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A B S T R A C T

The detection of anomalies in streaming data faces complexities that make traditional static methods unsuitable
due to computational costs and nonstationarity. We test and evaluate eight state of the art algorithms
against prominent challenges related to streaming data. Results show insights regarding accuracy, memory-
dependency, parameterization, and pre-knowledge exploitation, thus revealing the high impact of some data
characteristics to establish a most appropriate algorithm, namely: locality (i.e., whether outlierness is relative to
local contexts), relativeness (i.e., if past data defines outlierness), and concept drift (if it is expected, its intensity
and frequency). In most applied cases, such factors can be inferred in advance through the use of historical data
and domain knowledge. Assuming the viability of the studied methods in terms of time efficiency, this work
discloses key findings to achieve optimal designs of streaming data anomaly detection in real-life applications.
1. Introduction

Streaming data (aka data streams) refers to the technological chal-
lenge in which data are acquired and must be analyzed continu-
ously, resulting in a potentially unlimited and constantly growing
dataset (Ramírez-Gallego, Krawczyk, García, Wosfxniak, & Herrera,
2017). Data streams are closely related to multivariate time series,
although the latter usually exhibit a stronger time dependence and do
not necessarily have to be processed on the fly. We refer the reader
to the work by Read, Rios, Nogueira, and de Mello (2020) for further
discussion on this topic.

Detecting anomalies in streaming data is required in many domains.
Particularly the sequential processing of sensor data is determinant due
to the increasing interconnection of devices in the Internet of Things,
for instance, in medical, networking or environmental monitoring. A
clear definition of the expected anomalies in the specific application is
required for a good detection performance. In this respect, ‘‘outlier’’ and
‘‘anomaly’’ are commonly taken as synonyms. A traditional definition
of outlier is ‘‘an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different
mechanism’’ (Hawkins, 1980). This suggests that an ‘‘outlier" should
stand out from other data due to certain statistical properties, while
an ‘‘anomaly" is usually rather defined by the application context. But
note that such a definition of ‘‘outlier" – as well as the common uses of
‘‘anomaly" – are inseparable from a certain ambiguity, particularly in

∗ Corresponding author.
E-mail addresses: felix.iglesias@tuwien.ac.at (F. Iglesias Vázquez), alexander.hartl@tuwien.ac.at (A. Hartl), tanja.zseby@tuwien.ac.at (T. Zseby),

zimek@imada.sdu.dk (A. Zimek).

time-dependent environments. For example, outliers in a stream can
be isolated data points or data points that break temporal patterns,
but also isolated small clusters or even big clusters that suddenly
burst and later disappear. In this study, we use ‘‘anomaly", ‘‘outlier"
and ‘‘novelty’’ interchangeably, and we do not dismiss the semantic
problem; instead, we consider that these terms can be subject to open,
application-dependent definitions.

Previous works emphasize that performance of unsupervised clas-
sification usually depends on the data and the analysis goals (Campos
et al., 2016; Domingues, Filippone, Michiardi, & Zouaoui, 2018). There-
fore, although some methods might show clear advantages, establishing
a general ‘‘best algorithm’’ is hardly possible. The previous references
provide some guidelines for selecting algorithms and parameter settings
in static setups, but no similar suggestions exist for outlier detection
algorithms in streaming data analysis. In this work, we try to derive
the basis for such guidelines by studying the following questions:

1. How do specific data characteristics affect algorithm accu-
racy? We consider: different outlier percentages, variable space
and temporal densities, variable distances among normal shapes,
and different types of concept drift.

2. How do algorithms use previous knowledge to fit stream-
ing conditions? Unsupervised learning algorithms are often
designed by abstracting from concrete applications and therefore
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ignoring potential pre-knowledge. In practice, pre-knowledge is
required to train models and adjust hyperparameters, and ideally
such process should be automatizable. Moreover, it is important
to evaluate if configurations become suboptimal as data evolve.

3. How does the variation of time parameters affect algo-
rithms? The memory span of algorithms (e.g., sliding win-
dow sizes) influences detection performance, but also memory
demands and computational costs.

We investigate these questions by stress testing eight state-of-the-art
outlier detection methods for streaming data. Section 2 introduces the
topic and the studied methods. Section 3 discusses the different ways
in which algorithms commonly establish the meaning of ‘‘anomaly’’.
Section 4 explains the challenges to study, related to space geometries,
types of concept drifts, and dependence on memory hyperparameters.
Section 5 describes the analysis setup and experimental methodology.
Results are shown and discussed in Section 6. We additionally propose
two indices to characterize datasets and thus infer the most suitable
methods to use. Conclusions are outlined in Section 7. The Appendix
includes tables with extended results.

2. Outlier detection in streaming data

Anomaly detection in multidimensional spaces has been widely
discussed for non-evolving setups; we have already referred to two
popular comparative and evaluation studies (Campos et al., 2016;
Domingues et al., 2018). However, anomaly detection in multidimen-
sional streaming data is significantly less explored. Although there are
works using static approaches in dynamic environments, and beyond
batch-mode setups and hybrid options capable of taking advantage of
both batch and incremental analysis (Pishgoo, Akbari Azirani, & Raa-
hemi, 2021), algorithms used in streaming cases should not be the same
due to different computational and processing requirements. Moreover,
streaming data analysis must face the effect of concept drift, i.e., how
the statistic properties of the modeled phenomena change over time in
unexpected ways (Gama, Žliobaité, Bifet, Pechenizkiy, & Bouchachia,
2014). In general, the need for advances in streaming data analysis
have been claimed by experts several times, very recently by Bezdek
and Keller (2021). In the seminal work about concept drift, Gama et al.
(2014) remark that ‘‘in unsupervised learning over evolving data, (...)
validation of change detection and adaptation mechanisms only start
to be investigated’’1. Concept drift is also found as the main missing
aspect to tackle by algorithms in one of the most popular surveys in
stream clustering (Silva, Faria, Barros, Hruschka, Carvalho et al., 2013).
Also Gomes, Read, Bifet, Barddal, and Gama (2019) highlight the need
for further discussion of anomaly detection in streaming data.

To date, and to the best of our knowledge, perhaps the most relevant
comparison of anomaly detection in streaming data is the work by Tran,
Fan, and Shahabi (2016). Here, the authors focus on k-NN-based al-
gorithms and compare them in terms of CPU time and peak memory
consumption. Focusing on run-times and memory instead of accuracy
is not surprising as many traditional proposals are algorithm variations
that consist on techniques for speeding-up and increase computational
efficiency. Instead, our study focuses on prototypical models rather
than specific algorithms2. We assume the general competence of the
studied methods (as shown in the original references) and use them
in their ground implementations. Note that the scope of this work
is to study how each method applies a different interpretation of

1 The authors consider evolving multi-feature spaces (i.e., beyond
nivariate time series).

2 Henceforth, we refer to prototypical models as ‘‘methods’’ to differentiate
hem from their respective internally learned models. Also, when ‘‘methods’’
nd ‘‘algorithms’’ are used in the same context, the latter addresses specific
2

mplementations of the mentioned methods. a
outlierness and its implications. In addition, we evaluate run-times to
obtain insights about the scalability when increasing the memory span3.

2.1. Methods under study

We have selected methods based on their popularity or recent
appearance in reputed publications, demonstrated effectiveness, pub-
lished code transparency, and aiming to maximize the differences
among alternative ways of approaching the same problem. All of them
are unsupervised and specific for streaming data, except for one
case that we use as baseline. They are:

• SWKNN (Sliding Window K-Nearest Neighbors) consists of the
implementation of the k-NN algorithm proposed by Ramaswamy,
Rastogi, and Shim (2000) within a sliding window. This is the
most popular approach for outlier detection in streaming data,
which underlies algorithms like AbstractC (Yang, Rundensteiner,
& Ward, 2009), Exact- and Approx-STORM (Angiulli & Fassetti,
2007), the COD family (Kontaki, Gounaris, Papadopoulos, Tsich-
las, & Manolopoulos, 2011), among others. They all share the
same definition of outlier, which we cite from (Angiulli & Fassetti,
2007):

Let 𝑆 be a set of objects, 𝑜𝑏𝑗 an object of 𝑆, 𝑘 a positive
integer, and 𝑅 a positive real number. Then, 𝑜𝑏𝑗 is a distance-
based outlier (or, simply, an outlier) if less than 𝑘 objects in
𝑆 lie within distance 𝑅 from 𝑜𝑏𝑗.

This approach for capturing outlierness goes back to the seminal
work by Knorr and Ng (1998), and derived techniques mainly
differ in how to reduce the computational load, for instance, using
sampling in Approx-STORM or micro-clusters in MCOD. Instead of
merely obtaining a binary label, we build a score based on the dis-
tance of the 𝑘th neighbor to 𝑜𝑏𝑗 (thus allowing fair comparisons
with other methods). This implies that our experiments do not
use the 𝑅 hyperparameter for setting a crisp threshold between
inliers and outliers. In our implementation, closest neighbors are
searched with M-Tree indexing (Ciaccia, Patella, & Zezula, 1997).

• SWLOF (Sliding Window Local Outlier Factor) is the implementa-
tion of the popular LOF algorithm proposed by Breunig, Kriegel,
Ng, and Sander (2000) with a sliding window. LOF is still one of
the most reliable options as a general purpose outlier detection
technique (Campos et al., 2016); however, it is too computational
expensive for streaming data. The incremental LOF algorithm
proposed by Pokrajac, Lazarevic, and Latecki (2007) is equivalent
to the here implemented SWLOF in terms of accuracy, but makes
use of different indexing techniques to reduce run-times.

• RRCT (Robust Random Cut Forests) is a model-based approach
for outlier detection in dynamic data streams available in AWS Ki-
nesis Analytics. It uses an ensemble of tree graphs and establishes
the outlierness of new points based on their differential effect on
the forest structure (Guha, Mishra, Roy, & Schrijvers, 2016).

• RSHash is a straightforward algorithm based on randomized
hashing developed by Sathe and Aggarwal (2016). It uses a
hashed representation of the data, an ensemble of weak detectors,
and a data sample to create a training model. The method com-
plexity is linear in relation to the size of the data and the space
requirement is constant, achieving good accuracy performances.

3 In our experiments, despite being mostly implemented in Python, the
ore of the studied algorithms is built in C++ and wrapped with SWIG:
Salmon framework in Hartl (2020). This is done to severely reduce run-time
emands without detriment to the accuracy, which does not differ from the
ublished in the original sources. There exist other Python frameworks for
treaming anomaly detection, like PySAD (Yilmaz & Kozat, 2020), but their
omputational demands are unfeasible to cover the extensive experimentation
ere described in realistic times. All experiments in this paper are openly
vailable in Iglesias and Hartl (2021).
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• LODA is proposed by Pevný (2016), an anomaly detector for
streaming data based on combining a set of weak learners that
shows low time and space complexity. LODA simplifies the anal-
ysis space by means of a set of principal one-dimensional his-
tograms, recalling previous proposals for static environments
such as HBOS (Goldstein & Dengel, 2012) or PCA-based detec-
tors (Shyu, Chen, Sarinnapakorn, & Chang, 2006). The algorithms
used in our comparative study is implemented with equi-depth
histograms.

• SDO is a model-based outlier detection technique (Iglesias, Zseby,
& Zimek, 2018) and SDOstream is its extension for streaming
data (Hartl, Iglesias, & Zseby, 2020). SDO is genuinely static, but
can operate incrementally without updating internal models. We
include it as a baseline and due to its importance to understand
how the ‘‘outlierness’’ varies depending on the method. Since
SDO is unsupervised and model-based, it is also comparatively
useful for obtaining insights about how methods adjust time and
memory spans and how pre-knowledge is leveraged. SDOstream
adds a hyperparameter 𝑇 that establishes the model aging and,
hence, the memory duration.

• xStream is another recent approach with the peculiarity of ad-
dressing streaming data scenarios in which the feature space
might also vary.4 It deals with high-dimensionality by projecting
data into low-dimensional subspaces and by calculating outlier-
ness scores with half-space chains (Manzoor, Lamba, & Akoglu,
2018).

The introduced methods mainly differ in the way of performing and
using density-estimation (Zimek & Filzmoser, 2018), although it is also
determinant if a purely geometrical interpretation of ‘‘outlierness" is
used, or if, instead, algorithms define outliers as instances opposed to a
known normality. Particularly in stream environments, a third relevant
factor is how past data is remembered.

3. Defining anomalies

Outlier detection was traditionally undertaken in a purely unsu-
pervised way, assuming that the outlierness of a data point must be
established by evaluating its location with regard to other data points
close in time and space (strict). However, this approach may be inad-
equate in some cases, e.g., to detect collective anomalies (i.e., clusters
of anomalous data points). Hence, more practical approaches define
outliers or anomalies as something that diverges from what has been
previously defined as normal data points (relative). This second ap-
proach is closer to semi-supervised learning, sometimes referred to
as one-class classification (Marques, Swersky, Sander, Campello, &
Zimek, 2023; Moya & Hush, 1996). The reason for these variable
interpretations is that the terms themselves are ambiguous and ac-
quire nuances derived from the applications. In their exhaustive survey
about anomaly detection, Ruff et al. (2021) observe handy semantic
differences:

while anomalies are often the data points of interest
(e.g., a long-term survivor of a disease), outliers are
frequently regarded as ‘‘noise’’ or ‘‘measurement error’’
that should be removed in a data preprocessing step
(‘‘outlier removal’’), and novelties are new observations
that require models to be updated to the ‘‘new nor-
mal’’. The methods for detecting points from low prob-
ability regions, whether termed ‘‘anomaly’’, ‘‘outlier’’, or
‘‘novelty’’, are essentially the same, however.

4 This property is not studied in this work.
3

Fig. 1. Two-dimensional example. (a) Training data used for parameter adjustment
(blue points: inliers, red points: outliers). (b) Test data used for evaluation.

Therefore, one-class classification, anomaly detection, and outlier
detection are commonly seen as equivalent tasks. From the perspective
of streaming data application, the question of whether the task should
be approached in a supervised or unsupervised manner seems to be
more and more irrelevant, since some prior knowledge is almost indis-
pensable (at least to adjust hyperparameters) and there is no reason to
obviate historical data. Actually, semisupervised and weakly supervised
learning have shown to be promising for anomaly detection (Ruff et al.,
2021). Terms become anyway less clear in streaming scenarios; for in-
stance, note that all methods studied in this paper are unsupervised, but
some of them learn models progressively, and some of them incorporate
training phases in which they use unlabeled data, but can make the
most of labeled data if available.

If the discussion is rather oriented to decide between strict and
relative methods, both approaches or even intermediate solutions can
be equally correct or incorrect, and the peculiarities of the application
are to establish the more suited one. This aspect is rarely tackled in the
related literature even in spite of its importance to achieve accurate
performances. Furthermore, beyond such dichotomy, our experimental
results disclose how each prototypical method internally defines out-
lierness in a different way. In this section, we show a simple example
to empirically evaluate this fact. In the example, a two-dimensional
dataset is split into two subsets of the same size: one for known, past
data (training), and the second for new data to be processed in a stream
(test/evaluation), Fig. 1. Both training and test datasets are very similar
to each other, the main differences being new far outliers and two new
clusters.

We analyze this example with the methods described in Section 2.1,
their hyperparameters adjusted as explained below in Section 5.1 and
with a memory parameter (𝑇 ) equals the size of each split in all cases.
Fig. 2 shows performances with two plots for each studied algorithm: a
first plot showing outlierness scores with a colorbar and a second plot
emphasizing the top 100 data points with highest outlierness. To allow
a better comparison among dynamics, scores are normalized (𝑠 = −1

1+𝑠 )
and later scaled to the [0, 1] range. Some remarkable differences among
methods are:

1. Variable dynamical range of outlierness. Compared to other meth-
ods, RRCT and LODA stand out due to a higher range varia-
tion for scoring inliers, this means a lower difference between
the scores of inliers and outliers (i.e., outliers get less extreme
scores). Particularly LODA, whose unnormalized scores (ordered
from the lowest to the highest) show a nearly linear curve in this
example.

2. Evaluation of the new high-dense cluster. Depending on the
method, it is seen as all inliers, all outliers, or some-in some-out.
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Fig. 2. Performances of the studied methods in a two-dimensional example. Each method shows two plots: normalized outlierness scores and top 100 outliers (dark color).
3. Evaluation of the new low-dense cluster. Depending on the method,
all data points or only some of them are seen as top outliers.

4. Evaluation of the external layer of the known medium-dense cluster.
Methods diverge when assessing external data points of known
clusters among top outliers or not.

Besides other peculiarities specific to each method, we observe key
categories in the way of defining outlierness:

• Local vs. global (Schubert, Zimek, & Kriegel, 2014), where local
approaches focus on evaluating outlierness in the most immediate
neighborhood, whereas global methods tend to see outliers as
extreme values and strongly isolated data.

• Strict vs. relative, where relative approaches use past data for
defining a normality that remains over time in models or param-
eters, whereas strict methods use a definition of outlierness less
dependent on pre-knowledge.

4. Data scenarios and challenges

In this section we present and discuss the streaming data challenges
with which we test the methods under study.

4.1. Synthetic data

To evaluate the versatility of the algorithms, we designed nine
different multidimensional streaming data scenarios, every one of them
posing a specific challenge. They were created with MDCstream (Igle-
sias, Odjanic, Hartl, & Zseby, 2020) and are available independently in
4

Table 1
MDCstream wrapper configuration for generating synthetic datasets.

Name Base Nonstat. Sequential Moving Med.-out.

datasets 20 20 20 20 20
dimensions several several several several several
time-behav. stat. nonstat. sequent. stat. stat.
outliers few few few few medium
clusters few few few few few
den.-diffs. two two two two two
space normal normal normal normal normal
mov.-cls. no no no all no
overlap no no no no no

Name Many-out. Close Dens.-diff. Overlap

datasets 20 20 20 20
dimensions several several several several
time-behav. stat. stat. stat. stat.
outliers many few few few
clusters few many many many
den.-diffs. two two many many
space normal tight normal normal
mov.-cls. no no no no
overlap no no no yes

Mendeley (Iglesias, 2021). MDCstream is a streaming data generator
able to create different types of concept drift in multidimensional
spaces. It adds outliers as noise, close points, extreme values or con-
textual anomalies depending on the overall configuration, but always
as isolated data points (unless small clusters are later relabeled as
outliers).



Expert Systems With Applications 233 (2023) 120994F. Iglesias Vázquez et al.

a
d
b

M
t
o
f
i

a
c
o

d
i
t
e
s
t
t

Table 2
MDCstream wrapper: meaning of configuration parameters used.

Parameter Value Meaning

dimensions several Between 3 and 30 features.
time-behav. stationary Clusters remain.

nonstationary Clusters arbitrarily appear, disappear, and coexist.
sequential Clusters replace each other.

outliers few Up to 5% outliers.
medium Between 5% and 15% outliers.
many Between 15% and 40% outliers.

clusters few Between 2 and 10 clusters.
many Between 11 and 40 clusters.

den.-diffs. two Two different distributionsa and compactness coefficients.
many A different distributiona and compactness coefficient per cluster.

space tight The problem space has a reduced size based on the number of clusters, the number of outliers, and
dimensions.

normal The problem space is three times bigger per dimension than in the tight case.
mov.-clusts. no No cluster movement.

all All clusters move with arbitrary speeds and directions.
overlap no Cluster overlap is avoided.

yes Cluster overlap is allowed.

aAvailable distributions are: Uniform, Gaussian, Logistic, Gamma, Triangular, and Ring-Shaped. For each cluster, they can be defined radial or
multi-variate.
This means that outliers generated with MDCstream are ‘‘statistical
nomalies’’, i.e., data points placed in regions of low spatiotemporal
ensity and not generated by the same distributions used to create the
ulk of the data.

Analogously to the insights given by Arbelaitz, Gurrutxaga,
uguerza, Pérez, and Perona (2013) when exploring clustering valida-

ion, we find synthetic datasets equally valid as real data for evaluating
utlier detection methods, since algorithms can be pushed to the limit
or testing specific conditions established by design. Each collection
ncludes 20 different datasets, resulting in a total of 180 datasets.

We have developed a wrapper for MDCstream that simplifies the
utomatic parameterization and generation of dataset collections ac-
ording to the aimed test challenges. Table 1 shows the configuration
f the wrapper and Table 2 the actual meaning of parameter values.

Collections are:

• Base. This group establishes a experiment baseline. It does not
implement any specific challenge beyond anomaly detection in
multidimensional streaming data per se. It is also devised to set
the basic template in which other challenges will be later added.
Base datasets have between 3 and 30 spatial dimensions, clus-
ters (or classes) remain over time with stable point appearance
frequencies, contain few outliers (below 5%), and few clusters
(between 2 and 10, each of them with a different cardinality).
Clusters do not evolve and cluster-overlap is not allowed; instead,
they are placed in a space whose size is relatively consistent with
cluster sizes. Therefore, clusters are not too far from and not to
close to each other. Fig. 3 shows one of the datasets. Note that it
only shows 2 out of 27 dimensions plus time5. Base datasets are
defined allowing two different cluster densities, i.e., two different
underlying distributions and distribution coefficient sets for the
spatial point location in clusters. This is clearly visible in Fig. 3,
but note that, since clusters have different cardinalities and they
must be stationary, densities should be understood in a spatial–
temporal context. This means that cluster-densities are actually
more variable than simply two different types.

5 We are aware of the difficulties and limitations of visualizing time-
ependent multidimensional spaces; however, we believe that, although
ncomplete, plotting the evolution of only two dimensions over time— Figs. 3
o 8 and Figs. 9 to 12—helps to understand the analysis challenges that
ach studied dataset implies. Note also that the resolution of the plots might
ometimes transmit a misleading impression of the density of the space and
he proximity of data points (also, outliers are always plotted after inliers, so
5

heir prominence is highlighted).
• Nonstationary. The nonstationary collection of datasets uses the
same configuration as the base case, but allows clusters randomly
appearing, disappearing, coexisting, and reappearing. Consider-
ing the four types of changes over time (or concept drift) dis-
cussed by Gama et al. (2014), this scenario implements sudden
drifts (e.g., context A suddenly disappears and a different con-
text B appears then), gradual drifts (e.g., context A progressively
disappears and a different context B progressively appears, going
through a transition in which both coexist), and reoccurring con-
texts (context A and context B replace each other over time, either
abruptly or smoothly). The different types of concept drift can be
observed in Fig. 4, which shows one of the nonstationary datasets
used.

• Sequential. This collection is similar to the nonstationary one, but
here clusters replace each other sequentially, not allowing more
than one cluster occurring at the same time. Sequential datasets
are focused on sudden drifts in a much more abrupt manner than
nonstationary datasets. Fig. 5 shows one of the sequential datasets
used.

• Moving. This dataset collection focuses on the remaining type of
concept drift described by Gama et al. (2014), i.e., the incremental
drift. Here the base configuration is taken as baseline, but clusters
are allowed to move in any dimension of the space. Fig. 6 shows
one of the moving datasets used in the evaluation experiments.

• Medium-outliers. The remaining data challenges are not related
to concept drift, but to geometric properties of data points in
spatial dimensions. Specifically, this collection uses the base con-
figuration with an increased number of outliers. They are allowed
to account for between 5% and 15% of the total number of
instances, therefore creating a more noisy space in which clusters
are less clearly visible. Hence, their discrimination by analysis
algorithms becomes theoretically harder (Gama et al., 2014).

• Many-outliers. Here, input spaces are highly corrupted by back-
ground noise. Outliers are allowed to be from 15% up to 40%
of the total number of instances. Fig. 7 shows one of the many-
outliers datasets used in the experiments.

• Close. The close collection uses the base configuration, but adds
more clusters (between 11 and 40) and force them to coexist
in a reduced space, therefore remaining relatively close to each
other. Cluster overlap is in any case avoided (or minimized),
therefore searching for scenarios in which outliers hover close to
clusters, or perhaps in-between neighbor clusters. This scenario is
designed to test the finesse of algorithms to perceive local outliers.
Fig. 8 shows one of the close datasets used in the evaluation

experiments.
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Fig. 3. Visualization of 2 random features (out of 27) throughout time of a base dataset. Inliers are shown in blue color and outliers in red color.

Fig. 4. Visualization of 2 random features (out of 23) throughout time of a nonstationary dataset. Inliers are shown in blue color and outliers in red color.

Fig. 5. Visualization of 2 random features (out of 17) throughout time of a sequential dataset. Inliers are shown in blue color and outliers in red color.

Fig. 6. Visualization of 2 random features (out of 16) throughout time of a moving dataset. Inliers are shown in blue color and outliers in red color.

Fig. 7. Visualization of 2 random features (out of 21) throughout time of a high-outliers dataset. Inliers are shown in blue color and outliers in red color.

Fig. 8. Visualization of 2 random features (out of 8) throughout time of a close dataset. Inliers are shown in blue color and outliers in red color.
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• Density-differences. Compared to the base case, the density-
differences datasets contain more clusters (between 11 and 40),
each of them generated by a different distribution (among 12
possible options), also with different coefficients. Unlike the close
case, the space is not reduced, but normal.

• Overlap.6 This last set of datasets is configured as the density-
differences case, but here cluster overlap is allowed and facilitated.

.2. Real-application data and memory span

Most stream analysis algorithms are defined with at least one hy-
erparameter that establishes the memory, i.e., how long in the past
t recalls data points for the analysis (for instance, a sliding window).
ime-related hyperparameters should be adjusted based on the scenario
ynamics, meaning that the duration of the memory solely depends on
he expert estimation, which decides when past data become obsolete
nd must be forgotten. This is commonly a subjective aspect and
herefore difficult to establish automatically.

Apart from that, the memory is expected to be as long as possible,
et this may be not feasible in practice due to computational costs.
dditionally, it affects algorithms differently; for instance, doubling the
bservation period might severely increase complexity in some cases,
hereas the effect is negligible in others. On the other hand, in some
lgorithms, modifications in such time-related hyperparameters affect
he adjustment of other (hyper)parameters. Also note that sometimes a
ong memory can be counterproductive to deal with concept drift.

In addition to the challenges described in the previous section,
e also test the impact of different time-related hyperparameters on

he accuracy and run-time performances of methods. To do this, real
or application) data is better suited than mathematically-generated
ata, since applications often imply underlying periodicities to which
lgorithms might or might not adapt, thus consequently affecting the
lassification performance. Therefore, different application data will
how different time-behaviors for their intrinsic normal shapes as well
s for their anomalies.

Note also that, in these datasets, anomalies do not correspond to
ny formal definition, but are determined by the specific applica-
ion; i.e., they can be either isolated data points, or a high-density
icro-cluster, or the extension of a data-class into a new region of

pace.
Finally, by using application-related data we obtain deeper insight

n how unsupervised algorithms can make the most of pre-knowledge
o adjust their models, parameters, and the definition of outlierness.
atasets used are:

• The CICIDS2017 dataset is provided by the Canadian Institute for
Cybersecurity. This is one of the most recent datasets for Network
Intrusion Detection (Sharafaldin, Lashkari, & Ghorbani, 2018).
The CICIDS2017 dataset was designed to meet 11 quality criteria
expected for highly reliable IDS testing. We preprocessed the
data to obtain binary-labeled flow-instances: ‘‘attack related’’ and
‘‘non-attack related’’. Selected features correspond to the OptOut
vector, which has proven to maximize the distance between the
given classes when using unsupervised analysis (Iglesias, Hartl,
Zseby, & Zimek, 2019). ‘‘Attack-related" data points (here taken as
anomalies) account for 25.25% data. Fig. 9 shows inliers and out-
liers in two features over time. Attacks happen in bursts and show
higher densities than normal data, which is less homogeneous.

• The Shuttle dataset is a well-known dataset used for testing
machine learning algorithms. It was originally proposed by Catlett
(1991) and later donated to the public domain. It collects numer-
ical features about the diagnosis of subsystems in NASA’s Space

6 Not to be confused with the overlap index between inliers and outliers
efined in Section 6.3 Here, ‘‘overlap’’ refers only to different clusters of inliers.
7

Shuttle, based on hundreds of thousands of training instances
from simulator runs and real flight data. We used the popular
version published by Rayana (2016), in which training and test
data are combined and the minority classes are merged to form
the outlier class (1-label), while the majority class is for the inlier
class (0-label). Outliers account for 7.15% of the whole dataset
instances. Fig. 10 shows inliers and outliers in two features over
time.

• The Swan-SF dataset has been recently published in the Scientific
Data journal by Angryk et al. (2020b), being data extracted
from solar photospheric vector magnetograms in Spaceweather
HMI Active Region Patch (SHARP) series. The dataset is publicly
available (Angryk et al., 2020a). For our experiments, we used
the whole dataset and extracted features with the tools provided
by Ahmadzadeh and Aydin (2020). We extracted the same set
of features that the authors use in their examples and combined
flaring (FL) and non-flaring (NF) data. Given the strong class-
imbalance, we mapped the majority class into a normal-class
(0-label) and the rest into an anomalous-class (1-label), obtaining
a dataset with 17.2% outliers. Fig. 11 shows inliers and outliers
in two features over time.

• Yahoo-TSA is the abbreviation of the Yahoo! Synthetic and real
time-series with labeled anomalies, v1.0 dataset (Yahoo Webscope
Program, 2020), provided by the Yahoo! Webscope program to be
used for approved non-commercial research. For our experiments
we used the 67 real time-series in the A1Benchmark folder (hence-
forth called ‘‘parts’’). We concatenated parts to form a unique
time-series, therefore forcing 67 strong context changes. To keep
consistency, the first three data points of each part were addition-
ally labeled as outliers. Although these time-series are originally
intended to be independently tackled from an univariate time-
series perspective, we express them extracting features that draw
evolving spaces and make them suitable for the methods under
test. Extracted features are:

– Feature 1: normalized difference between the current value
and the previous one.

– Feature 2: normalized difference between the current value
and the exponential moving average (with a smoothing
factor equal to 2).

– Feature 3: normalized difference between the current value
and the simple moving average (calculated over the last 20
datapoints).

Normalization consists of dividing differences by the simple mov-
ing average (over the last 20 data points). In total the dataset
contains 1.97% outliers. Fig. 12 shows inliers and outliers in two
features over time.

5. Evaluation methodology

In this section we describe the analysis setups and experiments
conducted for testing and evaluation. Codes and experiments are avail-
able to reuse and replicate in our repository (Iglesias & Hartl, 2021).
Datasets (introduced in Section 4) are publicly available in the cited
references.

Some aspects narrow down the focus of our study and are worth
mentioning: we tackle multidimensional numerical feature spaces that
change over time, and we test unsupervised algorithms processing
data sequentially, in a way that simultaneity is omitted and the tem-
poral distance between two consecutive data points is fixed to one
unit. Note the differences of this setup with respect to anomaly de-
tection in univariate time series., e.g., (Fisch, Eckley, & Fearnhead,
2022), anomaly detection in mixed data, e.g., (Davidow & Matte-
son, 2022), anomaly detection with incremental supervised methods,
e.g., deep learning (Du, Li, Zheng, & Srikumar, 2017), or anomaly
pattern detection in streaming data, e.g., (Kim & Park, 2020).
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Fig. 9. Visualization of 2 features (out of 5) over time of the CICIDS2017 dataset. Inliers are shown in blue color and outliers in red color.
Fig. 10. Visualization of 2 features (out of 9) over time of the Shuttle dataset. Inliers are shown in blue color and outliers in red color.
Fig. 11. Visualization of 2 features (out of 12) over time of the Swan dataset. Inliers are shown in blue color and outliers in red color.
Fig. 12. Visualization of 2 features (out of 3) over time of the Yahoo-TSA dataset. Inliers are shown in blue color and outliers in red color.
5.1. Parameter adjustment

Regardless of supervised or unsupervised, machine learning in-
volves accurate adjustment of learning parameters and hyperparame-
ters. As stated by Snoek, Larochelle, and Adams (2012), this adjustment
‘‘is often a ‘black art’ requiring expert experience, rules of thumb, or
sometimes brute-force search’’. The methods studied in this work show
different sensitivity in front of hyperparameter changes; for instance,
vanilla SWKNN with a too small or too large 𝑅 would lead to irrelevant
binary classifications, far from its potential capabilities. Keeping default
values, using only rules of thumb (which are not always provided), or
manually adjusting each algorithm for every experiment would be very
costly and still subjective and suboptimal.

Instead, we aimed to reach optimal configurations by automatizing
the tuning process. To do this we moved apart the initial 20% data
and used it as pre-knowledge, therefore building automated expert
knowledge with historical data. This takes place in a training phase
in which algorithms take the pre-knowledge in one batch and are
run with different hyperparameter sets. The set that obtains the best
performance is later used for the evaluation phase. We use labeled data
only during the training phase to ensure optimal adjustments, meaning
that algorithms adjust to new data as usual during the evaluation phase
(i.e., in an unsupervised manner).
8

This 20%–80% training-evaluation split (or past-future split) in stream
analysis is a convention equivalent to the traditional 70%–30% training-
test split used in static supervised classification for obtaining reliable
models. Here we assume that the initial 20% of the data should suffice
for obtaining hyperparameters that are also suitable for a period four
times longer of unseen, future data. The described tuning method guar-
antees fair comparisons since all algorithms work at their best based on
the knowledge obtained from the initial 20% data. However, note that
such adjustment could become suboptimal as a result of the emergence
of concept drift. Hence, this setup additionally allows to check how
robust parameters are when facing such situation. Finally, it is worth
mentioning that some of the studied algorithms are able to naturally
perform hyperparameter adjustment without requiring labeled data.

5.2. Experimental steps

In the case of Synthetic Data (Section 4.1), the experiment goal
is to test algorithms when facing different challenges that might be
intrinsic to particular streaming data scenarios. We generated the 9
collections of 20 datasets introduced in Section 4, each collection
corresponding to a different challenge and one of them being a baseline
set (base). All datasets have 10,000 data points, from which the first
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2,000 were reserved for hyperparameter tuning and algorithm training
(Section 5.1), whereas the remaining 8,000 data points formed the
evaluation split. The memory hyperparameter 𝑇 (or length of the time-
window) is set to 500 data points for all algorithms and datasets. Steps
are:

1. Selection of challenge.
2. Selection of dataset.
3. Selection of algorithm.
4. Training and hyperparameter adjustment. Here we extract best

hyperparameters from the initial 2,000 data points (20%). Al-
gorithms were tuned with 30 different random combinations,7
and later tested in a 3-fold cross-validation setup with strat-
ified sampling. The metric was the adjusted average precision
(Section 5.3).

5. Evaluation. We applied best hyperparameters and extracted per-
formance indices from the remaining 8,000 data points (80%).
In order to remove non-deterministic effects and obtain higher
statistical power, each evaluation is repeated 10 times with
different random seeds.

For checking the effect of different Real-application Data and
Memory Span (Section 4.2), experiments use practically the same
setup as before, saving the initial 20% data as pre-knowledge. There-
fore, the CICIDS2017 dataset is split into 463,584 data points for
training and 1,854,338 data points for evaluation; the Yahoo-TSA
dataset accounts for 18,975 training and 75,892 evaluation data points;
the Swan-SF dataset for 66,237 training and 264,948 evaluation data
points; and the Shuttle dataset for 9,820 training and 39,277 evaluation
data points.

The main difference when compared with synthetic data experi-
ments is that here we repeat runs with various memory values. Given
𝑇 ∈ {100, 500, 1k, 5k, 100k, 500k, 1M, 5M}, each dataset uses a subset of
𝑇 with values below its total length. Steps are:

1. Selection of dataset.
2. Selection of 𝑇 .
3. Selection of algorithm.
4. Training and hyperparameter adjustment.
5. Evaluation with the remaining data points by using best hyper-

parameters.

5.3. Evaluation metrics

We use the metrics suggested by Campos et al. (2016): precision
at 𝑛, average precision, and area under the ROC curve. We add the
maximum F1 score. In the cited work, adjusted indices are introduced
for average precision and precision at 𝑛, following the procedure in-
troduced by Hubert and Arabie (1985). The adjustment for chance
is a standard way of normalizing the metric by the expected value
for a random result. Since different outlier ratios in different datasets
result in different expected values, adjusted metrics are comparable
over results with different outlier ratios.

We show here only adjusted average precision to assess accuracy,
yet all results and indices are available in our repository, and tables
with additional metrics are shown in the Appendix. We select average
precision since the Prec–Rec (Precision–Recall) curve is recommended
for imbalanced classification (Saito & Rehmsmeier, 2015). Average
precision is equivalent to the area under the Prec–Rec curve (Boyd, Eng,
& Page, 2013).

Finally, note that methods might not be implemented in their fastest
versions, therefore the plain, decontextualized comparison of run-time
values would be unfair (Kriegel, Schubert, & Zimek, 2017). Our inten-
tion when showing elapsed times is to disclose scalability aspects when
the memory hyperparameter is set larger.

7 Hyperparameter value ranges were set based on recommendations from
ource references.
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6. Results and discussion

In this section we discuss experimental results. The Appendix con-
tains additional performance indices and metrics.

6.1. Streaming data challenges

Fig. 13 shows boxplots for adjusted average precision results (ab-
reviated as aap). Critical distance diagrams are also provided in
ig. 14 to compare algorithms by using Wilcoxon–Holm post-hoc anal-
sis tests (Demšar, 2006). We first discuss the results from a global
erspective and then approach the challenges one by one.

.1.1. Accuracy
SWKNN, RSHash and SDOstream tend to show best results in gen-

ral. The main difference between SWKNN and SDOstream is that,
hile SWKNN uses the closest points in the observation window,
DOstream uses the closest points in the model (i.e., observers). RSHash

also shows excellent accuracy, but is more affected by spatial challenges
related to clusters (i.e., density differences, close clusters, and cluster
overlap) than SWKNN and SDOstream. On the other hand, SDOstream
adapts slightly worse to concept drift. In a second level, performances
in SWLOF, LODA and RRCT are in general below the methods men-
tioned before, but still satisfactory. SWLOF is the best at avoiding being
mislead in tight spaces in which clusters are too close to each other.
SDO drops its performance when concept drift occurs (i.e., nonstat,
equential, and moving). This is expected since it uses fixed learned
odels, which become obsolete after substantial concept change.

Even in spite of the fact that density differences between inliers
nd outliers might be clear when the complete timeline is evaluated,
he observation window takes comparatively only a few data points
nd makes such differences less evident. This issue is generally over-
ome by SWKNN by adjusting a suitable 𝑘 hyperparameter. On the
ther hand, RRCT space transformations into tree structures involve
n information disruption with regard to point distances that might
educe precision in some cases, requiring higher density differences
etween inliers and outliers than competitors. Note that the scoring
ump between far outliers and close outliers for RRCT is not as pro-
ounced as when using other methods. Also, together with SWLOF,
RCT shows to be the most disturbed by high outlier percentages.
ODA shows the best performance among all methods when facing
cenarios with high outlier rates, but struggles when facing density
ifferences, close clusters and cluster overlap. As a general rule, meth-
ds that resort to some kind of space projection are affected in such
cenarios. xStream, while solving relevant issues (e.g., time complexity,
igh dimensionality, new features), shows hyperparameters strongly
ensitive to the adjustments performed during training, thus carrying
ut space transformations that cannot deal properly with evolving
ackground structures in nonstationary cases.

.1.2. Challenges
Baseline scenarios (base) are satisfactorily managed by all methods.

ccuracy drifts are mostly caused either by inlier-labeled data points
hat were generated by long-tailed distributions or outliers located close
o clusters. Nonstationary scenarios are also well-solved, but a general
erformance drop is observed due to cases in which the hyperparam-
ter adjustment becomes suboptimal when data evolves (for example,
hen clusters in training are considerably denser than new evaluation

lusters). LOF and RRCT find sequential scenarios slightly easier to
olve than nonstationary ones because, as clusters appear alone, the
nlier/outlier density differences are more pronounced, therefore easier
o spot. On the other hand, other methods solve sequential datasets
orse because they are more sensitive to strong concept changes, which
re more radical in sequential cases than in nonstationarity cases. Moving
clusters do not imply a particular concept-drift challenge (at least at
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Fig. 13. Boxplots (without fliers) of the adjusted average precision (aap) obtained for every algorithm and challenge. ‘‘RSH’’ stands for ‘‘RSHash’’, ‘‘LOF’’ for SWLOF, ‘‘KNN’’ for
SWKNN, ‘‘XS’’ for xStream, and ‘‘SDOs’’ for SDOstream. The plot at the bottom evaluates all synthetic datasets together.

Fig. 14. Critical difference diagrams with the Wilcoxon–Holm post-hoc analysis test on the adjusted average precision (aap). Adapted from the implementation by Ismail Fawaz,
Forestier, Weber, Idoumghar, and Muller (2019). ‘‘RSH’’ stands for ‘‘RSHash’’, ‘‘LOF’’ for SWLOF, ‘‘KNN’’ for SWKNN, ‘‘xS’’ for xStream, and ‘‘SDOs’’ for SDOstream. The plot at
the bottom considers all synthetic datasets together.
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Fig. 15. Left: Adjusted average precision (aap) of evaluation data for different memory spans. Right: run-times in seconds of evaluation data for different memory spans.
he given speeds), whereas performances in medium-outliers and many-
utliers experiments are even better than in the baseline cases. This is
ue to the fact that, by default, MDCstream automatically draws larger
ata spaces when the outlier rate is higher in order to keep enough
eparation among data points. Therefore, from an overall perspective,
lusters become denser and less data points remain in controversial
reas. However, SWLOF and RRCT are affected in the many-outliers case
ecause they have a more local understanding of outlierness and are
rone to see inliers in the noisy cloud of background points. Implement-
ng density-differences and overlap in clusters makes setups configured
uring training more challenging, therefore selected hyperparameters
ess reliable, except for SDO, SDOstream, and SWKNN, whose parame-
ers are particularly robust. In tight environments (close), the problem
pace contains larger unclear zones, meaning that outliers tend to be
loser to inliers, therefore becoming the most challenging cases. The
bservation window used might be often insufficient to clearly establish
nlier/outlier boundaries. In such cases, SWLOF stands out as the best.

.2. The impact of pre-knowledge and memory span

Fig. 15 shows the results of experiments with real-application
atasets and different memory spans. A fact that immediately strikes
11
from the plots is the outstanding performances of SDO in the CI-
CIDS2017 dataset, and SDO, RSHash, and LODA in the Shuttle dataset.
This reveals that the main data structures of such datasets, as presented,
show stationarity with regard to the data saved for training. This situ-
ation happens often in real streaming data, particularly in applications
in which normality shows to be stationary, concept drift is minor, and,
if it happens, it is controllable or expected by human supervision. In the
CICIDS2017 case (related to network traffic anomalies) and the Shuttle
case (related to diagnosis of space shuttle systems), non-anomalous
shapes are constant throughout all collected data. This means that
normality draws a permanent, background profile in the problem space.
Such situation is also consistent with the phenomena represented by
Swan-SF data (related to sun magnetograms), yet the overlap between
normal and anomalous points is stronger here. Instead, in the Yahoo-
TS dataset we forced abrupt concept drift by concatenating different
time series, therefore any non-updated pre-knowledge learned in a
model-based algorithm becomes useless.

We delve into accuracy performances for each dataset and end up
with a brief discussion about scalability aspects.
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• CICIDS2017
A second insight disclosed by the performance of SDO in this
case (also in the Shuttle dataset) is that the meaning of anomaly
in such datasets and SDO are consistent to each other. Note
that here inliers and outliers have a pragmatical sense. Inliers
are shapes or clusters that are dominant (and harmless from an
application viewpoint), and outliers are a minority of data points
(related to harmful network activities), which can be isolated,
but also appear spontaneously as collective anomalies. SDO is
strongly application-oriented and able to identify isolated outliers
and anomalous dense clusters likewise, but unable to deal with
concept drift.
On the other hand, the data used for training shows well-repres-
ented normal shapes and no outliers. Such pre-knowledge contains
low information for adjusting hyperparameters in a rigorous way,
therefore useless for SWKNN or SWLOF, while it is suitable for
defining a relative meaning of anomaly for other methods.
In this dataset, the larger the memory span is, the more clear
overall differences between normal areas and anomalous areas
become. Note that SWKNN and SWLOF do not improve their
performances with larger memory spans due to their way of
measuring outlierness, which only takes into account close areas
around the evaluated point. Instead, other methods make the
most of more global views of the data context as well as more flex-
ible definitions of outlierness, so they improve their performances
as the observation scope increases. Consequently, Fig. 15 (top,
left) shows that the longer the memory the better the accuracy,
even in spite of the fact that density differences are expected
to become more prominent with smaller sample sizes (Zimek,
Gaudet, Campello, & Sander, 2013). In this case, larger obser-
vation windows help methods like SDOstream, RRCT, RSHash,
LODA and xStream not to be tricked by anomalies appearing as
bursts or dense small clusters.

• Shuttle dataset
In this dataset the location of the learned normality is key again.
Excellent performances of SDO, SDOstream, RSHash and LODA
regardless of 𝑇 attest this fact. Increasing 𝑇 generally works
against the remaining algorithms because anomalies happen to
be recurrent, therefore forming clusters that mislead methods that
define outlierness locally.

• Swan-SF dataset
Here normality also seems to be stationary and the memory
duration does not significantly affect accuracy. The fact that even
best aap performances are below 0.8 means that a significant
number of anomalies are not geometrically separable from inliers
in the analyzed feature space (i.e., inliers and outliers over-
lap). By observing which methods succeed and which ones fail
(RRCT, SWLOF), we can infer that outliers are prone to be dense
deviations from normal shapes. Fig. 11 corroborates this intuition.

• Yahoo-TSA dataset
This is undoubtedly the most challenging case among the real-
application datasets. The overlap between inliers and outliers is
considerable and the strong concept drift makes pre-knowledge
hardly useful. The evolving shape of this dataset is visible in
the pair of features plotted in Fig. 12. Moreover, increasing 𝑇
is detrimental because algorithms are forced to learn from a
diversity of past contexts that are obsolete and do not provide
useful information anymore, except for the most recent one. In
such situation, it is preferable to reduce the analysis scope to the
most immediate context. The method that better deals with the
described complexity is RRCT, since its models are less connected
to spatial distances, and so its definition of outlierness. In other
words, RRCT shows to be the most flexible approach, but still
12

requiring an optimal setting of its memory scope.
As for Scalability aspects, larger memory spans cause an increase
f the computational effort for instance-based methods like SWLOF
Fig. 15), which might be unaffordable for some applications but, at
he very least, is a limiting factor. Also LODA, despite being fast,
as a complexity linearly affected by the length of the observation
indow. In methods like LODA or SWLOF the cost implied by other

hyper)parameters – when adjusted to maximize accuracy – have a
oticeable impact in the overall time performance when compared
o competitors. Fig. 15 also shows that increasing the memory span
oes not significantly affect the remaining methods. Particularly fast is
WKNN, revealing that the datasets used in the given format are well
uited for M-Tree indexing.

.3. Key data characteristics

Experiments have revealed that a key aspect that differentiates
ethods is their way of understanding outlierness according to their

ocality and relativeness. This obviously affects the accuracy perfor-
ance. For estimating the best suited method in a given application,
e provide two indices that characterize datasets: outlier-inlier overlap
𝜙) and outlier relative-density (𝜌). These indices are inspired by the

coefficients defined by Steinbuss and Böhm (2021) for creating realistic
synthetic data to compare outlier detection algorithms.

• Outlier-inlier overlap (𝜙).
Given the set of inliers 𝐼 and the set of outliers 𝑂, we define:

𝜙 =
∫ ∞
−∞ min

(

𝑓𝑂(𝑥), 𝑓𝐼 (𝑥)
)

𝑑𝑥

∫ ∞
−∞ max

(

𝑓𝑂(𝑥), 𝑓𝐼 (𝑥)
)

𝑑𝑥
(1)

where 𝑥 is the one-dimensional projection of the problem space
driven by Linear Discriminant Analysis (LDA), and 𝑓𝑂(⋅) and 𝑓𝐼 (⋅)
are respectively the probability density functions of (O)utliers
and (I)nliers in the LDA projection. Since LDA maximizes class
separation, Eq. (1) is a quick estimation of the separation be-
tween outlier and inlier subspaces. In our implementation, we use
probability histograms as probability density functions. Note that
𝜙 ∈ [0, 1], with 𝜙 = 0 when outlier and inlier spaces are clearly
separated, and 𝜙 = 1 when they completely overlap.

• Outlier relative-density (𝜌), defined as:

𝜌 = 1

log2

(

1 + IQR
(

𝐷𝑂,𝑘

)

∕IQR
(

𝐷𝐼,𝑘

)

) (2)

where IQR stands for the InterQuartile Range, and 𝐷𝑂,𝑘 and 𝐷𝐼,𝑘
are the sets of distances from each outlier and inlier respec-
tively to its 𝑘-closest neighbor when considering all points in the
dataset. The binary logarithm establishes a reference threshold
𝜌 = 1 when the density of outliers equals the density of inliers;
it also makes 𝜌 ∈ (0, inf). 𝜌 < 1 is expected for datasets in
which outliers are located in low density regions; 𝜌 > 1 happens
when outliers appear in groups whose density is higher than the
normality.

In Fig. 16, 𝜙 and 𝜌 are calculated for all studied datasets. An
approximation to locality and relativeness can be mapped with such
values, but without obviating concept drift and the fact that indices
might show dependencies. If the outlier density is foreseen high and the
overlap between outliers and inliers is not common (𝜌 ↑ 𝜙 ↓), we will
opt for high relative methods that are not necessarily local, like LODA,
RSHash, or SDO (the last one when concept drift can be discarded); if
the overlap increases but outlier density is still high (𝜌 ↑ 𝜙 ↑), we need
more local methods (e.g., SWLOF); instead, when the density of outliers
is not expected to be high (𝜌 ↓), methods like SWKNN or SDOstream
should be preferred. If the overlap between inliers and outliers areas
is predicted to be high, commonly due to strong concept drift (𝜙 ↑
concept-drift ↑), RRCT is the option that stands out. A summary table

is shown in Table 3
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Table 3
Dataset characteristics contrasted with algorithm performances (aap). Synthetic collections are averaged with the median, whereas for real-application datasets
we selected cases with the best performing 𝑇 .

SWLOF SWKNN xStream SDO SDOstream RRCT RSHash LODA 𝜙 𝜌 Concept drift

base 0.97 1.00 0.95 0.99 1.00 0.95 0.98 0.96 0.02 0.37 no
nonstat 0.73 0.98 0.63 0.58 0.95 0.92 0.98 0.94 0.05 0.24 yes ↑

seq 0.86 0.96 0.41 0.37 0.89 0.94 0.97 0.83 0.05 0.41 yes ↑↑

mov 0.98 0.99 0.88 0.71 0.99 0.97 0.99 0.99 0.06 0.36 yes ↑

m-out 0.99 1.00 0.93 0.99 1.00 0.98 1.00 0.99 0.04 0.29 no
h-out 0.86 1.00 0.85 0.99 1.00 0.86 1.00 0.99 0.06 0.18 no
close 0.54 0.41 0.19 0.43 0.43 0.08 0.19 0.09 0.34 1.10 no
overlap 0.90 0.97 0.72 0.96 0.97 0.73 0.82 0.65 0.26 0.48 no
dens-diff 0.90 0.98 0.88 0.99 0.98 0.79 0.94 0.70 0.24 0.40 no

shuttle 0.98 0.99 0.95 0.99 0.99 0.71 0.98 0.98 0.02 0.72 no
cicids2017 −0.25 −0.31 0.91 0.96 0.29 0.20 0.75 0.51 0.05 3881.00 no
swan 0.21 0.72 0.69 0.71 0.70 0.22 0.74 0.72 0.20 0.38 no
yahoo 0.25 0.28 0.29 0.22 0.28 0.38 0.24 0.05 0.50 0.52 yes ↑↑
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Fig. 16. Outlier-inlier overlap (𝜙) and outlier relative-density (𝜌) of datasets used.
ndices in dataset collections have been averaged with the median. 𝑘 = 3 for all 𝜌
stimations.

.4. Method profiles

Finally, from the conducted experiments, we can describe the be-
avior of the methods in light of the questions formulated in the
ntroduction, Section 1.

1. How do specific data characteristics affect algorithm accu-
racy? More specifically, what is the response...

(a) ...in the event of moderate concept drift?
(b) ...in the event of strong concept drift (high nonstationar-

ity)?
(c) ...against variable outlier rates?, i.e., if the algorithm is

equally suitable when outliers are few or many.
(d) ...when facing data with different levels of density?
(e) ...when facing local outliers and overlap between regions

of inliers and outliers?
(f) ...when dealing with high-density, collective or clustered

anomalies?
(g) ...when normality is stationary?

2. How do algorithms use previous knowledge to fit streaming
conditions? More specifically:

(a) Is pre-knowledge required for parameter adjustment?
(b) Is pre-knowledge used to define normality?
(c) Is the algorithm deterministic or stochastic?
13
3. How does the variation of time parameters affect algo-
rithms? More specifically:

(a) Does the time window (or memory span) parameter affect
accuracy?

(b) Does the time window (or memory span) parameter affect
run-times?

(c) Are the remaining parameters of the algorithm robust
over time? Meaning that, once fixed the memory parame-
ter, should the algorithm be adjusted in the event of data
evolution and concept drift?

Table 4 summarizes algorithm profiles according to experiment
esults and provides a qualitative reference for their selection based
n these 13 studied criteria. It is important to keep in mind that there
re other factors to consider in the selection of methods; for example,
he interpretability of the models (e.g., SDOstream models are easier
o interpret than RRCT models), or specific, unique functionalities
e.g., xStream capability to deal with input spaces that vary the number
f features).

. Conclusions

This paper explores state of the art stream outlier detection methods
hen facing diverse types of challenges that are intrinsic to streaming
ata. Results disclose insights related to three aspects:

• Concept drift and data geometries. Most studied methods deal prop-
erly with concept drift and variable outlier ratios, but suffer
when facing shrunk spaces with close shapes formed by inliers
that overlap or show different densities. SWKNN, RSHash and
SDOstream show best performances and seem to cope better with
small data point mass than competitors.

• Use of pre-knowledge. Algorithms can use training data to prop-
erly tune parameters and models. Whereas traditional methods
(SWKNN, SWLOF) make the most of strict definitions of outlier-
ness (Schubert et al., 2014), modern proposals (RSHash, RRCT,
LODA, SDO, and xStream) build more flexible definitions that
further consider the normality imposed by the application. In-
termediate approaches are SDOstream and SWKNN (version with
non-binary scores).

• Memory span is a critical constraint in SWLOF, making it severely
shortsighted. To a lesser degree, it is also a limiting factor in
LODA. Other methods (SWKNN, SDO, SDOstream, RSHash, RRCT,
xStream) can adjust the memory prioritizing application require-
ments and are less limited by computational costs. However, in
practice, the memory span does not only depend on the applica-
tion dynamics, but also on the available pre-knowledge used for

creating models and tune hyperparameters.
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Table 4
Summary of method profiles based on the studied questions: (a) concept drift and data geometries (seven top rows), (b) use of pre-knowledge (three
mid rows), (c) memory span (three last rows). Keys ‘−’, ‘+’, ‘++’, ‘neg.’ stand for ‘unsuitable’, ‘suitable’, ‘excellent’, and ‘negligible’ respectively.

SWLOF SWKNN xStream SDO SDOstream RRCT RSHash LODA

Moderate concept drift + ++ − − ++ ++ ++ +
Strong concept drift + + − − + ++ + +
Variable outlier rates + ++ ++ ++ ++ + ++ ++
Variable density levels + ++ + ++ ++ − + −
Local outliers and overlap with inliers ++ + − + + + − −
Collective anomalies − − ++ ++ − − + +
Normality is stationary − − + ++ + − + +
Tuning depends on pre-knowledge no low high low low low high low
Pre-knowledge defines normality no no yes yes low low yes low
(D)eterministic or (S)tochastic D D S S S S S S
Accuracy is affected by the memory span high low high no high high low high
Run-time is affected by the memory span yes neg. low neg. neg. low neg. low
Parameter robustness in concept drift high high low high high high high high
Table 5
Accuracy performances of the base dataset collection.

pan apan ap aap mf1 amf1 roc-auc

LOF 0.87 ± 0.10 0.87 ± 0.10 0.97 ± 0.03 0.97 ± 0.03 0.89 ± 0.09 0.89 ± 0.09 0.98 ± 0.01
kNN 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00
xS 0.94 ± 0.18 0.94 ± 0.18 0.95 ± 0.17 0.95 ± 0.18 0.95 ± 0.13 0.95 ± 0.13 0.99 ± 0.01
SDO 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.00
SDOs 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00
RRCT 0.91 ± 0.09 0.91 ± 0.09 0.95 ± 0.08 0.95 ± 0.08 0.93 ± 0.08 0.92 ± 0.08 0.99 ± 0.00
RSHash 0.97 ± 0.06 0.97 ± 0.06 0.98 ± 0.04 0.98 ± 0.04 0.97 ± 0.05 0.97 ± 0.05 1.00 ± 0.00
LODA 0.93 ± 0.12 0.93 ± 0.12 0.96 ± 0.10 0.96 ± 0.10 0.93 ± 0.11 0.93 ± 0.11 0.99 ± 0.00
Summarizing the remarkable properties of the methods one by one:
DO is the most reliable when concept drift can be neglected and
ormality is well-defined by historical data. SWLOF is the most suited
or overpopulated, narrow spaces in which application goals require

strongly local approach. RRCT is the most adaptive at the expense
f losing accuracy. xStream also sacrifices accuracy and adaptability
or solving high-dimensionality and gaining the capability of dealing
ith new dimensions added during application phases. LODA is a

elative, global method with greater ability to highlight concentrations
f inliers and, therefore, the best method to discriminate clusters within
oisy backgrounds populated by outliers. Finally, SWKNN, RSHash, and
DOstream show to be the most accurate in general, and require less
ata to achieve such accuracy. Deciding between these three options is
undamentally a matter of weighting locality and relativeness: SWKNN
s the most local and strict, RSHash the most global and relative, and
DOstream remains in between.

Therefore, figuring out if the problem under analysis requires a
trict (i.e., shapes in pre-knowledge are not determining to define
ormality) or a relative perspective (i.e., shapes in pre-knowledge are
ey to define normality) is also an important factor that affects the
election of the methods and the success of the outlier detection task.
any applications make the most of known data shapes that remain

ver time, then favoring relative methods; on the other hand, relative
ethods are strongly affected by concept drift whenever new shapes

re expected to be automatically seen as the new normality. We have
dditionally proposed two indices to characterize datasets: outlier-inlier
verlap (𝜙) and outlier relative-density (𝜌), which help to identify the

most suited method for a given data scenario.
Beyond their interpretation of outlierness as local, global, strict or

relative, other characteristics must be carefully considered and studied
for method selection; for instance, the hyperparameter robustness and
ease of adjustment, as well as the inertia of parameters and learned
models when facing variations in data contexts.
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Appendix

In Tables 5–17, metrics are abbreviated as: precision at 𝑛 (pan),
adjusted precision at 𝑛 (apan), average precision (ap), adjusted aver-
age precision (aap), maximum F1 score (mf1), adjusted maximum F1
score (amf1), and area under the ROC curve (roc-auc). Algorithm
abbreviations are: ‘‘RSH’’ for ‘‘RSHash’’, ‘‘LOF’’ for SWLOF, ‘‘KNN’’ for
SWKNN, ‘‘XS’’ for xStream, and ‘‘SDOs’’for SDOstream’’.
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Table 6
Accuracy performances of the non-stationarity dataset collection.

pan apan ap aap mf1 amf1 roc-auc

LOF 0.46 ± 0.20 0.44 ± 0.21 0.74 ± 0.15 0.73 ± 0.15 0.57 ± 0.18 0.55 ± 0.19 0.68 ± 0.15
kNN 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00
xS 0.51 ± 0.32 0.49 ± 0.33 0.64 ± 0.31 0.63 ± 0.32 0.71 ± 0.23 0.70 ± 0.24 0.95 ± 0.09
SDO 0.38 ± 0.30 0.36 ± 0.31 0.59 ± 0.32 0.58 ± 0.33 0.49 ± 0.29 0.48 ± 0.29 0.84 ± 0.10
SDOs 0.96 ± 0.03 0.96 ± 0.03 0.95 ± 0.05 0.95 ± 0.05 0.97 ± 0.02 0.97 ± 0.02 1.00 ± 0.00
RRCT 0.81 ± 0.11 0.80 ± 0.11 0.93 ± 0.05 0.92 ± 0.06 0.83 ± 0.10 0.82 ± 0.11 0.99 ± 0.01
RSHash 0.97 ± 0.03 0.97 ± 0.03 0.98 ± 0.02 0.98 ± 0.02 0.97 ± 0.03 0.97 ± 0.03 1.00 ± 0.00
LODA 0.85 ± 0.14 0.85 ± 0.14 0.94 ± 0.07 0.94 ± 0.07 0.87 ± 0.13 0.86 ± 0.14 0.99 ± 0.02
Table 7
Accuracy performances of the sequential dataset collection.

pan apan ap aap mf1 amf1 roc-auc

LOF 0.71 ± 0.16 0.70 ± 0.17 0.86 ± 0.09 0.86 ± 0.09 0.77 ± 0.14 0.76 ± 0.14 0.90 ± 0.12
kNN 0.96 ± 0.04 0.96 ± 0.04 0.97 ± 0.03 0.96 ± 0.03 0.97 ± 0.03 0.97 ± 0.03 1.00 ± 0.00
xS 0.28 ± 0.22 0.25 ± 0.23 0.43 ± 0.26 0.41 ± 0.27 0.42 ± 0.20 0.40 ± 0.21 0.90 ± 0.09
SDO 0.19 ± 0.14 0.17 ± 0.15 0.39 ± 0.23 0.37 ± 0.24 0.26 ± 0.17 0.24 ± 0.17 0.60 ± 0.13
SDOs 0.86 ± 0.19 0.86 ± 0.20 0.89 ± 0.17 0.89 ± 0.17 0.90 ± 0.14 0.90 ± 0.14 0.99 ± 0.00
RRCT 0.88 ± 0.06 0.88 ± 0.06 0.95 ± 0.03 0.94 ± 0.03 0.89 ± 0.06 0.89 ± 0.06 0.99 ± 0.00
RSHash 0.95 ± 0.04 0.95 ± 0.04 0.97 ± 0.02 0.97 ± 0.02 0.96 ± 0.03 0.96 ± 0.03 1.00 ± 0.00
LODA 0.75 ± 0.14 0.74 ± 0.15 0.83 ± 0.12 0.83 ± 0.13 0.80 ± 0.12 0.79 ± 0.12 0.99 ± 0.00
Table 8
Accuracy performances of the moving dataset collection.

pan apan ap aap mf1 amf1 roc-auc

LOF 0.90 ± 0.08 0.90 ± 0.08 0.98 ± 0.02 0.98 ± 0.02 0.93 ± 0.05 0.93 ± 0.05 0.96 ± 0.05
kNN 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00
xS 0.86 ± 0.30 0.85 ± 0.31 0.88 ± 0.30 0.88 ± 0.30 0.89 ± 0.23 0.88 ± 0.24 0.98 ± 0.05
SDO 0.64 ± 0.40 0.63 ± 0.40 0.71 ± 0.40 0.71 ± 0.41 0.70 ± 0.34 0.70 ± 0.34 0.96 ± 0.04
SDOs 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00
RRCT 0.93 ± 0.08 0.93 ± 0.08 0.97 ± 0.06 0.97 ± 0.06 0.94 ± 0.07 0.94 ± 0.07 1.00 ± 0.00
RSHash 0.98 ± 0.03 0.98 ± 0.03 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.03 0.98 ± 0.03 0.99 ± 0.00
LODA 0.96 ± 0.05 0.96 ± 0.06 0.99 ± 0.01 0.99 ± 0.01 0.96 ± 0.05 0.96 ± 0.05 1.00 ± 0.00
Table 9
Accuracy performances of the medium-outliers dataset collection.

pan apan ap aap mf1 amf1 roc-auc

LOF 0.90 ± 0.05 0.89 ± 0.06 0.99 ± 0.00 0.99 ± 0.01 0.94 ± 0.03 0.94 ± 0.04 0.97 ± 0.03
kNN 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
xS 0.94 ± 0.21 0.93 ± 0.23 0.94 ± 0.21 0.93 ± 0.23 0.96 ± 0.15 0.95 ± 0.17 0.98 ± 0.08
SDO 0.99 ± 0.05 0.99 ± 0.06 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.00
SDOs 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
RRCT 0.97 ± 0.03 0.96 ± 0.04 0.99 ± 0.02 0.98 ± 0.02 0.97 ± 0.03 0.97 ± 0.03 0.99 ± 0.00
RSHash 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
LODA 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.01 1.00 ± 0.00
Table 10
Accuracy performances of the high-outliers dataset collection.

pan apan ap aap mf1 amf1 roc-auc

LOF 0.63 ± 0.10 0.49 ± 0.17 0.90 ± 0.05 0.86 ± 0.08 0.75 ± 0.08 0.65 ± 0.13 0.83 ± 0.09
kNN 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
xS 0.90 ± 0.19 0.87 ± 0.26 0.89 ± 0.23 0.85 ± 0.32 0.93 ± 0.13 0.91 ± 0.18 0.95 ± 0.12
SDO 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00
SDOs 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
RRCT 0.86 ± 0.09 0.80 ± 0.14 0.90 ± 0.09 0.86 ± 0.13 0.88 ± 0.07 0.83 ± 0.11 0.96 ± 0.04
RSHash 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00
LODA 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00
Table 11
Accuracy performances of the close dataset collection.

pan apan ap aap mf1 amf1 roc-auc

LOF 0.43 ± 0.18 0.41 ± 0.19 0.55 ± 0.25 0.54 ± 0.26 0.45 ± 0.18 0.43 ± 0.18 0.90 ± 0.08
kNN 0.44 ± 0.36 0.43 ± 0.37 0.42 ± 0.41 0.41 ± 0.42 0.59 ± 0.26 0.58 ± 0.26 0.96 ± 0.05
xS 0.19 ± 0.25 0.17 ± 0.25 0.22 ± 0.32 0.19 ± 0.33 0.27 ± 0.22 0.25 ± 0.22 0.78 ± 0.15
SDO 0.47 ± 0.36 0.46 ± 0.37 0.45 ± 0.42 0.43 ± 0.43 0.62 ± 0.25 0.61 ± 0.25 0.96 ± 0.05
SDOs 0.46 ± 0.37 0.45 ± 0.38 0.45 ± 0.42 0.43 ± 0.43 0.62 ± 0.26 0.61 ± 0.26 0.96 ± 0.05
RRCT 0.12 ± 0.20 0.10 ± 0.21 0.11 ± 0.22 0.08 ± 0.22 0.28 ± 0.18 0.26 ± 0.18 0.88 ± 0.08
RSHash 0.19 ± 0.28 0.17 ± 0.28 0.21 ± 0.34 0.19 ± 0.35 0.30 ± 0.23 0.29 ± 0.23 0.86 ± 0.10
LODA 0.10 ± 0.16 0.08 ± 0.16 0.11 ± 0.21 0.09 ± 0.22 0.20 ± 0.13 0.18 ± 0.13 0.82 ± 0.09
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Table 12
Accuracy performances of the density-differences dataset collection.

pan apan ap aap mf1 amf1 roc-auc

LOF 0.75 ± 0.10 0.75 ± 0.10 0.91 ± 0.06 0.90 ± 0.06 0.78 ± 0.10 0.77 ± 0.10 0.95 ± 0.03
kNN 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.00
xS 0.79 ± 0.22 0.78 ± 0.22 0.88 ± 0.22 0.88 ± 0.22 0.81 ± 0.18 0.81 ± 0.19 0.98 ± 0.02
SDO 0.98 ± 0.07 0.97 ± 0.07 0.99 ± 0.04 0.99 ± 0.04 0.99 ± 0.03 0.98 ± 0.03 0.99 ± 0.00
SDOs 0.97 ± 0.03 0.97 ± 0.03 0.98 ± 0.02 0.98 ± 0.03 0.98 ± 0.01 0.98 ± 0.01 1.00 ± 0.00
RRCT 0.78 ± 0.19 0.78 ± 0.19 0.80 ± 0.21 0.79 ± 0.21 0.83 ± 0.15 0.82 ± 0.15 0.99 ± 0.00
RSHash 0.88 ± 0.10 0.87 ± 0.10 0.94 ± 0.06 0.94 ± 0.06 0.89 ± 0.09 0.89 ± 0.09 0.99 ± 0.00
LODA 0.61 ± 0.22 0.60 ± 0.23 0.71 ± 0.22 0.70 ± 0.23 0.63 ± 0.21 0.62 ± 0.21 0.97 ± 0.01
Table 13
Accuracy performances of the overlap dataset collection.

pan apan ap aap mf1 amf1 roc-auc

LOF 0.74 ± 0.09 0.73 ± 0.09 0.91 ± 0.05 0.90 ± 0.05 0.76 ± 0.08 0.76 ± 0.09 0.94 ± 0.05
kNN 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.06 0.97 ± 0.06 0.98 ± 0.03 0.98 ± 0.03 1.00 ± 0.00
xS 0.66 ± 0.26 0.65 ± 0.27 0.73 ± 0.28 0.72 ± 0.29 0.70 ± 0.22 0.69 ± 0.23 0.95 ± 0.10
SDO 0.96 ± 0.09 0.96 ± 0.09 0.96 ± 0.08 0.96 ± 0.08 0.97 ± 0.06 0.97 ± 0.06 0.99 ± 0.00
SDOs 0.97 ± 0.04 0.97 ± 0.04 0.97 ± 0.06 0.97 ± 0.06 0.98 ± 0.03 0.98 ± 0.03 1.00 ± 0.00
RRCT 0.74 ± 0.21 0.74 ± 0.21 0.73 ± 0.27 0.73 ± 0.28 0.80 ± 0.15 0.80 ± 0.15 0.99 ± 0.00
RSHash 0.76 ± 0.16 0.76 ± 0.16 0.82 ± 0.19 0.82 ± 0.19 0.79 ± 0.14 0.79 ± 0.14 0.99 ± 0.01
LODA 0.59 ± 0.21 0.57 ± 0.21 0.65 ± 0.24 0.65 ± 0.24 0.62 ± 0.19 0.61 ± 0.19 0.97 ± 0.01
Table 14
Accuracy performances of the Shuttle dataset.

T alg pan apan ap aap mf1 amf1 roc-auc

T100 LOF 0.93 ± 0.00 0.93 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.93 ± 0.00 0.93 ± 0.00 0.99 ± 0.00
kNN 0.93 ± 0.00 0.93 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.99 ± 0.00
xS 0.90 ± 0.01 0.89 ± 0.01 0.96 ± 0.00 0.95 ± 0.00 0.90 ± 0.01 0.89 ± 0.01 0.99 ± 0.00
SDO 0.94 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.99 ± 0.00
SDOs 0.94 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.99 ± 0.00
RRCT 0.64 ± 0.01 0.61 ± 0.01 0.73 ± 0.00 0.71 ± 0.00 0.66 ± 0.00 0.63 ± 0.01 0.96 ± 0.00
RSH 0.94 ± 0.01 0.94 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.95 ± 0.02 0.95 ± 0.02 0.99 ± 0.00
LODA 0.93 ± 0.00 0.93 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.94 ± 0.01 0.94 ± 0.01 0.99 ± 0.00

T500 LOF 0.51 ± 0.00 0.46 ± 0.00 0.72 ± 0.00 0.68 ± 0.00 0.51 ± 0.00 0.48 ± 0.00 0.82 ± 0.00
kNN 0.94 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.99 ± 0.00
xS 0.61 ± 0.21 0.58 ± 0.23 0.45 ± 0.28 0.40 ± 0.30 0.78 ± 0.08 0.76 ± 0.08 0.96 ± 0.01
SDO 0.94 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.99 ± 0.00
SDOs 0.94 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.99 ± 0.00
RRCT 0.57 ± 0.01 0.53 ± 0.01 0.52 ± 0.01 0.48 ± 0.01 0.65 ± 0.01 0.62 ± 0.01 0.96 ± 0.00
RSH 0.96 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.99 ± 0.00
LODA 0.95 ± 0.00 0.95 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.97 ± 0.00 0.96 ± 0.00 0.99 ± 0.00

T1K LOF 0.28 ± 0.00 0.24 ± 0.00 0.51 ± 0.00 0.46 ± 0.00 0.31 ± 0.00 0.27 ± 0.00 0.57 ± 0.00
kNN 0.82 ± 0.00 0.81 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.82 ± 0.00 0.81 ± 0.00 0.98 ± 0.00
xS 0.83 ± 0.17 0.82 ± 0.18 0.81 ± 0.25 0.80 ± 0.27 0.88 ± 0.09 0.87 ± 0.10 0.98 ± 0.01
SDO 0.94 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.99 ± 0.00
SDOs 0.94 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.99 ± 0.00
RRCT 0.52 ± 0.02 0.49 ± 0.02 0.47 ± 0.02 0.43 ± 0.02 0.64 ± 0.02 0.61 ± 0.02 0.95 ± 0.00
RSH 0.96 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.99 ± 0.00
LODA 0.95 ± 0.00 0.95 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.99 ± 0.00

T5K LOF 0.15 ± 0.00 0.09 ± 0.00 0.25 ± 0.00 0.21 ± 0.00 0.15 ± 0.00 0.10 ± 0.00 0.53 ± 0.00
kNN 0.19 ± 0.00 0.12 ± 0.00 0.28 ± 0.00 0.24 ± 0.00 0.39 ± 0.00 0.35 ± 0.00 0.86 ± 0.00
xS 0.08 ± 0.01 0.01 ± 0.01 0.11 ± 0.04 0.04 ± 0.04 0.36 ± 0.07 0.31 ± 0.07 0.78 ± 0.05
SDO 0.94 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.99 ± 0.00
SDOs 0.94 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.99 ± 0.00
RRCT 0.44 ± 0.01 0.40 ± 0.01 0.40 ± 0.00 0.35 ± 0.01 0.60 ± 0.02 0.57 ± 0.02 0.94 ± 0.00
RSH 0.96 ± 0.00 0.95 ± 0.00 0.97 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.99 ± 0.00
LODA 0.95 ± 0.00 0.95 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.99 ± 0.00

T10K LOF 0.10 ± 0.00 0.03 ± 0.00 0.15 ± 0.00 0.09 ± 0.00 0.14 ± 0.00 0.09 ± 0.00 0.55 ± 0.00
kNN 0.14 ± 0.00 0.07 ± 0.00 0.28 ± 0.00 0.24 ± 0.00 0.33 ± 0.00 0.28 ± 0.00 0.81 ± 0.00
xS 0.09 ± 0.02 0.02 ± 0.02 0.12 ± 0.04 0.05 ± 0.05 0.22 ± 0.04 0.16 ± 0.04 0.64 ± 0.05
SDO 0.94 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.99 ± 0.00
SDOs 0.94 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.99 ± 0.00
RRCT 0.41 ± 0.02 0.37 ± 0.02 0.38 ± 0.01 0.33 ± 0.01 0.58 ± 0.02 0.55 ± 0.02 0.94 ± 0.00
RSH 0.96 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.97 ± 0.00 0.96 ± 0.00 0.99 ± 0.00
LODA 0.95 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.99 ± 0.00
16
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Table 15
Accuracy performances of the CICIDS2017 dataset.

T alg pan apan ap aap mf1 amf1 roc-auc

T500 LOF 0.19 ± 0.00 −0.18 ± 0.00 0.14 ± 0.00 −0.25 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.34 ± 0.00
kNN 0.18 ± 0.00 −0.20 ± 0.00 0.10 ± 0.00 −0.31 ± 0.00 0.49 ± 0.00 0.25 ± 0.00 0.37 ± 0.00
xS 0.13 ± 0.00 −0.26 ± 0.01 0.18 ± 0.01 −0.19 ± 0.01 0.48 ± 0.00 0.24 ± 0.00 0.23 ± 0.02
SDO 0.89 ± 0.02 0.84 ± 0.02 0.97 ± 0.01 0.96 ± 0.01 0.91 ± 0.00 0.87 ± 0.01 0.97 ± 0.00
SDOs 0.11 ± 0.00 −0.29 ± 0.00 0.10 ± 0.00 −0.31 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.31 ± 0.00
RRCT 0.14 ± 0.00 −0.24 ± 0.00 0.13 ± 0.00 −0.26 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.23 ± 0.00
RSH 0.50 ± 0.03 0.27 ± 0.04 0.47 ± 0.03 0.22 ± 0.04 0.52 ± 0.02 0.30 ± 0.03 0.52 ± 0.01
LODA 0.09 ± 0.00 −0.33 ± 0.00 0.07 ± 0.00 −0.34 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.25 ± 0.00

T1K LOF 0.19 ± 0.00 −0.19 ± 0.00 0.12 ± 0.00 −0.25 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.34 ± 0.00
kNN 0.17 ± 0.00 −0.22 ± 0.00 0.09 ± 0.00 −0.33 ± 0.00 0.49 ± 0.00 0.25 ± 0.00 0.37 ± 0.00
xS 0.21 ± 0.00 −0.15 ± 0.01 0.30 ± 0.01 −0.01 ± 0.01 0.48 ± 0.00 0.24 ± 0.00 0.31 ± 0.01
SDO 0.89 ± 0.02 0.84 ± 0.02 0.97 ± 0.01 0.96 ± 0.01 0.91 ± 0.00 0.87 ± 0.01 0.97 ± 0.00
SDOs 0.11 ± 0.00 −0.28 ± 0.00 0.10 ± 0.00 −0.31 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.31 ± 0.00
RRCT 0.15 ± 0.00 −0.23 ± 0.00 0.14 ± 0.00 −0.24 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.24 ± 0.00
RSH 0.48 ± 0.03 0.25 ± 0.05 0.46 ± 0.02 0.22 ± 0.04 0.52 ± 0.02 0.30 ± 0.02 0.52 ± 0.01
LODA 0.11 ± 0.00 −0.31 ± 0.00 0.09 ± 0.00 −0.33 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.25 ± 0.00

T5K LOF 0.18 ± 0.00 −0.19 ± 0.00 0.14 ± 0.00 −0.25 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.34 ± 0.00
kNN 0.15 ± 0.00 −0.23 ± 0.00 0.09 ± 0.00 −0.33 ± 0.00 0.49 ± 0.00 0.25 ± 0.00 0.36 ± 0.00
xS 0.46 ± 0.01 0.21 ± 0.01 0.57 ± 0.01 0.37 ± 0.01 0.49 ± 0.00 0.26 ± 0.01 0.61 ± 0.01
SDO 0.89 ± 0.02 0.84 ± 0.02 0.97 ± 0.01 0.96 ± 0.01 0.91 ± 0.00 0.87 ± 0.01 0.97 ± 0.00
SDOs 0.09 ± 0.00 −0.33 ± 0.00 0.12 ± 0.00 −0.28 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.29 ± 0.00
RRCT 0.18 ± 0.00 −0.19 ± 0.00 0.20 ± 0.00 −0.16 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.28 ± 0.00
RSH 0.53 ± 0.02 0.32 ± 0.04 0.53 ± 0.01 0.31 ± 0.02 0.55 ± 0.01 0.34 ± 0.02 0.58 ± 0.01
LODA 0.18 ± 0.00 −0.20 ± 0.00 0.14 ± 0.00 −0.24 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.31 ± 0.00

T10K LOF 0.18 ± 0.00 −0.19 ± 0.00 0.15 ± 0.00 −0.23 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.34 ± 0.00
kNN 0.15 ± 0.00 −0.22 ± 0.00 0.09 ± 0.00 −0.34 ± 0.00 0.49 ± 0.00 0.25 ± 0.00 0.36 ± 0.00
xS 0.52 ± 0.02 0.30 ± 0.03 0.57 ± 0.01 0.37 ± 0.02 0.57 ± 0.02 0.37 ± 0.03 0.66 ± 0.01
SDO 0.89 ± 0.02 0.84 ± 0.02 0.97 ± 0.01 0.96 ± 0.01 0.91 ± 0.00 0.87 ± 0.01 0.97 ± 0.00
SDOs 0.12 ± 0.00 −0.28 ± 0.00 0.14 ± 0.00 −0.24 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.28 ± 0.00
RRCT 0.19 ± 0.00 −0.17 ± 0.00 0.21 ± 0.00 −0.15 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.29 ± 0.00
RSH 0.55 ± 0.02 0.35 ± 0.03 0.55 ± 0.01 0.34 ± 0.02 0.56 ± 0.01 0.36 ± 0.03 0.61 ± 0.01
LODA 0.24 ± 0.00 −0.11 ± 0.00 0.21 ± 0.00 −0.14 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.39 ± 0.00

T50K LOF 0.19 ± 0.00 −0.19 ± 0.00 0.14 ± 0.00 −0.25 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.34 ± 0.00
kNN 0.17 ± 0.00 −0.21 ± 0.00 0.07 ± 0.00 −0.34 ± 0.00 0.49 ± 0.00 0.25 ± 0.00 0.37 ± 0.00
xS 0.55 ± 0.01 0.34 ± 0.02 0.67 ± 0.00 0.52 ± 0.01 0.64 ± 0.01 0.47 ± 0.01 0.77 ± 0.00
SDO 0.89 ± 0.02 0.84 ± 0.02 0.97 ± 0.01 0.96 ± 0.01 0.91 ± 0.00 0.87 ± 0.01 0.97 ± 0.00
SDOs 0.17 ± 0.00 −0.20 ± 0.00 0.22 ± 0.00 −0.13 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.28 ± 0.00
RRCT 0.24 ± 0.00 −0.10 ± 0.00 0.27 ± 0.00 −0.06 ± 0.01 0.48 ± 0.00 0.24 ± 0.00 0.36 ± 0.00
RSH 0.57 ± 0.02 0.37 ± 0.02 0.57 ± 0.01 0.38 ± 0.01 0.59 ± 0.02 0.40 ± 0.03 0.70 ± 0.02
LODA 0.37 ± 0.00 0.07 ± 0.00 0.43 ± 0.00 0.15 ± 0.00 0.50 ± 0.00 0.27 ± 0.00 0.59 ± 0.00

T100K LOF 0.19 ± 0.00 −0.18 ± 0.00 0.14 ± 0.00 −0.24 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.35 ± 0.00
kNN 0.17 ± 0.00 −0.21 ± 0.00 0.07 ± 0.00 −0.34 ± 0.00 0.49 ± 0.00 0.25 ± 0.00 0.37 ± 0.00
xS 0.61 ± 0.00 0.44 ± 0.01 0.73 ± 0.01 0.62 ± 0.01 0.68 ± 0.01 0.53 ± 0.02 0.83 ± 0.01
SDO 0.89 ± 0.02 0.84 ± 0.02 0.97 ± 0.01 0.96 ± 0.01 0.91 ± 0.00 0.87 ± 0.01 0.97 ± 0.00
SDOs 0.20 ± 0.00 −0.15 ± 0.00 0.28 ± 0.00 −0.03 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.28 ± 0.00
RRCT 0.26 ± 0.00 −0.08 ± 0.01 0.29 ± 0.01 −0.03 ± 0.01 0.48 ± 0.00 0.24 ± 0.00 0.39 ± 0.00
RSH 0.57 ± 0.02 0.38 ± 0.02 0.61 ± 0.00 0.43 ± 0.01 0.63 ± 0.01 0.45 ± 0.02 0.77 ± 0.01
LODA 0.38 ± 0.00 0.09 ± 0.00 0.46 ± 0.00 0.23 ± 0.00 0.53 ± 0.00 0.31 ± 0.00 0.62 ± 0.00

T500K LOF 0.19 ± 0.00 −0.18 ± 0.00 0.14 ± 0.00 −0.25 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.36 ± 0.00
kNN 0.19 ± 0.00 −0.19 ± 0.00 0.10 ± 0.00 −0.31 ± 0.00 0.49 ± 0.00 0.25 ± 0.00 0.38 ± 0.00
xS 0.87 ± 0.01 0.81 ± 0.02 0.94 ± 0.00 0.91 ± 0.00 0.88 ± 0.00 0.83 ± 0.01 0.93 ± 0.00
SDO 0.89 ± 0.02 0.84 ± 0.02 0.97 ± 0.01 0.96 ± 0.01 0.91 ± 0.00 0.87 ± 0.01 0.97 ± 0.00
SDOs 0.33 ± 0.00 0.03 ± 0.00 0.51 ± 0.00 0.29 ± 0.00 0.48 ± 0.00 0.24 ± 0.00 0.41 ± 0.00
RRCT 0.39 ± 0.01 0.11 ± 0.01 0.45 ± 0.01 0.20 ± 0.02 0.48 ± 0.00 0.24 ± 0.00 0.57 ± 0.01
RSH 0.72 ± 0.01 0.60 ± 0.02 0.82 ± 0.00 0.75 ± 0.01 0.73 ± 0.01 0.61 ± 0.02 0.86 ± 0.00
LODA 0.43 ± 0.00 0.17 ± 0.00 0.67 ± 0.00 0.51 ± 0.00 0.55 ± 0.00 0.34 ± 0.00 0.68 ± 0.00
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Table 16
Accuracy performances of the Swan-SF dataset.

T alg pan apan ap aap mf1 amf1 roc-auc

T100 LOF 0.41 ± 0.00 0.28 ± 0.00 0.53 ± 0.00 0.43 ± 0.00 0.43 ± 0.00 0.31 ± 0.00 0.75 ± 0.00
kNN 0.61 ± 0.00 0.53 ± 0.00 0.78 ± 0.00 0.73 ± 0.00 0.61 ± 0.00 0.53 ± 0.00 0.88 ± 0.00
xS 0.57 ± 0.00 0.49 ± 0.00 0.67 ± 0.00 0.61 ± 0.00 0.60 ± 0.00 0.52 ± 0.00 0.89 ± 0.00
SDO 0.61 ± 0.00 0.53 ± 0.00 0.76 ± 0.00 0.71 ± 0.00 0.62 ± 0.00 0.54 ± 0.00 0.90 ± 0.00
SDOs 0.59 ± 0.00 0.51 ± 0.00 0.71 ± 0.00 0.65 ± 0.00 0.62 ± 0.00 0.54 ± 0.00 0.90 ± 0.00
RRCT 0.33 ± 0.00 0.20 ± 0.00 0.33 ± 0.00 0.20 ± 0.00 0.39 ± 0.00 0.26 ± 0.00 0.71 ± 0.00
RSH 0.59 ± 0.00 0.50 ± 0.01 0.77 ± 0.00 0.72 ± 0.00 0.59 ± 0.00 0.51 ± 0.01 0.84 ± 0.01
LODA 0.48 ± 0.00 0.37 ± 0.00 0.52 ± 0.00 0.42 ± 0.01 0.51 ± 0.00 0.42 ± 0.00 0.83 ± 0.00

T500 LOF 0.24 ± 0.00 0.09 ± 0.00 0.29 ± 0.00 0.15 ± 0.00 0.29 ± 0.00 0.15 ± 0.00 0.59 ± 0.00
kNN 0.59 ± 0.00 0.51 ± 0.00 0.74 ± 0.00 0.68 ± 0.00 0.62 ± 0.00 0.54 ± 0.00 0.90 ± 0.00
xS 0.60 ± 0.00 0.52 ± 0.00 0.72 ± 0.00 0.66 ± 0.00 0.61 ± 0.00 0.53 ± 0.00 0.90 ± 0.00
SDO 0.61 ± 0.00 0.53 ± 0.00 0.76 ± 0.00 0.71 ± 0.00 0.62 ± 0.00 0.54 ± 0.00 0.90 ± 0.00
SDOs 0.60 ± 0.00 0.52 ± 0.00 0.75 ± 0.00 0.70 ± 0.00 0.61 ± 0.00 0.53 ± 0.00 0.90 ± 0.00
RRCT 0.34 ± 0.00 0.21 ± 0.00 0.41 ± 0.00 0.29 ± 0.00 0.38 ± 0.00 0.25 ± 0.00 0.70 ± 0.00
RSH 0.62 ± 0.00 0.54 ± 0.00 0.78 ± 0.00 0.73 ± 0.00 0.62 ± 0.00 0.54 ± 0.00 0.87 ± 0.01
LODA 0.53 ± 0.00 0.44 ± 0.00 0.59 ± 0.01 0.51 ± 0.01 0.57 ± 0.00 0.48 ± 0.00 0.86 ± 0.00

T1K LOF 0.25 ± 0.00 0.11 ± 0.00 0.31 ± 0.00 0.18 ± 0.00 0.31 ± 0.00 0.17 ± 0.00 0.59 ± 0.00
kNN 0.61 ± 0.00 0.53 ± 0.00 0.74 ± 0.00 0.68 ± 0.00 0.62 ± 0.00 0.55 ± 0.00 0.90 ± 0.00
xS 0.59 ± 0.00 0.50 ± 0.00 0.73 ± 0.00 0.68 ± 0.00 0.61 ± 0.00 0.53 ± 0.00 0.89 ± 0.00
SDO 0.61 ± 0.00 0.53 ± 0.00 0.76 ± 0.00 0.71 ± 0.00 0.62 ± 0.00 0.54 ± 0.00 0.90 ± 0.00
SDOs 0.61 ± 0.00 0.53 ± 0.00 0.77 ± 0.00 0.72 ± 0.00 0.61 ± 0.00 0.54 ± 0.00 0.90 ± 0.00
RRCT 0.38 ± 0.00 0.25 ± 0.00 0.47 ± 0.00 0.37 ± 0.00 0.41 ± 0.00 0.28 ± 0.00 0.73 ± 0.00
RSH 0.63 ± 0.00 0.55 ± 0.00 0.78 ± 0.00 0.74 ± 0.00 0.63 ± 0.00 0.56 ± 0.00 0.88 ± 0.01
LODA 0.55 ± 0.01 0.46 ± 0.01 0.63 ± 0.04 0.56 ± 0.05 0.58 ± 0.00 0.50 ± 0.00 0.88 ± 0.00

T5K LOF 0.27 ± 0.00 0.12 ± 0.00 0.31 ± 0.00 0.17 ± 0.00 0.31 ± 0.00 0.17 ± 0.00 0.59 ± 0.00
kNN 0.62 ± 0.00 0.55 ± 0.00 0.76 ± 0.00 0.72 ± 0.00 0.63 ± 0.00 0.55 ± 0.00 0.90 ± 0.00
xS 0.60 ± 0.00 0.52 ± 0.00 0.74 ± 0.00 0.69 ± 0.00 0.62 ± 0.00 0.54 ± 0.00 0.89 ± 0.00
SDO 0.61 ± 0.00 0.53 ± 0.00 0.76 ± 0.00 0.71 ± 0.00 0.62 ± 0.00 0.54 ± 0.00 0.90 ± 0.00
SDOs 0.61 ± 0.00 0.54 ± 0.00 0.76 ± 0.00 0.71 ± 0.00 0.62 ± 0.00 0.55 ± 0.00 0.90 ± 0.00
RRCT 0.39 ± 0.00 0.27 ± 0.00 0.47 ± 0.00 0.37 ± 0.00 0.42 ± 0.00 0.3 ± 0.00 0.75 ± 0.00
RSH 0.63 ± 0.00 0.56 ± 0.00 0.79 ± 0.00 0.75 ± 0.00 0.63 ± 0.00 0.56 ± 0.00 0.89 ± 0.00
LODA 0.59 ± 0.00 0.51 ± 0.00 0.66 ± 0.01 0.59 ± 0.02 0.60 ± 0.00 0.52 ± 0.00 0.89 ± 0.00

T10K LOF 0.28 ± 0.00 0.14 ± 0.00 0.33 ± 0.00 0.19 ± 0.00 0.31 ± 0.00 0.18 ± 0.00 0.59 ± 0.00
kNN 0.62 ± 0.00 0.55 ± 0.00 0.76 ± 0.00 0.72 ± 0.00 0.63 ± 0.00 0.56 ± 0.00 0.90 ± 0.00
xS 0.61 ± 0.00 0.53 ± 0.00 0.76 ± 0.00 0.71 ± 0.00 0.63 ± 0.00 0.55 ± 0.00 0.89 ± 0.00
SDO 0.61 ± 0.00 0.53 ± 0.00 0.76 ± 0.00 0.71 ± 0.00 0.62 ± 0.00 0.54 ± 0.00 0.90 ± 0.00
SDOs 0.61 ± 0.00 0.53 ± 0.00 0.78 ± 0.00 0.74 ± 0.00 0.62 ± 0.00 0.54 ± 0.00 0.90 ± 0.00
RRCT 0.37 ± 0.00 0.24 ± 0.00 0.43 ± 0.00 0.32 ± 0.00 0.41 ± 0.00 0.3 ± 0.00 0.74 ± 0.00
RSH 0.63 ± 0.00 0.56 ± 0.00 0.79 ± 0.00 0.75 ± 0.00 0.63 ± 0.00 0.56 ± 0.00 0.89 ± 0.00
LODA 0.59 ± 0.01 0.51 ± 0.01 0.65 ± 0.03 0.58 ± 0.04 0.61 ± 0.00 0.53 ± 0.01 0.89 ± 0.00

T50K LOF 0.28 ± 0.00 0.14 ± 0.00 0.34 ± 0.00 0.21 ± 0.00 0.31 ± 0.00 0.18 ± 0.00 0.59 ± 0.00
kNN 0.63 ± 0.00 0.56 ± 0.00 0.76 ± 0.00 0.72 ± 0.00 0.63 ± 0.00 0.57 ± 0.00 0.90 ± 0.00
xS 0.62 ± 0.00 0.55 ± 0.00 0.76 ± 0.00 0.72 ± 0.00 0.63 ± 0.00 0.56 ± 0.00 0.89 ± 0.00
SDO 0.61 ± 0.00 0.53 ± 0.00 0.76 ± 0.00 0.71 ± 0.00 0.62 ± 0.00 0.54 ± 0.00 0.90 ± 0.00
SDOs 0.62 ± 0.00 0.54 ± 0.00 0.78 ± 0.00 0.73 ± 0.00 0.63 ± 0.00 0.55 ± 0.00 0.90 ± 0.00
RRCT 0.32 ± 0.00 0.19 ± 0.00 0.36 ± 0.00 0.23 ± 0.00 0.38 ± 0.00 0.26 ± 0.00 0.71 ± 0.00
RSH 0.63 ± 0.00 0.55 ± 0.00 0.79 ± 0.00 0.74 ± 0.00 0.64 ± 0.00 0.57 ± 0.00 0.90 ± 0.00
LODA 0.57 ± 0.04 0.48 ± 0.05 0.71 ± 0.05 0.65 ± 0.06 0.59 ± 0.03 0.51 ± 0.03 0.88 ± 0.01

T100K LOF 0.28 ± 0.00 0.14 ± 0.00 0.34 ± 0.00 0.21 ± 0.00 0.31 ± 0.00 0.18 ± 0.00 0.59 ± 0.00
kNN 0.63 ± 0.00 0.56 ± 0.00 0.76 ± 0.00 0.72 ± 0.00 0.63 ± 0.00 0.57 ± 0.00 0.90 ± 0.00
xS 0.58 ± 0.00 0.50 ± 0.00 0.74 ± 0.00 0.69 ± 0.00 0.59 ± 0.00 0.50 ± 0.00 0.78 ± 0.00
SDO 0.61 ± 0.00 0.53 ± 0.00 0.76 ± 0.00 0.71 ± 0.00 0.62 ± 0.00 0.54 ± 0.00 0.90 ± 0.00
SDOs 0.62 ± 0.00 0.54 ± 0.00 0.75 ± 0.00 0.70 ± 0.00 0.63 ± 0.00 0.56 ± 0.00 0.90 ± 0.00
RRCT 0.31 ± 0.00 0.17 ± 0.00 0.35 ± 0.00 0.22 ± 0.00 0.37 ± 0.00 0.25 ± 0.00 0.70 ± 0.00
RSH 0.63 ± 0.00 0.56 ± 0.00 0.78 ± 0.00 0.74 ± 0.00 0.64 ± 0.00 0.57 ± 0.00 0.89 ± 0.00
LODA 0.62 ± 0.00 0.54 ± 0.00 0.77 ± 0.00 0.72 ± 0.00 0.62 ± 0.00 0.55 ± 0.01 0.90 ± 0.00
18
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Table 17
Accuracy performances of the Yahoo-TSA dataset.

T alg pan apan ap aap mf1 amf1 roc-auc

T100 LOF 0.24 ± 0.00 0.23 ± 0.00 0.28 ± 0.00 0.25 ± 0.00 0.24 ± 0.00 0.23 ± 0.00 0.75 ± 0.00
kNN 0.18 ± 0.00 0.15 ± 0.00 0.28 ± 0.00 0.28 ± 0.00 0.19 ± 0.00 0.18 ± 0.00 0.78 ± 0.00
xS 0.19 ± 0.00 0.18 ± 0.00 0.30 ± 0.00 0.29 ± 0.00 0.20 ± 0.00 0.19 ± 0.01 0.84 ± 0.00
SDO 0.12 ± 0.00 0.11 ± 0.00 0.23 ± 0.00 0.22 ± 0.00 0.12 ± 0.00 0.11 ± 0.00 0.73 ± 0.00
SDOs 0.20 ± 0.00 0.19 ± 0.00 0.30 ± 0.00 0.28 ± 0.00 0.21 ± 0.00 0.20 ± 0.00 0.81 ± 0.00
RRCT 0.24 ± 0.00 0.23 ± 0.00 0.39 ± 0.00 0.38 ± 0.00 0.25 ± 0.00 0.24 ± 0.00 0.76 ± 0.00
RSH 0.14 ± 0.00 0.12 ± 0.00 0.25 ± 0.00 0.24 ± 0.00 0.14 ± 0.00 0.13 ± 0.00 0.79 ± 0.00
LODA 0.09 ± 0.00 0.07 ± 0.00 0.07 ± 0.01 0.05 ± 0.01 0.14 ± 0.00 0.12 ± 0.00 0.76 ± 0.00

T500 LOF 0.25 ± 0.00 0.25 ± 0.00 0.29 ± 0.00 0.28 ± 0.00 0.27 ± 0.00 0.25 ± 0.00 0.76 ± 0.00
kNN 0.21 ± 0.00 0.20 ± 0.00 0.31 ± 0.00 0.31 ± 0.00 0.21 ± 0.00 0.20 ± 0.00 0.81 ± 0.00
xS 0.14 ± 0.01 0.13 ± 0.01 0.20 ± 0.03 0.19 ± 0.03 0.18 ± 0.01 0.17 ± 0.01 0.79 ± 0.02
SDO 0.12 ± 0.00 0.11 ± 0.00 0.23 ± 0.00 0.22 ± 0.00 0.12 ± 0.00 0.11 ± 0.00 0.73 ± 0.00
SDOs 0.21 ± 0.00 0.19 ± 0.00 0.31 ± 0.00 0.31 ± 0.00 0.21 ± 0.00 0.20 ± 0.00 0.81 ± 0.00
RRCT 0.26 ± 0.00 0.25 ± 0.00 0.39 ± 0.00 0.38 ± 0.00 0.27 ± 0.00 0.25 ± 0.00 0.81 ± 0.00
RSH 0.14 ± 0.00 0.13 ± 0.00 0.27 ± 0.00 0.25 ± 0.00 0.15 ± 0.00 0.13 ± 0.00 0.80 ± 0.00
LODA 0.07 ± 0.00 0.06 ± 0.00 0.07 ± 0.02 0.05 ± 0.01 0.14 ± 0.00 0.12 ± 0.00 0.76 ± 0.00

T1K LOF 0.23 ± 0.00 0.22 ± 0.00 0.25 ± 0.00 0.24 ± 0.00 0.24 ± 0.00 0.22 ± 0.00 0.76 ± 0.00
kNN 0.20 ± 0.00 0.19 ± 0.00 0.31 ± 0.00 0.29 ± 0.00 0.21 ± 0.00 0.19 ± 0.00 0.81 ± 0.00
xS 0.11 ± 0.01 0.10 ± 0.01 0.19 ± 0.01 0.18 ± 0.02 0.12 ± 0.01 0.10 ± 0.00 0.74 ± 0.01
SDO 0.12 ± 0.00 0.11 ± 0.00 0.23 ± 0.00 0.22 ± 0.00 0.12 ± 0.00 0.11 ± 0.00 0.73 ± 0.00
SDOs 0.19 ± 0.00 0.17 ± 0.00 0.30 ± 0.00 0.29 ± 0.00 0.20 ± 0.00 0.18 ± 0.00 0.80 ± 0.00
RRCT 0.25 ± 0.00 0.24 ± 0.00 0.37 ± 0.00 0.36 ± 0.00 0.25 ± 0.00 0.24 ± 0.00 0.80 ± 0.00
RSH 0.15 ± 0.00 0.13 ± 0.00 0.27 ± 0.00 0.25 ± 0.00 0.15 ± 0.00 0.13 ± 0.00 0.79 ± 0.01
LODA 0.06 ± 0.01 0.04 ± 0.01 0.06 ± 0.01 0.05 ± 0.00 0.11 ± 0.00 0.09 ± 0.00 0.75 ± 0.01

T5K LOF 0.12 ± 0.00 0.10 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.68 ± 0.00
kNN 0.14 ± 0.00 0.12 ± 0.00 0.25 ± 0.00 0.24 ± 0.00 0.14 ± 0.00 0.12 ± 0.00 0.73 ± 0.00
xS 0.11 ± 0.00 0.10 ± 0.00 0.20 ± 0.00 0.19 ± 0.00 0.12 ± 0.00 0.10 ± 0.00 0.72 ± 0.00
SDO 0.12 ± 0.00 0.11 ± 0.00 0.23 ± 0.00 0.22 ± 0.00 0.12 ± 0.00 0.11 ± 0.00 0.73 ± 0.00
SDOs 0.12 ± 0.00 0.11 ± 0.00 0.23 ± 0.00 0.22 ± 0.00 0.12 ± 0.00 0.11 ± 0.00 0.72 ± 0.00
RRCT 0.14 ± 0.00 0.13 ± 0.00 0.22 ± 0.00 0.21 ± 0.00 0.14 ± 0.00 0.13 ± 0.00 0.73 ± 0.00
RSH 0.12 ± 0.00 0.11 ± 0.00 0.23 ± 0.00 0.22 ± 0.00 0.12 ± 0.00 0.11 ± 0.00 0.74 ± 0.00
LODA 0.09 ± 0.02 0.08 ± 0.03 0.13 ± 0.04 0.12 ± 0.04 0.10 ± 0.01 0.09 ± 0.01 0.72 ± 0.01

T10K LOF 0.07 ± 0.00 0.06 ± 0.00 0.10 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.06 ± 0.00 0.65 ± 0.00
kNN 0.12 ± 0.00 0.11 ± 0.00 0.23 ± 0.00 0.22 ± 0.00 0.14 ± 0.00 0.12 ± 0.00 0.71 ± 0.00
xS 0.11 ± 0.00 0.10 ± 0.00 0.21 ± 0.00 0.20 ± 0.00 0.12 ± 0.00 0.10 ± 0.00 0.72 ± 0.00
SDO 0.12 ± 0.00 0.11 ± 0.00 0.23 ± 0.00 0.22 ± 0.00 0.12 ± 0.00 0.11 ± 0.00 0.73 ± 0.00
SDOs 0.12 ± 0.00 0.11 ± 0.00 0.23 ± 0.00 0.22 ± 0.00 0.12 ± 0.00 0.11 ± 0.00 0.72 ± 0.00
RRCT 0.11 ± 0.00 0.09 ± 0.00 0.17 ± 0.00 0.15 ± 0.00 0.11 ± 0.00 0.10 ± 0.00 0.69 ± 0.00
RSH 0.11 ± 0.00 0.10 ± 0.00 0.22 ± 0.00 0.21 ± 0.00 0.12 ± 0.00 0.10 ± 0.00 0.74 ± 0.00
LODA 0.09 ± 0.00 0.07 ± 0.00 0.13 ± 0.01 0.12 ± 0.01 0.10 ± 0.00 0.09 ± 0.00 0.69 ± 0.00

T50K LOF 0.03 ± 0.00 0.00 ± 0.00 0.03 ± 0.00 0.00 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.57 ± 0.00
kNN 0.12 ± 0.00 0.11 ± 0.00 0.23 ± 0.00 0.21 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.71 ± 0.00
xS 0.09 ± 0.00 0.07 ± 0.00 0.16 ± 0.00 0.15 ± 0.00 0.09 ± 0.00 0.07 ± 0.00 0.52 ± 0.00
SDO 0.12 ± 0.00 0.11 ± 0.00 0.23 ± 0.00 0.22 ± 0.00 0.12 ± 0.00 0.11 ± 0.00 0.73 ± 0.00
SDOs 0.12 ± 0.00 0.11 ± 0.00 0.23 ± 0.00 0.22 ± 0.00 0.12 ± 0.00 0.11 ± 0.00 0.74 ± 0.00
RRCT 0.10 ± 0.00 0.08 ± 0.00 0.16 ± 0.00 0.15 ± 0.00 0.10 ± 0.00 0.09 ± 0.00 0.69 ± 0.00
RSH 0.11 ± 0.00 0.10 ± 0.00 0.22 ± 0.00 0.21 ± 0.00 0.12 ± 0.00 0.11 ± 0.00 0.72 ± 0.00
LODA 0.09 ± 0.00 0.08 ± 0.00 0.08 ± 0.01 0.06 ± 0.01 0.10 ± 0.00 0.09 ± 0.00 0.71 ± 0.00
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