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Abstract: Radiometric Terrain Corrected (RTC) gamma nought backscatter, which was introduced
around a decade ago, has evolved into the standard for analysis-ready Synthetic Aperture Radar (SAR)
data. While working with RTC backscatter data is particularly advantageous over undulated terrain,
it requires substantial computing resources given that the terrain flattening is more computationally
demanding than simple orthorectification. The extra computation may become problematic when
working with large SAR datasets such as the one provided by the Sentinel-1 mission. In this study,
we examine existing Sentinel-1 RTC pre-processing workflows and assess ways to reduce processing
and storage overheads by considering the satellite’s high orbital stability. By propagating Sentinel-1’s
orbital deviations through the complete pre-processing chain, we show that the local contributing
area and the shadow mask can be assumed to be static for each relative orbit. Providing them as a
combined external static layer to the pre-processing workflow, and streamlining the transformations
between ground and orbit geometry, reduces the overall processing times by half. We conducted
our experiments with our in-house developed toolbox named wizsard, which allowed us to analyse
various aspects of RTC, specifically run time performance, oversampling, and radiometric quality.
Compared to the Sentinel Application Platform (SNAP) this implementation allowed speeding up
processing by factors of 10–50. The findings of this study are not just relevant for Sentinel-1 but for
all SAR missions with high spatio-temporal coverage and orbital stability.

Keywords: Sentinel-1; Synthetic Aperture Radar (SAR); Ground Range Detected (GRD); georeferencing;
orbital tube; radiometric terrain correction (RTC); analysis-ready Data (ARD)

1. Introduction

Synthetic Aperture Radar (SAR) missions have proven their great value for the moni-
toring of Earth system processes due to their all-weather and day and night operability [1].
The launch of the C-band SAR mission Sentinel-1A in 2014, followed by its companion
Sentinel-1B in 2016, started a new era of SAR applications at high temporal and spatial
resolution [2]. Combined dense backscatter time series from both satellites provide fer-
tile ground for manifold applications such as surface soil moisture estimation [3], flood
mapping [4], estimation of sea ice concentration [5], grassland mowing event detection [6],
forest mapping [7], and snow melt monitoring [8]. Even though Near-Real-Time (NRT)
operations were initially only foreseen over the oceans, there are now several Sentinel-1
NRT land monitoring services providing data products with a latency of only a few hours,
including the Global Flood Monitoring Service (GFM) [9], the Copernicus Global Land
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Service (CGLS) [10] and the Integrated forest Fire Danger assessment System (IFDS) for the
Austrian Alps [11–13].

The Sentinel-1 mission excels not only in its high spatio-temporal coverage and
timeliness, with a six day repeat cycle at the equator and a maximum data latency of
three hours [2], but also in terms of the quality of its backscatter images. However, many
applications still rely on products whose radiometry is ellipsoid-corrected SAR backscatter—
these show significant radiometric distortions over parts of the world that are not flat. There-
fore, backscatter data acquired over mountainous and hilly sections are often discarded.

A milestone in overcoming this limitation was achieved by [14], who presented a
method for computing a terrain flattened normalised radar backscatter coefficient, i.e.,
Radiometric Terrain Corrected (RTC) gamma nought γ0

T. In recent years, γ0
T has been more

and more widely used for improving the use of SAR data in undulated terrain [15,16]
or across different orbits [17,18]. These achievements motivated the Committee on Earth
Observation Satellites (CEOS) to select γ0

T as a standard for analysis-ready Data (ARD) [19].
The RTC operator to produce γ0

T has already been implemented in several SAR soft-
ware packages [20–22], for example, in GAMMA [23], the InSAR Scientific Computing
Environment version 3 (ISCE3) [24] and the Sentinel Application Platform (SNAP) [25].
Unfortunately, due to the complexity of the RTC algorithm, processing times are some
orders larger than when doing basic orthorectification. Furthermore, several per-pixel
metadata layers are required, including a shadow mask (“Data Mask Image”), the local
contributing area (“Scattering Area Image”), and the local incidence angle (“Local Incident
Angle Image”) (more details can be found in [26]). A remarkable step forward in terms
of improving the quality and run time performance of radiometric terrain correction has
been made by the novel area projection method presented in [27]. Still, when rolling out
processing activities to more scenes, or even globally, one may be limited by compute and
storage resources quickly. Consequently, multi-year γ0

T datasets are at the moment only
available at continental scale, e.g., as presented in [28], who generated a CEOS compliant
ARD normalised radar backscatter dataset over Africa.

Contributing to efforts for establishing worldwide ARD SAR data collections, we
extend our recent work on utilising Sentinel-1’s orbital stability for efficient pre-processing
of backscatter data [29]. For this, we use the Monte Carlo approach to ingest orbital
fluctuations—which are in the order of around 50–60 m (radial RMSE)—into a RTC γ0

T
pre-processing workflow. During the process, the impact of the orbital deviations on several
ground-based layers is checked. Here, our main interest lies in the local contributing area
used for terrain flattening (Aγ) and the shadow mask (MS). When the impact of the orbital
deviations on Aγ and MS are very small or even negligible, then these two layers can
be assumed to be static. This has already been proven in [29] for the (projected) local
incidence angle ((P)LIA), with a very low standard deviation of only 0.005 degree. The
major implication is that these layers do not need to be re-computed for each individual
Sentinel-1 scene, and can be ingested to the workflow as a static input layer read from
the storage.

A similar approach was pursued in the very recent study by [30], introducing a
pixel-based gamma-to-sigma correction factor, which allows to go from Geometric Terrain
Corrected (GTC) sigma nought σ0

E to RTC gamma nought γ0
T backscatter. By means of a

parameter simulation using a number of scenes as input, the study revealed that the gamma-
to-sigma layer behaves static over time and its variation falls well below Sentinel-1’s relative
radiometric accuracy of 0.1 dB [31]. This ratio may be used to perform on-the-fly RTC
computing on a stack of σ0

E images, resolving the need to perform radiometric terrain
flattening in orbit geometry and thus significantly reducing computational requirements.

In this study, the focus is on generating directly γ0
T image stacks with a performant

method, rather than relying on already available georeferenced backscatter data. Imple-
menting the complete γ0

T pre-processing workflow in our Python package wizsard enabled
us to analyse the impact of different variants of the pre-processing workflow on run time
performance and radiometric quality. Replacing the repeated generation of selected pre-



Sensors 2023, 23, 6072 3 of 19

processing layers with their static representation—as long as they are satisfying the required
radiometric accuracy level—will significantly improve run time performance. Thus, by
taking the satellites’ high orbital stability into account, processing services will benefit from
the insights provided in our study to produce a high-quality, normalised, dense backscatter
time series within less arduous time frames.

2. Materials and Methods

2.1. Sentinel-1 γ0
T Pre-Processing Workflow

The Sentinel-1 γ0
T pre-processing workflow laid out in [14] requires more processing

steps than the basic GTC σ0
E pre-processing workflow as presented in [32] or [29]. Instead of

taking ellipsoid-based area values (provided in the Sentinel-1 metadata) for standardising
the radar measurements to a certain backscatter convention, the actual illuminated area is
estimated by integrating surface patches of a Digital Elevation Model (DEM) in the radar
geometry. This area serves then as a standardisation factor to convert the radar brightness
β0 to radiometric terrain corrected gamma (γ0

T) or sigma nought (σ0
T). Finally, the RTC

image may be reprojected to a standard map geometry to provide coregistered backscatter
image stacks.

The RTC gamma nought workflow from [14] was graphically recycled in Figure 1 to
create a baseline for our workflow modifications applied in Section 2.2. Similar to [29],
we exclusively used Ground Range Detected (GRD), not Single-Look Complex (SLC) SAR
as input data, and performed all georeferencing operations in the frame of the “LatLon”
geographic projection system. The complete RTC gamma nought workflow is split into
four groups:

1. Local parameterisation: In the first step the ground-geometry-based layers are computed,
i.e., the local contributing area, the shadow mask, and a Look-Up Table (LUT) con-
taining azimuth and range indices. In this study, we use the shadow mask algorithm
presented in [33]. By traversing the DEM from East to West or vice versa—depending
on the orbit direction—the continuous analysis of the elevation angle allows to identify
areas that are not visible to the sensor and thus do not contribute to the backscattered
signal (occluded by shadow).

2. Radiometric adjustments: The same method as described in [29], except that the calibra-
tion values refer to β0 instead of σ0.

3. Terrain flattening: After bilinearly resampling the local contributing area (excluding pix-
els in shadow), into the orbit geometry, overlapping areas are cumulatively summed
up. This area is then used to radiometrically normalise β0 to γ0

T, as explained in [14].
4. Georeferencing: In the last step, γ0

T values are geocoded and resampled to the ground
geometry at the desired pixel spacing of the final product.

Comparing this procedure with the GTC σ0
E workflow in [29] reveals two new elements

that need to be investigated in terms of their variability over time: the local contributing
area Aγ, and the shadow mask MS. Their variability may be quantified by propagating
Sentinel-1’s orbital distribution through the complete pre-processing chain, as previously
carried out in [29]. If these layers can be declared static per relative orbit, the run time can
be improved (on top of the improvements already gained by using a static (P)LIA layer in
the σ0

E workflow).
A crucial part of defining the local contributing area as a static layer is the horizontal

oversampling of the input DEM. The optimal (over-)sampling factor should ensure a good
balance between radiometric quality and storage footprint, where [14] recommends an over-
sampling factor between 1 and 2. This should allow counteracting the introduced sampling
artefacts due to the finer ground range resolution of the sensing geometry at backslopes.

In this respect, the authors of [27] have developed a novel method to achieve a much
higher radiometric accuracy by reducing the magnitude of the required oversampling.
Instead of only analysing each terrain facet locally, they propose to compute the normali-
sation area using a weighted mean for the whole facet in orbit geometry. This approach
is very valuable for our study, since it allows reducing the order of oversampling for the
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static layers, also impacting the overall run time. With a focus on our representative study
sites, a suitable value for the oversampling factor is defined in Section 2.4.

Local parametrisation

Georeferencing Terrain flattening

Radiometric adjustments

Oversampled DEM

LUT generation

Level -1 GRD scene

Beta nought

Noise adjustments

Orbit interpolation

Shadow mask

Ground geometry Orbit geometry

Resampling

RTC gamma nought

Norm. gamma area

Local contr. area

Terrain flatteningLUT generation

Target DEM

Figure 1. Sentinel-1 RTC gamma nought pre-processing workflow. Important intermediate layers are
coloured in green and greyish boxes indicate common, but not mandatory steps.

2.2. Sentinel-1 γ0
T Pre-Processing Workflow Enhancements

In the following, we present our modifications of the Sentinel-1 γ0
T pre-processing

pipeline (Figure 1) by taking Sentinel-1’s unprecedented orbital stability into account. The
performance of the new workflow was assessed by comparing it to SNAP and our own
Python implementation of the Sentinel-1 γ0

T pre-processing workflow in wizsard. The
SNAP workflow was realised with SNAP 8 (release details can be found here: [34]) by
creating one Graph Processing Tool (GPT, [35]) graph comprising the following SNAP
operators: (1) Apply-Orbit-File (2) Calibration (3) Terrain-Flattening (4) Terrain-Correction
(5) Subset (6) Write. In addition to those already described in [29] for GTC sigma nought
pre-processing, the Terrain-Flattening operator is added between the Calibration and Terrain-
Correction operators to carry out the steps in Section 2.1. A single GPT graph file was used
instead of one for each of the steps above to minimise intermediate data writing and
reading. As a whole, it largely resembles the wizsard pre-processing chain. To allow a
direct comparison with already existing run time results for σ0

E in [29], the latest major
SNAP version 9 was not considered.

2.2.1. Static Aγ Layer

Motivated by previous results in [29] when discarding the (P)LIA computation for
each scene yielded a significant performance improvement (and following Section 2.1), a
static version of the local contributing area Aγ and the shadow mask MS demonstrates a
great potential of reducing processing effort. Assuming that both layers behave statically,
they may be combined to one single static layer for each relative orbit by directly integrating
the MS layer into the Aγ layer as “no data”. The steadiness of both layers under Sentinel-1’s
orbital variations will be investigated in more detail in Section 3 by means of Monte Carlo
simulation. This combined layer may then be passed as an a priori input to the Sentinel-1
pre-processing chain, in addition to the DEM data.

Using our own Python implementation of the Sentinel-1 γ0
T pre-processing workflow

in wizsard as a starting point, we decoupled the computation of the local contributing area
and masking of shadow areas from the per-scene pre-processing pipeline. Consequently,
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the generation of the Look-up Table (LUT) is the only remaining operation in the Local
parameterisation step.

2.2.2. Single LUT

In many SAR pre-processing workflows Look-up Tables (LUTs) are generated twice,
once during Local parameterisation and once during Georeferencing. This slows the workflow
significantly. Particularly in SNAP, those two operators are completely separated, even
when similar operations take place and the same intermediate data layers are utilised.
This inefficiency can be avoided by keeping the first (oversampled) LUT in memory and
providing it as direct input to the georeferencing routine. The azimuth and range indices
may then be down-sampled to the target sampling of the γ0

T backscatter product by means
of an average or Gaussian-weighted average. Note that this modification requires more
RAM since the LUT resides in memory during the whole process.

2.2.3. RTC Area Projection (RTC-AP)

In addition to efficiently managing transformations between the ground and orbit
geometry with LUTs, radiometric enhancements may be achieved by using the novel RTC-
AP algorithm, as presented in [27]. Instead of selecting bilinear resampling to project the
local contributing area from ground to orbit, as initially proposed in [14], Shiroma et al. [27]
recommend to warp the coordinate grid defined by the (oversampled) DEM to the scene
geometry, and cumulatively sum it with the corresponding weighted Aγ values.

The implementation of the area projection in wizsard follows the recipe described
in [27], but does not consider optional performance improvements, as for instance to
compute only once the weights for adjacent pixel edges. In our case, the local contributing
area is not computed on the fly and is directly retrieved from the static Aγ layer.

2.2.4. Benchmarking Environment

To assess the performance of the altered Sentinel-1 γ0
T pre-processing chains, wizsard

was repeatedly executed on a dedicated Linux machine with the same setup as used in [29],
i.e., 4 cores and 32 GB RAM. Since the workflow modification in Section 2.2.2 keeps the
LUT in memory and thus exceeds the initial RAM capacity setup, the available RAM was
limited only for the basic version of Sentinel-1’s γ0

T pre-processing workflow.

2.3. Input Data

To analyse the deviations of the different pre-processing layers driven by the satellites’
orbital variations and to perform a run time comparison of different workflow setups,
the exact same input data as described in [29] were considered (i.e., three Interferometric
Wide (IW) swath, Ground Range Detected (GRD), and high-resolution (H) scenes from
relative orbit 168 over Norway, Austria, and Benin; cf. Table 1 and Figure 1 in [29]). This
enables comparability of orbital deviations and their propagated outcome, and allows
benchmarking of run time results to existing ones measured at the σ0

E workflow.
In [29], we introduced a data-driven, semi-empirical model to represent average

orbital trajectories and their deviations per relative orbit. The model relies on historical and
precise orbit data (referred to as AUX_POEORB [36]) of the two-satellite constellation of
Sentinel-1A and Sentinel-1B for the years 2017–2020. It samples positions (p) and velocities
(v) at orbital reference points (p̂{x,y,z}, v̂{x,y,z}) and their respective deviations formulated
via discrete Probability Density Functions (PDF) of the orbital residuals (δp{x,y,z}, δv{x,y,z}),
every 10 s in along-track direction. Also in this publication, we focus on the relative orbit
number 168, which revealed orbital fluctuations in the order of 50–60 m on average for the
whole revolution (cf. Figure 2 in [29]).

The only ground-based input layer to the pre-processing workflow is the 30 m Coper-
nicus DEM [37], combined with geoid undulations retrieved from the Earth Gravitational
Model (EGM) 2008 [38]. The Copernicus DEM given in ellipsoid heights was then re-
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gridded to the desired product pixel spacing of 10 m for each of the three scenes using
cubic resampling.

2.4. Oversampling Analysis

As introduced in Section 2.1, an important processing parameter is the oversampling
factor that governs the spatial sampling of the DEM used during the local parameterisation,
i.e., the computation of the LUT, the shadow mask, and the local contributing area. In
theory, a proxy of the required oversampling factor can be calculated by considering the
Nyquist-Shannon sampling theorem [39]. For this, the local terrain conditions need to
be considered, i.e., the terrain slope βT in range direction, PLIA defined on the ellipsoid
θPLIA,E, PLIA referring to the terrain point θPLIA, T, and the desired ground range sampling
∆rGR, E = 10 m. With the latter and θPLIA, E, it is possible to obtain the equivalent slant
range ∆rSR, E (Equation (1)):

∆rSR, E = ∆rGR, E sin(θPLIA, E) (1)

The local ground range sampling ∆rGT, T is then found with Equation (2), which is a
slightly modified version of Equation (10.4) in [40].

∆rGR, T =
∆rSR, E

sin(θPLIA, T − βT)
(2)

Since ∆rGR,T refers to the viewing direction of the sensor and not to the North (Y) and
East (X) component of the DEM’s coordinate system, Equation (3) projects ∆rGR,T onto the
coordinate axes by taking into account the local azimuth of the satellite αT.[

∆rX, T
∆rY, T

]
= ∆rGR, T

[
cos(αT)
sin(αT)

]
(3)

Setting the maximum component in relation to the given (equal) spatial sampling of
the DEM ∆s = 10 m, i.e., the target sampling of our product, and applying the sampling
theorem, allows us to estimate the required oversampling factor so.

so = 2
∆s

max({∆rX, T, ∆rY, T})
(4)

This quantity is mapped in Figure 2 for each of the three regions of interest in Norway,
Austria, and Benin. Foreslopes are masked to visually stress the importance of the required
oversampling at backslopes. Two points can be seen clearly: the steeper the terrain facing
away from the sensor and the closer in near-range, the larger the required oversampling
factor. In extreme cases, so needs to be around 4 to guarantee a more or less artefact-free
terrain flattening procedure. Considering an oversampling factor of 4, the input DEM
would contain 16 times more pixels to store, load, and iterate over to compute the local
contributing area, which is a thorn in the side of an efficient pre-processing workflow.
Fortunately, Shiroma et al. [27] presented a methodology to achieve radiometric quality
with no or minimal oversampling by considering the actual area covered by the terrain
facet in orbit geometry (instead of applying bilinear oversampling). The supplementary
material offers further insights on aliasing effects in the accumulated normalisation area in
orbit geometry for RTC gamma nought.
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Figure 2. Required DEM oversampling factor shown for the three scenes introduced in [29]. Fore-
slopes are masked in grey. To make the maps comparable across the large range in latitude, the
Equi7Grid projection [41] was chosen in this and the following figures. Additionally, all data are
shown on top of Stamen’s terrain-background map (map tiles by Stamen Design, under CC BY 3.0.
Data by OpenStreetMap, under ODbL).

3. Uncertainty Propagation

Knowledge of the distribution of a system’s output can be obtained by feeding it with
uncertainties assigned to its explanatory variables. There are several methods that allow
one to propagate these uncertainties through the system in question, and impose certain
statistical requirements on the distribution of the input parameters, for example, being
a Gaussian. In this regard, Monte Carlo simulation offers the most flexibility and does
not limit the complexity of the system—at the cost of computational effort [42]. Since the
distributions of our orbital reference points are non-Gaussian [29], and the pre-processing
workflow has some non-closed-form components, Monte Carlo simulation appears as an
appropriate tool for the uncertainty propagation.

The uncertainty is expressed by the discrete PDFs of the orbital residuals δp{x,y,z} and
δv{x,y,z} located at the orbital reference points p̂{x,y,z} and v̂{x,y,z}. Sampling an orbital state
vector from these PDFs along with providing the DEM as input allows one to execute the
pre-processing workflow described in Section 2.1 to generate all layers. The horizontal and
vertical accuracy of the Copernicus DEM was not considered in the uncertainty propagation
to highlight only those deviations originating from orbital fluctuations.

Repeating the sampling n times provides an estimate of the variability of the ground-
based layers of interest, i.e., the local contributing area Aγ and the shadow mask MS.
Similar to [29], n = 1000 yielded a stable description of the distribution by investigating
the asymptotic behaviour of its sample mean.

3.1. Monte Carlo Simulations of Aγ and MS

The local contributing area Aγ is the main output of the Local parameterisation step as
described in Section 2.1. Repetitively computing Aγ for different samples—drawn from the
orbital distributions by means of Monte Carlo simulation—yielded the standard deviation
σAγ

as depicted in Figure 3. Overall, the maximum of σAγ
was around 0.006 m2, which is a

very small number compared to the size of the illuminated area.
Several interesting aspects can be observed in Figure 3: First, a scalloping pattern

emerged along the azimuth direction in a very similar manner to the standard deviation
of (P)LIA in [29]. This pattern was mainly caused by the actual definition of the orbital
uncertainties, i.e., that they are only applied at the orbital reference points which are 10 s
apart in along-track direction. Across-track, σAγ

seemed to increase from near to far range,
which can be explained by the enlargement of the projected illuminated area observed by
the sensor.



Sensors 2023, 23, 6072 8 of 19

Second, when comparing the three scenes, it appears that σAγ
was lowest in Norway,

increasing from North to South. This behaviour is bound to the oversampling of the “Lat-
Lon” coordinate system that features from the equator to the poles increasingly narrower
distances between its grid points. The comparable magnitude of σAγ

values in Austria and
Benin might stem from the superposition of the x and y components of the orbit trajectory,
which form a combined peak at mid-latitudes in Europe, as explained in Section 4.3 in [29].

Third, the zoom-in views provide a glimpse of the fine-scale, terrain-based variations
of σAγ

, revealing larger values at slopes facing away from the sensor. This is caused by the
widening of the projected illuminated area in the same manner as from near to far range.
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Figure 3. Local contributing area Aγ sample standard deviation of the probability density functions
resulting from the Monte Carlo simulations applied to the three scenes introduced in [29]. The
shadow mask (MS) probability is shown as an overlay. The coloured boxes indicate the extent of the
zoom-in views on the right, i.e., navy-blue corresponds to “zoom 1” and pink to “zoom 2”.
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In Figure 3, the standard deviation of Aγ is overlaid with a shadow mask probability,
which was computed by counting how often a pixel was classified as shadow and setting
this quantity in relation to the number of simulations n. The first zoom-in view in Norway
and Austria shows several regions being in shadow all the time, whereas in the second
zoom-in view one is able to spot a few pixels with a probability of less than 100%. Thus,
we can conclude that Sentinel-1’s orbital deviations do not significantly impact MS—only
at the edge of shadow areas, a very small number of pixels are not always in shadow for
the same relative orbit.

3.2. Static Layer Realisation of Aγ and MS

The results of the simulation demonstrate that these parameters are appropriate as
static layers and to be provided as external layers to a pre-processing workflow. As already
introduced in Section 2.1, both Aγ and MS can be merged by declaring pixels in shadow
to be “no data” values. Such a combined static layer can be established conveniently per
relative orbit. This would drastically reduce the required overall processing power and
storage footprint compared to generating and storing these datasets for each observation.

However, to effectively benefit from the combined static layer, we would need to
ensure that the small standard deviation of Aγ’s distribution (max(σAγ

) ∼ 0.006 m2) does
not cause backscatter variations exceeding the relative radiometric accuracy of Sentinel-1’s
C-band sensor, i.e., 0.1 dB (three sigma) [31]. The connection between Aγ and γ0

T is formu-
lated in Equations (24)–(26) in [14] and summarised in Equation (5).

γ0
T = Kγ

β0 Aβ

Aγ
(5)

This strict relationship allows to apply Gaussian error propagation to retrieve the
standard deviation of γ0

T’s distribution. By using the first derivative of Equation (5) as
input to the error propagation formula, Equation (6) yields our estimated effect on the SAR
radiometry, σγ0

T
:

σ2
γ0

T
=

(
∂γ0

T
∂Aγ

)2

σ2
Aγ

=

(
−Kγ

β0 Aβ

A2
γ

)2

σ2
Aγ

(6)

Figure 4 displays the result of the error propagation for each pixel of the Austrian
scene, represented as an Inter-Decile Range (IDR), i.e., as the difference between the 90th
and 10th percentile. This metric was chosen to visualise the spread of γ0

T’s distribution
in dB, and not in linear units. Overall, the IDR values were low, with a maximum of
about ∼0.03 dB. This shows that Aγ can be treated as static per relative orbit, in respect to
Sentinel-1’s relative radiometric accuracy. The largest discrepancies occurred at backslopes,
located in or close to shadow areas, confirming the need that pixels on the “ragged edge of
shadow” should be masked [14].

In Figure 5 we present how a static layer might look for each of the three scenes. Aγ

was produced by considering the average orbit trajectory defined by the orbital reference
points p̂{x,y,z} and v̂{x,y,z} and is overlaid with MS in orange.

The pixels of the static layer representing regions in radar shadow were not identified
using the average orbital trajectory, but were rather derived from the simulated radar
shadow mask probability. Giving preference to the best radiometric quality and taking note
of the fact that pixels on the “ragged edge of shadow” are recommended to be masked [14],
pixels with a shadow mask probability larger than zero were declared as shadow.
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Figure 4. RTC gamma nought backscatter image of the Austrian scene, overlaid with a shadow mask
(top). Inter-Decile Range (IDR) of the γ0

T backscatter distribution as function of Aγ (bottom). The red
boxes on the left side indicate the extent of the zoom-in view on the right side.
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Figure 5. Static layer of the local contributing area Aγ overlaid with the shadow mask MS and
visualised for the three scenes introduced in [29]. The orange boxes indicate the extent of the zoom-in
view at the bottom.
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4. Results

The insights gained from the analysis on the impact of Sentinel-1’s orbital fluctuations
on several pre-processing layers in Section 3 can now be combined with the proposed
modifications of the Sentinel-1 γ0

T pre-processing chain presented in Section 2.2. In this
section, we benchmark these workflows and run them repetitively on the dedicated project
machine to identify the most performant setup for γ0

T generation. Finally, we display
the difference in backscatter between the method performing best—based on radiometric
quality and run time—and the original output of the basic pre-processing pipeline in
Section 4.3.

4.1. Run Time Benchmarking

To reliably assess the run time behaviour, we executed 50 times each pre-processing
scenario presented in Section 2.2. Table 1 summarises the average values of the run time
experiments and regroups the steps depicted in Figure 1:

1. Scene preparation: Merges all scene- and orbit-related steps, including reading Level-1
data.

2. Auxiliary data preparation: Comprises loading and preparation of all auxiliary layers,
i.e., DEM data, and optionally, the static layer per relative orbit.

3. RTC: Performs all steps under Local parameterisation, Terrain flattening, and Georefer-
encing, excluding I/O as indicated in Figure 1.

4. Data export: Single step writing all encoded data as GeoTIFF files to disk. Since
processing γ0

T consumes more RAM, we encoded backscatter data as scaled dB values
and selected Int16 as a data type.

The following abbreviated workflow names refer to the aforementioned variations of
Sentinel-1’s γ0

T pre-processing chain: The original pre-processing setup once implemented
in SNAP 8 (“SNAP 8”) and once in Python (“wizsard (base)”), the latter workflow without
the on-the-fly computation of Aγ and MS (“wizsard (static Aγ)”), the utilisation of a single
LUT (“wizsard (single LUT)”), and finally significantly improving the radiometric quality
with the RTC-AP method (“wizsard (RTC-AP)”). Only the total run time is shown for
“SNAP 8”, since using a single GPT graph file does not allow the retrieval of run times in
compliance with the listing above. The best benchmarking result of the Sentinel-1 σ0

E pre-
processing workflow, shown in our previous study in [29], is also appended to the table to
demonstrate the computational overhead when performing radiometric terrain correction.

Each implementation was executed with two oversampling factors, i.e., 1 and 2, to
assess how the algorithms scale with a higher sampling of the input DEM data. An
analysis on the radiometric and computational influence of oversampling has already been
performed extensively in [27]; therefore, it is not considered necessary to further investigate
here. Unfortunately, the limited and predefined set of resources did not allow SNAP 8 to
be executed for oversampling factors larger than 1.

If we take a look at Table 1 and compare it with our findings in [29], similar conclusions
can be drawn. Across all scenes, Scene preparation’s run time remained nearly constant due
to a similar file size of the scenes. Furthermore, the projection system of the input DEM, i.e.,
the “LatLon” system, introduced an increasing oversampling with latitude. This caused
a significant increase in run time from South to North for all ground-based processing
categories, i.e., Auxiliary data preparation, RTC, and Data export.

Most remarkably, “wizsard (base)” is more than 10–50 times faster than “SNAP 8”
in total run time. This performance boost might stem from the utilisation of Numba that
achieves C-like speeds, and from the streamlining of similar computations. On the contrary,
SNAP 8 has a very modular workflow setup allowing one to work intuitively with different
satellite missions and SAR operators. It separates the Terrain-Flattening from the Terrain-
Correction operator, and thus the performance is lower. We also observed issues during
parallelisation (which might have been improved in more recent SNAP versions).

The first variation of the pre-processing chain replaces the dynamic computation of
Aγ and MS with the respective static layer. Compared to “wizsard (base)”, this scenario
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consumes ∼10–20% less time. Notably, this is less than the improvement with the static
(P)LIA layer in [29], because Aγ and MS are initially not written to disk. Reading the static
Aγ layer in addition to the DEM data takes a few seconds longer, where the difference
scales with oversampling, but on the other hand, fewer computations in the RTC step
reduce the run time significantly, e.g., by about 100 s for the scene located in Norway (not
oversampled).

Table 1. Summary of the benchmarking experiments for all different setups of Sentinel-1’s γ0
T pre-

processing chain. Included additionally: the best setup of the Sentinel-1 GTC σ0
E pre-processing

workflow taken from [29].

Workflow Ov. fac. Scene
Prep.

Aux. Data
Prep. RTC Data

Export Total w.r.t.
Wizsard (Base)

N
or

w
ay

wizsard (base) 1 42 s 10 s 11 min 56 s 9 s 12 min 57 s -
wizsard (base) 2 43 s 31 s 32 min 45 s 9 s 34 min 8 s -
wizsard (static Aγ) 1 42 s 13 s 10 min 45 s 9 s 11 min 49 s −9%
wizsard (static Aγ) 2 42 s 46 s 26 min 50 s 9 s 28 min 27 s −17%
wizsard (single LUT) 1 42 s 13 s 6 min 26 s 10 s 7 min 31 s −42%
wizsard (single LUT) 2 44 s 45 s 23 min 5 s 15 s 24 min 49 s −27%
wizsard (RTC-AP) 1 42 s 13 s 27 min 35 s 10 s 28 min 40 s +121%
wizsard (RTC-AP) 2 43 s 52 s 106 min 17 s 14 s 108 min 6 s +217%
SNAP 8 1 - - - - 661 min 38 s +5009%
wizsard (σ0

E) 1 - - - - 5 min 52 s −55%

A
us

tr
ia

wizsard (base) 1 44 s 6 s 6 min 10 s 4 s 7 min 4 s -
wizsard (base) 2 44 s 15 s 16 min 28 s 4 s 17 min 31 s -
wizsard (static Aγ) 1 44 s 7 s 5 min 27 s 5 s 6 min 23 s −10%
wizsard (static Aγ) 2 44 s 23 s 13 min 50 s 4 s 15 min 1 s −14%
wizsard (single LUT) 1 44 s 7 s 3 min 20 s 4 s 4 min 15 s −40%
wizsard (single LUT) 2 44 s 23 s 11 min 41 s 5 s 12 min 53 s −26%
wizsard (RTC-AP) 1 44 s 7 s 15 min 10 s 5 s 16 min 6 s +128%
wizsard (RTC-AP) 2 44 s 24 s 54 min 35 s 4 s 55 min 47 s +218%
SNAP 8 1 - - - - 257 min 44 s +3556%
wizsard (σ0

E) 1 - - - - 3 min 17 s −53%

B
en

in

wizsard (base) 1 43 s 4 s 4 min 24 s 3 s 5 min 14 s -
wizsard (base) 2 43 s 11 s 11 min 42 s 3 s 12 min 39 s -
wizsard (static Aγ) 1 43 s 5 s 3 min 55 s 3 s 4 min 46 s −9%
wizsard (static Aγ) 2 43 s 16 s 9 min 48 s 3 s 10 min 50 s −14%
wizsard (single LUT) 1 42 s 5 s 2 min 22 s 3 s 3 min 12 s −39%
wizsard (single LUT) 2 43 s 16 s 8 min 13 s 3 s 9 min 15 s −27%
wizsard (RTC-AP) 1 43 s 5 s 10 min 24 s 3 s 11 min 15 s +115%
wizsard (RTC-AP) 2 43 s 16 s 38 min 18 s 3 s 39 min 20 s +211%
SNAP 8 1 - - - - 63 min 4 s +1105%
wizsard (σ0

E) 1 - - - - 2 min 29 s −53%

Introducing a single LUT that stores range and azimuth indices into the pre-processing
workflow had the largest impact on the run time. This version of the workflow reduced
run times by ∼10–20% on top of the improvement from the static Aγ layer, leading to an
overall boost of ∼30–40%. However, observing the RAM utilisation during processing,
naively stored LUT values cost two to three times more RAM. This most probably exceeds
common office computer capacities, but could still be an option for a high-performance
computing (HPC) environment. Another strategy would be to improve wizsard’s RAM
management.

Doubling the oversampling slowed down the reading of the input DEM data and
static layer (Auxiliary data preparation) and the radiometric terrain correction (RTC) by
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two to three times. This order illustrates the general heavy workload when generating
radiometrically adequate γ0

T backscatter, since Figure 2 indicates that we need at least an
oversampling factor of around 4 when following the initial procedure in [14]. According
to the validation in [27], and as visually emphasised in our supplementary material, the
RTC-AP method provides the necessary framework for preserving a high radiometric
quality. In this regard, RTC-AP without oversampling performs as well as bilinearly
resampling Aγ based on an oversampling factor greater than 5 to 7. In terms of run
time statistics, Table 1 indicates that RTC-AP decelerates processing around two to three
times, which is not in alignment with the extremely good performance of the algorithm
as presented in [27]. wizsard only implements a very rudimentary version of the RTC-
AP algorithm without streamlining certain parts, such as parallelised computations, or
the duplicate processing of adjacent pixel edges. Yet, even under these circumstances,
“wizsard (RTC-AP)” without oversampling is still close to “wizsard (single LUT)” with an
oversampling factor of two.

4.2. Recommended Sentinel-1 γ0
T Pre-Processing Workflow

Based on all the insights gained so far, we selected the most performant components
and updated the initial pre-processing workflow in Figure 1. The improved version of
the workflow follows the “wizsard (RTC-AP)” setup and is shown in Figure 6. Instead
of running computationally expensive vector operations to calculate Aγ for each scene, a
static Aγ layer serves as an additional input parameter. Furthermore, the RTC-AP method
justifies the usage of an input DEM and Aγ that match the target sampling, since it mitigates
sampling artefacts without applying oversampling. The updated processor may also take
advantage of extensive RAM resources by storing information on the connection between
orbit and ground geometry in a look-up table.

Local parametrisation

Georeferencing Terrain flattening

Radiometric adjustments

DEM

LUT generation

Level -1 GRD scene

Beta nought

Noise adjustments

Orbit interpolation

Static l. c. area
& shadow mask

Ground geometry Orbit geometry

Resampling

RTC gamma nought Norm. gamma area

Terrain flattening

Area projection

Figure 6. Improved Sentinel-1 RTC gamma nought pre-processing workflow. Modifications to the
original workflow in Figure 1 are highlighted in red. Greyish boxes indicate common, but not
mandatory steps.

4.3. Backscatter Benchmarking

As a final experiment, we investigated how the proposed improvements (with Area
Projection (AP) and a Static Aγ Layer (SL)) affected georeferenced RTC gamma nought
backscatter values γ0

T-AP-SL. Figure 7 visualises the differences in backscatter between
γ0

T-AP-SL and γ0
T that stem from the two workflow versions shown in Figure 6 and Figure 1,

respectively. To focus on the positive impact of the RTC-AP method, both backscatter
images were generated without oversampling. Shiroma et al. [27] have already demon-
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strated that higher oversampling factors do not significantly alter the level of γ0
T backscatter,

especially for VV polarisation.
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Figure 7. γ0
T-AP-SL, VV as an output of the improved Sentinel-1 RTC gamma nought pre-processing

workflow shown in Figure 6 for the Austrian scene (top). The second row shows the difference
between γ0

T-AP-SL, VV and the result γ0
T, VV of the original workflow in Figure 1. Both versions do not

apply oversampling. The red boxes on the left side indicate the extent of the zoom-in view on the
right side.

Figure 7 shows that the difference is very low in flat regions and tends to increase
with steepness of the terrain. On the contrary, in undulated areas affected by layover and
shadowing, the backscatter differences exceed Sentinel-1’s relative radiometric accuracy of
0.1 dB. The major portion of the differences can be attributed to the positive influence of the
RTC-AP method featuring lower backscatter values on backslopes, where (under-)sampling
artefacts are mitigated, and higher values on foreslopes. This radiometric improvement
underlines the merit of using the RTC-AP method, allowing to exploit the full potential of
RTC gamma nought backscatter in undulated terrain.

5. Discussion

Our examination on the impact of Sentinel-1’s orbital fluctuations on the local con-
tributing area and shadow mask has clearly shown that these both can be declared per
relative orbit as a static layer. With orbital deviations of around 50–60 m (RMSE), Aγ’s stan-
dard deviation σAγ

reached a maximum of ∼0.006 m2. Propagating this quantity further
to the backscatter level resulted in an inter-decile range of ∼0.03 dB in areas in or close
to radar shadow. This is within the relative radiometric accuracy of Sentinel-1’s C-band
sensor and agrees well with the variation of the gamma-to-sigma layer presented by [30].

A static Aγ layer does not only boost the pre-processing run time, but is also highly
beneficial to other applications involving geocoding and radiometric adjustments. For
example, it can enable refinements of the radar geometry [14], or serve as input to the
creation of RTC gamma nought composites that combine images from different orbits [17].
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The same applies for a static MS layer, which is not only an integral part of Aγ, but
is also an asset for many bio-geophysical parameter retrievals in mountainous terrain
to mask unreliable backscatter values, e.g., [8,30]. Moreover, the extent of shadow areas
appears to remain stable over time, as indicated by an almost constant shadow mask
probability of 100%, as only a few pixels on the “ragged edge of a shadow” area were not
classified as shadow in every simulation. As an outcome of our Monte Carlo analysis, we
generated an Aγ layer from the average orbital trajectory and masked pixels with a shadow
mask probability larger than 0%. Instead of applying an empirically based buffer of 150–
200 m on a layover-shadow mask layer, as demonstrated in [30], we recommend using the
static shadow mask, applied per relative orbit. This should guarantee that information on
backscatter values is not unnecessarily discarded, even in spatial vicinity to areas occluded
by shadow. If one still needs to get rid of pixels close to radar shadows, one may rather
use the IDR layer based on σAγ

in combination with the relative radiometric accuracy of
Sentinel-1’s C-band sensor.

To mitigate resampling artefacts emerging from transformations between the ground
and orbit geometry—which are mainly located on backslopes and reduce the radiometric
quality of the georeferenced γ0

T product—the DEM and the static Aγ layer must be over-
sampled. According to our analysis in Section 2.3 and the aliasing effects visualised in
Figure 7, an oversampling factor of around 4 or higher would be necessary to mitigate
these artefacts as best as possible. However, whether the storage footprint of these external
layers or on-the-fly resampling would quickly exceed system resources or dramatically
increase processing times. Fortunately, with the novel RTC-AP algorithm from [27], it is
possible to resolve the need for extreme oversampling by projecting the actual local terrain
facet into the orbit geometry and sticking to the native resolution of the final γ0

T backscatter
product—without applying DEM oversampling at all.

To evaluate and select the most performant Sentinel-1 γ0
T pre-processing workflow,

we introduced different processing scenarios in Section 2.2 and benchmarked them in
Section 4. Streamlining the basic workflow (shown in Figure 1) in wizsard reduced the run
time by around 10–50 times compared to our external workflow reference implemented
in SNAP 8. Additional improvements were achieved by removing the individualised
per-scene computation of the local contributing area Aγ and the shadow mask MS from the
pre-processing chain and replacing it with a static version being ingested into the pipeline
together with the DEM (∼10–20%).

A permanent LUT had the most notable impact on the run time, in the order of
30–40%—at a cost of an increased RAM utilisation. Doubling the oversampling factor
behaved slightly more than one-to-one with a lower performance. Our rudimentary
implementation of the RTC-AP method turns out to be even slower, but it is able to
preserve adequate radiometric quality, which could only be approximated by using higher
oversampling factors.

Together with the RTC-AP method, the “wizsard (RTC-AP)” workflow, as visualised
in Figure 6, is our recommended way for Sentinel-1 γ0

T pre-processing. Despite the run time
degradation due to the non-optimised area projection in the RTC-AP step, it is possible to
achieve a performance similar to the most performant setup “wizsard (LUT)” with the next
larger oversampling factor. Introducing parallelisation in the RTC-AP step together with the
recommended optimisations by [27] might then perform well on both ends—minimising
run times while preserving adequate radiometric quality.

The fastest γ0
T pre-processing pipeline is not able to compete with the σ0

E pre-processing
chain, which has approximately 20% less run time. The weaker performance is caused
by the need to traverse the DEM (or the LUT table) two times, once when integrating the
local contributing area, and once when georeferencing the radiometric terrain corrected
backscatter image. Thus, the clever approach of [30] to perform radiometric terrain correc-
tion on the fly—by applying a static gamma-to-sigma ratio image to a σ0

E datacube—is a
big step forward to reduce processing costs for large-scale γ0

T production.
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The procedure of simulating static layers per relative orbit as presented in both of
our studies is extremely useful for generating all CEOS-ARD layers, without the need of
averaging scene-related images over time, as suggested, e.g., in [30]. The SNAP-based
solution presented in [30] still has some downsides in terms of processing performance,
oversampling, and systematic artefacts. Together with our findings on the stable behaviour
of (P)LIA in our previous paper [29], disk volume can be saved considerably when certain
per-pixel metadata layers were declared static. Yet, there is still the challenge to distribute
these layers to the end users, i.e., if they are attached to each scene, or provided via a
different endpoint that offers them for a certain region of interest. Especially with other
SAR satellite missions to come, a flexible approach for accessing and generating static
layers is needed, where our framework could assist in producing these layers locally. To
speed up pre-processing, we hope that open-source toolboxes like SNAP or ISCE3 take the
insights from [27,30] and our studies into consideration, and will be designed to accept
external static layers as input.

In our study, we focused only on a single relative orbit (168), but identified great
potential for applying our methods to other Sentinel-1 orbits, or even other satellites. Oper-
ational and planned SAR missions like the RADARSAT Constellation Mission (RCM) [43],
Sentinel-1C/D [44], NISAR [45], and ROSE-L [46], also operate in a small orbital tube with
a radius of a few 100 m and thus could also benefit from the insights presented in our
two publications for GTC sigma nought and RTC gamma nought. However, when orbital
tubes are larger than this order of magnitude, our approach would reach its limits quickly.
This has already been demonstrated by [30], where ALOS-1’s baseline variations of around
6500 m surpassed the acceptable range of radiometric variations.

Finally, the overall idea of statistically describing orbital trajectories and propagating
their deviations through a geocoding process is valuable for many scenarios. For instance,
when one wants to assess the impact of orbit maneuvers, apply sensor fusion, as, e.g.,
in [17], or create (normalised) backscatter models for sensor calibration and design [47].
It can help also quantifying the sensitivity of certain parameters on orbital variations
in a radiative transfer or bio-geophysical model, and thus support applications such as
flood mapping [4], wet snow mapping [8], surface soil moisture retrieval [48], and sea ice
analysis [49].

6. Conclusions

Recent efforts to utilise Sentinel-1’s orbital stability for efficient pre-processing of GTC
sigma nought backscatter σ0

E [29] were extended by analysing the state-of-the-art RTC
gamma nought γ0

T workflow and its intermediate layers in a similar manner. This study
clearly demonstrated the additional benefit of a static local contributing area Aγ combined
with a static shadow mask MS per relative orbit. Our proposed enhancements mitigate
the overhead of computing and storing these intermediate layers per scene and forming
orbit-ground geometry look-up tables twice, which allowed to reduce the overall run time
by approximately half. This paves the way for generating large-scale or global γ0

T products
in a reasonable time. With multiple SAR satellites and SAR-based services on the horizon,
it is essential that data providers are prepared to supply the earth observation community
with efficiently processed ARD backscatter data.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23136072/s1, Figure S1: Demonstration how different oversampling
factors are related to aliasing artefacts in the area used for radiometric terrain flattening Aγ. The first
row shows Aγ in orbit geometry without oversampling and orange bounding boxes delineating the
zoom-in view of the second row. The last row displays Aγ values along the pink profile drawn in the
center row for the oversampling factors 1, 2, 4, and 1 with Area Projection (AP).

https://www.mdpi.com/article/10.3390/s23136072/s1
https://www.mdpi.com/article/10.3390/s23136072/s1
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