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Kurzfassung

Seit einigen Jahren vollzieht sich in der Fahrzeugindustrie ein Umbruch hin zur Auto-

matisierung von Fahraufgaben sowohl in Quer- als auch in Längsrichtung. Der Trend

zum teil- oder vollautonomen Fahren wird immer deutlicher. Damit einher geht das

Potenzial, die Verkehrssicherheit und den Komfort der Insassen deutlich zu erhöhen.

Die Automatisierung verschiedener Fahraufgaben ist eng mit der Fahrermodellierung

verknüpft, da menschliches Fahrverhalten sowohl aus Komfort- als auch aus Sicherheits-

gründen erwünscht ist.

Diese Arbeit soll dazu beitragen, indem der Frage nachgegangen wird, wie ein Fahrer

bzw. eine Fahrerin die Fahrzeuggeschwindigkeit beim Überfahren eines Fahrbahnhin-

dernisses wählt und wie dies mit einem Fahrermodell dargestellt werden kann, insbe-

sondere im Hinblick auf das Verzögern des Fahrzeugs in Annäherung an das Hindernis,

das Überfahren des Hindernisses und das Beschleunigen des Fahrzeuges beim Verlassen

desselben. Auf dem Gebiet des Hindernisüberfahrens wurde in Bezug auf die Fahrwerks-

abstimmung (passive, semi- und aktive Radaufhängung) bereits viel geforscht, allerdings

oft unter der Annahme einer konstanten Fahrzeuggeschwindigkeit. In dieser Arbeit hin-

gegen soll nun untersucht werden, wie Straßenhindernisse nur durch eine Geschwin-

digkeitsplanung
”
optimal“ überwunden werden können. Zu diesem Zweck wurde ein

Fahrermodell auf der Grundlage einer modellprädiktiven Regelung (MPC) entwickelt.

Das Fahrermodell kann eine Geschwindigkeits- bzw. Beschleunigungstrajektorie unter

Berücksichtigung von Straßeninformationen, wie z.B. Hindernissen und gesetzlich vor-

gegebenen Maximalgeschwindigkeiten, generieren. Basierend auf einem Gütefunktional,

welches einen Kompromiss aus einem komfortablen und jedoch zügigen Überfahren des

Hindernisses ermöglichen soll, und einem internen Fahrzeugmodell plant der Regler für

einen Vorschauhorizont die optimalen Trajektorien. Der MPC wird weiterhin dazu ge-

nutzt, um unterschiedliche Fahrertypen und -stile abzubilden und menschliche Reakti-

onszeiten in den Planungshorizont einfließen zu lassen. Es wird gezeigt, dass das Fahrer-

modell gängige Straßenhindernisse im Stadtverkehr robust überfahren kann. Zur Dar-

stellung des Einflusses des internen Fahrzeugmodells in der Trajektoriengenerierung des

Fahrermodells werden ein Viertel- und ein Halbfahrzeugmodell gegenübergestellt.
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Abstract

For some years now, the automotive industry has been undergoing a change toward

the automation of driving tasks in both lateral and longitudinal directions. The trend

toward partially or fully autonomous driving is obvious. This is accompanied by the

potential to significantly increase road safety and passenger comfort. The automation

of various driving tasks is closely related to driver modeling, as human driving behavior

is desirable for both comfort and safety reasons.

This work aims to contribute by addressing the question of how a driver chooses the

speed of the vehicle when driving over a road obstacle, and how this can be represented

with a driver model, particularly with respect to the deceleration of the vehicle when

approaching the obstacle, passing the obstacle, and the acceleration of the vehicle when

departing the obstacle. Much research effort has been done in the field of obstacle cross-

ing with respect to suspension tuning (passive, semi-active and active suspension), but

most often under the assumption of constant vehicle speed. In this work, however, the

aim is now to investigate how road obstacles can be overcome in a “optimal” fashion

by speed planning only. For this purpose, a model predictive control (MPC) based on

a quarter-car and a half-car model has been developed. The driver model can generate

a speed and acceleration trajectory considering road information such as obstacles and

legal speed limits. Based on a cost function, which should enable a compromise of com-

fortable but quick crossing of the obstacle, and an internal vehicle model, the controller

plans the optimal trajectories for a preview horizon. The MPC is further utilized to rep-

resent different driving types and styles and to incorporate human reaction times into

the planning horizon. It is shown that the driver model can robustly negotiate typical

obstacles in urban roads. To illustrate the influence of the internal vehicle model in the

trajectory generation of the driver model, a quarter- and half-car model are compared.
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1 Introduction

The main objective of this work is to model human driving behavior with respect to

vehicle speed when approaching, passing, and departing various road obstacles. The

scenario considered in this thesis consists of a road vehicle crossing an obstacle, e.g.

a speed bump or a pedestrian crosswalk. When considering the scenario at hand, the

question naturally arises as to why or to what extent a human driver would reduce the

forward speed of the vehicle when passing the obstacle. There are a number of reasons:

The most important reason is perhaps that the driver aims to maintain the level of

driving comfort when passing the obstacle, thus reducing the vertical movement of the

vehicle. In extreme cases, the driver might also be concerned that too high vehicle speeds

could cause damage to the vehicle. In addition, the style in which the driver brakes and

accelerates the vehicle contributes to the perceived driving comfort. On the other hand,

the driver does not want to lose too much speed or time when driving over the obstacle.

So the answer to the question of how and why a driver slows down when approaching

an obstacle is quite complicated, and mapping this behavior is even more challenging.

The following sections are intended to provide a motivating example of why such

research is important in today’s world. In addition, the goal of this thesis is outlined,

respective research questions are defined, and the approach of the thesis is stated.

1.1 Motivation

The recent trend towards automation of various driving functions is aimed at increasing

the safety of road vehicles as well as the comfort of drivers and passengers. This de-

velopment is strongly driven by road safety reports that highlight the problem of traffic

fatalities, e.g. in a World Health Organization (WHO) report in [1], for the U.S. in [2],

or in a European Commission (EC) report in [3]. However, this trend is also being pro-

pelled by established companies such as Daimler, Audi, etc., or newer players like Tesla,

Mobileye and Waymo, which are trying to bring fully autonomous driving to market and

be the first to realize a fully self-driving vehicle. In an effort in recent decades to im-

prove safety, several key technologies have emerged in form of advanced driver assistance

1



1 Introduction

Table 1.1: ADAS grouped by longitudinal control, lateral control, and angular rate con-
trol, respectively. Table taken from [4]. A wide range of sensory information
is required to control vehicle dynamics.

systems (ADAS), as shown in Tab. 1.1.

The goal of ADAS is to compensate to some extent for human error in avoiding traffic

accidents by taking over some primary vehicle control functions, e.g., steering or braking,

to reduce the consequences of an accident, but as well to reduce the work load of the

driver and to improve the ride quality and comfort of the passengers [5]. Main objectives

are to reduce the number and severity of accidents, improve handling and comfort by

controlling the longitudinal, lateral, and vertical motions of a vehicle. Although most of

the systems introduced in recent decades are designed to improve safety, they have also

significantly improved driving comfort. There are only a few systems whose purpose is

solely to increase comfort, such as Parking Aid Systems (PAS), Cruise Control (CC) or

Adaptive Cruise Control (ACC). In [4], a comprehensive overview of the recent state of

the art in automotive safety systems is given.

Many of the systems listed in Tab. 1.1 are already standard today or may become

mandatory by legislative means in the coming years. There are, for example, new leg-

islative measures and political ambitions, such as the European Commission’s ambitious

plan to have zero traffic fatalities by 2050 [6], [7]. This plan is called “Vision Zero”. To

achieve such an ambitious goal, legislators are mandating a host of new vehicle safety

systems starting in 2022: This standard mandates new features such as Automated

Emergency Braking (AEB) and overridable Intelligent Speed Assistance (ISA) as stan-

dard for newly sold vehicles [8]. These systems are aiming to control the longitudinal

motion of the vehicle or vehicle speed in order to improve road safety. Similarly, in this

2



1 Introduction

thesis, a method for longitudinal control is developed that can improve driving comfort

by planning speed trajectories for the vehicle to pass road obstacles.

Expanding on the rapid development of automotive safety systems and the drive to

achieve fully autonomous driving, the International Society of Automotive Engineers

(SAE) has developed the SAE J3016 standard [9]. This standard provides detailed

definitions for six levels of driving automation, see Fig. 1.1. The stages define how

the task of operating a vehicle is divided between a human and a driving automation

system. When the human performs the entire Dynamic Driving Task (DDT), the SAE

standard classifies this as Level 0 (No Driving Automation). At Level 5 (Full Driving

Automation), the DDT is executed entirely by the automated driving system.

SAE J3016TM LEVELS OF DRIVING AUTOMATIONTM

DRAFT- Stand alone

• lane centering

 OR

• adaptive cruise 
control

• local driverless 
taxi

• pedals/
steering 
wheel may or 
may not be 
installed

• lane centering

  AND

• adaptive cruise 
control at the 
same time

• same as 
level 4, 
but feature 
can drive 
everywhere 
in all 
conditions

• automatic 
emergency 
braking

• blind spot 
warning

• lane departure 
warning

• traffic jam 
chauffeur 

You are driving whenever these driver support features 
are engaged – even if your feet are off the pedals and 

you are not steering

You are not driving when these automated driving 
features are engaged – even if you are seated in 

“the driver’s seat”  

These automated driving features 
will not require you to take 

over driving

You must constantly supervise these support features; 
you must steer, brake or accelerate as needed to 

maintain safety

What does the 
human in the 
driver’s seat 
have to do?

Example
Features

When the feature 
requests,

you must drive

These are automated driving features
These features 

provide 
steering 

OR brake/
acceleration 
support to 
the driver

These features 
provide 
steering 

AND brake/
acceleration 
support to 
the driver

These features can drive the vehicle 
under limited conditions and will 

not operate unless all required 
conditions are met

This feature 
can drive the 
vehicle under 
all conditions

These features 
are limited 

to providing 
warnings and 
momentary 
assistance

These are driver support features

What do these 
features do?

SAE 
 LEVEL 0TM

SAE 
 LEVEL 1TM

SAE 
 LEVEL 2TM

SAE 
 LEVEL 3TM

SAE 
 LEVEL 4TM

SAE 
 LEVEL 5TM

Copyright © 2021 SAE International. 

Copyright © 2021 SAE International. The summary table may be freely copied and distributed AS-IS provided that SAE International is acknowledged as the source of the content.

Learn more here:  sae.org/standards/content/j3016_202104

Figure 1.1: Levels of driving automation as defined by the SAE J3016 standard. Figure
taken from [9].

Referring to the issues of increasing traffic safety and passenger comfort, promoting

the use of self-driving cars could be a possible solution to reduce traffic accidents and

the socioeconomic burden of traffic fatalities [7], but also to increase passenger comfort

by relieving them of the task of driving in traffic. In [10], the potential cost savings from
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1 Introduction

the introduction of automated driving systems (SAE Level 5) were calculated. Under

an optimistic scenario, accidents are estimated to decrease by 90%, resulting in savings

of 1.6 trillion dollars in the period as in the conservative case.

Before there can be widespread use and acceptance of autonomous driving vehicles,

driverless vehicles must demonstrate that they are capable of reliably performing the

DDT in order to gain social acceptance. This means not only that the vehicle can drive

from point A to point B, but also that it does so in a way that makes passengers feel

safe and comfortable with giving up control of a vehicle. Passengers will only accept

and rely on ADAS or autonomous vehicles if they feel comfortable and therefore will

not urge them to take control of the vehicle. One approach to strengthen trust in the

systems could be to control the vehicle as if it were being driven by a human driver.

Another option would be to make the intentions and actions of the automated driving

system more transparent, for example by providing information via displays and audio

about what the car is doing and plans to do in the future [11].

How can this thesis contribute to solve this problem in the presence of road obstacles

such as speed bumps and pedestrian crossings? Providing information alone may not

be enough to give people a complete sense of security and trust. It may be that the

human passenger perceives the actions of the vehicle as unnatural or not human-like and

therefore disapproves of how the vehicle is being driven as unsafe. At a road obstacle,

rapid deceleration/acceleration could cause the passenger to feel uncomfortable and loose

trust in the underlying system. To cope with this problem, a human driver model is

incorporated into the system which assesses actions as humanly as possible.

If the focus is now shifted from real-world driving applications to a more economic

consideration, a human driver model that resembles human driving behavior in the

presence of obstacles may also be relevant in vehicle development, traffic flow studies,

and research where the combined overall human-vehicle system is studied [12]. In vehicle

development, capturing the behavior of a human driver in form of a driver model can

help reduce development costs by shifting costly experimental road tests to a simulator.

Model Predictive Control (MPC) can be used here to incorporate human driving

behavior and create a driver model that plans speed trajectories in the presence of

obstacles on the road with the goal of driving as comfortably and human-like as possible.

With the MPC it is even possible to map different driver characteristics, e.g., reaction

times, or to map completely different drivers, e.g., an aggressive or a conservative driving

style.

4



1 Introduction

1.2 Aim of the Thesis

To summarize the motivation, a suitable representation of the human driver specifically

for speed control in the presence of road bumps can be helpful to improve passenger

comfort and thus help in autonomous applications as well as in automotive development.

In this thesis, a novel predictive driver model for speed control in the presence of road

obstacles should be developed:

• A comprehensive cost function is developed that enables human-like acceleration

and/or speed trajectories in the presence of road obstacles.

• A simple vehicle model is introduced that captures relevant effects of the longitu-

dinal and vertical motions of a vehicle.

• Based on a cost function and vehicle model, a model predictive controller (MPC)

is introduced which performs a trajectory optimization problem and solves for the

optimal speed and/or acceleration trajectory.

• Analysis of speed profiles from a human point of view for approaching, passing and

departing different road obstacles (speed bumps, crosswalks, ...).

Summary: Aim of the Thesis

The aim of this work is to represent human vehicle speed control using a model

predictive controller (MPC) in the presence of road obstacles. The objective is to

design a cost function and optimization problem with emphasis on human driving

style and generate robust speed and/or acceleration trajectories. The vertical and

longitudinal motions of the vehicle are to be captured by a simple model and are

taken into account by a comfort criterion.

Research Questions Proceeding from the aim of this thesis to design a predictive driver

model for longitudinal vehicle control based on a model predictive control approach, the

following research questions are formulated.

5



1 Introduction

Research Questions

1. How can human longitudinal vehicle control be modeled with a model predic-

tive controller?

2. How to determine suitable driving speed profiles from a human point of view

for approaching, passing and departing different road obstacles (speed bumps,

crosswalks, ...)?

3. How can human properties such as dexterity, skill, driving style and reaction

time be incorporated into the driver model?

1.3 Structure of the Thesis

The remaining parts of the thesis are structured as follows.

In Chapter 2, background information is given on related work, vehicle models, driver

modeling, and control theory, especially model predictive control (MPC).

In Chapter 3, the underlying system dynamics representation of the human driver

model is formulated. Therein, models for the internal representation of the vehicle in

the driver model are formulated and investigated. A simulation environment is developed

for the vehicle–road system in which the driver model can be tested. The simulation

model is based on common vehicle models used in vehicle dynamics literature under

respective assumptions. Two models are used in this work: The quarter-car model,

which captures the vertical motion of one corner of the vehicle, and the half-car model,

which additionally captures the pitching motion of the vehicle. Therefore, the latter

model should reflect the real driving scenario more accurately.

In Chapter 4, a nonlinear model predictive control method for trajectory planning

is proposed, which forms the basis for the novel predictive driver model. This section

provides the context for answering the research question stated in Section 1.2. Therein,

the driver model is initially based on the assumption that the driver has only a limited

understanding of the movements that occur when passing an obstacle. For this purpose,

a predictive driver model is designed on the basis of a simple quarter-car model. The cost

function of the MPC – which defines the optimization objective – is regressed on various

comfort measures, and a suitable choice thereof is made with respect to human driving

6



1 Introduction

behavior. Afterwards, it is assumed that an experienced driver also has knowledge about

the pitching motion of the vehicle. For this purpose, the MPC is further developed to

take into account pitching motion via the half-car model.

In Chapter 5, the proposed predictive driver model is demonstrated with some ex-

amples such as potholes, bumps of different length and height and pedestrian crossings,

which in turn are used to validate the methods and control schemes proposed in Chap-

ter 4. The driver model, either with the quarter-car or with the half-car as internal

model, are subjected to be tested on different road obstacles and their performance is

evaluated in the simulation environment.

The final Chapter 6 concludes with answering the research questions and proposing

possible directions for future work.

7



2 Literature Review and Background

This chapter is intended to provide a brief overview of previous research related to this

thesis. First, literature with focus on increasing ride comfort in the context of vehicle

speed in the presence of road bumps is discussed. Subsequently, the focus of this chapter

is shifted to research work on active and semiactive suspension in the context of comfort

optimization for uneven road surfaces. Therein, different vehicle models are discussed,

which are also applicable to the posed problem in the thesis. Several commonly used road

profiles in research are also covered. The next section shifts the focus to human driver

modeling, and the remainder of the section specifically explains why model predictive

control (MPC) is particularly of use to create a driver model. In the last section, a brief

and general introduction to MPC itself is given.

2.1 Longitudinal Control with Respect to Comfort

Few publications were found that directly address the adjustment of vehicle speed near

a speed bump to improve experienced passenger comfort.

A publication that seeks to improve vehicle comfort by adjusting vehicle speed near

elevation was published by Wu [13]. Therein, perceived passenger comfort is optimized

in two ways: First, global road data, including upcoming obstacle information, is used

to optimize the speed profile through dynamic programming. Second, a MPC is used for

a nonlinear semiactive suspension system. Therefore, not only the comfort is improved

by actively modifying the suspension, but as well by adjusting the vehicle speed. For the

suspension control, a hybrid MPC with varying preview horizon as a function of vehicle

speed is used and shows large improvements in ride comfort compared to a Skyhook

system and several other MPCs, e.g. a MPC with fixed preview time. One drawback

of the proposed method is that the global road information has to be available for the

speed planing, which in many cases cannot be guaranteed. Additionally, the underlying

dynamic programming problem only allows the vehicle speed to increment in predefined

increments and therefore restricts the solution to a set of trajectories.

In [14], a model predictive control of engine torque and braking in the presence of road

8



2 Literature Review and Background

(a) Two degree-of-freedom quarter-car
model taken from [15]. (b) Full-vehicle model taken from [16].

Figure 2.1: Depending on the problem, different complex models are required to capture
the desired motions. A simple quarter-car model (a) can be sufficient to
capture ride comfort. More complex model (b) can be necessary when lateral,
longitudinal and vertical motions are investigated.

bumps is presented. In this paper, the authors investigated to improve the behavior of

the vehicle when passing two obstacles at very low speeds: A stepped obstacle resembling

a curb on a sidewalk and a cable bridge were chosen. The focus of this work is more

on achieving a constant vehicle acceleration in the longitudinal direction to smoothly

negotiate the obstacle at low speeds, for example, than on planning the vehicle speed

directly. The idea in the paper is that the vehicle comes to a stop before the obstacle and

the obstacle should be climbed comfortably with a constant longitudinal acceleration.

The MPC in this work does not consider the comfort in the vertical vehicle direction,

but rather tries to reduce the inconvenience of passing over the obstacle by following a

given vehicle acceleration in the longitudinal direction – thus improving the ride comfort

in the longitudinal direction.

2.2 Suspension Control with Respect to Comfort

Control of active or semi-active suspension systems in the presence of road obstacles

has attracted considerable interest from researchers. Since many of the applied vehicle

models, control methods, and so forth also apply to the application considered here in

the thesis, these will now be discussed.
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2 Literature Review and Background

Vehicle Model The choice of the vehicle model is dependent on the application and the

dynamics to be captured. In cases where ride comfort in the presence of uneven roads

or road obstacles are investigated, it is a common approach to model only the vertical

motion of a vehicle with a quarter-car model [17]–[21]. The quarter-car model – though

quite simple – reasonably reproduces the vertical motion of a vehicle. If more than one

axle or additional vehicle motions are to be captured, such as pitching or lateral motions,

more detailed models, such as the half-car or full-vehicle models are required [17], [22]–

[24]. The choice of the model depends on the particular problem and thus also on the

dynamics of interest.

Fig. 2.1 shows two vehicle models representing these examples: The quarter-car model

at the left-hand captures only the vertical motion, while the full-vehicle model at right-

hand allows to capture the lateral and longitudinal motions as well.

A good example of the use of different complex models is given in [25]. Here, a

vehicle with a Fully Active Suspension (FAS) is investigated in the presence of cosine-

shaped road bumps and potholes of different heights and lengths. The vehicle dynamics

are modeled with both a quarter-car model and a 10-degree-of-freedom model, and the

potential for cooperative control of the front and rear FAS actuators are investigated.

Control Methods Optimal control theory has been widely applied to automotive appli-

cations. For a comprehensive overview, please refer to the article by Sharp [26]. A broad

spectrum of modern control theory finds application especially in the field of suspension

control for comfort optimization:

1. Linear Quadratic Regulator (LQR) in [27].

2. Model Predictive Control (MPC) in [16], [19], [20], [22], [24], [28].

3. Explicit MPC where a multi-parametric problem is solved to find a piece wise affine

solution as in [18], [21].

4. Explicit MPC-based Gaussian radial basis function neural networks (RBF-NN)

[18].

5. Robust control theory for example in the form of H∞-control as found in [29].

In addition to the wide application of various control methods, MPC is becoming

increasingly popular in the automotive industry, according to [30]. MPC has several

inherent advantages over other methods: It not only allows to find an optimal solution

for the underlying control problem, but it also allows arbitrary constraints to be satisfied,
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such as an anti-wheel-hop constraint for speed bumps in [25], non-linear constraints on

the damper characteristics in [16], or soft constraints on the tire load, pitch and roll of

the vehicle in [17] to enhance the handling performance. One of the biggest advantages is

that a model predictive controller is able to predict future system states, thus being able

to react proactively and prepare for future excitations or disturbances on the system.

However, the work in [18] addresses one of the major drawbacks of model predictive

controllers: computation time. Therein, a model predictive controller was devised in

combination with a Kalman-Filter to estimate non-measured states for a quarter-car

model. As mentioned in the paper, a major drawback of solving an optimal control

problem online is the computational cost. One solution to this problem entails finding the

explicit solution to this optimal problem, as is done in [21]. However, the explicit solution

scales very poorly with the size of the optimization problem and the computational

advantage can turn into a disadvantage quite quickly. Therefore, in [18] the explicitly

solved MPC was approximated by a Gaussian neural network with radial basis function

to speed up the online computation.

Cost Function: Comfort Criterion Most of the control methods mentioned have a cost

function in common, via which a control input is to be optimized. The cost function

takes on an essential position here, as it can be used to tailor the problem specifically

to the application. The cost functions are designed to achieve specific objectives, such

as minimizing sprung mass acceleration to increase ride comfort or minimize tire load

variations to support vehicle handling. To improve ride comfort, the cost function typi-

cally incorporates the sprung mass acceleration as a measure of discomfort, additionally

some measure again for the tire load variations and cost for actuator forces in case of

semi-active or active suspension systems [17], [18], [20]. In cases with higher degrees of

freedom models where multiple modes of the vehicle are captured, it is also common

to include, for example, pitching motion in the cost function to penalize severe vehicle

nodding when going over bumps.

Road Profiles Particularly in the effort to improve ride comfort, the road irregulari-

ties and obstacles which excite the vehicle when driving through a road section are of

importance. Here, several profiles have distinguished themselves in the literature as a

testing ground for comfort-seeking control methods:

1. Stochastic road excitations [15], [16], [18].

2. Speed bumps and potholes with cosine shape [25] or triangular shape [24].
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It should also be mentioned in this context that all publications mentioned so far

assume a constant speed of the vehicle when driving over uneven road surfaces and

can therefore assume a constant preview horizon or a constant preview duration. This

assumption allows to know in advance when the vehicle will experience the road obstacle

or disturbance.

2.3 Human Driver Modeling

The previous section focused exclusively on the vehicle as a dynamic system. Yet, it has

always been of interest to researchers to investigate the role of the human driver as the

primary control element within the traditional driver-vehicle system. The systematic

study of automobile vehicle dynamics was initiated in the early 1940s and shortly there-

after, in the mid-1950s, the influence of the driver in the context of vehicle dynamics

began to gain research interest [12]. A suitable driver model and understanding of the

vehicle-driver-road system is not only interesting from a scientific point of view, but

can also help to reduce the time and cost of vehicle development by mathematically

simulating the driving conditions rather than relying on costly field test [31], [32].

Control Tasks Among others, the driver has two control tasks to perform in a vehicle:

longitudinal control and lateral control. From these control tasks, several subtasks can

be derived for a human driver model, e.g., keeping the vehicle on the road, following other

vehicles, road pursuit, collision avoidance, lane keeping, and many more [33]. Modeling

the full capabilities of a human driver using only “if-then” expressions would contain

about 10 000-50 000 rules [33]. Thus, mathematical modeling of the human driver has

been a heavily researched topic for many decades. Comprehensive reviews and overviews

of driver modeling are provided by Plöchl and Edelmann [12], Macadam [34], Delice and

Ertugrul [33], and most recently, Cole [31].

Characteristics of a Human Driver The model of a human driver should consider

various human features, such as the physical limitations and control behavior of a hu-

man. Macadam [34] states that a model of a human driver should have some essential

properties and characteristics of a human driver such as:

• the integration of a transport time delay or reaction time of the driver,

• the use of preview information by the driver to detect upcoming lateral and longi-

tudinal control demands,
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• the driver’s ability to adapt to changing vehicle dynamics and operating conditions

and

• the use of an internal vehicle model to estimate future vehicle behavior.

Macadam [34], Plöchl and Edelmann [12] elaborate on the human driver model further

and state, that an advanced driver model should try to capture not only the essential

characteristics but also:

• visual, vestibular, tactile, auditory information reception,

• a pipline for perception and processing of perceived information,

• neuromuscular dynamics with thresholds, time delays and limitations,

• planning capabilities for path and speed,

• adaption/learning of the human driver and

• the ability to adjust to specific types of driving styles based on, e.g.:

– age,

– experience/skill,

– willingness to take risks,

– different levels of concentration,

– tiredness,

– stress and

– emotions.

Driver Models The task of driving and steering a vehicle is often divided into two,

three, or four levels of control. More recently, predictive control has also been used as a

method to view driving tasks holistically rather than separately at different levels.

In the simplest case of a two-level driver model, the control structure consists of an

anticipatory open-loop (feedforward) and a compensatory closed-loop (feedback) control,

see Fig. 2.2. In the case of controlling the steering input of a vehicle, the anticipatory

loop may be associated with the generation of a drivable trajectory through a curve [35]–

[37]. For example, the trajectory generation may be based on an experiential knowledge

between steering input and road curvature. The task of the compensatory loop is to
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Figure 2.2: Two-level driver model for steering control, taken from [37]. The driver
model consists of an anticipatory open-loop and compensatory closed-loop
control.

ensure that the vehicle can follow the anticipated trajectory and to correct internal and

external disturbances.

The two-level model can be extended to a third level, which takes large local deviations

into account [12], [32]. In the case of local deviations, large feedback compensations can

arise and lead to undesired driving behavior. Therefore, in [32] a three-level driver is

introduced which in cases of large local disturbances tries to smoothly transition back to

the road trajectory. Preview steering tasks (anticipatory loop) will be of minor impor-

tance during this maneuver. Therefore, in critical situations, the third level controller is

activated and the others deactivated.

In [12], a method is described in which “steering by experience” is introduced as a

fourth level of control. The idea is based on the adaptation of the driver model in

difficult but recurring driving scenarios. Thus, the driver model is not static, but adapts

dynamically to the situation.

More recently, the focus of research has shifted to the application of model predictive

control to model the driver. Based on a model, controllers are able to consider future

travel paths, predict trajectories and calculate an optimal control sequence [38]. Thus,

MPC is a natural choice to represent the cognitive thought process of a human driver,

as it is based on the assumption that a human makes predictions based on an internal

representation of the situation [31]. MPC can be used for predictive control by generating

optimal speed and steering trajectories, for example. The model predictive controller

combines the anticipatory and feedback tasks, as the control scheme can be executed in

14



2 Literature Review and Background

a feedback loop.

For a detailed consideration of driver models, the extensive review by Plöchl and

Edelmann [12] is recommended.

2.4 Model Predictive Control

This section gives a general introduction to model predictive control. A model predictive

controller calculates an optimal control input for a given dynamical system – the model –

in order to minimize a specified cost criterion. Thus, an optimization problem arises. The

cost criterion can be used to perform a specific task like reference tracking, minimizing

actuator input, suppress or shape certain dynamics. The controller can be enhanced

to include constraints on states, input and output of the system in an optimal fashion.

MPC is not limited to linear system dynamics compared to Linear Quadratic Regulator

(LQR) or simple feedback control. The control method is intuitive as the decision making

process for finding the current control input also considers its future influence on the

system. This “planning” or prediction is intuitive for controlling, for example, a vehicle.

Model The optimal control problem can be defined for either a continuous- or a

discrete-time system. In general, a discrete-time approach is preferred when working

with complex, higher-dimensional and nonlinear systems, since the available solvers in

many cases outperform the solvers for the continuous case. In Fig. 2.3, the prediction

step for a discrete MPC is illustrated. The state trajectories are planned until a certain

horizon is reached, and an optimal input trajectory that minimizes a given cost function

is planned for the same duration.

This thesis focuses on the discrete-time formulation of an MPC. Therefore, only the

discrete-time MPC will be considered from this point on. A detailed consideration of

both continuous and discrete-time MPC can be found in [39]. It is assumed that a given

control problem is governed by the following difference equation with scalar input:

xk+1 = f(xk, uk) , (2.1)

where the time step index k ∈ {0, 1, 2, . . .} defines a time lattice tk = kTs with sampling

time Ts ∈ R>0. The states of the system xk ∈ X and control input uk ∈ U for ∀k with

the dynamics f(·) define the difference equation. For the set X of permissible states and

the set U of permissible inputs

{0} ⊂ X ⊆ Rm , {0} ⊂ U ⊆ R (2.2)
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Figure 2.3: Concept of MPC: Predicted and passed states, planned and applied inputs
schematically sketched at time step tk. Figure adapt from [39], [40] for
discrete-time.

must hold, where m is the number of states. For the MPC formulation, a second, local

prediction time grid with Np ∈ Z>0 sampling intervals, n ∈ {0, 1, 2, . . . , Np} as local

index is introduced so that the beginning of the grid at n = 0 is equal to tk. Note that

the sampling time Ts is the same for the local and global grids.

Optimal Control Problem (OCP) With the given difference equation (2.1) and the ad-

missible sets (2.2), the model predictive optimization problem can be written as follows:

Ũ∗
k = argmin

Ũk

J(k,xk, Ũk) (2.3a)

s.t. x̃k|n+1 = f(x̃k|n , ũk|n ) , x̃k|0 = xk , (2.3b)

x̃k|n ∈ X , ũk|n ∈ U , ∀n = 0, 1, . . . , Np − 1 (2.3c)

x̃k|Np
∈ XT , (2.3d)

where xk is given as the starting point for the prediction, x̃k|n are predicted states, ũk|n
are planned inputs and yield the planned input sequence Ũk =

�
ũk|0 , ũk|1 , . . . , ũk|Np−1

�
.

J(·) is the scalar optimization criterion or cost function. The cost function is generally a
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summation over the prediction grid. The constraints of states and inputs are contained

in the definition of the sets X and U in (2.2). Sometimes it may be useful to add terminal

conditions at the end of the prediction horizon x̃k|Np
, as seen in (2.3d). For the terminal

set XT , the condition {0} ⊆ XT ⊆ X must hold. The optimization problem (2.3) is

solved in a receding horizon fashion in every time step k, i.e. the first planned input

ũ∗k|0 of the optimal input sequence Ũ∗
k is applied to the system. Then the OCP is solved

again at the next time k + 1.

Solving the OCP Solving the OCP in (2.3) can be a complex undertaking, depending

on the cost function, the system dynamics and the constraints. In the generalized case

of a nonlinear optimization problem, the problem is categorized as a static optimization

problem that can be either constrained or unconstrained. For the unconstrained case,

there are various methods, e.g., steepest descent method, conjugate gradient method,

Newton method, Quasi-Newton method or Gauss-Newton method [41], [42]. When

constraints are introduced, the whole problem becomes more sophisticated as one has

to check whether certain constraints are active and should be considered or not. A

minimum in a static optimization problem with equality and inequality constraints is

defined by the Karush-Kuhn-Tucker (KKT) condition. Various solvers such as sequential

quadratic-programming (SQP), the interior-point algorithm (IP) or the active-set (AS)

method have been developed to solve such a problem and are contained in the fmincon-

Algorithm provided in Matlab [43]. For a neat list of solvers, see [42, pp. 30–32].

For a short introduction to model predictive control and nonlinear programming, the

overview [26] is recommended which focuses on the automotive application. For a deeper

understanding, the online available lecture notes by Prof. Steinböck [41] and [39] may

be considered. As a simple introduction to model predictive control, an example is given

in Appx. B.
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Before directly addressing the predictive driver model for speed control in the presence

of road obstacles, it is first necessary to deal with the representation of the vehicle in

the driver’s mind – the internal model of the car. This internal model is designed to

give the driver a precise idea of the excitation of the vehicle by the road, and thus of the

vehicle’s response and movements and the impact on the perceived comfort. Based on

this model, the driver decides from experience how best to behave – either keeping the

speed constant, accelerating or braking the vehicle.

Figure 3.1: Given vehicle1and road obstacle, the driver uses a representation (model) of
the scenario to assess how the road will affect the experienced comfort. This
assessment of the observed situation leads to an adjustment of the driving
speed and affects, for example, the vertical body acceleration – shown here
in red – which is commonly seen as a comfort measure. The experienced
comfort is therefore mainly influenced by vehicle dynamics, road obstacle
and vehicle speed.

To arrive at a dynamic model, some levels of abstraction must first be discussed. The

question naturally arises as how detailed the vehicle model in the driver’s mind generally

is. Does it take into account the drivetrain dynamics, brake dynamics, aerodynamics

or to what extent does the driver take into account the chassis? Of course, it depends

very much on a driver’s skills, experience, and the extent to which he or she is familiar

with the vehicle. This work attempts to represent the driver’s planning process for

a comfortable speed profile for a given road excitation in form of a MPC. Therefore,

one wants to keep the model rather simple in order to make the subsequent MPC not

too complex. Hence, it is a useful assumption to concentrate only on the chassis and

1Vehicle graphic from vecteezy.com
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to neglect most other dynamics. In this work, the chassis model is considered as the

abstraction limit and no other components are taken into account. As already shown

in the introduction, there are considerable differences in the chassis models, especially

concerning the order and complexity of the model.

For the most general case of an uneven road, still a detailed car model is required to

represent the interactions between the left and right side of the vehicle (roll motion), the

front and rear (pitch motion and yaw motion) and lift motion of the vehicle as shown in

Fig. 2.1b. With some assumptions, the modeling process can be drastically simplified to

produce simple models that represent the vertical motions that are essentially responsible

for perceived passenger comfort:

Assumption 1 (Road Assumptions) The following assumptions are chosen for the

driver’s internal vehicle model:

Asm. A: The road excitation of the left and right lanes are identical and the vehicle

is symmetrical about its longitudinal axis. Thus, the vehicle movements are

reduced to planar motions.

Asm. B: The road contact with the vehicle is approximated by a single point. Since the

tire contact patch is concentrated into one point, a sufficiently large curvature

of the road can be considered only.

For a complete and detailed description of the complex interrelationships of the various

chassis components and their modeling, reference should be made here to Mitschke’s

standard textbook [44]. Since this book is only available in German, reference should

also be made here to the work by Jazar [45].

In this thesis, two vehicle models are investigated. First, the quarter-car model is

presented. As shown in the literature section, the quarter-car model has found wide

application in the field of comfort optimization and vehicle control in general. This is

mainly due to its simplicity. A main limitation of the quarter-car is that it only captures

the dynamics of one axle and cannot represent the pitching motion of the vehicle when

passing over a road obstacle. Therefore, the half-car model is presented, which models

two axles and should better reflect the real driving scenario.

In the following, equations of motion in state-space representation are sought to predict

the state of the vehicle. These models form the basis for the subsequent formulation of

the trajectory optimization problem in form of a MPC. A model is given as follows:

ẋ = f(x, u, z) . (3.1)
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Here x ∈ Rn is a state vector, the input is given by u ∈ R, and the disturbance, in this

case the road excitations, are given by z ∈ Rp. The number of states n and disturbances

p depend on the underlying vehicle model. The dynamics of the vehicle are delegated

by the mapping f : Rn × R× Rp → Rn.

In the remaining sections of this chapter, the quarter-car is presented in Sec. 3.1 and

the half-car in Sec. 3.2 – with a special look at suspension modeling in Sec. 3.3 and

Sec. 3.4. The final state-space equations for both models are given in Sec. 3.5. This

chapter is concluded by a brief look at individual road elevations in Sec. 3.6 which are

used in this work.

3.1 Quarter-Car: Two-Mass Model

The quarter-car model, as shown in Fig. 3.2, consists of two masses: The body mass mB

and wheel mass mW . The suspension consists of a nonlinear progressive spring and a

damper with nonlinear damping characteristics. The individual suspension components

are covered in separate sections later in this chapter. The tire is modeled by a linear

spring and damper. In addition to the Asm. 1, the following applies:

Assumption 2 (Quarter-Car Assumptions) The following assumptions are chosen

in addition to the Asm. 1 for the driver’s internal vehicle model:

Asm. A: The elastic properties of the tire are approximated by a simple damper spring

model. The tire force is presumed to always act vertically.

Asm. B: The suspension and tire masses are part of either the sprung mass mB (body)

or the unsprung mass mW (wheel).

Asm. C: The sprung and unsprung mass experience the same longitudinal velocity and

longitudinal acceleration. No rotations of the masses are allowed.

Asm. D: The “drive-train” force FD is presumed to act as external force on the sprung

mass.

Equations of Motion Based on the free-body diagram in Fig. 3.2b, the governing

equations for the longitudinal and vertical directions are derived. Since the vehicle

model is rigid in the longitudinal direction and no rotation of the sprung and unsprung

masses is possible, the equation of motion in the longitudinal direction simply reads:

(mB +mW )s̈ = FD . (3.2)
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(a) Quarter-car model.
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(b) Free-body diagram.

Figure 3.2: Quarter-car model: Mass mB represents the (quarter of) the vehicle body,
mass mW represents one wheel. The horizontal force FD may be understood
as a “drive-train” force. Depending on the sign of FD, the vehicle is either
accelerated or decelerated. The vehicle is excited from the road via the road
elevation ζ. The movement of the wheel mass is measured from the static
equilibrium via zW . The movement of the body mass is measured from the
static equilibrium via zB.

Here mB is the sprung mass (car body), mW is the unsprung mass (car wheel), FD is

the “drive-train” force responsible for braking and accelerating the vehicle and s is the

distance traveled on the road and s̈ the vehicle acceleration, respectively. The equations

of motion in vertical direction are given by:

mB z̈B = −FgB + FkS + FcS , (3.3)

mW z̈W = −FgW − FkS − FcS + FkT + FcT , (3.4)

with the suspension spring force FkS which is modeled in detail in Sec. 3.3, the suspension

damper force FcS given by a piece-wise affine (PWA) law in Sec. 3.4, gravitational forces

FgB and FgW and linear tire forces FkT and FcT . The model is further developed into a

state-space description in Sec. 3.5.
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3.2 Half-Car: Two-Axle Model

The previous vehicle model represented only one quarter and one axle of a vehicle and

therefore could not capture the pitching motion. The half-car shown in the Fig. 3.3

captures not only the vertical motion but also the pitching of the vehicle. The front and

rear axle of the vehicle share a combined sprung mass (body). As with the quarter-car,

further assumptions are made:

Assumption 3 (Half-Car Assumptions) The following are required in addition to

Asm. 1, Asm. 2.A, Asm. 2.B and Asm. 2.C:

Asm. A: The pitch angle ϕB remains small. The pitching motion is linearized2 for

small pitch angles ϕB � 1 around the static equilibrium, e.g. ϕB = 0.

Asm. B: The rear wheel travels in the same track as the front wheel and thus expe-

rience the same excitation from the road. The excitations at the front and

rear axle are time delayed, which depends on the wheelbase L = lr + lf and

the driving speed v.

Asm. C: No rotation of the unsprung masses are allowed.

Asm. D: The ”drive-train“ force is decomposed into a braking force FB and driving

force FT which act as external forces on a massless rod connected to the

sprung mass.

The half-car model in Fig. 3.3 composes of the front and rear wheel mass mW,f and

mW,r and the body (mass mB, pitch moment of inertia IB w.r.t. the center of mass).

The models for suspension spring and damper as well as for the tires are the same at

the front and rear axle, but a different parameterization of the front and rear is used.

The representation of the driving force FD has been replaced by a braking force FB and

driving force FT . Under real conditions, the drive and braking forces act in the tire

contact patches and would lead to pitching during braking or acceleration, depending

on the chassis geometry and drivetrain layout. To account for this, a massless rod with

different leverage lengths is introduced at the center of mass. Depending on whether the

vehicle is braked or accelerated, the point of application of the force changes, as shown in

the Fig. 3.3a. With the variable set of lengths hi ∈ {hT , hB}, the forces induce different
pitching moments.

2This simplification is justified by the fact that no larger pitch angles from 5° ≈ 0.09 rad are expected
in sharp braking and acceleration maneuvers, see [44] and Chapter 5.
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Figure 3.3: Half-car model: FB is the braking and FT is the driving force. Depending
on FB and FT different leverage lengths are used to induce different pitching
moments. The vehicle is excited from the road via the road elevation ζr on
the rear and ζf on the front. All movements are measured in relation to the
static equilibrium position.

23



3 Vehicle Model

Equations of Motion Based on the free-body diagram in Fig. 3.3b, the governing

equations for the longitudinal and vertical directions are derived. The equation of motion

in the longitudinal direction is simple:

(mB +mW,r +mW,f )s̈ = FT − FB� �� �
FD

. (3.5)

Here mB is the sprung mass (car body), mW,r and mW,f are the unsprung masses for the

rear and front wheels, respectively. FB and FT are the forces for braking and accelerating

the vehicle and combined similar to the driving force FD in the quarter-car. The vertical

equations of motion for the sprung mass mB is given by (3.6). The pitching motion is

given by (3.7). The lifting motion of the rear and front wheels are given by (3.8) with

the index i ∈ {r, f} referring either to the rear or front suspension:

mB z̈B = −FgB + FkS ,r + FcS ,r + FkS ,f + FcS ,f , (3.6)

IBϕ̈B = FBhB − FThT + FkS ,rlr + FcS ,rlr − FkS ,f lf − FcS ,f lf , (3.7)

mW,iz̈W,i = −FgW ,i − FkS ,i − FcS ,i + FkT ,i + FcT ,i , (3.8)

where FkS ,i is mapped according to the same model as for the quarter-car in Sec. 3.3.

The suspension damper force FcS ,i is given by a PWA law in Sec. 3.4. lf and lr are the

distances from the front and rear axle to the center of mass (CoM).

3.3 Suspension Spring Model

In this work, a nonlinear spring model is chosen for the chassis. Usually, the human

driver is aware of the fact that the vehicle suspension has a limited suspension travel, as

at a certain point the spring is completely compressed. There is also a limited deflection

when the suspension is released. However, before the end of the suspension travel in

both directions is reached, progressive behavior sets in before this. In Fig. 3.4a, the

chosen spring model is sketched. The spring curve consists of a linear range around the

static rest position. After a certain amount of clearance Δzcmp, a gentle progression

occurs during compression. In the opposite direction, after a slightly larger clearance

Δzrbd, a strong progression occurs during rebound.

As seen from the figure, the spring curve is split into a static, linear and nonlinear
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deflection ΔzS,dyn

suspension spring force

static

linear

nonlinear

combined

rebound compression

(a) Static, linear and nonlinear components of suspension spring force.

defelction ΔzS,dyn

nonlinear component

clearance Δzcmp

compression

ΔzF,cmp = ΔzS,dyn −Δzcmp

rebound clearance Δzrbd

ΔzF,rbd = −ΔzS,dyn −Δzrbd

3

2

1

(b) Nonlinear component of suspension spring model.

Figure 3.4: Suspension spring: In (a) the suspension spring force-deflection relationship
is sketched. In (b) the nonlinear part is solely plotted. Suspension force
is given over suspension deflection ΔzS,dyn from static equilibrium position
ΔzS,stat. Total deflection: ΔzS = ΔzS,stat +ΔzS,dyn. In case of the quarter-
car, ΔzS,dyn is defined as zW − zB. For the half-car, the rear deflection
ΔzS,dyn,r is given by zW,r − ϕBlr − zB and the front deflection ΔzS,dyn,f by
zW,f + ϕBlf − zB.
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component3:

FkS = FkS ,stat + FkS ,lin + FkS ,nonlin .

The static and linear parts of the suspension model are straightforward and provided

in Sec. 3.5 in combination with the full state-space model. The nonlinear part is further

developed starting from a progressive spring characteristic for a constant natural fre-

quency under varying loading condition as derived in [44], [46]. The progressive model is

extended with additional parameters to allow fine tuning and to include clearance until

the onset of the progression. The nonlinear component of the total spring characteristic

in the compression (cmp) section – case 2 in Fig. 3.4b – is given as

FkS ,cmp (ΔzF,cmp) = kS

�
ΔzS,statf1,cmp

�
e
f2,cmp

ΔzF,cmp

ΔzS,stat − 1

!
−ΔzF,cmp

�
. (3.9)

For the rebound (rbd) section – case 3 in Fig. 3.4b – the nonlinear force is defined as

FkS ,rbd (ΔzF,rbd) = −kS

�
ΔzS,statf1,rbd

�
e
ΔzF,rbd

ΔzS,stat
f2,rbd − 1

!
−ΔzF,rbd

�
. (3.10)

The deflection in the progressive section is ΔzF,cmp for the compression stage and ΔzF,rbd

for the rebound stage which are defined in Fig. 3.4b. ΔzS,stat is the static equilibrium

deflection and kS is the linear spring stiffness. The parameter f1 is used to scale the

overall progression4 and f2 scales the curvature4 of the progressive rise. Note that in

the case of the half-car, for each axle exist different static equilibrium points ΔzS,stat as

well as that the parameters f1 and f2 vary between the front and rear. The delay until

the progressive part is active is given by Δzcmp or Δzrbd, compare Fig. 3.4b. Since the

progressive nonlinear component is basically unlimited and its force can increase expo-

nentially, this naturally leads to a limitation of the suspension travel. This knowledge of

the vehicle’s limited suspension travel may be expected from a skilled driver. The full

equation for the nonlinear part of the suspension force results to:

FkS ,nonlin (ΔzS,dyn) =

������
FkS ,cmp, case 2 for ΔzS,dyn > Δzcmp

FkS ,rbd, case 3 for ΔzS,dyn < −Δzrbd

0. else case 1

(3.11)

3For better readability, the equation is given without the subscript i, which in the case of the half-car
denotes the front or rear axle.

4For the sake of simplicity, the indexing for rebound, compression and axle was omitted.
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The necessary nature of such a complex model will be discussed later when some results

are considered and compared with a linear approach in Sec. 5.2.1.

3.4 Suspension Damper Model

The vehicle damper force-stroke relationship is approximated by a piece-wise linear

damper characteristic, similar to the models used in textbooks by Mitschke [44], Richter [46]

or in the publication [47]. The damper characteristics, as shown in Fig. 3.5, consists of

four linear sections: 1 low speed compression, 2 low speed rebound, 3 high speed

compression and 4 high speed rebound.

deflection speed vS

force

1

3

2

4

0

vz

vd

d2

d1

z1

z2

1 low speed compression

2 low speed rebound

3 high speed compression

4 high speed rebound

Figure 3.5: Suspension damper: The damper force-stroke relationship is split into low
and high speed compression and rebound sections. The transition velocities
vz and vd define the switch from low/high speed damping. Slopes z1, z2, d1
and d2 define the behavior of the damper in the respective sections. The
deflection speed vS is given for the quarter-car as żW − żB. For the half-car,
the deflection speed of the rear vS,r is given by żW,r − ϕ̇Blr − żB and for the
front damper the speed vS,f by żW,f + ϕ̇Blf − żB. The model is primarily
based on [47].
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The function that determines the damper’s final behavior is given as:

FcS (vS) =

������������

d1vS , case 1 for vd > vS > 0

z1vS , case 2 for vz < vS < 0

d2 (vS − vd) + d1vd , case 3 for vS ≥ vd

z2 (vS − vz) + z1vz , case 4 for vS ≤ −vz

(3.12)

where vd and vz are the transition velocities from the low to the high speed of the

compression and rebound stages, respectively. The deflection velocity vS is given in the

caption of Fig. 3.5. d1 and d2 are the slopes of the compression stage and analogously z1

and z2 are the slopes for the rebound stage. Similar to the suspension spring model, the

slopes and transition velocities may vary in the case of the half-car between the front

and rear axle. Similarly to the spring model, the necessity of such a complex model will

be discussed later when looking at some results and be compared to a linear approach

as well.

3.5 State-Space Models

In this section, the final state-space equations are derived by inserting the previously

derived spring model of Sec. 3.3 and the damper model of Sec. 3.4 into the vehicle models

of Sec. 3.1 and Sec. 3.2, respectively. In addition, the static displacement/equilibrium

point of the vehicle suspension and tire is derived and vehicle control input is briefly

discussed.

3.5.1 Quarter-Car

Starting from the equations in the vertical direction of the quarter-car model in (3.3)

and (3.4), the equations of motion are extended by inserting the gravitational forces and

the suspension spring model with the split into static, linear and nonlinear components:

mB z̈B = −FgB + FkS + FcS

= −mBg + FkS ,stat + FkS ,lin + FkS ,nonlin� �� �
FkS

+FcS , (3.13)
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mW z̈W = −FgW − FkS − FcS + FkT + FcT

= −mW g − FkS ,stat − FkS ,lin − FkS ,nonlin� �� �
FkS

−FcS + FkT ,stat + FkT ,lin� �� �
FkT

+FcT .

(3.14)

The nonlinear suspension component FkS ,nonlin is governed by (3.11). The damper force

FcS is given by (3.12). The remaining forces are yielded by the linear laws:

static suspension spring force: FkS ,stat = kSΔzS,stat , (3.15a)

linear suspension spring force: FkS ,lin = kS(zW − zB) = kSΔzS,dyn , (3.15b)

static tire spring force: FkT ,stat = kTΔzT,stat , (3.15c)

linear tire spring force: FkT ,lin = kT (ζ − zW ) = kTΔzT,dyn , (3.15d)

linear tire damping force: FcT = cT (ζ̇ − żW ) = cTΔżT , (3.15e)

with the linear suspension spring stiffness kS , linear tire stiffness kT and linear tire damp-

ing coefficient cT . ΔzS,stat, ΔzT,stat and ΔzS,dyn, ΔzT,dyn are the static and dynamic

deflections of suspension or tire.

Control Input The longitudinal motion is dictated by the drivetrain force FD in (3.2).

The equation is rearranged such that the vehicle acceleration is used as the new input

on the right hand side of the equation:

s̈ = v̇ =
FD

mB +mW
= a . (3.16)

Static Displacement The total spring/tire travel is composed of a static and a dynamic

component [44]:

ΔzS(t) = ΔzS,stat +ΔzS,dyn(t) , (3.17)

ΔzT (t) = ΔzT,stat +ΔzT,dyn(t) . (3.18)

From the vertical equation of motions in (3.13) and (3.14), the static displacement is

calculated by setting the time-dependent parts such as the velocities, accelerations, and

damping forces to zero. With the results from (3.15a) and (3.15c), the static displacement
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of the suspension and tire is calculated as:

0 = −FgB + FkS ,stat

= −mBg + kSΔzS,stat −→ ΔzS,stat =
mBg

kS
,

(3.19)

0 = −FgW − FkS ,stat + FkT ,stat ,

= −mW g −mBg + kTΔzT,stat −→ ΔzT,stat =
(mB +mW ) g

kT
.

(3.20)

Finally, the dynamic equations in (3.2) - (3.4) are simplified with the static displace-

ment in (3.19, 3.20) and the new input from (3.16) to yield the final set of equations:

z̈B =
1

mB
(FkS ,lin + FkS ,nonlin + FcS ) , (3.21a)

z̈W =
1

mW
(−FkS ,lin − FkS ,nonlin − FcS + FkT ,lin + FcT ) , (3.21b)

s̈ = a . (3.21c)

State-Space Model The set of Eqs. (3.21) can be transformed into a state-space model

by introducing the following state vector xq, input uq and disturbance/road excitation

zq with the index q denoting the quarter-car model:

xq =


xq,1

xq,2

xq,3

xq,4

xq,5

 =


ζ − zW

żW

zW − zB

żB

v

 , ẋq =
dxq

dt
=


ζ̇ − xq,2

z̈W

xq,2 − xq,4

z̈B

v̇

 , uq = a , zq = ζ̇ . (3.22)

The governing equations are further simplified by splitting them into a linear and a

nonlinear part by introducing a common linear system dynamics matrix Aq,1 ∈ R5×5,

as is standard in linear system control theory, and a nonlinear vector Aq,2 ∈ R5×1 which

maps the nonlinear state dynamics. Inserting the linear force equations from (3.15) and
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defining the input uq as the vehicle acceleration a, the state space model is obtained as:

ẋq =


0 −1 0 0 0
kT
mW

− cT
mW

− kS
mW

0 0

0 1 0 −1 0

0 0 kS
mB

0 0

0 0 0 0 0


� �� �

Aq,1

xq +


0

0

0

0

1


����
Bq

uq +


1
cT
mW

0

0

0


� �� �

Eq

zq

+


0

− 1
mW

0
1

mB

0


� �� �

Aq,2

FkS ,nonlin(xq,3) +


0

− 1
mW

0
1

mB

0


� �� �

Aq,2

FcS (xq,2 − xq,4) = fq (xq, uq, zq) ,

(3.23)

where Bq ∈ R5×1 is the input vector and Eq ∈ R5×1 the road excitation disturbance

vector. Last, in a more readable form, the state space equation with linear and nonlinear

dynamics:

ẋq = Aq,1xq� �� �
linear dynamics

+Bquq� �� �
input

+ Eqzq����
road excitation

+Aq,2 (FkS ,nonlin(xq,3) + FcS (xq,2 − xq,4))� �� �
nonlinear dynamics

.

(3.24)

The two degrees-of-freedom state-space model obtained herewith captures the lifting

motions of a vehicle driving on a road. The parameters used for the simulation study

are given in Appx. A.1.

3.5.2 Half-Car

Based on the equations of motion (3.6), (3.7) and (3.8), the following equations are

obtained by substituting gravitational, suspension and tire forces:

mB z̈B = −FgB + FkS ,r + FcS ,r + FkS ,f + FcS ,f

= −mBg + FkS ,stat,r + FkS ,lin,r + FkS ,nonlin,r� �� �
FkS,r

+FcS ,r

+ FkS ,stat,f + FkS ,lin,f + FkS ,nonlin,f� �� �
FkS,f

+FcS ,f

(3.25)
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IBϕ̈B = FBhB − FThT + FkS ,rlr + FcS ,rlr − FkS ,f lf − FcS ,f lf

= FBhB − FThT + (FkS ,stat,r + FkS ,lin,r + FkS ,nonlin,r)� �� �
FkS,r

lr + FcS ,rlr

− (FkS ,stat,f + FkS ,lin,f + FkS ,nonlin,f )� �� �
FkS,f

lf − FcS ,f lf

(3.26)

mW,iz̈W,i = −FgW ,i − FkS ,i − FcS ,i + FkT ,i + FcT ,i

= −mW,ig − FkS ,stat,i − FkS ,lin,i − FkS ,nonlin,i� �� �
FkS,i

−FcS ,i

+ FkT ,stat,i + FkT ,lin,i� �� �
FkT ,i

+FcT ,i

(3.27)

Note that the nonlinear terms FkS ,nonlin,r and FkS ,nonlin,f for the rear and front suspen-

sions are governed by (3.11), but differently parameterized. The dampers determined

by (3.12) are also parameterized differently for the rear and front axles. The index

i ∈ {r, f} in (3.27) denotes the axle. Remaining forces are further defined as:

static suspension force: FkS ,stat,i = kS,iΔzS,stat,i , (3.28a)

linear suspension spring force: FkS ,lin,i = kS,iΔzS,dyn,i , (3.28b)

static tire spring force: FkT ,stat,i = kT,iΔzT,stat,i , (3.28c)

linear tire spring force: FkT ,lin,i = kT,i(ζi − zW,i) = kT,iΔzT,dyn,i , (3.28d)

linear tire damping force: FcT ,i = cT,i(ζ̇i − żW,i) = cT,iΔżT,i . (3.28e)

with the linear constants for suspension kS,i, tire stiffness kT,i and tire damping coefficient

cT,i. The dynamic suspension deflection ΔzS,dyn,i is not as straight forward as in the

quarter-car case as the deflection of the spring is linked to the pitch angle of the vehicle.

The spring deflection for the front axle is given by ΔzS,dyn,f = zW,f +ϕBlf − zB and for

the rear axle as ΔzS,dyn,r = zW,r − ϕBlr − zB.

Control Input The longitudinal motion is dictated by the braking and acceleration

forces FB and FT , respectively, in (3.5). Similar to the quarter-car, the equation is
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rearranged such that the vehicle acceleration emerges as the new input:

s̈ = v̇ =

FD� �� �
FT − FB

mB +mW,r +mW,f� �� �
mtotal

= a (3.29)

Compared with the quarter-car, the drive forces occur not only in the longitudinal equa-

tions of motion but as well in the pitching equations. Hence, it is necessary to rewrite

the input (FBhB − FThT ) in (3.7) so that the vehicle acceleration is retained as input:

FBhB − FThT = −ph (FD)FD = −ph (a)mtotala , (3.30)

where the nonlinear function ph (·) switches between the braking or accelerating leverage

arm lengths through

ph (·) =
hT for FD > 0 or a > 0 ,

hB for FD < 0 or a < 0 .
(3.31)

It is further assumed that FB and FT cannot occur simultaneously; no simultaneous

braking or acceleration.

Static Displacement Similar to the quarter-car, the static deflections for tire and sus-

pension springs are determined as follows: From the given set of Eqs. (3.25) to (3.27)

four static deflections are to be calculated by setting the time-dependent parts to zero.

The static deflection of the rear and front suspension are calculated from the conserva-

tion of momentum and impulse of the body. The static deflection of the body springs is

thus yielded by:

FkS ,stat,r = kS,rΔzS,stat,r = FgB

lf
lf + lr

−→ ΔzS,stat,r =
mBg

kS,r

lf
lf + lr

, (3.32)

FkS ,stat,f = kS,fΔzS,stat,f = FgB

lr
lf + lr

−→ ΔzS,stat,f =
mBg

kS,f

lr
lf + lr

. (3.33)

The remaining static deflections of the tires are evaluated by substituting the previously

found deflections into the vertical equations of motion of the rear and front wheels:

FkT ,stat,r = kT,rΔzT,stat,r

= FgT ,r + FkS ,stat,r −→ ΔzT,stat,r =
g

kT,r

�
mW,r +mB

lf
lf + lr

#
,

(3.34)
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FkT ,stat,f = kT,fΔzT,stat,f

= FgT ,f + FkS ,stat,f −→ ΔzT,stat,f =
g

kT,f

�
mW,f +mB

lf
lf + lr

#
.
(3.35)

The equations of motion in (3.25) to (3.27) are combined with the definition of the

static displacement obtained before and the new input to gain the final set of equations:

z̈W,r =
1

mW,r
(−FkS ,lin,r − FkS ,nonlin,r − FcS ,r + FkT ,lin,r + FcT ,r) , (3.36a)

z̈W,f =
1

mW,f
(−FkS ,lin,f − FkS ,nonlin,f − FcS ,f + FkT ,lin,f + FcT ,f ) , (3.36b)

z̈B =
1

mB
(FkS ,lin,r + FkS ,nonlin,r + FcS ,r + FkS ,lin,f + FkS ,nonlin,f + FcS ,f ) , (3.36c)

ϕ̈B =
1

IB
(− ph(a)mtota+ FcS ,rlr − FcS ,f lf

− (FkS ,lin,f + FkS ,nonlin,f ) lf + (FkS ,lin,r + FkS ,nonlin,r) lr)

, (3.36d)

s̈ = a . (3.36e)

The equations thus obtained represent a four degree-of-freedom vehicle model capable

of capturing the pitch and vertical motions of a vehicle.

State Space Model The set of Eqs. (3.36) is transformed into a state space model by

introducing the following state vector xh, input uh and disturbances vector zh, which

is composed of the road excitation of the front and rear axle, with the index h for the

half-car:

xh =



xh,1

xh,2

xh,3

xh,4

xh,5

xh,6

xh,7

xh,8

xh,9


=



ζr − zW,r

żW,r

ζf − zW,f

żW,f

zW,r − ϕBlr − zB

żB

zW,f + ϕBlf − zB

ϕ̇B

v


, ẋh =



ζ̇r − xh,2

z̈W,r

ζ̇f − xh,4

z̈W,f

xh,2 − xh,8lr − xh,6

z̈B

xh,4 + xh,8lf − xh,6

ϕ̈B

v̇


, uh = a, zh =

�
ζ̇r

ζ̇f

�
.

(3.37)

Similar to the quarter-car, the state space equation is set up by substituting the set of

Eqs. (3.36a) - (3.36e) into the time derivatives in (3.37). The final state space system is
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decomposed into a linear system dynamic with the matrix Ah,1 ∈ R9×9 and a nonlinear

part with the vector Ah,2 ∈ R9×1. Inserting the definitions of linear forces from (3.28)

as well yields:
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ẋh =



0 −1 0 0 0 0 0 0 0
kT,r

mW,r
− cT,r

mW,r
0 0 − kS,r

mW,r
0 0 0 0

0 0 0 −1 0 0 0 0 0

0 0
kT,f

mW,f
− cT,f

mW,f
0 0 − kS,f

mW,f
0 0

0 1 0 0 0 −1 0 −lr 0

0 0 0 0
kS,r
mB

0
kS,f
mB

0 0

0 0 0 1 0 −1 0 lf 0

0 0 0 0
lrkS,r
IB

0 − lfkS,f
IB

0 0

0 0 0 0 0 0 0 0 0


� �� �

Ah,1

xh +



0

0

0

0

0

0

0

−mB
IB

ph(uh)

1


� �� �

Bh(uh)

uh +



1 0
cT,r

mT,r
0

0 1

0
cT,f

mW,f

0 0

0 0

0 0

0 0

0 0


� �� �

Eh

zh

+



0 0

− 1
mW,r

0

0 0

0 − 1
mW,f

0 0
1

mB

1
mB

0 0
lr
IB

− lf
IB


� �� �

Ah,2

�
FkS ,nonlin,r(xh,5)

FkS ,nonlin,f (xh,7)

�
� �� �

FkS,nonlin(xh)

+



0 0

− 1
mW,r

0

0 0

0 − 1
mW,f

0 0
1

mB

1
mB

0 0
lr
IB

− lf
IB


� �� �

A2

�
FcS ,r(xh,2 − xh,8b− xh,6)

FcS ,f (xh,4 + xh,8a− xh,6)

�
� �� �

FcS
(xh)

= fh (xh, uh, zh) ,

(3.38)
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where Bh(uh) ∈ R9×1 is the nonlinear input vector and Eh ∈ R9×2 the linear dis-

turbance matrix. In a more readable form, the state space equation with linear and

nonlinear dynamics is as follows:

ẋh = Ah,1xh� �� �
linear dynamics

+Bh(uh)uh� �� �
input

+ Ehzh� �� �
road excitation

+Ah,2 (FkS ,nonlin(xh) + FcS (xh))� �� �
nonlinear dynamics

.

(3.39)

Later in this thesis, it becomes necessary to consider the jerk j = da
dt as input to the

system instead of the vehicle acceleration a. For this purpose, an integrator (xh,10 = a,

ẋh,10 = j, uh = j) is added to the system. The final state space equation5 with linear

system matrix Ah,1 ∈ R10×10, input vector Bh ∈ R10×1, disturbance input Eh ∈ R10×2,

nonlinear dynamics vectors Ah,2 ∈ R10×1 and Ah,3 ∈ R10×1 read

ẋh = Ah,1xh� �� �
linear dynamics

+Bhuh� �� �
input

+ Ehzh� �� �
road excitation

+Ah,2 (FkS ,nonlin(xh) + FcS (xh)) +Ah,3ph(xh,10)xh,10� �� �
nonlinear dynamics

.
(3.40)

The parameters used for the simulation study are given in Appx. A.2.

3.6 Road-Excitation

So far, only the vehicle has been treated, but as shown in Fig. 3.1, the road itself has to be

considered as well. Since this work focuses on a simulation-based approach, it is assumed

that the road information is accurately known. In the literature, there are many bumps

based on cosine approaches, stochastic6 road excitations and some specialized bumps

such as potholes, road crossings, or triangle shaped ones. Some of those bumps were

already briefly introduced in the literature review in Ch. 2.

Cosine Bumps The cosine approach is probably one of the most widely used, e.g. [13],

[25]. The function is continuously differentiable and the requirement for the tire contact

5The matrices are given in Appendix A.3.
6These are not of interest in this application because the magnitude of these excitations are not sig-
nificant. Stochastic excitations are a frequently used excitation in semi-active and active wheel
suspension, respectively [16].
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area is not violated7. The bump is given by:

ζ(l) =

��
Hb

2

�
1− cos

�
2π

Wb
(l − lb)

#�
, for lb ≤ l ≤ lb +Wb

0 . otherwise

(3.41)

Common found cosine road bumps in literature approximately have widths Wb of 0.5m

distance l

el
ev
at
io
n
ζ

lb Wb

Hb

Figure 3.6: Geometric dimensions of a cosine bump.

to 1.5m and heights Hb ranging from 5 cm to 15 cm. In this work, the length of the

bump is designed to excite the vehicle with certain frequencies at a given driving speed.

Based on Frequency Analysis for Excitation of Resonant Frequencies Using the

transfer function, which can be generated by applying a stochastic road excitation as

described in [15], [44], [46], the amplitude spectrum of the vertical acceleration of the

sprung mass of the quarter-car is shown in Fig. 3.7.

Especially the two resonant frequencies at about 1.17Hz and 12.1Hz are visible. Since

the aim of this work is to generate a human driver model and behavior is very much

influenced by sensation, the sensitivity of humans to vertical acceleration at about 5Hz

was also marked in the transfer function. With these frequencies, one can construct

cosine bumps to directly excite these frequencies. Starting from (3.41), assuming a

constant velocity v of the vehicle and rewriting in the time domain, the following is

obtained:

ζ(t) =

��
Hb

2

�
1− cos

�
2π

v

Wb

�
t− lb

v

##�
, for

lb
v
≤ t ≤ lb

v
+

Wb

v

0 . otherwise

(3.42)

The frequency fb of this cosine excitation is equal to v
Wb

. For a given fb, a bump length

7According to [44], for the use of the simplified tire model with a single-point excitation, the bump
length should be at least four times the size of the tire contact patch (approx. 10–15 cm).
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frequency
resonant
heave

sensitivity
human

frequency
resonant
wheel-hop

Figure 3.7: Transfer function from road input ζ̇ to sprung mass acceleration z̈B of the
quarter-car model. Superimposed are regions of interest: The resonant fre-
quency of the heave – around 1.17Hz – the frequency of the wheel-hop around
12Hz; in the range from 4–8Hz humans are most sensitive to vertical accel-
erations [44].

Wb can be calculated to excite the desired frequency. The corresponding bump height

Hb is chosen so that a “sensibly intense” excitation occurs. The frequencies from the

transfer function of the quarter vehicle therefore result in Tab. 3.1.

bump name fb in Hz Wb in m HB in m

long bump 1.17 9.50 0.1250
medium bump 5.00 2.22 0.0625
short bump 12.1 0.92 0.0250

Table 3.1: Calculated cosine bumps based on the resonant frequencies. Bumps calculated
for given frequencies at v = 40 km/h. The height is chosen such to achieve a
“sensibly intense” excitation of the vehicle.

Raised Crosswalk The raised crosswalk or road crossing, often found in low-traffic

areas such as residential streets, is similar in design to the cosine approach except that

it is much wider and has a flat section between the ramp-on and ramp-off. The ramps

are designed with cosine functions to obtain a continuously differentiable road and not

to violate the assumptions on the single-point excitation of the tire model.

The excitation is very interesting, especially for the half-car, because it can be used

to excite the pitching motion to a greater extent.
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Figure 3.8: Raised crosswalk with half cosine ramps. The solid line shows the elevation
ζ(l) of the raised crosswalk along the road l. The dashed line is the spatial
derivative dζ

dl of the crosswalk.

Potholes The pothole is a special case of cosine excitation or raised crosswalk, since it

is a variant mirrored about the horizontal axis. Examples and illustrations can be found

in Sec. 5.1.

Pavement Curb The curb is a special case of the raised crosswalk as it features only

the ramp-on and then maintains the height. The ramp has a steeper slope. Examples

and illustrations can be found in Sec. 5.1.

Road Excitation: Mathematical Formulation For the novel model predictive driver

model, it has to be additionally considered that the underlying MPC operates in a

discrete-time fashion. The road excitation cannot be considered continuously and is fed

in discrete points to the driver model. This yields at time t a discrete point vector

Z(t) ∈ RNs with a constant sampling distance Δls ∈ R>0, see the top sketch in Fig. 3.9:

Z(t) =

ζ0(t) ζ1(t) · · · ζNs−1(t)

�T
, (3.43)

where the elements ζj(t) are the discrete points of the road with j ∈ {0, 1, . . . , Ns − 1},
Ns = 
 lprevΔls

� ∈ Z+ and the preview length lprev ∈ R>0.

As can be seen in (3.24) and (3.39), the road is considered by the time derivative

zq = ζ̇ or zh =

ζ̇r ζ̇f

�T
. In general, the derivative ζ̇ can be written as follows:

ζ̇(t) =
dζ (l(t))

dt
=

∂ζ

∂l

∂l

∂t
= ζ 	(l)v(t) . (3.44)
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Figure 3.9: Road sampling with equidistant spacial intervals Δls. Upper sketch depicts
the surface of the road Z(t) ahead of the vehicle at time t and the lower one
is the computed spatial derivative Z

�
(t).

As can be seen in (3.44), the road input depends not only on the current spatial derivative

at the vehicle’s position, but also on the speed at which the vehicle is traveling. This

means that for the same road obstacle, the excitation of the vehicle becomes more

intense with increasing speed. Furthermore, in order to know the excitation at time t,

the position of the vehicle must be known beforehand, but this depends on the vehicle’s

speed. Since the vehicle speed is not known a priori, the position and thus the excitation

is also unknown. How this problem is tackled in this thesis will be explained again in

more detail in the next chapter.

For the sake of completeness, the spatial derivative Z
�
(t) shall be defined similar as

Z
�
(t) =


ζ
�
0(t) ζ

�
1(t) · · · ζ

�
Ns−1(t)

�T
. (3.45)
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This chapter addresses the model predictive driver model to be used to generate human-

like speed and acceleration trajectories for a vehicle in the presence of road obstacles.

In Fig. 4.1 the underlying control problem is sketched. A vehicle is driven on a road.

The driver observes with a constant distance – preview distance lprev – the road in front.

Information about the road and vehicle are fed into a trajectory generation MPC and

an optimal velocity and/or acceleration trajectory is planned.

vehicle x, v, a

road sensing

preview distance lprev

generation
trajectory
MPC

internal model

vehicle
simulation

observed road

- legal road speed
- road elevation

acceleration a
velocity v

v, a
trajectories
planned

vehicle state x

Figure 4.1: Trajectory optimization task for the vehicle–road problem.1Based on the
current vehicle state x and the observed road, the predictive driver model
plans the speed/acceleration trajectory for a preview distance lprev. The
MPC uses an internal vehicle model that maps the driving situation; internal
model and simulation model are usually different.

The goal of the predictive driver model is to capture the planning behavior of humans

when driving over irregularities of the road. The behavior is influenced by three objec-

1Vehicle graphic from vecteezy.com
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4 Driver Modeling

tives that the driver tries to balance: First, and probably most important, the driver

tries to increase the vertical comfort for passengers, which is affected by the movement

of the vehicle excited by the obstacle on the road. For this purpose, the driver resorts

to braking and acceleration maneuvers to reduce the intensity of the excitation caused

by the road obstacle. Second, the driver attempts to improve comfort without perform-

ing inconvenient braking and acceleration maneuvers – therefore, longitudinal comfort

is also taken into account. Third, the driver aims to pass the obstacle as quickly as

possible and not lose too much time due to long periods of low driving speed. If possi-

ble, the vehicle should always drive close to the legal speed limit and the transition time

should be kept as short as possible. To accommodate these objectives several factors like

the sprung body acceleration, longitudinal vehicle acceleration, braking and longitudinal

jerk need to be considered. The objectives are considered in form of a cost function in

the subsequent trajectory optimization problem which is carried out by the MPC. The

aim of this chapter is to analyze the impact of the design of the cost function and the

weighting factors of the different objectives on the resulting trajectories. The resulting

trajectories are examined in terms of human behavior on the basis of requirements set

forth in this text, which have been derived from experience. It is also of interest to see

how different driving styles can be represented in the cost function, e.g., an aggressive

driver or a conservative driver.

The remainder of this chapter is structured as followed. The optimization problem for

generating the trajectories, as depicted in Fig. 4.1, is formulated in Sec. 4.1. In Sec. 4.2

the differential equations of the internal vehicle model are rewritten from equations in

time to equations in space. In the subsequent Sec. 4.3 the equations of motion are

discretized for use in the predictive driver model. In Sec. 4.4, the cost function is set up

meticulously and the various terms in the cost function are examined for the influence

on the shape of the planned trajectory. The cost function is first developed for the

quarter-car in Sec. 4.4.1 and later extended for the half-car in Sec. 4.4.2.

4.1 MPC based Trajectory Optimization

It is already known from Sec. 3.6 that the subsequent MPC requires the road information

in discretely sampled form. Furthermore, it is understood from the vehicle models

that the road does not directly excite the vehicle via the road height ζ, but via its

spatial derivative or rising speed ζ
�
= dζ

dl . Casting the problem depicted in the chapter

introduction into more technical terms, the driver model in this situation is dealing
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with a trajectory optimization problem: Given the current vehicle2 state vector xk

and the observed road segment Z
�
k, which contains the spatial derivatives discretely

sampled between the vehicle and the preview point, at time k, the driver model plans

how to behave on the road segment based on the cost function and the model of the

vehicle-road problem – the internal model. The outputs of the driver model are planned

trajectories X̃k for the vehicle states and Ũk for the control input, e.g. longitudinal

acceleration, along the preview horizon. The driver model applies the first control input

of the planned trajectory and continuously updates the plan/trajectory for approaching

and traversing the road obstacle – in control theory, this approach is called the receding

horizon principle. In this text, the planned control input is applied directly to the

simulation vehicle. In a real application, a lower level controller in the vehicle would try

to follow the planned trajectory. The entire control structure is shown in Fig. 4.2.

optimization
trajectory
MPC

−controller
lower level

vehicle

st
at
es

x
k

distance l

el
ev
at
io
n
ζ

distance l

d
er
iv
a
ti
v
e

∂
ζ

∂
l

road data road Z
�
k

t

x, u

tk−3 tk−2 tk−1

tk

tk+1 tk+2 tNp−1 tNp

tn+1 tn+2 tNp−1 tNp

previous states x

predicted states x̃

previous inputs u

planned inputs ũ

preview/prediction horizon

trajectoriesX̃k, Ũk

ũk

Figure 4.2: Trajectory optimization problem: Given the road information Z
�
k and vehicle

state xk at instant k the driver optimizes output trajectories X̃k and Ũk

which are then applied to the underling system. In a real application, a lower
level controller operates the vehicle and aims to follow the planned trajectory.
In the present study, the planned accelerations/speeds are applied directly.

If this problem of trajectory optimization is now attempted to be captured mathe-

matically, it can be done either in continuous or discrete form. In essence, optimization

distinguishes between dynamic optimization or static optimization. While in the former

a function space is optimized and thus results in a continuous trajectory, in the latter a

finite dimensional, usually Euclidean space, is optimized and results in a discrete trajec-

tory [41]. Dynamic optimization is a very popular method for trajectory optimization

problems and is widely used here with e.g., Pontryagin’s maximum principle. Unfortu-

nately, in this optimization the treatment of state constraints is not as straightforward

[41]. Due to the problems mentioned above, the trajectory optimization problem is

solved using a MPC in discrete form and the first input is applied to the real system in

2For the sake of readability, the subscript for the quarter- and half-car are omitted.
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the receding horizon fashion.

steps

x, u

k − 3 k − 2 k − 1 k k + 1 k + 2 k + 3 · · · k + Np − 1 k + Np

n
0 1 2 3 · · · Np − 1 Np

j0 1 2 3 4 5 6 7 8 9 · · ·

N
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−

3

N
s
−

2

N
s
−

1

N
s

previous states x

predicted states x̃

previous inputs u

planned inputs ũ

prediction horizon lpre

ΔlpΔls

Figure 4.3: Predicted states x̃ and passed states x, planned inputs ũ and applied inputs
u schematically sketched at step k. Figure adapt from [39], [40] for discrete
steps. Note that the step size between the planned inputs and the predicted
states is different. Over several prediction steps, the inputs are kept constant
or blocked. This allows for smaller prediction steps while keeping the overall
optimization parameters – the inputs – small over the horizon.

The trajectory optimization problem shown in Fig. 4.2 and Fig. 4.3 given the vehicle

state xk and road data Z
�
k at instant k is stated as follows:

Ũ∗
k = argmin

Ũk

J(X̃k, Ũk,Z
�
k) (4.1a)

s.t. x̃k|j+1 = f(x̃k|j , zk|j , ũk|n ) , x̃k|0 = xk , (4.1b)

x̃k|j ∈ X , ∀j = 0, 1, . . . , Ns − 1 (4.1c)

ũk|n ∈ U , ∀n = 0, 1, . . . , Np − 1 (4.1d)

x̃k|Ns
∈ XT , (4.1e)

where Ns is the number of prediction steps3 and is given as Ns = 
 lpreΔls
�, Np is the number

3The floor function �f� of a real number f gives the greatest integer less than or equal to f .
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of times the input can be modified in the preview horizon and is given by NP = 
 lpreΔlp
�,

Δls and Δlp are the corresponding step sizes for state prediction and control variable,

respectively, as shown in Fig. 4.3. Normally the step sizes are equal, but as will be

discussed later, the step size Δls for the discrete system must be chosen rather small.

To avoid that the number of optimization variables or control actions over the vehicle

horizon become too large, a different step size Δlp is introduced for this purpose. In

control engineering this is also called move blocking, because the control variable is

required to be constant over several prediction steps Δls – the action/move is blocked.

The sets X , U and XT will be treated later and for the moment it shall be assumed that

they are given. Analogously, let the scalar cost function J(·) be taken as given for the

moment. The optimal solution to the optimization problem is denoted by Ũ∗
k and the

optimal cost as J∗(X̃k, Ũ
∗
k,Z

�
k). Whereby the trajectories are defined as

Z
�
k =

�
zk|0 zk|1 . . . zk|Ns−2 zk|Ns−1

�T
, (4.2a)

X̃k =
�
x̃k|0 x̃k|1 . . . x̃k|Ns−2 x̃k|Ns−1

�T
, (4.2b)

Ũk =
�
ũk|0 ũk|1 . . . ũk|Np−2 ũk|Np−1

�T
. (4.2c)

Here for the quarter-car Z
�
k ∈ RNs , Ũk ∈ RNp and X̃k ∈ RNs×5 and for the half-car

Z
�
k ∈ RNs×2, Ũk ∈ RNp and X̃k ∈ RNs×9. Note that the individual elements of the road

Z
�
k given by (4.2a) are scalars for the quarter-car and vectors for the half-car.

4.2 From Time to Space

In this section, the state-space equations from the previous chapter are rewritten from a

set of differential equations in time t to a set of differential equations depending on the

road distance l, thus removing the dependence of velocity in the road excitation. One

of the major problems with the current formulation of the MPC is that for temporal

prediction, the predicted distance depends on the speed traveled and thus always varies.

At low speeds, the predicted distance is short, while at high speeds it is long. This

would mean that a previously visible obstacle could disappear in the next instant, as the

speed decreases and the predicted distance reduces. A possible approach to circumvent

this problem was shown by Wu in [13]: In that work, multiple MPCs were set up with

different prediction times. However, in this work, to maintain a constant prediction

distance, it was chosen to transform the state-space equations into the spatial domain.

The road input in the system equations for the quarter- or half-car is according
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to (3.44):

ζ̇(t) =
∂ζ

∂l

∂l

∂t
= ζ 	(l)v(t) ,

which corresponds to the chain rule and gives the vehicle speed v(t) times road excitation

ζ 	(l). Similarly, for the time derivative of the state vector ẋ holds ẋ = x
�
v. By inserting

the time derivatives for the state vector and road excitation with the chain rule, the

equations of motion of the quarter- and half-car are transferred to the spatial domain.

Quarter-Car Inserting and dividing the set of differential equations by the vehicle speed

v = xq,5, the previous road input zq(t) = ζ̇(t) will now be zq(l) = ζ
�
(l) and the equations

are

x
�
q = fq(xq, zq, uq) =

Aq,1

xq,5
xq+

Bq

xq,5
uq+Eqzq+

Aq,2

xq,5
(FkS ,nonlin(xq,3) + FcS (xq,2 − xq,4)) .

(4.3)

The equations now describe a dynamic system in the spatial domain and not in time,

and thus for a prediction horizon the preview distance/horizon is always constant.

Half-Car Similarly, for the half-car, the road input is now zh(l) =

ζ
�
r(l) ζ

�
f (l)

�T
, the

velocity is given by xh,9, and thus for the state-space model in (3.40) yield

x
�
h = fh(xh, zh, uh) =

Ah,1

xh,9
xh +

Bh

xh,9
uh +Ehzh

+
Ah,2

xh,9
(FkS ,nonlin(xh) + FcS (xh)) +

Ah,3

xh,9
fh(x10)x10 .

(4.4)

This transformation introduces the singularity v → 0. To avoid a problem in solving the

optimization task in (4.1), a state constraint is introduced later to always guarantee a

positive velocity.

4.3 Discrete Model

The trajectory optimization is based on a discrete MPC problem and since it is known

from the previous chapter that the system is nonlinear, it cannot be discretized exactly.

To discretize the system, different forward time-stepping methods like the Forward-

Euler, Runge-Kutta or other multistep methods are available. While the Forward-Euler

is appealing for its simplicity, the accuracy, as will be shown later, is not sufficient for

this application. The multistep methods are very costly in terms of computational effort

and therefore were disregarded. Hence, in the following chapter, the nonlinear system
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is linearized and discretized along the trajectory. Then, the obtained discrete system is

compared to an explicit Runge-Kutta formula [48] and the Forward-Euler.

4.3.1 Discrete Dynamics

The idea now is to linearize the spatial state-space equations in (4.3) and (4.4) along the

points of the trajectory X̃k and transform the system into a set of difference equations.

Quarter-Car: Linearized Equations Starting with linearizing the state space equation

around an arbitrary operation point x0�
q , x

0
q , u

0
q and z0q :

F(x
�
q, xq, zq, uq) = x

�
q − fq(xq, zq, uq) = 0 , (4.5)

F(x
�
q, xq, zq, uq) = x

�
q −

Aq,1

xq,5
xq − Bq

xq,5
uq −Eqzq

− Aq,2

xq,5
(FkS ,nonlin(xq,3) + FcS (xq,2 − xq,4)) = 0 ,

(4.6)

and developing the intermediate function F(·) into a Taylor series and breaking after the

linear term yields

F(x
�
q, xq, z, u) = F0 +

∂F

∂x�
q

%%%%
0

(x
�
q − x0�

q ) +
∂F

∂xq

%%%%
0

(xq − x0
q)

+
∂F

∂zq

%%%%
0

(zq − z0q ) +
∂F

∂uq

%%%%
0

(uq − u0q)

+ h.o.t ,

(4.7)

where the individual components are given through

F0 = x
�
q − fq(x

0
q , z

0
q , u

0
q) = 0 , (4.8a)

∂F

∂x�
q

%%%%
0

= 1 , (4.8b)

∂F

∂xq

%%%%
0

= − Aq,1

x0q,5
− Aq,2

x0q,5

�
∂FkS ,nonlin

∂xq

%%%%
0

+
∂FcS

∂xq

%%%%
0

#
+ [0 0 0 0 1]

�
Aq,1

x2,0q,5

x0
q +

Bq

x2,0q,5

u0q +
Aq,2

x2,0q,5

�
F 0
kS ,nonlin

+ F 0
cS

"!
,

(4.8c)

∂F

∂zq

%%%%
0

= −Eq , (4.8d)

∂F

∂uq

%%%%
0

= − Bq

x0q,5
. (4.8e)
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Inserting (4.8) into (4.7), simplifying the equations, and recasting by the spatial deriva-

tive yields the linearized system equations:

x
�
q ≈ Ãq(x

0
q , u

0
q)xq +

Bq

x0q,5
uq +Eqzq + K̃(x0

q , u
0
q) , (4.9)

where the linearized system dynamic matrix Ãq(·) and the constant vector K̃(·) are

given by

Ãq(x
0
q , u

0
q) =

Aq,1

x0q,5
+

Aq,2

x0q,5

�
∂FkS ,nonlin

∂xq

%%%%
0

+
∂FcS

∂xq

%%%%
0

#
− [0 0 0 0 1]

�
Aq,1

x2,0q,5

x0
q +

Bq

x2,0q,5

u0q +
Aq,2

x2,0q,5

�
F 0
kS ,nonlin

+ F 0
cS

"!
,

(4.10)

K̃(x0
q , u

0
q) = − Aq,2

x0q,5

�
∂FkS ,nonlin

∂xq

%%%%
0

+
∂FcS

∂xq

%%%%
0

#
+ [0 0 0 0 1]

�
Aq,1

x2,0q,5

x0
q + 2

Bq

x2,0q,5

u0q +
Aq,2

x2,0q,5

�
F 0
kS ,nonlin

+ F 0
cS

"!
.

(4.11)

Quarter-Car: Difference Equations Similar as described in [49, p. 103], the continuous

state equation is discretized with the sampling distance Δls. It is assumed that the input

uq,k, the road excitation zq,k and K̃(·) have a constant value (zero-order hold) between

two sampling instances. Considering the state xq,k = xq(lk), the successor state at k+1

is:

xq,k+1 = eÃqΔlsxq,k +

� Δls

0
eÃqµ

�
Bq

x0q,5
uq,k +Eqzq,k + K̃

!
dµ , (4.12)

given that xq,k+1 = xq(lk+1) = xq(lk +Δls). For the linearization point holds x0
q = xq,k,

u0q = uq,k and z0q = zq,k. After each successive iteration, the linearization point changes

to the current state; the system is linearized along the trajectory. One problem remains

in (4.12), namely that the matrix exponent is not analytically solvable. Therefore, the

matrix exponent is approximated by inserting the Taylor series4 such that the discretiza-

tion step size Δls appears quadratic. Terminating the series for the homogeneous part

of the equation after the second-order expansion and for the heterogeneous part of the

4From [49, p. 103], the matrix exponential of At, denoted by eAt, is the matrix given by the power
series:

eAt = I+
t

1!
A+

t2

2!
A2 +

t3

3!
A3 + · · · =

∞�
j=0

tk

k!
Ak .
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equation after the first-order expansion results in

xq,k+1 =

�
I+ ÃqΔls +

1

2
Ã2

qΔl2s

#
xq,k +Δls

�
I+

1

2
ÃqΔls

#�
Bq

x0q,5
uq,k +Eqzq,k + K̃

!
(4.13)

where the discretization step size Δls appears quadratic. Simplifying further yields

xq,k+1 = xq,k +Δls

�
Ãqxq,k +

Bq

x0q,5
uk +Eqzk + K̃

!

+
1

2
ÃqΔl2s

�
Ãqxq,k +

Bq

x0q,5
uk +Eqzk + K̃

!
,

(4.14)

xq,k+1 = xq,k +Δlsfq (xq,k, uk, zk)� �� �
Forward-Euler

+
1

2
ÃqΔl2sfq (xq,k, uk, zk) . (4.15)

The Eq. (4.15) is a nonlinear difference equation and is composed of the Forward-Euler

and an additional term.

Half-Car: Difference Equations Similar to the quarter-car, the difference equation is

derived. The system is given only for the half-car model with longitudinal jerk as input,

since the model with the longitudinal acceleration is almost identical to the quarter-car.

Since the procedure is quite similar, only the final equations are given here:

xh,k+1 = xh,k +Δlsfh (xh,k, uh,k, zh,k) +
1

2
ÃhΔl2sfh (xh,k, uh,k, zh,k) (4.16)

with

Ãh(x
0
h, u

0
h) =

Ah,1

x0h,9
+

Ah,2

x0h,9

�
∂FkS ,nonlin

∂xh

%%%%
0

+
∂FcS

∂xh

%%%%
0

#
− [0 0 0 0 0 0 0 0 1 0]�

Ah,1

x2,0h,9

x0
h +

Ah,2

x2,0h,9

�
F0
kS ,nonlin

+ F0
cS

"
+

Ah,3

x2,0h,9

ph(x
0
h,10)x

0
h,10 +

Bh

x2,0h,9

uh

!

+ [0 0 0 0 0 0 0 0 0 1]
A3,h

x2,0h,9

�
∂ph

∂xh,10

%%%%
0

x0h,10 + ph(x
0
h,10)

#
.

(4.17)

4.3.2 Comparison with Forward-Euler and ode45

In the following section, the difference equations of the two vehicle models are briefly

compared against a classical Forward-Euler and ode45 solver [48] from Matlab. For
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this purpose, an cosine obstacle as described in Sec. 3.6 is traversed and the results are

qualitatively examined. It should be noted here that this is by no means an accuracy

and stability analysis of the discretization. It shall only be shown here that the obtained

difference equation is more accurate than the Forward-Euler at larger step sizes and at

the same time faster than the ODE solver of Matlab.

In Fig. 4.4 a cosine bump, with a peak height of 10 cm and a total length of 1m, is

traversed. The simulation done by the Matlab solver is used (denoted as ODE45 ) as

reference. A classical Forward-Euler (denoted as fwe.) approach and the discretization

(denoted as dis.) as described in the previous section are compared. For the sake of

space over completeness in this thesis only the half-car is simulated. Shown is the the

sprung body acceleration z̈B, as this value plays a vital role in the following chapters.

(a) Simulation results of different step sizes Δls
over bump with height 0.1m and length 1m.

RMSE fw.
RMSE dis.
time fw.
time dis.
time ODE45.

(b) Root-Mean-Square-Error (RMSE) as mea-
sured relative to the ODE45 solution.

Figure 4.4: Benchmarking example of the half-car: Compared are a classical Forward-
Euler (fwe.), the previously described discretization (dis.), and the solver
(ODE45 ) as implemented in Matlab. RMSE of z̈B with respect to ODE45.

In Fig. 4.4b the RMSE of z̈B in relation to the reference solution (ODE45 ) is given as a

measure of accuracy over Δls. To give a rough indication of the algorithm’s performance,

the execution time was also measured. Clearly the discretization outperforms the built-in

Matlab solver in computational load and the Forward-Euler in terms of accuracy.
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4.4 Cost Function: The Key to Human-Like Trajectories

The previous sections dealt with the preparation of the underlying vehicle dynamics,

which the driver is assumed to have knowledge of, and how this can be attributed to

the optimization problem in (4.1). What is missing is how the human driver is mapped

into this problem. The idea, as mentioned in the introductory section of this chapter, is

to map the human driver behavior over bumps with a properly designed cost function

J(·). But before the cost function can be defined, it is necessary to discuss about what

constitutes a good acceleration/speed trajectory in first place, or rather how a human

would navigate this problem. The answer to the question of human driving behavior

could not be more subjective. It is challenging to represent or define human behavior

mathematically. Rather, it sparked very interesting, detailed, and lengthy conversations

between my supervisors and me, and ultimately led us to define some key factors that

a human trajectory should exhibit. Based on experience and common agreements, the

following key points were established, which are as well highlighted in the top right plot

of Fig. 4.5:

J
function
cost

comfort

input
control speed

long. jerk, ...
long. acceleration,

velocity, ...
time,

acceleration, pitch, ...
sprung mass

so
lve

for trajectory

Figure 4.5: A cost function J(·) must be designed that balances comfort (vertical mo-
tion), speed, and control input (longitudinal motion). The design of the
cost function influences the shape of the planned trajectories. By general
consensus, a shape similar to the plots on the right is desired: Here, the
vehicle passed through a cosine-shaped bump ζ and planned trajectories for
longitudinal velocity v and acceleration a are shown.
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• The longitudinal acceleration trajectory should not be erratic. A smooth and

steady acceleration is desired. Excessive jerking is not desirable.

• An initial rapid increase in deceleration should then be followed by an almost

constant deceleration phase close to the obstacle.

• Similarly, after crossing the obstacle, the acceleration part should be fairly constant

and gently drop to zero.

• The trajectories generated should aim to increase the experienced comfort of the

passengers by, for example, reducing the movements of the sprung mass such as

pitching and heaving.

As can be seen as gray area superimposed in Fig. 4.5, an approximately trapezoidal

shape satisfies all of these requirements. It starts with a linear increase until it reaches

a certain braking level and remains constant. Shortly after crossing the obstacle, the

vehicle again accelerates at an almost constant rate. The question arises, why not just

optimize a trapezoidal shape directly and have only a few optimization parameters? The

idea is not to constrain the trajectory by specifying its shape, but to investigate how

the choice of the cost function affects the planned trajectories and, along the way, to

find one that meets the requirements set here. The novel approach is to design a certain

cost function J(·) by essentially weighting three contributors (comfort, control input,

speed) against each other. The aim of the following sections is to present a systematic

investigation of these parts and to display how the trajectory can be shaped with them.

4.4.1 Quarter-Car

Before diving into the complex dynamics of the half-car, a basic cost function will first

be developed for the quarter-car, since the number of influencing factors (states, accel-

erations, ...) is relatively manageable. The cost expected to result primarily in speed

reduction is the comfort term, so this is considered first. Then the speed/time term is

examined, followed by the vehicle control input. In summary, the cost function J0(·) is
composed as follows:

J0(X̃k, Ũk) =
1

Ns

Ns−1$
j=0

Jcomfort(x̃k|j ) + Jspeed(x̃k|j ) + Jinput(ũk|j ) , (4.18)
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The cost J0(·) has now to establish the balancing between the contributors comfort,

speed and input5. The individual parts of the function are examined below. In the

further course, in addition to the three main factors, other factors are also taken into

account, resulting in the final cost function J(·).

Ride Comfort: Vertical Motion The comfort term plays a vital role in the trajectory

planning problem as without it, solving the optimization problem yields a trivial velocity

trajectory as the intention for decreasing the vehicle speed is absent. Before any criteria

can be defined, it must be understood how people perceive comfort in the vehicle. In the

models described, it is assumed that the driver is rigidly connected to the vehicle body.

Since the driver perceives the movements of the vehicle body, the comfort perceived

by the driver depends on the vertical motion of the sprung mass. Many authors [15],

[18], [20], [25] chose sprung mass acceleration z̈B as the measure of comfort, and so

will this text. The cost associated with experienced comfort Jcomfort(x̃k|j ) ≥ 0 for

all x̃k|j ∈ X must be a positive definite function, so that an increase in sprung mass

acceleration is always associated with an increase in cost. This is usually achieved by

choosing the comfort term such that the acceleration of the sprung mass appears as a

quadratic function, e.g., a (root) mean square (RMS) function or some other positive

definite function, e.g., a (root) mean quartic (RMQ) function or a mean absolute (MA)

function. Before deciding on a function, a simulation study is carried out and the costs

are calculated for various evaluation functions. For this purpose, a simple cosine bump

was traversed at different speeds in Fig. 4.6 and the corresponding RMS and RMQ values

are evaluated for the section.

A trend is evident in the simulation study: For a quadratic cost term, the minimum

of the evaluation function is around 40 km/h, while the minimum in the quartic case

is found at lower speeds. Since the ride comfort term is intended to force the driver

model to reduce speed near irregularities on the road to small values, the quartic term is

chosen. The figure, however, highlights an inherent problem. At high speeds, the RMS

and RMQ values start to decrease slightly again, which will be subject to discussion

5The cost J0(·) can as well be split into two summations: One over the prediction grid for spacing Δls
and one for the control input with spacing Δlp:

J0(X̃k, Ũk) =
1

Np

Np−1�
n=0

Jinput(ũk|n ) +
1

Ns

Ns−1�
j=0

Jcomfort(x̃k|j ) + Jspeed(x̃k|j ) . (4.19)
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Figure 4.6: Investigation of RMS and RMQ values over a cosine bump with length of
2m and height of 6.5 cm. It is clearly visible that the global optimum for
this bump would be to traverse it with 40 km/h in the RMS case and with
the lowest possible velocity in the RMQ case.

later. The final cost of comfort for the quarter-car results in:

Jcomfort(x̃k|j ) = Qcf
4
q,4(x̃k|j ) = Qcz̈

4
B,k|j , (4.20)

where the value Qc ∈ R>0 is a weight to tune the impact on the total cost and f4
q,4(x̃k|j )

is the dynamic equation for the sprung body mass acceleration z̈B,k|j of the quarter-car.

Driving Speed Up to now the solution of the optimization problem is only shaped by

the comfort term. As shown in Fig. 4.6, the optimal trajectory would bring the vehicle

towards lower speeds. However, after passing over the bump – if the vehicle does not

come to a stop before the bump – the driver would not have the intention to increase

speed again. Thus, a term will be added that penalizes the driver model if too much

time is required for passing the obstacle or if the velocity drops too much, respectively.

The driver model now tries to reach a balance between the comfort and speed terms

that allows some speed reduction but still ensures a fast passage through the preview

horizon.

Consider how the cost of Jspeed(x̃k|j ) can be designed to achieve a balance between

comfort and speed. A simple, but not yet satisfying approach would be to discount

the travel time directly. This would have been a easy choice if the system was not
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transformed from a difference equation in time to one in space6. For the presented

case in the spacial domain the time step Δtk|j is not given directly and is depending

approximately on the velocity between two instants by Δls
vk|j

. Preferable, the speed term

should not depend on time directly but rather on the velocity. This is achievable by

penalizing the velocity deviation from a given reference point. This is called reference

point tracking. The reference in this case will be a velocity vref which can for example

be the legal road speed or a velocity specified by the driver. The cost Jspeed(x̃k|j ) is then
to ensure in case of an increase in the comfort level due to a speed reduction, the speed

drop is limited and the velocity returns to the reference after the bump.

Similarly, Jspeed(x̃k|j ) should be positive definite, therefore Jspeed(x̃k|j ) ≥ 0 for all

x̃k|j ∈ X . Here, too, it must be decided whether it should be weighted absolute,

quadratic, or even higher. In short, for higher order functions, velocity dips, as shown

in Fig. 4.5, are penalized severely more than smaller and constant deviations. In fact,

a velocity dip above the bump is readily accepted because the main goal of the velocity

term is to provide slow but gradual reference tracking of vref , which is of paramount

importance after the bump. Therefore, higher order penalty functions are not chosen,

since they would penalize such peaks. Based on this consideration, two approaches for

the speed term are considered:

absolute cost term: Jspeed(x̃k|j ) = Qv

%%vref − x̃5,k|j
%% = Qv |vref − vj | , (4.21a)

squared cost term: Jspeed(x̃k|j ) = Qv(vref − x̃5,k|j )2 = Qv(vref − vj)
2 , (4.21b)

where is Qv ∈ R>0 is the corresponding weight factor for the speed term. In Fig. 4.7, a

cosine bump is traversed with a combined cost function for speed and ride comfort.

Vehicle Input: Longitudinal Comfort If the optimization problem in (4.1) is solved

taking into account solely the combined costs of comfort and speed, the optimal tra-

jectory would be to wait until the last moment of the bump, then to brake enormously

hard and then accelerate immensely hard again, as shown Fig. 4.7. Therefore, large

longitudinal accelerations should be penalized as well. Compared to the comfort and

speed terms, which are designed to ensure that the driver model detects road bumps,

reduces speed, and accelerates back to a given target speed, the vehicle input probably

plays the most critical role in shaping the trajectory.

As mentioned at the beginning of this chapter, a fairly sharp rise followed by a constant

6From the perspective of a human driver, taking travel time into account would also make little sense,
since a human driver uses a speedometer as a guide while driving.
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Figure 4.7: Illustrative example for a cosine bump with the combined costs of comfort
and speed. This example was computed with an quadratic penalization for
the speed, however, similar results are expected with an absolute one. Con-
straint at v = 10 km/h active to accomplish computation. Configuration:
Qv = 0.7, Qc = 0.3, Δls = 0.05m, Δlp = 2m, lprev = 25m.

negative longitudinal acceleration is desirable. After the obstacle, the acceleration of

the vehicle should also be constant again and gradually go to zero. Thus, similar to

the vertical comfort term, the primary concern is to penalize large acceleration values,

not constant accelerations. On closer inspection, the input term can be understood as a

comfort in itself, but not in the vertical but in the longitudinal direction. The fact that

the term vehicle input is used here is only to make it clear which quantity is optimized

in the MPC. Once again, a positive definite cost term Jinput(ũk|j ) ≥ 0 for all ũk|j ∈ U is

necessary, the simple quadratic and quartic cost functions are favored and benchmarked

against each other in Fig. 4.8:

squared cost term: Jinput(ũk|j ) = Quũ
2
k|j = Qua

2
j , (4.22a)

quartic cost term: Jinput(ũk|j ) = Quũ
4
k|j = Qua

4
j , (4.22b)

where Qu ∈ R>0 is the input cost term weight.

In Fig. 4.8 all four combinations of the speed and input terms were simulated with

the same cosine disturbance as in Fig. 4.7. The generated velocity profiles look quite

similar for all cases. Larger differences are seen when looking at the planned acceleration

trajectory. In the deceleration phase, all combinations look quite similar, with a rapid

increase in negative acceleration and a fairly constant deceleration to the hill at 30m.

Where differences become visible is after passing the cosine bump. Here, the quadratic
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(a) Qv = 0.7. (b) Qv = 0.4.

Figure 4.8: Comparison of quadratic and quartic control input weighting given the speed
weighting functions in (4.21) for the cosine bump scenario in Fig. 4.7. The
parameters were chosen so that the magnitude of the deceleration phase
remains comparatively constant: Qu = 1 for ũ4k|j and Qu = 2 for ũ2k|j .

speed penalty produces a linear acceleration curve that drops off quickly, while the

absolute penalty keeps the acceleration constant at first and later drops to zero when

the reference speed is reached. Minor differences become apparent when considering the

various input cost terms with quadratic or quartic functions. It seems that the quadratic

weight restricts the acceleration phase more than the quartic one. In most cases, the

quartic function will be used, since it allows an easier weighting between the comfort

term and the input term, since both are accelerations in a given direction with similar

magnitudes. Further, a look at the results shows which configuration best satisfies the

key points for passing in a human fashion mentioned in Sec. 4.4: absolute speed and

quartic vehicle control input weighting.

Terminal Cost: Long-Term vs. Short-Term Goals So far, only the final trajectory has

been considered, which is calculated along the entire course of the road. At each step

along the road, the driver model, the MPC, plans trajectories {X̃∗
k, Ũ

∗
k} for the preview

horizon. At each discrete step k, only the first computed input ũ∗k|0 from the optimally

planned trajectory Ũ∗
k is used and at the next time k + 1 the process is repeated. Have
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a closer look now at how the planned trajectories computed along the road at different

positions look like. In Fig. 4.9 the cosine hump from the previous examples is traversed,

but this time overlaid with the planned trajectories at each evaluation step k.

Figure 4.9: Illustrative example for a cosine bump with an absolute velocity v weight,
quartic weight for acceleration a and comfort z̈B. Superimposed in gray
are the planned acceleration trajectories at each step. Highlighted in red,
blue and green are planned trajectories at different positions along the road.
Configuration: Qv = 0.7, Qc = 0.3, Qa = 1, Δls = 0.05m, Δlp = 2m,
lprev = 25m.

In the deceleration phase, the trajectories are similar – most trajectories are close

to each other. In a human context, this means that at the beginning of the braking

maneuver, the driver is very confident about how to perform this maneuver. However, as

the vehicle continues to approach and look over the bump, the driver model is uncertain

about the acceleration phase after the bump. The uncertainty can be seen as a wide

band of gray trajectories below the final acceleration trajectory in black. Compare the

three highlighted trajectories in red, blue and green: the further the vehicle is traveling,

the farther the driver model shifts the end of the acceleration phase to the right.

This uncertainty can be resolved by adding an additional cost term that places a

greater stress on the long-term objective to the basic cost J0(·) in (4.18). A terminal

cost Jterminal(·) term is added as:

J(X̃k, Ũk) = J0(X̃k, Ũk) + Jterminal(X̃k) , (4.23a)

with Jterminal(X̃k) = QtNs(vref − x̃5,k|Ns−1 )
2 ,

= QtNs(vref − vk|Ns−1 )
2 ,

(4.23b)
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where Qt ∈ R>0 is the weight of the terminal cost term. To scale it properly, the cost

is multiplied by the number of samples Ns. The original idea behind adding a terminal

cost term is to shift the focus of the velocity weight to the end of the horizon and “unify”

the trajectories along the road. This can be interpreted as the intention of the driver

to have long- and short-term goals. The short-term goals along the prediction/preview

horizon are to minimize the discomfort and vehicle input. The long-term goal is to place

more emphasis on reaching the reference speed at the end of the prediction horizon. The

result of such an additional terminal cost term is shown in Fig. 4.10.

Figure 4.10: Illustrative example for a cosine bump with an absolute velocity weight,
quartic weight for acceleration a and comfort z̈B. Superimposed in gray are
the planned acceleration trajectories at each step. Configuration: Qv = 0.7,
Qc = 0.3, Qa = 1, Δls = 0.05m, Δlp = 2m, lprev = 25m and Qt = 0.001
which gives for the terminal cost QtNs ≈ 0.5.

With the addition of the terminal cost, the long term goal of reaching the reference

velocity at the end of the horizon is enforced. It would also be possible to map the speed

term only with the final cost, but this would remove the driver’s short-term goal and

would not penalize deviations along the trajectory in the prediction horizon. Applying

the extended cost from (4.23) does not change the final acceleration trajectory signifi-

cantly, but assists the driver model in planning along the route evident in that the gray

trajectories are very close to each other.

Trajectory Holding As mentioned in the introduction of this work, a driver model

should incorporate properties of a human driver, such as skill, reaction time, driving style

and so on. Similarly, as the terminal cost term influences the “decision” process when

crossing the obstacle, a trajectory holding can be understood as to keep the trajectory
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as consistent as possible if once decided for one. Mathematically speaking, the optimal

trajectory Ũ∗
k−1 from the previous step should be considered for optimization for the

next trajectory Ũk. In a human context, this means that the driver tries to stay on the

first chosen trajectory and only modifies it if it’s really necessary. A skilled driver, for

example, already knows how to approach such a road bump and won’t really deviate

from the first plan much. Given the previous designed trajectory Ũ∗
k−1 the total cost

can then be advanced by adding a trajectory holding term Jholding(·):

J(X̃k, Ũk, Ũ
∗
k−1) = J0(X̃k, ũk) + Jholding(Ũk, Ũ

∗
k−1) , (4.24a)

with Jholding(Ũk, Ũ
∗
k−1) =

1

Np − 1

Np−2$
n=0

Qh(n)(ũk|n − ũ∗k−1|n+1 )
2 , (4.24b)

where Qh(n) ∈ R>0 is the weight depending on the step n. Note, the input from the

previous trajectory in the summation starts at one due to the car having advanced one

step. Since it is not the intention to constrain the trajectory with these costs along

the entire forecast horizon, but rather at the beginning and to give the planner some

freedom towards the end, Qh(n) is designed so that the weight decreases to zero along the

prediction horizon. This can be achieved, for example, by reducing the weight linearly

along the prediction horizon.

How are different drivers mapped? It comes down to tuning or choosing the right

weights for the comfort Qc, speed Qv, and input terms Qu, respectively. For example,

if the speed term is emphasized, a driver model can be built that both brakes late and

does not lose much speed when crossing. The choice of the preview distance lprev also

plays a crucial role, because it determines how far in advance the driver is likely to react

to the obstacle. If the driver model is given a shorter preview distance, the obstacle

will be detected later and thus the driver model will have to brake harder to reach the

comfort target. On the other hand, if the preview distance is longer, the driver is able

to operate more conservatively by starting to brake earlier but not as hard. Of course,

all this behavior also depends on how the terms are weighted relative to each other.

In Ch. 5 in Sec. 5.3, some variations of the driver model are discussed, which can be

used to tune different driving styles.

Reaction Time Regarding human driver modeling, an essential issue is the time it

takes for a driver to react to newly perceived road information. This reaction/response

time of the driver model can be taken into account either directly in the optimization
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problem in (4.1) by constraining the input space or indirectly by either delaying the

inputs to the trajectory optimization or delaying the generated trajectory in the control

loop in Fig. 4.2:

1. Indirectly by

a) feeding delayed states xk−d and road information Z
�
k−d the optimization prob-

lem at instant k,

b) applying the delayed optimized input trajectory Ũ∗
k−d or, in the sense of the

receding horizon, the first input ũ∗k−d|0 at instant k.

2. Directly accounting for reaction time in the trajectory optimization problem by

constraining the input space U .

Here d ∈ Z>0 is the number of shift samples in the spatial domain corresponding to the

reaction time in the temporal domain. All three approaches are most easily explained by

a number line. In Fig. 4.11, the correlation between the spatial and temporal domains

is illustrated. The vertical dashed line in the figure represents the current position/time

stamp of the vehicle. Based on the previous points on the road lk−1, lk−2, lk−3, etc.

the corresponding timestamps can be calculated. In the indirect case, the next smaller

timestamp is sought from the current minus the reaction time (tk−3 in the figure). From

there, either the input computed at that time stamp is used or delayed states and road

information are fed to the MPC at the current time k. The direct approach with the

input space constraint faces the problem that the corresponding timestamps are not

known in advance, since the vehicle speed has not yet been determined. What is known,

however, is the planned trajectory from the previous trajectory optimization at k − 1.

This information is used to calculate forward in time and find the appropriate points.

Again, the time-delayed point is searched for (tk+2 in this case) and the input is bound

in the new optimization problem to the previous trajectory up to this point.

For the indirect cases, the appropriate translation from reaction time to the spatial

frame must first be found. For this, the corresponding timestamps up to tk ∈ R≥0 must

first be known, which can be calculated either analytically or numerically. The shift

index d at instant k for case 1a and case 1b yields:

d = i∗ = argmax
i

tk−i (4.25a)

s.t. tk − tk−i ≥ tr , ∀i = 0, 1, . . . , k − 1 (4.25b)
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distancelk−3 lk−2 lk−1 lk lk+1 lk+2 lk+3 · · · lk+Np−2 lk+Np−1

time
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Figure 4.11: Interrelation between the spacial and time domain for a given reaction time
tr. This illustrative example shows that a given reaction time cannot be
exactly achieved as the corresponding incremental time steps are not consis-
tent as they vary with the vehicle velocity. In colors are the three approaches
given.

where the index i maximizes the time tk−d while still enforcing that the effective reaction

time tk − tk−d is greater or equal to the desired reaction time tr ∈ R≥0. With the index

determined, either the state xk−d and road information Z
�
k−d in case 1a are delayed for

the optimization problem or the optimized input ũ∗k−d|0 in case 1b is applied at step k.

Note, due to the condition (4.25b) the effective reaction time will be most of the time

greater than the desired one. Furthermore, the discrepancy depends on Δlp as with

smaller steps the spacing in space as well as in time is denser: lim
Δlp→0

tk − tr − tk−d = 0.

The algorithm to calculate shift/delay samples d is given in the appendix in Alg. 1.

In case 2 the determination of the delay index is quite similar, but this time it is not

calculated into the past but into the future. The previously optimized input trajectory

Ũ∗
k−1 is used to calculate the future time steps T ∈ RNp , according to Alg. 2 in the

appendix. Based on the time steps computed for further steps the index d is obtained

by:

d = i∗ = argmin
i

tk+i (4.26a)

s.t. tk+i − tk ≥ tr , ∀i = 1, . . . , Np − 1 . (4.26b)

After the index d has been determined, the input space can be constrained as follows:

U =
�
ũk|n ∈ R

%%% ũk|n = ũ∗k−1|n+1 , ∀n = 0, 1, . . . , d− 1
�

, (4.27)
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which implies that the optimization steps up to d − 1 are locked to the previously

optimized trajectory Ũ∗
k−1.

What are the effects of the different approaches from the driver’s point of view? For

the indirect methods, the MPC has no knowledge of the response time. In the case

of delayed states and road information, the driver-model simply perceives the situation

with a time offset and therefore also reacts to it with an offset. In the case of the

delay at the output, the driver perceives the situation correctly, but cannot react to it

directly. In terms of control, however, both approaches lead to the same trajectory. In

the first approach, the optimization problem at step k is solved with the information

from step k− d, while in the second approach, the solution of the optimization problem

at k−d is simply applied at k. Thus, the applied ũ∗k is the same. This temporally shifted

perception shifts the final planned trajectory in its entirety, as shown in Figure. 4.12.

In the direct method, on the other hand, the MPC receives the road information and

the state of the vehicle without a time shift. However, the MPC is unable to react

immediately to the new information because the first control steps are locked to the old

trajectory. Yet, the MPC can react to the new road information with the unbound part

of the control sequence Ũk. Thus, the information about the changed road conditions is

not lost but encoded in the planned trajectory. This now leads to the fact that the final

trajectory has a time delay at the beginning – the driver model cannot react immediately

– but the rest of the trajectory is not simply shifted in time.

In the direct case, the MPC is aware of its reaction time and plans with it, while in

the indirect case the driver model would simply perceive everything with a time delay

or act with a time delay. In the driver’s mind, this behavior could again be interpreted

as skill and experience. An experienced driver is aware of his/her reaction time and can

deal with it to some extent. A novice driver is perhaps overwhelmed with the overall

situation and therefore reacts to the entire situation with a time delay. In short, we are

digressing here to a very fundamental question of how humans process, store, and react

to information, but this is far beyond the scope of this thesis and is thus not addressed

in further detail.

In Fig. 4.12, the trajectory of the traversal was again planned for the cosine bump

of the previous examples, but with the additional reaction time to the driver model.

As previously stated, the indirect methods7, which only delay either the input or the

output of the optimization problem, do generate the same trajectories – both are super-

imposed in different colors. In the deceleration phase, all approaches have nearly the

7In the figure called delay In. and delay Out..
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same behavior, trajectory and delayed braking as it was intended. For comparison there

is a solution without any reaction time. The decisive differences between the approaches

occur when driving over the bump and in the acceleration phase. In this phases the

reaction time approach with the locked inputs closely reassembles the reference solution

which has no reaction time. Compared to this, the indirect methods suffer here in such

that the trajectory is shifted/delayed rightwards in time.

delay

Figure 4.12: Trajectories and effective reaction times: The same cosine bump from the
previous examples is used. In the right plot the effective reaction time is
plotted. The horizontal line is the minimum required reaction time. For
reference, the MPC is given without any response time.

In the right diagram of Fig. 4.12, the true/effective reaction times for the approaches

are visualized. As mentioned earlier, due to the nature of discrete MPC, it is impossible

to obtain exactly the desired reaction time. The direct approach with locking of the

input space is chosen from here on.

Influence of Road Obstacle on the Design of the Cost Function The present cost

function was developed based on a single cosine-shaped bump, but as shown in the pre-

vious chapter, there are a variety of different bumps, from potholes to raised crosswalks

to curbs. Of particular interest are the various cosinusoidal bumps that are designed to

excite the resonant frequencies of the vehicle.

As will be investigated in Ch. 5, a standard cost function is quite well suited to deal

with all bumps. Yet, the tuning applied leads, for example, only to a small drop in

speed for the small cosine bumps. Here, it may be useful to adjust the sensitivity of

the driver model via the weighting factors and thus achieve an adaptive behavior for

different obstacles. In addition, an obstacle was designed to stimulate human sensitivity
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to vertical acceleration. However, this sensitivity is not represented in the driver model

itself. Therefore, it would make sense to strongly increase the weighting of the comfort

term for this obstacle in order to represent an increased sensitivity.

Additional Constraints In Sec. 4.2 a reformulation of the state space model was intro-

duced. The reformulation introduces a singularity at a full stop of the vehicle at v → 0.

This could be circumvented by switching back the system dynamics near the singularity

and considering the optimization problem in the time domain. However, since it is the

driver’s task to drive over the hill, it can be assumed that a standstill is not desired.

Therefore, a constraint is introduced in the optimization task:

X =
�
x̃k|j ∈ R5

%% x̃5,k|j ≥ vmin , ∀j = 0, 1, . . . , Ns − 1
�
, (4.28)

where vmin is an arbitrarily low speed limit that the vehicle should not fall below. The

necessity of this constraint is visible in Fig. 4.7, since the simulation would not have been

possible for this example, as the controller would have further reduced the speed to zero.

In the example, a lower bound was set to 10 km/h. In the majority of the considered

cases, the constraint is not active.

Recapitulation of full Driver-Model After writing the main points about the cost func-

tion, response time, and constraints in the previous sections, it is time to put everything

into a final optimization problem:

Ũ∗
k = argmin

Ũk

J0(X̃k, Ũk) + Jterminal(X̃k) (4.29a)

s.t. x̃k|j+1 = f(x̃k|j , zk|j , ũk|n ) , x̃k|0 = xk , (4.29b)

x̃k|j ∈ X , zk|j ∈ Z
�
k , ∀j = 0, 1, . . . , Ns − 1 (4.29c)

ũk|n ∈ U , ∀n = 0, 1, . . . , Np − 1 (4.29d)

with reaction times accounted in U according to (4.27) and a lower bound for the velocity

in X according to (4.28). In this optimization problem, trajectory holding is intention-

ally not incorporated, since locking inputs for reaction time to a previously planned

trajectory and penalizing a deviation from the first inputs of a previously planned tra-

jectory accomplish the same goal. The optimization task set here now contains the most

important components for the driver model proposed in this thesis. For the remainder

of this work, this optimization problem will be referred to as the Basic-Cost-Function.

In the next step, the optimization problem is adapted for the half-car and, in particular,
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the inclusion of pitching effects to the cost function is addressed.

4.4.2 Half-Car

In this section, the trajectory optimization problem for the half-car is presented. Starting

from the set of Eqs. (4.1), the corresponding optimization criterion J(·), the constrained
sets X , XT and U are required. The equations of motion have already been introduced

in Ch. 3 in Sec. 3.2. In contrast to the quarter-car, the half-car not only captures the

vertical motion of one axle, but as well maps the pitching of the vehicle. The focus

of this section is therefore on integrating pitching motion in form of an additional cost

term into the human driver model and studying its influence on the planned trajectories.

There is no need to discuss all cost terms again from scratch, so based on the findings

from the previous section, the cost function derived on the basis of the quarter-car is

reused.

Trying the Basic-Cost-Function The optimization problem in (4.29) is written again,

but adapted for the half-car8:

Ũ∗
k = argmin

Ũk

Jterminal� �� �
QtNs(vref − x̃9,k|Ns−1 )

2+

+
1

Ns

Ns−1$
j=0

Qcf
4
6 (x̃k|j ) +Qv

%%vref − x̃9,k|j
%%+Quũ

4
k|j� �� �

J0

(4.30a)

s.t. x̃k|j+1 = f(x̃k|j , zk|j , ũk|n ) , x̃k|0 = xk , (4.30b)

x̃k|j ∈ X , zk|j ∈ Z
�
k , ∀j = 0, 1, . . . , Ns − 1 (4.30c)

ũk|n ∈ U , ∀n = 0, 1, . . . , Np − 1 (4.30d)

where the road information in the half-car case Z
�
k ∈ RNs×2 is defined as:

Z
�
k =

�
ζ
�
r,k|0 ζ

�
r,k|1 . . . ζ

�
r,k|Ns−2 ζ

�
r,k|Ns−1

ζ
�
f,k|0� �� �
zk|0

ζ
�
f,k|1� �� �
zk|1

. . . ζ
�
f,k|Ns−2� �� �
zk|Ns−2

ζ
�
f,k|Ns−1� �� �
zk|Ns−1

�T

. (4.31)

In Fig. 4.13 the trajectory was planned with two driver models with different internal

vehicle models. Both results are given superimposed. The reference is the dotted tra-

8Indexing for the vehicle model is omitted.
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jectory generated by the driver model in (4.29) with an internal quarter-car model. The

simulation model matches the internal vehicle model. The second driver model uses a

half-car as internal model in (4.30) and results in the solid black line. It is noticed clearly

Figure 4.13: Comparison of the driver model based on the quarter-car (dashed) and
half-car (solid). The inclusion of the pitching in the half-car lead to an
acceleration and braking maneuver at the tip of the cosine bump. Note the
subscript for the half-car (h) and quarter-car (q). The bottom right plot
only shows the pitching motion for the driver model based on the half-car.

that the driver model based on the half-car acts similarly to the quarter-car driver in the

braking and acceleration phase before and after the obstacle. However, the new driver

model behaves differently in the middle section. The driver interrupts its braking phase

with a short acceleration burst. In the following, the behavior will be further examined.

Longitudinal Jerk The first thing to be investigated is why the driver model tends to

accelerate just before the bump. A major difference between the quarter-car reference

solution and the half-car driver is, of course, the additional pitching motion in both the

internal model and the simulation model. In the bottom right plot in Fig. 4.13, the

pitch acceleration and angle of the sprung mass are displayed for the half-car driver.
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In the deceleration phase the pitch angle is positive meaning that the front suspension

is compressed due to braking. When the vehicle hits the bump on the front axle the

suspension would further compress and this would translate to higher sprung mass ac-

celeration. Therefore, the driver-model tries to mitigate the influence of the bump by

quickly accelerating before it, hence extending the front suspension – visible through

the negative pitch angle shortly before the 30m mark – and reducing the overall body

acceleration experienced by the driver.

Currently, only the longitudinal acceleration as vehicle input is penalized in the cost

function. This prevents longitudinal accelerations from becoming too large, but shapes

the trajectory only to a certain extent. To get more control over the shape of the

vehicle acceleration trajectory, the longitudinal jerk is additionally taken into account.

Longitudinal jerk is understood as the derivative of the longitudinal acceleration, rk =
dak
dt . A rapidly changing longitudinal acceleration corresponds to high jerk values. Thus,

if the jerk is now penalized, the following cost function is obtained

J(X̃k, Ũk) = J0(X̃k) + Jterminal(X̃k) + Jjerk(Ũk) , (4.32a)

with J0(X̃k) =
1

Ns

Ns−1$
j=0

Qcf
4
6 (x̃k|j ) +Qv

%%vref − x̃9,k|j
%%+Qux̃

4
10,k|j ,

Jterminal(X̃k) = QtNs(vref − x̃9,k|Ns−1 )
2 ,

Jjerk(Ũk) =
1

Ns

Ns−1$
j=0

Qrr
2
k|j =

1

Ns

Ns−1$
j=0

Qrũ
2
k|j .

(4.32b)

The underlying system dynamics in (4.30b) have shifted to the jerk model given in (3.40)

and the new input/optimization variable is the longitudinal jerk. Simulating the mod-

ified driver model with the jerk as input and comparing it to the previously one yields

Fig. 4.14.

The weight of the jerk Qr ∈ R>0 is responsible for the more rounded shape of the tra-

jectory. At lower weights, the acceleration curve approaches that without jerk weighting

and has a more trapezoidal shape. At larger values, the trajectory is rounder and more of

a sinusoidal shape. Only minor differences in the sprung mass accelerations are evident

from the plot. A deeper insight is given by plotting the optimal costs at each time k for

the different terms, as shown in Fig. 4.15. A closer look at the comfort term z̈B reveals

a higher comfort in the vertical direction for a driver model without jerk penalty.

Pitch-Dynamics So far, only the Basic-Cost-Function is considered with the adaption

of longitudinal jerk to generate smoother trajectories. The intention behind this section
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Figure 4.14: Basic-Cost-Function extended with jerk penalty: Adding vehicle jerk to the
model and penalizing the jerk results in a smoother longitudinal vehicle
acceleration. The solid line shows the driver model with jerk penalty, while
the dashed line shows the driver model without jerk penalty. Simulated is
the bump of Fig. 4.13.

Figure 4.15: Individual costs at each step k along the road for a given cosine-shaped
bump acting at 30m. The smoother transition near the bump with the
additional jerk terms in Fig. 4.14 comes at the cost of decreased ride comfort.
The graph on the right plots the cost difference between the comfort terms:
Positive values indicate that the driver model provides a smoother ride
without the additional jerk term.
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– as well as the half-car – is to improve the comfort and planning capabilities of the driver

model by considering the pitching of the vehicle as well. The following paragraphs will

investigate the pitch motion in the cost function with focus mainly on

• pitch acceleration ϕ̈B and

• pitch angle ϕB.

Pitch-Acceleration For the pitch acceleration, several different cost terms can be de-

signed, e.g. in an absolute fashion, quadratic or quartic, similar to the sections for the

quarter-car driver model. In the most straightforward case, the pitch acceleration is

simply added as an additional term in the cost function:

Jpitch(X̃k) =
1

Ns

Ns−1$
j=0

Qpf
4
8 (x̃k|j ) =

1

Ns

Ns−1$
j=0

Qpϕ̈
4
B,k|j . (4.33)

Here Qp ∈ R>0 is used to weight the total influence of the pitch acceleration accordingly.

The pitch acceleration is given by (3.40). In (4.33) a quartic weighting function is chosen

without any special considerations, apart from the reasoning for a simpler weighting

between the other accelerations in the previous sections.

In Fig. 4.16, the driver model advanced with the penalty for longitudinal jerk and pitch

acceleration was simulated for the cosine bump of Fig. 4.13. The weight and therefore

the importance of the pitch acceleration was gradually increased. With increasing weight

the optimized vehicle acceleration trajectory shapes a similar behavior as in the case of

the model without the penalty on the jerk. As can be seen in the right graph, the

improvement of the pitch acceleration is marginal, and enhancements are only visible in

the phase after the bump. In Fig. 4.16 a small weight of Qp = 1 is advantageous in the

acceleration phase, while the vehicle acceleration is still smooth in the transition phase

over the bump. A small weight of the pitching acceleration can therefore be advantageous

if the smoothness of the planned vehicle acceleration trajectory is not strongly disturbed.

However, a higher weighting of the pitching acceleration penalty has a negative effect

and again leads to undesirable behavior on the bump, as observed previously.

Another possibility to take pitch acceleration into account is to determine a mixed

comfort criterion of pitch ϕ̈B and vertical acceleration z̈B derived from a virtual “head-

rest” position of the driver in Fig. 4.17. A virtual point, e.g., the driver’s headrest –

whereby seat dynamics were of course neglected here – is introduced into the model and

used to evaluate comfort. For this purpose, the vertical and longitudinal accelerations
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Figure 4.16: Basic-Cost-Function extended with jerk and pitch acceleration penalty: As
can be seen in the left plot, the pitch acceleration penalty counteracts a
smooth trajectory. To reduce the pitch acceleration, the driver model tries
to accelerate near the hill to stretch the suspension and reduce the influence
of the obstacle on the pitching. Cosine bump of Fig. 4.13 traversed.

are calculated, assuming linearized pitch dynamics:

ar,k|j = ak|j + hrϕ̈B,k|j = x̃10,k|j + hrf8(x̃k|j ) , (4.34a)

z̈r,k|j = z̈B,k|j − brϕ̈B = f6(x̃k|j ) + brf8(x̃k|j ) , (4.34b)

where hr ∈ R and br ∈ R are the vertical and horizontal distance from the center of mass

to the virtual headrest. The accelerations in vertical and horizontal direction combine

the old comfort criterion with the pitching motion, which then yields a new cost function

J0(·) as

J0(X̃k) =
1

Ns

Ns−1$
j=0

Qcz̈
4
r,k|j +Qv

%%vref − x̃9,k|j
%%+Qua

4
r,k|j . (4.35)

Simulations using this approach give very similar results to those using the pitch accel-

eration term (4.33) and are therefore not shown.

Pitch-Angle There is also the question of the extent to which the driver reacts to the

change in inclination caused by the vehicle pitching under various conditions. Extending

the Basic-Cost-Function with the jerk penalty by an additional pitch angle penalty, e.g.,

using a quadratic weight function, yields the results shown in Fig. 4.18. To show only

the influence of a pitch angle penalty, a pitch acceleration penalty was omitted.

In Fig. 4.18 the cost function was advanced with a penalty for the pitch angle with a
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sprung mass

zB

ϕB

headrest

hr
br

Figure 4.17: Half-Car model with headrest: Calculating the accelerations of a “virtual”
headrest yields a new comfort criterion. The virtual headrest position is
given by the distances hr and br with respect to the center of mass of the
sprung mass.

quadratic function. Since the magnitude of the pitch angle is small compared to the other

quantities, large weights must be chosen so that the effect of the additional cost term

becomes visible. Penalizing the pitch angle causes small changes in the braking phase,

since the ride comfort term z̈B dominates here in the cost function. In the acceleration

phase after the obstacle, on the other hand, the term has a large influence, which is

mainly reflected in a reduced maximum longitudinal acceleration, resulting in smaller

pitch angles during the phase (as shown starting at 40m). However, the peak-to-peak

value of the pitch angle while passing the bump (at about 30 meters in the figure) is

slightly improved. Due to the restrictive behavior of the pitch angle penalty in the

acceleration phase, the penalty is excluded from the final driver model.

Constraints and Reaction Time Similar to the driver model with an internal quarter-

car model in Sec. 4.4.1, the reaction time can be introduced either by delaying the road

information and vehicle states, by delaying the optimized control input, or by directly

considering the reaction time in the optimization problem. Similarly, the direct approach

has been adopted for the final half-car driver model. The input space U is constrained

as described in (4.26) and (4.27) in Sec. 4.4.1.

In addition, a lower bound on the vehicle speed is implemented to intercept the sin-

gularity which is introduced through the reformulation of the equations of motion from

temporal to space in Sec. 4.2:

X =
�
x̃k|j ∈ R10

%% x̃9,k|j ≥ vmin , ∀j = 0, 1, . . . , Ns − 1
�
. (4.36)
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Figure 4.18: Basic-Cost-Function extended by jerk and pitch angle penalties: The pitch
angle penalty leads to a limitation of the maximum acceleration after the
obstacle and has a rather small influence in the braking phase. Cosine bump
of Fig. 4.13 traversed.

In summary, the half-car driver model based on the jerk model in (3.40), the cost terms

J0(·), Jterminal(·) and Jjerk(·) in (4.32b) and the pitch cost Jpitch(·) in (4.33) is written

as:

Ũ∗
k = argmin

Ũk

J0(X̃k) + Jterminal(X̃k) + Jpitch(X̃k) + Jjerk(Ũk) (4.37a)

s.t. x̃k|j+1 = f(x̃k|j , zk|j , ũk|n ) , x̃k|0 = xk , (4.37b)

x̃k|j ∈ X , zk|j ∈ Z
�
k , ∀j = 0, 1, . . . , Ns − 1 (4.37c)

ũk|n ∈ U , ∀n = 0, 1, . . . , Np − 1 (4.37d)

The effect of reaction time on the planned trajectories was investigated. It turned out

that the effects on the trajectory of longitudinal acceleration were similar to the findings

for the quarter-car driver model described in Sec. 4.4.1: The trajectories are shifted

to the right in time, and it was found that the direct approach, where the reaction

time is considered in the optimization problem, gives the best results. Since the effect

of reaction time in the driver model is qualitatively similar to that observed for the

quarter-car driver model, it is refrained from discussing in detail here again.
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In this chapter, the driver model proposed in this work is tested on several obstacles as

introduced in Sec. 3.6. To illustrate the influence of the internal vehicle model on the

trajectory generation of the driver model, driver models with different internal vehicle

models are compared. The resulting trajectories are qualitatively evaluated. It is also

investigated to what extent the driver should be aware of nonlinearities in the vehicle

model. Furthermore, this section deals with three short case studies dealing with driver

model mismatch. This chapter concludes with a short section that focuses on modeling

different driver behaviors.

5.1 Road Obstacles and Bumps

In the previous chapters, methodically on the basis of one obstacle, the driver model

respectively the cost function of the underlying optimization problem was set up. For

this purpose, a bump was chosen which, from the analysis of the transfer function and

from [44], has the biggest impact in terms of discomfort z̈B on human drivers. This

does not guarantee, however, that the driver model found in this way is suitable for all

common road elevations and provides trajectories that meet the requirements defined in

Sec. 4.4. Therefore, the driver models will now be tested on additional road obstacles.

Furthermore, the behavior of the driver at different reference speeds will be studied.

Before delving deeper into the driver models, some parameters of the driver model are

first defined, which – with some exceptions – apply to the upcoming simulations. The

parameters are given in Tab. 5.1.

For the different driver models, the cost function J(·) is taken from the last section

of the respective driver model, i.e., for the quarter-car driver model in (4.29) and for

the half-car driver model in (4.37). It may be noted that in the previous chapter, the

simulation model always matched the internal model with which the driver planned its

trajectories, i.e., the quarter-car driver drove a quarter-car vehicle. In the following, the

traversal of an obstacle is always simulated with the half-car model, regardless of the

driver model. In addition to the half-car model, the simulation model features wheel
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lift-off if the dynamic tire force drops below the static one (total tire force vanishes).

General Parameters

parameter value unit

lprev 25 m
Δls 0.05 m
Δlp 2 m
tr 0.4 s
vmin 10 km/h
vref 50 km/h
Ns 500 1
Np 12 1

Solver interior-point
fmincon

-

Weights for the optimality criterion J(·)
parameter Quarter-Car Half-Car unit

Qs 0.7 0.5 sm−1

Qc 0.3 1.0 s 8m−4

Qu 1.0 0.1 s 8m−4

Qt 1× 10−3 1× 10−3 s2m−2

Qr - 0.1 s 6m−2

Qp - 1.0 s 8

Table 5.1: Parameters for the driver models: The left table contains the general param-
eters for the optimization problem. The right table contains the weights for
the different terms in the cost function, given once for the quarter-car driver
and the half-car driver.

5.1.1 Cosine Shaped Bumps

In this section, cosine shaped bumps are traversed. Cosine bumps are a commonly used

obstacle as they closely resemble real-world obstacles on roads and the assumption of

a single-point excitation of the underlying vehicle model is fulfilled [44]. To highlight

the improvement of comfort and other values, two additional solutions are considered:

a global optimization and a constant speed approach.

The global optimization (GLOBAL) considers the entire road at once and solves the

same optimization problem as the driver model, but for the entire finite road path

instead of a specific finite prediction horizon Δlprev. Since the entire path is optimized

at once, no driver reaction time is considered. The constant velocity (INIT ) approach

is introduced as a measure of improvement. In this approach, the obstacle is passed

without any control intervention.

Bumps derived from Resonant Frequencies In Sec. 3.6 three cosine bumps were de-

signed based around the resonant frequencies of the vehicle-model and the sensitivity of

humans to vertical acceleration. The design parameters are given in Tab. 3.1.

Fig. 5.1 shows the behavior of the quarter-car and half-car driver models passing

through all three road elevations in sequence. In the left column the responses of the
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Figure 5.1: Simulation model response (left: driver with internal quarter-car; right:
driver with internal half-car) when traversing a sequence of cosine bumps.
Only slight differences are evident in the vertical and pitch acceleration curves
between the driver models. Performance measures relative to the INIT sim-

ulation are given as well: Pz̈B =
RMS(z̈MPC

B )
RMS(z̈INIT

B )
, Pϕ̈B =

RMS(ϕ̈MPC
B )

RMS(ϕ̈INIT
B )

.
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driver model with an internal quarter-car representation and similarly in the right col-

umn for a driver with an half-car representation are given. As a reference, the response

of a vehicle traversing the obstacles with a constant velocity (INIT ) is overlapped. The

trajectories of both driver models depict a similar behavior. The planned trajectories of

the half-car driver are smoother as the jerk penalty in the cost function enforces this.

This is well reflected in the pitch angle ϕB and vehicle acceleration a. The quarter-car

driver rapidly changes from accelerating to braking whereas the half-car driver model

transitions smoothly. Both drivers barely react to the smallest elevation close to the

end. By tuning, respectively, by shifting the sensitivity in the driver’s sense, a more

responsive behavior could be achieved for the smaller bump. For comparison, two nu-

meric performance measures Pz̈B and Pϕ̈B are introduced in Fig. 5.1. The performance

measure Pϕ̈B indicates that the half-car driver with its additional weight for the pitch ac-

celeration performs better. In addition to the initial solution, the response of the driver

is compared to an optimal solution for the whole trajectory. The global optimization for

the quarter-car driver is given in Fig. 5.2.

Figure 5.2: Global optimization for the quarter-car driver: The driver model is aware
of the whole road and can therefore initiate the braking instantly. Perfor-
mance measures Pz̈B and Pϕ̈B are for the global trajectory and relative to
the constant speed simulation in Fig. 5.1.
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In the case of global optimization, the driver model can initiate braking immediately

and thus further reduce its speed and significantly improve comfort, as the performance

measurements indicate. Of course, this means that the selected preview distance of 25

meters is not optimal for this situation and a higher value might be preferred. Depending

on the obstacle ahead, an adaptive preview distance would be of interest to adjust.

Especially at higher speeds, a larger preview distance is advantageous.

Severe Speed Bump Similar to the work in [25], a cosine speed bump is designed with

a width of Wb = 1m and a height of Hb = 0.1m. This bump has a height similar to the

longest (first) bump in Fig. 5.1, but a width similar to the shortest (last) bump. This

should lead to a more severe excitation.

In Fig. 5.3 the bump is traversed. The half-car driver shows a significant advantage

in this scenario regarding the performance measures. The driver model is aware of the

second excitation of the system coming from the rear axle. This driver model also reacts

to the second peak at approx. 55m, which is most clearly visible in the pitching accel-

eration ϕ̈B or the vertical sprung mass acceleration z̈B. The improvements compared to

the quarter-car model are achieved exactly at this point, see second peak of the vertical

acceleration z̈B for the quarter-car.

The trajectory chosen by the quarter-car driver initially shows an acceleration spike,

which in terms of human driving style is undesirable. The reason for this behavior is not

entirely clear, but the author assumes that the solver of the optimization problem is stuck

in a local minima (see Sec. 5.1.1 for a related discussion). A remedy and improvement

could be to utilize trajectory-holding as explained in Sec. 4.4.1 or to penalize the jerk as

it is done by the half-car driver as well.

Again, a global optimization in Fig. 5.4 of the entire path leads to a significant im-

provement in terms of performance measures. Subjectively speaking, the optimized

acceleration trajectory does not correspond to a very human behavior, especially with

regard to the abrupt change between braking and acceleration phases. Here, particu-

larly the penalty of the jerk in the half-car model helps to produce a smooth transition

between the two phases.

Low and High Velocity Approaches Up to this point, the reference speed vref was

always set at 50 km/h. This reference was chosen because the obstacles which are pri-

marily considered in this thesis potentially occur in urban traffic and no higher speeds are

legally allowed. In this section, however, the case of lower and higher reference velocities

is considered. Especially the high reference velocities are of interest. Let’s look at how
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Figure 5.3: Simulation model response (left: driver with internal quarter-car; right:
driver with internal half-car) when traversing the severe cosine speed bump.
Compared to Fig. 5.1 in which both driver-models perform similarly, in this
case the half-car-driver outperforms the quarter-car driver in both perfor-
mance measures.
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Figure 5.4: Global optimization trajectories when traversing the severe cosine bump:
The globally planned trajectory was able to improve in terms of Pz̈B and
Pϕ̈B compared to the finite-horizon quarter-car MPC (compare indices with
Fig. 5.3).

the half-car driver model behaves at different reference speeds. For this purpose, three

different simulation runs were performed in Fig. 5.5 with vref equal 30 km/h, 50 km/h

and 80 km/h.

Planning the optimal speed/acceleration trajectory for a given road obstacle can lead

to surprising behavior at high speeds, i.e., the vehicle accelerates instead of braking, as

shown in the figure in the upper right of Fig. 5.5 for the severe bump at 80 km/h. This

raises the question why the driver model reacts in this way at higher speeds. It should

be clarified whether the modeling of the driver by means of the chosen cost function is

correct and advocates this behavior or if this behavior corresponds to the optimum of the

optimization problem. A closer look at the cost function using global optimization shows

that a trajectory where speed is increased instead of decelerated does not correspond

to the global optimum. However, looking at the Fig. 4.6, one notices that towards

high speeds the RMQ of the comfort term – the driving force for the speed reduction –

flattens out and even slightly decreases. This gives rise to local minima for the nonlinear
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Figure 5.5: Simulations run with the half-car driver model at variations in the reference
speed vref . For the high speed pass with vref = 80 km/h the preview distance
lprev is increased to 35m.

optimization problem where the solver obviously ran into.

Without a more detailed investigation, it is claimed that this problem is mainly caused

by the definition of the cost function and the solving procedure of the optimization

problem. One could now argue that the range of application is to be found at lower

speeds and that this is therefore not a problem. It is nevertheless interesting to know

how to deal with the defined driver model at higher speeds.

Some approaches that have been developed to suppress this behavior are based on

changing the behavior of the driver model to favor low speeds, or on helping the op-

timization problem to find the global minima with a better suited initial solution. To

let the driver model prefer lower speeds and thus make the optimization problem more

robust, the dynamic wheel contact force Fz,dyn can be considered in the cost1. This

is executed in Fig. 5.6. It was investigated also to support the optimization problem

by better predefining the solver’s initial solution. This can make the solving procedure

more robust. The problem has not been addressed further in this thesis and is one of

the follow-up tasks that should be addressed and solved in future work.

1This, however, raises the question to which extent a human driver is aware of the wheel force.
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Figure 5.6: High velocity approach simulated with a quarter-car driver model with an
additional penalty for the dynamic wheel contact force. Penalizing the wheel
contact force Fz,dyn = Fk,T + Fk,S forces a reduction in vehicle speed in the
high velocity approach.

5.1.2 Raised Crosswalk

Of particular interest to the half-car are excitations from the road that excite both

rear and front axles simultaneously. For this purpose, the case of a raised crosswalk

was designed and simulated for both driver-models in Fig. 5.7. The ascent and descent

ramps are cosine shaped. The total width is adjusted such that the width of the whole

road bump is longer than the wheelbase of the vehicle: width of the crosswalk of 5m

and height of 0.1m.

In this example, the half-car driver can also outperform the quarter-car driver in terms

of the performance indices due to the additional knowledge about pitching motion. Most

visible is here the decision from the half-car driver on top of the bump at around 50m

where the model does not immediately switch to the acceleration phase but rather just

coasts over the bump and starts accelerating afterwards. In contrary, the quarter-car

driver does as well accelerate after the bump but still breaks on top of it which impacts

the pitching.

5.1.3 Pothole and Pavement-Curb

Inspired by the works of Čorić in [25], potholes are studied in this section. In addition,

a pavement-curb was designed and studied. The assumption made for the simplified tire

model (single-point excitation) is certainly no longer valid for the curb. The test case is

sketched in Fig. 5.8.

The planned longitudinal acceleration and speed trajectories on this road are simulated
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Figure 5.7: Simulation model response (left: driver with internal quarter-car; right:
driver with internal half-car) when traversing an elevated pedestrian road
crossing. Note the coasting between the braking and acceleration phase in
the trajectory for the half-car driver.
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Figure 5.8: Road profile consisting of potholes and a curb. The potholes are inverted
cosine shaped bumps similar to the realistic bump, road crossing case and
the work in [25]. The curb is designed with a steep cosine on the ramp so
that it can be continuously differentiated.

for both driver models in Fig. 5.9. Performance measures: Pz̈B = 0.52026 and Pϕ̈B =

0.3986 for the half-car driver and Pz̈B = 0.6079 and Pϕ̈B = 0.5417 for the quarter-car

driver. In terms of the performance measures, the half-car driver model performs better.

This can also be seen from the fact that the driver model with an internal half-car

decelerates the vehicle slightly more at the first obstacle.

Figure 5.9: Results for traversing the road in Fig. 5.8 with both driver-models. The ref-
erence vehicle speed vref is set to 50 km/h. The quarter-car driver struggles
more with the lower speed bound vmin.

85



5 Simulation and Results

5.2 Driver Model Mismatch

Until now, it has been assumed that the driver has a fairly accurate representation of

the driving situation. In the previous section, primarily the abstraction level of the ve-

hicle model was investigated, but each of the internal vehicle models for the driver were

parameterized such that the dynamic behavior was well approximated with the simula-

tion model: Once the driver knew the driving situation only in form of the simplified

quarter-car and in the other variant the driver was given the full model of the half-car.

Of course, the quarter-car driver model could already be interpreted as a driver model

mismatch, since the driver’s internal model does not match the simulation model. From

the human’s point of view, the driver can not only represent an abstraction of the ve-

hicle in the mind, but can also estimate the parameterization through experience with

the vehicle and thus has a good understanding of the dynamic process. In this section,

however, it will be examined how a specific driver model deals with completely different

conditions, e.g. a different or unknown vehicle. The model does not change, but the

parameters of the vehicle do. The driver will now try to cope with the task with the

false parameterization.

In the following section, three case studies will deal with this question. The first

case study examines the importance for the driver to be aware of nonlinearities in the

vehicle suspension, e.g., knowledge of compression and rebound stops. The second case

study examines how the driver model changes the planned trajectories when different

parameterized internal models are given for the same simulation model, e.g., when the

driver is tuned for heavier or light and sporty vehicles. In the third case, an example is

considered in which the simulation model has been modified with an additional payload

that is not known to the driver in one case and is known in the second case. Of interest

is how the driver reacts to the payload in both cases.

5.2.1 Linear Internal Vehicle Model

The first case study is still more concerned with the question of how the driver copes

with a simplified internal vehicle model. A related question was already addressed in

the previous section when the quarter-car driver was compared to the half-car driver in

a simulation environment based on the half-car. In this section, however, the suspension

of the half-car driver is modified so that the model in (3.36) is “linear”.

For this purpose, the nonlinear spring forces are modified in (3.40). The spring force

is relieved of the nonlinear components of the rebound and compression stop (the expo-

nential components in Fig. 3.4a). Thus, the spring force is composed of only the static
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and linear components. A vehicle model with (piece-wise) linear differential equations

in time is obtained2. The transformation in Sec. 4.2 and the discretization described in

Sec. 4.3.1 still result in a nonlinear optimization problem as in (4.4.1), but with different

vehicle dynamics.

In Fig. 5.10, the driver model based on the linear vehicle model was routed over

the road bumps from the previous section. The cost function, weights, constraints,

reaction times and simulation model remain unchanged to previous examples. Fig. 5.10a

shows the planned trajectories for the bumps derived from the resonant frequencies and

Fig. 5.10b for the severe cosine bump. The performance of the linear driver model

when driving over the frequency-derived bumps deteriorates slightly for the vertical

sprung mass acceleration indicated by Pz̈B as well for the pitch acceleration stated by

Pϕ̈B compared to the half-car driver from the previous section, see Fig. 5.1. In case of

the severe bump, the nonlinear driver model is clearly outperforming the linear one in

terms of ride comfort. Since the linear driver model is unaware of the end-stops in the

suspension, it assumes that the selected speed reduction is sufficient to provide adequate

ride comfort. However, as the nonlinear driver model has shown, comfort can be further

increased by decelerating the vehicle to the speed limit vmin. The nonlinear driver model

has shown that knowledge of the end-stops in the suspension is of great importance to

achieve high ride comfort when severe obstacles are encountered.

5.2.2 Different Parameterized Internal Vehicle Models

In this section, the behavior of the driver model is investigated with different parame-

terized internal vehicle models. For comparison, a half-car is always used as the internal

model. The first driver model uses the original parameterization (see Appx. A.2) and is

referred to here as the heavy vehicle. Starting from the nonlinear half-car driver model,

the parameterization of the internal vehicle in the driver model is changed to represent a

sporty-light vehicle with a stiffer suspension, which is referred to here as a light vehicle:

• The sprung mass mB of the vehicle is reduced to 500 kg,

• the new moment of inertia is given by IB ≈ mBlrlf ,

• the suspension stiffness is increased to 3.3× 104Nm−1 at the front and 2.5× 104Nm−1

at the rear and

2The question arises why only the spring forces were linearized and not also the piece-wise linear damper
curve. In principle, this can also be done, but it is not straightforward to linearize the damping curve,
since the gradients in the low-speed and high-speed stages are significantly different. Linearization
would lead to completely different vehicle behavior.
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(a) Resonant Frequencies Bumps: The planned trajectories of the driver model with the linear
internal vehicle model look very similar to the nonlinear one. In terms of performance
indices Pz̈B and Pϕ̈B

, the linear driver model performs slightly worse (compare indices from
Fig. 5.1).

(b) Severe Bump: Here, the nonlinear version outperforms the linear one in the performance
indices by a considerable amount (compare indices from Fig. 5.3). The nonlinear driver
model decelerates down to the lower speed limit vmin, whereas the linear version does not.

Figure 5.10: Comparison of trajectories generated by the half-car driver with knowledge
of nonlinearities (nonlinear, · · · ) and without (linear, -). Performance in-
dices Pz̈B and Pϕ̈B given for the linear model.
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• in the damper setup, the averaged low speed damping3 D is increased to 4000N sm−1

at the front axle and 3800N sm−1 at the rear axle to obtain a stiffer chassis.

The wheel masses, tire parameters, geometric parameters of the half-car, and other

parameters for suspension and damping settings are retained from the predecessor as

specified in Tab. A.2.

It is investigated how the driver model behaves when the internal model is parameter-

ized differently compared to the simulation model. In Fig. 5.11, the resonant frequency

based cosine and the severe bump have been traversed. In one case, the driver’s inter-

nal model is parameterized with the light vehicle data from above. In the other case,

the internal model uses the heavier vehicle data, which is identical to the underlying

simulation model.

Resonant Frequency Bumps Variations in the internal driver model can lead to signif-

icant changes in the planned trajectories as can be seen when traversing the middle/sec-

ond bump of the frequency bump sequence. In case when the driver model assumes it’s

driving a light vehicle, it slows down the vehicle to lower speeds. In case of the driver

with the internal heavy vehicle configuration, the driver does not brake as hard; this

could be related to the fact that the increased vehicle mass reduces the amplitude of the

vertical acceleration due to the increased inertia. When looking at the vertical and pitch

acceleration plots below – shown are only the first and second bump – it’s obvious that

the the heavier driver model performs slightly better on the first bump. At the second

bump it seems like that the lighter driver model performs better. One could think of this

as a change in the vehicle model being similar to a change in weighting and therefore

being more sensitive to the middle bump.

Severe Bump For the severe bump, only small differences in the planned longitudinal

velocity and acceleration curves can be seen. This is most likely due to the severity

of the bump and the preference to brake as close to the lower limit vmin as feasible.

The differences in the vertical and pitch acceleration plots are most likely due to the

maneuver around 50m, where the light driver model brakes and accelerates quickly.

5.2.3 Vehicle with Additional Payload

In this section, a very similar case to the one above is considered, except that here the

suspension is not modified, but the vehicle is given an additional load in form of an

3For explanation of the parameter D see Appx. A.1.
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Figure 5.11: Comparison between driver models with either the light or heavy internal
vehicle model: For each column, a case is compared in which both driver
models pass through either the cosine bumps derived from the resonant
frequencies or the severe bump. The simulation model calculates with the
parameters from the heavy case.
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increased sprung mass. The addition of a payload also results in a shift of the center of

mass towards the rear axle which is captured by modifying the distances from rear and

front to the center of mass. The following parameters from Tab. A.2 are modified:

• Sprung mass mB is increased by 75 kg,

• distance lr is set to 0.48 · L, distance lf is set to (1 − 0.48) · L, where L is the

wheelbase, and

• the moment of inertia IB is adjusted again with IB ≈ mBlrlf .

Other parameters of the vehicle model remain unchanged, as do the cost function, the

constraints, and the reaction time.

In Fig. 5.12, a similar behavior as in Fig. 5.11 is observed: Again, a heavier vehicle

results in a smaller speed drop but only if the driver is aware of the additional payload.

Without the knowledge of the additional load, the planned longitudinal acceleration

trajectory takes a very similar shape to the nonlinear driver in Fig. 5.10a. The driver

model cannot distinguish between a mass that is part of the vehicle and thus fixed,

and an unsecured mass that could cause damage during heavy braking and acceleration

maneuvers. This could be one aspect of improving the human driver model, for example,

by retuning the weighting of the driver model’s cost function in the presence of an

unsecured mass to make crossing a road obstacle safer.

5.3 Modeling Different Driver Behaviors

Until now, the weighting parameters of the cost function in the driver model have never

changed, and likewise, the same preview distance has always been presumed. By chang-

ing the weighting and thus shifting the driver’s focus to either the speed or the comfort

criterion, for example, a different behaving driver model can be created that either ap-

proaches the obstacle very conservatively or behaves aggressively just before and after

the obstacle. In addition, the behavior of the driver and the effects on the developed tra-

jectories can be studied at different preview distances, since a shorter or longer preview

distance gives the driver model more or less time to react to the obstacle.

In Fig. 5.13 for the frequency bumps in the left column and for the severe bump in

the right column, three different behaving driver models are exemplary simulated:

• A basic driver model that uses the already known cost function and weighting.

• A conservative driver model in which the preview distance lprev is increased from

25m to 35m and the weighting of the comfort term Qc is raised from 1.0 to 5.0.
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Figure 5.12: Comparison of the trajectories generated when the half-car driver drives
over the frequency bumps and the severe bump. Compared cases: driver-
model aware of the additional payload (w. load) and one where it is not
(w.o. load).

• An aggressive driver model in which the preview distance is shortened to 20m as

well as the weight on the longitudinal Qu and pitch acceleration Qp is set to zero

to focus on aggressive braking and acceleration.

It can be clearly observed that the aggressive driver brakes very late at the first obstacle

in the left column and at the obstacle in the right column. The braking maneuver is

stronger in terms of maximum deceleration. The driver is driving rather aggressively.

Interestingly, at the middle/second bump in the left column, the aggressive driver opts for

a small speed reduction and quickly passes the obstacle. However, this also corresponds

to an aggressive driving style, as comfort is secondary for this driver model. In contrast,

the conservative driver opts for a gentler braking maneuver over a longer time/distance.

It is worth noting that the conservative driver model brakes the hardest on the second

bump in the left column compared to the other drivers as a result of preferred driving

comfort.
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Figure 5.13: Comparison of different driver behaviors: By adjusting the weighting of the
terms in the cost function and modifying the preview distance, different
driver characteristics are obtained.
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This work presented the development of a novel driver model which aims to represent the

human driving behavior when crossing road obstacles with a vehicle. For this purpose, a

MPC incorporating vertical and longitudinal vehicle dynamics was applied to generate

human-like speed and acceleration trajectories on presented road obstacles.

6.1 Summary

The underlying internal representation of the vehicle dynamics plays a crucial role for

the perception of comfort and further for the trajectory planning of vehicle speed and/or

longitudinal acceleration profiles. Understanding how the vehicle behaves and reacts to

obstacles on the road was the first step in creating a driver model. Thus, the first research

question was how to use a versatile method from control theory, the model predictive

controller, to create a driver model that can anticipate the impact of road obstacle and

respond accordingly by adjusting the vehicle speed.

Research Question & Finding 1

How can human longitudinal vehicle control be modeled with a model predictive

controller?

A mapping of the vehicle-road scenario is developed in Ch. 3 with two different

vehicle models: A quarter-car and a half-car. The vehicle models presented are

further developed in Sec. 4.2 for a constant preview distance to decouple the road

excitation from the vehicle speed. Given this model, a MPC is designed in Sec. 4.1.

The robustness and applicability of the different vehicle models as internal model

of the driver model are validated in Ch. 5.

Anticipatory or predictive and feedback control are vital components of a driver model

to respond to a given driving condition. An MPC was used to devise trajectories based

on the developed vehicle models and a detailed cost function containing three important

elements (vertical ride comfort, longitudinal comfort, vehicle forward speed) of a driver’s
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decision process. Great importance is given to the shape of the generated trajectories

as the behavior when traversing the bumps should be similar to those expected from a

human driver. Therefore, the MPC cost function was exploited and its influence on the

shape was analyzed. From this, the second research question stems and was addressed.

Research Question & Finding 2

How to determine suitable driving speed profiles from a human point of view for

approaching, passing and departing different road obstacles (speed bumps, cross-

walks, ...)?

Based on objective requirements defined in Sec. 4.1, a thorough and systematic

study of how to design a cost function for the predictive controller is given in

Sec. 4.4.1 for the quarter-car driver and in Sec. 4.4.2 for the half-car driver. This

scalar function and the properties of the underlying vehicle are decisive for the

resulting speed and acceleration profiles. In Sec. 4.1 it is shown how the behavior

of the driver model can be influenced by the choice of the individual terms. The

function was validated in Ch. 5 through various simulations.

From the literature review, it is known that a decent driver model should include some

human properties like reaction times and driving styles. The last research question dealt

with the driver’s behavior during the formation of the trajectory.

Research Question & Finding 3

How can human properties such as dexterity, skill, driving style and reaction time

be incorporated into the driver model?

In Sec. 4.1, the driver model has been enhanced to not react immediately to

newly perceived road information in the planning horizon – reaction time has

been added. In addition, the trajectory holding introduced in the same section

can be used to constrain the planning capacity of the driver model such that the

first trajectory selected is preferred and all subsequent trajectories should follow to

some extent. To a certain degree, this allows for skill to be taken into account: A

skilled driver will assess the obstacle first and then stick to the planned trajectory,

while a novice driver will most likely adjust the course several times. In Sec. 5.3 it

was shown that different driving styles can be represented by modifying weighting

factors and/or different preview distances.

95



6 Summary and Future Work

6.2 Outlook

In the course of the elaboration, further questions have arisen. Thereof, possible direc-

tions for future work building on this thesis are derived:

• As shown in this thesis, the driver model is robust for low speeds, but has diffi-

culties in dealing with high speeds. Two approaches towards a solution have been

presented, but they are not entirely satisfactory. An improved cost function with

respect to the comfort term could be considered.

• The question of computational effort was only briefly considered within this work

(see Appx. B.2). For an application in the autonomous domain, the required

computing time is of utmost interest.

• The degree of modeling in the vertical direction is more accurate than in the

longitudinal direction. The model could be further developed by also taking the

drive and brake dynamics into account.

• In this work, only road obstacles with symmetrical excitation of the vehicle were

considered. Through this assumption, the vehicle model could be simplified. How-

ever, if real potholes need to be investigated, which only act in one road lane, this

assumption no longer holds and a full vehicle would have to be applied.

96



Bibliography

[1] World Health Organization, “Global status report on road safety 2018: Summary”,

Jun. 2018.

[2] CDC. (Dec. 14, 2020). “Road traffic injuries and deaths—a global problem”, Cen-

ters for Disease Control and Prevention, [Online]. Available: https://www.cdc.go

v/injury/features/global-road-safety/index.html (visited on 01/18/2021).

[3] European Commission. Directorate General for Mobility and Transport., Road

safety in the European Union: trends, statistics and main challenges, April 2018.

LU: Publications Office, 2018.

[4] F. Gustafsson, “Automotive safety systems”, IEEE Signal Processing Magazine,

vol. 26, no. 4, pp. 32–47, Jul. 2009, Conference Name: IEEE Signal Processing

Magazine. doi: 10.1109/MSP.2009.932618.

[5] A. Ziebinski, R. Cupek, H. Erdogan, and S. Waechter, “A survey of ADAS tech-

nologies for the future perspective of sensor fusion”, in Computational Collective

Intelligence, N. T. Nguyen, L. Iliadis, Y. Manolopoulos, and B. Trawiński, Eds.,
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This chapter includes the parameters used – with exceptions mentioned in the thesis –

for all simulations given. Further, for the half-car model, the jerk-model matrices are

given as well as an estimated transfer function.

A.1 Quarter-Car: Parameters

parameter value unit description

mB 465.7 kg sprung mass (car body)
mW 50.4 kg unsprung mass (car wheel)
cT 500 N sm−1 tire damping coefficient
kT 262 200 Nm−1 tire stiffness
kS 2.7922× 104 Nm−1 suspension stiffness; linear part
D 3530 N sm−1 averaged low speed damping
A 1/2 1 asymmetry parameter
sd 0.25 1 degression factor rebound stage (sd < 1)
sz 0.40 1 degression factor compression stage (sz < 1)
vd 0.20 m s−1 transition velocity compression stage
vz 0.20 m s−1 transition velocity rebound stage
f1,cmp 1/3 1 nonlinear spring progression factor
f2,cmp 4 1 curvature of progressive rise
f1,rbd 1 1 nonlinear spring progression factor
f2,rbd 8 1 curvature of progressive rise
Δzcmp 0.02 m clearance of progressive compression part
Δzrbd 0.08 m clearance of progressive rebound part
FkS ,nlin,max 1× 105 N maximum nonlinear spring force

Table A.1: Parameters of the quarter-car model.

The damper model in this text uses slopes z1, z2, d1, and d2 for the low and high

section of the damper. These can be calculated from the parameters in the table above

by the following relationships:

• averaged low damper speed D = d1+z1
2 in N sm−1,
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• asymmetry parameter A = d1
z1
,

• degrading factor for the compression stage sd = d1
d2

< 1 and

• degrading factor for the rebound stage sz =
z1
z2

< 1.

A.2 Half-Car: Parameters

parameter value unit description

mB 803 kg sprung mass (car body)
IB 1430 kgm2 moment of inertia (car body)
hT 0.600 m acceleration force leverage
hB 0.222 m breaking force leverage
lf 1.206 m distance front contact point to CoM
lr 1.664 m distance rear contact point to CoM

parameter front value rear value unit description

mW,i 50.4 50.4 kg unsprung mass (car wheel)
cT,i 262 200 262 200 N sm−1 tire damping coefficient
kT,i 500 500 Nm−1 tire stiffness
kS,i 2.7915× 104 2.0231× 104 Nm−1 suspension stiffness; linear part
Di 3530 3515 N sm−1 averaged low speed damping
Ai 1/2 1/2 1 asymmetry parameter
sd,i 0.25 0.25 1 degression factor cmp. stage (sd,i < 1)
sz,i 0.40 0.40 1 degression factor rbd. stage (sz,i < 1)
vd,i 0.20 0.20 1 transition velocity cmp. stage
vz,i 0.20 0.20 1 transition velocity rbd. stage
f1,cmp,i 1/3 1/3 1 nonlinear spring progression factor
f2,cmp,i 4 4 1 curvature of progressive rise
f1,rbd,i 1 1 1 nonlinear spring progression factor
f2,rbd,i 8 8 1 curvature of progressive rise
Δzcmp,i 0.02 0.02 m clearance of prog. cmp. part
Δzrbd,i 0.08 0.08 m clearance of prog. rbd. part
FkS ,nlin,max,i 1× 105 1× 105 N maximum nonlinear spring force

Table A.2: Parameters of the half-car model. The index i ∈ {r, f} indicates values
for either the rear or front axle. The abbreviations rbd. and cmp. denote
rebound and compression, respectively.
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A.3 Half-Car: Jerk-Model

System advanced by an additional integrator state and jerk defined as new input:

xh =



xh,1

xh,2

xh,3

xh,4

xh,5

xh,6

xh,7

xh,8

xh,9

xh,10



=



ζr − zW,r

żW,r

ζf − zW,f

żW,f

zW,r − ϕlr − zB

żB

zW,f + ϕlf − zB

ϕ̇

v

a



, (A.1a)

uh = r , (A.1b)

ẋh =



ζ̇r − xh,2

z̈W,r

ζ̇f − xh,4

z̈W,f

xh,2 − xh,8lr − xh,6

z̈B

xh,4 + xh,8lf − xh,6

ϕ̈

v̇

ȧ



, (A.1c)

zh =

�
ζ̇r

ζ̇f

�
. (A.1d)

Ah,1 =



0 −1 0 0 0 0 0 0 0 0
kT,r

mW,r
− cT,r

mW,r
0 0 − kS,r

mW,r
0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0

0 0
kT,f

mW,f
− cT,f

mW,f
0 0 − kS,f

mW,f
0 0 0

0 1 0 0 0 −1 0 −lr 0 0

0 0 0 0
kS,r
mB

0
kS,f
mB

0 0 0

0 0 0 1 0 −1 0 lf 0 0

0 0 0 0
lrkS,r
IB

0 − lfkS,f
IB

0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0



(A.2)
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Bh =



0

0

0

0

0

0

0

−mB
IB

0

0



,

(A.3a)

Eh =



1 0
cT,r

mT,r
0

0 1

0
cT,f

mW,f

0 0

0 0

0 0

0 0

0 0

0 0



,

(A.3b)

Ah,2 =



0 0

− 1
mW,r

0

0 0

0 − 1
mW,f

0 0
1

mB

1
mB

0 0
lr
IB

− lf
IB

0 0


(A.3c)

A.4 Half-Car: Transfer Function Estimate

Figure A.1: Half-car transfer function estimated at v = 75 km/h derived from a stochastic
road excitation.
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The idea of this chapter is to give a rough understanding of how a model predictive

control (MPC) works by looking at a simple linear example. A second section of this

text deals with the computational effort for the novel MPC presented in this paper. The

last section contains the algorithms to compute the shift index d for the reaction time

in the novel driver model.

B.1 Reference Velocity Tracking: Linear Example

This small example should only be a short introduction to how MPC works. Imagine the

following tracking problem: A vehicle is to follow a reference speed trajectory. Calculate

the optimal traction force required to achieve this in an optimal way.

For the vehicle model, a simplified point mass model is assumed:�
ṡ

v̇

�
����
ẋ

=

�
0 1

0 0

�
� �� �

A

�
s

v

�
����
x

+

�
0
1
m

�
����
B

F����
u

, (B.1)

y =

0 1

�
� �� �

C

x , (B.2)

where m is the vehicle mass, s is the distance traveled and v is the speed of the vehicle.

The input u is the driving force F .

This system can be discretized exactly to obtain a difference equation of the fashion:

xk+1 = Adxk +Bduk , (B.3)

yk = Cxk , (B.4)

where the zero-order-hold assumption for the input was used. The optimal control
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problem is given as:

Ũ∗
k = argmin

Ũk

Jk =

Np$
n=1

(yref,k − ỹk|n )Q(yref,k − ỹk|n ) +
Np−1$
n=0

ũk|nRũk|n (B.5a)

s.t. x̃k|n+1 = Adx̃k|n +Bdũk|n , x̃k|0 = xk , (B.5b)

ỹk|n = Cx̃k|n , (B.5c)

x̃k|n ∈ X , ũk|n ∈ U , ∀n = 0, 1, . . . , Np − 1 (B.5d)

where yref,k ∈ R is the reference velocity, the output weight Q ∈ R and the input weight

R ∈ R. This problem is a quadratic-programming (QP) problem which is convex and

can be further simplified by inserting the linear constraint into the cost function. By

looking at the evolution over the prediction horizon:

ỹk|1 = Cx̃k|1 = CAdx̃k|0 +CBdũk|0 , (B.6a)

ỹk|2 = Cx̃k|2 = CAdx̃k|1 +CBdũk|0 = CA2
dx̃k|0 +CAdBdũk|1 +CBdũk|0 , (B.6b)

ỹk|3 = Cx̃k|3 = CA3
dx̃k|0 +CA2

dBdũk|2 +CAdBdũk|1 +CBdũk|0 , (B.6c)

...

ỹk|Np
= Cx̃k|Np

= CA
Np

d x̃k|0 +CA
Np−1
d Bdũk|Np−1 + . . .+CA0

dBdũk|0 , (B.6d)

which can be further simplified in matrix form:

ỹk|1
ỹk|2
ỹk|3
...

ỹk|Np


� �� �

Ỹk

=



CAd

CA2
d

CA3
d

...

CA
Np

d


� �� �

F

x̃k|0+



CBd 0 0 . . . 0

CAdBd CBd 0 . . . 0

CA2
dBd CAdBd CBd . . . 0
...

CA
Np−1
d Bd CA

Np−2
d Bd CA

Np−3
d Bd . . . CBd


� �� �

Φ



ũk|0
ũk|1
ũk|2
...

ũk|Np−1


� �� �

Ũk

.

(B.7)

The cost function Jk can then be given as:

J = (Yk −Yref,k)
T Q (Yk −Yref,k) + ŨT

kRŨk . (B.8)

The optimization problem can now be solved analytically for the case of no constraints

by substituting the prediction equation (B.7) into the cost function and solving for the

minimum:

Ũ∗
k =

�
ΦTQΦ+R

"−1
ΦTQ (Yref,k − Fxk) . (B.9)
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If constraints are involved, the optimal control sequence Ũ∗
k is obtained by a QP-solver

e.g. quadprog [50]. Therefore, the hessian H and the gradient fk are defined:

H = 2
�
ΦTQΦ+R

"
, (B.10)

fk = 2ΦTQ (Fxk −Yref,k) . (B.11)

Finally, let’s compare the solution of an unconstrained case with one where the input

drive force form (B.1) is constraint to a maximum of 200N in Fig. B.1.

Figure B.1: Velocity reference tracking comparing a solution with constraints and one
without. Through the variation of the weights Q and R the behavior of
the MPC can be tuned. Higher Q would yield a faster response time but
violate the constraints further in the unconstrained case as well. Higher R
reduces the magnitude of the input force. Ts = 1 s, Np = 100, m = 1000 kg,
R = 1/10, Q = 200.

For more information, I recommend to look at [39]–[41], [51].

B.2 Computational Cost of the Novel Driver Model

In this section, a brief overview of the calculation costs for the novel MPC is given

in tabular form. It should be noted that the cost strongly depends on the length of

the prediction horizon as well as the number of control interventions in this horizon.
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Therefore, reducing lprev, while helpful in reducing the computation time, also reduces

the ability of the driver model to react earlier to the road disturbance. For the case

shown in Fig. 5.1, the following averaged computation times are achievable:

driver model Gradient Approximation [43] Reduced Gradient Method [41]

quarter-car 0.2549 s 0.1090 s
half-car 0.7436 s -

Table B.1: With the solver Matlab provided by fmincon with its standard gradient
approximation method, the computation times shown in the second column
are achievable. By providing the gradient by the Reduced Gradient Method
as described in [41] to the solver, the computation times shown in the third
column are achievable. The controller was called every 2m on a path with a
total length of 200m, resulting in 100 controller calls.

B.3 Reaction Time Algorithms

Algorithm 1 Example of the calculation of d for the quarter-car in case 1

Input: Uk = [u0, u1, . . . uk−1]
T , x0, Δlp, tr * Uk ∈ Rk applied inputs up to index k

Output: d * Returns d according to Eq. (4.25)
v ← x5,0
T ← zeros(k + 1, 1)
for i ← 0 to k − 1 do

if ui = 0 then
Ti+1 ← Ti +Δlp/sqrt(v

2)
else

Ti+1 ← Ti +
�
sqrt(v2 + 2Δlpui)− sqrt(v2)

"
/ui

end if
v ← sqrt(v2 + 2Δlpui)

end for
tprevious ← interp1(T, T, Tk − tr, previous)
iprevious ← min(abs(T− tprevious))
return d = k − iprevious
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Algorithm 2 Example of the calculation of d for the quarter-car in case 2

Input: Ũ∗
k−1 =


ũ∗k−1|0 ũ

∗
k−1|1 . . . ũ∗k−1|Np−1

�T
, xk, Δlp, tr

Output: d * Returns the d according to Eq. (4.26)
v ← x5,k
T ← zeros(Np, 1)
for i ← 1 to Np − 1 do

if ũ∗k−1|i = 0 then

Ti ← Ti−1 +Δlp/sqrt(v
2)

else
Ti ← Ti−1 +

�
sqrt(v2 + 2Δlpũ

∗
k−1|i )− sqrt(v2)

 
/ũ∗k−1|i

end if
v ← sqrt(v2 + 2Δlpũ

∗
k−1|i )

end for
tnext ← interp1(T, T, T0 + tr, next)
inext ← min(abs(T− tnext))
return d = k − inext
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