (2.4-64)
keT

These expressions are quite similar to (2.4-42), (2.4-43) which
have been derived based upon the assumptions of Boltzmann statistics
and parabolic band structure. Probably the first empirical formula

for n,, has been proposed by Slotboom [2.79], [2.80], [2.81].
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N;+N; N
q-Vy+ (1n( ) + C)

N
nie = nji(T)-exp( ° ° ) (2.4-65)

with:
Vi = 9°1073 [V] , Ng =107 [em™3] , C =0.51 ]

This formula has been derived by a fit to experimental values of
the intrinsic concentration obtained from measurements of bipolar
transistors. In [2.26] the structure of Slotboom's formula has been
made plausible by theoretical investigations. (2.4-65) and formulae
which are very similar, e.g. [2.61], have proved by many authors to be
extraordinarily valuable in the simulation of bipolar devices , e.g.
[2.2], [2.24], [2.28]. 1In [2.46] the range of validity of an approach
with (2.4-63), (2.4-64) has been investigated very thoroughly. One
can state that the concept of an effectice intrinsic concentration is
valid (error<l10%) for total impurity concentrations smaller than about
8-1019cm"3 when the amount of compensation is not too large (<10%).
For heavily doped and compensated material any approach with an
effective intrinsic concentration fails dramatically. It is to note
that for degenerate material the product ne<p of electrons and holes
away from equilbrium is always smaller as it would be predicted by
(2.4-63), (2.4-64). The reason can be found in the strong bending of
the Fermi integral (cf. Fig. 2.4-1, [2.40]) compared to the

exponential function.

Another formula for the purpose of fitting an effective intrinsic

concentration has been derived by Lanyon and Tuft [2.55], [2.56].

(T) ( >q’ "&J’ . (2.4-66)
n- = n. .exp [ + N . —
1e 1 32-@- (£-k-T)3/2 VD a)

This expression is claimed to be 1in excellent agreement with
experimental data up to doping concentrations of 3,3~1019cm_3. For

larger concentrations the theoretical constants in (2.4-66) have been
replaced by empirical wvalues to fit experimental results [2.56],

[2.75]. A similar expression has been presented in [2.11].

A point of  uncertainty has been in recent years that optically
measured band gaps and electrically measured band gaps differ quite

significantly for heavily doped material. The reason for that fact is
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that by optical measurement only the rigid shifts of the band edges
can be detected [2.25], whereas all effects due to lattice disorder,
e.g. band tails, cannot be found. By electrical measurements both
contributions to the band gap narrowing are seen (cf. [2.62]).
Therefore, the effective electrical band gap is always smaller than

the one predicted by optical investigations.

Formulae which fit the effective intrinsic concentration to the
complex models of Mock [2.63], Slotboom [2.81l] and VanOverstraeten
et al. [2.90] which have been discussed above, have been developed in

[2.46]. The following structure for the empirical expression has been

used.
+
. o ez a3(T) -3 -
nle(T,ND) exp(al(T) + a2(T) (1017cm‘3) ) cm (2.4-67)
with:
al(T) = -1.99765-1071 + 2.01814-107 1.7 - 1.97040-10"%.72 (2.4-68)

The coefficients a2(T) and a3(T) which fit the empirical formulae best

to Mock's model in the doping range 1012,10%2% cn™3 are:

_ -1 -3 -6 _2
a2(T) = 9.60563-10"T = 3.94127:10 3-T + 4.41488-10"°.T (2.4-69)
a3(T) = 1.29363-10"1 + 1.10709-1073-T - 9.56981-10 /-T2

whereas for Slotboom's model in the doping range [1012,3-1020]cm—3

they read:

a2(T) = 7.95811-10"%1 - 3.20439.1073.7 + 3.54153-10"°.72 (2.4-70)
a3(T) = 2.97104-10"% + 6.75707-10"%-T - 4.90892.10"7 .2

and for VanOverstraeten's et al. model in the doping range
[1017,1021]cm—3 they evaluate to:

a2(T) = 2.38838-10"% - 9.57814-10"4.T + 1.07551-1070.12 (2.4-71)
a3(T) = 5.10190-107! + 5.75190-10"%.1 - 7.01029-1077 .72

The temperature T has to be given 1in Kelvin in (2.4-68) to
(2.4-71). The maximum relative difference of formula (2.4-67) with
the above given coefficients and the exactly evaluated models is
always smaller than ten percent (cf. [2.46], [2.47]) in the

temperature range [250,400]K. Formulae for an effective intrinsic
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concentration for compensated material are also given in [2.46],

however, they are much more complicated.

In Fig. 2.4-7 the effective intrinsic concentration for Mock's
model (solid line), Slotboom's model (dashed line) and
VanOverstraeten's et al. model (dot dashed 1line) are shown in
conjunction with the experimental values of Mertens et al. [2.61],
Slotboom [2.81l], Wieder [2.92] and Wulms [2.94]. Although the
agreement between the models and the experimental data is not
overwhelming, it can be considered pragmatically to be quite good,
because of the fairly pronounced scatter of the measured data.
However, a judgment as to which of the models is to be prefered can
not, therefore, be given.

Carrier Densities
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2.5 Heat Flow Equation.

For the design of power devices it is often desired to simulate
interaction of electrothermal phenomena. Changes in the temperature
and its distribution in the interior of a device can influence
significantly the electrical device behavior. Particularly, two
effects wusually have to be considered. Thermal runaway is one, a
rather common mechanism where the electrical energy dissipated causes
a temperature rise over an extended area of a device resulting in
increased power dissipation. The device temperature increases which
leads to an irrecoverable device failure (burn out), unless an
equilibrium situation can occur with a heat sink removing all of the
energy dissipated. The existence of such an equilibrium situation is
the second question which is sometimes quite difficult to answer
[2.54]. In order to account for thermal effects in semiconductor

devices the heat flow equation (2.5-1) has to be solved.

Q-c-g% - H = div k(T)-grad T (2.5-1)

@ and c¢ are the specific mass density and specific heat of the
material. Numerical values for € and ¢ at room temperature are
summarized in Tab. 2.5-1 for the most frequently used materials in

device processing.

material ¢ [mzs_zK_l] ? [VAs3n 2]
Si 703 2328
SiO2 782 2650 typical
Si3N4 787 3440 typical
GaAs ) 351 5316
Ge 322 5323

Tab. 2.5-1: Specific heat and density constants at T=300K

The temperature dependence of € and c¢ can be assumed to be
negligibly small in consideration of practical device applications
[2.50]. If one is not interested in thermal transients one can assume
for the simulation that the partial derivative of the temperature with
respect to time vanishes, which eases the problem of solving the heat
flow equation by one dimension. However, one is absolutely incorrect

in using this assumption in a simulation for which an equilibrium

Heat Flow Egquation
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condition does not exist. The simulation program will "blow up" in a

manner analogous to the real device.

k(T) and H denote the thermal conductivity and the locally
generated heat. Models for these gquantities will be given and

discussed in section 4.3 and section 4.4, respectively.

To just calculate the temperature distribution and the associated
thermal power dissipation without taking into account the current
induced by gradients of the temperature is a fairly crude approach
which 1is only appropriate for limited application [2.35]. In a more
rigorous approach the current density equations have to be
supplemented by additional terms.

Jq = g-n*P,*E + g*Dy-grad n + q-n-Dg-grad T (2.5-2)

Jp

q-p-ﬂp-f - q'Dprgrad p - q-p-Dg-grad T (2.5-3)

The last expression in (2.5-2), (2.5-3) represents a drift
current component with the temperature field as the driving force. 1In
section 2.3 we did assume temperature being constant for the
derivation of the classical drift-diffusion relations (cf. (2.3-33)).
As can be proved with minor algebraic effort, by assuming non constant
temperature in (2.3-29), (2.3-30) we obtain equations (2.5-2),
(2.5-3). Stratton [2.85] has verified these relations with a much
more rigorous approach, from a perturbation solution of the Boltzmann
equation. He also derived in his paper approximations for the thermal

diffusion coefficients Dg.

D

2.7

D
pt = _P_ (2.5-5)
P .7

These coefficients are smaller by a factor of two compared to
those we obtain with the procedure just sketched above. However, as
pointed out in [2.85] a more exact result owing to the complexity of
the problem is cumbersome, if at all possible, to obtain and
discrepancies of that order are not at all surprising. Dorkel [2.27]
demonstrated that Stratton's result is applicable for intrinsic
semiconductors; in the presence of dopants the thermal diffusion
coefficient is underestimated by at most a factor of five. Some more

Heat Flow Equation
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considerations on this subject can be found in, e.g. [2.141, [2.76].
However, one need not worry as all publications on nonisothermal
effects in the context of semiconductor device modeling certify more
or less the applicability of these relatively rough models for
describing the feedback of temperature gradients on the current
densities, e.g. [2.1], [2.18].

Heat Flow Equation
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2.6 The Basic Semiconductor Equations.

We shall now summarize the results which we have obtained in the
previous sections in order to be able to write down a set of
equations, the "basic" semiconductor equations, which we shall use in
all further investigations. It is obvious that for the sake of
transparency and efficiency, we shall perform a trade-off between
accuracy and complexity of our model, The equations we shall
concentrate on are valid for the major number of engineering
applications, particularly for silicon devices. Certainly, conditions
do exist for which their validity is not guaranteed, or at least in
doubt. However, as I tried to express in the previous sections, the
more sophisticated results in semiconductor physics are too complex to
give a rigorous, generally applicable and still sufficiently simple
model for the purpose of device simulation.

The basic semiconductor equations consist of Poisson's equation
(2.6-1), the continuity equations for electrons (2.6-2) and holes
(2.6-3) and the current relations for electrons (2.6-4) and holes
(2.6-5). For some applications it is desired to add to this set the

heat flow equations (2.6-6).

div grad Y=g-(n -p - C ) (2.6-1)
div J, - q-g% = g-°R (2.6-2)
div Ep + q-g% = -g*R (2.6-3)
Jn = q'n*P,"E + g°Dpegrad n (2.6-4)
Q-c-aT - H = div k(T)+*grad T (2.6-6)

dc

To almost this level of completeness, these equations were first

presented by VanRoosbroeck [2.89].

Models for C, the net doping concentration, for R, the net
generation/recombination, for | ﬂp, the carrier mobilities, for H,
the thermal generation and for k(T), the thermal conductivity will be

discussed 1in the following chapters. En and Eb, the effective fields

The Basic Semiconductor Equations
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in the current relations are to first order the electric field,
however, we may use supplementary correction terms to account for
heavy doping (cf. section 2.3, section 2.4) or thermally induced
currents (cf. section 2.5). For such mathematical investigations,
relatively slight perturbations are of only secondary importance.
Hence, for most applications, accounting for some specific effect is

possible by properly modeling the parameters in the basic equations.

The Basic Semiconductor Equations
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3. Process Modeling.

To enable the simulation of the electric behavior of a device the
configuration of the device (i.e. geometry and composition of the
material it is made of) is, obviously, one of the prereguisite pieces
of input information. Optimal design of a device necessitates the
capability to predict the effect of modifying any of the various
process steps involved in device fabrication. One principle barrier
for predictive device simulation is the uncertainty of the results of
process models due to still inadegquate understanding of their
underlying solid-state physics and chemistry. Particularly in the
development of devices for integrated circuits and their technology,
the need for process models is growing dramatically due to the tight
coupling of two and three dimensional device effects with the doping
profile [3.18]. Owing to these purposes, many computer programs
capable of modeling gquite generally the various processing steps of
device fabrication have been developed, and they have proven to be
extremely valuable tools, e.g. ICECREM [3.64], [3.67]; LADIS [3.76];
MEMBRE [3.54]; RECIPE [3.73]; SUPRA [3.15], [3.38], [3.39], [3.50] and
the extraordinarily well established SUPREM program [3.4], [3.5],
[3.50], [3.51], [3.59].

Apart from 1lithography which may be viewed as a fixed process
that simply provides flexibility in layout [3.56], [3.57], the primary
fabrication processes which determine the electrical characteristics
of semiconductor devices, in particular silicon devices, are ion
implantation, diffusion and thermal oxidation. Epitaxy, etching and
deposition <can certainly play an essential role in device fabrication
as well. However, as the field of process modeling is extraordinarily
wide and difficult, only the above cited process steps will be
discussed here. Furthermore, it should be noted that only a review of
the most important models can be presented here due to the complexity
of the underlying phenomena. The aim here is just to give a flavor on
what problems have to be dealt with in providing this all-important
input for device simulation. We also shall restrict ourselves to

silicon processing.

Process Modeling
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3.1 Ton Implantation.

Ion implantation is the most applied doping technique 1in the
fabrication of silicon devices, particularly integrated devices. A
highly energetic beam of ions strikes and penetrates into a target of
coated or uncoated semiconductor. The final distribution of particles
within the semiconductor will be discussed in this section. The only
exact procedure one can imagine for calculating the distribution of
implanted ions would be a Monte Carlo simulation of the implantation
process itself [3.48] by invoking the laws of statistical mechanics,
or perhaps at a minimum solving a Boltzmann transport equation
- similar to the one describing the movement of electrons - [3.16] for
the penetrating ions. Both methods allow a treatment based on first
principles of the undesirable parasitic effects of ion implantation
like 1lattice disorder and defects [3.16], [3.771, [3.78]}, Dback
scattering and target sputtering [3.74] and channeling [3.24].
However, for many practical applications it is sufficient to assume a
distribution function and to calculate or, even better, to measure its
parameters so that good agreement between experimentally determined
and simulated profiles 1is established. Such a procedure does,
obviously, not contribute to the understanding of the underlying
physical phenomena but it can prove - it has already proved - to be
adequate for many engineering applications, although in some novel
processing techniques (e.g. multilayered mask structures) the
disadvantages become quite evident and lead to frustration.

We first shall consider only one dimensional distributions. In
order to describe the distribution of implanted ions by means of
distribution functions we have to remember some of the mathematical
properties of probability functions. F(x) 1is termed a univariate
cummulative distribution function if:

a) F(x) 1is non-decreasing, i.e.,
F(x1l) £ F(x2) , for x1 < x2 (3.1-1)

b) F(x) is everywhere continous from the right, i.e.,

F(x) = lim F(x+h) (3.1-2)
h¥0+

c) F(x) fulfills:
F(-o0) =0, Fo =1 (3.1-3)

Only distribution functions with these properties are suitable

Ion Implantation
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for the description of implantation profiles. We further allow only

continuous distributions so that F(x) can be written as:

F(x) = Lf(t)'dt (3.1-4)

f(x) 1is termed the "probability density function" or "frequency
function". With these definitions the real ion distribution is given
as:

C(x) = Ng-f(x) (3.1-5)

Ny is the total implant dose per unit area. The properties of
the distribution function F(x) guarantee that the profile Iis
consistent in a physical sense, e.g. the total dose must be
incorporated 1in the target. The frequency function £(x) is, in
practice, assumed in its structure to be one of the well established
functions from statistical mathematics, and its associated parameters
are calculated with knowledge about some characteristic quantities of
the distribution. These are the mean value or projected range R_:

p
Rp =Tx-f(x)-dx (3.1-6)
-0
the standard deviation GP:
a, = ‘rr (x-Rp) 2+ £(x) - dx (3.1-7)
-0
the skewness rl:
T (x=Rp) 3+ £ (x) -dx
¥ = -0 5 (3.1-8)
Tp
and the excess or kurtosis ﬁzz
T (x—Rp)4-f(x)°dx
p, = = ; (3.1-9)
Tp
These characteristic gquantities can either be calculated or
measured in order to fit an assumed frequency function to

experimentally determined doping profiles [3.64]. The oldest theory
is termed LSS theory after the authors Lindhard, Scharff and Schiott

Ion Implantation
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[3.40]. The detailed physics of the ion range theory are covered
rather extensively in the literature. Hence, I shall only give some
important references and some qualitative discussion here. Numerical
values for the projected range Rp, the standard deviation cp and the
skewness *1 after the LSS theory are tabulated in the book of Gibbons
et al., [3.25]. Values for the kurtosis 92 have certainly been
calculated by somebody, however, I am not aware of any tabulated
results or closed form expressions. The LSS theory has been
thoroughly discussed 1in, e.g., [3.82]; it has been refined for
multilayered targets in [3.16]. 1In Fig. 3.1-1 the projected range Rp
is shown for the most frequently used dopants in silicon.
Correspondingly, Fig. 3.1-2 and Fig. 3.1-3 show the standard deviation
cp and the skewness rl' As results in form of tables or graphs are
tedious to handle, some sort of functional fit might be very
attractive. The easiest approach for that task is a simple polynomial

fit [3.71].

n
Rp = 2 aj-Ei (3.1-10)

i=1
n

o, = X bj-El (3.1-11)
i=1

E denotes the implantation energy. Coefficients for such

polynomials are given in Tab. 3.1-1, Tab. 3.1-2 for silicon as target,
in Tab. 3.1-3, Tab., 3.1-4 for silicon dioxide and in Tab. 3.1-5,
Tab. 3.1-6 for silicon nitride (Si3N4) as target.

Element B P Sb As
a, 3.338-10"3  1.259-107° 8.887-10°% 9.818-107%
a, ~3.308-10"% -2.743-10"7 -1.013-10"° =-1.022-10"°
a, 1.290-10"2  8.372-10"8 9.067-1078
a -3.056-10"10 -3.442.10710
4 ~13 ~13
ag 4.028-10 4.608-10

Tab. 3.1-1: Coefficients for Rp in silicon

Ion Implantation
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Element B P Sb As
b, 1.781-107> 6.542.107% 2.674-107% 3.652-107°
b, -2.086-107° -3.161-107° -2.885-107° -3.820-107°
by  1.403-1077 1.371-107%  2.311-107%  3.235.107°
b, -4.545-10710 -2.252.10711 -g.310-2071 -1.202-1071°
-13 -13 ~13
be 5.525-10 1.084-10 1.601-10
Tab. 3.1~2: Coefficients for °p in silicon
Element B P Sb As
a,  3.258-107°  9.842-107% 7.200-107* 7.806-107*
a, -2.113:107° 2.240-107 -8.054-107° -7.899-107°
a 6.641-107%  7.029-1078
3 ~10 -10
a, -2.422+10 —2.653-10
~13 -13
a 3.191-10 3.573+10
Tab. 3.1-3: Coefficients for Rp in silicon dioxide
Element B P Sb As
b,  1.433-107°  4.591-10"% 2.018-107% 2.637-10"4
b, -1.077-107> -1.983-107° -2.328-107° ~2.762-10"8
by  4.190-107°  8.383-1070  1.917-107° 2.373-1078
b, -6.000-10711 -1.382-10711 -6.997-107 " ~8.899-10 11
by 9.211-10" 1% 1.193.10713
Tab. 3.1-4: Coefficients for cp in silicon dioxide
Element B P Sb As
ay 2.514-107°  7.617-10"% 5.660-10"% 6.094-1077
a, ~1.618-107°  1.681-1077 -6.440-10"% -6.213-107°
a 5.323-107%  5.516-107%
3 -10 -10
a ~1.944-10 ~2.080-10
4 ~13 -13
a 2.563+10 2.799-10

Tab. 3.1-5: Coefficients for Rp in silicon nitride

Ion Implantation
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Element B P Sb As
b,  1.115-107>  3.542-10"% 1.516-107% 2.035-107*
b, -8.328-107° -1.488-107° -1.655-107% -2.092.107°
by,  3.228-107°  6.204-107° 1.345-107% 1.787.107%
b, ~-4.612-1071 -1.019-10711 -4.878-1071 -6.678.207 11
bs 6.401-10 1% 8.932.1071%

Tab. 3.1-~6: Coefficients for cp in silicon nitride

The dimensions of the coefficients a; s bi are micrometer per i-th
power of the units used for the implantation energy, usually keV. The
maximum error of Rp and c? calculated with these coefficients and
formulae (3.1-10), (3.1-11) in the range [5,300]keV is only a few
percent compared to the tabulated data in [3.25]. The skewness ?1 has
not been approximated in this way, although there is in principal no
problem, but for the construction of distributions for which an
accurate value of the skewness is required, one possibly has to modify
the values obtained by the LSS theory (cf. [3.64]). A slightly
different approach to the LSS concept about ion range theory has been
proposed by Biersack [3.10], [3.11]. Comparisons of measured and
calculated quantities according to the Biersack theory look quite
convincing [3.66]. Tabulated values are given in the book by Ryssel
and Ruge [3.63]. Measured values for the parameters (3.1-6) to
(3.1-9) for boron implanted into silicon have been given in [3.65]. A
thorough discussion and comparison of various other concepts on ion

range theory can be found in, e.g., [3.41].

The distributions which are most frequently used for describing
doping profiles are the simple Gaussian or normal distribution, the
joined half Gaussian distribution, Edgeworth asymptotic expansions of

the Gaussian distribution and the Pearson type IV distribution.

The Gaussian distribution makes use only of the projected range

Rp and the standard deviation cp‘ The frequency function for a
Gaussian distribution reads:

x-Ry) 2
£(x) = L cexp(- TR0, (3.1-12)

qgfg.,p 2-0,2

A Gaussian distribution has a skewness rl=0 and a kurtosis p2=3.

Ion Implantation
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The approximation of a true profile with a Gaussian distribution is
only accurate to first order. However, the simplicity of the
calculation justifies to some degree its use when the primary concern

is the average location and average extent of a distribution.

If one wants to fit more accurately the asymetrical distributions
usually found in practice, it is necessary to at least account for the
skewness. Such an approach was suggested in [3.26] and it has been
used quite extensively. The frequency function is defined to consist
of two half Gaussian distributions that Jjoin at a modal projected
range Rm’ For distances x<Rm the distribution has standard deviation

’1’ while for x>Rm the distribution has standard deviation 02.
x=-R 2
( m 2
( ﬂz-u-(cl+cz) 2-0)
f(x) = ( (3.1-13)
( ~R..} 2
2 (x )
( X2Rp cexp (-~ -—__Ef_
( ﬂz-u- (@1+05) 2:@)

The modal projected range Rm and the "one-sided" standard
deviations g,, ¢, can be calculated by using the characteristic
guantities (3.1-6), (3.1-7) and (3.1-8). With some amount of algebra

these integrals evaluate to:

Rp = Ry + \E @y - 1) (3.1-14)

j 2
o '4(012 - @10y + 052) - = (02 - gy)2 (3.1-15)

2 4 8
. - N 2= 1) 2 2y 4+ 3 -~ 2o 0
i; (@2 - @1) - (( )+ (@14 + @2%4) ( )-@1-@2)

3

(3.1-16)

¥

T

The kurtosis 92 can not be used to match a profile, because one

has only three parameters (Rm, 01, 02) available which are already
fully determined by R, cp and *1 through relations (3.1-14) to
(3.1-16). The kurtosis 82 of a joined half Gaussian distribution can
be demonstrated to depend only on the square of the skewness.
Fig. 3.1-4 shows the value of the kurtosis one automatically obtains
for a given value of the skewness. It is satisfying that over the
entire range of validity for the skewness *1' (cf. 3.1-17) the wvalue

for the kurtosis is reasonable.

Ion Implantation
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It would be very attractive to have explicit formulae for Rm' e,
and a2. However, such formulae do not exist. With some algebra one
will end up with a cubic equation for the difference (61—62) and a
guadratic equation for the sum (cl+02). These egquations could, in
principle, be solved analytically, however, this approach can not be
recommended for implementation in a computer program because of
cancellation problems associated with the specific structure of the
analytical solutions of cubic equations. An iterative method is much
more feasible. It is to note that a joined half Gaussian distribution
only exists for a restricted range of values for the skewness ?l. In
particular condition (3.1-17) must hold.

|#1] < jt_-_gQ:z = 0,99527 (3.1-17)

I feel obliged here to warn the reader about the various papers
on joined half Gaussian distributions; in many of these the various

constants are indisputably incorrect.

For distributions whose skewness has a magnitude larger than
given in (3.1-17) (cf. Fig. 3.1-3) it 1is necessary to take 1into
account higher order <characteristic quantities of the distribution,
minimally, the kurtosis 92 (3.1-9). In [3.22] an Edgeworth asymptotic
expansion has been suggested for that purpose. The first three terms

of the Edgeworth expansion are:

[?1_d3g

£(y) = [g(y)] —2(y)] +
-3 434 2 16
+ [pz 979 gy 4 fi_-g_i(y)] +oua. (3.1-18)
24 y4 72 ay6

f(y) is the frequency function to be expanded in terms of g(y)
and 1its derivatives. In our case g(y) is the Gaussian frequency

function.

2
gly) = M__i___-exp(- Zf) (3.1-19)
Z‘R'VP

y = p (3.1-20)

Terms in brackets in (3.1-18) are terms of the same order with
respect to the expansion index. If the derivatives of g(y) are

evaluated and substituted into (3.1-18) we obtain:

Ion Implantation
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g2
f(y) = - cexp (- —7)'
2'“'¢p
D+ P2-3  5-#12 ¥ (ﬁ2—3 _ 5'?12)_ 2
5 i 3 Y ) g Y

pd o4 Y17, 3.1-21
77 5 Y 75 ¥ ( )

-3 cypq2 2
i]é_.y3+(p2 _53"1 4 3 6)

If no wvalues for the kurtosis 92 are available, which 1is
unfortunately very often the case, Gibbons et al. [3.25] suggests
using relation (3.1-22) which guarantees that (3.1-21) is positive for

y=0.

P

n

2-712 + 3 (3.1-22)

The expansion (3.1-21) is only applicable for a limited range of
values for ’1' 92 and also y. The condition which has to be fulfilled
is that the multiplying polynomial in (3.1-21) 1is positive. The
procedure of performing an Edgeworth asymptotic expansion into
Gaussian frequency functions is, from a mathematical point of view, a
very elegant way to introduce the influence of higher order
characteristic quantities of the distribution function. However, due
to the fact that only the very low order terms of the expansion can be
accounted for, the frequency function exhibits an oscillatory behavior

for distributions whose skewness ’1 is of large magnitude.

An approach followed by Hofker [3.30] for fitting a £frequency
function to experimental data is to use a Pearson type IV distribution
function. The whole family of Pearson distributions [3.26] is based
on the differential equation
daf y-a

—(y) =
ay bo+by *y+bp y?

f(y) , y=1x - Rp (3.1-23)

where f(y) 1is, as defined before, the frequency function. The four
constants a, bO’ by
quantities projected range (3.1-6), standard deviation (3.1-7),
skewness (3.1-8) and kurtosis (3.1-9) as we shall demonstrate in the

following.

and b2 can be expressed in the four characteristic

The i-th central moments of any distribution are defined as:
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Py = T;)yi'f(y)'dy (3.1-24)

These central moments are related to the characteristics which we
prefer to use by:
Rp = B (3.1-25)

o, = {p; - P12 (3.1-26)

P = b3 = 3-Farby * 2P0 (3.1-27
' (B2 - $12)3/2 T

g, Pa T AF 6Py 3 - 3.5 4 (3.1-28)
2 (B2 = P12)? |

We further remember that ﬁ0=l (cf. 3.1-3). Then we rearange
(3.1-23) after multiplying both sides by y".

yRe(bg + bysy + bo-y2)-£'(y) = yhe(y - a)-£(y) (3.1-29)

By integrating both sides of (3.1-29) between -0 and oo and

assuming that

lim yP-f(y) = 0 , n<6 » (3.1-30)
y#400

we obtain:

n*bg-Pp-1 * ((n+l)*by=-a) P, + ((n+2)-bo+l) Py4y =0 (3.1-31)

By putting n=0,1,2,3 in (3.1-31l) we have four simultaneous linear

0r bl and b2 with coefficients which are functions

of the <central moments. Note that we may introduce without loss of

equations for a, b

generality a coordinate transformation y¥®z prior to integrating
(3.1-29), which eminently eases the calculus, such that:

(i=1 0
Bi'o= (3.1-32)
( i#1 Py

The expressions for a, bO’ b, and b2 are then evaluated to:

1
F +3
a = - S1% P2+3) (3.1-33)

10-Po-12-912-18

o-pZ. (4.ﬁ2._3.r12)

(3.1-34)
10-fo-12-F,2-18

bg = -

Ion Implantation
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& ¥y (Bo+3
by = - o ¥ (Fard) (3.1-35)
10-f,-12-372-18

2:f,-3.%12-6
by = - 2 - %1 (3.1-36)

10-f,-12-912-18

The shape of f(y) varies considerably with bO’ bl and b2.
Pearson has classified the different shapes into seven types. I shall
give here a short resume of this classification because one can find
some inconsistencies on that subject in some papers authored by
engineers. I shall follow Pearson's numbering of the individual types
of distributions, although it does not exhibit a clear systematic base
[3.34]. The form of solution of (3.1-23) evidently depends on the
nature of the roots of the equation:

bg + by*y + bgey?2 =0 (3.1-37)

However, I first should like to note that if we have bl=b2=0
which corresponds to:
(¥1=0
( ) Gaussian (3.1-38)
(By =3)

the solution of (3.1-23) 1is the Gaussian frequency function
which, in fact, 1is a 1limiting case for all types of Pearson

distributions.

We have a Pearson type I distribution if the roots of (3.1-37)
are real and of opposite sign. This is the case for:

(¥ 70 )
) Type I (3.1-39)
(Py <3+ 1,592

A degenerate case is the Pearson type II distribution.

1 =0

r
Type II (3.1-40)
P, <3

—~ e~ o~
— e

The Pearson type III distribution corresponds to the case b2=0

and bl#O which can be expressed as:

(¥1 70 )
( ) Type III (3.1-41)
( pz = 3 + 1,5'}"12 )

The case when (3.1-37) dose not have real roots corresponds to

the Pearson type IV distribution. This cases arises when:
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0 < P12 < 32
Type IV (3.1-42)

N N N e

(
(
E ’ 39.#12 + 48 + 6+ (P12+4)3/2
>
("2 32 - §12
If (3.1-37) is a perfect square we have the Pearson type V
distribution.
0 < P12 < 32
Type V (3.1-43)

— Nt et e

(
(
g b 39°¥12 + 48 + 6+ (P12+4)3/2
(72 32 - P12

The Pearson type VI distribution corresponds to the case when the
roots of (3.1-37) are real and of the same sign.

¥. #0

Type VI (3.1-44)

— — et et e

(
(
é 2 < p 39-P12 + 48 + 6+ (P12+4)3/2
3+ 1,5- < <

( gl 2 32 - ¥.2

Finally, the ©Pearson type VII distribution corresponds to the

case when b,>0, b,=0 and b,>0 which can also be expressed as:

(¥1 =0
( )  Type VII (3.1-45)
(fy > 3)

0 1 2

The conditions (3.1-38) to (3.1-45) are graphically summarized in
Fig. 3.1-5. Only the types I, IV and VI correspond to areas in the
(?12,92) plane. The remaining types correpond to 1lines and are
sometimes called transition types. The Gaussian distribution which,
as mentioned, is a limiting case for all distributions is denoted by
an asterisk in Fig. 3.1-5. Note that for any distribution condition

(3.1-46) holds as can easily be proved.
o > 1 + 92 (3.1-46)

With regard to the conditions (3.1-38) to (3.1-45), respectively,
it is Just a matter of a simple calculus to solve the differential
equation (3.1-23) for the frequency function of the specific type.
However, for the description of implantation profiles only the Pearson
type IV and type VII distribution can be generally applied. These
frequency functions have a single maximum at y=a and decay
monotonically to zero on both sides. The type VII distribution is not

skewed which results in a very limited applicability, if any. I have
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seen some attempts to use other Pearson frequency functions,
particularly type V and type VI, to fit in a piecewise manner
implantation profiles. Such approaches are inconsistent with the

underlying mathematics and should be strictly avoided.

The general solution of the differential equation (3.1-23) 1is
given in (3.1-47) when the restriction (3.1-42) which characterizes

the Pearson type IV distribution is obeyed.

1
£(x) = K'(—(b0+b1-(x-Rp)+b2'(x—Rp)2))(ETE;)'
b1/by + 2- 2+by* (x-Rp) + b
cexp (- _1/P2 2 atan(l P2 (*¥7Rp) =p (3.1-47)
¥4-borbg - by? N4:by by - b1?

The constant K is the normalization constant to fulfill (3.1-3).
It can usually be determined only by numerical integration. Ryssel
[3.64], [3.67] favours the Pearson type IV distribution very much. It
is his experience that almost all practically arising profiles can be
fitted rather accurately. A similar experience has been documented in
[3.81].

Some authors, e.g. [3.4], [3.30], have added so-called
exponential tails to the Pearson type IV frequency function.

~

f(x) = £(x) + A-exp(—l-(x—x2

o)) (3.1-48)

The constants A, A and X, are determined by fitting the value,
the first and the second derivative at a matching point. However, I
feel such a procedure is not really to be recommended: on the one hand
to use the elaborate mathematical approach with the Pearson type IV
distribution function and on the other hand to modify the results with
quite arbitrary extensions. A completely arbitrary distribution can

be expected to work as well.

If no values for the Kkurtosis are available, a universal
expression (3.1-49) is often wused to overcome this problem
(c£.[3.671).

Po = 2.8 + 2,432 (3.1-49)

IR

A similar approach has been suggested in, e.g., [3.64].

Certainly quite a few other frequency functions have also been
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suggested to describe doping distributions, e.g. the Gram-Charlier
series [3.82] which is based on an expansion of the Gaussian frequency
function into Hermite polynomials. However, the disadvantages of most
of the more sophisticated frequency functions 1like the tendency to
oscillate (which we have already mentioned for the Edgeworth
expansions), or a very complicated calculus for the coefficient
evaluation are usually too severe for practical application [3.29],
[3.66].

In Fig. 3.1-6 a comparison of a Gaussian (dashed line), a joined
half Gaussian (dot-dashed 1line), a Pearson type IV (solid 1line)
distribution and an experimentally determined profile is given. The

range parameters have been taken from results of the Biersack theory.

Fig. 3.1-7 shows the shape of the Pearson type IV distribution as

it changes with the implantation energy as parameter.

Another problem one has to face is the implantation through a
coating 1layer, typically an oxide mask. Let us assume that we have a
semiconductor, material 2 in this context, covered by a layer of
material 1 of thickness t__.. . All of the distribution functions
which we have discussed above have to be modified in order to be able
to account for such a configuration. The easiest procedure one can
carry out is to use transformed coordinates for the distribution in
material 2.

( X<tmask  C1(x)
C(x) = ( (3.1-50)
( %3tpask  Co(x - d)

Cl(x) is the doping distribution in material 1; Cz(x) in
material 2. d is a translation gquantity which reflects a density
transformation. It can be modeled after, e.g., [3.4] as:

R
d = tpaepr (1 - P2 (3.1-51)
Rpl
or after, e.g., [3.67] as:
a
d = tpask- (1 - B2 (3.1-52)
Rpl' sz and ’pl’ ¢p2 are the projected range and the standard
deviation in material 1, 2, respectively (cf. (3.1-6), (3.1-7). Both

approaches work comparatively well if the thickness of material 1 is
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sufficiently large. For thin coating layers none of these procedures
is satisfactory. Ryssel [3.66] suggested, pragmatically, a procedure
where just the distribution in the semiconductor (material 2) is

needed.

( o o
( “P2.c, (CP2.4)
( %p1 pl
C(x) = ( (3.1-53)
( @p2
( X>tmask Co(x - tmask- (1l - _=Z2))
cpl
This approach gives excellent results for thin coating layers if
the distribution is concentrated in the substrate (cf. [3.67]).

The best procedure, from my personal point of view, has been
suggested also by Ryssel [3.66], [3.67]. Here, the concentration

Cl(x) is calculated first for infinitely thick material 1. Then the
total number of ions Ng; in the layer of thickness thnask 1S calculated
by integration. By assuming no coating layer, the concentration Cz(x)
is calculated in material 2, and the thickness t' which contains Ndl
ions is determined. The final profile is composed of profile Cl(x) in
material 1 up to tmask and profile Cy (%) starting from t'. Thus, the
resulting profile incorporates the total implantation dose Nd~ This
approach can be generalized to multi layer structures in a

straightforward manner.

The profile obtained with any of the above given procedures is
discontinuous at the interface X=tmask' This seems to be in contrast
to Monte Carlo simulations, however, the discontinuity is not very
pronounced if the mass density of material 1 differs little from the
mass density of material 2.

Several problems like recoil or knock-on implantation of ions
arise with the implantation through masking layers. These problems
and many more are dealt with in the specialized 1literature. The
articles [3.41], [3.66], [3.74] and of a more general interest, the
books [3.2], [3.25], [3.63], [3.80] can be recommended for a more in
depth study.

The last problem regarding ion implanation which I would like to
discuss here is the two dimensional distribution of implanted ions for
a non constant mask thickness tmask across the lateral dimension

Ion Implantation
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(y=coordinate). The idea for the solution to this problem is based on
the work of Furukawa et al. [3.50], who <considered only Gaussian
distributions near an infinitely steep mask edge. Runge [3.62] has
refined that approach for arbitrarily shaped mask edges, but still
considering only Gaussian distributions. However, the idea behind the
approach 1is a simple convolution of a quasi-one dimensional profile

C(x7tmask

tmask(y) is to be considered as a parameter. A general formula can,

therefore, be given.

(y)) with a Gaussian distribution in the y-direction.

C(x,y) = _*_i____' C(xitmagk(y')) -exp(-~ iZ:Z___

) +dy’ (3.1-54)
b‘2-'!':-41' ~® 2""py2
by

upy is the lateral standard deviation. Tabulated values for apy
are given in, e.g. [3.23]1, [3.25], [3.63]. Fig., 3.1-8 shows a graph
of @& in silicon obtained from the LSS theory. This convolution
(3.1-54) can usually be carried out only with numerical methods. In
case of an infinitely high mask extending to the point y=a, the
convolution can be performed analytically. We have:

( y<a 0
C(xitnask (¥)) = ( (3.1-55)
( yza C(x)

The integral (3.1-54) evaluates to:
ooy
2
C(x,y) = C(x)- 5 154 (3.1-56)

erfc(

where erfc(x) denotes the complementary error function defined as:
erfc(x) = %ﬁfI;‘tz-dt (3.1-57)

All two dimensional process modeling programs, to my knowledge,
use the convolution integral (3.1-54) in a more or 1less simplified
manner to calculate two dimensional distributions (cf. [3.50], [3.54],
[3.66]1, [3.73], 1[3.75]1, [3.76]). One problem, however, associated
with that formulation is the assumption that the 1lateral standard
deviation pr is independent of the depth (x~coordinate). Considering
two dimensional calculations of the damage distribution formed by ion
implantation [3.47], which have been confirmed experimentally ([3.36],
one could speculate that this 1is a poor assumption. Examples of

calculated two dimensional implantation profiles are shown in

Ion Implantation
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3.2 Diffusion.

Diffusion is the physical mechanism which is responsible for the
redistribution of impurity atoms in semiconductor processing. By
means of diffusion processes one can obtain a desired shape of the
distribution of dopants incorporated into the semiconductor by, e.g.,
ion implantation or which are deposited at the surface as a paste,
fluid or gas of high concentration. The latter process is usually
termed a predeposition process. The former process, diffusing a
profile which has been produced by ion implantation, always has to be
carried out in order to "recreate" the semiconductor lattice from the
bombardment damage caused by ion implantation. In this context

diffusion is usually termed "annealing".

The diffusion of dopants in semiconductors is described by the

two laws of Fick, which read:

Jij = -Dj-(grad Cti - Zi-“g *(Ctj - Ccj)-grad @) (3.2-1)
kT
act; 4 div 3s = 0 (3.2-2)
iv J3 = <L
= I i

Cti is the total concentration; Cci is the electrically inactive
part of the concentration, i.e. the concentration of dopants which is
not well incorporated in the silicon lattice and, thus, is not ionized
(e.g. neutral clusters). 31 denotes the impurity flux; Z; is the
charge state of the impurity (+1 for singly ionized acceptors, -1 for
singly ionized donors). Di represents the diffusion coefficient which
depends, in general, on all sorts of quantities as we shall discuss
later. W is the electrostatic potential. The index i of all above
cited quantities denotes the i-th impurity type as there is usually
more than one kind of impurity incorporated into the silicon when a

diffusion process is performed.

By substituting (3.2-1) into (3.2-2) we obtain the classical form
of the diffusion equation, a continuity equation, for the i-th dopant.

act;
I = div [Dj-(grad Ctj - Zi-_g_-(Cti - Ccj)+grad §)] (3.2-3)

dt KeT

The electrostatic potential #§ is determined by the Poisson

equation which we have discussed in section 2.1.

Diffusion
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div grad § = %-( n-p-2=036) (3.2-4)

The quantity C represents the total net concentration of all

ionized impurities., For a system with n impurities we have:

cC = -
i

o

Zi*(Cty - Ccj) (3.2-5)
1
Note that in (3.2-5) the influence of, e.g., charged vacancies is
neglected. 1In all process modeling programs I am familiar with the
Poisson equation 1is not solved as an elliptic differential equation,
but rather assuming vanishing space charge and Boltzmann statistics.
The electrostatic potential can then be calculated explicitly (cf.
section 2.4).

k-T

W= —a—-arsinh( ) (3.2-6)

2+njy

The electrostatic potential $Y 1is identical to the built-in
potential which we have derived in section 2.4, because the
semiconductor structure is not electrically biased during a diffusion
process. n; denotes the intrinsic concentration at the process
temperature. It may be modeled as depending on the concentration of
dopants, thus, representing an effective intrinsic concentration
(cf. section 2.4). The assumption of vanishing space charge is very
poor when considering the coupled diffusion in a structure with
pn-junctions. Obviously, the exact location of the pn-junction, which
is one of the most important results one should like to obtain from
process modeling, will depend on the interaction of the space charge
layer at the pn-junction with the electrostatic potential,
particularly if one deals with steeply graded junctions. This problem

is stressed also in [3.1].

In the 1literature one <can often find that field enhanced
diffusion is accounted for with a so-called field enhancement factor
multiplying the diffusion coefficient. In the case of just one type
of impurity - we can drop the index i - and under the assumption that
the total concentration of impurities is electrically active we may

take the electrostatic potential as:

w= 5T arsinh(- Z2°Ct (3.2-7)
g9 2°nj

The gradient of Y reads:

Diffusion
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ker, 1 . % _.grad ct (3.2-8)
q "él+ (Ct )2 2+njy
2°njy

grad ¥ = -

By substituting (3.2-8) into (3.2-3) and with a small amount of

algebra we obtain:

act
= div(D;-df-grad Ct 3.2~9
-3t (D4 g ) ( )
with the field enhancement factor df:
df = 1 + ct (3.2-10)

YctZ + (2-n;)?2

It should be noted that the approach using a field enhancement
factor is only correct if just one species of impurities is involved
in the diffusion process. Although it has been used quite frequently,
tracing the 1literature, I <can not see any plausible reason to

introduce such a field enhancement factor.

In (3.2-7) we have assumed the validity of Boltzmann statistics
for the description of the mobile carriers. This seems to be
justified at typical process temperatures even for doping
concentrations up to the solubility limit [3.64]. However, if one
wants to avoid the assumption of Boltzmann statistics, it is just a
matter of the complexity of the calculus to do so (cf. section 2.4).

This problem has been treated in, e.g. [3.33], [3.55].

In the following I should 1like to discuss models for the
diffusion coefficient D;. It is well established that the diffusion
vehicles are the intrinsic point defects of the lattice, i.e.
vacancies and interstitials [3.68]. In section 3.3 evidence will be
given showing both kinds of defects are important for the diffusion of
dopants in silicon. However, at this time there 1is a 1lack of
mathematical models describing the diffusion by interstitials.
Therefore, the following considerations are based on the vacancy
mechanism, Hence, the diffusion coefficient Di is assumed to be the
sum of several diffusivities 1([3.8)], where each accounts for the
impurity interactions with different <charge states of lattice

vacancies,

pD; = D2 + DV~ + D.-V" + DIyt (3.2-11)
1 1 1 1

Diffusion
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p©
1

species diffusing with neutral vacancies, D; for those diffusing with

is the diffusion coefficient for the dopants of the i-th

singly negative charged vacancies, D; for those diffusing with doubly
negative charged vacancies, and DI for those diffusing with singly
positive charged vacancies., Other types of configurations are
certainly also imaginable; however, the cited ones are considered to
be most relevant. V™, V- and vT are the concentrations of singly
negative, doubly negative and singly positive charged vacancies
normalized by the concentration of neutral vacancies. These
concentrations can be modeled under the validity of Boltzmann
statistics as:
v-=2, ve=(2,)2, vyt=FE (3.2-12)

nj nj nj

n and p denote the electron and hole concentration, respectively.
The individual diffusion coefficients D? are usually given as
expressions in Arrhenius form:
X X Egi
Di = Doi-exp(— —_—) (3.2-13)

kT

Numerical values for the prefactors Dgi and the so-called
activation energies Ezi are summarized in Tab. 3.2-1. These data have
been compiled from [3.19], [3.20]; they are also nicely summarized in
[3.59]. More numerical values for different dopants are reviewed in
[3.72].

element p° E° D~ E- D E D; E;
2°0-1 a 2°-1 a 29-1 29-1
fcm®s ] [eV] [ecm©s 7] [eV] [em®s ] [eV] [cm®s 7] [eV]
B 0.037 =3.46 0.72 -3.46
p 3.85 -3.66 4.44 -4.00 44.20 -4.37
Sb 0.214 -3.65 15.0 -4.08
As 0.066 -3.44 12.0 -4.05

Tab. 3.2-1l: Diffusion coefficients

Boron mainly diffuses with neutral and positively charged
vacancies, the latter being the dominant effect. Fig. 3.2-1 shows the
total diffusivity of Boron versus doping concentration for various

temperatures.

Diffusion
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The examination of the diffusivity of phosphorus 1is most
difficult. One tends to assume that phosporus diffuses with neutral,
singly negative and doubly negative charged vacancies. For low
concentrations the diffusion with neutral vacancies 1is dominant,
whereas for high concentrations the doubly negative charged vacancies
are considered to dominate the overall diffusivity. Particularly for
high concentrations the diffusion of phophorus shows various unusual
phenomena [3.21], 1like kink formation, enhanced tail diffusion,
enhancement of the diffusion of other impurities (e.g. boron). No
unified treatment of the diffusion of phosphorus has been found so
far, and many fairly detailed modifications to the effective diffusion
coefficient have to be undertaken to obtain acceptable simulation
results [3.59]. Some of the features of phosphorus diffusion have
been discussed in, e.g., the work of Matsumoto et al. [3.44], [3.45],
[3.46]. A plot of the total diffusivity of phosphorus after (3.2-11)

versus doping concentration is shown in Fig. 3.2-2.

Antimony diffuses with neutral and singly negative charged
vacancies. At process temperatures the diffusion with the negatively
charged vacancies 1is somewhat greater. Fig. 3.2-3 shows the total
diffusivity of antimony versus doping concentration.

Arsenic as a donor diffuses primarily with neutral and singly
negative charged vacancies. Both mechanisms are comparable throughout
the process temperature range. A plot of the diffusivity of arsenic

versus doping concentration is given in Fig. 3.2-4,

In some papers one can find a slightly different form for the

diffusion coefficient (3.2-11).

1+ PreR o+ [7'71'- (_2__._)2 + f)*i'-?_
1

. 1 n;: ni;
p; = D"t 1 . ! (3.2-14)
P I
1+ BT+ BT+ B
D; " denotes the diffusion coefficient for intrinsic conditions

i
which exist at relatively low doping concentrations. The ﬁ? can be

understood as parameters describing the effectiveness of charged
vacancies relative to neutral ones in impurity diffusion. The
expressions (3.2-11) and (3.2-14) can, obviously, be made equivalent
by a proper choice of the parameters. However, I feel that (3.2-11)

is more reasonable.

Diffusion
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Fig. 3.2-5 shows the intrinsic diffusion coefficient (n=p=ni) for
boron (fully drawn line), phosphorus (dashed line), arsenic

(dot-dashed line) and antimony (dotted line) versus temperature.

Another formulation which has been used especially in older work
is based on a different formulation of the diffusion equation:
aCti

a4t

?
= div grad ( Di'Cti ) (3.2-15)

Here Di is supposed to be an effective diffusion coefficient
which accounts by a proper model for field enhancement as well as for
interaction phenomena between mobile carriers and dopants and between
dopants of different species. This formulation, however, is not at
all physically reasonable, and it should therefore be avoided for
careful simulations. In the case when one can use a constant

diffusion coefficient this question is, obviously, irrelevant.

Although the model (3.2-~11) for the diffusion coefficient is
already quite sophisticated, it has to be applied very carefully. An
additional modification, wusually an enhancement, of the diffusivity
takes place in oxidizing ambients as will be discussed in the next
section. If the dopant concentration becomes so high that it
approaches its solubility limit in silicon - this is the case in many
practical applications - the impurities are considered to precipitate
or to cluster, and they will, supposingly, not diffuse. However,
quantitative statements are very difficult to make at the moment. The
interested reader should carefully check the, hopefully, forthcoming
literature on that and related problems. Currently, the most
frequently used model which describes the relation between the total
concentration Ct and the electrically inactive {e.g. cluster)
concentration Cc is based on the following differential equation.

dcc

3% = m+kc+ (Ct - Cc)® - kd-Cc {3.2-16)

kc and kd are the clustering and declustering rate, respectively.
These are usually assumed to be temperature dependent. m 1is the
cluster size, 1i.e., the number of impurity atoms which form an
electrically inactive complex, the cluster. However, in [3.79] it is
explained, particularly for arsenic, that the allowence for
electrically charged clusters seems to improve the agreement with
experimental results. Different types of charged and uncharged

Diffusion
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clusters are further considered in ({3.28]. These effects become
significant when the dopant concentration reaches the solubility limit
(e.g. 3:10%%n™3 for arsenic at 1000 Celsius). I should like to
speculate that in essence these statements are correct, but in order
to derive models which are applicable for engineering purposes much

more investigatory work has still to be carried out.

Very often it 1is assumed that the effect of dynamic clustering
and declustering is negligible. Then we obtain an algebraic,
equilibrium cluster relation between the total and the electrically

active concentration.

Ct = (Ct - Cc) + ﬁc-(Ct - Cc)m (3.2=-17)
ke

= . 3.2"18

ﬁc m 3 ( )

Numerical values and the temperature dependence of the
equilibrium cluster coefficient ﬁc are presented in the report [3.59].

So far we have discussed diffusion models, the complexity of
which grew in turn as each detail was considered in just slightly more
depth. We have ended up with a model capable of quite accurately
describing diffusion in silicon, but it requires the solution of a
system of equations for the coupled diffusion of n dopants, which is
composed of n parabolic partial differential equations (3.2-3), n
ordinary differential equations (3.2-16) and the Poisson equation, an
elliptic partial differential equation (3.2-4). This system
represents a mixed initial boundary value problem, and 1it,
unfortunately, has incorporated an enormous amount of very uncertain
parameters in the physical sense. Particularly the models for the
boundary conditions (e.g. segregation), which we shall not discuss
here but only sketch in section 3.3, are fairly poor because of the
lack of understanding in the underlying physics and chemistry. A
thorough discussion of the great many problems associated with
diffusion is beyond the scope of this text which is primarily devoted
to device modeling. In the following we shall only consider
simplifications to the diffusion models which have proved to be quite

valuable in the context of engineering problems.

If the diffusion coefficient can be treated as a constant and 1if
field enhancement of the diffusivity can be neglected, which is the

Diffusion
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case only for 1low doping concentrations, the diffusion equation
simplifies to:
2 2
gE=D.(ac+3c) (3.2-19)
t 3x2 842
For an inert diffusion we <can assume at the surface of the

semiconductor the boundary condition:

ac _
3§5x=0 =0 (3.2~20)
This boundary condition guarantees that no impurity atoms diffuse
through the surface. It is just correct to first order. However, by
assuming the applicability of (3.2-19) and (3.2-20), the solution of
the diffusion problem can be carried out analytically for a unit

impulse source d(x',y') as the initial condition.
C(x,y,0) =d(x',y") (3.2-21)
J(x',y‘) denotes the Dirac delta function. The solution of

(3.2-19) 1in the half-~plane x€{[0,0], y€[-00o,00] with boundary condition
(3.2-20) and inittial condition (3.2-21) is a classical result.

» oty 2
C(x,y,t) = _~_E___-exp(— ﬁZ_Z_l_)-
2*wD°t 4D+t
iy 2 vy 2
L exp(- XTFIY 4 oexp(- XX (3.2-22)
4D+t 4-D-t

With (3.2-22) we can solve the diffusion problem for an arbitrary

intitial condition C(x,y,0) by convolution.
C(x,y,t) = T TC(X' /v',0)C(x,y,t) dy'-dx’ (3.2-23)
e o)

In some cases (3.2-23) can be solved in closed form, for

instance, for a Gaussian implantation profile.

( y<a 0
(
C(x,y,0) = ( Ng (x--Rp)2 (3.2-24)
( yza — " EXP (— ____—5—)
( qz.u-cp 2°0p

For the sake of simplicity, we ignore the lateral spread of the
implanted profile (3.2-24). After substitution of the initial
condition (3.2-24) and the unit impulse source solution (3.2-22) into
(3.2-23) the diffused profile reads:

Diffusion
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Ng (y~ |)2
C(x,y,t) — slexp(~ ———Z-~)-dy'—
égzﬁ'4'ﬂ“ﬂp‘D't 2 4+D-t
(x'-Rp) 2 (x-x")2 ,
° exp (- - «dx' + (3.2-25
[ P 20,2 1ot )

(X'-‘Rp)2 (x+xl)2
+lexp (- 5= = )edx' ]
z.ap 4.D.t
The two integrals in (3.2-25) can be evaluated with some algebra
so that the final solution becomes:

N -
C(x,y,t) = d cerfe( 7Y o[ H(x,t)+H(-x,t) 1 (3.2-26)

4-N2-m (@,2+2+Dt) 2-yo-t

with:

R . g2
cerfc( —__E-'J D-t - * p .z) (3.2-27)
%o lo,2+2+D-t 4+Det+ (G52+2:D t)

This solution strategy was introduced by Lee et al. [3.37],
[3.38]. It has been refined to account for more general initial
conditions [3.14], [3.15], [3.39], [3.50] and to account,
gualitatively, for a non constant diffusivity [3.73]. There have also
been published slightly different approaches for analytic solutions of
(3.2-19) with different boundary conditions at the semiconductor

surface, e.g. [3.12], [3.35], however, these are more complex.

Diffusion
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3.3 Oxidation.

The thermal oxidation of silicon is one of the most important
processing steps for the fabrication of modern devices. All existing
models for oxide growth are based on the work of Deal and Grove in
1965 [3.17]. Their basic idea was the assumption of a steady state

situation between three fluxes.

Fl = h- (C* - C9) (3.3-1)
o .. 1 ;
F2 = -D-g‘i = p.& = C (3.3-2)
X XOX
F3 = kg-Cl (3.3-3)

Fl1 is the flux of oxidant from the bulk of the gas to the
gas—-oxide interface. c® is the concentration of the oxidant at the
oxide surface; C* is the concentration of the oxidant in the oxide,
which will be in equilibrium with the partial pressure in the bulk of

the gas; and h is the gas phase mass transfer coefficient.

F2 denotes the flux across the oxide, which is assumed to be
purely diffusive. c' is the oxidant concentration in the oxide at the

oxide~gilicon interface; X ox represents the oxide thickness.

F3 is the flux corresponding to the oxidation reaction at the
oxide-silicon interface. ks represents the chemical surface reaction
rate [3.27]. In the steady state condition these three fluxes are

identical and can be expressed:

k
F = S .c* (3.3-4)
k Kee
1 + 8 4 ts'¥ox
h D

The flux of oxidant reaching the oxide-silicon interface is
described by the differential equation:
dxox
Ny~ =F (3.3-5)
'3t
Ny is the number of oxidant molecules incorporated into a unit

volume of oxide. The solution of (3.3-5) is:

Xox (t) = '4(§+xox(0))2 + B-t - _1;: (3.3-6)

with:

Oxidation
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A = 2-D'(%_ + 1 (3.3-7)

*
g = 2D°C" (3.3-8)

(3.3-6) is frequently written in a slightly different form:

Xox2 (£) + A*xXox(t) = Be(t + 1) (3.3-9)
with:
Xox2 (0) + A*xgx (0)

= 5 (3.3-10)

B is refered to as the parabolic growth rate coefficient because

for large t (3.3-9) approaches: y
A2
Xox2 (t) = Bet , t >> s (3.3-11)

For small time we observe that B/A describes a linear growth

rate:

2
Xox (£) = g-(t F1), t<< P g (3.3-12)

By proper modeling of the growth rate coefficients, many ambient
attributes can be accounted for (composition, pressure, ...).
However, for very thin oxides the flux models (3.3-1) to (3.3-3)
appear to be oversimplified and have to be modified [3.32], [3.59].
An empirical formula for thin oxide thicknesses corresponding to
(3.3-5) reads:

B + Ky exp(- E_) + Kpcexp (- E_)
L 5] 1

- 2 (3.3-12)
dt 2°%Xgx t+ A

dXox

A and B are defined in (3.3-7) and (3.3-8), respectively. The
two supplementary terms compared to (3.3-5) involve functions decaying
exponentially in time which dominate, as it has been confirmed by
observation of an extensive collection of experimental data [3.59],
oxide growth in the 2nm and 20nm regime, respectively. One can
expect, however, that many more modifications of this type will be
introduced 1in order to account heuristically for effects which can be
seen experimentally but have not been understood completely on a

theoretical basis. As excellent reviews on the many problems of

Oxidation



Die approbierte gedruckte Originalversion dieser Habilitationsschrift ist an der TU Wien Bibliothek verfiigbar

The approved original version of this habilitation thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

- 87 -~

oxidation [3.59], [3.60] can be recommended. A more fundamental
treatment of the kinetics of oxide growth, which is based on the
solution of the Navier-Stokes hydrodynamic equation, has fortunately
begun [3.13]; however, to keep track with present and future device
technology many advances in understanding the wunderlying kinetics
still have to be made. A worthwhile approach, particularly for thin
oxides, should be a microscopic simulation of oxide growth with Monte
Carlo methods [3.53].

The most complete models for the growth rate coefficients B/A and
B have been summarized in [3.52], [3.59]. 1In these models the oxidant
pressure dependence, the substrate doping dependence, and the
dependence on the orientation of the silicon surface are acccounted

for in dry and wet ambients with and without HC1.

Another effect which has to be considered in the context of
oxidation is the impact on the diffusion coefficient. It has been
observed by several authors, e.g. [3.3], [3.42], [3.43], that the
diffusivity is enhanced. This enhancement is, most plausibly, based
on diffusion mechanisms additional to the vacancy diffusion mechanisms
which we have outlined in the last section. The additional mechanism
is due to intrinsic interstitials emitted from the oxidized surface as
suggested by Hu [3.31] and proved experimentally by, e.g. Antoniadis
and Moskowitz [3.6], [3.7]. Some theoretical considerations on this
subject can be found in [3.49]. It is not clear at present how the
vacancy and the interstitialcy mechanism interact, or which one
dominates, in the temperature range [800,1000]C [3.21]]. Therefore, we
have restricted ourselves solely to the vacancy diffusion mechanism in
the last section. However, by postulating an enhancement of the
interstitial concentration and their self diffusion during oxidation
[3.3}, [3.8], [3.9] an increase 1in the diffusivity of dopants 1is
sound. Taniguchi et al. [3.75] have suggested modifying the
diffusivity of boron and phosphorus, particularly, with the following

empirical expression:

axox 0

3 X 2,08eV

I'~eexp (- - or (3.3-14)
dc ) P 25pm KeT )

D =Dy + K- (
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( 1,7

( <100> 3,08-10-3 SO

( s0,7
K= (

( 1,7

( <111> 2,67-10-3 S 7

D, is the effective diffusion coefficient for inert ambients; x
denotes the distance to the oxide-silicon interface; K is a constant
derived from fits to experimental data. Watch the dimension of K
because in all publications I am aware of it is given in a very sloppy
manner. The qualitative dependence of the oxidation enhanced
diffusion coefficient upon the oxide growth rate, the distance to the
interface and temperature 1is plausible. Therefore, pragmatically,
such a model can prove to be very valuable, but it clearly
demonstrates how poorly the diffusion kinetics are understood. It
should be noted that oxidation retarded diffusion has also been
observed experimentally, e.g. [3.59]. This effect can be made
plausible by the allowance of vacancy consumption by interstitials
during oxidation. Similar models to (3.3-14) can be found in [3.5],
[3.59]1, [3.641, [3.67].

From a numerical analyst's point of view the simulation of
diffusion in oxidizing ambients 1is quite a tough problem. As
particular difficulty the moving oxide-silicon interface boundary is
evident. For a one dimensional simulation that problem is usually
solved by means of a reorganization of the simulation domain during
time integration. For a two dimensional simulation, however, a
reorganization of the domain is rather difficult [3.61] and costly in
terms of computer resources. To overcome this problem Penumalli
[3.58] has introduced a coordinate transformation which maps the
moving boundary in the physical domain into a stationary boundary in
the transformed domain. Consider the diffusion equation:

g% = g§.(D.g§) + gy-(D~g§) (3.3-15)
in the domain:

X(y,t) § x <@
(3.3-16)
-0 < y <

which is a function of time. x=X(y,t) denotes the oxide-silicon

interface in parameterized form. A drift term has been neglected in

Oxidation
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(3.3-15) only for the sake of simplicity. The coordinate
transformation:
(§)  (xx(y.,t))
( ) ( )
(8 ) =(y ) (3.3~17)
( ) ( )
( T (t )
will change (3.3-15) into:

ac ax 3 ac ax 82x. 8c

= [1 + (qr)2] par (Dopg) + [pe = Dol _leps +
at ' ae Pae) T lge T P’ e

3 ac
+ pet (Dog )
am
4x 3 dc a dc
- ¢ (g (Doas) + * (D aa))
gy # e am &
(3.3-16) will be transformed 1into the time invariant domain
(3.3-19).

0§ <o
(3.3-19)

0w<f <o

(3.3-18)

The proper treatment of the boundary condition for oxidation at
the silicon-oxide interface can be found in, e.g. [3.50], [3.69]. For
the treatment of the lateral oxidation under a mask edge which gives
rise to the "Bird's Beak", no established theory is available at this
time. The function X(y,t) is usually modeled as (cf. [3.58]):

X(y,t) = b.xox(t)-i-erfc(!ELiZZfl_) (3.3~20)
2 k1*Xox (t)

"b" is the amount of silicon consumed to produce one unit of
oxide. xox(t) is the oxide thickness as a function of time given by
the one dimensional theory which we have sketched above. "a"
determines the location of the mask edge (y>a is the free, oxidizing
surface) ; ky denotes the ratio of lateral to vertical oxidation and is

considered to be a function of the mask thickness.

The cross derivatives in (3.3-18) have been introduced by the
coordinate transformation (3.3-17) because of the lack of
orthogonality between lines of constant § and lines of constant f.
They do not cause in principal a complication of the solution of
(3.3-18), but they have a non negligible impact on the efficiency of
numerical procedures. Murphy et al. [3.54] have estimated that the

Oxidation
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treatment of the cross derivatives nearly triples the required
computer resources. However, the coordinate transformation of
Penumalli [3.58] seems to be a very feasible approach to the two
dimensional simulation of oxidation at the moment (cf. [3.54]); it has
been also used successfully by several other authors, e.g. [3.54],
[3.70]1, [3.76].

Oxidation
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4. The Physical Parameters.

The basic semiconductor equations, the derivation of which we
have thoroughly discussed in chapter 2, just determine the structure
of the set of equations which we shall have to solve in order to
simulate the internal behavior of a device. Process modeling, as
sketched in chapter 3, delivers information about the geometry of a
device and the distribution of dopants, which can also be considered
to be a physical parameter. As we have already noticed, a couple of
additional physical parameters are inherently associated with the
basic semiconductor equations. Any quantitative, or even qualitative,
simulation of a device relies heavily on applicable models for these
parameters. In addition, a mathematical characterization of the
problem of solving the basic semiconductor equations is only feasible
with at least qualitative knowledge of the associated parameters (e.g.
sign, smoothness, order of magnitude). Therefore, we shall discuss in
this chapter the most important models for the physical parameters. A

review has also been presented in [4.41].

In section 4.1 models for the mobility of electrons and holes are
summarized. Quantitatively accurate mobility values are required for
the purpose of predictive simulation because of the multiplicative
dependence of the current upon mobility, which is, obviously, one of
the results most desired.

In section 4.2 carrier generation/recombination phenomena are
dealt with. These determine many essential effects associated with

parasitic currents and device breakdown.

Section 4.3 and section 4.4 are devoted to models for the thermal
conductivity and heat generation, respectively. Their influence
becomes apparent when accounting for electrothermal interaction
phenomena by solving consistently the heat flow equation as part of

the basic semiconductor equations.

The Physical Parameters
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4.1 Carrier Mobility Modeling.

In section 2.3 we have introduced relaxation times tn’ tp in
order to be able to derive the current relations. These relaxation
times determine the rate at which electrons and holes are caused to
change their momentum vector; therefore, they describe the average
time between the scattering events electrons and holes undergo. We,
additionally, have made use of the definitions of carrier mobilities
because these are intuitively much easier to imagine than relaxation
times. In this section we shall discuss the various mechanisms which
determine the carrier mobilities and, obviously, also the relaxation
times. In particular electrons and holes can be scattered by thermal
lattice vibrations, ionized impurities, neutral impurities, vacancies,
interstitials, dislocations, surfaces and electrons and holes
themselves. A further mobility reduction is due to the saturation of
the drift velocity of warm and hot carriers which is caused by lattice
vibrations. Unfortunately, many of these mechanisms, especially their
interactions, are extremely complicated and hence difficult to model
exactly. Therefore, we shall discuss several approaches which have
been published to model with phenomenological expressions the various
experimentally observed mobility phenomena. A review on that subject

can also be found in [4.58].

The most fundamental process by which carriers in a pure crystal
are scattered 1is their interaction with the thermally generated
vibrations of the atoms of the crystal. These lattice vibrations are
a function of temperature. The theoretical result for the mobility

caused by so-called "acoustic deformation potential lattice
scattering" (Pi, ﬂ; for electrons and holes) reads:
Ao -nd.C
pL o= 2 § m__ 1 (4.1-1)
(mn)S/Z.EaCZ.(k.T)3/2
L_2-¥2om g-fit-cy
Pp = — (4.1-2)
3 (mp)5/2.EaV2.(k.T) 3/2
¢y is the average longitudinal elastic constant of the
semiconductor; its numerical value lies in the order of 105VAScm_3.
E . and E,, are the deformation potential constants of the conduction

band and the valence band, respectively. They have a numerical value

Carrier Mobility Modeling
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of a few eV. A concise derivation of (4.1-1), (4.1-2) can be found
in, e.g., [4.108] and a rigorous treatment of lattice scattering has
been published in, e.g. [4.55], [4.127]. Since silicon and germanium
have a multivalley band structure and since high energetic phonons
take part in the lattice scattering processes, (especially in gallium-
arsenide where this effect is even dominant) the behavior of the
mobility cannot be correctly described by (4.1-1), (4.1-2). Band
structure and optical phonons give rise to additional scattering
mechanisms [4.15], [4.701, [4.108], [4.117]. A detailed discussion of
these effects is beyond the scope of this text. For the purpose of
simulation one usually takes a simple power law whose coefficients are

obtained by fitting experimental mobility wvalues.

o = o’ {550 (4472
L o T o

= . P 4.1-4
b= B2 ) (4.1-4)

The published numerical values for the constants in (4.1-3),
(4.1-4) show some scatter. A menu of these coefficients compiled from
varios sources are summarized in Tab. 4.1-1. A judgement of the data

and a recommendation is rather difficult.

Carrier Mobility Modeling
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; o} o
material szl _l dn ZPE , dp reference
[cm“V ~s 1 [ ] [cm®V s =] [ 1
Si 1388,157 467,729 [4.8]
1448 2,33 473 2,23 [4.9]
1438 2,42 465 2,2 [4.19]
1330 495 [4.21]
1407,3 467,73 [4.33]
1430 2,2 495 2,2 [4.38]
1360 520 [4.41]
1350 2,5 480 2,5 [4.50]
1450 2,6 500 2,3 [4.57]
1448 2,42 479 2,2 [4.58]
1400 500 [4.90]
1354 [4.96]
1400 480 [4.106]
1240 2,5 438 2,7 [4.117]
1500 2,5 600 2,7 [4.123]
1600 600 [4.131], [4.139]
1500 2,6 500 2,3 [4.136]
GaAs 8500 [4.6]
8600 250 [4.50]
7500 [4.80]
8500 1 400 2,1 [4.123]
9000 1 500 2,1 [4.136]
Ge 3900 1900 [4.50]
3800 1,66 1800 2,33 [4.57]
3900 1800 [4.90]
2694 1,6 1818 1,3 [4.117]
3900 1,66 1900 2,33 [4.123]
3800 1,66 1820 2,33 [4.136]
Tab. 4.1-1: Lattice mobility constants
Sah et al. have published a different model [4.102] which is
claimed to predict reliably mobility wvalues in silicon in the

temperature range [4.2,600]K.

L 1
'p =
n 1 N 1
2 7o -1.5 2 7 -3,13
4195°M". . 2153°M°. .
Vs (300K) Vs (§UUK
L 1
Yo I " I
2 7 -1.5 cm?2 , T . -3.25
250250, . 591°M", .
Vs (EOUK) Vs (300K

This model combines the theoretical lattice

caused by
optical or intervalley phonons by the

(4.1-5)

(4.1-6)

scattering mobility

acoustical phonons with a mobility component caused by

stated in [4.102] that more elaborate formulae

theoretical models do not Justify the addi

Carrier Mobility Modeling
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purpose of simulation. I fully agree with that statement from my

personal experience.

Fig. 4.1-1 and Fig. 4.1-2 show the lattice mobility for electrons
and holes in silicon versus temperature after the model of Sah et al.
(4.1-5), (4.1-6) (solid 1line), the model (4.1-3), (4.1-4) with
parameters of Arora et al. [4.9] (dashed line) and with parameters of
Dorkel et al. [4.38] (dot dashed 1ine) together with experimental
values of Norton et al. [4.81] and Li [4.70], respectively.

The next scattering mechanism we shall consider for mobility
modeling is ionized impurity scattering. The first useful model which
was derived by theoretical investigations has been published by
Conwell and Weiskopf [4.28]. Their formula reads:

I 64-¢2+ (2°k') 32 J m 12°m e kT
pooo= : gen (“om s T 4.1-7
with:
1
gew(x) = ——— (4.1-8)
In(1+x2)

CI is the sum of all ionized impurity species times the magnitude

of their charge state.
n

CI = EE]ZiI'Ci (4.1-9)
i=1

The dopants usually taken in semiconductor processing have a
charge state with magnitude one. However, for some applications such
as solar cells, zinc can be wused [4.102} which has two acceptor
levels, one ofwhich is doubly ionized, thus corresponding to Z=2.

Expression (4.1-7) reflects a reciprocal dependence of the
mobility upon the total concentration of ionized impurities for
moderately high concentrations, which becomes weaker (~CI_1/3) for
very large concentrations. The function Jew (¥) models the influence
of "neighboring" ionized impurities which screen each other due to
their Coulomb potential and, therefore, are inactive as scattering
centers. However, the model for this effect 1is relatively crude
(cf.[4.281). A refinement of the influence of charge screening has
been introduced by Brooks [4.17]. He has also accounted for the fact

that free electrons and holes screen the impurities.

Carrier Mobility Modeling
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2. (Deremy 3/2 24-m_ £+ (k-T)2
pp o= e 2Tk AT gy e ) (4.1-10)
r q3-CI }ﬂ'l q2.ﬁ2. (n+p)
n,p
with:
_ 1
gp (x) = (4.1-11)
1In(l+x) - >
1+x

(4.1-10) 1is <claimed to be more accurate for moderately heavy
doped semiconductors (CI<1019cm—3). For degenerate semiconductors,
however, no applicable theoretical models have been published so far
and heuristic models have to be used instead. (4.1-7) and (4.1-10)
give nearly the same results as long as the free carrier concentration
about equals the 1ionized impurity concentration. When the free
carrier density 1is appreciably smaller, which 1is the case for
compensated material [4.16] and space charge regions, (4.1-10) gives a
lower mobility due to the fact that less screening will take place,
and, therefore, the ionized impurities will scatter more efficiently
(cf. [4.35]1). Some more considerations on this subject have been

given in, e.g. [4.94], [4.95], [4.103].

The mobility components due to lattice sattering and due to
ionized impurity scattering have to be combined in some way to obtain
an effective mobility., The Mathiessen rule is inappropriate for that
purpose, because lattice scattering and ionized impurity scattering
can not be considered to be fully independent mechanisms, which is a
definite requirement for the applicability of the Mathiessen rule
[4.108]. Debye and Conwell [4.35] have derived from theoretical

reasoning the following expression for the combined mobility PﬁIp.

14
PET = Bl 11 4 x2.(Ci(x) -cos(x) + si(x)-sin(x))] (4.1-12)
n,p n,p

(4.1-13)

(4.1-14)

Carrier Mobility Modeling
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si(x) = - Tafififl-dt (4.1-15)

A discussion of that model can be found in [4.35], [4.108].
(4.1-12) 1is guite tedious to handle. 1In [4.38] an approximation to
(4.1-12) has been presented, which is quite simple:

LI _ L 1,025 ) _
Voo = ¥y o 7 0.025) (4.1-16)
1 + (2,126._1rPy0,715
Pl
n,p

This approximation is claimed to be accurate to within a 2%
maximum error if:

L I
< 5. 4.1~
Vop < 132 p (4-1-17)
(4.1-17) is not really a serious restriction because the
expressions for the ionized impurity mobility component (4.1-7) and
(4.1-10) are already invalid if they produce results which would

violate (4.1-17).

There 1is, unfortunately, some uncertainty which numerical values
one should pick for the effective masses m:, m; in (4.1~-10). Dorkei
et al. [4.38] use in the case of silicon 0,953-mO and 1,0048-mO for m.
in the leading term and in the argument of Iy in (4.1-10),
respectively; ang, equivalently, 20,25-m0, which is rather large, and
0,413-mo for mp. Evaluating all the dependent constants with these

recommendations, (4.1-10) will read:

2’4.1021 1 . ( T )3/2 1,37.102001-“-3.( T )2

pi - cmVs 300K -gp ( 300K ) (4.1-18)
CI n+p
. 5,2.1020_iv__. (3_'10‘_0__K)3/2 5'63.10190m—3.('§%‘6—f{')2
cmvs
} i (4.1-19)
Pp =5 gp ( g )

A more pragmatic approach for modeling the combined lattice and
ionized impurity mobility has been introduced by Caughey and Thomas
[4.21]. They have used a Fermi like function, or hyperbolic tangent,

to fit experimental data:

Carrier Mobility Modeling
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. FL _ Fmin
pilp = pglg + P TP (4.1-20)
' ' 1+ (CI ,@n,p
ref
n,p
(4.1-20) incorporates a saturation effect of the mobility

reduction for high impurity concentrations, which has been observed by
experimental investigations. Numerical values for the parameters for
silicon at 300K temperature which are involved in (4.1-20) are
summarized in Tab. 4.1-2 for electrons and in Tab. 4.1-3 for holes.

pmin dn C;ef reference
[cmav—ls-l] [ ] [cm—3]
55,24 0,733 1,072-10%7 [4.8]
92 0,91 1,3 -1017 [4.101, [4.41], [4.58]
65 0,72 8,5 -10%% [4.211, [4.54]1, [4.72]
71,12 0,7291  1,059-1017 [4.33]
52,2 0,680 9,68 -10%% [4.73] (arsenic)
68,5 0,711 9,20 -10*® [4.73] (phosphorus)

Tab. 4.1-2: Coefficients for ionized impurity scattering of electrons

pmin o cref reference
[cmEV—ls—l] [p] [c§—3]
49,705 0,7 1,606-10%7 [4.8], [4.33]
47,7 0,76 6,3 -10% [a.211, [4.541, [4.58], [4.72]
65 0,61 2,4 1017 [a.41]
44,9 0,719 2,23 -10%7 [4.73]
47,7 0,76 1,9 -10%7  [4.91]

Tab., 4.1-3: Coefficients for ionized impurity scattering of holes

The various publications again have some scatter in these data;
however, in all of the references a perfect fit to experimental

results has been claimed!

The saturation of mobility reduction for high impurity
concentration has been treated more sophisticatedly than (4.1-17) by
some authors. In [4.91], [4.119] the mobility of electrons is modeled
with:

Carrier Mobility Modeling
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65507 pg _ gscm?
in ) CXS s " CI b 0,72 (4.1-21)
l + ( 14 l + ( 14
5:1020cm—3 8,5-10]-6cm“3

Roulston et al. [4.96] have used (4.1-22) for the -electron
mobility with good success:

2
: 5 12685~
pﬁ = 86,55, (1 - CI )+ Vs (4.1-22)
Vs 6,18-1020cy~3 1+ CI

)
1,3-1017¢cm™3
A similar treatment can be found in, e.g. [4.73].
Another formula for modeling ionized impurity scattering in

silicon at 300K temperature with just two parameters has been proposed
by Scharfetter and Gummel [4.106].

pL
pLI - n,p (4.1-23)
n,p CT

1 +
C;ef + CI
' P Sn,p
£ -

c & = 3-1016cm=3 , s, = 350
cref - 4.10160p-3 Sy, = 81
p Y

(4.1-23) has been widely used by, e.g. [4.47], [4.79], [4.131],
[4.139], [4.140] and, again, excellent agreement between experimental
and calculated results has been claimed. A discussion on a
theoretical basis of this equation has been carried out by Thornber
[4.129].

Arora et al. [4.9] have published formulae with a very similar
structure to the Caughey and Thomas expression (4.1-20) with
coefficients for silicon which depend on temperature.

2
1252807 (T ,-2,33

pLI - 88cm2.( T y=0,57 4 Vs 300K (4.1-24)
n Vs 300K 1+ CT
1,432-1017cm=3. (_T_)2,546
300K

Carrier Mobility Modeling



Die approbierte gedruckte Originalversion dieser Habilitationsschrift ist an der TU Wien Bibliothek verfiigbar

The approved original version of this habilitation thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

- 105 -

2
40707 (T _)-2,23

T y-0,57 + Vs 300K (4.1-25)
Vs 300K CI

2,67-1017cm=3- (_T__)2,546
300K

These formulae are supposed to be accurate to within a maximum
error of 13% in a temperature range [250,500]K and a total ionized
impurity concentration range [1013,1020]cm—3.

The 1last approach for combined lattice and ionized impurity
scattering in silicon which I should like to present here has been
proposed by Sah et al. [4.102].

2 +1018cm=3
pI = 90cm '(l + 2+10 cm . ( T ) (4.1‘26)
n Vs CI 300K
2 «1018cm—
pI = 45°™°. (1 4+ 1,2-10+°cm 3.( T 1) (4.1-27)
P Vs CI 300K
LI 1
= 4,1-28
e T ( )
L I
pn,p pn,p

(4.1-28) is the simple Mathiessen rule which is not applicable
based on theoretical reasoning as described previously. For the

lattice mobilities Pﬁ p expressions (4.1-5), (4.1-6) are used. These
14
formulae are claimed to be accurate for ionized impurity
11 20 -3

concentrations in the range [1077,10" ]lcm .

More theoretical considerations can be found in the various books
on semiconductor physics, e.g. [4.15], [4.29], [4.61], [4.108]. It is
to note that wusually no difference is maid between ionized impurity
scattering of minority or majority carriers. For high impurity
concentrations the thereby introduced error can be guite significant
[4.14].

Fig. 4.1-3 and Fig. 4.1-4 show, respectively, the mobility of
electrons and holes caused by combined lattice and ionized impurity
scattering versus concentration of ionized impurities at 300K
temperature in silicon. The solid line corresponds to the model of
Dorkel et al. (4.1-16), (4.1-18), (4.1-19); the dashed line denotes
the model of Scharfetter and Gummel (4.1-23); the dot-dashed 1line
corresponds to the Caughey and Thomas 1like model of Arora et al.

Carrier Mobility Modeling
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(4.1-24), (4.1-25); and the dotted 1line denotes the model of Sah
et al. (4.1-26), (4.1-27), (4.1-28). Experimental data have not been
included in these figures because their scatter is even 1larger than
the differences between the models. That can lead to the pragmatical
conclusion that it does not make much difference which model to
choose. More experimental and theoretical investigations have to be
carried out 1in order to get rid of these guite significant
uncertainties. Comparisons between experimental and model mobility

values are given in, e.g. [4.58], [4.91], [4.119].

I am aware of no specific models for ionized impurity scattering
in GaAs. Supposedly, there has not been an urgent need £for such
models. For germanium the models for silicon should work quite well
with minor changes in some constants. However, as there is presently
little activity in the development of germanium devices except some
very special power devices, the question of modeling in Germanium is

more or less irrelevant.

Another scattering mechanism which we have to consider for device
modeling is carrier-carrier scattering. Particularly in power devices
operating in the on-state this effect becomes pronounced because the
free carrier densities may increase far above the doping

concentration.

A very simple approach to account for carrier-carrier scattering
has been suggested by Engl and Dirks [4.41]. They use the Caughey and
Thomas expression (4.1-20) for ionized impurity scattering with an
effective concentration of scattering centers depending not only on
the ionized impurity concentration CI but also on the free carrier
density n+p.

Cleff = 0,34-CI + 0,66 (n + p) (4.1-29)

In one paper Adler [4.1] has suggested a similar approach. He

has simply added an extra term in the denominator of the Caughey and

Thomas formula.

' pL _ pmin
pﬁlg - pﬁlg + n,p n,p (4.1-30)
14 ’
1+ CI )dn,p + ﬂn-p )dn,p
ref 14.Cref
n,p n,p

In another paper [4.3] Adler has suggested a different treatment

Carrier Mobility Modeling
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as being more accurate. Here, the mobility component due to

carrier—carrier scattering is modeled as:

1,428.1020_1
¥}C cmvs (4.1-31)

qn~p-1n(1 + 4,54-1011lcm=2. (n-p)~1/3)

This component is combined with the original Caughey and Thomas

model (4.1-20) for lattice and ionized impurity scattering with the

simple Mathiessen rule.

LIC 1
= 4.1-32
pnlp 1 + 1 ( )
LI ;E
Pn,p

A structurally equivalent expression to (4.1-31) for PC has been

proposed in [4.38] with temperature dependent coefficients.

1,04-1021 1 . T 3,2

pC = cmVs 300K (4.1-33)
ﬂn- «1n(l + 7,45-1013em=2.(_Y )2.(n.p)-1/3
P ( ' (3OOK) (n+p) )

These authors combine (4.1-33) with the mobility component Pi p
C 12

due to ionized impurity scattering (4.1-18), (4.1-19) to Pi D using

[4
the Mathiessen rule. This result is then used in formula (4.1-16)
instead of Pi p to calculate the global mobility ﬂiIg. This approach
[4 [4

seems to be physically very sound.

Li and Thurber [4.69] have investigated carrier~carrier
scattering at low injection levels for uncompensated silicon, where
the free carrier density equals the ionized 1impurity concentration.
In this approach both the mobility component due to lattice scattering

and due to impurity scattering are multiplied with a correction

factor.

ﬂicp = ﬂﬁ p-min(max(0.88,l.0133 - cI ) 1) (4.1-34)
' ' 1.5-1018cm—3

pic = pi -min(max(0.632,1.0409 - 1 ), 1) (4.1-35)
P rP 4.89.1017¢cm—3

These components are then combined with the Debye and Conwell
formula (4.1-12) to obtain an effective mobility. However, as
mentioned above, this approach 1is restricted to 1low injection
conditions, where the influence of carrier-carrier scattering is
relatively small and unimportant. Therefore, (4.1-34), (4.1-35) have

Carrier Mobility Modeling
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to be seen only as an improvement to the theoretical model of 1ionized

impurity scattering.

Fig. 4.1-5 and Fig. 4.1-6 show the mobility due to 1lattice,
ionized impurity and <carrier-carrier scattering versus free carrier
concentration in silicon at 300K temperature. The solid line
corresponds to the model of Dorkel et al. (4.1-33); the dashed line
denotes (4.1-31), (4.1-32); the dot-dashed 1line corresponds to
(4.1-30); and the dotted 1line to (4.1-29). Electron and hole
concentrations have been assumed to be equal which is usually the case
when the free carrier concentration strongly exceeds the doping
concentration. The ionized impurity concentration CI has been assumed
to be lOl4cm—3.

Another scattering mechanism which possibly has to be taken into
account 1s neutral impurity scattering. This effect is not very
pronounced at room temperature and can usually be ignored. However,
it can become relevant for simulations at low temperatures (T<77K).
Early theoretical results predict that the mobility component due to
neutral impurity scattering is temperature independent (cf. [4.16],

[4.108]).

*
N q-m

pooo= nrp (4.1-36)
‘P 20-ag-firmg-E€-CN
a is the Bohr radius (5,2917706-10—llm) and CN denotes the

B
concentration of neutral impurities. More recent investigations (cf.

[4.69]) predict a weak temperature dependence for temperatures below
50K.

*
pN _ 0]041‘q'mn,p. (_2-. k.T +_];. ENn,p) (4'1_37)
P apefemge£-CN 3 'ENn,p 3 'k-T

with:

*

m £
ENp,p = 0,71lev-_ZrB. (22)2 (4.1-38)
Mg €
The mobility component due to neutral impurity scattering can be
combined with the mobility due to lattice, ionized impurity and
carrier—-carrier scattering with the Mathiessen rule. A more elaborate

treatment is not known at the moment.

Carrier Mobility Modeling
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LICN 1
= 4,.1-39
pan 1 + 1 ( )
LIC N
pan pan

The next effect we shall consider for mobility modeling is the
saturation of the drift velocity for high electric field. This effect
has to be accounted for by a reduction of the effective mobility since
the magnitude of the drift velocity is the product of the mobility and
the electric field component in the direction of current flow.

E-J

— *
vl = -p -0 (4.1-40)
SN
- E-J
Spl = p.2°R (4.1-41)
-
|3p]

However, the above given statement holds only if the diffusion
current component is negligibly small. clinstead of the electric
field component in the direction of current flow it is more
appropriate to use the magnitude of the gradient of the repective
quasi-Fermi potential, which to first order is the driving force for

the carriers (cf. section 2.3).

|¥n| ﬂ:-lgrad %, | (4.1-42)

|vp| P;- grad | (4.1-43)

The gradient of the quasi~Fermi potential points always in the
direction of the flow of the <corresponding current density. Note
also, that there arises a non-trivial problem when the inner product
of electric field and current density 1is positive in (4.1-40), or
negative in (4.1-41). Such a situation can locally arise in a device
when the diffusion current component dominates the drift current
component., The use of (4.1-42) and (4.1-43) has to be strongly
recommended as, probably, first pointed out in the various
publications of Engl et al., e.g. [4.41]. However, in most
publications the electric field is considered to be relevant for the
saturation of the drift velocity. The differences which arise in
simulation results between taking the electric field or the gradient
of the quasi-Fermi potentials as responsible for carrier heating are,
luckily, not very pronounced in many applications because the electric

field and the gradient of the quasi~Fermi potentials are almost

Carrier Mobility Modeling



Die approbierte gedruckte Originalversion dieser Habilitationsschrift ist an der TU Wien Bibliothek verfiigbar

The approved original version of this habilitation thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

- 110 -

parallel 1in «critical device areas. Therefore, the question of which
guantity to take is not really as important as it looks at £first
glance. In the following we shall use the symbols E  and E  for the

P
magnitude of the driving forces for electrons and holes, respectively.

In 1951 Shockley [4.114] derived theoretically probably the first
useful equation for the influence of <carrier heating on the drift
velocity and, thus, the mobility.

pLICN

PﬁICNE - n (4.1-44)

LICN

. ¥ *En
1, E'Jl s 3 (_n )2

2 2 8 Cs
Cs denotes the speed of longitudinal acoustic phonons
(~l,66-106cms-l). Thornber [4.129] has stated more recently that this

equation 1is very reasonable for not too large driving forces, which
was Shockley's intention. The drift velocity associated with (4.1-44)

does not saturate.

A widely used expression for mobility reduction due to carrier
heating reads:
LICN

YLICNE _ Pop (4.1-45)
n,p
' (1 + P yPn,p)1/fn,p
Ecrlt

Some numerical values which have been found in the literature for

the c¢ritical fields Eﬁrlt
r

temperature are summarized in Tab. 4.1-4.

and the exponent pn p for silicon at 300K
I

We shall not differentiate between carrier heating taking place
in the bulk of a semiconductor or in an inversion channel, which was
done intuitively some years ago. Recent experiments, e.g. [4.101},
indicate reliably that, if there is any difference at all, it is very
small. The former opinion is the reason, I suspect, why some of the
numerical constants published in the literature show an unexpectedly

pronounced scatter.

Carrier Mobility Modeling
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Egrit ﬁn Ecrit ﬁ reference
1 p p
[Vem ] [ ] [Vem ] [ ]
8,57 -10° 1,11 1,8 -10% 1,21 [4.19]
8,7 -10° 2,9 1,2 -10% 2,6 [4.25] for <100> material
1,4 -10% 2,8 [4.25] for <1l1> material
7,396-10° 1 2 -10% 1 [4.33]
8,0 -10° 2 1,95-10% 1 [4.54], [4.72]
2 104 1 [4.84], [4.85]
7,22 -10° 2 [4.89]
7,1 -10° 1,4 [4.135]

Tab. 4.1-4: Coefficients for velocity saturation of (4.1-15)

The temperature dependence of these coefficients for silicon has
been investigated in [4.19].
crit

\% T
E = 6,98-103" - 1,55
n ' o (3008 + Pn

1,11 T )0.66
300K (4.1~-46)

crit \Y T T
E =1,80-104" (- 1,68 1,21 (- )0.17
P ! o ‘3008’ + P 21 (sopr)

Thornber [4.129] has pointed out that (4.1-45) is 1incorrect to
use, although the formula is exceedingly simple and might have proven
to be useful. The value of the saturation velocity associated with
(4.1-44) can be calculated as:
ySat LICN pcrit (4.1-47)

n,p - ¥n,p "Fn,p

This means that the saturation velocity depends on, e.g.,
impurity scattering which is totally implausible by physical
reasoning. The experiments of Sabnis and Clemens [4.101] have clearly
demonstrated that the saturation velocity is almost independent of the
doping concentration. However, this problem can be easily overcome
[4.21] by eliminating in (4.1-45) the critical field in relation
(4.1-47) and introducing instead the saturation velocity as new
parameter.

LICN

4

pLICNE _ n,p (4.1-48)

n.p plICN &
(1 + (PP PP 1/ p

vsat
n,p

Numerical values for the coefficients viag and pn D for silicon

14 14

at 300K temperature are given in Tab. 4.1-5.
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viat ﬁn V;at ﬁp reference
[ems 1] [ ] [cms ™1 [ ]

1,1-107 2 3,5-10° 1 [4.21], [4.41]
1,0-10" 1 [4.34], [4.62]

Tab. 4.1-5: Coefficients for velocity saturation of (4.1-48)

Another formulation has been suggested by Scharfetter and Gummel
[4.106] and has been successfully used by various authors, e.g.
[4.47], [4.139], [4.131].

I
PLIE = pr (4.1-49)

*1 . pLTy2. (B/WLRN2 T E o
pL-g/(pL-n) + r pbeB

All guantities in (4.1-49) have to be imagined with index n or p
for electrons or holes. For PLI expression (4.1-23) is used. For the
constants A, F and B the following values have been recommended in

[4.106] for silicon at 300K temperature.

7,4-1032_
cm

v
Ap = 3’5'103Eﬁ , F, =8,8, By
(4.1-50)

o
i

e 3V = . 4V
p 6,1-10 i Fp 1,6 , Bp 2,510 =
Formula (4.1-49) is usually written in a different manner which
might be more familiar to some readers:

LI
PLIE = ¥ (4.1-51)

2
1+ I + (BB (B2
cref 4 Ci/s E/A + F B

Again all quantities, except CI, have to be imagined with index n
or p. However, (4.1-49) allows a nice interpretation of its
parameters. As Thornber [4.129] has already shown, this formula is
very attractive for several reasons. The term PL-B can be interpreted
as a saturation velocity which is independent of impurity scattering.
Using the original data of [4.106] these saturation velocities

evaluate to:

vt - 1, 04.107CM

n s
(4.1-52)

veat - 1 20.107°M

P s
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These values are gquite plausible. One probably would expect a
smaller value for the saturation velocity of holes. The term FL-A
represents a velocity which can be identified as an acoustic phonon
velocity. Such a quantity is responsible for the behavior of warm
carriers which 1is nicely reflected by (4.1-49). It can also be
expected that this velocity is to first order independent of impurity
scattering. The only modification which has to be recommended for
(4.1-49) 1is to replace the term pL-E by PLI-E in order to stay
consistent with the elaborate scattering scaling results of Thornber
[4.129]. By rewriting (4.1-49) with the above obtained interpretative
results we obtain:

LI
PLIE - ¥ (4.1-53)

LlI.m ac LI.
{1 + (p M d E)Z

2. ryoB
gac O GET g T Fovae) T (Eax

F in (4.1-53) 1is not straightforward to interprete by physical
reasoning; it should be considered as a fitting parameter. If
LI should be

calculated with any of the previously discussed

carrier~carrier scattering has to be taken into account, §

replaced by pLICN

models of preference.

ac sat

The temperature dependence of v and v
ac

is expected to be
fairly weak. In the case of v I am not aware of any results. By
interpretating the temperature dependent critical fields (4.1-46) of

[4.19] as the ratio of the saturation velocity vSat over the lattice

mobility PL we obtain:

vSat - 10750, ¢ T y=0,87
n s 300K
(4.1-54)
vSat _ g 37.106¢Mm. (T y-0.52

P s 300K

These values are very sound since, by theoretical investigations,

sat

one predicts a T—O'5 dependence [4.61] in v which is gquite close to

(4.1-54).

A different expression for the saturation velocity depending on
temperature has been suggested in [4.58].
2,4-107°0
ySat - s (4.1-55)

" 1+0,8 T )
cex O
1oe p(soox
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Several other formulae can be found 1in the literature for
modeling the influence of velocity saturation upon mobility. In
[4.6], [4.59], [4.60] expression (4.1-56) has been suggested for

electron mobility in silicon at 300K temperature,

pLI
poiE o n (4.1-56)
n i
2. ptllg
Ll n %2
2 2 sat
n
1,05-107Y_  [4.6]
cm
iat = (4.1-57)
1,18-107Y_  [4.59], [4.60]
cm

The associated saturation velocity (4.1-57) is properly attained
by (4.1-56). 1In [4.93], quite a similar expression has been used:

pLI
LI
priE - n (4.1-58)
n LI
2°p T -Ep
Ll s h
2 2 Vsat
n
However, this equation, although it makes use of a parameter
viat, does not attain a saturation velocity; from my point of view

this equation does not make any sense at all.

In [4.97] an equation has been proposed which should take care of
warm and hot carriers properly:
LT

P
inE - n (4.1-59)
I I
pelop, pelp,
i+_l_-\J1 + 0 o+ 2 2
2 2'VO VO

It is interesting to note that, although unfortunately not stated

in [4.97], the associated saturation velocity viat=vo-ﬂ_.
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Fig. 4.1-7 and Fig. 4.1-8 show the mobility versus driving force

E and E in silicon at 300K temperature for electrons and holes,

n
respectively. A lattice mobility of 1430 cm?v 1s™! for electrons and

480cm?v " ts™1  for holes has been assumed. Impurity scattering and

carrier-carrier scattering has been assumed to be negligibly small.
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line denctes the model of Scharfetter and Gummel (4.1-51);

the dashed line corresponds to the model (4.1-48) of
[4.21]; and the dot—-dashed line corresponds to the

(4.1-45) with parameters of Canali et al. [4.19].

The solid
with parameters
Caughey and Thomas

model

For GaAs the influence of velocity saturation is most frequently

modeled with the following expression:

E,) 3
gl o sat, ( n)
n n (ECTit)4
pEIE - _ n (4.1-60)
1+ 04
gCrit
n
Numerical values for the parameters of (4.1-60) at 300K
temperature have been compiled from literature data in Tab. 4.1-6.
viat Egrlt reference
[ems 1] [Vem™ 1]
8,5 -10° 4,0 -10° [4.13]
1,0 -107 4,0 -10° [4.32]
1,0 -107 2,691-10°  [4.66]
1,12-107 5,7 -10° [4.67]
7,5 +10® 4,0 -103  [4.80]
Tab. 4.1-6: Coefficients for velocity saturation of (4.1-60)
Alley [4.6) has used a slightly different relation.
( E
( 8 + 0,1+ ()5
( 3600
Cm. < 11027 ptl. cm
( cm n En
LIE _ | 8+ )3
o= 36007 (4.1-61)
( cm
(
E ; . 13887
E, » 11027V . ¢°n
( ®n 2 cm Pa Ep
Fig. 4.1-9 compares the model (4.1-60) with parameters of Laux
and Lomax [4.66] (solid line) with the model (4.1-61) (dashed line).
A zero field mobility of 7500cm?v " ts™1 has been assumed. Fig. 4.1-10

shows

the drift velocity for the same data together with experimental
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values by Ruch and Kino [4.98], [4.99]. These experimental results

have been verified with Monte Carlo calculations in [4.100].

Particularly for compound semiconductors like GaAs such heuristic
models can only qualitatively reflect the wunderlying phsyics. It
should not be expected that these models enable a satisfying
prediction of device performance for many cases. As pointed out in
section 2.3 the models for the current relations will have to be
refined in order to more accurately simulate miniaturized GaAs

devices.

The last scattering mechanism we shall discuss here 1is termed
surface scattering. This effect is of obvious fundamental importance
in all devices where current flow takes place primarily along a
surface of the devices. The most prominent devices of that category
are the MOS transistors. Theoretically, surface scattering is
comprised of a good many different mechanisms like surface roughness
scattering, scattering by interface charges, scattering by surface
phonons and various quantum effects. Although the application of MOS
structures has recieved a great deal of attention in recent years, the
problems associated with conduction at surfaces have not been
investigated as deeply as one would expect. Many physics oriented
investigations are carried out at low temperatures because the results
can be interpreted much more easily. Therefore, all models which are
presently used have been constructed on a fully empirical basis with a

scope to reflect the main experimental findings as well as possible.

One of the earliest models has been suggested by Yamaguchi
[4.139]. He has used the formula of Scharfetter and Gummel (4.1-51)
for impurity scattering and mobility reduction due to velocity
saturation and an additional factor to reduce the mobility in the
presence of an electric field component perpendicular to the current
flow direction.

LIES LIE 1

prIES =y

. (4.1-62)
n,p n,p

lEXEn,pl

crit =
En,p “|Tn,pl
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crit - 6,49-104Y_
n cm
(4.1-63)
gCrit - 1, 87.1047_
P cm

This model has been used and recommended by many others, too,
e.g. [4.33], [4.401, [4.41], [4.83], because it has been claimed that
excellent agreement with experimental results is obtained. However,

Thornber [4.129] has strongly criticized Yamaguchi's treatment using
sat
. n,p
is scaled with the same factor, obviously, as the mobility.

theoretical arguments. The saturation velocity v associated with

LIE
P

n,p
Sabnis and Clemens [4.101] have experimentally proved that surface

scattering 1is almost independent of the doping concentration. Cooper
and Nelson [4.30] have shown with elaborate measurements that the
influence of surface fields on the saturation velocity is relatively
small, which is in contrast to former opinions (cf. [4.58]) but which
is quite believable considering their experiments. Very careful
measurements on that subject have been published in [4.120}, too.
Thornber [4.129] has made a suggestion, which is well accepted today,
to use a relation of the form (4.1-64) for the total effective
mobility P*.

pro= PR pLINS LICN, B \), £, vSat(E)) ) (4.1-64)

LICNS combines the mobility due to lattice, ionized

The function
impurity, carrier-carrier and neutral impurity scattering with the
influence of surface scattering (El denotes the field component
responsible for surface scattering) to a cold carrier mobility, which
is then combined with the driving force (here denoted by EII) and the
saturation velocity which might be a function of E to the total
effective mobility P*. PLICNS
(4.1-62) as long as good agreement between simulated and measured
results 1is obtained. P* should be a function of the type (4.1-48) or
(4.1-53). Yamaguchi, as a matter of fact, has revised his model in a

later paper [4.140] by exactly following the suggestions of Thornber.

may have the functional form of

I have suggested the following expression for the influence of
surface scattering [4.109], [4.110].

ref
X + X €

pLICNS - pLICN. n,p (4.1-65)
n,p n,p ref
x + bn,p-xn'p
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x denotes the distance perpendicular to the interface. Directly
at the interface (x=0) the mobility is reduced by a factor 1l/b; at a
ref it is reduced by the factor 2/(l+b); and at greater
distance from the surface it naturally follows that the reduction

factor approaches unity. Xref represents a characteristic length

distance x=x

which describes the range of influence of the surface.

(@]
X
x;eg =__MP (4.1-66)
' 14 TP
Ecr1t
n,p
%% = 5.10-7em . ESTIY - 104V
n n cm
(4.1-67)
%% = 4-10-7cm , ©ESTIY = g.103V_
P P cm

This range is modeled as a function of the carrier driving force
(field component parallel to current flow or magnitude of the gradient
of the corresponding gquasi-Fermi potential). The formulation of Xref
produces a reduction in the range of influence of surface scattering
for greater driving forces, thereby velocity saturation appears.
Carriers already traveling with the saturation velocity can be
considered not to experience the influence of the surface as much as
cold carriers [4.71]. The parameter "b" in (4.1-63) describes the

strength of the influence of surface scattering.

"l
b = 2 4 4.1-68
n.P Eirit ( )
n,p
Ecrlt = 1,8'1052_. , Ecrlt = 3,8-1052_ (4.1-69)
ln cm lP cm

It is modeled as a function of El which can be the electric field
component perpendicular to current flow, or the electric field
component perpendicular to the interface, or, what I suggest, the
projection of the electric field component perpendicular to the
current flow direction onto the direction perpendicular to the
surface. The formulation of b rests upon the consideration that the
charge carriers are pressed against the surface by an electric field,
which results in a greater scattering, in such a way that a greater
mobility reduction occurs. Without any electric field we also observe

a mobility reduction due to surface roughness scattering (b=2).
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However, I am absolutely aware that (4.1-63) is a fully
phenomenological expression neither of which the structure nor the
associated parameters may be claimed to be correct in a theoretical
sense. It simply represents my experience which has been confirmed
over several years by many users of our simulation tools that an
expression with such a structure nicely reflects the experimental

observations.

There are plenty more suggestions on how to treat surface

scattering phenomenologically. The interested reader could have a
look at, e.g. [4.4], [4.11], [4.25], [4.42], [4.120], [4.134].

Carrier Mobility Modeling
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4,2 Carrier Generation-Recombination Modeling.

In section 2.2 we have introduced 1in a very formal manner a
quantity R which has been interpreted as a function describing the
balance of generation and recombination of electrons and holes. This
section is now devoted to the discussion of the physical phenomena
which have to be considered to derive models for R. The various
physical mechanisms responsible for generation/recombination will be
phenomenologically described, and their expected contribution to R

will be indicated.

Let us assume a homogeneously doped semiconductor which is in
thermal equilibrium with its ambient. Due to the thermal energy the
concentration of electrons and holes will continuously fluctuate
because of generative and recombinative processes. However, as the
semiconductor is in equilibrium, there will be a dynamic balance
between the generation and recombination rates, which leads to an
equilibrium concentration nj of electrons and P, of holes. These
concentrations are related by:

Ng°Po = niz (4.2-1)

n; denotes the intrinsic concentration which we have already
discussed in section 2.4. (4.2-1) 1is only appropriate for non
degenerate semiconductors; for moderate degeneracy, however, n. can be
replaced by nSay an effective intrinsic  concentration
(cf. section 2.4). When the semiconductor is excited by some external
stimulus, the balance between generation and recombination is
disturbed as the electron and hole concentrations depart from their
equilibrium values n, and p . If excess carriers have been generated,
recombination will prevail, whereas, if carriers have been removed,
generation will dominate, so that a steady state situation between

generation/recombination and the external stimulus is established.

Generation/recombination phenomena can be seen from two different
points of view: either from the energy levels between which the
various mechanisms take place or, directly, from the underlying
physical effect. Viewed in terms of energy levels, generation/
recombination may take place either in one step, which 1is termed
direct generation/recombination or in two or more steps which is

called indirect generation/recombination. In consideration of the
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physical mechanisms we divide generation/recombination into primarily
phonon transitions, photon transitions, Auger or three particle
transitions and impact ionization. In principle several more
mechanisms like transitions caused by plasma oscillations, excitons
and spin waves do exist, but these are usually not so important as the

ones cited above [4.77].

Phonon transitions take place primarily in two steps by way of
defects (traps). A theory of this effect has been established by
Shockley and Read [4.115] and Hall [4.51]. Therefore, the mechanism
is most freqguently termed Shockley~Read-Hall generation/recombination.

In detail four partial processes are involved.

SRH.a) electron capture: an electron from the conduction band is
trapped by an unoccupied defect which becomes occupied.

SRH.b) hole capture: an electron from an occupied trap moves to the
valence band and neutralizes a hole. The trap becomes
unoccupied.

SRH.c) hole emission: an electron from the valence band is trapped by
a defect, thus 1leaving a hole in the valence band and an
occupied trap.

SRH.d) electron emission: an electron from an occupied trap moves to
the conduction band. The trap becomes unoccupied.

By assuming that process SRH.a and SRH.b take place sequentially,
an electron-hole pair will only recombine with the help of a trap
which is occupied during the processes. Analogously, by assuming that
process SRH.c and SRH.d take place sequentially, an electron-hole pair
is only generated with the help of a trap which, again, 1is occupied
during the processes. We see nicely that the overall generation/

recombination process takes place in two steps with the aid of traps.

The traps can be characterized as follows. They are defects with
an energy level Et' a concentration Ne and capture cross sections K,
and Kp for electrons and holes, respectively. A trap 1is most
effective for generation/recombination if its energy level E_ is in
about the middle of the gap between valence band and conduction band.
This is easy to imagine by remembering the involved partial processes.
To generate an electron-hole pair, thermal energy is first consumed to

move an electron from the valence band to the trap (process SRH.c) and
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energy 1s again required to move the electron from the trap to the
conduction band (process SRH.d). The total energy required for such a
process 1is obviously independent from the energetic location of the
trap, which is the width of the band. However, the maximum energy of
the partial processes is obviously a minimum if the trap level |is
exactly in the middle of the band. We can, therefore, deduce that
impurities for the purpose of doping are very ineffective as
generation/recombination centers, because these are located
energetically close to one of the band edges in order to be effective
as doping centers. These impurities are frequently called "shallow"
impurities whereas impurities which are put into a semiconductor to
increase the recombination rate (like gold in power devices) are
termed "deep" impurities. Some deep impurities lead to multiple
energy levels but one of these levels dominates the carrier

generation/recombination in most cases [4.92].

With the above given phenomenological description of the
generation/recombination mechanism it 1is rather straightforward to
derive for single 1level traps an expression for the purpose of

simulation. Following the ideas of Shockley et al. we assume the
SRH SRH SRH SRH SRH SRH

rates Ccn R Cen R Ccp and Cep R Ccn R Ccp are the capture rates for
electrons and holes per electron and hole, respectively, when all
traps are unoccupied. CzﬁH, CigH are the emission rates for electrons

and holes per electron and hole, respectively. Let further ft denote
the fraction of traps which 1is occupied. Then we may write the

capture rates per unit volume for electrons and holes as:

SRH SRH
RO = Copone (1 - f£y) (4.2-2)
SRH SRH
R = C ‘p-£f 4.2-3

Analogously we may write the emission rates per unit volume for

electrons and holes as:

GORH _ oSRH ¢ (4.2-4)
n en
SRH SRH
GSRH - oSRH. (1 _ ¢ 4.2-5
: S - £p) (4.2-5)

The total generation/recombination rate evaluates to (4.2-6)
since electrons and holes always act in pairs, and, thus, their net

generation/recombination rate must be identical. This statement will
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not hold for transient situations where the carrier densities change
rapidly [4.26]. However, as there are no results available on that
subject which could be used for device modeling, we have to leave that

problem open.

RSRH - RSRH _ GSRH - RSRH _ GSRH (4.2-6)
n n P p
In thermal equilibrium where we have no net generation/

recombination it follows that the capture rates of electrons and holes
must be equal to the corresponding emission rates, which enables us to

calculate, for instance, the emission rates:

1 - f
SRH - SRH. -—_—tg —
Can = Cop Do Fig (4.2-7)
SRH SRH fio
C = (4.2-8)

ep Ccp Po'T =g

Index "o" indicates equilibrium gquantities., It is very
convenient to define densitites ny and Pyt

Nl = nor—g— (4.2-9)

P1 = Po'i—:—fzg (4.2-10)

With these definitions the net generation/recombination rates

become:
S S —4 S L] L] — -~ L ] —
Rn - Gn = Ccn (n- (1 fi) ny-f¢) (4.2~11)
SRH SRH SRH
R - G = C . ofy - -(1 - £ 4,.2-12
D D cp (pef¢ p1-( £)) ( )

These two rates are equal so that we can calculate the fraction

of occupied traps ft'

n-coR 4 pl'C2§H
fr = —=mm SRAE (4.2-13)
Ccn *(n + nqy) + Ccp (p + p1)

The net generation/recombination rate RSRH is therefore given by

the following equation:
. 2
n‘p - n
RSRH - - (4.2-14)
tp' (n + n]_) + tn' (p + Pl)

withs
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1
tP" SRH
cp

(4.2-15)

O

1
SRH
cn

(4.2~-16)

!

It is very common to define carrier lifetimes tn and tp as
reciprocals of the corresponding capture rates per single carrier.

The capture rates can be assumed quite generally to be expressed as:

SRH
Co o = KpeventNe (4.2-17)
SRH

Cop = Kprven'Ne (4.2-18)

n
sections for electrons and holes; Vin is the thermal velocity; and Nt

K and Kp denote, as already mentioned, the capture cross

is the concentration of traps. As long as the trap density Nt remains
independent of doping, the lifetimes tn' tp do not vary with doping.
However, at high doping concentrations additional generation/
recombination centers can be created. In the literature one can find
empirical expressions of the following type for the doping dependence
of the lifetimes, which are claimed to fit experimental findings.

_ tho .
Th = Np * Np (4.2-19)
14—
yret
n

} Tpo .
T = o T (4.2-20)
1+ ——

ref
p

N

and N;ef, N ref are

Numerical values for the parameters tno' t P

po
compiled from literature data in Tab. 4.2-1.
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ref ref
tno Nn“3 tpo Np_3 reference
[s] [em 7] [s] [em 7]
5,0 -107° 5,0-101° 5,0 «107° 5,0-10%° [4.33]
-4 15 -5 15
3,94-10 7,1+10 3,94-10 7,1-10 [4.36]
3,95-10"%  7,1.10%° 3,52-107° 7,1-10%° [4.43], [4.137]
4,0 1074 7,1.10%3 [4.44]
1,0 -1072  3,0-10%7 1,0 1072 3,0-10%7 [4.78]

Tab. 4.2-1: Coefficients for (4.2-19), (4.2-20)

Similar expressions for the doping dependence of the lifetimes
like:

Nref

o n,p a

Yp = Yo Gy Fwg VP ¢ 043 < @np <06 (4.2-21)

can also be found in the literature, e.g. [4.1], [4.41].

In the derivation of (4.2-14) it has been assumed that the number
of available traps is much larger than the number of carriers involved
in a generation/recombination process. Furthermore, the time of
readjustment of an electron in a trap once it 1is trapped has been
assumed to be negligibly small. Dhariwal, Kothari and Jain [4.37]
have investigated these problems and they have obtained a very nice
result.

RDKJ = . (4.2-22)

tp-(a-n + beny) + tn-(b-p + a-py) + c-(n*p - nj2)

withs
dt,
a=l+a‘—t—'|—n

dey
Lo,
dt, + deg
N

(4.2-23)

o
]

I shall not review in detail the derivation of (4.2-22), but we
shall perform a qualitative discussion. Jtn, Jtp denote the times of
transition for an excited electron in a state close to the conduction,

valence band to the trap level. Jt'n, Jt'p are the times for
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transition in the reverse direction. If the transitions are
infinitely fast we obtain a=b=1 and c¢=0 (cf. [4.37]) and (4.2-22) 1is
identical to (4.2-14), the original Shockely~-Read-Hall formula. t;,

t; are then also equivalint *to (4.2-15), (4.2-16). The general
formulae for the lifetimes tp’ tp are more complex; however, as one
preferably uses experimental data for calibration due to the
uncertainty in the values of various "theoretical" gquantities involved
in the formulae, a discussion will be skipped. The most attractive
feature of (4.2-22) compared to (4.2-14) 1is the saturation of
recombination for large carrier densities. Such a saturation will,
obviously, happen; for instance, it can play a role in devices where
breakdown is retarded by extraordinarily strong recombination [4.105].
However, I am not aware of any simulations which have corroberated
this effect.

The next physical mechanisms we have to consider for generation/
recombination are photon transitions. This mechanism takes place
primarily in one step; it is thus a direct generation/recombination

mechanism., There are two partial processes involved.

OPT.a) an electron loses energy on the order of the band gap, which is
emitted as a photon, and moves from the conduction band to the
valence band (radiative recombination).

OPT.b) an electron gains energy from incident photons and moves from
the valence band to the conduction band (optical generation).

This effect 1is important for narrow gap semiconductors and
semiconductors whose specific band structure allows direct transitions
like GaAs [4.57]. 1In silicon and germanium band to band generation/
recombination is insignificant for all imaginable conditions. An

expression for modeling is easy to derive. By assuming a capture rate

CSPT and an emission rate Cng, the involved partial processes can be
written:
OPT OPT
Rnp = Cc ‘n*p (4.2-24)
OPT _ ,OPT -~
an = Ce (4.2-25)
These rates must be equal in thermal equilibrium so that:
OoPT _ OPT ) _
Ce = C_ nj (4.2-26)

Carrier Generation~Recombination Modeling
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The total band to band generation/recombination is the difference
of the partial rates, which evaluates to:

ROPT - CSPT. (n*p - ni2) (4.2-27)

T

Some guidelines on how to evaluate the capture rate Cgp can be

found in, e.g., [4.117].

The next physical mechanisms for generation/recombination we
shall consider here are Auger or three particle transitions. The
partial processes involved in Auger recombination are still a matter
of investigation (cf. [4.45], [4.64], [4.132]) and only more or less
gualitatively understood. However, gualitatively the partial

processes will take place about as follows.

AU.a) electron capture: an electron from the conduction band moves to
the valence band, transmitting the excess energy to another
electron in the conduction band. In the wvalence band the
electron recombines with a hole.

AU.b) hole capture: an electron from the conduction band moves to the
valence band transmitting the excess energy to a hole in the
valence band, which moves away from the valence band edge. The
electron recombines with a hole.

AU.c) electron emission: an electron from the valence band moves to
the conduction band by consuming the energy of a high energetic
electron in the conduction band and leaving a hole in the
valence band.

AU.d) hole emission: an electron from the valence band moves to the
conduction band by consuming the energy of a high energetic hole
in the valence band. A hole is left at the valence band edge.

In any of these partial processes three carriers are involved.
In process AU.a and AU.c these are two electrons and one hole; in
process AU.b and AU.d these are one electron and two holes. However,
these processes describe only the direct band to band Auger
generation/recombination. More recent investigations [4.107] indicate
that trap assisted partial processes have a higher probability than
direct band to band processes. This changes the partial processes
AU.a to AU.d such that the carriers move from one of the bands to a
trap instead to the other band. As additional partial processes the
Shockley-Read-Hall transitions which we have formerly discussed will

Carrier Generation-Recombination Modeling
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interfere. A fully consistent treatment of the interaction of trap
assisted Auger generation/recombination and Shockley—-Read-Hall
generation/recombination has been carried out 1in {4.45]. The
influence of a specific band structure of a semiconductor upon Auger

generation/recombination has been reviewed in [4.27].

The partial processes AU.c and AU.d are refered to in many
textbooks as impact ionization which is stated to be the antagonism of
Auger recombination. However, this is wrong or at 1least enormously
inexact. To clarify the situation we have to consider the rates per
unit volume of the partial processes AU.a to AU.d.

RAU = chYin2.p (4.2-28)
RSU - cﬁg-n.pZ (4.2-29)
¢tV = 2V.n (4.2-30)
GSU = czg-p (4.2-31)

Rate RﬁU corresponding to the partial process AU.a is
proportional to the square of the electron concentration times the
hole concentration with the Auger capture coefficient for electrons.
Similarly RSU corresponding to partial process AU.b is proportional to
the electron concentration times the square of the hole concentration
with the Auger capture coefficient for holes. Rate Gncorresponding to
partial process AU.c is proportional only to the electron density with
the Auger emission coefficient <£for electrons. Here 1is a big
difference to impact ionization, the corresponding generation rate of
which would be proportional to the electron current density instead of
the electron concentration. That means Auger generation may take
place in regions with a high concentration of mobile carriers with
negligible currrent flow, whereas impact ionization requires non
negligible current flow as a prerequisite. Some practical
implications of that statement on the operation of MOS devices have

been given in [4.71]. Finally, rate GSU corresponding to partial
process AU.d 1is proportional only to the hole density with the Auger
emission coefficient for holes. The same statement of comparison

between Auger generation of holes and impact ionization of holes is
valid as given above for electrons. However, I have to admit that
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viewed microscopically there is no difference between Auger generation
and impact ionization. The enormous difference lies in the source of

energy for the partial processes as I have outlined above.

In thermal equilibrium no generation/recombination exists so that
we can calculate the Auger emission rate by equating (4.2-28) to
(4.2-30) and (4.2-29) to (4.2-31).

chU = AU, 4.2 (4.2-32)
en cn

chU = AU.p, 2 (4.2-33)
ep  cp

The total net Auger generation/recombination rate is the sum of

the net rates for electrons and holes.

AU - oAU _ AU AU _ AU -
R Rn Gn + Rp Gp (4.2-34)
If we substitute the partial rates (4.2-28) to (4.2-31) and the
Auger emission coefficients (4.2-32), (4.2-33) 1into (4.2-34) we
obtain:
AU = (cBU. AU v .oinep - n:2 -
R (Ccn n + Ccp p)*(n*p ni<) (4.2-35)
The numerical values of the Auger capture coefficients Cig and
Cig show a remarkable scatter in the literature. Quite frequently

used in modeling programs are the data of Dziewior and Schmid [4.39]

which are summarized in Tab. 4.2.-2.

temperature ng CAg
[K] [cm s_l] [cmgs-l]
77 2,3-10731  7,8.10732
300 2,8-1073Y  9,9.10732
400 2,8-10731 1,2.10731

Tab. 4.2-2: Auger coefficients in silicon

The temperature dependence of the Auger coefficients is fairly
weak as we can deduce from Tab. 4.2-2. An extensive collection of
Auger coefficients from literature data can be found in [4.132]. The

dependence on doping concentration is speculated also to be weak.

As excellent reviews about the present understanding of the
generation/recombination mechanisms we have treated so far, [4.45],
{4.52], [4.132] can be recommended.

Carrier Generation-Recombination Modeling
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In addition to generation/recombination in the bulk of a
semiconductor, electrons and holes may also be generated/recombined at
surfaces. The rate of surface generation/recombination can even be
much greater under some conditions than the bulk generation/
recombination rate. For the purpose of modeling one usually assumes a
formula which is structurally equivalent to the Shockley-Read-Hall

expression for bulk generation/recombination.

n'p - nj? _
RSURF = _ " -4 (%) (4.2-36)

-S—p-'(n + np) + s—r-l-- (p + p1)

sp and s, denote the surface recombination velocities for
electrons and holes, respectively. Their numerical values are on the
order of lOOcmz/s. It is more established to use velocities instead
of 1lifetimes for surface generation/recombination. J(§ Y is the
Dirac-delta function and X =0 denotes the surface. This means surface
generation/recombination is only existing exactly at the surface. The
transition between surface generation/recombination and bulk
generation/recombination has not been implemented in any modeling
program, as far as I know. However, theoretically it 1is not fully
clear what one should expect; some considerations are given in [4.90],
[4.117]. My suggestion, which a few others agree to, e.g. [4.65], is
that one should not treat generation/recombination phenomena at
surfaces differently than in bulk material, but one should care more
thoroughly about the various generation/recombination parameters at
surfaces. (4.2-36) obviously reflects an indirect generation/
recombination mechanism with just a different interpretation of the
capture rates (cf. (4.2-15) to (4.2-18)) in comparison with (4.2-14).

The last physical mechanism we shall discuss in the context of
generation/recombination modeling 1is impact ionization. This effect
is a pure generation process which, as already mentioned, is seen to
be microscopically identical to the Auger generation process. Two

partial processes have to be considered.

II.a) electron emission: an electron from the valence band moves to
the conduction band by consuming the energy of a high energetic
electron in the conduction band and leaving a hole in the
valence band.

II.b) hole emission: an electron from the valence band moves to the
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conduction band consuming the energy of a high energetic hole in
the valence band. A hole is left at the valence band edge.

These partial rates can be written:

Inl
II _ ] n -
G = = @ 3 (4.2-37)
Ipl
IT l p
G = g o 4.2-38
p D 3 ( )
The total rate is simply the sum.
RII = -gIT . gIT (4.2-39)

n P

n
defined as generated electron-hole pairs per unit length of travel and

o and dp are the ionization rates for electrons and holes

per electron and hole, respectively. For instance, an electron
generates over a distance l/dn one electron~hole pair on average. The
energy which is consumed from the 1ionizing carrier 1is termed
ionization energy or threshold energy for ionization E,. This
gquantity has been a topic of many investigations in the past years

with absolutely nonunique results (cf. summary in Tab. 4.2-5,
Tab. 4.2-6). Similarly, the theoretical results for the ionization
rates dn' dp are not unique. However, both theoretical and

experimental investigations indicate a good approximation to be an
exponential dependence of the ionization rates upon the electric field

component E in direction of current flow.

Ecrit
o, = cff-exp(- (— )pn) (4.2-40)
Ecrit
¢, = o> 2 Po 4.2-41
p = € exp(- (—g—)'P) (4.2-41)

The exponents Pn, P_ are found in the range [1,2]. As a matter
of fact fairly early theoretical considerations by Shockley [4.116]
predict the exponents to be one, which has been also the very old
experimental finding by Chynoweth [4.24]. A different treatment by
Wolff [4.138] predicts the exponents to be two. Numerical values for
the coefficients of (4.2-40) and (4.2-41l) compiled from 1literature
data are summarized in Tab. 4.2-3 for electrons and in Tab. 4.2-4 for

holes.
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material dﬁ) Egrit ﬂn reference
[em 1] [vem ™1 [
si 1,0 -10° 1,66-10° 1 [4.39] 1,1-10°V/cm <E< 5-10°V/cm
6,2 -10° 1,08-10° 1  [4.49] 2,4-10°V/cm <E< 5,3-10°V/cm
1,28-10° 2,54-10° 1 [4.63] E< 5-10°V/cm
1 -10° 5,87-10° 1 [4.63] E> 5-10°V/cm
1,6 -10° 1.65-10° 1 [4.76] 2-10°V/cm <E< 6,7-10°V/cm
3,8 -10° 1,75-10° 1 [4.122], [4.123]
2,2 -+10% 1,54-10° 1 [4.124)
7 +10° 1,4 -10% 1 [4.131]
7,03-10° 1,231-10° 1 [4.133] 1,75-10°V/cm <E< 6-10°V/cm
GaAs 2,0 -10° 2,0 -10° 1 [4.6]
2,994-10° 6,848-10° 1,6 [4.18] 2,22-10°V/cm <E< 6,25-10°V/cm
3,5 -10° 6,85-10° 2  [4.122]
1,34:-10% 2,03-10° 2 [4.123]
Ge 1,55-107 1,56-10° 1 [4.118]
1,55-107 1,56-10° 1 [4.122], [4.123]
Tab. 4.2-3: Constants for impact ionization of electrons
material d;’ Egrit Pp reference
[em 1) [vem™1 [ ]
si 2,0 -10° 1,98-10° 1 [4.49] 2,4.10°V/cm <E< 5,3:10°V/cm
5,5 +10° 1.65-10° 1  [4.76] 5-10°V/cm <E< 8-10°V/cm
1,0 -10% 1,66-10® 1 [4.82] 1,1-10°V/cm <E< 5-10°V/cm
2,25-107 3,26-10% 1 [4.122], [4.123]
1,0 -10% 2,22-10° 1 [4.124]
1,3 -10° 2,09-10° 1 [4.131] E< 6,07-10°V/cm
4,4 -10° 1,4 -10° 1 [4.131] E> 6,07-10°V/cm
1,582-10% 2,036-105 1  [4.133] 1,75-10°V/cm <Eg 4-10°V/cm
6,71-10° 1,693-10° 1  [4.133] 4-10°V/cm <E< 6:10°V/cm
GaAs 2,215-10° 6,57-10° 1,75 [4.18] 2,22-10°V/cm <E< 6,25+10°V/cm
3,5 -10° 6,85-10° 2  [4.122]
1,34:10° 2,03-10° 2 [4.123]
Ge 1,0 .10’ 1,28-10° 1  [4.118], [4.122]
1,0 -10% 1,28-10° 1 [4.123]
Tab. 4.2-4: Constants for impact ionization of holes
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Investigations by Baraff [4.12] have predicted that these
theories can be interpreted as the two limiting cases of a much more
rigorous model. For low fields Shockley's model is more appropriate,
whereas for high fields Wolff's model 1is asymptotically correct.
Baraff's results can, unfortunately, not be given in closed form; they
have been obtained by a numerical solution of the Boltzmann transport
equation, however, restricted to the assumption of an unrealistic band
structure. However, a universal plot for both electrons and holes has
been presented, which shows

E, Ej

@A = f( Bl ' AT

A is the mean free path between collisions with high energetic

(4.2-42)

phonons; E_ is the average loss of energy defined per such collision;

r
and E;, denotes the ionization energy, as already defined. Numerical
values collected from miscellaneous publications are summarized 1in

Tab. 4.3-5 for electrons and in Tab. 4.3-6 for holes.

material A E, E; reference
[nm] [eV] - [eV]
Si 6 0.063 1,68 [4.5]
1,1 [4.7]
6,2 0,063 [4.31]
1,4 [4.53]
6,9 0,61 1,6 [4.68]
7,0 1,5 [4.75]
1,8 [4.76]
4,8 0,051 1,1 [4.86], [4.87]
4,8 0,053 1,1 [4.88]
5,0 0.063 1,1 [4.116]
1,8 [4.126]
GaAs 3,5 0,035 2,15 [4.5]
1.7 [4.7]
3,5 0,036 [4.31]
1,5 [4.53]
3,3 0,022 1,7 [4.86), [4.87], [4.88]
2,0 [4.126]
Ge 6,5 0,037 1,01 [4.5]
0,8 [4.7]
6,5 0,036 [4.31]
0,91 [4.53]
3,6 0,019 0,8 [4.86]
3,9 0,019 0,8 [4.87]
3,9 0,022 0,8 [4.88]

Tab. 4.2-5: Constants for impact ionization of electrons
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material A Er Ei reference
[nm] [eV] [eV]
Si 1,8 [4.7]
3,8 0,063 [4.31]
1,6 [4.53]
4,4 0,61 1,6 [4.68]
1,0 3,5 [4.75]
2,4 [4.76]
4,4 0,051 1,8 [4.86]
4,7 0,051 1,8 [4.87]
4,7 0,053 1,8 [4.88]
0.063 1,1 [4.116]
GaAs 1.4 [4.7]
3,5 0,036 [4.31]
2,7 [4.53]
3,3 0,022 1,7 [4.86), [4.87], [4.88]
Ge 0,9 [4.7]
6,5 0,036 [4.31]
1,3 [4.53]
4,7 0,019 0,9 [4.86]
5,1 0,019 0,9 [4.87]
5,1 0,022 0,9 [4.88]

Tab. 4.2-6: Constants for impact ionization of holes

Baraff's universal curves have been approximated with compact
formulae so that an application for the purpose of simulation is
facilitated. Crowell and Sze [4.31] have proposed the following

expression:

@A = exp( Co(r) + Cp(r)-x + Co(r)-x2 ) (4.2-43)
with:
Colr) = -1,92 + 75,5-r = 75712
Cy(r) =1,75+10"2 - 11,9+r + 46-r2 (4.2-44)
Co(r) = 3,9-1074 - 1.17-r +11.5-r2
where:
Er
r=E—I
(4.2-45)
Ej
x=
q'A'E

This approximation is claimed to be accurate within two percent
maximum error over the range r€[0.01,0.06] and x€[5,16]. A more

accurate approximation has been given in [4.121]:
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@A = exp( Co(r) + Cp(r)ex + Co(r)-x2 + C3(r)-x3 ) (4.2-46)
with:
Co(r) = -7,238:1072 - 51,5°r + 239.6°r2 + 3357-r3
Cy(r) = -0.4844 + 12,45+r + 363-r2 - 5836-r3
(4.2-47)
Cp(r) = 2.982°10"2 - 7,571-10"2-r - 148,1-r2 + 1627-r3
C3(r) = -1.841-107> - 0.1851°r + 10,41-r2 - 95,653

This approximation fits Baraff's curves perfectly over the range
re[0.01,0.07] and x€[3,14]. The result is shown in Fig. 4.2-1. The
guestion, obviously, remains if these theoretically obtained results
agree with experimental results. An answer to this question is, most
unfortunately, not easy. The measured results of Lee et al. [4.94],
for instance, agree nicely with Baraff's results when the numerical
values for 1, Er and Ei are taken from [4.31]. The experimental
results of, e.g. Van Overstraeten et al. [4.133] and Grant [4.49],
would require totally unrealistic values for A, Er and Ei to agree
with Baraff's results. On the other hand, in, e.g. [4.104], [4.118],
[4.128] the ionization rates of Van Overstraeten et al. have been
used, whereby good agreement between experimental and simulation
results on device breakdown phenomena has been obtained. The
influence of the models for the ionization coefficients upon simulated

device performance can be indeed very pronounced [4.2].

Chwang et al.[4.23] have rigorously obtained the same results as
Baraff with a completely different approach for the calculation,

however, with essentially the same assumptions.

Thornber [4.130] has suggested an empirical expression which has
been proved to be consistent with an elaborate momentum and energy

scaling theory.

d = Ef-exp(— i ) (4.2-48)
Ej keT-Fy E2
—=—= + E +

Ej Fr

Fj and F . are interpreted as threshold fields describing the
field at which the ionization energy is reached in one mean free path
and the field at which the phonon energy is reached in one mean free
path (cf. [4.130]). (4.2-48) includes the asymptotic behavior of the

Carrier Generation-Recombination Modeling



Die approbierte gedruckte Originalversion dieser Habilitationsschrift ist an der TU Wien Bibliothek verfiigbar

The approved original version of this habilitation thesis is available in print at TU Wien Bibliothek.

thelo

(]
lio
nowledge

b

°
i
r

M YOU

- 136 -

ionization rate, which has been predicted by Baraff. Thornber
believes that (4.2-48) 1is the first simple, physical, analytical
expression for the ionization coefficient wvalid for all fields.
However, by fitting this expression to the experimental data of, e.g.
[4.49], [4.133], Thornber himself has obtained unexpected large values

for the ionization energies.

Okuto and Crowell [4.88] have proposed an empirical expression
which are supposed to fit the theoretical results of Baraff as well as

measurements.

T (4.2-49)
b3gg* (1 + d'(ﬁ - 300K))

E

T
@ = ajzgg°- (1 + c~(E - 300K)) *E-exp (- ( )2)

The coefficients of formula (4.2-49), which 1is temperature

dependent, are summarized in Tab. 4.2-7.

material a399 b3091 c d
[v ~] [Vem ] [ ] [ ]
si 0,426 4,81-10° 3,05-10"% 6,86-10"% electrons
0,243  6,53-10° 5,35-10"% 5,87-107° holes
GaAs 0,294 5,86-10° 8,5-10 ° 7,17-10"% electrons and holes
Ge 0,569 3,32-102 6,33-10": 9,34-10‘2 electrons

0,559 2,72-10 7,87-10" 8,82-10 holes

Tab. 4.2~7: Coefficients of (4.2-7)

Fig. 4.2-2 and Fig. 4.2-3 show the ionization rates for electrons
and holes in silicon at 300K temperature, respectively. The solid
line corresponds to the data of Van Overstraten et al.[4.133]; the
dashed 1line denotes the data of Grant [4.49]; the dot-dashed line
corresponds to the model of Okuto and Crowell (4.2-29); and the dotted
line has been calculated with the approximation (4.2-46) to Baraff's

model with parameters from [4.31] and [4.53].

Fig. 4.2~4 and Fig. 4.2-5 show the ionization rates for electrons
and holes in GaAs at 300K temperature. The solid line corresponds to
the data of Bulman et al. [4.18]; the dashed line denotes the data of
Sze and Gibbons [4.122]; and the dotted 1line has been calculated,
again, with the approximation (4.2-46) to Baraff's model with

parameters from [4.7] and [4.31].
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Recently attempts have been made to calculate the impact
ionization coefficients by Monte Carlo methods taking into account a
realistic band structure [4.112)}, [4.113], [4.125]. This interesting
work, however, is subject to considerable controversy [4.20], [4.56].

One problem which arises in the context of impact ionization in
very small devices and for low bias applications is the dark space
phenomenon. In regions of a device with a large gradient of the
electric field component parallel to current flow all models of impact
ionization which we have discussed can be expected to overestimate the
ionization rates. The carriers first have to gain an energy on their
path through the device which is larger than the threshold energy for
ionization before impact ionization can take place. The ionization
rate at a specific place, thus, will depend, qualitatively spoken, not
only on the local field, but also upon the field distribution in that
vicinity. Therefore, the dark space phenomenon is frequently termed a
non-local effect, e.g. [4.87]. A rigorous treatment of this and
related phenomena [4.111] with models consisting of pure differential
equations is impossible; it is also inconsistent with the usually
assumed current relations because for their derivation moderate
gradients for the electric field have been assumed (cf. section 2.3)).
It has to be stated that much more experimental and theoretical
investigations have to be carried out in order to understand the many

detailed effects of impact ionization.

Finally, it should be noted that for the purpose of device
modeling the individual generation/recombination rates are usually
added up in the most simple manner.

R = RSRH 4 ROPT ; RAU ; RSURF 4 RII (4.2-50)

Interaction phenomena between the various mechanisms which
obviously do exist are fully ignored in (4.2-50). A more concise
treatment of interaction phenomena as demonstrated 1in [4.45] for
Shockley-Read-Hall and trap assisted Auger generation/recombination
can be expected to contribute to a great extent to answering many of

the open questions.
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4.3 Thermal Conductivity Modeling.

Most currently available models for the thermal conductivity of
silicon and germanium are based on the early measurements of
Glassbrenner and Slack [4.48]. The same authors have also presented
theoretical investigations which led to the following formula for the
thermal conductivity in semiconductors.

1

k(T) = 5 (4.3-1)
a+ b'T+ c-T

The constants a,b and ¢ are summarized for silicon and germanium
in Tab. 4.3-1. The agreement between measured thermal conductivity
values and the results of (4.3-1) is within five percent for silicon
and germanium in the range T€[250,1000]K and T€E€[50,700]K,

respectively.

Si Ge dimension

a 0,03 0,17 vla=lenm

b 1,56-1073 3,95.1073 v la~lcpr~?
1,65-107% 3,38.107% v la~lcmk™2

Tab. 4.3-1: Coefficients for (4.3-1)

Quite frequently one can find for the purpose of device
simulation a simple power law for the thermal conductivity in silicon,
e.g. [4.1], [4.22], [4.46].

VA T .
- e ® PR, -4 3 -
k (T) 1,5486—* (355%) / (4.3-2)

(4.3-2) 1is a fairly good approximation to (4.3-1l) as can be seen
from Fig. 4.3-1. The solid 1line corresponds to (4.3-1); and the
dashed line denotes (4.3-2).

The thermal conductivity of heavily doped semiconductors
(>10190m_3) might be expected to be higher than of pure material
because of the large number of carriers available for transporting
heat. The opposite is true (cf. [4.74]). Measurements indicate that
the thermal conductivity is lowered by as much as thirty percent 1in

the presence of a high doping concentration.

A critical review of published data on the thermal conductivity
of silicon, germanium and III-V compound semiconductors has been

presented by Maycock [4.74].
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4.4 Thermal Generation Modeling.

Heat generation has been modeled in various ways in the

literature. The simplest form has been used by, e.g., Gaur and Navon
[4.46].
H= (Jy + Jp)E (4.4-1)

However, this expression is inappropriate for general application
because it predicts heat sinks in device regions where the inner

product of total current density and electric field is negative.

Adler [4.79] has suggested a formulation which is more sound.

EC —_ EV —
H = div (—+Tp + —+Jp) (4.4-2)

Ec and EV are the conduction band edge energy and the wvalence
band edge energy, respectively. This formulation takes into account
the energy loss/gain to the lattice through recombination/generation

as one can see by expanding the "div" operator.
1 1 _
H = g'Jn-grad E¢ + g Jp'9rad Ey + R (Eg - Ey) (4.4-3)

R stands for the recombination/generation rate; and the
difference E<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>