
Impact of Design Factors for ESA CCI Satellite Soil Moisture

Data Assimilation over Europe

ZDENKO HEYVAERT ,a,b SAMUEL SCHERRER,a,b MICHEL BECHTOLD,a ALEXANDER GRUBER,b WOUTER DORIGO,b

SUJAY KUMAR,c AND GABRIËLLE DE LANNOYa

a Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Heverlee, Belgium
b Department of Geodesy and Geoinformation, Technische Universität Wien, Vienna, Austria

c Hydrological Sciences Laboratory, NASAGoddard Space Flight Center, Greenbelt, Maryland

(Manuscript received 15 August 2022, in final form 18 March 2023, accepted 22 March 2023)

ABSTRACT: In this study, soil moisture retrievals of the combined active–passive ESA Climate Change Initiative (CCI)
soil moisture product are assimilated into the Noah-MP land surface model over Europe using a one-dimensional ensemble
Kalman filter and an 18-yr study period. The performance of the data assimilation (DA) system is evaluated by comparing
it with a model-only experiment (at in situ sites) and by assessing statistics of innovations and increments as DA diagnostics
(over the entire domain). For both assessments, we explore the impact of three design choices, resulting in the following in-
sights. 1) The magnitude of the assumed observation errors strongly affects the skill improvements evaluated against in situ
stations and internal diagnostics. 2) Choosing between climatological or monthly cumulative distribution function matching
as the observation bias correction method only has a marginal effect on the in situ skill of the DA system. However, the in-
ternal diagnostics suggest a more robust system parameterization if the observations are rescaled monthly. 3) The choice of
atmospheric reanalysis dataset to force the land surface model affects the model-only skill and the DA skill improvements.
The model-only skill is higher with input from the MERRA-2 than with input from the ERA5 reanalysis, resulting in larger
DA skill improvements for the latter. Additionally, we show that the added value of the DA strongly depends on the qual-
ity of the satellite retrievals and land cover, with the most substantial soil moisture skill improvements occurring over crop-
lands and skill degradation occurring over densely forested areas.
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1. Introduction

Soil moisture has been recognized as an essential climate vari-
able by the Global Climate Observing System (GCOS) due to
its important role in hydrological processes and its impact on
global weather and climate through atmospheric feedbacks
(Seneviratne et al. 2010; Mahfouf 2010). As the water source for
evapotranspiration over land and an essential variable for vege-
tation growth, it is involved in the water, energy, and carbon
cycles driving many land surface and atmospheric processes. The
monitoring of soil moisture is thus essential in, for example, as-
sessing possible drought development. This motivates the need
for the development of long-term and large-scale data records of
both surface and root-zone soil moisture.

Soil moisture can be derived from satellite-based brightness
temperature or backscatter in the microwave spectrum (Kerr
et al. 2010; Paloscia et al. 2013; Entekhabi et al. 2014). How-
ever, these microwave sensors have limited vertical penetration

depth (top few centimeters of the soil), and the resulting products
contain both temporal and spatial discontinuities. Alternatively,
land surface models (LSMs) can simulate surface and root-zone
soil moisture to obtain physically consistent estimates at all times
and locations (Srinivasan et al. 2000). Data assimilation (DA)
uses observations to constrain LSM estimates and enables us to
obtain superior estimates of soil moisture by combining the ad-
vantages of both sources for soil moisture estimation. Numerous
studies have shown the benefit of satellite-based soil moisture
DA, either using backscatter or brightness temperatures (e.g.,
Loew et al. 2009; De Lannoy and Reichle 2016a,b; Lievens et al.
2017; Reichle et al. 2019) or soil moisture retrievals (e.g., Reichle
and Koster 2005; Draper et al. 2012; Lievens et al. 2015; Kumar
et al. 2014, 2019). The latter approach does not require an obser-
vation operator that converts the observations into the prognostic
model space, leaving out an additional level of complexity to the
DA system. However, it lacks the advantage of being physically
consistent and inevitably suffers from biases between the retrieval
and model estimates of soil moisture (Reichle and Koster 2004).
In this paper, we assimilate soil moisture retrievals from theEuro-
pean Space Agency Climate Change Initiative Soil Moisture
(ESA CCI SM; Dorigo et al. 2017) product. In this product, soil
moisture retrievals from various active and passive microwave in-
struments have been harmonized and bias corrected to create a
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consistent merged long-term (over 30 years) soil moisture climate
data record (Gruber et al. 2019).

Earlier studies have shown a positive impact of assimilating
the ESA CCI SM product, e.g., for streamflow modeling in
China (Liu et al. 2018) and estimating historical root-zone soil
moisture records over India (Pal andMaity 2021).Blyverket et al.
(2019) assimilated the ESA CCI SM, SMAP, and SMOS data
over the contiguous United States using an ensemble optimal in-
terpolation (EnOI) method to compare their respective per-
formances. They found that out of the three resulting analyses,
the one with assimilated ESA CCI SM data showed the smallest
improvements in correlations with in situ soil moisture data.
Over Europe, Albergel et al. (2017) found an improvement in
the representation of above-ground biomass, gross primary pro-
duction, and evapotranspiration by jointly assimilating the ESA
CCI SMproduct andGEOV1 leaf area index (LAI) into a global
land data assimilation system (LDAS-Monde). De Santis et al.
(2021) found relatively minor improvements in predicting river
flow by assimilating the ESACCI SMproduct. Finally, Naz et al.
(2020) assimilated the ESACCI SMproduct into the community
land model (CLM) over Europe, producing a high-resolution
(3 km) reanalysis dataset for soilmoisture.They foundan improve-
ment over in situ sites compared to themodel-only simulation.

The studies above thus report mixed results, partly due to the
use of different model and DA configurations. In this study, we
assess the impact of such configurations on the performance of
the DA system. Specifically, we consider three choices regarding
the design of the DA system with its LSM and error parameteri-
zation. First, we focus on the chosen observation error (perturba-
tion magnitude) and how this parameter affects the skill of the
DA system and its internal diagnostics. Second, we consider two
approaches for treating observation-minus-forecast bias: cumula-
tive density function (CDF) matching through either the com-
monly used climatological rescaling (Reichle and Koster 2004)
or seasonal monthly rescaling (Barbu et al. 2014). Third, we ad-
dress the impact of the forcing input on the LSM by comparing
two atmospheric reanalyses: the fifth-generation European Cen-
ter for Medium-Range Weather Forecasts (ECMWF) Reanaly-
sis (ERA5; Hersbach et al. 2020) and the NASA Modern-Era
Retrospective Analysis for Research and Applications version 2
(MERRA-2; Gelaro et al. 2017). While comparisons between
these datasets have been made previously for a variety of differ-
ent applications (Olauson 2018; Seethala et al. 2021; Song and
Wei 2021; Taszarek et al. 2021), this study presents, to our
knowledge, the first assessment of the impact of ERA5 versus
MERRA-2 forcing on Noah-MP soil moisture simulations with
and without soil moisture DA. Additionally, we look into how
external factors affect the in situ performance of the DA system.
As in previous studies (e.g., Draper et al. 2012), we assess the im-
pact of retrieval quality and land cover on the added value of
DA using the ESA CCI SM product.

We assimilate the combined active–passive ESA CCI SM
product into the Noah LSM with multiparameterization options
(Noah-MP; Niu et al. 2011), which dynamically simulates both
soil moisture and vegetation, over the European continent. We
evaluate the model-only and DA performances for soil moisture
against in situ measurements. However, the limited number of
in situ sites does not represent the entire domain regarding soil

texture, land cover, and climate. Therefore, we also evaluate the
DA diagnostics (Reichle et al. 2017), which are available over
the entire simulation domain.

Section 2 introduces the experiment setup and evaluation
methods. Section 3 presents the results in view of the three de-
sign choices outlined above. The conclusions are summarized
in section 4.

2. Methodology

a. Model configuration

Model simulations are performed using the Noah-MP model
(Niu et al. 2011; Yang et al. 2011) version 4.01 with dynamic
vegetation, implemented within the NASA Land Information
System (LIS; Kumar et al. 2006). Noah-MP simulates soil mois-
ture at depths of 0–10 cm (SM1), 10–40 cm (SM2), 40–100 cm
(SM3), and 100–200 cm (SM4). We will refer to soil moisture in
the top 10 cm as the surface soil moisture (sfsm, equivalent to
SM1) and the top 100 cm as the root-zone soil moisture (rzsm).
We derive the model rzsm as the weighted average of the top
three layers, with the thickness of the layers serving as weights.
We use a regular grid over the European continent (11.508W–

40.258E, 29.758–71.758N) at a spatial resolution of 0.258. Starting
from a uniform initial condition, we spin up the LSM by loop-
ing three times from 2000 to 2010 to obtain a reliable climatol-
ogy to initialize the year 2000. A 2-yr period from 1 January
2000 through 31 December 2001 then serves to spin up the 24
perturbed ensemble members (see section 2d). All experiments
(see section 2e) are conducted from 1 January 2002 through
31 December 2019 using a model integration time step of
15 min and daily averaged model output at 0000 UTC.

The used land cover data are obtained from NASA’s Moder-
ateResolution Imaging Spectroradiometer (MODIS; Friedl et al.
2002) while the Harmonized World Soil Database (HWSD;
Nachtergaele et al. 2010) is used for soil texture information and
NASA’s Shuttle Radar Topography Mission (SRTM; Farr et al.
2007) provides the elevation map. Land cover and soil texture
are spatially transformed to the model grid using a tiling ap-
proach. Land cover is assumed to be constant over time as in
most studies (unlike Maertens et al. 2021, for example).

b. Meteorological forcing

The Noah-MP LSM is forced by the latest two major climate
reanalysis products in separate experiments (see section 2e):
ERA5 (Hersbach et al. 2020) lowest model level forecasts with
a resolution of 0.258 3 0.258, and MERRA-2 (Gelaro et al.
2017) lowest model level analyses with a resolution of
0.58 3 0.6258. Both datasets are matched to the model grid us-
ing a bilinear interpolation approach. The MERRA-2 forcing
includes a gauge-based precipitation correction similar to the
one developed for MERRA-Land (Reichle et al. 2011; Reichle
and Liu 2014). For both forcings, elevation-based atmospheric
temperature corrections are applied in LIS.

c. Satellite retrievals

We use satellite retrievals from the combined active–
passive ESA CCI SM product version 7.1 (Dorigo et al. 2017;
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Gruber et al. 2019) for assimilation into the Noah-MP LSM.
This product merges soil moisture retrievals of multiple sat-
ellites by combining both active and passive microwave
products after rescaling them to the Global Land Data
Assimilation System Noah LSM (GLDAS Noah; Rodell
et al. 2004), thereby obtaining a consistent long-term record.
Passive products are retrieved using the Land Parameter
Retrieval Model (LPRM; Owe et al. 2008) algorithm and in-
clude, for our study period, the Special Sensor Microwave
Imager (SSM/I), the Tropical Rainfall Measuring Mission’s
Microwave Imager (TMI), the Advanced Microwave Scan-
ning Radiometer (AMSR)-E and AMSR-2, WindSat, the
Soil Moisture Ocean Salinity mission (SMOS), and the Soil
Moisture Active Passive mission (SMAP). Active products
are retrieved using the TU Wien Water Retrieval Package
(WARP; Wagner et al. 1999; Naeimi et al. 2009) algorithm
and include the Active Microwave Instrument Wind Scatterom-
eter (AMI-WS), and the Advanced Scatterometer (ASCAT)-A
and ASCAT-B.

The ESA CCI SM product has a temporal resolution of one
day on a 0.258 regular grid (same as the model grid). It is quality
controlled, with retrievals masked out over rain forests, during
frozen or snow-covered periods, or if flags of the retrieval algo-
rithm are raised. Furthermore, we do not assimilate observa-
tions over grid cells for which the land cover is predominantly
“urban and built-up land” or “snow or ice,” or where the topo-
graphic complexity (TC) exceeds 10%. TC is defined as the
standard deviation of the elevation within a grid cell, normal-
ized between 0% and 100%, and is provided with the ESA CCI
SM product. We do assimilate retrievals over forested areas if
they do not have a warning flag in the ESA CCI SM product.

For experiments using monthly CDFmatching (see section 2e),
we ensure a reliable rescaling for each location by omitting
months with less than 100 observations across the 18 simu-
lated years. For experiments using climatological CDF match-
ing, we omit locations with less than 100 observations in at
least three different years from the assimilation.

d. Data assimilation method

A one-dimensional ensemble Kalman filter (EnKF; Reichle
et al. 2002; Evensen 2003) with 24 ensemble members is used

for assimilation of the soil moisture retrievals into the
Noah-MP LSM at 0000 UTC; the daily ESA CCI SM retriev-
als are centered around this time. CDF matching is applied to
remove the differences in climatology between the model and
the retrievals. Differences between the forecasted and ob-
served sfsm, also called innovations, are mapped to updates in
prognostic volumetric soil moisture content in the four LSM
soil layers. The magnitude of the updates, also called incre-
ments, depends on the assumed error in the forecasts and
observations.

Perturbations to meteorological fields and the model’s
four soil moisture prognostic variables approximate the
forecast errors. The settings for these perturbations are cali-
brated for the open loop through ensemble verification
measures (De Lannoy et al. 2006). Settings for cross correla-
tions of the errors are taken from Kumar et al. (2014). Note
that the effective correlation of the forecast errors used in
the Kalman filter is a combination of the correlations im-
posed via the perturbations and correlations from the dynam-
ical coupling which is present in the model because of the
physical interaction between the layers. As listed in Table 1, we
perturb precipitation and downward shortwave radiation with
multiplicative perturbations drawn from a lognormal distribu-
tion, whereas the downward longwave radiation and four soil
moisture variables are perturbed with additive perturbations
drawn from a normal distribution. This means that samples are
drawn from a standard normal distribution (and truncated if
their value exceeds 2.5) and multiplied by the standard devia-
tion in Table 1. Forcing perturbations have a temporal correla-
tion of 24 h, whereas the perturbations in the four prognostic
variables are not temporally correlated. This temporal correla-
tion relates to the time scale of the AR(1) process. No spatial
correlations for the perturbations are enabled, and perturba-
tions to the prognostic variables are not cross correlated to
those of the forcings. We applied the correction described by
Ryu et al. (2009) to remove unintended perturbation bias in the
forecasts. This means that the ensemble average of an open
loop will be the same as a deterministic forecast. The character-
ization of the random and systematic observation errors is
treated as a design choice and is discussed below.

TABLE 1. Overview of ensemble perturbations to forcing fields}downward shortwave radiation (SW), downward longwave
radiation (LW), and precipitation (P)}and prognostic variables of soil moisture in the four soil layers (SMi, i 5 1, … , 4). Additive
(1) perturbations have a mean of 0 and are drawn from a normal distribution, while multiplicative (3) perturbations have a mean of
1 and are drawn from a lognormal distribution. We applied temporal correlations of the time series through a first-order
autoregressive model. Perturbations to prognostic variables are uncorrelated to the forcing perturbations.

Cross correlations with other perturbations

Type Mean Standard deviation Temporal correlation SW LW P SM1 SM2 SM3 SM4

SW 3 1 0.3 24 h 20.5 20.8
LW 1 0 50 W m22 24 h 20.5 0.5
P 3 1 0.5 24 h 20.8 0.5
SM1 1 0 0.004 00 m3 m23 0 0.6 0.4 0.2
SM2 1 0 0.000 07 m3 m23 0 0.6 0.6 0.4
SM3 1 0 0.000 04 m3 m23 0 0.4 0.6 0.6
SM4 1 0 0.000 02 m3 m23 0 0.2 0.4 0.6

H EYVAER T E T AL . 1195JULY 2023

Unauthenticated | Downloaded 07/04/23 11:52 AM UTC



e. Performed experiments and impact assessments

Table 2 gives an overview of the experiments discussed in this
paper. Two open loop (model-only) experiments OLx are per-
formed, with x referring to the reanalysis dataset used to force
the LSM, i.e., ERA5 for x 5 E and MERRA-2 for x 5 M.
Similarly, the reference data assimilation experiments are
denoted by DAx. These experiments use monthly CDF
matching (see below) and an observation error (see below)
of S 5 0.025 m3 m23 whereas other DA experiments use cli-
matological CDF matching, denoted by DAc

x, or a different
value for S, denoted by DAx(S). All OL and DA experi-
ments have the same forecast perturbation settings listed in
Table 1.

1) IMPACT OF THE OBSERVATION ERROR

The magnitude of the observation error S refers to the as-
sumed observation error standard deviation. Several experi-
ments DAE(S) are performed with S 2 {0.00625, 0.0125, 0.025,
0.05, 0.1, 0.2} (m3 m23), leaving all other settings unchanged.
The reference experiments DAE and DAM use a value of
S5 0.025 m3 m23, which was determined based on an optimiza-
tion of innovation diagnostics (Reichle et al. 2002). This value is
much smaller than the total error of the ESA CCI retrievals be-
cause anomaly observations are assimilated (after CDF match-
ing) and the perturbations determined by S only reflect the error
on the short-term and interannual signal in the observations.

2) IMPACT OF THE RESCALING APPROACH

Because the Kalman filter assumes unbiased observations
and forecasts, we use a pixel-based CDF-matching approach
to rescale the retrievals to the model climatology (Reichle
and Koster 2004). In the reference experiments DAE and
DAM, the CDF matching is done separately for each month
of the year (Barbu et al. 2014) based on the 18 years of re-
trievals and model-only simulations. This approach was also
used by Kumar et al. (2015), de Rosnay et al. (2020), and
Aires et al. (2021), for example. In most other studies (e.g.,
Reichle and Koster 2005; Draper et al. 2012; Kumar et al.
2014; Lievens et al. 2015), however, the CDF matching is
based on the entire time series of observations, here referred
to as climatological CDF matching. We use this more com-
mon climatological rescaling approach in the DAc

E experi-
ment, keeping all other configurations unchanged.

3) IMPACT OF THE METEOROLOGICAL FORCING

Most land surface DA systems correct for short-term and
interannual errors introduced by meteorological forcings. The
only difference between experiments DAE and DAM is the

reanalysis dataset used to force the Noah-MP LSM, as shown
in Table 2.

f. Evaluation sites and skill metrics

Evaluation sites are acquired from two sources. First, the
International Soil Moisture Network (ISMN; Dorigo et al.
2011, 2013, 2021) provides in situ measurements of soil mois-
ture at various depths at individual points in the study domain.
The data have been quality controlled, and we only use data
points flagged as “good” for evaluation. Second, soil moisture
observations from the SMAP/In Situ Core Validation Site
Land Surface Parameters Matchup Data, Version 1, are avail-
able at 9-km grid-scale core validation sites as part of the
SMAP Calibration/Validation Program (Cal/Val; Colliander
et al. 2017). Figure 1a marks all 94 grid cells for which in situ
sfsm is available for evaluation, after removing sites for loca-
tions where no DA takes place (e.g., mountainous areas). We
aggregate the in situ data to daily resolution and require at
least 200 daily observations over at least three different years
per site before including it in the evaluation. When multiple
sites are available within a 0.258 grid cell, skill metrics are com-
puted for each site separately, after which the metric values
are averaged to obtain a single value for the grid cell. This de-
creases the weight of areas with multiple sensors when com-
puting the overall skill improvements over the domain.
Similarly, there are 63 locations with in situ rzsm data (not
shown). In situ sites are only used to assess rzsm if at least one
sensor is present at a depth below 10 cm.

Figure 1b shows a considerable variation in the period in
which in situ sfsm is available for evaluation. For example, the
GTK network in Finland and the ORACLE network in cen-
tral France cover periods in the first part of the simulations,
whereas Cal/Val sites and data from the FMI network enable
evaluation of later parts of the simulations. Some networks
cover relatively long periods (e.g., SMOSMANIA), whereas
others do not (e.g., GROW). The temporal coverage of the
reference data matters. Indeed, we expect larger DA skill im-
provements at sites with data in later periods when the assimi-
lated ESA CCI SM product has higher-quality retrievals. The
supplemental material provides a detailed overview of the
ISMN networks used and their references in Table S1.

Similar to other studies (e.g., Kumar et al. 2019), we mainly
rely on the anomaly correlation (Ranom) as skill metric, be-
cause it removes climatological differences between in situ
and model (or retrieval) estimates of soil moisture (Koster
et al. 2009). We compute the anomaly values by subtracting
the multiyear mean seasonal cycle from the soil moisture
data, after which we calculate the Pearson correlation coeffi-
cient between two anomaly time series. We also use the unbi-
ased root-mean-square difference (ubRMSD; Entekhabi et al.
2010), defined as ubRMSD5

����������������������
RMSD2 2 bias2

√
, with

bias 5
1
N
∑
N

i51
(xi 2 yi) and RMSD 5

��������������������
1
N
∑
N

i51
(xi 2 yi)2

√
: (1)

Here xi represents the soil moisture estimated by the OL or
DA experiment (or satellite retrievals), and yi represents the

TABLE 2. Overview of the performed experiments.

CDF
matching

Forced by
ERA5

Forced by
MERRA-2

Open loop } OLE OLM

Data assimilation Monthly DAE DAM

Climatological DAc
E }
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in situ observed soil moisture at day i (N days in total). In situ
observations when the soil is frozen or snow covered are re-
moved before computing the skill metrics.

g. Regional data assimilation diagnostics

Apart from evaluating over stations with in situ data, we
also assess the DA system through internal diagnostics (Gelb
et al. 1974). These diagnostics are based on statistics of the in-
novations, or observation-minus-forecast residuals, and are
thus available at all times and locations for which soil moisture
retrievals are assimilated (Reichle et al. 2017). Following pre-
vious studies (e.g., Reichle et al. 2002; De Lannoy and Reichle
2016a,b; Reichle et al. 2017), the DA diagnostics are used to
explore whether the assumed errors of the system are consis-
tent with the actual errors. If the DA system extracts the infor-
mation from the observations optimally, the innovations n

should form a zero-mean white noise sequence in time for
each location (Gelb et al. 1974; Reichle et al. 2017).

The normalized innovations ñ are obtained by dividing the
innovations n by the square root of the sum of the model and
observation ensemble variances. If we choose the assumed
model and observation errors optimally, the standard devia-
tion of ñ , sñ , should be close to unity. Values greater than one
indicate underestimated forecast and observation error var-
iances, whereas values smaller than one indicate an overesti-
mation of the error variances (Reichle et al. 2002; Desroziers
et al. 2005; Crow and Bolten 2007; Crow and Van den Berg
2010).

Increments are the state space equivalent of the innova-
tions: we derive them for each of the four soil layers of the
model. Like the innovations, they should follow a zero-mean
white noise sequence in time. We will primarily focus on the
relations between soil moisture increments of different soil

layers and the impact of the three considered design choices
on these relations.

3. Results and discussion

a. Model-only experiments

In this section, we compare the results of the two ensemble
model-only experiments OLE and OLM. We do not assimilate
retrievals in these runs but use the same perturbations to forc-
ing fields and prognostic variables as the subsequent DA ex-
periments (Table 1).

The map of time-average rzsm for the OLE experiment in
Fig. 2a shows the expected patterns, with drier soils over
southern Europe and northern Africa. Sandy soils, in Norway
and Finland for example, are also substantially drier. The re-
sults for sfsm (not shown) are very similar, but with drier top-
soil in northern Africa. Figure 2b shows the difference in the
average rzsm between OLE and OLM (an artificial pattern is
visible in this map due to the difference in resolution between
both reanalyses). MERRA-2 yields drier soils in most regions
of Europe, most pronounced over mountainous areas such as
the Pyrenees and the Carpathians. Over northern Africa, the
LSM forced by ERA5 generally yields drier soils, especially
over the Atlas Mountain ranges. The bias over Scandinavia is
small, with soils in OLE slightly drier. We observe that the soil
moisture differences strongly relate to precipitation differ-
ences. Indeed, we observe higher average precipitation over
most of Europe for the ERA5 reanalysis compared to
MERRA-2 (Fig. S1). The magnitude of this difference is also
linked to topography. An explanation for this may be that the
ERA5 reanalysis is not rain gauge corrected over our study
domain, and several studies (e.g., Bandhauer et al. 2022 over
Europe) have found that the mean precipitation is overesti-
mated. Over Scandinavia, the precipitation in both datasets is

FIG. 1. (a) Location of the ISMN in situ evaluation sites and the Cal/Val reference sites for sfsm, colored per net-
work. The inset shows a close-up of the SMOSMANIA network in southern France. (b) The lines indicate the start
and end dates for which sfsm information is available at individual sites, colored per network. Gaps in the data may
be present between the start and end dates (not shown).
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comparable, while MERRA-2 has more precipitation over
northern Africa, in line with rzsm in Fig. 2b.

Figure 2d depicts the temporal variability of the rzsm
through the interquartile range (IQR). There is a clear latitu-
dinal effect, with southern Europe and Turkey showing the
most variability in soil moisture over time and northern
Europe the least. Mountainous areas such as the Pyrenees, the
Alps, and the Carpathian Mountains show little variation in
simulated soil moisture. Again, the maps for sfsm are very sim-
ilar, but sfsm exhibits more variability than rzsm over northern
Africa (not shown). The difference in rzsm variability between
OLE and OLM is visualized in the map of Fig. 2e. Contrary to
the map of the temporal average (Fig. 2b), most regions in
Europe have a higher variability over time for OLM. This be-
havior can be understood by looking at the soil moisture dy-
namics in Fig. 2c, which compares the time series of spatially
averaged rzsm for each day of the year across all simulation
years, hrzsmidoy. The difference Dhrzsmidoy between OLE and

OLM is shown as a function of hrzsmidoy in the OLE experi-
ment. This difference increases during summer, to reach its
largest value during the driest period toward the end of sum-
mer. The difference between both runs then decreases again to
reach its minimum during the wettest period at the end of win-
ter. This means that soils dry out more during summer in the
simulations forced by MERRA-2 than in simulations forced by
ERA5, explaining the larger variability for the former observed
in Fig. 2e. This effect is larger for rzsm than for sfsm (not
shown). One important driver for the dynamics depicted in
Fig. 2c is the precipitation P. Figure 2f portrays the difference
DhPidoy between the ERA5 and MERRA-2 reanalyses for
each day of the year, as a function of hPidoy. The differences
in precipitation between the two reanalyses can indirectly
explain the differences in rzsm shown in Fig. 2c: hPidoy is
typically larger for ERA5 during light rainfall events, while
hPidoy is larger for MERRA-2 during heavy rainfall events.
Note that the difference in color between Fig. 2c and Fig. 2f

FIG. 2. (a) Temporally averaged (2002–19) rzsm, hrzsmi, in the OLE experiment. (b) Difference in hrzsmi between OLE and OLM:
brown indicates higher values for OLE, and blue indicates higher values for OLM. (c) Difference in the spatial average for each day of the
year, Dhrzsmidoy, between OLE and OLM as a function of hrzsmidoy for OLE. (d),(e) As in (a) and (b), but for the interquartile range
IQRrzsm. (f) As in (c), but for the precipitation P.
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indicates a time delay between hPidoy and hrzsmidoy of about
6 months.

b. Number of assimilated observations

The number of assimilated soil moisture retrievals varies
both in space and time for the DAE experiment. Figure 3a
shows daily counts of assimilated observations over the
study domain. Apart from a clear seasonal pattern, the
number of assimilated retrievals increases over time as
additional sensors are included in the combined active–
passive ESA CCI SM product. This is most pronounced in
the peaks of the summer months, when the number of retriev-
als increases from 12500 in 2002 to 15 000 in 2019. The impact
of adding MetOp-A ASCAT (January 2007) or AMSR2
(July 2012) is visible, for example (Dorigo et al. 2017). While
the inclusion of some products (e.g., SMAP in April 2015)
does not have a direct impact on the number of assimilated
retrievals, it allows for a higher-quality daily averaging and
should decrease the product uncertainty.

The map for DAE in Fig. 3b shows that retrievals are never
assimilated in mountainous areas such as the Alps, the Pyre-
nees, and the Carpathian Mountains as satellite retrievals in
such areas are masked out (section 2c). Similarly, the map also
shows fewer assimilated retrievals in areas with cold winters
such as Northern Europe due to the masking of retrievals dur-
ing frozen conditions. Drawing the map for the DAc

E experi-
ment yields a similar pattern, with slightly more assimilated
observations throughout the domain, and in the northern lati-
tudes specifically. The pattern for DAM follows that of DAE

closely.

c. Evaluation of the DA skill improvements

Figure 4a shows boxplots of Ranom for the model-only
(OLE) and data assimilation (DAE) sfsm forced by ERA5,
at the ISMN and SMAP Cal/Val sites. The mean difference
between both Ranom distributions is significantly different
from zero at the 5% level (paired two-sample t test,
p5 0.0015), but the difference is small with mean Ranom 5 0.52
for DAE and mean Ranom 5 0.51 for OLE. Figure 4b shows the
spatial pattern of the DA impact, with a skill improvement at
sites in southern France (the SMOSMANIA network) and

eastern Europe (the RSMN network) and a deterioration in
Finland (GTK and FMI networks). As mentioned earlier, the
SMOSMANIA and RSMN networks provide evaluation data
toward the end of the simulation, when retrievals are more
numerous and of higher quality, whereas the GTK network
mostly consists of in situ information that can be used to evalu-
ate the first half of the simulation (Fig. 1). We are thus not only
comparing different regions but also different periods, which
may be an additional explanation of the differences in skill im-
provements. Maps of the sfsm ubRMSD (not shown) display a
similar spatial pattern, with mean values of 0.052 and
0.051 m3 m23 for the OLE and DAE experiments, respectively.
The evaluation of the rzsm (Figs. 4c,d) yields similar results as
for the sfsm, with mean Ranom values of 0.51 and 0.49 for the
OLE and DAE experiments, respectively (ubRMSD: 0.042 and
0.043 m3 m23). Overall, the significant but small improvements
found in our study align with Reichle et al. (2021) who show
that the impact of soil moisture DA over Europe can be lim-
ited compared to other (drier) regions, or regions where the
forcing data are presumably of lower quality.

In Fig. 5a, we visualize (through Ranom with the in situ
data) the impact of model-only (OLE) F5 and observation
skill on the skill improvement by the DAE system. For evalu-
ation sites located in the top left of this figure, OLE outper-
forms the retrievals, whereas the retrievals outperform the
model in the bottom right of the figure. No DA skill degrada-
tion is observed when the observations outperform the
model, but this is the case only for a minority of the evalua-
tion sites (18 out of 94). However, it is clear that improve-
ments can still occur in other locations, where the retrievals
perform worse than the model.

Linking the skill of the model and/or the retrievals, and
thus the expected DA skill improvement, to environmental
factors such as land cover would allow making a priori as-
sumptions regarding locations where the DA is expected to
have a substantial positive or negative impact. Figure 5b
shows the distribution of forest fraction (based on the
model land cover input) in the grid cells for sites showing
skill improvement (blue boxplot) and sites with skill deteri-
oration (red boxplot). A two-sample t test indicates that
the means of the two distributions are different at the 5%

1-year moving average(a) (b)

FIG. 3. (a) Daily count of assimilated ESA CCI soil moisture retrievals over the study domain. (b) Total number of
retrievals assimilated for each grid cell over the complete simulation period. No assimilation took place over white
grid cells. Both figures correspond to the DAE experiment.
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significance level (p 5 0.014). Locations with skill degrada-
tion are more likely located in (densely) forested areas,
such as the ISMN sites in Finland. Figure 5c demonstrates
that locations where retrievals outperform the model
(OLE) indeed have a relatively low forest fraction, al-
though exceptions occur.

Similarly, Figs. 5d and 5e reveal statistically significant
(p 5 0.009) skill improvement by DA at grid cells with
larger cropland fractions. Model and satellite retrieval per-
formance differences at such sites are generally smaller
than over forested sites. This is consistent with the findings
of Draper et al. (2012) and is linked to croplands being
more suited for microwave remote sensing than forests,
and the Noah-MP model not accounting for cropping prac-
tices such as irrigation. A map showing the spatial distribu-
tions of forests and croplands over our study domain can
be found in the supplemental material (Fig. S2).

Previous studies over the contiguous United States (De
Lannoy and Reichle 2016b; Kumar et al. 2019) show larger
skill improvements over the east (wetter soils) than the
west (drier soils) of the country. We therefore also exam-
ined the link between mean (modeled) rzsm and skill im-
provement (Figs. 5f,g) but found no statistically significant
effect (p 5 0.104).

1) IMPACT OF THE OBSERVATION ERROR

Figure 6 shows the distribution of sfsm and rzsm skill im-
provements DRanom (compared to OLE) at ISMN and SMAP
Cal/Val sites for DAE(S) with different values of the observa-
tion error S. Superimposed on the boxplots are the indi-
vidual evaluation sites, with blue colors indicating higher
retrieval quality and red colors indicating lower retrieval
quality (relative to the model skill). As discussed previ-
ously, higher satellite retrieval qualities result in larger
skill improvements, but observations with lower skill than
the model may still improve the DA results. Figure 6 dis-
plays a trade-off for both sfsm and rzsm when choosing the
“optimal” value of the observation error S. If S is too small,
the DA puts too much weight on the observations: while the
best-performing sites show very strong improvements in this
scenario, many sites also show strong deteriorations. As S in-
creases, the DA remains closer to the OL and DRanom values
converge toward zero. A larger value for S is thus a “safe”
choice if the objective is to assimilate a product of low(er)
quality (compared to the model) without harming the model
simulations. The value S 5 0.025 m3 m23 results in the highest
median skill improvement for both the sfsm (DRanom 5 0.007)
and the rzsm (DRanom 5 0.008).

FIG. 4. (a) Comparing spatial distributions of sfsm Ranom for the OLE and DAE experiments relative to ISMN and
Cal/Val evaluation data. (b) Change in anomaly correlation (DRanom) of sfsm: blue sites show an improvement in skill
by the DA, whereas red sites show a degradation. The inset shows a close-up of the SMOSMANIA network in south-
ern France. (c),(d) As in (a) and (b), but for the rzsm.
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2) IMPACT OF THE RESCALING APPROACH

Skill improvements DRanom for DA with the monthly
(DAE) and climatologically (DAc

E) rescaled observations are
shown in Figs. 7a and 7b for the sfsm and rzsm respectively.
For both rescaling methods, the DA skill gain is virtually iden-
tical when averaged over all stations and also exhibits low in-
terstation variability (sfsm: average DRanom of 0.014 and 0.012
for DAE and DAc

E, respectively; rzsm: average DRanom of
0.015 and 0.016 for DAE and DAc

E, respectively). The lower
panels of Fig. 7 are discussed in the following subsection.

3) IMPACT OF THE METEOROLOGICAL FORCING

Figure 7c (sfsm) and Fig. 7d (rzsm) compare the skill im-
provements DRanom between DAE and DAM experiments.
The DA skill changes, both improvements and degradations,
are more moderate for DAM than for DAE, as indicated by
the slope of the regression that is significantly smaller than 1,
while the intercept is not significantly different from 0 (sfsm:
average DRanom of 0.014 and 20.003 for DAE and DAM, re-
spectively; rzsm: average DRanom of 0.015 and 0.012 for DAE

and DAM, respectively). The OL simulations of sfsm have a

FIG. 5. (a) Skill change (DRanom; DAE 2 OLE) for sfsm (color), as a function of OLE skill (vertical axis) and obser-
vation skill (horizontal axis). Blue indicates improvements and red indicates deteriorations. (b) Fraction of the evalu-
ated grid cells occupied by forest, for all sites with improvements (blue boxplot) and deteriorations (red boxplot).
The p value indicating the significance of the difference between the means of both distributions is shown on top
(two-sample t test). (c) As in (a), but with the color replaced by the forest fraction. (d),(e) As in (b) and (c), but for
the cropland fraction. (f),(g) As in (b) and (c), but for the mean rzsm.

FIG. 6. (a) Distribution of skill improvements in sfsm (horizontal axis) as a function of the observation error S
(vertical axis). Individual evaluation sites are superimposed with an indication of the retrieval skills relative to OLE.
(b) As in (a), but for the rzsm. Since the CCI product only represents surface soil moisture, no comparison between
satellite retrievals and in situ rzsm measurements is shown.
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larger Ranom when forced with MERRA-2 than when forced
with ERA5 for about 79% of the stations. This may partly ex-
plain why the skill improvements are generally larger for
DAE than for DAM, as they are compared to their respective
OL experiments. Despite the smaller skill improvements, the
DAM experiment still slightly outperforms DAE in terms of
Ranom (not shown).

d. Statistics of the data assimilation innovations

By design, the temporal average of the innovations is small
throughout the domain, with values ranging from 20.001 to
0.003 m3 m23 (5th and 95th spatial percentiles, respectively) for
DAE (Fig. S3), and similar values for DAc

E and DAM. The im-
pact of the rescaling approach and meteorological forcing on
the temporal innovation mean is not significant. However, the
innovation time series show a seasonal pattern in DAc

E, with in-
novations steadily increasing during one-half of the year (May–
November) and decreasing the other half of the year. This is
reduced in DAE (this is shown for the corresponding DA incre-
ments in Fig. S5). Unsurprisingly, rescaling the observation via
monthly CDF matching thus results in a time series resembling
a white noise sequence more closely. This is our main motiva-
tion to use monthly rescaling as the reference configuration in
the DAE and DAM experiments. In the remainder of this sec-
tion, we will discuss the temporal standard deviation of the nor-
malized innovations sñ , which should be close to unity. Figure

S4 shows this quantity’s temporal and spatial distribution for
the DAE experiment. It reveals smaller values over desert re-
gions (Sahara), and larger values over agricultural regions (e.g.,
Ukraine), consistent with the findings of De Lannoy and
Reichle (2016b) and Reichle et al. (2017).

1) IMPACT OF THE OBSERVATION ERROR

Figure 8a shows the spatial distributions of the temporal
standard deviation of the normalized innovations sñ for dif-
ferent values of the observation error S. The reference value
S 5 0.025 m3 m23 is depicted in light green and is centered
around a value of sñ between 1/2 and 1. The fact that sñ , 1
for most grid cells indicates that the total assumed forecast
plus observation error of the system is slightly overestimated.
Increasing S shifts the distribution of sñ to smaller values
(stronger overestimation of the errors), while excessively de-
creasing S shifts the distribution to larger values than unity
(underestimation of the errors).

While our experiments with S5 0.025 m3 m23 happen to si-
multaneously result in the best value for hsñ i (Fig. 8a) and
DRanom (Fig. 6), there are several reasons why this would not
always be the case. First, the innovation diagnostics cover the
complete spatial and temporal domain of the experiments,
while the in situ sites only cover the sparse locations and times
shown in Fig. 1. Second, we optimize the observation error
while keeping the assumed forecast perturbation parameters
constant. Ideally, both should be tuned simultaneously as
both their sum and ratio impact innovation diagnostics (Crow
and Bolten 2007). Furthermore, our tuning assumes time in-
variance of forecast and observation error parameters.

2) IMPACT OF THE OBSERVATION

RESCALING APPROACH

Figure 8b shows the joint spatial sñ distributions of the
DAE experiment (monthly CDF matching), and the DAc

E ex-
periment (climatological CDF matching). Most bins are lo-
cated above the diagonal, indicating that sñ is systematically
larger (and hence closer to unity) for the DAc

E than for the
DAE experiment. The actual remaining total error (after bias
removal) of the DAE experiment is larger than that of the
DAc

E experiment. Therefore, as expected, we find that the as-
sumed total error of the DA system is overestimated more if
the observations are rescaled monthly instead of climatologi-
cally when all other settings remain unchanged.

3) IMPACT OF THE METEOROLOGICAL FORCING

The choice of meteorological forcing dataset does not have a
significant impact on the sñ , as can be seen from Fig. 8c. The
panel shows the relation of the spatial sñ distributions in the
DAE and the DAM experiment. The bins are scattered more or
less evenly around the diagonal, indicating that the choice of
ERA5 or MERRA-2 forcing does not have a major impact on
how the total error of the system is being estimated.

e. Statistics of the data assimilation increments

The results for the increments in each of the four soil layers
are in line with those of the innovations, i.e., the DAc

E

FIG. 7. Relation between skill improvements of DAE and skill
improvements of (a),(b) DAc

E and (c),(d) DAM relating to (left)
sfsm and (right) rzsm. The color bar represents the skill difference
between OLE and OLM in (c) and (d).
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experiment yields zero-mean time series that have a strong
seasonal pattern. The increments of the DAE experiment re-
semble a white noise sequence more closely (Fig. S5). Incre-
ments in deeper soil layers are smaller than in the top layers:
the difference in increment size between layers 1 and 4 is
more than an order of magnitude.

In this section, we will focus on the relation between incre-
ments of different layers. Figure 9a shows the bivariate distribu-
tion of individual increments, i.e., not aggregated over space or
time, for layers 1 and 2 (relations between deeper layers look
similar and are provided in Fig. S7). The increments between
both layers are positively correlated, and two regimes can be
discerned from the histogram: one of strong increment coupling
between soil layers (close to the vertical zero line) and one of
weak increment coupling (close to the horizontal zero line). For
the latter, increments of layer 1 are relatively large but close to
zero for layer 2. There are even some occasions where the

increments of two different layers have an opposite sign (i.e.,
they contribute negatively to the correlation). The relatively
low spatiotemporal increment correlation between the layers is
in line with the assumed ensemble error correlation when per-
turbing the soil moisture forecasts (Table 1).

Before moving on to the other panels of Fig. 9, Fig. 10 links
the different regimes in the bivariate increment distributions
to other variables. The same two-dimensional bins between
layers 1 and 2 as in Fig. 9a are shown, but the color now indi-
cates the average value of some explanatory variables in that
bin, rather than the count of increments. Figure 10a displays
the vertical coupling strength (VCS), which is defined here as
the anomaly correlation between the time series of sfsm (top
layer) and rzsm (composite of the top three layers) in the
model-only experiment OLE (Kumar et al. 2009). A map of
the VCS over the study domain (Fig. S8) displays strong geo-
graphical differences, with the smallest values over Spain,

FIG. 8. (a) Spatial histograms of the normalized innovations sñ for the DAE(S) experiments, each with different observation error S.
The horizontal axis has a logarithmic scale. (b) Bivariate histogram of sñ for DAE on the horizontal axis (monthly CDF matching) vs
DAc

E on the vertical axis (climatological CDF matching). (c) Bivariate histogram of sñ for DAE on the horizontal axis (ERA5 as forcing)
vs DAM on the vertical axis (MERRA-2 as forcing).

FIG. 9. (a) Bivariate histogram of increments between layers 1 and 2 of the DAE experiment. The other panels show the difference between
increment histograms of the DAE experiment and (b) DAE(S5 0.025), (c) DAc

E, and (d) DAM experiments.
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Turkey, and Africa and a clear influence of the soil texture
over the rest of Europe (e.g., a lower VCS over sandy soils).
From Fig. 10a, we find that lower values of the VCS typically
coincide with the weak increment coupling regime (large in-
crements for the surface layer and near-zero increments for
deeper layers), whereas higher values of the VCS typically co-
incide with the strong increment coupling regime (large incre-
ments for both surface and deeper layers). This is consistent
with the findings of Kumar et al. (2009). The effect of other
land surface variables, i.e., the evapotranspiration (ET), total
runoff, rainfall, and rzsm, is visualized in Figs. 10b–e. The
panels show that wetter soil and larger hydrological fluxes
typically lead to stronger correlations between the increments
of different layers. Note that all these variables have an im-
portant latitudinal dependence over our study domain. In-
deed, the regions with little ET, runoff, rainfall, and rzsm are
mostly located in northern Africa, southern Europe, and
Turkey. These regions thus dominate the weak increment
coupling regime.

1) IMPACT OF THE OBSERVATION ERROR

Figure 9b shows the difference between histograms of in-
crements for the DAE(S) experiments with S 5 0.025 m3 m23

(as shown in Fig. 9a) and S 5 0.05 m3 m23. For the larger ob-
servation error S, the distribution shows more increments
close to zero while the number of counts at the tails decreases.
This is unsurprising, as we expect smaller DA updates for
larger observation uncertainties.

2) IMPACT OF THE RESCALING APPROACH

The impact of rescaling the observations via monthly or cli-
matological CDF matching is shown in Fig. 9c, which compares
experiments DAE and DAc

E. Monthly rescaling of the observa-
tions results in smaller increments, as the distributions show
positive differences centered around zero and negative differ-
ences toward the tails. This aligns with the smaller remaining
innovation values when the observations are rescaled through
monthly CDF matching.

3) IMPACT OF THE METEOROLOGICAL FORCING

Figure 9d shows that the DAM experiment has more incre-
ments in the weak increment coupling regime, whereas DAE

has more increments in the strong coupling regime. This
means that the correlations between layer 1 and deeper incre-
ments are larger with ERA5 meteorological forcings. As a re-
sult, we find more near-zero increments in the deeper layers
for DAM and in the top layer for DAE. A possible explana-
tion may be the higher number of heavy rainfall events in the
ERA5 forcing compared to the MERRA-2 forcing (not
shown), and the associated wetter rzsm for ERA5 (Fig. 2). In-
deed, Figs. 10d and 10e show that heavy rainfall events and
wetter rzsm are strongly linked to the strong coupling regime
in the bivariate histograms.

Figure 11 offers a closer look at the impact of rainfall on
the increment distribution. The top panel again shows a bivar-
iate histogram, this time between the top soil layer increments
for the DAE and the DAM experiments, respectively (Fig. S6
shows the histograms for all soil layers). Again, the distribu-
tion is centered around zero and decreases quickly for larger
increments values. Most increments are located around the di-
agonal, resulting in a relatively high Pearson correlation of
0.72 between increments of both experiments. This correlation
decreases for deeper layers, as shown in Fig. S6, indicating that
the impact of choosing another forcing dataset is larger for the
rzsm than for the sfsm. This can be linked to the fact that rzsm
has a longer memory of distinct updates. A limited number of
increments have opposite signs in the DAE and DAM experi-
ments (top-left and bottom-right quadrants of Fig. 11a). An ex-
planation for this may be rainfall events that are not be
captured well in one or the other forcing dataset. Figure 11b
shows that for increments close to the diagonal (the large ma-
jority), the average difference in rainfall rate DP between both
forcing datasets is nearly zero. However, the small number of
increments that have opposite signs in both experiments show
large absolute values in DP, suggesting that the DA is correct-
ing for a missed precipitation event in one of both forcing
datasets.

FIG. 10. As in Fig. 9a, but the colors now indicate the average value of different variables at the times and locations of the incre-
ments: (a) VCS, (b) ET, (c) total runoff, (d) rainfall rate, and (e) rzsm.
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4. Conclusions

The combined active–passive ESA CCI SM product v7.1
was assimilated into the Noah-MP land surface model over
Europe and adjacent regions to produce consistent estimates
of surface and root-zone soil moisture as well as other land
surface variables (incl. dynamic vegetation). The data assimi-
lation (DA) system was first evaluated using in situ soil mois-
ture data. We found that the distributions of anomaly
correlations Ranom across various in situ sites are similar for
open loop (OL) and DA experiments. However, in some re-
gions, the DA improves soil moisture estimates (e.g., eastern
Europe), whereas in other regions it deteriorates the skill
(Scandinavia). We found that DA often leads to degradation
of skill over locations that are dominated by forests, whereas
the largest improvements can be found over croplands. The
DA typically introduces large improvements at sites where
the Ranom between the ESA CCI SM retrievals and the in situ
soil moisture is high compared to the Ranom between the
model-only simulations and in situ soil moisture, but at most
sites, the model outperforms the ESA CCI SM. This may be
attributed to the fact that the reanalysis forcings over Europe
have a high quality due to an abundance of observations from

land stations, radiosondes, aircraft, etc., which help the model
simulations.

A second assessment of the DA system used regional inno-
vation and increment diagnostics. The bivariate distributions
of increments in pairs of soil layers show regimes with strong
and weak increment coupling between soil layers. A strong in-
crement coupling is found in regions with high evapotranspi-
ration, rainfall, and runoff values, i.e., outside of northern
Africa, southern Europe, and Turkey.

In this study, we examined how the maximal amount of in-
formation from remotely sensed observations can be used by
assessing the design choices of the DA system and tuning
them for optimal performance. As such, we systematically ex-
amined the impact of three design choices for both the in situ
and regional assessments outlined above:

1) The magnitude of the observation error S. This parameter
has an important impact on the in situ soil moisture skill,
with a trade-off between fostering large improvements at
sites with high-quality retrievals (requiring small S) and lim-
iting the deteriorations at sites with low-quality retrievals
(requiring large S). A reference value of S 5 0.025 m3 m23

was found to have a temporal standard deviation of the
normalized innovations close to the ideal value of hsñ i5 1.
This value for S also yielded the largest median improve-
ment in terms of DRanom at the in situ sites. Additionally,
we showed the impact of S on the distribution of the incre-
ments, which are narrower for larger S. A suggestion for fu-
ture work is the exploration of temporally varying errors,
as these may reflect the dataset properties more accurately
and thus lead to better DA performance.

2) The observation rescaling via monthly or climatological
CDF matching. Although this choice does not significantly
impact the in situ evaluation results, we found that innova-
tions and increments follow the desired temporal white
noise sequence much more closely if the observations are
rescaled on a monthly basis. The increments, and thus pos-
sible water budget imbalances, are smaller in the DA ex-
periment with monthly rescaling.

3) The choice of meteorological forcing dataset. Separate OL
and DA experiments were performed using ERA5 and
MERRA-2 atmospheric reanalyses as forcings. We found
that the skill improvements in the experiments forced by
MERRA-2 are smaller, at least in part because in this sce-
nario the Ranom values of the model-only simulations are
better at the validation sites to begin with. No clear effect
of the forcing was visible in the statistics of the innova-
tions. The increments showed a stronger propagation to
deeper soil layers in the DA experiment forced by ERA5
than for that forced with MERRA-2. One possible expla-
nation may be that the ERA5 reanalysis simulates more
heavy rainfall events that result in wetter soils over main-
land Europe (not for northern Africa), which thus result
in increments belonging to the regime of strong vertical in-
crement coupling.

It should be noted that each of the three design choices has
been explored independently from one another, whereas in

FIG. 11. (a) Bivariate distribution between increments of the
DAE and DAM experiments for soil layer 1. (b) Same binning as in
(a), but the color represents the average difference in rainfall DP
between both meteorological forcings: brown indicates higher rain-
fall rates in DAE and blue indicates higher rainfall rates in DAM.
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reality, we can expect to see interactions between them. For
example, observation (and model) errors could be improved
further by tuning them specifically for the meteorological
forcing being used. The perturbations applied to the precipita-
tion in particular (Table 1) would be chosen differently for
land surface models forced by ERA5 and MERRA-2 in an
optimal system.

In conclusion, our study demonstrates the potential benefits
of assimilating the combined active–passive ESA CCI SM
product into the Noah-MP LSM over Europe, with the optimi-
zation of key design choices leading to better estimates of soil
moisture than can be achieved from satellite retrievals or mod-
els alone. This can in turn help in improving our understanding
of the water, energy, and carbon cycles as these DA updates
in soil moisture are linked to changes in other geophysical var-
iables such as leaf area index and evapotranspiration.
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