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Abstract

With the advent of modern smartphones, the possibility of embedding measurement

software into apps to automatically trigger background performance tests constitutes

an interesting data source for mobile network operators (MNOs) to complement

dedicated testing campaigns as well as user-triggered speedtests. These background-

triggered measurements enable a higher level of control over the time and place of

measurements. However, the shared resources offered by mobile networks can not

be used in an unfettered way, which limits the measurement frequency & volume

possible in such measurement campaigns.

Previous work has shown that LTE cell load can be inferred from signal quality mea-

surements by devices in an experimental setup. This work examines the possibilities

of inferring the time series of key performance indicators in a live LTE network using

data collected by way of background-triggered crowdsourcing measurements.

Based on two matched datasets consisting of a) background-triggered crowdsourcing

measurements and b) radio access network performance indicators, LSTM recurrent

neural network models for time series regression are compared against different re-

gression methods based on linear and decision tree-based models with respect to

performance and model interpretability.

Both the magnitude of the load curves and the temporal location of peak loads in

LTE cells can be reliably estimated by using only background-triggered crowdsourc-

ing data. In most scenarios, the LSTM recurrent neural network model outperformed

all other models with respect to both the root mean squared error (between 4% and

40% improvement compared to the best alternative model) of the predicted time

series, as well as the success ratio of temporal peak detection within the time series

(between 80% and 145% improvement compared to the best alternative model). Fur-

thermore, performance measurements collected using a background-triggered crowd-

sourcing approach can aid in estimating cell load when used in conjunction with

signal quality. Finally, the effect of additional noise and missing data is examined

and used to inform decisions about the viability of using crowdsourcing data given

certain measurement conditions.
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Introduction

It is paramount for mobile network operators (MNOs) to have insight into the perfor-

mance of their own and competitor networks from both an individual and statistical

perspective. Dedicated drivetesting is the classical approach of measuring the per-

formance of mobile networks: a resource-intensive practice in which measurement

devices are positioned in a car and driven through different areas to statistically

evaluate and compare network performance and coverage.

With the advent of smartphones, crowdsourcing has emerged as a new paradigm

for testing performance from the user’s perspective, promising granular measurement

data on a population level. For the sake of this analysis, there are two measurement

approaches to crowdsourcing: first, user-triggered crowdsourcing, in which users can

conduct a performance measurement on-demand to get information about the qual-

ity of their current network connection. This approach however, is strongly biased by

the expectations of the end user and skews toward situations in which performance

is either unusually good or unusually bad. The second approach is background-

triggered crowdsourcing, which is the practice of embedding measurement software

into smartphone apps and remotely or periodically triggering measurements with-

out requiring user interaction, thereby removing the aforementioned ’trigger bias’.

While user-triggered crowdsourcing has been widely researched due to the availabil-

ity of open datasets such as RTR Netztest [1], there is only little literature available

on the topic of background-triggered crowdsourcing measurements.

Background-triggered crowdsourcing measurements can serve as a complement

to drivetesting performance benchmarks in the evaluation of mobile networks, pro-

viding a more granular perspective of network performance without biasing the

measurement ensemble with users’ expections in the way that user-triggered crowd-

sourcing does. However, there are restrictions to the types of insights that can be

generated in this way, because the possible resource usage incurred by background

measurements is limited. One, because the radio frequency spectrum is a shared

resource that should not be blocked by constant measurements, and two, excessive

background-triggered testing may have adverse effects on the user experience.

In the face of these restrictions, this work examines the possibility of using background-

triggered crowdsourcing measurements for the estimation of network performance

indicators in mobile networks by trying to answer the following questions:

1. How accurately can the time series of LTE cell load parameters be predicted

by crowdsourcing data?
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2. How does performance of an LSTM neural network compare with the perfor-

mance of classical single-step regression methods when predicting such time-

series?

3. Do the regression parameters and feature importances generated by the models

used yield any novel insight into the connections between measurements on the

UE and the parameters of the network as measured in the RAN?

4. How does prediction performance degrade when the share of missing data is

increased or additive noise is overlaid onto the measurement data and how

does this impact the usability of such crowdsourced data sets?

State of the Art

Various strategies have been employed trying to model network quality parameters

using user-triggered crowdsourcing measurements, such as trying to model downlink

throughput as a function of signal strength [2], a neural-network based method to

infer network KPIs in geographical areas from crowdsourcing measurements [3], or

comparing different spatial interpolation techniques for cellular coverage prediction

using user-triggered crowdsourcing measurements [4].

External factors may play a large role in the quality of certain measurements,

such as weather, cell load, device battery level, or others. Different works have

tried to incorporate various parameters to estimate different performance indicators:

deriving the cell load from RSRQ measurements [5] in a laboratory environment,

using machine learning to find the best predictors for downlink throughput from a

set of network parameters such as latency, signal strength or device battery level

[6], or investigating the impact of including weather data in signal strength forecast

models (including different LSTM-based models) [7]. The difficulties of generating

coverage maps using measurement data from a diverse set of devices have been dealt

with in [8].

The forecasting and regression of timeseries have been dealt with extensively in

different areas of research. An overview of the available methods is available in [9].

An outline of state-of-the-art methods for timeseries regression was presented in [10].

LSTM recurrent neural networks have been used extensively in forecasting applica-

tions as well; one specific adaptation of LSTM is IMV-LSTM, which tries to learn

the temporal variable importance vectors while training the neural network itself

is presented in [11]. Autoregressive techniques were compared with LSTM neural

2



network models for the use case of traffic forecasting for LTE network dimensioning

in [12].

Thesis Outline

In the first section, a framework of mobile network performance indicators is intro-

duced on two levels: performance indicators on a radio access network level as well

as performance indicators as measuremed on the user equipment. Measurements

conducted over multiple weeks in a live LTE network as well as a standalone LTE

cell in an isolated laboratory environment demonstrate the technical limits of con-

ducting throughput tests with file size restrictions due to the background-triggered

paradigm.

Following this introduction of the measurement methods, three baseline regression

methods are presented before outlining the reasoning for using recurrent neural net-

works including long-short term memory (LSTM) models for time series regression.

A special implementation of LSTM called Interpretable Multi-Variable LSTM (IMV-

LSTM) [11] is summarized with regards to its structure and the way it tries to make

its predictions interpretable.

Section 3 presents two datasets used in the subsequent analysis: Dataset A, a

background-triggered crowdsourcing dataset and Dataset B, containing RAN-level

KPIs. Both datasets include measurements of synthetic cells generated from live

network data.

Section 4 discusses the detailed model implementations compared before presenting

the experimentation results using the datasets presented in Section 3. Moreover, the

results are discussed with respect to performance and interpretability before analyz-

ing the influence of missing and faulty data on LSTM model performance. Based on

this analysis, guidelines for the limits of using crowdsourcing data for LTE network

parameter inference are given depending on the amount of data available.

Finally, the conclusion summarizes the contributions and indicates areas of potential

for future work.
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1 Network Measurement Methodologies

Measuring the quality of a mobile network is a large-scale and complex task: many

different systems that interact with each other dynamically, across large areas with

heterogeneous landscapes and users. Due to the variety of possible conditions that

these properties induce, there are different approaches to measuring the quality of

a mobile network that all have individual advantages and disadvantages.

This chapter investigates the different mobile network performance indicators

that can be used to classify the quality of a mobile network as well as measurement

types that can be used to measure these performance indicators. Then, the draw-

backs of using small file sizes for throughput measurements are presented before

delineating different measurement approaches that can be used to generate mea-

surement data, such as drive testing, or different forms of crowdsourcing.

1.1 Mobile Network Performance Indicators

In order to assess the quality of a mobile network, its performance must be summa-

rized in a few key performance indicators (KPIs) that encapsulate some truth about

the network. Such an indicator may be an aggregate such as the mean downlink

throughput or the median latency measured in an area. There are countless KPIs

that may be used to evaluate a mobile network; therefore, the question may arise:

why are some KPIs used, and not others?

Different KPIs have been defined by 3GPP for parts of the LTE network architec-

ture, for example for the E-UTRAN [13] or the evolved packet core [14]. Performance

measurements and the management thereof have also been standardized by 3GPP,

for instance in [15] and [16].

There are three categories of performance indicators used in this work:

1. RAN-Level LTE Performance Indicators are measurements drawn from the

radio access network on a cell-level.

2. Physical LTE Performance Indicators are measurements defined in the stan-

dards associated with LTE conducted on UEs.

3. TCP Performance Indicators are measurements using TCP as a transport pro-

tocol, or measurements that measure related quantities, such as latency or

ICMP Ping.
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Physical LTE performance indicators can inform about the physical condition of

a network: how well is the coverage spread out over an area? Are there patches

of land that are not adequately provided for in terms of signal strength? TCP

performance indicators on the other hand, can inform about the quality of service

that is experienced with respect to the transport and application layers. The use

of crowdsourcing complicates this further: application-layer data may be readily

accessible for apps or even websites on smartphones, thereby enabling throughput

or latency measurements. The physical LTE parameters, however, require access

to lower-level operating system interfaces - something that may not be desirable or

even possible in some circumstances.

The importance of user-centered metrics also stem from the fact that mobile

network operators are frequently compared in the media according to different mea-

surement methodologies laid out by companies like umlaut [17]. In umlaut’s sum-

mary on the network test conducted in 2020 in Germany, Austria and Switzerland

[18], their network testing methodology is laid out transparently and includes time-

limited and volume-limited downloads and uploads. As one of the market leaders in

mobile network benchmarking, umlaut is mentioned as an example for many differ-

ent companies that show a strong focus on throughput speeds and latencies when it

comes to evaluating a network. Furthermore, the introduction of 5G promises lower

latencies for real-time applications such as gaming or augmented reality - making

latencies a major KPI of interest.

1.1.1 RAN-Level LTE Performance Indicators

Physical Resource Block Usage

In an LTE network, radio resources can be drawn up on a time-frequency grid, in

which the smallest element is a resource element (RE) which can be identified by

the frequency index k and the time index l [20]. Fig. 1 shows the resource grid of

an LTE downlink slot Tslot. A physical resource block (PRB) consists of a set of

consecutive OFDM symbols in the time domain and a set of consecutive subcarriers

in the frequency domain. The utilization of radio resources can thus be evaluated

as the share of physical resource blocks that are used out of the total resource

blocks available. A link between high PRB usage and lower throughput has been

established in [21].
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Figure 1: An illustration of the LTE downlink resource grid. The image is a recon-
struction of Fig. 6.2.2-1 in ETSI TS 136 211 [19].

Active Downlink UEs

Active Downlink UEs is the amount of UEs that are active in the downlink in a

given time interval. A UE is considered active if one or more non-guaranteed bit

rate data radio bearers have been successfully configured for it. The more users

populate a cell and actively use the radio resources, the fewer resources each user

will have, therefore this is an important KPI when assessing the load in an LTE cell.

RRC Connected UEs

Radio Resource Control (RRC) Connected UEs is the amount of UEs that are in the

state RRC Connected as defined in [22]. Fig. 2 shows the state transitions between

different states surrounding the RRC Connected state in the RRC protocol. In the

RRC Connected state, UEs are connected to a cell but not sending or receiving

data. In case of data transmission, the UE is handed over to the dedicated channel

or forward access channel. Furthermore, any inter-RAT handovers are performed

from this state when necessary. The performance indicator "RRC Connected UEs"

therefore contains the amount of UEs in a cell that were recently active and have not

6



RRC Connected

RRC Inactive

RRC Idle

Resu
me / Sus

pend

Conn
ecti

on

Connection
Establishment

& ReleaseConnectionRelease

Cell DCH

Handover

GSM/GPRS Connected

Inter-RAT
Handover

Figure 2: An simplified illustration of RRC Connected and the surrounding states
involved in the radio resource control protocol.

yet timed out of the RRC Connected state or been handed over via an Intra-RAT

or Inter-RAT handover, and therefore may again start to send data at some point

during the time that they are in the RRC Connected state.

1.1.2 Physical LTE Performance Indicators

Received Signal Strength Indicator (RSSI)

"E-UTRA Carrier Received Signal Strength Indicator (RSSI), comprises the linear

average of the total received power (in [W]) observed only in certain OFDM sym-

bols of measurement subframes, in the measurement bandwidth, over N number

of resource blocks by the UE from all sources, including co-channel serving and

non-serving cells, adjacent channel interference, thermal noise etc." [23]

Reference Signal Received Power (RSRP)

Reference Signal Received Power (RSRP) is an indicator of radio link signal strength

in LTE. ETSI TS 136.214 Release 14 [23] defines RSRP as "the linear average over

the power contributions (in [W]) of the resource elements that carry cell-specific

reference signals within the considered measurement frequency bandwidth."
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Reference Signal Received Quality (RSRQ)

Reference Signal Received Quality (RSRQ) is a type of carrier-to-interference metric,

and is a proxy for the quality of the radio conditions by way of a reference signal.

According to ETSI TS 136.214 Release 14 [23], RSRQ is defined as "the ratio

RSRQ =
N · RSRP

E-UTRA carrier RSSI
,

where N is the number of RB’s of the E-UTRA carrier RSSI measurement band-

width. The measurements in the numerator and denominator shall be made over

the same set of resource blocks."

Channel Quality Indicator (CQI)

The Channel Quality Indicator (CQI) is defined in ETSI TS 136.213 Release 14 [24]

and indicates the current channel quality based on modulation technique and code

rate.

Signal-to-Interference-Plus-Noise Ratio (SINR)

Signal to noise and interference ratio (SINR), or Reference signal-signal to noise

and interference ratio (RS-SINR) in ETSI TS 136.214 Release 14 [23] is defined as

"the linear average over the power contribution (in [W]) of the resource elements

carrying cell-specific reference signals divided by the linear average of the noise and

interference power contribution (in [W]) over the resource elements carrying cell-

specific reference signals within the same frequency bandwidth." [23]

1.1.3 TCP Performance Indicators

Different prior work has dealt with the pathologies of networks and the difficulties

that can arise when trying to measure TCP packet flows [25], the many different

variables influencing measurement outcomes [26] as well as the additional complicat-

ing factors that arise when doing mobile network measurements using smartphones

[27, 28]. There have also been efforts at standardization of these type of measure-

ments: the IETF working group on IP Performance Measurement (IPPM) strives

to "develop and maintain standard metrics that can be applied to the quality, per-

formance, and reliability of Internet data delivery services and applications running

over transport layer protocols (e.g. TCP, UDP) over IP." [29] In the context of

this work, different RFCs have been published. Regarding TCP throughput testing,

8



RFC6349 [30] defines a "Framework for TCP Throughput Testing" for managed

business-class IP networks and RFC 3148 [31] outlines methods for empirical bulk

transfer capacity metrics. For latency measurements, RFC 2681 [32] discusses the

different trade-offs between round-trip time and one-way delay metrics and RFC

7679 [33] defines a metric for one-way delay of packets across Internet paths. RFC

7799 [34] discusses the delineation between active and passive measurements.

RFC 6349 [30] introduced a "Framework for TCP Throughput Testing" which

seeks to "define a method to conduct a practical end-to-end assessment of sustained

TCP performance within a managed business-class IP network." While dealing with

a different type of network, the underlying protocols and performance indicators can

also be used to test mobile networks.

Throughput

Before throughput can be defined accurately, the notion of a cumulative volume is

needed.

Definition 1.1 (Cumulative Volume). The cumulative volume is the total volume

of data that was transferred prior to some time t. On a TCP connection, ordered

and sequential packets pi of a certain size v(pi) are used to transfer data. Therefore,

the cumulative volume at a time t is defined as the sum of all packet sizes associated

with packets transferred up to that point in time:

V (t) =
t�

v(pi). (1)

Definition 1.2 (Instantaneous Throughput). Given the cumulative volume at in-

stances t and t + T , the instantaneous throughput r is defined as the throughput

at one particular instant, given by the data volume transferred in an infinitesimally

small period of time:

r(t) = lim
T→0

V (t+ T )− V (t)

T
. (2)

In most cases, it is not practical to use the ensemble of instances to characterize a

measurement. Therefore, certain aggregates are used to summarize a measurement.

The aggregates that will be used later on are described in the following definitions.

Definition 1.3 (Peak Throughput). The peak throughput Rmax is the maximum

of all instantaneous throughputs that occur during a measurement:

Rmax = max
tmin≤t≤tmax

r(t). (3)
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Definition 1.4 (Mean Throughput). The mean throughput R is the total volume

of data transferred during a measurement, divided by the total duration of the

measurement, from the beginning of the transfer to its end:

R =
V (tmax)− V (tmin)

tmax − tmin

. (4)

Latency Measurements

Latency has large implications for the quality of experience that users have. Fur-

thermore, there are links between latency and possible throughput as indicated by

[35]. Mobile network links are asymmetric by nature, therefore the latency experi-

ence may differ depending on the direction measured. Optimally, the two different

directions would be measured independently, resulting in two one-way delay mea-

surements. This technique, however, requires synchronization and cooperation be-

tween the server and the UE, and is expensive to realize. Therefore, the latency is

measured using round-trip time measurements.

Round-Trip Time (RTT)

RFC 6349 [30] defines Round-Trip Time in the following way:

Definition 1.5 (Round-Trip Time). The round-trip time is the elapsed time be-

tween the clocking in of the first bit of a TCP segment sent and the receipt of the

last bit of the corresponding TCP Acknowledgment.

TCP Handshake Latency for Round-Trip Time Estimation

The fact that TCP segments can have different lengths complicates round-trip time

measurements further, since latencies differ depending on the segment length. When

doing a TCP handshake as indicated in 3, data can only be sent from TCP ACK

onward. Therefore, the latency calculated through the TCP SYN and TCP SYN

ACK packets does not suffer from this drawback. One proxy for RTT is the TCP

handshake latency, which is the time difference between the first sent bit of the TCP

SYN packet and the last bit received of the TCP SYN ACK packet. This type of

measurement uses TCP directly to measure the round-trip time.

Definition 1.6 (TCP Handshake Latency). The TCP Handshake Latency is the

elapsed time between the clocking in of the first bit of the TCP SYN packet sent

and the receipt of the last bit of the corresponding TCP ACK.
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Figure 3: The three-way handshake is the process of establishing a connection be-
tween two hosts in TCP. Before any other TCP packets can be successfully trans-
ferred, this handshake must be completed, making it an interesting proxy for con-
nection latency.

ICMP Ping for Round-Trip Time Estimation The Internet Control Mes-

sage Protocol (ICMP) was first defined in RFC 792 [36] and specifies echo and echo

reply messages that can be used to conduct ping measurements to determine the

round-trip-time between two hosts. ICMP ping measurements are routinely used

to assess the round-trip time of messages between two hosts. However, as is dis-

cussed in [37], ICMP is "not designed for data [transmission]" and "many end hosts

have rate limited or even blocked ICMP packets, which may lead to obtain wrong

measuring results or the measurement cannot be conducted at all."

Definition 1.7 (ICMP Ping). The ICMP Ping is elapsed time between the sending

of the first ICMP echo packet sent and the receipt of the last bit of the corresponding

ICMP echo reply.

1.2 Measurement Types

The previous section outlined the performance indicators for mobile networks in two

categories: physical LTE performance indicators and TCP performance indicators.

While LTE performance indicators are well-defined through standardization, there

are many different ways of measuring the different TCP performance indicators.

This section introduces the different measurement types that are used to measure

these performance indicators. A thorough investigation of different measurement

types and influencing parameters can be found in [5].
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Measurement Types

Throughput
Measurements

Latency
Measurements

Stability
Measurements

LTE
Parameters

Active
Throughput
Measurements

Passive
Throughput
Measurements

ICMP Ping

TCP Hand-
shake Latency

DNS Query
Time

Download
Success Ratio

ICMP Ping
Dropped
Packages

TCP Hand-
shake Failure
Ratio

RSRP

RSSI

RSRQ

CQI

SINR

Figure 4: An overview of selected types of quality measurements available in an
LTE network.

GET /✁le.zip

HTTP/1.1 200 OK
Content-Type: application/zip

Figure 5: The process of downloading a file via HTTP - a frequently used technique
to measure downlink throughput performance. The file size limits the maximum
throughput achievable.

1.2.1 Active Throughput

In active throughput measurements, a file is downloaded from or uploaded to a server

as indicated in Fig. 5. The server’s performance and attainable throughput must

exceed the performance of the network under test, otherwise measurement results

are limited by the performance or throughput of the server itself. The throughput

is calculated by dividing the volume transferred by the time it took to transfer the

volume. In this work, TCP is used for such measurements, but other transport-layer

protocols such as UDP may also be used.

There are two different types of active throughput measurements used in this

analysis:

1. time-limited speedtests, and

2. volume-limited speedtests.

Volume-limited and time-limited speedtests may be conducted using different file
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sizes and different time-limits, respectively. Active throughput measurements using

adaptive file sizes are also possible to account for different capabilities of different

links. This is, however, a complex undertaking that is not feasible when conducting

measurements on user devices. This analysis will therefore only deal with fixed-

size throughput measurements. The file size of a volume-limited measurement is

denoted using the notation R([file size] MB). For example, R(3 MB) denotes an

active throughput measurement using a file size of 3 MB.

Similarly, the time limit of time-limited speedtests is denoted using the notation

R([time limit] s). For example, R(10 s) denotes an active throughput measurement

using a file size of 10 s.

1.2.2 Passive Throughput

One problem connected with active throughput measurements is that a sufficiently

sized active throughput measurement must fill the link entirely for the duration of

the measurement, during which it cannot be used by the end user. Furthermore,

active throughput measurements increase the network load, because the data is

transferred additionally to any user activity. Passive throughput measurements try

to circumvent this dilemma by measuring throughput solely based on user activity.

GET /user_requested_✁le_1.zip

HTTP/1.1 200 OK
Content-Type: application/zip

GET /user_requested_✁le_2.zip

HTTP/1.1 200 OK
Content-Type: application/zip

Figure 6: Users frequently download over different protocols when surfing the web
or watching a video stream. These download activities can be recorded, but their file
size is not fixed, limiting the expressiveness of such measurements for benchmarking
purposes.

In passive throughput measurements, the user activity itself is used to estimate

the available throughput by calculating the transferred volume by the time elapsed.

When a web page is downloaded, or a video is uploaded to a social network, this

data can be used as a basis for throughput calculations. This type of measurement
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is called a throughput burst. While highly dependent on the file size of the web page

or video that is downloaded, the possibility of measuring throughput solely based on

user behaviour can be of interest to both measurement operator and device owner.

In the following sections, such passive burst measurements are denoted as R(burst).

Passive throughput measurements can be a deceptively compelling option in

crowdsourcing throughput measurements: no extra bandwidth is consumed as there

is no dedicated file transfer to measure the throughput, and the measurements are

available in large numbers. However, the throughput measured is highly dependent

with the volume transferred without the ability of controlling the volume.

1.2.3 ICMP Ping

ICMP Echo

ICMP Echo Reply

Figure 7: An illustration of an ICMP ping: one host sends an ICMP echo mes-
sage, which the other host answers to using an ICMP echo reply. This type of
measurement is frequently used to determine the round-trip time.

Ping measurements are routinely used to investigate the latency experienced by a

host when using internet services, such as real-time audio and video communications

or gaming. In order to get the most accurate results, ICMP ping measurements are

usually conducted in groups of 4 measurements, returning the packet loss in %, as

well as the minimum, maximum and mean round-trip time. In the following, when

ICMP pings are used to analyze latency, the mean round-trip time out of a group

of 4 measurements is used and denoted as Ping.

1.2.4 TCP Handshake Latency

TCP handshake latency measurements are conducted by requesting a small file such

as a favicon from a web server, measuring the TCP handshake latency as defined

above.

The TCP handshake measurement is conducted only once per measurement and

is denoted as TCPLatency.
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1.3 Limits of Lightweight Throughput Measurements

This section investigates the limits of the background-triggered crowdsourcing method-

ology due to the smaller file size used in active throughput measurements in relation

to achievable throughput. First, a short introduction to the mechanisms of TCP

congestion control will be given. Then, measurements conducted in the scope of this

thesis are presented. These measurements were conducted both in a live LTE net-

work and a laboratory setup that consisted of a standalone LTE cell in an anechoic

chamber isolated from outside radio frequency interference.

1.3.1 TCP Congestion Control

There are different methods for congestion control in TCP detailed in RFC 5681

[35] which have an effect on the achievable speeds when using small files:

• Slow Start controls the ramp up of a TCP transfer by limiting the step-wise

increase of the congestion window at each ACK received.

• Congestion Avoidance increases the congestion window each round-trip time

depending on the the number of bytes acknowledged.

Both of these algorithms must be implemented by TCP implementations per RFC

5681 [35]. These congestion control algorithms work by limiting the growth of

throughput, which means that there is a time constant that the first N bytes cannot

be transmitted faster than. In general, this effect is desired in order to limit the

congestion that over-eager senders can inject into a network. In the context of per-

formance testing, however, it limits the maximum throughput that can be achieved

with small files. Since the ramp-up of the congestion window is limited by the fre-

quency of the ACKs received, the file size must be adapted to the links’ round-trip

time as well as the throughput possible on the link.

1.3.2 Throughput Limits of Lightweight Files Tested in Empty LTE Cell

UE
Antenna
Setup Attenuator eNodeB Internet Test server

Figure 8: Measurement setup

In order to evaluate the limits of lightweight throughput measurements in a con-

trolled environment, a measurement campaign lasting multiple days was conducted
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in an empty LTE cell to provide evidence on this limitation while preventing load

effects from influencing the results.

The otherwise empty LTE cell was isolated to outside radio frequency interference

in an anechoic chamber, and the user equipment (UE) was positioned in direct line

of sight of two antennae connected to an eNodeB. Between the antennae and the

eNodeB, a remote-controlled attenuator was positioned in order to vary the atten-

uation automatically in steps of 2 dB size in order to iterate over varying levels

of signal strength. The maximum achievable throughput in this setup was limited

at 140MBit/s. The tests were performed using a dedicated web server located in

Vienna. Throughput data was collected using Nemo Wireless Network Solutions

software. In total, 530 individual speedtests and RSRP measurements were con-

ducted with file sizes of 2 MB and 20MB to represent the typical range of file sizes

in crowdsourcing throughput measurements. The measurement setup is depicted in

Fig. 8.

Figs. 9 (a) and (b) show 2D histograms of downlink throughput and RSRP.

While measurements done with 2 MB file size are concentrated below 100MBit/s

with only a few outliers above, the measurements with 20 MB file size easily reach

the limit of 140MBit/s of the test setup.

(a) (b)

Figure 9: Subfigure (i) shows a 2D Histogram of R(2MB) and RSRP. Subfigure (ii)
shows a 2D Histogram of R(20MB) and RSRP. The bins have a width of 2 dBm
and a height of 5MBit/s. The ’x’ marks the median observation with respect to
R(2MB) / RSRP and R(20MB) / RSRP, respectively.

1.3.3 Live Network Performance of Different File Sizes At Fixed Loca-

tion

Measurements in an isolated cell containing only a single user do not reflect the

reality that in live networks throughput depends on the amount of users in a cell.
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In LTE, resource blocks are allocated depending on the Quality of Service (QoS)

level of the tariff, the amount of connected devices currently in the cell as well as

the resources requested by other devices.

The QoS level of different services and UEs is set using QoS classes, encapsulated

in QoS class identifiers (QCIs). Resources in the RAN are scheduled according to

the respective QCI associated with a given data flow. An overview of the general

concept of QCIs and the different available QCIs is given in [38].

In order to investigate the impact of QCI on the connection between RSRP

and downlink throughput, a set of devices was positioned at a fixed location for

a duration of one week, conducting measurements periodically. All devices were

operated in the same network, but were assigned tariffs with different QCI. A total

of 4950 single measurements were conducted for two measurement types: volume-

limited speedtests with a file size of 3 MB and time-limited speedtests with a time-

limit of 10 seconds.

The three tariffs used had the following limitations:

1. Tariff A: low QoS class / 20 MBit/s DL / 5 MBit/s UL

2. Tariff B: medium QoS class / 300MBit/s DL / 50 MBit/s UL

3. Tariff C: high QoS class / no shaping / no shaping

Figure 10: 2D Histogram of R(3MB) and RSRP for tariffs with different QoS classes
and traffic shapings. Color scale indicates # of measurements per bin on a logarith-
mic scale for visibility, the position marked by an ’x’ indicates the median observa-
tion with respect to both dimensions. Note: the interested reader may notice that
speeds in this scenario do not attain the same speeds as the measurements in Fig. 9
despite a larger file size. This unfortunate dissonance is attributed to differences in
the measurement systems being used in the two different scenarios, but should not
detract from the larger point of these measurements.

Fig. 10 shows a 2D histogram of R(3 MB) for each of the three tariffs. In

measurements with this small file size, the reaction time of the shaping mechanism
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is too slow to limit the total speed to 20 MBit/s when operating in suitable radio

conditions. As can be seen in the corresponding plot for the Tariff A in Fig. 11,

when a transfer of larger volume takes place over a total of 10 seconds, the shaping

mechanism reliably limits the speeds.

Figure 11: 2D Histogram of R(10s) and RSRP for tariffs with different throughput
shapings. Color scale indicates # of measurements per bin on a logarithmic scale
for visibility, the position marked by an ’x’ indicates the median observation with
respect to both dimensions.

For Tariff B, there is also a certain amount of R(3MB) measurements with

throughput above 40 MBit/s, but most of the measurements are still located in

the sub-40MBit/s range. Also, R(10s) is considerably higher compared to Tariff A

while operating at similar values of RSRP.

For Tariff C, R(3 MB) is limited as seen with Tariff B. R(10s) is higher for mea-

surements done with Tariff C when compared to R(10s) of Tariff B. This is indicated

by the higher maximum throughput, as well as the smaller amount of measurements

that lie below 200 MBit/s. Note: the few measurements with R(10s)>300MBit/s

or R(3 MB)>300 MBit/s are attributable to measurement errors. Due to the time-

based nature of throughput measurements, small aberrations in time can lead to

some measurements seeming to have higher throughput than realistic.

Active throughput measurements with a file size of 3 MB or lower do not reliably

produce throughput above a threshold of 40 MBit/s. In time-limited measurements,

much higher throughput is possible, but these types of tests are not feasible in

background-triggered crowdsourcing due to concerns regarding resource usage. The

trade-off is clear: if the file size is too large, users will protest, if it is too small, the

insights will be worthless. The optimal file size for background-triggered speedtests

must be chosen in consultation with both those developing and marketing the app

that the measurement software will be embedded into, as well as those responsible

for evaluating and analysing the measurements.
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1.4 Measurement Approaches

After delving into the technical details of individual measurements, this section is

deals with the different approaches to setting up measurements in order to achieve

a broad view of the network under test.

Crowdsourcing and drive testing are distinct approaches to measuring the prop-

erties of a network and the behaviour of its users: while the aim of drive testing

is to properly assess the technical state of a cell network, trying to show the limits

of the network itself as a technical entity, crowdsourcing targets the experience of

users inside the network. The technical measurement types that are used in a mea-

surement campaign are similar for different approaches, e.g. throughput or latency

measurements. What differs, is who controls the time, place and the technical pa-

rameters of these measurements.

In the following evaluation, three different approaches will be presented and com-

pared:

• Dedicated drive testing / walk testing: a professional measurement opera-

tor drives or walks around an area to conduct measurements using dedicated

measurement equipment.

• Crowdsourcing with user-triggered measurements: curious users conduct a

single speedtest in their specific location and network coverage, using websites

or apps usually provided by private analytics companies or regulators.

• Crowdsourcing with background-triggered measurements: measurement soft-

ware is embedded into an app and conducts automatic tests according to a

predefined schedule or depending on certain triggers.

1.4.1 Dedicated Drive Testing

Dedicated drive testing is a measurement approach in which a vehicle equipped with

measurement equipment is driven around to measure mobile networks in order to

test the service availability and quality in a geographically limited area. While this

method is the de-facto standard in network performance benchmarking, it is very

cost- and capital-intensive. Dedicated drive testing incurs large costs for dedicated

vehicles or measurement setups in backpacks that include measurement devices such

as

• dedicated mobile network measurement devices,
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• phones with commercial measurement software,

• phones with custom measurement software,

• high-quality GPS trackers with external antennae to improve location accu-

racy,

• frequency scanners,

and more.

Furthermore, there are organisational measures that can be undertaken in order

to accurately depict the network being measured. Measurement devices may be used

in a standardized car model to rule out the influence of different car models on radio

frequency attenuation. Measurement devices may be equipped with SIM cards as-

sociated with specific tariffs. For example, tariffs with a high QoS classification may

be used to measure top throughput speeds, whereas tariffs with a lower QoS classi-

fication may be used in order to better measure the effects of network under high

load. Measurement operators may be instructed to drive to specific places, along

specific routes, or at specific times. In phases of technology roll-out, such as during

the introduction of new technologies, it may be of special importance to monitor

expansion progress and possible technical problems. Measurement operators may

invalidate measurements when system malfunctions are observed to prevent false

conclusions induced by equipment failure.

Besides the high cost, there are drawbacks and restrictions associated with the

drive testing approach. Some of these include:

• limited ability to use different measurement devices and update them fre-

quently due to large cost,

• labor laws in a region or country may restrict the times at which measurements

are possible,

• events such as a natural catastrophes can restrict the freedom of mobility

between countries and / or areas, making it impossible for measurements to

take place in certain regions.

1.4.2 User-Triggered Crowdsourcing Measurements

As outlined in [39], the most widely used approach to crowdsourcing mobile network

measurements relies on "appealing to user altruism and curiosity" - depending on
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users to trigger tests - which also comes with a number of drawbacks. While there

are strong financial incentives to use crowdsourcing data over dedicated testing, a

lot of the control that is possible in dedicated drive testing cannot be exerted in

this approach and is handed over to the end user triggering the test. This handover

of control can generally be beneficial: there is no device cost for the operator,

and no operational expenditure for staff who operate measurement devices or the

vehicles used to drive the devices around. While there may be costs associated

with crowdsourcing software, specialized and high-cost measurement software that

interacts with lower protocol layers is usually not part of this measurement software.

End-users measure whenever they please, so there is no restriction with respect to

the daytime of measurements. Users might trigger measurements exactly when the

network does not perform as advertised. Regardless of whether or not freedom of

mobility is restricted, users usually keep their phones in their proximity, enabling

measurements during scenarios such as natural catastrophes or regional curfews. On

the one hand, this can help an MNO identify problem areas in its network. On the

other hand, it reduces the usefulness of the data for achieving a representative view

of the network.

There are also some drawbacks to this crowdsourcing approach, which are inter-

twined with its advantages. Users decide when and where to conduct measurements,

so the infrastructure supporting these crowdsourcing efforts is controlled by users

instead of a dedicated operator. Usually, however, there are no incentives for users

to measure in certain locations or for the ensemble of all users to distribute the

measurements evenly over a certain area. This can have different effects, such as a

higher concentration of measurements in areas with bad coverage, or an unexpected

increase in measurement activity that could lead to a hike in operating costs. Fur-

thermore, measurements may be conducted with vastly different radio conditions

such as inside buildings, underground, inside moving cars or trains, walking on the

street, or directly next to a base station. This variety of radio conditions can trans-

late into in vastly different results despite measurements having been conducted in

a similar location. Measurement devices must be equipped with SIM cards in order

to have cell service, but there is no selection and no information with respect to

the type of SIM or tariff being used. The ensemble of measurements will be con-

stituted of measurements by users with both low and high QoS as well as high and

low throughput shaping. There is no protection against measurement tampering,

such as certain users conducting many measurements or influencing the performance

experienced in a specific location. This may be done on purpose or inadvertently,
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and may have a large influence on the aggregate statistics. There is no way for the

end users to indicate whether a measurement succeeded or failed, or to invalidate

measurements in case of measurement error. The operators of the infrastructure

that supports the measurements, in turn, also do not have a way of telling why and

how a measurement failed, just that it happened.

1.4.3 Background-Triggered Crowdsourcing Measurements

In the third approach, crowdsourcing measurements are collected in the background

using software on the user’s phone, usually in the form of a software development

kit (SDK) embedded in an app downloaded by the user. This can either be done

by app developers themselves in order to gain information about the user or their

performance, or in order to gather data that can be sold to others. Measurements in

this scenario are triggered automatically, either by a temporal schedule or triggered

by the supporting infrastructure.

This approach shares some benefits with the second approach outlined above,

but it is also different in some distinct ways. Some of the benefits include that

there is no device cost for the MNO, and no operating expenditure for workers to

operate the devices, the supporting infrastructure needs to be paid for, but there

should be no unforeseen costs due to measurement spikes. No users are involved in

triggering the individual measurement, hence measurements are devoid of human

influence with respect to time or location of the measurement. Devices, however,

that are logged into WiFi or are turned off can not be triggered to measure the mobile

network. On the other hand, since the measurement can be scheduled to take place

at random instances throughout the day, users cannot tamper with measurements

without tampering with their own quality of experience simultaneously. In the

event of a restriction of freedom of mobility, this approach will still work, since users

usually keep their phone in their proximity and carry it with them when moving.

There are also drawbacks to this approach, which again overlap with the draw-

backs of the user-triggered crowdsourcing approach. Users may restrict an app’s

background activity when they discover that their data transfer volume and battery

are being drained by an app that should not do so. This is an important threat to

such background-triggered schemes, since any change in a mobile operating system’s

permissions process may have a devastating effect on the amount of measurements

collected. The measurement devices are the users’ phones, and while this informa-

tion is usually recorded, there is no way to change the type or quality of device, and
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no way to know or influence the tariffs on the users device. Having said that, this

can be mitigated by zero-rating traffic coming from measurement servers. The tem-

poral distribution of the measurement sample is largely dependent on the scheduling

algorithm used to trigger measurements and the permission of the host operating

system on user devices to perform such background activity.

1.4.4 Summary

DT U-T CS B-T CS

Device cost −− ++ ++

Infrastructure cost − −− −−
Operating cost for measurement staff −− ++ ++

Tariffs are known ++ −− −−
Diversity of device types ∼ ++ ++

Needs user buy-in ++ −− −
User-triggered ++ − ++

Possible malicious influence on measurements ++ −− +

Spatial restrictions −− + ++

Temporal restrictions ∼ + ++

Table 1: An overview of the positive and negative aspects of different measurement
approaches from the perspective of the measurement operator: dedicated drive test-
ing (DT), user-triggered crowdsourcing (U-T CS) and background-triggered crowd-
sourcing (B-T CS).

To sum up, the three measurement methodologies can be categorized with respect

to their utility in different use cases as well as their cost: drive testing, while resource-

intensive, can best be used to measure the technical parameters of a network due to

the high level of control exerted on the variables of the measurement process. User-

triggered crowdsourcing can offer a great perspective into the problems that users see

in the network, since the measurement time and location are subject to user interac-

tion. Background-triggered crowdsourcing may offer an insight into user experience

and network performance without requiring the end users to trigger measurements,

eliminating a behavioural bias that may be present in user-triggered crowdsourcing.

The different advantages of background-triggered crowdsourcing outlined in Table

1 motivate a further investigation of the possibilities of data generated according to

this approach.
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2 Timeseries Regression Methods

This section introduces the general problem statement of timeseries regression, a

few basic methods of classical regression as well as two LSTM neural network

approaches for timeseries regression: a "vanilla" LSTM architecture, as well as a

specially adapted LSTM structure intended for use in timeseries forecasting called

IMV-LSTM. Afterwards, general considerations for training statistical and machine

learning models, interpreting the results and preventing undesirable outcomes are

put forward.

2.1 Problem Statement

Let y be the target timeseries that is to be estimated, and let xn with n = 1..N

be a set of explanatory variable time series. The goal is to predict y by using the

information contained in the explanatory variables as well as information about the

relationship between the explanatory and target variables gained from data used

in the training process. For a finite timeseries of length T, the target timeseries is

defined as a vector y and the explanatory timeseries xn are contained in the matrix

X:

y =


y1

y2
...

yT

 X =


x1,1 x1,2 . . . x1,N

x2,1 x2,2 . . . x2,N

...
...

...

xT,1 xT,2 . . . xT,N

 (5)

where y contains the stacked values of the target variable at timesteps t =

1, 2, ..., T , the elements contained in X are stacked vectors of the n explanatory

variables at timesteps t = 1, 2, ..., T .

Goal of timeseries regression is to learn a representation of y in terms of X with

regression parameters θ:

ŷ = f(X;θ) (6)

over the training dataset. This representation is then evaluated by computing the

root mean squared error

RMSE(y, ŷ) =
�

1

n
(y − ŷ)�(y − ŷ) (7)
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on the testing dataset.

Some of the most popular forecasting models for timeseries, such as ARIMA or

vector autoregression use the explanatory variables as well as the target variable

from before the forecasting interval for their prediction, but not the explanatory

variables from the forecasting interval. This type of forecasting is called ex-ante

forecasting in [9], as opposed to ex-post forecasting. Since the goal of this work

is not to forecast a timeseries that is known until timestep T , but to estimate an

entirely unknown timeseries from the explanatory variables, these autoregressive

methods are not considered in the analysis.

2.2 Baseline Regression Models

2.2.1 Linear Regression

In linear regression, multiple input variables in vector x are used to predict a single

target variable y:

ŷLR = xθ. (8)

This single variable linear regression problem corresponds to one row of the re-

gression problem described in 5. Thus, any timeseries dependencies between the

variables are ignored, and only one timestep is used for both the explanatory and

target variables. There are different ways to minimize the error ε with respect to

the the parameters θ of the model. One of the approaches is ordinary least squares,

in which the error

εOLS = ||y − xθ||2 (9)

is minimized by calculating the parameter vector θ using the pseudo-inverse as

θ = (X�
trainXtrain)

−1X�
trainytrain (10)

using all samples from the training dataset stacked into the matrices Xtrain and

ytrain.

2.2.2 Random Forest Regression

Random forests are ensemble models constructed out of decision trees [40] and were

first introduced in [41]. The principle of random forests is to construct many dif-

ferent decision trees that are based on a random subset of the total input data set,

both by random variable selection as well as choosing different data subsets for the
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build process of each tree. Each individual tree is a predictor f(Θ), where Θ is a

bootstrap sample of the original data x. These individual tree predictors are then

aggregated into an ensemble model. When it comes to predicting the final target

value, the results from all the models are combined, usually averaged when dealing

with regression tasks as indicated in Fig. 12. Some implementations, such as the

implementation by Scikit-Learn [42] used in this work, additionally use weights re-

trieved from the individual regression trees while combining the individual model

predictions.

. . .

Tree 1 Tree 2 Tree N

Result 1 Result 2 Result N

Average

Random Forest Prediction

Input

Figure 12: An illustration of random forests for regression.

2.2.3 Gradient Boosting Regression

Boosting is the method of combining weak learners into an ensemble model, where

a weak learner is defined as a model that is only slightly better than chance. In

gradient boosting, weak learners are combined in a way such that they each try to

correct the mistakes of the previous model [43].
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. . .

Tree 1 Tree 2 Tree N

Loss 1 Loss 2 Loss N-1

Prediction 1 Prediction 2 Prediction N

Combine Predictions

Gradient Boosting Prediction

Input

Figure 13: An illustration of gradient boosting for regression.

2.3 Recurrent Neural Networks

Artificial neural networks have been used extensively for different kinds of tasks like

regression, forecasting, and classification. Neural networks in general are universal

function approximators: given the input X and the desired output y, they can learn

to approximate a function f by learning the parameters θ in the equation [44]:

ŷNN = f(X;θ). (11)

In this work, a certain type of neural networks is investigated and used for time-

series regression: recurrent neural networks. Recurrent neural networks can be

distinguished from feed-forward neural networks by the type of data flows inside the

model: while in feed-forward neural networks, data only flows from input to output

layer by layer, data may flow from the output of a cell back to the cell itself in

recurrent neural networks. They are thus feed-forward neural networks extended by
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Hidden Layer

Input layer

Output layer

Feed-Forward
Neural Network

Recurrent
Neural Network

Figure 14: A schematic illustration of the difference between the connections of
feed-forward neural networks and recurrent neural networks.

feedback connections [44], as illustrated in Fig. 14. These feedback connections en-

able recurrent neural networks to have somewhat of a memory of sequences and are

therefore described by [44] as "a family of neural networks for processing sequential

data", i.e. specialized for processing sequences of values x1, x2, ...xn. Since timeseries

in the form of Eq. 5 are just values in a sequence, recurrent neural networks are a

logical choice when choosing a neural network architecture for timeseries regression

problems.

In the problem discussed in this work, there may be many different correlations

between time-steps that are quite distant from each other. A long-term influence of

different input parameters on results may therefore yield an advantage over a model

that cannot exploit such dependencies [44].

With vanilla recurrent neural networks, however, this can lead to problems: when

trying to train a recurrent neural network to learn long-term dependencies, the train-

ing mechanisms present some challenges caused by the way gradients are calculated

in recurrent neural networks. The way the parameters θ of a neural network are

optimized is by calculating a cost function

J(θ) = E(X,y) p̂dataL(f(X;θ),y), (12)

where p̂data is the empirical distribution of the training data. Then, an optimiza-

tion algorithm is applied after each iteration to iteratively find the parameters θ that

minimize the cost function J(θ) [44]. One example for an optimization algorithm is

gradient descent, in which the parameters of the neural network are adjusted in the
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direction of the gradient with respect to θ:

g = ∇θJ(θ). (13)

There are many more optimization algorithms, which do, however, often build on

the concept of gradient descent, incorporating various improvements in order to

speed up calculation. Two examples of optimization algorithms based on this idea

are stochastic gradient descent [44] and Adam [45].

The Vanishing Gradients Problem

H

xt

ht

H

x1

h1

H

x2

h2

H

xT

hT

= . . .

Figure 15: An illustration of the correspondence between a cell of a recurrent neural
network and its counterpart when unrolled through time.

In recurrent neural networks, the gradients are often calculated using a method

called backpropagation through time (BPTT) [46]. In BPTT, inputs first are prop-

agated through the network forwards to calculate the loss, before propagating the

loss backwards through the unfolded recurrent neural network as illustrated in Fig.

15 and computing the gradients using the chain rule. Detailed as well as intuitive

explanations of this process are given in [47].

Learning long-term dependencies using recurrent neural networks and applying

BPTT suffers from one critical flaw: back-propagated gradients propagated over

many stages "tend to either vanish or explode" [44], resembling an unstable system

that either learns nothing due to vanishing gradients, or spirals out of control due

to exploding or oscillating gradients. Besides making recurrent neural networks

hard to train, all of these phenomena effectively prevent the system from learning

relationships between values that are more than a few timesteps apart.
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Figure 16: The data flows inside an LSTM Cell.

2.3.1 Long Short-Term Memory

One of the solutions developed in response to the problem of vanishing gradients are

long-short term memory (LSTM) cells [48]. While vanilla recurrent neural networks

usually only contain an activation function, these LSTM cells are extended by a

memory state in order to take into account long term dependencies in the data. The

data flows inside one of these cells are illustrated in Fig. 16, where xt is the input,

ht−1 is the state carried over from the previous iteration and ct−1 is the cell state

containing the memory.

LSTM Cell Update Equations

There are three main calculations in the cell update process:

1. the forget gate Ft determines which parts of the current input and previous

state to incorporate into scaling of the previous the cell state Ct,

2. the input gate It determines which parts of the current input and previous

state to add to the scaled previous cell state Ct−1,

3. the output gate Ot determines which parts of the current input and previous

state scale the output of the current cell Ct.

Informed by the LSTM cell structure illustrated in Fig. 16, the cell update

equations can be written in the following form [49], where equations 15 - 17 contain
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the different gate update functions, and equations 18 - 19 contain the cell and hidden

states that are carried over to the next timestep:

Ft = σ(UfXt +WfHt−1 +Bf ) (14)

It = σ(UiXt +WiHt−1 +Bi) (15)

Gt = tanh(UgXt +WgHt−1 +Bg) (16)

Ot = σ(UoXt +WoHt−1 +Bo) (17)

Ct = Ft �Ct−1 + It �Gt (18)

Ht = Ot � tanh(Ct) (19)

Additionally to the forget, input and output gates, Gt is the hidden gate, Ct is

the cell state, and Ht is the hidden state at time t. Ba are the (static) bias inputs

for gate a.

� is defined as the Hadamard product [50]:

(A�B)ij = [aij · bij]. (20)

The activation functions used are the Sigmoid and tanh functions:

σ(x) =
1

1 + e−x
tanh(x) =

ex − e−x

ex + e−x
.

2.3.2 Interpretable Multi-Variable LSTM (IMV-LSTM)

Vanilla LSTM RNNs, as other neural networks, are not innately interpretable. An

interpretable amendment to the network structure called IMV-LSTM was proposed

in [11]. IMV-LSTM has been described as "the only model with both a satisfying

performance score and correct interpretability" in a benchmark of different inter-

pretable time series prediction models [51].

IMV-LSTM is distinguished from classical LSTM by two main factors:

1. An update mechanism different from the classical LSTM machanism is used
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to exploit the LSTM cell structure to learn the representations of the target

variable for each explanatory variable, and

2. a mixture attention mechanism is employed to summarize the contributions of

each explanatory variable on a temporal as well as a variable level.

In order to solve the regression problem outlined in Eq. 5, the structure proposed in

[11] has been slightly adapted. The input to the adapted IMV-LSTM is the matrix

of explanatory variables X that is used to predict the target timeseries y. The three

goals of this adapted IMV-LSTM are carried over from the goals in [11]:

1. Given X, to learn a non-linear mapping to predict the vector of the target

time series

ŷIMV-LSTM = F(X).

2. Given X, to derive the variable importance vector

I ∈ RN
+ ,

N�
n=1

In = 1.

This vector I indicates the relative importance of explanatory variable n for

the prediction.

3. Given X, to derive the temporal importance vector with respect to explanatory

variable n:

Tn ∈ RT−1
+ ,

N�
n=1

Tn
k = 1.

The vector Tn
k indicates the different relative timestep importances for timesteps

k and explanatory variable n.

IMV-LSTM Structure

While in classical LSTM, the network structure is a hyperparameter to be optimized,

IMV-LSTM specializes this hyperparameter as an integral part of its interpretability

model. The classical LSTM model is specialized by setting the hidden unit structure

up to reflect N different explanatory variables with d neurons per variable, yielding

a total of D = N · d neurons per layer.

The hidden state matrix is defined as H̃t = [h1
t , ...,h

N
t ]

� where H̃t ∈ RN×d. The

element hn
t of H̃t is the hidden state vector specific to the explanatory variable

n, which is the key element of this specialized structure that makes it capable of
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learning the variable importances.

Furthermore, the input-to-hidden U and hidden-to-hidden W transition tensors are

defined as Wj = [W1
j , ...,W

N
j ]

� and U j = [U1
j , ...,U

N
j ]

�, where Wj ∈ RN×d×d and

U j ∈ RN×d×d0 .

This is also reflected in the adapted update equations: the main change to the

classical LSTM update equations is that Equation 16 is replaced by an adapted

update equation for the hidden state J̃t that incorporates the adapted hidden state

matrix h̃t−1:

J̃t = tanh(U j �∗ Xt +Wj �∗ H̃t−1 +Bj) (21)

As with the transition matrices, the hidden state update can be decomposed into

separate vectors for each of the explanatory variables: J̃t = [j1t , ..., j
N
t ]. This update

equation can be understood as a piecewise update of the hidden state with respect

to each explanatory variable.

All changes to the other update equations follow from the change to the hidden

state update and the adapted update equation as defined in Equation 21. While this

equation does not look much different from the corresponding Equation 16 in clas-

sical LSTM, the tensor-dot operation �∗ in this case is to be understood as a prod-

uct for each variable individually, therefore Wj �∗ H̃t−1 = [W1
jh

1
t−1, ...,W

N
j h

N
t−1]

�,

meaning that the update to the cell state happens on a variable basis. As explained

in the original paper, this can be understood as the separate training of an LSTM

neural network for each explanatory variable without interconnection between the

explanatory variables.

The other update equations follow:


Ĩt

F̃t

Õt

 = σ(W �∗ H̃t−1 + U �∗ Xt +B) (22)

Ct = F̃t � C̃t−1 + Ĩt � J̃t (23)

H̃t = Õt � tanh(C̃t). (24)

Attention Mixture Model

The second part of the interpretability framework in IMV-LSTM is the attention
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mixture model. Here, the different variable-wise hidden state matrices from the

different timesteps are combined first on a temporal, then on a variable level in order

to derive the temporal importance and variable importance vectors. By modifying

the derivation of these importance vectors of the original paper [11] to fit the problem

of timeseries regression per Eq. 5, the mixture attention is formulated as:

p(y|X) =
n=1�
N

p(y|z = n,X) · Pr(z = n|X) = (25)

=
N�

n=1

p(y|z = n,hn
T ⊕ gn) · Pr(z = n|h1

T ⊕ g1, . . . ,hN
T ⊕ gN) (26)

where z is a discrete variable over 1...N corresponding to the N explanatory

variables, ⊕ is the concatenation operator and gn is the temporal attention weighted

sum of hidden states of variable n: gn =



t α
n
t h

n
t , where αn

t is the attention weight

that can be computed as

αn
t =

exp fn(h
n
t )


k exp(fn(h
n
t ))

, (27)

where fn(·) can be any function specific to variable n, including a neural network

[11]. For p(y|z = n,hn
T ⊕ gn), a Gaussian output distribution is used, parametrized

by [µn,σn] = ϕn(h
n
T ⊕gn), where ϕ(.) can be a neural network. The training proce-

dure outlined in [11] then uses an expectation minmization (EM) framework to learn

the neural network parameters as well as the importance vectors simultaneously by

including both in a custom loss function that the neural network minimizes. The

scope of this method would, however, be too detailed for this discussion and is not

significant with respect to the alterations to the neural network used in this work.

After training, when taking an input to make a prediction, the mixture model

is used to calculate a weighted sum of the individual predictions per explanatory

variable:

ŷ =
�
n

µn · Pr(z = n|h1
T ⊕ g1, . . . ,hN

T ⊕ gN) (28)

In summary, IMV-LSTM computes estimates of the target variable timeseries

for each input timeseries using individually propagated LSTM neural networks, and

uses an expectation minimization framework and a customized loss function to learn

a gaussian mixture model distribution during training in order to learn the temporal

and variable importance vectors I and T.
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2.4 Suitability for Timeseries Regression

In this short section, the methods used will be evaluated with respect to their

expected performance on the timeseries regression problem formulated in Eq. 5.

An overview of the attributes of different regression methods is given in Table 2.

Model
Prediction

Mode Interpretability
Special

Timeseries Method

Linear Regression single-step parameters no

Random Forest single-step feature importances no

Gradient Boosting single-step feature importances no

LSTM multi-step not interpretable no

IMV-LSTM multi-step temporal & variable
importance vectors yes

Table 2: An overview of the different methods used for timeseries regression.

The linear regression model as well as the decision-tree based models suffer from

a critical flaw: they only work on single timesteps. Therefore, unless the relation-

ships between explanatory and target variable timeseries are strictly independent of

the timesteps before and after the evaluated timestep, this puts these methods at a

disadvantage. However, as has been shown in previous literature, especially RSRQ

seems to be well-linked with cell load KPIs [5] even when only looking at individual

values, but throughput measurements may also be a good predictor of cell load [21].

The crowdsourcing data used as input to the models, however, may be inherently

noisy and error-prone, especially due to the speedtest measurements conducted with

limited file size, leading to throughput restrictions. What is inherent in all single-

step timeseries models is interpretability: linear regression has linear parameters

values, and the tree based models have feature importances that yield insight into

the significance of certain explanatory variables to the target variable predictions.

For the classical LSTM network and the adapted IMV-LSTM, it is hard to tell

which will be perform better. The classical LSTM network is a "one-size fits all"

approach that only has hyperparameters adapted to the problem, whereas IMV-

LSTM is a method specially developed for a different timeseries problem: ex-ante

timeseries regression. In contrast to classical LSTM, IMV-LSTM incorporates an

interpretability framework that will be of certain benefit when looking at aligned

timeseries and trying to figure out which variables had a stronger impact on the
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prediction. By using the method in an adapted way, it is unclear whether the

performance will be as good as in the original paper: since a whole timeseries is

predicted, the variable importance vector is calculated for the entire timeseries -

this may pose some problems to the algorithm. When looking at shuffled timeseries,

i.e. where the peaks of the timeseries are not clustered around the a few timesteps,

this will be a problem, because the temporal importance vectors should not be able

to pick up a pattern, but the method probably will do so anyway.

2.5 General Considerations

Depending on the type of statistical model, there are different elements of the input

data, model performance, model interpretability and model configuration that must

be considered in order to evaluate which model to use for a given purpose. There

are different problems that can occur with such models:

1. Data may leak between the training, validation and testing, validation datasets,

leading to bad generalization performance and misleading results in the model

design phase.

2. Results may not be interpretable, i.e. there may be no way to reason about

how model results were constructed.

3. A model may overfit on the training data, leading to good validation perfor-

mance, but poor generalized performance on unseen test data.

4. Hyperparameters may not be properly tuned, leading to sub-par results despite

the general possibility of good results.

5. Missing data in training, validation and testing, validation may adversely in-

fluence model performance.

2.5.1 Training, Validation & Testing Split

In order to properly test the performance of different models, data is split into

training, validation and testing data sets. The training set will be used to train the

models, the validation set will be used for model selection, and the test set will be

used to test the model performance after training and validation have concluded.
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2.5.2 Interpretability

Interpretability is defined in [52] as "the ability to explain or to present in under-

standable terms to a human", while noting that a formal definition of interpretabil-

ity remains elusive. It is further argued in [52] that the need for interpretability

primarily arises in situations when the problem is not formalized well, hindering op-

timization and evaluation of the algorithm in question. Besides, it may be of benefit

to interpret the mechanisms of a machine learning model for reasons of scientific

understanding, safety, ethics, or other trade-offs [52].

2.5.3 Overfitting & Regularization

In statistical learning, models may overfit, i.e. learn the properties of the training

set to the point where generalized prediction suffers [43]. Since a model’s goal is to

learn patterns that are generalizable from the training set to the test set, this is not

a desired outcome. Regularization is defined in [44] as "any modification we make

to a learning algorithm that is intended to reduce its generalization error but not

its training error."

Dropout

Dropout is a technique of preventing overfitting of neural networks by randomly

dropping cells of the network along with all connections to and from the dropped

cells during training [53]. This has the effect of preventing combinations of nodes

from adapting to each other too strongly.

Figure 17: A schematic illustration of the effect of dropout in a feed-forward neural
network with two hidden layers: (i) shows the network before applying dropout, (ii)
shows the effect of dropout (illustrated by blacking out the cells) on the network
connections.

Regularization

In order to prevent overfitting of models, regularization is used to control the com-

plexity of a given model. There are different ways of going about this, most com-
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monly a penalty term is added to the cost function J(θ) in order to penalize model

complexity along with prediction errors and thereby force the model to generalize.

There are different ways of going about this, such as using L1 and L2 regularization

[54] or through a regularized learning objective as implemented in [55].

2.5.4 Choosing Hyperparameters

Different models have different hyperparameters, i.e. parameters that act as config-

uration for the machine learning process. These hyperparameters must be chosen

in order to suit the problem at hand. Depending on the search space of a given set

of hyperparameters, optimization may be done using grid search or more elaborate

methods.

2.5.5 Missing Values

Missing values in both training and test data sets can negatively impact model

performance in machine learning and especially deep neural networks. In time series,

missing values can be imputed by using methods of different complexity:

1. replacing missing values with the previous value in the timeseries,

2. replacing missing values by a random value,

3. replacing missing values by linear interpolation, or

4. others.

2.6 Summary

In this section, the general problem of timeseries regression was introduced and for-

malized, before presenting multiple ways of performing such a regression on the basis

of individual timesteps or entire timeseries. A special type of LSTM neural network

was described that is constructed to learn the temporal and variable importances of

the regression problem along with a mapping function from exaplantory to target

timeseries. The benefits and drawbacks of these different methods were summarized

before adressing some common pitfalls in the design, training and testing of machine

learning models along with possible solutions.
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3 Data Sets

The goal of this section is to describe the datasets that will be used as the basis

for the timeseries regression in the subsequent section. First, the logic of the ag-

gregation is presented along with the training-validation-testing-split before delving

into the two datasets: Dataset A which was collected using background-triggered

crowdsourcing that contains only measurements by UEs in a live LTE network, and

Dataset B, which contains key performance indicators from the radio access network

from the same live LTE network.

Dataset # of Cell Bundles Individual Measurements
Training 640 61440
Validation 160 15360
Testing 200 19200

Table 3: The amount of measurements available in the training, validation and
testing datasets.

3.1 Dataset A: Background-Triggered Crowdsourcing Data

Dataset A contains measurement data collected between January 1st, 2021 and

April 1, 2021 according to the background-triggered crowdsourcing approach. All

measurements in the dataset were conducted on phones with an Android operating

system.

• Download Speedtests: Due to the ways in which TCP’s congestion control

algorithms restrict small-file throughput, two measures are taken to reduce its

impact: (i) a small 50kB file is downloaded immediately prior to the start of

the file transfer and (ii) the download uses 3 simultaneous threads to achieve

maximum possible throughput and accelerate the ramp-up of TCP’s slow start.

• RSRQ Measurements: RSRQ is measured using the read-out of the operating

system.

• ICMP Ping: the native Android command "ping" is used. One measurement

corresponds to the average ping out of a set of 5 conducted immediately after

eachother.

Figs. 18 and 19 show the histograms of the different variables contained in

Dataset A after separation into the training, testing and validation datasets.
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Figure 18: Histograms for the Speedtest KPIs contained in Dataset A, divided into
the training, validation and testing datasets. The speedtest volume has a step at the
desired size of the speedtest, which is 10 MB. There are few measurements above
this value that are generally to be considered outliers.

Figure 19: Histograms for the RSRQ & Ping KPIs contained in Dataset A, divided
into the training, validation and testing datasets.

3.1.1 Data Cleaning

As with any data source, it is important to examine and, if necessary, clean the data

before using it. A variety of problems that can occur with data sets, such as illegal

values, duplicates, missing values, and more, have been discussed in [56].

The data investigated below are filtered according to the following rule set:

• the measurement must have been conducted in LTE in one of the cells that

make up the data sets used for training, validation and testing of the models,

and

• the measurement must have been successful.
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3.1.2 Constraints

The main caveat of crowdsourcing measurements is also their biggest strength: it

depicts (more or less accurately) the performance of the network, filtered by the

behaviour of the crowd. If behavioural insights are of interest, this exactly what is

needed. If, however, technical network parameters are germane to the analysis, this

property constitutes a limiting factor.

Crowdsourcing means different things to different people. In telecommunica-

tions companies, different departments have different interests when it comes to

crowdsourcing. While marketing departments may be interested in the location and

interests of customers or the comparison with competitors, more technical depart-

ments may be interested in problems that occur frequently in certain areas or using

certain technologies. The tools that collect this data are therefore often multi-usage

tools, which can lead to messy or dirty data due to these different and sometimes

contradictory requirements.

The dataset used in this analysis, as well as any other crowdsourcing dataset,

therefore has certain limitations due to user distribution and behaviour:

Influence of Crowd Behaviour

User devices usually move with users, therefore a region’s measurement coverage is

contingent on users actually being in the region. Therefore, large scale user move-

ment can impact aggregate statistics, e.g. groups of people moving out of cities

during winter holidays or spending their weekends in residential regions as opposed

to commercial areas during the week.

Correspondence to Population Density

In a similar vein, users are distributed according to population density, which in-

dicates that certain areas will be more heavily populated with measurements than

others, simply due to the amount of users present. Ideally, this corresponds well

with the statistics of the network itself and can therefore contain information about

the amount of users in a cell bundle.

Technical Measurement Limits

Mobile networks are a shared medium - users’ quality always depends on the be-

haviour of other users in their proximity. In the extreme case, in order to perfectly

measure the network at all moments, all devices could conduct tests at all times.
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This would, however, preclude any user from communicating at all, rendering the

network incapable of fulfilling its purpose. Furthermore, when conducting measure-

ments on users’ devices, it is important to consider the privacy concerns of users,

the energy usage and battery drain caused by a measurement, as well as the impact

on the user’s quality of experience. Therefore, measurements cannot be conducted

at all times and on all devices, and the type of measurement as well as time and

place must be chosen carefully to optimize the information collected.

3.2 Dataset B: LTE RAN Cell KPIs

Dataset B is comprised of data collected from the RAN of a live LTE network.

As with Dataset A, all data is again averaged over five cells and the duration of 3

months.

3.2.1 Available KPIs

RRC Connected UEs

Radio Resource Control (RRC) connected UEs are connected to an LTE cell, as

opposed to devices that are idle and hence not connected to a cell. The details of

RRC protocols are defined in ETSI Technical Specification 136 331.

Active DL UEs

Active Downlink UEs actively use the downlink within one transmission time inter-

val.

PRB Usage

Physical Resource Block (PRB) Usage is a measure of the used resources of the

OFDM time-frequency grid, indicating how large the load of a given cell is at any

point in time.

Fig. 20 shows the histograms of the KPIs contained in Dataset B.

3.3 Aggregation

In order to investigate a correspondence between the source and target data using the

timeseries regression methods, cells were selected randomly and assigned arbitrary

cell bundle identifiers for streamlined analysis. Both datasets introduced in this

chapter were averaged across five randomly selected cells and over a duration of

three months. KPIs are available in 15-minute intervals for a mean day, yielding 96
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Figure 20: Histograms for the KPIs contained in Dataset B, divided into the training,
validation and testing datasets.

rows of data per cell bundle. Cells were randomly selected on the basis of being LTE

cells, and were then aggregated into 1000 cell bundles split into three data sets:

1. a training set containing 640 cell bundles,

2. a validation set containing 160 cell bundles, and

3. a testing set containing 200 cell bundles.

The sets of cells contained in the bundles from each of the training, validation

and testing sets are disjoint to prevent information leakage from one dataset to

the other. All data is normalized using a MinMaxScaler out of Scikit-Learn [42],

therefore contains only values between 0 and 1 in order to prepare the data for

processing by the neural network model.
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Figure 21: An illustration of the preprocessing step of aggregating measurements -
the timeseries of individual cells (thin red) are averaged over the day to generate a
single timeseries (thick red) that is the mean timeseries per day.

3.4 Examples

Additionally to the histograms presented in the previous section, this section shows

two example cell bundles and their respective values in the two datasets. Apart

from getting a feeling for the type of timeseries contained in the datasets, some

connections between KPIs are directly visible.

3.4.1 Example 1

Figs. 22 - 24 show the timeseries for Example 1 - cell bundle 33 from the training

set. While the speedtest data does not seem to have a very strong trend, Average

RSRQ and RSRQ Count seem to have quite large correspondence to PRB Usage

and RRC Connected UEs, respectively. RSRQ is inversely related to the cell load,

therefore the trends are reversed, but a pattern is clearly visible.

3.4.2 Example 2

Figs. 25 - 27 show the timeseries for Example 2 - cell bundle 18 from the training

set. The speedtest data is much more erratic, but the trends are still very similar

for the RSRQ measurements and the PRB Usage. As in Example 1, the Ping does

not seem to fluctuate much, which is primarily attributable to the very high outliers

compared to the median ping value.
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Figure 22: Example 1a for Dataset A: the timeseries of three speedtest KPIs from
the crowdsourcing dataset for cell bundle 33.

Figure 23: Example 1b for Dataset A: the timeseries of three RSRQ & Ping KPIs
from the crowdsourcing dataset for cell bundle 33.

Figure 24: Example 1 for Dataset B: the timeseries of three RAN KPIs from the
crowdsourcing dataset for cell bundle 33.

Figure 25: Example 2a for Dataset A: the timeseries of three speedtest KPIs from
the crowdsourcing dataset for cell bundle 18.
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Figure 26: Example 2b for Dataset A: the timeseries of three RSRQ & Ping KPIs
from the crowdsourcing dataset for cell bundle 18.

Figure 27: Example 2 for Dataset B: the timeseries of three RAN KPIs from the
crowdsourcing dataset for cell bundle 18.
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4 Inference of LTE Cell KPI Timeseries using Crowd-

sourcing Data

Given the baseline measurement concepts that were described in Section 1, the

regression methods from Section 2 will be used in this section to infer Dataset B

from Dataset A presented in section 3. To this end, the specifications of the models

will be defined before presenting detailed results and a performance comparison. The

regression parameters and feature importances that underlie the model predictions

are analyzed and compared before investigating the possible effects of faulty or

missing data in the data sets in order to give an estimation of the required size of

data sets when using crowdsourcing data for such and similar inference tasks.

The connection between PRB Usage and user downlink throughput has been

investigated by [21] and [20], who found that an increase in PRB utilization nega-

tively affects downlink throughput. Furthermore, [5] showed that PRB utilization

and RSRQ are correlated as measured by the UE, however, the interpretations from

such measurements can be misleading and/or wrong when measurement conditions

are not optimal. Strictly controlled measurements are often not available for a

network-wide overview of the cell load and related key performance indicators.

4.1 Models

The linear regression, decision tree and gradient boosting models were trained and

tested on individual timeframes. The LSTM models were trained and tested on the

96-step timeseries of each cell bundle. For the linear regression and random forest

models the Scikit-Learn implementations were used [42], for the gradient boosting

model the XGBoost implementation was used [55], the vanilla LSTM model was a

self-designed model using Keras [57] and for the IMV-LSTM model, the PyTorch

implementation by Alexey Kurochkin [58] was used in an adapted way. The im-

plementation code as well as the used data is made available at the Institute of

Telecommunications at the University of Technology Vienna to ensure reproducibil-

ity.

4.1.1 Linear Regression Model

The linear regression model was trained using the data in the training set and

evaluated on the testing set. Training and testing was conducted on individual

timeframes.
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4.1.2 Random Forest Model

The random forest model was trained using the data in the training set and evaluated

on the testing set. Training and testing was conducted on individual timeframes.

The only hyperparameter considered was the maximum model depth, its optimal

value was found to be 2 in a grid search over [2, 3, 4, 5, 6].

4.1.3 Gradient Boosting Model

The gradient boosting model was trained using the data in the training set and

evaluated on the testing set. Training and testing was conducted on individual

timeframes. The hyperparameters were found using grid search on the search space

indicated in Table 4 and the performance evaluation conducted using the validation

dataset.

Hyperparameter Value Value Search Space

Max. Depth 2 [2, 3, 4, 5, 6]
Number of Estimators 300 [100, 200, 300, 400, 500]
Learning Rate 0.1 [0.01, 0.03, 0.05, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18]

Table 4: The set of hyperparameters used in the gradient boosting model below
along with the hyperparameter values evaluated in the grid search.

4.1.4 LSTM Model

The LSTM model was trained on the training set, validated on the validation set

and tested on the testing set. Training, validation and testing was conducted on the

entire 96-element timeseries that represents one cell bundle.

Layer Neurons
LSTM Layer 1 96
LSTM Layer 2 96
Dropout Layer 1 (0.2) 96
Dense Layer 1 96
Dropout Layer 2 (0.1) 96
Dense Layer 2 96
Dense Layer 3 96

Hyperparameter Value

Batch Size 64
Learning Rate 0.001
Epochs 25
Loss Function Huber Loss
Optimizer ADAM

Table 5: The model layer structure and the hyperparameters used in the LSTM
model below along with the hyperparameter values evaluated in the grid search.
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4.1.5 IMV-LSTM Model

The IMV-LSTM model was trained on the training set, validated on the validation

set and tested on the testing set. Training, validation and testing was conducted on

the entire 96-element timeseries that represents one cell bundle.

The model structure follows from the IMV-LSTM concept, therefore the layer

structure is fixed and not configurable. The parameters used were taken directly

from the PyTorch implementation of IMV-LSTM [58], which also already includes

the adaptive learning rate and early stopping.

Hyperparameter Value

Batch Size 64
Learning Rate 0.001 (adaptive)
Epochs Up to 1000 (adaptive)
Depth 96
# of Units 128
Loss Function MSE Loss
Optimizer ADAM

Table 6: The model layer structure and the hyperparameters used in the LSTM
model below along with the hyperparameter values evaluated in the grid search.
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4.2 Results

In this section, the results of the regression experiments on the datasets presented

in Section 3, using the models outlined in Section 4.1 are presented and analyzed.

Model performance is assessed in two different ways:

1. by the model prediction’s root mean squared error, a standard measure of

prediction performance, and

2. by the model’s ability to predict the peak of the three load curves (Active DL

UEs, PRB Usage and RRC Connected UEs), which helps to judge whether

the model learns information about the position of the load peak. A model’s

peak prediction is considered accurate if the predicted peak lies within one

hour of the ground truth and the ensemble of predictions is evaluated using

the success ratio, i.e.

Success Ratio =
Nsuccess

Nsuccess +Nno_success
.

In order to investigate the possibility of overfitting on the relative position of

peaks and troughs, the models are not only evaluated on the aligned timeseries, but

also on data shifted by a uniformly random offset on a cell bundle basis.

4.2.1 Aligned Timeseries

The regression results with the aligned timeseries, evaluated on data containing

the correct time-of-day for the measurements, are shown in Tables 7 and 8. Both

the vanilla LSTM as well as the IMV-LSTM model outperform all other models

irrespective of the target parameter, and both in terms of RMSE as well as success

ratios. Additionally, the IMV-LSTM model outperforms the vanilla LSTM model

by quite a sizeable margin. While the peak detection for the KPIs Active DL UEs

and PRB Usage are near or above the 90% mark, the percent of peaks detected for

RRC Connected UEs is at best 37% for the IMV-LSTM model.
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Model Active DL UEs PRB Usage RRC Connected UEs

Linear Regression 0.0459 0.1214 0.0959
Random Forest 0.0461 0.1219 0.0942
Gradient Boosting 0.0431 0.1135 0.0935
LSTM 0.0428 0.0953 0.0945
IMV-LSTM 0.0317 0.0805 0.0898

Table 7: RMSE of the different regression models compared to ground truth.

Model Active DL UEs PRB Usage RRC Connected UEs
Linear Regression 25% 44% 9%
Random Forest 25% 36% 15%
Gradient Boosting 24% 53% 9%
LSTM 80% 93% 23%
IMV-LSTM 89% 95% 37%

Table 8: Success ratio of the busy hour estimation using different regression models
compared to ground truth. Peak load estimation is the maximum value per cell
bundle. The busy hour is deemed a success if the estimation is within 1 hour of the
ground truth peak.

4.2.2 Shifted Timeseries

Since the LSTM models may be learning a something about the series just from the

position of the values in the timeseries, the timeseries are shifted by a uniformly

random offset to relocate the peaks for each cell bundle individually. Fig. 28 shows

the distribution after random uniform generation of the shift between 0 and 23

hours.

The results for the shifted timeseries are shown in Tables 9 and 10. The results

for the single-step methods are the same, because their algorithms don’t take into

account the position of the calculated value within a timeseries. The vanilla LSTM

model, in contrast, does not perform as favourably as with the aligned data. The

RMSE for the vanilla LSTM model went up considerably for all target parameters,

and the peak detection capability sunk to just over 50%. The IMV-LSTM model

did not suffer as much: the RMSE is only slightly worse than in the aligned case,

but the peak detection capability went down for all target parameters.
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Figure 28: A histogram of the unformly random timeseries offset inccured on the
aligned timeseries in order to simulate the shifted timeseries.

Model Active DL UEs PRB Usage RRC Connected UEs

Linear Regression 0.0459 0.1214 0.0959
Random Forest 0.0461 0.1219 0.0942
Gradient Boosting 0.0431 0.1135 0.0935
LSTM 0.0950 0.1885 0.1488
IMV-LSTM 0.0382 0.0885 0.0952

Table 9: RMSE of the different regression models compared to ground truth. Values
were normalized prior to RMSE calculation.

Model Active DL UEs PRB Usage RRC Connected UEs

Linear Regression 25% 44% 9%
Random Forest 25% 36% 15%
Gradient Boosting 24% 53% 9%
LSTM 51% 58% 15%
IMV-LSTM 71% 84% 12%

Table 10: Success ratio of the busy hour estimation using different regression models
compared to ground truth. Peak load estimation is the maximum value per cell
bundle. The busy hour is deemed a success if the estimation is within 1 hour of the
ground truth peak.

4.3 Model Analysis

4.3.1 Regression Parameters & Feature Importances

The interpretability of statistical models for regression problems can yield some

insights about the nature of the statistical relationship between explanatory and
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target variables and may therefore have positive effects either for the understanding

of the system as well as the development of future models.

Tables 11 to 13 show the regression parameter values for the linear regression

models, the feature importances for the random forest and gradient boosting models,

as well as the variable importances I for IMV-LSTM. The feature importances for

tree-based models and the variable importances for IMV-LSTM are non-negative,

and can therefore not be directly compared with the regression coefficients for the

linear models.

Model Throughput Volume Avg. RSRQ # RSRQ Avg. Ping

Linear Regression -0.1002 0.0083 -0.1934 0.1625 0.1068
Random Forest 0.0000 0.0000 1.0000 0.0000 0.0000
Gradient Boosting 0.0801 0.0094 0.7163 0.1244 0.0699
IMV-LSTM 0.2123 0.1981 0.2159 0.1860 0.1877

Table 11: Parameter values for the regression of Active Downlink UEs for different
model types.

Model Throughput Volume Avg. RSRQ # RSRQ Avg. Ping

Linear Regression -0.2744 0.0348 -1.0291 0.3418 0.0280
Random Forest 0.0000 0.0000 1.0000 0.0000 0.0000
Gradient Boosting 0.0472 0.0020 0.8994 0.0378 0.0135
IMV-LSTM 0.1986 0.1524 0.3128 0.1851 0.1510

Table 12: Parameter values for the regression of PRB Usage for different model
types.

Model Throughput Volume Avg. RSRQ # RSRQ Avg. Ping

Linear Regression -0.2395 0.1487 -0.1793 0.4236 0.2326
Random Forest 0.0000 0.0000 0.6755 0.1048 0.2197
Gradient Boosting 0.0340 0.0133 0.4212 0.2819 0.2497
IMV-LSTM 0.1961 0.1974 0.1957 0.1955 0.2154

Table 13: Parameter values for the regression of RRC Connected UEs for different
model types.

While these tables are mostly self-explanatory, a few facts seem especially inter-

esting:

1. While the average ping measurements don’t seem to have any significant bear-

ing on the regressions for Active Downlink UEs or PRB Usage, they do seem
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to be included in all three regression models for the RRC Connected UEs.

2. As previous research has already investigated [5], all models include Avg.

RSRQ as a main predictor for the PRB Usage. This corroborates previous

findings by showing that even in quite noisy environments and measurements

that are conducted on UEs in a live network environment with many different

factors of influence, RSRQ still works well as a predictor of PRB Usage and

thereby the cell load.

3. While the link between the different RAN-level KPIs and RSRQ seems robust,

the average throughput and volumes don’t seem to be very influential to the

models. This is especially interesting, because it is in conflict with the link

found between PRB Usage and Downlink Throughput in [21].

4. The IMV-LSTM model does not seem to differentiate much between the vari-

ables used for the prediction: in two out of the three target variables, all

explanatory variables are weighted around one fifth. Only in the PRB Usage

prediction, RSRQ is more heavily weighted at the expense of the Speedtest

Volume and Average Ping variables.

4.3.2 Temporal Importances

Only the IMV-LSTM model promises to give an insight into the temporal impor-

tance of the different exogenous variables with respect to the output timeseries.

Since IMV-LSTM is used in an adapted way here, a word of caution with respect

to the interpretation of these results: in the original paper [11], IMV-LSTM is pro-

posed as a forecasting method for a single timestep. In this work, the method is

used to predict an entire timeseries at once, therefore the feature importances must

be interpreted in a different way: for each input variable, how important is timestep

ti for the interpretation of the entire timeseries of the target parameter?

An interpretation of Fig. 29 (a) shows the ramifications of this change very

clearly: for the average RSRQ, the timesteps near the beginning and the end of the

time series are estimated to be most important, discounting most of what happens

between. For the RSRQ Count and Average Ping variables, the end of the timeseries

is calculated to be most important. The differences, in any case, are not very large.

The temporal importances for the DL Throughput and DL Volume don’t seem to

change at all - but the meaning of this is unclear: is this variable not important at

54



(a) (b)

Figure 29: Temporal importances for the different explanatory variables in the pre-
diction of the Active DL UEs timeseries, where (a) shows the temporal importances
for the aligned timeseries, and (b) shows the temporal importances for the randomly
shifted timeseries.

all, or do the different timesteps really not differ with respect to their significance

to the final prediction?

Fig. 29 (b) shows the corresponding temporal importances for the IMV-LSTM

model trained on the shifted data. The temporal importances seem erratic at best,

which is not surprising given that there should not be much similarity between the

trends of the timeseries anymore, compared to the aligned model.

In the case of the RRC Connected UEs shown in Fig. 31, the result is more

puzzling: apart from the average ping, none of the aligned timeseries has temporal

importance fluctuations. What does this mean, especially given that Table 13 shows

that the variable importances are fairly equal for all variables, with only a slightly

higher feature importance given to average ping?

Furthermore, it is hard to pinpoint the exact meaning of these temporal impor-

tances when it comes to the shifted timeseries. While in the aligned timeseries, the

timesteps corresponded to a certain time of day, the shifted timeseries don’t have

similar daily trends, therefore it is unlikely that certain steps are actually much

more important than others. The model, however, simply computes the steps ac-

cording to the defined algorithm, and outputs temporal importances according to

this algorithm: there doesn’t seem to be any extractable meaning in these temporal

importance vectors when it comes to the shifted timeseries.
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(a) (b)

Figure 30: Temporal importances for the different exogenous variables in the pre-
diction of the PRB Usage timeseries, where (a) shows the temporal importances for
the aligned timeseries, and (b) shows the temporal importances for the randomly
shifted timeseries.

(a) (b)

Figure 31: Temporal importances for the different exogenous variables in the pre-
diction of the RRC Connected UEs timeseries, where (a) shows the temporal impor-
tances for the aligned timeseries, and (b) shows the temporal importances for the
randomly shifted timeseries.
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4.4 Performance Degradation Caused by Missing or Faulty

Data

Crowdsourcing data is inherently noisy due to the many influencing factors that are

in contact with the system. When data is perfect and noiseless, prediction results

may be very good or perfect. But how does prediction performance suffer when the

data starts to degrade in some way or another, due to noise or missing data?

The following questions will be investigated in this section:

1. How does model performance deteriorate when missing values are introduced

into the data set?

2. How does model performance deteriorate when additive noise is introduce to

the data set?

3. Given the answers to the questions above, how much missing data is still

acceptable when using the data for timeseries prediction?

4.4.1 Performance Degradation - Missing Values

Figure 32: RMSE evaluated for the IMV-LSTM model on the test data set after
training, given different duty cycles for missing data. For each combination of target
parameter and share of missing values, 10 models were trained.

In a measurement system with measurements arriving according to some stochas-

tic process, the number of timeslots without any measurements goes up when mea-
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surement counts go down, leading to missing values in the timeseries. Missing values

can impact timeseries regression methods heavily, because there is simply less in-

formation content to be used in the prediction. To simulate this process, missing

values will be incorporated training, validation and testing datasets. Missing values

are blocked out for the entire input data at one timestep at random to simulate the

effect of no measurements taking place at a specific interval in time. The missing

values are then imputed by filling in the previous value if available, otherwise by

filling in the subsequent value in the timeseries.

Figs. 32 and 33 show the results of these simulations for the IMV-LSTM model

as well as the single-step models, respectively. While the performance of the IMV-

LSTM model deteriorates only slightly with increasing amounts of missing data, the

single-step models perform well for the Active Dowlink UEs and RRC Connected

UEs, but poorly for the prediction of PRB Usage.

Figure 33: RMSE evaluated on the test data set after training, given different total
epoch counts and different duty cycles for missing data.

4.4.2 Performance Degradation - Additive Noise

While the results from the LSTM Models in Section 4.2 are impressive, datasets

can get much more noisy than the dataset used in this analysis. To simulate such a

scenario of measurement data with additive noise, due to problems in the measure-

ment system, higher variance due to less measurements overall, or other influencing

factors, the regression problem is redefined to include an additive noise term.

To simulate this scenario with additional influencing factors, random noise ac-

cording to Z ∼ N (0, σ2
z) is added to the input variables in the training, validation
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Figure 34: Effects of AWGN on the values of the Average RSRQ input variable for
different variances.

and test datasets:

y =


y1

y2
...

yT

 Xn =


x1,1 + z1,1 x1,2 + z1,2 . . . x1,N + z1,N

x2,1 + z2,1 x2,2 + z2,2 . . . x2,N + z2,N
...

...
...

xT,1 + zT,1 xT,2 + zT,2 . . . xT,N + zT,N

 (29)

To test the effect of such additive noise, the performance of the different models

is evaluated with noise of zero mean and a set of standard deviations [0.001, 0.01,

0.05, 0.1, 0.2, 0.3]. To guarantee stability of the models used, any value in the

matrix Xn larger than 1 or less than 0 is set to 1 or 0, respectively. An example for

the effects of such additive white Gaussian noise depending on the variance of the

noise is shown in Fig. 34. For each target variable and additive noise level, datasets

were generated 6 times before training the models on the respective datasets. Fig.

35 shows the results of these experiments for the IMV-LSTM model, and Fig. 36

shows the results for the single-step methods. While the IMV-LSTM model does

not seem to degrade in a meaningful way for any of the parameters, the single-step

models get worse for all models, but the prediction of the PRB Usage suffers the

most.
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Figure 35: Results of testing IMV-LSTM with additive white Gaussian noise in both
training as well as testing.

Figure 36: Results of testing the different single-step models with additive white
Gaussian noise in both training as well as testing.
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4.4.3 Assessing the Required Amount of Data

One of the big questions that arises when dealing with crowdsourcing data is: how

much data is needed for a specific use case? While the answer is hard to give in

general, I will attempt to answer the question based on the insights from the previous

sections. The question to be solved is multi-faceted in nature and therefore depends

on multiple parameters:

1. measurement collection duration,

2. amount of users in the part of the network that is of interest,

3. measurement system adoption,

4. measurement frequency per user,

5. model granularity, and

6. desired model performance.

Assume a measurement collection duration of Tcollection days, a number of users

Nusers, a measurement frequency of Nmeasurement per user per day, and a model granu-

larity of gmodel, which is defined as the minimum duration of the prediction interval.

Knowing the mean number of measurements per time interval of a random pro-

cess, the mean inter-arrival time of events can be calculated and used for simulation

using a Poisson process model, due to the generally independent and memoryless

nature of these measurement events. The inter-arrival time depends on many dif-

ferent exogenous variables and user behaviour, such as whether or not UEs in the

network are turned on, the measurement frequency, user activity, the permissions

of the measurement app on the UE, and more. The mean inter-arrival time λ can

thus be modeled as:

λ =
Nmeasurement ·Nusers · Tcollection

NMinutes
, (30)

where NMinutes is the amount of minutes per day.

Modeling the inter-arrival process as homogeneous throughout the day and as a

Poisson process, the inter-arrival times are distributed according to an exponentially

distributed random process with inter-arrival time λ:

f(t;λ) =

��λ · eλ·t, t ≥ 0

0, t < 0
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The results of a simulation using this model are shown in Fig. 37 with two

different values for the collection duration Tcollection. The granularity of the model

is the same as in the above analyses: for a 24 hour day, 96 15-minute intervals

are assumed, and the mean count of measurements per interval is computed by

simulation. All intervals containing zero measurements are regarded as "missing

values" in the fictional time series generated by this measurement process.

When only using data collected on a single day as shown in Fig. 37 (a), the

amount of users as well as the amount of measurements per user must be about four

times larger compared to aggregation over a longer period of time, such as 14 days

in Fig. 37 (b), in order to attain a dataset with a comparable amount of missing

values.

(a) (b)

Figure 37: The results of simulating measurements as a Poisson process with inter-
arrival time λ: the color scale indicates the amount of missing 15-minute intervals
throughout the day.

As an example of how to interpret Fig. 37, imagine a measurement system built

to gain better insight into the cell load of an MNO: there are many cells to be

measured, many users, and a plan to roll out a measurement app to 5 UEs per cell.

For user experience reasons, the measurement operator does not want to overbear on

the UE’s resources, and chooses to conduct on average 5 measurements per device

per day. A white rectangle in Fig. 37 (a) indicates the amount of missing values

that the operator has to expect when only using data from one day, about 70%.

On the other hand, in 37 (b), the operator must only expect about 10% of missing

values when aggregating these measurements over 14 days. Given these estimates, it

is possible to choose an approach and estimate the additional error that is incurred

by potentially aggregating measurements in smaller time intervals by taking into

account the analysis results put forward in Section 4.4.1.
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This simple model can be complicated by using different distributions that de-

scribe the measurement generation process throughout the day: are measurements

as likely to happen at 3 a.m. as they are at 9 p.m., or different daytimes be modeled

according to different distributions? For different measurement systems, the answers

to this question will vary.

Section 4.4 showed the effect of missing data on different timeseries regression

models when using previous value imputation. These timeseries regression methods’

good performance in dealing with a certain proportion of missing values demon-

strates that there is some leeway in the design of a measurement system when trying

to estimate network KPIs using background-triggered crowdsourcing measurements.

4.5 Summary

This section contained a detailed explanation of the different model configurations,

before presenting results of the timeseries regression analysis. Two different LSTM

models were shown to outperform classical regression models when dealing with the

problem of timeseries regression. After an analysis of the regression parameters,

the effect of missing values and noisy data on the different models was compared,

before presenting a Poisson process framework for estimating the number of expected

missing measurement intervals in such a system.
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Conclusion & Outlook

Conclusion

In this work, two datasets, one generated with background-triggered crowdsourcing,

and one retrieved from the radio access network, were used to exemplify the usage

of crowdsourcing data to infer the cell load parameters of an LTE network. To

start with, the limits of volume-restricted download speedtests were examined in an

experimental laboratory setup as well as in the live network. Then, different methods

of conducting timeseries regression were presented: linear regression, random forests

and gradient boosting as baseline methods, a classical LSTM network, as well as an

adaptation of the LSTM concept developed to offer high performance along with

interpretability for time series regression. After a short presentation of the input

datasets, the models used were specified and optimized by training a large array

of configurations with different hyperparameters and selecting the best performing

configuration according to the validation data. The results of these models were

compared with respect to prediction performance, but also interpretability. Finally,

the models were tested with modified input data exhibiting either missing values

or additive noise, to simulate the models’ robustness to bad data quality. Both

the vanilla LSTM as well as the interpretable IMV-LSTM networks outperformed

the single-step regression methods. However, the interpretability of IMV-LSTM, a

method adapted from timeseries forecasting, does not seem very robust to changes

in the input data when inferring the importance of explanatory variables. Both

for the temporal and variable importance vectors, the output was questionable.

The robustness of the LSTM models to noise and imputed missing data shows the

power of multi-step regression when compared to the single-step methods, which

did not perform nearly as well. These results are promising for the future use

of crowdsourcing data: if the correspondence between cell-level key performance

indicators from the radio access network and background-triggered crowdsourcing

data can be used in this way, it may be possible to characterize LTE cells by using

only crowdsourcing data. One important caveat, however, is that at least in the

training phase, some data from inside an LTE network is still needed. Also, only data

from a single network was used in this analysis; therefore, it is still yet to be examined

whether or not this type of regression is possible across operator boundaries, due

to different settings, KPIs reported from the RAN management systems, different

crowdsourcing techniques, and more.
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Outlook

There are different paths that future work can take from here. In general, the

methods presented can be tested on datasets from other networks, also with other

measurement methodologies. Since the data included in this analysis was only from

a single operator in a single country, an analysis that spans multiple operators across

countries may yield better insight into the ways such models may perform for com-

petitor analysis. A comparison with other measurement methodologies may also

yield interesting insights: how do methodologies such as user-triggered crowdsourc-

ing or drivetesting compare to the results generated using background-triggered

crowdsourcing? Furthermore, the best method used in this work, IMV-LSTM, is

not specially adapted to the problem. With significant investment into method de-

velopment, there may be ways to design LSTM networks that learn interpretability

specifically tailored to this class of problems that yield better results and inter-

pretability.
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