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Preface

The research for this diploma thesis has been conducted by Florian Pimpel, Martin J.
Renner and Armin Tavakoli and has been submitted to "arXiv" as “Correspondence
between entangled states and entangled bases under local transformations” [1]. It has
recently been accepted for publication as a Regular Article in “Physical Review A”.
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Abstract

The entanglement of quantum states is amongst the most studied features of quantum
mechanics. It is integral for the majority quantum information protocols and describes
a non-classical type of correlation, that links the states of physical systems in a way
that is different from our intuitive understanding. Some of the most relevant techniques
for quantum technologies such as teleportation, dense coding and entanglement swap-
ping however, depend on the entanglement of joint quantum measurements, which has
been seeing much less scientific attention. In general, the established Bell state mea-
surement is used, whose measurement basis consists of the four maximally entangled
states. This is the reason why we can consider it as the measurement corresponding to
the maximally entangled state. In this thesis we want to address the question whether
all entangled states can generally be related to a corresponding iso-entangled measure-
ment in which all measurement basis vectors are local unitary transformations of the
original state. In the process of analysing some quantum systems we prove that a cor-
responding basis exists for every bipartite state with a local dimension of either two,
four or eight. Furthermore, we find strong numerical evidence that the same is true for
two qutrits and three qubits. Nevertheless, we conjecture that there are quantum states
without a basis, since the same numerics cannot find a measurement basis for some four
qubit states. More restrictively, we examine whether there exist local unitaries that gen-
erate a basis from any state, independently of the specific state. We prove that such a
state-independent basis construction does not exist for general quantum states, but we
show that it is possible for real valued composite qubit states if and only if the amount
of qubits is smaller than four and that it cannot exit for multipartite states with an odd
local dimension. Additionally, we give explicit constructions for some specific n-qubit
entangled states. The results presented in this thesis suggest that similarly to the entan-
glement of quantum states, the entanglement of iso-entangled joint measurements show
a strong dependence on particle numbers and dimension.
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Zusammenfassung

Die Verschränkung von Quantenzuständen ist eine der am meisten untersuchten Eigen-
schaften der Quantenmechanik. Sie ist für den Großteil von Quanteninformationspro-
tokollen unerlässlich und beschreibt eine nicht-klassische Art der Korrelation, die die
Zustände von physikalischen Systemen auf eine Weise verknüpft, die sich von un-
serem intuitiven Verständnis abhebt. Viele der wichtigsten Techniken für Quanten-
technologien wie Teleportation, Dense Coding und Entanglement Swapping beruhen
jedoch auf der Verschränkung von Quantenmessungen, die bisher weitaus weniger wis-
senschaftliche Aufmerksamkeit erfahren hat. Im Allgemeinen wird die etablierte Bell-
Zustandsmessung verwendet, deren Messbasis aus den vier maximal verschränkten Zu-
ständen besteht. Aus diesem Grund können wir sie als die Messung betrachten, die
dem maximal verschränkten Zustand entspricht. In dieser Arbeit wollen wir der Frage
nachgehen, ob sich alle verschränkten Zustände allgemein auf eine entsprechende iso-
verschränkte Messung beziehen lassen, bei der alle Messbasisvektoren lokale unitäre
Transformationen des ursprünglichen Zustands sind. Bei der Analyse einiger Quanten-
systeme beweisen wir, dass für jeden zweiseitigen Zustand mit einer lokalen Dimension
von entweder zwei, vier oder acht eine entsprechende Basis existiert. Außerdem finden
wir starke numerische Hinweise dafür, dass dies auch für zwei Qutrits und drei Qubits
gilt. Dennoch stellen wir die Vermutung auf, dass es Quantenzustände ohne Basis
gibt, da dieselbe Numerik keine Messbasis für einige Vier-Qubit-Zustände finden kann.
Außerdem untersuchen wir restriktiver, ob es lokale unitäre Transformationen gibt, die
aus jedem Zustand eine Basis erzeugen können, unabhängig von dem spezifischen Zu-
stand selbst. Wir beweisen, dass eine solche zustandsunabhängige Basiskonstruktion
für allgemeine Quantenzustände nicht existiert, aber wir zeigen, dass sie für reellwer-
tige zusammengesetzte Qubit-Zustände genau dann möglich ist, wenn die Anzahl der
Qubits kleiner als vier ist, und dass sie für mehrteilige Zustände mit ungerader lokaler
Dimension nicht existieren kann. Zusätzlich geben wir explizite Konstruktionen für
einige spezifische verschränkte n-Qubit-Zustände an. Die in dieser Arbeit vorgestellten
Ergebnisse legen nahe, dass ähnlich wie die Verschränkung von Quantenzuständen auch
die Verschränkung von iso-verschränkten Messungen eine starke Abhängigkeit von der
Teilchenzahl und der Dimension aufweist.
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1 Introduction

Since its establishment in the early twentieth century, quantum mechanics has grown
to one of the most successful theories physics can offer. Based on a few repeatedly
validated postulates, it provides the mathematical framework that is used in various dis-
ciplines of physics to describe systems consisting of the smallest particles. One of such
fields of research that has been gaining more and more attention in the last years is quan-
tum information science. While addressing some of the most foundational questions, it
also enables possible protocols which, in some specific situations, are capable of out-
performing any computation that relies on classical information theory. In contrast to its
classical counterpart, quantum information theory describes information processing in
systems, that obey the laws of quantum mechanics and can therefore make use of some
of its bizarre properties. One of these key features is a non-classical type of correlation
that is fundamental to quantum mechanics, called entanglement. With its partly coun-
terintuitive implications, that gained a lot of scientific and public attention, it is not only
broadly useful for applications in quantum information science, but also an intensively
studied research field itself.

Some of the most relevant techniques for quantum technologies such as teleportation
[2], dense coding [3] and entanglement swapping [4] however, depend on the entangle-
ment of joint quantum measurements, which has been seeing much less scientific at-
tention. With entangled measurements we refer to projective joint measurements, with
an eigenbasis that consists of equally entangled states. In general the established Bell
state measurement is used, whose measurement basis consists of the four maximally en-
tangled states (|00> ± |11>) /√2 and (|01> ± |10>) /√2. This is the reason why we can
consider it as the measurement corresponding to the maximally entangled state. Sim-
ilarly, iso-entangled basis states are known to exist for other special states, like GHZ-
, W- , and some Dicke states [5, 6], which we will introduce later. To broaden the
understanding of entangled measurements we therefore want to address the question
whether all entangled states can generally be related to a corresponding iso-entangled
measurement in which all measurement basis vectors are local unitary transformations
of the original state. Studying this connections may not only be an interesting aspect
of quantum mechanics. It also has the potential to open up new possibilities in quan-
tum information applications, since entangled measurements beyond the bell basis are
increasingly interesting for topics such as network nonlocality [7] and entanglement-
assisted quantum communication [8, 9].

Considering that we are given a joint pure quantum state |ψ> of n subsystems, each
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of dimension d, we examine, whether it is possible to find a measurement, namely an
orthonormal basis of the global dn-dimensional Hilbert space, in which all the basis
states have the same degree of entanglement. Specifically, we want to decide the ex-
istence of dn strings of n local unitary transformations, such that when applied to the
joint quantum state, each of the strings generates a vector of an orthonormal basis. The
resulting basis vectors are all equivalent under local unitary transformations and hence
equally entangled. After that, we investigate, whether there exist classes of states, such
that there are strings of local unitary operators, that map any state of the class to an
orthonormal basis.

The basic concepts, that are necessary for the scope of this work, will be introduced
in the following sections [10].

1.1 Postulates of Quantum Mechanics
Postulate 1: Any isolated physical system can be associated to a complex vector
space endowed with an inner product (Hilbert space H), called the state space.
The properties of the system are fully described by its state vector.

The state vectors, called kets |ψ>, are unit vectors in the Hilbert space and can be de-
picted as a linear combination of the orthonormal basis states |ei> E H. In the case of
an N -dimensional Hilbert space, this is realized by a finite sum.

|ψ> =
N∑
i=1

αi |ei> E H, αi E C,
N∑
i=1

|αi| = 1, <ei|ej> = δij (1.1)

There is a bijective map between the Hilbert space H and its dual space H*, which
elements are called bras.

(.)† : H → H*, |ψ> .→ (|ψ>)† = <ψ| =
N∑
i=1

α*
i <ei| (1.2)

The inner product assigns to every pair of state vectors |ϕ> , |ψ> a complex number <ϕ|ψ>
and has the following properties:

<ψ|ϕ> = <ϕ|ψ>*
<ψ|ψ> = 1 A |ψ> , (1.3)

where the second property is equivalent to the restriction of the kets to be unit vectors.
In a finite dimensional Hilbert space we can calculate the inner product by using the
coordinate representation with respect to the orthonormal basis:

<ψ|ϕ> =
N∑
i=1

α*
iβi, (1.4)
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where |ψ> = ∑N
i=1 αi |ei> and |ϕ> = ∑N

i=1 βi |ei>.
The simplest quantum mechanical system is a two dimensional Hilbert space. One

example of such a system is the spin of a single spin-1/2 particle, e. g. an electron. The
orthonormal basis states are then referred to as |0> and |1> and every state vector can be
written as

|ψ> = α0 |0>+ α1 |1> . (1.5)

Postulate 2: The evolution of a closed quantum system is described by a unitary
transformation. The state |ψ2> at time t2 is related to the state |ψ1> at time t1 by a
unitary operator, that depends only on the times t1 and t2:

|ψ2> = U (t2, t1) |ψ1> . (1.6)

In the case of the two dimensional space any possible unitary transformation can be
obtained in the laboratory. Of particular interest are the both unitary and hermitian Pauli
Operators

X =

(
0 1
1 0

)
Y =

(
0 -i
i 0

)
Z =

(
1 0
0 -1

)
. (1.7)

With the help of them any 2 x 2 unitary operator can be created up to a global phase,
which is irrelevant for our purposes. These are all elements of the SU (2)-group and
can be generated by a matrix exponential using three real parameters:

U (α, θ, ϕ) = eiα→r·→σ

with →r =

(( cos θ cosϕ
cos θ sinϕ

sin θ

)) and →σ =

(( X
Y
Z

)) .
(1.8)

The X- and Z-operators are often referred to as bit flip and phase flip operators.

Postulate 3: A measurement is described by a set of measurement operators {Ma}
acting on the system being measured, where the index a stands for the measure-
ment outcome. The probability for the outcome a when measuring a system in the
state |ψ> is

p (a) = <ψ|M †
aMa|ψ> (1.9)

and the post-measurement state after the system is:

|ψpost> = Ma |ψ>√
<ψ|M †

aMa|ψ>
. (1.10)

The measurement operators satisfy the completeness equation,∑
a

M †
aMa = 11. (1.11)
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The completeness equation guarantees that the probabilities sum to 1:∑
a

<ψ|M †
aMa|ψ> = <ψ|

∑
a

M †
aMa |ψ> = 1. (1.12)

An important special class of measurements are the projective measurements. For this
the measurement operators have to be orthogonal projectors, hence they have to satisfy
MaMa, = Maδaa, . Such a measurement is called an observable. It is a hermitian opera-
tor and the projective measurement operators are the projections onto the eigenspace of
the various measurement outcomes:

M =
∑
a

aMa =
∑
a

a |a> <a| . (1.13)

The states |a> are the eigenstates of the measurement and form an orthonormal basis.
As a consequence of the projection, the states |a> are also the post-measurement states
for the respective measurement outcome. The quantum-physical expectation value of an
observable is the probabilistic average of the measurement outcomes and can be written
as

<M> ψ = <ψ|M |ψ> =
∑
a

a |<ψ|a>|2 . (1.14)

Postulate 4: The state space of the composition of physical systems is the tensor
product of the state spaces of the constituent systems. If the partial systems are
numbered from 1 to n, the state space of the whole is H =

xn
i=1 Hi. If the

state of the i-th system is |ψi>, the joint state is |ψ> = xn
i=1 |ψi>, or alternatively

|ψ1ψ2... ψn>.

To this point we have only considered pure quantum states. However, if we want to
describe a non-isolated system, hence a subsystem where we do not possess informa-
tion of the entire composite system, we use statistical ensembles in form of a density
operator:

ρ =
∑
i

pi |ψi> <ψi| . (1.15)

The density operator states that the system is in the state |ψi> with the probability pi and
has the following properties:

• The trace is normalized: tr{ρ} = 1

• It is positive-semidefinite: ρ ≥ 0, and therefore hermitian: ρ† = ρ.

Also, the density operator represents a pure state ρpure = |ψ> <ψ| iff tr{ρ2} = 1. If
it is not a pure state, it is called a mixed state where the maximally mixed state for a
d-dimensional system is ρm = 11/d.
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The evolution by a unitary operator is then described by

ρ2 = Uρ1U
†, (1.16)

the probability for a measurement outcome a is

p (a) = tr
{
M †

aMaρ
}
, (1.17)

and the post-measurement state is

ρpost =
MaρM

†
a

tr
{
M †

aMaρ
} . (1.18)

The quantum-physical expectation value of an observable M =
∑

a a |a> <a| can be
evaluated by

<M>ρ = tr{ρM}. (1.19)

Given the state ρAB of the joint system of subsystems A and B, it is possible to obtain
a description of the state of one subsystem by building the reduced density operator. It
is defined by the partial trace:

ρA = trB{ρAB}. (1.20)

This is a valid description of the subsystem, since it fulfils the correct measurement
statistics for measurements performed on the respective subsystem.

1.2 Qubits and Bloch representation
Similarly to the term bit that is used for the simplest form of classical information, the
two-dimensional Hilbert space is referred to as the system of one qubit – one quantum
bit. It is spanned by two orthonormal state vectors, e.g. {|0> , |1>}. Alternatively to the
form in Eq. (1.5) we can parametrize the pure state vector of a qubit by using the angles
θ and ϕ:

|ψ> = cos(θ/2) |0>+ eiϕ sin(θ/2) |1> , (1.21)

where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. This corresponds to the geometrical representa-
tion of the qubit-state space called the Bloch sphere that is depicted in Fig. 1.1. Every
pure state of a single qubit can be associated to a point on the surface of the Bloch
sphere. Two states that are mutually orthogonal are represented by antipodal points
on the sphere. Notice that a global phase is neglected in this representation, hence
|ϕ2> = eiα(cos(θ/2) |0>+eiϕ sin(θ/2) |1>) =cos(θ/2) |0>+eiϕ sin(θ/2) |1> = |ϕ1>. This
is because there is no physical difference between |ϕ1> and |ϕ2>. We can emphasize this
by having a look at any possible measurement we can perform on the system. The prob-
ability for a specific measurement outcome is independent of the global phase, since

<ψ2|M †
aMa|ψ2> = <ψ1|e-iαM †

aMae
iα|ψ1> = <ψ1|M †

ae
-iαeiαMa|ψ1> = <ψ1|M †

aMa|ψ1>.
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|0>

|1>

|ψ>

z

x

y
ϕ

θ

Figure 1.1: The Bloch sphere is a geometric representation of the qubit-state space. Ev-
ery pure qubit-state is associated to a point an the surface of the sphere.
Mixed states are located within in the sphere.

The action of the Pauli operators (X, Y, Z) on a qubit-state results in rotations of the
state in the Bloch ball, namely π-rotations around the respective axes (x, y, z). This can
be verified by checking the action of (X, Y, Z) on a state |ψ>, e.g. for Z:

Z |ψ> =
(

1 0
0 -1

)
(cos(θ/2) |0> - eiϕ sin(θ/2) |1>)

= cos(θ/2) |0>+ ei(ϕ+π) sin(θ/2) |1> .
(1.22)

When regarded as projective measurement operators, it is clear that the two eigenvec-
tors of (X, Y, Z) are the two antipodal vectors that lie on the respective axes (x, y, z),
e.g. the eigenvectors of Z are |0> and |1>. The coordinates of a given qubit state with
respect to the axes (x, y, z) can also be evaluated by calculating the expectation values
of the Pauli operators. This means that the unit vector →r of a state |ψ> in the Bloch
sphere is given by

→r =

(( <X> ψ
<Y > ψ
<Z> ψ

)) =

(( sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

)) , (1.23)

where (θ, ϕ) are the parameters of the state in the representation that we used before.
This is also possible for density operators of a qubit, which also includes mixed states,
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hence →r = (<X>ρ, <Y >ρ, <Z>ρ)T . Therefore we can write every qubit state in its Bloch
decomposition:

ρ =
1

2
(11 + →a · →σ) , (1.24)

where →a E R3, ||→a|| ≤ 1 and →σ = (X, Y, Z)T . The Bloch sphere also provides a
geometric interpretation of the general unitary operator U (α, θ, ϕ) = eiα→r·→σ as defined
in Eq. (1.8). It rotates through an angle of α about the axis that is given by the (θ, ϕ) in
the Bloch sphere.

1.3 Quantum entanglement
Quantum entanglement is one of the most studied aspects of quantum mechanics, since
it is one of the essential properties that distinguishes quantum from classical theories.
It is also one of the most potent resources for quantum information processing and
communication applications. For the sake of simplicity, this section will only cover the
entanglement of pure states, although they are not fully attainable in a realistic scenario.
As we will see below, the entanglement in pure states of a composite system is a distinct
quantum property, that makes it impossible to describe the information of the whole
system by local properties in the subsystems. To analyse entanglement, it is therefore
obligatory to define all the operations that can be done locally.

1.3.1 Local operations assisted by classical communication
All non-selective operations that map a valid quantum state ρ to another quantum state
ρ, can be described by completely positive, trace preserving operators [11, 12]:

ρ, =
∑
i

LiρL
†
i ,

∑
i

L†
iLi = 11. (1.25)

Operations where the operators Li are spatially separable, i.e. Li = LA
i ⌦LB

i ⌦LC
i ⌦ ...,

are called separable operations (SEP ) [13]. All operations which can be performed
by spatially separated parties that share a joint state form a specific class, called local
operations assisted by classical communication (LOCC). Every such operation has to
be separable, but the class is not equivalent to SEP , hence LOCC ( SEP . While the
above physical definition of LOCC is rather intuitive, the simple mathematical charac-
terization for SEP does not apply [14].

A special class of LOCC are local unitary operators LU:

ρ, = UlocalρU
†
local

Ulocal =UA ⌦ UB ⌦ UC ⌦ ....
(1.26)

They are reversible and preserve the entanglement.
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If two states ρ and ρ, are related by LOCC as in (1.25), they are called equivalent
under LOCC. If they are related by (1.26), they are called local unitary equivalent or
shorter LU-equivalent. It is known that two states are equivalent under LOCC if and
only if they are LU-equivalent [12].

There is also the possibility to perform stochastic LOCC (SLOCC), which means that
a state is not transformed to another deterministically, but with a certain non-vanishing
probability. States that are connected via SLOCC are called to be in the same SLOCC-
equivalence class.

1.3.2 Bipartite entanglement

A bipartite pure state is the easiest setting to discuss entanglement. If the joint quantum
state of the composition of two systems |ψAB> E HAB = HA ⌦ HB can be written as
the tensor product of a state of system HA and a state of system HB, the joint state is
called separable or not entangled:

|ψAB> = |ψA> ⌦ |ψB> . (1.27)

If this is not possible, the state is called entangled.
To study bipartite entanglement it is useful to introduce the Schmidt decomposition.

A general pure state of two subsystem, HA of dimension n and HB of dimension m,
where we assume that n ≥ m, can be described by using the respective orthonormal
bases {|iA>} and {|iB>}:

|ψAB> =
∑
i

∑
j

αij |iA> |jB> . (1.28)

Similar to the singular value decomposition, it is proven that such a state can be written
as

|ψAB> = UA ⌦ UB

m-1∑
i=0

λi |iAiB> , (1.29)

where Ai : λi E R, λi ≥ 0 and
∑m-1

i=0 λ2
i = 1 applies. The state that the local

unitaries act on is called the Schmidt decomposition of |ψAB>, which is therefore LU-
equivalent to the state and possesses the same entanglement. The strictly positive factors
{λi : λi > 0} are called the Schmidt coefficients and the amount of them is called the
Schmidt rank. We can easily see that therefore a bipartite pure state is entangled if and
only if it’s Schmidt rank is greater than one. Note that for multipartite systems, meaning
the composition of more than two subsystems, such a decomposition and hence also the
definition of a Schmidt rank is not as easily applicable, however a generalisation is
possible [15].
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A commonly used entanglement measure for the bipartite setup is the entanglement
entropy, which is the von Neumann entropy of the reduced state.

S (ρA) = - tr{ρA log2 ρA}, ρA = trB{ρ} (1.30)

It does not matter, to what subsystem the state is reduced, which can easily be seen
by using the Schmidt decomposition. Using the Schmidt coefficients λi the entropy is
given by

S (ρA) = S (ρB) = -
∑
i

λ2
i log2 λ

2
i . (1.31)

The entanglement entropy is maximized by the maximally entangled states, which
for two qubits are the four Bell states:

,,ϕ+
>
=

1√
2
(|00>+ |11>),,ϕ-> = 1√

2
(|00> - |11>),, ψ+

>
=

1√
2
(|01>+ |10>),, ψ-> = 1√

2
(|01> - |10>) .

(1.32)

They build an orthonormal basis of the joint space of two qubits.

1.3.3 Tripartite entanglement

The structure of entanglement of three parties is already much more complicated than
the bipartite case that we have studied before. It was shown that for three qubits, there
are different SLOCC classes, displaying that two different types of entanglement exist
[16].

We now consider the joint Hilbert space of three qubits HA⌦HB⌦HC . A maximally
entangled representative of the GHZ class is the GHZ state

|GHZ> = 1√
2
(|000>+ |111>) . (1.33)

The GHZ state can be regarded as the maximally entangled three qubit state in many
aspects, e.g. it maximizes the tripartite entanglement measure called 3-tangle [16, 17].
If two subsystem are traced out, the reduced state is the maximally mixed state

ρA = ρB = ρC =
1

2
11. (1.34)
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It also has the property that any two-particle reduced state is separable:

ρAB =
1

2
(|00> <00|+ |11> <11|) = 1

2
(|0> <0| ⌦ |0> <0|+ |1> <1| ⌦ |1> <1|) . (1.35)

The maximally entangled state of the SLOCC class, that possesses a different kind of
entanglement, is the W state

|W > = 1√
3
(|001>+ |010>+ |100>) . (1.36)

While this state has zero 3-tangle, it maximizes the residual bipartite entanglement [16].
The two-particle reduced state for any two subsystems is

ρAB =
2

3

,, ψ+
> <

 ψ+
,,+ 1

3
|00> <00| , (1.37)

which can be shown to be as high in bipartite entanglement as possible in the case of
such a reduction.

As a consequence of the separable two-particle reduced states, the entanglement in a
GHZ state is fragile under particle losses, whereas the W state is maximally robust in
this regard.

1.4 Generalized Schmidt decomposition for three
qubits

The Schmidt decomposition we used in the previous section is only applicable to bi-
partite systems. There is also a generalization for three qubits, as introduced by Acin
et.al. [18], and a canonical form for even more general systems as shown by Carteret
et.al [19]. In the following chapter, we make use of the canonical form for three qubits,
which reads:

|ψ> = a |000>+ b |011>+ c |101>+ d |110>+ e |111> , (1.38)

where (b, c, d, e) are real numbers and a is a complex number. As shown by Perdomo
[20], every real three-qubit state

|ψr> =
∑
i

λi |i> , (1.39)

with i = i1i2i3 E {0, 1}3 and λi E R is local unitary equivalent to the form

|ψ,
r> = a |000>+ b |011>+ c |101>+ d |110>+ e |111> , (1.40)
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where all parameters (a, b, c, d, e) are real numbers. Since every pair of state that does
not have the exact same coefficients in its canonical form as is (1.38) are not local
unitary equivalent [19], the result of Perdomo implies that there are states where we can
not get rid of a complex factor by local unitary transformations. This is true because if
a state in the form of (1.38) with a /E R is LU-equivalent to a real superposition of the
product states, it would also be LU-equivalent to a real canonical form, which cannot
be true.

1.5 Locally maximally entanglable states

Kruszynska and Kraus introduced the class of locally maximally entanglable states
(LME states) [21]. They are characterized by the following properties: We consider
an n-qubit pure state |ψ> and supplement each qubit with a qubit ancilla. We use con-
trolled operations Cl =

∑1
i=0 U

(i)
l ⌦ |i>la <i|, where U

(i)
l are unitary operators for the

system l and |i>la <i| acts on the ancilla-qubit of system l. We call the state |ψ> lo-
cally maximally entanglable (LME) iff there exist local controlled operators Cl such
that C1⌦C2⌦ ...⌦Cn |ψ> |+>⌦n is maximally entangled with regards to the separation
of the system and the auxiliary system. The state of the ancilla-qubits is defined by
|+> = 1/

√
2(|0> + |1>). Examples for LME states are the GHZ state or graph states

[22].
Kruszynska and Kraus also prove that an n-qubit state |ψ> is LME iff there exists a

unitary operator Ul for each qubit l such that {U i1
1 ⌦U i2

2 ⌦ ...⌦U in
n |ψ> |il = 0, 1} forms

an orthonormal basis.

1.6 Joint quantum measurements

In this thesis we want to study the entanglement of joint quantum measurements, which
are used to measure the joint state of two ore more subsystem. The most famous and
commonly used entangled joint measurement is the Bell state measurement that is a
projection onto the four maximally entangled Bell states in Eq. (1.32). This type of en-
tangled measurement is crucial for a lot of quantum information protocols, such as tele-
portation [2], dense coding [3] and entanglement swapping [4]. As already mentioned,
we can view the Bell state measurement as the measurement corresponding to the maxi-
mally entangled two-qubit state. A projective measurement with the product-state basis
{|00> , |01> , |10> , |11>} is an example for a measurement with zero entanglement and
corresponds to the product state |00>. In a similar way, we want to ask, whether all
entangled states can be associated to a measurement basis. Specifically, we want to find
a basis, where all the basis states are LU-equivalent. The subject of LU-equivalence has
already been studied by investigating whether two quantum states are LU-equivalent
and by introducing a method to determine the connecting unitary [23, 24]. We want to
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explore a related but different scenario. For a joint quantum state |ψ> of n subsystems
of local dimension d, we examine the existence of dn strings, {Vj}dnj=1, of local unitary
transformations,

Vj =
nO

k=1

U
(j)
k (1.41)

where U
(j)
k is a d-dimensional unitary operator, such that the set of states |ψj> ≡ Vj |ψ>

form an orthonormal measurement basis, i.e. | <ψj|ψj,> | = δjj, . If this is possible, we
say that |ψ> admits a basis and we call the set of basis vectors {|ψj>}dnj=1 a |ψ>-basis.
The eigenstates of this projective joint measurement are therefore equally entangled and
we can ascribe a specific amount of entanglement to the measurement.

In the previous sections we introduced some classifications for the different kinds of
entanglement in pure states. In the following chapters we want to investigate whether
something similar is possible for entangled measurements.
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2 Are there states without a basis?

In this chapter we want to investigate, whether we can find an entangled state |ψ> that
cannot be associated to a measurement basis in a sense that all the basis states of the
measurement basis are LU-equivalent to |ψ>. We therefore analyse some of the simplest
systems with low dimensionality.

2.1 Bipartite systems

We begin with bipartite systems, specifically systems that are composed of two equally
dimensional subsystems. The simplest example is the composition of two qubits, hence
(n, d) = (2, 2).

2.1.1 Two qubits

In the previous chapter, we saw that the maximally entangled two qubit states are given
by the four Bell states in (1.32), which form the basis of the commonly used Bell state
measurement. We can easily check that they indeed are local unitary equivalent by only
using the Pauli operators: ,,ϕ+

>
= 11 ⌦ 11

,,ϕ+
>,,ϕ-> = Z ⌦ 11

,,ϕ+
>,, ψ+

>
= 11 ⌦X

,,ϕ+
>,, ψ-> = Z ⌦X

,,ϕ+
> (2.1)

The question is, if this is possible for every two qubit state |ψ>. We constructively
show that every such state admits a basis. We therefore first apply the state-dependent
local unitary transformations WA

 ψ ⌦ WB
 ψ that map |ψ>, via a Schmidt decomposition,

into the computational basis,

|ψS> = λ |00>+
√
1- λ2 |11> (2.2)

for some coefficient 0 ≤ λ ≤ 1. One can easily verify that the following construction
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transforms |ψS> into an orthonormal |ψ>-basis:

V j V j |ψS>
11 ⌦ 11 λ |00>+√

1- λ2 |11>
11 ⌦XZ λ |01> - √

1- λ2 |10>
XZ ⌦ Z λ |10>+√

1- λ2 |01>
XZ ⌦X λ |11> - √

1- λ2 |00>

(2.3)

Notice that once the state has been rotated into the Schmidt form |ψS>, the subsequent
unitaries in Eq. (2.3) do not depend on λ.

2.1.2 Four- and eight-dimensional subsystems

The construction for two qubits can be extended to four- and eight-dimensional subsys-
tems, hence (n, d) = (2, 4) and (n, d) = (2, 8). Again via Schmidt decomposition, we
can find state-dependent local unitaries that transform |ψ> into |ψS> =

∑d-1
l=0 λl |ll> for

some Schmidt coefficients
∑

l λ
2
l = 1, λl ≥ 0. We can now show that there is a set

of local unitaries that indeed leads to a |ψ>-basis independently of the specific Schmidt
coefficients.

Let the local dimension be either d = 4 or d = 8, and index the d2 basis elements
as (j̃, j) where j̃ = 0, 1, . . . , d - 1 and j = 1, 2, . . . , d. Let WA

 ψ ⌦ WB
 ψ be the state-

dependent local unitaries that transform the general state |ψ> into the Schmidt basis,
i.e. |ψS> ≡ WA

 ψ ⌦ WB
 ψ |ψ> =

∑d-1
l=0 λl |l, l>, with the Schmidt coefficients λl E R

satisfying
∑

l λ
2
l = 1. We now further decompose the individual d-dimensional registers

as a string of m qubits, writing |l> = |l1 . . . lm>. Thus, the Schmidt decomposed state
reads

|ψS> =
∑

l1,...,lm=0,1

λl |l1 . . . lm, l1 . . . lm> . (2.4)

Once the state has been put in the form (2.4), we apply a set of local unitaries that is
independent of the Schmidt coefficients. For d = 4 and j̃ = 0, the two sets of unitaries
read as follows:

j̃ j U
(j̃,j)
1 U

(j̃,j)
2 U

(j̃,j)
1 ⌦ U

(j̃,j)
2 |ψS>

0 1 11 ⌦ 11 11 ⌦ 11 λ00 |00, 00>+ λ01 |01, 01>
+λ10 |10, 10>+ λ11 |11, 11>

0 2 11 ⌦X 11 ⌦XZ λ00 |01, 01> - λ01 |00, 00>
+λ10 |11, 11> - λ11 |10, 10>

0 3 X ⌦ 11 XZ ⌦ Z λ00 |10, 10> - λ01 |11, 11>
-λ10 |00, 00>+ λ11 |01, 01>

0 4 X ⌦X XZ ⌦X λ00 |11, 11>+ λ01 |10, 10>
-λ10 |01, 01> - λ11 |00, 00>

(2.5)
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In addition, we define U (j̃,j)
1 := X j̃

4 U
(j̃=0,j)
1 and U

(j̃,j)
2 := U

(j̃=0,j)
2 , where Xd is the d-

dimensional shift-operator Xd =
∑d-1

l=0 |l + 1><l|. Note that, the unitaries U (j̃,j)
2 coincide

with the set of unitaries for two qubits given in Eq. (2.3) and do not depend on j̃. At
the same time, U (j̃=0,j)

1 are the same as U
(j̃,j)
2 where the Z gates are left out. We now

show that {U (j̃,j)
1 ⌦U

(j̃,j)
2 |ψS>}j̃,j is a basis of the bipartite Hilbert space. One can check

directly that the four states with j̃ = 0 stated in Eq. (2.5) above are pairwise orthogonal.
It is worth mentioning that we are exploiting the fact that U (j̃=0,j)

2 are the elements
of a state-independent construction for real superpositions, which we will introduce in
Chapter 4. To see the connection, note that the calculation for the state-independent
construction for an arbitrary real two-qubit state |ψ2> = λ00 |00>+λ01 |01>+λ10 |10>+
λ11 |11> reads as follows:

(11 ⌦ 11) |ψ2> = λ00 |00>+ λ01 |01>+ λ10 |10>+ λ11 |11> ,
(11 ⌦XZ) |ψ2> = λ00 |01> - λ01 |00>+ λ10 |11> - λ11 |10> ,
(XZ ⌦ Z) |ψ2> = λ00 |10> - λ01 |11> - λ10 |00>+ λ11 |01> ,
(XZ ⌦X) |ψ2> = λ00 |11>+ λ01 |10> - λ10 |01> - λ11 |00> .

(2.6)

Since these states are pairwise orthogonal for arbitrary real coefficients λl1l2 , the same
holds true for the states in Eq. (2.5). In addition, all of the states where j̃ = 0 are
elements of the subspace spanned by |00, 00>, |01, 01>, |10, 10> and |11, 11>. Hence,
they form a basis of this four-dimensional subspace. By shifting now the first system
we obtain a basis for the remaining orthogonal subspaces. More precisely, since we
defined U

(j̃,j)
1 = X j̃

4 U
(j̃=0,j)
1 the states where j̃ = 1 are esentially the same states

as the ones in Eq. (2.5) but with the first system shifted by one l → l ⌦ 1 (mod 4).
For example, λ00 |11, 10> - λ01 |00, 11> - λ10 |01, 00> + λ11 |10, 01> is the state that
corresponds to j̃ = 1 and j = 3. In this way, the four states where j̃ = 1 form a
basis of the subspace spanned by |01, 00>, |10, 01>, |11, 10> and |00, 11> (or all states
where |l + 1, l>). Analogously, the four states where j̃ = 2 (j̃ = 3) form a basis of
the subspaces spanned by the vectors with |l + 2, l> (|l + 3, l>). Altogether, the sixteen
states {U (j̃,j)

1 ⌦ U
(j̃,j)
2 |ψS>}j̃,j form a basis of the entire sixteen dimensional Hilbert

space.

A similar construction can be found for d = 8 by using the state-independent con-
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struction of three qubits. The set for j̃ = 0 reads as follows:

j̃ j U
(j̃,j)
1 U

(j̃,j)
2 U

(j̃,j)
1 ⌦ U

(j̃,j)
2 |ψS>

0 1 11 ⌦ 11 ⌦ 11 11 ⌦ 11 ⌦ 11 +λ000 |000, 000>+ λ001 |001, 001>
+λ010 |010, 010>+ λ011 |011, 011>
+λ100 |100, 100>+ λ101 |101, 101>
+λ110 |110, 110>+ λ111 |111, 111>

0 2 11 ⌦ 11 ⌦X Z ⌦ Z ⌦XZ +λ000 |001, 001> - λ001 |000, 000>
-λ010 |011, 011>+ λ011 |010, 010>
-λ100 |101, 101>+ λ101 |100, 100>
+λ110 |111, 111> - λ111 |110, 110>

0 3 11 ⌦X ⌦ 11 Z ⌦XZ ⌦ 11 +λ000 |010, 010>+ λ001 |011, 011>
-λ010 |000, 000> - λ011 |001, 001>
-λ100 |110, 110> - λ101 |111, 111>
+λ110 |100, 100>+ λ111 |101, 101>

0 4 X ⌦ 11 ⌦ 11 XZ ⌦ 11 ⌦ 11 +λ000 |100, 100>+ λ001 |101, 101>
+λ010 |110, 110>+ λ011 |111, 111>
-λ100 |000, 000> - λ101 |001, 001>
-λ110 |010, 010> - λ111 |011, 011>

0 5 11 ⌦X ⌦X Z ⌦X ⌦XZ +λ000 |011, 011> - λ001 |010, 010>
+λ010 |001, 001> - λ011 |000, 000>
-λ100 |111, 111>+ λ101 |110, 110>
-λ110 |101, 101>+ λ111 |100, 100>

0 6 X ⌦ 11 ⌦X X ⌦ 11 ⌦XZ +λ000 |101, 101> - λ001 |100, 100>
+λ010 |111, 111> - λ011 |110, 110>
+λ100 |001, 001> - λ101 |000, 000>
+λ110 |011, 011> - λ111 |010, 010>

0 7 X ⌦X ⌦ 11 X ⌦XZ ⌦ Z +λ000 |110, 110> - λ001 |111, 111>
-λ010 |100, 100>+ λ011 |101, 101>
+λ100 |010, 010> - λ101 |011, 011>
-λ110 |000, 000>+ λ111 |001, 001>

0 8 X ⌦X ⌦X X ⌦XZ ⌦X +λ000 |111, 111>+ λ001 |110, 110>
-λ010 |101, 101> - λ011 |100, 100>
+λ100 |011, 011>+ λ101 |010, 010>
-λ110 |001, 001> - λ111 |000, 000>

(2.7)

Again, we define U (j̃,j)
1 = X j̃

8 U
(j̃=0,j)
1 and U

(j̃,j)
2 = U

(j̃=0,j)
2 . The proof that this forms a

basis of the 64-dimension Hilbert space is completely analogous to the case of d = 4 be-
fore. The eight states for j̃ = 0 form a basis of the eight-dimensional subspace spanned
by |l1l2l3, l1l2l3> (for li = 0, 1). Applying the shift operator X8 to the first system,
one obtains bases of the other eight-dimensional orthogonal subspaces spanned by the
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vectors with
,,l + j̃, l

>
. This approach cannot (immediately) be generalized to higher

dimensions d = 2n, due to the lack of state-independent constructions for n ≥ 4 qubits
(see Chapter 4). However, there is in principle no reason to restrict the unitaries on the
second system to tensor products of single qubit Pauli gates as we do here. In principle,
we could also consider general permutations with suitably chosen signs such that all
terms cancel in this pairwise sense as above. Even when considering this larger class
of possibilities, an exhaustive search has been done without finding any additional con-
struction. Due to this, it seems unlikely that a construction exists in which the unitaries
do not depend on the Schmidt coefficients.

2.1.3 Two qutrits
The simplest bipartite system that has not been taken into account yet are two qutrits,
meaning two three-dimensional subsystems (n, d) = (2, 3). This appears to be consid-
erably different because during the process of research for this thesis, there have not
been found strings of local unitaries that bring the Schmidt decomposition |ψS> into a
basis without explicit dependence on the Schmidt coefficients. Nevertheless, a basis
might still be possible to construct by taking the Schmidt coefficients into account when
choosing the local unitaries. Actually, this seems to always be possible. To arrive at
this, a numerical method has been used. Let {|ϕj>}mj=1 be a set of states in a given
Hilbert space. These states are pairwise orthogonal if and only if they realise the global
minimum (zero) of the following objective function

f({ϕj}) ≡
∑
j /=j,

| <ϕj|ϕj,> |2. (2.8)

It is clear that pairwise orthogonal states realise the minimum of this function by defi-
nition. To prove the other direction we consider a set of states {|ϕj>}mj=1 that minimizes
f . Every addend in the sum of f is non-negative, i.e. | <ϕj|ϕj,> |2 ≥ 0. Therefore they
all have to vanish, which is equivalent to pairwise orthogonality.

For a given state |ψ>, we can numerically minimise f({ψj}) over all possible strings
{Vj}dnj=1 of local unitaries. To this end, the local unitaries U (j)

k have been parametrized
by d2 - 1 real variables using the scheme of Ref. [25]. For the two-qutrit case, 1000
pairs of Schmidt coefficients (λ1, λ2), which (up to local unitaries) fully specify the
state |ψ>, have been chosen randomly. In each case we initialised the basis states us-
ing the parametrized strings {ψj}dnj=1 = {Vjψ}dnj=1. Setting the first string of unitaries
to V1 = 11 and therefore |ψ1> = |ψ>, this results in 2(9 - 1) local unitaries that de-
pend on 2(9-1)2 free parameters. Using the MATLAB- nonlinear programming solver
“fminunc” with the method “sequential quadratic programming (sqp)”, we minimized
f({ψj}) with respect to the free parameters of the local unitaries. As an alternative, we
also used Wolfram Mathematica’s “NMinimize” with the methods “DifferentialEvolu-
tion” and “SimulatedAnnealing” for the minimization. Without exception, strings of
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local unitaries that yield a result below a selected precision threshold of f ≤ 10-6 have
been found.

2.2 Three qubits
Furthermore, we can also numerically investigate the case of three qubits, (n, d) =
(3, 2). This scenario requires a different approach than the previous cases since mul-
tipartite states have no Schmidt decomposition. As introduced in Section 1.4, for any
given three-qubit state |ψ>, there exist local unitary transformations that map it onto the
canonical form of (1.38), hence a |000> + b |011> + c |101> + d |110> + e |111> where
(b, c, d, e) are real numbers and a is a complex number [18, 19]. Hence, up to local uni-
taries, the state space (after normalisation) is characterised by five real numbers. From
the result of Perdomo [20] in Section 1.4 we also derived that there are states which
cannot be described without the complex factor. Later, we will provide an analytical
construction of a |ψ>-basis for the four-parameter family corresponding to restricting
a to be real. However, during the creation of this thesis, there has not been found an
analytical basis construction for general three-qubit states. Nevertheless we will conjec-
ture that it exists. To evidence this, the previously introduced numerical search method
has been employed. Again, 1000 normalised sets of coefficients (a, b, c, d, e) have been
chosen randomly and the minimal value of f has been searched over all the strings of
local qubit unitaries with the same methods as for two qutrits in the previous section. In
all cases, it has been found that f vanishes up to a selected precision of f ≤ 10-6.

2.3 More than three qubits
Given the above case studies, one might suspect that every pure quantum state admits a
basis. Interestingly, this seems not to be true. While some states of four qubits, (n, d) =
(4, 2), are found to admit a basis, for example a W state and doubly-excited Dicke state
[6], it appears that most four-qubit states do not admit a basis. Many different four-
qubit states have been sampled and it has been repeatingly attempted to numerically
find a basis via the minimisation of (2.8), also using several different search algorithms.
It was regularly found that the estimated minimum is multiple orders of magnitude
above our given precision threshold for a basis. For example, the minimum of f has
been searched for the state 2√

6
|W > +

√
2√
6
|GHZ4,2>, with 100 randomised initial points,

and it has never reached a value below f = 10-1, five orders of magnitude above the
previously mentioned precision threshold. It has been attempted to prove that no basis
exists by employing semidefinite outer relaxations of f over the set of dimensionally-
restricted quantum correlations [26] combined with a modified sampling of the state
and measurement space [27] and symmetrisation techniques [28] to efficiently treat the
large number of single-qubit unitaries featured in this problem. However, the conjecture
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has resisted these efforts. A guiding intuition for the impossibility of a basis is to note
that the number of free parameters is 3n(2n - 1) whereas the number of orthogonality
constraints (counting both the real and imaginary part) is 22n - 2n, and the latter is
larger than the former only when n ≥ 4. Also, we numerically minimized f for the
same state, with a lesser amount of required orthonormal states than a full basis. The
numerics suggest that N = 12 orthonormal states are possible to find, while for N = 13
we never reached below f = 10-3. This is also in line with the above parameter-
counting-argument. For N orthonormal states and n = 4 qubits, we have 12(N - 1)
free parameters and N2 - N orthogonality constraints. The latter is larger than the
former for N ≥ 13.

Furthermore, if an n-qubit state |ψ> does not admit a basis, then the (n + 1)-qubit
state |ψ,> = |ψ> ⌦ |0> also does not admit a basis. By contradiction, suppose there are
2n+1 unitaries V ,

j = Vj ⌦ U
(j)
n+1 such that |<ψ,|(V ,

j )
†V ,

k|ψ,>| = δjk Aj, k E {1, ..., 2n+1}.
Divide the 2n+1 states U

(j)
n+1 |0> into two sets such that two orthogonal vectors are not

in the same set (e.g. the northern and southern hemisphere of the Bloch ball). Con-
sider the set that contains at least as many elements as the other one, hence, at least
2n elements. By construction, these states cannot be distinguished on the last qubit,
|<0|U (j)†

n+1U
(k)
n+1|0>| /= 0. Since |<ψ,|(V ,

j )
†V ,

k|ψ,>| = |<ψ|V †
j Vk|ψ>| · |<0|U (j)†

n+1U
(k)
n+1|0>|, we

must have |<ψ|V †
j Vk|ψ>| = δjk for all of those pairs, which contradicts that |ψ> does

not admit a basis. By induction, this argument shows that if our above conjecture holds,
namely that some four-qubit states do not admit a basis, then the same holds for any
number of qubits larger than four.
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3 Special n-qubit states that
correspond to a basis

Since not all pure quantum states admit a basis, and this seems to be typical rather than
exceptional for four qubits, it is interesting to ask whether some distinguished families
of n-qubit states can nevertheless admit a basis. This is well-known to be the case
for n-qubit GHZ-states and graph-states since they are locally maximally entanglable
(LME) [21]. As we considered in Section 1.5, every n-qubit LME-state can form an
orthonormal basis {U i1

1 ⌦ U i2
2 ⌦ ... ⌦ U in

n |ψ> |il = 0, 1} by using only n local unitary
operators Ul. A GHZ-state of n subsystems of dimension d can be written as

|GHZn,d> = 1√
d

d-1∑
k=0

|k>⌦n . (3.1)

The corresponding strings of local unitaries are

Vj = Zj1
d ⌦Xj2

d ⌦ . . .⌦Xjn
d |GHZn,d> , (3.2)

where j = j1 . . . jn E {0, . . . , d - 1}n and where Zd =
∑d-1

l=0 e
2πi
d

l |l><l| and Xd =∑d-1
l=0 |l + 1><l| are generalised Pauli operators.
More interestingly, a positive answer is also possible for the other three-qubit maxi-

mally entangled states and their n-qubit generalisations: the n-qubit W -state. We can
define it similar to Dür et. al. [16] as

|Wn> = 1√
n

∑
σ

σ(|0>⌦n-1 |1>) , (3.3)

where σ runs over all permutations of the position of “1”. A construction for the n-qubit
W -state was given for the purpose of entanglement distillation in Ref. [5] and in Ref. [6]
where they also proved the existence of a basis for some Dicke-states, which are defined
by ,,Dk

n

>
=

(
n

k

)- 1
2 ∑

σ

σ(|0>⌦n-k |1>⌦k) , (3.4)

where σ runs over all permutations of the positions of k excitations. Besides the n-qubit
W -state they prove the existence of Dicke-state-bases for all systems with n ≤ 5 and
for (n, k) = (6, 3).
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We will now introduce a different, quite convenient, inductive construction scheme
for the n-qubit W -state. Note that |W1> = |1> and that a |W1>-basis is obtained from
the unitaries {11, X}. Now we apply induction. Consider that the strings {V (n)

j }2nj=1

generate a |Wn>-basis. One can then construct a basis for n + 1 qubits as follows. For
half of the basis elements, namely j = 1, . . . , 2n, define V

(n+1)
j = V

(n)
j ⌦ 11 and for the

other half, namely j = 2n +1, . . . , 2n+1, define V (n+1)
j = (V

(n)
j ⌦X)

xn
k=1 Z ⌦ 11. We

can now prove that {V (n+1)
j |Wn+1>}j is a W -basis.

As defined in Eq. (3.3) the W -states beginning at the lowest number of subsystems
are:

|W1> ≡ |1>
|W2> ≡ 1√

2
(|01>+ |10>)

|W3> ≡ 1√
3
(|001>+ |010>+ |100>)

|W4> ≡ 1

2
(|0001>+ |0010>+ |0100>+ |1000>)

... (3.5)

Note that for one and two qubits, the definition is only introduced for sake of conve-
nience in the induction. The states |W1> and |W2> simply describe the up-state of a
single qubit and the | ψ+>-Bell-state of two qubits. In addition to the general form in
Eq. (3.3), it is also useful for our proof to write the state recursively as

|Wn+1> =
√

n

n+ 1
|Wn> ⌦ |0>+ 1√

n+ 1
|0>n ⌦ |1> (3.6)

We will write the local unitaries in all the strings V
(n)
j for a particular number of

particles n as V (n)
j = U

(j)
1 ⌦ U

(j)
2 ⌦ . . . ⌦ U

(j)
n . Clearly, if we apply the local unitaries

V
(1)
1 = U

(1)
1 = 11 and V

(1)
2 = U

(2)
1 = X to |W1> we generate the trivial one-qubit

W -basis {|0> , |1>}. Assume now that the local unitaries {U (j)
k } for k = 1, . . . n and

j = 1, . . . , 2n yield a |Wn>-basis. We will now show that under this assumption we can
construct a basis for |Wn+1> and hence it follows from induction that a W -basis exists
for any number of qubits.
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We illustrate the induction step as follows,

U
(1)
1 ⌦ U

(1)
2 ⌦ . . . ⌦ U

(1)
n ⌦ 11

U
(2)
1 ⌦ U

(2)
2 ⌦ . . . ⌦ U

(2)
n ⌦ 11

...
...

...
U

(2n)
1 ⌦ U

(2n)
2 ⌦ . . . ⌦ U

(2n)
n ⌦ 11

U
(1)
1 Z ⌦ U

(1)
2 Z ⌦ . . . ⌦ U

(1)
n Z ⌦ X

U
(2)
1 Z ⌦ U

(2)
2 Z ⌦ . . . ⌦ U

(2)
n Z ⌦ X

...
...

...
U

(2n)
1 Z ⌦ U

(2n)
2 Z ⌦ . . . ⌦ U

(2n)
n Z ⌦ X

. (3.7)

We see that for the first 2n basis elements, we extend the unitaries for n qubits by
tensoring with 11 for qubit number n + 1. For the latter 2n basis elements, we extend
the unitaries for n qubits by multiplying all of them from the right by Z and finally
tensoring with X for qubit number n+1. As usual, we now write the string of unitaries
associated to each row as V

(n+1)
j for j = 1, . . . , 2n+1. We similarly use V

(n)
j for the

unitary strings for the case of n qubits.
To see that this yields a basis, we first show that the first 2n basis elements (upper

block of table, j = 1, . . . , 2n) are orthogonal. For this purpose, we use the recursion
formula (3.6) to write for j /= j,

<Wn+1|(V (n+1)
j, )†V (n+1)

j |Wn+1> = n

n+ 1
<Wn0|(V (n)

j, )†V (n)
j ⌦ 11|Wn0>

+
1

n+ 1
<0 . . . 01|(V (n)

j, )†V (n)
j ⌦ 11|0 . . . 01>

+

√
n

n+ 1
<Wn0|(V (n)

j, )†V (n)
j ⌦ 11|0 . . . 01>

+

√
n

n+ 1
<0 . . . 01|(V (n)

j, )†V (n)
j ⌦ 11|Wn0> = 0

The first term is zero for all j, /= j due to the induction hypothesis. The third and fourth
terms are zero due to orthogonality in the last qubit register. The second term is zero
because for every j, /= j there exists at least one qubit register k for which U

(j,)
k and

U
(j)
k are composed of different numbers of bit-flips (X). The latter follows from the

initial condition of using {11, X} to construct the |W1>-basis.
The same procedure will analogously show that the latter 2n basis elements (lower

block of the table, j = 2n + 1, . . . , 2n+1) are orthogonal. We are left with showing that
every overlap between the upper and lower block, i.e. with any j, = 1, . . . , 2n and any
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j = 2n + 1, . . . , 2n+1, also vanishes. For this we have

<Wn+1|(V (n+1)
j, )†V (n+1)

j |Wn+1> = n

n+ 1
<Wn0|

[
(V

(n)
j, )†V (n)

j ⌦X
] nO

k=1

Z ⌦ 11|Wn0>

+
1

n+ 1
<0 . . . 01|

[
(V

(n)
j, )†V (n)

j ⌦X
] nO

k=1

Z ⌦ 11|0 . . . 01>

+

√
n

n+ 1
<Wn0|

[
(V

(n)
j, )†V (n)

j ⌦X
] nO

k=1

Z ⌦ 11|0 . . . 01>

+

√
n

n+ 1
<0 . . . 01|

[
(V

(n)
j, )†V (n)

j ⌦X
] nO

k=1

Z ⌦ 11|Wn0>

Note that
xn

k=1 Z ⌦ 11 |Wn0> = - |Wn0> and
xn

k=1 Z ⌦ 11 |0 . . . 01> = |0 . . . 01>. The
first and second terms are both zero due to orthogonality in the final qubit register. We
thus have

<Wn+1|(V (n+1)
j, )†V (n+1)

j |Wn+1> =
√
n

n+ 1
<Wn|(V (n)

j, )†V (n)
j |0 . . . 0>

-
√
n

n+ 1
<0 . . . 0|(V (n)

j, )†V (n)
j |Wn>

=

√
n

n+ 1
<Wn| (V (n)

j, )†V (n)
j - (V

(n)
j )†V (n)

j, |0 . . . 0> = 0.

(3.8)

The last equality follows from the fact that it is sufficient, for given (j, j,), that there exist
some register index k such that (U (j,))†kU

(j)
k - (U (j))†kU

(j,)
k = 0 in order for the overlap

to vanish. This is always the case because due to our construction (see initial condition
and the table), for every two unitaries there is at least one register k where the single-
qubit unitaries differ by X , meaning that either (U (j)

k , U
(j,)
k ) = (11, X)/(Z,XZ), or the

same with j ↔ j, is true. The condition above is satisfied by all of these combinations.
Hence we conclude that the proposed construction satisfies

<Wn+1|(V (n+1)
j )†V (n+1)

j, |Wn+1> = δjj, (3.9)

and therefore yields a W -state basis for any number of qubits.
Note that this construction is not limited to the standard Wn states. It also creates an

orthonormal basis from less entangled states that consists of the same product states as
the Wn state, not in a uniform superposition but with arbitrary real coefficients:,,,W̃n

<
=
∑
σ

λσσ
(|0>⌦n-1 |1>) , λσ E R,

∑
σ

λ2
σ = 1 . (3.10)

The proof for the construction works exactly the same for this state. We therefore found
unitaries that construct a basis from each state in the family defined by Eq. 3.10, in-
dependently of the coefficients λσ. This realisation leads to the question, if there are
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strings of local unitary operators that, independently of the specific states, generate a
basis from every state of the Hilbert space. This will be addressed in the following
chapter.
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4 State independent constructions
for restricted spaces

So far, we have considered whether a specific state can be associated to a specific mea-
surement. In other words, the unitary constructions have been state-dependent. We now
go further and introduce a complementary concept, namely whether there exist strings
of local unitaries {Vj} that can transform any state in a space of states S into a basis,
i.e. strings of local unitaries that satisfy

Aψ E S, |<ψ|V †
j Vj, |ψ>| = δjj, . (4.1)

Naturally, this state-independent notion of basis construction is much stronger than the
previously considered state-dependent notion. In the most ambitious case, when we
choose the space S to be the entire Hilbert space of n subsystems of dimension d,
i.e. S ≈ (Cd)⌦n, then a state-independent construction cannot exist. In fact, not even
two orthogonal vectors can be state-independently constructed for the full quantum state
space. To show this, we can w. l. g. set V1 = 11 and assume that there exist local unitaries
{Uk} such that |ψ1> = |ψ> and |ψ2> =

xn
k=1 Uk |ψ> are orthogonal for all |ψ>. Focus

now on the particular state |ψ> =
xn

k=1 |µk> where |µk> is some eigenvector of the
unitary Uk. Since the eigenvalues of a unitary are complex phases, written eiφk for Uk

and |µk>, we obtain

|ψ1> =
nO

k=1

|µk> ,

|ψ2> = ei
∑n

k=1 φk

nO
k=1

|µk> .
(4.2)

These two states are evidently not orthogonal and hence we have a contradiction.
Interestingly, the situation changes radically if we limit our state-independent inves-

tigation to all quantum states in a real-valued Hilbert space. That is, S ≈ (Rd)⌦n. Such
real quantum systems have also been contrasted in the literature with their complex
counterparts [29, 30, 31]. Let us momentarily ignore the n-partition structure of our
Hilbert space and simply consider two real states |ψ1> = |ψ> and |ψ2> = U |ψ> obtained
from a given real target state |ψ> and a fixed (ψ-independent) unitary U . It holds that ψ1

and ψ2 are orthogonal if and only if U is skew-symmetric. To prove this, assume first the
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skew-symmetry property U = -UT . Since for real states <ψ1|ψ2> = <ψ2|ψ1>* is equiv-
alent to <ψ|U |ψ> = <ψ|U †|ψ>* = <ψ|UT |ψ>, skew-symmetry implies that <ψ1|ψ2> = 0.
Conversely, assume that <ψ|U |ψ> = 0 for all real-valued |ψ>. Choosing in particular
|ψ> = |k> where k = 0, . . . , dn - 1 denotes a product state, it follows that all diagonal
elements of U must vanish. Then, choose |ψ> = 1√

2
(|i> + |j>) for any pair i /= j. This

yield Uii +Ujj +Uij +Uji = 0, but since we know that the diagonals vanish we are left
with just Uij = -Uji which defines a skew-symmetric operator.

Returning to our n-partitioned real Hilbert space, and still w. l. g. taking V1 = 11, the
above result demands that we find local unitaries such that

U1 ⌦ . . .⌦ Un = -UT
1 ⌦ . . .⌦ UT

n . (4.3)

This is only possible if UT
k = ±Uk. Hence, all local unitaries must be either symmetric

or skew-symmetric, and the number of the latter must be odd. When extended from two
orthogonal states to a whole basis, we require that this property holds for every pair of
distinct labels (j, j,) in the basis. In other words, we require that every string (Vj)

†Vj,

with j /= j, is skew-symmetric.
The question becomes whether the above condition can be satisfied for a given sce-

nario. Consider it first for qubit systems (d = 2). We can show that the set of complex
qubit unitaries that are either symmetric or skew-symmetric and whose products are
again either symmetric or skew-symmetric, must obey a simple structure; they are es-
sentially equivalent to the four Pauli-type operators P ≡ {11, X, Z,XZ}. First, note
that the set is finite since there are exactly 2n basis states. Next, we observe that the
identity 11 has to be within the set P since we demand that V1 = 11. Furthermore, we
can argue that the gate

XZ =

(
0 -1
1 0

)
has to be within the set as well. If we neglect a global phase, it is the only skew sym-
metric gate, and hence the only one that maps every real qubit state to its orthogonal
state. More precisely, if it is not used on the i-th qubit at least once, one can choose a
real qubit state |ϕi> such that none of the gates in P map |ϕi> to its orthogonal vector.
Hence if we apply the state-independent construction to the real-valued product state
|ϕ> = |0>1 ⌦ . . . |0>i-1 ⌦ |ϕi> ⌦ |0>i+1 ⌦ . . . ⌦ |0>n none of the resulting 2n states are
distinguishable on the i-th qubit, which is impossible if these states should form a basis
of product states. Therefore, the gate XZ has to be within the set P . Here we can also
elaborate a bit on why the problem of state-independent transformations that we showed
in (4.2) does not apply, if we restrict the states to be real. The eigenstates of XZ are
|i±> = (|0> ± i |1>)/√2. On of them is shown in in Fig. 4.1 together with the space of
real superpositions |ψr> of the computational basis. The states |i±> are not real, which
is why (4.2) is not applicable. All real superpositions on the other hand, are rotated by
XZ to their orthogonal state.
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|ψr>

|i+>

z

x

y

Figure 4.1: The skew-symmetric unitary gate XZ has the eigenstates |i±>, which rep-
resent the rotation axis of the gate. The application of XZ therefore rotates
every real superposition about the angle π to its orthogonal state.

Apart from the gates 11 and XZ we can constrain which other qubit unitaries can be
in the set P . We know that if we demand V1 = 11, every string of local unitaries (Vj)
and their products (Vj)

†Vj, with j /= j, have to be skew-symmetric. As a result, the
local unitaries on each subsystem (hence, the unitaries in the set P) and also all their
products have to be either symmetric or skew-symmetric. By neglecting a global phase,
the general form of a unitary operator can be written as:

U =

(
cos (θ)eiα sin (θ)eiβ

- sin (θ)e-iβ cos (θ)e-iα

)
. (4.4)

The only skew-symmetric 2x2 unitary is, up to an irrelevant global phase, the Pauli-type
operator XZ, which we already found to be necessarily in the set P . All the symmetric
matrices of this form can be written as:

U =

(
cos (θ)eiα i sin (θ)
i sin (θ) cos (θ)e-iα

)
. (4.5)

If the gate U is in P , it is at some point multiplied with the gate XZ since the operator
XZ is used at least once on the i-th qubit. Since we know that the result of this product
has to be again either symmetric or skew-symmetric, we obtain that α = π/2, 3π/2 due
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to:

(XZ)†U =

(
0 1

-1 0

)(
cos (θ)eiα i sin (θ)
i sin (θ) cos (θ)e-iα

)
=

(
i sin (θ) cos (θ)e-iα

- cos (θ)eiα -i sin (θ)

)
.

(4.6)

The two possibilities for α = π/2, 3π/2 correspond to the two solutions

U1 =

(
cos (θ) sin (θ)
sin (θ) - cos (θ)

)
, U2 =

(
sin (θ) - cos (θ)

- cos (θ) - sin (θ)

)
. (4.7)

We left the irrelevant global factor i for simplicity. Considering the additional degree of
freedom of θ, we can restrict to the first class of solutions U1 since the second class U2

can be obtained by shifting θ by π/2. Hence, if we add a gate U to the set P , it has to be
of the form given by U1 above. Now if we add two such gates to the set P , the product
of U1 with another valid matrix U ,

1 is

U †
1U

,
1 =

(
cos (θ) sin (θ)
sin (θ) - cos (θ)

)(
cos (θ,) sin (θ,)
sin (θ,) - cos (θ,)

)
=

=

(
cos (θ) cos (θ,) + sin (θ) sin (θ,) cos (θ) sin (θ,)- sin (θ) cos (θ,)
sin (θ) cos (θ,)- cos (θ) sin (θ,) cos (θ) cos (θ,) + sin (θ) sin (θ,)

)
=

=

(
cos (θ - θ,) - sin (θ - θ,)
sin (θ - θ,) cos (θ - θ,)

)
If both, U1 and U ,

1, are in P , this product has to be again either symmetric, which is true
if θ = θ, or skew-symmetric, which is true if θ = θ, + π/2. (Note that, also θ = θ, + π
and θ = θ,+3π/2 are possible solutions but we do not have to consider them since they
just differ by an irrelevant global factor of (-1) in one of the two unitaries.) Hence, U ,

1

is either U1 or the unitary U2 stated above. Hence, for each single-qubit subsystem, we
can only use a set of operators P ≡ {11, U1, U2, XZ} for our basis construction.

In a final step, we can show that we can restrict also θ. To see this, suppose a state-
independent construction exists where we use the gates from the set P ≡ {11, U1, U2, XZ}.
Now consider the construction where each gate U1 is replaced with W †U1W , each gate
U2 with W †U2W , each gate XZ with W †XZW and each gate 11 with W †11W , where:

W =

(
cos (α) - sin (α)
sin (α) cos (α)

)
(4.8)

for some freely chosen parameter α. This also has to be a state-independent construc-
tion for any state with real coefficients, since W is a map from real states to real
states, and all inner products between the basis states remain the same under this lo-
cal transformation. Hence, if a state-independent construction exists with the gate set
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P ≡ {11, U1, U2, XZ}, another state-independent construction with the gate set P , ≡
{W †11W,W †U1W,W †U2W,W †XZW} has to exist as well. Choosing α = θ/2, the set
P , ≡ {W †11W,W †U1W,W †U2W,W †XZW} becomes exactly P , ≡ {11, X, Z,XZ},
which concludes the proof.

Thus, if a state-independent construction exists, we can restrict to selecting one of
these four operators for each of our local unitaries U (j)

k .

4.1 Two and three qubits

Interestingly, for the case of two qubits, (n, d) = (2, 2), a state-independent construc-
tion is possible. It is in fact given by the unitary transformations Eq. (2.3). One can
straightforwardly verify that the above criterion is satisfied, i.e. all local unitaries are
selected from P and all pairs of products of unitary strings in (2.3) are skew-symmetric.
Alternatively, one can easily verify that (2.3) maps every state

∑
i,j=0,1 αij |ij> into a

basis, for any real coefficients αij .

Vj Vj |ψS>
11 ⌦ 11 α00 |00>+ α01 |01>+ α10 |10>+ α11 |11>

11 ⌦XZ α00 |01> - α01 |00>+ α10 |11> - α11 |10>
XZ ⌦ Z α00 |10> - α01 |11> - α10 |00>+ α11 |01>
XZ ⌦X α00 |11>+ α01 |10> - α10 |01> - α11 |00>

(4.9)

Furthermore, by the same token, a state-independent basis is also possible for every
real state of three qubits, (n, d) = (3, 2). One explicit construction that satisfies our
necessary and sufficient criterion is the following set of eight strings of local unitaries
that maps every real state

∑
i,j,k=0,1 αijk |ijk> into a basis
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Vj Vj |ψS>
11 ⌦ 11 ⌦ 11 +α000 |000>+ α001 |001>+ α010 |010>+ α011 |011>

+α100 |100>+ α101 |101>+ α110 |110>+ α111 |111>
Z ⌦ Z ⌦XZ +α000 |001> - α001 |000> - α010 |011>+ α011 |010>

-α100 |101>+ α101 |100>+ α110 |111> - α111 |110>
Z ⌦XZ ⌦ 11 +α000 |010>+ α001 |011> - α010 |000> - α011 |001>

-α100 |110> - α101 |111>+ α110 |100>+ α111 |101>
XZ ⌦ 11 ⌦ 11 +α000 |100>+ α001 |101>+ α010 |110>+ α011 |111>

-α100 |000> - α101 |001> - α110 |010> - α111 |011>
Z ⌦X ⌦XZ +α000 |011> - α001 |010>+ α010 |001> - α011 |000>

-α100 |111>+ α101 |110> - α110 |101>+ α111 |100>
X ⌦ 11 ⌦XZ +α000 |101> - α001 |100>+ α010 |111> - α011 |110>

+α100 |001> - α101 |000>+ α110 |011> - α111 |010>
X ⌦XZ ⌦ Z +α000 |110> - α001 |111> - α010 |100>+ α011 |101>

+α100 |010> - α101 |011> - α110 |000>+ α111 |001>
X ⌦XZ ⌦X +α000 |111>+ α001 |110> - α010 |101> - α011 |100>

+α100 |011>+ α101 |010> - α110 |001> - α111 |000>

(4.10)

4.2 More than three qubits

Two- and three-qubits are interesting cases because they are exceptional. As we now
show, there exists no state-independent construction for real states of four or more
qubits. We first prove this for n = 4 and then show that this implies impossibility
also for n > 4. The four-qubit case contains 16 strings of unitaries and we know that
each local unitary can w. l. g. be selected from P . Since we seek a state-independent
construction, we can momentarily consider only the state |0000>. In order for it to be
mapped into a basis, we see that Z acts trivially on every register and therefore each one
of the 16 combinations of bit-flip or identity operators, {Xc1 ⌦Xc2 ⌦Xc3 ⌦Xc4} for
c1, c2, c3, c4 E {0, 1}, must be featured in exactly one of the 16 unitary strings {Vj}16j=1.
Let us now look only at six of these strings, namely those corresponding to having zero
bit-flips (1 case), one bit-flip (4 cases) and four bit-flips (1 case). W. l. g. fixing V1 = 11
(zero bit-flips), the strings take the form

V1 11 ⌦ 11 ⌦ 11 ⌦ 11
V2 XZr11 ⌦ Zr12 ⌦ Zr13 ⌦ Zr14

V3 Zr21 ⌦ XZr22 ⌦ Zr23 ⌦ Zr24

V4 Zr31 ⌦ Zr32 ⌦ XZr33 ⌦ Zr34

V5 Zr41 ⌦ Zr42 ⌦ Zr43 ⌦ XZr44

V6 XZr51 ⌦ XZr52 ⌦ XZr53 ⌦ XZr54

, (4.11)

44



where rij E {0, 1} represent our freedom to insert a Z operator and thus realise the
two relevant elements of P . Since every row must be skew-symmetric and the only
skew-symmetric element in P is XZ, we must have r11 = r22 = r33 = r44 = 1 and
r51 + r52 + r53 + r54 = 1 where addition is modulo two. Moreover, every product of
two rows must be skew-symmetric, i.e. the product must have an odd number of XZ
operations. For the four middle rows, this implies rij + rji = 1 for distinct indices
i, j E {1, 2, 3, 4}. For the products V †

6 Vj for j = 2, 3, 4, 5, the conditions for skew-
symmetry respectively become

r12 + r13 + r14 + r52 + r53 + r54 = 1

r21 + r23 + r24 + r51 + r53 + r54 = 1

r31 + r32 + r34 + r51 + r52 + r54 = 1

r41 + r42 + r43 + r51 + r52 + r53 = 1. (4.12)

Summing these four equations and using the previously established skew-symmetry
conditions, one can cancel out all degrees of freedom rij and arrive at the contradiction
1 = 0. Hence, we conclude that the state-independent basis construction for four qubits
is impossible.

For the case of five qubits, we can again assume w. l. g. that the 32 combinations of
bit-flip or identity operators, {Xc1⌦Xc2⌦Xc3⌦Xc4⌦Xc5} for c1, c2, c3, c4, c5 E {0, 1}
must be featured in exactly one of the 32 unitary strings since the state |00000> has to
be mapped into an orthonormal basis. Suppose there is a state-independent construction
that maps every real-valued five-qubit state into a basis, in especially any state of the
form |ψ> ⌦ |0>, where |ψ> is an arbitrary real-valued four qubit state. Now consider
the 16 strings where c5 = 0. Since the fifth qubit is always mapped to itself, it has
to hold that the first four qubits are pairwise distinguishable. However, this implies a
state-independent construction for four qubits which is in contradiction to the above. By
induction, this implies that no state-independent construction can exist whenever n ≥ 4.

4.3 Odd-dimensional systems

The possibility of state-independent constructions for real-valued bi- and tri-partite sys-
tems draws heavily on the simple structure of skew-symmetric qubit unitaries. If we
consider real-valued systems of dimension d > 2, the situation changes consider-
ably. Using our necessary and sufficient condition, it follows immediately that state-
independent constructions are impossible in all odd dimensions, i.e. when (n, d) =
(n, 2m + 1). This stems from the fact that there exists no skew-symmetric unitary ma-
trix in odd dimensions. To see that, simply note that if A is skew-symmetric then

det(A) = det
(
AT

)
= det(-A) = (-1)2m+1 det(A) = - det(A) , (4.13)
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and hence
det(A) = 0 , (4.14)

but that contradicts unitarity because the determinant of a unitary has unit modulus.
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5 Conclusion and Outlook

(2,2,R) (2,2,C) (3,2,R) (3,2,C)
State-dependent

construction - - - (-)

State-independent
construction - x - x

(4,2,R) (2,3,C) (2,4 or 8,C) (n, 2m+ 1,R)
State-dependent

construction (x) (-) - ---
State-independent

construction x x x x

Table 5.1: Overview of results. The first row indicates the scenario: (n, d,S) gives
particle number, dimension and the type of state space respectively. The
symbol -indicates the existence of a basis under local unitaries. The symbol
xindicates that there in general can be no basis under local unitaries, i.e. at
least one state admits no basis. Paranthesis indicates that the result is obtained
from numerical search. The symbol --- indicates that no investigation was
made.

In this thesis we have investigated the correspondence between entangled states and
entangled joint measurements. We examined, whether there exist sets of local unitary-
transformations that map a state to an iso-entangled basis. Furthermore, we explored the
possibility of generating an entangled measurement basis without prior knowledge of
the specific state. Similar to the entanglement of states, we found that the entanglement
of joint LU-equivalent measurements strongly depends on both particle number and
local dimension. The analytical and numerical results of our research are summarised
in Table 5.1 [1].

The most obvious open problem left by this work is to prove that there exist four-qubit
states that do not admit a local unitary-equivalent basis. Since our numerics suggest that
nearly all four qubit states fall in that category, it would also be interesting to examine,
whether it is possible to bound the relative Hilbert space volume of such states without
a basis. Since we proved that it is not possible for general states, we had to restrict the
Hilbert space to real state vectors for the state-independent basis constructions. How-
ever, maybe there exist state-independent unitaries also for other special spaces. One
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example that could be studied is the set of states with a known entanglement entropy.
State-independent constructions evidently exist for product states and maximally entan-
gled states. Another open problem of experimental relevance is to determine which of
of the theoretical measurements presented in this work are possible to realise in a lab.

The entanglement of joint quantum measurements is of structural and foundational
interest. Exploring them has the potential to broaden the understanding of quantum ef-
fects since it may lead to new approaches for observing quantum systems. One example
are quantum networks, where entangled joint measurements have played a fundamental
role in characterizing new forms of nonlocality that were introduced recently [32, 33,
34]. Measurements that have been used in this context are the so called Elegant Joint
Measurements [35, 36]. They also have been realised in various experiments [37, 38,
39] in terms of quantum correlations and communication, which also showcase the rele-
vance of more general entangled measurements beyond the Bell-State measurement for
usage in quantum applications. Elegant Joint Measurements can be viewed as a mea-
surement that corresponds to a partially entangled state, but it also has the property that
the single qubit reduced states of the four basis states form a tetrahedron in the Bloch-
sphere. This goes beyond the requirements in this thesis, but our results may be useful
to find measurements with similar symmetric properties.

A known disadvantage of GHZ-based entanglement swapping protocols is that they
are very sensible to particle loss, since this causes the reduced state to be separable.
Other entangled states which are locally inequivalent to the GHZ-state, like e.g. the W-
state, maintain their entanglement under the loss of a particle. Entangled joint measure-
ments, constructed from states with specific properties, may therefore be able to open
up new approaches towards more noise-resilient entanglement swapping protocols.
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[4] M. Żukowski et al. ““Event-ready-detectors” Bell experiment via entanglement
swapping”. In: Phys. Rev. Lett. 71 (26 Dec. 1993), pp. 4287–4290. DOI: 10.
1103/PhysRevLett.71.4287. URL: https://link.aps.org/doi/
10.1103/PhysRevLett.71.4287.

[5] Akimasa Miyake and Hans J. Briegel. “Distillation of Multipartite Entangle-
ment by Complementary Stabilizer Measurements”. In: Phys. Rev. Lett. 95 (22
Nov. 2005), p. 220501. DOI: 10.1103/PhysRevLett.95.220501. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.95.
220501.

[6] Yu Tanaka, Damian Markham, and Mio Murao. “Local encoding of classical in-
formation onto quantum states”. In: Journal of Modern Optics 54.13-15 (2007),
pp. 2259–2273. DOI: 10.1080/09500340701403301. URL: https://
doi.org/10.1080/09500340701403301.

[7] Armin Tavakoli et al. “Bell nonlocality in networks”. In: Reports on Progress in
Physics 85.5 (Mar. 2022), p. 056001. DOI: 10.1088/1361-6633/ac41bb.
URL: https://dx.doi.org/10.1088/1361-6633/ac41bb.

[8] Armin Tavakoli et al. “Correlations in Entanglement-Assisted Prepare-and-Measure
Scenarios”. In: PRX Quantum 2 (4 Dec. 2021), p. 040357. DOI: 10.1103/
PRXQuantum.2.040357. URL: https://link.aps.org/doi/10.
1103/PRXQuantum.2.040357.

49

https://doi.org/10.48550/ARXIV.2301.13285
https://arxiv.org/abs/2301.13285
https://arxiv.org/abs/2301.13285
https://doi.org/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.69.2881
https://link.aps.org/doi/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevLett.71.4287
https://doi.org/10.1103/PhysRevLett.71.4287
https://link.aps.org/doi/10.1103/PhysRevLett.71.4287
https://link.aps.org/doi/10.1103/PhysRevLett.71.4287
https://doi.org/10.1103/PhysRevLett.95.220501
https://link.aps.org/doi/10.1103/PhysRevLett.95.220501
https://link.aps.org/doi/10.1103/PhysRevLett.95.220501
https://doi.org/10.1080/09500340701403301
https://doi.org/10.1080/09500340701403301
https://doi.org/10.1080/09500340701403301
https://doi.org/10.1088/1361-6633/ac41bb
https://dx.doi.org/10.1088/1361-6633/ac41bb
https://doi.org/10.1103/PRXQuantum.2.040357
https://doi.org/10.1103/PRXQuantum.2.040357
https://link.aps.org/doi/10.1103/PRXQuantum.2.040357
https://link.aps.org/doi/10.1103/PRXQuantum.2.040357


[9] Jef Pauwels et al. “Entanglement in prepare-and-measure scenarios: many ques-
tions, a few answers”. In: New Journal of Physics 24.6 (June 2022), p. 063015.
DOI: 10.1088/1367-2630/ac724a. URL: https://dx.doi.org/
10.1088/1367-2630/ac724a.

[10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2010. DOI:
10.1017/CBO9780511976667.

[11] K. Kraus et al. States, Effects, and Operations: Fundamental Notions of Quan-
tum Theory. Lecture Notes in Physics. Springer Berlin Heidelberg, 1983. ISBN:
9780387127323. URL: https://books.google.at/books?id=fRBBAQAAIAAJ.

[12] Charles H. Bennett et al. “Exact and asymptotic measures of multipartite pure-
state entanglement”. In: Phys. Rev. A 63 (1 Dec. 2000), p. 012307. DOI: 10.
1103/PhysRevA.63.012307. URL: https://link.aps.org/doi/
10.1103/PhysRevA.63.012307.

[13] Runyao Duan et al. “Distinguishability of Quantum States by Separable Oper-
ations”. In: IEEE Transactions on Information Theory 55.3 (2009), pp. 1320–
1330. DOI: 10.1109/TIT.2008.2011524.

[14] Eric Chitambar et al. “Everything You Always Wanted to Know About LOCC
(But Were Afraid to Ask)”. In: Communications in Mathematical Physics 328.1
(May 2014), pp. 303–326. ISSN: 1432-0916. DOI: 10.1007/s00220-014-
1953-9.

[15] Marcus Huber and Julio I. de Vicente. “Structure of Multidimensional Entangle-
ment in Multipartite Systems”. In: Phys. Rev. Lett. 110 (3 Jan. 2013), p. 030501.
DOI: 10.1103/PhysRevLett.110.030501. URL: https://link.
aps.org/doi/10.1103/PhysRevLett.110.030501.

[16] W. Dür, G. Vidal, and J. I. Cirac. “Three qubits can be entangled in two inequiv-
alent ways”. In: Phys. Rev. A 62 (6 Nov. 2000), p. 062314. DOI: 10.1103/
PhysRevA.62.062314. URL: https://link.aps.org/doi/10.
1103/PhysRevA.62.062314.

[17] Valerie Coffman, Joydip Kundu, and William K. Wootters. “Distributed entan-
glement”. In: Phys. Rev. A 61 (5 Apr. 2000), p. 052306. DOI: 10 . 1103 /
PhysRevA.61.052306. URL: https://link.aps.org/doi/10.
1103/PhysRevA.61.052306.

[18] A. Acín et al. “Generalized Schmidt Decomposition and Classification of Three-
Quantum-Bit States”. In: Phys. Rev. Lett. 85 (7 Aug. 2000), pp. 1560–1563. DOI:
10.1103/PhysRevLett.85.1560. URL: https://link.aps.org/
doi/10.1103/PhysRevLett.85.1560.

50

https://doi.org/10.1088/1367-2630/ac724a
https://dx.doi.org/10.1088/1367-2630/ac724a
https://dx.doi.org/10.1088/1367-2630/ac724a
https://doi.org/10.1017/CBO9780511976667
https://books.google.at/books?id=fRBBAQAAIAAJ
https://doi.org/10.1103/PhysRevA.63.012307
https://doi.org/10.1103/PhysRevA.63.012307
https://link.aps.org/doi/10.1103/PhysRevA.63.012307
https://link.aps.org/doi/10.1103/PhysRevA.63.012307
https://doi.org/10.1109/TIT.2008.2011524
https://doi.org/10.1007/s00220-014-1953-9
https://doi.org/10.1007/s00220-014-1953-9
https://doi.org/10.1103/PhysRevLett.110.030501
https://link.aps.org/doi/10.1103/PhysRevLett.110.030501
https://link.aps.org/doi/10.1103/PhysRevLett.110.030501
https://doi.org/10.1103/PhysRevA.62.062314
https://doi.org/10.1103/PhysRevA.62.062314
https://link.aps.org/doi/10.1103/PhysRevA.62.062314
https://link.aps.org/doi/10.1103/PhysRevA.62.062314
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevA.61.052306
https://link.aps.org/doi/10.1103/PhysRevA.61.052306
https://link.aps.org/doi/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevLett.85.1560
https://link.aps.org/doi/10.1103/PhysRevLett.85.1560
https://link.aps.org/doi/10.1103/PhysRevLett.85.1560


[19] H. A. Carteret, A. Higuchi, and A. Sudbery. “Multipartite generalization of the
Schmidt decomposition”. In: Journal of Mathematical Physics 41.12 (2000), pp. 7932–
7939. DOI: 10.1063/1.1319516. URL: https://doi.org/10.1063/
1.1319516.

[20] Oscar Perdomo. “Canonical representation of three-qubit states with real am-
plitudes”. In: Journal of Physics A: Mathematical and Theoretical 54.46 (Oct.
2021), p. 465301. DOI: 10.1088/1751-8121/ac2e27. URL: https:
//doi.org/10.1088%2F1751-8121%2Fac2e27.

[21] C. Kruszynska and B. Kraus. “Local entanglability and multipartite entangle-
ment”. In: Phys. Rev. A 79 (5 May 2009), p. 052304. DOI: 10.1103/PhysRevA.
79.052304. URL: https://link.aps.org/doi/10.1103/PhysRevA.
79.052304.

[22] M. Hein, J. Eisert, and H. J. Briegel. “Multiparty entanglement in graph states”.
In: Phys. Rev. A 69 (6 June 2004), p. 062311. DOI: 10.1103/PhysRevA.69.
062311. URL: https://link.aps.org/doi/10.1103/PhysRevA.
69.062311.

[23] B. Kraus. “Local Unitary Equivalence of Multipartite Pure States”. In: Phys.
Rev. Lett. 104 (2 Jan. 2010), p. 020504. DOI: 10.1103/PhysRevLett.
104 . 020504. URL: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevLett.104.020504.

[24] B. Kraus. “Local unitary equivalence and entanglement of multipartite pure states”.
In: Phys. Rev. A 82 (3 Sept. 2010), p. 032121. DOI: 10.1103/PhysRevA.82.
032121. URL: https://link.aps.org/doi/10.1103/PhysRevA.
82.032121.

[25] Christoph Spengler, Marcus Huber, and Beatrix C. Hiesmayr. “Composite pa-
rameterization and Haar measure for all unitary and special unitary groups”. In:
Journal of Mathematical Physics 53.1 (2012), p. 013501. DOI: 10.1063/1.
3672064. URL: https://doi.org/10.1063/1.3672064.

[26] Miguel Navascués and Tamás Vértesi. “Bounding the Set of Finite Dimensional
Quantum Correlations”. In: Phys. Rev. Lett. 115 (2 July 2015), p. 020501. DOI:
10.1103/PhysRevLett.115.020501. URL: https://link.aps.
org/doi/10.1103/PhysRevLett.115.020501.

[27] Armin Tavakoli. “Semi-Device-Independent Framework Based on Restricted Dis-
trust in Prepare-and-Measure Experiments”. In: Phys. Rev. Lett. 126 (21 May
2021), p. 210503. DOI: 10.1103/PhysRevLett.126.210503. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.126.
210503.

51

https://doi.org/10.1063/1.1319516
https://doi.org/10.1063/1.1319516
https://doi.org/10.1063/1.1319516
https://doi.org/10.1088/1751-8121/ac2e27
https://doi.org/10.1088%2F1751-8121%2Fac2e27
https://doi.org/10.1088%2F1751-8121%2Fac2e27
https://doi.org/10.1103/PhysRevA.79.052304
https://doi.org/10.1103/PhysRevA.79.052304
https://link.aps.org/doi/10.1103/PhysRevA.79.052304
https://link.aps.org/doi/10.1103/PhysRevA.79.052304
https://doi.org/10.1103/PhysRevA.69.062311
https://doi.org/10.1103/PhysRevA.69.062311
https://link.aps.org/doi/10.1103/PhysRevA.69.062311
https://link.aps.org/doi/10.1103/PhysRevA.69.062311
https://doi.org/10.1103/PhysRevLett.104.020504
https://doi.org/10.1103/PhysRevLett.104.020504
https://link.aps.org/doi/10.1103/PhysRevLett.104.020504
https://link.aps.org/doi/10.1103/PhysRevLett.104.020504
https://doi.org/10.1103/PhysRevA.82.032121
https://doi.org/10.1103/PhysRevA.82.032121
https://link.aps.org/doi/10.1103/PhysRevA.82.032121
https://link.aps.org/doi/10.1103/PhysRevA.82.032121
https://doi.org/10.1063/1.3672064
https://doi.org/10.1063/1.3672064
https://doi.org/10.1063/1.3672064
https://doi.org/10.1103/PhysRevLett.115.020501
https://link.aps.org/doi/10.1103/PhysRevLett.115.020501
https://link.aps.org/doi/10.1103/PhysRevLett.115.020501
https://doi.org/10.1103/PhysRevLett.126.210503
https://link.aps.org/doi/10.1103/PhysRevLett.126.210503
https://link.aps.org/doi/10.1103/PhysRevLett.126.210503


[28] Armin Tavakoli, Denis Rosset, and Marc-Olivier Renou. “Enabling Computa-
tion of Correlation Bounds for Finite-Dimensional Quantum Systems via Sym-
metrization”. In: Phys. Rev. Lett. 122 (7 Feb. 2019), p. 070501. DOI: 10.1103/
PhysRevLett.122.070501. URL: https://link.aps.org/doi/
10.1103/PhysRevLett.122.070501.

[29] Marc-Olivier Renou et al. “Quantum theory based on real numbers can be exper-
imentally falsified”. In: Nature 600.7890 (Dec. 2021), pp. 625–629. ISSN: 1476-
4687. DOI: 10.1038/s41586-021-04160-4. URL: https://doi.
org/10.1038/s41586-021-04160-4.

[30] William K. Wootters. “Entanglement Sharing in Real-Vector-Space Quantum
Theory”. In: Foundations of Physics 42.1 (Jan. 2012), pp. 19–28. ISSN: 1572-
9516. DOI: 10.1007/s10701-010-9488-1. URL: https://doi.org/
10.1007/s10701-010-9488-1.

[31] Kang-Da Wu et al. “Operational Resource Theory of Imaginarity”. In: Phys.
Rev. Lett. 126 (9 Mar. 2021), p. 090401. DOI: 10.1103/PhysRevLett.
126 . 090401. URL: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevLett.126.090401.

[32] Marc-Olivier Renou et al. “Genuine Quantum Nonlocality in the Triangle Net-
work”. In: Phys. Rev. Lett. 123 (14 Sept. 2019), p. 140401. DOI: 10.1103/
PhysRevLett.123.140401. URL: https://link.aps.org/doi/
10.1103/PhysRevLett.123.140401.

[33] Alejandro Pozas-Kerstjens, Nicolas Gisin, and Armin Tavakoli. “Full Network
Nonlocality”. In: Phys. Rev. Lett. 128 (1 Jan. 2022), p. 010403. DOI: 10.1103/
PhysRevLett.128.010403. URL: https://link.aps.org/doi/
10.1103/PhysRevLett.128.010403.

[34] Armin Tavakoli et al. “Bell nonlocality in networks”. In: Reports on Progress in
Physics 85.5 (Mar. 2022), p. 056001. ISSN: 1361-6633. DOI: 10.1088/1361-
6633/ac41bb. URL: http://dx.doi.org/10.1088/1361-6633/
ac41bb.

[35] Nicolas Gisin. “Entanglement 25 Years after Quantum Teleportation: Testing
Joint Measurements in Quantum Networks”. In: Entropy 21.3 (Mar. 2019), p. 325.
DOI: 10.3390/e21030325.

[36] Armin Tavakoli, Nicolas Gisin, and Cyril Branciard. “Bilocal Bell Inequalities
Violated by the Quantum Elegant Joint Measurement”. In: Phys. Rev. Lett. 126
(22 June 2021), p. 220401. DOI: 10.1103/PhysRevLett.126.220401.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.126.
220401.

52

https://doi.org/10.1103/PhysRevLett.122.070501
https://doi.org/10.1103/PhysRevLett.122.070501
https://link.aps.org/doi/10.1103/PhysRevLett.122.070501
https://link.aps.org/doi/10.1103/PhysRevLett.122.070501
https://doi.org/10.1038/s41586-021-04160-4
https://doi.org/10.1038/s41586-021-04160-4
https://doi.org/10.1038/s41586-021-04160-4
https://doi.org/10.1007/s10701-010-9488-1
https://doi.org/10.1007/s10701-010-9488-1
https://doi.org/10.1007/s10701-010-9488-1
https://doi.org/10.1103/PhysRevLett.126.090401
https://doi.org/10.1103/PhysRevLett.126.090401
https://link.aps.org/doi/10.1103/PhysRevLett.126.090401
https://link.aps.org/doi/10.1103/PhysRevLett.126.090401
https://doi.org/10.1103/PhysRevLett.123.140401
https://doi.org/10.1103/PhysRevLett.123.140401
https://link.aps.org/doi/10.1103/PhysRevLett.123.140401
https://link.aps.org/doi/10.1103/PhysRevLett.123.140401
https://doi.org/10.1103/PhysRevLett.128.010403
https://doi.org/10.1103/PhysRevLett.128.010403
https://link.aps.org/doi/10.1103/PhysRevLett.128.010403
https://link.aps.org/doi/10.1103/PhysRevLett.128.010403
https://doi.org/10.1088/1361-6633/ac41bb
https://doi.org/10.1088/1361-6633/ac41bb
http://dx.doi.org/10.1088/1361-6633/ac41bb
http://dx.doi.org/10.1088/1361-6633/ac41bb
https://doi.org/10.3390/e21030325
https://doi.org/10.1103/PhysRevLett.126.220401
https://link.aps.org/doi/10.1103/PhysRevLett.126.220401
https://link.aps.org/doi/10.1103/PhysRevLett.126.220401


[37] Jun-Feng Tang et al. “Experimental Optimal Orienteering via Parallel and An-
tiparallel Spins”. In: Phys. Rev. Lett. 124 (6 Feb. 2020), p. 060502. DOI: 10.
1103/PhysRevLett.124.060502. URL: https://link.aps.org/
doi/10.1103/PhysRevLett.124.060502.

[38] Cen-Xiao Huang et al. “Entanglement Swapping and Quantum Correlations via
Symmetric Joint Measurements”. In: Phys. Rev. Lett. 129 (3 July 2022), p. 030502.
DOI: 10.1103/PhysRevLett.129.030502. URL: https://link.
aps.org/doi/10.1103/PhysRevLett.129.030502.

[39] Elisa Bäumer, Nicolas Gisin, and Armin Tavakoli. “Demonstrating the power
of quantum computers, certification of highly entangled measurements and scal-
able quantum nonlocality”. In: npj Quantum Information 7.1 (July 2021), p. 117.
ISSN: 2056-6387. DOI: 10.1038/s41534-021-00450-x. URL: https:
//doi.org/10.1038/s41534-021-00450-x.

53

https://doi.org/10.1103/PhysRevLett.124.060502
https://doi.org/10.1103/PhysRevLett.124.060502
https://link.aps.org/doi/10.1103/PhysRevLett.124.060502
https://link.aps.org/doi/10.1103/PhysRevLett.124.060502
https://doi.org/10.1103/PhysRevLett.129.030502
https://link.aps.org/doi/10.1103/PhysRevLett.129.030502
https://link.aps.org/doi/10.1103/PhysRevLett.129.030502
https://doi.org/10.1038/s41534-021-00450-x
https://doi.org/10.1038/s41534-021-00450-x
https://doi.org/10.1038/s41534-021-00450-x

	Introduction
	Postulates of Quantum Mechanics
	Qubits and Bloch representation
	Quantum entanglement
	Local operations assisted by classical communication
	Bipartite entanglement
	Tripartite entanglement

	Generalized Schmidt decomposition for three qubits
	Locally maximally entanglable states
	Joint quantum measurements

	Are there states without a basis?
	Bipartite systems
	Two qubits
	Four- and eight-dimensional subsystems
	Two qutrits

	Three qubits
	More than three qubits

	Special n-qubit states that correspond to a basis
	State independent constructions for restricted spaces
	Two and three qubits
	More than three qubits
	Odd-dimensional systems

	Conclusion and Outlook
	Bibliography

