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Kurzfassung

Datenqualität wirkt sich unmittelbar auf die Wirksamkeit von Modellen des maschinellen
Lernens aus, und ihre Beschaffung ist oft mit erheblichen Investitionen verbunden. Fragen
der Vertraulichkeit von Daten, insbesondere wenn es sich um sensible Informationen
handelt, werden daher immer wichtiger. Algorithmen von Drittanbietern, die zur Er-
stellung von maschinellen Lernmodellen verwendet werden, können ein Risiko für die
Vertraulichkeit solcher wertvollen Daten darstellen, da ihre Kapazität genutzt werden
kann, um die Trainingsdaten zu verbergen, die anschließend von einem Angreifer exfil-
triert werden können. Wir schlagen eine Taxonomie von Angriffen zur Datenexfiltration
vor. Wir simulieren solche Angriffe in zwei Szenarien, die davon abhängen, welchen
Zugriff ein Angreifer auf das endgültige, trainierte Modell hat - ein White-Box- oder ein
Black-Box-Szenario. Um die Angriffe durchzuführen, passen wir einen zuvor vorgestellten
Ansatz an, der mit künstlichen neuronalen Netzwerken arbeitet, die auf tabellarischen
Daten trainiert wurden. Wir messen den Nutzen der Angriffe, indem wir die Ähnlichkeit
der exfiltrierten Daten mit den originalen Trainingsdaten berechnen. Wir bestimmen die
Angriffseinstellungen, die zu einer 100-prozentigen Ähnlichkeit der exfiltrierten Daten
führen. Außerdem messen wir die Auswirkungen dieser Angriffe auf die Vorhersagekraft
der zugrunde liegenden Modelle bei der ursprünglichen Klassifizierungsaufgabe. Anschlie-
ßend implementieren wir entsprechende Abwehrmethoden. Wir zeigen, dass die gewählten
Verteidigungsstrategien den aus den Angriffen resultierenden Schaden erfolgreich abmil-
dern, ohne die Modellperformance zu beeinträchtigen, selbst wenn der Angreifer versucht,
die Robustheit der Angriffe (z.B. durch Verwendung von error correction) zu erhöhen.
Darüber hinaus zeigen wir, dass die Anwendung der Verteidigungsstrategien die Leistung
der Basismodelle (d.h. der nicht angegriffenen Modelle) nicht wesentlich beeinträchtigt,
was auf ihre Universalität hindeutet.
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Abstract

Quality of data directly impacts the effectiveness of machine learning models and its
acquisition often involves substantial investments. Confidentiality issues concerning data,
especially when sensitive information is involved, therefore become increasingly pertinent.
Third-party algorithms employed for building machine learning models can pose a risk to
the confidentiality of such valuable data, as their capacity can be exploited to hide the
training data, which can be subsequently exfiltrated by an adversary. We introduce a
taxonomy of data exfiltration attacks. Further, we simulate such attacks in two scenarios
depending on the access an adversary has to the final, trained model - a white-box or a
black-box scenario. To perform the attacks, we adapt a previously introduced approach
[63] to work with artificial neural networks trained on tabular data. We measure the
utility of the attacks by calculating the similarity of exfiltrated data to the original
data and determine the attack settings leading to a 100% similarity of exfiltrated data.
Additionally, we measure the impact these attacks have on the prediction effectiveness of
the models on the original classification task. Subsequently, we implement corresponding
defense methods. We show that the chosen defense strategies are successful at mitigating
the impact of the attacks, without compromising the model performance, even when the
adversary attempts to increase the robustness of the attacks (e.g. by employing error
correction techniques). Moreover, we show that the application of the defenses does not
compromise the performance of the base (i.e. not attacked) models, which hints at their
universality.
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CHAPTER 1
Introduction

1.1 Motivation
The range and scope of machine learning applications have broadened significantly over
the last decades. Propelled by its transformative potential across industries, it has
emphasized the critical role of the data upon which machine learning models are built.
Clive Humby, a mathematician and data scientist, drew an interesting parallel by claiming
that "data is the new oil", thereby highlighting the potential value of data. Moreover,
this quote stresses the importance of data quality, and how refinement and suitable
transformation of raw data raises its value. Its quality, among other factors, feeds directly
into the robustness of the predictive power of machine learning models. Further factors
contributing to an increased value of data are the costs associated with its acquisition. In
many cases, there are significant investment and time resources involved in the collection
and labeling of high-quality data. Reasons for the protection of data ownership are
therefore apparent. If the data contains sensitive information regarding individuals, the
confidentiality aspect takes on yet another dimension.

However, data confidentiality concerns may arise when third-party algorithms are applied
to confidential data. Third-party machine learning algorithms might be employed for
a variety of reasons. A data owner might seek the machine learning expertise of third
parties if they do not possess such knowledge themselves. As a result, they outsource
the model creation to a third-party provider. Another example of external code being
applied to data is when a data owner allows data visiting - a setting when the data
holder, for example, does not have a use-case for their data but allows an interested
third party to use it without data sharing access. Libraries offering a wide range of
functionalities are readily available for use in all steps of the machine learning process,
making it more accessible. In another scenario, an adversary could therefore potentially
contribute malicious code to a library in order to carry out the data-hiding step of data
exfiltration. Should the adversary be able to gain access to a model trained using such
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1. Introduction

Figure 1.1: Overview of a data exfiltration pipeline: the adversary provides malicious
code that has the ability to exfiltrate confidential data even if executed in an isolated
computing environment. The right-most part of the figure depicts a defense being applied
to the model, with the aim of removing the data exfiltration functionality, thereby
preventing the attacker from reconstructing the hidden training

library, the extraction step can then be performed. A common element in the scenarios
mentioned above is the interest of the data holder to keep their confidential data private
and not share it directly with any third party. The third party, however, might have
malicious intent to gain unauthorized access to the private training data, thereby acting
as an adversary. This is why using or allowing third-party algorithms puts data holders
at risk, as information about their private data could be revealed.

1.2 Problem Statement
The goal of a data exfiltration attack is to extract information about the training data
from a trained machine learning model. The code provided by a third party contains
hidden malicious code segments that cause the training data itself to be embedded into
the model. Typically, data exfiltration attacks (DEA) utilizing machine learning models
can be classified by the mode of embedding of information into a model. The adversary
can either hide information in a model using techniques from the field of steganography
or utilize the direct memorization of data that occurs in the training process of machine
learning models. The goal of this thesis is to investigate data exfiltration attacks based
on the steganographic approach, abusing machine learning models, as well as defense
strategies to defend machine learning models from attacks of this sort.

In the attacks from the data hiding category, an adversary has influence over the training
process, during which the algorithm simultaneously trains a machine learning model
whilst also encoding (parts of the) training data into the model itself. This allows the
attacker to carry out the exfiltration even when the malicious code is executed within
a secure, isolated computing environment. This poses a significant risk for the data
owner. This process of data exfiltration is shown in Figure 1.1. The right part of the
figure shows an active defense being applied to the model, with the goal of mitigating the
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1.2. Problem Statement

potential damage caused by data exfiltration. In order to develop a suitable defense, the
nature of the attacks and the adversarial techniques must be investigated. In which way
exactly the adversary influences the training process depends on the type of access is the
adversary assumed to gain to the model once it is trained. We distinguish the following
cases:

1. White-box access (access to the model parameters): This type of attack abuses
the representation capacity of the model parameters. The adversary decodes the
information (secret) hidden in the learned parameters in order to reconstruct (parts
of) the training data.

2. Black-box access (input-output access only, e.g. via a prediction API): In the
black-box scenario, the learning capacity of the model is abused. Instead of encoding
the information (secret) into the parameters of the model, the algorithm makes
the model remember specific responses for crafted inputs; it, therefore, generates
(artificial) data points, and each of these data points is labeled with (a part of) the
secret. Once the adversary wants to gain access to the secret (i.e. the confidential
training data), they produce the same data points and enter them into the prediction
API. The label containing the secret is returned.

Therefore, the requirements for the development of defense mechanisms differ given
the data-hiding technique. In an active defense approach, the model itself needs to be
modified, in order to (partially) remove this information from this attacked model. If the
attacker is not assumed to have access to the model parameters, the active defenses will
comprise other techniques, for example adapting those from other adversarial machine
learning methods, like detecting adversarial examples or backdoors, or from model
watermarking, in order to purposefully remove those parts of the model that are not
responsible for learning the original task. Another mitigation strategy could be a passive
defense that introduces restricting the number of queries an individual is allowed to
submit to the prediction API, which would limit the adversary in how much information
they can access by querying the API. The main focus of this thesis are attacks by
utilizing steganography techniques. Due to the resulting attacked model being modified
in comparison to a benign model, two trade-offs need to be considered in this scenario:

• Attack effectiveness vs. Model utility: Since the resulting model is modified in
comparison to a benign model, the model effectiveness (measured e.g. via accuracy,
precision, recall, etc.) on the original task is expected to decrease. The more
information is encoded into a model, the lower the utility of this model becomes.
On the one hand, it would be possible to fully encode the training dataset into
a model and perform a highly successful exfiltration attack, on the other hand,
the model would lose its utility for its intended task. Subsequently, third-party
algorithms yielding low-quality models could potentially be suspected of being
malicious.

3



1. Introduction

• Defense effectiveness vs. Model utility: As the defense strategies modify
the model, also here, quantifying the change in model utility is necessary. The
goal is to minimize the attacker’s chances of data exfiltration while preserving an
acceptable utility of the model. Otherwise, the defender could potentially modify
all model parameters, thus removing the chance of data exfiltration altogether, but
at the same time, removing any utility of the model for its intended task. The
defender thus faces the challenge of determining the acceptable threshold for the
model’s utility drop - the cost of the defense. Furthermore, it is important to
consider the effectiveness of the attack in relation to the size of the model. A
model with a capacity much larger than necessary for a certain task can hold more
information about the training data. Therefore models disproportionately large in
relation to the underlying task could be used to exfiltrate large amounts of data
with high success, but potentially be more suspicious for attack detection. However,
determining the proportionate model size is not a straightforward task, and can
thus not serve as an indicator of an attack.

The effectiveness of the attacks, as well as the defenses, is examined and the above-
mentioned trade-offs are quantified. Experiments with different settings for the attacks
and defenses are conducted. An evaluation of the resulting performance is performed. In
order to precisely define the scope of the thesis, the research questions presented in the
following section have been formulated.

1.3 Research Questions
1 In what way can successful data exfiltration attacks using machine learn-

ing models be designed? This question aims to explore the possible techniques
on how to encode information into machine learning models and subsequently
exfiltrate this hidden information. The quality and the amount of data, which can
be exfiltrated, need to be considered in relation to the size and the complexity of the
model used for such an attack, as the amount of information that can be encoded
in the model increases with expanding model capacity. Abusing a model dispro-
portionately large to the given task would artificially maximize the effectiveness of
an attack. The goal is therefore to design attacks using models of proportionate
capacity to the intended task, as well as considering the above-described attack
effectiveness vs. utility trade-off.

2 To what extent are the attacks useful? In order to determine the usefulness
of the attacks, the attack effectiveness and the model utility are measured. The
relationship between these measures is evaluated.

a) To what extent can data be exfiltrated from trained machine learning
models by performing attacks utilizing data hiding techniques?
This question aims to investigate the success rate of data exfiltration attacks.
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1.3. Research Questions

In order to quantify the effectiveness of such attacks, the similarity between the
original training data, and the exfiltrated (reconstructed) data after performing
an attack is measured. Additionally, the amount of recovered data can be
measured.

b) To what extent does the model effectiveness change after incorporat-
ing data exfiltration functionality? In order to perform data exfiltration
attacks, the original, benign algorithm is modified in order to encode infor-
mation about the training data into the model itself. Thus, a decrease in the
model utility is expected, as parts of the model are changed or replaced (in
comparison to a benign training process) to encompass the additional informa-
tion. Preserving the performance of the model on the original, intended task
as much as possible poses a challenge. Otherwise, the algorithm could easily
be modified to simply encode all of the training data into the model instead
of training it, which would subsequently render the model useless. In order
to assess the utility of the attack model on the original task, metrics such as
accuracy, precision, recall, F1-Score, and ROC-AUC Score are employed. The
performance of the attack model is compared to the benign model to measure
the change in model utility.

3 In what way can models used for information hiding be successfully
defended from data exfiltration attacks? The aim of this question is to
find out how to design defense strategies against data exfiltration attacks. As
the secret information gets embedded into the model, the defenses will consist of
techniques that modify the trained model. Rendering the model useless would
effectively eliminate the option of data exfiltration. The following research questions,
therefore, quantify the important measures to be considered when aiming to design
successful, optimal defense strategies, while preserving model utility.

4 To what extent are the defense strategies useful? In order to assess the
usefulness of the defenses, the defense effectiveness, and the model utility are
tracked. The trade-off between these measures is evaluated.

a) To what extent do the chosen defenses decrease the success of the
data exfiltration attacks? This question seeks to examine the effectiveness
of various defense strategies protecting against data exfiltration attacks. The
measurement technique from the RQ2(a) is used here as well, in order to
quantify the effectiveness of a defense mechanism. In RQ2(a), the similarity is
measured using an undefended model. In contrast, this research question aims
to assess the similarity using a defended model. As defense is put in place
on top of an undefended model, the similarity of the exfiltrated data to the
original data is expected to decrease.

b) To what extent does the model utility change after the application of
defense strategies against data exfiltration attacks? Due to the model
parameter modification by a defense strategy, a trade-off between the model
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utility and the defense effectiveness is expected. The change in the model
utility portrays the cost of utilizing defense strategies. The proposed method
to measure this change is to compare the performance of the model trained
with a benign algorithm, a malicious algorithm, and a malicious algorithm
with an applied defense. The metrics used in RQ2(b) (accuracy, precision,
recall, etc.) measure the impact of the defenses on the model utility.

1.4 Methodology
In this section, the methodology of this thesis is described in detail. The methodology
is tailored to address the research objectives and to ensure that the outlined research
questions can be answered.

1.4.1 Literature research
In order to investigate the state-of-the-art research, a literature review is performed
according to the guidelines developed by Kitchenham et al. [39]. A restricted version
of their method has been used to detect relevant literature based on defined inclusion
and exclusion criteria and to specify the information to be acquired from the inspected
studies.

The goal is to research and gather information on the approaches within the field
of security of machine learning models and data confidentiality, specifically regarding
research on data exfiltration. In order to identify literature relevant to the security of
machine learning models and particularly to data exfiltration, the following criteria have
been defined:

1. Literature surveying adversarial machine learning and corresponding defense strate-
gies.

2. Literature proposing methods for data hiding in machine learning models.

3. Literature proposing methods for removal of information hidden in models.

The literature review serves as a theoretical base for the implementations and experiment
design. It also serves the purpose of identifying the requirements for the design of data
exfiltration attacks and defenses.

1.4.2 Threat Modeling
Understanding of the operational structure of a potential security breach commonly
involves modeling possible threats. Within this work, a threat model is constructed for
each type of data exfiltration attack. This model elaborates the profile of an attacker,
defender, and the computational environment and is based on a threat modeling structure
for machine learning-based systems from [5, 10]. It describes the incentives and goals

6



1.4. Methodology

of the attacker and elaborates on their capabilities. This includes the knowledge of the
attacker and what access they have to the model and the underlying data. Furthermore,
other aspects that must be considered when modeling security threats are the resources
and possible actions of the attacker. The threat model thus contains information on
the adversary’s objectives and goals, how much effort they are able to invest, and what
their capabilities are. Threat models further provide a basis for modeling corresponding
defense techniques. In this case, the side of a defender is included as well. The same
factors must be considered for the defender - the defender’s goals and capabilities. The
threat models serve as a foundation for the design and implementation of both the attacks
and defenses.

1.4.3 Design and implementation of data exfiltration attacks abusing
machine learning models

The attacks are based on the foundational study published by Song et al. [63]. Their
attack design guides the implementation within this work. However, adaptations of the
attacks are carried out in order to perform the attack on models trained on tabular data.

1.4.4 Design and implementation of defense techniques in order to
minimize chances of data exfiltration

The design of countermeasures is undertaken based on the type of attack that is carried
out. Subsequently, these defense techniques are implemented in order to defend the
models obtained in the previous step.

1.4.5 Evaluation and comparison of different settings

For each implemented attack, as well as each implemented combination of an attack-
defense strategy, the effectiveness is measured using the metrics defined within the
research questions. The results are collected in order to evaluate the performance of the
attacks and defenses by mainly assessing the degree of data exfiltration on undefended
and defended models.

1.4.6 Analysis and defining guidelines for selection of attack settings
and optimal defense strategies

Analysis of the results is performed in order to find the most optimal settings for defense
strategies. Additionally, the analysis considers the above-mentioned trade-offs between
the attack/defense effectiveness and the utility of the models. A set of recommendations
is developed based on the analysis results regarding the various settings and trade-offs.

We follow the principles of the CRISP-DM framework [70] to guide the experiment design
and evaluation process.

7



1. Introduction

1.5 Thesis Organization
The remainder of this thesis is organized as follows: Chapter 1 introduces the topic
and establishes the problem which we attempt to subsequently solve. It describes the
methodological approach applied within this thesis. Chapter 2 provides the necessary
background knowledge on the topic, giving an overview on the notation used throughout
this work, and explaining the relevant underlying concepts and methods. Chapter 3
presents an overview of relevant research in the field of machine learning security and
related work. Chapter 4 details the threat models for each attack scenario investigated.
This chapter defines the roles of an adversary and a defender, along with their incentives,
goals, knowledge, and actions. Chapter 5 describes the experiment design in detail, The
experiment setup is modeled for each set of experiments performed. This provides a
detailed description of the steps taken within each experiment to investigate the change
in the effectiveness and utility from a benign model to an attacked one to a defended one.
Chapter 6 presents the results of experiments conducted and interprets them, analyzing
and discussing the factors that led to these specific outcomes. Chapter 7 summarizes the
outcomes of this work, and elaborates on the directions of future research in the field of
data exfiltration exploiting machine learning models.

8



CHAPTER 2
Background

This chapter provides background knowledge relevant to the research and experiments
conducted within this work. An introduction to the field of machine learning is followed
by descriptions of supervised learning, and more specifically classification. Further,
evaluation techniques along with relevant metrics are presented. Then, concepts relevant
to data exfiltration attacks and defenses are introduced.

Table 2.1 presents the notation of the most common variables and parameters used
throughout this work. The subsequent sections provide an explanation of the meaning
and relevance of each of the terms.

2.1 Supervised Machine learning
Computer scientist and machine learning pioneer Tom Mitchell defined Machine Learning
as follows:

"A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.”

This definition captures the essence of machine learning, which involves the development
of algorithms that enable a program to learn and become more proficient or skilled at
the tasks it is designed to do through the accumulation of experience.

Machine learning is a subfield of artificial intelligence that studies the development
and application of algorithms capable of automatically learning patterns and making
predictions or decisions from data. It involves training computational models on datasets,
allowing them to capture complex relationships and extract relevant features, and thereby
generalize from the examples provided. This comprises automatic methods that require

9



2. Background

Table 2.1: Notation used in this work

Notation Meaning
D Dataset
X Attributes of the dataset
y Target attribute of the dataset
m Number of attributes in D
f ML model
θ Model parameters
θ′ Model parameters modified by attack
θ′∗ Model parameters modified by defense
W Model weights
b Model biases
L Number of hidden layers
h Hidden layer
α Learning rate
s Secret (to be exfiltrated)
b Number of least significant bits
A Neuron activations
T Trigger set
X′ Generated trigger set attributes
Dex Exfiltrated dataset
T Benign training algorithm
A Data transformation algorithm
Tmal Malicious training algorithm

no specification of rules to learn and no external assistance in learning. One of the
sub-fields in machine learning, relevant to this work, is supervised learning. Supervised
learning involves mapping input data to known output labels in the training process.
These labels are also called the target variable (or attribute) - it is what the algorithm
ultimately aims to predict. Thus the mapping resulting from the training process should
ultimately correctly predict the value of the target variable on data where the output
label is unknown.

2.2 Classification

In supervised machine learning, classification is a task where the objective is to assign
input data points to predefined categories (also called classes). The algorithm learns
from labeled training data X = ((x1, y1), (x2, y2), . . . , (xn, yn)), where each input sample
xi = (xi1, . . . , xim) (consisting of values belonging to input features, also called variables
or attributes, of size m) is associated with a known class label yi. This known mapping to
the target variable is also referred to as ground-truth. The full dataset can be represented
as a matrix:
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D =


x1,1...m y1
x2,1...m y2

...
...

xn,1...m yn


During the training phase, the classification algorithm aims to learn the input features
and capture their relationship to the corresponding labels. Through this learning process,
the model parameters θ are adjusted to find decision boundaries between the classes
of the training dataset. Optimally, the trained model f̂ should capture patterns and
relationships in the training data well enough to assign the correct label to given data
samples, while at the same time still being able to generalize and correctly classify similar,
however previously unseen, data. Ideally, the trained model should approximate the
true (unknown) function f (which fits the true patterns and relationships in the data) as
closely as possible. In order to classify a new data point xi, the trained model f̂ utilizes
the learned decision boundaries and assigns a specific class label to the data point, i.e.
prediction ŷi = f̂(xi1, xi2, . . . , xim), where 0 ≤ i ≤ n.

2.2.1 Binary Classification
Binary classification is a type of supervised classification where the target variable
y = (y1, . . . , yn) of the underlying dataset consists of two classes - yi ∈ {0, 1} where yi

represents the sample label and 0 ≤ i ≤ n. The target variable of the dataset we use in
our evaluation is binary.

2.3 Model Performance Evaluation Metrics
The performance of a model on a classification task is evaluated by comparing the true
labels of data samples to the corresponding predictions produced by the model. The
difference between the true label and the prediction is denoted as error ε. The given
original sample label yi is thus compared to the model prediction ŷi = f̂(xi1, xi2, . . . , xim),
so that yi = ŷi + ε. Based on this comparison, various metrics can be calculated.

• True Positive (TP) prediction: A TP prediction is achieved when a sample
belonging to a positive class is labeled as such by the model, thus the prediction
matches the ground truth, i.e.

yi = ŷi = 1

• True Negative (TN) prediction: A TN prediction describes the case, when a
sample belonging to a negative class is labeled as such by the model, thus the
prediction matches the ground truth, i.e.

yi = ŷi = 0

11
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• False Positive (FP) prediction: A FP prediction occurs when a sample belonging
to a negative class is assigned a positive label by the model. In this case, the
prediction does not correspond to the ground truth, i.e.

yi = 0 ∧ ŷi = 1

• False Negative (FN) prediction: A FN prediction occurs when a sample belonging
to a positive class is assigned a negative label by the model. Also in this case,
the prediction does not correspond to the ground truth, i.e.

yi = 1 ∧ ŷi = 0

• Accuracy: captures the proportion of correctly classified samples over the total
number of samples.

Accuracy = TP + TN
TP + TN + FP + FN

• Precision: Precision quantifies the proportion of correctly predicted positive
samples out of all predicted positive samples and is therefore defined as

Precision = TP
TP + FP

• Recall: Recall represents the proportion of TP that are correctly identified by the
model. It is also known as sensitivity or a true positive rate (TPR) and is defined
as

Recall = TP
TP + FN

• F1 Score: The F1-score captures both precision and recall into one metric - it is
calculated as the harmonic mean of these two metrics.

F1 score = 2 × Precision × Recall
Precision + Recall

• Area Under the Receiver Operating Characteristic Curve (ROC AUC):
plots sensitivity (the true positive rate (TPR)) against specificity (the false positive
rate (FPR)), and thereby captures the ability of the model to distinguish between
the samples of positive and negative classes across various classification thresholds.

– True Positive Rate (TPR) (same as recall):

TPR = TP
TP + FN

– False Positive Rate (FPR):

FPR = FP
FP + TN

12
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This metric is used to evaluate model performance on binary classification problems.

• Zero-Rule (0R) Baseline: This baseline represents the performance of a simple,
naive classifier, indicating the performance when, for any input, the model returns
the label of the most-frequent class of the target variable as a prediction, i.e. the
accuracy is equal to the proportion of the most-frequent class in the data.

2.4 Multilayer Perceptron
The Perceptron algorithm proposed by F.Rosenblatt in 1958 [57] is a fundamental
algorithm in the field of Machine Learning. It is a type of linear binary classifier that
aims to distinguish between two classes of data. It consists of an artificial neuron that
maps an input vector to an output value by calculating the weighted sum of the input
features. This sum is then passed through an activation function, which determines
the output of the perceptron. During the learning process, the perceptron adjusts its
weights based on the errors made in classification by comparing its predictions with the
correct class labels, and updating the weights accordingly if there is a misclassification.
A Multilayer Perceptron (MLP) is a more complex form of the MLP is a type of
fully-connected, artificial neural network (FCNN) that consists of multiple layers of
interconnected artificial neurons. It is a feedforward neural network, meaning that
information flows in one direction, from the input layer through the hidden layers to the
output layer.

MLP architecture typically comprises an input layer, one or more hidden layers, and an
output layer. The layer size is determined by the number of neurons per layer. Typically,
each hidden layer consists of multiple neurons. The neurons in adjacent layers are fully
connected, meaning that each neuron is connected to every neuron in the previous and
subsequent layers. The size of the input layer depends on the size of the input data
(the number of features in X). The neurons finally feed into the last layer, the so-called
output layer, where the prediction of the network for the given sample is produced.

In an MLP, each neuron receives input signals from the previous layer, applies a weighted
sum of the inputs, and applies an activation function to produce an output. The activation
function introduces non-linearity, allowing the MLP to learn complex relationships
between input data and the target variable. As the produced weights determine the slope
of the resulting curve, additional parameters - biases, can be used in order to shift the
resulting curve, to further reduce the classification error.

The Multilayer Perceptron can also be represented as follows:

• Input Layer: xi = (xi1, xi2, . . . , xim), where xi represents an input sample, with
(xi1, xi2, . . . , xim) representing the feature values of that sample and m represents
the number of features in the data X. Therefore, the size of the input layer is
determined by m.
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• Hidden Layers: h(l) = (h(l)
1 , h

(l)
2 , . . . , h

(l)
j ) (for l = 1, 2, . . . , L), where h(l) repre-

sents the lth hidden layer, and L represents the number of hidden layers. h
(l)
i stands

for each neuron, with 1 ≤ i ≤ j and j representing the number of neurons in each
layer (hidden layer size).

• Output Layer: produces the prediction ŷi for each sample x1, x2, . . . , xn that is
passed through the network.

The first step of the training process of an MLP is the initialization of weights and biases
for each neuron in the network. The weights and biases of an MLP can be represented as
matrices:

Input-to-Hidden Layer Weights: W(1) =


w

(1)
11 w

(1)
12 . . . w

(1)
1j

w
(1)
21 w

(1)
22 . . . w

(1)
2j

...
... . . . ...

w
(1)
m1 w

(1)
m2 . . . w

(1)
mj



Hidden-to-Hidden Layer Weights: W(l) =


w

(l)
11 w

(l)
12 . . . w

(l)
1j

w
(l)
21 w

(l)
22 . . . w

(l)
2j

...
... . . . ...

w
(l)
j1 w

(l)
j2 . . . w

(l)
jj



Hidden-to-Output Weights: W(L+1) =


w

(L+1)
1

w
(L+1)
2

...
w

(L+1)
j



Hidden Layer Biases: b(l) = (b(l)
1 , b

(l)
2 , . . . , b

(l)
j ) (for l = 1, 2, . . . , L)

Output Layer Biases: b(L+1) = (b(L+1))

The weights and biases are generally referred to as parameters of a model θ = {W, b}.
The size of these matrices, and thus the number of parameters in a model is determined
by the number of input features, number of layers in the network, and number of neurons
in each layer. As each neuron in a layer is connected to every neuron in the previous layer,
the number of weights in a layer is the product of the number of neurons in that layer
and the number of neurons in the previous layer. Each neuron also has a bias associated
with it, so the number of biases in a layer is equal to the number of neurons in that layer.

MLP contains an activation function in each neuron. In this thesis, we employ the
Rectified Linear Unit activation function as the hidden layer activation function, which
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is defined as the maximum of 0 and the input, where the v input denotes the input to
the neuron:

ReLU(v) = max(0, v) =
�

v if v > 0
0 otherwise

The Sigmoid activation function is applied as the output layer activation function and is
defined as:

σ(v) = 1
1 + e−v

where v represents the input to the function. This function maps values to the range
(0, 1) and is therefore commonly used in the context of binary classification tasks, as
the resulting value can be interpreted as the probability of the input belonging to the
positive class.

A forward pass refers to a process of calculating an output given an input. It consists
of propagating the input through the layers of the network in a forward manner and
does not include the update of the model parameters. The input data is represented as
a vector, with each vector element corresponding to a feature value of the data. In the
first step, data enters the network and is propagated through each layer. Each neuron
computes a weighted sum of its inputs (a dot product with the weights, plus the bias).
Subsequently, the activation is computed. Then, the network provides output based on
its inputs.

Therefore, the MLP forward pass can be represented as:

a(1) = ReLU

xW(1) + b(1)

�
a(l) = ReLU


a(l−1)W(l) + b(l)

�
for l = 2, 3, . . . , L

o = σ

a(L)W(L+1) + b(L+1)

�
We can then compute how much off the MLP is with its prediction; the loss function
relevant to the model architecture used within the experiments in this thesis is the Binary
Cross-Entropy Loss (denoted as Loss).

Loss = − 1
N

N�
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)]

where ŷi represents the output of the model for the ith input sample. It shows the
predicted probability of the ith sample belonging to the positive class of the target
variable. This is summed up over all samples in the dataset.

During the training process, the objective is to find the set of weights and biases that
minimize the loss, which is typically achieved by using an optimization algorithm, such
as stochastic gradient descent.
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In order to find the optimal set of parameters, the computed error from the loss function
is propagated from the final layer through the network in a backward manner, in a
process referred to as backpropagation. The gradients of the loss function with respect
to the weights and biases (parameters θ of the model) are computed; the gradient of
the function at a given point indicates the steepest increase of the function at that
point. Subtracting the gradient from the parameters, therefore, leads to a step in the
direction of the steepest decrease in the loss function. In this manner, the parameters
are consequently updated, depending on how much each of the parameters contributed
to the error. The update rule for weights and biases is given as:

w
(l)
ji = w

(l)
ji − α

∂J(W, b)
∂w

(l)
ji

b
(l)
j = b

(l)
j − α

∂J(W, b)
∂b

(l)
j

where α is a hyperparameter controlling the magnitude of the update, also referred to as
the learning rate.
During the training process, the input data is fed to the network in batches. The size
of a batch is a hyperparameter of the model which can be adjusted to find the optimal
value. It is primarily used in the training of a model and refers to the number of training
data samples that are used for one set of a forward pass and a backward pass of the data
within one training This process, from the forward propagation, until the parameters are
updated, for all batches of the dataset, i.e. until each input sample has been presented
once to the MLP training, is referred to as one training epoch. The training process is
repeated for a number of epochs, upon which the final model is obtained.
During training, a validation set can be used in order to assess the model’s performance
on unseen data, and, if desired, to implement early stopping of the training process. The
calculated loss on the validation set is tracked. Once it is no longer showing improvement
upon a training iteration, the training can be stopped.
Algorithm 2.1 depicts the training process of a Multilayer Perceptron.
The parameters θ of the final model constitute the learned representation of the input
data. Each parameter has a numerical value.

2.5 Hyperparameter tuning
Hyperparameter tuning is a process of adjusting hyperparameters in a machine learning
model in order to optimize its performance on a specific task. In MLP, the hyperparam-
eters to optimize are, for example, the learning rate. By conducting hyperparameter
performance evaluation, the model’s hyperparameters can be fine-tuned to achieve a
balance between overfitting and underfitting, resulting in improved model performance. It
is usually carried out by training the model with different combinations of hyperparameter
values and evaluating its performance on a validation set.
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Algorithm 2.1: Benign training algorithm T
Input: Training data [Xtrain | ytrain], Validation data [Xval | yval], learning rate

α, batch size N , total epochs E
Output: Trained model f̂
Initialize network weights W(l) and biases b(l) randomly for all layers l
Let Lossmin be the minimum validation loss observed so far, initialized to ∞
Let patience be the maximum number of epochs to wait for an improvement in
validation loss

Let epochs_since_last_improvement be the number of epochs since the last
improvement in validation loss, initialized to 0

for epoch in E do
for batch in [Xtrain | ytrain] do

Forward pass:
ŷtrain ← forward_pass(f, Xtrain)
Compute loss:
Loss = − 1

N

�N
i=1[yitrain log(ŷitrain) + (1 − yitrain) log(1 − ŷitrain)]

Backward pass (backpropagation):
Compute gradients: ∂Loss

∂W(l) and ∂Loss
∂b(l) for all layers l

Use optimizer to update parameters θ:
W(l) = W(l) − α ∂Loss

∂W(l) for all layers l

b(l) = b(l) − α∂Loss
∂b(l) for all layers l

end
if [Xval | yval] is not None then

Forward pass:
ŷval ← forward_pass(f, Xval)
Compute Lossval, the loss on validation_data
Lossval = − 1

Nval

�Nval
i=1 [yival log(ŷival) + (1 − yival) log(1 − ŷival)]

if Lossval < Lossmin then
Lossmin = Lossval

epochs_since_last_improvement = 0
else

epochs_since_last_improvement ± 1
if epochs_since_last_improvement ≥ patience then

Break
end

end
end

end
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2.5.1 Grid Search
Once the values to be investigated for each hyperparameter are determined, a grid of
the parameters is constructed. During a Grid Search, a model is trained using each
combination of the hyperparameter values from the given grid. Then, the performance of
each of the models is evaluated, and the best-performing model is chosen.

2.5.2 Cross-validation
A straightforward approach to the evaluation of model effectiveness is the holdout method,
which splits the data into two parts - a training set and a validation set. The model
is trained on the training set, and its performance is evaluated on the validation set.
However, the resulting calculated performance of the model on this validation set is highly
dependent on how the holdout split is performed (the calculated performance metric
might be particularly high or low on this one specific subset of the data, and not reflect the
true model effectiveness). In order to increase the robustness of the evaluation, ensuring
a more reliable estimate of the model’s performance on unseen data, cross-validation
(CV) can be employed. Standard practice is to employ k-fold cross-validation, a method
that partitions data into k parts, where k-1 parts are used for building a model and one
part is retained for performance evaluation. This step is repeated k times, to ensure a
reliable estimate of the model’s performance on unseen data. The results over k folds
are then combined (e.g. averaged) to produce a single performance estimation. The
application of cross-validation is important for a more robust model selection.

2.6 Data Preprocessing
In order to build a model based on training data, the underlying data must (in most
cases) undergo transformation. The necessary preprocessing steps depend on the nature
and type of the data, as well as the algorithm that will be used for classification. In
the first step, the dataset needs to be investigated to determine the preprocessing steps
necessary.

2.6.1 Data Cleaning
The dataset might contain missing values, outliers, or noisy data. Handling missing
values typically comprises of imputation, in some cases also the removal of the respective
features or samples. This step, however, needs to be performed carefully, taking the
impact of the specific preprocessing step into account. Outliers should be carefully
detected and investigated, as they might skew the data in an unwanted or unnatural way.

2.6.2 Encoding
For the algorithm to handle categorical values, especially if they are represented in the
dataset as strings, label encoding is necessary. It assigns a number to each category

18



2.7. Representation of numerical values

within the feature. However, this type of encoding is not always ideal, as it introduces
order to categories, which are not necessarily ordinal or end up being encoded in the
wrong order. Therefore, preprocessing requires careful inspection of the data to determine
which type of preprocessing is suitable. Another way to preprocess categorical data is
one-hot encoding. When applied, a separate, binary column is created for each category
of each categorical feature. The disadvantage is that this type of encoding increases
the dimensionality of the data and introduces multicollinearity into the dataset. For
this reason, one of the newly created columns per original categorical feature should be
removed in order to avoid linear dependency in the data.

2.6.3 Feature Scaling
Another step critical to data preprocessing is feature scaling. It ensures equal contribution
of the different features to the subsequently built machine learning model. Scaling involves
either normalizing the data by transforming it into a chosen range (min-max scaling) or
standardizing it by centering the values around the mean with a standard deviation of
one.

2.7 Representation of numerical values
The model parameters are represented as single-precision floating-point numbers using
the IEEE-754 Standard [33]. According to IEEE-754, the single-precision floating-point
format (32-bit) consists of:

• Sign bit

• Exponent consisting of eight bits

• Significand precision (also known as the mantissa) of size 23 bits

Endianness refers to the order used to numerically interpret a range of bytes in computer
memory. It describes how multi-byte data (floating-point numbers in the case of model
parameters) are stored and read in computer systems. The two main types are Big
Endian, where the most-significant bit is written at the smallest memory address, and its
opposite, Little Endian. Due to the fact that the IEEE-754 Standard does not specify
endianness, it is important to determine the endianness in order to pinpoint where the
least significant bits (LSBs) are stored.

2.8 Error Correction Codes
Error Correction Codes (ECC) provide a way to detect and correct data corruption in
digital data transmission and storage. The detection and correction are performed by
adding extra symbols to the data. A widely utilized type of ECC is the Reed-Solomon
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error correction. This method utilized block-based ECCs, meaning that blocks of bits
are grouped together into larger symbols. This property makes them effective at dealing
with burst errors, which are errors that affect many consecutive bits or larger failures
which affect bytes at a time. Reed-Solomon ECCs have a wide range of applications,
such as mobile or satellite communications, or for example, bar-code scanning, including
QR-Codes.

2.9 Data Exfiltration Attacks Application Scenarios
Data exfiltration functionality could potentially be embedded in a module of an ML
library, or in an application that provides model-building functionality. Furthermore,
in settings where it comes to a code exchange, this can potentially be interjected by a
man-in-the-middle attack, e.g. with an adversary impersonating the code-provider party,
replacing the benign code with malicious one.

2.9.1 Federated Learning
Federated learning can pose a special scenario for the application of DEA. Although
federated learning is a privacy-preserving machine learning technique that eliminates
the need for data sharing, there are still privacy implications regarding the data. In
order to avoid data sharing, a machine learning model is trained locally by a number of
participants (e.g. devices) on their sensitive data [40] [12]. Subsequently, these models
are aggregated in order to build a final global model. The models can be trained in a
parallel manner, where participants train models simultaneously, and subsequently share
the models with a central aggregating entity. In the case that the code was provided by
this aggregator, it could potentially contain exfiltration functionality. A second federated
learning configuration is so-called sequential learning, where the participants train the
models consecutively so that the global model is updated, before being sent to another
participant. Such a model could still potentially be at risk for data exfiltration attacks.

2.10 Security risks
Confidentiality, integrity and availability have been identified as three key components
of information security, commonly referred to as the CIA-triad [60, 65]. Confidentiality
has been defined through limiting access to information ensuring its non-disclosure. The
integrity component aims to guarantee that the information is accurate and trustworthy.
Reliable access to information by authorized individuals is ensured through the component
of availability. Potential security risks can be classified according to which of the three
components they violate. In adversarial machine learning, threats are also classified
according to these principles [5, 10]. Chapter 3 provides more details on how these
concepts relate to security in machine learning.
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CHAPTER 3
State-of-the-Art

3.1 Adversarial Machine Learning
Barreno et al. first introduced a taxonomy of adversarial attacks against learning systems
[5]. The attacks are classified along three dimensions - influence, specificity, and security
violation. Attacks are classified as causative if the attacker influences the learning process
with control over training data, and exploratory, if there is no influence on the training
process, but the attack exploits misclassifications. The axis of specificity partitions the
attacks into two categories - attacks targeting to compromise the model’s performance on
a particular instance of the data, or attacks targeting data instances indiscriminately. As
introduced in Chapter 2, attacks against machine learning can be categorized based on
which element of information security an attack aims to compromise with respect to the
underlying model. The taxonomy introduced by Barreno et al. [5] distinguishes between

Table 3.1: Categorization of adversarial attacks against ML (adapted from [10])
Attacker’s Goal

Misclassifications that do
not compromise normal
system operation

Misclassifications that
compromise normal
system operation

Querying strategies that reveal
confidential information on the
learning model or its users

Attacker’s
Capability

Integrity Availability Confidentiality

Test data Evasion (a.k.a.
adversarial examples)

- Model extraction / stealing and
model inversion (a.k.a.
hill-climbing attacks), Data
Exfiltration abusing
unintentional memorization

Training data Poisoning (to allow
subsequent intrusions)
– e.g., backdoors or
neural network trojan

Poisoning (to
maximize classification
error)

Data Exfiltration by
Steganography/Intentional
Memorization
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integrity and availability attacks. Later, Biggio et al. expanded on this classification,
by adding a third class of attacks, comprising confidentiality [10]. This classification is
shown in Table 3.1.

3.1.1 Integrity Violation Attacks
Violating the integrity of a system, in this case, means harmful instances are being
classified as false negatives, thus not recognized by the system.

Backdoor attacks via Data poisoning

Data poisoning is an attack that involves influencing or controlling (a part of) training
data by the attacker, whereby eventually, the model’s behavior is manipulated [58, 47].
This way, a backdoor is inserted into the learning process. Such attacks require the
attacker to have the ability and access to intervene directly at training time. If misleading
data (i.e. poisoned samples) is injected into the learning process, the algorithm might
adopt incorrect behavior. The target label of the modified instances is specified by
the adversary. The attack is successful, when the modified samples are labeled by the
attacked model, with the class assigned by the adversary [17, 25].

Evasion attacks

Evasion attacks differ from data poisoning attacks by the fact in which stage the ML
process is modified. Evasion attacks are executed at the testing stage, assuming adversary
has no access, and thus no influence on the training process. The aim is to modify the
input sample to cause unusual behavior at inference time. For example, a gradient-
based approach was proposed to modify the input samples to purposefully lead to
misclassification [9].

3.1.2 Availability Violation Attacks
Based on the adversary’s objective, a subset of poisoning attacks belongs to this category.
In this subset, the objective is to harm system availability causing denial of service, by
maximizing incorrect classification of benign instances.

3.1.3 Confidentiality Violation Attacks
The attacks from this category aim to compromise the confidentiality of models, or the
respective underlying data.

Model Stealing

The objective of model stealing attacks is to infer information about a model [66, 50]. By
default, the premise for model stealing attacks is black-box access to the target model.
According to the taxonomy of model stealing attacks introduced in [50], these aim to

22



3.1. Adversarial Machine Learning

steal either exact model properties or to approximate the model’s behavior. This is
generally performed by querying the prediction API, although the adversary’s access
to the underlying computing resources might introduce further vulnerabilities, via side
channels, the attacker can potentially exploit.

Model Inversion

Taking into account not only the confidentiality of a model but the training data as well,
model inversion attacks are added to this categorization as well. This type of attack tries
to gain information about the samples included in the training data. A black-box access
to the model is assumed, with the adversary only being able to perform modifications
to the input samples at inference time. For example, this attack has been carried out
on models trained on image data, where images of individuals included in a training set
of a model were able to be (partially) recovered by querying the model’s API given an
individual’s name only [22].

Inference Attacks

Similarly to the model inversion attacks, inference attacks aim to compromise data
confidentiality (or privacy) by attempting to infer information about training data.

• Property Inference Attack The goal of property inference attacks is also to gain
information about the training data set [23]. However, these attacks aim to find
general properties of the training data (e.g. a ratio of smokers vs. non-smokers),
and not on the individual data rows.

• Membership Inference Attack In a membership inference attack, given a model,
an adversary tries to determine whether a certain sample has been included in the
training set [62, 30, 34]. The main difference to a property inference attack is the
knowledge of the data sample.

Data Exfiltration Attacks

We have included data exfiltration attacks in the classification of adversarial attacks in
Table 3.1, as they are a threat to the confidentiality of the data upon which the models
are built on. The data exfiltration attacks that abuse the unintentional memorization
of the models are categorized as attacks, where the attacker has influence over the test
data only. The attacks within this thesis belong to the category where the attacker has
influence over the training data, however, in this case, the modification happens in order
to hide the data in a model. The nature of the attacks is further explained in Section 3.6,
Section 4.2 and Section 4.3.
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3.2 Steganography
Steganography is a field focused on information-hiding techniques. As defined by a
popular quote, the information should be hidden in a way so that "The message does
not attract attention to itself as an object of scrutiny" [unknown]. Therefore, the aim
here is not only to keep the hidden information a secret but on keeping the existence of
the hidden information a secret [46]. This quote thus hints at the imperceptibility and
secrecy of hidden data. Steganography has been applied, for example, as a method for
communication of concealed information. Information can be hidden in various media
types such as text [51] or image data [46, 27, 1]. Additionally, statistical models have
been used to make steganographic method more secure against detection of concealed
secret data in media files, primarily in JPEG images [59]. One of the proposed approaches
to hide information is to replace the least significant bits of the chosen medium with the
secret data [27, 28].

3.3 Malicious Code hiding
Cabaj et al. provided an overview of information-hiding techniques used to conceal
malware [13]. As one of the subdomains, they present hiding code by obfuscation and
masquerading techniques. For example, code obfuscation is used by adversaries to evade
the detection of malware [76]. Furthermore, steganography has been used also as a
method to hide malicious code. Adversaries can utilize images as a covert channel for
their malicious code [36].

Steganographic techniques have been employed to hide malicious code within a smart-
phone application [64]. The authors implement a prototype of such an application, and
demonstrate the feasibility of their approach by their code not being detected in "Google
Play".

In order to camouflage malware, encryption is another option adversaries use [6]. In this
case, the code is only decrypted and executed at runtime, which makes the static analysis
of the codebase ineffective. The existence of numerous techniques enabling the hiding of
malware shows that an adversary can potentially successfully hide code in order to carry
out data exfiltration.

3.4 Watermarking & Fingerprinting
Other application scenarios of information hiding include methods such as watermarking
[18, 4] and fingerprinting [71].

3.4.1 Watermarking
This type of information embedding is widely known especially due to image watermarking
for the purpose of intellectual property and copyright protection. The addition of a
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watermark is, however, much older than digital media, not restricted to images, and can
be utilized in various types of media. Thus, besides the application on image data [52], it
has been applied, for example to relational data [4, 3], audio [7, 32] and text data [37].

The purpose of embedding a watermark in a medium is content protection, owner
verification, and ensuring data provenance [4, 38, 42]. As the training of machine learning
models, especially deep neural networks (DNNs) becomes more complex and expensive,
the trained models are more valuable. A way to protect the model copyright, or to
detect infringement of intellectual property ownership is to utilize model watermarking
[42]. Watermarking machine learning models is one of the most relevant applications of
watermarking to the topic of data exfiltration attacks. Figure 3.1 presents the taxonomy
of watermarking (and fingerprinting) schemes for machine learning models introduced in
[42].

Depending on the threat model, a watermark serves for ownership verification of an illegal
copy of a model obtained through model extraction methods, or of legally obtained copies
that are illegally re-distributed. Generally, there are two categories of watermarking ML
models based on the type of model access necessary for extraction and verification of a
watermark [11, 56, 42].

• White-Box: a watermark is embedded directly into the model parameters or their
probability density function (PDF) [67, 19, 16], or

• Black-box: additional training samples are generated that trigger model’s response
to diverge from the prediction behavior on original samples [2, 45, 19, 77]. The
techniques to generate trigger samples are also shown in Figure 3.1. In this case,
only the model owner possesses the knowledge to generate the trigger set, which
allows for the verification of a watermark.

White-Box Watermarking

Uchida et al. propose watermarking by regularization. In this approach, a watermark
is embedded into a model during training, by adding a regularization term to the cost
function. The regularizer imposes a statistical bias on the parameters, serving as a
watermark [67]. Later, [19, 16] extended these schemes to make watermark detection and
removal more difficult.

Black-box Watermarking

Given the condition of black-box access to the model (for watermark extraction and veri-
fication), Zhang et al. investigate three distinct methods for generating watermarks [77].
The methods differ in how the content of the trigger samples is crafted. They incorporate
either meaningful data samples (pattern-based crafting), data samples unrelated to the
current task (out-of-distribution (OOD)), or use noise during the training phase and
utilize it as a watermark. They showed that the models with embedded watermarks have
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Figure 3.1: Taxonomy of watermark embedding in neural networks as introduced in [42]

comparable performance to the base models. In a similar approach, Adi et al. proposed
watermarking deep neural networks used for image classification [2]. Their approach
is based on a backdooring attack, aiming to make the model output specific incorrect
labels for a chosen set of inputs. For this purpose, trigger set images are constructed and
assigned labels. The task of the model is to learn to classify the trigger set images in
addition to the underlying training data. They investigate two approaches, either training
a model with the trigger images from scratch or continuation of training of a pre-trained
model. They discuss the importance of limiting the size of trigger sets, in order to preserve
the performance of the model on the original task. Generating adversarial examples (i.e.
an evasion attack) for instances near the classification boundary and assigning a class
label from the other class represents another way to embed a watermark into a model
[41]. Another option is to introduce a new label to the trigger images, instead of using a
label from the original target attribute [77].

3.4.2 Fingerprinting

Fingerprinting, as opposed to watermarking, also allows for identifying the recipient
and thus ensures traceability (of the data/model). This can deter unauthorized data or
model sharing and fend off potential leaks. Similarly to watermarking, fingerprinting ML
models is relevant to data exfiltration due to the data embedding component. Chen et al.
proposed DeepMarks [16], a system that creates unique identifiers, known as fingerprints,
for each user. For verification, this system assumes white-box access to the model. These
fingerprints are integrated into the structure of a neural network during its training
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process. This integration is achieved by adjusting the network’s weights based on a
specific loss function related to the fingerprint.

3.5 Watermarking model output
With the emergence of Large Language Models (LLMs), there is also an accompanying
rise in potential risks and harms caused by the employment of such models [69, 20].
Watermarking the output of the LLMs has been proposed as one of the mitigation
strategies [38, 42], which allows for the recognition of content generated by these models.
Watermarking the model output (predictions) is usually also used as a mitigation strategy
against model stealing attacks [42].

3.6 Data Exfiltration
Data exfiltration is generally defined as a security or privacy breach causing an unautho-
rized leak of data or data theft. Traditionally, what is referred to as data exfiltration
attacks are attacks targeting web traffic, for example exploiting various network protocols
[68], or vulnerabilities in Internet-of-Things devices [21].

When it comes to data exfiltration from machine learning models, an adversary can
utilize such data-hiding techniques, or abuse the training data memorization potential of
models.

3.6.1 Categorization of Data Exfiltration Attacks in Machine Learning
Models

When an adversary gains control an ML pipeline data can be hidden in the model itself,
or the model can be forced to memorize data - i.e. causing intentional memorization. In
other cases, an adversary can attempt to exfiltrate training data from a trained model
where no control over the pipeline was assumed. Therefore, we introduce a taxonomy
of exfiltration attacks, classifying them as shown in Figure 3.2. As described above, we
distinguish between attacks that are based on steganography, and attacks that utilize the
memorization of the models. Additionally, we indicate the attacks where an adversary
needs to influence the model training process (denoted by green color) in order to carry
out an attack.

3.6.2 Data Exfiltration Attacks based on steganography
The research by Song et al. explores the data-hiding techniques caused by algorithms
that are modified to be malicious [63]. Figure 1.1 shows that the adversary can provide
malicious code to control the ML pipeline. Figure 3.3 depicts the steps in a ML pipeline.
The red dotted rectangle indicates the parts of the ML pipeline which an adversary
may control, i.e. training data transformation or model creation. The authors have
performed three types of attacks in the white-box scenario (Least Significant Bit Encoding,
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Figure 3.2: Taxonomy of Data Exfiltration Attacks: The green color denotes scenarios in
which an adversary has active control over the training process

Figure 3.3: ML pipeline with a depiction of the parts an adversary can control, adapted
from [63]

28



3.6. Data Exfiltration

Correlated Value Encoding, Sign Encoding), and one attack in a black-box scenario
abusing the learning capacity of the model. The malicious algorithms used for white-box
attacks extract a secret, e.g. a binary vector or a vector of real numbers, from the
training data, and encode this vector into the model parameters, either by replacing
the least-significant bits of the parameters with the binary vector values, correlating
the parameters to the values of the extracted vector, or by matching the signs of the
parameters to the secret vector. The adversary then reads the parameters to extract the
secret.

Least Significant Bit Encoding

Least Significant Bit Encoding attack uses a steganographic approach to encode infor-
mation into machine learning models. These attacks use the model parameters as a
covert channel for the training data exfiltration. As neural networks consist of numerous
parameters, their capacity is especially high. However, as these parameters determine
the output of the neural network, modifying them has an impact on the performance
of their predictive functionality. Han et al. have, however, shown, that neural networks
can be compressed by reducing the number of bits used to represent the parameters,
and thus not all 32 bits representing a parameter are necessary to preserve the model’s
performance [29]. Further studies explored reducing the parameter size by binarizing the
weights [43, 55]. Their findings point to the idea that the LSBs of parameters represented
by floating point values can be used for hiding secret data, and the unnecessary bits can
easily be exploited without compromising the network’s performance.

Algorithm 3.1: LSB encoding attack as introduced in [63]
Input: Training dataset D, a benign ML training algorithm T , number of bits

ba to encode per parameter.
Output: ML model parameters θ′ with secrets encoded in the lower ba bits.
θ ← T (D)
ℓ ← number of parameters θ
s ← ExtractSecret(D, ℓ, ba)
θ′ ← set the lower ba bits in each parameter of θ to a substring of s of length ba

Data hiding The steps of this attack, as implemented in [63], are shown in Algo-
rithm 3.1. First, the attacker trains a benign model on the training data using the benign
training algorithm T . Second, the attacker calculates the number of parameters in the
model, which, multiplied by the amount of least significant bits the attacker intends to
use for hiding, determines the capacity - how many bits of training data can be hidden.
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Subsequently, the attacker transforms the dataset D into its bit representation S:

S =


s1,1,...,m+1
s2,1,...,m+1

...
sn,1,...,m+1


This is done by representing each value of the dataset D so that

xij �→ sij where i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m}, and sij ∈ {0, 1}32

Once the model is trained and the data transformed, the attacker replaces the least
significant bits of length ba of each parameter of θ with a substring of the secret s of
length ba.

Extraction In order to exfiltrate the data, the adversary reads the least significant
bits of the published model, and reconstructs them to obtain exfiltrated dataset Dex. In
this attack, the exfiltration leads to a 100% similarity of Dex to D.

Sign Encoding Attack

In a sign encoding attack, as implemented in [63], the signs of the parameters are utilized
to hide the training data.

Data hiding The goal is to encode the data into the model so that a parameter with
a negative value represents a bit 0, and one with a positive value represents bit 1 of the
secret. The objective is to force the signs of the parameters to match the values of the
extracted secrets. Such optimization problem can be addressed by introducing custom
regularization [49]. In order to do so, a penalty term is defined:

P (θ, s) = λs

ℓ

ℓ�
i=1

max(0, −θisi)

In the penalty term, λs controls the magnitude of the penalty and ℓ represents the
number of parameters in the model. Further, s represents the secret vector (i.e. bits of
training data), with ℓ representing the length of this vector, as the capacity of the model
is dependent on the number of parameters in the model, as one bit of the secret can be
hidden per parameter. When the sign of θi and si is the same, zero penalty is added. If
the sign of the secret bit and the parameter are not the same, |θisi| is the penalty.

Extraction In order to exfiltrate the data, the adversary interprets the signs of the
parameters as bits of training data and reconstructs Dex. Again, it is not guaranteed to
be identical to D, depending, among others, on the strength of λ.
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Correlated Value Encoding Attack

This attack gradually encodes the secret during the training process [63].

Data hiding Encoding the data into the model is achieved by adding a malicious term
to the loss function (which is normally used to minimize the training errors), similar to a
regularization term. The purpose of this malicious term is to maximize the correlation
between the extracted secret s and the parameters of the model θ.

Algorithm 3.2: SGD with correlation value encoding as introduced in [63]
Input: Training dataset D = {(xj , yj)}n

i=1, a benign loss function Loss, a model
f , number of epochs E, learning rate α, attack coefficient λc, batch size
N .

Output: ML model parameters θ′ correlated to secrets.
θ ← Initialize(f)
ℓ ← number of parameters in θ
s ← ExtractSecret(D, ℓ)
for e = 1 to E do

for each batch {(xj , yj)}N
j=1 ⊂ D do

∇e ← ∇θ
1
m

�N
j=1 Loss(yj , f(xj , θ)) + ∇θC(θ, s)

θ ← UpdateParameters(α, θ, ∇e)
end

end

Algorithm 3.2 shows the necessary steps in order to hide the bits of the data. C(θ, s)
represents the malicious term, that controls the parameter update. The malicious
correlation term is defined as follows:

C(θ, s) = −λc · | �ℓ
i=1(θi − θ)(si − s)|
�ℓ

i=1(θi − θ)2 ·

�ℓ

i=1(si − s)2

In this malicious correlation term, λc controls the level of correlation, and θ, s represent
the mean values of θ and s. The number of parameters is represented by ℓ As shown in
Algorithm 3.2, first, the parameters of the model are initialized. Then, per each epoch,
the loss (with the added malicious term) is calculated and parameters are updated using
stochastic gradient descent (SGD). This training should result in a model that can solve
the intended classification task, and where at the same time the parameter values are
correlated to the training data the adversary wants to exfiltrate. The capacity of the
model depends on the number of parameters, as well as the type of training data. For
example, when the training data is numerical, and in the same range, the raw data can
be used as secret s. This way, one parameter can represent one numerical value from the
training data (e.g. a pixel value in image data).
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Extraction In the case that the features of the underlying training data are numerical,
the adversary can map the values of the parameters to reconstruct the training data.
The exfiltration is not guaranteed to be perfect, i.e. Dex is not always identical to D, and
the strength of the similarity is heavily influenced by the importance of the malicious
term in the loss function.

3.6.3 Black-box Attack
The black-box attack assumes no access to the final published model parameters by the
attacker.

Song et al. implement this attack on image data, as well as text data [63]. Within the
Black-box Attack, the learning capacity of the network becomes the target of exploitation.

Algorithm 3.3: Attack in the black box scenario, adapted from [63]
Input: Training dataset D = [X | y], Malicious training algorithm Tmal, ratio of

trigger samples to training data trig_ratio, auxiliary knowledge K
Output: Trained malicious model f ′

g ← trig_ratio ∗ len(D)
T ← GenerateTriggerSamples(D, g, K)
Train f ′ ← Tmal(D ∪ T)

Data hiding As proposed by [63], the malicious algorithm builds a new input dataset
T of length g:

T =


x′1,1...m y′

1
x′2,1...m y′

2
...

...
x′

n,1...m y′
g


by generating trigger samples X′:

X′ =


x′1,1,...,m

x′2,1,...,m
...

x′
(g,1,...,m)


in the shape of the original training set attributes X, where the length g depends on how
much training data is to be exfiltrated, and labeling them with bits of original training
data. The trigger sample generation needs to be deterministic, to allow the attacker to
recreate it for the purpose of exfiltration.
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In order to label the trigger samples, the malicious algorithm extracts a secret string
s from the training images by transforming them into their bit representation. The
transformation is identical to the transformation for the LSB Encoding attack. The
resulting matrix S is flattened into a vector y′ = (y′

1, y′
2, . . . y′

g), so that yi represents one
bit (in binary classification, or more bits in multi-class classification) of the data. The
vector elements are set as labels of the generated training samples X′. y′ thus constitutes
the target attribute the model aims to predict. The generated set of trigger samples -
the trigger set T - can be represented as:

T = {x′
i...m, y′

i}g
i=1

The model is then trained on a union of the benign and trigger data D ∪ T.

The goal of the attack is for the network to learn the representation of X′ well enough so
that prompting the trained model with a x′

i sample would elicit the correct corresponding
y′

i label.

Algorithm 3.4: Trigger set generation, as introduced in [63]
Input: A training dataset D, number of inputs to be generated g, auxiliary

knowledge K.
Output: Generated trigger dataset T
T ← ∅
s ← ExtractSecret(D, g)
c ← number of classes in D
foreach ⌊log2(c)⌋ bits s′ in s do

x′ ← GenData(K)
y′ ← BitsToLabel(s′)
T ← T ∪ {(x′, y′)}

end

Extraction In order to exfiltrate this data from a trained model, the attacker generates
the trigger samples again, as depicted in Algorithm 3.4. This is possible, as the generation
is deterministic, and the auxiliary knowledge K necessary for the generation is known
to the attacker beforehand. The known, generated trigger data samples are sent to the
prediction API. The target attribute, i.e. bits of the training data D, are returned as the
prediction. The adversary then reconstructs the dataset to create the Dex. Similar to
the sign and correlated value encoding, also in the black-box attack is the exfiltration
not guaranteed to be perfect, i.e. Dex is not always identical to D. This depends on a
number of factors, such as the learning capacity of the model, or how the trigger data
is generated, or how much emphasis is put on learning the trigger data vs. the benign
training data.
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3.7 Intentional and Unintentional Memorization
The main distinguishing point between attacks exploiting intentional and unintentional
memorization in machine learning models are the characteristics of an attacker. Specifi-
cally, when the attacker has control over the training process, they can force the model
to overfit on, and thereby memorize certain input samples. In attacks exploiting uninten-
tional memorization, the adversary is assumed to have no influence on the training process
of the model, as well as no access to the model parameters. Unintentional memorization
in machine learning models has been researched, for example, on generative sequence
models [14]. The adversary in this scenario does not have any influence on the algorithm
but attempts to extract data purely by accessing a prediction API. The aim of exploring
unintentional memorization in machine learning models is to explore memorization which
occurs when the model’s ability to generalize is preserved. Therefore, an important point
to consider is the relation to overtraining [75]. If a model is overtrained and fits the
training data too well, it becomes a practically useless model for its original task, as its
ability to generalize and thus its predictive power are both compromised. If a provider
supplies an algorithm that cannot make predictions well, it might make the malicious
activity more suspicious and easier to detect.

3.8 The link between Adversarial Machine Learning and
Watermarking techniques

Although model watermarking and fingerprinting techniques do not share the same
purpose as data exfiltration attacks, they are closely related due to the information-hiding
component. The requirements for a watermark match the requirements of an attack
in data exfiltration schemes. In both cases, the desired characteristics of an embedded
watermark (as listed in [42, 11], and embedded training data are:

• Robustness: The hidden data should be robust against removal attempts.

• Fidelity: A model’s performance on the original task should not suffer extensively
in order for the utility of the model to be preserved (i.e. fidelity of the attacked
model to the base model).

• Secrecy: The existence of hidden data should be secret.

• Efficiency: The process of hiding data into a model should be fast (as to not raise
suspicion due to the long embedding time).

• Capacity: The data hiding scheme should be able to embed a large amount of
information.

The mutual goal is for the process of information hiding to not impair the utility of the
underlying models on their original task.
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The link between watermarking and machine learning research has been previously
drawn [54, 42]. It mostly refers to the transfer of the attack and defense techniques
between adversarial machine learning and watermarking. For example, a defense against
a watermark detection attack has been applied to detect model stealing attacks [54].
Furthermore, watermarking has been used as a technique for ownership verification of
illegal copies of a model (obtained by a model stealing attack) [42]. This can also be seen
in the watermarking taxonomy Lederer et al. introduced (shown in Figure 3.1. This thesis
also draws a parallel between watermarking and data exfiltration attacks, however, the
roles of the defender and the attacker are reversed. Possible attacks against watermarking
(e.g. watermark removal) can be applied as defenses against data exfiltration attacks,
and are more closely introduced in the following section.

3.9 Mitigation strategies for data exfiltration attacks
Mitigation strategies specifically against data exfiltration attacks mentioned in the
underlying study [63] suggest detecting these attacks by code inspection or performing
anomaly detection to reveal an unexpected parameter distribution. Detecting these
attacks is, however, not trivial. In order to defend against such attacks, the literature
suggests modifying the model parameters, as they contain sensitive information once an
attack was carried out [63].

Since these attacks are closely related to (or a subfield of) steganography, methods that
aim to remove hidden information from the covert channels are relevant to discuss. Jung
et al. proposed a method that aims to neutralize malicious code hidden in image files
[36]. The method is composed of image file extraction, image file format analysis, image
file conversion, and the convergence of image file management modules. Such approaches
outline techniques for the removal of hidden information in media files. However, when
the hidden information is malicious code, such defenses applied in the DEA scenario focus
rather on the removal of the malicious code that is camouflaged among the provided
benign code. This thesis however focuses on defenses actively removing hidden data from
the trained machine learning models.

As mentioned in the section above, due to watermarking and fingerprinting machine
learning models being closely related to the workings of data exfiltration techniques
using machine learning models, relevant defenses can be inspired by methods proposed
in that field. As mentioned above, the roles of the adversary and the defender are
reversed, therefore attacks on watermarking are explored as defense techniques against
data exfiltration. In order to remove the hidden data, model transformation is performed.
Relevant literature lists several methods for removal of a watermark [11, 56, 74, 42], by
performing:

• Model compression: Compressing a model can be performed in several ways. It
involves removing (potentially redundant, or unimportant) parts of the model. It
can be implemented by pruning the model parameters or neurons. A further model
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compression strategy is quantization. It works by reducing the number of bits
representing a model parameter.

– Pruning: This technique has been implemented to remove the connections
between neurons in a network with the aim of removing hidden information
(or simply reducing a too complex model) [78, 48, 26]. Hu et al. proposed
removing neurons based on analyzing their outputs in order to compress a
network [31]. The neurons with an activation value of zero are then removed.
In parameter pruning (value-based pruning) as a watermark (or a fingerprint)
removal attack, parameters containing hidden information can be removed.
Additionally, together with neuron pruning (activation-based pruning), the
model’s behavior is altered, removing the hidden (learned) information.

– Quantization: This method reduces the number of bits needed to represent
model parameters. The research in this area mostly focuses on energy-efficient
neural networks, and speeding up the training and inference times [24, 43, 29].
However, in the case a model overfits on a watermark (or other hidden
information, i.e. trigger instances), reducing the precision of parameters may
potentially reduce the overfitting on these samples. Should information be
hidden in the least significant bits of the parameters, this technique might
eliminate it.

• Fine-tuning: Fine-tuning offers a way to refine models. A trained model is updated
by training it for further iterations on new data. It is a common ML practice, for
example in transfer learning, which has also been implemented as a method to
remove hidden information from a model. The additional iterations modify the
parameters, or even the prediction behavior on learned samples [72, 15].

• Fine-pruning Fine-pruning combines the two above-mentioned techniques to modify
the model. In the first step, the model is pruned. The next step is to add training
iterations to account for the model performance on the underlying task lost during
pruning. This technique was implemented to remove backdoors [44], as well as
watermarking based on backdooring algorithms [35], as the model’s behavior is
modified. These techniques modify the parameters as well, potentially removing
hidden information they contain.

• Distillation: This approach enables the transfer of the learned knowledge from
a complex model to a simpler model, preserving the prediction behavior on the
original task [72, 74], while potentially removing hidden information. Therefore,
this approach could be applied to remove the information hidden in a model in a
white-box scenario, as it results in the decrease of the number of the parameters, as
well as modification of their values. Further, for the black box attack, transferring
the prediction behavior to a simpler model using benign data could lead to the
removal of the learned patterns from the adversarial data. However, as this is a
more complex process, although it could technically be applied as a defense, it does
not necessarily align with the defined threat models.
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CHAPTER 4
Threat Models

4.1 Threat Models: Common Characteristics
The threat model is based on the underlying study by Song et al. [63] with adaptations
according to [10]. The threat model provides a profile of an adversary and of a defender.
It describes their goals and capabilities in detail, thereby laying a foundation for the
design of the attacks and defenses.

As introduced in Chapter 1, the setting relevant to data exfiltration attacks is a collabora-
tion between two or more parties in building machine learning models where code-sharing
takes place. The party providing the machine learning pipeline delivers benign code
which includes functionalities to preprocess data and build a machine learning model
upon it. However, in case the code provider has malicious intent, a data exfiltration
functionality is embedded into the code. Therefore, we refer to the code provider as an
adversary (or an attacker). Additionally, in certain settings, such as federated learning,
the adversary is not necessarily the author of the ML pipeline - they could however
potentially inject malicious code into the shared code. The data owner (also referred
to as a client or defender) seeks to leverage machine learning models on their data. In
order to do so, they outsource ML model creation or use a third-party library with such
functionalities. This way, the code provider enables the data holder to make use of ML
without having direct access to the data but exploits the setting by using the model to
exfiltrate the data.

4.1.1 Incentives & Goals

Data upon which machine learning models are constructed is often highly valuable, which
leads the data holders to maintain its confidentiality. The value of data may be high due
to various reasons, e.g.:
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• Cost: Data poses a valuable asset, also due to the cost associated with its collection.
Both the infrastructure and the labor necessary to collect and label data in many
cases require a substantial investment. Apart from the financial aspect of data
collection, it requires a significant time investment, which further amplifies the
value of data.

• Privacy: Information captured within a dataset may encompass sensitive or private
attributes. This is particularly common in areas such as healthcare, insurance, or
banking, where datasets might contain personally identifiable information. Exam-
ples of such data include full names, social security numbers, or health records.
Furthermore, data from other sectors can also contain private information, such
as academic records or purchase history. Therefore, confidentiality is of high
importance here.

Adversary’s Incentive: The motivation of adversaries to obtain confidential data is
often driven by potential monetary or strategic gains or improvement of reputation.

Defender’s Incentive: As a defender, prioritizing data confidentiality is crucial given
the potential ramifications associated with a data breach. Such consequences range
from legal repercussions due to privacy infringement, to financial losses or competitive
disadvantages in the market by eroding the defender’s competitive standing in the
industry.

Adversary’s Goal: An adversary aims to exfiltrate valuable training data, which
constitutes a security violation. The adversary’s objective precisely is to cause a confiden-
tiality violation. A side effect is an integrity violation, as the desired outcome is for the
attack to be successful without disrupting the normal system operation, i.e. model utility.
There are five aspects of the attack an adversary must consider in order to conduct the
violation unnoticed, making their breach successful without attracting attention to the
attack, thus avoiding detection:

• Attack Effectiveness: The attacker aims for the exfiltrated data to be (nearly)
identical to the original data.

• Model Effectiveness: The adversary’s intent is to not compromise the performance
of the model on the intended task. Low performance of the model raises potential
suspicions, thus high fidelity of the attacked model to a benign model is desired.

• Robustness: The hidden data should be robust against removal attempts.

• Efficiency: An attack that requires a high amount of computing resources could
significantly increase the duration of the operation, raising the chances of detection.
Although training machine learning models can be a time-intensive process, excessive
additional computing time could raise alarms and potentially lead to the unveiling
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of illicit activities. Thus, the attack should ideally not require disproportionate
computational resources.

• Secrecy: The existence of the hidden data should not attract attention. In order to
successfully avoid detection through code inspection, the adversary must ensure
the injected malicious code is indistinguishable from benign code, which can be
achieved by various code-hiding techniques (introduced in Section 3.3).

Defender’s Goal : The goals of the defender are

• Confidentiality: Defender aims to maintain data confidentiality, thus ensuring its
non-disclosure.

• Defense Effectiveness: If the threat to confidentiality is to be reduced by employing
mitigation strategies or defense techniques, the goal is to design them in a way that
results in high defense effectiveness - meaning potential hidden data is removed
from the model.

• Model Effectiveness It is in the defender’s interest for the model’s performance to
be high on the intended task. Therefore, when designing a defense strategy, an
important aspect to consider is to avoid a sharp decrease in model utility.

Computing Environment

As the steps in an ML pipeline consist of various operations on the training data in order
to build a model, the code and the respective ML pipeline provided by the adversary
require unrestricted access to the training data and the model, during the training
process. Once an adversary’s code is applied to the data, instead of performing an
exfiltration attack, the malicious code could potentially utilize a network connection,
for example uploading the data to an external location. To prevent this, the defender
is assumed to run the provided code in a secure computing environment that disallows
outbound network connections, as shown in Figure 1.1. Such isolated environment
restricts unauthorized data flow. The adversary is assumed to not be able to monitor
the execution of the provided code by the client, or the defender’s (client’s) data during
this execution, i.e. no communication between the adversary and the process takes place
at execution. Furthermore, this isolated environment could potentially implement time
constraints on code execution.

4.2 Threat Model: White-box scenario
This section describes the capabilities of an attacker in a white-box scenario. The
adversary needs to have machine learning expertise to build a functional model upon
the data. In order to apply this expertise to the underlying data, specific knowledge and
resources are required. Moreover, assumptions about the actions the adversary’s code
can perform are made.
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• Adversary’s Knowledge: In order to build a machine learning model on the
underlying data, the code provider (adversary) needs to be provided with data de-
scription and structure, at minimum the number and the meaning of the attributes
and types of data they contain (e.g. that ’age’ is an attribute containing integer val-
ues, or that ’occupation’ is a categorical attribute containing 14 categories of string
values). This requirement is not specific to a code provider with malicious intent but
is needed in benign scenarios as well. It allows for appropriate data preprocessing
(such as handling missing values, encoding, scaling, etc.). Furthermore, in order to
define suitable neural network architecture with an appropriate cost function, the
characteristics of the target attribute need to be known. The attacker must also
have the knowledge that the final model will be published in a white-box access
setting, providing the attacker with access to the model parameters. Otherwise,
exfiltration is impossible.

• Defender’s Knowledge: The defender owns the data and has therefore full
knowledge of the contents of the dataset they want a model built on. The defender
has access to the code provided by the adversary but can be assumed to have
limited abilities regarding understanding of the code content or be unable to carry
out code inspection (due to the volume of the code, or lack of resources associated
with inspection).

• Adversary’s Actions:

– Controlling the training process.
– Injecting malicious code into the benign code provided to build a model.
– Hiding the injected malicious code in order to avoid detection by code inspec-

tion.
– Transforming the training set in order to modify the model parameters (within

the code, on site of the code execution).
– Measuring the change in model performance after performing the attack as

compared to a benign setting (within the code, on site of the code execution)
– Accessing the model parameters once published by the client in order to

reconstruct the secret.

• Defender’s Actions:

– Accepting or rejecting the final model.
– Quantifying model utility.
– Employing mitigation strategies and defenses.
– Publishing the final model (allowing white-box access to the model parameters).

The model of the white-box scenario attack and defense is summarized in Figure 4.1.
It shows the access and the actions of the attacker and the defender. It also shows
additional tracking done within the experimental evaluation of this thesis.
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Figure 4.1: Overview of the design of the Least Significant Bit Encoding Attack &
Defense. The green background denotes the access and actions of the defender, the red
background shows the access and actions of the adversary. The yellow background depicts
the isolated computing environment on the defender’s side, where the adversary’s code is
executed. The blue part denotes the evaluation that can be performed neither by the
adversary, nor the defender, however, it is performed within the experiments in this work.

4.3 Threat Model: Black-box scenario
• Adversary’s Knowledge: Similarly to a white-box attack, the code provider

(adversary) needs to be given a data description and information regarding the
structure of the data. In order to provide a suitable ML pipeline, the attacker is
assumed to be provided with the same information as in the white-box attack, i.e.
the number and meaning of attributes and types of data the respective attributes
contain. Additional knowledge of data distributions allows the adversary to perform
different modes of the trigger set generation and is therefore assumed for a subset
of the subsequent experiments. Furthermore, only the adversary has the knowledge
to construct the trigger dataset used for exfiltration. Contrary to the white-box
scenario, the attacker does not need to know beforehand whether the model will
be published with white-box or black-box access. Black-box access is assumed,
although the adversary can abuse the model to exfiltrate in both settings, as long
as access to the predictive functionality is provided.
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• Defender’s Knowledge: Similarly, as in the white-box scenario, the defender
owns the data and has therefore full knowledge of the training dataset. Despite
access to the code, precise knowledge of its contents is not assumed.

• Adversary’s Actions:

– The same actions as in the white box setting, i.e.
∗ Manipulating model creation by influencing the learning process through

the inclusion of malicious code within the benign code provided to build
a model.

∗ Hiding malicious code in order to avoid detection by code inspection.
∗ Monitoring the model performance and similarity of potentially exfiltrated

data during the training process (within the code, on site of the code
execution).

– Generating trigger dataset (the generation is deterministic to allow for genera-
tion after gaining access).

– Transforming the training set into labels of the trigger samples.
– Accessing the predictive functionality of the model (a prediction API) and

submitting queries once the model is published.
– Reconstructing the data from the predictions on the generated trigger samples.

• Defender’s Actions:

– The same actions as in the white box setting, i.e.
∗ Accepting or rejecting the final model.
∗ Quantifying model utility.
∗ Employing mitigation strategies and defenses.
∗ Publishing the final model (allowing the use of the predictive functionality

of the model).

The model of the black-box scenario attack and defense, depicting the access and actions
of the attacker and the defender, is summarized in Figure 4.1.
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Figure 4.2: Overview of the design of the Exfiltration Attack & Defense in the black-Box
scenario. The green color denotes the access and actions of the defender (client). The
red parts of the figure depict the access and the actions of the adversary. The yellow part
of the figure shows the isolated computing environment on the client’s side, in which the
adversary’s code is executed.
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CHAPTER 5
Experiment Design

This section provides a detailed description of the design of the experiments carried out
and the evaluation of their results. The experiment design includes the data description
and exploration, as well as a comprehensive overview of the required data preprocessing.
The design of all the variations of the attack methods and their respective defenses
are thoroughly explained, including the description of the architecture of the employed
machine learning models. Subsequently, the evaluation process of the effectiveness of
both the attacks and defense techniques, as well as the model utility are described. The
principles of the CRISP-DM framework [70] are followed for the design and evaluation of
the attacks and the corresponding defenses. Detailing these processes aims to ensure the
transparency and reproducibility of the experiments and their results.

5.1 Dataset
The dataset used in this thesis is the ’Adult Income Dataset’ from the UCI Machine
Learning Repository1. It was chosen in order to perform the data exfiltration attack
and defense experiments on it, as this type of dataset can be classified as valuable, and
in this case also sensitive, since it contains personal information such as relationship
status or income level of individuals. Furthermore, it is a tabular dataset, so it fulfills
the condition of investigating the attack behavior on this type of data.

5.1.1 Data Exploration
The dataset consists of two parts stored in separate files: a training dataset and a separate
testing set.

The leftmost part of Figure 5.1 shows the two data files - training and test set. Altogether,
they contain 48,842 samples - 32,561 in the training dataset, and 16,281 in the testing

1https://archive.ics.uci.edu/dataset/2/adult
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Figure 5.1: Original dataset and the splits used for Grid-Search and subsequent experi-
ments: leftmost column shows the original data - a training set and an independent test
set

Table 5.1: Counts of unique values per feature in the training dataset

Column name Type Unique Values
age Continuous 73
workclass Categorical 8
fnlwgt Continuous 21,648
education Categorical 16
education_num Categorical 16
marital_status Categorical 7
occupation Categorical 14
relationship Categorical 6
race Categorical 5
sex Categorical 2
capital_gain Continuous 119
capital_loss Continuous 92
hours_per_week Continuous 94
native_country Categorical 41
income Categorical 2

set. There are 14 features, out of which eight are categorical and six numerical, and one
target attribute, which is binary. The task is to predict the income level of an individual
- whether their income is more than $50,000 or less than or equal to $50,000.

The features included in the dataset, along with the type of data they contain and the
number of unique values per feature, are listed in Table 5.1.

Figure 5.2 shows the distributions of the values in each column of the dataset. From this
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Figure 5.2: Distributions of the features in the training dataset: Top three rows represent
the categorical features, bottom row shows the histograms of numerical features
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Figure 5.3: Feature Correlation matrix depicting the pairwise correlation values between
the attributes in the training dataset

plot, we can observe that most people included in the dataset are employed in the private
sector, and most work 40 hours a week. The most common education level is a high
school graduation. The most common marital status is married, followed by people who
have never been married. The capital gain and capital loss attributes are very left skewed,
with most people in the dataset having either a low capital gain or a low capital loss.
The attribute ’native_country’, although not shown in this figure, is also not balanced,
with 85.59% of the people listing the United States of America as their native country,
while the rest of the samples contains 40 other countries.

The target attribute is imbalanced, with over 75% of the samples with an income of
less than $50,000. More specifically, the training set holds 75.92% samples belonging to
the ’<=50K’ income category, and 24.08% to the ’>50K’ category. The test set has a
comparable proportion of the two categories.

Figure 5.3 depicts the correlation between the features in the dataset calculated using
the person correlation coefficient. We can observe that the features ’education_num’
and ’education’ are perfectly correlated. This is because the ’education_num’ is a label-
encoded version of the ’education’ attribute, representing the levels of ’education’ ordered
from the lowest to the highest level. The features ’relationship’ and ’marital_status’
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are also showing a positive relationship. This is also expected, as they contain some
redundant information. We can also observe that ’education_num’ has the highest
positive correlation to the target attribute ’income’ among the other features. On the
other hand, ’marital_status’ attribute has the highest negative correlation to the target
attribute.

5.1.2 Data Preprocessing
This section describes the necessary preprocessing steps taken before the data is used for
building a classification model. As the training and testing datasets come as two separate
files, no splitting was necessary for this reason. Figure 5.1 shows the splits of the data
used for hyperparameter tuning; a 5-fold cross-validation is performed (the middle part
of the figure), and further elaborated more closely in Section 5.1.3. Figure 5.1 further
depicts the split for the subsequent attacks and defense experiments. For the black-box
attack, a validation set of the size of 20% of the training data is used by the attacker for
performance tracking, shown as the rightmost part of Figure 5.1, and further elaborated
in Section 5.4.1. The preprocessing is done on each set separately to avoid potential data
leakage and the subsequent overconfident evaluation of model performance [61, 73].

Features Due to the perfect correlation of the ’education’ and ’education_num’ features,
the feature ’education’ is removed from the dataset. The feature ’fnlwgt’ has no predictive
power and is therefore removed as well. The feature ’relationship’ is removed as well
due to its redundancy. To further reduce the feature space, ’capital_loss’ is subtracted
from ’capital_gain’ to create a new feature named ’capital_change’. The variable
’native_country’ is transformed into a binary attribute. As seen in the Figure 5.2, the
majority of the samples have the value ’United-States’ in this column. The rest is
scattered over 40 different values. Therefore this attribute has been transformed into a
binary attribute containing the values ’US’ and ’Non-US’.

Missing Values A few of the features contain missing values, namely the feature
’workclass’ contains 1,836 missing values, ’occupation’ 1,843, and ’native country’ 583
missing values in the training set. In order to handle the missing values, k-Nearest-
Neighbors imputation is performed with k = 3. We show that this imputation leads to
results comparable to the state-of-the-art, as our best final performance on the test set
with an accuracy of 85.11% (reached by a model with 1 hidden layer with the hidden
layer size of 164 neurons). The results obtained on the test set is shown in order to
compare with a previous study that used this dataset. Our result is comparable to a
result obtained by J.Poulos and R.Valle [53], where an accuracy of 85.6% was reached
on the test set. The network architecture these authors have used was, however, larger,
and consisted (besides an input and an output layers) of 2 hidden layers, with a hidden
layer size of 1,024 neurons. However, it is important to mention that the test set serves
strictly for evaluation only, and not for model selection – for the subsequent experiments
a hyperparameter search using cross-validation is done, performing model selection based
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Table 5.2: Explored Hyperparameter Grid

Hyperparameter Layer size (m) # hidden layers (l) Batch size Learning rate (α) Dropout Optimizer
1 (*input size) 1 128 0.1 0 adam
2 (*input size) 2 256 0.01 0.1 sgd

Values 3 (*input size) 3 512 0.001 - -
4 (*input size) 4 - - - -
5 (*input size) 5 - - - -
10 (*input size) - - - - -

on the scores achieved on the validation set instead - the test set is treated as separate,
unseen data.

Encoding & Scaling In the following step, one-hot encoding is applied to the categor-
ical data. The numerical features are standardized.

5.1.3 Hyperparameter Tuning
The hyperparameter tuning is not an explicit priority for the subsequent experiments, as
the aim of experiments was not to optimize the performance of a benign model, but to
observe the change in the performance of the different models with the attack and defense
functionalities and to allow for comparisons among various settings of the experiments.
Nevertheless, the tuning is performed in order to find hyperparameters that lead to
acceptable performance of the base models which are later attacked (and defended), and
to provide an evaluation in a realistic and fair setting: our model is not chosen in a way
to demonstrate specific aspects of the data exfiltration attack and defense capabilities,
disregarding the actual machine learning task, but we demonstrate the attacks and
defenses on a model that is likely to also be chosen in a real-world setting for the actual
predictive task.

In order to find the hyperparameter combination that results in optimal classification
performance, hyperparameter tuning using grid-search is carried out. It is performed
using 5-fold cross-validation by training the model with different combinations of hy-
perparameter values and evaluating its performance. Altogether, in the final run of
the grid-search, 1,080 different models were tested. The explored hyperparameters con-
sisted of the number of hidden layers in the MLP, layer size (in multiples of input size),
learning rate, batch size, dropout, and optimizer. The values for each of the explored
hyperparameters can be seen in Table 5.2.

Figure 5.4 shows the runs executed in the hyperparameter search. Each line represents
one model with a different combination of hyperparameters. Each axis shows a different
hyperparameter, with the values along the respective axis showing the explored values.
The rightmost axis shows the final results of the 5-fold cross-validation, with the color
indicating the value of the arithmetic mean of the accuracy score across all five folds.
The differences due to batch size and dropout in the outcome are not visible from this
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Figure 5.4: Results of model hyperparameter search to determine optimal settings for
subsequent attacks. Each line represents a model with a different combination of hyper-
parameters in the grid search. The axes represent the explored value of hyperparameters,
with the right-most axis depicting the results of these models with respect to the mean
validation accuracy in 5-fold cross-validation

Figure 5.5: Hyperparameter importance and their correlation with respect to the mean
validation accuracy in 5-fold cross-validation

plot, but with the optimizer, we can start to see that the Adam optimizer leads to higher
scores than stochastic gradient descent. The layer sizes of 1 and 10 show lower scores
than the values in between. The number of hidden layers does not seem to have a large
impact on the final performance. We can observe that the lower learning rate values lead
to higher scores.

The importance of each of the hyperparameters (of numerical values), along with runtime,
and their correlation to the arithmetic mean accuracy resulting from 5-fold cross-validation
can be observed in Figure 5.5. The correlations indicate the nature and significance
of linear relationships between individual hyperparameters and the model effectiveness
(mean accuracy). The resulting value lies in the range [−1; 1]. Although these correla-
tions demonstrate evidence of a relationship between a hyperparameter and the mean
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Table 5.3: Hyperparameters of models used in attack and defense settings

Dropout Batch size Learning rate α Optimizer
0 512 0.001 Adam

accuracy they do not necessarily imply causality. These correlations are susceptible to
outliers, which may transform an otherwise strong relationship into a moderate one.
Moreover, correlations can only grasp linear relationships between hyperparameters and
the calculated metric. More complex relationships would not be identified by correlation
measures. The importance signifies how useful each hyperparameter was with respect to
the mean accuracy (obtained through 5-fold cross-validation). This metric is provided by
the WandB experiment tracking tool [8]. The importance measures are calculated by
employing a tree-based model.

Therefore, we can observe, that layer size has been identified as the hyperparameter with
the highest importance, and is slightly positively correlated with the mean accuracy. The
number of hidden layers has a slightly lower importance, in spite of this relationship
not being of linear nature. The value of the learning rate α is negatively correlated to
the resulting model accuracy: the higher the value of the learning rate (as shown in
Table 5.2, the lower the mean accuracy, and vice-versa. This aligns with the observation
from Figure 5.4, where we can observe the correlation of the hyperparameters to the
model performance obtained by cross-validation, and we can see that the lower values of
the learning rate, as well as the Adam optimizer, yield higher accuracy score (depicted
by lighter color).

Batch size and dropout are showing lower importance, with batch size having a positive
relationship to the mean accuracy, whereas dropout is negatively correlated with this
metric. The best-performing model resulting from the 5-fold cross-validation is obtained
with the following hyperparameters: 1 hidden layer of size 3 (123 neurons), a dropout of
0.0 (i.e. no dropout), a learning rate of 0.001, a batch size of 512, and Adam optimizer.
The best-performing model hyperparameter values used for the subsequent experiments
are shown in Table 5.3. The achieved accuracy on the test set is 84.46%. The zero-rule
baseline accuracy on the test set is 75.43%. When retrained on the full training set, the
model achieves 84.68% accuracy.

5.2 Design of Attacks & Defenses: Common settings and
Evaluation

The model hyperparameters are kept constant across all experiments, in order to ensure
comparability and observe the impact on attack and defense success and model utility
based on the various settings of the attacks and defenses. Otherwise, a change in model
effectiveness could be caused either by a change in model hyperparameters, or the change
in attack and/or defense settings. Furthermore, the experiments are performed on
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Table 5.4: Attack & Defense behavior investigated on models of following sizes

# of hidden layers 1 3 5
Layer size (×input size) 1 3 5 1 3 5 1 3 5
# of neurons in per hidden layer 41 123 205
# of parameters in a model 1,764 5,290 8,816 5,208 35,794 93,276 8,652 66,298 177,736

models where the model size varies (depending on layer size and the number of hidden
layers). This, along with the number of parameters, in each model can be seen in Table 5.4.
It results in nine models of different sizes. The layer size refers to the number of neurons
in the hidden layer h and is expressed as a multiple of the input size. The input size is
equal to the number of features in the preprocessed data m, excluding the target feature,
i.e. m − 1, the number of neurons per hidden layer is, therefore, layer_size × (m − 1).
In the following chapters, the various model sizes are therefore referred to as Number
of hidden layers × layer size, e.g. 3×3.

Figure 5.6 shows the overview of all experiments and the different settings explored. The
explored model sizes are depicted in this figure. Further attack settings are explained
and elaborated in the sections corresponding to the attack-specific design - white-box in
Section 5.3 and black-box in Section 5.4.

5.2.1 Evaluation
This section details the evaluation process of the attacks and the corresponding defenses.

Attack & Defense utility are both measured by comparing the exfiltrated data Dex

to the original data D. The only difference is that a successful attack leads to a high
similarity, whereas a successful defense leads to a low similarity. Therefore, a metric that
calculates this similarity is implemented. Since the experiments are done on tabular data,
the metrics implemented by [63] are not applicable, since they focus on other data types
(such as Mean Absolute Pixel Error - MAPE for image similarity). When working with
tabular data, different types of attributes typically need to be considered. As shown in
Table 5.1, the dataset consists of attributes of continuous numerical values, an ordinal
attribute and categorical attributes. The similarity metric, therefore, needs to encompass
this information. Thus, for each pair of instances (from normalized datasets Dex and D),
for each pair of values belonging to

• Categorical attributes: Hamming distance is calculated.

• Numerical attributes: Euclidean distance (absolute difference) is calculated.

This way, the distance between the two samples, i.e. the error of exfiltration, is calculated.
The resulting values are added per instance, over all instances, and averaged over the
length of the dataset. Subsequently, the error is subtracted from 1 to represent data
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Figure 5.6: Overview of the experiments conducted within this work, showing the variants
of the attacks and the comparisons made. The bottom part depicts the defense approaches.
The overall numbers of experiments conducted is shown.
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similarity. The final value of the metric can be expressed in terms of percentages, with
100% indicating that the Dex and D are identical.

This similarity metric can be generally applied to samples of tabular data, however, it
does not take the ranges of the data into account, which means that even if nonsensical
data is exfiltrated, a certain level of similarity will be assessed by this metric. To force
the similarity to be 0, the (expected) ranges of values in each column could potentially
be taken into account (e.g. if an exfiltrated value for the column ’age’ is ≥ 100 similarity
is set to 0). This would entail a dataset-specific crafting of a similarity metric, which
requires specific domain knowledge. The more generic metric described above is therefore
applied within this work, as it serves to identify the success of attacks and defenses.

Model Utility In order to quantify model utility, the model’s performance on the
original task needs to be measured. Here, the attacker and the defender both share the
same goal - preserving the model utility. To evaluate how well a model performs on
the task, the performance measures introduced in Chapter 2 are employed: accuracy,
precision, recall, ROC AUC, and F1 score are computed on the training set and a separate
test set, as shown in Figure 5.1, for all experiments conducted. For the black-box attack,
the adversary uses a validation set (rightmost part of Figure 5.1) to track the performance
during training and decide e.g. on early stopping. The final results are however also
compared on the separate test set, to ensure a fair comparison across all configurations
(i.e. combinations of attack & defense settings)

5.3 Design of White-Box Exfiltration Attack & Defense
The following section presents the details of the attack and defense design within the
context of the white-box scenario. The variants of the attack given the employed encoding
strategies are detailed, each in terms of their characteristics. The data transformations
associated with each variant are described, and the required model parameter transforma-
tions are explained. The objective is to provide a comprehensive overview of the attack
architecture to allow for the understanding of the attack deployment process, as well as
the defense technique.

5.3.1 Least Significant Bit Encoding Attack
In order to carry out the data hiding, the adversary constructs the training pipeline
identical to a benign training setting. Once the training is performed, the attacker then
embeds the training data into the parameters θ of the final train model based on the
model capacity. This is achieved by modifying the weights and biases of the benign model
using them as a covert channel - data is encoded into the least significant bits of these
numbers.

For the experiments, in the first step, base models (benign models) are retrained on the
full training set with the hyperparameters found by grid-search as described in 5.1.3.
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5.3.2 Model Capacity
The capacity of the model depends on the number of parameters in the model and the
number of bits b used for data hiding. The attacker, therefore, determines the capacity of
the model by calculating the number of bits available for hiding by multiplying these two
numbers. From the attacker’s perspective, a large model is desirable due to the larger
number of parameters it offers for data hiding.

5.3.3 Data transformation
The training data that the attacker intends to exfiltrate is transformed into its bit
representation. Three variants of the transformation for the subsequent encoding are
explored within this thesis.

Gzip transformation

This type of transformation for encoding is based on the implementation from the
underlying study by Song et al. [63]. It has been adapted for use with tabular data. Gzip
compression is applied to the training data in order to reduce the amount of information
to be encoded into the model. The resulting data is transformed into a byte string, which
is transformed into its bit representation. The data is now ready to be encoded into the
parameters. One aspect to consider with this transformation is the capacity of the model.
The size of compressed data in bits needs to be determined beforehand, in order to trim
the training data to the desired size, so that once compressed, it fits into the LSBs of the
model.

• Advantages: This is a fairly simple and for an attacker an easy-to-execute approach.
Compressing the training data before it is encoded into the parameters of the model
allows for a larger volume of the data to be encoded into the parameters, and
subsequently exfiltrated than with other transformation variants.

• Disadvantages: As a result of the nature of data compression aiming to utilize
space as efficiently as possible, minor errors can lead to a pronounced impact on
the success and result of decompression. The susceptibility of a compressed gzip
file to small errors and file corruption compromises the robustness of this approach.
This is the case also when the attacker is able to reconstruct known building blocks
of the file format. If the attacker embeds any identifiable parts of a gzip file into
the parameters, it makes the attack more susceptible to detection (e.g. a gzip file
header can be read from the LSBs, and the data hiding thereby detected)

Label-Encoding Transformation

For the following transformation, label encoding is applied to the categorical attributes
of the training dataset D. The numerical values remain unchanged in this step. The
number of attributes (excl. the target variable) in the dataset is represented by m. As
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the adversary aims to exfiltrate the target attribute as well, we denote the number of
attributes in D by m + 1. Subsequently, each value xij and the corresponding yi from
the training dataset D is transformed into its bit representation so that each value now
has a length of 32 bits.

xij �→ sij where i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m + 1}, and sij ∈ {0, 1}32

The transformed dataset has the following form:

S =


s11 s12 . . . s1m+1
s21 s22 . . . s2m+1
...

... . . . ...
sn1 sn2 . . . snm+1


Specifically, the ’Adult Income’ dataset contains 12 columns after preprocessing. This
label-encoding transformation, therefore, results in 384 bits representing one instance of
the dataset D, meaning 384 bits are necessary in order to hide one data sample in the
model parameters.

• Advantages: This method offers a straightforward procedure for data transfor-
mation in the context of data exfiltration. The main advantage is that it is more
robust to bit-flip errors and thus less susceptible to minor errors compared to the
gzip file encoding.

• Disadvantages: The amount of bits needed to represent the dataset is significantly
higher, thus requiring the capacity of the model to be high as well in order to
exfiltrate a meaningful amount of data. When working with a model of the same
size, this approach effectively lowers the capacity of the model with respect to the
amount of data that can be exfiltrated.

One-hot Encoding Transformation

In order to reduce the number of bits needed to represent one sample, the data is
transformed in the following way. Each categorical value is one-hot encoded. One-
hot encoding eliminates the need for the values from the categorical attributes to be
represented by 32 bits each, as every value from each category from each attribute can
be represented by (a combination of) either 0 or 1. One-hot encoding of the categorical
features results in 38 variables. This means 38 bits are necessary to represent the
categorical values of each sample (as opposed to 256 bits in label-encoding transformation).
Each column containing rational or negative numerical values is represented by 32-bit
single-precision floating-point values, otherwise, the numerical columns are represented
by integer values. The numerical values are transformed into the corresponding bit
representation. The integer values, when transformed into their bit representation,
require a different number of bits depending on their value, thus resulting in different
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lengths of the bit strings. In order for the adversary to reconstruct the data once the
final model is published, the same length representing each of these values is necessary.
To address this issue, first, the length of the longest bit representation max_len of the
integer values is calculated, and padding is added to all the other values until max_len
is achieved. Second, the adversary needs the knowledge of the max_len variable. As
defined in Section 4.1.1, no communication or signaling from the model to the attacker
is possible during the code execution. For this reason, the attacker treats max_len as
a 32-bit floating-point value and transforms it into its bit representation. This is then
encoded into the model parameters together with the training data. Once the max_len
is recovered, the training data can be reconstructed.

• Advantages: The one-hot encoding transformation combines the general concepts
of the two previously introduced techniques. This method offers a reduction in the
number of bits needed to represent the data, as compared to label-encoding trans-
formation, and an increase in robustness compared to the gzip file transformation.
In the ’Adult Income’ dataset, the one-hot encoding transformation results in a
91-bit representation of one data instance. This results in a 76.4% decrease in the
number of bits necessary to represent one sample, in comparison to the result of the
label-encoding transformation. By reducing the number of bits needed for encoding
of one instance, the capacity of each model, with respect to the amount of data that
can be encoded, is increased. A further advantage is that this method offers more
robustness than the gzip file encoding, with lower susceptibility to minor errors.

• Disadvantages: The amount of bits needed to represent the dataset is higher than
the gzip file encoding. The susceptibility to errors is higher than the label-encoding
transformation.

For each of the transformation settings, in the following experiments, the transformed
training data is encoded into the least significant bits of the parameters, with an increasing
number of bits ba utilized, from 1 until 32 bits are reached (when the whole parameter is
changed).

5.3.4 Defense: LSB Sanitization
In order to defend from the LSB Encoding attack, the aim is to remove the hidden
information from the model. This can be achieved by modifying the parameters of the
attacked model θ′. For example, the least significant bits of the parameters can be
sanitized. Algorithm 5.1 shows the steps of the chosen defense. Within this work, the
value of all LSBs bd is set to 0. The parameters are therefore modified once again - and
the defense returns a model with parameters θ′∗. This way, the hidden information is
partially removed. How much information is removed depends on the interplay between
the attack bits ba and the defense bits bd. However, neither the attacker nor the defender
has the knowledge of how many bits the other party is considering. Therefore, the
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Algorithm 5.1: LSB defense by sanitizing least significant bits of model pa-
rameters

Input: trained model parameters θ′, number of bits bd to sanitize per parameter
Output: Sanitized model parameters θ′∗

for each parameter p′ in θ′ do
p′∗ ← set bd lower bits of p′ to 0s

end
return θ′∗

subsequent experiments explore all of the possible combinations (i.e. 32 ba × 32 bd).
Figure 5.7 shows the process of parameter modification, along with an example of a

Figure 5.7: LSB attack by data hiding and defense by parameters sanitization: example
of parameter value change

parameter value. In this example, ba = bd = 14, which results in 14 LSBs of a parameter
from the benign model being replaced by bits of training data, which modifies the benign
parameter value from 1.2945 to 1.2934. The defender sets the values of a bd number of
LSBs to 0. The parameter value is further modified by this defense, which results in
1.2935.

Since neither of the parties knows how many LSBs the other party modifies, this can
result in the removal of all of the information if ba ≤ bd. This in turn results in a change
in model performance that is equal to the scenario where a base model is modified by
the defense (i.e. as if no attack took place, and the defense was applied in a benign
setting). The case when ba > bd leads to the preservation of some hidden training data
(i.e. secret).

5.3.5 Attack Adaptation
When anticipating a detection method or an active defense, the attacker can employ
further techniques to reinforce the attack. We describe two options:

• Encryption: The adversary has the option to encrypt the data before hiding it in
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the model parameters. The underlying study [63] uses the AES CBC encryption
scheme. It makes the hidden data more difficult to detect, should the defender
look for any pattern in the LSBs, or attempt to reconstruct any information from
LSBs. However, it reduces the robustness of the attack against defense techniques.
If the encrypted data is hidden in the bits of parameters and subsequently changed,
the attacker is not able to decrypt the data correctly. The decryption will yield a
different plaintext than the original data, so when reconstructed, it will not match
the training data and the attack is rendered useless. For this reason, encryption is
not applied to the subsequent experiments.

• Error Correction Codes In order to increase the robustness of the attack against
a potential defense, the adversary can encode the training data using error correction
codes. For this purpose, Reed-Solomon encoding is employed. However, there is
a trade-off between utilizing the ECCs and the capacity: as the encoding adds
additional symbols to the data to detect and correct potential errors, the final
amount of bits to be encoded into the model parameters increases. This means
that with the same model size, less data can be exfiltrated. The adversary decides
on the trade-off they are willing to accept.

Both of these options would be applied to the secret s before the transformed data is
encoded into the parameters (as the penultimate step in Algorithm 3.1)

5.4 Design of Black-Box Exfiltration Attack & Defense
This section explains the details of the attack and defense design in the black-box
scenario, along with the details of the design of experiments. The variants of the trigger
set generation are described and the investigated settings are detailed.

5.4.1 Black-Box Exfiltration Attack
The overview of the attack design is shown in Algorithm 3.3. The trigger set generation
is carried out according to Algorithm 3.4. Since a dataset with a binary target attribute
is used to demonstrate the attack, one trigger sample is needed to represent one bit
of training data. The auxiliary knowledge K, in this case, represents the knowledge
of dataset characteristics as described in Section 4.3. For a subset of attacks, it also
comprises knowledge of probability distributions. The model is trained on the benign
training set and a generated trigger set. In each epoch, first, a full training pass over
the benign data Dis performed. Subsequently, within the same epoch, a full pass on a
combined adversarial dataset is done. This combined dataset contains the benign training
data as well as the trigger set samples. i.e. D ∪ T, which aligns with the training strategy
from the original paper of Song et al., where this attack was performed on image and
text data [63].

The settings explored in the black-box scenario attack are:
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• Knowledge K: mode of trigger set generation (based on attackers knowledge K
of training data probability distributions). It determines how the trigger samples
are generated. Three different options are chosen depending on the knowledge of
the attacker:

– The attacker has knowledge of training data distribution
∗ In-distribution data is generated
∗ Out-of-distribution data is generated

– The attacker has no knowledge of the training data distribution
∗ Uniformly distributed data is generated

• Trigger ratio: ratio of the trigger set size to the benign training set size (in %),
indicates the number of trigger instances g to be generated and learned by the
model: g = trig_ratio × len(D)

• Oversampling: simple trigger set oversampling by repetition, as chosen by the
adversary. Each trigger sample is then repeated multiple times. In this work, we
explore four settings: (i) 1 × g - no repetition, (ii) 2 × g, (iii) 3 × g, and (iv) 4 × g.

The training process of the MLP utilized in the black-box data exfiltration attack scenario
(with malicious code implementing data hiding functionality) is depicted in Algorithm 5.2.

Evaluation The performance of the model is evaluated after each epoch on the vali-
dation set Dval (consisting of benign data only) and the trigger set T. In contrast to
the models in the white-box setting, which are trained for 10 epochs, these models are
also trained further for up to 120 epochs, to allow more detailed observations of their
behavior. The dataset split used for the evaluation is shown in the right-most column of
Figure 5.1. The final base model and the final attacked model performances are compared
using a separate test set. Additionally, the attacker uses 20% of the training data as a
validation set. This type of evaluation is used by the adversary to monitor the trade-off
between the performance on the benign training set and the performance on the trigger
set. The continuous evaluation at each training iteration is important, as the attacker
has to achieve two conflicting key objectives:

• Attack success: Achieve a high similarity of exfiltrated data Dex to the original
data D. As one option, the performance on the trigger samples can also be measured
– the higher the performance on the trigger samples, the higher chance the attacker
has to obtain exfiltrated data with high similarity to the original training set.
Alternatively, the similarity of exfiltrated data Dex to the original data D at
each training iteration can be monitored as well, although the reconstruction
and similarity calculation at each step leads to increased overall runtime. In the
following evaluation of the experiment results, we use a similarity metric defined in
Section 5.2.1 to measure the attack success.
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Algorithm 5.2: Training algorithm Tmal augmented with malicious DEA func-
tionality

Input: Training data [Xtrain | ytrain], Validation data [Xval | yval], Trigger set
T = [X′ | y′], learning rate α, batch size N , total epochs E

Output: Attacked model f̂ ′

Initialize parameters θ′ (W(l) and b(l)) randomly for all layers l of a network f ′.
Let Lossmin be the minimum validation loss observed so far, initialized to ∞.
for epoch in E do

for batch in [Xtrain | ytrain] do
Forward pass:
ŷ ← forward_pass(f ′, Xtrain).
Compute loss:
Loss = − 1

N

�N
i=1[yitrain log(ŷitrain) + (1 − yitrain) log(1 − ŷitrain)]

Backward pass (backpropagation):
Compute gradients: ∂Loss

∂W(l) and ∂Loss
∂b(l) for all layers l.

Use optimizer to update parameters θ′:
W(l) = W(l) − α ∂Loss

∂W(l) and b(l) = b(l) − α∂Loss
∂b(l) for all layers l.

end
for batch in adversarial_data [Xtrain ∪ X′ | ytrain ∪ y′] do

Forward pass:
ŷ ← forward_pass(f ′, Xtrain ∪ X′)
Compute loss:
Loss = − 1

N

�N
i=1[yi log(ŷi) + (1 − yi) log(1 − ŷi)] where yi ∈ ytrain ∪ y′

Backward pass (backpropagation):
Compute gradients: ∂Loss

∂W(l) and ∂Loss
∂b(l) for all layers l.

Use optimizer to update parameters θ′:
W(l) = W(l) − α∂Losst

∂W(l) and b(l) = b(l) − α∂Loss
∂b(l) for all layers l.

end
Forward pass:
ŷval ← forward_pass(f ′, Xval)
Compute loss on validation data
Loss = − 1

Nval

�Nval
i=1 [yival

log(ŷival
) + (1 − yival

) log(1 − ŷival
)]

Similarity Evaluation:
ŷ′ ← forward_pass(f ′, X′)
Transform ŷ′ �→ Dex
Calculate similarity of Dex to D where D = [Xtrain ∪ Xval | ytrain ∪ yval]
if similarity = 100 then

return optimal model f̂ ′

end
end
return f̂ ′
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• Model utility: Preserve the utility of the attacked model f̂ ′, to stay comparable
to the utility of the base model f̂ trained on benign data X only. It is crucial for
the attacker to prevent a significant decrease in the performance of attacked model
f̂ ′ on the benign data X. The attacker conducts monitoring of the performance
of the attacked model on benign data for each epoch, and can thus compare the
performance of the model at each training epoch to the performance of the base
model, which was trained on benign data only. For the experiments, additional
monitoring of the performance of the base model is performed for each epoch.

The adversary is unable to actively control the stopping criterion based on similarity
calculation at execution time, however, even in the above-described secure, isolated
computing environment, the performance monitoring functionality can be embedded in
the code itself. It is up to the attacker to define the stopping criterion for the training
of the model. For instance, the adversary might be willing to endure a loss in training
accuracy, and risk extending overall runtime, if it results in higher similarity. This is a
strategic trade-off that the adversary has to take into account, depending on the objectives
and constraints. This way, the attacker finds the optimal number of epochs given the
attack success or model utility, or a combination of both. Additionally, the attacker
needs to consider the attack runtime and its effect on the overall training runtime.

In the following experiments, an optimal number of training iterations is found when
the attack success potential is high, and the similarity achieved is 100 percent. The
resulting optimal model f ′∗ is saved at this point. This is the model to which the defense
will be applied in the subsequent step.

Has the model not achieved a 100% similarity even after 120 training loops, the training
is stopped, and the attacked model is saved after the last iteration.

The utility of the final, optimal model f ′∗ trained on (Dtrain ∪ T) is evaluated on the
independent test set. The attack success is again evaluated by data similarity calculation
and the model’s performance on the trigger set.

5.4.2 Defense: Targeted Local Neuron Pruning
As the data the model is trained on includes the trigger samples, it contains the learned
representation of these samples as well. The aim of the defense is to remove the knowledge
the model has learned from these trigger samples while preserving the knowledge learned
from the benign training data. The objective is therefore to observe how the neurons
behave on a forward pass of the benign training data. The neurons that do not respond
to the benign data are removed, as these neurons are considered redundant to the
underlying task. The assumption is that since these neurons are not responsible for the
prediction on the underlying task, they might be responsible for the representation of
the trigger samples (or overall not useful). Therefore, we refer to this process as targeted
pruning. Algorithm 5.3 depicts this iterative process. As a first step in each iteration,
the benign, original training data is passed through the network, and the activations of
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Algorithm 5.3: Targeted Local Neuron Pruning
Input: Attacked model f ′, number of neurons to prune from each layer p, benign

training features X, validation data [Xval | yval], evaluation algorithm
evaluate_model_performance, allowed_performance

Output: Defended model f ′∗

L ← number of hidden layers in f ′

n ← len(X)
j ← initial number of neurons in each hidden layer of attacked model f ′

pruned_neurons ← p
current_j ← j
while pruned_neurons ≤ j do

pruned_j ← j − pruned_neurons
current_j ← pruned_j + p
Forward pass: Compute activations on benign training set:
a(1), . . . , a(L) ← forward_pass(f ′, X)

for l ← 1 to L do
Calculate the mean of activations per neuron µ

h
(l)
i

= 1
n

�n
i=1 a

(l)
i

h(l)
k1...kcurrentj

= sort

h(l)

1...current_j , by a
(l)
1...current_j

�
Remove neurons: h(l) = h(l)

k1...kpruned_j

pruned_neurons ← pruned_neurons + p
end
Forward pass: ŷval ← forward_pass(f ′, Xval)
performance ← evaluate_model_performance(yval, ŷval)

end
if performance ≤ allowed_performance then

return defended model f ′∗

end

each neuron are collected. The values of the activations at each neuron averaged over all
benign samples. Subsequently, these averaged activation values are sorted, separately
per layer, and the chosen percentage of neurons with the lowest average activation value
in each layer are removed from the network. Due to the pruning carried out at each
layer separately, we refer to this as local pruning. At each iteration, the performance
of the model is evaluated on the test set. Additionally, in order to monitor the defense
effectiveness, the similarity of the exfiltrated data is monitored at all iterations. In a
real setting, the defender, of course, would not be able to perform this step, as they do
not possess the knowledge to construct the trigger set, but this data is required for the
in-depth analysis of the defense.
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CHAPTER 6
Results

This chapter presents and interprets the results of the experiments. The results of each
attacks are shown, followed by the results of the corresponding defense. It elaborates on
the utility of the attacks, with regards to the capacity of the models, the effectiveness of
the attack, as well as the effectiveness of the attacked model on the original task. We
make a comparison to the effectiveness of the base models. Additionally, we present the
overhead generated by the incorporation of the exfiltration functionality with respect to
the training time.

6.1 Attack: Least Significant Bit Encoding
The following section presents the results of the attack in the white-box setting, i.e.
where the adversary has control over the learning process of the model and gains full
access to the learned model parameters. The attack utility, along with the impact of the
attack on the performance of the model is presented for the explored configurations.

6.1.1 Attack Utility
The LSB Encoding attack results in a 100% similarity of exfiltrated data to the original
training data. Therefore, the utility of this attack largely depends on the capacity of
the models - how much data can be hidden in the least significant bits of the model
parameters.

Capacity The capacity of the model depends on the number of parameters in the
model and on the number of least significant bits the adversary uses. For the models
investigated, the number of parameters is shown in Table 5.4. For example, the model of
size 1×1 comprises 1,764 parameters. The number of bits in this model is therefore 56,448,
which is the maximum amount of bits that can be hidden in the model (utilizing all 32

65



6. Results

Table 6.1: LSB Attack: Number of bits needed to represent the training data

Label enc.transf. One-hot enc.transf. Gzip transf.
Bits per sample 384 91 ∼53
Bits per dataset 12,503,424 2,963,051 1,725,733

Figure 6.1: LSB Attack time (in seconds) w.r.t. attack configurations

bits of each parameter, i.e. replacing parameter values fully with bits of training data).
As shown in Table 6.1, when utilizing the label encoding transformation, a maximum of
147 instances can be hidden in the model. Using the one-hot encoding transformation,
this increases to 620 instances of the training data, and with the gzip transformation,
1,065 samples can be hidden in the parameters.

Attack time The time required to carry out an attack is an important aspect for
the adversary to consider. It consists of the calculation of the model capacity, the
data transformation, and the encoding into the parameters itself. This time needs to
be considered on top of the regular model training, as it increases the runtime of the
provided code, potentially raising suspicions about hidden malicious activity. Figure 6.1
shows the attack time needed, for the attack using the label encoding transformation,
depending on the various configurations of the models explored. The code execution
time for the base model of size 1×1 was 42 seconds, therefore, the maximum overhead
caused by the attack (i.e. worst-case scenario) increases the runtime by 42.9%. It is
interesting to point out that there is a positive relationship between models of smaller
size, and the attack time needed. This behavior can be explained by the limited capacity
of small models, where longer data processing is needed in order to prepare and trim the
data in order to encode it into the LSBs.
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(a) 1×1 (b) 3×3 (c) 5×5

Figure 6.2: Impact of the LSB (Gzip) encoding attack on the performance of the model:
The plot shows the change in accuracy with the increasing number of bits used for data
hiding, marker color denotes the F1 score of the attacked model on the original task.
The dark solid line indicates the minimum accuracy, and the light blue line shows the
mean similarity

(a) Label encoding transformation (b) One-hot encoding transformation

Figure 6.3: Impact on the performance of the base models when the label and one-hot
encoding transformations are utilized (average of models of 1×1, 3×3, 5×5 size)

6.1.2 Model utility

Modifying the least significant bits of the parameters potentially impacts the performance,
as the parameter values are changed and thus the activations, confidences, and eventually
rank of predicted classes are affected.

Figures 6.2 and 6.3 demonstrate the change in performance of the model after a certain
number of bits of training data are hidden in the model. Accuracy is presented on
the y-axis, while color of the markers represents the F1-Score, with the darkest value
indicating an F1-Score of 0, which is equivalent to the zero-rule accuracy baseline. The
dark blue line represents the minimum accuracy values, and light blue displays the mean
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Table 6.2: The impact of the LSB encoding attack on the performance of original
classification task of the underlying models. The cells show the number of attack bits ba

at which a change in performance starts to take place

Model Size 1×1 3×3 5×5
Number of LSBs 22 23 24 25 22 23 24 25 22 23 24 25
Base Model Accuracy 84.44 84.48 84.47
Attacked Model Accuracy 84.40 84.36 84.13 79.71 84.36 84.21 83.9 63.9 84.38 84.63 83.48 80.37
∆ Accuracy -0.04 -0.08 -0.31 -4.73 -0.12 -0.27 -0.58 -15.18 -0.09 0.16 -0.99 -4.1
Zero-Rule Baseline 75.43 75.43 75.43

accuracy. These figures generally show that the accuracy suffers no or minimal change
when up to 23 bits of the parameters are used for attack. Figure 6.2 shows the impact
of the attack that utilizes gzip transformation before the training data is hidden on the
performance of models of different sizes. For the smaller models (of size 1×1 and 3×3), a
notable drop in performance occurs at ba = 25. At this point, the performance of the
model of size 3×3 drops below the zero-rule baseline of predicting just the majority class.
The model of size 1×1 drops to this baseline performance and predicts only the majority
class, at ba = 27. These two models thus have practically no remaining utility. The
model of size 5×5 showcases a similar behavior, but the drop in performance is rather
gradual, with ba = 27 rendering the model useless. Table 6.2 presents details of these
results. It shows the accuracy of the benign base model and indicates the effect of the
attack at certain levels of changed bits ba, by showing for each step of ba the achieved
accuracy and the change towards the previous step. This confirms that there is basically
no effect when attacking up to 21 bits, and only a minor change with the 22nd bit. We
can observe a slight increase in the accuracy of the model of size 5×5 at ba = 23. This
can be attributed to the model increasingly predicting the majority class, so the accuracy
improves, however, there is a decrease by 1.49% in the F1-Score.

The models into which the hidden training data was encoded directly without compression,
i.e. utilizing the label and one-hot encoding transformation, exhibit a comparable behavior
regarding the change in model performance. Figure 6.3 depicts this behavior for models of
all three sizes combined. The marker color again depicts the F1-Score, the lines represent
the min and mean accuracy values. We can observe a sharp drop in minimum accuracy
at ba = 25. This is more pronounced for the models where one-hot transformation was
used before the data, however, the mean accuracy is higher for ba > 25. This can be
explained better by additionally observing the F1-Score, which indicates that the models
tend to predict the majority class only more often (the accuracy is, therefore, closer to
the zero-rule baseline). The accuracy falling to this baseline means the models ability to
predict the minority class has been removed. The lower accuracy, but higher F1-Score
indicate, that the model’s ability to distinguish between the classes is partially preserved.
However, with the F1-Score below 50% this does not represent a particularly effective
model.
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6.2 Defense: LSB Sanitization
The utility of the defense is defined by the reduction in the exfiltration functionalities
of the attack - a decrease in the similarity of the exfiltrated data to the original data
demonstrates that the defense is effective. It is in the interest of the defender, however, to
maintain an acceptable level of performance of the model. The following section therefore
examines these two aspects, in order to find optimal defense settings.

6.2.1 Defense Utility
Removing the information from the least significant bits, when there is no error correction
put in place by the attacker, causes the similarity of exfiltrated data to degrade immedi-
ately. In case the defender is using the same or a higher amount of bits to be removed
than the attacker used for the encoding (i.e. ba ≤ bd), the exfiltration functionality is
fully removed. The adversary and the defender, however, do not have knowledge of the
number of bits the other party is using. As shown in the previous section, an adversary is
able to use up to 23 LSBs while causing no (or minimal) harm to the model’s performance.
A capable defender could perform a similar attack simulation, and could then reasonably
assume that this is the minimal amount of bits an adversary will utilize for an attack.

(a) No ECCs (b) 200 ECCs (c) 250 ECCs

Figure 6.4: Applying a defense of removing an increasing amount of bd LSBs, when the
attacker encoded into ba = 23 LSBs. The attack (with label transformation) employing
ECCs ((b) and (c)) remains successful against a defense removing four to five LSBs

If the hidden data is encoded into the parameters directly, without utilizing any com-
pression, the change in exfiltrated data is equivalent to changing bits of the training
data, in the respective transformed form. Figure 6.4 shows this decrease in similarity
when an adversary hides the training data into 23 LSBs of parameters, and the LSBs are
sanitized iteratively. This plot shows that a change of only one bit causes the similarity
of exfiltrated data to drop below 90%, with bd = 12, the similarity drops below 50%.

When gzip compression is used to transform the data before it is encoded into the
parameters, the file is not recoverable after a defense is applied. Employing ECCs however,
allows an attacker to adapt to an anticipated defense by increasing the robustness of the
attack. Figures 6.4b and 6.4c show the change in similarity once encoding the data with

69



6. Results

additional ECCs is carried out by the adversary. It can be observed that even after four
and five LSBs, respectively, are used for defense, the similarity of reconstructed data is
100%. Beyond this point, however, the data cannot be reconstructed due to the ECC
decoding not being able to handle the amount of errors, or, the data is reconstructed
yielding meaningless data.

(a) 1×1 (b) 3×3 (c) 5×5

Figure 6.5: The combination of ba and bd where the attack (with gzip transformation)
employing ECCs was successful despite applied defense. The color of the markers indicates
the value of the ECC parameter applied

Figure 6.5 depicts the cases, where due to the employment of ECCs, the attack is
successful (the gzip file is reconstructed leading to a 100% similarity). The color of the
markers represents the ECC value used. It depicts that if the defender changes only
one LSB of the parameters, the attacker would need to have used at least 13 LSBs in
order to still exfiltrate the data. In the larger model, this increases to ba = 14. The
main takeaway from this figure is however, that the attacker is unable to reconstruct the
training data when bd > 8.

It is important to mention that the ECCs increase the number of bits needed to represent
the underlying data. The ECCs encoding is applied on top of the result of the data
transformation. Although they increase the chances of correct exfiltration, this happens
at the cost of reducing the amount of data that can be hidden. For example, an ECC
parameter of 10 increases the average number needed to represent a sample in a gzip
format from 53 to 63 bits. The parameter value of 50 increases it on average to 77 bits, a
value of 100 to 109 bits, and a value of 200 to 377 bits for one sample. For the direct
encoding of data, this increase is equivalent. Therefore, as also shown in Figure 6.4, even
though the reconstruction was not successful, the adversary is unable to use additional
ECCs due to the limit imposed by the size of model parameters. Decreasing the amount
of ECCs, however, did not lead to a successful recovery of the training data.

Sanitizing the LSBs of the parameters minimizes the chances of successful exfiltration,
despite the usage of error correction functionality. The defense by sanitization is thus
highly effective.
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6.2.2 Model Utility

(a) 1×1 (b) 3×3 (c) 5×5

Figure 6.6: Performance of the models (of which the performance has been preserved
after an attack was carried out) after a defense has been applied. The figures show the
decrease in performance with an increasing number of defense LSBs being modified, with
accuracy being depicted on the y-axis, and color representing the value of the F1-Score

Nevertheless, the impact of LSB sanitization on the performance of the underlying model
needs to be investigated to gain a full picture of the usefulness of the chosen defense.
Figure 6.6 shows the change in utility of the model given the amount of bd sanitized.
The plots depict the scores of the models, where the performance on the original task
was preserved after an attack has been carried out. Similarly to the attack scenario,
the performance starts to decrease after 22 bits have been modified. Once 25 bits are
sanitized, the models are rendered useless.

For that reason, the defender can utilize this characteristic, and remove the hidden
information. The defender is able to discard any hidden information at no cost, i.e. there
is no need to give up on any model performance (unless it has already been compromised
by an attack). The defense proves to be highly effective.

6.2.3 Parameter Modification
We observe that the defense that sets the values of LSBs to 0 acts as a quantization of
the model parameters. It removes the precision of the parameter values, forcing them
into bins. The bins depend on the bits with value 1 of the exponent of the floating-point
value representation. Figure 6.7 shows this behavior on an example of weights from a
model of size 1×1, with ba = bd = 23. The histograms depict the parameter values (only
weights are shown). The x-axis shows the values of the parameters, the y-axis shows
the number of parameters with the corresponding value. The parameters of the benign
model can be seen in the leftmost part of the figure. The modified values resulting from
hiding data in the LSBs of the parameters are depicted in the middle column of the
figure. The parameter values with LSBs modified by the defense are shown on the right.
The input-to-hidden layer weights are presented in the top row and the hidden-to-output
weights in the bottom row. We can see how the precision of the values is reduced,
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Figure 6.7: Histograms depicting the parameter values (weights) of the benign model on
the left, the resulting values after the LSB encoding attack in the middle of the figure,
and after defense on the right. The figure shows the weights of a model of size 1×1, with
ba = bd = 23. The input-to-hidden layer weights are presented in the top row and the
hidden-to-output weights in the bottom row.

causing many parameters to be reduced to the same value. We can see how the number
of parameters per bin increases in the figures from left to right. For example, in the
hidden-to-output parameters, in the benign model, there are 31 bins with at most three
parameter values per bin, whereas, for the defended model, there are only seven bins,
with up to 12 parameters per bin.
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Figure 6.8: The number of trigger samples necessary in order to exfiltrate instances of
the training data

6.3 Attack: Black-Box Attack
The following section presents the results of the attack in the setting where the adversary
has control over the learning process of the model but does not assume full access to the
model after the model is trained. The attack utility, along with the impact of the attack
on the performance of the model, is presented.

6.3.1 Attack Utility
The attack utility is dependent on the learning capacity of the models, as well as the
similarity of the exfiltrated data. The following section presents and discusses the results
of both of these aspects.

Learning Capacity In order to explore the learning capacity of the models at hand,
four different settings regarding the amount of generated samples are explored. The
amount of trigger samples is expressed as the ratio to the size of the training set (0.1x,
0.5x, 1x, and 2x). With one trigger sample being labeled with one bit of the original
training data, 384 trigger samples are needed to hide one data sample, as the classification
task is binary. Figure 6.8 visualizes this relationship. It is easy to see that in order to
exfiltrate 170 samples, over 65,000 trigger samples are necessary - which is two times the
size of the training set.

We investigate the learning capacity of the models in relation to the model size. Generally,
larger models are expected to have a larger learning capacity, as they have more parameters
that allow them to encompass more complex relationships. Figure 6.9 confirms this
behavior. It shows the maximum similarity results for four different sizes of the trigger set
for the investigated attacked models of different sizes. It shows that the smallest models
do not learn the trigger samples. The models of size 3×3 manage to learn the smallest
trigger set (3,256 samples), with the best result reaching a 100% similarity of exfiltrated
data to the original data, at the 57th epoch. During training, the similarity of the data
seems to fluctuate and does not seem to stabilize. The model also learns the larger trigger
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Figure 6.9: The ability of models to learn different amounts of trigger samples (expressed
as a ratio to the training set size) - maximum similarity achieved

set, which is of the same size as the training set, better than the trigger set half the size
of the training set. A possible explanation for this behavior might be that since the data
is labeled with bits of the training data, there are no structured common characteristics
among the samples that are put to the same target class. However, the attacker has no
option to selectively label similar trigger samples with one of the classes of the target
attribute (0 or 1 bits of the training data) to account for learning inconsistencies resulting
from such behavior, as the trigger generation needs to be deterministic in order to be
recreated for exfiltration. It could, therefore, happen, that for a certain number of trigger
samples, the bit representation of training data used as labels match the structure in the
original data better, which results in the model learning the trigger set better than other
trigger set sizes.

The models of size 3×3 learn the trigger set that is twice the size of the training set
better than the smallest models we consider do, achieving over 50% in similarity. The
5×5 models start achieving higher similarity sooner than the 3×3 models: when learning
the smallest trigger set, reaching up to a 98.84% similarity already at the 29th training
iteration and a 100% similarity at the 76th epoch. Interestingly, the 100% similarity
is only reached later than in the smaller model. However, this might result from the
instability of trigger sample learning mentioned above. These large 5×5 models manage
to learn even large trigger sets more accurately. On the largest trigger set (twice the
size of the training data), they reach up to 92.89% in similarity, however, it takes longer
for the similarity to start increasing. We, therefore, see that the models require more
training loops to remember such amounts of trigger samples.

In order to further investigate what model size is necessary to allow learning of the
trigger samples, different values for the layer size were investigated. Figure 6.10 depicts
the similarity of exfiltrated data achieved by models with a different number of hidden
layers. Each of the plots represents models with the same number of hidden layers, with
increasing layer size (from left to right). Layer size of 1 is represented by purple color,
layer size of 3 by orange color, and layer size of 5 by blue color. The models comprising
one hidden layer, with layer sizes of three (×input size), and five (×input size) (shown in
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Figure 6.10: Similarity given hidden layer size: The impact of layer size on similarity
achieved by models of 1, 3, and 5 hidden layers: blue denotes models with layer size 5,
orange 3 and purple represents layer size 1
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Figure 6.11: The ability of models to learn different amounts of trigger samples (expressed
as a ratio to the training set size). The mean similarity of exfiltrated data to the original
data is shown on the y-axis, with the shadows representing the minimal and maximal
similarity values achieved

Table 5.4) were unable to learn well and achieved results comparable to the models of
size 1×1. This behavior is shown in Figure 6.10a. Also the models with three hidden
layers of layer size 1(×input size) performed similarly. The models with 5 hidden layers
of layer size 1(×input size) achieved 50.41% in similarity after 116 epochs. We can
therefore see, that in the investigated scenarios, the model requires a hidden layer size
of at least three(×input size) and models with at least three hidden layers to achieve a
100% similarity on the smallest trigger set.

Figure 6.11 show the mean similarity of exfiltrated data compared to the original training
data at each training iteration, grouped by the trigger set size. Figure 6.11a also shows
that on average, the smallest trigger set was learned by the model quicker, whereas
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Figure 6.12: Impact of different modes of trigger generation on the similarity of exfiltrated
data

the model struggled with learning the largest trigger set. In comparison, for the large
model shown inFigure 6.11b the trigger set size does not have a notable impact on the
resulting mean similarity. It even shows that the models which learned the larger trigger
set (1:1 ratio to the original training set) on average achieve a slightly higher similarity
of exfiltrated data starting after 75 epochs of training. A possible explanation for this
behavior is overfitting of the model on the original training data when the trigger set is
smaller, as we will elaborate in detail in Section 6.3.2.

Similarity - Trigger generation mode

This section discusses how the mode of trigger generation impacted the learning of the
trigger samples. As shown in the previous section, the small model of size 1×1 did not
have the ability to learn the trigger samples well, and even after increasing the size of the
hidden layer, the ability did not increase considerably. Figure 6.12 shows the ability of the
models to learn depending on which knowledge the adversary used to generate the trigger
samples. For each group of trigger set generation, the evolution of the mean similarity
(incl. min-max values) is shown. If the trigger samples are out-of-distribution of the
benign training data even the larger models do not have the ability to learn them. When
the values of the instances in the trigger set are distributed following the distribution of
the benign data, i.e. mimicking the benign data, the models achieve better results, with
the mean similarity reaching over 60% for 3×3, and over 75% for 5×5 models. The best
models of size 3×3 in this scenario were able to reach over 80% similarity, with models
of size 5×5 increasing this similarity up to 90%. The models were able to learn the
uniformly distributed trigger samples the best - they show the best performance in terms
of mean similarity across all models. For the models of size 3×3, they reached up to
85% similarity on average, with the best models reaching 100% similarity, thus allowing
for perfect exfiltration of the hidden data. Continuing the pattern, for the models of
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size 5×5, the average similarity was even higher, reaching up to over 95%, with the best
models achieving perfect similarity of benign data to exfiltrated data. The potential
reason why the models were able to learn the trigger set with uniformly distributed
samples the best could be that the model more easily identified a pattern in this data,
or simply, the generated instances labeled with the bits of training data, resembled the
original training dataset more. The investigation of this notion was not carried out, as
the data generation needs to be deterministic, and can thus not depend on the original
training data.

Again, it can be observed, that the larger models tend to learn faster, requiring fewer
training iterations in order to learn the trigger samples. For the largest models, however,
especially regarding the best-performing models of this size, there seems to be more
instability in the learning process of the trigger samples. This could possibly be explained
by the tendency of larger models to overfit on the benign training data, causing unstable
behavior on the trigger samples. This behavior is addressed below, in Section 6.3.2 and
Figure 6.16.

Successful attack configurations

Overall, we identified 16 configurations (out of 432) where the attacked model led to a
similarity of 100%. The common characteristics leading to the most successful attacks
are uniform distribution of trigger samples, 0.1 trigger ratio and model size where with
≥ 3 hidden layers, and of layer size ≥ 3). The five left-most columns of Table 6.3 present
the identified successful configurations.

The repetition of the trigger samples (i.e. the oversampling) did not have an effect on
the success of the attacks. The oversampling results are not depicted, as the 16 most
successful experiments contained all four settings of this simple oversampling, which led
to identical performance regardless of the number of repetitions.

Attack time Figure 6.13 shows the difference in model training times per each epoch
between the training of the base models vs. malicious training of attacked models. Blue
color represents the training of the base models, while orange represents the attacked
models. The models are grouped by the number of hidden layers, with increasing layer
size (from left to right, indicated by the color shade). We can see that due to the forward
pass and backpropagation being performed twice, and on additional data per each epoch
(as presented in Algorithm 3.3), the epoch runtimes increase in comparison to the base
model epoch runtimes. As expected, the depth of the network and layer size also impact
the epoch runtimes.

Similarly, Figure 6.14 depicts the total training time of the models which successfully
learned the trigger set and produced exfiltrated data samples identical to the original
samples. The grouping, ordering, and color represent the same characteristics as in the
plot above (Figure 6.13). The number of epochs at which the training of the attacked
model is stopped is shown in Table 6.3. The reason to compare models trained for a
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Figure 6.13: Increase in training time per epoch after inclusion of data exfiltration
functionality, shown per number of hidden layers ordered by layer size, with blue color
denoting the base models and orange the attacked models. The darker the color, the
larger the size of hidden layers

different number of epochs is to compare models successful at exfiltration and also to
show how much training time is required for the adversary’s training to reach a similarity
of 100% and therefore exfiltrate instances identical to those of the original training data.
For this reason, an adversary might resort to a smaller model, as it results in a shorter
runtime, lowering the chances of the attack raising suspicion.

6.3.2 Model utility
Figure 6.15 depicts the continuous evaluation of one attack setting during the training
process. The blue lines show the performance of the base models, with the darker shade
indicating the accuracy, and the lighter blue shade showing the F1-Score. The red line
represents the validation set accuracy of the attacked model, while the orange line depicts
the respective F1-Score. Further metrics, as described above, are tracked, although not
shown here. A zero-rule baseline on the validation set is depicted by grey color. It serves
for comparison of the model utility - once the performance decreases below the baseline,
the model performs no better than a model predicting exclusively the majority class. The
green line shows how the similarity of the exfiltrated data to the original data changes
after each epoch, i.e. how successful is the model at exfiltration attack at each epoch.
The metrics are tracked on the test set for each epoch as well to allow for comparison
within the experiments in this work. We treat the test set as a separate set, and the
score on the test set represents the score the model would achieve once deployed.

In Figure 6.16, the impact of the attack on the mean performance of the models is shown.
The results are shown on the test set, in order to compare the final performance of the
models. The accuracy of the model stays above the baseline for the whole course of

78



6.3. Attack: Black-Box Attack

Tr
ai

ni
ng

tim
e

(s
)

Figure 6.14: Increase in total training time after inclusion of data exfiltration functionality:
Total training time of the successful attacks needed to in order to achieve 100% similarity
shown per number of hidden layers ordered by layer size, with blue color denoting the
base models and orange the attacked models. The darker the color, larger the size of
hidden layers
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Figure 6.15: Example of performance tracking in experiments, and by an adversary
on a model (the example shows a model of 3×3 size, 0.1 ratio of trigger samples to
original data samples, no oversampling of triggers, uniform trigger generation). The
y-axis represents the performance of the model, as well as of the attack (the metrics are
shown in terms of percentages)
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Figure 6.16: The impact of the attack functionality on the model performance for three
different model sizes (shown on the test set), where the accuracy of the attacked model
is depicted by the orange color, the accuracy of the base model by the blue color, and
similarity is shown in green. The mean values are shown, with the shadows indicating
the minimum and maximum values reached at each epoch
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Figure 6.17: Performance of the base vs. attacked models (in terms of accuracy) on the
training and validation set at each epoch, depicting the overfitting of the models that
takes place when trained for a high number of epochs. The performance of the base
models is represented by blue and green lines, while red and orange colored lines denote
the performance of the attacked models

training for all models. Looking more closely, it can be observed that the performance of
the model of 1×1 size increases at a slower rate on the underlying task than the other
models’ performance. We can observe that the attacked models’ performance is slightly
lower than the base models’ performance during the training process. With increasing
training iterations, the models’ performance is decreasing. However, the accuracy of
the base models is decreasing at a similar rate as the accuracy of the attacked models.
Therefore, this decrease can be rather attributed to the overfitting of the models on the
underlying task. But as shown in the section above, and also depicted by the green color
in Figure 6.16, training for many more epochs is required in order for the models to learn
the trigger samples.
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Table 6.3: Difference of the attacked model performance to the base model performance
for models that achieved 100% similarity
#Hidden layers Layer Size Trig.ratio Gen.mode Opt.epoch ∆ Accuracy ∆ Precision ∆ Recall ∆ ROC AUC ∆ F1 Score ∆ Epoch Time

3 3 0.10 uniform 57 -1.51 -7.18 4.92 0.65 -0.21 1.26
3 5 0.10 uniform 40 -1.63 -3.71 -2.76 -2.01 -3.21 1.30
5 3 0.10 uniform 65 -2.20 -4.36 -5.70 -3.38 -5.08 3.21
5 5 0.10 uniform 76 -2.28 -7.69 2.43 -0.69 -2.23 6.52

Figure 6.17 shows the overfitting behavior of the models. We can observe how the training
and validation accuracy of both the base and the attacked models behave with increasing
training epochs. After a certain point (approximately 25 epochs for models of size 1×1,
below 10 epochs for larger models), the models start learning the training set better,
which leads to a degradation of their performance on the validation set. This is especially
true for the larger models. This is the reason why base model training would be stopped
at 10 epochs. The additional training epochs of the base model are depicted in order to
show that it is not only the inclusion of the trigger set that leads to the degradation of
performance but also the nature of the training itself. However, as shown above, these
extensive training iterations are necessary in order for the models to learn the trigger set.

Table 6.3 shows the impact of the attack on the utility of the models most successful w.r.t.
the attack. It depicts the differences in the performance expressed in terms of multiple
metrics - the sign and the color depicting the increase/decrease in model performance.
The bold print indicates the most favorable change in performance. As mentioned in the
sections above, the repetition of the trigger samples led to the same performance of the
attack as if there was no repetition. It has also had no impact on the performance of
the models on the original task. Therefore, the 16 most successful attack results can be
reduced to the 4 rows in this table, as the additional 12 differed only in having more
repetitions of the trigger set. The table also shows how many training iterations were
needed until a 100% similarity was reached by each of the models. The accuracy of these
models on the original task decreases based on the number of hidden layers, and also
with the increasing layer size. For the smallest and largest successful model shown, the
recall improves through the implementation of the attack functionality, however, this of
course comes with the trade-off regarding precision. As expected, the training time per
epoch increases. For the smallest model shown here, training time for one epoch takes
86.72% longer than an epoch of a base model (although this is a high increase in training
time, in our experiments, this increase in absolute numbers corresponded to 1.26 seconds,
which is not necessarily noticeable for the defender). This difference in the epoch time
needed for a base model vs attacked model also increases with model size.

To further investigate which configuration affects the model utility, Figure 6.18 shows the
mean performance of the models of different sizes given the mode of trigger generation.
For the smallest model, it can be observed that including trigger instances generated
with the same distribution as the training data in the training of the attacked model
leads to an overall lower performance of the model. We could interpret this as the trigger
instances "confusing" the model since they introduce samples similar to the training data
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Figure 6.18: The impact of trigger generation mode on the model performance for 3
different model sizes (shown on the test set)

but with essentially random labels (bits of training data). Therefore, any pattern the
model learned from the benign data is being invalidated, and the model is thus misled.
The out-of-distribution data impacts the model performance the least, especially at the
beginning of the training. Towards the later training iterations, the models’ behavior
is comparable to when uniformly distributed trigger samples are included. We can
also observe very little degradation of the performance of the smaller model, which, as
discussed above, has likely two reasons: the small model does not have the capacity to
overfit on the original training data and also does not learn the trigger samples. The
middle-sized models experience a larger decrease in performance, which does not seem
to largely depend on the mode of trigger generation, although the in-distribution data
causes the models to have a slightly lower performance. The largest models showcase
even a smaller difference in impact on the model performance given the mode of trigger
generation. It can be seen, that it takes this model more training epochs to learn the
in-distribution data than the other trigger instances.

6.4 Defense: Targeted Local Neuron Pruning
As a defense in the black-box setting, we try to identify those neurons that are responsible
for learning the triggers, and then remove them from the model, to de-activate the
exfiltration capability, as described in Section 5.4.2. The behavior of both the model
performance and the similarity of exfiltrated data to the original data was observed at
each iteration of neuron pruning.

6.4.1 Defense Utility
Neuron pruning has been applied to all the models investigated. The results below
demonstrate an effective removal of the learned representation of the trigger samples.
The largest investigated models, of size 5×5, on average lose their successful exfiltration
capabilities after pruning 10% of the neurons, as the similarity drops below 50%. The
middle-sized models, (i.e. 3×3, the smallest ones that were able to achieve a 100%
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Figure 6.19: Impact of targeted neuron pruning on the mean similarity of exfiltrated
data given the ratio of trigger instances to benign training instances (the bounds indicate
the minimum and maximum values)

similarity after an attack) respond to the pruning as a defense faster than large models.
The defense causes a sharp drop in the similarity of exfiltrated data: on average, the
similarity decreases to less than 50% already after pruning 6% of the neurons. As shown
in Section 6.3.1, the smallest models investigated within this work did not learn the
trigger samples well. However, the defender does not know whether (and which) attack
functionality has been implemented into the model. Therefore, the defender performs
neuron pruning here as well, removing some of the learned information after pruning
30% of the neurons. Figure 6.19 shows the results of pruning w.r.t. the ratio of trigger
samples to the benign training data. With an increasing amount of learned trigger
samples, the pruning procedure removes the learned information faster, requiring the
removal of fewer neurons to neutralize the attack. This behavior is more pronounced for
the largest models (5×5). We can only speculate about the reason for this behavior. For
example, the model learns smaller amounts of data at a faster rate, thereby reinforcing
the learned information through further training, which leads to this information to be
not as easily removed. Therefore, the information could be learned better also by neurons
responsible for learning the original data. Removing the neurons not responsible for
primarily learning the original data might enable the model to retain this information for
longer. Another possible explanation is that simply the pattern in the smallest generated
trigger set w.r.t. to the target variable is more similar to the original data (i.e. trigger
samples similar to those samples from the original data belonging to a positive class are
(coincidentally) labeled as a positive class more often), and therefore the responsibility of
learning both the trigger and the benign samples is spread more evenly throughout the
neurons in the network. With a larger trigger set this pattern might be broken. However,
this would require further investigation. It can be observed that some of the models
that learned the smallest amount of trigger samples, i.e. with 0.1 ratio to the training
set, retain a 70% similarity of the exfiltrated data even after 16% of neurons have been
pruned.

Previously (Section 6.3.1), it was observed that the mode of trigger generation leading
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Figure 6.20: Impact of targeted neuron pruning on the similarity of exfiltrated data given
the mode of trigger generation

to the best attack utility was the generation of uniformly distributed instances. In the
3×3 models that utilized the uniform generation, a sharp drop in attack utility can be
seen, showing the effectiveness of the defense. Although the in-distribution data was
not learned perfectly during the attack, the removal of this information is slightly slower
and thus more difficult than in the uniform distribution group, i.e. the decrease in
similarity was steeper for the models that learned uniformly distributed triggers. The
learned in-distribution triggers lead to a slightly more robust attack against this defense,
however, if pruning is continued, it eventually also leads to the removal of the learned
information. For the 5×5, the information learned about the uniformly distributed
and in-distribution triggers is being removed at a similar rate, although the starting
points differ. Out-of-distribution data was not learned well by any model, reaching
only low values of similarity, which does not constitute a successful attack. The applied
defense causes slight changes in resulting similarity for the larger models that utilized
this generation.

6.4.2 Model Utility

The impact of neuron pruning on the performance of the investigated models is explored
on the previously attacked, as well as benign models.

It can be observed that the base models retain effectiveness on the original task at a
level comparable to when no pruning is performed for a longer time than the attacked
models. This suggests the universality of the defense, allowing the defender to apply the
defense without losing too much performance. However, the performance of the attacked
models has already been affected by the attack. Generally, the larger the model, the
more pruning is needed to impact the performance of the model negatively, as the larger
models have a lot of spare capacity that is not or only marginally used to represent
the tasks. For the smallest investigated models, of size 1×1, the attacked models lose
their effectiveness on average after pruning more than 50% of neurons. The respective
base models lose the ability to differentiate between the positive and negative classes
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Figure 6.21: Impact of targeted neuron pruning on the performance (accuracy) of the
attacked and base models
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Figure 6.22: Impact of targeted neuron pruning on the performance (accuracy) given the
trigger generation mode of trigger samples at attack

completely after 54% of neurons are pruned from the network. Figure 6.21 depicts this
by including the zero-rule baseline.

Given the mode used for the generation of the trigger samples, an interesting behavior
can be observed. The pruning of the neurons of the 1×1 models which were trained
on the out-of-distribution trigger samples causes the accuracy to drop on average at a
faster rate, with the in-distribution trigger generation having the second largest impact
on model performance. The models trained using uniformly generated triggers lose
their performance on the original task at a slower rate. In the 5×5 models, however, the
performance of the models trained using the in-distribution samples is impacted the most
by the defense. The performance of the models of this size trained on out-of-distribution
samples even shows an improvement in performance on the underlying task, before
dropping below baseline. This behavior can be observed in Figure 6.22

The most important aspect to pay attention to is the trade-off between the model
performance and the similarity of exfiltrated data. Overall, the similarity of exfiltrated
data drops at a significantly faster rate than the model performance. Figure 6.23 shows the
change in the mean performance of the models which were most successful at exfiltration,
i.e. the models that achieved 100% similarity at attack. The performance of the attacked
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Figure 6.23: Impact of targeted neuron pruning on the performance (accuracy) of the
most successful attacked and respective base models. The plot shows mean values, with
the boundaries indicating the minimum and maximum values
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Figure 6.24: Impact of targeted neuron pruning on the performance (accuracy) of the
most successful attacked models (100% similarity at attack) of different sizes and the
respective base models

models starts to decrease faster than that of the base models. However, the exfiltration
functionality decreases at a faster rate, leading to a steep drop in the average similarity.
Even the models retaining the similarity for the longest (as indicated by the maximum
bounds) experience a major loss of the exfiltration functionality before the effectiveness
of the models on the original task is fully removed.

To evaluate how the model size contributes to the impact of the defense on the behavior
of the models which were successful at exfiltration, Figure 6.24 shows the change in model
accuracy at each pruning step. The pruning seems to affect the base model faster when
the model is larger, whereas the smaller base model allows for the removal of a larger
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Table 6.4: Change in model and attack utility of the models most successful at exfiltration
after application of defense

10% pruned neurons 20% pruned neurons
# hidden layers Layer Size Trig.ratio Trig.gen. ∆ B. Accuracy ∆ A. accuracy ∆ Similarity ∆ B.accuracy ∆ A. accuracy ∆ Similarity

3 3 0.10 uniform -0.01 -0.35 -91.48 -0.50 -2.06 -94.25
3 5 0.10 uniform 0.23 -0.01 -62.04 0.13 -2.28 -78.39
5 3 0.10 uniform -0.30 -1.05 -67.35 -0.81 -2.84 -95.13
5 5 0.10 uniform 0.08 0.38 -26.91 -0.05 0.20 -64.75

percentage of neurons before the model is rendered useless. When observing the behavior
of the attacked models, this trend is inverse: the larger model retains almost unchanged
accuracy even when over 20% neurons are pruned. The performance of the 3×3 starts to
degrade much sooner with the application of pruning. It could potentially be explained by
the smaller model having a lower learning capacity, therefore the neurons responsible for
learning the trigger samples are also responsible for learning the original task. Therefore,
removing neurons removes the classification accuracy on the primary task at a faster
rate, than in larger models. However, both models fully lose their predictive capabilities
at the same time (i.e. reaching the baseline).

Table 6.4 shows the respective values of the performance after 10% and 20% of neurons
are pruned. The models in this table correspond to the models represented in Table 6.3
after the attack was carried out. Figure 6.24a is represented by the first row. It shows
that the attacked model of this size loses the exfiltration capabilities already when 10% of
neurons are pruned, with the similarity decreasing by 91.48%. This comes at a trade-off
of 0.35% accuracy decrease on the original task. Figure 6.24b is represented by the last
row. Here we can observe a smaller loss of the exfiltration functionality, however, this
model’s performance improves slightly with pruning. The base model also improves
slightly with the pruning of 10% of neurons; after 20% are pruned, the base model loses
0.05% in accuracy. The second and third rows represent the behavior of the models
where the layer size is adjusted as well. The attacked model of this size experiences a
slight decrease in accuracy, but at 10% pruned neurons, a large portion of the exfiltration
capabilities is removed - 67.35% for the model of size 5×3, and 26.91% for the model of
size 5×5.

6.5 Attack settings and optimal defense strategies
This section provides a summary of the results in order to derive general recommendations
based on the presented experiments. It can be concluded that, in the white-box scenario, as
the LSB Encoding attack leads to 100% similarity, the adversary will focus on maximizing
the exfiltration capacity without compromising the model performance on the original
task. As shown above, replacing the significand (the 23 LSBs of a single-precision
floating-point value) fulfills these requirements. It allows the adversary to still safely
exfiltrate the training data with the largest possible capacity before the performance of
the model decreases notably. Table 6.5 shows the results of the experiments at ba = 23.
We can observe that the largest possible decrease in accuracy among configurations and
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Table 6.5: LSB Encoding attack: Change in model accuracy on the original task at
ba = bd = 23, with red color denoting the worst observed scenario

Transformation ∆ B vs. A Accuracy
Mean Min Max Std

One-hot -0.20 0.07 -0.53 0.20
Label -0.22 0.15 -0.99 0.26
Gzip -0.27 0.15 -1.14 0.27

Transformation ∆ B vs. D Accuracy
Mean Min Max Std

One-hot -0.43 -0.03 -1.70 0.55
Label -0.27 0.03 -1.70 0.36
Gzip -0.43 -0.03 -1.70 0.53

model sizes tested is 1.14% at this point, in some cases, the performance of the model
even increases, even by up to 0.15%.

Therefore, we recommend the defender apply a defense by LSB sanitization to remove the
exfiltration functionality from the model, thereby removing the hidden data. Although
modifying less than 23 bits leads to a large decrease in the data exfiltration functionality,
Table 6.5 shows, that removing the hidden information from the 23 LSBs decreases a
model’s accuracy at most by 1.7%.

Regarding the black-box setting, it can be reasonably assumed that the attacker will
aim to exfiltrate lower amounts of training data, as the explored models do not have the
learning capacity to learn higher amounts of trigger samples. The uniformly distributed
trigger samples led to the best results of the attack, with the in-distribution data providing
another, although less successful, possibility of training data exfiltration. We have shown
that targeted neuron pruning is a successful defense strategy against this type of attack.
It greatly decreases the similarity of exfiltrated data to the original training data, even
when small amounts of neurons are pruned while having minimal impact on the model
performance on the original task. Furthermore, it can be applied universally in the
explored settings, as it does not lead to major decrease of performance, even when applied
on a model that does not contain any hidden data. Therefore the presented pruning
method is recommended in order to mitigate the chance of data exfiltration.

6.6 Comparison to the State-of-the-Art
This section provides a comparison of the obtained results to the results of the foundational
paper on data exfiltration attacks [63]. In this paper, the authors have used image
and text data, namely the CIFAR, Labeled Faces in the Wild (LFW) and FaceScrub
datasets (consisting of images), and 20Newsgroups and IMDB datasets (text data). They
investigate the behavior of these attacks on convolutional neural networks for image data,
and Support Vector Machines along with Logistic Regression for classification of text
data. Although the results are not directly comparable, as we have explored further
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application scenarios of the attacks (on other types of neural networks and other data
type), we can look at the relative attack utility in terms of capacity and impact on the
model effectiveness on the original task. In the comparison, we focus on the results of
the experiments performed on neural networks employed for binary classification in the
underlying study (mainly CNN on LFW dataset).

6.6.1 Least Significant Bit Encoding Attack

In the LSB Encoding attack, the decoding is always perfect (unless encoding errors or
defenses are present), therefore the achieved similarity is 100%. Their results show that
the classification performance drops after using 18 LSBs of the parameters for data hiding
on multi-class classification tasks, while for binary tasks up to 22 LSBs can be used. At
this number of ba, the classification performance is not substantially impacted, and the
networks experience a loss of up to 0.14% in accuracy. This result is consistent with our
findings.

For the classification on the LFW dataset (training test consisting of 9,924 images,
each represented by ∼ 67, 536 bits), the authors used a convolutional neural network
consisting of 880,000 parameters. They, however, use gzip compression before hiding
the images in the model, and do not specify the number of images they can exfiltrate.
Using a label-transformation (representing each pixel value by 8 bits, as pixel values
consist of integers) they would be able to exfiltrate approximately 2.88% of the dataset,
i.e. 286 instances, without harming the accuracy on the primary task. This number is
likely higher for compressed data, though only marginally, as image data can not be
compressed much further. For comparison, in the smallest investigated model (1,764
parameters) and label transformation, we are able to exfiltrate 0.32% of the dataset (i.e.
105 instances out of 32,561). Gzip transformation increases this to 2.35% of the dataset
(i.e. 765 instances), without harming the models classification performance. Using an
MLP comprising 177,736 parameters, we are able to exfiltrate 32.69% of the dataset
(10,645 samples, using the label encoding) without compromising model’s classification
performance. In order to exfiltrate the full dataset (using the gzip transformation, with
ba = 23) we would require a model with ∼ 75, 032 parameters.

6.6.2 Black-Box Attack

For this type of attack, the authors investigated encoding three images (0.03% of the
training data) using 34,000 trigger samples, and five images (0.05% of the training data)
using 58,000 trigger samples (for the LFW dataset). The ratio of the trigger samples is
therefore 3.4 and 5.8 respectively. The size of the CNN is the same as for the LSB attack
(880,000 parameters). They used the Mean Absolute Pixel Error to measure the similarity
of the exfiltrated images to the original images. The reconstruction similarity resulted in
MAPE of 18.6 for three images, and 22.4 for five images. The observed impact on the
classification performance was positive (up to +0.34% in accuracy). In comparison, a
model comprising 35,794 parameters investigated within this thesis, enabled exfiltration
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of 0.02% of the training dataset (i.e. 8 instances) with perfect similarity. The observed
behavior of the neural networks seems to be similar in both studies, however, a precise,
direct comparison cannot be made due to the nature of the underlying data, and the
differences in model architectures necessary to learn the different classification tasks.
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CHAPTER 7
Conclusion

This thesis expands upon the topic of exploitation of the capacity of neural networks
and has shown the design of successful data exfiltration attacks and defenses in two
different scenarios utilizing neural networks. The networks have been trained on tabular
data. The training data has been exfiltrated by first hiding it in a model using a
steganography approach and subsequently retrieving it from a published model. The
attacks are classified by the mode of access the adversary assumes to have to the final,
trained model: white-box, or black-box access.

7.1 Summary & Contributions
This section describes the contributions of this thesis, as compared to the underlying study
[63]. The behavior of the Least Significant Bit Encoding attack in the white-box scenario,
and the behavior of the black-box scenario attack were investigated in models trained on
tabular data, in models of various sizes. For the LSB Encoding attack, three different
types of data transformation for encoding into the LSBs of a model were explored and
the behavior of the attack was compared. Furthermore, an active defense by sanitizing
the LSBs was implemented. Its utility, i.e. its effectiveness at removing the hidden
information, along with the impact on the utility of the model on the original task were
investigated. A similarity metric was defined in order to quantify the difference between
the original training data and the exfiltrated data. To increase the robustness of the
LSB Encoding attack, thereby making the hidden data more resistant to bit sanitization,
error correction codes were applied as an additional step of the data transformation
before encoding into LSBs. Their impact on the data similarity of exfiltrated data after
a defense has been applied was observed.

In the black-box scenario attack, three different modes of trigger set generation and their
impact on the similarity of exfiltrated data, as well as the model utility, were explored.
Additionally, the impact of the size of the trigger set, as well as simple oversampling
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(i.e. oversampling by repetition) have been explored in the same context. An active
defense against this type of exfiltration attack has been tested, by applying targeted,
local pruning to the trained model. Again, its effect on the similarity of exfiltrated data,
as well as the model effectiveness on the target task have been measured and analyzed in
all configurations listed above.

Our contributions are as follows:

• We have introduced a taxonomy of data exfiltration attacks.

• The threat resulting from third-party code employment has been demonstrated by
showing that ML models trained on tabular data can be successfully exploited for
data exfiltration.

• We have shown that the adversary requires minimal knowledge about the training
data properties in order to perform successful exfiltration in both scenarios.

• We have shown that models proportionate in size to the original task can be
exploited for data exfiltration.

Further, we present our contributions as a response to the research questions defined in
Section 1.3.

1. In what way can successful data exfiltration attacks using machine learning models
be designed?

• In order to measure the success of the attacks, we have defined a similarity
metric in order to compare the exfiltrated data to the original data.

• White-box scenario: We have presented a design of a data exfiltration attack
(based on [63]) abusing the representation capacity of the model parameters
by encoding training data into the least significant bits of the parameters of a
model trained on tabular data. Three different modes of data transformation
for encoding into the parameters have been investigated. This attack leads to
a 100% similarity of exfiltrated data to the original training data.

• Black-box scenario: In order to exfiltrate data in this scenario, a model is
trained on crafted trigger samples labeled with bits of training data. We have
adapted an attack abusing the learning capacity of the model, proposed by
[63], for use with tabular data. Additionally, we have investigated three ways
to craft the trigger set, establishing that uniformly distributed trigger samples
produce a successful attack leading to a similarity of 100%. Moreover, we have
presented a malicious training algorithm that forces a model to learn these
trigger samples.

2. To what extent are the attacks useful?
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a) To what extent can data be exfiltrated from trained machine learning models
by performing attacks utilizing data hiding techniques?

• White-box scenario: As mentioned above, this attack leads to a 100%
similarity of exfiltrated data to the original data. The amount of data
exfiltrated depends on the size of the model and the number of least
significant bits used for an attack. The introduced modes of data trans-
formation allow to reduce the number of bits needed to represent a data
sample, increasing the amount of data exfiltrated. In our experiments, we
have been able to exfiltrate between 2.35% of the training set (using the
smallest investigated model) up to 100%, i.e. the full training set utilizing
larger models, with a minimal impact on model performance.

• Black-box scenario: In the black-box scenario, we have been able to exfil-
trate 8 samples (0.02%) of the training set with a 100% similarity. Larger
amounts of training data can be exfiltrated, but with lower similarity.

b) To what extent does the model effectiveness change after incorporating data
exfiltration functionality?

• White-box scenario: Configurations of successful attacks that do not
impact the model performance on the original task have been determined.
Generally, we have found that even replacing the total significand of a
model parameter represented as a single-precision floating-point value
does not lead to a notable degradation of performance.

• Black-box scenario: We have found that modifying the training process to
incorporate the learning of trigger samples slightly decreases the accuracy
of the models compared to base models (trained with a benign algorithm).
We have also determined that the performance of the smaller models
is more negatively affected if the trigger samples generated follow the
distribution of the original training data. This impact is less pronounced
when training larger models. Uniformly distributed trigger samples, which
also lead to the highest similarity score, have a smaller impact on the
model performance. The degradation of the model performance is however
largely attributed to the overtraining needed in order for the underlying
model to learn the trigger samples.

3. In what way can models used for information hiding be successfully defended from
data exfiltration attacks?

• White-box scenario: The information hidden by the attacks into the model
parameters has been removed by sanitizing the LSBs of parameters.

• Black-box scenario: The design of the defense against the black-box attack
was inspired by the design of attacks that aim to remove a watermark from a
model. It targets the part of the neural network responsible for learning the
trigger samples and removes them. It is performed by observing the network’s
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behavior on benign data and removing the neurons that do not get activated
at a pass of this original data.

4. To what extent are the defense strategies useful?

a) To what extent do the chosen defenses decrease the success of the data
exfiltration attacks?

• White-box scenario: The interplay between the number of bits used for
attack, and the number of bits used for defense has been investigated and
the similarity remaining after a defense has been observed. The nature
of data transformation determines the rate of the deterioration of the
similarity of exfiltrated data with the increasing amount of sanitized LSBs,
i.e. the similarity of hidden data utilizing label encoding transformation
decreases slower than that of gzipped data. Similarly, as in the attack
setting, most of the bits of each parameter (the significand) can be
modified without causing a notable decrease in model performance. In
the likely attack scenarios, we are therefore able to remove all of the
hidden information, thus preventing exfiltration. We have also shown that
in some cases, the number of defense bits does not need to exceed the
number of attack bits (although this information is not available to either
party) for the defense to be successful.

• Black-box scenario: By applying targeted, local neuron pruning, we are
able to target for removal of the neurons that are responsible for the
learned representation of the trigger samples. We have found that this
defense removes the learned trigger samples from the smaller models at a
faster rate, and causes a sharp drop in the similarity of exfiltrated data
already after removing 10% of the neurons. For the larger models, the
drop in similarity is also significant, and removes a large amount of learned
information, however, at a slightly slower rate. In these models, we are
however able to prune more neurons without compromising the model’s
performance on the original task.

b) To what extent does the model utility change after the application of defense
strategies against data exfiltration attacks?

• White-Box scenario: As already partially answered above, the application
of this defense, depending on the number of bits used for the attack and
for the defense, does not affect the performance of the model, or impacts
it minimally. We reasonably assume the adversary’s motivation to not
compromise the model’s performance on the original task. Therefore,
we focus our result analysis mainly on the scenarios where the attacker
does not utilize the full capacity of each individual model parameter. In
this case, we are able to remove the exfiltration functionality, while not
harming the model’s performance too much. We have found that this
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defense can also be applied to benign models without (notably) impacting
their performance.

• Black-box scenario: We have found that the similarity of exfiltrated data
to the original data decreases at a much faster rate with activation-based
neuron pruning than the performance of the models decreases on the
original task. Therefore, the amount of pruning required to remove the
learned representation of the trigger samples from a trained model does
not cause a notable decrease in model performance. In the models most
successful at exfiltration, when pruning only 10% of the neurons, we have
found that the accuracy decreases at most by 0.35% in comparison to a
base model, and in some cases, even increases. A possible explanation
for this increase is that the neurons responsible mainly for learning the
trigger samples, contribute negatively to the predictions on the original
data, thus when removed, the performance on the original data improves.
When pruning a larger number of neurons, the trade-off between similarity
and model utility is more considerable, however, the worst noted accuracy
loss in the successful models was 2.84%. We have found that applying
the defense to corresponding base models decreases their performance on
the original task at a slower rate, which points to the low cost of defense
deployment on the defender’s side.

Additionally, we present our further contributions:

• We have added an adaptation to increase the robustness of the LSB Encoding
attack by incorporating error correction codes. We showed the settings where this
adaptation improves the success of an attack leading to exfiltration with 100%
similarity.

• We found defense settings that handle this adaptation by the attacker and safeguard
the data from exfiltration.

7.2 Future Work
The future work in this field lies in exploring further attack settings and scenarios. The
influence of the model hyperparameters on the attacks and defenses was out of the
scope of this work. However, especially for the attack in the black-box scenario, the
model hyperparameters, such as learning rate, dropout, or possibly other activation
functions could potentially impact how quickly and up to what value of similarity the
trigger set is learned. The behavior of the white-box attacks introduced in Chapter 3,
namely Correlated Value Encoding Attack and Sign Encoding Attack, has not yet been
explored in models built on tabular data. For the LSB Encoding attack, we have found
that the significand of the bit representation of model parameters of a single-precision
floating-point value can be replaced causing minimal impacts on the effectiveness of
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the model. Therefore, in order to increase the capacity of the model for the attacks,
parameters of double-precision floating-point values can be utilized to potentially hide
more data.

To our best knowledge, defenses have not yet been developed for the Correlated Value
Encoding Attack and Sign Encoding Attack, and could therefore constitute a further
research direction. Applying the developed defenses on models built on other data types,
such as images or text, was not explored within this work. We believe that these defenses
could potentially be successful on other types of neural networks (e.g. convolutional
neural networks).

Exploration of further modifications of defense strategies could lead to improvements of
defense utility.

Since the significand of each parameter value does not contribute largely to making
correct predictions, representing the parameters by fewer bits, or possibly binarizing the
weights can be explored in this scenario. This way, the capacity to hide data would be
expected to be largely eliminated, and any data-hiding attempts would potentially result
in greater performance losses on the original task.

In order to increase the robustness of the attack in the black-box scenario, pre-pruning of
the model by the adversary could be implemented, as an adaptation of the pruning-aware
attack for backdoors [44]. This would consist of the adversary pruning the neurons least
active upon the pass of the training data, and then training the pruned network with
both training and trigger data. This results in the trigger samples activating the same
neurons. The attacker can therefore prune until a certain loss in model effectiveness on
the original task is reached, while still preserving effectiveness on the trigger samples.
Upon applying a defense, this could potentially lead to a sharper and faster decrease in
the performance of the model on the original task, possibly causing the defender to not
be able to apply a defense without compromising the model’s performance. However, in
that case, the risk for the attacker is that the final model will not be deployed (i.e. the
attacker will not gain access to the prediction API needed to exfiltrate the data).

Furthermore, other defense methods such as fine-tuning or fine pruning can be applied.
Weight pruning (i.e. setting selected values of the model parameters values to 0) is another
possible approach, which could potentially defend against attacks in both scenarios. As
this approach does not involve the computation of neuron activations, and it is thus likely
a simpler approach for the defender to apply, requiring less knowledge. However, it might
produce a less effective defense. Another possible defense is knowledge distillation, i.e.
transferring of the learned knowledge from a complex model to a simpler model could
potentially remove the hidden information, while preserving the prediction behavior on
the original task. The discussed defense strategies, namely pruning, quantization and
distillation could potentially improve model efficiency w.r.t. prediction time.

Moreover, other similarity metrics for measuring the similarity of two samples of tabular
data could be utilized in order to measure the similarity of the exfiltrated data to the
original data. For example, taking into account the ranges of values and imposing a
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larger penalty on values outside of a defined range could be implemented, although such
calculation of similarity would be dataset and use-case specific.

The behavior of data exfiltration attacks and the corresponding defenses within this
thesis need to be explored on a wider range of datasets, various tasks such as multi-class
or multi-label classification, or regression problems. Furthermore, their behavior can be
observed on various additional data types (e.g. audio, time-series), as, so far, they have
been explored only on image, text, and tabular data.

The behavior and capacity of further network types should be investigated (e.g. graph
neural networks, recurrent neural networks, ...).

Intentional memorization offers another way to force a model to ’remember’ certain
instances. Usually utilizing models’ ability to overfit, this adversarial technique is closely
related to the learning of the trigger samples in the black-box scenario, however, utilizing
different techniques to extract the wanted sample. The relation of this technique to the
steganography-based approaches in this thesis should be further explored.

Additionally, as the influence of an adversary on the training process is not always
presumed, more work in the field of exfiltration regarding unintentional memorization
occurring in neural networks and subsequent data exfiltration should be explored.
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