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Abstract

Stochastic Gradient Descent (SGD) is the workhorse for training large-scale machine
learning applications. Although the convergence rate of its deterministic counterpart,
Gradient Descent (GD), can be shown to be accelerated by adaptations that use the
notion of momentum, e.g., Heavy Ball (HB) or Nesterov Accelerated Gradient (NAG), the
theory could not prove, by means of local convergence analysis, that such modifications
provide faster convergence rates in the stochastic setting. This work empirically establishes
that a positive momentum coefficient in SGD has the effect of enlarging the algorithm’s
learning rate, not contributing to a boost in performance per se. For the deep learning
setting, however, this enlargement tends to be conducted in a way robust to unfavorable
initialization points. Given these findings, this work derives a heuristic, the Momentum
Linear Scaling Rule (MLSR), to transfer from a small-batch setting to a large-batch setting
in deep learning while approximately maintaining the same generalization performance.
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Introduction

We are in an exciting area of machine learning research in which the increasing data
and model scale is swiftly improving accuracy in computer vision [42], natural language
processing [2] and speech recognition [54]. The workhorse for training these large-scale
machine learning applications is Stochastic Gradient Descent (SGD) [44]. For its non-
stochastic counterpart, Gradient Descent (GD) [3], there exist adaptations, e.g., Heavy
Ball (HB) [41] or Nesterov Accelerated Gradient (NAG) [36], which use the notion of
momentum, capable to provably accelerate convergence. In the stochastic setting, however,
the theory could not identify [62, 30, 47, 26, 61], with the tools of local convergence
analysis, an increase in training speed when employing SGD with momentum (SGDM).
In spite of the absence of such theoretical guarantees, SGDM is a popular [22, 39, 33,
26] optimizer in machine learning and said to empirically [51, 26] boost the training
performance. In this work, we will empirically establish that a momentum coefficient in
the stochastic setting generally has the effect of merely enlarging the learning rate of
SGD, not contributing to faster training per se. For deep learning applications, however,
this enlargement is conducted in a fashion robust to unfavorable initialization points.
Given our findings, we will derive a promising heuristic, the Momentum Linear Scaling
Rule (MLSR), to transfer from a small-batch setting to a large-batch setting in deep
learning while approximately maintaining the same generalization performance. Chapter
1 introduces important concepts of mathematical optimization used in machine learning
as well as their relation to generalization efficiency. Chapter 2 discusses the usage of
momentum in SGD on the basis of Stochastic Heavy Ball (SHB) [41] and Stochastic
Nesterov Accelerated Gradient (SNAG) [36]. Chapter 3 presents the contributions of this
work with chapter 4 summarizing our conclusions.
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Chapter 1

Optimization and machine learning

Many real-world problems can be viewed as optimization problems that aim to minimize a
loss function or maximize a reward function1. In that regard, machine learning techniques
rely heavily on the field of mathematical optimization and the efficiency of respective
numerical methods. In this chapter, we give a brief introduction to optimization, its use
in machine learning and its relation to generalization.

1.1 Notation, definitions and assumptions

In this section we introduce some general notations, definitions and assumptions which
are standard in the context of optimization.

1.1.1 Notation

We denote vectors by lowercase letters in bold face, matrices by uppercase letters in bold
face and scalars by lowercase letters, e.g. xi is a scalar representing the ith coordinate of
the vector x and A is a matrix. We consider twice-differentiable functions f : Rp → R,
for which we denote by x⋆ a minimizer of f , i.e., x⋆ ∈ argminx f(x) and by ∇f(x) :=

∇xf(x) the gradient of f at x ∈ Rp. The Hessian of f at a point x ∈ Rp is denoted by
∇2f(x) := ∇2

xf(x). Furthermore, we use the convention that O(·) hides constants.

1Note that, given a function f(x), it always holds that maxx f(x) = −(minx −f(x)). W.l.o.g., one can
hence restrict their attention to minimization problems.
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1.1.2 Definitions

A reoccurring theme in optimization is the notion of convexity which gives us a guarantee
that every local minimum is a global one.

Definition 1 (convexity [37]). A differentiable function f : Rp → R is convex if and
only if

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩ ∀x,y ∈ Rp. (1.1)

An even stronger version of convexity is the notion of strong convexity which gives us
the additional guarantee that our objective function is lower-bounded by a quadratic
function.

Definition 2 (µ-strong convexity [37]). A differentiable function f : Rp → R is µ-
strongly convex with µ > 0 if

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
∥y − x∥2 ∀x,y ∈ Rp. (1.2)

A convenient property of an objective function is that its gradients do not change arbitrarily
fast within a neighborhood which can be formalized with the notion of smoothness.

Definition 3 (L-smoothness [37]). A differentiable function f : Rp → R is L-smooth if
its gradient is L-Lipschitz with L > 0, i.e.,

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥ ∀x,y ∈ Rp. (1.3)
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Figure 1.1: An illustration [40] of definitions 1-3.

1.1.3 Assumptions

To theoretically analyze the local convergence behavior of stochastic first-order methods
such as SGD, it is convenient to do this under assumptions. We list the three most
prominent assumptions used in state-of-the-art [30, 62, 26, 1] convergence analysis in the
following.

Assumption 1 (Unbiased gradient oracles). Almost surely, we have

E[g(xt)|ξt] = ∇f(xt), (1.4)

for each iteration t = 1, ..., T with ξt a realization of a random seed.

Assumption 2 (Independent realizations). The realizations {ξt}Tt=1, with T the number
of iterations, are independent.

Assumption 3 (Bounded variance). There exists σ > 0 such that

E[∥g(xt)−∇f(xt)∥2] ≤ σ2 (1.5)

for each iteration t = 1, ..., T .
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1.2 Optimization in machine learning

Our objective [1] in supervised learning2 is to determine a prediction function h : A → B
such that, given a ∈ A , the value h(a) offers an accurate prediction about the true output
b ∈ B. We assume that the prediction function h has a fixed form and is parameterized
by a vector x ∈ Rp over which the optimization is to be performed. That is, for some
h(·; ·) : A× Rp → B, we consider the family of prediction functions

H = {h(·;x) : x ∈ Rp}.

We aim to find the prediction function h ∈ H that minimizes the loss incurred from
inaccurate predictions. That is, we assume a given loss function ℓ : B × B → R which,
given an input-output pair (a, b), yields the loss ℓ(h(a;x), b) where h(a;x) and b are the
predicted and true outputs, respectively. Having access to a set of realizations {ξi}ni=1 of a
random seed ξ corresponding to n ∈ N drawn i.i.d. input-output samples {(ai, bi)}ni=1 ⊆
A× B , one seeks to minimize the empirical risk function f : Rp → R, given as

f(x) =
1

n

n

i=1

ℓ(h(ai;x), bi) =
1

n

n

i=1

f(x; ξi) =
1

n

n

i=1

fi(x), (1.6)

where f denotes the composition of the loss function ℓ and the prediction function h.
Below we briefly discuss two prominent examples of how f can be formulated.

Logistic regression

Logistic regression [16] is a classic approach to binary classification where we model the
conditional probability of observing a class label bi ∈ {−1, 1} given a set of features
ai ∈ Rp. The prediction function h is given by

h(ai;x) := s(aT
i x) (1.7)

with s(u) = 1
1+exp(−u) the standard logistic function. Following the principle of maximum

likelihood estimation, ℓ corresponds to the binary cross-entropy loss and minimizing (1.6)
accordingly yields a convex3 problem with x⋆ being a linear classifier.

2Narrowing down the discussion to supervised learning is reasonable as many unsupervised and other
learning techniques reduce to optimization problems of comparable form. [53]

3Note that employing L2-regularization with regularization parameter µ yields a µ-strongly convex
problem.

10



Figure 1.2: An illustration [43] of linearly separable (left) and non-linearly separable
(right) data.

Deep neural networks

Modern machine learning applications often require learning algorithms to handle non-
linearly separable data in very high-dimensional spaces. Thus, a theoretically [13] as well
as practically [29] promising alternative to linear classifiers such as logistic regression are
Deep Neural Networks (DNN). DNNs [1] describe the prediction function h by applying
successive transformations, made in M layers, to a given input vector ai ∈ Rd1 , where
dm is the output dimension of the mth transformation. A canonical fully connected layer
performs the computation

a
(m)
i = s(X(m)a

(m−1)
i + µ(m)) ∈ Rdm , (1.8)

where a
(1)
i = ai, the matrix X(m) ∈ Rdm×dm−1 and vector µ(m) ∈ Rm contain the

parameters of the mth layer, and s(·) is a component-wise non-linear activation function.
As such, we have h(ai;x) := a

(M)
i , where the parameter vector x collects the parameters

{(X(m), µ(m))}Mm=1 of the successive layers. Independent of the loss function ℓ, minimizing
(1.6) accordingly generally leads to a highly non-linear and non-convex optimization
problem, making it intractable [15] to solve to global optimality.
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1.3 Convex and non-convex optimization

The examples in section 1.2 illustrate the variety [1] of optimization problems that arise in
machine learning: one comprises convex optimization problems which are derived from the
usage of logistic regression while the other one involves highly non-linear and non-convex
problems which are derived from the usage of deep neural networks. This section gives a
brief overview of convex and non-convex optimization. As in (1.6), we consider the finite
sum minimization problem where, given n functions fi : Rp → R for i = 1, ..., n, we want
to find x⋆ that minimizes the average function value. That is, formally, we seek to find
x⋆ such that

x⋆ ∈ argmin
x

f(x), f(x) =
1

n

n

i=1

fi(x). (1.9)

1.3.1 Convex optimization

In the convex setting, if the derivative of the function f(x) is defined everywhere on its
domain Rp and can be inverted, a minimizer x⋆ is obtained by the first-order constraint
∇f(x) = 0. However, if there exists no such closed form solution for x⋆, as is the case
with many machine learning applications such as logistic regression, we need to revert to
numerical algorithms to search for a minimizer.

Gradient Descent (GD)

A natural choice for the search direction is the negative gradient, i.e., −∇f(x), and the
respective method is fittingly dubbed Gradient Descent (GD) [3]. GD is an iterative
method which, in each iteration t = 1, ..., T , takes a step with learning rate α ∈ R++ learning

rate αtowards the opposite direction of the gradient computed at the current point xt. Note
that the gradient is only a local indication of the direction with the steepest slope and
hence the learning rate α should be carefully chosen in order to ensure convergence to a
neighborhood of x⋆.

Stochastic Gradient Descent (SGD)

Computing the average gradient over n functions fi can be expensive if n is large. This is
particularly true for large-scale machine learning applications [1] where n represents the
number of data points in a dataset with typically n > 106. Instead, we can fall back to
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Stochastic Gradient Descent (SGD) [44], where in each iteration t = 1, ..., T , we sample
uniformly at random B distinct indices {it1, it2, ..., itB} = Bt from [n], where Bt denotes
the batch [10] at iteration t and B = |Bt| denotes the batch size. We then apply a step batch size

Bwith learning rate α in the opposite direction of g(xt) :=
1
B i∈Bt

∇fi(xt), where g(xt)

denotes the stochastic gradient at xt. In fact, g(xt) is an unbiased4 estimator of the true
gradient, i.e., E[g(xt)] = ∇f(xt), and one iteration of SGD is n/B times cheaper than
one iteration of GD.

Algorithm 1 Stochastic Gradient Descent
Require: initial x1 ∈ Rp, iterations T , learning rate α ∈ R++

1: for t = 1, ..., T do
2: xt+1 ← xt − αg(xt) ▷ SGD step
3: end for
4: return xT ▷ return last iterate

Figure 1.3: We can describe both GD and SGD within the framework of SGD where the
special case of g(xt) = ∇f(xt) for all t = 1, ..., T or B = n corresponds to GD.

1.3.2 Non-convex optimization

The global optimization of non-convex objectives such as deep neural networks is an NP-
hard problem in general. Hence, rather than trying to find x⋆ in (1.9), one usually contents
[15] oneself with a local minimum x̄. For a twice-differentiable function f : Rp → R, we local

minimumcall a point x̄ ∈ Rp a local minimum if ∇f(x̄) = 0 and all eigenvalues in ∇2f(x̄) are
positive. In the case of deep learning, we usually [15] search for local minima using SGD.

Figure 1.4: An illustration [9] of a non-convex landscape.

4This implies that assumption 1 is satisfied.

13



1.3.3 Local convergence analysis

To theoretically analyze the "speed" at which SGD reaches a specific region of the
objective function, e.g., a neighborhood of a local minimum x̄, one can make use of local
convergence analysis. For instance, if we fix a constant learning rate α in SGD for the
iterations t = 1, ...T , we are confronted [1] under assumptions 1-3 for a smooth non-convex
objective f with a local convergence rate of

E
1

T

T

t=1

∥∇f(xt)∥2

current distance

≤ O f(x1)− f(x̄)

αT

optimization term

+ ασ2

noise term

≤ ε,
(1.10)

where x1 is the initialization point of SGD, x̄ denotes a local minimum and ε is a tolerance
level. Without going into specifics, we see in (1.10) the general [1] framework with respect
to the local convergence rate of SGD for a variety 5 of objectives. That is, one usually
describes an upper-bound on the current distance to the desired region by an optimization
term, comprising the initial distance from x1 to said region, as well as a noise term which
quantifies the stochasticity in the gradients. Indeed, we need α and T to be large in order
to reduce the optimization term while we need α to be small in order to decrease the
noise term. As a compromise, one usually [9, 1] decays α over the course of the iterations.
Note that the noise term becomes a more dominant part of the convergence rate as one
increases the variance upper bound, σ2 → ∞, or decreases the tolerance level, ε → 0.

5In particular, this framework captures [1] the local convergence behavior of SGD for the objective
functions we will consider in chapter 3, i.e., smooth (strongly) convex and smooth non-convex problems.
Note that for strongly convex objectives, the optimization term is even reduced linearly with T → ∞.
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1.4 Generalization

The process of optimizing the empirical risk function (1.6) in the context of machine
learning is also referred to as training a predictor. In fact, the practical goal of this
training process is to have the predictor perform well on unseen data, that is, to obtain a
predictor which generalizes well. We simulate this unseen data by holding out a portion
of the dataset which is referred to as the test set. However, minimizing the empirical
risk can lead to overfitting, i.e., the model fits closely to the training set but does not
generalize well to unseen data. In the convex setting, we are able to counteract overfitting
through regularization. Regularization is an approach to compromise between an accurate
solution to the empirical risk minimization problem and the solution’s complexity by
introducing a penalty term. For instance, we can regularize a logistic regression problem
with the L2-norm which renders the final training objective strongly convex.[5]

However, to mitigate overfitting in deep learning problems, we are required not
only to find a local minimum within the non-convex landscape but to avoid sharp local
minima during our search. For a twice-differentiable function f , a local minimum x̄ sharp local

minimumis characterized as sharp [17, 35] if there exist numerous large positive eigenvalues in
∇2f(x̄). These sharp minima tend to generalize [17] less well than flat minima at which
the Hessian exhibits several small positive eigenvalues.

Figure 1.5: An illustration [17] of a flat and sharp local minimum in the context of
generalization for deep learning.

SGD is the main optimizer for the training of deep neural networks [15, 9] and, from a
theoretical point of view [57], this algorithm exponentially depends on stochastic gradient
noise (SGN) — which is considered [32] to be proportional to α

B — to escape sharp SGN α
B

minima.
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1.4.1 Large-batch training and the Linear Scaling Rule (LSR)

Large-batch training, i.e., B → n, is able to efficiently utilize [10] parallel computation to
accelerate the training process of large-scale machine learning applications. However, to
achieve good generalization in deep learning, we are required [32, 57] to have α

B sufficiently
large in order to escape sharp minima when training with SGD. Hence, when transferring
from a small-batch setting with batch size B to a large-batch setting with batch size
cB, where we scale the original batch size B by c > 1, a natural heuristic to maintain a
sufficient level of SGN is to scale the learning rate α of SGD by the same factor c. This
heuristic [10] is called the Linear Scaling Rule (LSR). However, the literature [10, 34, 57,
27] suggests that an increase of the learning rate α only works in a narrow range since
too large initial learning rates may lead to optimization divergence or bad convergence.
To mitigate optimization challenges in the early stages of convergence when applying
the LSR, the literature [10] has proposed various warmup strategies with respect to the
learning rate α.

16



Chapter 2

Momentum in SGD

It has been found that the convergence rate of GD, i.e., the special case of SGD employing
deterministic gradients, can be provably [8] accelerated through adaptations of the
algorithm’s update step. The most prominent extensions of GD that achieve such
acceleration are Polyak’s Heavy Ball (HB) method [41] and Nesterov’s Accelerated
Gradient (NAG) method [36] and we refer the interested reader to Ghadimi et al. [8] for
an in-depth discussion of the convergence rates of these methods in the deterministic
setting.

As outlined in sections 1.3 and 1.4, SGD has practical advantages over GD with
regard to computing efficiency and, in the case of deep learning, generalization efficiency.
However, convergence analysis [62, 30, 47, 26, 61, 9] suggests that the Stochastic HB
(SHB) method and the Stochastic NAG (SNAG) method have no theoretical advantage
over SGD. In spite of that, both methods are still popular [22, 51] extensions to SGD in
practice. This chapter briefly introduces SHB and SNAG and identifies an open question
with regard to the benefit of these methods for stochastic gradients.
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2.1 Stochastic Heavy Ball (SHB)

SHB [41] is the method to which the literature generally [9, 61, 60, 62] refers as SGD
with momentum (SGDM). There are a number of formulations1 of SHB discussed and
analyzed in the literature and we introduce the most popular2 one in Algorithm 2.

Algorithm 2 Stochastic Heavy Ball (SHB)

Require: initial x1 ∈ Rp, iterations T , learning rate α ∈ R++, momentum β ∈ [0, 1)
1: m0 ← 0 ▷ set initial momentum term to 0
2: for t = 1, ..., T do
3: mt ← βmt−1 + g(xt) ▷ compute momentum term
4: xt+1 ← xt − αmt ▷ update step
5: end for
6: return xT ▷ return last iterate

Let us first compare the SHB algorithm with SGD. We observe that we introduce an
auxiliary sequence mt, the momentum term, which accumulates past stochastic gradients
g(xi), i = 1, ..., t. We then update our current iterate xt in the negative direction of mt

with a learning rate α. In fact, one can rewrite the momentum term as

mt =

t

i=1

βt−ig(xi), (2.1)

where β ∈ [0, 1) denotes the momentum coefficient. Indeed, it is easy to see that when we momentum
βset β = 0, we recover SGD.

2.1.1 On an effective learning rate

By observing Equation (2.1), we notice that mt is the largest when successive stochastic
gradients point in exactly the same direction. In fact, if SGDM always observes a stochastic
gradient g, the momentum term mt corresponds to 1

(1−β)g in the long-time limit. Therefore, effective
learning
rate
α̃ = α

1−β

it is convenient [9, 59, 27] to think of SHB as SGD with an effective learning rate of

α̃ =
α

1− β
. (2.2)

1Please refer to Appendix .1 for a discussion of several formulations of SHB and SNAG introduced in
the literature.

2Note that the SGD optimizer in both PyTorch [39] and TensorFlow [33] corresponds to Algorithm 2
with β = 0 as the default parameter setting.
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Note that α̃ constitutes an approximation but acknowledges the literature’s claim that
SHB with β > 0 changes [59] or, more precisely, enlarges [49] the learning rate α of SGD.

2.2 Stochastic Nesterov Accelerated Gradient (SNAG)

SNAG [36], in its original version, is not a momentum method, however, Sutskever et al.
[51] derived a relation to SHB which is also dubbed Nesterov momentum [9] and given in
Algorithm 3.

Algorithm 3 Stochastic Nesterov Accelerated Gradient (SNAG)

Require: initial x1 ∈ Rp, iterations T , learning rate α ∈ R++, momentum β ∈ [0, 1)
1: m0 ← 0 ▷ set initial momentum to 0
2: for t = 1, ..., T do
3: mt ← βmt−1 − αg(xt + βmt−1) ▷ compute Nesterov momentum
4: xt+1 ← xt +mt ▷ update step
5: end for
6: return xT ▷ return last iterate
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2.3 What is the benefit of momentum in SGD?

In spite of the provable [8] acceleration capacity in the deterministic setting, the literature
[62, 30, 47, 26, 61, 9] could not identify — with the tools of local convergence analysis —
any theoretical advantage of SHB and SNAG over plain SGD in the stochastic setting.
Indeed, theoretical analyses in the 1990s [38, 55] predicted that any advantages in terms
of asymptotic local rate of convergence will be lost in the stochastic setting with authors
eventually discouraging the use of momentum [23] for stochastic gradients. In 2013,
however, Sutskever et al. [51] again sparked interest in the use of momentum in the noisy
setting as they argued that, while β > 0 does not help in the fine local convergence
regime, it accelerates the initial phase of convergence. We have seen on the example of
the effective learning rate in section 2.1.1 an instance where the literature has established
the existence of an interdependence between the learning rate α and the momentum
coefficient β. In fact, Sutskever et al. [51] implicitly acknowledge such an interdependence
as their experiments employ tuned settings of (α, β). Given the literature’s observation
[20, 58, 9] that a sensible choice of the learning rate α is essential for SGD to achieve
reasonable training and test performance, a natural research objective is to understand
the empirical effect of a positive momentum coefficient β > 0 on the learning rate α in
SGD.
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Chapter 3

Contribution

As discussed in chapter 1, we make use of mathematical optimization to train machine
learning models with the goal of obtaining predictors which generalize well. Our contri-
butions can be categorized as an empirical investigation of the interdependence of the
learning rate α and the momentum coefficient β in SHB and SNAG along the dimensions
of optimization and generalization, concluding with a promising heuristic for large-batch
training in deep learning, the Momentum Linear Scaling Rule (MLSR). As both SHB and
SNAG exhibit comparable results, we choose to focus our discussion in this chapter on the
significantly more popular [9] SHB method to which we will refer as SGDM, i.e., "SGD
with momentum", in the remainder of this work. An extension of our analysis to SNAG
along with a detailed elaboration on the experimental setup can be found in Appendix .2.
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The main contributions of this thesis are as follows.

• Optimization: Through experiments, we establish in section 3.1 that a momentum
coefficient β ∈ (0, 1) enlarges the learning rate of SGD.

– For the convex setting, we conjecture in section 3.1.1 that SGD with momentum
empirically has no advantage over plain SGD, thereby supporting results from
convergence analysis [47, 26] in that regard.

– For the non-convex deep learning setting, we conjecture in section 3.1.2 that,
rather than being able to boost the training performance [51] per se, SGD
with momentum is able to enlarge the learning rate of SGD in a way robust to
unfavorable initialization points.

• Generalization: Through experiments, we establish in section 3.2 that a momentum
coefficient β ∈ (0, 1) enlarges the learning rate of SGD and thus increases the
efficiency of SGD to escape from sharp local minima in the non-convex deep learning
setting.

• Momentum Linear Scaling Rule (MLSR): Based on our findings in section 3.1.2 and
section 3.2, we derive the MLSR heuristic in section 3.3 to robustly move from a
small-batch setting to a large-batch setting in deep learning. Employing the MLSR
for such transitions has the benefit of maintaining a sensible level of stochastic
gradient noise — which is essential for good generalization — without the need for
warmup strategies with respect to the learning rate.
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3.1 Optimization

In the stochastic setting, the literature [62, 30, 47, 26, 61] could not identify — by means
of local convergence analysis — any theoretical advantages of SGDM over plain SGD.
In that regard, the usage of a positive momentum coefficient β > 0 in SGD has been
in fact declared [38, 55, 23] redundant 30 years ago. In 2013, however, Sutskever et al.
[51] claimed that SGDM’s benefit lies in accelerating the initial phase of convergence,
maintaining the same performance in the fine local convergence regime as SGD. They
supported their argument with experiments, using tuned settings of (α, β). Following
up on this, the literature [49, 59] has argued that the effect of β > 0 is rather a change
in the effective learning rate of SGD which can be modelled [9, 59, 27] by α̃ = α

1−β as
introduced in section 2.1.1, reflecting the idea that β > 0 enlarges [49] the learning rate
α. Given that a sensible choice of the learning rate α is essential [20, 58, 9] for SGD to
achieve reasonable training performance, we would like to examine the effect of β > 0 on
a learning rate α with respect to SGDM’s efficiency to minimize an objective.

Thus, this section empirically investigates the interdependence between the learning rate
α and the momentum coefficient β in SGDM with regard to the algorithm’s optimization
performance. In that regard, section 3.1.1 examines the convex case and section 3.1.2
explores the non-convex deep learning setting.
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3.1.1 Convex problems

In terms of convergence analysis, the literature could merely identify that SGDM [47]
converges as fast as SGD under strong convexity and convexity for specific iteration-
dependent schedules of (α, β). Moreover, for any constant β ∈ (0, 1) — a setting which is
said to empirically accelerate the training performance [9, 51] with the best practice of a
fixed β = 0.9 [45, 59] — it has been recently proven [26] that there exists a Lipschitz and
convex function for which the last iterate of SGDM suffers from a suboptimal convergence
rate. That is, from the point of view of convergence analysis [47, 26, 61], the usage of
β > 0 for (strongly) convex objectives, such as (L2-regularized) logistic regression, does
not provide any advantages over plain SGD in terms of boosting the training performance.
Addressing this argument, Sutskever et al. [51] claimed in 2013 that, even though β > 0 has
no benefit within the fine local convergence regime, SGDM is however able to accelerate
the initial phase of convergence. As their claims are based on tuned settings of (α, β)
with the literature suggesting that β > 0 merely enlarges [49, 59] the learning rate, we
aim to empirically investigate the interdependence between the learning rate α and the
momentum coefficient β in SGDM for the case of convex problems. We do so in this
section by means of grid experiments of which the setup is explained below

Grid experiment: We fix a level of stochasticity in the gradients σ2 (for example via
the batch size B ∝ 1/σ2), a maximum number of iterations Tmax and a decreasing
sequence of tolerance levels E = εmax, ..., εmin. We then consider two sets Gα and
Gβ which respectively include values for the learning rate α and the momentum
coefficient β, where we ensure 0 ∈ Gβ to account for the case of SGD. We then
run SGDM with all (α, β) ∈ Gα ×Gβ on an objective function and measure the
number of iterations T for the algorithm to converge to every ε ∈ E for each setting
(α, β). Note that we can also describe the iteration budget through the number of
epochs E, where it takes ⌈n/B⌉ iterations to perform one epoch.
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Experiment 1: A strongly convex objective

We would like to empirically investigate the interdependence between the learning rate α

and the momentum coefficient β of SGDM with respect to the algorithm’s optimization
performance on a strongly convex objective by means of a grid experiment. To be able
to control the level of stochasticity in the gradients directly through a parameter σ2, we
consider, the µ-strongly convex quadratic function [50] f : Rp → R,

f(x) :=
1

2
⟨Ax,x⟩+ µ

2
∥x∥2,

for p = 20, µ = 0.2. A ∈ Rp×p is a band-diagonal matrix with [−1p−1, 21p,−1p−1] on the
diagonals. We define stochastic gradients with η ∼ N (0, σ2 · Ip) as

g(x) := ∇f(x) + η

which implies that E[∥g(x)−∇f(x)∥2] ≤ σ2 for all x ∈ Rp. Thus, we are able to adapt
the parameter σ2 of assumption 3 directly.
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Figure 3.1: Experiment 1 [grid experiment, str. convex quadratic, median of 3 runs]:
Informally, we observe in each grid a non-white region R ⊂ Gα ×Gβ for which certain
settings (α, β) ∈ Gα × Gβ converged within the iteration budget. Within R, we see
color-encoded efficiency regions Si ⊂ R, i = 1, ... with Si ∩ Sj = ∅, i ≠ j. In each Si, every
setting (α, β) ∈ Si has approximately the same efficiency to converge. For instance, the
dark blue pixels correspond to an efficiency region with settings (α, β) that approximately
converged the fastest within R. Within every Si, we observe a tendency for the highest
momentum coefficient β to be associated to a setting comprising the smallest learning
rate α and vice-versa. Furthermore, we observe a tendency that there always exists an
α ∈ Gα for which (α, 0) ∈ Si for every i = 1, ..., i.e., we see a tendency that plain SGD is
able to be represented in each efficiency region. Hence, as per this experiment, we observe
the phenomenon [49, 59] that SGDM with (α, β), β > 0 tends to enlarge the learning rate
of SGD.
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Experiment 2: A convex objective

In grid experiment 1, we considered an objective function where we could directly manipu-
late the stochasticity in the gradients with a parameter. We would now like to examine the
interdependence of α and β of SGDM with respect to the algorithm’s training performance
on a real, convex machine learning task. For that purpose, we would like to minimize
the binary cross-entropy training loss of a simple logistic regression model trained on the
full diabetes dataset [7]. To control the level of stochasticity, we adapt the batch size B,
where the gradient estimates become noisier the smaller the batch size.

Figure 3.2: Experiment 2 [grid experiment; logistic regression/diabetes data; median of
3 runs]: We immediately observe that our conclusions from the strongly convex case in
experiment 1 extend to the convex case. That is, we see a tendency of SGDM to enlarge
the learning rate of plain SGD.
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A conclusion for the convex case

In order to empirically investigate the interdependence between the learning rate α

and the momentum coefficient β with respect to the training performance of SGDM in
the convex setting, we employed a grid experiment for a strongly convex objective in
experiment 1 as well as a grid experiment for a convex objective in experiment 2. In both
experiments, we observed that β > 0 has a tendency to enlarge the learning rate of SGD
which supports similar claims in the literature [49, 59]. That is, a smaller learning rate αs

extended with β > 0 is able to reduce the training loss as efficiently as SGD with a learning
rate α′, α′ ⪆ αs. Moreover, we observed that a medium learning αm extended with β > 0

is prone to exhibit diverging behavior akin to SGD with a learning rate α′′, α′′ ⪆ αm.
This observation supports the notion of an effective learning rate as introduced in section
2.1.1, reflecting the tendency that SGDM with (α, β) enlarges α in a fashion which can
be modelled by α̃ = α

1−β . Furthermore, observing the trajectory of the (α, β)-grids over a
decreasing sequence E gave us insight into the convergence efficiency for a setting (α, β),
under a certain level of stochasticity in the gradients, from the initial phase of convergence
until fine local convergence set in. In fact, even for settings with a very low level of
stochasticity in the gradient estimates, we could not observe a superiority of employing
β > 0 in the initial phase of convergence as we were always able to find a setting (α, 0),
i.e. a learning rate α for plain SGD, which was among the settings with the highest
convergence efficiency. That is, we are not able to verify the claim by Sutskever et al.
[51] that momentum accelerates the convergence during the initial phase in the convex case.

From a practical perspective, we can deduce from experiments 1 & 2 that we
are required to decrease α over time to efficiently reach the vicinity of a minimum. This
is supported by convergence analysis as introduced in section 1.3.3. Moreover, as per our
experiments, we can always find a learning rate for SGD which is competitive with a
specific setting of SGDM. Hence, we conjecture that a more natural approach to efficiently
train a convex machine learning predictor is to fine-tune a learning rate schedule for plain
SGD without the use of momentum, and by that, reduce the hyperparameter search
space of the optimizer.
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3.1.2 Non-convex deep learning problems

In the previous section, we examined the interdependence of α and β in SGDM with
respect to SGDM’s performance in training a convex machine learning predictor. We
concluded from our experiments that the use of momentum in SGD for a convex problem
has no advantages over plain SGD with respect to training efficiency, supporting recent
theoretical observations [26, 47]. In practice, however, β > 0 in SGD is mainly [22, 51,
26] employed when training non-convex deep neural networks, where practitioners often
refer to best practices [45, 9] such as β = 0.9. As for the convex case, the advantage
of SGDM over plain SGD could not be captured [62, 61] with the tools of convergence
analysis. Following up on this, Sutskever et al. [51] defended the use of momentum in
the stochastic setting as they argued that, while momentum has no advantage in the fine
local convergence regime, β > 0 helps in speeding up the initial phase of convergence.
This stadium of convergence, according to their argument, is particularly important when
training non-convex DNNs. In the context of local convergence analysis, said initial phase
can be described by the optimization term as introduced in section 1.3.3. Indeed, for
smooth non-convex objectives under assumptions 1-3, SGDM’s state-of-the-art convergence
result [62] for a fixed α,

O 1
α

1−βT
+

α

1− β
σ2 ,

corresponds to the rate achieved by plain SGD with a learning rate of α
1−β . That is, we

again notice an indication that SGDM with (α, β) enlarges [49, 59] the learning rate of
SGD, behaving similarly to SGD with an effective learning rate of α̃.

Given that a sensible choice of the learning rate α is essential [20, 58, 9] for
SGD to achieve reasonable training performance in deep learning problems, we would like
to examine the effect of β > 0 on a learning rate α with respect to SGDM’s efficiency to
converge to the vicinity of a local minimum. In particular, we want to take up on the
indication [62, 59, 27] that SGDM with (α, β) performs similarly to SGD with α̃.
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Beginning our analysis, we will observe in experiment 3 the effect of starting SGDM at
different initialization points x1 within the non-convex and non-linear landscape of a
DNN by means of a grid experiment. In experiment 4, we will follow up on the findings
of experiment 3, investigating the behavior of SGDM with (α, β) and SGD with α̃ for
increasing learning rates when started from different initialization points x1.

Experiment 3: A non-convex deep learning objective

In section 3.1.1, we introduced the setup of a grid experiment to empirically investigate
the interdependence of α and β in SGDM with respect to the method’s training efficiency.
In this experiment, we conduct two grid experiments for a deep learning problem, using
two different initialization points x1 for SGDM. In particular, we will minimize the cross-
entropy training loss of the simple neural network LeNet [24] trained on the Fashion-MNIST
[56] dataset.

(a) initialization 1. (b) initialization 2.

Figure 3.3: Experiment 3 [grid experiment; LeNet/FMNIST; 2 different init. points]:
We observe the result of a grid experiment for two different initialization points and
notice that we are confronted with two quite varying grids due to the non-convexity and
non-linearity of the objective. In particular, we observe that initialization 1. in figure
3a induces a grid exhibiting geometrically similar color-encoded efficiency regions as the
(strongly) convex case, while initialization 2. in figure 3b induces a grid which exhibits a
region R ⊂ Gα ×Gβ which is comparatively less connected above its "diagonal", i.e., the
region within the grid which has α and β relatively large comprises settings which could
converge within the epoch budget with neighboring settings that could not. In particular,
we notice that settings (α, β) which have α relatively small and β relatively large are
able to converge for both initialization points while being represented in relatively high
efficiency regions.
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Experiment 4: The robustness of the effective learning rate

In experiment 3, we observed that, for one initialization point, SGDM has a tendency
to enlarge the learning rate of SGD in a fashion that aligns with our conclusion for the
convex case in section 3.1.1 and which supports the literature’s indication [62, 59, 49, 27]
that SGDM with (α, β) behaves similarly to SGD with α̃, providing no tangible advantage
over plain SGD. However, for another initialization point, we observe a tendency for plain
SGD with a larger learning rate not to be competitive with SGDM. Hence, experiment 3
could be seen as an indication that, only for a favorable initialization point, SGD with
a larger learning rate behaves similarly to SGDM. By extension, this observation could
suggest that the training performance of SGDM with (α, β) is more robust to where we
start the method within the non-convex landscape than SGD with α̃. To follow up on this
observation, we would like to empirically investigate the training loss achieved by SGDM
with (α, β) and SGD with α̃ over numerous initialization points. To that end, we will
again minimize the cross-entropy training loss of the neural network LeNet [24] trained
on the Fashion-MNIST [56] dataset.

Figure 3.4: Experiment 4 [(α, β) vs. α̃ for α̃ → ∞; LeNet/FMNIST; 100 init. points;
training loss after E epochs]: For a fixed β = 0.95, we observe that SGD (blue) with
α̃ small is able to achieve a comparable training loss distribution after E epochs to
SGDM (orange) with (α, β) over 100 initializations. However, as we increase α̃, SGD has
a tendency to be more prone to indulge in bad convergence behavior than SGDM with
(α, β), while being able to approximately achieve the competitor’s minimum training loss
for favorable initializations. We can hence conjecture that SGDM with (α, β) tends to be
more robust to initialization points than SGD with α̃ when α̃ becomes larger. Note that
this behavior appears to be invariant to a positive scaling of the batch size B.
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A conclusion for the non-convex deep learning case

We deduce from experiments 3 & 4 that, for small learning rates α, SGDM with (α, β)

exhibits a training performance similar to SGD with a larger learning rate, supporting
the literature’s [62, 59, 49, 57] indication that SGDM induces a learning rate α̃ for plain
SGD. For larger learning rates α, however, SGDM with (α, β) tends to converge as
efficiently as SGD with α̃ initialized at a favorable initialization point, i.e., a starting
point x1 from which SGD is able to converge efficiently [20] with relatively large learning
rates. Synthesizing our findings, we can conjecture that SGDM is able to perform larger
effective steps1 than SGD for a multitude of initialization points. That is, rather than
being able to increase the training speed [51] in the initial phase of convergence per se —
a claim which could not be supported by convergence analysis [62, 61] —, SGDM is able
to boost the training performance conditional to an unfavorable initialization point x1

for plain SGD.

In practical terms, we conclude that employing β > 0 represents an alternative
to increasing the learning rate α of SGD robust to the initialization point. That is, the
best practice of using a momentum coefficient β = 0.9 [45] with a smaller learning rate
helps SGD reduce the training loss more reliably than employing a larger learning rate.

1We note that table 2 of [27] extends our observations to ResNet-9 [12] trained on CIFAR-100 [21].
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3.2 Generalization

We have discussed in chapter 1 that our goal when training a machine learning predictor
is to obtain a model which does not overfit the training set in order to generalize well to
unseen data.

For convex problems, we can mitigate overfitting by adapting the objective itself
using regularization. Hence, in the convex case, generalization efficiency aligns directly
with optimization efficiency as our aim is to reduce the empirical risk of the regularized
objective. Thus, as per our results from section 3.1.1, SGDM provides neither theoretical
[47, 26] nor empirical advantages over SGD to reduce the regularized training loss of a
convex machine learning predictor and, by extension, does not benefit generalization in
the convex case.

For non-convex deep learning objectives, generalization efficiency aligns with both
optimization efficiency and the efficiency to escape from sharp local minima as discussed
in section 1.4. Indeed, to achieve good generalization within a time budget for a deep
learning problem, we are required to converge fast to a flat local minimum. Hence,
when training a DNN with SGD, we need [57] the stochastic gradient noise [32] α

B to
be sufficiently large in order to escape from sharp minima during our quest for a flat
minimum while being constrained [10, 34, 57] with respect to the range of α in order to
achieve good convergence behavior.

In this section, we would like to to empirically investigate the interdependence
of α and β in SGDM with respect to the algorithm’s efficiency to escape from sharp
minima, extending our analysis of section 3.1.2 to the second important pillar of
generalization performance in deep learning.
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Experiment 5: Escaping sharp valleys

In this experiment, we would like to empirically investigate the interdependence of the
learning rate α and the momentum coefficient β in SGDM with respect to the algorithm’s
efficiency to escape from sharp minima, considering different levels of sharpness under
varying levels of noise in the gradients. To that end, we employ a setup analogous to the
grid experiments introduced in section 3.1.1, where we report the number of iterations
for the setting (α, β) to escape from a minimum. Inspired by [64, 50], we consider the
non-convex Styblinski-Tang function f : Rp → R,

f(x) =
1

2

p

i=1

(x4i − 16x2i + 5xi),

for p = 10 and define stochastic gradients with η ∼ N (0, σ2 · Ip) as

g(x) := ∇f(x) + η

which implies that E[∥g(x)−∇f(x)∥2] ≤ σ2 for all x ∈ Rp. As we multiply every parameter
of f by

√
k, we rescale the Hessian of f by a factor of k since f(

√
kx) ⇝ k∇2f(x) for

a point x ∈ Rp. Thus, we are able to control the stochasticity in the gradients by a
parameter σ2 and the relative minima sharpness by a parameter k.
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Figure 3.5: Experiment 5 [sharpness grid experiment; Styblinski-Tang function; median
of 3 runs]: Tying in with our conclusions of section 3.1.2, we can observe that SGDM
has a tendency to enlarge the learning rate of plain SGD with respect to the method’s
efficiency to escape from sharp minima. Moreover, we observe that σ2 → ∞ increases
the efficiency to escape from a minimum for smaller learning rates, thereby confirming
theoretical results [32].
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Experiment 6: Reducing sharpness with large batches

In experiment 5, we considered a non-convex objective function where we could directly
manipulate the sharpness of a minimum with a parameter. We now would like to examine
the interdependence of α and β in SGDM with respect to the algorithm’s efficiency in
avoiding sharp regions on a real non-convex deep learning task. To that end, we train
the neural network LeNet [24] on a subsample of the Fashion-MNIST dataset [56] and
find a local minimum x̄GD with GD, achieving a cross-entropy training loss of ≈ 0. As
discussed in section 1.4, local minima found by B = n are usually relatively sharp and
associated with poor [28, 64] generalization. We then employ a setup analogous to the
grid experiments introduced in section 3.1.1, where we report the number of epochs for
a large-batch setting of (α, β) initialized at x̄GD to reduce a sharpness estimate to a
target value. Although we defined sharpness in section 1.4 based on the eigenvalues of
the Hessian at the corresponding local minimum, it is usually too expensive to compute
∇2f(·) in practice. Hence, we employ the following estimate [64] of the sharpness at a
point x ∈ Rp within a non-convex deep learning objective f ,

1

M

M

i=1

f(x+ ηi)− f(x), ηi ∼ N (0, δ2 · Ip), (3.1)

where M = 50 and δ = 0.01.

Figure 3.6: Experiment 6 [large-batch sharpness grid experiment; LeNet/subsampled
FMNIST]: We observe that the color-encoded efficiency regions follow a diagonal pattern
within the grid, indicating that β > 0 enlarges the learning rate of plain SGD.
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A conclusion for generalization in deep learning.

We have seen in experiments 5 & 6 that a momentum coefficient β ∈ (0, 1) has a tendency
to enlarge the learning rate of plain SGD with respect to the method’s efficiency to escape
from sharp minima. This finding supports the argument [27, 9, 64, 59] that SGDM with
(α, β) can be approximated by SGD with α̃ = α

1−β .
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3.3 The Momentum Linear Scaling Rule (MLSR)

Given our results from sections 3.1.2 and 3.2, we can conjecture that SGDM with (α, β) is
more likely to exhibit good generalization efficiency as it is better equipped than SGD to
achieve good convergence performance while keeping a sensible amount of stochastic gra-
dient noise (SGN) to escape from sharp minima. Indeed, the literature argues [32] that the
SGN of SGDM with (α, β) is proportional to α

B(1−β) — reflecting again an effective learn-
ing rate of α̃ = α

1−β for SGD. While it is claimed [32] that numerous settings of α, β,B are
able to achieve the same level of SGN, and by that, lead to comparable escaping efficiency,
we have established in section 3.1.2 that SGDM tends to be more robust to the ini-
tialization point x1 and, by extension, is more likely to achieve good convergence behavior.

As discussed in section 1.4.1, large-batch training is able to efficiently utilize
parallel computation to accelerate the training of deep neural networks. In order to
maintain a similar magnitude of SGN, the literature has advocated [10] to multiply the
learning rate by c when the batch size is multiplied by c > 1 — a heuristic called the
Linear Scaling Rule (LSR). However, as an increase of the learning rate α only works in a
narrow [10, 34, 57] range, since too large initial learning rates may lead to optimization
divergence or bad convergence, this rule has to be applied with care, with the authors
proposing [10] specific warmup strategies for α. Given our conclusions from sections 3.1.2
and 3.2, we present an extension2 of this heuristic which naturally overcomes optimization
challenges early in training through the use of momentum.

Momentum Linear Scaling Rule (MLSR):

For a setting (α, β,B), when the batch size B is multiplied by c > 1,
adapt the momentum coefficient as

β := 1− 1− β

c
.

For plain SGD (β = 0), we thus introduce a momentum coefficient β = 1− 1/c.

2This rule is derived from our goal of maintaining the same level of SGN for a new batch size cB, c > 1
by adapting the momentum coefficient. That is, we set α

cB(1−βc)
= α

B(1−β)
and solve for βc.
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In experiments 8 and 9 we will illustrate the benefit of the MLSR in practice. In particular,
we will show akin to the original LSR [10] paper that, while keeping all hyperparameters
— including the number of epochs — unchanged, we are able to closely match the top-1
test error of a small-batch benchmark, the "Base" case, without the need for extensive
warmup strategies for α. To that end, we train the neural networks VGG11 [48] and
ResNet-18 [12] on the CIFAR-10 [21] dataset.

Figure 3.7: Experiment 7 [MLSR; ResNet-18/CIFAR-10; c=20; 2 runs; error range
of ±2×std]: We observe that, with the MLSR, we are able to closely match the top-1
training and test error curves of a small-batch benchmark when we scale the batch size
by 20. For the LSR, however, we observe comparatively non-monotonic test performance.

Figure 3.8: Experiment 8 [MLSR; VGG11/CIFAR-10; c=20; 2 runs; error range of
±2×std]: We observe that, with the MLSR, we are able to closely match the top-1 training
and test error curves of a small-batch benchmark when we scale the batch size by 20.
With the LSR, however, we would diverge without the use of warmup strategies for the
learning rate.
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Figure 3.9: Experiment 9 [MLSR mult. batch sizes; test error after 10 epochs; ResNet-
18/CIFAR-10; 3 runs; error range of ±2×std]: We see that the MLSR is able to approx-
imately maintain the top-1 test error after 10 epochs of the base case for a batch size
scaling of up to 16 while the LSR would induce bad convergence behavior without the
employment of special warmup strategies.
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Chapter 4

Conclusion

In the deterministic case, GD extended with the notion of momentum has a provable [8]
advantage over plain GD. In spite of that, we conjectured in chapter 3 that, based on our
empirical results, a momentum coefficient β ∈ (0, 1) in the stochastic setting generally
has the effect of merely enlarging the learning rate of plain SGD, not contributing to a
boost in performance per se. That is, for the convex case, we supported in section 3.1.1
the results from convergence analysis [26, 47] as we could not empirically establish an
advantage of SGD with momentum over plain SGD. For the non-convex deep learning
case, we concluded in section 3.1.2 that SGD with momentum empirically has the effect
of enlarging the learning rate in a more robust fashion. In particular, rather than being
capable of faster convergence [51] per se — a claim which could not be supported by
convergence analysis [62, 61] —, SGD with momentum is able to improve the training
performance conditional to an unfavorable initialization point for plain SGD. In addition
to that, we empirically established in section 3.2 that β > 0 has the ability to compensate
for small learning rates with respect to the method’s efficiency to escape from sharp
minima. Based on our findings in sections 3.1.2 and 3.2, we were able to derive a heuristic,
the MLSR, for transitioning from small-batch to large-batch training in deep learning while
approximately maintaining the same generalization efficiency. We believe that it would be
of great practical interest to benchmark and test the MLSR heuristic against existing rules
[10], accounting for a variety [34] of warmup strategies, complex deep learning models
and large datasets such as ImageNet [6].
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.1 SHB & SNAG Formulations

In this section, we briefly discuss the most important formulations for SHB and SNAG
used in the literature. For instance, the papers [31, 19, 25, 14, 18, 59, 4] employ or adapt
these formulations to derive related methods.

.1.1 SHB Formulations

For the iterations t = 1, ..., Polyak’s original formulation [41] of SHB is given as

SHB: xt+1 = xt − αg(xt) + β(xt − xt−1), (1)

where x0 = x1 and β ∈ [0, 1). For m0 = 0, we can equivalently [61] express (1) as

MOM1_SHB:
mt = βmt−1 − αg(xt),

xt+1 = xt +mt.
(2)

Moreover [46], we can express (1) as

xt+1 = xt − α g(xt)− β
(xt − xt−1)

α

= xt − α g(xt) + β
(xt−1 − xt)

α

= xt − α g(xt) + βmt−1

mt

,

(3)

since
mt−1 =

(xt−1 − xt)

α
=⇒ xt = xt−1 − αmt−1, (4)

which gives us the formulation used in PyTorch’s [39] SGD optimizer when choosing a
momentum parameter in (0, 1):

MOM2_SHB:
mt = βmt−1 + g(xt),

xt+1 = xt − αmt.
(5)

In [19, 31], a "normalized" version of SHB is discussed given as

EMAM:
mt = βmt−1 + (1− β)g(xt),

xt+1 = xt − αmt.
(6)
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The formulation in (6) allows us to interpret the sequence mt as an exponential moving
average of past stochastic gradients and corresponds to PyTorch’s SGD optimizer with
parameters momentum=β, dampening=1− β, β ∈ (0, 1). Note that EMAM has a smoothing
effect [30, 63] on the noise level of the gradients while MOM2_SHB elevates [27] the
variance of the stochastic gradients.

.1.2 SNAG Formulations

The original SNAG formulation by Nesterov [36] for the iterations t = 0, ... is given as

SNAG:
xt+1 = yt − αg(yt),

yt+1 = xt+1 + β(yt+1 − yt),
(7)

with y0 = x0. For mt := yt−yt−1 and m0 = 0, we can relate [51] SNAG to MOM1_SHB
by

MOM_SNAG:
mt+1 = βmt − αg(xt + βmt),

xt+1 = xt +mt+1,
(8)

which corresponds to the formulation used in PyTorch’s [39] SGD optimizer.

.2 Experimental Setup

In this section, we extend our experiments to SNAG and provide additional information
on the experimental setup. All experiments involving real machine learning tasks, i.e.,
experiments {2, 3, 4, 6, 7, 8, 9}, have been implemented using Python 3.7.13 [52], NumPy
1.21.6 [11] and PyTorch 1.11.0 [39] and run on a Tesla P100-PCIE-16GB GPU, where
we used the parameters lr,momentum, nesterov in torch.optim.SGD to respectively
control α, β and the choice between SHB and SNAG. The remaining experiments {1, 5}
were implemented using Python 3.7.13 and NumPy 1.21.6 and have been run on an
Intel(R) Xeon(R) CPU @ 2.20GHz. The SHB and SNAG methods used in experiments
{1, 5} have been implemented according to their respective original formulations given in
(1) and (7). For every experiment, we had an available RAM of 13.6 GB.
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.2.1 Experiment 1

For this grid experiment, we considered three noise levels σ2 = {0.01, 1, 100}, representing
a small, medium and large noise regime, respectively. For each σ2, we chose a maximum
tolerance level of εmax = 3.5. For the small and medium noise regime, we chose a minimum
tolerance level of εmin = 0.05, while for the large noise regime we chose εmin = 2. In
fact, a tolerance level of 0.05 could not be achieved for any setting (α, β) when σ2 = 100

and thus we chose a corresponding level of εmin = 2 for illustration purposes. For every
noise level, we considered a linear grid Gβ = {0, 0.05, 0.1, 0.15, 0.2..., 1}, where included
the extreme case of β = 1. In particular, for σ2 = 0.01, we considered a logarithmic
grid Gα = {−6, ..., 0.5}, |Gα| = 25 and for σ2 = {1, 100}, we considered a logarithmic
grid Gα = {−6, ..., 0.3}, |Gα| = 20. Each grid experiment has been run with a maximum
number of iterations Tmax = 25000 for three different seeds with SHB and SNAG started
at x1 = (0.2, ..., 0.2)T ∈ R20. We reported the median number of iterations T to reach an
xT with f(xT )− f(x⋆) ≤ ε for each ε ∈ E over the three runs for every setting (α, β).
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Figure 1: Experiment 1: SNAG We immediately observe that our conclusions from
experiment 1, where we considered SHB, extend to the case of SNAG in the strongly
convex setting.
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.2.2 Experiment 2

For this experiment, we formulated a logistic regression model in PyTorch, employing
one linear layer combined with the sigmoid activation function. We minimized the binary
cross-entropy loss, torch.nn.BCELoss, training the model on the full diabetes dataset [7]
with n = 768. We used two batch sizes B = {200, 10}, representing a small and large
noise regime, respectively. For each B, we chose a maximum tolerance level of εmax = 0.5,
while we picked different minimum tolerance levels, i.e., εmin = 0.47 for B = 200 and
εmin = 0.475 for B = 10, for illustration purposes. In fact a tolerance level of 0.47 could
not be achieved for any setting (α, β) when B = 10. For every noise level, we considered
a linear grid Gβ = {0, 0.05, 0.1, 0.15, 0.2..., 1}, where we included the extreme case of
β = 1. For B = 200, we considered a logarithmic grid Gα = {−4, ..., 0.4}, |Gα| = 20 and
for B = 10, we considered the logarithmic grid Gα = {−3, ..., 0.8}, |Gα| = 20. Each grid
experiment has been run with a maximum number of epochs Emax = 1000 for three
different initialization points and three different seeds. We reported the median number
of iterations to achieve a binary cross-entropy loss smaller or equal to every ε ∈ E for the
three runs for every setting (α, β).
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Figure 2: Experiment 2: SNAG We immediately observe that our conclusions from
experiment 2, where we considered SHB, extend to the case of SNAG in the convex setting.
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.2.3 Experiment 3

We used a PyTorch implementation of the neural network LeNet [24] which we trained
on the Fashion-MNIST training dataset [56] (n = 6 · 104) with a fixed batch size of
B = 256. We considered different initialization points with different seeds for every grid
experiment. With an epoch budget of Emax = 30, we reported the number of epochs
E to reach a cross-entropy loss, torch.nn.CrossEntropyLoss, of less than or equal to
ε = 0.23 for every setting (α, β). We considered for both initializations a linear grid
Gβ = {0, 0.05, 0.1, 0.15, 0.2..., 1}, where we included the extreme case of β = 1, and a
linear grid Gα = {0.001, ..., 0.4}, |Gα| = 30.

(a) initialization 1. (b) initialization 2.

Figure 3: Experiment 3: SNAG As in experiment 3, where we considered SHB, we
observe that the efficiency to converge for a setting (α, β) depends on the initialization
point x1 for SNAG.

.2.4 Experiment 4

We considered two batch sizes B = {2560, 256} with respective epoch budgets of Emax =

{10, 5}. As in experiment 3, we considered the neural network LeNet [24] which we trained
on the Fashion-MNIST training dataset [56] with n = 6 · 104. We fixed a momentum
coefficient β = 0.95 and reported the final cross-entropy loss of SHB with (α, β) and
plain SGD with α̃ after Emax epochs using 100 different initialization points for α =

{0.005, 0.01, 0.02, 0.03} which led to the effective learning rates for plain SGD of α̃ =

{0.1, 0.2, 0.4, 0.6}. That is, for every initialization point x1j , j = 1, ..., 100, we ran SHB with
every (α, β) and plain SGD with the corresponding α̃ and reported the final cross-entropy
loss after Emax epochs.
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.2.5 Experiment 5

We considered three noise levels σ2 = {0.01, 1, 100}, representing a small, medium and large
noise regime, respectively, as well as three sharpness levels for the minimum {1, 10, 100}.The
1-dimensional Styblinski-Tang function has one global minimum at x⋆ = −2.903534 and a
saddle point at s = 0.156731 which separates the global minimum from a local minimum.
We initialized SHB and SNAG at 1√

k
(x⋆, ..., x⋆) ∈ R20 and reported the number of

iterations T to observe ∃i ∈ [20] : xT i ≥ s, i.e., to observe one coordinate of an iterate
xT to escape the valley of the global minimum. Figure 4 illustrates the setup of this
experiment for the 1-dimensional case.

Figure 4: An illustration of experiment 5 for p = 1. We initialize SHB and SNAG at the
global minimum and count the number of iterations to escape its valley.
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Figure 5: Experiment 5: SNAG We see that our conclusions from experiment 5, where
we considered SHB, extend to the case of SNAG.
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.2.6 Experiment 6

We subsampled the training dataset of Fashion-MNIST [56] by a factor of ≈ 0.0083,
considering 500 images out of the 6 · 104 training images and found the local minimum
x̄GD with GD, i.e., B = 500. We then employed a batch size of B = 200 which induces
a large-batch setting with B/n = 0.4, and initialized SGDM at x̄GD, where we were
confronted with a sharpness estimate according to (3.1) with M = 50, δ = 0.01 of ≈ 0.5.
We reported the number of epochs E to reduce this initial estimate to a target value of
ε = 0.0025 with an epoch budget of Emax = 50 for every setting (α, β). We considered a
linear grid Gβ = {0.1, ..., 1}, |Gβ | = 10, where we accounted for the extreme case of β = 1,
and a linear grid Gα = {0, , ..., 1}, |Gα| = 10.

Figure 6: Experiment 6: SNAG We see that our conclusions from experiment 6, where
we considered SHB, extend to the case of SNAG.
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.2.7 Experiment 7

We trained the neural network ResNet-18 [12] on the CIFAR-10 [21] training set with
n = 5 · 104. For the small-batch benchmark, we trained the network with a setting of
(α, β,B) = (0.1, 0, 100) for 200 epochs, where we employed a weight decay of 10−4 and
decayed the learning rate α by 10 at epoch 150. With the goal of multiplying the batch
size by a factor of c = 20, while keeping the remaining hyperparameters (epochs, weight
decay, learning rate schedule, etc.) unchanged and maintaining a sensible level of SGN, the
use of the LSR led us to multiply the learning rate α by 20 as well, inducing a new setting
of (2, 0, 2000). According to the MLSR, however, we employed a momentum coefficient of
β = 1 − 1

20 = 0.95, leading to a new setting of (0.1, 0.95, 2000). We reported the top-1
training and test error for every epoch and showed the error range of plus/minus two
standard deviations for two runs.

.2.8 Experiment 8

We trained the neural network VGG11 [48] on the CIFAR-10 [21] training set with
n = 5 · 104. For the small-batch benchmark, we trained the network with a setting of
(α, β,B) = (0.05, 0, 100) for 300 epochs, where we decayed the learning rate α by 2 at
epochs {30, 60, 90, 120, 150, 180, 210, 240, 270} and employed a weight decay of 5 · 10−4.
With the goal of multiplying the batch size by a factor of c = 20, while keeping the
remaining hyperparameters (epochs, weight decay, learning rate schedule, etc.) unchanged
and maintaining a sensible level of SGN, the use of the LSR led us to multiply the learning
rate by 20 as well, inducing a new setting of (1, 0, 2000). According to the MLSR, however,
we employed a momentum coefficient of β = 1 − 1

20 = 0.95, leading to a new setting
of (0.05, 0.95, 2000). We reported the top-1 training and test error for every epoch and
showed the error range of plus/minus two standard deviations for two runs.

.2.9 Experiment 9

We trained the neural network ResNet-18 [12] on the CIFAR-10 [21] training set (n = 5·104),
where we employed a weight decay of 10−4. We considered a small-batch benchmark of
training the network with (α, β,B) = (0.05, 0, 128), reporting the top-1 test error after 10
epochs. We then applied both the LSR and the MLSR to the given the set of batch size
scalings {2, 4, 8, 16}. We again reported the top-1 test error after 10 epochs, keeping all
remaining hyperparameters (weight decay, learning rate schedule, etc.) unchanged. This
procedure yielded the following settings (α, β,B) for the batch size scalings:
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• c = 2 ⇝ LSR:(0.1, 0, 256),MLSR:(0.05, 0.5, 256),

• c = 4 ⇝ LSR:(0.2, 0, 512),MLSR:(0.05, 0.75, 512),

• c = 8 ⇝ LSR:(0.4, 0, 1024),MLSR:(0.05, 0.875, 1025),

• c = 16 ⇝ LSR:(0.8, 0, 2048),MLSR:(0.05, 0.9375, 2048).

We showed the error range of plus/minus two standard deviations for three runs.
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