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Kurzfassung

Die vorliegende Arbeit ist in drei Teile gegliedert. Im ersten Teil wird die reguläre und
chaotische Bewegung von Fluidelementen in einer zweidimensionalen zeitperiodischen
Strömung betrachtet. Als Paradebeispiel dient die zweidimensionale Strömung in einem
quadratischen Behälter. Die Strömung wird durch einen Deckel angetrieben, der eine
harmonische Bewegung mit einem von Null verschiedenem Mittelwert ausführt. Bei
einer Erhöhung der mit der Geschwindigkeitsamplitude U gebildeten Reynoldszahl (des
Verhältnisses von Trägheits- zu Viskositätskräften Re = UL/ν, wobei L die Seitenlänge
des Behälters und ν die kinematische Viskosität des Fluides sind) wächst der Raumanteil,
den chaotische Trajektorien einnehmen. Niedrige Frequenzen (in der Größenordnung von
O(10−2)) der Deckelbewegung, bezogen auf den Kehrwert U/L der konvektiven Zeitskala,
führen zu einer großen Anzahl von langgestreckten Kolmogorov-Arnold-Moser-Tori,
deren Struktur sensitiv von der Reynoldszahl abhängt. Für diese Frequenzen entstehen
chaotische Trajektorien bei Re ∼ O(1). Das Gebiet mit chaotischen Trajektorien dehnt
sich bei Re ∼ O(10) auf den größten Teil des Behälters aus. Höhere konvektiv skalierte
Frequenzen in der Größenordnung von O(1) führen hingegen zu einigen wenigen großen
KAM-Tori, die nur schwach von der Reynoldszahl abhängen. Chaotischen Trajektorien
entstehen in diesem Fall ab Re ∼ O(102). Bei gegebener Reynoldszahl existiert eine
bestimmte Frequenz, bei der eine optimale Durchmischung des Fluids erzielt wird. Im
Bereich Re ∈ �50, 200� entspricht die optimale Frequenz einer relativen Stokes-Schichtdicke
von 0,3 bis 0,4. Im Kontext dieser Arbeit behandelt der erste Teil ein elementares Problem,
welches Phänomene veranschaulicht, die das chaotische Mischen in inkompressiblen
zeitabhängigen zweidimensionalen Strömungen wie auch in inkompressiblen stationären
dreidimensionalen Strömungen bestimmen.

Im zweiten Teil wird die lineare Stabilität der stationären, axisymmetrischen thermo-
kapillaren Strömung in thermokapillaren Tröpfchen mit einer sphärischen Oberfläche
untersucht. Die Abhängigkeit der kritischen Reynoldszahl für den Einsatz dreidimen-
sionaler Konvektion vom Kontaktwinkel und von der Prandtlzahl wird berechnet und
die Struktur der gefährlichsten Störung wird analysiert. Es werden verschiedene Re-
gime symmetriebrechender Instabilitäten gefunden. Für ein sehr flaches Tröpfchen mit
kleinem Kontaktwinkel und hoher Prandtlzahl, das vom Substrat beheizt wird, findet
man eine klassische Marangoni-Instabilität nahe der Tröpfchenmitte. Bei einem großen
Kontaktwinkel wird die erste Instabilität hingegen durch hydrothermale Wellen (HTW)
verursacht. Generell ist die kritische Marangoni-Zahl niedriger, wenn das Tröpfchen von
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der Wand beheizt wird als wenn es von der Wand gekühlt wird. Für eine heiße Wand
bleibt der hydrothermale Instabilitätsmechanismus sogar bis zu kleinen Prandtlzahlen
von O(10−3) dominant. Die kritische Mode und die Struktur des Grundtemperaturfeldes
bei der kritischen Marangonizahl unterscheiden sich in den beiden Fällen (heiße/kalte
Wand) erheblich. Nur für sehr kleine Prandtlzahlen und große Kontaktwinkel wird eine
rein mechanische Instabilität durch Trägheitseffekte beobachtet. In diesem Fall sind die
kritischen Parameter und die Struktur der kritischen Mode für kalte und heiße Wände
sehr ähnlich.

Schließlich wird im dritten Teil dieser Arbeit die Topologie von Flüssigkeitstrajektorien
in einer Modellströmung untersucht, die als lineare Superposition der thermokapillaren
Grundströmung mit der kritischen dreidimensionalen Hydrothermalwelle konstruiert wird.
Knapp oberhalb der kritischen Schwelle sollte dieses Modell eine gute Näherung der
wahren dreidimensionalen Strömung sein, falls die Verzweigung superkritisch ist. Speziell
wird der Fall einer beheizter Wand, ein großer Kontaktwinkel und eine hohe Prandtlzahl
betrachtet, weil für diese Bedingungen die Bildung von Partikelakkumulationsstrukturen
in der Literatur berichtet wurde. Wenn die Stärke der Störströmung circa 10% der Grund-
strömung beträgt, bilden sich rotierende KAM-Tori nahe der Kontaktlinie und der freien
Oberfläche aus. Basierend auf den bekannten Mechanismen der Partikelakkumulation
ist zu erwarten, dass sich im Falle einer Suspension aus dichteangepaßten Partikeln mit
geringer Konzentration Akkumulationsstrukturen in der Nähe dieser KAM-Tori ausbilden
können, wobei Partikel aus dem Gebiet chaotischer Trajektorien durch Kollision mit der
Grenzfläche auf den Attraktor transferiert werden.



Abstract

This thesis is divided into three distinct parts. In the first part, the regular and chaotic
motion of fluid elements in a two-dimensional time-periodic flow is considered. The
two-dimensional flow of an incompressible fluid in a square cavity serves as an excellent
example. The flow is driven by a lid that oscillates harmonically in its tangential direction
with a zero mean velocity. The emergence and gradual growth of the region occupied
by chaotic pathlines upon increasing the Reynolds number (the ratio of the inertial and
viscous forces Re = UL/ν defined with the velocity amplitude of the lid motion U , the
length of the side of the cavity L and the kinematic viscosity of the fluid ν) is resolved.
Low frequencies of the lid oscillation (of the order of magnitude O(10−2) relative to the
inverse of the convective time-scale U/L) lead to a high number of stretched Kolmogorov–
Arnold–Moser tori and high sensitivity to the Reynolds number. For these frequencies,
the region occupied by chaotic trajectories (chaotic sea) emerges at Re ∼ O(1) and
spreads to most of the domain at Re ∼ O(10). On the other hand, higher convective
frequencies of the order of 1 lead to a small number of large nested KAM tori and a weak
sensitivity to the Reynolds number. The chaotic trajectories then emerge at Re ∼ O(102).
An optimal frequency for fast stirring exists for a given Reynolds number. In the range
Re ∈ �50, 200�, the optimal frequency corresponds to the relative Stokes layer thickness of
0.3 to 0.4. In this thesis’s overall context, the first part employs the lid-driven cavity flow
as a minimalist toy problem illustrating the phenomena that govern stirring in oscillating
two-dimensional and steady three-dimensional flows.

The second part investigates the linear stability of the steady axisymmetric thermocapil-
lary flow in a droplet with a spherical free surface adhering to a heated or cooled wall.
The dependence of the critical Reynolds number on the contact angle and the Prandtl
number is computed, and the structure of the most dangerous perturbation is described.
Different regimes of symmetry-breaking instability are observed. For a heated wall, a low
contact angle, and a high Prandtl number, the Marangoni instability is observed near
the center of the droplet. On the other hand, a hydrothermal wave (HTW) instability is
found for high Prandtl number and contact angle. For a hot wall, the critical Marangoni
number is lower than for a cold wall, and the thermal instability mechanism remains
dominant even down to Prandtl numbers as small as O(10−3). The structures of the basic
temperature field and of the most dangerous perturbation differ significantly between
the two cases (hot or cold wall). A purely inertial instability is observed in the case of a
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vanishing Prandtl number and large contact angle. In that case, the critical parameters
and the perturbation structure are quite similar for cold and hot walls.

Finally, the third part of this thesis investigates the topology of fluid trajectories in a model
flow constructed as a superposition of the aforementioned basic thermocapillary flow and
the most dangerous three-dimensional rotating perturbation mode. The conditions with a
heated wall and higher contact angles and Prandtl numbers are considered, for which the
formation of particle accumulation structures has been reported in the literature. For the
relative magnitude of perturbation of O(10%), we find tori approaching close to the free
surface near the contact line. Based on the known mechanisms of particle accumulation,
it can be expected that in the case of a dilute suspension of density-matched particles,
accumulation structures can build near these tori when the collisions of the particles with
the free surface transfer them onto the attractor.
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CHAPTER 1
General introduction

1.1 Mixing and stirring

The importance of mixing is obvious1. By mixing, we understand the homogenization
of concentration of miscible fluids or mechanical emulsification of immiscible liquids.
When the fluids are immiscible or their diffusivity is low, it is desirable to promote the
mixing by stirring. Stirring is the transport of the fluids by advection, which increases
the interface area between them. For weakly diffusive or non-diffusive fluids, the initial
mixing stage is dominated by stirring if present. In the case of immiscible fluids, we
restrict attention to those with passive interfaces, meaning that the surface tension is too
weak to affect the flow. Once the interfacial area is sufficiently large, and at least one of
the fluids is stretched into thin filaments, even a weak diffusivity becomes sufficient to
homogenize the concentration, or even a weak surface tension is sufficient to atomize the
liquid into small droplets.

The most reliable way to achieve a time-efficient stirring is to maximize the Reynolds
number to reach a turbulent flow. This is, however, not always possible, for example,
when the size of the flow domain is limited (lab-on-chip, e.g. Petkovic et al., 2017) or
when the fluid is highly viscous (polymer processing). When such low-Reynolds-number
flow is steady and two-dimensional, the stirring is poor as interfacial areas increase only
linearly in time. However, if at least one of the translation invariances in the spanwise
direction or time breaks, chaotic advection can be achieved even in a Stokes flow. The
chaotic advection stretches fluid interfaces exponentially, providing an efficient stirring
mechanism.

1but if in doubt, the reader is referred to the introductions of (Speetjens et al., 2021; Aref et al., 2017;
Haller, 2015, and many others)
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1. General introduction

1.2 Scope of this thesis
This thesis is divided into three parts. In the first part, the emergence of chaotic
advection is illustrated numerically in a minimalist setup - the two-dimensional time-
periodic lid-driven cavity. In the second part, the transition of a thermocapillary flow in a
droplet adhering to a wall from a steady axisymmetric into an oscillating two-dimensional
or steady (in a co-rotating reference frame) three-dimensional state is investigated
through a linear stability analysis. Such transition is necessary for the onset of chaotic
advection, and thus it significantly affects the mixing properties of the flow. The mixing
in adhering droplets is of direct practical interest, e.g., in medical diagnosis (Li et al.,
2015; Brutin, Sobac, Loquet and Sampol, 2011; Sefiane, 2010). Furthermore, both the
two-dimensional oscillating and the three-dimensional steady state admit the existence
of specific Lagrangian coherent structures called Kolmogorov–Arnold–Moser tori (as
described in the first part), which are the primary candidates for the explanation of the
particle accumulation structures (Romanò, Wu and Kuhlmann, 2019) observed in hanging
non-isothermal droplets by Takakusagi and Ueno (2017); Watanabe et al. (2018). Thus,
the third part of this thesis predicts the structure of the fluid trajectories in conditions
comparable to Watanabe et al. (2018). A superposition of the basic flow and the most
dangerous three-dimensional rotating perturbation mode is employed as a minimalist
model.

1.3 Mathematical model
The flow of an incompressible Newtonian fluid2 of constant density ρ and dynamic
viscosity µ is governed by the famous Navier–Stokes system of equations consisting of
the conservation of linear momentum

ρ(∂t̃ũ + ũ · ∇̃)ũ = −∇̃p̃ + µ∇̃ · (∇̃ũ + ∇̃ũT� �� �
s̃

) + f̃ (1.1a)

and conservation of volume
∇ · ũ = 0 (1.1b)

in differential form. ũ and p̃ are the velocity and pressure field of the fluid, νs̃ is the
shear stress tensor and f̃ incorporates possible additional bulk forces acting on the fluid
as acceleration fields. The validity of the incompressibility constraint (1.1b) requires a
small Mach number Ma2 = U2/c2 � 1, where U is a characteristic velocity scale of the
flow and c is the speed of sound. Using the identity

∇ · (∇ũ)T ≡ ∇ (∇ · ũ) (1.1b)===== 0 (1.2)
2This terminology automatically implies the continuum assumption Kn ≡ λm/L � 1, where λm is

the mean free path of molecules and L is the characteristic length of the flow domain. Further common
assumptions beyond this level of detail are not explicitly mentioned.
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1.4. Numerical methods

the divergence of the shear-stress tensor in the momentum equation (1.1a) is typically
simplified as

∇̃ ·
�
∇̃ũ + ✟✟✟∇̃ũT

�
= ∇̃2ũ. (1.3)

The system (1.1) is of parabolic type, i.e., its solution on some flow domain Ω requires
initial conditions on the entire domain and boundary conditions on the entire boundary
∂Ω. The boundary conditions can in general be prescribed either for the velocity vector ũ,
or for the stress vector n·(s̃−p̃I) acting on the boundary, where n is the outward-pointing
normal. They are typically projected to the normal and tangential directions with respect
to the boundary, where different boundary conditions can be prescribed in each of these
independent directions.

1.3.1 Scaling
It is advantageous to scale lengths x = x̃/L, velocities u = ũ/U and time t = t̃/t∗ with
some characteristic length L, velocity U and time t∗ of the flow problem, in order to
obtain a generalizable result. The pressure p = p̃/p∗ is scaled with some convenient factor
p∗. Since p∗ does not affect the results presented in this thesis, it will not be specified
explicitly.
A common approach is to find the representative length and velocity scales L and U of
the problem and define the characteristic time scale as their ratio t∗ = L/U . L is typically
determined by a characteristic size of the flow geometry. When the boundary conditions
determine a characteristic (maximum or mean) velocity of the flow, it is natural to use
this as the velocity scale. Such scaling is called convective. The dimensionless momentum
equation then reads

∂tu + (u · ∇)u = −∇p + 1
Re∇2u + f . (1.4)

Alternatively, the velocity scale can be defined as U = ν/L, where ν = µ/ρ is the
kinematic viscosity, leading to a viscous scaling

∂tu + (u · ∇)u = −∇p + ∇2u + f . (1.5)

When a typical time scale of the flow is imposed, for example, by the boundary conditions
or by the bulk forces f̃ , it may be appropriate to use this to scale time independently of
length and velocity. The time derivative term in (1.4) or (1.5) is then multiplied by the
Strouhal number Str = L/(Ut∗) or by the Stokes number St = L2/(νt∗), respectively.

1.4 Numerical methods
The analytical solution of the Navier–Stokes equations (1.1) is only possible for a few
simple flows. Several well-established numerical methods are, however, available. Thus,
the flow problems are solved numerically in this thesis. The continuous Galerkin method
described below is employed for spatial discretizations throughout this thesis. The par-
ticular implementations of this method and other numerical methods applied specifically
for a given problem are described in the corresponding chapters.
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1. General introduction

1.4.1 Nodal continuous Galerkin method
The flow domain Ω is divided into a mesh of finite elements. An approximate numerical
solution uh, ph of the governing equations is sought in the form

uh(x, t) =
Nu�
i=1

ui(t)φu
i (x), ph(x, t) =

Np�
i=1

pi(t)φp
i (x). (1.6)

As the name of the method suggests, the basis functions φu
i and φp

i (and thus also the
numerical solution) are continuous across Ω. They are constructed with element-wise
Lagrange polynomials, such that each function is equal to one at its corresponding grid
point, while on all other grid points it vanishes. The unknown coefficients ui, pi are
the nodal values of the numerical solution. The velocity and pressure are approximated
within each element with different polynomial order. Thus, their values can be stored on
different nodes.

Next, a system of equations must be obtained to determine the coefficients ui, pi. To that
end, the residual of the momentum and continuity equations is defined. The equations
are multiplied, respectively, with test functions v and q from some function spaces V
and Q, and integrated over the computational domain Ω


Ω

	
ρ(∂t̃ + uh · ∇̃)uh + ∇̃ph − µ∇̃ · sh

�
· vdΩ =



Ω

ρf̃ · vdΩ, (1.7a)



Ω

(∇ · uh) qdΩ = 0, (1.7b)

where sh = ∇̃uh + ∇̃uT
h . For simplification, we define the following notation:

(a, b) =


Ω

a · bdΩ, (A, B) =


Ω

A : BdΩ,

�a, b� =



∂Ω

a · bdS.
(1.8)

The viscous dissipation term is integrated per partes to eliminate second derivatives,
using the product rule

∇̃ · (sh · v) = sh : ∇̃v + (∇̃ · sh) · v (1.9)

and the Gauss–Ostrogradsky theorem

V

∇̃ · (sh · v)dV =



S
(sh · v) · ndS. (1.10)

Furthermore, we use the identity (sh · v) · n = (n · sh) · v. The weak form of the viscous
term then reads

− µ
�
∇̃ · sh, v

�
= µ

�
sh, ∇̃v

�
− µ �n · sh, v� . (1.11)

4



1.4. Numerical methods

The pressure gradient term is integrated per partes as well�
∇̃ph, v

�
= −

�
ph, ∇̃ · v

�
+ �phn, v� (1.12)

to bring it to the same form as the continuity equation. The linear combination of both
equations defines a scalar expression for the residual of the Navier–Stokes system

R := ρ
�
(∂t̃ + uh · ∇̃)uh, v

�
+ µ

�
sh, ∇̃v

�
−

�
ph, ∇̃ · v

�
− (∇ · uh, q)

+ �n · (phI − sh), v� . (1.13)

The formulation of the problem then reads

Find (ui, pi) such that R = 0 ∀(v, q) ∈ V × Q. (1.14)

The essence of the Galerkin methods is to use the basis functions as the test functions,
V � uh and Q � ph. Each test function v then generates the discrete conservation of
momentum on the corresponding velocity node, while each q generates the conservation
of volume on the corresponding pressure node. The integrals from the inner products
(1.8) are expressed numerically based on the nodal values on the given element.

In the case of time-dependent flow problems (∂tu �= 0) the resulting system of equations
(1.14) still requires numerical discretization in time. A semi-implicit multi-step third-order
scheme is employed in chapter 2, as described in section 2.3.6.

Boundary conditions can be imposed in either strong or weak form. Dirichlet boundary
conditions for velocity are typically imposed in the strong form - i.e., by modification of
the function spaces. The velocity values at the boundary nodes are prescribed. Thus,
they do not count as unknowns. Formally we write

uh ∈ V b such that uh = uD on ΓD, (1.15)

where ΓD ⊆ ∂Ω is the part of the boundary where the Dirichlet condition is imposed and
V b is a modified functions space where the Dirichlet condition is satisfied independently
of the unknown coefficients ui. The velocity test functions are set to zero on the Dirichlet
boundary

v ∈ V 0 such that v = 0 on ΓD. (1.16)

The boundary integral in (1.13) then vanishes on ΓD. Dirichlet boundary conditions for
pressure can be imposed in the same way.

On the other hand, a prescribed boundary stress

n · (phI − sh) = gN on ΓN (1.17)

is typically imposed in the weak form. The prescribed stress vector acting on those faces
of finite elements which belong to ΓN is substituted directly into the boundary integral,

5



1. General introduction

while no modifications of the functions spaces are needed on ΓN. This thesis does not
employ other boundary conditions (e.g., Robin or periodic).

The strong boundary condition can also be imposed for selected components of the
velocity vector. The boundary stress is then imposed only in the remaining coordinate
directions. The division of the boundary ∂Ω into ΓD and ΓN can therefore differ for each
field variable (velocity components and pressure), but it must always hold

ΓD ∪ ΓN = ∂Ω ∧ ΓD ∩ ΓN = ∅. (1.18)

Alternatively, the boundary integral can be projected to arbitrary perpendicular directions
(typically normal and tangential to the boundary), in which independent boundary
conditions can be imposed.

1.4.2 Newton–Raphson method
For steady flow problems (∂tu = 0, as in chapters 3 and 4), (1.14) leads to a system of
non-linear algebraic equations

R(q0) != 0 (1.19)

for the vector of nodal values q0 = (ui, pi). This is solved iteratively with the Newton–
Raphson method (algorithm 1.1). The method is also employed in chapter 2 for finding
closed fluid trajectories in the time-dependent flow, as described in section 2.3.2. The
concept of the method is briefly presented below for completeness. Some readers might
prefer to skip the rest of this section.

Algorithm 1.1: The Newton–Raphson method for the iterative solution of a
system of non-linear algebraic equations

Data: initial guess for q0
Result: q0 such that 
R(q0)
 ≤ tolerance

1 while 
R(q0)
 > tolerance do
2 compute Jacobian matrix Aij ← ∂q0,j Ri(q0) ;
3 q0 ← q0 − A−1R(q0) ;
4 end
5 return q0

The method can be derived from the Taylor expansion

R
�
q

(k)
0 + δq

�
= R

�
q

(k)
0

�
+ ∇R

�
q

(k)
0

�
· δq + O

�
δq2

�
(1.20)

of the non-linear vector function R(q0) about an initial guess for q0. The correction δq

of the initial guess q
(k)
0 is sought such that

R
�
q

(k)
0 + δq

� != 0. (1.21)
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1.4. Numerical methods

An assumption is made that between the initial guess and the solution of (1.19), the
function R is approximated sufficiently well with linear dependence. Under this assump-
tion the higher order terms O

�
δq2

�
are neglected, which corresponds to linearization of

the problem (1.21) about the initial guess

R
�
q

(k)
0 + δq

�
≈ R

�
q

(k)
0

�
+ ∇R

�
q

(k)
0

�
· δq

!= 0. (1.22)

The linearized problem is then solved for the correction

δq = −
	
∇R

�
q

(k)
0

��−1 · R
�
q

(k)
0

�
, (1.23)

and a new approximation of the solution is obtained as

q
(k+1)
0 = q

(k)
0 + δq. (1.24)

The more non-linear the system (1.19) is, the closer should the initial guess be to its
solution in order to satisfy the underlying assumption of the method. Therefore, for a
given geometry, we typically first compute a low-Reynolds-number flow, using a zero
vector as an initial guess. Since low-Reynolds-number flows are dominated by the linear
terms of the Navier–Stokes equations, an arbitrary initial guess is usually good enough
for convergence. The solution is then used as an initial guess for the computation of
flows at higher Reynolds numbers.
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CHAPTER 2
Chaotic advection in a

two-dimensional time-periodic
lid-driven cavity

The results presented in this chapter have been published in:
Babor, L. and Kuhlmann, H. C. (2023a), ‘Lagrangian transport in the time-periodic two-
dimensional lid-driven square cavity’, Phys. Fluids 35, 033611 (21pp).

2.1 Introduction

2.1.1 Lid-driven cavity flow

A lid-driven cavity is a closed box where at least one of the walls (the lid) slides
tangentially (fig. 2.1). Such sliding lid can be realized, for example, by a belt, or it can
be approximated for laboratory purposes by a rotating cylinder with a sufficiently large
radius. The motion of the lid drives a flow inside the cavity. If the cavity is elongated in
the direction normal to the lid’s motion, then in the central section of the cavity, the
effect of the front and the back wall diminishes, and the flow is two-dimensional up to a
certain Reynolds number.

The lid-driven cavity flow is a classical benchmark in computational fluid mechanics
thanks to the simplicity of the geometry. Furthermore, it is a convenient setup for the
investigation of several fundamental fluid-dynamics phenomena as, e.g., the centrifugal
instability (Albensoeder et al., 2001b; Kuhlmann and Albensoeder, 2014, and others),
multiplicity of states (Albensoeder et al., 2001a), an infinite sequence of corner vortices
(Moffatt, 2019, 1964; Kalita et al., 2018) and chaotic advection (Romanò et al., 2020) to
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2. Chaotic advection in a two-dimensional time-periodic lid-driven cavity

Figure 2.1: Illustration of a lid-driven cavity

name a few (see Shankar and Deshpande, 2000; Kuhlmann and Romanò, 2018, for an
extensive review).

When the velocity of the lid is modulated harmonically in time, an oscillatory boundary
layer appears near the lid, as in the second problem of Stokes. In the limit of an infinitely
wide1 cavity, the oscillatory flow consists of a Stokes layer near the lid and a pressure-
driven flow in the rest of the cavity due to conservation of volume (O’Brien, 1975). The
thickness of the Stokes layer λ scales as LSt−1/2, where the Stokes number St = L2/(νT ),
L is the height of the cavity, ν the kinematic viscosity and T the period of oscillation.
When the relative thickness of the Stokes layer λ/L � 1 is small, it is pronounced even
in cavities with a finite width-to-height ratio. A detailed description of the instantaneous
flow in a cavity with a width-to-height ratio of 2 driven by a harmonic motion of a single
lid is due to Zhu et al. (2020).

2.1.2 Chaotic advection
The term chaotic advection has been introduced by Aref (1984). He shows that the
trajectories of infinitesimal fluid elements in two-dimensional time-periodic closed laminar
flows can be either regular or chaotic (see fig. 2.2 for illustration). Regular trajectories,
also called integrable, can be qualitatively described over an unbounded time interval
with a function employing a finite number of constants. For example, the trajectories in
steady two-dimensional flows are always regular. The chaotic trajectories, on the other
hand, are characterized by a positive Lyapunov exponent

σ(X, M) = lim
t→∞

|dX|→0


1
t

ln
� |dx|

|dX|
��

, (2.1)

which is the exponential stretching rate of an infinitesimal line segment dX with an
initial orientation M = dX/|dX| advected along the trajectory from an initial location
X. |dx| is the length of the segment at time t. The Lyapunov exponent quantifies the
sensitivity of a trajectory to the initial condition X.

1In the absence of buoyancy, it is a standard convention to consider the lid as the top boundary. The
width and height are then the extents of the cavity in the direction parallel and perpendicular to the lid,
respectively.
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Figure 2.2: Illustration of advection of two different blobs of marked fluid in a two-
dimensional time-periodic lid-driven cavity. (a) shows the initial state where two blobs
in different locations in the cavity are marked by black and blue color. (b) shows the
final shape of the colored portions of fluid after some natural number of periods of the
flow. The black portion of fluid is located in a region of chaotic trajectories, while the
blue fluid is located in a region of regular trajectories.

The possibility of the co-existence of regular and chaotic trajectories can be deduced by
an inspection of the advection equation

dx̃

dt̃
= ũ(x̃, t̃). (2.2)

In the case of an incompressible two-dimensional flow, a stream function can be defined
as

ũ =
�

∂ψ/∂ỹ
−∂ψ/∂x̃

�
. (2.3)

Substitution of (2.3) in (2.2) yields a Hamiltonian dynamical system where the stream
function ψ is the Hamiltonian and the spatial coordinates x̃ and ỹ take the role of
the generalized position and momentum. The fluid trajectories are thus equivalent
to trajectories in a phase space of the Hamiltonian system, and the well-established
Hamiltonian dynamics apply. For a steady flow ψ = ψ(x̃, ỹ), the system has 1 degree of
freedom since the Hamiltonian depends on 1 “position” and 1 “momentum”, which are
not independent (analogously to the most famous Hamiltonian system - the frictionless
pendulum). Thus, only regular trajectories are allowed. Time dependence of the
Hamiltonian ψ = ψ(x̃, ỹ, t̃) adds an additional half degree of freedom, admitting the
existence of chaotic trajectories.
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2. Chaotic advection in a two-dimensional time-periodic lid-driven cavity

Of particular relevance are the time-periodic flows ψ(x̃, ỹ, t̃) = ψ(x̃, ỹ, t̃ + T ), where T is
the period. In order to relate the advection to the Hamiltonian dynamics, it is common
to understand time as an azimuthal coordinate (fig. 2.3) by mapping the time interval of
one period [0, T ] to the azimuthal interval [0, 2π]. In this viewpoint, the dynamics are
generalizable to steady three-dimensional flows.

Regular trajectories lie on Kolmogorov–Arnold–Moser (KAM) tori. In the case of a
steady two-dimensional flow, the tori coincide with the streamlines extended in time.
The mapping between the time and the azimuthal angle is arbitrary in this case. All
trajectories in such flow are regular since all fluid elements move along streamlines. The
tori form dense nested sets, as each vortex in the flow corresponds to a dense set of nested
streamlines. A common center of each set of tori is a closed elliptic trajectory, which
in this analogy corresponds to a center of a steady two-dimensional vortex. When the
flow becomes time-periodic or three-dimensional, some of the tori can remain, but in the
former case, they no longer coincide with the instantaneous streamlines.

Chaotic trajectories fill the remaining space between the KAM tori. They typically
emerge from a homoclinic or heteroclinic connection - a set of hypothetical trajectories2

which separate different sets of tori and connect either two different hyperbolic trajectories
(heteroclinic connection) or a single hyperbolic trajectory with itself forming a closed loop
(homoclinic connection). When such connection is perturbed by the time-dependence
or three-dimensionality of the flow, the set of pathlines leaving a hyperbolic trajectory
along one of its most-repelling directions (unstable manifold) no longer coincides with
the set of pathlines approaching either the same or another hyperbolic trajectory along
one of its most-attracting directions (stable manifold). Instead, the stable and unstable
manifolds intersect transversally, which is one of the signatures of chaos. The perturbed
unstable manifold folds as it approaches the (other) hyperbolic trajectory along the stable
manifold. The folds are stretched along both unstable manifolds (of the latter trajectory)
until they return to their original trajectory, where they are folded and stretched again
by the same mechanism. This way, the perturbed unstable manifolds are repeatedly
stretched and folded, which leads to an exponential growth of their area. The reader is
referred to the book of Ottino (1989) for excellent illustrations.

The type of a closed trajectory (elliptic/parabolic/hyperbolic) is defined by the behavior of
trajectories in its close vicinity, as already follows from the previous paragraphs. Elliptic
trajectories are Lyapunov stable. This means that trajectories near the elliptic trajectory
remain in its neighborhood for all times. They orbit about it. On the other hand,
hyperbolic trajectories are characterized by the stable and unstable manifolds. These
are curves or surfaces (in 2D or 3D, respectively) along which the nearby trajectories
exponentially approach or depart from the hyperbolic trajectory. In the case of the
parabolic type, the distance of the nearby trajectories from the closed trajectory depends
linearly on time. A mathematical criterion for classification of the type of a closed
trajectory is provided in section 2.3.2.

2Such separation trajectory cannot be observed in its entirety since it takes an infinitely long time to
approach a hyperbolic trajectory along its stable manifold
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x

y

t

Figure 2.3: The stroboscopic projection of fluid trajectories in a two-dimensional flow
illustrated in a figurative cylindrical coordinate system, where a radial and axial coordinate
represent the two spatial dimensions x and y of the flow, and the time is mapped to the
azimuthal coordinate. The stroboscopic projection plane is shown in yellow. The black
spiral curve illustrates a fluid trajectory, and the black dots represent the intersections of
the trajectory with the projection plane.

The regular and chaotic trajectories can be distinguished using a Poincaré section.
Poincaré section is a plane in the parameter space of a Hamiltonian system that is
periodically intersected by the trajectories, where the positions of the intersection points
are recorded. In the case of a time-periodic flow, the Poincaré section is equivalent to a
stroboscopic projection (fig. 2.3) where the period of strobing is (a natural multiple of)
the period of the flow. The intersections of regular trajectories with the Poincaré plane
outline closed curves, which are the intersections of their parent tori with the plane. The
intersections of chaotic trajectories are chaotically distributed within the region between
the KAM tori, often called the chaotic sea.

The KAM tori are specific cases of Lagrangian coherent structures - barriers of convective
material transport. The fluid inside a torus cannot exchange with the fluid outside the
torus except through molecular diffusion. The tori can deform as they are advected by
the flow, but their intersections with the Poincare plane recover the initial shape and
position after n ∈ N periods of the flow (or n revolutions about the axis of the torus in
case of a steady three-dimensional flow). n is called the periodicity of the torus.

Regular trajectories wind about the centerlines of KAM tori. The winding time τw
describes the duration of one winding with respect to the period of the torus nT . When
the winding time is rational, i.e., τw = p/q and (p, q ∈ N), all trajectories on the torus
are closed (of parabolic type) and each intersects the Poincaré plane at p distinct points.
Tori consisting of closed trajectories are called resonant. On the other hand, trajectories
with irrational τw are not closed, and their intersections with the Poincaré plane cover
the outline of their parent torus densely. The Kolmogorov–Arnold–Moser theorem
(Kolmogorov, 1954b,a; Arnold, 1963; Möser, 1962; Rüssmann, 1970) claims that the non-
resonant tori survive a perturbation of the Hamiltonian system. The Poincaré–Birkhoff
theorem (Birkhoff, 1934; Helleman, 1980) explains that resonant tori tend to break into
sub-harmonic tori around one of the parabolic closed trajectories with periodicity pnT .
The closed trajectory thus becomes elliptic. Furthermore, a hyperbolic trajectory is
created with heteroclinic connections separating different parts of the subharmonic torus
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2. Chaotic advection in a two-dimensional time-periodic lid-driven cavity

from the non-resonant tori of period nT . A layer of chaotic trajectories bounded by two
nested tori can emerge from these heteroclinic connections.

When the winding time infinitely close to the closed trajectory at the center of the
tori becomes rational, the trajectory itself is called resonant. This occurs, for example,
when different sections of a subharmonic torus approach the closed trajectory of lower
periodicity between them and eventually touch it. The closed trajectory then changes
type from elliptic to hyperbolic. When the different sections of the subharmonic torus
merge into a single torus of lower periodicity, the central closed trajectory changes type
back to elliptic. Such resonances of closed trajectories were observed, for example, in
two-dimensional lid-driven cavity flow with a non-zero mean velocity of the lid oscillation
(Poumaëre, 2020), or in a steady three-dimensional cavity (Ishii et al., 2012).

2.1.3 Historical context

Low-Reynolds-number (� O(1)) flows in cavities driven by two opposing walls have been
extensively investigated in terms of the topology of fluid trajectories, for example by
Chien et al. (1986); Ottino et al. (1988); Leong and Ottino (1989); Franjione et al. (1989).
They consider the effect of the temporal driving protocols of the lids. The mean velocities
of the lids are typically non-zero. In such conditions, there is a net advection even at
Stokes flow. For specific driving protocols Leong and Ottino (1989) observe that a larger
distance (relative to the cavity size) traveled by the lid per period of the flow favors the
chaotic advection. Also, they show that when the time dependence of the velocity of both
lids is even symmetric about some instances in time, the locations of fluid elements which
follow closed trajectories tend to organize at these time instances into some pattern that
inherits symmetries from the instantaneous streamlines of the flow.

Takasaki et al. (1994) and Anderson et al. (2000) consider cavities driven by a harmonic
motion with a non-zero mean velocity of a single lid at Reynolds numbers of O(10).
Takasaki et al. (1994) find an optimal dimensionless frequency (in convective scaling)
of the lid oscillation for efficient stirring in the range [0.7, 1] within the investigated
Reynolds numbers and ratios of the oscillation amplitude to the mean component of
the lid velocity. Anderson et al. (2000) find a KAM torus of period one near the center
of the instantaneous Eulerian vortex orbited by a subharmonic torus of period three
for the dimensionless frequency of 0.67 and the Reynolds number based on the mean
velocity component of 50. These regular tori almost completely vanish in the sea of
chaotic trajectories when the Reynolds number based on the amplitude of the lid velocity
oscillation increases from 25 to 75. Furthermore, they investigate the effect of a small,
steady motion of the bottom wall (the one opposing the lid). When the bottom wall
moves in the opposite direction than the mean velocity of the lid, a layer of regular
trajectories near the bottom wall is eliminated, but the size of the KAM tori in the
bulk of the cavity increases. Also, the structure of the KAM tori then becomes more
complex for some parameters. On the other hand, when the bottom wall moves in the
same direction as the average motion of the lid, the region of regular trajectories near
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2.2. Problem formulation

the bottom wall extends. Subharmonic tori of several periodicities are observed in this
region.

Most studies above consider driving with a non-zero mean velocity and low Reynolds
number. This chapter investigates fluid transport in a cavity flow driven by a single lid
with zero mean velocity. This setup is more practical as the lid can be realized by a solid
plane wall with linear driving. However, any net advection relies on fluid inertia, and
thus a higher Reynolds number is required.

2.2 Problem formulation
We consider the flow inside a two-dimensional square cavity (fig. 2.4) of side length L,
driven by a harmonic tangential oscillation of a single lid with velocity amplitude U
and period of oscillation T . Scaling the lengths, velocities, and time by L, U , and T
respectively, the dimensionless form

Str∂u

∂t
+ u · ∇u = −∇p + 1

Re∇2u, (2.4a)

∇ · u = 0. (2.4b)

of the governing equations (1.1) is obtained. The solution of (2.4) is required to satisfy
the boundary conditions

u(x = ±1/2) = 0, (2.5a)
u(y = −1/2) = 0, (2.5b)

u(y = 1/2) = cos(2πt)ex. (2.5c)

on the domain Ω = [−0.5, 0.5] × [−0.5, 0.5]. A fully developed time-periodic flow is
considered, i.e., after the effect of the initial condition vanishes. The two independent
dimensionless parameters governing the problem are the Reynolds number Re = LU/ν and
the Strouhal number Str = L/(UT ) which quantifies the oscillation frequency with respect
to the convective time scale. Alternatively, the Stokes number St = ReStr = L2/(νT )
may be employed to express the frequency with respect to the viscous time scale. The
dimensionless advection equation reads

dx

dt
= Str−1u(x, t). (2.6)

2.3 Methods of investigation
2.3.1 Stroboscopic projection
The positions of fluid elements are recorded every time the lid’s motion reaches a given
phase. We select the phase of maximum positive velocity, corresponding to the times
t = k, k ∈ N. At these times, as well as for t = k + 1/2, the positions of KAM tori are
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0
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ỹ

ũ = U cos(2πt/T )ex

u = 0

Figure 2.4: Sketch of a two-dimensional square cavity with a harmonic tangential motion
of the lid

the least sensitive to Str, and they can be easily grouped into pairs. For each torus in
the left half of the cavity, a counter-part exists in the right half. This property will be
illustrated in more detail.

The trajectories used for the stroboscopic projection are started from a set of uniformly
distributed points. Initially, a grid of 10 × 10 points is used. When at least some of the
trajectories are chaotic, their stroboscopic projection gradually covers the entire chaotic
sea. Regions not visited by the chaotic trajectories then typically correspond to KAM
tori. The resolution of the initial points is increased up to 25 × 25 when the structure of
KAM tori is complicated. The trajectories are integrated for at least 100 periods. When
the Reynolds number is low, and the frequency is high, the winding time is typically very
long, τw � 1. It is then necessary to compute the trajectories for up to 1000 periods to
obtain complete outlines of at least some of the tori.

2.3.2 Visualization of heteroclinic connections
Only regular heteroclinic connections, i.e., those that separate two sets of nested KAM
tori, are visible directly in the stroboscopic projection. In order to visualize the transverse
heteroclinic connections within the chaotic sea, closed hyperbolic trajectories must first
be found. In the stroboscopic projection, they can be observed as hyperbolic fixed points
XF. These are computed iteratively with the Newton–Raphson method

X
(k+1)
F = X

(k)
F −

	
∇F (X(k)

F )
�−1 · F (X(k)

F ) (2.7)
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as zero points of the displacement function

F (X) := fn(X) − X
!= 0, (2.8)

where x(n) = fn (x(0)) maps an initial point X ≡ x(0) of a trajectory x(t) started at
time t = 0 to its final point x(n) after n periods of the flow. n must match the periodicity
of the searched closed trajectory. The Jacobian

∇F (X) = ∇fn(X) − I (2.9)

is approximated with centered finite differences

∇fn(X) ≈
�

f n(X+δex)−f n(X−δex)
2δ

f n(X+δey)−f n(X−δey)
2δ

�
(2.10)

following Farazmand and Haller (2012). The type of the closed trajectory is related to
the eigenvalues λ1,2 of ∇fn(XF) as follows (Ottino, 1989):

Hyperbolic |λ1| > 1 > |λ2| ∧ λ1λ2 = 1
Parabolic λ1,2 = ±1
Elliptic |λ1,2| = 1 ∧ λ1,2 �= 1.

In the hyperbolic case, the eigenvectors corresponding to λ1 and λ2 point in the most
repelling and attracting direction, respectively.

Once a hyperbolic trajectory is found, 50 initial points are uniformly distributed along
a small circle about its starting point. They represent an outline of a small blob of
marked fluid, discretized into connected line segments. As the flow advects the initial
points, the blob is stretched into a thin filament along the most repelling directions of
the hyperbolic trajectory. The outline of the blob houses the unstable manifold. Due to a
rapid increase of the perimeter of the outline, its discretization must be refined during the
advection to accurately represent its shape. Therefore we apply the adaptive refinement
algorithm of Meunier and Villermaux (2010). After every 10−3 convective time units the
curvature κ(s) parametrized with the arc-length coordinate s is approximated by cubic
spline interpolation of its points xo(si), yo(si) and using the formula

κ = |x

oy



o − y

ox



o |
(x
2

o + y
2
o )3/2 . (2.11)

The length of an i-th line segment is then restricted by

|si+1 − si| <
Δl

1 + ακ(si+1/2) , (2.12)

where Δl = 10−3 is the maximum segment length for zero curvature and α = 30Δl/π
controls the sensitivity of the segment length to the curvature. si+1, si and si+1/2 are
the values of s at the segment endpoints and at its center respectively. Those segments
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2. Chaotic advection in a two-dimensional time-periodic lid-driven cavity

which exceed the length restriction are split in two parts connected at a new point
[xo(si+1/2), yo(si+1/2)], obtained by evaluating the spline interpolation at the segment
center.

A stable manifold of a hyperbolic trajectory can be obtained similarly, integrating the
fluid trajectories backward in time. This is equivalent to a forward integration of the
problem

dx

dt
= −Str−1u(x, −t). (2.13)

In order to illustrate a transverse heteroclinic connection, we compute an unstable
manifold of one hyperbolic trajectory and a stable manifold of the other trajectory.

2.3.3 Visualization of the temporal evolution of KAM tori
The stroboscopic projection shows the outlines of KAM tori at a single phase of the lid
motion. These outlines can move and deform significantly throughout the oscillation
cycle as they are advected by the flow. In order to visualize the entire spatio-temporal
structure of a torus, we collect pieces of a regular trajectory from subsequent flow periods
into a single three-dimensional plot in the parameter space (x, y, t) ∈ Ω × [0, 1]. This is
equivalent to plotting a set of trajectories started from the points outlining the torus in
the stroboscopic projection. We order these points based on their polar angle

θF = arctan Y − YF
X − XF

(2.14)

with respect to the center of the torus XF. The outline of a torus is then approximated
by connecting these ordered points. The advection of this outline along the regular
trajectory reconstructs the surface of the torus in the parameter space (x, y, t). Only the
largest torus of each set of nested tori is selected for visualization.

2.3.4 Winding times of regular trajectories
In order to quantify the winding time τw, we compute the cumulative winding angle θF(t)
over the same number of periods K ∈ N as used for the stroboscopic projection. The
winding time is then computed as

τw = 2πK

θF(K) − θF(0) . (2.15)

2.3.5 Quality of stirring
The stirring ability of a flow can be quantified in many ways. Chapter VII of Aref et al.
(2017) gives a summary of possible methods. We follow the concept of coarse-grained
density. A portion of marked fluid is initiated in some unmixed state - i.e., the perimeter
of the outline should be small compared to the area of the marked fluid. The requirement
on the stirring is to uniformly distribute the marked fluid across the flow domain on some
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global scale, such that on a small scale, the mixing can be completed, e.g., by diffusion.
To that end, the domain is divided into Nδ sub-regions with the same areas Sδ. The
proportion of marked fluid

Di(t) = S
(i)
b (t)
Sδ

(2.16)

within each sub-region i (fig. 2.5b) can then be evaluated over time, where S
(i)
b (t) is the

area of the marked fluid inside that sub-region. Di is also called a coarse-grained density.
The overall proportion of the marked fluid inside the domain

�D� =

Nδ�
i=1

S
(i)
b

NδSδ
(2.17)

and the mean of the squared local proportions

�
D2

�
(t) = 1

Nδ

Nδ�
i=1

D2
i (t) (2.18)

then define the variance
�
D2� − �D�2. By scaling the variance with its largest possible

value, one obtains the coarse-grained intensity of segregation

I(t) =
�
D2� − �D�2

�D� (1 − �D�) ∈ [0, 1]. (2.19)

We initialize the marked fluid as a square of side length 1/2 in the center of the cavity (fig.
2.5a) and divide the domain into Nδ = 400 squared sub-regions of side length δS = 0.05.
This configuration was selected such that the initial outline of the marked fluid overlaps
with the boundaries of the sub-regions. The initial intensity of segregation is then
I(0) = 1, corresponding to a perfectly unmixed state. The outline of the marked fluid is
again discretized into connected fluid elements, which are advected by the flow, and it is
adaptively refined with the aforementioned algorithm. Each side of the initial square is
refined as a separate curve because the curvature would diverge at the edges. The same
parameters Δl and α are used as for the visualization of stable and unstable manifolds,
although this typically leads to a large number of fluid elements for the representation of
the outline. The computation is terminated when at least one of the sides of the initial
square is discretized into more than 50 000 fluid elements, which indicates a well-stirred
state, or when the convective time t/Str from the start of the advection reaches 100.

The intensity of segregation I(t) was evaluated only every half-period of the flow to
filter out transient stretching of the marked fluid within a single oscillation cycle. These
data points (fig. 2.5c) were then fitted by an exponential decay exp[−t/(τmStr)] with the
characteristic decay time τm expressed in convective scaling.
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Figure 2.5: Quantification of the stirring ability of a flow for Re = 50, Str = 0.25. (a)
Initial (black) and final (red) shape of a portion of marked fluid advected for eight periods
of the flow; (b) The distribution of the coarse-grained density Di(8) at the final state; (c)
Exponential fit of the intensity of segregation I(t)

2.3.6 Numerical methods

Velocity field

The velocity field u(x, t) is computed with an open-source spectral-element solver
NEK5000 (Fischer et al., 2008), based on FORTRAN 77. Internally, the default convective
scaling of the problem (2.4, 2.5) is used, i.e., the time is scaled with L/U instead of T .
The problem is discretized in space with the continuous Galerkin method on a uniform
Cartesian grid of 20×20 square elements. The velocity and pressure fields are represented
element-wise with 7th and 5th order Lagrange polynomials on Gauss-Legendre-Lobatto
and Gauss-Legendre nodes, respectively (PN −PN−2 method). The same nodes are used to
approximate the integrals arising in the weak formulation of the Navier–Stokes equations
with an element-wise Gauss(-Lobatto) quadrature. An exception is the convective term,
which is integrated with a 12-point Gauss-Lobatto quadrature. The over-integration of
the convective term on 3(N + 1)/2 points, where N is the polynomial order of velocity,
is recommended by Mengaldo et al. (2015) in order to suppress numerical instabilities
due to aliasing.

A third-order Adams–Moulton method is used for the discretization in time. The typical
difficulty with an implicit discretization of the Navier–Stokes equations lies in the presence
of the convective term, which makes the resulting system of algebraic equations non-linear.
It could be solved iteratively for every time step, which would, however, significantly
increase the computational demand. Instead, the convective term at the unknown
time step is approximated by extrapolating the known time steps with the third-order
Adams-Bashforth method. This conserves the overall third-order accuracy in time.

The third-order Adams-Moulton and Adams-Bashforth methods require the last three
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time steps to be available in memory. Lower order discretization is employed when the
computation starts from initial conditions or a saved velocity field until the first three
steps have been computed. If it is desired to restart the computation without the drop in
the accuracy of the initial steps, the Checkpointing routines from the KTH Framework
(github.com/KTH-Nek5000) can be employed. These were, however, not used in the
present study.

The coupling between the evolution of velocity and pressure through the incompressibility
constraint is further approximated with the Fractional Step Method (also known as the
projection method or splitting method):

1. The velocity at the next time step is first predicted using the pressure field from
the known time step. The predicted velocity field is generally not incompressible
unless the flow is steady.

2. Using the predicted velocity, a correction of pressure is computed such that it
enforces incompressibility.

3. The velocity and pressure at the next time step are then corrected using the pressure
correction.

The second and third steps can be understood as a projection of the predicted velocity
onto a space of divergence-free vector fields. This method is advantageous from the point
of view of computational efficiency. It, however, introduces a so-called splitting error of
the discretization in time. Thanks to Perot (1993), a Fractional Step Method of arbitrary
order of accuracy can be designed. The one implemented in NEK5000 is of third-order,
matching the overall accuracy of the temporal discretization.

In order to validate the implementation and assess the grid convergence, a steady two-
dimensional lid-driven cavity flow is first computed and compared to the benchmark
data of Botella and Peyret (1998) in table 2.1. The lid moves with constant speed in the
positive x direction. The flow is started from rest

u(x, t = 0) = 0 (2.20)

and the convergence to a steady state is indicated by the criterion

max
i,j

|ui(xj , t) − ui(xj , t − Δt)|
Δt

≤ 10−7, (2.21)

where i and j enumerate the velocity components and the grid points, respectively.

The flow governed by (2.4, 2.5) is as well started from rest, and the initial evolution
towards a fully-developed time-periodic flow is monitored by the maximum change of
any velocity component at any grid point from one period to the other

Rk = max
i,j

|ui (xj , k) − ui (xj , k − 1) | , k ∈ N (2.22)
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2. Chaotic advection in a two-dimensional time-periodic lid-driven cavity

−umin ymin vmax xmax −vmin xmin
101 × 101 0.2140434 −0.0419 0.1795745 −0.2630 0.2538089 0.3104
141 × 141 0.2140423 −0.0419 0.1795727 −0.2630 0.2538031 0.3104
B & P 0.2140424 −0.0419 0.1795728 −0.2630 0.2538030 0.3104

Table 2.1: The minimum of the horizontal velocity along the vertical center-line
umin(0, ymin) and the extrema of the vertical velocity along the horizontal center-line
vmax(xmax, 0), vmin(xmin, 0) in a steady lid-driven cavity for Re = 100 computed with
5th and 7th order element-wise polynomial approximation of velocity, leading to a total
number of 101 × 101 and 141 × 141 nodes for velocity. B & P indicates the results of
Botella and Peyret (1998).

Rk

k
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Re = 500, Str = 1
Re = 500, Str = 0.1
Re = 500, Str = 0.02
Re = 200, Str = 1

Figure 2.6: The evolution of Rk (2.22) with the number of periods k from the start of
the lid motion

for a given phase of the lid motion. The higher the Stokes number, the more periods are
required for reaching a time-periodic state (fig. 2.6). Within this investigation, St ≤ 500
and the time-periodic state, indicated by the criterion Rk < 10−7, is reached after less
than 100 periods. The velocity and pressure of the last time step are then saved to a file,
and the computation is terminated. Afterward, the flow is restarted from the saved file,
and the velocity field at 1000 uniformly distributed time steps over one flow period is
saved. Further flow evolution is constructed as a periodic extension of this one period.

Fluid trajectories

The integration of (2.2) requires evaluation of the velocity u along the trajectory x(t). The
nodal values obtained from the spectral-element solver are thus interpolated element-wise
with Lagrange polynomials

u(x, y, t) =
N+1�
i,j=1

ui,j(t)li(x)lj(y), li(x) =
N+1�
k=1
k 	=i

x − xk

xi − xk
(2.23)
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i 1 2 3 4 5 6 7
ei 71/57600 0 -71/16695 71/1920 -17253/339200 22/525 -1/40

Table 2.2: Coefficients for the error estimate (2.27) of the RK5(4)7M method

where N = 7 is the polynomial order. The trajectories started from a set of initial
conditions X = x(0) are obtained by integrating (2.2) with the adaptive-time-step
5th order Runge-Kutta method RK5(4)7M of Dormand and Prince (1980)

ki,j = u (tn + ciΔt, xj(tn) + Δt(ai,1k1,j + · · · + ai,i−1ki−1,j)) (2.24a)

xj(tn+1) = xj(tn) + Δt
7�

i=1
biki,j + O

�
Δt6

�
(2.24b)

implemented in the MATLAB function ode45. The subscript j enumerates the computed
trajectories. At each step, the positions of fluid elements xj(tn+1) are computed with
RK5, and the relative error is estimated by comparison to the result of RK4

� ≈ 
xj(tn+1) − x̂j(tn+1)
2

xj(tn+1)
2

. (2.25)

Although the computation of RK5 with seven intermediate directions k is sub-optimal,
the method is designed such that the RK4 reuses them

x̂j(tn+1) = xj(tn) + Δt
7�

i=1
b̂iki,j . (2.26)

The coefficients ai,1...6, bi, b̂i, ci are given in table 2 of Dormand and Prince (1980). The
error estimate can also be expressed directly

� ≈

����� 7�
j

ejki,j

�����
2


xj(tn+1)
2
(2.27)

without the explicit computation of x̂i(tn+1). The coefficients ej used in ode45 are given
in tab. 2.2. The step size for the next step is then adapted according to

Δt ← 0.8Δt

�
tol

�Δt

�1/5
. (2.28)

The relative tolerance is set to tol = 10−8. A custom version of ode45 has been imple-
mented for the advection of adaptively refined curves, where the number of trajectories
changes over time.

The times at which the velocity is evaluated are not restricted to those saved from the
flow solver. It is, therefore, necessary to interpolate u in time as well. The nodal Fourier
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Figure 2.7: Convergence of the nodal Fourier interpolation (2.29) for Str = 0.01

interpolation

u
(M)
i,j (t) =

M�
k=1

ui,j(tk)
M

sin



M

2 (t − tk)
�

cot

1

2(t − tk)
�

(2.29)

is employed (Kopriva, 2009), where k enumerates M uniformly distributed time steps
over one period. The accuracy of the interpolation is assessed by comparison to all 1000
steps saved from the solver

�M =

���u
(M)
i,j (tk) − ui,j(tk)

���
2


ui,j(tk)
2
, k = 1, . . . , 1000. (2.30)

The flow is well represented by less than M ≤ 100 steps (fig. 2.7). The saturation of
�M at O(10−6) for Str = 1 and O(10−8) for Str = 0.01 is related to the restarting of the
flow solver after a time-periodic state is reached. As described in the previous section,
the first two time steps after the restart are computed with lower-order discretization in
time. Due to the higher discretization error at these steps, the computed velocity is only
periodic up to the level at which �M saturates. This accuracy was considered sufficient
for the present study. The velocity field (2.29) used for the computation of trajectories is
time-periodic by definition.

Interpolation of the velocity field near a discontinuous boundary condition

The velocity field obtained from the spectral-element flow solver suffers from Gibbs
undulations (fig. 2.8) close to the corners where the moving lid meets the steady walls.
This causes stiffness of the advection problem (2.2) as accurate computation of trajectories
passing close to one of these corners requires a much smaller time-step size than in the
rest of the domain. The computation of trajectories with the Dormand–Prince algorithm
in such velocity field then typically becomes prohibitively computationally demanding.
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Thus, we propose an ad-hoc modification

u(x, y, t) = ua(x, y, t) +
N+1�
i,j=1

[ui,j(t) − ua(xi, yj , t)] li(x)lj(y) (2.31)

of the interpolation (2.23) on the spectral elements containing the discontinuous boundary
condition. ua is some function that matches the prescribed discontinuous boundary
conditions at the corner points, but is continuous in the rest of the domain. The Lagrange
polynomials then interpolate only the remainder field, for which the boundary conditions
are continuous. ua should be a good approximation of u close to the discontinuity,
without the artificial oscillation. The analytical Stokes flow near the corner

ψ0(r, θ) = 4ru(y = 1/2)
π2 − 4

�
π2 + 2πθ

4 sin θ − θ cos θ

�
(2.32)

due to Gupta et al. (1981) is employed in the following way

ua =

 ∂yψ0
�
rA, θA

�
+ ∂yψ0

�
rB, θB

�
−∂xψ0

�
rA, θA

�
− ∂xψ0

�
rB, θB

� (2.33)

θA,B = − sign
�
xA,B

�
arctan y − yA,B

x − xA,B rA,B = 
x − xA,B
2

xA =
	
xA, yA

�
=



−1

2 ,
1
2

�
xB =

	
xB, yB

�
=


1
2 ,

1
2

�
.

Figure 2.8 shows that this a posteriori treatment removes the undulation in the interpo-
lated velocity field.

The velocity at the corner points is set to zero, i.e., the no-penetration condition has a
priority over the no-slip condition. This is to ensure that no fluid trajectories enter or
leave the domain. If, on the other hand, the no-slip condition was enforced at the corner,
the Stokes flow solution of Riedler and Schneider (1983) could be employed to take a
leakage of fluid between the lid and the sidewalls into consideration.

2.4 Results
2.4.1 Instantaneous velocity field
It is confirmed by an inspection of the Fourier spectrum of velocity (fig. 2.9) that the flow
is strictly periodic with the period of lid oscillation within the investigated parameter
space Re ∈ [1, 500], Str ∈ [0.01, 1]. Furthermore, it is invariant under translation by half
a period together with a reflection about the vertical axis x = 0�

u
v

�
(x, y, t) =

�
−u
v

�
(−x, y, t + 1/2), (2.34)
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Figure 2.8: Modified interpolation of the velocity field near the corners with a discontinu-
ous boundary condition. Black dots are the nodal values, dashed line is their Lagrange
interpolation (2.23), while the solid line is the modified interpolation (2.31). Nodal values
computed with a refined mesh are plotted by crosses for reference.

as shown by Vogel et al. (2003). Figure 2.10 shows an example of instantaneous streamlines
and a vertical profile of the horizontal velocity during and acceleration phase of the lid
in the positive x direction. The Stokes number St = 500 corresponds to the Stokes layer
thickness λ/L = 0.04. During the initial stage of the lid acceleration, most of the cavity
is occupied with an anti-clockwise vortex which survives from the previous half-period
with negative lid velocity. An undular boundary layer is observed not only at the lid
but also along most of the stationary walls. Four elliptic points are observed within
this layer - one near the left wall, one near the bottom wall, and two near the top right
corner. They gradually merge into a single center of a clockwise vortex which grows and
replaces the anti-clockwise vortex. The anti-clockwise vortex eventually vanishes near the
downstream corner. As the lid velocity reaches a maximum and enters the deceleration
phase, the center of the clockwise vortex moves from the vicinity of the upper right corner
into the bulk of the cavity. The reader is referred to Zhu et al. (2020) for a detailed
description of the instantaneous vortical structure in a harmonically driven cavity with a
width-to-height ratio of 2.

When the Reynolds number is low Re ∼ O(1) (fig. 2.11a,d), the streamlines of the
instantaneous flow are close to symmetric about the vertical axis x = 0 and they do not
vary significantly during the oscillation cycle. Most of the cavity is occupied by a single
large vortex which changes its sense of rotation when the lid changes the direction of
motion. The spatial distribution of the variance σ2(|u|) of velocity magnitude is similar
to the distribution of the velocity magnitude itself. In case of a low frequency of the lid
oscillation Str � 1, the time derivative term in (2.4a) becomes comparatively small, and
the flow can be considered quasi-steady. This means that at every time instance, the
instantaneous flow resembles a steady lid-driven cavity flow, even when the Reynolds
number is increased (fig. 2.11b,c). The instantaneous streamlines, however, become
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Figure 2.9: Fourier spectra û (black) and v̂ (blue) of the horizontal and vertical velocity,
respectively, at the point (x, y) = (1/4, 1/4) for Re = 500 and Str = 0.1.
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Figure 2.10: Streamlines (black) and velocity profile u(x = 0) (blue) on the vertical
centerline for Str = 1 and Re = St = 500 shown during the acceleration phase of the lid
in the positive x direction. Full and dashed lines indicate negative (clockwise rotation)
and positive stream function (counter-clockwise rotation), respectively. The streamlines
are distributed logarithmically.

asymmetric for higher Reynolds numbers, and thus they vary more significantly in time.
The peaks of the variance then identify the areas with the largest velocity magnitude
over the cycle. For large Stokes number, St ∼ O(102) (fig. 2.11e,f), most of the variation
of the flow in time occurs in the Stokes layer near the lid.
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Figure 2.11: Time-variance (color) of the velocity magnitude σ2 (|u|) and streamlines
(black) of the instantaneous flow at the largest positive velocity of the lid. Re and Str as
indicated.

2.4.2 Mean flow

It was shown in the previous section that when the Reynolds number is not small, Re � 1,
the instantaneous streamlines are asymmetric with respect to the centerline x = 0. This
induces a non-zero time-averaged velocity field ū (fig. 2.12) and makes the flow irreversible.
The mean flow can naturally affect net fluid transport after a complete period of the lid
motion. The structure of the mean flow is the same within the investigated parameter
range. It consists of one larger pair of vortices that occupy most of the domain and
one smaller pair near the bottom corners. Both vortex pairs are mirror-symmetric with
respect to the axis x = 0. The strength of the mean flow increases with the Reynolds
number, as expected. For higher Stokes numbers, it concentrates near the upper corners
of the cavity. The size of the bottom vortices typically increases with the Reynolds
number up to a certain threshold, beyond which they shrink again upon a further increase
of Re. The threshold decreases when the convective frequency Str is increased.
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|ū|

0.05

0.1

0.15

(c) Str = 0.02, Re = 500

x

y

−0.4

−0.4

−0.2

−0.2

0

0

0.2

0.2

0.4

0.4

(d) Str = 1, Re = 1
x

−0.4−0.2 0 0.2 0.4

(e) Str = 1, Re = 200
x

−0.4−0.2 0 0.2 0.4

0.02

0.04

0.06

0.08

|ū|
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Figure 2.12: Magnitude (color) and streamlines (black) of the time-averaged velocity
field ū. Re and Str as indicated in the sub-captions.

2.4.3 Kolmogorov–Arnold–Moser tori
When the Reynolds number is low Re = 1 (fig. 2.13), only regular trajectories are observed
for all investigated frequencies Str ∈ [0.01, 1]. The periodicity of all tori is n = 1. In
the stroboscopic projection to t = k, k ∈ N0, the sets of tori are clearly divided into
two groups of equal size by a separatrix that connects the center of the bottom wall
with the center of the lid. Each torus from one group has a matching counterpart in
the other group, i.e., all tori are paired. Each pair is symmetric with respect to the
reflection-translation (RT) transformation

(x, y, t) →
�

−x, y, t + 1
2

�
. (2.35)

The separatrix, formed by a (sequence of) heteroclinic connection(s), is rather straight in
the bottom part of the cavity but becomes undular near the lid. It, of course, deforms in
time as it is advected by the flow. Interestingly, the wavelength of the undulation does
not correlate with the Stokes layer thickness St−1/2.

For a high frequency of the lid oscillation Str > 5.9 × 10−2, the intersections of KAM
tori with the projection plane t = k (fig. 2.13a) resemble the streamlines of the mean
flow for the same parameters (fig. 2.12d), except the small pair of tori below the lid.
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Figure 2.13: Stroboscopic projection (dots) of fluid trajectories to t = k, k ∈ N for Re = 1
and different frequencies of the lid oscillation indicated in the sub-captions. The red
curves in (a) are the streamlines of the mean flow ū and the blue lines in (d) are the
streamlines of the instantaneous velocity field at t = k.

Thus, we conclude that the mean flow dominates the net fluid transport. A heuristic
explanation can be constructed using the convective scaling of time tc = t/Str, under
which the duration of a flow is proportional to the length of fluid trajectories. The final
position of a fluid element after one period is given by an integral of velocity along its
trajectory

x
�
tc = Str−1

�
=

Str−1

0

u (x(tc), tc) dtc. (2.36)

When the convective period Str−1 of the flow is short, the trajectory of a fluid element is
also short, and thus it stays close to its initial position during the entire flow cycle. The
integral of velocity along its trajectory is then similar to the integral of velocity at its
initial position

Str−1

0

u (x(tc), tc) dtc
Str−1→0−−−−−−→

Str−1

0

u (x(0), tc) dtc (2.37)

which approximates advection by the mean flow

Str−1

0

u (x(0), tc) dtc ≡ Str−1ū ≈
Str−1


0

ū (x(tc), tc) . (2.38)

This argument only holds when the velocity field does not vary significantly in space at
the length scale of the short trajectory, i.e., when u · ∇u � O(1).

When the frequency is decreased, the small tori below the lid vanish, and for Str ≤
5.9 × 10−2 a new pair of KAM tori appears near the center of the instantaneous Eulerian
vortex for t ∈ N (fig. 2.13b). These new tori grow upon a further decrease of frequency,
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Figure 2.14: Stroboscopic projection to t = k for Str = 1 and various Reynolds numbers
as indicated in the sub-captions. Black and magenta dots indicate synchronous and
subharmonic regular trajectories, while grey dots indicate chaotic trajectories. Red curves
are the streamlines of the mean flow for the same parameters.

displacing the other tori towards the walls. Another tori eventually appear at a similar
position, and the same process repeats several times. This leads to a complex structure
of multiple sets of stretched tori for low frequencies. We note that for Str ≤ 0.01, most
of the tori are stretched along the instantaneous streamlines.

Above, we have considered the structure of fluid trajectories (also called Lagrangian
topology) for Re = 1. Next, we investigate how it responds to an increase in the Reynolds
number. At a certain threshold, the sea of chaotic pathlines emerges, and some of the
regular tori with periodicity one break into subharmonic tori. The threshold increases
with increasing frequency (fig. 2.21a).

For Str = 1 the Lagrangian topology (fig. 2.14) is not very sensitive to the increase of
the Reynolds number. The centers of the largest tori move towards the upper corners,
and the smaller tori near the bottom corners and below the lid shrink. This is a similar
trend as observed for the time-averaged velocity field. The trajectories remain regular
for Re < 100. At Re = 100 we start to observe subharmonic tori of high periodicity and
layers of chaotic trajectories between regular tori.

For Re = 500 chaotic trajectories are observed in the upper part of the cavity. On the
other hand, the net fluid transport almost vanishes in the lower part. This is expected as
the flow in the bottom part of the cavity becomes insignificant (fig. 2.11f). Small tori
with period 1 remain around the closed trajectories near the upper corners, surrounded
by subharmonic tori of period 5.

For the frequency Str = 0.25 (fig. 2.15), the regular tori in the bulk of the largest nested
sets break into subharmonic tori at Re = 20. The periodicity of the subharmonic tori
ranges from p = 5 near the synchronous (n = 1) trajectory up to p = 9 further away from
the center of the set. It is instructive to consider the dependence of the winding time τw of
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Figure 2.15: Stroboscopic projection to t = k for Str = 0.25. Re as indicated in the
sub-captions. Black, magenta and grey dots as in fig. 2.14. The blue dot indicates the
closed synchronous elliptic trajectory in the center of the set of tori. The tori at the
bottom corners are not shown in (c) and (d).
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Figure 2.16: Dependence of the winding time τw of regular trajectories about the central
closed trajectory as a function of the mean radius of cross-section r̄ of their KAM tori.
The parameters are given in the legend. The cases shown are distinguished by line type
and color corresponding to the color of the sub-captions of figs. 2.15(a,b) and 2.17(a–c).

the synchronous tori on the distance from the closed synchronous trajectory (fig. 2.16) in
order to identify which resonances lead to the creation of the subharmonic tori. It is seen
that for Re = 20 and Str = 0.25 the winding times of the synchronous tori from the largest
set vary in the range τw ∈ (4, 10). It is thus clear that the subharmonic tori emerged
by breaking of the synchronous tori with integer winding times τw = p/q = 5/1, . . . , 9/1.
This means they only wind once about the synchronous closed trajectory before returning
to their starting position in the stroboscopic projection plane.

It would be tempting to conclude that resonant tori with integer winding times are more
likely to break than those with other rational values of τw. We must, however, be aware
that the latter might be difficult to observe. The resulting subharmonic tori would have
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Figure 2.17: Stroboscopic projection to t = k for Str = 0.1. Re as indicated in the
sub-captions. Black, magenta and grey dots as in fig. 2.14. The blue dot indicates the
closed synchronous elliptic trajectory in the center of the set of tori. The tori at the
bottom corners are skipped in (b).

q-times higher periodicity p. Since all of their p parts must fit into the circumference
of the resonant torus, the cross-sections of the subharmonic tori might be too small to
be captured with the given grid of fluid elements. We will show that resonances with
non-integer winding times can be observed when τw is sufficiently small and when the
circumference of the resonant torus is sufficiently large. It shall be noted that τw diverges
as Re → 0 as well as when the tori approach walls (fig. 2.16). The former is due to the
reversibility of the Stokes flow and the latter due to the no-slip condition.

When the Reynolds number is further increased, the sea of chaotic trajectories emerges
from the synchronous heteroclinic connections, destroying the outermost KAM tori, but
also from the subharmonic heteroclinic connections of higher periodicity. The latter
create layers of chaotic trajectories separated by the remaining synchronous tori. The
subharmonic tori of higher periodicity vanish in these chaotic layers, while new tori of
smaller periodicity appear close to the synchronous trajectory. Some of these appreciably
grow in size.

For Str = 0.1 (fig. 2.17) the chaotic trajectories emerge from the synchronous heteroclinic
connection at even lower Reynolds number Re = 10. In contrast to Str = 0.25, only
the outer tori tend to break into subharmonic ones, while those in the bulk of each set
survive the increase of the Reynolds number. This is related to the winding time, which
is almost constant in the bulk of the set and only starts to increase significantly in the
outer part of the set. We do not expect observable resonances in the region where the
tori are small, the winding time is still rather high, and it does not cross integer values.
For Str = 0.1, Re = 10 (fig. 2.17b) the resonant tori with τw = 11 and 12 break into
subharmonic tori with the same period. When the Reynolds number is increased to
Re = 20 (fig. 2.17c), the outer tori with non-integer rational winding times τw = 21/4
and 16/3 break into subharmonic tori with period 21 and 16. As mentioned before, these
tori with a long period are rather small, and thus they might be difficult to capture. For
Re = 50 (fig. 2.17d) only the tori at the bottom corners survive.
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Figure 2.18: Stroboscopic projection to t = k. Parameters as indicated. Black, magenta
and grey dots as in fig. 2.14. The initial distribution of fluid elements in (b) is concentrated
near the boundaries of the upper tori, and some artifacts of the initial distribution may
be visible in the chaotic sea.

As the number of sets of tori increases for Str < 0.059, we observe that the chaotic
sea tends to emerge from the heteroclinic connections outlining the most stretched sets
(fig. 2.18). Highly stretched tori vanish at low Reynolds numbers Re ∼ O(1), while the
"newest" tori near the center of the Eulerian vortex survive to higher Reynolds numbers
Re ∼ O(10).

Typically, the regular tori are destroyed as the Reynolds number increases. However,
for Str = 0.05 (fig. 2.18a–d) new regular tori are born in the bulk of the chaotic sea
as Re increases from 340 to 345. The structure of these tori in space and time differs
qualitatively from those observed at lower Reynolds numbers, as shown in the next
section.

2.4.4 Spatio-temporal structure of KAM tori
For low Reynolds numbers Re ∼ O(10) (fig. 2.19a-c) the KAM tori have an oscillatory
helical shape. For higher frequencies Str > 0.1 (fig. 2.19a,b) they only travel short
distances during the oscillation cycle. The figure 2.19(a) illustrates well the reflection-
translation symmetry (2.35) of the upper tori (cyan and brown). Figure 2.19(b) shows
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Figure 2.19: Stroboscopic projections (dots) and outermost KAM tori (surfaces) of
selected sets, for the parameters indicated in sub-captions, shown over one full period of
the driving. The low-opacity surfaces in (d) represent isosurfaces of the instantaneous
stream function for ψ = ±0.4 and ±0.6. The front faces of the wire-frames correspond to
the phase of the lid motion at t = k, k ∈ N in (a–c) and at t = 3/2 + k in (d).

subharmonic tori of periods 3 (green) and 4 (red) as they wind about the synchronous
tori (blue). Only one of each pair of tori is plotted for simplicity.

For low frequencies Str � O(10−2) (fig. 2.19c), the tori can make multiple revolutions
about the center of the Eulerian vortex during a half-period of unidirectional lid motion.
The tori close to the vortex center make more revolution than those further away. Tori
get stretched when they pass close to the moving lid. Only few tori are plotted in fig.
2.19(c), which demonstrate this general behavior.
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2. Chaotic advection in a two-dimensional time-periodic lid-driven cavity

The tori observed for Str = 0.05, Re = 500 have a different structure. This is related
to the different structure of the flow, which is dominated by two Eulerian vortices with
opposite senses of rotation, which alternately appear and disappear in the upper part of
the cavity. They are visualized by isosurfaces of the instantaneous stream function (low
opacity surfaces in fig. 2.19d). They are generated near the upstream upper corner of
the cavity after the lid motion changes direction and gradually move towards the center
of the cavity. They vanish soon after the lid changes the direction of motion again, being
replaced by the counter-rotating vortex, which is created near the opposite upper corner.
Each of the upper KAM tori in fig. 2.19(d) spirals close to the center of its respective
vortex for a half-period of unidirectional lid motion, and afterward, it is advected back
to its starting position during the second half-period.

2.4.5 Heteroclinic connections
Next, we illustrate the emergence of chaotic trajectories by perturbation of a heteroclinic
connection. Figure 2.20(a) shows an example of a regular heteroclinic connection for
Str = 0.05 and Re = 5. A small circle of fluid elements is initiated around a hyperbolic
trajectory P, approximating an outline of a blob of fluid. The outline (blue curve) is
advected by the flow and adaptively refined as described in section 2.3.2. It is stretched
along the unstable manifold Wu(P ) of the trajectory P, which coincides with the stable
manifold Ws(Q) of another hyperbolic trajectory Q. The outline approaches close to the
trajectory Q along its stable manifold and gets stretched along the unstable manifold
Wu(Q). Eventually, it arrives back to the trajectory P along its stable manifold Ws(P ).
Another small circle (outline shown in cyan) is initiated around the trajectory Q, and
it is advected backward in time in order to visualize the stable manifold Ws(Q). It is
clear that the heteroclinic connection between P and Q is unperturbed, since Wu(P ) is
indistinguishable from Ws(Q).

Figure 2.20(b), on the other hand, shows an example of a transverse heteroclinic connection
for different parameters Str = 0.02, Re = 10. Again, a small circle is initiated around a
hyperbolic trajectory P. It stretches along the unstable manifold of P, which develops
undulations in its upper part. The undulations are magnified when they approach another
hyperbolic trajectory Q, being stretched in the directions of its unstable manifold. This
example clearly illustrates the folding and stretching of fluid interfaces near the hyperbolic
trajectory Q, which leads to an exponential growth of their area. The folds eventually
penetrate the entire sea of chaotic trajectories.

We consider another example of transverse heteroclinic connections between different
parts of a hyperbolic trajectory of higher periodicity. For Str = 0.25 and Re = 50 (fig.
2.20c) we find closed hyperbolic trajectories of periodicities 3 and 4 embedded in the
chaotic sea. Their stable and unstable manifolds form a labyrinth called heteroclinic
tangle. A subharmonic hyperbolic trajectory of periodicity n intersects the stroboscopic
projection plane at n points, and heteroclinic connections exist between its different parts.
We consider the trajectory of period 4. Its subsequent intersections with the stroboscopic
projection plane t = k form hyperbolic points which are denoted P1, . . . , P4. The blue
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Figure 2.20: Examples of heteroclinic connections. Dots are the stroboscopic projection
of fluid trajectories to φ0 = 0. The blue lines in each figure represent an initially small
circle about the hyperbolic point P (or P1 in (c)) being advected and shown after 42
(a), 6 (b) and 20 (c) periods of lid motion. Cyan lines represent an initially small circle
about the point Q (or P2 in (c)) advected backward in time. In (a), stable and unstable
manifolds are indicated by green and red arrows, respectively.

outline is obtained by initiating a blob at P1, which is advected forward in time. It is
stretched towards the hyperbolic points P2 and P4 where the outline folds. One side of
the folds is stretched back to P1 and the other towards P3 where they fold again. The
cyan outline is initiated around P2 and advected backward in time.

2.4.6 Mixing
In the high-frequency regime Str ∈ �0.2, 1�, there exists an optimum Reynolds number
Re ∈ �50, 100� for fast mixing (fig. 2.21b). When the optimum value is exceeded, the
thickness of the Stokes layer becomes too small, and the flow is then mostly concentrated
in this thin layer close to the lid. For lower frequencies, the mixing improves with an
increase of the Reynolds number. For a given Reynolds number there exists an optimum
frequency, which is identified from fig. 2.21 as Str ≈ 0.25 for Re = 20 and Str ≈ 0.05 for
Re = 200. This corresponds, respectively, to the Stokes numbers St = ReStr of 5 and
10 and the Stokes layer thicknesses λ = St−1/2 of 0.45 and 0.32. The best mixing does
not correlate with the largest extent of the chaotic sea, which increases when the driving
frequency is decreased (fig. 2.21a).

2.5 Discussion
A lid-driven cavity with zero mean velocity of the lid is easy to construct since a rigid plate
with linear driving can be employed as the lid. The simplicity of the geometry is believed
to be advantageous for microfluidic applications. The structure of fluid trajectories and
the mixing ability of the flow were investigated for a range of driving frequencies and
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Figure 2.21: (a) Regimes of the Lagrangian topology in which only regular trajectories
exist (blue squares), regular and chaotic trajectories coexist (green circles), and in which
regular regions occupy less than 1% of the domain (red diamonds). (b) Dependence of
the convective mixing time τm on the Strouhal number for different Reynolds numbers
Re = 10 ( + ), Re = 20 ( ), Re = 50 ( ), Re = 100 ( ), Re = 200 ( ),
Re = 500 ( ) .

Reynolds numbers. The results can be utilized to design a laminar mixing device based
on this setup.

Compared to the two-dimensional lid-driven cavity flow with a non-zero mean velocity of
the lid oscillation (Poumaëre, 2020) we do not observe resonances of synchronous closed
trajectories associated with the emergence of homoclinic connections and bifurcation of
elliptic trajectories. On the other hand, we observe many heteroclinic connections for
low driving frequencies, which promote the stretching of fluid.

Chaotic advection can be achieved with the present setup even for low Reynolds numbers
Re ∼ O(1) when the driving frequency is sufficiently low Str ∼ O(10−2). For such
low driving frequencies, the sea of chaotic trajectories spans the entire cavity when the
Reynolds number is increased to Re ∼ O(102). However, the large extent of the chaotic
sea does not guarantee fast mixing because, for the low frequencies, long convective time
is needed to complete one flow cycle. Therefore, an optimal driving frequency exists for
a given Reynolds number when fast mixing is required.

When the driving frequency is too high, Str ∼ O(1), the flow has a poor mixing ability.
In the range of lower Reynolds numbers Re ∼ O(10) the fluid trajectories tend to remain
regular, while for higher Reynolds numbers Re ∼ O(100) the flow is concentrated in a
thin Stokes layer below the lid, with very weak fluid transport in the rest of the cavity. In
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2.5. Discussion

the high-frequency regime, the Kolmogorov-Arnold-Moser tori resemble the streamlines
of the mean flow. This phenomenon is attributed to short fluid trajectories within an
oscillation cycle. The effect of spatial variation of the velocity field on the net transport
of a fluid element after one period of oscillation decays as the frequency increases, since
the element remains close to its initial location. The transport then becomes dominated
by the mean velocity in this close neighborhood of the initial location.
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CHAPTER 3
Linear stability analysis of

thermocapillary convection in
droplets adhering to a wall

The results presented in this chapter are reproduced from a manuscript
Babor, L. and Kuhlmann, H. C. (2023b), ‘Linear stability of thermocapillary flow in a droplet
attached to a hot or cold substrate’, submitted to Phys. Rev. Fluids on April 26, 2023.

3.1 Introduction

3.1.1 Thermocapillarity
An interface between two immiscible or partially miscible fluids experiences a surface
tension σ (see, e.g., Levic, 1962; Davis, 1987). The interface between a liquid and a gas
is often called a free surface. The surface tension depends on several aspects as the local
chemical concentration of both fluids, temperature, electrical fields or contamination
of the interface. In this work it is assumed that both fluids, the liquid inside the
droplet and the ambient gas, are chemically pure (i.e., their chemical concentrations
are homogeneous), the free surface is not contaminated, and electrical field is excluded.
Thus, only the temperature dependence of the surface tension σ(T ) is considered. A
temperature gradient tangential to the free surface induces a gradient of surface tension

∇σ = −γ(I − n ⊗ n) · ∇T̃ (3.1)

which can drive a flow.
γ = − dσ

dT̃
(3.2)
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is the temperature coefficient of surface tension. The thermocapillary driving of fluid
flow is particularly appealing for applications in microfluidics (Karbalaei et al., 2016)
and in the conditions of microgravity Salgado Sánchez et al. (2020). It can also give rise
to various instabilities (Davis, 1987; Schatz and Neitzel, 2001).

For many flows of practical interest, γ can be assumed constant within a given interval
of temperature variations. Thus, a linear dependence of surface tension on temperature

σ(T ) = σ0 − γ(T − T0) (3.3)

is assumed in the standard framework of thermocapillary flows, and the heat capacity of
the free surface per unit area

cσ = T
dγ

dT
. (3.4)

(Schneider, 2013) is commonly neglected. This is consistent with the common assumption
that other thermophysical fluid properties are constant as well. Such assumptions are
typically valid for moderate temperature variations and normal fluids at temperatures
sufficiently far below their critical temperature1.

The free surface can be viewed as a heat engine that can drive a flow by converting part
of the normal heat flux density into mechanical power per unit area. When no mechanical
work is extracted from the flow, it is dissipated back to heat by viscosity in the bulk of
the fluid. It is common to neglect both the bulk heat production per unit volume due to
the viscous dissipation of momentum as well as the normal heat flux density jump at the
free surface. For thermocapillary flows they both scale with γ2ΔT 2/(µL2), where ΔT
and L are the characteristic scales of temperature variations and lengths, respectively.
This is typically sufficiently small compared to the scales of convective (ρcpγΔT 2/µ) or
conductive (λΔT/L) heat flux densities, where cp is the specific heat capacity and λ the
heat conductivity of the fluid.

Under these assumptions, the normal heat flux is continuous across the free surface. The
conditions of validity in terms of independent dimensionless power products are provided
in sec. 3.2.1.

3.1.2 Coffee-stain effect
When a droplet on a wall evaporates in a non-equilibrium pinned-contact-line regime, a
Stefan flow is induced in the bulk of the droplet, which compensates for the evaporation

1In this context, the critical temperature is defined as the temperature at which the latent heat of
evaporation vanishes. The fluid cannot form a sharp interface above the critical temperature, since there is
no distinction between the liquid and the gaseous phase. Even below but close to the critical temperature,
thermocapillary flows cannot be analyzed by standard means due to several complications. However,
in most practical situations fluids hardly achieve such high temperatures in liquid state. For example,
the free surface of water would, under the standard continuum assumption, experience a negative heat
capacity per unit area (Schneider, 2015) in the temperature range from 528.0 K to 647.1 K (Kalová and
Mareš, 2018), where the upper bound is the critical temperature.
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mass loss near the contact line to keep it pinned. The flow can transport suspended
particles towards the contact line where they accumulate. This leads to non-uniform
deposition of the particles during drying of the droplet known as the classical coffee-
stain effect (Deegan et al., 1997; Larson, 2017). The coffee-stain effect is of interest
in numerous fields of science and industry. While it is typically undesired in ink-jet
printing (Park and Moon, 2006) and spray coating, it is finding new applications in
medical diagnostics (Guha et al., 2017; Li et al., 2015) and manufacturing of conductive
layers (Lian et al., 2020). A review of these and other applications is due to Zang et al.
(2019).

When a temperature gradient tangential to the free surface is present, either due to
the evaporation heat flux (see e.g. Bhardwaj, 2018; Kelly-Zion et al., 2018; Kumar and
Bhardwaj, 2018; Semenov et al., 2017; Hu and Larson, 2002, or others) or due to a
non-isothermal ambient environment, a thermocapillary flow is induced, which modifies
the deposition pattern after the drying of the droplet. While the effect of a basic steady
axially symmetric thermocapillary convection on the deposit has been investigated (Hu
and Larson, 2006; Li et al., 2019), many experimental studies (e.g. Sefiane et al., 2008,
and others) show that such flow can be unstable to three-dimensional or oscillating
perturbation.

The transition to three-dimensional or time-dependent flow can be expected to affect the
deposition strongly. It can even induce de-mixing and clustering of neutrally buoyant
particles into accumulation structures in the bulk of the droplet, as observed by Takakusagi
and Ueno (2017). The formation of particle accumulation structures (see e.g Romanò,
Wu and Kuhlmann, 2019, for a review of the mechanism) is by itself a phenomenon with
large practical potential. It is therefore essential to understand for which parameters the
instability of the basic flow occurs.

3.1.3 State of the research
In droplets on a wall under steady axially symmetric thermocapillary driving, a steady
axisymmetric basic state exists, consisting of either one or more toroidal vortices. The
basic state can become unstable to three-dimensional and/or time-dependent perturba-
tions for high Reynolds numbers due to various instability mechanisms. The richness of
mechanisms is partly caused by the oblique temperature gradient with respect to the
free surface, which can be dominant in either normal or tangential direction at different
positions on the free surface. Thermocapillary-driven instabilities of the flow in droplets
have been reported in the literature. In this study, we also find purely hydrodynamic
instability of the basic axisymmetric toroidal vortex, which is very similar to that observed
in low-Prandtl-number liquid bridges.

The flow instabilities driven by thermocapillarity rely on the following self-amplification
(positive feedback) mechanism: The perturbation of the free-surface temperature induces
a perturbation of the thermocapillary stress which drives a perturbation flow. The
perturbation flow, in turn, amplifies the temperature perturbation. This type of instability
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therefore requires a non-zero Prandtl number, such that the perturbation flow can generate
the temperature perturbation from the basic temperature gradient by convection.

Such instabilities have been originally analyzed in liquid pools (Smith and Davis, 1983;
Koschmieder and Prahl, 1990; Schwabe et al., 1992; Schatz et al., 1995; Riley and Neitzel,
1998; Burguete et al., 2001; Garnier and Chiffaudel, 2001, and others). They are typically
divided into two sub-classes: thermocapillary and Marangoni instabilities (Schatz and
Neitzel, 2001; Davis, 1987). The former rely on the tangential, and the latter on the
normal direction of the basic temperature gradient with respect to the free surface. The
Marangoni instability requires the temperature gradient to be directed from the free
surface into the bulk of the droplet. It manifests itself in form of Marangoni cells (Pearson,
1958), which are typically observed near the center of shallow droplets heated from the
wall (Gavrilina and Barash, 2021; Shi et al., 2017; Karapetsas et al., 2012), or radial rolls,
which have been observed near the contact line of shallow droplets on heated substrates
with large (but finite) conductivity (Zhu and Shi, 2021, 2019; Sefiane et al., 2010). The
Marangoni cells and rolls can be either steady or traveling.

The hydrothermal wave (HTW) instability, observed in droplets with higher contact angle
(Watanabe et al., 2018), falls into the class of thermocapillary instabilities. It requires a
thermocapillary basic flow which modifies the internal temperature gradient in the bulk
of the fluid by convection. The perturbation flow generates a temperature perturbation
with internal extrema. This also leads to some perturbation of the surface temperature
which drives the perturbation flow by thermocapillarity. The HTW instability manifests
itself in the form of a standing or traveling wave. It has been thoroughly investigated not
only in liquid pools, but also in liquid bridges (Xu and Davis, 1984; Kuhlmann and Rath,
1993; Wanschura et al., 1995; Leypoldt et al., 2000; Nienhüser and Kuhlmann, 2002;
Stojanović et al., 2022, and others). On the other hand, in the case of a thermocapillary
droplet on a wall, the structure of the HTW is not yet fully understood.

Apart from the aforementioned instability mechanisms, which rely on the perturbation
of the free-surface temperature, the basic thermocapillary flow can also lose stability
due to inertia, as in isothermal flows. The inertial symmetry breaking mechanisms
are operational also in the limit of vanishing Prandtl number. Inertial instabilities in
low-Prandtl-number thermocapillary flows have been reported, e.g., by Kuhlmann and
Rath (1993); Wanschura et al. (1995) in a liquid bridge, or by Kuhlmann and Schoisswohl
(2010) in a liquid pool. To the best of the author’s knowledge, inertial instabilities have
not yet been reported in a droplet on a wall.

3.1.4 Stability of fluid flows
The homogeneous Navier–Stokes equations (1.1) can be viewed as a dynamical system

∂t̃

�
1 0
0 0

�
� �� �

M

�
ũ
p̃

�
� �� �

q

=
�

−(ũ · ∇̃)ũ + ν∇̃ · s̃ − ρ−1∇̃p̃

∇̃ · ũ

�
� �� �

N (q)

, (3.5)
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together with the boundary conditions. When the boundary conditions satisfy some
symmetries, e.g., translation invariance in time (∂t̃ = 0) or in some spatial direction,
there exists a solution q0 to (3.5) which satisfies the same symmetries. q0 is called the
basic state. In the case of time invariance ∂t̃q0 = 0, the basic state is the fixed point of
the dynamical system,

N (q0) = 0. (3.6)
In what follows, we only consider the case of a steady basic state. The problem (3.6) is
easier to solve numerically than (3.5). The basic state can be either stable or unstable. The
stability is defined by the evolution of an initial perturbed state q(t̃ = 0) = q0 + q
(t̃ = 0)
according to the dynamical system (3.5) (i.e., when q(t̃ = 0) is used as an initial condition
for (3.5)). q
(t̃ = 0) is a small initial perturbation. The basic state is called stable if
the perturbed state q(t̃) remains close to q0 as t̃ → ∞. On the other hand, it is called
unstable when q(t̃) departs from q0 and evolves into a different state. In that case, some
of the symmetries of q0 can be lost in the new state. The stability of the basic state is
further subdivided into several types, namely

Asymptotic stability q(t̃) → q0 as t̃ → ∞
Lyapunov stability |q
(t̃)| � |q
(t̃ = 0)| as t̃ → ∞
Conditional stability |q
(t̃ = 0)| ≤ �c =⇒ |q
(t̃)| � |q
(t̃ = 0)| as t̃ → ∞

Monotonic stability d|q
(t̃)|
dt̃

< 0 ∀t̃ ∧ q(t̃) → q0 as t̃ → ∞,

where �c is a positive constant.

3.1.5 Linear stability analysis
In this section it will be shown that when the initial perturbation q
(t̃ = 0) is infinitely
small, its evolution is described by a linearized dynamical system, which implies an expo-
nential growth or decay in time. When all infinitesimal perturbations decay exponentially,
the basic state is called linearly stable. If there exists any infinitesimal perturbation
which grows exponentially, the basic state is called linearly unstable.

Substitution of the decomposition q(t̃) = q0 + q
(t̃) into (3.5) under the assumption of a
steady basic state ∂t̃q0 = 0 leads to a dynamical system describing the evolution of the
perturbation

∂t̃M · (✚✚q0 + q
) = N (q0 + q
)

∂t̃M
�

u


p


�
=

�
−(ũ0 + u
) · ∇̃(ũ0 + u
) + ν∇̃ · (s̃0 + s
) − ρ−1∇̃(p̃0 + p
)

∇̃ · ũ0 + ∇̃ · u


�
,

(3.7)

where s̃0 = ∇̃ũ0 + (∇̃ũ0)T and s
 = ∇̃u
 + (∇̃u
)T. The non-linear right-hand side can
be expanded in the Taylor series about q0

N (q0 + q
) = ✘✘✘✘✿0N (q0) + ∂N
∂q0� �� �
A

(q0) · q
 + O
�
(q
)2

�
, (3.8)
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where A is the Jacobian of N . When the initial perturbation is asymptotically small,
|q
(t̃ = 0)| � q0, the higher order terms O �

(q
)2�
become negligible. The initial evolution

of such small perturbation is then described by the linearized system

∂t̃M · q
 = A(q0) · q


=
�

−(ũ0 · ∇̃)u
 − (u
 · ∇̃)ũ0 + ν∇̃ · s
 − ρ−1∇̃p


∇̃ · u


�
.

(3.9)

The perturbation satisfying (3.9) can be decomposed into normal modes

q
 =
�

j

q̂j(x̃n) exp(ηj t̃ + ikhx̃h) + c.c. (3.10)

The index j enumerates the modes q̂j with the complex temporal exponents ηj = ςj + iω̃j ,
where ςj ∈ R is the growth rate and ω̃j ∈ R is an oscillation frequency. x̃n is a position
vector in the non-homogeneous directions, while the repeated index h implies summation
over the homogeneous directions - i.e., those directions in which the problem is translation
invariant. kh ∈ R is a wave number of the modes in the corresponding homogeneous
direction. When the domain is periodic in the homogeneous direction with some period Lh,
then the wave number is restricted to discrete values kh = mh2π/Lh, where mh ∈ Z. For
example, in a cylindrical coordinate system when the problem is invariant in the azimuthal
direction φ, Lφ = 2π. The complex conjugate “c.c.” ensures that the perturbation is real.
The modes do not interact, and each individually satisfies the problem (3.9) due to its
linearity.

Substitution of the normal mode Ansatz (3.10) with specified wave numbers kh into (3.9)
and expressing the derivatives ∂t̃q


 and ∂x̃h
q
 analytically leads to a linear system of

PDEs
ηMq̂ = Aq̂ (3.11)

for each mode q̂j and its complex growth rate ηj . The system can be discretized in the
non-homogeneous directions to obtain a generalized eigenproblem

ηM q̂i = Aq̂i (3.12)

where the eigenvector q̂i contains the values at the grid points (enumerated by i) of a
given mode, and the linear differential operator A is approximated numerically with a
discretization matrix A. The mass matrix M is the discrete version of M, which in the
case of the linearized Navier–Stokes equations acts as an identity matrix on the nodal
values of velocity and as a zero matrix on the nodal values of pressure.

Only the eigenvector corresponding to the largest growth rate ς is of interest in the
context of linear stability analysis. It is called the most dangerous mode. As long as the
real parts ς of all eigenvalues η are negative, the basic state is linearly stable. If at least
one eigenvalue has a positive real part, the corresponding mode will grow exponentially,
and the basic state is linearly unstable. Thus, we order the growth rates such that
ς1 > ς2 > ς3 > . . . and consider only the leading growth rates and their associated modes.
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Figure 3.1: Sketch of the flow geometry - the sessile droplet with a spherical free surface
(blue). The origin of the cylindrical coordinate system (r, φ, z) is located at the center of
the droplet base. n, trz and eφ are the surface normal and the surface tangent vectors.

3.2 Problem formulation
This chapter considers the flow inside a sessile liquid droplet (fig. 3.1) of a given wetting
radius R and contact angle α on a perfectly conducting substrate with a fixed temperature
Tw. The liquid is assumed to be non-volatile in the ambient gas, which has a uniform
far-field temperature Ta �= Tw. The temperature gradient within the droplet arises due
to the heat transfer between its free surface Γs and the ambient gas, which is modeled by
Newton’s law of cooling

q̃(x̃) = −λg∇̃Tg(x̃) ≈ h
	
T̃ (x̃) − Ta

�
, x̃ ∈ Γs, (3.13)

where q̃ is the heat flux in the direction of the outward-pointing normal, λg is the thermal
conductivity of the ambient gas, Tg is its local temperature, the parameter h is the heat
transfer coefficient, and T̃ is the local temperature of the liquid. Due to the non-volatility,
there is no additional heat and mass flux at the free surface due to phase change. The
continuity of the normal heat flux at the free surface reads

λ∇̃T̃ = −q̃, (3.14)

where λ is the thermal conductivity of the liquid. The distribution of temperature within
the droplet is governed by the conservation of energy. For an incompressible flow (1.1b),
and when the heat production due to viscous dissipation of kinetic energy is neglected,
the energy equation in differential form simplifies to a convection-diffusion transport of
heat

ρcp(∂t̃ + ũ · ∇̃)T̃ = λ∇̃2T̃ , (3.15)

where cp is the specific heat capacity.
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The thermocapillary driving of the flow occurs through the balance of tangential forces
at the free surface, namely of the viscous shear stress and the thermocapillary stress
(Levic, 1962)

µtrz · (n · s̃) = trz · ∇̃σ ≡ −γtrz · ∇̃T̃ at Γs, (3.16)
µeφ · (n · s̃) = eφ · ∇̃σ ≡ −γeφ · ∇̃T̃ at Γs, (3.17)

where γ = −dσ/dT̃ is the temperature coefficient of surface tension. The effect of the
shear stress from the outer gas is neglected under the assumption that the viscosity of
the gas is much smaller than the viscosity of the liquid µg/µ � 1. The balance of normal
forces, on the other hand, determines the shape of the droplet. See, e.g., eqs. (2.7) or
(2.22) of Kuhlmann (1996) for a full force balance at the free surface in dimensional
or dimensionless form, respectively. In the absence of flow, the normal force balance is
expressed by the Young-Laplace (Young, 1805; Laplace, 1806) equation

Δp̃ = σ∇̃ · n, (3.18)

where Δp̃ is the pressure drop across the free surface and ∇̃ · n is the local curvature.
In the absence of flow and gravity, the pressure distribution in the liquid and the gas
is uniform, leading to a constant pressure jump Δp0. For an isothermal free surface
(with constant surface tension) this leads to a constant surface curvature. A non-zero
acceleration of gravity g induces a hydrostatic pressure

Δph = −(ρ − ρg)g · (x̃ − x̃0), (3.19)

where ρg is the density of the outer gas and x0 is a reference location of zero hydrostatic
pressure drop. This causes a static surface deformation. Furthermore, a non-uniform
temperature of the free surface causes a variation of σ(T ) in (3.18), and the flow in the
droplet exerts an additional dynamic normal stress

Δpd = p̃ − n · s̃ · n (3.20)

on the free surface, where p̃ is the flow-induced pressure distribution relative to the state
without flow. These two effects lead to a dynamic surface deformation. The overall
normal stress balance at the free surface reads

Δp0 + Δph + Δpd = σ(T )∇̃ · n. (3.21)

In the present model, both the static and the dynamic surface deformations are neglected,
such that the free surface is spherical and indeformable. This simplification applies to
small Bond and capillary numbers, as described in section 3.2.1.

Since a constant density of the liquid is considered in this work, there is no buoyancy that
would affect the flow. Although, in general, the density would be (at least) temperature
dependent, it is assumed here that buoyancy is negligible compared to thermocapillary
driving. In order to justify this assumption and define the conditions of its validity, we
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3.2. Problem formulation

consider the Boussinesq approximation, which for small density variations models the
effect of buoyancy with a bulk force term

f̃ = −βg(T̃ − T0), (3.22)

where β = −(dρ/dT̃ )/ρ(T0) is the thermal expansion coefficient of the liquid and T0 is
a reference temperature. Accordingly, the scale of the buoyant force per unit mass is
proportional to β|g|ΔT , where ΔT = |Tw − Ta| is the scale of temperature variations. On
the other hand, the thermocapillary force per unit mass scales with γΔT/(ρR2). As the
ratio of buoyant to thermocapillary forces ρβ|g|R2/γ is proportional to R2, it is typically
small for small droplets.

3.2.1 Dimensional analysis
The reference physical parameters relevant for this problem are summarized in table 3.1
with their units indicated in the SI system. It lists 14 parameters, and the rank of the
dimension matrix is 4. Thus, according to the Buckingham Π theorem, the problem
depends on 10 independent dimensionless power products. We want to define these
power products in terms of the characteristic scales of the problem. The wetting radius
is selected for the length scale, L := R. Furthermore, the thermocapillary velocity scale
U := γΔT/µ is employed. The dimensionless power products are

aspect ratio Γ = H

R
= tan

�
α − π

2

�
+ 1

cos
�
α − π

2
�

Reynolds number Re = ρUL

µ
= ργΔTR

µ2

Prandtl number Pr = µcp

λ

Biot number Bi = hR

λ

Grashof number Gr = gρ2βΔTR3

µ2

Bond number Bo = ρgR2

σ0

Capillary number Ca = γΔT

σ0

Brinkman number Br = µU2

λΔT
= γ2ΔT

µλ

N1 = |cσ(T0)|U
λ

= |cσ(T0)|γΔT

µλ

N3 = |cσ(T0)|Rω̃

2πλ
,

where H is the height of the droplet, ω̃ is the oscillation frequency of the perturbation,
and N1 and N3 are due to Schneider (2013).
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ρ µ |g| ΔT cp λ σ0 γ R H h β cσ(T0) ω̃

kg 1 1 0 0 0 1 1 1 0 0 1 0 1 0
m -3 -1 1 0 2 1 0 0 1 1 0 0 0 0
s 0 -1 -2 0 -2 -3 -2 -2 0 0 -3 0 -2 -1
K 0 0 0 1 -1 -1 0 -1 0 0 -1 -1 -1 0

Table 3.1: Dimension matrix of the problem. H is the height of the droplet, and ω̃ is the
oscillation frequency of the perturbation.

ρ µ |g| ΔT cp λ σ0
kg m−3 Pa s m s−2 K J kg−1 K−1 W m−1 K−1 N m−1

(a) 912 4.56 × 10−3 9.81 40 1.8 × 103 0.12 1.97 × 10−2

(b) 789 1.095 × 10−3 9.81 5 2.845 × 103 0.14 2.2 × 10−2

γ R β ω̃
N m−1 K−1 m K−1 rad s−1

(a) 6.37 × 10−5 1.5 × 10−3 1.09 × 10−3 2π
(b) 8.36 × 10−5 1.5 × 10−3 1.074 × 10−3

Table 3.2: Typical experimental conditions according to Takakusagi and Ueno (2017) for
a silicon oil (a) and Brutin, Sobac, Rigollet and Le Niliot (2011) for ethanol (b). The
remaining fluid properties which are not provided by the authors are taken from the
datasheet of the KF96L-5cs silicone oil, and from Kleiber and Joh (2010), respectively.

Identification of relevant groups and related simplifications

In order to motivate the simplifications employed in this study, let us substitute some
realistic values for the parameters listed in tab. 3.1. Consider, e.g., the typical exper-
imental conditions of Takakusagi and Ueno (2017) or Brutin, Sobac, Rigollet and Le
Niliot (2011) listed in tab. 3.2. In order to compute the heat capacity cσ = −Tσ

(T ) of
the free surface per unit area, the second derivative of σ with respect to T is required.
In case of ethanol we differentiate the empirical formula (6) on page 301 of Kleiber and
Joh (2010) to obtain cethanol

σ (T = 25°C) = 2.719 × 10−5 J m−2 K−1. In the case of the
silicon oil there is, unfortunately, not enough data on the temperature dependence of
surface tension to accurately compute cσ.

The Brinkman number represents the ratio of viscous dissipation to thermal conduction.
Since the viscous heat production is neglected in (3.15), it is only valid for Br � 1. For
the experimental conditions of Takakusagi and Ueno (2017) and Brutin, Sobac, Rigollet
and Le Niliot (2011), Br = 3 × 10−4 and Br = 2.3 × 10−4, respectively.

As mentioned before, the buoyant force (3.22) is neglected as well, corresponding to a
small ratio of Grashof to capillary Reynolds number Gr/Re � 1. This is typically valid
for very small droplets or low gravity. For the exemplary parameters, Gr/Re = 0.34 and
0.22, which is still rather too large for the buoyancy force to be neglected. This analysis,
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3.2. Problem formulation

therefore, applies either to even smaller droplets, fluids with smaller values of ρβ/γ, or to
microgravity conditions (Watanabe et al., 2018). It is, however, expected that the results
of this work remain at least qualitatively valid also for the millimeter-sized droplets of
low-viscosity silicon oil under terrestrial gravity.

Once the buoyancy is neglected, it is, under similar arguments, consistent to also neglect
static surface deformation. The importance of the static surface deformation is expressed
by the Bond number Bo = Gr/Re × γ/(σ0β). The value of Bo = 1.02 leads to a visible
static deformation of the free surface (Takakusagi and Ueno, 2017), compared to a
spherical shape. For the conditions of Brutin, Sobac, Rigollet and Le Niliot (2011),
Bo = 0.79. Nevertheless, the static deformation is neglected in this study, which limits its
validity to reduced gravity, sub-millimeter droplets or fluids with larger ratio of surface
tension to density.

Furthermore, it is assumed that the variations of the surface tension are small compared to
its mean value, Ca � 1. This allows to neglect dynamic surface deformations (Kuhlmann,
1999; Kuhlmann and Nienhüser, 2002) and thus, the droplet has the shape of a perfect
spherical cap. The free surface then acts as an indeformable impenetrable boundary. For
the exemplary parameters, Ca = 0.13 and 0.02.

The validity of the approximation of continuous heat flux across the free surface further
requires N1 � 1 and also N3 � 1 in case of a time-dependent perturbation (Schneider,
2013). Substituting the values from the second row of tab. 3.2 together with the value of
cσ for ethanol we obtain N1 = 7.4 × 10−5 and N3 = 4.6 × 10−8s × ω̃. The heat flux can
thus be assumed continuous up to oscillation frequencies of O(107s−1).

3.2.2 Nondimensional governing equations

Scaling the problem as follows

x = x̃

R
, T = T̃ − Ta

ΔT
, u = ũ

ν/R
, t = t̃

R2/ν
, p = R2

ρν2 p̃,

the dimensionless form of the governing equations (1.1,3.15) is obtained as

(∂t + u · ∇)u = −∇p + ∇ · (∇u + ∇uT )� �� �
s

, (3.23a)

∇ · u = 0, (3.23b)

(∂t + u · ∇)T = 1
Pr∇2T. (3.23c)

51



3. Linear stability analysis of thermocapillary convection in droplets adhering
to a wall

r

z

0
0 1

Γ

Γs

Figure 3.2: Scaled computational domain

The solution on the domain shown in fig. 3.2 must satisfy the following boundary
conditions

u = 0, T = ±1 at z = 0, (3.24a)
∂φu = ∂φp = ∂φT = 0 at r = 0, (3.24b)

n · u = 0 at Γs, (3.24c)
n · ∇T = −Bi T at Γs, (3.24d)

trz · (s · n) = −Re trz · ∇T at Γs, (3.24e)
eφ · (s · n) = −Re eφ · ∇T at Γs, (3.24f)

where Γs denotes the free surface and the sign ± corresponds to a heated or cooled
substrate.

Unless stated otherwise, we fix the Biot number to Bi = 0.2362, which is a realistic value
for small droplets (R ∼ O(10−3m)) of silicon oils (k ∼ O(10−1W/m K)) and heat transfer
coefficients h ∼ O(101W/m2K). This particular value was selected as an approximation
of the conditions employed by Shi et al. (2017).

3.2.3 Basic state
As the problem definition (3.23,3.24) is invariant with respect to translation in t and φ,
the problem admits a steady (∂t = 0) axially symmetric (∂φ = 0) basic state (u0, p0, T0).
Substitution to (3.23) provides a system of steady two-dimensional equations

(u0 · ∇)u0 = −∇p0 + ∇ · (∇u0 + ∇uT
0 )� �� �

s0

, (3.25a)

∇ · u0 = 0, (3.25b)

(u0 · ∇)T0 = 1
Pr∇2T0. (3.25c)

The force balance at the free surface in the azimuthal direction (3.24f) is then satisfied
identically, and the uniqueness of the solution at the axis (3.24b) reduces to a symmetry
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condition

u0,r = ∂ru0,z = ∂rp0 = ∂rT0 = 0 at r = 0, (3.26)

where u0 = u0,r(r, z)er + u0,z(r, z)ez. The azimuthal component of velocity in the
basic state is zero. Since the numerical solution of (3.25) only requires two-dimensional
spatial discretization, it is much less computationally demanding than solving the three-
dimensional time-dependent problem (3.23).

3.2.4 Linear stability

Once the basic state is found, its linear stability with respect to three-dimensional
time-dependent perturbation (u
, p
, T 
) is investigated. Substituting the decomposition

�u
p
T

� (r, φ, z, t) =

�u0
p0
T0

� (r, z) +

�u


p


T 


� (r, φ, z, t) (3.27)

into (3.23) and linearizing it about the basic state, a system of PDEs for the perturbation
is obtained as

∂tu

 + (u0 · ∇)u
 + (u
 · ∇)u0 = −∇p
 + ∇ · s
 (3.28a)

∇ · u
 = 0 (3.28b)

∂tT

 + u0 · ∇T 
 + u
 · ∇T0 = 1

Pr∇2T 
 (3.28c)

with the boundary conditions (3.24). The normal mode Ansatz for the perturbation
reads

�u


p


T 


� (r, φ, z, t) =

�û
p̂

T̂

� (r, z) exp(ηt + imφ) + c.c. (3.29)
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where m ∈ N0 is the azimuthal wave number. Substituting the Ansatz (3.29) in (3.28)
and expressing the derivatives ∂t and ∂φ we obtain the equations for the modes

ηûr = − (u0,r∂r + u0,z∂z)ûr −(ûr∂r + ûz∂z)u0,r − ∂rp̂

+
�

2∂rr + 2
r

∂r − m2 + 2
r2 + ∂zz

�
ûr +

� im
r

∂r − 3im
r2

�
ûφ + ∂rzûz (3.30a)

ηûφ = − (u0,r∂r + u0,z∂z)ûφ −u0,rûφ

r
− imp̂

+
�

∂rr + 1
r

∂r − 2m2 + 1
r2 + ∂zz

�
ûφ +

� im
r

∂r + 3im
r2

�
ûr + im

r
∂zûz (3.30b)

ηûz = − (u0,r∂r + u0,z∂z)ûz −(ûr∂r + ûz∂z)u0,z − ∂z p̂

+
�

∂rr + 1
r

∂r − m2

r2 + 2∂zz

�
ûz +

�
∂rz + 1

r
∂z

�
ûr + im

r
∂zûφ (3.30c)

0 =∂rûr + ûr

r
+ im

r
ûφ + ∂zûz (3.30d)

ηT̂ = − (u0,r∂r + u0,z∂z)T̂ −(ûr∂r + ûz∂z)T

+ 1
Pr

�
∂rr + 1

r
∂r − m2

r2 + ∂zz

�
T̂ . (3.30e)

Boundary conditions on the axis

The perturbation velocity in general consists of three velocity components, û = ûrer +
ûφeφ + ûzez. For m = 0 the perturbation is axially symmetric, ∂φ(u
, p
, T 
) = 0, and thus
the symmetry condition (3.26) is prescribed for the modes at the axis. The azimuthal
component of velocity then vanishes. For m > 0, the uniqueness of the scalar perturbation
fields

∂φp
 = ∂φT 
 = 0 at r = 0 (3.31)

requires

p̂ = T̂ = 0 at r = 0. (3.32)

Noting that

∂φer = eφ, ∂φeφ = −er, (3.33)

the azimuthal derivative of the velocity vector expands as

∂φu = (∂φur)er + ureφ + (∂φuφ)eφ − uφer + ∂φuzez

= (∂φur − uφ)er + (ur + ∂φuφ)eφ + ∂φuzez
!=0 at r = 0.

(3.34)
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The axis condition for ûz is then the same as for the scalar fields

for m > 0, ûz = 0 at r = 0. (3.35)

For the radial and azimuthal component of velocity, the axis condition reads

∂φur − uφ = 0 (3.36a)
∂φuφ + ur = 0. (3.36b)

Differentiation of (3.36a) with respect to φ and substitution from (3.36b) leads to a
condition for the radial component

∂2
φur + ur = 0, (3.37)

while differentiation of (3.36b) and substitution from (3.36a) provides a condition for the
azimuthal component

∂2
φuφ + uφ = 0. (3.38)

The perturbation velocity components must satisfy these boundary conditions at r = 0.
Substituting the normal mode Ansatz and canceling the common factor exp(ηt + imφ)
we obtain

−m2�(ûr) cos mφ + m2�(ûr) sin mφ + �(ûr) cos mφ − �(ûr) sin mφ = 0, (3.39a)
−m2�(ûφ) cos mφ + m2�(ûφ) sin mφ + �(ûφ) cos mφ − �(ûφ) sin mφ = 0. (3.39b)

For m �= 1 and φ ∈ �0, 2π� this can only be satisfied if

ûr = ûφ = 0. (3.40)

In the case of m = 1, (3.39) is satisfied identically and thus a non-zero velocity vector
perpendicular to the axis, u(r = 0, z) = urer + uφeφ, is admissible. In order to obtain
boundary conditions for ûr and ûφ we substitute (3.35) and (3.36b) into the continuity
equation (3.28b) at r = 0 for m = 1

∇ · u
(r = 0, z) ≡
�

∂r + 1
r

�
u


r + 1
r

∂φu

φ� �� �

−u�
r (3.36b)

+∂z✓
✓✼

0 (3.35)
u


z

= ∂ru

r +

✓
✓✓

1
r

u

r −

✓
✓✓

1
r

u

r

(3.28b)=⇒ ∂rûr
!= 0. (3.41a)

Next we differentiate (3.36a) with respect to r to obtain

∂φ✟✟✟✯
0 (3.41a)

∂ru

r − ∂ru


φ = 0 =⇒ ∂rûφ = 0 (3.41b)
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(a) m = 0 (b) m = 1 (c) m > 1

Figure 3.3: Sketch of some possible structures of the normal modes for different wave
numbers indicated in the sub-captions. Arrows indicate the flow direction, and their
color indicates temperature. The bottom row illustrates a top view of the velocity and
temperature at the free surface, while the top row corresponds to a cut in a plane
φ = const.

at r = 0 for m = 1. Finally, we can summarize the axis boundary conditions at r = 0 for
the modes as follows

for m = 0 ûr = ûφ = ∂rûz = ∂rp̂ = ∂rT̂ = 0
for m = 1 ∂rûr = ∂rûφ = ûz = p̂ = T̂ = 0
for m > 1 ûr = ûφ = ûz = p̂ = T̂ = 0

Examples of the structure of modes admitted by these boundary conditions are illustrated
in fig. 3.3.

Non-integrable singularity on the axis for m = 1

The system (3.30) contains terms proportional to 1/r2, which present a non-integrable
singularity at r = 0, unless they multiply a field that vanishes at the axis. The problematic
terms are

−m2 + 2
r2 ûr, −2m2 + 1

r2 ûφ, −3im
r2 ûφ,

3im
r2 ûr.

since ûr and ûφ can be non-zero on the axis for m = 1. Following Gelfgat et al. (1999)
we express from the continuity equation (3.30d)

3im
r2 ûr = −3im

r
∂rûr + 3m2

r2 ûφ − 3im
r

∂zûz (3.42a)
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and
− 3im

r2 ûφ = 3
r

∂rûr + 3
r2 ûr + 3

r
∂zûz. (3.42b)

Substitution to (3.30) provides modified equations for ûr and ûφ

ηûr = −(u0,r∂r + u0,z∂z)ûr − (ûr∂r + ûz∂z)u0,r − ∂rp̂

+
�

2∂rr + 5
r

∂r − m2 − 1
r2 + ∂zz

�
ûr + im

r
∂rûφ +

�
∂rz + 3

r
∂z

�
ûz (3.43a)

ηûφ = −(u0,r∂r + u0,z∂z)ûφ − u0,rûφ

r
− imp̂

+
�

∂rr + 1
r

∂r + m2 − 1
r2 + ∂zz

�
ûφ − 2im

r
∂rûr − 2im

r
∂zûz (3.43b)

where the non-integrable singularity is eliminated for m = 1. Thus, we employ the
modified equations (3.43) for ûr and ûφ when m = 1. For other azimuthal wave numbers
m �= 1, the original linearized equations (3.30a,b) are employed.

3.3 Numerical solution methods
3.3.1 Basic flow
The system (3.25) is discretized with the continuous Galerkin method (sec. 1.4.1). The
inner product for cylindrical coordinates can be defined as

(a, b) = 1
2π



Ω×�0,2π�

a · b r dr dφ dz . (3.44)

Due to the axial symmetry a = a(r, z), b = b(r, z), the azimuthal integration is trivial
and leads to

(a, b) =


Ω

a · b r dr dz.

The residual RNS of the dimensionless Navier–Stokes sub-system (3.25a,b) is analogous
to (1.13). The residual of the energy equation (3.25c)

Re = (u0 · ∇Th, θ) + 1
Pr(∇Th, ∇θ) − 1

Pr�n · ∇Th, θ� Th, θ ∈ Θ (3.45)

is obtained in the same way by integrating the heat diffusion term by parts. The test
functions θ are set to 0 at the part of the boundary where a Dirichlet condition is prescribed
for temperature, namely at the substrate z = 0 (3.24a). Thus, the boundary integral
vanishes at the substrate. It also vanishes at the axis r = 0 due to the homogeneous
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Neumann condition n · ∇T0 = 0 (3.26). At the free surface, the prescribed dimensionless
heat flux (3.24d) is substituted into the boundary integral as

− �n · ∇Th, θ� = �BiTh, θ�. (3.46)

The Dirichlet boundary condition for the velocity u0 at the substrate (3.24a), and for
its radial component u0,r also at the axis (3.26), are imposed in a strong sense. The
integrand of the boundary integral at the axis

[n · (phI − sh)] · v = ✘✘✘✘✿0
∂zuh,r + ✘✘✘✘✿0

∂ruh,z (3.47)

vanishes due to the homogeneous Neumann condition for u0,z.

At the free surface we have different boundary conditions in the normal (3.24c) and
tangential (3.24e) directions, which do not coincide with the coordinate directions r and
z. Therefore, the no-penetration condition cannot be easily enforced in a strong form.
Instead, we project the boundary stress integral into the normal and tangential directions

�phn − n · sh, v� = �(n ⊗ n) · (phn − n · sh), v�
+ �(I − n ⊗ n) · (phn − n · sh), v�

= �ph − n · sh · n, v · n�
+ �−n · sh · trz, v · trz�

(3.48)

and impose both conditions independently in the weak form. The tangential shear stress
is directly substituted with the thermocapillary stress from (3.24e)

�−n · sh · trz, v · trz� = �Retrz · ∇Th, v · trz� . (3.49)

The no-penetration boundary condition on the free surface is enforced with the method of
Nitsche (1971). The method relies on adding a penalty term that measures the deviation
from the no-penetration condition

Rp = C

h
�n · uh, n · v�

to the residual of the Navier–Stokes sub-system. The value of the penalization constant
C = 60 is selected. Furthermore, a stabilization term

Rs =
�
q − n · (∇v + ∇vT) · n, uh · n

�
, (3.50a)

which is a symmetric counter-part of the normal boundary stress integral, is also added.
Minimization of these Nitsche terms

RNi = Rp + Rs
!= 0 (3.50b)

leads to enforcement of the no-penetration condition.
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The final variational formulation of the problem reads

Find (uh, ph, Th) ∈ V b × Q × Θb such that
RNS ((uh, ph), (v, q)) + RNi ((uh, ph), (v, q)) + Re(Th, θ) = 0

∀(v, q, θ) ∈ V 0 × Q × Θ0. (3.51)

The variational formulation is solved using a Finite Element library FEniCS (Alnaes
et al., 2015). To that end, the domain (fig. 3.2) is discretized with the package mshr
into an unstructured mesh of triangular elements. The free surface is discretized into
uniform, straight line segments - the edges of the elements.2 In the interior of the domain,
the mesh density parameter N (required by the meshing library mshr) is set inversely
proportional to the square root of the height-to-wetting-radius ratio N ∼ 1/

√
Γ. Namely,

N = 80/
√

Γ, 90/
√

Γ and 110/
√

Γ for hot wall, cold wall and low Pr < 1 and cold wall
and high Pr ≥ 1, respectively. The size of the elements decreases close to the free
surface, where the external element edges coincide with line segments approximating the
curved boundary. The number of boundary segments per π/2 radians is set to N2/4.
Apart from the vicinity of the free surface, the size of the elements of the initial mesh is
approximately uniform in the rest of the domain. Once the initial unrefined basic mesh
has been generated, the elements adjacent to the substrate are divided into halves. An
example of the structure of the mesh is shown with a smaller grid resolution N = 20
in figure 3.4. For a cold wall, the elements within the distance of 0.04 and 0.01 from
the contact line (r, z) = (1, 0) are divided to 1/8 and 1/64 of the size of elements in the
interior for Pr < 1 and Pr ≥ 1, respectively. For the computation of the linear stability
with a hot wall and m = 1, the elements near the axis r = 0 are refined the same way as
the elements near the wall, and the elements near the apex are refined the same way as
those near the contact line in the case of a cold wall.

The standard Taylor–Hood elements are employed for the Navier–Stokes sub-system. The
velocity field is approximated with quadratic element-wise Lagrange polynomials V = P2

2
and the pressure with linear element-wise polynomials Q = P1. The temperature field is
represented with the same polynomial order as the velocity Θ = P2. The distribution
of nodes and the shape of the basis functions are illustrated on a reference element in
fig. 3.5. The discretization provides a system of non-linear algebraic equations F (Y ) = 0
for the vector of nodal values Y . The system is solved with a Newton–Raphson solver
(algorithm 1.1) implemented in FEniCS, which automatically computes the Jacobian
matrix ∇F .

3.3.2 Streamlines
Streamlines of the basic state, and of the axisymmetric perturbation, are computed as
the isolines of the Stokes stream function ψSt. A stream function ψ is in cylindrical

2During this work, the library FEniCS has been superseded by a newer version FEniCSx, which
provides better support for elements with curved sides. For future works, it is advisable to employ curved
elements to represent the free surface.
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Figure 3.4: Illustration of the two-dimensional finite-element mesh for the computation
of the thermocapillary-driven flow in a droplet on a wall
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Figure 3.5: Distribution of grid nodes on a reference triangular finite element (a, c) and
the corresponding basis and test functions (b, d) for velocity, temperature (a, b), and
pressure (c, d).

coordinates defined as

u0,r = ∂zψ u0,z = −∂rψ − 1
r

ψ (3.52)

such that the continuity equation for an axisymmetric flow

∇ · u0 = 1
r

u0,r + ∂ru0,r + ∂zu0,z

= 1
r

∂zψ + ∂rzψ − 1
r

∂zψ − ∂rzψ = 0 (3.53)

is identically satisfied. The isolines of ψ, however, do not coincide with the streamlines

u0 · ∇Ψ = u0,r∂rψ + u0,z∂zψ

= ✭✭✭✭✭✭✭✭✭
∂zψ∂rψ − ∂rψ∂zψ − 1

r
ψ∂zψ �= 0 . (3.54)
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The streamlines can be computed as isolines of the Stokes stream function ψSt = rψ

u0 · ∇ψSt = u0 · ∇(rψ)
= u0,r(ψ + r∂rψ) + u0,zr∂zψ

= −u0,rru0,z + u0,zru0,r

= 0 . (3.55)

In order to obtain a single PDE for ψ we use the definition of vorticity and substitute for
the velocity components

ω0 = (∇ × u0) · eφ

= ∂zu0,r − ∂ru0,z (3.56a)

= ∂z (∂zψ) − ∂r

�
−∂rψ − 1

r
ψ

�
= ∂zzψ + ∂rrψ − 1

r2 ψ + 1
r

∂rψ

= Δψ. (3.56b)

The vorticity ω0 is computed from the velocity components according to (3.56a), once
the numerical solution uh satisfying (3.51) is found. The Poisson equation (3.56b) for ψ
is then subjected to a homogeneous Dirichlet condition at all boundaries

ψ = 0 at ∂Ω, (3.57)

which corresponds to a no-penetration condition (i.e., the outline of the domain is a single
streamline). The problem (3.56b, 3.57) is again solved with the continuous Galerkin
method

Find ψh ∈ P2,0 such that (Δψh − ψh

r2 , θ) = (ω0, θ) ∀θ ∈ P2,0 (3.58)

on the same mesh as used for the flow. P2,0 is the function space of element-wise
second-order polynomials satisfying the homogeneous Dirichlet condition.

3.3.3 Linear stability
The equations for the modes (3.30), with the modification (3.43) for m = 1, subjected
to the boundary conditions (3.32,3.35,3.403.41) are discretized in the same way as the
equations for the basic state. The discretization provides the generalized eigenproblem
(3.12). The matrices M and A are assembled by FEniCS and exported to SciPy (Virtanen
et al., 2020) as sparse matrices of the type LIL (row-based list of lists). The eigenproblem
is then solved with the SciPy function sparse.linalg.eigs, which is an interface to
the Arnoldi Package (ARPACK) (Lehoucq et al., 1998).

The Arnoldi iteration algorithm implemented in ARPACK finds the eigenvalues with the
largest magnitude. In order to find eigenvalues η with the largest real part (typically close
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to zero), the eigensolver must be operated in the shift-invert mode. The eigenproblem is
internally transformed into a problem

(A − σAM)−1M q̂i = q̂iνA (3.59)

with eigenvalues νA = 1/(η−σA), which is then solved by the algorithm. The transformed
eigenvalues νA with the largest magnitude obtained form the Arnoldi iteration correspond
to the original eigenvalues η, which are closest to σA. The eigenvalues of interest are
then obtained as η = σA + 1/νA. More details of the implementation can be found
in chapter 3.2 of (Lehoucq et al., 1998). We set σA = 1 and request 50 converged
eigenvalues. Furthermore, we set the value of the optional parameter ncv (which specifies
the dimension of the Krylov subspace) to 300, as recommended by des Boscs and
Kuhlmann (2021).

The Arnoldi iteration typically involves a large number of matrix-vector multiplications.
These were computed by SciPy with the library OpenBLAS (Wang et al., 2014), which
employs parallelization.

Computation of the neutral stability Reynolds number

The neutral stability Reynolds number Ren is sought as a root of the function ς1(Re),
where ς1 is the largest real part of the eigenvalues η for a given Reynolds number. It is
advisable to employ an efficient root-finding algorithm due to the large computational
requirements of the solution of the eigenproblem (3.12). The iterative method of Muller
(1956) is employed in this work, as summarized in the algorithm 3.1. The essence of the
method is to interpolate the last three computed values of ς1(Re) quadratically and use
the root closest to the last guess of Ren as a new guess for which ς1 is computed. It is then
used in the next iteration. To initiate the algorithm, the first two interpolation points
Re0,1 must be provided as initial guesses for the root. Re0 is typically obtained by a
quadratic extrapolation of the neutral stability curve and Re1 = Re0 −sign(ς0

1 ) δ is shifted
from Re0 towards the expected location of the root by a guessed initial step δ. The third
initial interpolation point is obtained by the secant method. In the subsequent iterations,
the last three estimates of Ren are employed for the interpolation. The computation is
terminated once the change of Ren between two subsequent iterations drops below 0.1%.

3.3.4 Verification
The implementation of the numerical methods is verified by reproducing the results of
the linear stability analysis of thermocapillary convection in non-cylindrical liquid bridges
(portion of liquid between two parallel and concentric support disks) due to Nienhüser
and Kuhlmann (2002) for selected parameters. The comparison is summarized in tab. 3.3
for the contact angles α = 50°, 90° and 130°, and Prandtl numbers Pr = 0.02 and 4.
In the interior of the domain, a uniform structured boundary-fitted mesh is employed.
The number of elements N per radius of the support disks is varied to investigate the
convergence of the critical Reynolds number with grid resolution. The elements near
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3.3. Numerical solution methods

Algorithm 3.1: The root-finding method of Muller (1956) for computation of
the neutral Reynolds number

Data: Initial guess Re0, initial step size δ, tolerance
Result: Ren such that ς1(Ren) = 0

1 ς0
1 ← ς1(Re0);

2 Re1 ← Re0 − sign(ς0
1 ) δ;

3 ς1
1 ← ς1(Re1);

4 Re2 ← Re1 − ς1
1

Re1−Re0
ς1
1 −ς0

1
;

5 k ← 2;
6 while |Rek − Rek−1|/Rek > tolerance do
7 k ← k + 1;
8 find p(Re) ∈ P2 such that p(Rei) = ς i

1 ∀i ∈ {k − 3, k − 2, k − 1};
9 find r1, r2 such that p(r1,2) = 0 ∧ |r1 − Rek−1| < |r2 − Rek−1|;

10 Rek ← r1;
11 end
12 return Rek

Pr 0.02 4

N
α 50° 90° 130° 50° 90° 130°

40 2426 2058 2930 1458 1001 805
60 2411 2058 2911 1452 1001 807
80 2408 2059 2907 1451 1001 808
100 2405 2059 2902 1449 1001 808
N&K 2380 2060 3070 1445 1010 800

Table 3.3: Grid convergence of the critical Reynolds number Rec of the linear stability of
axisymmetric thermocapillary convection to perturbation with m = 2 in non-cylindrical
liquid bridges in zero gravity Bo = 0 for various contact angles α and two different
Prandtl numbers Pr. The results are compared to Nienhüser and Kuhlmann (2002),
indicated by N&K.

each disk within the distance of 1% of the radius are halved, while those within the 1%
distance from the free surface are gradually refined to 1/32 of the size of the elements
in the interior. The elements within the distance of 0.06% of the support-disk radius
from the triple lines are refined to 1/64 of the size of the elements in the interior. For
N = 100 the critical Reynolds number agrees with Nienhüser and Kuhlmann (2002) up
to 1%, except the demanding case of Pr = 0.02, α = 130°, for which a 5% difference is
observed. For Pr = 4, the agreement between the oscillation frequencies ωc (not shown)
is at a similar level. The instability is stationary for Pr = 0.02.
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Figure 3.6: Convergence of the maximum absolute value of the Stokes stream
function |ψSt|∞ of the basic flow with respect to n−2 for a hot (a) and cold
(b) wall and (Pr, α, Re, Bi) = (10−3, 90°, 37024, 0.2362), (16.36, 25°, 23622, 0.2362),
(0.038, 120°, 35645, 0.2362) and (28.1, 120°, 17115, 0.4) indicated with black, blue, red
and green symbols, respectively.

3.3.5 Grid convergence

The grid convergence of the numerical solution for typical combinations of the governing
parameters is investigated by plotting the value of the global extremum of the Stokes
stream function (fig. 3.6) and the critical Reynolds number (fig. 3.7) against n−2, where
n = N

√
Γ is a scaled mesh parameter. A straight line in these axes indicates a quadratic

convergence.

Four cases with high values of the Reynolds number Re ∼ O(104) were selected for fig.
3.6. Notice that the span of the vertical axis is below 2%. The maximum absolute
value of the Stokes stream function max |ψSt| tends to increase with n, but converges
quadratically to a finite value. Only for the blue symbols in fig. 3.6(a) the convergence
seems to be super-quadratic. This deviation from the quadratic convergence might be
related to the discretization of the free-surface shape with ∼ N2 line segments.

For coarser meshes the convergence plots in fig. 3.6 are polluted by a chaotic noise due
to the unstructured nature of the meshes. This noise becomes insignificant for higher n.
Note that even for the red symbols in fig. 3.6(b) the noise is well below 1%.

For a hot wall, n = 60 and (Pr, α) = (16.36, 16°) (blue in fig. 3.7a) and (Pr, α) =
(10−3, 90°) (black in fig. 3.7a), the critical Reynolds number Rec is already converged
to 0.1‰ and 5‰ deviation from the quadratically extrapolated value for an infinitely
fine mesh. With the value n = 80 employed in this study, the estimated accuracy of the
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Figure 3.7: Convergence of the critical Reynolds number Rec with respect to n−2 for
a hot (a) and cold (b) wall and (Pr, α, Bi) = (10−3, 90°, 0.2362), (16.36, 16°, 0.2362),
(0.038, 120°, 0.2362) and (28.1, 120°, 0.4) indicated by black, blue, red and green symbols,
respectively. The dashed lines are the least-squares linear fits.

latter case is 3‰.

The mesh requirements are higher in the case of a cold wall. With n = 90, Rec is converged
to 6‰ for (Pr, α) = (0.038, 120°) (red in fig. 3.7b). For (Pr, α, Bi) = (28.1, 120°, 0.4)
(green in fig. 3.7b), there remains some noise in the convergence plot with an amplitude
of approximately 8‰ for n ∈ �73, 130�.
With the grid resolution selected in this study, the numerical results are converged to a
tolerance of 1% for all combinations of parameters presented.

3.4 Results
We observe instabilities of the basic state in more or less distinct regions of the parameter
space spanned by α, Pr, and the sign of the wall temperature with respect to the ambient.
They are categorized based on the dominant symmetry-breaking mechanism.

Marangoni instability is presented in section 3.4.1. It is observed for low-α high-Pr
droplets on a hot wall. It is characterized by steady or traveling convection cells, typically
close to the axis r = 0. An up-flow at the centers of the convection cells lifts hot fluid
from the wall towards the free surface. The perturbation of the free-surface temperature
induces thermocapillary stress, which drives the perturbation flow. As this instability
relies on the perturbation of the temperature field, the critical Reynolds number diverges
as Pr → 0.
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Section 3.4.2 describes a purely hydrodynamic instability due to inertial symmetry
breaking of the basic toroidal vortex. This instability is driven by inertia in the bulk of
the flow, and it does not rely on the perturbation of the temperature field. It is, therefore,
the main mechanism in the limit of low Prandtl number fluids (e.g., liquid metals). We
find this instability for higher contact angles and both hot and cold walls.

Finally, a hydrothermal wave (HTW) instability is presented in section 3.4.3. It derives
energy from gradients of the basic temperature field in the bulk. An internal perturbation
flow (possibly driven also by inertia) generates internal extrema of the temperature
perturbation. These cause a weak perturbation of the free-surface temperature, and the
induced thermocapillary stress feeds energy onto the perturbation flow. The hydrothermal
waves are observed for higher α and Pr. For the hot wall, the basic state is characterized
by a region of cold fluid near the apex. A displacement of this cold fluid from the apex
along the free surface is the most dangerous perturbation. For the cold wall, on the other
hand, the basic state exhibits a layer of hot fluid along the entire free surface. This layer
suppresses perturbations of the free-surface temperature. The critical Marangoni number
is thus significantly higher for the cold wall than for the hot wall.

3.4.1 Marangoni instability

This section considers a representative Prandtl number Pr = 16.36, which corresponds to
1 cSt silicone oil. The wall is hot, and the contact angles are small (α ≤ 25°).

Basic thermocapillary flow

The thermocapillary stress due to the basic temperature field is directed from the contact
line towards the apex, driving a toroidal vortex that rotates counter-clockwise in the r −z
plane (fig. 3.8). For very small contact angles (α < 10°), the basic thermocapillary vortex
at the stability threshold is weak, especially close to the axis r = 0. The temperature
distribution in this region is dominated by conduction, with an almost linear vertical
profile (fig. 3.8a). For α = 15° the vortex spreads up to the axis and a hyperbolic
stagnation ring appears at (r, z) = (0.187, 0.083), as indicated by the cross in fig. 3.8b. As
the contact angle increases, the stagnation ring vanishes, and the vortex gains strength.
It advects hot fluid from the contact line along the free surface, such that for α = 25°,
the vertical temperature gradient is locally inverted in part of the droplet.

Steady axisymmetric Marangoni convection

We consider α = 5° in some detail as a representative example of a very shallow droplet.
The region of vanishing flow near r = 0 with an almost linear vertical temperature profile
is reminiscent of liquid pools with a small aspect ratio (Koschmieder and Prahl, 1990).
It is thus prone to Marangoni instability. For comparison, we follow Schatz and Neitzel
(2001) and estimate the apex temperature from a local Biot number BiH = hH/λ = BiΓ
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Figure 3.8: The temperature field (color) and streamlines (black) of the neutrally stable
steady axisymmetric basic state for (a) α = 5°, MaH,c = 83.35, (b) α = 15°, MaH,c =
122.0, (c) α = 20°, MaH,c = 603.3, (d) α = 25°, MaH,c = 4263

at r = 0 as

Tapex ≈ Tw + BiHTa

1 + BiH
. (3.60)

The Marangoni number based on the height H and the temperature difference between
the wall and the apex

Tw − Tapex = (Tw − Ta) BiH
1 + BiH

(3.61)

is then defined by

MaH = ρcpγ|Tw − Tapex|H
µλ

= ρcpγΔTR

µλ
· H

R
· |Tw − Tapex|

|Tw − Ta|
= Ma Γ Bi Γ

1 + Bi Γ , (3.62)

where Ma = RePr = ρcpγΔTR/(µλ) is the usual definition of the Marangoni number.

When the Marangoni number is increased beyond MaH = 82.16, another steady axisym-
metric flow solution (fig. 3.9b) comes into existence in addition to the thermocapillary
flow (fig. 3.9a). The new solution is of Marangoni type. It consists of axisymmetric
convection cells (tori) near the axis, the strengths of which decay in the radial direction,
such that only the thermocapillary flow remains closer to the contact line. This radial
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Figure 3.9: Steady two-dimensional flow states for heating from below, α = 5°, Pr = 16.36
and MaH = 87.0 (triangles in fig. 3.10). (a) lower disconnected branch (w(0, Γ/2) =
−0.031); (b) connected branch (w(0, Γ/2) = −0.609); (c) upper disconnected branch
(w(0, Γ/2) = 0.889)

decay of the convection cells is related to the value of the local Marangoni number

Maloc = MaH
d(r)
H

(3.63)

based on the local depth d(r), which decreases in the radial direction.

The bifurcation of the solutions is visualized in fig. 3.10 by plotting the vertical ve-
locity w(0, Γ/2) at mid-height at the axis versus the Marangoni number MaH . The
orange curve, which comes from low Marangoni numbers and small negative w(0, Γ/2),
will be called the ‘connected branch’ in the following. The axisymmetric Marangoni
cells with an up-flow at the axis come into existence by a saddle-node bifurcation at
(MaH , w(0, Γ/2)) = (82.16, 0.479) (indicated by square in fig. 3.10). The two blue for-
ward branches emerging from the saddle node will be called ‘disconnected branches’.
Along the stable upper disconnected branch (solid blue curve), the strength and radial
extent of the convection cells increase upon an increase of the Marangoni number, at
the expense of the thermocapillary vortex. The strength of the Marangoni convection
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Figure 3.10: Bifurcation diagram showing the dependence of the vertical velocity w
at the axis midpoint (r, z) = (0, Γ/2) on the Marangoni number MaH for the steady
axisymmetric states shown in fig. 3.9. The solid line indicates the part of the branch
which is linearly stable to axisymmetric perturbation, while the dotted line indicates
unstable solutions. The connected branch is shown in orange and the disconnected
branches are shown in blue. The black square marks the saddle-node bifurcation point,
the diamond shows the (weakly perturbed) transcritical bifurcation point, and the dots
indicate Marangoni numbers for which the flow near the axis is illustrated in figs. 3.9
and 3.11. The green vertical line indicates the linear stability boundary with respect to
three-dimensional perturbation.

decreases steeply along the unstable lower disconnected branch (dotted blue curve) such
that it would seem to intersect the connected branch at a transcritical bifurcation point
(MaH , w(0, Γ/2)) = (83.18, −0.029) (diamond in fig. 3.10). The transcritical bifurcation
is, however, imperfect, as can be seen from the inset in fig. 3.10. It is perturbed by the
weak thermocapillary flow.

In the absence of the thermocapillary flow, the transcritical bifurcation would be perfect.
It seems that w(0, Γ/2) would oscillate between positive and negative values along the
lower disconnected branch, leading to a sequence of transcritical bifurcation points
(intersections with w(0, Γ/2) = 0) where the Marangoni cells change the sense of rotation.
Here, the thermocapillary flow becomes stronger when MaH increases and the transcritical
bifurcations become increasingly perturbed. The connected (orange) and the lower
disconnected (blue) branches separate from each other for MaH > 120.

The evolution of the axisymmetric Marangoni cells along the connected and the lower
disconnected branches is visualized in fig. 3.11 by plotting the difference between the flows
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Figure 3.11: Difference of the flows corresponding to the orange and the lower part of
the blue branch in fig. 3.10 for the Marangoni numbers indicated in the sub-captions

on these branches for the same MaH . The flow with lower |w(0, Γ/2)| is subtracted from
the other one. The strength of the cells (visualized by the difference of the temperature
fields) and their sense of rotation depend sensitively on MaH . On the other hand, their
radial wavelength only weakly decreases with MaH .

Symmetry-breaking Marangoni instability

This section investigates the linear stability of the steady axisymmetric flow on the
connected branch, denoted as basic state in the following, to three-dimensional or time-
dependent perturbation. The upper disconnected branch solution is linearly stable for
α = 5° at the critical stability boundary MaH,c = 83.27 of the connected branch. For
α = 15° we can no longer find the disconnected branches.

For α = 5°, the most dangerous symmetry-breaking perturbation in form of steady
three-dimensional convection cells (fig. 3.12) is as well localized near the axis r = 0 in the
region of vanishing basic flow with almost linear dependence of T0 on z. Similarly to the
Marangoni instability in low-aspect-ratio cylindrical liquid pools (Koschmieder and Prahl,
1990), the neutral Marangoni numbers MaH,n for different azimuthal wavenumbers are
close to each other (tab. 3.4). At the contact angles α < 8°, the most dangerous wave
numbers are m = 1 and 2, and their neutral curves are almost indistinguishable (fig.
3.13a). Quadratic extrapolation of MaH,n for m = 2 to the limit of vanishing contact
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Figure 3.12: The most dangerous perturbation modes for heating from below, α = 5°
and Pr = 16.36. The azimuthal wave numbers are indicated in the sub-captions, and
the corresponding neutral Marangoni numbers are provided in tab. 3.4. The free surface
temperature is shown at the top, while at the bottom, the velocity vectors and temperature
field close to the axis are shown in the meridional plane φ = const. containing the
maximum temperature perturbation.

m 0 1 2 3 4 5 6 7 8
MaH,n 87.01 83.27 83.35 83.92 84.47 85.18 87.04 86.82 87.55

Table 3.4: The neutral stability Marangoni numbers MaH,n for given azimuthal wave
numbers m for a droplet on a hot substrate with the contact angle α = 5° and the Prandtl
number Pr = 16.36

angle gives MaH,c(α → 0) ≈ 79.6. This is a typical value for low-aspect-ratio liquid pools.

When α is increased, the critical m changes frequently, and the most dangerous pertur-
bation extends in the positive radial direction (compare figs. 3.12 and 3.14). In the range
12.5° < α < 13.5°, the neutral curves of the steady modes m = 2 and 3 turn backward
(see the inset in fig. 3.13a) and intersect other neutral curves of time-dependent modes
with the same azimuthal wavenumbers, which continue to higher contact angles. Such
intersections occur at α = 8.39°, 12.7° and 13.3° for m = 1, 2 and 3, respectively.

The time-dependent modes arise in pairs with complex conjugate eigenvalues η, where
for m > 0, positive and negative oscillation frequencies ω indicate, respectively, clockwise
and counter-clockwise rotation of the perturbation pattern in the view from the top with
an azimuthal phase speed ω/m. Only the positive frequencies are plotted in fig. 3.13(b),
and the corresponding clockwise-rotating modes are shown in fig. 3.14(a, b).

The frequencies grow with α (fig. 3.13b). The temperature perturbation at the droplet
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Figure 3.13: Dependence of the critical Marangoni number MaH,c (a) and of the critical
oscillation frequency ωc of the most dangerous mode (b) on the contact angle α for
shallow droplets on a hot substrate with Pr = 16.36. For α < 8°, the critical curves for
the azimuthal wavenumbers m = 1 and m = 2 are almost indistinguishable. The insets
in (a) and (b) show the neutral Marangoni numbers MaH,n and neutral frequencies ωn,
respectively.
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Figure 3.14: The most dangerous perturbation at the onset of instability for a droplet
on a hot substrate with Pr = 16.36 and: (a) α = 15°, MaH = 122.0, m = 1, (b)
α = 20°, MaH = 603.3, m = 5, (c) α = 25°, MaH = 4263, m = 0. For the three-
dimensional perturbation (a) and (b), the surface temperature is shown at the top, while
the velocity and temperature field in a meridional plane containing the maximum positive
temperature perturbation is shown at the bottom. For the axisymmetric perturbation
(c) the projection to a meridional plane is shown for an arbitrary time t0 (top) and
t0 + π/(2ω) (bottom).
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surface develops a fan-blade shape (fig. 3.14a,b) similar to that observed by Karapetsas
et al. (2012) in shallow evaporating droplets on a perfectly conducting substrate. In a
cut with a fixed meridional plane φ = const., Marangoni convection cells can still be
identified. They travel along the free surface towards the axis r = 0.

MaH,c rises steeply with α. This may be attributed to the basic temperature field. The
basic thermocapillary flow, the strength of which grows with increasing α, transports
hot fluid from the contact line towards the apex, decreasing or even inverting the local
vertical temperature gradient (fig. 3.8d). When α exceeds 23°, the axisymmetric (m = 0)
time-dependent perturbation becomes the most dangerous one. It consists of convection
cells (fig. 3.14c) which travel in negative radial direction.

Influence of the Prandtl number

The effect of the Prandtl number is illustrated for a representative contact angle α = 16°
in fig. 3.15. The critical Marangoni number decreases monotonically with Pr but saturates
for large values of Pr. The critical Reynolds number Rec = Mac/Pr then becomes inversely
proportional to Pr. As Rec drops to low values for large Pr, the basic flow at critical
conditions becomes creeping and thus independent of Re. Inertia becomes negligible, and
the stability of the basic flow then depends only on the ratio between convective and
diffusive heat transfer within the droplet (i.e., on the value of the Marangoni number).

For this type of instability, the critical Marangoni number diverges as Pr → 0 (relevant,
e.g., for liquid metals). This is because the instability relies on the perturbation of the
temperature field by the perturbation flow. For low Pr, temperature perturbations are
diffused rapidly, so that they cannot drive the perturbation flow.

3.4.2 Inertial instability

In this section, we consider the breaking of symmetry in the limit of a small Prandtl
number, Pr � 1 (such that Bi and Re remain finite). This limit is relevant, e.g., for
droplets of liquid metals (additive manufacturing). The temperature field is governed by
conduction, i.e., it is independent of the flow. It depends only on α and Bi. The basic
temperature field is the same for heating or cooling from the wall, except for the sign. The
basic flow, on the other hand, still depends also on the Reynolds number and on the sign
of the dimensionless wall temperature. The latter affects not only the sense of rotation of
the basic vortex but, for a non-zero Reynolds number, also the shape of the streamlines
(as described in the following sub-section). The Marangoni number Ma = RePr is not a
suitable control parameter for Pr � 1 and finite Re. Since the temperature diffuses too
rapidly compared to convection, the temperature perturbation vanishes for vanishing Pr
and finite Re. Thus, there is no perturbation of the thermocapillary stress in this limit
which could drive a perturbation flow. Any instabilities can then only be driven by the
inertial bulk terms in the linearized momentum equation (3.28a).
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Figure 3.15: Dependence of MaH,c on the Prandtl number Pr for droplets on a hot
substrate with α = 16°. Thick lines indicate critical curves, while thin lines indicate
neutral curves.

Basic flow

As described above, the basic temperature field (fig. 3.16a,d) is independent of the flow,
but it determines the distribution of the thermocapillary stress which drives the basic
flow. The basic flow at criticality for two different contact angles α = 100° and 120° and
either hot or cold wall is show in fig. 3.16(b,c,e,f) for a very small Pr. For α = 120°, it
consists of a single toroidal vortex. The largest thermocapillary stress is close to the
contact line. On a hot wall (fig. 3.16b,e), the fluid is accelerated from zero velocity at the
contact line along the free surface towards the apex. The thermocapillary driving decays
with increasing distance from the contact line, and the maximum velocity is reached
on the free surface at some intermediate height. Near the apex, the fluid is decelerated
and deflected downwards. On the other hand, on a cold wall (fig. 3.16c,f), the flow is
driven by the free surface from the stagnation point at the apex towards the contact
line, and the driving thermocapillary stress grows in the direction of the flow. Thus, the
maximum velocity is reached at the free surface close to the contact line, where the flow
turns sharply towards the axis and away from the wall. For a cold wall, the center of the
vortex is closer to the contact line. For a hot wall, the flow is stronger near the axis as
compared to a cold wall.

Effect of α on the basic flow and on the stability boundary

The effect of the contact angle on the critical Reynolds number Rec and on the critical
oscillation frequency ωc (in case of a time-dependent perturbation) is shown in fig. 3.17.
Both Rec and ωc decay monotonically with α. For α = 120°, the critical Reynolds number
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Figure 3.16: The marginally stable basic state for Pr = 10−3 and: α = 100° (a–c),
α = 120° (d–f). The left column shows the basic temperature field. The middle and the
right columns show the streamlines and the velocity magnitude (color) for the hot and
cold walls, respectively. The critical Reynolds numbers are: Rec = 14622 (b), Rec = 12030
(c), Rec = 3102 (e), Rec = 1700 (f).

is one order of magnitude smaller compared to α = 100°. This is due to the increase in
the size of the droplet relative to R, the temperature variation across the droplet (fig.
3.16a,d), and the free surface area across which the thermocapillary stress drives the flow.
The maximum basic flow velocity at critical conditions (fig. 3.16b,c,e,f) is of the order of
100. It decreases by approximately one half when α is increased from 100° to 120°. Also,
the increased strain due to the axial stretching of the basic vortex might support the
instability. In the case of a cold wall, the streamlines are more sensitive to the contact
angle. Namely, the basic vortex shrinks towards the contact line when α decreases.
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Figure 3.17: Dependence of the critical Reynolds number Rec (a) and of the critical fre-
quency ωc on the contact angle for droplets with Pr = 0.001. The azimuthal wavenumber
m is coded by color (see the legend in a). Solid lines correspond to a hot wall, while the
dashed line indicates a cold wall. The mode with m = 2 is steady. Both the full and the
dashed line continue to the complete range of α shown, but only part of each critical
curve was computed.

Structure of the most dangerous modes

For a cold wall and all contact angles, or a hot wall and higher contact angles α > 102°
we find an instability to a steady perturbation (fig. 3.18a,b,d,e) with a wavenumber
mc = 2. It consists of vortices, which can be seen in the horizontal cut with the plane
z = Γ/2. The distance of the apparent centers of these vortices from the axis tends to
increase (decrease) with z for a hot (cold) wall. The perturbation flow is alternatingly
perpendicular and tangential to equidistant meridional planes separated by π/4.

For a hot wall and lower contact angles α < 102° the most dangerous perturbation
is replaced by a traveling wave (fig. 3.18c,f) with a wavenumber mc = 1. Again, the
clockwise-rotating mode is displayed. One can identify two vortices in the cut at z = Γ/2
with a flow across the axis. Near the apex, the perturbation velocity is large compared
to the rest of the droplet.

Dependence on the Prandtl number

The dependence of the neutral Reynolds number Ren and of the critical frequency ωc on
the Prandtl number for α = 120° is shown in fig. 3.19. In the case of a cold wall, only
the steady mode m = 2 is found. Rec grows by at least one order of magnitude upon a
small increase of Pr ∼ O(10−2). This is similar to the low-Pr instability in liquid bridges
(see, e.g. Wanschura et al., 1995). In our case, the critical curve even turns backward.
At higher Pr even the mode m = 2 becomes time-dependent, but its neutral Reynolds
number is the much higher than that of the mode m = 1. For a higher contact angle in
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Figure 3.18: The most dangerous perturbation for Pr = 10−3 shown in the horizontal
midplane z = Γ/2 indicated by the black dashed line (a-c) and in the meridional plane
indicated by the blue dashed line (d-f). The parameters are: cold wall, α = 120°, Rec =
1700, mc = 2, ωc = 0 (a,d); hot wall, α = 120°, Rec = 3102, mc = 2, ωc = 0 (b,e); hot wall,
α = 100°, Rec = 14622, mc = 1, ωc = 286.7 (c,f).

the range 130° � α � 140°, the stabilization of the basic state is weaker, and the critical
curve can be continued to higher Pr. For a hot wall and α = 120° we find neutrally
stable perturbation modes in the range m ∈ �1, 3�, and their neutral curves continue
beyond Pr > 1. For m = 1 and 3 the stabilization with Pr is weaker than for m = 2.
Thus, the traveling wave m = 1 becomes more dangerous than the steady mode m = 2
for Pr > 2.181 × 10−2. The frequency ωc of the former decreases monotonically with the
Prandtl number for Pr < 5.

When the Prandtl number is increased, the stronger convection of heat within the
fluid tends to homogenize the temperature distribution (fig. 3.20b) and decrease the
thermocapillary stress (fig. 3.21a) in the lower part of the free surface. Thus, a higher
Reynolds number would be needed to maintain the same strength of the thermocapillary
flow (fig. 3.21b). For a hot wall, Pr = 1 and Rec = 8409 the basic temperature field
develops a thermal boundary layer near the wall (fig. 3.20b).
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Figure 3.19: Dependence of the neutral Reynolds number Ren for the azimuthal wave
numbers coded by color (a) and of the critical frequency ωc (b) on the Prandtl number
Pr for a hot substrate with the contact angle α = 120° (full lines), cold substrate and
α = 120° (dashed line), cold substrate and α = 140° (dotted line). The modes m = 1
(full red line) and for the hot wall, α = 120° and Ren > 3.6 × 104 also m = 2 (dashed
orange line above the orange dot) are time-dependent. Otherwise, the modes m = 2 and
m = 3 are steady.
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Figure 3.20: The marginally stable basic state for α = 120° and: hot wall, Pr = 2.1813 ×
10−2, Re = 3953 (a); hot wall, Pr = 1, Re = 8409 (b); cold wall, Pr = 3.8×10−2, Re = 3656
(c).
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Figure 3.21: For hot wall, α = 120° and Re = 3953: (a) The tangential temperature
gradient at the free surface integrated in the azimuthal direction plotted against the
path length s from the contact line to the apex for Pr = 0 (black), Pr = 0.02 (blue) and
Pr = 0.1 (red); (b) Dependence of the value of the Stokes stream function at the center
of the basic vortex on the Prandtl number

The perturbation of the temperature field due to the steady mode m = 2 for the critical
conditions at α = 120°, small but non-zero Pr and either hot or cold wall is shown
in fig. 3.22. In both cases, the velocity at the free surface is dominantly directed in
the direction of the positive gradient of the surface temperature perturbation and thus
against the thermocapillary stress induced by this perturbation. The thermocapillary
stress, therefore, tends to suppress the perturbation flow, stabilizing the basic state upon
an increase of Pr.

In case of the travelling wave m = 1 the perturbation velocity at the free surface for
α = 120°, Pr = 2.181×10−2 becomes localized near the apex where the velocity aligns with
the thermocapillary stress (fig. 3.23a-c). As the Prandtl number further increases along
the critical curve to Pr = 1 (fig. 3.23d-f), the extrema of the temperature perturbation
at the free surface migrate closer towards the apex.

For both modes, m = 1 and m = 2, the extrema of the temperature perturbation are
created in the bulk of the droplet by the action of the inertia-induced perturbation
velocity acting on the internal basic temperature gradient.

3.4.3 Hydrothermal wave instability

For large contact angles (α � 70°) and high Prandtl numbers (the threshold depends
on α), we find only the azimuthal wavenumber m = 1 to be the critical one. This is in
qualitative agreement with the experiments of Watanabe et al. (2018). In addition to the
traveling hydrothermal wave we also find a steady critical perturbation for Pr ∼ O(1) with
a similar spatial structure to the traveling wave. In this section, we use the Marangoni
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Figure 3.22: The temperature and velocity fields of the most dangerous mode at the free
surface projected in axial (a,b) and radial (c,d) direction, and in a meridional cut indicated
by the dashed line (e,f) for α = 120°, mc = 2 and hot wall, Pr = 2.1813 × 10−2, Re = 3953
(a,c,e); cold wall, Pr = 3.8 × 10−2, Re = 3656 (b,d,f) .
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Figure 3.23: The most dangerous perturbation for a hot substrate, α = 120°, mc = 1 and:
Pr = 2.1813 × 10−2, Re = 3953 (a,b,c), Pr = 1, Re = 8409 (d,e,f) . The right column
shows the velocity and temperature at the free surface viewed from the top. The left
(and the middle) column shows the meridional cuts corresponding to the cyan and orange
dashed lines, respectively.

number Ma = RePr as a suitable control parameter. The critical Marangoni number Mac

and the oscillation frequency ωc of the time-dependent modes decrease monotonically
with α (fig. 3.24). For Mac the decrease is roughly exponential, at least within some
range of α (depending on the other parameters). Again, we attribute the steep decrease
of Mac with α to the growing size of the droplet relative to R, as in the case of the
inertial instability.

For a cold wall, the dependence of Mac on Pr is similar to the Marangoni instability.
Namely, Mac decreases steeply upon an increase of the Prandtl number for Pr ∼ O(1),
but the slope of the decay decreases with increasing Pr (fig. 3.25a). In the case of a hot
wall, the dependence is more complex. The critical curve of the low-Prandtl-number
traveling wave with m = 1 (fig. 3.27a,b) described in sec. 3.4.2 continues for α = 120°
up to the point A: (Pr, Mac) = (5.0218, 67787) in fig. 3.25. Mac increases by two orders
of magnitude from O(102) to O(104) as Pr increases from 0.1 to 5. At the point A, the
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Figure 3.24: The dependence of the critical Marangoni number Mac (a) and of the
critical frequency ωc (b) on the contact angle α for a hot (red) and cold (blue) wall,
(Pr, Bi) = (16.36, 0.2362) (full line), (Pr, Bi) = (28.1, 0.4) (dashed line). The critical
azimuthal wave number is mc = 1.

traveling wave is replaced by a steady mode with the same azimuthal wavenumber m = 1
(fig. 3.27c,d), which has a similar spatial structure as the traveling wave. In particular,
it is characterized by a hot and a cold spot close to the apex. Mac drops by one order
of magnitude upon a small increase of the Prandtl number from the point A to a local
minimum of the critical curve at (Pr, Mac) = (7.184, 8993). Afterward, Mac increases
until the point B: (Pr, Mac) = (16.36, 14833), where the steady mode is again replaced
by a traveling wave. Upon a further increase of Pr from the point B both Mac and ωc

decrease. The critical Marangoni number saturates for Pr � 50 at Mac ≈ 8750.

In the case of a cold wall, the critical Marangoni number is one order of magnitude
larger than for a hot wall. This is due to a layer of hot fluid that develops below the
free surface (fig. 3.26c). The temperature gradient tangential to the free surface almost
vanishes except in the close vicinity of the contact line. The thermocapillary driving of
the basic flow is thus restricted to this small region. The basic state is shown for larger
values of α = 140°, Pr = 28.1 and Bi = 0.4 compared to the values considered in the case
of a hot wall. With this choice, the order of magnitude of Mac ∼ O(105) for the cold
wall is comparable to the typical values obtained for the hot wall for lower values of α,
Pr and Bi.

For lower contact angles (α ∼ 90°), the critical Marangoni number is large even for a
hot wall. The thermal convection is thus intense compared to thermal conduction. The
variation of the basic temperature within the droplet at criticality is smaller than for
higher α with lower Mac. The basic state exhibits a thin thermal boundary layer at the
wall (fig. 3.26a). In the bulk, the vertical temperature gradient is inverted in some regions.
The horizontal component of the temperature gradient reaches magnitudes comparable
to the vertical one. In the case of the hot wall, there is a column of cold fluid near the
axis in the upper part of the droplet.
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Figure 3.25: Critical Marangoni number Mac (a) and critical oscillation frequency ωc (b)
as functions of the Prandtl number for a hot wall, α = 120°, Bi = 0.2362 (red), and for
a cold wall, α = 140°, Bi = 0.4 (blue). The critical azimuthal wavenumber is mc = 1.
Between the points A and B on the red curve ωc = 0.

The different structure of the basic temperature field for hot and cold wall leads to a
different structure of the most dangerous perturbation. For a hot wall (fig. 3.27), the
perturbation is dominated by a displacement of the column of cold fluid, which is located
below the apex in the basic state, by a perturbation vortex with m = 1. The displacement
of the cold fluid is manifested by two columns of positive and negative temperature
perturbation close to the axis at opposite sides. The vortex is driven by a localized
thermocapillary stress at the apex due to the extrema of the temperature perturbation,
which are located close to the apex. In the case of the steady mode (fig. 3.27c,d), the
perturbation flow is tangential to the meridional plane containing the extrema of the
temperature perturbation and perpendicular to the perpendicular meridional plane.

In the case of a cold wall, the velocity perturbation has a similar structure, but it is not so
localized near the apex as in the hot wall case. For illustration, the most dangerous mode
is plotted in fig. 3.28 for α = 140° and Bi = 0.4. Two vortices are visible in a horizontal
cut z = Γ/2. The perturbation flow creates extrema of the temperature perturbation in
the bulk of the droplet from the internal basic temperature gradient. In the horizontal
cut, the temperature perturbation has a Yin-Yang shape. The temperature perturbation
almost vanishes at the free surface. This is due to the layer of hot fluid near the free
surface in the basic state which suppresses perturbations of the free-surface temperature
by the mechanism described by Pearson (1958).
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Figure 3.26: The marginally stable basic state for: (a) hot wall, α = 90°, Pr = 16.36, Bi =
0.2362, Mac = 276602; (b) α = 120°, Pr = 16.36, Bi = 0.2362, Mac = 14833; (c) cold wall,
α = 140°, Pr = 28.1, Bi = 0.4, Mac = 143820.
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Figure 3.27: The most dangerous modes with mc = 1 for a hot wall, Pr = 16.36,
Bi = 0.2362 and (a–b) α = 90°, Mac = 276602, ωc = 55.6; (c–d) α = 120°, Mac = 14833,
ωc = 0. The perturbation of velocity (arrows) and temperature (color) is shown: (a,c) in
a meridional cut containing the maximum of the temperature perturbation, as indicated
by the dashed line in (b) and (d), respectively; (b,d) at the free surface viewed from the
top. The direction of propagation of the traveling wave (a,b) is clockwise.

3.5 Summary
We observe three more or less distinct types of instability. For high-Pr small-α droplets
on a hot wall, we find Marangoni instability in the central part of the droplets. This is in
qualitative agreement with other numerical studies (Karapetsas et al., 2012; Shi et al.,
2017). The critical azimuthal wavenumber depends sensitively on α. For very small α,
the Marangoni cells are steady. When α increases, the critical Marangoni number rises
steeply, and the critical mode becomes time-dependent.

The Marangoni cells (or rolls) do not arise near the contact line, as observed in evaporating
droplets on walls of finite conductivity experimentally by Sefiane et al. (2010) and in the
three-dimensional time-dependent simulations of Zhu and Shi (2021). It should be noted
that the convection cells near the contact line were also not found by the linear stability
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Figure 3.28: The clockwise-rotating most dangerous mode with mc = 1 and ω = 1.71 for
a cold wall, α = 140°, Pr = 28.1 and Bi = 0.4. The perturbation of velocity (arrows) and
temperature (color) is shown in (a) a meridional cut indicated by the dashed line in (b),
(b) the horizontal cut at z = Γ/2 indicated by the dashed line in (a).

analysis of Karapetsas et al. (2012), who imposed an evaporation heat flux at the free
surface and a constant temperature of the wall. Karapetsas et al. (2012) found the same
structure of Marangoni cells as presented here in section 3.4.1. Furthermore, it is shown
by Sefiane et al. (2010) that the conductivity of the substrate favors the occurence of the
cells. Thus, the discrepancy cannot be attributed to the simplifications of the thermal
boundary conditions with the Newton’s law of cooling at the free surface and a perfectly
conducting wall. Instead, the inability to find the cells near the contact line may be
related to the limitations of the linear stability theory which cannot capture subcritical
instabilities (e.g. due to backward bifurcation). It has been illustrated in fig. 3.10 that a
subcritical Marangoni instability can indeed occur in shallow droplets. This speculation
is further supported by the three-dimensional time-dependent numerical simulations of
Kumar et al. (2022), which show that Marangoni cells originate in the central part of the
droplet, as predicted by our results, and subsequently trigger smaller cells closer to the
contact line in the course of time.

In the limit of small Prandtl number Pr � 1, we find an instability for higher contact
angles (α � 90°) to a steady perturbation with m = 2. The structure of the perturbation is
very similar for the hot and cold walls. The neutral Reynolds number of this perturbation
mode grows steeply when Pr is increased to small non-zero values ∼ O(10−2), since
the perturbation of the thermocapillary stress is directed against the perturbation flow.
In the case of a hot wall, there is, in addition, a time-dependent perturbation mode
m = 1, which becomes the most dangerous one when Pr is increased. This perturbation
mode displaces a region of cold fluid in the basic state from the apex, which produces a
thermocapillary driving of the perturbation flow. The critical curve of the m = 1 mode
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continues to high Prandtl numbers.

For high Pr and α we find instability only to mc = 1. The structure of the basic
temperature field and of the most dangerous mode depends on whether the wall is hotter
or colder than the ambient. For a hot wall, the critical curve is continued from the
low-Prandtl-number instability. The perturbation mode can be either steady or traveling,
depending on the values of Pr and α. For a cold wall, the extrema of the temperature
perturbation are located in the interior of the droplet, while at the free surface, the
temperature perturbation is only very weak. A layer of hot fluid below the free surface
in the basic state suppresses perturbations of the free surface temperature. This leads to
much larger Mac compared to the hot wall.
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CHAPTER 4
The onset of chaotic advection in
a thermocapillary-driven droplet

on a wall

4.1 Motivation
In droplets hanging from a hot horizontal wall (or rod), particle accumulation structures
(PAS) have been observed experimentally by Takakusagi and Ueno (2017) and Watanabe
et al. (2018). The flow in which the PAS have been observed was three-dimensional
and time-dependent due to the hydrothermal wave (HTW) instability. Although the
investigation of the accumulation mechanism in this particular flow geometry is lacking,
the observed structures are very similar to those found in liquid bridges (Schwabe et al.,
2006, and others). It has been shown (see, e.g. Hofmann and Kuhlmann, 2011; Kuhlmann
and Muldoon, 2012; Mukin and Kuhlmann, 2013) that in the latter setup, solid neutrally
buoyant particles of finite size can accumulate inside or near Kolmogorov-Arnold-Moser
(KAM) tori, which approach sufficiently close to some impenetrable boundary (wall or
free surface). The transport mechanism of particles from the sea of chaotic trajectories
onto KAM tori is due to repulsive force between the particle and a boundary, either by
direct contact or by the lubrication effect. Thus, the typical prerequisite for accumulation
of density-matched particles is that their size is comparable to the minimal distance of
a KAM torus from the boundary. Kuhlmann and Muldoon (2013) however show that
PAS can also appear in the chaotic sea when collisions of the particles with boundaries
repeatedly return them to the same section of some open chaotic trajectory. For a review,
see Romanò and Kuhlmann (2019).

This chapter aims to compute the Lagrangian topology in a flow comparable to Watanabe
et al. (2018) and correlate it to their particle accumulation structures. The KAM tori
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4. The onset of chaotic advection in a thermocapillary-driven droplet on a wall

are computed in a moving frame of reference which rotates together with the traveling
hydrothermal wave. In such frame, the flow as well as the KAM tori are steady and
three-dimensional. We consider droplets attached to a hot wall with large contact angles
(α ≥ 90°) and high Prandtl numbers (Pr = 28.1, 68.4, 207), corresponding to 2, 5, and 20
cSt silicone oils at 20°C. The Biot number of 0.3 is employed throughout this chapter,
unless stated otherwise. The Biot number typically shifts the critical Marangoni number
but does not have other significant qualitative effects.

4.2 Methodology
Similar as Kuhlmann and Muldoon (2012) we construct a model flow which aims to
approximate the true three-dimensional flow at supercritical conditions. Here, the model
is constructed as a superposition of the basic flow and the critical mode with positive
ω (i.e, rotating in the negative φ direction), in a co-rotating reference frame with an
azimuthal phase velocity −ω/m. The model flow in the rotating frame reads

um(r, φ, z) = u0 + ω

m
reφ + aT

max T0 − min T0

max T̂
(û exp(imφ) + c. c.) . (4.1)

The term (ω/m)reφ is an additional azimuthal component of the basic velocity field due to
the rotation of the reference frame. The perturbation mode is re-normalized with the factor
(max T0 − min T0)/ max T̂ such that aT is the amplitude of the temperature perturbation
relative to the maximum variation of the basic temperature field (max T0 − min T0).
Thus, aT can be compared to the experiments where the basic temperature as well as
the temperature perturbation have been measured by infrared imaging (Takakusagi and
Ueno, 2017). The model (4.1) is expected to approximate the three-dimensional flow for
slightly supercritical conditions.
The model flow (4.1) is interpolated onto a finer mesh (obtained by applying the FEniCS
function refine to the computational mesh) and evaluated at nφ = 400 uniformly
distributed meridional planes. The values of the flow variables at element vertices are
imported to ParaView 5.10.1 (Ayachit, 2015), where the fluid trajectories are computed
with the adaptive-step 5th order Runge–Kutta method (2.24) implemented in the filter
Stream Tracer. A Poincaré section is then defined as a Slice (i.e., an intersection
with a given plane) of the trajectories. The meridional plane containing the global
maximum of the temperature perturbation, which is located near the apex, is used as
the Poincaré plane.
Vertices of the same triangular element at two adjacent meridional planes form a three-
dimensional cell. The grid of cells is divided into sub-domains, which are distributed
among MPI ranks using the filter D3. The trajectories are started from random positions
within the droplet (corresponding to the seed type Point Cloud), such that they are
distributed among the sub-domains. Nevertheless, no satisfactory parallelization of the
computation of trajectories has been achieved by this workflow - at best, 3 out of 12
available MPI ranks have been active at a time. This identifies a large potential for
improvement of parallel efficiency of the computation.
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Figure 4.1: Poincaré section of fluid trajectories in the basic flow (in a rotating frame of
reference) compared to the contour lines of the Stokes stream function. See text for the
physical and numerical parameters.

4.2.1 Verification

The accuracy of the trajectory computation is assessed by comparing the Poincaré
section for aT = 0 at an arbitrary meridional plane to the contour lines of the Stokes
stream function of the basic flow for the following parameters: Re = 329, α = 120°, Pr =
28.1, Bi = 0.2362. The computational mesh for the basic state and the perturbation is
adapted as follows: The finite elements within the distance d1 = 0.05 from the wall and
the apex are divided into halves, compared to the basic mesh in the bulk. The elements
within the distances 7.5 × 10−4 from the apex and d2 = 5 × 10−3 from the contact line
are further divided into quarters. The number of elements along the free surface per π/2
radians is set to sN2, where N = n/

√
Γ corresponds to the number of elements per unit

length in the bulk and s = 0.5, n = 70 are numerical parameters. The penalization factor
for the Nitsche method is set to C = 500. These parameters lead to sufficiently accurate
streamlines and fluid trajectories (fig. 4.1) with acceptable numerical cost. The trajectory
started at the outermost streamline in fig. 4.1 deviates slightly from the streamline due to
numerical error. The Poincaré points presented in this chapter should thus be understood
with small error bars. Other trajectories in fig. 4.1 match perfectly with the streamlines.
In general, the numerical error tends to increase with increasing distance from the vortex
center due to the increased length of the trajectory and due to the streamline crowding
near the free surface. It is obvious that any normal offset from the exact streamline
created by numerical error near the free surface becomes magnified in the low-velocity
region near the axis r = 0.
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α
Pr 28.1 68.4 207

90° (98 238, 21.55) (54 345, 6.600) (55 152, 2.238)
100° (31 647, 11.69) (25 544, 4.417) (26 929, 1.537)
110° (14 444, 7.461) (13 133, 3.037) (14 291, 1.083)
120° (7 658, 5.020) (7 329, 2.120) (8 310, 0.7795)

Table 4.1: The critical Marangoni numbers and critical oscillation frequencies (Mac, ωc)
for the range of parameters considered in this chapter. The wall is hot, the Biot number
is Bi = 0.3 and the wave number is m = 1.

4.3 Results
First, we investigate the effect of the perturbation amplitude aT on the topology of fluid
trajectories for a representative case α = 90°, Pr = 68.4 and Mac = 54345. Afterwards,
the effects of the contact angle and Prandt number for selected amplitudes are considered.
The azimuthal wavenumber is m = 1 and the frequencies are ω > 0 throughout this
chapter. The critical Marangoni numbers and oscillation frequencies for the cases
considered in this chapter are indicated in table 4.1.

For the perturbation amplitudes aT ∼ 0.01, the trajectories remain regular except possibly
next to the boundaries, and the majority of them lie on primary KAM tori similar to
streamlines of the unperturbed basic flow. A secondary set of KAM tori (blue in fig. 4.2a)
of period 1 emerges by resonance from a closed trajectory orbiting around the center of
the basic toroidal vortex. The size of this set grows when the amplitude increases, and
saturates at aT ≈ 2% for the selected parameters α = 90°, Pr = 68.4. For aT = 0.05, a
subharmonic torus of period 3 is observed in the outer part of the basic vortex (red in fig.
4.2b), approaching very close to the free surface. The minimum distance from the free
surface of the trajectory on this torus is 3.5×10−3 at (r, φ, z) = (0.9773, 1.395 rad, 0.1948),
where φ is measured from the position of the maximum positive temperature perturbation.

Chaotic trajectories are visible for aT ≥ 0.05 in this outermost region of the basic vortex.
The extent of the chaotic sea grows with aT , at the expense of the tori. Resonances
occasionally occur near the borders of the regular islands. For aT � 0.06 (fig. 4.2c), the
chaotic sea is also observable along the homoclinic connection separating the primary
(black) and the secondary (blue) set of the nested KAM tori, and the primary tori become
more and more displaced away from the center of the basic vortex. For aT � 0.3 (fig.
4.2e) both the primary and the secondary set orbit about the center of the basic vortex.
Subharmonic tori with small cross-sections and higher periodicities (∼ 10) are typically
found near the outermost secondary torus for 0.1 ≤ aT ≤ 0.3.

For a given amplitude aT ∼ O(1%) and α = 90° the topology is not very sensitive to the
Prandtl number for high values (Pr = 68.4 and Pr = 207). But when Pr is decreased to
28.1 (leading to an increase of the critical Reynolds number), the secondary set of KAM
tori vanishes (fig. 4.3a). For higher amplitudes aT ∼ O(10%) the set of primary tori
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Figure 4.2: Poincaré sections of fluid trajectories for different perturbation amplitudes
aT (indicated in sub-captions) and α = 90°, Pr = 68.4, Bi = 0.3. The grey lines in the
background are the streamlines of the basic flow. Grey dots are the intersections of
chaotic trajectories, black dots indicate regular trajectories belonging to the primary
KAM tori, blue dots correspond to the secondary synchronous tori, and dots of other
colors indicate subharmonic tori. The periodicities of the subharmonic tori in (d) and (e)
are 11 and 16, repsectively.
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Figure 4.3: Poincaré section of fluid trajectories in the model flow for α = 90° and
different Pr and aT as indicated in the sub-captions. Colors and other parameters as in
fig. 4.2.

shrinks and the extent of the chaotic sea increases when the Prandtl number is increased
(fig. 4.3b,c,e,f). This dependence is, however, only weak, and the topology is very similar
across the range of Pr considered.

When the contact angle is increased from 90° up to 120°, the secondary tori migrate
towards the center of the basic vortex (fig. 4.4). This indicates that the resonance between
the wave speed ω/m and the rotational frequency of the basic vortex occurs closer to the
vortex center. The effect of the contact angle on the topology of trajectories is stronger
for higher Prandtl numbers. For Pr = 207 there remains only one set of nested KAM
tori when the contact angle is increased from 110° to 120° with aT = 0.01 (fig. 4.4c,f),
or when aT is increased from 0.03 to 0.1 for α = 110° (fig. 4.5g,h). When aT is further
increased from 0.1 to 0.3 for Pr = 207 and α = 110°, the second set of tori appears again
(black in fig. 4.5i).

The topology becomes more sensitive to aT at higher contact angles (compare figs. 4.2
and 4.3 to 4.5). For a given value of aT the extent of the chaotic sea typically increases
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Figure 4.4: Poincaré sections of fluid trajectories in the model flow for aT = 0.01 and
different Pr and α (indicated in sub-captions). Colors as in fig. 4.2.

with α. For example, with α ≥ 110°, some chaotic trajectories and subharmonic tori are
observable even at perturbation amplitude as low as aT = 0.01 (fig. 4.4a-c).

4.3.1 Three-dimensional structure of the KAM tori

In this sub-section, examples of the three-dimensional structure of the KAM tori are
provided for aT = 0.3. The primary and the secondary tori of period 1 together form
two interlocked rings (fig. 4.6). The proportion of the sizes of the outermost secondary
and primary tori increases with the Prandtl number, and the extent of the chaotic sea
increases with the Prandtl number and the contact angle.

The primary torus is displaced, compared to the unperturbed basic streamlines, by
the perturbation velocity. Thus, it is shifted towards the apex in the region where the
perturbation velocity transports hot fluid from the bulk towards the apex, and away
from it on the other side of the droplet where a perturbation flow from the apex into
the bulk is associated with a negative temperature perturbation (fig. 4.7). On the other
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Figure 4.5: Poincaré sections for α = 110° and different Pr and aT as indicated in the
sub-captions. Colors as in fig. 4.2.
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(a) α = 90°, Pr = 28.1 (b) α = 90°, Pr = 68.4 (c) α = 90°, Pr = 207

(d) α = 110°, Pr = 28.1 (e) α = 110°, Pr = 68.4 (f) α = 110°, Pr = 207

Figure 4.6: Regular trajectories (colored as in fig. 4.2) on the outermost reconstructed
KAM tori for aT = 0.3 and selected α and Pr (indicated in sub-captions). The arrows
indicate the sense of rotation of the tori in the laboratory frame. In the co-rotating frame
the tori are steady and the base rotates in opposite direction.

hand, the secondary torus approaches the apex on the side of the dominant downward
perturbation flow, and the contact line on the side of the upward perturbation flow.

On the primary tori, which originate from the streamlines of the basic vortex, the regular
trajectories typically wind about the central closed trajectory with rather uniform speed
along the azimuth. On the other hand, on the secondary tori the trajectories make most
of the winding near the axis of the droplet, while they do not wind significantly near
the free surface. The winding is typically slower on the secondary tori compared to the
primary tori.

The secondary torus for α = 90°, Pr = 68.4 and aT = 0.2 is compared in fig. 4.8 to the
particle accumulation structures (PAS) reported by Takakusagi and Ueno (2017) and
Watanabe et al. (2018) from terrestrial and on-orbit experiments. In the case of the
terrestrial conditions the shape of the droplet is significantly deformed due to gravity (fig.
4.8e). The particles approaching the apex along the free surface are not easily visible in
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(a) (b)

Figure 4.7: Regular trajectories (black and blue lines) and contours of the vertical
velocity perturbation (semi-transparent surfaces in (a)) and temperature perturbation
(semi-transparent surfaces in (b)) for α = 90°, Pr = 68.4 and aT = 0.3. The red and blue
color of the surfaces indicates positive and negative values.

the photographs, but the complete closed structure is sketched in fig. 4 (3) of Takakusagi
and Ueno (2017). The general structure of the PAS agrees with the secondary torus, but
the solid particles approach closer to the apex and they travel towards the wall closer
near the axis. This is also evident from the three-dimensional reconstruction of particle
trajectories provided in fig. 8 (2) of Takakusagi and Ueno (2017). This might either
indicate that the PAS is located in the chaotic sea near the secondary torus, or it might
be a consequence of the different shape of the droplet, buoyancy or nonlinear effects in
the supercritical flow.

As far as the perturbation of the free-surface temperature is considered, we find a very
good qualitative agreement with the experiments (fig. 4.8g,h). Thus, the simplified
thermal boundary condition at the free surface employed in our model seems to have a
minor effect on the instability.

As pointed out in the motivation of this chapter, the prerequisite for accumulation of
neutrally buoyant particles on a KAM torus is that the size of the particles is comparable to
the smallest distance of the torus from a boundary. Therefore, the smallest dimensionless
distance d of regular trajectories from the free surface and the location (φd, zd) of the
closest approach are provided for selected cases in tab. 4.2. Again, φd is measured from
the location of the maximum temperature perturbation. The closest approach of the
secondary torus to a distance d = 7.72 × 10−3 from the free surface is observed for
(α, Pr, aT ) = (90°, 68.4, 0.3) close to the contact line. For a larger contact angle α = 110°
and the same Pr = 68.4 and aT = 0.3 it is the primary torus which approaches closer to
the free surface than the secondary torus. But the minimal distance d = 8 × 10−3 is very
similar to the former case. The primary and the secondary tori approach the free surface
at the opposite sides of the droplet.

The scaled radii of the particles employed in the terrestrial and on-orbit experiments
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Figure 4.8: The secondary KAM torus (a,d) for α = 90°, Pr = 68.4 and aT = 0.2 compared
to PAS observed in terrestrial experiments by Takakusagi and Ueno (2017) for the same
Pr (b,e), and in on-orbit experiments by Watanabe et al. (2018) (c,f). The perturbation
of the free-surface temperature from our linear stability analysis (g) is compared to the
infrared imaging from the terrestrial experiments (h) provided by Watanabe et al. (2018).
The top, middle and bottom rows show the views from the top through the transparent
wall into the droplet, from the side and from below, respectively. The red and green
curves with arrows in (a) and (b) are short sections of the blue regular trajectory. The arc
arrows in (a–d and g–h) indicate the sense of rotation of the structures in the laboratory
frame.
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α Pr aT d φd [rad] zd

90° 68.4 0.3 7.72 × 10−3 0.528 0.184
90° 68.4 0.5 1.06 × 10−2 −2.314 0.312
90° 207 0.3 9.70 × 10−3 0.443 0.187
110° 28.1 0.3 1.04 × 10−2 −2.771 0.377
110° 68.4 0.3 8.00 × 10−3 −2.650 0.381

Table 4.2: The smallest distance d of a KAM torus from the free surface, and the position
of the closest approach (φd, zd) for selected combinations of α, Pr and aT . φd is measured
from the position of the maximum temperature perturbation.

reported by Watanabe et al. (2018) were 0.005, 0.006 and 0.0075. These values are
only slightly lower than those of the smallest distance d between the tori and the free
surface, listed in tab. 4.2. It is expected that there remains a lubrication film between
the particles and the free surface, such that the minimal distance of the particle centroids
form the free surface remains larger than their radii (Romanò, Wu and Kuhlmann, 2019).

4.4 Discussion
Within the range of parameters considered in this chapter, the critical frequency ωc of the
most dangerous mode mc = 1 is such that in the reference frame which rotates with the
azimuthal velocity of the critical mode, the basic state contains two closed trajectories
of period one in the bulk of the droplet. In addition to the trivial closed trajectory
at the center of the basic toroidal vortex, there exists a second one that winds about
the center of the vortex once per revolution of the critical mode. This second closed
trajectory gives rise to secondary KAM tori when the basic flow is perturbed by the
critical mode. Qualitatively, the same flow topology has been found in the supercritical
flow in a high-Prandtl-number liquid bridge by Barmak et al. (2021).

The secondary tori typically approach close to the free surface, especially for higher aT

and lower Pr and α. Finite-size neutrally buoyant particles can therefore be transported
from the chaotic sea onto the KAM tori due to repulsion by the free surface. For α = 90°,
the general three-dimensional structure of the secondary tori (fig. 4.8a,d) agrees with the
shape of the particle accumulation structures reported in figs. 1 and 4(3) of Takakusagi
and Ueno (2017). For Pr = 68.4, the tori are stretched along the free surface, while they
are rather compact near the axis r = 0. This is due to the larger magnitude of the basic
velocity near the free surface and the related streamline crowding. In the experiments,
the particles indeed seem rather dispersed near the free surface.

With our model flow (4.1), rather large perturbation amplitudes aT ∼ O(10%) are
necessary to obtain a sufficient extent of the chaotic sea. This is significantly larger than
the colormap limits of the temperature perturbation employed, e.g., in fig. 7 of Watanabe
et al. (2018). It is, however, pointed out by Takakusagi and Ueno (2017) that the
temperature variation visualized by the infrared imaging is more of a qualitative nature.
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Furthermore, the amplitudes considered in this chapter are beyond the assumption of
an infinitesimal perturbation, which was employed to justify neglecting the non-linear
terms in the equations for the perturbation. Our results can therefore be compared only
qualitatively to the real supercritical flow.
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CHAPTER 5
Conclusions

All topics of this work are related to the stability and streamline topology in boundary-
driven flows. The interest comes from the fact that solid particles of finite size with a
density similar to that of the carrier fluid may cluster into non-trivial line-like particle
accumulation structures (PAS) in such flows (Romanò, Wu and Kuhlmann, 2019). Namely,
PAS have been observed in a three-dimensional lid-driven cavity (Romanò, Kannan
and Kuhlmann, 2019; Wu et al., 2021) and in thermocapillary flows (Schwabe et al.,
2006; Takakusagi and Ueno, 2017). The occurrence of accumulation structures requires
either three-dimensional or time-periodic flow. Under steady two-dimensional boundary
conditions (and source terms, if present), the three-dimensional flow (e.g., in the form of
cells or hydrothermal waves) can be born out of the basic steady two-dimensional flow
by a flow instability.
Owing to the lower computational requirements and better accuracy by which time-
periodic two-dimensional flows can be computed as compared to three-dimensional
flows, preference was given to the former case in chapter 2, where the structure of fluid
trajectories in a time-periodic two-dimensional lid-driven cavity has been investigated.
Several results have been accumulated, extending the ranges of parameters considered by
other investigators. A parametric study of the topology of fluid trajectories and of the
mixing capability of the flow has been conducted for the case of zero mean velocity of the
lid. It is shown that for a given Reynolds number, there exists an optimal frequency for
fast mixing, which arises as a trade-off between the extent of the sea of chaotic pathlines
and the duration of the driving cycle.
It was, however, observed that the time scales for particle accumulation in this system
are too large to be of practical relevance, either due to long driving periods (Str−1 � 20)
or due to long time scales of net advection in the bulk of the cavity (∼ 103× the
convective time scale L/U for Str = 1 and Re ∼ 102). The most promising combination
of parameters for particle accumulation seems to be Str = 0.25 and Re = 50. As an
extension of this work, the potential for particle accumulation could be investigated by
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computing the transport of finite-size density-matched particles, modeling particle-wall
collisions as, e.g., in Hofmann and Kuhlmann (2011).

In the next step, the creation of three-dimensional flows by an instability of a thermocap-
illary flow in a droplet adhering to a wall was investigated in detail by means of linear
stability analysis. Three more or less distinct regions of instability have been identified,
namely

• the Marangoni instability in high-Prandtl-number low-contact-angle droplets on a
hot wall,

• purely inertial instability for very-low-Prandtl-number high-contact-angle droplets,

• hydrothermal wave instability for high-Prandtl-number high-contact-angle droplet.

The Marangoni instability creates convection cells in the central part of the droplet. The
structure of these cells agrees well with the linear stability analysis of Karapetsas et al.
(2012). We find neutrally stable perturbations over a spectrum of azimuthal wave numbers
with similar neutral Marangoni numbers. Shi et al. (2017) show that for some parameters,
the convection cells of different wave numbers coexist in the three-dimensional flow at
different radial distances from the center of the droplet. The fact that Shi et al. (2017)
observe the cells even at Marangoni numbers significantly lower than the critical values
determined by the present linear stability analysis for the same parameters indicates
that the bifurcation of the basic state might be backward. We indeed find a backward
bifurcation giving rise to steady axisymmetric convection cells. Another three-dimensional
transient numerical study of Kumar et al. (2022) indicates that cells originating near
the center of the droplet can trigger a sub-critical emergence of smaller cells closer to
the contact line, which are commonly observed experimentally in evaporating droplets
Sefiane et al. (2010). As an extension of this work, the nonlinear bifurcation of the
basic flow into the three-dimensional state(s) should be investigated in more detail by
three-dimensional numerical simulations or experiments.

For the hydrothermal wave instability in droplets on a hot wall, the structure of the
most dangerous perturbation agrees very well with the experimental results of Watanabe
et al. (2018). The present analysis provides further insight into the instability mechanism.
The basic state contains a region of cold stagnant fluid at the apex. Above the critical
Marangoni number, the location of this cold spot becomes unstable to any displacement
along the free surface. The displacement of the cold spot induces a perturbation of
the thermocapillary stress at the apex. The induced thermocapillary stress drives a
perturbation vortex which in turn amplifies the displacement. The perturbation vortex
is asymmetric with respect to the meridional plane of the displacement of the cold spot.
This asymmetry is related to a rotation of the perturbation about the axis of the droplet.
For intermediate Prandtl numbers Pr ∼ 1, the hydrothermal wave is replaced by a steady
perturbation mode of a similar spatial structure. For both the hydrothermal wave and
the steady mode, the extrema of the temperature perturbation are located very close to
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the free surface. Thus, this instability differs from a typical hydrothermal wave instability,
for which the extrema of the temperature perturbation are located in the bulk of the
fluid.

To the best of the author’s knowledge, this is the first work presenting a hydrothermal
wave instability in droplets on a cold wall and an inertial instability in adhering droplets
for small Prandtl numbers Pr � 1.

For a cold wall, the hydrothermal wave instability has a typical structure. Extrema of
the temperature perturbation are created in the bulk of the droplet from basic internal
temperature gradients by a perturbation flow. The temperature perturbation diffuses
up to the free surface, causing a weak perturbation of the free surface temperature.
The induced perturbation of the thermocapillary stress drives the perturbation flow.
Apart from the internal temperature gradients, the basic flow is characterized by a
layer of hot fluid that forms below the free surface. This layer tends to suppress the
perturbations of the free-surface temperature. Consequently, the critical Marangoni
number is approximately one order of magnitude larger compared to a droplet on a
hot wall for the same parameters. This might explain why this instability has not been
reported previously in the literature.

The inertial instability for low Prandtl numbers Pr � 1 has a similar critical Reynolds
number and structure of the most dangerous perturbation for both the cold and the
hot wall. The perturbation vortices create a temperature perturbation in the bulk of
the droplet and at the free surface. The perturbation of the thermocapillary stress acts
against the perturbation flow at the free surface. Thus, the critical Reynolds number
grows steeply when the Prandtl number is increased.

Although buoyancy and static surface deformation have been neglected in chapter 3, it is
shown in section 3.2.1 that both effects are non-negligible for millimeter-sized droplets in
terrestrial gravity. Thus, another natural continuation of this work would be to consider
the effect of gravity on the aforementioned instabilities.

As a by-product of the linear stability analysis, the supercritical nonlinear flow in the
thermocapillary-driven droplet on a wall is approximated qualitatively by a superposition
of the basic flow at the linear stability threshold and the most dangerous perturbation
mode. The structure of fluid trajectories in this model flow is investigated for a range of
perturbation amplitudes aT . Such conditions are selected for which particle accumulation
structures have been observed experimentally, as reported in the literature. For the
relative amplitude of perturbation aT ∼ O(1%), we observe the emergence of secondary
tori orbiting about the basic toroidal vortex. These periodically approach the free surface
and the wall near the contact line. At higher perturbation amplitudes aT ∼ O(10%)
and contact angles α � 110°, the primary tori vanish, and the chaotic sea fills most of
the domain, while only the secondary tori remain. This topology of fluid trajectories is
similar to that found in liquid bridges. Solid particles can accumulate on the secondary
tori, or on the subharmonic tori which occasionally appear in the chaotic sea for some
parameters. The general structure of the secondary tori agrees with the shape of the
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experimentally observed particle accumulation structures reported in the literature.

The approximation of the supercritical flow as a superposition of the basic flow and the
leading perturbation mode is, of course, an oversimplification of the problem. The results
of chapter 4 should thus be understood only as first-order estimates. The predicted
structure of the KAM tori should be confirmed by computing fluid trajectories in flows
obtained from three-dimensional numerical simulations.

Minimal model problems have been employed throughout this thesis in order to isolate
the essential physics and for the sake of generality and reproducibility of the results. A
natural continuation of this work would be to confirm the predictions by relaxing the
simplifying assumptions and increasing the level of detail of the model. To that end,
some potential extensions of this study have been indicated above.
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