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Abstract

This study uses a structural vector autoregressive (SVAR) model to examine the relationships
between the intensity of drilling activity (i.e. investment) for natural gas production, natural
gas withdrawals, economic activity, and natural gas prices in the United States. The results
show that the reaction of drilling to an unexpected change in natural gas prices depends on
the source of the price change. Specifically, I find that the reaction of drilling is significantly
stronger after an economic activity shock than after a gas demand shock (e.g. due to oil price
fluctuations). In addition, it is shown that demand-side factors were more important than
supply-side factors in explaining the 85% drop in natural gas prices from June 2008 to April
2012. This contradicts prevailing explanations focused on shale gas development and should
dampen the expectations of policymakers seeking to rapidly expand shale gas production in
order to obtain similar cheap energy as the U.S. after 2008.
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1 INTRODUCTION

1 Introduction

After decades of decline and stagnation, starting around 2005 natural gas output in the United
States began to rise dramatically. Mainly responsible for this was the exploitation of uncon-
ventional natural gas reservoirs, commonly refered to as shale gas. As Mu [2019] and Wang
and Krupnick [2015] point out, the process that led to this sudden surge in gas withdrawals
actually started in the 1970s and 1980s but came to fruition some decades after. Its impressive
success in raising domestic natural gas production also aroused interest of other governments
- for example in Argentinia, Poland or Australia - to replicate the U.S. shale gas boom [Wang
and Krupnick, 2015]. Responsible for this is the notion that the shale gas boom brought cheap,
domestically produced energy to industrial and residential users. Starting with the financial
crisis of 2008, U.S. natural gas prices collapsed and never rose to the levels experienced in the
2000s: In June 2008, one million British termal units (from now on abbreviated MMBtu, one
of which equals roughly 0.29 MWh) of natural gas cost 12.7 USD at the Henry Hub, which
is the most important trading platform for this fuel in the United States, while in April 2012
prices were as low as 1.95 USD.1 After 2008 natural gas did not only become cheaper but also
increasingly important in the United States, surpassing coal as the most used fuel for power
generation in 2016 [Walton, 2017]. The ever-increasing role of natural gas makes it ever more
essential to understand the dynamics of natural gas markets. Studying the example given by
the United States is not only of relevance to the U.S. itself but also to other countries, who (like
the European Union) recently switched from a pricing policy linked to crude oil to an US-style
model of gas on gas competition or consider doing so [IGU, 2021]. This puts some questions at
the center of interest: To what extent do supply and demand side factors influence gas prices?
And how do changes in natural gas prices influence gas production and investment behavior -
in particular drilling activity? The importance of the latter question is highlighted by recent
studies of oil [Anderson et al., 2018] and natural gas wells [Mason and Roberts, 2018]. Both
papers show that the rate of drilling is the most important decision variable for oil and gas
producers, since production from existing wells is primarily governed by laws of geology and
petro-engineering. Nevertheless, the issue of oil and gas drilling has been mainly dealt with in
a narrow setting focussing on supply and demand conditions within energy markets, leaving
out general macroeconomic conditions, while macroeconomic gas market models usually leave
out drilling as a variable.

I try to close this gap by setting up a structural vector autoregressive (SVAR) model con-
taining drilling activity, gas production, industrial production and the Henry Hub gas price.
This model is able to verify previous findings of related studies like Arora and Lieskovsky
[2014], Wiggins and Etienne [2017] and Rubaszek et al. [2021], who have already shown that
demand side shocks are way more important than supply side shocks for explaining variation
in the natural gas price. Moreover, according to my model drilling shocks have no significant
effect on other gas market specific variables. Most likely this is because drilled wells usually
last decades, often times longer than the sample used in this study, and therefore the effect on
production is streched out over time and hard to capture for a monthly SVAR. Drilling activity,
on the other hand, seems to rise when prices rise. This response, however, takes some time
and depends on the origin of the price shock. The price elasticity of drilling after an economic

1Source: FRED (2022) ,Henry Hub Natural Gas Spot Price, Not Seasonally Adjusted (MHHNGSP),
(monthly): https://fred.stlouisfed.org/series/MHHNGSP.
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2 LITERATURE REVIEW

activity shock is significantly higher than after a gas demand shock.2 The reason for this is
that the effect of a gas demand shock on natural gas prices vanishes quickly, while the effect
of an economic activity shock is persistent. In particular I show that the extraordinarily high
level of active rigs before the financial crisis of 2008 was to a large extent fuelled by economic
activity shocks. After this, advances in drilling technology prevented the number of active rigs
to collapse despite exceptionally low natural gas prices.

The price decline of U.S. natural gas after its height in 2008 is of particular interest to
policymakers in the U.S. and in other countries that consider shale gas development. In April
2012 natural gas prices in the U.S. were around 85 percent below their June 2008 level. This
drop stood in sharp contrast to rising global LNG prices due to increased demand after the
Fukushima accident and extremely high crude oil prices. The United States seemed to have
found a recipe to escape the energy price bonanza. It is tempting to attribute the extremely
low natural gas prices predominantly to the shale revolution. Wiggins and Etienne [2017] and
Rubaszek et al. [2021] have already shown that demand side factors are important to explain
the price drop after 2008. However, they do not calculate the relative contributions of different
shocks to the change in the price level. I estimate that between June 2008 and September 2009
more than two thirds of the decline in natural gas prices have to be attributed to gas demand
and economic activity shocks. Perhaps more surprisingly, when comparing April 2012 prices
to June 2008 prices, demand side factors were still more important than supply side factors.
One should not overstate the effect of the shale boom on natural gas prices in that period and
instead take into account low energy demand due to the financial crisis. Of course, the fact that
the rise in shale gas production made the U.S. virtually independent of global LNG markets
might have increased its resilience against price shocks on the world market. Most likely, the
combination of weak domestic demand and global price shocks to which the U.S. was relatively
immune led to the striking difference between natural gas prices in the United States and in
Europe as well as Asia that could be observed after the financial crisis.

In the following sections I will give a brief review of the relevant literature and provide some
descriptive evidence of U.S. natural gas markets in the shale boom era. After this I will set
up a SVAR model of the U.S. natural gas market that is identified by a combination of sign
and exclusion restrictions. Inference will be conducted using a modified version of the Bayesian
approach developed by Inoue and Kilian [2013, 2018] for purely sign identified models. As a
next step I will present estimates for the impulse response functions, decompose the forecast
error variance of the endogenous variables and derive a historical decomposition of natural gas
prices and drilling activity between 1993 and 2020. The final section concludes. Mathematical
derivations of claims made in the paper and some sensitivity analysis are given in the appendix.

2 Literature Review

Oil market literature. The literature on natural gas markets draws heavily on methods and
discussions previously developed with respect to oil markets. Since Kilian [2009] SVARs are the
predominant tool for analyzing the latter. Using recursive exclusion restrictions and modelling
oil production, economic activity and oil prices, this influential study came to the conclusion
that demand for oil stemming from changes in global economic activity was mainly responsible

2I define this elasticity as δ log(rigt+h)/δ log(pt), where rigt+h is the number of active rigs in month t + h
and pt is the real henry hub price in month t.
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for rising oil prices in the 2000s, which explained why this price increase seemed to not curb
economic growth. Before, studies like Hamilton [2003] focused mainly on oil price shocks arising
due to supply disruptions. Kilian and Murphy [2012] later developed the basic model further so
that it could be identified using sign and elasticity constraints instead of exclusion constraints,
while Kilian and Murphy [2014] added oil inventories to the model to capture speculative de-
mand. Recently Baumeister and Hamilton [2019] have argued that the lower bound for the
price elasticity of oil supply used by Kilian and Murphy [2014] is too close to zero. Imposing
an explicit prior distribution on this value that allows for larger posterior estimates, using a
different measure of global economic activity and accounting for measurement errors of oil in-
ventories, they estimate the importance of supply shocks for explaining oil price fluctuations
to be higher than in the model of Kilian and Murphy. The whole methodological debate about
how to correctly identify structural shocks in the oil market is too vast to be summarized here.
Various strands of this debate address, for example, what prior assumptions can be made about
the price elasticity of oil supply, how to measure global economic activity, and how to define
particular elasticities. Kilian and Zhou [2020] give an overview of these discussions.

Gas market models. In the last decade there has also evolved a literature on gas market
SVAR models. Nick and Thoenes [2014] set up such a model for the German market using
natural gas, oil and coal prices, LNG imports to Europe, gas storage levels and a supply
shortfall variable. Since their specification uses weekly data they are not able to include any
variables concerning real economic activity. They find out that oil and coal prices are an
important determinant of natural gas prices in the long run. Arora and Lieskovsky [2014]
apply the specification of Kilian [2009] to the U.S. natural gas market and include residential
natural gas consumption as a fourth variable. They report evidence for a magnified response
of industrial production to a gas supply shock in the shale gas period. Moreover, according
to their analysis, supply and business cycle shocks play only a marginal role in explaining
natural gas price fluctuations. Hou and Nguyen [2018] detect four regimes in the U.S. gas
market and set up a Markov switching SVAR model. They find out that gas demand shocks
are the most important determinants of the gas price while gas supply is insensitive to demand
side shocks. Rubaszek and Uddin [2020] use a threshold SVAR model to estimate effects of
structural shocks depending on inventory levels. All three studies previously mentioned rely on
a recursive identification strategy.

Wiggins and Etienne [2017] use the sign restrictions of Kilian and Murphy [2014] combined
with a time varying parameter (TVP) and stochastic volatility specification. They report some-
how higher magnitudes of the price elasticities of supply and demand at the end of their sample
when compared to the early 2000s. Furthermore, they conclude that demand shocks are im-
portant to explain the collapse of natural gas prices after 2008. While the flexibility of TVP
models is appealing, there is also some potential for criticism. Kilian and Zhou [2020] highlight
that even in the absence of structural change a TVP VAR would report time varying param-
eter values since the degree of over-fitting is governed by hyperparameters for which there is
no empirically observable value. Having this in mind, the parameters reported by Wiggins and
Etienne [2017] seem to be stable enough during the shale gas boom to not invalidate the use
of constant parameter models. Finally, Rubaszek et al. [2021] apply the oil market model of
Baumeister and Hamilton [2019] to the gas market of the United States. This approach relies
on imposing prior assumption directly on the structural parameter matrix A0, the values of
which have an economic interpretation as contemporaneous elasticities. This is motivated by
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the result of Baumeister and Hamilton [2015] that by imposing a flat prior on the orthonormal
matrix Q, as is common for sign restricted models, and calculating A-1

0 as chol(∑)Q, where
∑ is the variance-covariance matrix of the reduced form residuals, one imposes an informative
prior on A0. Therefore this common prior used for sign restricted models is not agnostic, as is
often intended. Baumeister and Hamilton therefore suggest to be explicit about the prior one
imposes on A0. However, as [Kilian and Lütkepohl, 2018, 453-454] highlight, a flat prior on A0

can lead to an unintentionally informative prior on A-1
0 . Therefore choosing between the two

approaches should depend on which variable is of interest. If this are the elasticities given by
A0, the Baumeister and Hamilton [2019] approach might be preferable, while when needing the
values of A-1

0 , as is the case for computing the structural impulse response functions, the fore-
cast error variance decomposition or the historical decomposition, the ,traditional, approach
might be better suited. Since I am mainly interested in A-1

0 , I choose the latter setting.

Drilling literature. Against the backdrop of major improvements in (horizontal) oil and
gas drilling in the last two decades, there has been a growing empirical and theoretical literature
on oil and gas drilling. There are three major contributions of Ryan Kellogg, one of which is
with coauthors: Kellogg [2011] shows how inter-firm learning increases the productivity of
certain matches between fossil fuel companies and drilling contractors, which can explain the
stability of contract relationships and the consistent improvement of productivity in oil and
natural gas drilling. Kellogg [2014] uses data on oil drilling in Texas to show how oil price
volatility influences drilling negatively, the response being consistent with optimal behaviour
according to a theoretical model he proposes. Moreover, volatility measures derived from
futures prices are a better predictor for drilling than variation derived from past prices, for
example by means of fitting a GARCH process. Finally, Anderson et al. [2018] show that oil
production from existing wells in Texas is unresponsive to oil prices, which can be explained
by laws of geology and petro-engineering. Drilling, on the other hand responds strongly to oil
price changes. A similar result for natural gas is provided by Mason and Roberts [2018], who
study natural gas wells in Wyoming and report price elasticities of supply that are small in
magnitude. The last two papers are crucial for my work, since they motivate including drilling
activity into the gas market model and justify some of my identifying assumptions. Further
evidence on the relationship between prices and drilling is provided by Khalifa et al. [2017] as
well as Shakya et al. [2022]. Using quantile regression techniques, the former show that there is
a strong relationship between the rig count and oil prices in the US, especially between lagged
prices and the rig count. The authors conclude that the relationship between rig count and oil
prices is not contemporaneous but that the reaction of drilling to price changes takes time. The
latter article conducts Granger causality analysis to study the relationship between oil drilling,
gas drilling, oil prices and gas prices. The authors use a rolling window approach to account
for structural change and find that information transmitted between drilling and prices has
increased since the development of shale oil and gas. They also note a growing importance of
gas drilling and prices as information transmitters.

All in all, there seems to be a lack of structural macro-econometric models trying to explain
the dynamics governing and effects of oil or gas drilling. Existing papers on drilling mainly
focus on the micro-level or conduct traditional time series analysis using reduced form equations
and ignoring general macroeconomic conditions or treating them as exogenous. Structural gas
or oil market models, on the other hand, usually do not consider drilling. This paper tries to
close some part of this gap.
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3 THE SHALE GAS BOOM

Figure 1: Natural gas withdrawals in the United States and the contribution of shale gas.
Source: Energy Information Administration (2022) ,Natural Gas Gross Withdrawals and Production, (annual):

https://www.eia.gov/dnav/ng/ng-prod-sum-dc-NUS-mmcf-a.htm.

Notes: As is common in the United Sates, natural gas withdrawals are denoted in cubic feet (CF), one of which

roughly equals 0.028 cubic meters.

3 The Shale Gas Boom

Until less than two decades ago, natural gas output in the USA had been stagnant for a
long time. This changed dramatically with the shale gas revolution. Shale gas is natural
gas contained in shale - a sedimentary rock with low permeability. Because of the latter
property, shale gas does not naturally flow into a drilled well but needs additional stimulation
by hydraulic fracturing (,fracking,) [Mu, 2019]. Even though shale gas production in the U.S.
ranges back to the 19th century and gained political support after the oil crisis of the 1970s, it
needed some more decades and advances in horizontal drilling as well as hydraulic fracturing
to become economically viable. According to Wang and Krupnick [2015] it was a combination
of government policy, high natural gas prices in the 2000s, certain institutional characteristics
of the U.S. oil and gas industry, environmental factors, deep capital markets and a dynamic
oil and gas service industry that finally led to the shale revolution in the 2000s. As Figure 1
shows, the term ,revolution, is appropriate when talking about the roaring success of shale gas.
In 2007 the share of natural gas withdrawals from shale wells was rather negligible, while some
years after more gas was withdrawn from shale wells than from conventional wells. This rise in
shale production also coincided with a rise in total U.S. natural gas production. As is shown in
Figure 2, this facilitated a changing role of the United States on the international natural gas
markets. Before 2007 net natural gas exports from the U.S. had been declining, but after 2007
this trend changed. While imports were reduced, exports (mainly to Mexico) rose, pushing
net exports upwards. After the opening of the natural gas liquefaction plant Sabine Pass I in
2016 exports rose even further to finally surpass total imports. Since then, the United States
have been a net exporter of natural gas. Figure 3 sheds some light on the liquefied natural gas
(LNG) trade balance of the United States. In the 2000s the U.S. started importing substantial
amounts of LNG. After the start of the shale gas revolution and the great recession of 2008,
LNG imports declined steeply. When the U.S. started to open their own liquefaction facilities
in 2016, which they have expanded rapidly since then, they quickly became a net exporter of
LNG. It is notable, that apart from the Covid crash the liquefaction plants were always close
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3 THE SHALE GAS BOOM

Figure 2: Natural gas production in the United States and international gas trade.
Source: Energy Information Administration (2022) ,Natural Gas Gross Withdrawals and Production, (monthly);

,U.S. imports by country, (monthly); ,U.S. exports by country, (monthly): https://www.eia.gov/naturalgas/

data.php.

Notes: Lines mark takeoff of U.S. shale gas production (2007) and opening of liquefaction plant Sabine Pass I

(2016).

Figure 3: LNG trade and liquefaction capacity in the United States.
Source: Energy Information Administration (2022) ,U.S. liquefaction capacity,: https://www.eia.gov/

naturalgas/data.php.

Notes: Lines mark takeoff of U.S. shale gas production (2007) and opening of liquefaction plant Sabine Pass I

(2016).

to full capacity.
During the shale gas boom, not only natural gas production but also nominal and relative

prices of natural gas compared to crude oil changed. As is apparent from Figure 4 and noted
by Brown and Yücel [2008], during the early 2000s a 1:6 rule did properly approximate the gas
price in terms of the oil price. This makes sense, since 6 MMBtu of natural gas contain roughly
the same energy as one barrel of crude oil. Shortly before the shale gas take-off, however,
this rule seemed to break down. A straightforward explanation for this phenomenon is that
additional shale oil production can easily be sold abroad while U.S. natural gas exports to

10
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3 THE SHALE GAS BOOM

Figure 4: Comparison of crude oil prices (WTI) and natural gas prices (Henry Hub).
Source: Energy Information Administration (2022) ,Natural Gas Spot and Futures Prices (NYMEX), (monthly):

https://www.eia.gov/dnav/ng/ng-pri-fut-s1-d.htm; FRED (2022) ,MCOILWTICO, (monthly): https:

//fred.stlouisfed.org/series/MCOILWTICO.

Notes: Lines mark takeoff of U.S. shale gas production (2007), oil price collapse due to increased OPEC+ pro-

duction (2014) and opening of LNG liquefaction plant Sabine Pass I (2016). Crude price is given in USD/Barrel,

natural gas price is given in USD/6MMBtu which represents roughly the same energy content [Brown and Yücel,

2008].

other continents are constrained by LNG liquefaction capacity - which did not exist or operate
almost at full capacity in the plotted sample. This change in relative prices was also reflected
in the pattern of drilling, even though with some considerable lag. Figure 5 plots the number
of rigs that are employed for oil or natural gas drilling at a certain point in time. Rigs are
tools that can be used to drill new wells, deepen existing ones or drill sidetracks off existing
wells. As is described by Kellogg [2011] and Anderson et al. [2018], oil and gas companies
usually do not own their own rigs but rent them from independent service providers together
with specialized crews operating the rig. Since the number of total rigs and trained workers is
approximately fixed in the short run - Anderson et al. [2018], in their model, treat rigs as a
scarce resource that cannot be expanded - rental prices react strongly to changes in the oil or
gas price [Anderson et al., 2018]. Usually, there are idle rigs available that are allocated on the
spot market based on price. Kellogg [2014] notes, however that starting in 2004 rising natural
gas and oil prices led to large fossil fuel companies locking up rigs in long term contracts. As a
consequence, rig markets became extremely tight and therefore had a long unobservable wait
list which lead to a disconnect between drilling decisions and drilling activity for some time.
Therefore, Kellogg [2014] only uses drilling data through 2003 in his study, leaving later years
out. Since the period in which I am interested - the shale gas expansion starting in the mid
2000s - lies after 2003, I cannot do the same. However, I want to state this fact as a caveat.
One can see that until around 2008 the majority of active rigs was employed for natural gas
drilling. After the financial crisis the number of active gas rigs somehow recovered before falling
until 2016. During the same time, which was marked by high oil prices, the number of active
rigs used for oil drilling increased steadily. The regime of high oil prices ended 2014 when
OPEC+ increased production which started a price war on global oil markets. With some lag,
oil drilling decreased dramatically and, together with gas drilling, reached its low in 2016 before
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3 THE SHALE GAS BOOM

Figure 5: Active drilling rigs in the United States.
Source: Baker Hughes Rig Count via Energy Information Administration (2022) ,Crude Oil and Natural Gas

Drilling Activity, (monthly): https://www.eia.gov/dnav/ng/ng-enr-drill-s1-m.htm.

Notes: Lines mark takeoff of U.S. shale gas production (2007), oil price collapse due to increased OPEC+

production (2014) and opening of LNG liquefaction plant Sabine Pass I (2016).

Figure 6: International natural gas prices and price for crude oil (WTI).
Source: Statistical Review of World Energy - BP via Our World in Data (2022) ,Natural gas prices, (annual):

https://ourworldindata.org/grapher/natural-gas-prices.

Notes: Lines mark takeoff of U.S. shale gas production (2007), the Fukushima accident (2011) and the oil price

collapse due to increased OPEC+ production (2014). Prices are given in current USD.

recovering somehow.
North American natural gas prices were not only low after 2008 in nominal terms or when

compared to oil, but also in comparison to international natural gas prices. Figure 6 shows that
after 2008 Canadian and U.S. natural gas prices dropped dramatically, while prices in Europe
returned quickly to the levels experienced immediately before the crisis. LNG prices in South
East Asia, however, rose even further and seemed to follow crude oil prices. Most likely, the
reason for this differential between natural gas prices in Europe and Asia was increased LNG
demand due to the Fukushima accident [Mu and Ye, 2018]. Even though natural gas prices in
Europe and Asia fell after 2014, North American prices remained far below this level. But the
shale gas boom enabled the United States not only to become a net exporter of natural gas and
was accompanied by low prices but also facilitated a rapid increase in natural gas consumption.
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4 THE MODEL

Figure 7: Natural gas consumption in the United States.
Source: Energy Information Administration (2022) ,Natural Gas Consumption by End Use, (annual): https:

//www.eia.gov/dnav/ng/ng-cons-sum-dcu-nus-a.htm.

Figure 7 shows that until the shale boom natural gas consumption was rather stagnating with
growing shares of electric power generation and shrinking shares of the industrial sector. After
the shale boom, however, industrial gas consumption rose again while electric power generation
turned to natural gas on a rapid scale. At the end of the sample, electric power plants were
the single biggest consumer of natural gas in the United States. We will now turn towards a
modelling framework that allows one to make some causal statements regarding the descriptive
evidence presented in this section.

4 The Model

4.1 Econometric Set Up

I set up a structural vector autoregressive (SVAR) model of the form

A0yt = c+

p∑
j=1

Ajyt-j + Axxt + Et, (1)

where yt is a 4x1 vector consisting of active gas drilling rigs, natural gas marketed produc-
tion, industrial production and the real price of gas in the United States. The qx1 vector xt of
exogenous variables consists of seasonally and trend adjusted heating and cooling degree days,
dummies for extraordinary events or structural change and 11 monthly dummies to capture
seasonal effects, c is an intercept, A0...Ap are 4 x 4 matrices, Ax is a 4 x q matrix and Et is a
4x 1 vector consisting of Gaussian structural shocks. The individual structural shocks Ei,t are
assumed to be independent of each other and have unit variance, i.e.

(Et)
iid~ N(0, I4).

The structural model (1) can also be written in reduced form as
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yt = d+

p∑
j=1

Bjyt-j +Bxxt + et, (et)
iid~ N(0,∑), (2)

where B := [d,B1, ..., Bp, Bx] = A-1
0 [c, A1, ..., Ap, Ax] and ∑ = A-1

0 (A-1
0 ),. System (2) can

then be expressed as a regression equation of the form

Y
[4xT ]

= B
[4xD]

Z
[DxT ]

+ E
[4xT ]

, (3)

where Y = [y1, ...yT ], D = 1 + 4p + q, column i of Z is Zi = [1, y,i-1, ..., y
,
i-p, x

,
i]
, and

E = [e1, ..., eT ]. Like Inoue and Kilian [2013] as well as Arias et al. [2018], I choose a Bayesian
approach and propose a Gaussian-Inverse Wishart prior for the reduced form parameters. This
implies the following prior distributions:

∑ ~ IWK(S*, n) (4)

and

β|∑ ~ N(β*, Vβ = V * ∑), (5)

where S*, n, V as well as β* (or equivalently B* such that β* = vec(B*)) have to be
pre-specified. As is described in [Kilian and Lütkepohl, 2018, 162-165], the Gaussian-Inverse
Wishart prior is a natural conjugate prior, which means that the prior, the likelihood and the
posterior are all from the same distributional family. In particular, one obtains the following
posterior distribution:

∑|y ~ IWK(S, τ), (6)

β|∑, y ~ N( -β, -∑β), (7)

where the parameters of the distribution are given as:

-B = (B*V -1 + Y Z ,)(V -1 + ZZ ,)-1,
-β = vec( -B),

-∑β = (V -1 + ZZ ,)-1 * ∑,

S = T ~∑ + S* + .BZZ , .B +B*V -1(B*), - -B(V -1 + ZZ ,) -B,,

τ = T + n,

.B = Y Z ,(ZZ ,)-1,

~∑ = (Y - .BZ)(Y - .BZ),/T.

For the parameters of the prior distribution I stay agnostic and choose n = 0, S* = 04x4,
V -1 = 0DxD and B* = 04xD. Thus the posterior means of the parameters boil down to

E[B|Y ] = .B,

E[∑|Y ] = (Y - .BZ)(Y - .BZ),/(T - 4- 1),

E[∑β|Y ] = (ZZ ,)-1 * E[∑|y].
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Therefore, the expected value of the posterior distribution of B is equal to the least squares
estimate of B and the expected value of the posterior distribution of ∑ is a consistent estimate
for ∑ in the frequentist sense under typical distributional assumptions. As a consequence, the
Bayesian estimates of the parameters can also be interpreted from a frequentist viewpoint. It
is inference in the sign identified structural model, for which the Bayesian interpretation of the
estimates is needed.

4.2 Choice of Variables

I use four time series of endogenous variables (active rigs, gas production, industrial production
and real price of gas) and two time series of exogenous variables (heating and cooling degree
days) that are all available in monthly frequency from 1993M11 to 2020M01.3 As a measure
of investment and drilling activity I include the number of active rigs currently used for gas
drilling in the United States as provided by the Baker Hughes Rig Count.4 Since drilling
is expensive and the economic viability of opening new wells is highly dependent on prices
in the future [see Mu, 2019], active rigs serve as a barometer of expectations in the oil and
gas industry. For the oil sector, Kellogg [2014] shows that price volatility influences drilling
negatively and volatility measures derived from futures prices are a better predictor for drilling
activity than backward-looking indicators that are based on past price variation. Therefore,
the rig count measure should somehow serve to capture a speculative component in the gas
market in the sense of Kilian and Murphy [2014] additional to technological progress in drilling
and the exploitation of natural gas wells. But there is another major reason for including active
rigs into the model: Recently, studies such as Anderson et al. [2018] have exploited engineering
knowledge to explain the empirical fact that the short-term price elasticity of oil production
is close to zero. According to them, production from existing wells is primarily determined by
geological characteristics and as a consequence, producers mainly react to price changes via
the drilling rate. For the natural gas industry, Mason and Roberts [2018] provide a similar
result and report price elasticities of gas production from already existing wells that are small
in magnitude.

The choice of the remaining endogenous series - gas production, economic activity and real
price of gas - needs somewhat less explanation, because at least since Kilian [2009] these three
variables lie at the center of many oil market SVAR models. As so often, however, the devil
lies in the details. Following Arora and Lieskovsky [2014] and Wiggins and Etienne [2017], I
use marketed U.S. natural gas withdrawals5 as a measure of gas production and real U.S. in-
dustrial production6 as a measure of economic activity. One could object to looking exclusively
at the industrial sector, since industrial activity is only one part of economic activity and is
continuously losing relevance compared to the government or service sector.7 While this might

3All series would be available until 2022M04. Since extraordinary events such as the Covid pandemic and
the Texas energy crisis in 2021 provide additional challenges for modelling, I leave the last two years out of my
analysis.

4Baker Hughes Rig Count via Energy Information Administration (2022) ,Crude Oil and Natural Gas Drilling
Activity, (monthly): https://www.eia.gov/dnav/ng/ng-enr-drill-s1-m.htm.

5Energy Information Administration (2022): ,U.S. Natural Gas Marketed Production, (monthly): https:

//www.eia.gov/dnav/ng/hist/n9050us2M.htm
6FRED (2022) ,IPB50001N, (monthly): https://fred.stlouisfed.org/series/IPB50001N.
7Between 2009 and 2019 the industrial sector never contributed more than 20 percent to the GDP of the

United States. Source: Statista (2022) ,Distribution of gross domestic product (GDP) across economic sec-
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be true in general, Figure 7 reveals that for most of the sample the industrial sector was the
single biggest consumer of natural gas in the United States, only getting surpassed by electric
power generation in the last years. In contrast, gas consumption in the commercial, residential,
and transportation sectors tends to be negligible. Additionally, the included weather variables
should be responsible for a considerable share of the variation in residential and commercial
natural gas usage. Moreover, in 2020 the industrial sector,s electric energy consumption was
about two thirds of residential electric energy consumption and roughly twenty percent lower
than commercial electric power usage.8 Therefore, also a big chunk of all electric power gener-
ated is consumed by the industrial sector. This motivates using U.S. industrial production as
a monthly measure of economic activity and not, for example, a factor containing information
from multiple time series that are available on a monthly basis and relate to economic activity.
One could ask why I do not use a measure of global economic activity like the freight rate
index proposed by Kilian [2009], as is common in oil market models. Like Wiggins and Etienne
[2017] I argue that the North American natural gas market is essentially a local one. Li et al.
[2014] show that between 1997 and 2011 there is evidence for convergence between European
and Asian natural gas prices, while the North American natural gas price stands for itself. This
should be especially true since the financial crisis of 2008, where North American natural gas
prices unambiguously decoupled from international natural gas and crude prices (see Figure 6).
For the real gas price the nominal Henry Hub price deflated by the U.S. consumer price index9

is used. The monthly Henry Hub price is provided by the Wall Street Journal and available for
1993M11-2014M02.10 From 1997M01 on a monthly Henry Hub series is made available by the
EIA.11 Like Arora and Lieskovsky [2014] I first use the Wall Street Journal series, but I switch
to the EIA series when the former is not available anymore.

Finally, let,s get to the exogenous variables. While Arora and Lieskovsky [2014] use residen-
tial natural gas demand as an endogenous variable in their VAR model, I do not include this
measure since residential gas consumption is rather small and I want to keep the model parsi-
monious. Since variation of natural gas usage in the residential sector should come mainly from
changes in temperature, I follow Brown and Yücel [2008] as well as Nick and Thoenes [2014] and
include measures of temperature into the model. Heating or cooling degree days, as provided by
the EIA12, measure how cold or warm a certain location is. For an aggregate measure that can
be used to assess national energy demand, local measures are population-weighted. Addition-
ally to weather and seasonal dummies I also add dummy variables to exclude two extraordinary
events and model one broken trend. The two events are the hurricanes Katrina in 2005M09
and Gustav in 2008M09. Katrina greatly reduced natural gas output, especially in the Gulf of
Mexico, in an already tight market and led to a spike in natural gas prices [see DOE, 2006].

tors in the United States from 2000 to 2019, (annual): https://www.statista.com/statistics/270001/

distribution-of-gross-domestic-product-gdp-across-economic-sectors-in-the-us/.
8In 2020, the residential, commercial and industrial sector consumed 1,464.4, 1,287.4 and 959.1 Terawatt

hours respectively. Source: Statista (2020) ,Electricity consumption in the United States in 2020, by sector,:
https://www.statista.com/statistics/560927/us-retail-electricity-consumption-by-sector/.

9FRED (2022) ,USACPIALLMINMEI, (monthly): https://fred.stlouisfed.org/series/

USACPIALLMINMEI.
10Wall Street Journal via FRED (2016) ,GASPRICE, (monthly): https://fred.stlouisfed.org/series/

GASPRICE.
11Energy Information Administration via FRED (2022) ,MHHNGSP, (monthly): https://fred.

stlouisfed.org/series/MHHNGSP.
12Energy Information Administration (2022) ,Heating degree-days by census division, (monthly); ,Cooling

degree-days by census division, (monthly): https://www.eia.gov/totalenergy/data/monthly/index.php
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Three years later, Gustav also reduced natural gas production but was not followed by a price
hike since the economic crisis of 2008 already reduced gas demand [see CRS, 2009]. The two
hurricanes led to short-term reductions of gas production that are clearly extraordinary and
violate the assumption of symmetric shocks. It is hard to imagine a productivity shock rising
gas production multiple percentage points above the level expected in the previous month. I
also use a broken trend dummy of the form [0, ..., 0, 1, 2, 3, ...] to account for a constant rise in
gas production from the mid 2000s onwards. As is described by Kellogg [2011], Anderson et al.
[2018], Wang and Krupnick [2015] and Mu [2019], among many others, from the early 2000s
on innovations in hydraulic fracturing (,fracking,) and horizontal drilling led to higher cost ef-
fectiveness and production levels in the oil and gas industry. It is not a straightforward choice
to model this ,revolution, with exogenous broken trend dummies. First, since the increase in
productivity in the oil and gas sector was not only the result of some breakthrough scientific
innovations that can be clearly dated, but to a large extent the result of ,learning by drilling,
[see Kellogg, 2011], one should interpret the shale boom as a smooth structural change rather
than a clear break. Recently Demetrescu and Salish [2020] have shown that in the case of a
smooth structural transition without a clear break date, ignoring the break and choosing the
lag length of the VAR with the help of an information criterion is preferable to using dummy
variables. One could also object to using exogenous dummies on economic grounds: High natu-
ral gas prices after 2000 helped making already existing fracking techniques economically viable
and set an incentive for developing new techniques. In this sense, the shale gas boom must be
partly seen as an endogenous outcome. However, due to the singularity of the event and the
non-linearity as well as long delay times and horizons involved - as Wang and Krupnick [2015]
highlight, efforts to exploit shale gas started multiple decades before 2000 - my SVAR model is
clearly not able to disentangle the effects that led to the shale boom. The exogenous dummies
have to be interpreted as an auxiliary construction to deal with this shortcoming. Regarding
the econometric concerns, looking at the log-level of gas production plotted in Figure 8 makes it
plausible to approximate part of the shale boom by a broken trend. The break in growth rates
detected by the Bai and Perron [1998] procedure, 2005M05, is also historically plausible as start
of the shale boom [Mu, 2019]. It has to be noted that the broken trend dummy does not alter
the economic results qualitatively. Including it only makes the impulse response of gas supply
to a gas supply shock less persistent and yields a more plausible historical decomposition of gas
production.

Before modelling I apply unit root tests to the endogenous variables in log-levels. The ADF
test with four lags never rejects the hypothesis of an unit root for all three specifications (no
drift no trend, drift and no trend, drift and trend) on the 5 percent level. On the other hand,
the KPSS test rejects the hypothesis of stationarity for natural gas production (specification 2
and 3) as well as for industrial production (specification 3) on the 1 percent level. For all other
combinations the KPSS test does not reject the hypothesis on the 5 percent level. Since for the
first differences the hypothesis of the ADF test is always rejected at the 1 percent level and the
hypothesis of the KPSS test is never even rejected at the 10 percent level if we allow for a drift,
I conclude that the endogenous variables are at most integrated of order one. Despite potential
unit roots, I will estimate the model in log-levels. Since the Johansen eigenvalue test rejects
the hypothesis of no cointegration at the 1 percent it is to conclude that there is at least one
linear combination of active rigs, gas production, industrial production and the gas price in log-
levels that is stationary. Estimating the model in differences would amount to throwing away
information with regards to this equilibrium relationship. On the other hand, the potential
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costs associated with estimating the model in log-levels are low. As [Kilian and Lütkepohl,
2018, 41-43] highlight, for integrated variables the parameters estimated by OLS are consistent
and even standard Gaussian inference remains valid.13 Further, if one additional lag to the
true lag order is added when estimating the model, the asymptotic variance covariance matrix
of the slope parameters is of full rank, which justifies joint inference on the parameters. Of
course there is some efficiency loss due to the additional parameters that have to be estimated.
Also, in contrast to a stationary multivariate process corresponding to a stable VAR-system,
an I(1) process does not have an MA(∞) representation. Therefore, the endogenous variables
cannot be meaningfully approximated by a finite linear combination of past structural shocks
as is done in the historical decomposition [see Kilian and Lütkepohl, 2018, 116-122]. There are,
however, solutions to this problems to which I will come back later. Further, because a MA(∞)
process is regular, its forecast error variance converges to its unconditional variance when the
forecast horizon goes to infinity. This is not the case for integrated variables and therefore the
forecast error variance decomposition does not converge. Thus, I will not deal with the variance
decomposition of the forecast error for large horizons, in which I am not particularly interested
anyway.

As a last step, the exogenous variables are transformed. Both heating and cooling degree
days have a strong seasonal component and since seasonal dummies are already included in
the VAR, the transformed variables should provide information on deviations from the typical
seasonal temperature pattern. Also, even though the unit root tests do not detect any non-
stationarity, knowledge of climate change makes it probable that the true data generating
process is not stationary. This is also reflected by the descriptive fact that from 1980 to
2000 there are only three months with slightly more than 350 cooling degree days and from
2000 to 2020 there are eleven months with more than 350 cooling degree days and even two
with more than 400. Since regressing an integrated variable on another integrated variable
invalidates standard frequentist inference (spurious regression) it is appropriate to be cautious
and therefore I choose a transformation that removes seasonality as well as a trend from the
data and subtract the mean of the last five observations that were in the same month from
each observation. Figure 8 shows all series as included in the VAR model.

4.3 Estimation of the Reduced Form

The reduced form of the model as given in (2) is estimated with OLS, choosing a lag length
of 6 months despite the AIC suggesting only one lag. As a first reason, this is because Kilian
and Zhou [2020] argue that traditional lag selection criteria often tend to underestimate the
true lag order in finite samples and in particular for oil market models up to 24 monthly lags
are needed to adequately capture the relationship between economic activity and oil market
variables. Further, Kellogg [2014] reports that the engineering, permitting and rig contracting
process leads to a gap of three months between the decision to drill a well and the start of the
drilling process. Khalifa et al. [2017] also conclude that the impact of oil price changes on the
number of active rigs has lags of multiple months. Even though both studies deal with the
U.S. oil industry, these facts should also hold for the natural gas industry since drilling rigs and

13I am aware that the concerns regarding stationarity that are discussed here arise primarily from a frequentist
approach and are not that relevant from a fully Bayesian perspective. However, since my reduced form estimates
as well as Figure 10 are also interpretable from a frequentist viewpoint, I want to address these concerns.
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Figure 8: Transformed variables that are included in the VAR model.

contractors are the same for both sectors.
Figure 9 plots the reduced form residuals which roughly look like the trajectories of a white

noise process. The only exception is some evidence for volatility clustering when looking at
the rig count and the gas price. I now apply diagnostic tests to the model residuals to check
some assumptions previously imposed. Table 1 plots the result of the multivariate Breusch-
Godfrey LM test for autocorrelation in the model residuals. For the standard autoregressive
lag-length of 6 and 5 lags in the test equation, the hypothesis of no autocorrelation is rejected
at the 1 percent level and for 14 lags in the test equation it is rejected at the 5 percent level.
Increasing the number of autoregressive lags in the model reduces or even removes the evidence
for residual autocorrelation. Using a lag number as high as 18, however, would greatly increase
the dangers of overfitting and lead to a high number of parameters to be estimated. Therefore
I will stick to the specification of 6 lags. As a compensation a robustness analysis is conducted,
in which the model is estimated on the two sub-samples before and after the shale gas boom.
This is motivated by the fact that the Breusch-Godfrey test does not reject the hypothesis of
no autocorrelation if the model is fitted to the two individual sub-samples. As a last diagnostic
exercise, the third and fourth moments of the model residuals are given in Table 2. Under the
hypothesis of Gaussian errors the skewness should be 0 and the kurtosis should be 3. In the full
sample, only the residuals of the number of active rigs most likely have nonzero skewness but

19



4.4 Identification of the Structural Form 4 THE MODEL

Figure 9: Reduced form residuals for the sample 1993M11-2020M01.

Sample: 1993M11-2020M01 1993M11-2005M04 2005M05-2020M01

Lags Test p = 6 p = 12 p = 18 p = 6 p = 6
5 0.001** 0.003** 0.438 0.604 0.812
14 0.013* 0.045* 0.402 1 0.305

Table 1: Multivariate Breusch-Godfrey LM test for autocorrelated errors.
Notes: The table denotes p-values for different combinations of model lags (p) and lags used in the Breusch-

Godfrey test. * p < 0.05, ** p < 0.01.

all variables seem to have some excess kurtosis. In the earlier sample there is no problem with
skewness and only the residuals of rig and rpg have some excess kurtosis. In the later sample
the rig count residuals, again, are problematic. Concluding, asides from the negative skewness
of rpg and some excess kurtosis, the third and fourth moments of the model residuals do not
look too problematic. In particular, the residuals of gas production seem to be symmetric after
excluding hurricanes Katrina and Gustav using dummy variables.

4.4 Identification of the Structural Form

After estimating the reduced form, the structural form (1) is still to be identified since there
exist infinitely many structural models corresponding to each reduced form. One can easily
show that a structural model (1) corresponds to the reduced form (2) if and only if
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1993M11-2020M01 1993M11-2005M04 2005M05-2020M01

rig gpd ipd rpg rig gpd ipd rpg rig gpd ipd rpg
Skew -0.5** -0.1 -0.2 0.1 -0.1 0.3 0.3 -0.4 -0.7** -0.2 0.2 0.3
Kurt 4.8** 3.6* 3.7* 4.0** 4.0* 2.9 2.8 4.0* 5.2** 3.5 3.5 2.8
J-B 52.8** 5.7 7.8* 13.2** 5.9 2.3 2.2 8.2* 48.6** 2.8 3.2 2.1

Table 2: Skewness and kurtosis of model residuals.
Notes: Skew denotes the standardized sample skewness, Kurt the standardized sample kurtosis and J-B the

Jarque-Bera test statistic. Stars refer to the D,Agostino test (H0: no skewness), the Anscombe-Glynn test

(H0: no excess kurtosis) and the Jarque-Bera test (H0: no skewness and no excess kurtosis). Abbreviations for

variables: rig ... rig count, gpd ... gas production, ipd ... real industrial production, rpg ... real price of gas. *

p < 0.05, ** p < 0.01.

A-1
0 = CQ, (8)

[c, A1, ..., Ap, Ax] = A0[d,B1, ..., Bp, Bx], (9)

where C = chol(∑) and Q E O(n) := {Q E Rnxn|QQ, = Q,Q = In} is an arbitrary
orthonormal matrix. To restrict the set of admissible structural models, one has to employ
some identifying restrictions. As a first step, I require the impact effect matrix A-1

0 to match
the sign/exclusion pattern given in Table 3. I assume that four orthogonal shocks - a drilling
shock, a gas supply shock, an economic activity shock and a gas demand shock - span the
space of the innovations to the four endogenous variables. A drilling shock leads to a rise in gas
drilling. This is the only shock that can affect the number of active rigs contemporaneously,
since for contractual, legal and technical reasons the decision to drill takes three months to
result in actual drilling activities [see Kellogg, 2014]. With this assumption, the drilling shock
as well as the first column of A-1

0 are point identified. When the elements of A-1
0 are denoted by

aij one can compute (E1,t) as the reduced form residual (e1,t) divided by its standard deviation,
a11 being equal to this standard deviation. The remaining elements a1. can then be obtained by
regressing (E1,t) on the remaining model variables (or equivalently on the reduced form errors).
Therefore there is no need to impose any sign restrictions on the first column of A-1

0 . The second
structural shock, a gas supply shock, decreases gas production unexpectedly. As a consequence,
the price of gas goes up and industrial production decreases. A gas supply shock can be an
extreme weather event that decreases gas production for a short time or an unexpected change
in well productivity. The third shock, an economic activity shock, raises industrial production
on impact. This shock pushes gas prices up which triggers a rise in natural gas production.
Lastly, a demand shock specific to the gas market rises gas prices and gas production while
reducing industrial production. A gas demand shock can be thought of as a shift in preferences,
representing changed heating or cooling behaviour or a higher amount of natural gas used for
heating or power production instead of coal or oil due to environmental concerns. Another
possible cause of gas demand shocks are substitution or spillover effects: Using data until 2007
Brown and Yücel [2008] report crude oil prices to be one of the main drivers of natural gas
prices in the U.S. and for Germany Nick and Thoenes [2014] also conclude that oil prices are
an important determinant of natural gas prices. Expanding the recursively identified model
of Kilian [2009] to include a gas price variable, Jadidzadeh and Serletis [2017] estimate that
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around 30 percent of the long run variance of the gas price is determined by fluctuations in the
oil supply and oil specific demand. Therefore oil supply shocks, speculative oil demand shocks
or rising oil prices due to a rise in foreign economic activity (which does not lead to higher
U.S. industrial production) can find their way into the model as gas specific demand shocks.
Since Nguyen and Okimoto [2019] report qualitatively similar responses of the gas market to
oil demand and gas demand shocks, it is justifiable to not distinguish between the two in this
paper,s model. Of course the decoupling of oil and natural gas prices in the United States (see
Figure 6) might have mitigated the importance of oil price shocks in recent years.

Not all structural models that satisfy the imposed impact sign restrictions are also econom-
ically plausible. Some may imply responses or elasticities which we know to be false. Kilian
and Murphy [2012] therefore suggest using prior knowledge about such elasticities to further
restrict the set of admissible solutions. Therefore I use microeconomic evidence provided in
Mason and Roberts [2018], who study price elasticities of already existing natural gas wells
in Wyoming. They report a price elasticity of gas production of 0.0262 for the whole sample.
Splitting samples in four quartiles according to peak production rates gives no price elasticity
that is different from zero for the first two quartiles. The third quartile has an elasticity of
0.0311 and the fourth quartile of 0.0646. To be prudent I use 0.065 as an upper bound for
the price elasticity of oil supply and discard all model draws, for which a23/a43 or a24/a44 are
above this threshold. Kilian and Murphy [2012] also restrict the impact response of economic
activity to a gas demand shock to a small interval. The numerical value for this restriction
is the hardest to motivate on empirical grounds so Kilian and Murphy choose an arbitrary
value close to zero and conduct sensitivity tests in which they vary that threshold. I restrict
the immediate impact of a gas demand shock on industrial production to lie in the interval
(-0.004, 0), where 0.004 is half the standard deviation of the reduced form error of industrial
production. As an additional guideline, one can use the theoretical result of Hamilton [2013]
that the elasticity of output to a change in the real price of energy should equal the energy
bill as a fraction of gdp times the price-elasticity of energy demand. This result only refers to
direct, supply side effects and leaves aside changes in employment or capital formation which
one can assume to operate with some lag. In 2008, the US natural gas bill was the highest
in the sample with about 200 billion 2019 Dollars14, amounting to below 1.2 percent of gdp.
Rubaszek et al. [2021] estimate a short term price elasticity of gas demand of -0.42. Even
using the extremely cautious value of -1 for this elasticity would give a lower bound of roughly
-0.0014 for the impact response of economic output to an unexpected price increase of 0.114 -
one standard deviation of the reduced form error of the real gas price. This is about a third of
the lower bound I use, since one has to account for the fact that industry is a disproportionally
large natural gas user when compared to the total economy and natural gas price increases
might be caused or accompanied by oil price increases. Further justification for a bound close
to zero is given by Baumeister and Hamilton [2019] who use a prior mean of -0.05 for the oil
price elasticity of economic activity and obtain a posterior of almost exactly zero. As a last
identifying assumption, economic activity shocks are not allowed to lower industrial production
in the first six months.

One could ask why I did not choose a recursive identification strategy like in Kilian [2009]
for oil markets or Arora and Lieskovsky [2014] for natural gas markets. Indeed, as is pointed
out above, there is strong evidence for the price elasticity of gas supply as well as the response
of industrial production to a gas demand shock to be close to zero on impact. To assume

14Source: EIA, Today in Energy, September 9, 2021.
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Drilling Gas Supply Economic Activity Gas Demand
Shock Shock Shock Shock

Rig Count * 0 0 0
Gas Production * - + +
Ind. Production * - + -
Gas Price * + + +

Table 3: Impact sign and exclusion restrictions for A-1
0 .

Notes: Additional elasticity restrictions and dynamic sign restrictions are described in the text.

that these values are exactly zero would enable us to identify A-1
0 uniquely as the Cholesky

decomposition of ∑. This would greatly simplify estimation, eliminate identification uncertainty
and allow to use standard frequentist methods for inference. However, these values are, most
likely, not exactly zero. Mason and Roberts [2018] show that the price elasticity of gas supply
is close to zero but statistically significant different from zero for individual wells in Wyoming.
Similarly, when looking at the European natural gas crisis after the Russian attack of Ukraine,
one can see see that in principle industry can react quickly to rising gas prices. After a first
surge of natural gas prices starting in March 2022, prices fell back to typical 2021 levels in May.
After rising to March-levels again at the end of July, prices rose further to a new all time high
at the end of August. Earlier in the year, Ruhnau et al. [2022] had already reported on- and
off-switching of energy-intensive chemical plants in Germany in response to changes in natural
gas prices. On August 23th Bloomberg reported that European plants had reduced one third of
their ammonia output capacity [Gebre, 2022], on August 25th the same news provider reported
a capacity reduction of 50 percent [de Sousa et al., 2022]. Of course, it is still possible that these
capacity cuts were all decided in July or June, when natural gas prices started to rise again.
However, since prices surpassed March-levels only one month before these extreme capacity
reductions it is highly unlikely that all of these measures were planned months before. As an
additional argument, chemical output can also to some extent be reduced without shutting down
production capacity: Richardson [2022] reports that typical chemical plants can be operated at
60 percent of design capacity. Of course, the United States never experienced nearly as extreme
energy price shocks in the observed sample period as Europe did in 2022. The events in Europe,
however, at least point towards some short-term flexibility in the chemical industry and are
sufficient to not believe in a zero-response of industrial production to energy price shocks in
the same month. Therefore, a recursive identification strategy is not plausible. Nevertheless, I
will later compare estimation results for the two identification strategies described here.

Now let us come to the actual identification procedure for the structural form. While
the first shock is point identified, shocks 2-4 are only set identified. Since the probability of
drawing Q such that CQ matches the zero restrictions in Table 3 is zero when one draws from
an uniform distribution on O(4) the algorithm commonly used for SVAR models with just sign
restrictions and no exclusion restrictions [see for example Kilian and Lütkepohl, 2018, 441] has
to be adapted slightly. In particular, one can easily show that CQ matches the zero restrictions
given above if and only if

Q =

]
1 01x3

03x1 Q*,

[
(10)
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where Q* E O(3). Therefore one can draw such a Q* from an uniform distribution on O(3),
build Q as in (10) and check if the sign restrictions are met. If this is the case, we can keep the
draw. The detailed procedure is given in Algorithm 1. This algorithm exploits the fact that
one can draw from O(n) by drawing each component of the n x n matrix J from a standard
normal distribution and computing the QR-decomposition of J , [Q R]. If one makes sure that
each diagonal element of R is positive, the resulting Q is drawn from an uniform distribution
on O(n).

Algorithm 1 Identify the set of admissible structural models

Input: B = [d,B1, ..., Bp, Bx], C = chol(∑), K (number of draws)
Output: k < K admissible structural models: [cj, Aj

0, A
j
1, ..., A

j
p, A

j
x], j E {1, ..., k}

1: j ← 1
2: for i E {1, ..., K} do
3: draw a 3x 3 matrix J with Jv ~ N(0, I3) for each column Jv of J
4: let [Q* R] be the QR-decomposition of J
5: for v E {1, 2, 3} do
6: if Rvv < 0 then
7: Q*

v ← -Q*
v

8: end if
9: end for
10: build Q as in (10)
11: check if CQ satisfies impact sign restrictions, otherwise move to next draw
12: check if CQ satisfies elasticity restrictions, otherwise move to next draw
13: check if structural IRFs meet dynamic sign restrictions, otherwise move to next draw
14: Aj

0 ← (CQ)-1

15: [cj, Aj
1, ..., A

j
p, A

j
x] ← Aj

0[d,B1, ..., Bp, Bx]
16: j ← j + 1
17: end for

Of course Algorithm 1 can be further optimized since it can get quite computationally
burdensome if only a small fraction of all draws are admitted and therefore K has to be chosen
to be quite large. A straightforward optimization is not calculating the full matrix CQ in the
beginning but checking one element after the other by multiplying rows of C with columns of
Q and discarding the draw as quickly as possible. Further, if the original Q* is not admissible,
one can switch signs of the columns and/or permutate the columns and check if the modified
CQ now matches the requirement. This can be done because the resulting matrix Q* will still
be orthonormal. Also note that since at most one such permutation fulfils the sign restrictions
the resulting matrices Q* will still be uniformly drawn from O(3) if one stops trying different
permutations once one combination is accepted.

4.5 Inference in the Structural Model

We now know how to identify the set of admissible structural models that correspond to a
certain point estimate of reduced form parameters. Usually, however, one wants to use SVAR
models to conduct inference, especially with regards to the impulse response functions. So how
does one get point estimates of the impulse response function and corresponding highest density
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or confidence bands? In many applications using sign restrictions, researchers report pointwise
medians as well as pointwise quantile bands from a set of simulated impulse response functions
as point estimate and highest density band, respectively. As Inoue and Kilian [2013] highlight,
however, such pointwise statistics can be misleading. Pointwise median response functions do
not need to match the behaviour of any simulated structural IRF. Likewise, pointwise error
bands do not contain a certain fraction of admissible models. In general - not only in the
context of sign restricted models - pointwise error bands for impulse response functions are
too narrow to conduct joint inference. To address this problem there are several methods for
joint inference on impulse response functions [see Lütkepohl et al., 2020, for an overview]. The
typical solutions, however do not solve the problem which model to report as point estimate in
the set identified case. An approach that provides broad enough confidence bands to contain a
certain fraction of IRFs and one particular model as point estimate is provided by Inoue and
Kilian [2013]. They suggest to report the modal model that maximizes the posterior density
function of the IRF, f( ~Θ). After ordering all drawn solutions in decreasing order of their
posterior density f( ~Θ), one can compute the (1 - α)-quantile f1-α of this value and define a
(1 - α)% highest density region as Sα = {~Θ|f( ~Θ) > f1-α}. Recently, Inoue and Kilian [2022]
have generalized this approach using Bayesian loss functions, where the original procedure
reporting the modal model is optimal using a Dirac-delta loss. Further, they show how to
report the modal IRF in models identified by zero restrictions and exclusion restrictions using
the algorithm of Arias et al. [2018]. I can use neither of the formulas without modification,
since I draw Q not directly from O(4) but the smaller dimensional variable Q* from O(3). In
this case, it follows from Proposition 3 in the Appendix that when imposing an uniform prior
on Q* E O(n- 1), the posterior density of the structural IRFs can be computed as

f( ~Θ) = 2)n
2-n+2(/2|C|-np

nπ
i=1

|cii|n-i+1|In-1 + ~Q*|-)n-2(

| ~D,
n-1(K

, *K ,C ,)(In2 - L,
nLn)(K * CK) ~Dn-1|-1/2f( ~B|∑)f(∑)f(s*), (11)

where n = 4, cii is the ith diagonal element of C and ~Q* is just Q* with the sign of the first
column flipped if the determinant of Q* is -1. The (n - 1)2 x (n - 1)(n - 2)/2 matrix ~Dn-1

satisfies vec(S) = ~Dn-1veck(S)
15 for a (n-1)x(n-1) skew-symmetric matrix S. Construction

and central properties of this matrix are described in Magnus [1988]. Similarly Ln is n(n+1)xn2

such that vec(L) = L,
nvech(L) for any lower triangular matrix L. Further, K is an nx (n- 1)

matrix defined as

K =

]
01x)n-1(

In-1

[
.

The last three terms in (11) are the posterior density of ~B = [B1, ..., Bp] conditional on ∑,
the posterior density of ∑ and the posterior density of s* = veck(S*), where

S* = In-1 - 2(In-1 + ~Q*)-1

15The operator veck stacks all below-diagonal elements of a matrix in a column vector, likewise vec stacks
all columns of a matrix in a column vector and vech stacks all element on and below the diagonal in a column
vector.
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is a skew-symmetric matrix depending on Q*. For f( ~B|∑) and f(∑) there are simple closed-
form solutions since they are densities of a multivariate normal distribution and a Gaussian-
Inverse Wishart distribution, respectively. For the last factor, Le,on et al. [2006] show that s*

has the density function

f(s*) =

(
n-1π
i=2

Γ(i/2)

πi/2

)
2)n-2()n-3(/2

|In-1 + S*|n-2
. (12)

Therefore one can use Algorithm 2 to conduct Bayesian inference in the 4-dimensional SVAR
model with sign and zero restrictions as set up above. For M draws from the reduced form
parameters and K draws of orthogonal matrices Q* for each reduced form draw, the algorithm
returns k < MK admissible structural models together with the posterior density of their IRFs.
For inference I can now report the IRF corresponding to the modal model with the highest
posterior density value as point estimate and plot the IRFs of (1 - α)100% of all models as
highest density region.

5 Results

5.1 Comparison of Identification Strategies

Before conducting inference, let us take a look at the IRFs of the structural models that
correspond to the OLS estimate of the reduced form (2) using Algorithm 1. For comparison
I also report the estimated IRFs corresponding to a recursive identification strategy. This
amounts to assuming that Q = I4 and therefore A-1

0 has the following form:

A-1
0 =

2..4
* 0 0 0
* * 0 0
* * * 0
* * * *

3..5 . (13)

This is equivalent to assuming that a drilling shock immediately affects all variables, but is
the only shock that affects the number of active rigs on impact - an assumption we already used
and justified for the model above -, that the price elasticity of gas supply is zero and industrial
production does not react to a gas demand shock in the same month. This basically means
that we switch the identifying assumptions of Kilian and Murphy [2012] for the restrictions of
Kilian [2009]. Note that some restrictions are similar in nature but the recursively identified
model cannot be an admissible model corresponding to the sign restrictions [see Kilian and
Lütkepohl, 2018, 421-424 for a discussion]. As I have argued above, the recursive identification
assumptions are not plausible in my opinion. However, since many studies of the U.S. natural
gas markets rely on such assumptions [Arora and Lieskovsky, 2014, Hou and Nguyen, 2018,
Rubaszek and Uddin, 2020], it is interesting to compare the two strategies.

Figure 10 plots the resulting impulse response functions. Note that for the responses to
the drilling shock, recursive identification and identification corresponding to Table 3 coincide.
This is because the drilling shock is point identified by the assumption that it is the only shock
affecting gas drilling on impact - an assumption that is in place in both models. We see that a
drilling shock raises the number of active rigs in a hump shaped way. Also, gas production and
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Algorithm 2 Conduct Bayesian inference in our SVAR model.

Input: Y = [y1, ..., yT ], Z = [Z1, ..., ZT ], p, M , K
Output: k < MK admissible models with IRF posterior density: [Aj

0, A
j
1, ..., A

j
p, f

j], j E
{1, ..., k}

1: j ← 1
2: compute reduced form posterior parameters as in (6) and (7)
3: for h E {1, ...,M} do
4: draw ∑ from (6)
5: draw B conditional on ∑ from (7)
6: C ← chol(∑)
7: ~B ← [B1, ..., Bp]
8: for i E {1, ..., K} do
9: draw a 3x 3 matrix J with Jv ~ N(0, I3) for each column Jv of J
10: let [Q* R] be the QR-decomposition of J
11: for v E {1, 2, 3} do
12: if Rvv < 0 then
13: Q*

v ← -Q*
v

14: end if
15: end for
16: build Q as in (10)
17: check if CQ satisfies impact sign restrictions, otherwise move to next draw
18: check if CQ satisfies elasticity restrictions, otherwise move to next draw
19: check if structural IRFs meet dynamic sign restrictions, otherwise move to next draw
20: ~Q* ← Q*

21: if det( ~Q*) = -1 then
22: ~Q*

1 ← - ~Q*
1

23: end if
24: f j ← f( ~Θ) as given in (11)
25: Aj

0 ← (CQ)-1

26: [Aj
1, ..., A

j
p] ← Aj

0[B1, ..., Bp]
27: j ← j + 1
28: end for
29: end for
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industrial production are raised slightly after 1-4 months. This delay is consistent with the fact
that drilling and the fracturing process take some time and therefore natural gas production
cannot be raised immediately after drilling has started. Let us now take a look at the responses
to the remaining shocks. A gas supply shock decreases gas production sharply and has a
persistent negative effect on natural gas output. This raises the real price of gas, increases
gas drilling with a considerable lag and has no noticeable effect on industrial production. An
economic activity shock increases industrial production persistently, increases the gas price and
slightly increases gas production. One can see, however, that this supply response takes time
and most likely depends on the increase in drilling that happens due to the rise in industrial
production. Lastly, a gas demand shock rises the price of natural gas sharply but this response
is considerably weakened after some months and entirely gone after one year. This shock
decreases industrial production with the effect becoming stronger over time, which makes sense
since adjustment to higher gas prices might take time. Gas production increases slightly and
drilling also increases. It is noteworthy, however, that the response of drilling activity is less
persistent than after an economic activity shock. We also see that the results corresponding
to the recursive identification and to the sign restrictions do not differ too much qualitatively.
The main difference is that the model with sign restrictions allows economic activity and gas
supply shocks to have a stronger impact on gas prices and drilling than the recursively identified
model. Also, in the sign restricted model gas demand shocks can have a stronger impact on
industrial production. The magnitude of this effect, however, depends crucially on the limit to
the impact response of industrial production to a gas demand shock. A tighter bound pushes
the admissible responses in column 3 and 4 of row 3 and 4 further towards the recursively
identified IRFs. We will come back to this discussion when talking about the forecast error
variance decomposition.

5.2 Natural Gas Market Dynamics

As a next step one can compute the Bayesian point estimates and highest density bands for the
impulse response functions that are computed using Algorithm 2. The results are plotted in
Figure 11. The qualitative implications of the point estimates remain similar to above. Since
they represent identification as well as parameter uncertainty and are jointly computed not
pointwise, the 68% bands are quite broad. It is notable, however, that drilling, gas supply
and economic activity shocks have a persistent effect on drilling activity, gas production and
industrial production, respectively, that is significantly different from zero even after one year.
Meanwhile, the effect of a gas demand shock on the gas price vanishes quickly and is only
significantly different from zero for the first few months after the shock. Lastly, one can see
that an economic activity shock raises gas prices and drilling activity significantly some months
after the shock. As a robustness check, I also estimate the model on two sub-samples, 1993M11-
2005M04 and 2005M05-2020M01, and compare the impulse response functions. The results can
be seen in Figure 22 and 23 in the appendix. Most responses are qualitatively similar to the ones
plotted in Figure 11. As a main difference, the response of gas production to a gas supply shock
seems to be less persistent after splitting the sample. There are also some significant differences
between the two samples: In the later time window, drilling shocks seem to have a stronger and
more persistent effect on the number of active rigs and economic activity shocks, after some
months, have a stronger effect on gas production than in the earlier sample. Furthermore, in
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Figure 10: Admissible structural impulse response functions corresponding to OLS point
estimate.
Notes: The black, dotted line corresponds to the recursive identification strategy. Colored lines are the set of

admissible structural IRFs that satisfy the imposed sign restrictions.
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Figure 11: Structural IRFs for the full sample 1993M11-2020M1.
Notes: The black line is the modal model which maximizes the posterior density of the structural IRFs. Colored

lines are the Bayesian 68% highest density region.

the first sample the effect of a drilling shock on gas production is significantly positive between
month 2 and 4, while in the late sample the point estimate is negative and not significantly
different from zero. Aside from that, the IRFs seem to match, which speaks for the robustness
of the model results.

5.3 The Price Elasticity of Natural Gas Drilling

According to Figure 11, only natural gas price increases that are triggered by an economic
activity shock lead to a significant response of the rig count. This is the case, even though
the initial price change after a gas demand shock of one standard deviation is estimated to be
bigger than after an economic activity shock of one standard deviation. This suggests, that the
response of natural gas drilling to a change in the gas price depends on the shock that leads to
the price change. Controlling for the size of the price change, these responses can be explicitly
compared using price elasticities of drilling that can be computed as follows:
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κk
h :=

δ log(rigt+h)

δ log(pt)
=

01k,h
04k,1

, k = 2, 3, 4, (14)

where 0jk,h is the element (j, k) in the structural IRF matrix of horizon h. It follows from
this formula, that for each structural IRF three different price elasticities of drilling, κk

h, can
be computed for every horizon h. After h months, a price change due to the structural shock
k leads to a larger response of natural gas drilling than a price change due to shock l, if we
have κk

h - κl
h > 0. Therefore, we can test differences in the magnitude of the drilling response

by computing posterior distributions of the differences of the elasticities defined above, using
the posterior distribution of the structural IRFs that we have already obtained. Figure 12
plots these distributions together with the fraction of all values in the posterior distribution
that are negative. In the top panel, the differences of the price elasticities of drilling after
an economic activity shock and a gas supply shock are plotted. We see that for a horizon of
one quarter, more than 85 percent of the structural IRFs in the posterior distribution imply
a stronger response of drilling after an economic activity shock than after a gas supply shock.
However, this difference vanishes when we increase the horizon at which we look and after
one year nothing suggests that the responses after an economic activity and after a gas supply
shock are different. This picture is different when comparing economic activity shocks and gas
demand shocks, which is done in the lower panel. After one quarter, more than 90% of all IRFs
in the posterior distribution imply a stronger drilling response to price changes after economic
activity shocks than after gas demand shocks. This fraction gets even bigger as we increase the
horizon for which we compute elasticities. One year after the price change, the response of the
rig count relative to the initial price change is bigger after an economic activity shock virtually
for the whole posterior distribution. This makes sense, since the initial increase in prices after
a gas demand shock has vanished by then, while after an economic activity shock prices are
still increased significantly.

5.4 Forecast Error Variance Decomposition

To study the relative importance of different structural shocks for variation in the model vari-
ables, it is popular to calculate a forecast error variance decomposition. This is motivated by
the fact that the h-step mean squared prediction error (MSPE) of an SVAR model is given by

E[(yt+h - .yt+h|t)(yt+h - .yt+h|t),] =
h-1∑
i=0

Φi∑Φ
,
i

=
h-1∑
i=0

ΘiΘ
,
i,

where Φi is the reduced form impulse response function of horizon i, Θi is the structural
impulse response function of horizon i and .yt+h|t is the forecast of yt+h conditional on information
given at time t. The kth diagonal element of the resulting matrix is the h-step MSPE of variable
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(a) κecon. activity
h - κgas supply

h

(b) κecon. activity
h - κgas demand

h

Figure 12: Posterior distributions of the differences of κh = δ log(rigt+h)/δ log(rpgt) by shock.
Notes: This figure plots the posterior distribution of κi

h - κj
h = θ1i,h/θ4i,1 - θ1j,h/θ4j,1 for two structural

shocks i and j.
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k that can be written as

MSPEk(h) =
h-1∑
i=0

(02k1,i + ...+ 02kn,i)

=
n∑

j=1

(02kj,1 + ...+ 02kj,h-1), (15)

where 0kj,i denotes element (k, j) of Θi. Equation 15 shows that MSPEk(h) can be decom-
posed in contributions from different shocks, using the structural IRFs. In particular, one can
make use of the fact that

1 =
02k1,1 + ...+ 02k1,h-1

MSPEk(h)
+ ...+

02kn,1 + ...+ 02kn,h-1

MSPEk(h)
. (16)

More information on the forecast error variance decomposition can be found in [Kilian and
Lütkepohl, 2018, 113-116]. Figure 13 plots the decomposition given in (16) for each n = 1, ..., 4
and horizon h = 0, ..., 14. For consistency, the model corresponding to the modal IRF displayed
in Figure 11 is used. One can see that short-term variation in the number of active rigs is
mainly driven by drilling shocks - which is not a big surprise since drilling takes some time
to respond to unexpected shocks other than drilling shocks. After some months, however,
economic activity shocks gain in importance and also gas supply as well as gas demand shocks
explain a small fraction of the forecast error. Variation in gas production is mostly determined
by gas supply shocks with gas demand shocks being the second most important factor. For
industrial production, economic activity shocks are the most important driver of variation
in the forecast error. What is perhaps surprising is the relative importance of gas demand
shocks. Since natural gas is an important fuel for industry, natural gas price fluctuations
that happen because of changed preferences or extraordinary weather events in regions with
disproportionally high natural gas usage for heating and electricity generation, might affect
industrial production. Also, oil price shocks working their way into the model as gas demand
shocks via substitution effects may do the same. However, I must note that the share of the
forecast error of industrial production that is due to gas demand shocks is mainly governed by
the bound for the immediate impact of a gas demand shock on industrial production. There
are good reasons to impose such a bound, but it is hard to argue for a particular number.
Therefore I have set the relatively prudent lower bound of half a standard deviation of the
reduced form residuals of industrial production times minus one. A narrower band reduces the
relative importance of gas demand shocks for industrial production. Figure 26 and 27 in the
Appendix plot impulse response functions for alternative bounds to the immediate response
of industrial production to a gas demand shock. In particular, I restrict this response to lie
in the interval (-b, 0), where b is now not half but a third of the standard deviation of the
reduced form residual of industrial production. This reduces not only the immediate impact of
a gas demand shock on industrial production but also - and to a lesser extent - of an economic
activity shock to the gas price. The qualitative implications of the impulse response functions,
however, remain unaltered. Concerning the forecast error variance decomposition, gas demand
now explains a larger (but still minor) fraction of the forecast error of gas production and a
larger share of the forecast error of the gas price, while the influence on industrial production
is reduced dramatically. At the same time, gas supply shocks now explain a larger fraction of
the forecast error of the gas price - which is still at most 25 percent - while the share of the
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Figure 13: Forecast error variance decomposition for the full sample 1993M11-2020M1.
Notes: Forecast error variance decomposition corresponds to the impulse response function with maximal

posterior density.

economic activity shock shrinks. Another robustness check is to look at the results for the two
sub-samples previously used for the impulse response analysis. These are presented in Figure
24 and 25 in the Appendix. In the earlier sample, drilling shocks seem to explain a smaller
share of the forecast error corresponding to the number of active rigs than in the late sample.
Economic activity shocks, in the late sample, seem to be responsible for a large part of variation
in gas production after some months. When it comes to the effects of gas demand shocks on
industrial productions, there is a similar issue as in the full sample - we know, however, that
this result crucially depends on the bound for the effect of the gas demand shock on industrial
production.

Some results concerning the forecast error variance decompositions are sensitive to the choice
of b, for which I have no precise empirical estimate. Therefore I have to stick to the results that
are robust to the choice of b. In particular the model shows that drilling and gas supply shocks
explain the largest fraction of the forecast error of active rigs and gas production, respectively.
After some months, however, economic activity shocks explain a considerable fraction of the
forecast error of the rig count and gas demand shocks also play a considerable role for gas
production. The forecast error of industrial production is only to a small extent explained by
drilling or gas supply shocks. Lastly, gas supply shocks can only explain a minor fraction of
the forecast error of the gas price. Instead, the gas price is mainly driven from the demand
side, but we are not in a position to exactly estimate the relative importance of gas demand
and economic activity shocks.
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5.5 Historical Decomposition in the Presence of Unit Roots

Impulse response analysis and forecast error variance decomposition provide some insights into
the inner workings of U.S. natural gas markets. However, to assess the relative importance of
certain shocks in different historical periods they are not an appropriate tool. Instead, this can
be done using the historical decomposition of endogenous variables. Given an AR(p) system
B(L)(yt) = (et), where (et) ~ WN(∑) and B(L) = In - B1 - ... - Bp is a stable n x n
lag-polynomial, the process (yt) has an MA(∞) representation

yt =
∑
j>0

Φjet-j =
∑
j>0

ΘjEt-j, (17)

where Φj is the reduced form IRF of horizon j, Θj is the structural IRF ΦjA
-1
0 and (Et) is

the series of structural shocks such that Et = A0et. Since (yt) is an MA(∞) process it is regular
and therefore the effects of past shocks vanish over time. This motivates the approximation

yt+h ≈
h∑

j=0

ΘjEt+h-j, (18)

that converges in probability to the true value of yt+h if h goes to infinity. Therefore, one
can decompose the kth endogenous variable the following way:

yk,t+h ≈
h∑

j=0

[0k1,jE1,t+h-j + ...+ 0kn,jEn,t+h-j]

=
n∑

i=1

h∑
j=0

0ki,jEi,t+h-j =:
n∑

i=1

.yik,t+h. (19)

Intuitively, .yik,t+h represents the contribution of shock i to the endogenous variable k at
time t + h. If this value is positive, shock i has a positive influence on variable k and the
other way around. Another way to think of yik,t+h is as a counterfactual value for yk,t+h for
the case of all past shocks but i having been zero and shock i having been as observed. Even
though the insights that such a historical decomposition can provide are potentially useful to
study natural gas markets, I cannot simply use formula (19) to compute it. The reason is that
since my system is not stable, the effects of structural shocks cannot be expected to vanish
over time and therefore approximation (18) is not valid. This makes it necessary to adapt the
formula and its interpretation slightly. Given endogenous variables [y-p, ..., y0, ...yT ], exogenous

variables [x0, ..., xT ], an estimate for the reduced form parameters .B as defined in (2) and a
structural parameter matrix .A0 like in (1) one can compute estimates for the structural shocks
E = [.E0, ..., .ET ] as

E = .A0(Y - .BZ). (20)

Afterwards one defines .Eit = [0, ..., 0, .Ei,t, 0, ..., 0]
, for i E {1, ..., n} and recursively computes

the decomposition

.yit =
.d+

p∑
j=1

.Bj .y
i
t-j + .Bxxt + .A-1

0 .Eit, (21)
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with starting values [.yi-p, ..., .y
i
0] := [y-p, ..., y-1]. Note that this is not a decomposition in the

sense provided above for the case of stable AR(p) systems without exogenous variables. Neither
does .yit only contain past structural errors i, nor is the sum of all decompositions an approxi-
mation of the true value yt. The first point is due to the fact that the starting values contain
all kind of structural shocks whose effects cannot be expected to vanish over time. Instead, .yit
has to be interpreted as the counterfactual value of yt for the case of all structural shocks other
than shock i having been zero from time zero on. The second point raises the question how to
present the historical decomposition such that the relative contributions of different structural
shocks can be interpreted qualitatively. For MA(∞) processes, a natural comparison is the
constant zero-function, since in the absence of any shocks the process converges to this value.
In the case of my model, zero is no meaningful comparison value. Also, comparing yit to the true
value yt does not tell us if shock i does exert a positive or negative influence on the endogenous
variables at time t. Suppose, for example, that at time t all structural shocks have a positive
influence on yk,t. Then .yik,t lies below yk,t for every i. To get a series of meaningful comparison
values one has to set .E0t = [0, ..., 0] and compute .y0t using the recursive procedure given in (21).
This is the counterfactual value of yt for the case of no shocks from time zero on. If shock i
has a positive influence on yk,t then .yik,t lies above .y0k,t. Further, this comparison value has the
nice property that the differences (.yik,t - .y0k,t) sum up to (yk,t - .y0k,t), which somehow justifies
the term decomposition.

5.6 Decomposition of Drilling Activity

The historical decompositions of gas production and industrial production are not particularly
interesting for my questions but consistent with common intuition and major historical events.
For the remaining two variables, however, the method described above provides valuable in-
sights. The historical decomposition of the number of active rigs is presented in Figure 14.
The top panel plots the true number of active rigs (grey) and the comparison value y01,t (black),
while in the lower four panels the differences of the real rig count to the comparison value as
well as of the counterfactual values to the comparison values, i.e. (y1,t-y01,t) and (yi1,t-y01,t), are
displayed. Despite continuously higher gas production, active drilling rigs seem to experience
a downward trend since 2005, which could be due to more effective drilling and higher well
productivity. One can see that in the years before 2008, economic activity was more important
in driving up drilling activity to all-time heights than were drilling shocks. After the great
recession, however, when economic activity, gas demand and gas prices were low, drilling re-
mained extraordinarily stable. Egan [2016] notes this fact and explains it with an increase in
drilling and well productivity, which matches the estimated importance of drilling shocks in
this period. Afterwards, in 2016, oil and gas drilling in the United States reached a 70 year low.
This is most likely due to low business confidence in an environment of extremely cheap natural
gas and oil, bankruptcies and vast excess capacities. At the end of 2016, finally, drilling rates
increase rapidly. As Blackmon [2016] explains, this was not only because of higher natural gas
prices but also due to huge efficiency gains in drilling leading to lower costs per drilled well,
new discoveries of shale gas reservoirs in the Permin basin and extraordinary cheap drilling
equipment. Also, as Blackmon [2016] notes, in 2016 more than 200 oil and gas companies went
bankrupt, which cleared out excess capacities and most likely is responsible for the positive

36



5.7 Disentangling Historical Natural Gas Price Fluctuations 5 RESULTS

Figure 14: Historical decomposition of the number of active rigs.
Notes: The comparison value y01,t is plotted in black, the grey line in the top panel is the true rig count y1,t as

included in the model. The remaining panels present the historical decomposition series that were computed

using (21) minus the comparison value, i.e. (yi1,t-y01,t) (color), as well as the true rig count minus the comparison

value, i.e. (y1,t - y01,t) (grey). This is done to highlight the fact that
∑

i(y
i
1,t - y01,t) = (y1,t - y01,t) justifies the

term decomposition.

contribution of supply shocks to drilling activity.

5.7 Disentangling Historical Natural Gas Price Fluctuations

Now let us get to the main point of this exercise, the historical decomposition of the natural gas
price as presented in Figure 15. One can see that the comparison value increases until 2005 and
then decreases. This changed trend can be attributed to the shale gas boom. However, there
is much that cannot be explained by the deterministic parts of the time series. Before 2000,
natural gas prices were unusually low. This was mainly due to gas specific demand shocks. A
possible explanation for this would be extremely cheap oil after the Asian financial crisis - in
November 1998, the nominal price for one Barrel of WTI was the lowest since 1986.16 Some
years later, in 2000 and 2001, natural gas prices spiked. The model correctly attributes the
biggest share of this increase to rising gas demand. The reason for the surge in natural gas prices
was the California energy crisis, where artificial tightening of electric energy supply and market
manipulation led to a surge in demand for natural gas. As Wilson [2002] points out, at this time

16Source: FRED (2022) ,DCOILWTICO, (monthly): https://fred.stlouisfed.org/series/DCOILWTICO.
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Figure 15: Historical decomposition of the gas price.
Notes: The comparison value y04,t is plotted in black, the grey line in the top panel is the true rig count y4,t as

included in the model. The remaining panels present the historical decomposition series that were computed

using (21) minus the comparison value, i.e. (yi4,t-y04,t) (color), as well as the true rig count minus the comparison

value, i.e. (y4,t - y04,t) (grey). This is done to highlight the fact that
∑

i(y
i
4,t - y04,t) = (y4,t - y04,t) justifies the

term ,decomposition,.

around 50 percent of Californian electricity generation capacity was driven by natural gas with
expensive natural gas power plants acting as the swing producer. Therefore, when Californian
electricity demand rose, natural gas demand rose disproportionally. Additionally, the high
electricity prices led to older, less efficient natural gas power generators to be re-activated.
As a result, from May 2000 to August 2001 natural gas demand for electricity generation in
the system of the Pacific Gas and Electric Company was 41 percent higher than in the twelve
months before. When the effects of this crisis vanished, the fall of gas prices was reinforced
by a drop in industrial demand due to the economic crisis in the aftermath of the Dotcom
bubble. Additionally, falling oil prices may explain some portion of the fall in gas demand.
In 2005, natural gas prices reached their record level in the sample. The reasons are supply
disruptions due to the hurricanes Katrina and Rita. I have already accounted for the former
with a dummy. However, a small portion of the remaining rise in prices is correctly estimated to
be due to a gas supply shock. Additionally, around this time economic activity shocks begin to
exert a positive influence on prices which they continued to do until the financial crisis of 2008.
Shortly before the great recession, natural gas prices spiked again. According to CRS [2009], a
rise in demand from the power generation (+2.8%) and residential (+3%) sector in an already
tight market has to be made responsible for this, while industrial demand rose only 0.3% in
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Figure 16: Contributions of trend and different shocks to natural gas price collapse after 2008.
Notes: Solid lines mark changes in log real natural gas prices in two time windows. Colored bars represent

contributions of fitted trend and different structural shocks to this price change that were computed using (22).

2008. Additionally, the price of WTI hit a record high of almost 140 USD/Barrel in June 2008.
Again, the model identifies demand shocks as the main driver for this spike in prices. Wiggins
and Etienne [2017] report similar results. According to them, the exact origin of the price spike
is somehow unsettled. However, they review some potential explanations that are all in line
with my definition of a gas specific demand shock. After this peak, the gas price was in free
fall from 2008 to 2012. Note that it are demand side factors and not supply changes due to
the shale boom that are mainly responsible for this price drop. This is not self-evident, since
economists and market analysts have attributed this price collapse largely to the shale boom
[Wiggins and Etienne, 2017]. Hausman and Kellogg [2015] for example estimate that demand
side factors are responsible for less than 20 percent of the fall in natural gas prices between
2007 and 2013, while the shale gas revolution is argued to be responsible for the remainder.
My model results challenge the predominant role of supply side factors. To assess the relative
contributions of the trend and the structural shocks to the change of some variable one can
compute:

yk,t+h - yk,t = (yk,t+h - y0k,t+h) + (y0k,t+h - y0k,t) + (y0k,t - yk,t)

= (y0k,t+h - y0k,t) +
n∑

i=1

[(yik,t+h - y0k,t+h) + (y0k,t - yik,t)], (22)

where (y0k,t+h - y0k,t) is the part of the change that can be explained by the trend (as well as
seasonal and weather effects) and the remaining summands are the contributions of different
structural shocks i. The first two bars of Figure 16 plot the contributions of different factors
to the gas price collapse after its peak in 2008M06. Ten months after this date the natural
gas price reached a local minimum. According to the historical decomposition implied by the
modal IRFs, more than two thirds of this collapse can be attributed to demand side factors.
After some recovery, the natural gas price fell even deeper in 2012M04. It is perhaps more
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surprising than for the first time span that still demand side effects accounted for most of the
drop in prices. Figure 17 shows the posterior distribution of the fraction of the natural gas price
drop that was due to demand side shocks (economic activity shocks and gas demand shocks).
For the period 2008M06-2009M09 the whole 68% (equal-tailed) confidence interval is above 75
percent and for 2008M06-2012M04 it is still above 50 percent. Thus we can conclude that for
the natural gas price collapse after 2008, demand side factors were more important than the
shale gas revolution. The third bar of Figure 16 plots the contributions of different shocks and
the trend to the change in natural gas prices between June 2007 and 2013, which is roughly
the same time window that Hausman and Kellogg [2015] look at. While it is obvious that the
trend component pulled prices down strongly, supply shocks actually dragged it up somehow.
Thus, demand side shocks - of which economic activity shocks are the most important - are
responsible for more than 45 percent of the drop in natural gas prices, which is more than double
the fraction that Hausman and Kellogg [2015] estimate. However, Figure 17 shows that for this
time interval the estimate of the contribution of demand side shocks to the drop in natural
gas prices is fairly imprecise. Therefore, the value of Hausman and Kellogg [2015] - which is
estimated using an instrument depending on variation in weather conditions and therefore also
has a high variance - lies within the 68% confidence interval of my estimate. Additionally, there
are some differences between my approach and the one of Hausman and Kellogg [2015]: They
compare yearly average prices of 2007 and 2013, whereas I look at monthly prices. Furthermore,
they estimate long-run price elasticities of natural gas supply and demand to construct (long
run) supply and demand curves, while I use the historical decomposition implied by my SVAR
model. This makes the two estimation results not entirely comparable, but my estimates suggest
that demand-side shocks may have played an important role for the observed decline in natural
gas prices also in the period 2007-2013.

The origins of the economic activity shocks in 2008 are straightforward. The gas demand
shock is most likely the result of low consumer confidence and a severe reduction of household
wealth. Further, the oil price - itself in free fall - which used to pull the gas price upwards in
the years before, now became decoupled from the latter as was pointed out before. Also, this
was the time when the United States almost completely withdrew from global LNG markets
before returning as a net supplier in 2016. After the financial crisis, economic activity and gas
demand held the natural gas price below its trend until about 2014 before playing a positive role
again. One possible explanation for the persistent rise in gas demand is the growing importance
of natural gas for electric power generation, as can be seen in Figure 7. In 2016, natural gas
surpassed coal as the most important source of electric power in the U.S. [Walton, 2017]. In
the same year, however, the natural gas price fell to its lowest level in the sample. As Egan
[2016] reports, in this year the U.S. energy industry was struggling with excess supply. After
2016 prices rose again, which, according to Walton [2017] was due to a combination of supply
disruptions and stronger demand. Additionally, the bankruptcy of more than 200 oil and gas
companies [see Blackmon, 2016] may have also cleared out some excess supply, which would be
represented by a supply shock as it is the case in our decomposition. All in all, the historical
decomposition of natural gas prices seems to closely match the prevailing explanation of many
events. One possible difference, however, is the natural price collapse after 2008, which my
model largely attributes to demand side factors instead of the shale gas boom.
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Figure 17: Posterior distribution of the fraction of the natural gas price drop that can be
attributed to demand side shocks (economic activity and gas demand shocks) in three time
intervals.
Notes: Red line represents fraction that corresponds to the modal IRF, dotted lines are end-

points of the 68% equal-tailed confidence intervals. Plotted are distributions of the random variable
100.[(y3

4,t+h-y0
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4,t+h-y0
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]]Y, Z, for three combinations of t and h.

6 Conclusion

To study natural gas market dynamics in the United States I have set up a structural vector
autoregressive model that includes the number of active drilling rigs, natural gas production,
industrial production and the real price of gas. To identify the structural form I employ a set of
both, exclusion and sign restrictions. For conducting inference I adapt the procedure of Inoue
and Kilian [2013, 2018] that was originally designed for purely sign identified models. Many of
my results are similar to the ones of existing studies on the U.S. gas markets conducted, among
others, by Arora and Lieskovsky [2014], Wiggins and Etienne [2017] and Rubaszek et al. [2021].
In particular, I show that gas demand and economic activity shocks account for the biggest
part of variation of the natural gas price and supply-side shocks are comparatively negligible.

As a new contribution, I present evidence for the fact that the response of drilling to
unexpected changes in the price of gas depends on the source leading to the price change.
Drilling reacts sluggishly to the other model variables and price changes due to gas specific
demand shocks are typically large but vanish quickly. Therefore, economic activity shocks
that change prices less but more persistently raise drilling significantly and persistently, while
gas demand shocks do not. In particular, the price elasticity of drilling after an economic
activity shock is significantly larger than after a gas demand shock. Since previous studies like
Anderson et al. [2018] and Mason and Roberts [2018] have found out that the rate of drilling is
the most important determinant of oil and natural gas supply, this result is highly relevant for
policymakers that want to expand domestic energy production. In the case of the United States,
a considerable amount of the record high levels of gas drilling before 2008 can be attributed to
economic activity shocks. After 2008, technological advances in drilling prevented the number
of active rigs to collapse despite exceptionally low natural gas prices.

Expanding natural gas production is usually not an end in itself. Although national security
of supply and geopolitical autonomy have recently become the focus of renewed attention, gov-
ernments typically hope that greater supply will lead to cheaper energy for national businesses
and the electorate. It is therefore worthwhile to disentangle the reasons for the U.S. natural
gas price collapse after 2008. Hausman and Kellogg [2015] attribute this fall to the shale gas
revolution - a view they seem to share with most economists and analysts [Wiggins and Eti-
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enne, 2017] - and estimate that demand side factors are responsible for less than 20 percent of
the total price drop between 2007 and 2013. However, my model highlights the importance of
demand side factors. I estimate - albeit with a wide confidence interval - that between June
2007 and June 2013 more than 45 per cent of the price decline was due to demand-side shocks.
When looking at a narrow time window from the June 2008 price high until September 2009,
according to my model more than two thirds of the price drop can be attributed to economic
activity and gas demand shocks. Even when comparing the natural gas price of June 2008 to
the approximately 85 percent lower value of April 2012, I conclude that the contribution of
demand side factors to this drop was greater than that of supply side factors. The two latter
results even apply to the entire 68% equal-tailed confidence interval. The importance of de-
mand side shocks for the gas price drop after 2008 has been previously highlighted by Wiggins
and Etienne [2017] and Rubaszek et al. [2021] who also make use of an SVAR model. However,
they do not compute and present the contributions of different shocks to the change in the price
level over different periods. Thus, this studies do not challenge the estimate of Hausman and
Kellogg [2015] explicitly, even though calculations to do so would have been straightforward in
principle. This evidence of the importance of demand side shocks after 2008 should dampen
the hopes of governments working on their own shale gas booms. As follows from Wang and
Krupnick [2015] and Mu [2019], most countries lack one or many of the peculiarities that led
to the roaring success of shale gas development in the United States.17 However, even with a
comparatively rapid expansion of shale gas production, no one should expect a price decline
similar to that seen in the United States after 2008.

17Examples for this are water availability, deep capital markets, a dynamic service-sector industry and the
specific market structure of the oil and gas industry in the United States.

42



LIST OF FIGURES

7 List of Figures

1 U.S. (shale) gas production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 U.S. natural gas trade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 U.S. LNG trade and capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Oil and natural gas prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 U.S. active drilling rigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6 International natural gas prices and oil price . . . . . . . . . . . . . . . . . . . . 12
7 U.S. natural gas consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8 Model variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9 Reduced form residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10 IRFs: comparison of recursive identification and sign restrictions . . . . . . . . . 29
11 IRFs and error bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
12 Comparison of price elasticities of drilling by shock . . . . . . . . . . . . . . . . 32
13 Forecast error variance decomposition . . . . . . . . . . . . . . . . . . . . . . . . 34
14 Historical decomposition: rig count . . . . . . . . . . . . . . . . . . . . . . . . . 37
15 Historical decomposition: gas price . . . . . . . . . . . . . . . . . . . . . . . . . 38
16 Contributions to gas price collapse after 2008 . . . . . . . . . . . . . . . . . . . . 39
17 Contributions of demand side shocks to natural gas price drop . . . . . . . . . . 41
18 Rotations vs. Sub-Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
19 Mapping Reduced Form to IRFs . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
20 IRFs: Original Inoue and Kilian [2013] Oil Model . . . . . . . . . . . . . . . . . 56
21 IRFs: Replication of the Inoue and Kilian [2013] Oil Model . . . . . . . . . . . . 57
22 IRFs: early sample 1993M11-2005M04 . . . . . . . . . . . . . . . . . . . . . . . 58
23 IRFs: late sample 2005M04-2020M01 . . . . . . . . . . . . . . . . . . . . . . . . 59
24 FEVD: early sample 1993M11-2005M04 . . . . . . . . . . . . . . . . . . . . . . . 60
25 FEVD: late sample 2005M04-2020M01 . . . . . . . . . . . . . . . . . . . . . . . 60
26 IRFs: robustness check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
27 FEVD: robustness check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

43



8 BIBLIOGRAPHY

8 Bibliography

S. T. Anderson, R. Kellogg, and S. W. Salant. Hotelling under pressure. Journal of Political
Economy, 126(3):984-1026, June 2018.

J. E. Arias, J. F. Rubio-Ram,1rez, and D. F. Waggoner. Inference based on structual vector
autoregressions identified with sign and zero restrictions: Theory and applications. Econo-
metrica, 86(2):685-720, March 2018.

V. Arora and J. Lieskovsky. Natural gas and u.s. economic activity. The Energy Journal, 35
(3):167-182, July 2014.

J. Bai and P. Perron. Estimating and testing linear models with multiple structural changes.
Econometrica, 66(1):47-78, January 1998.

C. Baumeister and J. D. Hamilton. Sign restrictions, structural vector autoregressions, and
useful prior information. Econometrica, 83(5):1963-1999, September 2015.

C. Baumeister and J. D. Hamilton. Structural interpretation of vector autoregressions with
incomplete identification. American Economic Review, 109(5):1873-1910, May 2019.

D. Blackmon. The oil and gas situation - 2016 year in review, Dec.
2016. URL https://www.forbes.com/sites/davidblackmon/2016/12/20/

the-oil-and-gas-situation-2016-year-in-review/?sh=4e6a15187c65.
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A MATHEMATICAL APPENDIX

A Mathematical Appendix

Here I will prove some statements made in Sections 4.4 and 4.5. The first Proposition is a
central and well known result for sign identified SVARs.

Proposition 1. Suppose the unknown matrix A E Rnxn is of full rank and AA, = S. Then a
matrix B is a possible solution for A if and only if B = CQ, where C = chol(S) and Q E O(n).

Proof. Suppose we have such a B. Then we have

BB, = CQQ,C , = CC , = S. (23)

Now let B satisfy BB, = S. Then we have

B = C

~Q:=. .. .
C-1B, (24)

where ~Q E O(n) because

~Q ~Q, = C-1BB,(C-1),

= C-1S(C-1),

= C-1CC ,(C ,)-1 = In,

and similarly ~Q, ~Q = In.

The second result proves the claim that in this paper,s model the matrix Q must have the
form (10) in a more general case.

Proposition 2. Suppose the unknown matrix A E Rnxn is of full rank and is block lower
triangular, i.e. there exist n1+...+nk = n such that A consists of k2 block matrices Aij E Rnixnj

with Aij = 0nixnj
for j > i. Further, A satisfies AA, = S. Then a matrix B is a possible solution

for A if and only if B = CQ, where C = chol(S) and Q = diag(Qn1 , ..., Qnk
) is block-diagonal

with Qi E O(ni).

Proof. Following Proposition 1 it is clear that B must have the form

B = CQ, (25)

with Q E O(n). Since C is lower triangular, C-1 is lower triangular and in particular block
lower triangular as defined above. Therefore Q = C-1B is the product of two block lower
triangular matrices. Using the same partition as for A, one can compute each of the k2 blocks
of Q as

Qij = (C-1B)ij =
k∑

s=1

(C-1)isBsj. (26)

Now suppose j > i. Then for s = 1, ..., j - 1 the matrix Bsj consists only of zeros and for
s = j, ..., k the same is true for matrix (C-1)is. Therefore in this case the right side of (26) is a
sum of zero matrices and Qij consists of zeros only. Thus Q is also block lower triangular. As
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a next step we will prove that using the same partition, every orthonormal matrix Q that is
block lower triangular is in fact block diagonal with orthonormal matrices as diagonal entries.
For k = 1 this statement is trivial. Now suppose it holds for a certain k and take an arbitrary
matrix Q E O(n) with a partition corresponding to n1 + ... + nk+1 = n such that Q is block
lower triangular. We can then partition this matrix into

Q =

]
Q11 0n1xn.
Q.1 Q..,

[
, (27)

where Q is of dimension n1 x n1, Q.1 is of dimension n. x n1 with n. = n2 + ...+ nk+1 and
Q.. is of dimension n. x n.. Note that Q.. is block lower triangular with k2 blocks. We can
then use the fact that Q E O(n):

QQ, =
]
Q11 0n1xn.
Q.1 Q..

[ ]
Q,

11 Q,
.1

0n.xn1 Q,
..

[
=

]
Q11Q

,
11 Q11Q

,
.1

Q.1Q,
11 Q.1Q,

.1 +Q..Q,
..

[
!
=

]
In1 0n1xn.

0n.xn1 In.

[
.

(28)

One can derive similar conditions from Q,Q !
= In. It follows immediately that Q11 E

O(n1). Thus left-multiplying Q11Q
,
.1 by Q,

11 yields Q.1 = 0n.xn1 from which we obtain Q.. E
O(n.). Therefore Q.. is an orthonormal, block lower triangular matrix with k2 blocks which,
by induction assumption, is block diagonal with orthonormal matrices as diagonal entries. It
follows that the statement holds also for k + 1 and therefore for all k > 1, which finishes the
proof.

Setting n1 = 1, n2 = 3 and k = 2 it follows from Proposition 2 that for the model of this
paper it must hold that A-1

0 = CQ with C = chol(∑) and Q being as given in (10). The
general statement, however, has also a nice geometric interpretation. Suppose we have an n-
dimensional vector of reduced form errors (et) with variance-covariance matrix ∑ and (Et) is an
n-dimensional vector of uncorrelated structural shocks with unit variance. Let us assume that
both variables are connected via

A(et) = (Et), (29)

where A-1 is an nxnmatrix that is block lower triangular, as is given in Proposition 2. Then
it follows from the same statement that A-1 = CQ with Q = diag(Q1, ..., Qk), Qi E O(ni).
Thus we get

(ut) := C-1(et) = Q(Et). (30)

Geometrically, (ut) is the vector of uncorrelated errors obtained by using the Gram Schmidt
orthonormalization procedure. This vector is equal to the identified ,structural, shocks if a
recursive identification strategy is used. Since Q is block-diagonal, we get the following identity
for every i < k: 2.4 (umi+1,t)

...
(umi+ni,t)

3.5 = Qi

2.4 (Emi+1,t)
...

(Emi+ni,t)

3.5 , (31)
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where mi := n1 + ... + ni-1. Since Qi is a regular square matrix, the orthogonal errors
(umi+1,t), ..., (umi+ni,t) span the subspace of the structural errors (Emi+1,t), ..., (Emi+ni,t). In other
words, imposing block lower triangularity on A-1 allows one to identify subspaces in the space
of all structural shocks - which, in SVAR analysis, is assumed to equal the space of the reduced
form shocks - that are spanned of ni < n of the structural shocks. It is only within this subspaces
that rotations need to be applied to transform the errors (ujt) to the true structural shocks
(Ejt). The reduced dimensionality of the rotations is matched by the reduced dimensionality
of the matrices Qi, ni, when compared to n. Suppose for example that we are in the three
dimensional case with k = 2, n1 = 1 and n2 = 2. Then we will let the direction of (e1,t)
untouched, project (e2,t) on [(e1,t)]

-, (e3,t) on [(e1,t), (e2,t)]
- and rotate the resulting vectors

(u2,t) and (u3,t) in the 2-dimensional plane defined by [(e1,t)]
- to obtain all three structural

shocks up to scale. Figure 18 visualizes this procedure and its difference to ,ordinary, rotations.
Finding three uncorrelated structural shocks that span the space of the observed reduced form
shocks amounts to finding an orthogonal coordinate system of said space (the rows of A-1

0

are then the coordinates of the reduced form shocks with respect to this coordinate system).
In general, this task has no unique solution. The Figure plots the coordinate system that is
obtained by the Cholesky decomposition, i.e. (e1) is spannend by (E1), (e2) is a combination
of the first two coordinate vectors and the third coordinate vector is orthogonal to the first
two. If we then rotate the whole coordinate system, we end up with another set of orthogonal
vectors of unit length, i.e. another coordinate system. If we impose the restriction that the first
column of A-1

0 is of the form [* 0 0], however, the possible rotations are severely restricted. If
the direction of (E1) would be different from the direction of (e1) the imposed zero restrictions
were violated. Therefore we may only rotate the first axis, which is equivalent to rotating (E2)
and (E3) in [(E2), (E3)] = [(E1)]

- = [(e1)]
-. Proposition 2 also covers two corner cases: If k = 1

we are left with the same identification problem as in the case of classical sign restrictions. In
the case of k = n we have ni = 1 for every i < k and every such subspace is one dimensional.
Thus the structural shocks are point identified up to scale. If some of the blocks have dimension
ni = 1, these shocks are point identified, while the remaining shocks are only ,block identified,
- as I call it - and additional sign, elasticity or shape restrictions may be used to narrow down
the set of potential solutions.

There remains the question how to conduct inference in the block identified case. In the
case of classical sign restrictions, i.e. k = 1, Inoue and Kilian [2013, 2018] prove that in a
Bayesian framework one can explicitly derive the posterior density of the structural impulse
response functions ~Θ as

f( ~Θ) =

]]]]] δvec( ~Θ)

δ[vec(B), vech(C), s,]

]]]]]
-1 ]]]]δvech(∑)δvech(C)

]]]] f(B|∑)f(∑)f(s), (32)

where S = In - 2(In + ~Q)-1, s = veck(S) and the operators vec, vech and veck stack
the columns, lower triangular and sub-diagonal elements of a matrix, respectively. ~Q is Q
manipulated to satisfy | ~Q| = 1. For the remainder of the section, when I write Q I will refer
to ~Q. The matrix B is defined as [B1, ..., Bp]. Le,on et al. [2006] show that for an uniform
distribution on {Q E O(n)||Q| = 1} the variable s has the density function
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E2

E3

E1 E1

E2

E3

e1
e2

e3

e1
e2

e3

A-1
0 =

24* * *
* * *
* * *

35 A-1
0 =

24* 0 0

* * *
* * *

35Full Rotation Sub-Rotation

Figure 18: Difference between Rotations and Sub-Rotations.
Notes: This figure displays random variables interpreted as vectors in a Hilbert space (the square root of the

covariance being the inner product). Viewed through this lens, the length of a vector is its standard deviation,

the cosine of two vectors is their correlation coefficient and orthogonality in the geometric and probabilistic

sense are equivalent. The plotted coordinated system is the set of structural shocks obtained using the Cholesky

decomposition (or equivalently the Gram-Schmidt procedure). Possible rotations of the coordinate system that

are allowed under the identification assumptions are drawn on the axes.

f(s) =

(
nπ

i=2

Γ(i/2)

πi/2

)
2)n-1()n-2(/2

|In + S|n-1
. (33)

With the posterior density being explicitly computable one can choose the modal model
that has the highest posterior density as point estimate. Also, by plotting impulse responses
for the 100(1- α)% of all drawn models with the highest posterior density, one can construct
joint confidence bands for the impulse responses that avoid the problems of pointwise bands.
The result of Inoue and Kilian [2013], however, depends on the change-of-variable method
which holds because there is a one-to-one mapping between [vec(B),, vech(C),, s,] and the first
p + 1 structural IRFs, [00, 01, ..., 0p] = [A-1

0 ,Φ1A
-1
0 , ...,ΦpA

-1
0 ], where Φi are the reduced form

impulse responses at horizon i. In the case of sub-rotations, however, one has to adapt the
formula above. This is because we draw not from O(n) but from smaller dimensional subspaces
O(ni). Therefore a mapping between [vec(B), vech(C), s] and ~Θ cannot be bijective, since
additional linear restrictions on Q lead to the dimension of veck(S) (and of Q) being smaller
than n(n- 1)/2. I will derive an adaption of the formula of Inoue and Kilian [2013, 2018] for
the special case of k = 2, n1 = 1 and n2 = n - 1 such as in the model set up in this paper.
In this case, it follows from the dimensional arguments made above that there is a one to one
mapping

Φ : [vec(B), vech(C), (s*),] .→ vec( ~Θ), (34)

50



A MATHEMATICAL APPENDIX

· · ·

· · ·θ

∑ B1 Bp

00 01 0p

Φ Φ-1

S* = f (Q*)

Figure 19: One-to-one Mapping from Reduced Form and Sub-Rotation to first p IRFs.
Notes: Dots represent unrestricted elements that can be chosen freely from R and matrix elements without dots

are functions of the unrestricted elements. One can verify by counting that the two objects in the grey boxes

have the same dimension.

where s* = veck(S*) and S* = In-1 - 2(In-1 + Q*)-1. The matrix Q* is the one used to
construct Q like in (10). The matrix S* is skew-symmetric and thus all the information about
the rotation represented by Q* is contained in the lower-diagonal elements of Q*. Figure 19
illustrates that indeed Ψ is a mapping between two vector spaces of the same dimension. It
follows that one can compute the posterior density of the structural IRFs as

f( ~Θ) =

I. .. .]]]]] δvec( ~Θ)

δ[vec(B), vech(C), (s*),]

]]]]]
-1

II. .. .]]]]δvech(∑)δvech(C)

]]]]
III. .. .

f(B|∑)
IV....

f(∑)

V. .. .
f(s*) . (35)

Terms II-IV are exactly like in Inoue and Kilian [2018], term V is given as (33), where one
just has to substitute S* for S and n-1 for n. Only deriving I needs some tedious computations.
Before doing that, however, I should introduce some notation: Let Dn be the n2 x n(n+ 1)/2
duplication matrix such that vec(M) = Dnvech(M) for any nxn symmetric matrix M. Further,
~Dn-1 is the (n- 1)2 x (n- 1)(n- 2)/2 matrix designed to satisfy vec(S*) = ~Dn-1s

*. Similarly
Ln is n(n+ 1)/2x n2 such that vec(M) = L,

nvech(M) for any lower triangular matrix M. The
n x 1 vector eni consists of zeros with only the ith element being equal to one. Lastly, let us
define the nx (n- 1) matrix K as

K =

]
01x)n-1(

In-1

[
. (36)

Now the following proposition that justifies using equation (32) can be proven:
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Proposition 3. Suppose we have an n x n SVAR-model, where only the first of n structural
shock is allowed to have an immediate impact on the first variable and we draw from an uniform
distribution on O(n - 1) to identify the model via sub-rotations as outlined above. Then the
joint posterior density of the structural impulse response functions can be computed as

f( ~Θ) = 2)n
2-n+2(/2|C|-np

nπ
i=1

cn-i+1
ii |In-1 +Q*|-)n-2(

| ~D,
n-1(K

, *K ,C ,)(In2 - L,
nLn)(K * CK) ~Dn-1|-1/2f(B|∑)f(∑)f(s*). (37)

Proof. As first and major step, we will take the derivative of vec( ~Θ) with respect to vec(Φ),,
vech(C), and s,. Note that Q* = 2(In-1 - S*)-1 - In-1 and therefore

dQ* = 2(In-1 - S*)-1dS(In-1 - S*)-1. (38)

It follows that

vec(dQ*) = 2(((In-1 - S*)-1), * (In-1 - S*)-1)vec(dS)

= 2(((In-1 - S*)-1), * (In-1 - S*)-1) ~Dn-1ds. (39)

Now comes the step where we depart from Inoue and Kilian [2018]. We can express Q as

Q = en1 (e
n
1 )

, +KQ*K ,. (40)

It follows that

d(CQ) = d(C)Q+ Cd(KQ*K ,)

= d(C)Q+ 2CK(In-1 - S*)-1dS*(In-1 - S*)-1K , (41)

d(ΦCQ) = d(Φ)CQ+ Φd(C)Q+ 2ΦCK(In-1 - S*)-1dS*(In-1 - S*)-1K ,, (42)

and further

d(vec(CQ)) = (Q, * In)L
,
nd(vech(C)) + 2(In * C)vec(K(In-1 - S*)-1dS*(In-1 - S*)-1K ,)

= (Q, * In)L
,
nd(vech(C)) + 2(In * C)JQds

* (43)

d vec(ΦCQ) = (Q,C , * Inp)d(vec(Φ)) + (Q, * Φ)L,
nd(vech(C)) + (In * ΦC)JQds

*, (44)

where JQ := (K((In-1 - S*)-1), *K(In-1 - S*)-1) ~Dn-1. Note that the final results for the
differentials are just as in Inoue and Kilian [2018], with the only difference being the definitions
of JQ and s*. While in Inoue and Kilian [2018] JQ is a square matrix in our case it is not,
since we have to match the different dimensions of S* and C. This difference in dimensions will
remain the major challenge in the following proof, since, in general, square matrices are easier
to handle than non-square matrices.

Remembering that ~Θ = [(CQ), (ΦCQ),], it follows immediately from (43) and (44) that

J1 :=
δvec( ~Θ)

δ[vech(C), (s*), vec(Φ)]
=

]
(Q, * In)L

,
n (In * C)JQ 0n2xn2p

(Q, * Φ)L,
n (In * ΦC)JQ (Q,C , * Inp)

[
. (45)
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Because this matrix is block lower triangular its determinant is equal to the product of the
determinants of the matrices on the diagonal:

|J1| = |(Q, * In)L
,
n (In * C)JQ||(Q,C , * Inp)|

= |(Q, * In)L
,
n (In * C)JQ||C|np. (46)

Now we can re-write

[(Q, * In)L
,
n (In * C)JQ] = (Q, * In)Z, (47)

with

Z = [L,
n 2(F *G) ~Dn-1], (48)

F = QK(In-1 - (S*),)-1 =
1

2
K(In-1 +Q*) = K(In-1 - S*)-1, (49)

G = CK(In-1 - S*)-1 = CF. (50)

As a next step we can make use of the equality

|(Q, * In)Z| = |Z| =
√

|Z|2 =
√
|Z ,Z|. (51)

Because of

Z ,Z =

]
Ln

2 ~D,
n-1(F

, *G,)

[ [
L,
n 2(F *G) ~Dn-1

]
=

]
In)n+1(/2 2Ln(F *G) ~Dn-1

2 ~D,
n-1(F

, *G,)L,
n 4 ~D,

n-1(F
, *G,)(F *G) ~Dn-1

[
(52)

=:

]A B
C D

[
we can compute the squared determinant of Z as

|Z ,Z| = |A||D - CA-1B|
= |D - CB|
= |4( ~D,

n-1(F
, *G,)(In2 - L,

nLn)(F *G) ~Dn-1)|
= 2)n-1()n-2(| ~D,

n-1(F
, *G,)(In2 - L,

nLn)(F *G) ~Dn-1|. (53)

Note that the exponent of 2 is smaller than in the Case of Inoue and Kilian [2018]. The
reason for that is that because JQ has less columns in our case Z has so too. Therefore the
dimension of Z ,Z is (n-1)(n-2)/2 here instead of n(n-1)/2. Now we define F * = (In-1-S*)-1

and ~D+
n-1 = ( ~D,

n-1
~Dn-1)

-1 ~D,
n-1. Using a result from Magnus [1988] we can write

~D,
n-1(F

, *G,)(In2 - L,
nLn)(F *G) ~Dn-1)

= ~D,
n-1((F

*), * (F *),)(K , *K ,)(In * C ,)(In2 - L,
nLn)(In * C)(K *K)(F * * F *) ~Dn-1

=M, ~D,
n-1(K

, *K ,)(In * C ,)(In2 - L,
nLn)(In * C)(K *K) ~Dn-1M, (54)

where M = ( ~D+
n-1(F

* * F *) ~Dn-1). Again, using Magnus [1988] we obtain
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|M| = |F *|n-2 = |1
2
In-1 +Q*|n-2 = 2-)n-2()n-1(|In-1 +Q*|n-2. (55)

In the case of sign restrictions without exclusion restrictions, Inoue and Kilian [2018] are
able to simplify (54) further by decompositioning In2 -L,

nLn = R,R where R is an n(n-1)xn
matrix that satisfies RR, = In)n-1(/2. Further, they are able to show that

R(In * C) ~Dn (56)

is lower triangular and therefore they can simplify its determinant to a product of diagonal
elements of C. Because

R(In * C)(K *K) ~Dn-1 (57)

is no square matrix, however, we cannot proceed accordingly and do not simplify our ex-
pression further. Using (46), (47), (51), (53), (54) and (55) we obtain

|J1| = |C|np|(Q, * In)L
,
n (In * C)JQ|

= |C|np|(Q, * In)Z|
= |C|np|Z|
= |C|np2)n-1()n-2(/2| ~D,

n-1(F
, *G,)(In2 - L,

nLn)(F *G) ~Dn-1|1/2
= |C|np2)n-1()n-2(/2|M|| ~D,

n-1(K
, *K ,C ,)(In2 - L,

nLn)(K * CK) ~Dn-1|1/2
= 2-)n-1()n-2(/2|C|np|In-1 +Q*|n-2| ~D,

n-1(K
, *K ,C ,)(In2 - L,

nLn)(K * CK) ~Dn-1|1/2.
(58)

For

J3 =
δvech(∑)

δvech(C),
(59)

we can use the result from Inoue and Kilian [2018] that

|J3| = 2n
nπ

i=1

cn-i+1
ii , (60)

where cii is the ith diagonal element of C. Inoue and Kilian [2013] proved that]]]] δvec(Φ)δvec(B),

]]]] = 1, (61)

we can re-write (32) as

f( ~Θ) = |J1|-1|J3|f(B|∑)f(∑)f(s*)

= 2)n
2-n+2(/2|C|-np|In-1 +Q*|-)n-2(

nπ
i=1

cn-i+1
ii

| ~D,
n-1(K

, *K ,C ,)(In2 - L,
nLn)(K * CK) ~Dn-1|-1/2f(B|∑)f(∑)f(s*).
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B Replication of the Kilian and Inoue (2013) Oil Model

Since I could not rely on any pre-built packages or code to estimate and identify my SVAR
model, I wanted to make my own coding results comparable to a benchmark model to de-
tect potential programming or conceptional errors. Slightly modifying my code (i.e. reducing
dimensions, getting rid of the part involving sub-rotations, changing some identifying assump-
tions and substituting my own formula for the IRF posterior density for the one provided by
Inoue and Kilian [2018]) allowed me to replicate the oil model of Inoue and Kilian [2013]. This
model has the advantages that a) its identifying assumptions are similar to the ones used in
my model, b) it relies on the same strategy for inference (i.e. reporting the modal IRF) and c)
there is Matlab code online available, which has been corrected for various errors/shortcomings
that have been detected in the last years. Figure 20 was generated using this original Matlab
code. Figure 21, on the other hand, plots the structural IRFs that were computed using my
own code.

Taking into consideration, that due to different random number generators and seeds the
results cannot be expected to be exactly the same, the two Figures can be interpreted as being
roughly identical. Since the resulting posterior distribution is relatively flat in some regions,
in particular small differences in the reported modal model should not be put on the gold
scale. Even though not every part of my code could be cross-checked in this way (especially the
derivation of the posterior distribution in the case of sub-rotations), this result should hopefully
strengthen confidence in the technical soundness of this paper.
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B REPLICATION OF THE KILIAN AND INOUE (2013) OIL MODEL

Figure 20: Structural Impulse Response Functions of the Inoue and Kilian [2013] Oil Model.
Notes: This plot is produced using the original Matlab Code provided together with the Kilian and Lütkepohl

[2018] textbook. Since the code has been subject to some revisions, the plot slightly deviates from the Inoue

and Kilian [2013] paper but resembles Figure 13.7 in Kilian and Lütkepohl [2018]. This code can be downloaded

from Lutz Kilian,s website: https://sites.google.com/site/lkilian2019/textbook/code?authuser=0.
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B REPLICATION OF THE KILIAN AND INOUE (2013) OIL MODEL
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Figure 21: Replication of the Inoue and Kilian [2013] Oil Model using my own R code.
Notes: This figure was produced using the original dataset of Inoue and Kilian [2013] and a modified version of

my own R code that was originally programmed to analyse the U.S. natural gas market. Since the exact result

depends on the random number generator, the seed and the exact number of iterations, some minor differences

to the original Figure are to be expected.
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C ROBUSTNESS CHECKS

C Robustness Checks

C.1 Results for Subsamples

Figure 22: Structural IRFs for the early sample 1993M11-2005M04.
Notes: Dashed lines mark IRFs corresponding to modal model of late sample 2005M05-2020M02 as in Figure

23.
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C.1 Results for Subsamples C ROBUSTNESS CHECKS

Figure 23: Structural IRFs for the late sample 2005M05-2020M02.
Notes: Dashed lines mark IRFs corresponding to modal model of late sample 1993M11-2005M05 as in Figure

22.
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C.1 Results for Subsamples C ROBUSTNESS CHECKS

Figure 24: Forecast error variance decomposition for the early sample 1993M11-2005M04.

Figure 25: Forecast error variance decomposition for the late sample 2005M05-2020M02.
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C.2 Different Elasticity Bounds C ROBUSTNESS CHECKS

C.2 Different Elasticity Bounds

Figure 26: Structural IRFs for the full sample for robustness check.
Notes: Here we restricted the immediate response of industrial production to a gas demand shock to lie in the

interval (-b, 0), where b is one third of the variance of the reduced form residual of industrial produciton. The

black line is the modal model which maximizes the posterior density of the structural IRFs. Colored lines are

the Bayesian 68% highest density region. 500 reduced form draws with 10,000 draws of Q* for each reduced

form draw were conducted.
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C.2 Different Elasticity Bounds C ROBUSTNESS CHECKS

Figure 27: Forecast error variance decomposition for the full sample for robustness check.
Notes: Here we restricted the immediate response of industrial production to a gas demand shock to lie in

the interval (-b, 0), where b is one third of the variance of the reduced form residual of industrial production.

Forecast error variance decomposition corresponds to the impulse response function with maximal posterior

density given in Figure 26.
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