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Abstract

English

The aim of this thesis was to show that the combination of the Virtual Magnet Method and
Topology Optimization Method can be applied together for different geometrical settings.
It could be shown to use both for 2D geometries such as sextupole, quadrupole mag
net, magnetic refrigeration and a simplified motor model, all using permanent magnets.
Furthermore, the combined approach was used to demonstrate it works for more com
plex models. So it was applied on a partly existing COMSOL Multiphysics model of a 2D
permanent magnet synchronous motor model, where it was used to design an own rotor
model by using the combined approach. The torque and air gap flux density of the motor
was analyszed, as well as their harmonics. Comparable results were achieved, compared
to the original existing model of an embedded permanent magnet rotor. In conclusion, this
opens possibilities to use this approach for more diverse analysis for permanent magnet
optimization.

German

Das Ziel dieser Arbeit war es zu zeigen, dass die Kombination der Virtual Magnet Meth
ode und der TopologyOptimierungsmethode für verschiedene geometrische Gegeben
heiten zusammen angewendet werden kann. Es konnte gezeigt werden, dass beide für
2DGeometrien wie Sextupol, Quadrupolmagnet, magnetische Kühlung und ein verein
fachtes Motormodell, die alle Permanentmagnete verwenden, verwendet werden kön
nen. Außerdem wurde der kombinierte Ansatz verwendet, um zu zeigen, dass er auch
für komplexere Modelle funktioniert. So wurde er auf ein teilweise vorhandenes COMSOL
MultiphysicsModell eines 2DPermanentmagnetSynchronmotors angewandt, wo er zur
Auslegung eines eigens designten Rotors unter Verwendung des kombinierten Ansatzes
verwendet wurde. Es wurden das Drehmoment und die Luftspaltflussdichte des Motors
sowie deren Oberschwingungen analysiert. Es wurden vergleichbare Ergebnisse erzielt,
verglichenmit dem ursprünglichenModell eines eingebetteten PermanentmagnetRotors.
Dies eröffnet die Möglichkeit, diesen Ansatz für vielfältigere Analysen zur Optimierung von
Permanentmagneten zu nutzen.
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1 Introduction
1.1 Motivation and Problem definition
The importance of permanent magnets ranges from their use in industry, different ap
plications of energy conversion and conservation. As many of them are reliant on the
energy product of the magnets, which strongly depends on certain characteristics of the
magnets, there is a strong interest in investigation of optimized permanent magnets and
researching for improved versions.

First mentions of magnetic materials was the socalled lodestone, basically consisting out
of magnetite, Fe3O2. In its natural appearance, it shows a magnetic state. This stone was
used in the ancient days to magnetise iron needles, mainly used for compasses, which
was the first reported use of artificially created magnets.
William Gilbert started reporting three different ways of producing artificial magnets, start
ing in the 17th century, followed by Sturgeon in the 19th century, who invented electro
magnets. He showed through experiments with different alloys that their properties are
reasoned not only by their constituents’ properties. Further investigations of magnetic ma
terials were made in Japan, as well as Germany and England. Heusler discovered alloys,
which appeared to show better properties than magnets at this time, therefore named
Heusler alloys. Japanese scientists Takei and Kato invented magnets out of powdered
oxides, which can be seen as vanguards of ferrite nowadays [1].

There are growing appeals for increasing the energy product, already started in the 20th

century with upcoming new forms of permanent magnets such as ferrite or rareearth
intermetallic compounds. The increasing value of energy product as well as ratio between
coercivity and magnetism lead to new applications using permanent magnets such as
actuators, electric motors and electromechanical accessories [2].

According to [3], permanent magnet applications can be split up into groups of static or
dynamic behaviour, depending on if the working point in the second quadrant of the hys
teresis loop is moving or fixed at a certain point. E.g. for uniform fields with static working
point magnets are used for Magnetic Resonance Imaging or alignment of magnetic pow
der. If the field is nonuniform within a static point, then it can be used for e.g. beam
control or radiation sources. For dynamic working points and e.g. time varying fields,
magnetometers use this effect [3]. Certain limits are then set in terms of coercivity for
the specific magnet material, but as well depending on the specific application, a certain
geometry is required [3].

For the several mentioned applications, permanent magnets need to show their magnetic
effect in order to make the application work properly. The foremost problem is the fact that
those magnets play an immense part of the performance as well of the costs of the whole
application. For instance, as mentioned in [2], producing thin film permanent magnets
for e.g. permanent magnet synchronous machines is conflicting as the main part of the
permanent magnets within the rotor is to guide the flux into the air gap and then the stator.
This is however only possible when the magnets has a certain thickness compared to the
lateral dimensions of the magnetic system.

Another main limitation would be the working temperature of e.g. NdFeB and ferrite
that have high remanence values and which collides with the temperature requirements
of some induction motors. Therefore, a switch for some applications is made to other
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high temperature SmCo types [3]. In terms of compactness, temperature resistance and
acoustics, permanent magnets need to fulfill as well more requirements when it comes to
electric automobiles [3].

As demonstrated in [4], permanent magnets were increasing in demand within the years
of 2005 until 2020, although the regression of 2009 until 2011, higher demand was de
noted as more renewable energy resources were build. For instance, expanding amount
of wind power plants, high efficiency motors, electric bikes or air conditioning. Higher
demand of rare earth elements that occur in permanent magnets raised the prices, as
the it exceeded the availability of it. The global magnet market in terms of use and cost
focuses on hard ferrite and NdFeB magnets. As [4] forecasts, the demand for 2030 of
NdFeB magnets will double the amount that is used in 2020. This big increase lead to
questions of supply guarantee, but as well the huge dependency of the magnet market in
China for global output, as still 80% of rare earth magnets such as NdFeB magnets are
expended from there. A large number of alternative approaches have been investigated
over the last two decades to overcome this problem.
This thesis should contribute to a sustainable and more efficient way of analysing perma
nent magnet shape, especially for areas of wind energy turbine motors or motors used for
electric vehicles.

1.2 Previous Work and focus of the thesis
Already in [2], ideas where mentioned of using exchange spring magnets, having recoil
curves with high permeability and achieving almost remanence point for back loop, to
have a beneficial ratio of cost to performance of the magnet, as the amount of rare earth
magnet is reduced.

Only a few studies have shown that the Virtual MagnetMethod can be applied on simplified
geometries, especially magnetic refrigeration, like in [5], [6]. No study to date has exam
ined this method applied on applications like quadrupole or sextupole magnets, as well as
more complex models like permanent magnet synchronous machines. Using Topology
Optimization Method, in [7] it has been applied for a specific machine type, however not
in combination with the Virtual Magnet Method. In particular, no study has shown that
both methods can be combined, only a comparison within the two methods has been pre
sented in [8], and this combination applied on more complex models has also not been
yielded.

This thesis considers the field of combining the Virtual Magnet Method and Topology Op
timization Method as the main subject of its study. Therefore, it deals with applying both
on permanent magnets for different use cases. In comparison to other techniques used
so far it has the big advantage of combining the strengths of both methods in order to get
a more precise output than by applying only one of the methods. One practical advan
tage of the method is that it can be used for any suitable geometrical application, even if
the composition of it is more complex, as used in chapter 5 for Permanent Magnet Syn
chronous machines, there is the possibility to break the geometry down to more easy
subparts and apply the combined approach on it. It has as well significant benefits in
expanding and varying the methods to have several possible combinations depending on
the main optimization goal. This gives rise to a broad field of future possible optimization
possibilities, as it is decoupled from specific material use as well.
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2 Theoretical Background
This chapter will provide the basic physical laws that build the basis for the following
investigations and to understand and interpret the results properly.

2.1 Maxwell Equations and Magnetostatic Relations
Themost common form of theMaxwell’s equations is the differential, local form, presented
by equation 2.1a until 2.1d [9]:

∇×E = −∂B

∂t
(2.1a)

∇ ·B = 0 (2.1b)

∇×H = J +
∂

∂t
D (2.1c)

∇ ·D = ρ (2.1d)

∇ · J = − ∂

∂t
ρ (2.1e)

Faraday’s Law, defined by equation 2.1a, combines the curl of the electric field with the
negative time derivative of the magnetic flux density. Equation 2.1d is named Gauss’s
Law, saying that the divergence of the electric flux density equals to the charge density.
The AmpereMaxwell Law is expressed by equation 2.1c, showing that the curl of the
magnetic field strength is equal to the current density and the additive term of displace
ment current density, which was added by Maxwell to include nonstationary cases in this
equation [9]. Equation 2.1b defines that magnetic charges do not exist, so that the di
vergence of the magnetic flux density is equal to zero. Therefore, this equation is often
expressed as Magnetic Charge Absence [9], [10].

The local Maxwell equations for magnetostatics are stated here, especially relevant for
chapter 4 [9]:

∇×E = 0 (2.2a)
∇ ·B = 0 (2.2b)

∇×H = J (2.2c)
∇ ·D = ρ (2.2d)

The linear constitutive relations, expressed as:

D = ϵ0ϵrE (2.3a)
B = µ0µrH (2.3b)

serve to draw the connection between the two pairs of fields, E and B as well as H and
D, in order to define a physical dynamic system including interpretations for energy and
momentum [9], [11].

5



Using the relations explained in this chapter, the following will combine them to define
field conditions on the edges of two different materials.

2.1.1 Boundary conditions
Assuming that the surface between two materials with diverse relative permeabilities can
be expressed by applying Stoke’s Theorem on equation 2.1c and Gauss’s Theorem on
equation 2.1b, resulting in boundary conditions for Ht and Bn as follows, assuming that
1 and 2 stands for material 1 with permeability µr1 and material 2 with permeability µr2

respectively. The indexed t and n stands for the tangential and normal components of
the corresponding vectors, ŝ defines the normalized tangential vector and n̂ the normal
ized normal vector to each of the boundaries, illustrated in figure 2.1 and expressed in
equations 2.4 for the magnetic field strength and 2.5 for the magnetic flux density [9],
[12].

∫
∂A′

H · ŝ ds =
∫
A′

J · n̂ dA′ (2.4a)

H2t −H1t = −Km (2.4b)

, where Km serves as the surface current density [12].

∫
A
B · n̂ dA = 0 (2.5a)

B2n −B1n = 0 (2.5b)

A′

A

1

µ1

2

µ2

n̂

ŝ

Figure 2.1: Cylinder with surface area A and normal vector n̂ defines the boundary con
ditions for B, the bottom rectangle for H with the perpendicular vector ŝ [13]

Magnetic vector and scalar potential
For magnetostatics, two main laws exist, mentioned in equation 2.2c and 2.2b. In order
to solve them, magnetic potentials can be defined. If no currents exist, then the magnetic
scalar potential Vm can be used, however if there are currents, then the magnetic vector
potentialA needs to be used [13]. As the virtual magnet method does not work for existing
currents, those specifications without currents are considered afterwards.

The magnetic scalar potential Vm, defined in equation 2.6a and illustrated in figure 2.2,
can be used to express the magnetic field strength through a scalar field. First of all, it
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needs to fulfill equation 2.2b, see equation 2.6b, with respect to the constitutive relation in
2.26, explained in more detail in chapter 2.2.1. Equation 2.6d can be especially defined
as magnetic charge density [13].

H = −∇Vm (2.6a)
∇ ·B = 0 = ∇ · (−µ0∇Vm) (2.6b)

∇ · (µ0∇Vm) = µ0∇ ·M (2.6c)
−∇ ·M = ρm (2.6d)
n̂ ·M = σm (2.6e)

IH(r)

Figure 2.2: Example for an irrotational field H caused by the direct current I, depending
on the distance vector r from the wire. Figure adapted from [14] and [15].

The second requirement is fulfilling Ampere’s Law 2.2c with the scalar potential, however
assuming to have no currents, so J = 0, as seen in equation set 2.7. This is automatically
fulfilled as the curl of a gradient field is always zero [14].

∇×H = 0 = ∇× (−∇Vm) (2.7)

In order to define the vortex field B through another vector field A, the magnetic vector
potential, shown in equation 2.8a, the expression needs to fulfill the same two equations
like mentioned for the scalar potential before [16]. The relation states that the vortex field
B can be defined as the vortex density of A. The curl of A is used in equation 2.8b,
applied for equation 2.2b, and illustrated in figure 2.3, including the direct validity of this
relation, as the divergence of a vortex field is always zero, implying solenoidality of the
magnetic field [14].

B = ∇×A (2.8a)
∇ ·B = 0 = ∇ · (∇×A) (2.8b)

The second equation 2.2c to be satisfied with equation 2.8a is expressed in 2.9a, including
again the constitutive relation 2.26. Equation 2.9c defines the curl of the magnetisation
as the magnetic current density Jm, which appears in the macroscopic observation of the
magnetic field. Furthermore, equation 2.9d expresses the surface current density Km.
Latter specifically is needed to describe fields caused by permanent magnets, as it states
that for volumes with random shape, Km defined on a surface of a volume equals the
uniformly magnetisation within this volume [13].
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Figure 2.3: Schematic figure for representing the magnetic vector potential A and the
relation to the vector field B [14].

∇×H = J = ∇× 1

µ0
(∇×A) (2.9a)

∇× 1

µ0
(∇×A) = J +∇×M (2.9b)

∇×M = Jm (2.9c)
M × n̂ = Km (2.9d)

Relation between magnetic potential definition and boundary conditions
In most cases to define boundary conditions for electro or magnetostatics, the Poisson’s
equation is used. This one was mentioned in equation 2.6c and approximately suitable
for equation 2.9b, as they both show the source on the righthand side which causes
the magnetic field. The Laplace equation would then be the trivial solution zero, so the
homogeneous solution [14].

If the boundary has a defined potential, then it is either 0, so a homogeneous boundary
condition, or it is unequal to 0, then named Dirichlet boundary condition. The third version
can be expressed as the change of the potential at the boundary, called Neumann bound
ary condition [14]. As for the virtual magnet method only the definition of the magnetic
scalar potential can be applied, therefore the boundary conditions are expressed now
with Vm. For both above mentioned boundary conditions, Dirichlet and Neumann, can
be revealed through both potential definitions [17]. By using the magnetic scalar potential
for currentfree regions, the curlfree state ofH, or having no magnetomotive force along
any curve within an idealised magnetic body, they represent constant magnetic potential
within this area, so they need to be currentfree inside. The surface of such a body can
be defined as a perfect magnetic conductor, as it serves as an equipotential surface, like
the one of iron [11].

2.1.2 Poynting’s Theorem and related energy aspects
Lenz’s Law builds the basis of interaction when a magnetic field which changes induces
electric current into a conductor, who then counteracts to this applied magnetic field, so
the conductor tries to manipulate the induced magnetic field [12].

The Lorentz Force, which can be an outcome of the Lenz Law, can be expressed as
follows [10]:

F

q
= E + v ×B = E′ (2.10)
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, saying the relation between the velocity v of a point mass with its charge q, resulting in
a force applied on that mass particle. Here it is stated as the force related to the charge,
in order to define an electric field E′, which defines the righthand side of the equation. It
means that this field would be seen from an observing system moving with the geometry.
Therefore, this field expression can be inserted in the following equation

J = σ(E + v ×B) + Je (2.11)

, meaning that the current density J consists of an external applied current density Je and
E′ which represents the field that causes the force on the charged particle from equation
2.11 [18].

In respect of the detailed analysis of permanent magnet synchronous machine types in
chapter 5, the origin of the resulting torque will be derived here from the force densities
and the maxwell stress tensor expression.

Considering the work which is done by the Lorentz force term in 2.10, then it results in

dW = dq(E + v ×B) · dl = dq(E + v ×B) · vdt (2.12)

dl would define a distance of the displaced charge dq with its velocity v within the vol
ume Λ. The change of energy of the charge within a certain volume Λ and exchanging
expressions of dq with ρd3r leads to the integral over the volume [19]:

dW

dt
=

∫
Λ
(E + v ×B) · vρd3r =

∫
Λ
(E · J)d3r (2.13)

, using the relation of 2.10 to express the integrand with J . By replacing exactly the current
density by the Ampere’s Law in 2.1c, then it results in [19]

E · J = E · ( 1

µ0
(∇×B)− ϵ0

∂E

∂t
) (2.14a)

E · J = −1

2

∂

∂t
(ϵ0E

2 +
B2

µ0
)−∇ · E ×B

µ0
(2.14b)

Inserting expression 2.14b into the work integral, and using the divergence theorem which
basically relates a volume integral of a divergence to a surface integral, it leads to [19],
[11]:

∫
Λ
(E · J)d3r = − d

dt

∫
Λ

1

2
(ϵ0E

2 +
B2

µ0
)d3r −

∫
dΛ
(
E ×B

µ0
)dΛ (2.15)

If the minus sign would be placed on the left side of the equation, it would be immediately
evident that this volume integral defines the Joule losses, also called energy losses, as
power flows out of the electromagnetic system within the volume Λ. The expression in
2.15 is called the Poynting’s Theorem, defining the energy conservation generalised for
an electromagnetic system. Especially the second surface integral on the right side of the
equation includes an expression which is named Poynting vector, usually defined as

9



S =
E ×B

µ0
= E ×H (2.16)

, therefore the surface integral expression of S can be explained as the energy flux which
comes out of the observed volume, so the rate of energy change through the surface of
Λ [19], [11].

By taking equation 2.12 and changing it to, with respect to the index m as the material
subsystem and el as the electromagnetic subsystem, :

fm = −fel = ρel(E + Jel ×B) (2.17)

, one can modify it further by inserting Jel, the modified Ampere’s Law 2.1c, ρel as the
modified Gauss’s Law 2.1d, modified Faraday’s Law 2.1a and a vector identity for vector
field f

Jel =
1

µ0
∇×B − ϵ0∂tE (2.18a)

ρel = ϵ0∇ ·E (2.18b)
∇×E + ∂tB = 0 (2.18c)

f × (∇× f)− f(∇ · f) = ∇ · (1
2
f2δ − f ⊗ f) (2.18d)

in order to get the following, including the definition for δ as the unit tensor, Kronecker
Delta, and using the magnetic charge free statement 2.1b:

fel = ∂t(ϵ0E ×B) +∇ · [(ϵ0
2
E2 +

1

2µ0
B2)δ − ϵ0E ⊗E − 1

µ0
B ⊗B] (2.19a)

wel =
ϵ0
2
E2 +

1

2µ0
B2 (2.19b)

p
el
= welδ − ϵ0E ⊗E − 1

µ0
B ⊗B (2.19c)

From the version in 2.19a, one part can be abbreviated to 2.19c, named as momentum
flux density, more precisely as in general the negative signed version as Maxwell stress
tensor, containing the energy density expression 2.19b [11], [19], [20].

The Maxwell stress tensor can now be used to define the related torque within an elec
tromagnetic system related to a point P [20],[11], [19]:

T (P) =

∫
dV

(rP × fel)dA (2.20a)

T (P)mag =

∫
dV

1

µ0
rP × (n ·BB − 1

2
B2n)dA (2.20b)

With thosementioned definitions in 2.20, especially 2.20b for dominant magnetic systems,
a proper reference can be made in chapter 5 to explain mechanical effects caused in the
machine by the electromagnetic field.
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2.1.3 Multipole Expansion for analysing Quadrupole and Sextupole fields
In order to understand chapter 4.1.3, this subchapter should provide a brief description of
how quadrupole and sextupole fields are analysed.

Assuming to have a magnetic field B = (Bx, By, Bz), with respect to the three Carte
sian coordinates x, y, z, regarding Bz as constant, then the other two components can be
defined with complex numbers as [21]:

By + iBx = Cn · (x+ iy)n−1 (2.21a)
n = 1, 2, 3... (2.21b)

By + iBx = Bref ·
∞∑
n=1

(an + ibn) · (x+ iy

Rref
)n−1 (2.21c)

The first equation above states that the magnetic field density can be split up into a real
and imaginary part, as well expressed by the righthand side with the complex factor Cn,
that needs to satisfy divB = 0, as well as curlB = 0, like mentioned in 2.1b and 2.1c, with
respect to zero current density, so assuming to have a charge and currentfree space, in
order to be a valid solution for the maxwell equations.

This factor can serve, if expressing equation 2.21a within a sum expression, as a scaling
factor of how intense the specific observed field occurs, however only considering the
chosen n expression [21].

The exponent and index n expresses different fields: n = 1 defines a dipole field, n = 2
a quadrupole and n = 3 a sextupole expression. Depending on when to specify the
parameters an and bn, the reference values, reference radius Rref and a reference field
Bref , need to be determined as well [21].

Out of the mentioned expressions, the derivative for the nonscrewed version in 2.22a
and the screwed version in 2.22b is shown as:

∂n−1By

∂xn−1
= (n− 1)!

Bref

Rn−1
ref

· an (2.22a)

∂n−1Bx

∂xn−1
= (n− 1)!

Bref

Rn−1
ref

· bn (2.22b)

The quadrupole field can be expressed by two components, one for each direction in the
twodimensional space. If Cartesian coordinates are considered, the x and y component
are individually composed [22]:

2 · x · y = ±r2 (2.23a)
Bx = a2 · y (2.23b)
By = a2 · x (2.23c)

The horizontal focus works simultaneously reducing the focusing in the other direction.
An ideal quadrupole shows the hyperbolic contours, as can be seen in equation 2.23a,
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not screwed, including r as the aperture radius here. For the individual axes x and y,
the equations below show that they do not depend from each other, including the scaling
factor a2 for quadrupoles. Considering the possible harmonics appear with 2 ∗ n, with
respect that n = 2, 6, 10, 14... [22]. A similar explanation can be made for the sextupole
field for a sextupole magnet, in the nonscrewed way:

3 · x2 · y − y3 = ±r3 (2.24a)
Bx = a3 · (xy) (2.24b)

By = a3 · (x2 − y2) (2.24c)

In this case, the field expression in equation 2.24c is not independent of direction, there
fore as well called nonlinear elements, compared to the before mentioned quadrupole
magnet, which behaves linearly. The field varies quadradically from the distance of the
center, including the scaling factor a3 for sextupoles. With respect to the occurring har
monics, here the following can appear: n = 3, 9, 15, 21, ..., again showing the 2n charac
teristic [22].

2.2 Material properties
2.2.1 Constitutive relations and hysteresis behaviour
Equation 2.3b expresses the relation between the magnetic flux density and the magnetic
field strength, with relative permeability indicated by µr and vacuum permeability by µ0.
The fields B and H are in the following relation with the magnetisation M [23]:

B = µ0(H +M) (2.25)

, or in another way expressed as:

H =
1

µ0
B −M (2.26)

The occurrence of the magnetisation, M , is caused by the atomic change of current
density due to an external magnetic fieldB [9]. Therefore, the relation between the mag
netization and the magnetic field strength can be expressed as follows [23]:

χ ·H = M (2.27a)
χ = µr − 1 (2.27b)

Equation 2.27b relates the magnetic susceptibility χ with the relative permeability µr. The
above relations assume isotropic magnetic behavior. Therefore B, H and M are all
parallel to each other, and µr, µ and χ are scalars [23].

However, if the material is anisotropic, the equation needs to be modified using the per
meability tensor µ [11, 5]:

B = µ ·H +Br (2.28)
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The equation above includes the remanent flux density, Br, which is only non zero for
permanent magnets. If the magnetisation is approximately constant over the relevant
range of values of H, then it results in µ0M ≈ Br [24]. This is discussed in detail in
chapter 2.2.3.

M

H

1

2

3

4

5

Mr

Ms

−Mr

−Ms

Figure 2.4: Schematic figure of MH curve and significant marks, adaption from figure in
[23], [25]

Figure 2.4 shows an idealised hysteresis curve with the relation of M over H. Before
explaining the exact parts of this curve, the expression Blochwalls describe the boundary
between two spontaneously magnetized areas with different orientation [23].

For the innermost part of the orange curve, also named as initial magnetisation, reversible
Blochwall movements still exist. The following, more steep path of the initial curve already
includes nonreversible wall movements. If theH field is more increased, the curve shows
again reversible wall movements, and then tends to reach the saturation point, also de
fined with the saturation magnetisationMs. From this point on, reducing the field strength
again, leads to another curve part, plotted in yellow. The point where the field returns to
zero is named as the remanence magnetisation point. Through applying an opposing
field, the curve can continue in the second quadrant, leading to the socalled coercivity
field strengthHc. Within this second quadrant, hysteresis curves for permanent magnets
are specially shaped as a knee, as the progression tends to be very steep from a certain
point towardsHc, further mentioned in chapter 2.2.3. If possible, by enlarging the oppos
ing field, the negative saturation magnetisation can be reached. For enlarging the field
again, the curve runs towards positive magnetisation again. These steps of a hysteresis
is called a maximal gained hysteresis [23].

2.2.2 Ferromagnetism
Materials can be divided into three main groups because of their magnetic behaviour,
which include diamagnetism, paramagnetism and ferromagnetism [9]. As this thesis
mainly worked with ferromagnetic materials, the focus will be laid on this type.

Compared to the other forms of magnetism, ferromagnetic materials show a high mag
netisation after only applying small external H. The effect reflects in the occurring Ms,
which is called the magnetisation saturation. Figure 2.5 shows this behaviour as well as
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the positive value for χ which can take values of 105 and a value for µr much larger than
one.

Ferromagnetic materials own permanent magnetic moments, which orient each other par
allel due to strong interactions within the atomic lattice, also named as spontaneous mag
netisation. This leads to parallel orientation within certain areas inside the material, called
magnetic domains or Weiss domains. To the outside they compensate each other almost
completely, although by applying already a small field strength, the material reacts and
shows alignment within the domains. Due to already existing orientation of magnetic mo
ments, the material behaviour is not reversible, but can be defined with a hysteresis curve
[9], [23].

Compared to the former explained versions, ferromagnetic materials are dependent on
temperature change. The magnetisation, as shown in figure 2.5, decreases until the Curie
temperature TC is reached, which signalizes a change in the magnetic behaviour. After
reaching this temperature, the material properties change to paramagnetic ones [9].The
name for the temperature comes from the general definition of the Curie’s Law which
implies the inverse temperature dependency 1/T . The need to modify this law leads to
the CurieWeiß Law, which counts especially for ferroelectric materials, as the magnetic
moments show interactions among them [23].

+H

+M

MS

+T

+M

Tc

1

χ

Figure 2.5: Approximated behaviour of ferromagnetic material, figures adapted from [23]
and [26]

2.2.3 Permanent Magnets
Permanent magnets can serve magnetic flux density lines without any electric excitation.
Especially their shape influence the shape of the occurring field lines [9].

For this type of material, the following equation is used to define their behaviour in the
easy axes [24]:

BM = µ0 ·HM +Br (2.29)

Permanent magnets, often named as hard magnetic materials, can be split up into three
main groups. First group include the AlNiCo magnets, which stands for aluminium, nickel
and cobalt. They are identified by their high remanence flux densityBr and relatively low
coercivity field strength Hc. The second group covers ferrite like strontium ferrite with a
high Br compared to AlNiCo magnets, however Hc is lower. The third group contains
rareearth magnets such as NdFeB magnets, consisting of neodymium, iron and boron,
which show high values in bothBr andHc. For the magnetising process a high magnetic
field strength is needed, which means at least 2 ·Hc, especially for already high existing
Hs of 3 ·Hc the resulting Br is 4 ·Hc.
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In figure 2.6, a typical hysteresis loop can be seen for permanent magnets, represented
by M(H) with Ms, defining the magnetic saturation. HCM stands for if M inside the
magnet goes towards zero [27].

µ0M(H)

H−HC 0 HC

Hs

µ0Ms

Figure 2.6: Hysteresis curve for rareearth permanent magnets, adapted from [27].

As equation 2.29 shows, it includes the definition of the working point, which is defined
with BM and HM . It can be generated out of the above mentioned relation and the air
gap function, defined as

BM = −µ0
hM
δ

·HM (2.30)

, including δ for the length of the air gap (in general to define magnetic circuit, but also
applicable for synchronous machines between rotor and stator, see chapter 5) and hM
for the height of the magnet [24], [27].

In a simplified assumption of no magnetic leakage flux between the neighbour magnets
on a rotor with different magnetic orientation and same air gap and magnet surface, the
magnetic flux density is the same for surface mounted magnets as within the air gap.
However, as permanent magnet synchronous machines are rotationally symmetric and
the surfaces differ between the air gap and the magnet surface, normally BM is smaller
than the remanence flux densityBr, as demagnatization effects occur with an increasing
factor of δ/hM , inversely proportional to the slope of the air gap function [27].
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3 Optimization Methods
Taking the example of a loaded beam from [28], in order to find a good balance between
the needed amount of material and the needed stiffness, an optimization problem needs
to be formulated to generate the optimum out of it. Basically, it can be stated as a mini
mization problem

min
γ

Ξ(γ) (3.1)

, using γ here as the variable for a design vector which, inserted in the objective function
Ξ(γ), should be minimized. How γ then is chosen defines the type of optimization.
If it includes variables that influence the geometry like length or depth, it is called a para
metric optimization. If γ influences the outside shape of the object, it is called a shape
optimization. Topology Optimization would then be, if γ defines a function that defines
each point within the object to be solid or void [28].

Compared to the other two options, Topology Optimization is more flexible as any kind of
shape can be approached. Therefore, it is interesting to see how the combination with
the Virtual Magnet Method influence the output in a different way rather than using an
optimization approach that is already fixed in some restrictions.

3.1 Topology Optimization Method
Topology Optimization Method gives ideas for compositions that would have not been ob
vious to design [29], [28]. Mentioned in [30], various shapes where optimized for different
objectives and resulted in geometries that appear similar to some objects evolved over
centuries of years by nature. Examples shown there were a cube optimized that resem
bled an apple, or leafs and roots structures were generated. As stated in [31], Topology
Optimization was mainly used for mechanical optimization problems, but was increasingly
enlarged for problems to be solved for permanent magnets. Some common examples of
applications for an unusual usage of this method are electrical machines, as there will
be a more detailed discussion about a specific type of machine in chapter 5. Another
example would be designing magnets for magnetic resonance imaging systems, as well
as actuators with cores in cshape.

In general, the Topology Optimization Method is an iterative problem and can be mathe
matically expressed as a minimization problem, based on the simplified version in 3.1, as
follows [30], [32], [33]:

Ξ(u(ρ),ρ) =
∑
i

∫
Λi

ξ(u(ρi), ρi) dV (3.2a)

s.t. : G0(ρ) =
∑
i

νiρi − V0 ≤ 0 (3.2b)

s.t. : Gj(u(ρ),ρ) ≤ 0, j = 1...M (3.2c)
s.t. : ρi = 0 or 1, i = 1...N (3.2d)

u expresses a state field, satisfying a (non)linear state equation. The objective function
is displayed as an integral over a local function ξ(u(ρi), ρi). In 3.2, the area Λ is divided
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into finite elements and therefore the density distribution correlates to N elements, 3.2d,
and then ρ displays the vector of the design variable of dimension N and includes the
material distribution. It can either be 0, if within the area of Λ it should be void, or 1,
if there should be material. The definition of Ξ describes, like in the beginning of this
chapter, the objective function, depending on the constraints coming withG0 ≤ 0, defining
the volume constraint, andM other possible constraintsGi ≤ 0. This number of additional
constraints is set because for real life applications there are mostly additional constraints
to the volume. Even though some problems might not have a volume constraint or have
no volume to optimize, it might be a guidance for the main optimization goal to fulfill.

[32].

There are several different variations of Topology Optimization methods, such as phase
field, homogeneous or levelset method, ESO (evolutionary structural optimization), GA
(genetic algorithm) or PSO (particle swarm optimization. The homogeneous density ap
proach is one of the most used ones and as well used within this thesis. It will be explained
in detail in chapter 4 [30].

3.2 Virtual Magnet Method  Continuous approach
The Virtual Magnet Method can be used to optimize permanent magnet assemblies, and
is predicated on the reciprocity theorem. This theorem defines two regions, labeled with
1 and 2. Number 1 stands for the system with the ”real” magnet, which is to be optimized,
number 2 defines the virtual case, as it does not exist physically, only as a mathematical
construction. Therefore, the expression in equation 3.3 shows the field distribution in area
1 which maximizes the objective functional u(x). The functional S behaves linearly with
regard to the magnetic field strength H1. Here it must be pointed out that the following
statements are based on equation 2.28 and their constraints like no free currents within
the region [5].

S[H1] =

∫
dVH1(x) · u(x) =

∫
dVH1(x) ·Br2(x) (3.3)

Equation 3.3 includes an expression for an objective representing the desired magnetic
vector field, u(x), whereas x denotes any point in this given vector field [5],[8]. In order
to create a maximum integral expression in 3.3, for a fixed value of Br1(x), it needs to
be aligned withH2(x) for every x inside the design region. The former is though caused
by Br2(x), as can be seen in equation 3.4.

More precisely, the principle of equivalence of magnetic energy can be explained by:

∫
dVH2(x) ·Br1(x) =

∫
dVH1(x) ·Br2(x) (3.4)

As an illustrative example, a Halbach cylinder like demonstrated in figure3.1a and 3.1b,
is given, to interpret the reciprocity theorem better. The idea for this representative field
of an Halbach cylinder was taken from [31].

A Halbach cylinder can be defined, mostly assumed as infinitely long, cylinder with mag
netic material surrounding a bore realised as an air gap [34]. Therefore, as shown in
figure 3.1a, the vector field u, marked as black arrows, is only defined within the area of
Ω, which denotes the inner circle, while outside it is zero, hence minimizes the integration
area. Figure 3.1b shows the result of the virtual magnet method for the desired uniform
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field in the bore u(x). The resulting magnetic vector field lines are held in green, the red
arrows represent the magnetic remanence flux density within the magnet area.

(a) The virtual magnet area, demonstrated
by the inner circle and the resulting field lines
ofu(x), held in violett. In addition to the field
lines black arrows demonstrate the field di
rection in the bore.

(b) The real magnet area, surrounding the
virtual magnet area, which is the bore of
the Halbach cylinder, plotting the magnetic
field lines (green contour lines) and the re
manence flux density (red arrows)

Figure 3.1: Virtual Magnet Method applied on the circular area for an optimized field in
the y direction over an averaged field in the inner circle [8]

Equation 3.4 states that the energy owned by magnetic flux sources, represented byBr1,
of system 1 when it is located in a field which is generated by the flux sources of system 2,
represented byH2 corresponds exactly with the energy owned by magnetic flux sources,
represented byBr2, of system 2 when it is located in a field which is generated by the flux
sources of system 1, represented by H1 [6]. In other words, inside the air gap, a virtual
magnet is placed to produce a remanent flux density in the area around, which consists
of permanent magnet material.

3.2.1 Border considerations between magnet and other material and
optimal energy efficiency

Regarding the left side of equation 3.4, an alignment between the remanence flux density
norm and the magnetic field strength results in an expression as the following:

∥H2(x)∥ ∥Br1(x)∥ ≥ 0 (3.5)

Equation 3.5 includes the origin why a different remanence in the area outside of the
magnet area cannot influence the optimal chosen remanence direction for the magnet
itself [5]. All the above mentioned effects are a conclusion of given linearity between the
physical parameters Br1(x) and H1(x), and S and H1(x) respectively. Aside this re
lation, regarding equation 3.4, it was indirectly assumed that the magnetic susceptibility,
the relation between the magnetic field strength and magnetisation, equals in the real
and virtual system, which results in a not predictable state of how the material will be
distributed ideally. A simplification can be though made if one of the materials consists
of air, the other one of permanent magnet material, as then the area with especially rare
earth permanent magnets show no susceptibility, therefore in advance, no apportionment
of material needs to be done [5].
As mentioned before, Br1(x) and H2(x) are aligned, and S behaves linear towards
Br1(x), hence an ideal distribution of magnet material would be by placing it in regions
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with a high value of the normalized virtual magnet field. Resulting out of this fact, the ideal
border between air and magnet material can be defined as the equipotential surface of
the virtual scalar field H2(x) [5] .
Regarding chapter 5, where the geometrical model consists of permanent magnet mate
rial, air and soft magnetic material such as iron, it is important to mention which impact this
material has for ideal border conditions. As the remanence in the permanent magnet field
area is always directed perpendicular to the region contiguous to it, filled with a high per
meable material, e.g. soft iron, the remanence must then be as a consequence directed
perpendicular to the border between the two materials. Therefore, it is indirectly clari
fied which orientation the remanence must have when two regions filled with permanent
magnet material and soft iron are adjacent to each other [5].

A main figure of merit for magnet structures and later used for discussing results, is the
magnetic efficiency factor [35]:

M =

∫
Λ dV ∥B1(x)∥2∫

Λm
dV ∥Br1(x)∥2

(3.6)

Equation 3.6 provides an expression for the ratio between the stored energy in the field
and the possible maximum energy provided by the magnet material. Its maximum value
to be achieved is 0.25 [35], which is explained in more detail in [36].

The integral regions Λ, used for the air gap with µ0 and Λm as the magnet region with a
uniform permeability of µ, should not overlap. Combining them although should result in
the total observed area, except those parts with a very high permeability. Br1 of the real
system should be proportional additionally to the fact of being aligned to H2.
If all the above mentioned restrictions can be applied, then the magnetic system is energy
efficient to its maximum. Fulfilling the fact of the proportionality and the uniformly defined
permeability inside the magnet area, it adds up to that Br1 is defined as a nonrotational
zerodivergence field [5].
Regarding the before remarked optimal border condition, this can be asserted through:

H2 = −∇Vm2 (3.7)

The righthand side of equation 3.7 defines an equipotential surface of the magnetic scalar
potential Vm2 of the virtual system, as explained in chapter 2.1.1, which creates the mag
netic field strength of the virtual system, H2 [5] .

Making use of the idea of the optimal border as defined in equation 3.7 is done for chosen
geometries in chapter 4 [8].

3.3 Virtual Magnet Method  Segmented approach
For certain applications, a segmentation of the magnet area into uniformly magnetized
blocks is needed. Therefore, this method offers a segmented approach as well, where
the ideal remanence of each segment is defined by the field of the virtual magnet, where
the average over the volume of the concerning segment is taken, if its border is predefined
already. The border definition has to be taken from the optimization process directly only
if the segment shapes are not defined in advance [5],[8].

As for simplicity reasons, further investigations here will focus only on the continuous ap
proach of the Virtual Magnet Method. Possible amplifications with a segmented approach
and Topology Optimization will be discussed in chapter 6.
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3.4 Differences in methods
As there is an increasing need to for finding an optimized magnetization direction with
Topology Optimization, it is interesting to investigate whether it can be combined in some
aspects with the Virtual Magnet Method or identify some aspects which can be investi
gated in future research, as already touched on in chapter 1.

This subchapter should give an overview over the main differences and common aspects
of both mentioned methods. In [8] the aspect of achieving a global optimum which is
of high quality is an aspect which can be ignored for this thesis, as only examples are
mentioned here where, if segmentation within Virtual Magnet Method would be applied,
the segmentation is that low so that the results show an appropriate value of confidence
for a global optimum. Another bullet point in [8] which does not have to be considered
here is the dependence of simulation time for threedimensional problems, as here the
focus lies on twodimensional models only.

Two aspects where both methods agree with each other are those of being able to work
with any kind of permanent magnet shape and that there are no geometrical constraints.

The following conditions though disperse between the two methods. The first condition is
that the Topology Optimization Method needs shapes that are regularized, whereas the
Virtual Magnet Method does not hypothesise it. Furthermore, former delivers an ideal
shape of parts consisting of iron, which is not the case when using the Virtual Magnet
Method. The last big aspect which differs with the former, is that Topology Optimization
can work with objective functionals that are not linear, as well as the constitutive relations
do not need to be linear as well.

As clearly highlighted in [8], Virtual Magnet Method offers a more reliable and fast opti
mization compared to Topology Optimization, however former guarantees more flexibility
in many aspects.

In the following two chapters, both methods will be investigated first individually, then a
combination will be done for more simple geometries, as it is interesting to see if some of
the limits and strengths of each method can be combined in an optimal way [8].

21



22



4 Optimization methods applied on
simplified geometries

As mentioned in [6], some examples of this paper are used here to show how the Virtual
Magnet Method and the Topology Optimization Method is applied. First, it is explained
how to implement both methods separately in COMSOL for chosen examples, then the
combination of both methods is delineated for two specific examples.

4.1 COMSOL Multiphysics  2D modelling
To perform both optimization simulations on different geometric objects, the simulation
software COMSOL Multiphysics is used. This framework works for finite element ap
proaches as serves as a numerical implementation [35]. As for a first approach of com
bining the two methods, it was decided, for reasons of faster reproduction and shorter
simulation time, to limit to only to 2D models, as also mentioned as a disparity between
them [8]. Additionally, like mentioned in [5], models in two dimensions can be assumed
if one direction has no specific changement in its physical state compared to the other
two directions. Therefore, the following models are expected to be infinitely long in one
direction.

4.1.1 Realising Virtual Magnet Method in COMSOL Multiphysics
To realise the Virtual Magnet Method, in detail explained in chapter 3, the relevant equa
tions 2.2c, 2.8a and 2.11, explained in chapter 2, are applied to the whole area of the
created object. Within the object, two different areas need to be differentiated: one part
for the real system, the other one for the virtual system.
For the virtual system, the magnetization is applied to the design area. On the other hand,
for the real system, the magnetization is applied to the virtual area, also field area, as the
optimization objective depends on the magnetic field over that area.
In the following subchapters they will be named as Rm for the real (magnet) system, the
virtual (magnet) system will be named as Rg.

add
itional boundary

bo
und

ary conditions
Rm

Rg

Figure 4.1: Schematic explanation of area correlation for Virtual Magnet Method [5]

Aside of that, setting the right boundary conditions, as mentioned in chapter 2, is impor
tant as the electromagnetic laws need to be valid not only within the object, but also on
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the edges. Additionally, they serve as boundaries to differentiate the object from its sur
rounding, mostly air, but also for some simulations inside the object they help to clarify
the different physical states of the materials used. Figure 4.1 reveals the correlations.

4.1.2 Realising Topology Optimization Method in COMSOL Multiphysics
To implement Topology Optimization Method for the following examples with permanent
magnet material and soft iron, the node ”Topology Optimization” is applied on the de
signed component in COMSOL. The socalled ”Density Model” comes along with certain
constrains and variables, where it can be defined, how many materials and under which
constraints certain materials should be used or not used. Moreover, it can be specified if
these constraints are given for every mesh edge point or it can be defined for the com
plete element of the mesh itself. As stated in [37], the name ”density model” explains
that a defined interpolation function is used by control parameters in order to define the
framework for the desired material specifications.

The Density Model of Topology Optimization makes use of the Helmholtz filter. This type
of filter is used in general to even input data in order to use it with lower noise level. It
basically solves the partial differential equation as follows [38]:

∇ · (−R2∇g) + g = D (4.1)

Equation 4.1 defines the data input with D, with g the filtered data and R stands for the
filter radius, which biases how improved the solution can be and if reduced amount of
steps achieve the same result [38].

Therefore, it can be well applied for Topology Optimization, as illustrated in equation 4.2
[37]. The analogon of input data D would be θc, which is fed to the differential equation.
The output data g is shown as θf , the filter radius is similarly named asRmin. The indexed
expression min shows that the radius is often chosen as the edge size of the mesh by
default [37].

θf = R2
min∇2θf (x) + θc (4.2)
0 ≤ θc ≤ 1 (4.3)

Equation 4.3 shows the span of θc. The onedimensional Heaviside function H(x), dis
played in figure 4.2, should give an idea of how θc would act for a onedimensional prob
lem. The filter aspect can be seen in this figure as the step function is smoothed by the
other two exponential expressions held in orange and yellow.

Another relevant parameter for Topology Optimization using the density method is gray
scaling. It can be minimized by projection, which is the definition for a smooth step func
tion.

Within figure 4.2, the significance of two parameters that result in figure 4.4 can be ex
plained: β, defines how steep the function in orange and yellow is, so how sharp the
difference between the two main values will be, in order to reduce grayscaling. It is also
directly called steepness of the projection. θβ defines where the projection point is set,
which means where the function changes from one value to the other one.
The volume factor θ, as shown in figure 4.4 on the right side, can be expressed as [37]:

θ =
tanh(β(θf − θβ))− tanh(βθβ)

tanh(β(1− θβ))− tanh(βθβ)
(4.4)
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Figure 4.2: Illustration of the analytical solution of the Helmholtz filter equation by a one
dimensional Heaviside function [37]

Figure 4.3: This figure represents an MBB (MesserschmittBolkowBlohm) beam. The left
side displays the notfiltered control variable θf , the right side shows the filtered θf [37],
[39]

A third key component when using the density approach is the interpolation type. Two
main types are used frequently, which are named SIMP (solid isotropic material with pe
nalization) and RAMP(rational approximation of material properties). Apart from those
two, the Darcy interpolation exists, but is used mainly for fluid mechanics [37].

The SIMP interpolation has the ambition to create an interpolation that is continuous and
works between void and solid state by using intermediate density values as a penalization
function. This is expressed in the following two equations:

θp = θmin + (1− θmin)θ
psimp (4.5a)

Ep = θp · E (4.5b)

Equations 4.5 represents the relation between the material parameter, expressed as the
Young’s Modulus E and the density value θp that defines the design variable at the same
time. psimp as the exponent expresses the penalization parameter. An ideal value for psimp

was found out to be 3, as too low or too high values of it would cause either less gray
scaling effects or a too fast convergence towards a local minimum [32], [37]. Mentioned
in [32], the value psimp = 3 gives additionally the possibility to realize the optimized object
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Figure 4.4: This figure represents an MBB (MesserschmittBolkowBlohm) beam. The
left side displays the filtered control variable θf , the right side shows θ with reduced gray
scaling [37], [39].

with intermediate densities. Its big advantage is to generate a fast solution over material
density, meaning where to have material (solid) or not (void).

In comparison to the SIMP interpolation that specifies on describing the material through
its stiffness with an exponential relation 4.5a, the RAMP interpolation influences the ma
terial through its elasticity with a rational function. Contrary to the SIMP algorithm, it pro
vides more smooth density distribution in its solution rather than fast definition of certain
regions. A mathematical expression for this interpolation type can be given by [33]:

θp = θmin +
θ · (1− θmin)

1 + q(1− θ)
(4.6a)

Ep = θp · E (4.6b)

In comparison to SIMP, the used parameter in equation 4.6a which controls if the material
distribution will be more smooth or more binary, as figure (1.32) in [33] demonstrates for
different values, is the parameter q. When q = 1, a interpolation is linear which includes
a smooth material distribution. If q increases, the interpolation develops towards a more
parabolic behaviour and leads to binary distribution [33].

Completely independent from the interpolation type is the chosen optimization solver,
which is, specifically when using SIMP and RAMP algorithms, the MMA (Method of Mov
ing Asymptotes). It works incremental, as in each step the material distribution will be
redefined to get an optimum out of it and simultaneously to guarantee structural integrity.
MMA is used for optimization problems for large scale [33].

The main advantage of MMA lies in the splitup of the main problem into individual sub
problems that are convex. This includes that the optimization variables from the beginning
do not influence the subproblems that follows the original one. The fact of convex approx
imations changes the original convex problem into smaller linear problems with several
coefficients by creating asymptotes in each iteration step that are adjusted to find the
optimal material distribution while maintaining the structural integrity. Therefore, those
advantages have a positive effect on the computational time, especially when problems
have less constraints [33].

4.1.3 Evaluation and verification of results depending on examples
For all the results given from COMSOL for the following examples, the designed geometry
in COMSOL will be always shown, a real life application for the given example to verify
its purpose. The main objective is stated in the beginning, as a field plot and with a
mathematical expression of the magnetic field. It will be demonstrated how exact this
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objective is met by the two applied methods. For this reason, except for chapter 4.2.3,
the other results in chapters 4.2.2 and 4.2.1 need to be validated by their components of
a multipole expansion.

The background to the multipole expansion was give in chapter 2.1.3, where the ideal
factors and their origin were demonstrated. As they provide a mathematical explanation
for ideal models of multipoles without any disturbance factors, it needs to be included in
the following declaration, as tradeoffs occur when modelling real life applications, even
with simplifications. Therefore, a partition between the desired value of the expansion
and a term which includes the residuals was made [6].

As mentioned in [8], the graph in 4.5 should illustrate the analogon between the definitions
in Hilbert space and linear algebra, in order to state the facts in a simpler way. The order
of magnitude should be disregarded, as it only serves for better illustration.

✲HQ ✲Br2

✻

Dx

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

H1

Figure 4.5: Illustration of the analogon to the Hilbert space expressions

H1 demonstrates the magnetic field strength which represents the distribution of the field
in the specific air gap, depending on the observed system later. HQ is part of the desired
vector, ∆x, marked as Dx, defines the difference between H1 and HQ. Br2, defines
the remanence flux density, which is known for the upcoming examples, but not the exact
magnitude. To be able to define the relation between HQ and Br2, it can be said that

HQ · c = B̂r2 (4.7)

c = HQ · B̂r2. (4.8)

Transferring the relation in equation (4.8) into the Hilbert space, as the physical environ
ment here is expressed through vector fields, some expressions used in linear algebra
will be transferred into the Hilbert space, were the following elements

A ·B =

∫
Λ
dVA(x) ·B(x) (4.9)

∥B∥ =

∫
Λ
dV ∥B∥2 . (4.10)

serve as a basis [8]. Both in equation 4.9, 4.10 and 4.12a  4.12c, the symbol Λ serves
as the air gap area, where the desired field configuration is observed.

As explained in [6] for the example of the analysis of a quadrupole magnet, to consider a
suitable figure of merit, the field distribution in the air gap can be considered. Based on
the correlation in equation 2.28 in chapter 2.2, the magnetic field strength in the air gap,
here defined with the indexed 1, can be expressed as follows
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H1(x) = HQ(x)+∆(x) (4.11a)
H1(x) = u(x)α[H1(x)]+∆(x) (4.11b)

H1(x) = u(x)
H1(x) · u(x)

∥u(x)∥2 +∆(x) (4.11c)

Expressionα[H1(x)] in equation 4.11b stands for a functional of the fieldH1(x) (function
of the vector field H1(x), [14]), and behaves proportionally to the objective functional S,
which then causes linearity in H1(x) [8].

The figure of merit can now be expressed by the two factors, further named with a c, and
depending on which part of the multipole expansion is expressed, the subscript symbol
will define it. The subscript Q stands for the quality of an ideal field (either quadrupolar
or sextupolar, depending on the example later), therefore the secondorder or thirdorder
term of the expansion. The subscript ∆ summarizes the other residual terms [6],[8].

cQ =

(∫
Λ dS ∥HQ(x)∥2∫
Λ dS ∥H1(x)∥2

)1/2

(4.12a)

HQ(x) =

∫
Λ
dSH1(x) ·

� u(x)(∫
Λ dS ∥u(x)∥2

)1/2

� (4.12b)

c∆ =

( ∫
Λ dS ∥∆(x)∥2∫
Λ dS ∥H1(x)∥2

)1/2

=

(∫
Λ dS ∥H1(x) − HQ(x)∥2∫

Λ dS ∥H1(x)∥2
)1/2

(4.12c)

For the case of chapter 4.2.4 the above mentioned way of calculating the factors in equa
tion 4.12a  4.12c can be applied similarly.

4.2 Models of simplified geometries
The following subchapters include a general description of the geometric object, then an
analysis with the Virtual Magnet Method and the Topology Optimization Method. Eventu
ally, the results will be compared. For the two examples, a combined approach of both
methods will be shown.

4.2.1 Sextupole Magnet
The first model used to demonstrate both methods is a sextupole magnet. It is assumed
to have similar field properties and an objective function which can be expressed and
obtained in a way that the geometry shows directly the effect of the methods and at the
same time knowing the desired field lines in advance helps to verify the output of both
methods more facile.

The desired field is emerged from the application. When a beam experiences a spread
of its momentum, it causes a certain dispersion when passing a dipole. The role of a
sextupole magnet is to regulate the chromatic aberration [43].
As shown in figure 4.7, the desired field lines plotted with COMSOL can be seen and is
expected as the main objective regardless of the applied optimization method. It clearly
shows the dependence of the field lines are weakened quadratic, compared to the field
of the quadrupole magnet of the chapter before.
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Figure 4.6: This schematic figure serves as a model for the sextupole magnet [6]. The
orange area in the middle defines the virtual magnet, the blue circle around represents
the design area, in this case the real permanent magnet. The circle segment should
demonstrate the sector that is used for applying Topology Optimization Method for the
two models, as a symmetric object is observed. The proper boundary conditions are
mentioned for the sector sides.

Sextupole  Geometry Configuration value unit
r1 0.175 m
r2 0.5 m
r3 2.5 m

αsector 30 °
Table 4.1: Chosen measurements for geometry of sextupole magnet in COMSOL. The
idea of taking one sector for Topology Optimization approach was given by [40], the sizes
were inspired by [41], the general geometrical shape by [42].

A mathematical expression for the skewed (4.13a) and nonskewed (4.13b) magnetic field
density inside the air gap can be given, as resulted from [44] and more detailed explained
in chapter 2.1.3, by

Bgs = −0.5 · (x2 − y2) · êx + xy · êy (4.13a)
Bg = xy · êx + 0.5 · (x2 − y2) · êy (4.13b)

To achieve this given magnetic field distribution, first the Virtual Magnet Method and then
Topology Optimization Method will be applied on the geometry.
Sextupole Magnet analysed with Virtual Magnet Method
The results in 4.9 show clearly the desired field configuration plotted in 4.7 and verify,
aside of the results calculated in table 4.2, that it can be used to identify regions to be filled
with magnet material. Figure 4.11a then again emphasizes the exact calculation of the
resulting field, which is demonstrated through the blue arrow plot, showing the magnetic
field strengthH. Demonstrated with red arrows is the difference between the results and
the green arrow plot, therefore the ”error” that occurs. The green arrows show the best
possible approximation of the desired field that can be obtained. It is to be mentioned
here that for all three arrow plots a normalization of units was performed, hence they can
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Figure 4.7: Ideal field distribution for the skewed field in the region Rg of a sextupole
magnet with switched signs for x and y component to adjust the plots between topology
optimization and virtual magnet method results.

(a) Mesh plotted for entire geometry and
surrounding.

(b) Mesh plotted from a closer view of ge
ometry.

Figure 4.8: Mesh setup for applying Virtual Magnet Method. A refinement number of 3
was applied to the areas that are analysed.

be represented within the same plot and a comparison is valid. This procedure counts for
all the following examples in this chapter.
As in figure 4.11a the geometrical shape of the virtual magnet part is ideally circular, it
is obvious to obtain the desired field exactly as an output, according to [45]. Therefore,
the error plot is not visible with the same factorisation of the other two plots. Comparing
the results of the circular inner shape in 4.11a and the hexagonal shape in 4.11b, in the
latter there is a slight difference in the edge of the inner field between the green and blue
arrows.

Sextupole Magnet analysed with Topology Optimization Method
In this chapter the sextupole magnet is only analysed for the circle segment shown in
figure 4.6 where the optimization was applied, taking advantage of symmetry. As for this
method a description of the remanence flux density for the design area in order to define
magnetic properties is needed, for a sextupole magnet it can be explained based on the
general expression for Halbach cylinders as follows [35]
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Figure 4.9: Sextupole Magnet optimized in permanent magnet material usage with the
Virtual Magnet Method for a skewed field. The contour plot, here demonstrated with grey
colored lines, represent the zcomponent of the magnetic vector potential Az. The black
arrows demonstrate the magnetic flux density within the design area in its x and y direc
tion. The colour bar serves as a demonstration of the norm of the magnetic flux density,
given in Tesla.

Br = Brem · [cos(p · φ) · êr + sin(p · φ) · êφ] (4.14)

Equation 4.14 states an expression for a homogeneous field with p = 1 using the cylindri
cal coordinate system. The factor p in the argument here serves only as a way to express
different field configurations. Brem refers to the maximum value ofBr. By setting p = 2 for
Cartesian coordinates and using the density optimization variable θp to vary in material, it
can be adapted to an expression specifically for sextupole magnets [35]:

Br = θp ·Brem · [cos(4 · φ) · êx + sin(4 · φ) · êy] (4.15)

Equation 4.15 includes the design variable θp which varies between zero and one ( ex
plained in chapter 4.1.2). Brem is set to 1.4 T which corresponds to comparable values in
[6]. φ defines the angle spanned between the x and y component within the air gap area,
expressed through the function atan2(y, x) as it depends on both components.
Aside of equation 4.15, a definition for the recoil permeability µrec was set using θp to dif
ferentiate between the two desired materials. For θp = 0, the permeability value equals
the one from iron, if θp = 1, then the value changes to the one from rare earth permanent
magnets, which can be often approximated to 1. The value 4000 is needed to express the
permeability of iron in that equation. As a reference for it it was taken from the COMSOL
material library.

µr = 4000 · (1− θp) + θp (4.16)

Both equations 4.15 and 4.16 provide enough information about the desired field distribu
tion and the materials that are used. For applying the density method an objective function
Ξ needs to be set. For the observed cases here, Ξ will be maximized and is given by:
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Figure 4.10: Sextupole Magnet optimized in permanent magnet material usage with the
Virtual Magnet Method for a skewed field, however with a hexagonal shape inside for
the virtual magnet area Rg. The contour plot, here demonstrated with greycolored lines,
represent the zcomponent of the magnetic vector potential Az. The black arrows demon
strate the magnetic flux density within the design area in its x and y direction. The colour
bar serves as a demonstration of the norm of the magnetic flux density, given in Tesla.

Ξ1,2,3,4 =
⟨Bairgap⟩ · u(x)

d+Amag
, d = 0.2, 0.5, 1, 1.5 (4.17)

Maximization of equation 4.17 is chosen as the numerator includes the average of the
magnetic air gap field density, ⟨Bairgap⟩, which is expressed as an inner product with
the ideal definition of a skewed sextupole field in equation 4.13a, u(x) = Bgs . The
denominator Amag includes the expression of the permanent magnet area. In order to
vary the emphasis of the magnet amount, a factor d is changed in order to compare four
different objective functions and their output.
It is desired to be as small as possible as of cost factors, but still large enough to guarantee
a strong field in the air gap, given by the numerator. The 1 added to the area is given only
for reasons of more smooth approach of the objective itself [35].

Sextupole Magnet cQ c∆ c2Q + c2∆ M
VMM (circular Rg) 1.0000 0.0015854 1.0000 0.077856
VMM (hexagonal Rg) 0.99867 0.051559 1.0000 0.063621
TOM (Ξ1 , β = 8 , pSIMP =set) 0.99997 0.0075503 1.0000 8.2222 · 10−8

TOM (Ξ2 , β = 8 , pSIMP =set) 0.99999 0.0043405 1.00000 5.0264 · 10−8

TOM (Ξ3 , β = 8 , pSIMP =set) 1.0000 0.0026474 1.0000 3.8342 · 10−8

TOM (Ξ4 , β = 8 , pSIMP =set) 1.00000 0.0019929 1.00000 3.4346 · 10−8

TOM (Ξ2 , β = 13 , pSIMP =set) 0.99997 0.0075503 1.00000 8.2222 · 10−8

TOM (Ξ2 , β = 20 , pSIMP =set) 0.99972 0.023459 1.00000 5.9323 · 10−7

Table 4.2: Representation of the calculated values of themultipole expansion 4.12a ,4.12c
and the magnetic efficiency factor 3.6. For the analysis of TOM, the SIMP algorithm was
used and changes of β and pSIMP were made, the initial value θ0 = 0.5 and the projection
point θβ = 0.5 was set by default and not changed in this case. The used optimality
tolerance for TOM was 0.1, and a maximum of 100 iterations was set as a restriction.

As argued in [6], the factors in table 4.2 are normalized, therefore the expression in

32



(a) (b)

Figure 4.11: A cutout of the skewed field is shown here. The contour plot, here demon
strated with greycolored lines, represent the zcomponent of themagnetic vector potential
Az. The green arrows are covered by the blue arrows, the red arrows are too small to be
shown within the same scaling.

Figure 4.12: Mesh setup for applying Topology Optimization Method for the 30°sector for
Sextupole design. A refinement number of 2 was applied to the areas that are analysed,
the iron core around the design area was not taken into account.

the third column can be done. When comparing the results from Topology Optimization
Method with different values of β, it can be seen that a more significiant impact on the
results is created by the change of pSIMP , which is automatically set by COMSOL to 3 if
not manually changed. By adapting it to higher values above 5, as mentioned in chap
ter 3, the solution converges very fast and stops after one iteration with no reasonable
output. On the other hand, setting the value pSIMP towards lower values than 3, the de
pendency on the slope factor β gets higher, as can be seen for c∆. This value increases
by an increasing value of β, which means that the residual terms that should be minimal
increase. At the same time, M increases as well. The magnetic efficiency factor M in
the fourth column, explained in chapter 3.2, gives a significant higher value for objects
where the field strength is more important than in these examples. However, for reasons
of comparison it is included in every example in this chapter.
Another aspect to consider is shown in figure 4.14a  4.14d, that specifically for case 4.14c
the least amount of magnet material would be used and the objective plot in blue in 4.15
also clearly achieves the highest value among the investigated cases. Although, as men
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tioned through other aspects before, the main focus to achieve beam focusing with the
geometry of the field within the bore, needs to be the main objective which is less accurate
in this case. In this specific case, a possible approach would be to consider both results
from the Virtual Magnet Method and those from Topology Optimization where results of
the cases showed in figure 4.13a  4.13d correspond the most with results given through
figure 4.9 and those from table 4.2.

Overall comparing the results of the density method in table 4.2 to the results of the Virtual
Magnet Method, it is apparent that this method here achieved better results with a lower
value of c∆.

4.2.2 Quadrupole Magnet
Quadrupole Magnets are used to focus beams of particles which are charged, which
mainly appears in the field of particle acceleration [6]. The desired field configuration
is to have magnetic field of zero in the center of the air gap, therefore achieving a focus
ing effect. A slightly different figure is used for the quadrupole compared to the sextupole
magnet, as shown in figure 4.16 and table 4.3. The iron yoke was used here only as a
schematic representation for a stabilizer that is sometimes used in real life applications,
so the idea was inspired by [41]. Although it needs to be mentioned that because of the
iron yoke the field lines from the region Rm are forced to be perpendicular to it, so it will
affect the output, as results will show. Therefore, this experiment of including the iron
yoke was only made for this example and left out for the sextupole magnet, as the results
were too strongly influenced by it.
For this example a sector with 45 °was chosen which can represent the field properly.

Quadrupole  Geometry Configuration value unit
r1 0.175 m
r2 0.5 m

rsector 0.75 m
b 1.25 m

chamfer(distance from vertex) 0.3 m
αsector 45 °

Table 4.3: Chosen measurements for geometry of quadrupole magnet in COMSOL. The
idea of taking one sector for Topology Optimization approach was given by [40], the sizes
were inspired by [41].

Demonstrated in figure 4.17, the skewed version of the quadrupole field was chosen to
analyse and taken as an objective. The skewed (4.18a) and nonskewed (4.18b)version
can be mathematically expressed by

Bgs = y · êx + x · êy (4.18a)
Bg = x · êx + y · êy (4.18b)

Quadrupole Magnet analysed with Virtual Magnet Method
After generating the mesh for the Virtual Magnet Method for the whole geometry, results
in figure 4.19 indicate the achieved ideal notskewed field from figure 4.17. Demonstrated
with the magnetic vector potentialAz, the desired field with red arrows is plotted in a cutout
of the geometry to show the strong correlation to the resulted arrow plot of cQ. Especially
the plot 4.19a let assume to fill certain areas with permanent magnet material.
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Quadrupole Magnet analysed with Topology Optimization Method
Starting from equation 4.14, this one can be adapted in this case to an expression for a
quadrupole magnet:

Br = θp ·Brem · [cos(3 · φ) · êx + sin(3 · φ) · êy] (4.19)

Ξ =
⟨Bairgap⟩ · u(x)

1 + ⟨θp⟩ (4.20)

Maximization of equation 4.20 is chosen in the same way as for the Sextupole geometry
with a similar approach, although the expression of the ideal definition of the nonskewed
quadrupole field in equation 4.18b, u(x) = Bg, is different. The same equation was taken
for defining the two different materials, defined in 4.16.

Figure 4.24 gives a good overview over the different cases applied on the geometry with
the SIMP algorithm. Attention needs to be paid for a larger scale for figure 4.24b and 4.24e
as for those cases only small regions showed values around 2.5−3.5 T. At the same time,
the results for defining the magnetiron border show for those two cases a slightly different
result, 4.25b and 4.25e. Although as mentioned in the previous example, the results in
table 4.4 needs to be taken into account as well. Therefore, results have shown again
for cases with rising value for β had an increasing value of c∆ and simultaneously forM.
Values for cQ stayed stable for all cases.

Comparing the objective plots for each case demonstrated in figure 4.26 that with higher
values for β the convergence went faster within the first 10 iterations to its optimized end
value at the last iteration. Two of the cases with lower β values and especially with the
lower value for pSIMP , drawn with the red line, and the predefined case with the auto
matically set value leads to a lower end objective after 100 iterations than other observed
cases.

Quadrupole Magnet cQ c∆ c2Q + c2∆ M
VMM (circular Rg) 0.99992 0.012458 1.0000 0.11672
VMM (pentagonal Rg) 0.99825 0.059071 1.0000 0.094805
TOM (β = 8, pSIMP set) 0.99974 0.022795 1.0000 0.12983
TOM (β = 14, pSIMP = 2) 0.99997 0.0078568 1.0000 0.16735
TOM (β = 14, pSIMP = 2.5) 0.99997 0.0075649 1.0000 0.16725
TOM (β = 20, pSIMP = 2) 0.99997 0.0075293 1.0000 0.17311
TOM (β = 25, pSIMP = 2) 0.99997 0.0075740 1.0000 0.17316
TOM (β = 9, pSIMP = 1.5) 0.99993 0.0011921 1.0000 0.15003

Table 4.4: Representation of the calculated values of themultipole expansion 4.12a ,4.12c
and the magnetic efficiency factor 3.6. For the analysis of TOM, the SIMP algorithm was
used and changements of β and pSIMP were made, the initial value θ0 = 0.5 and the
projection point θβ = 0.5 was set by default and not changed in this case. The used
optimality tolerance for TOM was 0.001, and a maximum of 100 iterations was set as a
restricition.

4.2.3 Magnetic Refrigeration
Another interesting object to investigate, inspired from examples of [6], is a magnetic
refrigeration.
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As explained in [40], magnetic refrigeration uses the produced magnetic field through
permanent magnets to generate a temperature change, whereby a system can be cooled.

Magnetic Refrigeration  Geometry Configuration value unit
r1 0.4 m
r2 0.45 m
r3 1 m
r4 5 m

αsector 90 °
Table 4.5: Chosen measurements for geometry of magnetic refrigeration in COMSOL.
The measurements were chosen according to [40]. The idea of taking one sector for
Topology Optimization approach was given by [46].

The square in figure 4.27 should demonstrate the sector that is used for applying Topol
ogy Optimization Method. As it is a symmetric object, for reasons of simplicity only one
quarter is analysed, as the output field distribution can easily be mirrored to the other
sectors. As for boundary conditions, the inner two sides of the square are used, for the
outside, the sector of the blue circle is used.
The radius r4 in table 4.5 and outlined in figure 4.27 serves as a wide region where the
main geometrical object can be investigated and proper boundary conditions are guaran
teed. Therefore it was chosen to be five times the outer radius of the observed geometry.
Magnetic Refrigeration analysed with Virtual Magnet Method
The desired Bg field within the area Rg has the following shape:

Bg = sign(x) · x√
x2 + y2

êx + sign(x) · y√
x2 + y2

· êy (4.21)

The denominators represent the normalization of each component, sign(x) stands for the
signum function and serves to express the field direction properly.
For reasons of simplicity, similar in [40], the inner part of the geometry will be already
determined to soft iron with a relative permeability of µr = 1000 and other parameters set
by the material library of COMSOL Multiphysics. Hence only the ring outside, named as
Rg in figure 4.27, serves as design area. Additionally, it should be noted that the extra
circle in the air gap ring between the inner iron circle and the outer design area in figure
4.28c or e.g. in figure 4.29b only serves for calculating the magnetic flux density along
this curve.

The results produced in figure 4.29 are similar to the results presented for magnetic re
frigeration in [6]. The regions that are aimed to be strong field regions appear as ”kidney
shaped” in figure 4.29a, held in red on the left and right side of the inner circle, which
resembles the results in figure 4 in [6].
Magnetic Refrigeration analysed with Topology Optimization Method and
combined approach
Additionally mentioned, the investigation for all of topology optimization variations for this
example have been made by using one quarter of the geometry and setting the proper
boundary conditions on the borders, based on the approach of [40]. This is shown for the
mesh in figure 4.30.

As already mentioned in the previous examples, an expression needs to be found for
the remanence flux density within the design region. It can be explained based on the
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general expression for Halbach cylinders, inspired from [35], and adapting it with p = 1
for the Cartesian Coordinate system to

Br = θp ·Brem · [cos(2 · φ) · êx + sin(2 · φ) · êy] (4.22)

µrec = (1000− θp · 2000) · (θp < 0.5) + 1 (4.23)

This time, a different formulation is given for the recoil permeability, which includes an
expression that works as a differentiation between the case of having θp < 0 and θp ≥ 0.
The former result in an expression for µrec as only including the first part of the euqation
which ends up as µrec = 1000− θp · 2000, which stands for an ironbased material. Latter
includes the opposite, so only the second term of the equation counts and results in µrec =
1, which represents permanent magnet.

Ξ1 =
⟨Bslot⟩
1 + ⟨θp⟩ (4.24a)

Ξ2 =
⟨Bslot⟩

0.5 + ⟨θp⟩ (4.24b)

For this example, two objective functions were investigated. The difference between them
lays in the modeling of the denominator to create a more smooth transition. The main
objective although remains as the difference between the high field regions Rg (held in
orange in figure 4.27) and low field regions (the rest of the white ring in figure 4.27) needs
to be maximized by simultaneously using least amount of magnet material, defined in the
denominator. This idea was inspired by [35] and [40].
In both definitions of the objective functions 4.24a and 4.24b, ⟨Bslot⟩ stands specifically
for the norm of the magnetic flux density in that part of the air gap where the field needs
to be strong.

To have a larger variety of results, a comparison between the virtual magnet method was
made with two separate approaches of algorithms for Topology Optimization: SIMP and
RAMP. For each, the combined approach with the Virtual Magnet Method was made. The
focus on investigated parameters laid on the magnetic efficiency M like in the previous
examples and the maximum value of the norm of the magnetic flux density in the area air
gap area Rg, summarized in the following tables 4.6 and 4.7.

The combined approach was made by using the topology optimized outputs and adapting
it to the virtual magnet method, so that in the end both methods are applied. More pre
cisely, instead of having the physical laws for the regions within the geometry only defined
by the material design variable θp, the design area is additionally defined through the vir
tual magnet method, but using the expression of equation 4.23 for the material definition.
Aside of the magnitude of the remanent flux density within the design area, defined with
θp as usual for the density method, now for the direction of it the reference to the virtual
magnet area Rg is used instead, which includes the definition of Bg in 4.21. Separately
it needs to be mentioned that the expression of µrec needs to be mentioned within the
definition of the virtual system this time.

Figure 4.31 reproduces the kidneyshaped result of VMM in all cases, except in the com
bined approaches in 4.31e and 4.31f. The latter shows more influence from the virtual
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Magnetic refrigeration M ⟨Bairgapmax⟩[T ]
VMM 0.059253 2.2528

TOM (β = 8, pSIMP set, Ξ1) 0.13094 2.0020

TOM (β = 8, pSIMP set, Ξ2) 0.17202 1.7193

TOM (β = 14, pSIMP set, Ξ1) 0.12736 1.9209

TOM (β = 14, pSIMP set, Ξ2) 0.17159 1.7330

TOM (β = 8, pSIMP set, Ξ1) & VMM 0.15828 2.1853

TOM (β = 8, pSIMP set, Ξ2) & VMM 0.16358 1.9493

Table 4.6: Results of VMM and TOM with SIMP algorithm and combined approach. The
best result regarding the tradeoff between both calculations was highlighted in yellow.

magnet method. The partly occurring white areas in the field plot signifies that those
regions are out of the common set range, which was chosen for better comparability.

The table in 4.6 provides information about the calculated figure of meritM and the maxi
mum value of the magnetic flux density in the air gap at the angle 0. Highest values could
be achieved through Ξ2 despite the changing β values. Similar values were achieved
through the combined approaches. Comparing these results with the second column in
table 4.6, a slight correspondence can be seen between raising values of the maximum
air gap flux density and falling values of M.

The maximum value of the air gap flux density in table 4.6 was taken from the plot in
figure 4.32 at 0°. Especially in this plot compared to the result for VMM solution in [6],
only a sector of 0°  90° was plotted as of symmetry reasons and better visibility. The
combined approaches occur with similar results. They clearly show the influence of the
local maximum at 75° of the VMM result, however shifted to the angle close to 60°. The
red line of Ξ1 with β = 8 has a longer lasting plateau compared to the rest, starting already
from 55°. The course of the noncombined approach lines do not have any effect on the
combined approaches, only for the dark blue line with Ξ2 and VMM, a short plateau is
recognizable.

Regarding the objective plots in figure 4.33, Ξ2 achieves one of the highest objectives,
which corresponds with the results of M. This perhaps influenced as well the result of
the combination with Ξ2, even though the plot stopped before iteration 20. The combined
approach with Ξ1 had the most iterations and a continuous raise in the plateau.

Comparing the results of the combined approaches in figure 4.34 with the rest (4.34a
4.34d), there is no significant kidneyshaped magnet result. Even the topology optimized
versions have, additional to the kidney shaped part an extra magnet area, except for
4.34d. The kidney areas close to the 0° area explains the high magnitude of the radial
component of the magnetic flux density and the high achievements of the objective. Sur
prisingly the result in 4.34d has no second magnet part and the kidney magnet area is
smaller than the rest of the results in 4.34a4.34c.

For the RAMP investigation, the same setup in terms of objective functionsΞ and changed
values for β were used, to make it better comparable.

The magnetic field norm plot in figure 4.35 is, regarding the resulted shapes of the arrow
plot and the field lines of the zcomponent of the magnetic vector potential, comparable
in strength and size to the results achieved by using SIMP algorithm in 4.31.

For this particular case when using RAMP algortihm, in table 4.7, the dependency on the
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Magnetic refrigeration M ⟨Bairgapmax⟩[T ]
VMM 0.059253 2.2528

TOM (β = 8, qRAMP = 3, Ξ1) 0.12998 1.9860

TOM (β = 8, qRAMP = 3, Ξ2) 0.15642 1.7118

TOM (β = 14, qRAMP = 1.5, Ξ1) 0.13237 1.9421

TOM (β = 14, qRAMP = 1.5, Ξ2) 0.16715 1.7970

TOM (β = 14, qRAMP = 3, Ξ1) & VMM 0.15655 2.0915

TOM (β = 14, qRAMP = 1.5, Ξ1) & VMM 0.13184 2.2308

Table 4.7: Results of VMM and TOM with RAMP algorithm and combined approach. The
best result regarding the tradeoff between both calculations was highlighted in yellow.

variable qRAMP was tried to investigate, aside of changing Ξ and β.
This table gives partly the explanation of why for the combined approach only Ξ1 and
β = 14 were chosen, as with them higher results inM and especially ⟨Bairgapmax⟩ were
reached. The general correspondence of higher values in M resulting in lower values in
⟨Bairgapmax⟩ suit for the RAMP investigation here as well.
Overall shows the table 4.7 a similar result range than 4.6, however the values for the
figure of merit M are a little lower. With the combined approaches higher values for
⟨Bairgapmax⟩ could be obtained.
Including the plots of the radial component of the flux density here as well, compared to the
results with SIMP algorithm, the curves are more spread between the same objectives.
The combined approaches were influenced by the local maximum of Ξ1 at 70°, although
theirs occurred at 60°. The course of the combined approach plots were congruent. They
also show a different behaviour with qRAMP = 1.5, as they reach a global maximum at
30°, compared to the version with qRAMP = 3, where the plateau correlates to the solution
of the one where SIMP was used.

The local maximum at 30° might be explained by the small extra magnet area as a result
in 4.36f, compared to 4.36e. Generally, the magnet areas are similar to the results of
SIMP, although the areas of the solution in 4.36b and 4.36c are smaller than in the SIMP
result.

The objective of Ξ2 appears again in figure 4.38 as the highest, compared to the rest. The
combined approaches could reduce their plateaus, whereas for the TOM approaches only
the plateaus started at iteration 20 with almost no change afterwards.

Differences in some results compared to e.g. [35] can be attributed to different size of
the simulated geometry, as for smaller size the differences in the magnetic flux density
between different optimization results may vary less, according to [35].
As well it changes the output when the ”optimality tolerance” in COMSOL is changed,
which results in less executed iterations and therefore less iterations that might lead to
another, more optimized result. For all the given examples here an optimality tolerance,
as already stated before, of 0.001 was used in the simulation environment.

4.2.4 Simplified Model for electric motor
This model was as well inspired by the investigation of the simplified electric motor model
of [6], however adapted to a switch between rotor and stator, so that in this model, the
stator is the outside ring, whereas the inside area, the design area, represents the rotor
that is optimized.
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Simplified Motor model  Geometry Configuration value unit
r1 0.007 m
r2 0.03 m
r3 0.031 m
r4 0.038 m
r5 0.05 m
r6 0.25 m

αsector 90 °
Table 4.8: Chosenmeasurements for geometry of the simplifiedmotor model in COMSOL.
The measurements were chosen according to . The idea of taking one sector for Topology
Optimization approach was given by [46], as it can be applied as well on a symmetric
composition as it is given here.

Electric motor analysed with Virtual Magnet Method
For the Virtual Magnet Method, the air gap flux density in equation 4.25 was applied to
create minimal harmonic effects [6]. The mesh was set to be refined in the areas Rg and
Rm where the optimization was applied, whereas in the stator area the mesh was held
less fine.
The result of the simulation can be seen in figure 4.42.

Bg = sin(2 · φ) · 1√
x2 + y2

(x · êx + y · êy) (4.25)

The field demonstrated in figure 4.42 resembles strongly the solution of the segmented
approach in [6] for a fourpole motor.
Electric motor analysed with Topology Optimization Method and combined
approach
Four objective functions were tested as well as the combined approach with specifically
chosen objective functions.
Based on the representation and use of the mesh in [47] and [48] an additional twofold
refinement of the triangles of the mesh, shown in figure 4.51, was made to examine the
impact on the accuracy of the results especially in the areas where the optimization is
performed.

Br = θp ·Brem · [y · êx + x · êy] (4.26)

The expression for the remanence flux density in equation 4.26 was adapted to the quarter
of the motor circle that was investigated. For the recoil permeability, the same expression
as for the examples before in this chapter was taken.

µrec = 4000− θp · (4000− 1) (4.27)

To make the data from table 4.9 and charts 4.44 more understandable, the magnetic flux
density along the air gap for the observed quarter was plotted by splitting it up into three
components: the total radial component in figure 4.45, the first harmonics in 4.46 and the
residual parts in 4.47. This approach was taken from [8] and is based on using the Fourier
series to plot the first harmonic of the radial component of the air gap flux density and the
total component, as well as the rest terms, summarized in the third plot. Therefore, the
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Simple Motor  mesh refinement number 1 M THD (%)
VMM 0.15725 0.349
TOM (Ξ1) 0.073438 19.366
TOM (Ξ2) 0.14984 0.492
TOM (Ξ3) 0.14806 5.567
TOM (Ξ4) 0.071091 19.639
TOM, VMM (Ξ2) 0.10682 22.029
TOM, VMM (Ξ4) 0.10685 22.296

Table 4.9: Representation of the calculated figure of meritM for the mesh refinement 1 in
COMSOL. For the analysis of TOM, the SIMP algorithm was used and changes of β and
pSIMP were made, the initial value θ0 = 0.5 and the projection point θβ = 0.5 was set by
default and not changed in this case. The used optimality tolerance for TOM was 0.001,
and a maximum of 100 iterations was set as a restriction.

THD (total harmonic distortion) can be calculated accordingly to [8] to effectively see the
ratio of the distortion, as they vary in their amplitude. The THD is added to table 4.9 and
4.10. For better comparability, the colours of the plots are adapted to the different cases.
Only for the relative error plots (4.49,4.57), the colour of the combined case with Ξ4 and
VMM was changed from turquoise dotted line to dark red line for better visibility.

For the analysis of this simple motor model, the focus laid on different objectives and
mesh refinements rather than changing the other parameters.
Regarding the magnetic field plots in figure 4.44, the strongest field results were achieved
through Ξ2,3 ( in 4.44b,4.44c). The results in 4.44e and 4.44f were clearly influenced by
the Virtual Magnet Method from the magnet shape.

The table in 4.9 show the calculated results forM and the THD. The row in yellow serves
to highlight a good tradeoff between a low THD value and high value for M, which ex
plains why Ξ2 was taken for the combined approach.
For the objectives Ξ2,3 the results of the figure of merit are in a similar range than the one
of the Virtual Magnet Method. The value of the latter for the total harmonic distortion is
in the same range like the result mentioned in [6] with 0.02. This counts only for M, but
not for the THD. The two combined models are in a similar range forM as well as for the
THD.

Regarding the total magnetic flux density and the first harmonics plotted in 4.45,4.46,
results show similar behaviour of VMM and of Ξ2,3, as well as Ξ1,4. For the combined
versions, a shift is noticeable which might correspond to the shifted magnet area in 4.50e
and 4.50f.
This shift is as well notable for the residual plots in 4.47. The results of Ξ1,4 correspond
again, only Ξ3 shows a higher ratio.

Figure 4.48 represents the plot of the relative change of the objective which are very
aligned to each other, especially between the first ten iterations.

After the 40th iteration, all objectives remain on a plateau, which signifies no further im
provement, however Ξ1,4 show the least plateau and the highest values of all. In general,
Ξ2 has a higher objective than Ξ3 over the whole iteration number Corresponding to the
reached plateaus, the error plots decrease, which prefigures a good convergence of the
solutions.

Regarding figure 4.49, only four cases were chosen to demonstrate the difference in the
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converging error. The plots in pink and turquoise come from the topology optimized ap
proach with the objectives Ξ2 and Ξ4. The plots held in dashed dark blue and red are
the combined approaches with the virtual magnet method, both using the two mentioned
objectives. While Ξ2 and the combination of VMM and Ξ4 decay between iteration 60 and
80, the combination of VMM and Ξ2 goes down right before iteration 100, whereas the
turquoise plot ends up with a higher error value after 100 iterations.
As a predefined upper boundary is set for the convergence error, its limit can be clearly
seen as a plateau at 0.5.

The magnet areas in 4.50 highlight the prior explanations about the discussed results, as
Ξ1,3 are similar, as so are Ξ2,3 and the combined results. The small areas of Ξ1,4 also
mirror the lower maximal radial component of the flux density, as well as the visible shift
in amplitude for the combined versions can be explained by the resulted magnet area.

Simple Motor  mesh refinement number 2 M THD (%)
VMM 0.15725 0.349
TOM (Ξ1) 0.11847 14.041
TOM (Ξ2) 0.12190 2.0221
TOM (Ξ3) 0.15096 13.101
TOM (Ξ4) 0.11701 15.674
TOM, VMM (Ξ2) 0.11275 15.5334
TOM, VMM (Ξ4) 0.11963 19.889

Table 4.10: Representation of the calculated figure of merit M for the number of mesh
refinement 2 in COMSOL. The refinement process did not change any result from the
virtual magnet method compared to the prior refinement number, so it only affected the
results for Topology Optimization. For the latter, SIMP algorithm was used and changes
of β and pSIMP were made, the initial value θ0 = 0.5 and the projection point θβ = 0.5
was set by default and not changed in this case. The used optimality tolerance for TOM
was 0.001, and a maximum of 100 iterations was set as a restriction.

For the second approach of refinement number 2, the results were the same for the Virtual
Magnet Method both for the calculated values in the table as well as for the plots. As well
as before, the colour of the combined version for Ξ4, VMM in the relative error plot 4.57
was changed from turquoise dotted line to dark red line as of visibility reason.

The magnetic field norm plots in figure 4.52 is general lower than in the former example
with refinement number 1. The only remarkable difference is that Ξ1,2,4 are similar here
compared to the prior example.

Regarding the results for the THD in table 4.10, Ξ1,4 improved, whereas Ξ2,3 increased.
Especially the combination Ξ2 with VMM improved and a remarkable difference between
Ξ2 and Ξ3 is noticeable. The values for M improved for all values, except for the result
of Ξ2 which decreased and the Ξ3 and VMM stayed the same.

The radial component of the flux density in figure 4.53shows again an alignment of Ξ1,4.
For both combinations an alignment is only visible for the first harmonic plot in 4.54, for
the total component the influence of the slight plateau of Ξ2 has an impact on the combi
nation with Ξ2 and VMM.
Very remarkable is the plateau of both results Ξ2,3. Compared to the former results of
refinement number 1, the plots are generally more spread and partly lower in their ampli
tude, as already the plotted flux density norm stated it.
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For the residual plot in figure 4.55, a clear influence of Ξ2 can be seen on the combina
tion with Ξ2 and VMM. The other plots here are as well more spread than the results of
refinement number 1 in figure 4.47.

The objective plots in figure 4.56 possibly indicates that the change of the mesh influenced
the progress of the objective in terms of less plateaus, except for Ξ3. In general, both
combinations improved, as well the values increased in general. Specifically Ξ2 aligns
with the combination of Ξ2 and VMM, the combination with Ξ4 approaches the objective
of Ξ4.

Comparing the convergence plot in figure 4.57 with figure 4.49, an increase of the overall
relative error is visible, as well as the set boundary of 0.5. Compared to the plotted cases,
Ξ4 shows the lowest value.

The magnet area in figure 4.58 demonstrates a bigger difference in shape between the
two combinations, as well as the areas of Ξ2,3 reduced in size and changed in shape.
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(a) Ξ1, projection slope β = 8, pSIMP set by
default.

(b) Ξ2, projection slope β = 8, pSIMP set by
default.

(c) Ξ3, projection slope β = 14, pSIMP set by
default.

(d) Ξ4, projection slope β = 8, pSIMP set by
default.

(e) Ξ2, projection slope β = 13, pSIMP set by
default.

(f) Ξ2, projection slope β = 20, pSIMP set by
default.

Figure 4.13: Sextupole Magnet analysed with the Topology Optimization Method with
SIMP algorithm: The colour bar serves as a demonstration of the norm of the magnetic
field, given in Tesla. The black arrows in coneshape show the plotted objective function
in the region Rg. The white arrows represent the remanence flux density of the magnetic
field in the design area Rm. The projection point θβ = 0.5 and the initial value for the
control variable was set to θ0 = 0.5 were used for all cases.
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(a) Ξ1, projection slope β = 8, pSIMP set by
default.

(b) Ξ2, projection slope β = 8, pSIMP set by
default.

(c) Ξ3, projection slope β = 8, pSIMP set by
default.

(d) Ξ4, projection slope β = 8, pSIMP set by
default.

(e) Ξ2, projection slope β = 13, pSIMP set by
default.

(f) Ξ2, projection slope β = 20, pSIMP set by
default.

Figure 4.14: Sextupole Magnet analysed with the Topology Optimization Method with
SIMP algorithm: The colour bar here serves as the indicator between magnet material
above 0.5 and iron under this threshold level.
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Figure 4.15: Objective function evaluations plotted over the total iterations made for the
individual cases that were mentioned in table 4.2.
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Figure 4.16: This schematic figure serves as a model for the quadrupole and sextupole
magnet [6]. The orange area in the middle defines the virtual magnet, the blue circle
around represents the design area, in this case the real permanent magnet, and the grey
square around serves as an iron yoke. The circle segment should demonstrate the sector
that is used for applying Topology Optimization Method for the twomodels, as a symmetric
object is observed. The proper boundary conditions are mentioned for the sector sides.
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Figure 4.17: Ideal notskewed field distribution in the center of the quadrupole magnet
geometry. To have a comparison to the plots with TOM, for the y component a minus sign
was added to let the field arrows point inwards the inner circle.

Figure 4.18: Mesh setup for Virtual Magnet Method for the quadrupole geometry. As of
symmetry reasons, not the whole geometry is shown here. The refinement number of 3
was applied on the areas Rg and Rm.
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(a) (b)

Figure 4.19: Quadrupole Magnet optimized in permanent magnet material usage with the
Virtual Magnet Method for a notskewed field. The contour plot, here demonstrated with
greycolored lines, represent the zcomponent of the magnetic vector potential Az. The
black arrows demonstrate the magnetic flux within the design area in its x and y direction.
The colour bar serves as a demonstration of the norm of the magnetic flux density, given
in Tesla.

(a) (b)

Figure 4.20: Quadrupole Magnet optimized in permanent magnet material usage with
the Virtual Magnet Method for a notskewed field for a pentagonal shaped Rg. The con
tour plot, here demonstrated with greycolored lines, represent the zcomponent of the
magnetic vector potential Az. The black arrows demonstrate the magnetic flux within the
design area in its x and y direction. The colour bar serves as a demonstration of the norm
of the magnetic flux density, given in Tesla.
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(a) (b)

Figure 4.21: A cutout of the notskewed field of the circular Rg in figure 4.21a and of the
pentagonal shaped Rg in figure 4.21b. The contour plot, here demonstrated with grey
colored lines, represent the zcomponent of the magnetic vector potential Az.

(a) Uniform field in pentagonal region Rg from
more distance.

(b) Uniform field in pentagonal region Rg more
in detail.

(c) Field distribution of uniform field over whole geometry.

Figure 4.22: Comparison of virtual magnet method results with uniform field distribution.
As the previous example, a pentagonal virtual magnet area was chosen to show the limits
of the method.
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Figure 4.23: Mesh setup for applying Topology Optimization Method for the 45°sector
for the quadrupole design. A refinement number of 2 was applied to the areas that are
analysed, the iron core around the design area was not taken into account.
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(a) Projection slope β = 8, pSIMP set by de
fault.

(b) Projection slope β = 14, pSIMP = 2.

(c) Projection slope β = 14, pSIMP = 2.5. (d) Projection slope β = 20, pSIMP = 2.

(e) Projection slope β = 25, pSIMP = 2. (f) Projection slope β = 9, pSIMP = 1.5.

Figure 4.24: Quadrupole Magnet analysed with the Topology Optimization Method with
SIMP algorithm: The colour bar serves as a demonstration of the norm of the magnetic
field, given in Tesla. The red arrows show the plotted objective function in the region Rg.
The white arrows represent the remanence flux density of the magnetic field in the design
area Rm. The projection point θβ = 0.5 and the initial value for the control variable was
set to θ0 = 0.5 were used for all cases.
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(a) Projection slope β = 8, pSIMP set by de
fault.

(b) Projection slope β = 14, pSIMP = 2.

(c) Projection slope β = 14, pSIMP = 2.5. (d) Projection slope β = 20, pSIMP = 2.

(e) Projection slope β = 25, pSIMP = 2. (f) Projection slope β = 9, pSIMP = 1.5.

Figure 4.25: Quadrupole Magnet analysed with the Topology Optimization Method with
SIMP algorithm: The colour bar here serves as the indicator between magnet material
above 0.5 and iron under this threshold level.
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Figure 4.26: Objective function evaluations plotted over the total iterations made for the
individual cases that were mentioned in table 4.4.
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Figure 4.27: This schematic figure serves as a model for magnet refrigeration [6]. The
orange areas on the sides define the virtual magnet, the blue circle around represents
the design area, in this case the real permanent magnet, and the grey circle in the middle
serves as the iron core.
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(a) Mesh plotted for entire geometry with refine
ment number 2.

(b) Mesh plotted for inner circles including radius
r2.

(c) Ideal field for magnetic refrigeration in two air gaps on
each side, represented by red arrow plot. The figure only
shows until the radius r2.

Figure 4.28: Mesh defined for analysis in 4.28a, 4.28b and ideal field plot.

54



(a) (b)

Figure 4.29: Magnetic refrigeration optimized in permanent magnet material usage with
the Virtual Magnet Method. The contour plot, here demonstrated with greycolored lines,
represent the zcomponent of the magnetic vector potential Az. The black arrows demon
strate the magnetic flux within the design area in its x and y direction. The colour bar
serves as a demonstration of the norm of the magnetic flux density, given in Tesla.

Figure 4.30: Mesh setup for applying Topology Optimization Method for the 90°sector for
magnetic refrigeration design. A refinement number of 2 was used here as well.
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(a) Projection slope β = 8, pSIMP set, Ξ1. (b) Projection slope β = 8, pSIMP set, Ξ2.

(c) Projection slope β = 14, pSIMP set, Ξ1. (d) Projection slope β = 14, pSIMP set, Ξ2.

(e) Projection slope β = 8, pSIMP set, Ξ1, VMM (f) Projection slope β = 8, pSIMP set, Ξ2, VMM

Figure 4.31: Magnetic refrigeration analysed with Topology Optimization Method with
SIMP algorithm and the combination with VMM. The colour bar serves as a demonstra
tion of the norm of the magnetic field, given in Tesla. The black arrows represent the flux
density of the magnetic field in the design area Rm. The projection point θβ and initial
value for the control variable θ0 were set to 0.5 and used for all cases.
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Figure 4.32: Magnetic flux density plots for the observed cases mentioned in table 4.6 for
the VMM, the SIMP algorithm and the combined approaches. The plots were taken along
the middle line displayed in figure 4.28c and 4.29b. pSIMP = def means the predefined
value which is automatically set by COMSOL and the angle 0 is defined at the high field
region direction and counting counterclockwise.

Figure 4.33: Objective plots for the observed cases mentioned in table 4.6 for the SIMP
algorithm.
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(a) Projection slope β = 8, pSIMP set, Ξ1. (b) Projection slope β = 8, pSIMP set, Ξ2.

(c) Projection slope β = 14, pSIMP set, Ξ1.
(d) Projection slope β = 14, pSIMP set, Ξ2.

(e) Projection slope β = 8, pSIMP set, Ξ1, VMM (f) Projection slope β = 8, pSIMP set, Ξ2, VMM

Figure 4.34: Magnet shape for magnetic refrigeration analysed with Topology Optimiza
tion Method with SIMP algorithm and the combination with VMM.
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(a) Projection slope β = 8, qRAMP = 3, Ξ1. (b) Projection slope β = 8, qRAMP = 3, Ξ2.

(c) Projection slope β = 14, qRAMP = 1.5, Ξ1. (d) Projection slope β = 14, qRAMP = 1.5, Ξ2.

(e) Projection slope β = 14, qRAMP = 3, Ξ1,
VMM

(f) Projection slope β = 14, qRAMP = 1.5, Ξ1,
VMM

Figure 4.35: Magnetic refrigeration analysed with Topology Optimization Method with
RAMP algorithm and the combination with VMM. The colour bar in 4.31 serves as a
demonstration of the norm of the magnetic field, given in Tesla. The black arrows rep
resent the flux density of the magnetic field in the design area Rm. The projection point
θβ and initial value for the control variable θ0 were set to 0.5 and used for all cases.
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(a) Projection slope β = 8, qRAMP = 3, Ξ1. (b) Projection slope β = 8, qRAMP = 3, Ξ2.

(c) Projection slope β = 14, qRAMP = 1.5, Ξ1. (d) Projection slope β = 14, qRAMP = 1.5, Ξ2.

(e) Projection slope β = 14, qRAMP = 3, Ξ1,
VMM

(f) Projection slope β = 14, qRAMP = 1.5, Ξ1,
VMM

Figure 4.36: Magnet shape for magnetic refrigeration analysed with Topology Optimiza
tion Method with RAMP algorithm and the combination with VMM.
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Figure 4.37: Magnetic flux density plots for the observed cases mentioned in table 4.7
for the VMM, the RAMP algorithm and the combined approaches. The plots were taken
along the middle line displayed in figure 4.28c and 4.29b, defining the angle 0 at the high
field region direction and counting counterclockwise.

Figure 4.38: Objective plots for the observed cases mentioned in table 4.7 for the RAMP
algorithm.
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Figure 4.39: Schematic for simple electric motor model, inspired by the motor model of
[5].

Figure 4.40: Ideal field distribution for simple motor model, plotted within the region of Rg.

Figure 4.41: Mesh setup for Virtual Magnet Method for simple motor model. The refine
ment of the mesh was done within the areas Rg and Rm.
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(a) (b)

Figure 4.42: Simplified motor model optimized in permanent magnet material usage with
the Virtual Magnet Method. The contour plot, here demonstrated with greycolored lines,
represent the zcomponent of the magnetic vector potential Az. The black arrows demon
strate the magnetic flux within the design area in its x and y direction. The colour bar
serves as a demonstration of the norm of the magnetic flux density, given in Tesla.

Figure 4.43: Mesh refinement number 1.
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(a) Ξ1. (b) Ξ2.

(c) Ξ3.
(d) Ξ4.

(e) Ξ2, VMM (f) Ξ4, VMM

Figure 4.44: Simple Motor model analysed with Topology Optimization Method with a
mesh refinement number of 1 and the combination with VMM. The colour bar serves
as a demonstration of the norm of the magnetic field, given in Tesla. The black arrows
represent the remanent flux density of the magnetic field in the design area Rm as they
could not be illustrated in white because of visibility on the colourbar. The coneshaped
arrows represent the desired field in region Rg. The projection point θβ and initial value
for the control variable θ0 were set to 0.5 and used for all cases.
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Figure 4.45: Total radial component of radial magnetic flux density  plots for the observed
cases mentioned in table 4.9 for the mesh refinement number 1.

Figure 4.46: First harmonic of the radial component of radial magnetic flux density  plots
for the observed cases mentioned in table 4.9 for the mesh refinement number 1.
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Figure 4.47: Residuals of the radial component of radial magnetic flux density  plots for
the observed cases mentioned in table 4.9 for the mesh refinement number 1.

Figure 4.48: Objective plots for the observed cases mentioned in table 4.9 for the mesh
refinement number 1.
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Figure 4.49: Relative error plots for the observed cases mentioned in table 4.9 for the
mesh refinement number 1.
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(a) Ξ1. (b) Ξ2.

(c) Ξ3.
(d) Ξ4.

(e) Ξ2, VMM (f) Ξ4, VMM

Figure 4.50: Simple Motor model analysed with Topology Optimization Method with a
mesh refinement number of 1 and the combination with VMM. The colour bar serves as a
demonstration of the magnet and iron area with the threshold of 0.5. The projection point
θβ and initial value for the control variable θ0 were set to 0.5 and used for all cases.
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Figure 4.51: Mesh refinement number 2.
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(a) Ξ1. (b) Ξ2.

(c) Ξ3.
(d) Ξ4.

(e) Ξ2, VMM (f) Ξ4, VMM

Figure 4.52: Simple Motor model analysed with Topology Optimization Method with a
mesh refinement number of 2 and the combination with VMM. The colour bar serves
as a demonstration of the norm of the magnetic field, given in Tesla. The black arrows
represent the remanent flux density of the magnetic field in the design area Rm as they
could not be illustrated in white because of visibility on the colourbar. The coneshaped
arrows represent the desired field in region Rg. The projection point θβ and initial value
for the control variable θ0 were set to 0.5 and used for all cases.
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Figure 4.53: Total radial component of radial magnetic flux density  plots for the observed
cases mentioned in table 4.10 for the mesh refinement number 2.

Figure 4.54: First harmonic of the radial component of radial magnetic flux density  plots
for the observed cases mentioned in table 4.10 for the mesh refinement number 2.
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Figure 4.55: Residuals of the radial component of radial magnetic flux density  plots for
the observed cases mentioned in table 4.10 for the mesh refinement number 2.

Figure 4.56: Objective plots for the observed cases mentioned in table 4.10 for the mesh
refinement number 2.
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Figure 4.57: Relative error plots for the observed cases mentioned in table 4.10 for the
mesh refinement number 2.
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(a) Ξ1.
(b) Ξ2.

(c) Ξ3. (d) Ξ4.

(e) Ξ2, VMM
(f) Ξ4, VMM

Figure 4.58: Simple Motor model analysed with Topology Optimization Method with a
mesh refinement number of 1 and the combination with VMM. The colour bar serves as a
demonstration of the magnet and iron area with the threshold of 0.5. The projection point
θβ and initial value for the control variable θ0 were set to 0.5 and used for all cases.
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5 Synchronous Machines
Synchronous machines are one part of AC machines, which are on the other hand part of
electrical machines. Their range of application starts from small power motors, working in
a range of Watt up to a few 100 Watt, working with a converter and permanent magnets,
and used for ventilation of computers or within medical technology for example. Com
pared to DC motors they don’t use brushes, which is of advantage [27].
As generators they can work in a range of some kW up to 2 GW for hydro power plants,
wind power plants, as well as vehicle power supply of ships and airplanes [27].

Within the stationary state of energy conversion of an electrical machine, the electromag
netic torque that causes the rotation is mainly caused by the current within the armature
winding which correlates with the electromagnetic field within the air gap. It is assumed
that the spatial periodicity for circumference, given by the number of pairs of poles p, is the
same for the wire configurations and the caused rotating fields. Therefore, it can be sup
posed to have the same behaviour of the machine in each pair of poles, why in this thesis
at some points this symmetry will be used and only one pair of poles will be investigated
[20].

A general equation with the angular speeds can be expressed in equation 5.4 and 5.5.
ΩSta is referred to the angular speed of the electromagnetic field with respect to the stator
inside the air gap, ΩRot defines the same, although with respect to the rotor. Equation 5.5
specifically defines the correlation for electrical angular frequencies , and p defines the
number of pairs of poles. The general connection between the electric frequency f and
the mechanical rotational speed n within electrical machines is given by equation 5.3 [20].

Ωe = p · Ωmech = 2 · π · f (5.1)
Ωmech = 2 · π · n (5.2)

f = p · n (5.3)

ΩSta = ΩRot +Ωmech (5.4)
Ωe,Sta = Ωe,Rot + p · Ωmech (5.5)

For synchronous machines, equation 5.6 and 5.8 are used. Former implies that the exci
tation of this machine type happens with timeindependent parameters, e.g. permanent
magnets in the rotor. Latter defines the relation between the frequency of the stator, for
the first harmonic, and the rotational speed, therefore nSyn is also called synchronous
rotational speed, which explains the name for this type of electrical machines [20].

ΩSta = Ωmech (5.6)
ΩRot = 0 (5.7)

fSta = p · nSyn (5.8)
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Figure 5.1 provides a more specified overview of the various kinds of synchronous ma
chines. They are subdivided by their excitation and if their axes need to be considered
magnetically. The parameters ld and lq stand for specific inductance in direction d and q,
which will be explained and shown in the following subchapters in more detail. For those
types of machines, the dq coordinate system is common to use, with respect to a fixed
rotor [20].

For the machine types which use excitation, such as the electrically excited and perma
nent magnet machines, as shown in figure 5.1 in light blue and lime, their longitudinal
axes lies in the direction of the excitation [20].

Synchronous
Machines

Electrically
Excited

Reluctance

Permanent
Magnet

no axes
ld
lq

≈ 1

normal axes
1 <

ld
lq

< 10

inverted axes
0.1 <

ld
lq

< 1

Figure 5.1: Overview over different types of synchronous machines and their relation
between their inductance [20].

5.1 Permanent Magnet Synchronous Machines
5.1.1 Basic functionality of PMSMs (Permanent Magnet Synchronous

Machines)

Figure 5.2: Magnetic circuit representing a simplified machine model [27].

This simplified explanation will be sufficient for this thesis as the machine will not be inves
tigated by changing parameters like power rating, mechanical frequency. A more detailed
description can be taken from e.g. [20].
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Regarding an idle state of the machine, no current is flowing through the stator and only
the influence of the rotor based permanent magnets (for this model here, surfacemounted
magnets are used), is observed. Figure 5.2 shows the stator, rotor and in between the air
gap δ (called ”Luftspalt” in this figure), the height of the magnets hM (”Magnethöhe”), the
loops of the magnetic flux density B and the pole pitch τp. xr stands for the coordinate x
on the rotor side [27].
One of the loops of B closing over stator and rotor in figure 5.2 can be taken to define a
curve integral, which results in a flux linkage of zero. Assuming infinitely permeable iron
µr and neglecting leakage flux between the magnets of different polarity, then the integral
can be written as, according to [27]:

∫
S
Hds = Hδ · δ +HM · hM = θ = 0 (5.9)

With assuming as well to have idealised continuity circumstances BM · AM = Bδ · Aδ as
neglecting leakage flux, the relation in equation 2.30 can be used to define a load line.
With that, the dependency of the air gap height and magnets can be expressed.

Very typical for synchronous machines is to use the coordinate system dq, which is fixed
regarding the rotor. It is used as the excitation, if notexisting it is the magnetically pre
ferred axis, is laid in the real axes of the coordinate system. Therefore, it was used to
define different rotor types for the PM synchronous machine in figure 5.1 and for describ
ing one rotor type in figure 5.3 [20].

The direction d is important for the torque, as the dependency of the torque is mainly
influenced for PMSMs through the flux linkage of the magnets in the d direction in the idle
state [20].

5.1.2 Stator configurations
The focus for this thesis here lies on the type called FSCW (fractionalslot concentrated
wound) double layer stator, as this one is used within COMSOL Multiphysics as a prede
fined example and serves here for more investigations. As mentioned in [49], the main
machine parameters for the permanent magnet synchronous machines within the dq co
ordinate system can be defined by both flux linkages of the permanent magnets as well
as the mutual and self inductances. Former represents the interaction between the mag
netomotive force (MMF) from the stator as a result from the equivalent air gap function.
Second refers to the interaction between the MMF of the stator resulting from the flux
density caused by permanent magnets.

The FSCW types, as explained in [49], show no crossing of the windings, hence the
copper use is less, which results in a lower copper loss factor as well and in total a more
compact design is possible.

5.1.3 Rotor configurations
The main three types of rotors of synchronous machines can be defined as followed: the
surfacemounted magnet rotors, the interiormounted magnet rotors and interiormounted
magnet rotors using inverted axis. The first type has the advantage of an easy fixation
of the magnets, although the air gap which counts magnetically is, compared to the other
types, quite high, as the height of the magnets add up to the needed air gap between rotor
and stator. This does not happen for the other two types, as the magnets are mounted
inside the rotor. For the surfacemounted type then it needs to be mentioned that they are
mostly not shortcircuitproof and are used for small rotational speed [20].
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The second type includes rotors which have interiormounted magnets, which often in
clude small air areas inside for magnetic flux guidance reasons. As now the magnets
are stored inside the rotor, the air gap is within the norm height, which means that short
circuitstrength is given as well as less eddycurrent losses inside the magnets, compared
to the first application with magnets placed on the surface of the rotor. The main differ
ence between the last two types of permanent magnet rotors occurs in the magnetic axes,
as the magnetic flux component in direction d needs to pass through the magnet for the
inverted type, whereas for the normal axes type, the d flux can go through the iron core
directly. The same inverse principle counts for the q axes [20].

Especially rotor types using permanent magnets for excitation not often use damping
windings, as they often connected to converters and they can replace them by an extra
control mechanism. Although, when they are connected directly to the grid, as for gener
ators for wind mills, then this type of rotor only exists as interiormounted magnets where
the extra damping windings can be plugged in, as can be seen in [50]. For the surface
mounted type then the occurring eddycurrents behave similarly like damping windings
[20].

Although the better mechanical stability and reliable performance of the interiormounted
type of rotor is more preferred for several applications, the focus will lay on the embedded
surface mounted permanent magnet rotor type as of simplicity and time for realisation of
this model, as pictured in figure 5.3. Further types of permanent magnet rotor configura
tions are explained in [49].

PM

rotor

dq

τp

Figure 5.3: Model for 6 pole embedded permanent magnet rotor with axes d, q [49],[20].

5.2 Embedded Surface Mounted Permanent Magnet
Synchronous Machines with COMSOL

5.2.1 Rotor optimization
First, a simplified model of the motor was generated in COMSOL to apply both methods
in order to generate a functional rotor to implement in the predefined COMSOL motor
model. Therefore, the geometry in figure 5.4 was designed for four different cases, but all
with the same geometry of table 5.1.

The focus laid on generating an exportable curve to define the boundary between magnet
and iron parts, as well as a magnetization, through applying both methods like in the
previous chapter. With these two parameters, and making use of symmetrical installation,
a rotor was constructed and compared with the results of the existing COMSOL example.
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Figure 5.4: Schematic figure for PM rotor optimization.

PM rotor model  Geometry Configuration value unit
r1 0.0005 m
r2 0.015 m
r3 0.01525 m
r4 0.0155 m
r5 0.0165 m

αsector 18 °
Table 5.1: Chosen measurements for rotor design.

The measurements were chosen to be suitable to insert into the COMSOL 2D permanent
magnet motor model. The idea of taking one sector for the combined approach was given
by [46], as it can be applied as well on a symmetric composition as it is given here.

Ξ1 =
⟨ ˆBslot⟩ · sin(5 · atan2(y, x))

2 +Amag
(5.10a)

Ξ2 =
⟨ ˆBslot⟩ · sin(5 · atan2(y, x))

0.5 +Amag
(5.10b)

Ξ3 =
⟨ ˆBslot⟩ · sin(5 · atan2(y, x))

10−3 +Amag
(5.10c)

Ξ4 =
⟨ ˆBslot⟩ · sin(5 · atan2(y, x))

1 +Amag
(5.10d)

The idea of setting the objectives like shown in equation 5.10a5.10d was to regulate the
magnitude of the magnet area by changing the parameter added in the denominator, while
maximizing a harmonic sinusoidal field in the air gap between rotor and stator.
Equation 4.23 was used again to define the material.

For the expression of the remanence flux density, the norm includes, as previous exam
ples had, θp andBrem = 1.4 T, for the direction the corresponding expressions of equation
5.12 are used.

Br = θp ·Brem · (eBg,x + eBg,y) (5.11)
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The desired Bg field within the area Rg is set to:

Bg = sin(5 · atan2(y, x)) · x√
x2 + y2

êx + sin(5 · atan2(y, x)) · y√
x2 + y2

· êy (5.12)

For the plots shown in figures 5.5a5.5d, a mesh refinement number of 2 was used except
for the shaft inside. For all the plots, the optimality tolerance of 0.001 was used and the
boundary conditions, shown in figure 5.4 were applied. For those cases, the objective
plots where plotted, as well as the relative error plots, similar to the analysis of chapter
4. The relative error was split into two graphs for better visibility. Plot 5.7 shows clearly a
minor relative error for objective 1 than for objective 2, although in the objective plot 5.6
objective 2 achieves a higher outcome. For the second relative error plot 5.8 objective 3
achieves a lower error and higher objective outcome than objective 4, even though the
iteration for the pink objective stopped 50 iterations before the turquoise one.

However, it is important to see these results in relation to their field plot, and later included
in the motor model to evaluate their performance better. Figure 5.5 shows the sector plot
for all the observed cases, plotted with the same colour range for better comparison.
Especially objective 3 shows, despite good results from the plots mentioned in the former
paragraph, a weak field and very small contour line for the supposed magnet area. This
affects clearly the functionality within the motor model, as shown in the following results.

5.2.2 Complete motor implementation and analysis
For this investigation, the permanent magnet motor model of COMSOL was taken, which
should represent a 2D version of a real life motor with 35mm diameter and an axial length
of 80mm [51],[52]. Detailed description of it can be seen in table 5.2 and figure 5.9.

PM 2D motor model  Geometry definition value unit
α0 initial mechanical angle 20 °
2p number of poles 10 1
p number of pole pairs 5 1
m number of phases 3 1
ωrot rotational speed 600 rpm
fel electrical frequency 50 Hz
I0 peak current 10 A

Nturn number of wire turns in slot 20 1
ffslot slot filling factor 0.8 1
Q number of stator slot 12 1
δ air gap length 5 mm

dcont = 2 · r4 diameter of rotorstator continuity interface 30.5 mm
dstator stator diameter 50 mm
dgeom motor diameter incl. air external to stator 53 mm
toothh tooth height 8 mm
toothw tooth width 4 mm
shoeh shoe height 1.5 mm
shoew shoe width 6 mm
shoef radius of shoe fillet 0.4 mm

Table 5.2: Measurements for COMSOL geometry of the motor model [52].

According to table 5.2, the number of stator slots per pole and phase is
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q =
Q

2 · p ·m =
2

5
(5.13)

Based on the structure of q, which indicates the fractional slot winding type of the stator,
its denominator is used to identify the occurring harmonics νPM within this machine type.
According to [20], it can be calculated, with respect to g ∈ Z as follows:

νPM =
1

5
· (1 + 2 ·m · g) = 1

5
;−1;

7

5
;−11

5
; ... (5.14)

It is important to mention as those harmonics, especially the first one with the norm smaller
than one runs faster than the first harmonic, which can cause severe acoustic noise for
this type of machine. The other harmonics are slower than the first harmonic, but can
be remarkable as torque ripple [20]. Therefore, with the discrete fourier transformation
(DFT), the harmonics of the investigated air gap flux density and the torque was analysed
as well.

The model used from COMSOL can be seen in figure 5.9 with its partitions and materi
als. The three phases are highlighted with different colours, as well as soft iron and iron
regions. In this image, the slot winding type, defined as ”radial partition” in COMSOL, can
be seen more clearly [51].

For a general demonstration, a surfacemounted permanent magnet rotor is pictured
there, although for the investigations, an embedded model was used, to compare it with
the designed rotor results.

The various material areas are highlighted in different colors in figure 5.11a to make them
easier to spot and provide a better overview.

Copper for the windings is presented in dark orange in figure 5.11a,N54 (sintered NdFeB)
for the magnets with a remanence flux density of 1.45T and a recoil permeability of 1.05 is
highlighted in magenta. Soft iron was implemented for rotor and stator parts, held in dark
gray, as plotted in the BH curve in 5.10. Iron, in light grey, was used for the shaft. The
areas filled with air are painted in light blue.

As explained in chapter 2.2.2 with equation 2.30, with a larger air gap δ between rotor and
stator, smaller air gap flux density would occur, as well as more likely that demagnetization
effects occur. Therefore, the air gap was not changed and tried to be adapted to the
original model. Therefore, a stronger dependecy of the magnet height can be seen at the
plots of the air gap flux density.

After implementing the contour plot and the magnetisation of each rotor solution, it was
adapted to generate a new rotor to the existing stator configuration. Figure 5.11 gives
an overview over the different magnet shapes, coloured in magenta to differentiate them
easier.

Figure 5.11d includes small rectangular shaped cavities in between the magnet shapes.
These were added after analyzing the magnet shapes, as the field lines partly closed
through soft iron and did not fulfill their purpose for the machine. The idea, especially of
rounding the cavity edges, was partly inspired by [53], the measurements for the small
rectangles are 2.8mm for the height and 3.7mm for the width.

As mentioned before, in figure 5.12 and 5.13, a clear difference in the magnetic field
density norm (colour bar) is remarkable for objective 3, whereas objective 1 and 4 seem
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to have similar outputs.

The torque calculation for this example is based on Arkkio’s method, which is referred to
the Maxwell’s stress tensor for the general torque calculation, mentioned in chapter 2.1.2.
It is specifically used when two parts are split through an air gap with one rotating part,
demonstrated in figure 5.14. The main difference between this method and the calculation
with Maxwell’s stress tensor lies in the integral, as latter in equation 2.20b uses a surface
integral, whereas Arkkio’s method uses a volume integral as shown in equation 5.15a,
which leads to less mesh dependency [54]. For the volume integral over the area Λ
(eq. 5.15c) utilizes the azimuthal force density, which is calculated through the radial and
azimuthal component of the flux density, as shown in 5.15b [54].

T = nsec

∫
Λ

Fφ · rA
rout − rin

dV (5.15a)

Fφ =
Br ·Bφ

µ0
(5.15b)

Λ : (rin < rA < rout) (5.15c)

The radius rA lies between two radii which are entirely in air and nsec is the number of
sectors, set automatically by COMSOL. The area used for Arkkio’s method is highlighted
in blue in figure 5.14a and more detailed in figure 5.14b, adjacent to the continuity bound
ary.
The continuity boundary is the boundary that is defined as the rotors mesh is rotating,
so it needs to be adapted during rotation to the mesh of the stator to have a continuity
between the two parts. Therefore, variables can be properly interpolated if the meshes
are not continuous to guarantee that the magnetic vector potential A is continuous [52].

The plotted torque in figure 5.15 serves as an easier comparison of the resulting torque
between the different rotor solutions. It is plotted over exactly 72°, which refers to exactly
the length of one pole pair for this machine type.
Thismeasurement was taken over 360°to calculate a better approximation of the RMS(root
mean square) of the torque, that is plotted over the magnet area of the rotor magnets,
shown through figure 5.18.

It is important to have in mind that aside of the clear improvement of the torque in its
magnitude with objective 1 and 4, and magnet material could be reduced with objective 2,
a ripple in the torque occurs, as the plot over one electrical period in figure 5.17 shows, but
more clearly demonstrated through the calculated DFT(discrete fourier transformation) of
the torque ripple in figure 5.19. The latter shows for each plot the original model with blue
diamondshaped symbols in comparison with one of the rotor models and their objectives
what they are based on.
Clearly for the motors designed with objective 1,2 and 4 harmonics in the torque can be
seen, compared to the dark blue plot.

In a similar way like the torque investigation, a closer look can be done towards the mag
netic flux density within the air gap, illustrated over one half of the arc length, plotted over
the angle in °, in figure 5.16. A similar shape can be registered, as well as the exceeding
amplitude of all rotors except the one designed with objective 3, which is obvious when
taking into account the minimized magnet size. To interpret this result from another per
spective, again the DFT was used to calculate the occurring harmonics in the flux density,
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shown in figure 5.20. As already seen in figure 5.16, the similar curve of rotor with ob
jective 2 mirrors in the green harmonic plot compared to the original model, as the first
component is the strongest for green as well.

On the other hand, the rotor with the objective 1 shows a stronger component than the
first one, which might come through in more sharp peaks in 5.16.

83



(a) Ξ1, projection slope β = 13.

(b) Ξ2, projection slope β = 8.

(c) Ξ3, projection slope β = 8.

(d) Ξ4, projection slope β = 13.

Figure 5.5: Sector plots of all observed cases for the rotor model. The black arrows this
time show the magnetization that resulted from the Virtual Magnet Method. The contour
line signifies the boundary between iron and magnet area.
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Figure 5.6: Objectives of designed rotor models, plotted over iterations.

Figure 5.7: Relative error plots of objective 1 and 2, for better visibility it was plotted
separately from the other two error plots.

85



Figure 5.8: Relative error plots of objective 3 and 4, for better visibility it was plotted
separately from the other two error plots.

Figure 5.9: 2D  permanent magnet motor model in COMSOL, taken from [51].
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Figure 5.10: BH curve for the soft iron used in the COMSOL model.
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(a) Original model of COMSOL

(b) Motor with included solution of β = 13, Ξ1. (c) Motor with included solution of β = 8, Ξ2.

(d) Motor with included solution of β = 8, Ξ3. (e) Motor with included solution of β = 13, Ξ4.

Figure 5.11: Comparing magnet shape (in magenta) within designed rotor , implemented
in the motor model, with original model.
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(a) Original model of COMSOL

(b) Motor with included solution of β = 13, Ξ1. (c) Motor with included solution of β = 8, Ξ2.

(d) Motor with included solution of β = 8, Ξ3. (e) Motor with included solution of β = 13, Ξ4.

Figure 5.12: Comparing field plots of stationary analysis of original model with imported
rotor models, at t = 0.
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(a) Original model of COMSOL

(b) Motor with included solution of β = 13, Ξ1. (c) Motor with included solution of β = 8, Ξ2.

(d) Motor with included solution of β = 8, Ξ3. (e) Motor with included solution of β = 13, Ξ4.

Figure 5.13: Comparing field plots of stationary analysis of original model with imported
rotor models by more detailed plot, at t = 0.
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(a) Area coloured in blue used for Arkkio’s
method.

(b) Continuity boundary pairs (blue line in the
air gap) and air gap area for calculating the
torque.

Figure 5.14: Radii shown that are used for Arkkio’s method.

Figure 5.15: Torque plotted for the initial mechanical angle with 20°, for an angle of 72°,
which refers to exactly a period of one pole pair.
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Figure 5.16: Radial component of the magnetic flux density, plotted over the arc length
along the continuity line between rotor and stator, demonstrated as radial angle on the
xaxis, for time t = 0 [52].

Figure 5.17: Torque plotted over one electrical period, here demonstrated as a function
of time on the xaxis [52].
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Figure 5.18: RMS calculation of torque of initial angle 20°for mechanical angle, plotted
over the magnet area of the different models.
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(a) Ξ1, projection slope β = 13. (b) Ξ2, projection slope β = 8.

(c) Ξ3, projection slope β = 8. (d) Ξ4, projection slope β = 13.

Figure 5.19: Plots of all observed cases for the rotor torque harmonics, always compared
with the original model in with dark blue diamond symbols. The yaxis is scaled with the
sampling period in COMSOL.
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(a) Ξ1, projection slope β = 13. (b) Ξ2, projection slope β = 8.

(c) Ξ3, projection slope β = 8. (d) Ξ4, projection slope β = 13.

Figure 5.20: Plots of all observed cases for the rotor air gap flux density harmonics ,
always compared with the original model in with dark blue diamond symbols. The yaxis
is scaled with the sampling period in COMSOL.
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6 Conclusion and Outlook
6.1 Limitations of the thesis
Some limitations need to be mentioned here that might have influenced the outcome of
this work. No other research papers in other languages than German or English were con
sidered due to insufficient language skills. The aim for keeping the period under review
reduced to the last eight years was mainly achieved, but for some basic laws of physics,
no specific restrictions were made. Regarding certain scientific papers, only those that
were supported by the Technical University of Vienna and Denmark or those that are
publicly accessible were consulted. That specifically excludes all papers or articles were
additional costs were needed and no library could have had provided them.
Aside from this, another limitation was a prescribed time frame and cost limitations. There
fore it was not possible to realize a practical implementation of the model.
Besides this, efforts were made to include the recent state of research in the field of
optimization methodologies for permanent magnet assemblies, but as of mentioned lim
itations, there might be other investigations possible for future research tasks, that are
partly mentioned in 6.3.

6.2 Conclusion
This thesis presented a way of how to combine the Virtual Magnet Method and Topology
Optimization. It could be shown that combing both methods lead to comparable results
by using only each method separately.
With this work it could be shown that both optimization methods, which were previously
only applied separately, showed combined comparable results where only each method
was applied separately. By means of simplified geometries, the feasibility of the combi
nation could be shown at the beginning. For each of the geometries investigated, other
modifiable parameters were addressed. By means of changes within the default settings
for the Topology Optimization, it was specifically observed whether there were changes
in the results compared to the basic settings. Thus, the optimization solver MMA was
examined for both variants SIMP and RAMP. Since both have a different way of using an
iterative convergence procedure for a given design space and material distribution, very
different results were obtained for some applications, e.g. for magnetic refrigeration.
In addition, some parameters had stronger effects on the change in the result than others,
such as varying β, as it mainly influenced the grayscaling. Other parameters had less
influence when changing them, for example the initial value for the control variable θ, θ0
did not bring any improvement. As well, θβ and θmin was used with its default value, as
varying these two parameters too far away from the given value only made the iterative
process ending with no useful results.

However, adapting the upper boundaries for maximum iteration number sometimes lead
to varying solutions, as well as setting the optimality tolerance smaller to 0.001 helped
improving. Changing the mesh setup for specific areas within the observed geometries
also helped to get different magnet shapes, as examined for the simplified motor model in
chapter 4, as well as minimizing the plateaus in the objectives plotted over the iterations.

Using these findings from the simplified geometries, an attempt was made to apply both
methods combined to a 2D model of an electrical machine in COMSOL Multiphysics to
see if the application of both methods can result in a plausible rotor design. Thus, it could
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be shown that aspects in Table 1 from [8] could thus be combined, as mentioned in chapter
1.
By combining both methods, it was possible to create different optimized magnet shapes
for the motor model and at the same time to calculate the magnetization of those magnets.
The results in chapter 5 were similar to the original model with respect to the magnetic flux
density curve in the air gap, but with respect to the RMS of the torque, higher values could
be achieved with some models, with partially reduced magnet material, like presented in
figure 5.18.

From these results it can be concluded that the combination of both methods can definitely
be applied to other geometries. If extensions are made as suggested in the next section,
it can certainly be applied to other objects with permanent magnets.

6.3 Outlook
A number of recommendations for future research can be given here, as a matter of time,
not every aspect could have been investigated with proper detail.

As already mentioned at the introduction chapter, as stated for many applications in [4],
reducing the dependency of China’s almost monopoly for permanent magnet market, it
can be interesting to investigate ways to reduce the amount of material needed to still
fulfill the objectives, but leave out any additional parts. Aside of this dependency, it is of
great interest to reuse already used permanent magnets again. Very clear ideas of how to
reuse permanent magnets of synchronous machines is given in [55]. Combining the idea
of analysing the motor with finite element method there, but instead using the approach
of the combination of both methods as within the thesis, it could be of great interest to
see results when using approaches of [56]. In this work one part focused on designing a
structure out of the model without adapting to predefined shapes or considering limitations
in the manufacturing process. Hence there could be more degrees of freedom in terms
of reusing magnets out of damaged motors and reusing them by simultaneously creating
new advanced shapes, as using them in form of segmented magnets. This provides a
good starting point to include concepts of using the printed frame in [56] for individual
shapes of magnets by creating soft magnetic composites out of used permanent mag
nets. There might be a possibility to influence the amount of powdered magnet material
by adding recycled polymers to it and fill it within the desired frame.
It is a question of future research to think of including complete new material that results
in similar behaviour than permanent magnets to save further excavation of rare earth el
ements. One concrete example would be the synthetically generated alloy of nickel iron,
called tetrataenite. It occurs within meteorites, where over millions of years a cooling pro
cess rearranges the crystal lattice of nickel and iron, stacking in a certain sequence so
that magnetic characteristics are built up. Even though efforts where made in the 1960’s
to generate tetrataenite artificially, but did not work for mass production. By using phos
phorus now, the process turned into a less costeffective and complex [57].
Future research on using the Virtual Magnet Method as the segmented approach com
bined with Topology Optimization could be combined well with the proposal in the former
paragraph to define certain magnet blocks, each of them magnetized differently, and then
optimized with different varieties of Topology Optimization, as this thesis only examines
the density approach.

Furthermore, other aspects of optimization can be considered, e.g. using threedimensional
models, including other physical parameters like acoustic phenomena or additional ther
mal losses that occur, specifically during continuous rating of electrical machines. As
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stated in [58], the strong dependency of high temperatures and demagnetisation can drive
investigations within optimized cooling system, as it clearly showed improvements.

Future research could as well include to research on building prototypes, e.g. for electrical
machines and the designed rotor, to test the simulated motor and verify results for real
life circumstances. Those aspect might be interesting to test within environments such
as new models of wind turbines, as explained in [59]. An unconventional type of turbines
with vertical axis rotation instead of horizontal axis rotation, but implying centrifugal force
shutters, it might be of great interest to investigate a diverse rotor for this type of wind
power plant.
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