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Kurzfassung

Industrie 4.0 kann als Paradigmenwechsel im Bereich der industriellen Produktion gesehen
werden, der zur Digitalisierung von Fertigungsprozessen führt. Zu diesem Zweck bietet
das Konzept des digitalen Zwillings einen strukturierten Ansatz für den Austausch und
die Abbildung von Daten in diesem Kontext. Hierzu zählen auch Sensordaten, die mittels
maschinellen Lernens (ML) beispielsweise zur Erkennung von Fehlern in Produktions-
prozessen genutzt werden können. ML-Modelle müssen jedoch bei Bedarf aktualisiert
und anschließend produktiv eingesetzt werden. Allerdings mit der Einschränkung, dass
Produktionssysteme zu diesem Zweck nicht einfach angehalten werden können. Deshalb
müssen diese Aktualisierungen so durchgeführt werden, dass der Wechsel zwischen den
Modellen ohne Unterbrechung der Produktionsprozesse erfolgen kann.

Diese Arbeit zeigt einen Ansatz zur Integration eines ML-Modells zur Fehlererkennung in
eine Verwaltungsschale (AAS), die eine standardisierte Implementierung eines digitalen
Zwillings ist. Der Schwerpunkt liegt dabei auf der kontinuierlichen Bereitstellung aktual-
isierter Versionen dieses Modells während des Betriebs, ohne dass es zu Ausfallzeiten in
den Produktionsprozessen kommt. Die wichtigsten Ergebnisse sind die Identifizierung
von Anforderungen an eine dynamische Modellbereitstellungs- und Wechselstrategie auf
der Grundlage einer Literaturrecherche und ein ML-Modell-Integrationskonzept für die
AAS und eine prototypische Implementierung mit Eclipse BaSyx, um die identifizierten
Bereitstellungsstrategien sowohl qualitativ als auch quantitativ bewerten zu können.

Zu diesem Zweck wurde ein generisches Teilmodell basierend auf dem AAS-Metamodell
entwickelt, das verschiedene Arten von ML-Modellen sowie Anwendungsszenarien unter-
stützen kann. Darüber hinaus wurden drei Bereitstellungsstrategien ermittelt, die einen
Wechsel zwischen Modellversionen ohne Ausfallzeiten ermöglichen. Bei diesen Strategien,
die im Prototyp implementiert wurden, handelt es sich um zwei Blue-Green Deployments
und ein Rolling-Deployment-Konzept. Die entwickelten Konzepte und Ansätze wurden
anhand des Prototyps veranschaulicht, um die Einsetzbarkeit und Eignung des Ansatzes
zu verdeutlichen. Die Ergebnisse unterstreichen, dass es keine Einheitslösung gibt und
dass die am besten geeignete Bereitstellungsstrategie vom jeweiligen Anwendungsfall
abhängt. Darüber hinaus sind alle drei beschriebenen Bereitstellungsstrategien dem
Basisansatz, einem manuellen Bereitstellungsansatz unter Verwendung des Recreate
Deployment Patterns, überlegen. Sie übertreffen diesen sowohl bei der kriterienbasierten
Bewertung als auch beim Vergleich der Ausführungszeiten.
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Abstract

Industry 4.0 can be seen as the new paradigm shift in the field of industrial production,
leading to the digitalization of manufacturing processes. To this end, the concept of
digital twins provides a structured approach for exchanging and representing data in
this environment. This includes sensor data that can be used by techniques such as
machine learning (ML) to detect faults in production processes, among other things.
However, ML models need to be updated or retrained and deployed as needed but with the
limitation that production systems cannot simply be stopped for this purpose. Therefore,
these updates must be performed in such a way that switching between models can be
accomplished without interrupting production processes.

This thesis describes an approach for integrating a ML model for fault detection into an
Asset Administration Shell (AAS), which is a standardized implementation of a digital
twin, focusing on the seamless deployment of updated versions of this model during
operation without causing downtime in production processes. The main contributions of
this thesis are therefore the identification of requirements for a dynamic model deployment
and switching strategy based on a systematic literature review, a ML model integration
concept for the AAS, and a prototype implementation using Eclipse BaSyx to perform
both a qualitative and quantitative evaluation of the identified deployment strategies.

To this end, a generic submodel was developed that conforms to the AAS metamodel
definition and can support different types of ML models and application scenarios. In
addition, three deployment strategies were identified that allow switching between model
versions without downtime. These strategies described in detail and implemented in
the prototype are two blue-green deployments and one rolling deployment approach.
The evolved concept and approaches were demonstrated by means of a prototype to
illustrate the applicability and suitability of these artifacts. The findings emphasize
that there is no one-size-fits-all solution and that the most appropriate deployment
strategy depends on the specific use case. In addition, all three deployment strategies
described are superior to the baseline approach, a manual deployment approach using
the recreate deployment pattern, as they outperform it in both criteria-based evaluation
and comparison of execution times based on the prototype.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
Industry 4.0 can be seen as the new paradigm shift in the field of industrial production.
The utilization of information and communication technology to create modular and
efficient manufacturing systems [LFK+14] and the intelligent networking of machines
and processes are fundamental aspects of Industry 4.0 [Pla23]. To generate added
value, the sensor data, which is initially only available locally, must be transferred from
machines and production facilities to other components. This end-to-end digitalization of
manufacturing processes leads inevitably to cross-layer interactions and thus requires a
structured approach for exchanging and representing data. The concept of the digital twin
addresses these requirements for structured cross-layer communication within Industry
4.0 [SKA20].

A digital twin is the virtual representation of an asset that covers its whole lifecycle and
provides access to the asset’s data and services. These assets are physical entities of the
real world, such as a product to be produced or a machine. Digital twins aggregate (real-
time) data that is generated in the physical world. This data can be used for simulations,
machine learning applications, decision-making support and for providing insights that
may in turn affect the entities in the physical world as updated configurations in order
to optimize a whole production plant [SKA20][Arm20].

One standardized implementation of digital twins is the Asset Administration Shell
(AAS)1. The AAS is defined as a technology-independent metamodel that enables the
modeling of assets as their digital representation. It encapsulates the information and
functionalities of the assets, such as their properties, measurement data, real-time data,
and capabilities [NOP22]. Subsequently, the sensor data encapsulated in AAS models
can be used to detect faults in production processes to reduce the costs of monitoring

1https://industrialdigitaltwin.org/en/
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1. Introduction

and maintaining production equipment, since manual fault detection is complicated,
inefficient, and lacks real-time capability [HDZ+20].

Improvements in sensor, storage and communication technology are enabling the trans-
formation towards smart factories. Due to technological advancements, projects are
emerging that leverage the Big Data collected and apply machine learning techniques to
improve fault detection in production environments. Proposed fault detection approaches
are based, for example, on Bayesian networks, artificial neural networks, deep neural
networks, support vector machines, linear classifiers with linear discriminant analysis,
or on the hidden Markov model as an extension of Markov chains [ABP17], [HDZ+20].
Other proposed techniques for fault detection models are ensemble learning [LDKC19] or
deep transfer learning [XSLZ19].

However, machine learning models need to be updated or retrained when their performance
degrades. Reasons for performance degradation include concept drift and model aging.
This means that the learned feature distribution shifts over time due to changes in the
data generating processes, resulting in misclassified error states [ZEK21]. In the context
of production environments, machine components age over time, are maintained or
replaced. Therefore, all these aspects influence the fault patterns to be identified. Thus,
the stronger the model drifts, the more likely it is that incorrect error classifications will
occur [LDKC19]. To continuously ensure a given classification accuracy, fault detection
models must be retrained and deployed as needed. However, production systems cannot
simply be stopped when a newly trained model needs to be deployed somewhere in the
system as this would incur high costs for the corresponding processes. Therefore, the
updates must be performed in such a way that the switch from the old to the new version
of a model can be accomplished in a limited period of time without interrupting the
production process [KBA+21].

Although there exists substantial research on various fault detection approaches for differ-
ent areas in production [ZXW+14], [ABP17], [LSA+19], [XSLZ19], [HDZ+20], [SbAT20],
[SLJK21], and some research on concept drift detection and machine learning model
update strategies [LDKC19], [ZEK21], only a limited number of papers addresses de-
ployment approaches for machine learning models [Ben20], [GPR+21]. To the best of
our knowledge, there is currently no research on combining AAS concepts with dynamic
deployment strategies for machine learning models and switching between different model
version that aim to achieve zero downtime for production systems. In addition, there
is little research on topics related to the AAS and, in particular, on the incorporation
of machine learning models into AAS submodels. The latter can also be of interest to
machine manufacturers, since fault detection models incorporated into the AAS can be
handed over to customers directly in the AAS, along with other machine properties and
documentation. Thus, they do not need any further information about the internal fault
detection process.
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1.2. Aim of the Work

1.2 Aim of the Work
A significant amount of research has been conducted to develop different approaches of
high performing fault detection models in the production environment. Some papers
also address concept drift detection and appropriate update strategies to maintain the
desired level of quality. However, structured approaches for deploying new or retrained
machine learning models in a continuously operating production environment are rarely
mentioned. It can be assumed that the further development of the concept of digital
twins and in particular of the AAS will also expand the application possibilities and
increase interoperability. This also requires the ability to dynamically deploy machine
learning models in production environments while striving for zero downtime. Therefore,
the overall goal of this thesis is to develop a concept for the integration of data-driven
fault detection models into the AAS in order to subsequently enable the exchange of
these models during runtime with minimal downtime.

Based on the above objectives, the following research questions can be formulated:

• RQ1: Which deployment strategies for Machine Learning (ML) models and dy-
namic update methods for software components are mentioned in existing literature
or have been applied in production environments that could be transferred to the
AAS?

• RQ2: Given the current state of the AAS, what is a feasible approach to integrate
a fault detection model into the AAS considering that the models should be called
directly from the edge nodes that contain the real-time data?

• RQ3: What is an appropriate strategy to deploy a fault detection model in a
production environment and switch from the previous to the new model without
stopping production processes?

RQ1 sets the focus for the literature review to rigorously determinate the current state
of the art on these research topics and, based on that, begin to develop an integration
approach. An important aspect of conceptualizing the integration into an AAS is that
it should be possible to run the fault detection model on a node close to the devices
that actually emit the real-time data. Therefore, RQ2 restricts the possibilities to
define a viable integration approach. Subsequently, requirements must be defined for
the dynamic deployment of fault detection models in production environments and for
the non-disruptive switch between the previous and the updated version of the models.
Based on these requirements, possible deployment and model switching strategies derived
from such approaches in other areas will be evaluated. Again, these requirements limit
the options that can be accepted as an appropriate strategy in terms of RQ3.

Accordingly, this thesis aims to fill the gap between the development of fault detection
models, including their need to account for model drift, and the deployment strategies
of such models, considering the possibility of integration into an AAS. The following
paragraphs summarize the expected results:

3



1. Introduction

• Identification of Requirements for Model Deployment and Switching
The first step is to define requirements for deploying new versions of fault detection
models and switching from the old to the new version of these models (e.g., time
constraints depending on cycle times or management overhead). These requirements
include also the aspect of the model’s integrability into an AAS that takes into
account the deployment on edge nodes, implementation effort and complexity, and
the constraints imposed by this requirement on the dynamic deployment strategy.

• Model Integration Concept for the AAS The fault detection model should
be integrated into an AAS. Thus, the task is to identify how such a model can be
integrated into the concept of the AAS using the existing metamodel elements. A
key requirement in this regard is that the fault detection model should be deployed
directly on a node at the edge of the network, i.e., in close proximity to the assets
that generate the data.

• Identification of Deployment and Switching Strategy A further outcome of
this work is the conception of strategies for deploying an updated version of a fault
detection model and switching from the outdated version to the new version of the
model without stopping or interrupting the production process.

• Evaluation of the Deployment Strategies and AAS Integration Concept
In order to evaluate the identified deployment and switching strategies for a fault
detection model, as well as the approach for integrating such a model into an AAS,
a prototype is implemented that demonstrates how such an architecture looks like
and how fast a model switch can be performed compared to the baseline method
of stopping the system, replacing the model, and restarting the system again. For
the implementation of this proof of concept, the Eclipse BaSyx Framework2 will be
used as it is quite an extensive implementation of the AAS.

1.3 Structure
The following section provides a brief overview of the structure of this thesis. In Chapter 2,
the methodologies used are described, especially for the SLR and the evaluation. The
background is elaborated in Chapter 3 covering essential topics. Based on the performed
SLR, the related work is discussed in Chapter 4. A list of relevant criteria and requirements,
both for the integration concept and the dynamic model deployment and switching
strategies is defined in Chapter 5. In Chapter 6, the approach for integrating a fault
detection model into an AAS is described, while Chapter 7 presents relevant model
deployment and switching strategies. The evaluation of the prototype and the results
of the technical experiments are presented in Chapter 8 and are discussed in detail in
Chapter 9. Finally, in Chapter 10 the insights and findings gained are summarized and
ideas for future work are pointed out.

2https://www.eclipse.org/basyx/
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CHAPTER 2
Methodology

This chapter describes the methodologies used in this thesis. The methodological approach
followed is the Design Science Framework by Hevner et al. [HMPR04]. Within this
framework there is first a Systematic Literature Review based on Kitchenham et al. [KC07]
conducted that is reduced to the main parts. For the evaluation, a qualitative evaluation
of the concept is done based on the defined requirements. Additionally, a prototype is
implemented that proves that the concept actually works and also demonstrates the
utility and suitability of this approach. In the following, the respective methods used
within the Design Science Framework are described in detail.

2.1 Systematic Literature Review
The first step is to perform a literature review in order to identify the current state of
deploying ML models. Furthermore, the current research on dynamic update approaches
of software components in general will be investigated. In order to dynamically update
implemented ML models in a continuously operating production environment, with the
aim of having minimal downtime during this process, it will be necessary to link and
combine the findings on deployment strategies and upgrading approaches for ML models
with the approaches on dynamic update methods for software components.

In order to systematically analyze the existing literature and provide an overview of
the topics mentioned a Systematic Literature Review (SLR) based on Kitchenham et
al. [KC07] is conducted. However, since it would otherwise be too much overhead for
this thesis, only certain steps of this SLR approach are selected and applied accordingly.
The relevant steps of the SLR that are followed in this thesis are:

1. Formulation of the research questions with regard to the identification of the related
work

5



2. Methodology

2. Selection of appropriate search keywords

3. Definition of inclusion and exclusion criteria

4. Selection and reading of papers

5. Descriptive synthesis of the extracted information

6. Summarizing the findings

2.1.1 Research Questions for the SLR
The formulation of research questions is an essential step in a SLR process. In order to
provide a solid foundation of the existing research to build upon and fill the gap in the
existing literature, the following research questions for the SLR can be formulated:

• RQ1a: Which deployment strategies for ML models have been published by other
researchers or are suggested by practitioners and ML experts?

• RQ1b: Which dynamic update methods for software components in the production
environment are mentioned in existing literature and which software frameworks
do they use?

• RQ1c: Which requirements are mentioned in the literature that are relevant for
dynamic deployments of software components in production environments?

It can be seen by the abbreviations of these questions that they should be understood as
part of RQ1, as RQ1 covers the frame of the literature review to rigorously determine
the current state of research on these topics.

2.1.2 General Inclusion and Exclusion Criteria
In the following, general criteria are defined that determine whether a paper remains in
the SLR process or is excluded thereof.

Inclusion Criteria In order to be evaluated in detail, a paper must

• be written in English or German.

• have a title that implies relevance to the research question.

• have an abstract that implies relevance to the research question.

• be fully accessible.

6



2.2. Evaluation

Exclusion Criteria Papers are explicitly excluded from the SLR process

• if they have not been peer reviewed yet, for example, if they have only been
published on arXiv1.

• if the title or abstract does not indicate answering the research question in a useful
way.

Further inclusion and exclusion criteria, more specific to the particular question, are
defined in the respective sections.

Most of the scientific literature eligible for answering the research questions can be found
in major online libraries and publishing sites. Therefore, the following publication portals
were used as sources for the SLR:

• IEEE Xplore2

• ACM Digital Library3

• Scopus4

• Springer Link5

2.1.3 Foundation for the Requirements Definition
In addition to provide a sound foundation on these topics, the SLR also contributes
towards defining criteria and requirements for the artifact to be developed. Based on the
obtained findings, relevant aspects for the integration of an ML model for fault detection
as well as for the deployment of such models with a special focus on dynamic updates are
derived, which subsequently are formulated as criteria and requirements that the artifact
should meet.

These criteria and requirements involve aspects that are essential for switching between ML
models in the context of production environments, such as striving for zero downtime. In
addition, requirements for the integration of such models into an AAS will be determined.
A key necessity in this context is the requirement to deploy the model on edge nodes.
These evaluation criteria are mainly qualitative ones.

2.2 Evaluation
The created artifact is evaluated in two ways. On the one hand, a criteria-based evaluation
according to Cronholm and Goldkuhl [CG03] is conducted. The integration concept

1https://arxiv.org/
2https://ieeexplore.ieee.org/
3https://dl.acm.org/
4https://www.scopus.com/
5https://link.springer.com/
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2. Methodology

and the identified approaches for deploying and switching between the model versions
are evaluated according to the criteria defined at the beginning. On the other hand,
a prototype evaluation is carried out following Peffers et al. [PRTV12]. In addition,
the prototype is also used for a quantitative evaluation of the identified deployment
strategies by measuring the duration of the steps required to deploy a new model. This
will also enable a comparison of the different strategies. Furthermore, by comparing it to
a baseline approach, it is possible to assess how well the identified deployment strategies
solve the motivated problem.

2.2.1 Criteria-Based Evaluation

This type of evaluation uses a checklist approach to evaluate the artifact first. In general,
criteria are more universally applicable because they are not derived from a specific
organizational context. Thus, criteria-based evaluation is ideally deductive [CG03].

After the concept for integrating a fault detection model into an AAS is completed and
the strategies for deploying new model versions without any interruption are identified,
they are evaluated against the list of defined criteria and requirements of the respective
categories. On the one hand, this is done for the integration concept, and on the
other hand, all identified deployment strategies are evaluated individually to enable a
subsequent comparison. The result of this evaluation step is compared in a table. The
rows contain the criteria and requirements, while the columns contain the integration
concept and the deployment strategies. The degree of fulfillment is evaluated in three
grades: (+) completely fulfilled, (◦) partially fulfilled, and (–) not fulfilled.

2.2.2 Evaluation based on the Implemented Prototype

As part of the prototypical evaluation, the integration concept will be implemented to-
gether with the identified deployment strategies using the BaSyx platform in combination
with Docker for containerization as well as other required software components. The
implemented prototype should prove that the developed concept actually works and also
demonstrate the utility and suitability of the approach in a rather abstract and synthetic
environment. In addition, technical experiments can be conducted based on the prototype
to evaluate the technical performance of the identified deployment strategies [PRTV12].
This can be compared to the baseline approach, which is a recreate deployment pattern.

The outcome of this evaluation is twofold: an executable implementation of the artifact
that satisfies the predefined criteria and requirements, and technical experiment runs that
allow measuring the performance of the deployment strategies in terms of the execution
time of the individual steps required to prepare a new model version in an environment
and eventually to switch between model versions. Tables for comparison and graphical
representations of the measured values are used for a clear presentation of the latter
results. There, the mean values as well as the standard deviations of the execution times
of the test runs, grouped by steps, are presented.

8



2.2. Evaluation

2.2.3 Technical Details for Prototype Evaluation
This section deals with the implementation details of the prototype for the conceptual
design of an AAS integration approach and dynamic deployment method for ML models
for a Packed-Bed Regenerator.

Design Decisions and Selection of Software Tools and Components

For the implementation of the prototype, in particular the server-side implementation of
the AAS, the Eclipse BaSyx™ Framework was chosen. At the moment, Eclipse BaSyx
supports four programming languages. According to the project documentation, only
the Java and C# SDKs provide the full functionality of BaSyx and are appropriate for
the implementation of applications or services6. Because of that fact, but also due to
the circumstance that many examples for different use cases are available on the Eclipse
project page as well as on GitHub and on the Internet, the SDK for Java was chosen.

For containerization Docker and Kubernetes were chosen, as the were mentioned in the
literature, but also because both are quite easy to install, set up, and get started with.
Furthermore, ready to use components for an AAS Server and Registry are provided as
Docker Containers. However, a self-hosted AAS Server and Registry were used for the
evaluation of the prototype, as this was required for pushing operations and custom code
into the AAS as well as for debugging purposes.

Used Software Versions and Hardware Specifications

Table 2.1 summarizes the used versions of the software components utilized in the course
of implementing and evaluating the prototype as well as the hardware specifications of
the system on which the evaluation took place.

joblib vs. ONNX vs. Other Serialization Formats For the persistence of the
trained fault detection ML models, joblib serialization is used. joblib is based on pickle
serialization, but improves upon it by being more efficient with respect to objects that
internally contain large numpy arrays, which is often the case with fitted scikit-learn
estimators. However, with joblib it is only possible to serialize on disk, and there are
security and maintainability limitations as well [Sci23]. But these limitations are not an
issue for the implemented prototype and, therefore, joblib is completely sufficient for this
use case.

Other possible formats or libraries for persisting ML models are, for example, skops,
which is not based on pickle and allows specifying trusted types, or other formats aimed
at interoperability. These include ONNX or PMML, for instance. However, since this use
case does not involve switching between different machine learning frameworks, switching
between different computing architectures, or emphasizing readability through the use of
an XML structure [Sci23], joblib is completely sufficient from this point of view as well.

6https://wiki.eclipse.org/BaSyx_/_Overview; last accessed: 2023-02-03
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Component Version
Windows Windows 10 Pro - Version 22H2
Java OpenJDK 16.0.1
Python 3.9
Eclipse BaSyx™ 1.1.0
Docker Engine 20.10.22
Kubernetes 1.25.4
Traefik 2.9.1
Eclipse Mosquitto™ 2.0.15

Processor Intel® Core™ i5-4690K CPU @ 3.50GHz
System Type 64-bit operating system, x64 based processor
RAM 16 GB

Table 2.1: Used Software Component Versions and Hardware Specifications

Under the aspect of achieving the lowest possible level of complexity, a vote can be cast
for joblib too.

2.2.4 Evaluation Approach of the Technical Experiments

This section explains the details of the approach in terms of the structure and procedure
of the technical experiments to measure execution times and evaluate the identified
deployment strategies.

Since no other infrastructure for testing was available and one machine was sufficient
for the purpose of implementing the prototype, only this machine was used with the
specifications listed in Table 2.1. This also ensured that identical conditions with regard
to hardware and software specifications prevailed for all test runs of the deployment
strategies. In addition, network-dependent influencing factors could be excluded. This
means that Docker with all required containers, the AAS server along with the HTTP
servers, MongoDB, and the evaluation program were running on the same machine.

Preparation of the Fault Detection ML Models In order to show that ML models
can be integrated in this approach, but more importantly can be dynamically exchanged,
several ML models had to be created. For this purpose, a total of seven models were
trained on the same dataset of simulated sensor values. However, they were all of a
different type of ML model, but still belonged to the overall class of classification models.
The purpose of this was to demonstrate the suitability of this approach for different types
of ML models, as long as they meet the predefined requirements. Regardless of the actual
type of the model, these requirements are: (1) (De-)Serializability, (2) Containerizability,
and (3) Inference via an API.
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Since it was not the intention to create a high performing and accurate model for fault
detection, especially since the database would not allow this anyway, simple models were
deliberately chosen and no hyperparameter tuning was done. All ML algorithms used
are from the scikit-learn library for Python. The following list summarizes the model
types that were created for the prototype and thus also used for the test runs:

• Support Vector Machine Classifier (two models using different kernels)
• Decision Tree Classifier
• Random Forest Classifier (two models with different depth)
• KNeighbors Classifier
• Linear Discriminant Analysis

Evaluation Program The evaluation program is a script written in Python that
executes a configurable number of test runs. In addition, a parameter can be used to
define which deployment strategy is currently being evaluated. This has an effect on when
which tests are executed regarding the active and standby environment. This evaluation
program also logs all operations that are called in the AAS.

However, the actual time measurement is located on the AAS side. More precisely, in
the individual implementations of the operations in BaSyx. This is done primarily for
two reasons: First, this is the only way to measure time in sub-steps within an operation
(e.g., sub-steps that are necessary to prepare the model in an environment). Secondly,
this leaves out a layer that could cause delays, which have nothing to do with the actual
deployment, namely, the network layer between the evaluation program and the fault
detection submodel. If everything runs on one machine, as in this case, this factor may be
negligible. However, if it runs on different nodes, latencies could influence the measured
time and thus distort the result.

Test Run A test run is defined as a sequence of steps that automatically invoke the
defined operations in the fault detection submodel. To this end, a test run uploads each of
the seven previously trained and serialized models to the AAS, prepares the environment
with this model and finally performs the switch between the models. After preparing the
standby environment, it checks whether both the active and standby environments are
still accessible.

Execution of Test Runs

The test runs for time measurement as part of the technical experiment are executed
separately for each deployment strategy. This means for a test run, that the scenario is
prepared specifically for a deployment and switching strategy (e.g., preparing the required
Docker containers, adjusting the evaluation program, loading the customized AAS with
the corresponding addresses and ports in the properties, etc.) and the operations are
invoked automatically via the evaluation program.
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For each deployment strategy identified, including the baseline approach with the recreate
deployment pattern, two times ten test runs are performed. After ten test runs are
performed, everything is reset and ten test runs are executed again. Therefore, in total
140 times (i.e., 2 × 10 × 7) per deployment strategy a model is loaded into the AAS, the
environment is prepared and the dynamic change is accomplished. If an error occurs
unexpectedly during one of the called operations, the entire attempt for this one model
is not considered and an additional loop run is made in order to always reach the total
of 140.

In order not to fill up the AAS and thus also the stored models in the archive in the
MongoDB unnecessarily in a short time during the test runs, the models of the previous
test run (if already present) are deleted after each test run.
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CHAPTER 3
Background

The following chapter explains the fundamental concepts, approaches and technologies
that are used or serve as a basis in this thesis. First, an overview of Industry 4.0 and
digital twins is presented, followed by a more detailed elaboration on the AAS as a
standardized digital twin implementation that is employed in this thesis. Subsequently,
the potential of ML for detecting faults is motivated and the challenge of concept drift is
explained. Finally, a brief introduction on the basic characteristics of the Packed-Bed
Regenerator is provided.

3.1 Industry 4.0 and Digital Twins
Industry 4.0, an ex-ante defined term for the fourth industrial revolution, is a disruptive
paradigm shift in the manufacturing industry. The term is particularly well established in
German-speaking countries and combines the two development directions of application-
pull (e.g., short time-to-market, individualization, flexibility, decentralization, etc.) and
technology-push (e.g., further mechanization and automation, digitalization, miniaturiza-
tion) [LFK+14]. Industry 4.0 aims to achieve an end-to-end digitalization of production
processes and ensures greater flexibility and changeability in manufacturing, thereby
reducing the costs of individualized products that are only produced in small batches
and making their manufacture economically viable [SKA20]. With this paradigm, a shift
from product to service orientation is expected and the emergence of new companies is
anticipated [LFK+14].

Numerous sensor data are already collected by machines, but they are only available
locally and subsequent data processing is considerably hampered by the separate layers
of the automation pyramid and their respective protocols. This is why Industry 4.0
opts for a peer-to-peer architecture to promote cross-layer communication. For example,
an ERP system can directly receive sensor data to track the quality of a production
process, skipping all the intermediate stages that would be required in the traditional
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automation pyramid. Further examples of use cases that take advantage of the described
flexibility of Industry 4.0 are the significant reduction of the integration time for new
devices into a manufacturing process and the dynamic change of manufactured products
with the corresponding process adjustments - and all this with low effort and without
downtime [SKA20]. In this way, scenarios are conceivable in which products control their
own production processes [LFK+14].

Digital Twin To enable this cross-layer interaction, a structured approach for data
representation and exchange is essential. Digital twins are the key to this requirement.
They encapsulate data from the physical world and allow them to be used, for example,
for tests or simulations in the digital world, and can in turn affect the physical asset
based on the knowledge gained in the digital twin [SKA20].

One definition of digital twins by the Industrial Internet Consortium [MvSB+20] is
that “a digital twin is a formal digital representation of some asset, process or system
that captures attributes and behaviors of that entity suitable for communication, storage,
interpretation or processing within a certain context.” Armstrong [Arm20] highlights a
dynamic aspect and brings the lifecycle of an asset into play as a digital twin “spans
its lifecycle, is updated from real-time data, and uses simulation, machine learning and
reasoning to help decision-making” [Arm20].

Thelen et al. [TZF+22] have conducted a comprehensive literature review on the de-
velopment and trends of the digital twin. The first appearance of the concept “digital
twin” was mentioned already in the 1960s in NASA’s Apollo 13 program. Due to its
increasing prevalence in various fields, many domain-specific definitions of digital twins
have been proposed [TZF+22]. VanDerHorn and Mahadevan [VM21], based on their
review of several definitions, presented a consolidated and generalized definition of digital
twins as ”a virtual representation of a physical system (and its associated environment
and processes) that is updated through the exchange of information between the physical
and virtual systems” [VM21].

Based on the above definition, three essential components defining a digital twin are:
(1) a physical reality, (2) a virtual representation, and (3) connections for information
exchange between the physical and virtual world [VM21]. Kritzinger et al. [KKT+18]
have distinguished the terms digital model, digital shadow, and digital twin. The main
difference between these three concepts is the way data flows between the physical and
digital asset. In a digital model, the data flow in both directions is optional and mostly
manual. While for a digital shadow the data flow is unidirectional from the physical to
the digital asset with an optional data flow back, a digital twin requires a bidirectional
data flow preferably automated [KKT+18].

3.2 Asset Administration Shell
This section discusses some general aspects of the AAS and provides a brief introduction
to the main concepts and elements of the AAS metamodel that are used in this thesis.

14



3.2. Asset Administration Shell

The AAS is one standardized embodiment of a digital twin and its standardization is
currently being carried out through a collaboration between Plattform Industrie 4.01

and other notable associations like the Industrial Digital Twin Association (IDTA)2 and
ZVEI3. Their published specification Details of the Asset Administration Shell in the
version 3.0RC02 [Pla22] serves as basis for the following elaboration on the metamodel
elements.

The general structure of an AAS is specified by a metamodel that is independent of any
specific technology, but is supported by several technology-specific serialization mappings,
including XML, JSON, or OPC UA. Therefore, an AAS enables interoperability between
solutions from different vendors [NOP22]. Besides its technology- and device-independence
it is furthermore a machine-readable description of an asset that provides access to all its
properties and functionalities [Sch22a].

AASs are a key concept in Industry 4.0, enabling information hiding and providing an
abstraction layer for technical or logical components. Therefore, AASs can be defined for
physical as well as for non-physical entities, for example, for devices, products, but also
for processes [Sch22a]. The content within an AAS, such as properties, measurement and
real-time data, or capabilities, is structured in submodels [NOP22].

At the moment, three types of AASs can be distinguished regarding their interaction
pattern [Sch22a], [NOP22]:

• Type 1 - passive: These are basically serialized files, for example in XML or
JSON format, that contain static information and can be distributed as files.
The metamodel specification [Pla22] primarily deals with this type of AAS and
introduces the AASX package format.

• Type 2 - reactive: These AASs are available as runtime instances and are hosted
on servers. They can contain static data as well as provide dynamically changing
data. Therefore, AASs of type 2 can interact with other components. This type is
mainly covered in the second part of the AAS documentation, which deals with
API definitions for accessing the information contained in AASs.

• Type 3 - proactive: In addition to the characteristics of type 2 AASs, they
contain active behavior, which means that they can communicate directly with
other AASs independently of applications (peer-to-peer interaction).

AASX Package Explorer One standardized format for exchanging an AAS is the
Asset Administration Shell Package (AASX) format that is derived from Open Package
Conventions standards. This generic package file format contains the structure along
with the data and supplementary files, such as manuals or CAD files [Pla22]. Based on

1https://www.plattform-i40.de/IP/Navigation/EN/Home/home.html
2https://industrialdigitaltwin.org/en/
3https://www.zvei.org/
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this exchange format, Hoffmeister et al. have published an open source tool4 that allows
to graphically create new AASs or edit and view existing ones saved in the AASX format.
It is an desktop application written in C# that is quite intuitive to use and provides some
support by indicating potential violations of the standard through hints.

Identifiers for AASs In general, each element within an AAS requires an ID. Some
of them have to be globally unique, while for others a short ID (a local identifier) is
sufficient, since these elements are unique in combination with the ID of the parent
elements. This IDs are needed, for example, to address specific elements in an AAS via
the API [Pla22].

3.2.1 Submodel
Submodels serve to model specific aspects of an asset that is represented by the AAS
and encapsulate their properties and features. They are one of the most important
structuring elements within an AAS in terms of technical functionality and digital repre-
sentation [Sch22a]. Standardized versions of submodels are called submodel templates.

A submodel is composed by several submodel elements, which can be of different types
and are used to describe and distinguish asset characteristics. To ensure a well-defined
meaning, each submodel element requires a semantic definition, which can be specified
either directly via an external reference, such as ECLASS, or indirectly by providing a
concept description [Pla22]. A submodel element is per se an abstract element and can
therefore not be instantiated, which is why concrete element types are required. The
currently existing submodel element types are quite manifold and can be clustered into
certain groups. The most important ones in the context of this thesis are: DataElement
(with concrete elements like Property, Blob, or ReferenceElement), Capability, Submodel
Element Collection (SMC), Operation, and Event.

Submodel elements can in turn contain other submodel elements, creating an internal
hierarchy and providing a way to organize elements. For this purpose, a SMC is the element
of choice, since it is a collection of submodel elements and may allow duplicates [CS20b].
These collections are primarily used for cases that require a fixed set of properties with
unique names [Pla22].

The Property submodel element can store a single value of a simple data type, such as
string, date, integer, a floating point number, and so on. The data element Blob stores the
content of a file directly in its value property as Binary Large Object (BLOB). In addition,
the corresponding MIME type of the content must be specified. In contrast, the File
submodel element stores only the file path. Another data element is the ReferenceElement,
which defines a logical reference to another element that can be either in the same AAS
or in any other AAS. It can also refer to external objects if they have a global unique
ID [Pla22]. In the following sections, some important submodel elements are explained
in more detail.

4https://github.com/admin-shell-io/aasx-package-explorer
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3.2.2 Capability, Operation, Skill

A capability is an implementation-independent definition of an asset’s potential to realize
a desired impact in the physical or virtual environment [Pla22]. In addition, they should
be independent of a particular asset and also of the AAS itself [BBB+20]. Typically, a
capability is mapped to one or more skills which represent it either as a property or an
operation. However, in more complex scenarios, it can be also mapped as a collection or
an entire submodel [Pla22]. Skills are therefore defined on an asset-specific basis. Possible
realizations of capabilities include state variables, trigger variables, operations, function
blocks, and semantic protocols, ranging from simple possibilities to highly complex
representations [BBB+20].

Defining capabilities and the corresponding operations is essential to perform capability-
based engineering and operation. This means, for example, that the actual sequence
of production processes is not determined in advance, but only after a capability check
has evaluated the potential options and the feasibility check determines the option that
can actually be used. For this purpose, it is necessary to provide the description of the
capabilities in a machine-readable format using a formal semantic description [BBB+20].

Operations, as one possible implementation of skills, can be used to perform client/server
interaction, for example. Function blocks, in contrast, are modeled in the AAS as a
submodel. This submodel contains data elements for input and output parameters, the
internal states, as well as operations to start, stop, or interrupt a function. Thus, the
AAS essentially defines the information that can be used, but does not implement the
actual functionality. This can be provided by additional files that are added as files or
BLOBs [BBB+20].

An operation as an AAS metamodel concept defines the behavior of a component as a
procedure. Several input and output variables as well as combined input/output variables
can be defined, which are all of type OperationVariable and can have a submodel element
of arbitrary type as a value. Such variables describe a provided parameter or the result of
an operation [Pla22]. Operations can essentially be invoked by a simple method call. In an
AAS, the defined generic and abstract capabilities are linked with RelationshipElements
to the particular skills that actually provide that functionality [BBB+20].

3.2.3 Events

Events in the context of the AAS are very versatile and serve various purposes. These
events are of different types and can represent input or output events with respect to the
referred element. Input events are provided by an external massaging infrastructure and
can be processed by the affected component. Whereas output events are broadcast to
other AASs or external systems via an external massaging infrastructure. One possible
use case for events is when a supplier wants to inform a customer that the firmware
of an asset has been updated (forward events). Reverse events, on the other hand,
are used when a supplier monitors the status of a device to detect possible incidents.
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Events can also be used to track changes to components, which in turn can be collected
centrally [Pla22].

In the AAS metamodel specification [Pla22], a list of event types has been defined,
including structural changes, value changes of submodel elements, execution of operations,
and so forth. In addition, custom event types can also be defined. While a general
format of events has to be followed, the actual payload is fully customizable. The
BasicEventElement inherits from the abstract EventElement and has several attributes
defined. These include a reference to the observed element which thus defines the scope
of the event, the direction, the state (i.e., on or off), the message subject, the broker, and
additional timing information [Pla22].

Besides these aspects of events in the AAS metamodel specification [Pla22], there is very
little documentation on the use of events in real use cases. Furthermore, the support for
events in the AASX Package Explorer and BaSyx does not appear to be very extensive
at this time either.

3.2.4 Eclipse BaSyx™
Eclipse BaSyx™ is an open source framework provided under the Eclipse Public License
2.0 (EPL 2.0). It provides a platform for the development of Industry 4.0 applications by
facilitating the integration of heterogeneous devices based on a standardized data and
information model to enable cross-technology communication. To this end, the BaSyx
platform provides ready-to-use components (e.g., AAS server and registry) as well as
SDKs for Java, .NET, C++, and Python that enable the development of individual
components and applications, but also the integration of devices [Sch21].

BaSyx is a concrete implementation of the AAS metamodel, which enables the connection
of all relevant components and ensures the required end-to-end digitalization. It has to be
noted that BaSyx currently supports only version 2 of the AAS metamodel. In general,
the defined AASs with their respective submodels and all elements contained therein are
hosted on AAS servers and can be located via registries. On the one hand, these servers
provide persistence via a backend storage functionality and, on the other hand, make
the contained information available via a standardized interface. Therefore, a central
component for communication between devices and systems is the Virtual Automation
Bus (VAB) [Sch21]. A standardized API5 is available to allow external applications and
systems to easily access an AAS, including its submodels and elements, primarily through
CRUD operations (create, read, update, and delete), but also to invoke operations.

The VAB enables end-to-end communication and reduces the implementation overhead
for supporting different protocols, since VAB primitives serve as common base. In total,
five primitives are defined for the VAB: (1) create, (2) delete, (3) retrieve, (4) update,
and (5) invoke. Custom VAB implementations need to implement and map these five
primitives in order to interact with VAB elements, like AAS objects and submodels, for
example [Sch20].

5https://app.swaggerhub.com/organizations/BaSyx
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3.3 Machine Learning based Fault Detection in
Production Environments

In this section, the fundamentals of performing fault detection based on ML models with
focus on production environments are presented. However, only a brief overview will be
given, since this is a very broad field of research.

Fault detection, as used in this context, belongs to the category of fault diagnostics
approaches mentioned in the literature. In particular, it aims to detect the presence
of damage or defect that represents the current state of the system. In contrast, fault
prognostics aims to assess the future health state of the system. Another approach to be
distinguished in this area is predictive maintenance. This is a proactive approach in the
area of plant maintenance that is based on the recognition of patterns in sensor data and
attempts to predict when a machine component might fail in order to plan maintenance
work in good time [TZF+22].

All of these tasks are value-adding processes and are necessary in the manufacturing
environment because unexpected failures can cause high maintenance and downtime
costs, reduce customer satisfaction, and even lead to injuries or fatalities [TZF+22]. In
addition, most of the time during downtime is spent on locating the fault rather than
fixing the actual problem [ABP17].

Further distinctions in the broader context can be made between reactive maintenance,
where maintenance work is performed only after a fault has occurred, and preventive
maintenance, where maintenance work is performed at regular intervals, which in most
cases is more frequent than necessary [TZF+22].

ML based Fault Diagnostics The sensor data encapsulated in digital twins such as
the AAS can be used to automatically detect faults in production processes to reduce the
costs of monitoring and maintaining production equipment, as manual fault detection
is complicated, inefficient, and lacks real-time capability since components are often
inaccessible and the process requires human intervention [HDZ+20]. For this purpose,
ML models are used, for example, to classify the health of a system, to identify the type
of fault, or as a predictive tool to quantify the damage in a system. Both classical ML
approaches and deep learning methods can be used to accomplish this tasks [TZF+22].

In a classical ML approach, features must first be extracted from the collected and
preprocessed sensor data before training the model as a classification or regression task
can be performed. However, these approaches also have some downsides, such as domain
knowledge is required to extract features, and selecting the right features for a satisfactory
overall performance is an iterative, tedious, and time-consuming process. Deep learning
methods eliminate this task by automatically extracting features from large amounts
of data. In many applications, deep learning approaches have performed better than
conventional ML approaches for fault diagnostics [TZF+22].
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Different approaches have been proposed in the literature for a wide variety of use
cases, as they have different advantages and disadvantages. Approaches based on
Bayesian networks are more intuitively understandable because they are white-box
models, and support uncertainty modeling and hierarchical structures well. Artificial
neural networks (ANN) are well suited for modeling nonlinear complex problems, but are
more computationally intensive. Support vector machines are good for modeling both
linear and nonlinear relationships and are faster than ANNs, but are more difficult to
tune and incorporate domain knowledge. Hidden Markov models as a probabilistic model
are computationally intensive for training, but are excellent for modeling processes with
unobservable states [ABP17]. Also, linear classifiers with linear discriminant analysis can
be used for fault detection [HDZ+20].

Further proposed approaches for fault detection in manufacturing include, among others,
a combination of an adapted restricted Boltzmann machine for feature extraction and a
deep neural network [HDZ+20], an ensemble learning algorithm based on a set of offline
classifiers [LDKC19] as well as based on an ExtraTree classifier [SLJK21], a deep transfer
learning method using a deep neural network as a basis [XSLZ19], a support vector
data description method [ZXW+14], an online reduced rank kernel principal component
analysis [LSA+19], or a reduced kernel partial least squares regression method [SbAT20].

Another aspect that should not be ignored for this topic is the fact that the quantity
and quality of the data is essential for the performance of the models. Especially data
representing incorrect states are more difficult and less frequent to acquire than those for
correct states. This leads to an imbalance of the data and to a poor accuracy in terms of
fault diagnostics [TZF+22]. Solutions to this problems include oversampling techniques
applied to the minority class, such as the Synthetic Minority Oversampling Technique
(SMOTE), or applying undersampling techniques to the majority class, which have the
disadvantage of losing potentially important information [LDKC19]. Further approaches
in the field of digital twins are based on physics and involve the generation of synthetic
data ( i.e., erroneous data is generated from a physical simulation and used to augment
the training data set), physics-informed architecture or loss function design (inclusion of
knowledge about the physical facts), or fault diagnostics based on physics-based modeling
(for use cases where fault data is extremely rare) [TZF+22].

3.4 Problem of Data and Concept Drift
Since the ML models contained in a digital twin are often used in constantly changing
environments, a situation arises where the distribution of the training data initially
used is far off the data obtained live from the system (production data). Therefore,
such a situation is also called “out-of-distribution”, since the assumption that the
distribution of the training data is also representative for the production data is not true.
Reasons for these changed conditions are, for example, operational changes due to the
addition or replacement of sensors, adaptation of manufacturing processes, changes in
the measurement method, and so on [TZF+22].
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All of these aspects cause the underlying distribution to shift over time, and therefore the
legacy mapping no longer fits the newly collected data [ZEK21]. This shift introduces a
discrepancy between the data distribution of the training datasets and the observed data
distribution. If these deviations are not integrated into the model, the performance of
the ML model may deviate significantly. This degradation, also known as model decay,
can be divided into two types: Data drift and concept drift [TZF+22].

Data Drift This drift type refers to a scenario in which the statistical characteristics
of the production data differ significantly from those of the training data. Although the
relationship between X and Y remains the same, X follows two distinct distributions
for the training and production datasets. Ultimately, this leads to erroneous predictions
of the model for the production dataset. Mathematically, data drift can be defined as
ptrain(X) = pprod(X) [TZF+22]. X, in this context, refers to the explanatory variables
(features), while Y denotes the dependent variables.

Concept Drift This type of drift describes the effect that the underlying relationship
between X and Y changes. Mathematically, concept drift can be defined as ptrain(Y |X) =
pprod(Y |X) [TZF+22]. In this context, a concept refers to the combined distribution of
feature vectors and dependent variables that may change in response to replacement or
aging of machine components, for example, resulting in a new joint distribution [LDKC19].
In this case, the model is also no longer reliable to a certain extent and will make incorrect
predictions.

In practice, this leads to some challenges. To ensure consistent and satisfactory perfor-
mance, the ML model needs to be updated when drift is detected. For example, by using
a drift indicator, which is a quantitative application-specific metric. Several approaches
have been proposed in the literature to address this problem, such as evaluating the
divergence between training and production data, monitoring the variation in the quality
of predictions, or calculating the mean error between predictions and actual measure-
ments [TZF+22]. Which approach is most appropriate also depends on the ML model
used.

Zufle et al. [ZEK21] have identified two groups of approaches to meet this challenge. The
first is incremental model learning, which is well suited for rule-based models, support
vector machines, tree-based ensembles, and neural networks, since only a part of the
underlying concept such as rules, support vectors, trees, or weights need to be updated.
The second group requires complete retraining. However, this requires a strategy on when
to trigger the retraining. This can be done either at regular intervals, based on quality
thresholds, or based on statistics of deviations [ZEK21]. In contrast, Lin et al. [LDKC19]
proposed an ensemble learning-based approach that supports offline classifiers to deal
with concept drift and imbalanced data.
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3.5 Packed-Bed Regenerator
In this section, an overview on the Packed-Bed Regenerator is given. The Packed-Bed
Regenerator is an illustrative industrial use case that initially served as a motivating
example, helping to condense the first idea into the identified problem and the formulation
of the problem statement. Additionally, it serves, in a simplified and scaled-down version,
as an application example for the prototype that will be implemented in this thesis in order
to evaluate the developed integration concept and the identified deployment strategies.
To this end, this section summarizes the key points of the Packed-Bed Regenerator
concept.

The diploma thesis by Michalka [Mic18] investigated the transient behavior of a Packed-
Bed Regenerator and determined parameters such as storable energy, power and energy
density for comparison purposes. Due to the need to be able to store energy, since supply
and demand do not always coincide, energy storage systems play a major role in ensuring
a continuous supply of energy. The heating and cooling sector represents the largest
end-use energy consumption in Europe accounting for 50 percent. Sensible thermal energy
storage systems, including the Packed-Bed Regenerator, are cost-efficient due to the use
of water, stones, or other solid materials as fillings and, moreover, they do not contain
toxic materials. The properties of these fillings are a significant performance factor for
such regenerators. Their field of application are short to medium-term high-temperature
heat storage and are employed in industrial furnaces or power plants [Mic18].

Figure 3.1 provides an overview of the rough structure of a Packed-Bed Regenerator
based on a schematic sketch. This shows a charging process in which hot air is directed
into the container from above in order to heat the bulk material. Technical details have
been omitted intentionally, as the focus is only on the basic understanding of the concept
and the most essential properties of such a thermal energy storage systems.

In the middle of Figure 3.1 is the container with the storage mass illustrated, which is
filled with gravel or other bulk material and serves as a heat storage unit and is composed
of four modules. The conical shape of the container can be explained by physical effects.
Without this shape, the expansion during heating of the container would cause the filling
to settle and then lead to stresses during the cooling phase [Mic18]. In addition to the
central bulk material container, there exist also other essential components that were not
included in the figure [Mic18]:

• a connection to technical processes that emit the heat used to heat the storage
mass or, in the case of a test rig, the air heating coil that heats the ambient air
sucked in to the desired temperature, and a fan to generate an air mass flow

• isolation to reduce heat loss to a minimum

• bulk material, which serves as a storage mass for thermal energy

• pipelines, valves and flaps to control the air flow and the operating mode
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Figure 3.1: Simplified Schematic Sketch of a Packed-Bed Regenerator based on
Michalka [Mic18]

The air for charging and discharging is passed through the central bulk material container
via pipelines. Basically, two operating modes can be distinguished [Mic18]:

• Charging: The hot air, which originates as residual heat from technical processes,
is directed into the container from above, transferring heat to the bulk material
in the container. The loading times depend on the air mass flow as well as on the
defined air outlet temperature. Alternatively, the container can also be loaded with
hot air from the bottom.

• Discharging: The sucked-in, cold ambient air is directed into the container from
the bottom. The thermal energy stored in the bulk material is then continuously
released to the air flowing through.

3.5.1 Sensors and Measurement Technology
In the Packed-Bed Regenerator test rig described by Michalka [Mic18], primarily temper-
ature sensors, pressure sensors and a mass flow meter are installed. The temperature
and pressure sensors are also depicted in Figure 3.1. These sensors can play an essential
role in fault detection using ML models.

Temperature Sensors To enable an accurate measurement of the temperature distri-
bution within the heat storage unit, a total of 18 temperature sensors are installed in the
test rig, one at the inlet, one at the outlet, and four in each of the four modules placed
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on a plane with equal distances between them and are aligned towards the center of the
container [Mic18]. These sensors are represented as red points in Figure 3.1, simplified
for only three modules and only one temperature sensor each.

Pressure Sensors Multiple types of pressure sensors are used in the Packed-Bed
Regenerator test rig. Downstream of the fan is, for example, a relative pressure sensor
or a differential pressure measurement is performed as a redundant measurement to
determine the air mass flow. In order to determine the pressure loss within the filling,
which is caused by the internal friction of the air as well as by friction between air
particles and the solid material, a differential pressure measurement is carried out. For
this purpose, sensors are installed both at the top and bottom to determine this pressure
difference [Mic18]. The sensors for this differential pressure measurement are represented
in Figure 3.1 by the two blue dots.

3.5.2 (ML) Models for the Packed-Bed Regenerator
Halmschlager et al. [HKBH19] investigated the application of a recurrent neural network
approach for modeling the complex non-linear behavior of a Packed-Bed Regenerator in
order to perform time series predictions. The objective of the model was to predict the
outlet temperature of the Packed-Bed Regenerator for a given number of time steps. The
basis for this data-driven approach was simulated training data that took into account
bottom and top air temperatures, mass flow, temperatures at the four levels in the
modules, and fill level, i.e., the total amount of thermal energy stored [HKBH19].

In another work, Halmschlager et al. [HMH21] investigated a mechanistic grey-box model
for the Packed-Bed Regenerator, which can be considered a hybrid model combining a
physical and a data-driven model. The model is based on physical information about
the Packed-Bed Regenerator, which is used to define physical relationships described as
equations, and enriched with experimental data to optimize specific parameters. The
objective of this approach is the same as with the previous model: to predict the outlet
temperature. In total, the researchers defined three mechanistic grey-box models, each
based on different assumptions and thus having different equations. The results of
the mechanistic grey-box model, specifically one of its advanced versions, exhibit high
accuracy as well as robustness and reliability, thus surpassing the model based on a
neural network approach as well as a physical model [HMH21].

These research papers demonstrate the relevance of using ML models and various other
forms of modeling for a Packed-Bed Regenerator in scientific contexts. By utilizing, for
example, temperature sensor data and other relevant information from the Packed-Bed
Regenerator, it is possible to accurately predict certain output variables.
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CHAPTER 4
Related Work

The following chapter addresses existing work on deployment strategies for ML models
and dynamic update methods for software components. To this end, the methodological
approach for conducting a SLR is defined in Section 2.1. These SLRs are performed for
both topics and the results are summarized accordingly. Finally, integration approaches
for ML models into an AAS are introduced and compared. The following sections address
the research questions defined in Section 2.1.1 and add further, more specific criteria
regarding the SLR process.

4.1 Deployment Strategies for Machine Learning Models
In addition to the general inclusion and exclusion criteria, the following inclusion criteria
are added:

• The paper must be published between 2012 and 2022.

• The paper should describe how ML models can be deployed, either based on a
specific use case or at a more general level.

Therefore, papers that focus solely on the implementation of a particular ML model for a
given problem and its superiority over other solutions are excluded from the SLR process.

In order to get a broad overview on the topic of ML model deployment strategies in
a first step, an overview search for scientific papers on Semantic Scholar1 and Google
Scholar2 was conducted. The search terms used in Semantic Scholar and Google Scholar
were:

1https://www.semanticscholar.org/
2https://scholar.google.com/
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(deployment of) OR (deployment strategies for) machine learning
models OR machine learning model deployment in production

However, too many papers were obtained with this search term, making it impossible to
process them systematically. Therefore, in order to refine and extend the search term,
the papers on the first 10 result pages were reviewed and evaluated in terms of relevance
to the research questions. Both literature search engines ordered their results according
to relevance. In total, 21 papers could be identified that potentially can contribute to
answering the research question based on their title and abstract. To get also more
practice related literature on this topic, blog posts on deploying ML models were searched
and evaluated.

In addition to the papers, some blog posts obtained through a Google search on the
same keywords as used for the papers were analyzed as well. In this context, specific
terms for deployment strategies were used repeatedly, which are not exclusively used
for the deployment of ML models but are also very common there. Among others,
the following were mentioned [Bar22], [Cen20], [Kha21], [Mal21]: Recreate deployment,
Canary deployment, Blue-Green deployment, Shadow deployment, A/B testing, or Rolling
deployment/ramped deployment.

Using a recreate deployment strategy, the system is first stopped, the new version is
then deployed, and then the system is finally restarted. This approach is very easy to
perform, but results in downtime and has a negative impact on users experience. In a
canary deployment scenario, a new version of a model is deployed, and initially only a
small portion of the user traffic is redirected to the new version. This fraction is then
increased gradually. In this way, the new model is tested against the current operational
model. With this approach, deployments without downtime are possible. Furthermore,
there is the possibility for a rollback if necessary [Bar22]. In a blue-green deployment
scenario, also known as red-black deployment, a new version of a model is deployed in
a separate environment while the current model is operational in another environment.
After the new model is tested, it can be put into service, and all traffic is routed to the
new model. The other environment can be used for possible rollbacks or as a staging
area for the next version of the model [Cen20].

In a shadow deployment scenario, the new model version is deployed alongside the current
model and receives the same requests as the live model, but the results are not published
to the users as they are only used for evaluation purposes [Bar22]. A/B testing is a
strategy that compares at least two versions of a model to determine which of them
performs better. For this purpose, the user group is divided into subgroups and each of
them is assigned a model version [Kha21]. Rolling deployments can be used if there are
multiple instances of an application. During an upgrade step, only some of the instances
are upgraded to the new version while the others are still running the previous version.
This procedure is then repeated until all the instances are upgraded [Cen20].

Based on these findings, the search string was then modified to obtain a manageable
set of results. To this end, the search term was iteratively refined and tested on IEEE
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Xplore. The reasons for using IEEE Xplore were that the initial overview search already
identified many articles on this topic published by IEEE and also the advanced search
interface from IEEE Xplore is very intuitive to use. Table 4.1 summarizes the iteration
steps and the number of results obtained. The displayed search string in the table has
been slightly adjusted for better readability compared to the syntactically correct one
used for the search on IEEE Xplore. The metadata data field used in the first iteration
includes among others the abstract, index terms, and document and publication title.

One insight that was recognized right at the beginning was that search terms that contain
ML in the text or in the abstract and were not combined with other, more restrictive
terms led to too many results, almost all of which were not relevant. Based on the
findings from iteration 1, the data field for the search terms was changed to just the
title of the document to limit the number of results. For step 2, the search term was
extended to include at least one of the names of the different deployment strategies in
order to find these strategies also in the scientific literature. However, this extension led
to only one result. Therefore, the search terms for the title were expanded to include
terms that were regularly found in the overview search and also aimed at answering the
research questions. Step 4 of the definition of the search term thus leads to 14 results.
For the fifth iteration, the search term was slightly tweaked. In the overview search,
some frameworks ending in flow were mentioned in the papers. Therefore, this part was
added to the search term for the title. To exclude papers from the hit list that merely
indicate the use of ML for solving their research problem in their work, the title filter
string was extended by explicitly excluding the phrase "using machine learning" from
the title. Furthermore, model scoring, ML platform, and MLOps platform were added to
the full-text search field, as these terms also appeared a few times in the initial search.
Furthermore, instead of deployment only deploy* was taken in the title filter, so that for
example also deploying is found.

The final search string that was also used to query the other three publication databases
is therefore as follows:
Title:(“deploy*” OR “deployment strategy” OR “rollout” OR release
OR “lifecycle” OR “continuous integration” OR “CI” OR “continuous
delivery” OR “CD” OR “architecture*” OR “*flow” NOT “using machine
learning”) AND (“AI” OR “ML” OR “machine learning” OR “artificial
intelligence”)
AND
Text: “canary” OR “blue-green” OR “red-black” OR “shadow deployment”
OR “rolling deployment” OR “ramped deployment” OR “recreate deployment”
OR “model scoring” OR “machine learning platform?” OR “ML platform?”
OR “MLOps platform?”

Remarks on the Search Results of the Publication Databases Scopus does not
support a full text search functionality. Therefore, the search term for the full text part
of the query has been added to the combined search data field for title, abstract and
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Iteration Search Term # of Results

1 Metadata:(“deployment” OR “deployment
strategy” OR “rollout” OR “release”) AND
(“AI” OR “ML” OR “machine learning” OR
“artificial intelligence”) AND “model”

4623

2 Title:(“deployment” OR “deployment
strategy” OR “rollout” OR release) AND
(“AI” OR “ML” OR “machine learning” OR
“artificial intelligence”) AND “model”

12

3 Title:(“deployment” OR “deployment
strategy” OR “rollout” OR release) AND
(“AI” OR “ML” OR “machine learning” OR
“artificial intelligence”) AND “model”
AND Text: “canary” OR “blue-green” OR
“red-black” OR “shadow deployment” OR
“rolling deployment” OR “ramped deployment”
OR “recreate deployment”

1

4 Title:(“deployment” OR “deployment
strategy” OR “rollout” OR release OR
“lifecycle” OR “continuous integration”
OR “CI” OR “continuous delivery” OR “CD”
OR “architecture*”) AND (“AI” OR “ML”
OR “machine learning” OR “artificial
intelligence”) AND Text: “canary” OR
“blue-green” OR “red-black” OR “shadow
deployment” OR “rolling deployment”
OR “ramped deployment” OR “recreate
deployment”

14

5 Title:(“deploy*” OR “deployment strategy”
OR “rollout” OR release OR “lifecycle”
OR “continuous integration” OR “CI”
OR “continuous delivery” OR “CD” OR
“architecture*” OR “*flow” NOT “using
machine learning”) AND (“AI” OR “ML”
OR “machine learning” OR “artificial
intelligence”) AND Text: “canary” OR
“blue-green” OR “red-black” OR “shadow
deployment” OR “rolling deployment” OR
“ramped deployment” OR “recreate deployment”
OR “model scoring” OR “machine learning
platform?” OR “ML platform?” OR “MLOps
platform?”

16

Table 4.1: Evolution of Search Terms and Number of Results Obtained for Deployment
Strategies for Machine Learning Models, performed on 25.06.2022 on IEEE Xplore
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Source # of Results # of Selected # of Relevant
IEEE Xplore 16 12 11

ACM Digital Library 4 2 1
Scopus 2 0 0
Total 22 14 12

Table 4.2: Final Results Based on the Defined Search Term for Deployment Strategies
for Machine Learning Models, performed on 25.06.2022

keywords. The search and advanced search functions at Springer Link also differ from
those at IEEE Xplore and ACM Digital Library. Springer Link does not offer a combined
search for title and full text or abstract data fields. Therefore, one approach was to
combine the search terms for title and full text with AND to create a search term that
was used only for a full text search. However, this search produced 9625 results, which
was impossible to handle in the course of this work. Also, the title search alone could not
be used with the search terms previously defined and used with the other publication
databases. Therefore, the Springer Link publication database is not considered for this
part of the SLR.

Table 4.2 summarizes the final result in terms of relevant papers found in a quantitative
way. In total, three publication databases were considered and a total of 22 papers was
found that matched the defined search term and was further evaluated. The number
of selected papers indicates the number of papers for which both the title and abstract
seem promising to contribute to answer the defined research questions. On IEEE Xplore,
16 entries were found, of which 12 had a promising title and abstract, and 11 were finally
classified as relevant. In the ACM Digital Library, four entries were found, of which two
were read thoroughly, and one is relevant according to the defined criteria. Both papers
found on Scopus are not relevant for answering the defined research questions at all.

4.1.1 Summarizing the Findings
The following section summarizes the key statements of the relevant papers after a
thorough reading of those selected papers. Thus, all 12 summarized papers contribute to
answering the defined research questions and are therefore considered as relevant to the
research.

Maskey et al. [MMH+19] mention a difference between developing a model and deploying
it productively to make predictions. They examine this topic from the perspective of
the Earth science domain and propose a inherently iterative ML lifecycle focused on
their community. An essential aspect of deploying ML models is testing and ensuring
the performance of the model in production as different data is processed in production
environments. A/B testing is therefore a method to compare the performance of different
deployed models. The authors mention as a challenge in deploying ML models the
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regular iterations of models and keeping track of their changes. They suggested the
adoption of mechanisms similar to those used in software development and operations
(DevOps) [MMH+19]. This challenge was later addressed by other researchers.
Hummer et al. [HMR+19] propose with ModelOps a cloud-based framework and platform
for Artificial Intelligence (AI) application lifecycle management, which aims to extend
the principles of traditional DevOps pipelines and combine these with AI model lifecycles,
though they differ in some aspects. Nevertheless, deploying models also poses some
risks. Techniques such as canary releases, A/B testing, user feedback, and drift detection
can be used to address these risks. ModelOps provides the ability to seamlessly shift
between execution environments, as the generic, platform-independent pipeline generates
execution environment-specific artifacts using additional information. In addition, the
authors mention the importance of closed feedback loops to retrain models based on
specific events [HMR+19].
Garg et al. [GPR+21] investigated approaches on applying concepts from DevOps to
the world of machine learning model deployment (MLOps) using existing advances
such as containerization and model management tools that support the model life-
cycle. Containerization allows to decouple the execution environment and to ensure
reproducibility. Together with an orchestration framework, containers can be easily
deployed, managed, and automated. Thus, Docker and Kubernetes are often used in
practice for such use cases. Furthermore, the authors differentiate between three levels of
MLOps depending on their level of automation - ranging from manual and script-driven
processes to fully automated Continuous Integration and Continuous Delivery (CI/CD)
pipelines. In recent years, a number of MLOps platforms have emerged that include
a set of tools and frameworks that facilitate the process of automated development of
machine learning models. However, they are often not yet mature and are still under
development [GPR+21].
Gisselaire et al. [GCGb+19] defined an approach to asses deployment architectures for
intelligent Cyber-Physical Systems (iCPSs) based on cost and security aspects. iCPSs are
Cyber-Physical Systems (CPSs) that embed also ML technologies. For their approach,
they reduced each iCPS to four components: (1) Training Data-Sets, (2) Model Learning,
(3) Predictive Model, and (4) Decision Taking. Each of these components can be deployed
either on the edge or in the cloud, resulting in a total of 16 deployment configurations.
For example, developing and deploying ML models in the cloud is much more cost
effective than on the edge because the cloud infrastructure already provides much more
functionality and resources are provided on-demand. On the other hand, some security
risks are of greater concern when data is sent from the edge to the cloud [GCGb+19].
In their paper, Peticolas et al. [PKT19] describe a cloud and edge spanning ML and data
science framework, named Mímir, for the Industrial Internet of Things (IIoT) and how
to deploy ML applications in this industrial setting. In this context, time series data is
continuously streamed to the cloud and stored there to perform analysis and train and
validate ML models based on this data. To deploy the model, they create ML model
containers that contain all the necessary packages and dependencies so that they can
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eventually deploy the model to the cloud or alternatively to the edge. This approach
allows easy scaling for additional edge nodes, as well as easy replacement of model
containers with new model versions [PKT19]. However, the authors do not explicitly
mention a specific strategy for updating the model containers.

Wöstmann et al. [WST+20] propose a reference architecture for ML in the process
industry. The proposed architecture follows the hierarchical structure that is defined in
industry standards and, furthermore, deals with the integration of software components
at different levels of the automation pyramid. The edge devices, an optional component
of the architecture that enables decentralized execution of scoring processes, act as kind
of buffer in case of network issues to prevent data loss, but they can also provide real-time
streaming data or send them as “batch”-format. Furthermore, model scoring directly
on the edge enables low-cost and near-real-time model execution. In addition, model
update capabilities and storage strategies are crucial for stable productive use. The
authors also suggest the use of ML platforms for model management and deployment,
especially when larger amounts of data are processed and more complex models and
pipelines are required. For performance and stability reasons as well as to ensure short
response times and resource efficiency, the proposed architecture utilizes the concept
of a separate deployment environment. Thus, the proposed architecture provides the
flexibility to deploy models on-premise, in the cloud, or also on fog nodes. Moreover, the
paper mentions the issues of concept drift and its implications and therefore the need for
permanent monitoring and evaluation of model performances [WST+20].

Giannopoulos et al. [GSK+22] propose a general-purpose workflow for developing, deploy-
ing, evaluating, and retraining ML models in the area of Open Radio Access Networks
(O-RANs). A O-RAN is an approach for future wireless networks that incorporate
transparent, open, and programmable communications. Within such O-RANs there are
different application scenarios for ML possible that have different timing constraints
(from real-time to near-real-time to non-real-time applications). The described workflow
focuses on a near-real-time controller as the main intelligence actor. After the model is
constructed and trained, it is containerized using standardized tools and subsequently
stored in a model catalog. The trained model is passed to the near-real-time controller,
which performs near-real-time inference. If the need for a model update is discovered
during the model evaluation, the model can be either retrained or there is already a
better performing model in the model catalog. In this case, the better model needs to be
deployed to the controller again [GSK+22]. Lee et al. [LJSY21] also propose a workflow
architecture for ML models in an O-RAN and their integration into a RAN Intelligent
Controller (RIC) platform. For training and deploying the created model, they use ML
pipeline automation techniques to satisfy MLOps Level 1. For the implementation, they
used the MLOps platform Kubeflow because it supports both end-to-end lifecycle manage-
ment of the model and automation of the training pipelines. The trained and packaged
models are then deployed on inference services to process requests. After a required
retraining of the model, a new version thereof is created, and the inference host can then
update the model with the latest version. The deployment strategy used to deliver those
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model updates is a canary rollout (a small percentage of the requests is routed to the
new model version, while the remainder is still routed to the old one) [LJSY21].
Muthusamy et al. [MSI18] propose a data-driven approach to utilize AI to analyze the
performance of AI methods in business processes. They suggest to deploy models as
microservices that have three well-defined interfaces for scoring, retrieving feedback, and
notification of new model versions. The functionalities can be accessed via an API. For
the deployment of new model versions strategies such as canary deployments and A/B
testing can be used. The use of a new model version always involves a certain risk, even
if the model has been sufficiently tested, because the overall impact on the business
application is difficult to predict. One way to mitigate the risk is to use a model proxy
that forwards the calls to the respective model microservices and logs both the inputs
and outputs. Based on these logs, analyses can be performed, whose results in turn can
affect routing. Also, fallback models can then be used if the performance of a model is
not as expected or does not meet certain thresholds [MSI18].
A similar approach is taken by Argesanu and Andreescu [AA21] for the design of a
end-to-end ML platform that is mainly focused on batch inference. The architectural
design consists of three main layers: (1) Orchestration Layer, (2) Model Serving, and (3)
Data Access. While the Model Serving tier hosts all the models, the Orchestration tier
handles among other things the prediction requests. The orchestration layer also records
prediction requests, errors, and results to provide statistics and insights for various
stakeholders, but also to monitor model performance over time. Additional emphasis
is also placed on containerization to ensure that the characteristics of the production
environment are the same as for model training. Also, model versioning ensures that all
trained models are ready for deployment. These two aspects facilitate model deployment
and help mitigate the risks associated with deploying ML applications [AA21].
Warnett and Zdun [WZ22] defined a decision model for architectural designs based on a
qualitative study of the technical challenges that practitioners face when introducing ML
models into production. One decision point for deploying such a model is the level of
automation to be selected, ranging from no automated deployment to semi-automation
by deploying pre-prepared pipelines to full CI/CD pipeline automation. In addition, it is
important to define the events that trigger these pipelines. Among the tasks that can
be automated in building and deploying pipelines are containerization and testing using
canary deployment or A/B testing. Furthermore, there are different approaches regarding
which and how many model versions should be used in production. This decision is in
turn influenced by various factors such as the need for safe model transitions or rolling
upgrades. Both require limited downtime, which is only possible if there is more than
one model version available. Therefore, a strategy with N versions in production is
recommended, as this meets both of the above requirements and enables smooth model
version exchanges without downtime. One question that came up repeatedly and that
would help with decision making if answered right at the beginning is whether or not to
use MLOps [WZ22].
Openja et al. [OMK+22] conducted an experimental study by analyzing 406 open-source
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MLOps platf. - CI/CD X X X X X X X
Containerization X X X X X X X X

A/B Testing X X X X
Canary Deployment X X X X
Rolling Deployment X

Web Service - API X X X
New Framework X X X

Table 4.3: Mapping of Papers to Deployment Concepts

ML software projects to understand how Docker is used in the field of ML deployment
processes. They found that most use cases for using Docker as deployment tool are
application systems that contain the ML model along with the rest of the code to perform
end-user tasks, followed by MLOps and ML toolkits. The intended uses of Docker
are many, including model and data management, cloud-based deployment, interactive
deployment, CI/CD, or build and packaging. However, Docker is in general used for
deploying ML models mainly for portability reasons [OMK+22].

Table 4.3 provides a list of the main approaches and strategies for deploying ML models
and the corresponding papers in which they are stated. Most of the analyzed papers
focus their deployment strategies and concepts on MLOps, mostly in combination with
containerization techniques. Moreover, most of these papers provide only a brief descrip-
tion of ML model deployment and focus rather on the entire development and ML model
lifecycle. Other authors, however, proposed their own framework for the development
and deployment of ML models, as they encountered some limitations within the existing
frameworks. Some papers also discuss possible testing and upgrade strategies for such
models, especially if multiple model versions are in service.

Figure 4.1 summarizes the results of this part of the SLR in a quantitative manner. The
vertical axis of this bar chart shows the deployment concepts mentioned in the papers,
while the horizontal axis shows the number of papers that mention the respective concept
in their paper. It is important to note that multiple concepts may be mentioned in a
paper, so the total number of these occurrences does not add up to the 12 relevant papers
identified during the SLR.

MLOps platforms, one of the concepts for deploying ML models listed in Table 4.3, are
platforms such as Kubeflow, Amazon SageMaker, and MLflow [GPR+21]. The concept
of containerization comprises tools such as Docker and the orchestration tool Kubernetes.
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Complementary Paper to the SLR Results One paper that was found in the
initial overview search but did not match the search terms in the SLR was published
by Benton [Ben20]. Because of the title “Machine Learning Systems and Intelligent
Applications”, the search criteria did not fit, as adding Systems or Applications to the
search string would have yielded far too many results. Nevertheless, this paper contains
some interesting aspects that can help to answer the research questions.

Benton [Ben20] relates the technical challenges of complex application developers to the
field of machine learning systems and introduces the concept of intelligent applications.
One important challenge for ML is the reproducibility of pipelines. But the way ML
applications fail is also different compared to classical software, because ML models can
fail but still provide predictions even though they are wrong. Thus, intelligent applications
are different to classical applications as ML models provide an essential functionality and
therefore the development process differs. Also, their way of deployment is different. To
simplify the development and deployment of intelligent applications, he suggests the use
of a microservice architecture. Thus, Kubernetes and containerization are proposed as
the basis for this architecture. This approach allows declarative deployments and enables
continuous integration, continuous deployment, and even a more sophisticated blue-green
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deployment strategy. In this context, a blue-green deployment is described as an approach
where one part of the requests is forwarded to the new model while other requests are
still forwarded to the old model. The proportion of requests for the old model gradually
changes more and more towards the new model. This also enables deployments without
downtime [Ben20]. In the rest of the literature, however, a blue-green deployment is
understood as a complete switch from the old to the new model version from one moment
to the next. The approach described in this paper is more commonly understood in the
literature as canary deployment.

4.1.2 Answer to Research Question RQ1a

As it can be seen in Table 4.2, 22 papers were initially found in accordance with the
search terms. After reviewing the title and abstract, 14 papers were selected for thorough
reading. Finally, 12 papers were considered as relevant to answer the research question
RQ1a.

RQ1a: Which deployment strategies for ML models have been published by
other researchers or are suggested by practitioners and ML experts? The
assignment of deployment concepts in Table 4.3 already helps to answer this question.
Most of the work analyzed focuses on ML model deployment on MLOps platforms and
ML frameworks, both commercial and open-source. This includes also the automation of
building, packaging, and testing pipelines up to full automation using CI/CD pipelines.
Likewise, containerization techniques, such as the use of Docker and Kubernetes, are
common in the papers and are used, for example, for packaging the models or for easy
deployment to different locations, such as edge nodes or the cloud. These tools are also
used for quick and easy model upgrades. Especially for cases where multiple models
are in operation or to test the performance of different models against production data,
different deployment and testing strategies are mentioned. Canary deployment and A/B
testing are most frequently mentioned, followed by rolling deployment strategies. These
strategies can also be used for model upgrades, especially with a focus on zero downtime
and safe rollouts as well as the ability for an easy rollback to the old version if the
performance of a model is not as good as expected. In contrast, accessing the model
for model scoring via an API was mentioned rather seldom. However, accessing the
model via an API can be done either directly via a web service or also via an API in
combination with a containerized model.

In some papers, expert interviews were conducted with domain experts, while in others
authors from companies in the field of ML or the respective companies where the use cases
or implementations were tested contributed to these publications. Based on their analyses
of codebases and repositories of real-world projects, the work of Openja et al. [OMK+22]
also showed that Docker plays an important role in practice at various stages of model
development and deployment, as well as for model integration into applications.
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4.2 Dynamic Updates of Software Components
In order to link the findings on deployment strategies and upgrading approaches for ML
models to the topic of dynamic update methods for software components in production
environments in general, a SLR based on the same methodological approach as defined
in Section 2.1 is also performed for the latter topic. In addition, relevant aspects with
regard to these methods in relation to production environments should be identified as
well.

Additional to the general inclusion and exclusion criteria in Section 2.1.2, the following
inclusion criteria are added:

• The paper must be published between 2007 and 2022.

• The paper should describe how software components like Programmable Logic
Controllers (PLCs) can be dynamically updated in production environments such
as real-time systems or CPSs. In addition, these dynamic update strategies also
include approaches for disruption-free software updates and update strategies for
time-critical applications. Moreover, software frameworks used for this purpose are
also of interest.

The time period to be considered for the publications was extended from the last 10
years to the last 15 years compared to the SLR on deployment methods for ML models,
since quite a few articles to be noted on this topic were also published around 2010.

As for the first part of the SLR, an overview search on this topic was initially conducted
on Semantic Scholar and Google Scholar. The search terms used in these search engines
were:
dynamic software updating real time systems OR disruption-free
software updates in production environments

As one might have already expected, too many papers were found to be able to evaluate
all of them systematically. In this context, both literature search engines ordered their
results by relevance, taking into account results up to the 10th page for further analysis.
Based on these search terms, 16 papers were identified that provided a rough overview
of the topic and on the basis of these findings the search term could be improved. As
before, IEEE Xplore advanced search was used to test and refine the search terms.

Table 4.4 summarizes the iteration steps and the number of results obtained for this part
of the SLR. Again, the displayed search string in the table has been slightly adjusted for
better readability.

Although the metadata data field was used in the first iteration, including among other
things the abstract, index terms, and the title of the document, only six results were
found using these search terms. Therefore, additional search terms were added in the
second iteration. One of the main goals of dynamic software updates is to not disrupt
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Iteration Search Term # of Results

1 Metadata:(“dynamic software updat*” OR
“DSU” OR “dynamic update method?”) AND
(“real time system?” OR “automation
system?”

6

2 Metadata:(“dynamic software updat*” OR
“DSU” OR “dynamic update method?” OR
“disruption-free” OR “non-disruptive” OR
“zero-downtime” OR “no-downtime”) AND
(“real time system?” OR “automation
system?” OR “container environment?”
OR “Virtual PLC?”

21

3 Full Text:(“dynamic software updat*” OR
“DSU” OR “dynamic update method?” OR
“disruption-free” OR “non-disruptive” OR
“zero-downtime” OR “no-downtime”) AND
(“real time system?” OR “automation
system?” OR “container environment?”
OR “Virtual PLC?”

124

4 Title:(“dynamic updat*” OR “dynamic
software updat*” OR “DSU” OR “dynamic
update method?” OR “disruption-free”
OR “non-disruptive”) AND (“real time
system?” OR “automation system?”
OR “container environment?” OR
“Virtual PLC?” OR “non-disruptive” OR
“zero-downtime”

4

5 Title:(“dynamic updat*” OR “dynamic
software updat*” OR “DSU” OR “dynamic
update method?” OR “release” OR “Docker”
OR “Kubernetes” OR “container-based”
OR “containerization”) AND (“real
time system?” OR “automation system?”
OR “time-sensitive application?” OR
“container environment?” OR “Virtual
PLC?” OR “high availability” OR
“disruption-free” OR “non-disruptive” OR
“zero-downtime” OR “no-downtime”)

11

Table 4.4: Evolution of Search Terms and Number of Results Obtained for Dynamic
Updates of Software Components, performed on 13.07.2022 on IEEE Xplore
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running operational programs. Therefore, terms such as disruption-free or zero-downtime
were added, as well as other system-related keywords that appeared in some of the articles
found in the overview search. For the third iteration, a full-text search was conducted
and a total of 124 papers were found, but most of them did not indicate relevance to the
research questions solely based on their titles. Accordingly, for the fourth iteration, the
data field for the search was changed to search only within the title, as this seemed to
be a good indicator for relevance. In addition, some terms were rearranged within the
search clause to provide more appropriate combinations of search terms. For the last
iteration, the search string was extended again and some terms were rearranged to find
more relevant papers. Thus, terms like Docker, Kubernetes or time-sensitive application
were added, as these terms also appeared sometimes in the papers found in the overview
search. In contrast to the first SLR for deployment methods, searching the full-text fields
often resulted in a large number of non-relevant papers, so for this SLR a full-text search
with specific terms was omitted.

Therefore, the final search string used to query the publication databases is as follows:
Title:(“dynamic updat*” OR “dynamic software updat*” OR “DSU”
OR “dynamic update method?” OR “release” OR “Docker” OR
“Kubernetes” OR “container-based” OR “containerization”) AND
(“real time system?” OR “automation system?” OR “time-sensitive
application?” OR “container environment?” OR “Virtual PLC?” OR
“high availability” OR “disruption-free” OR “non-disruptive” OR
“zero-downtime” OR “no-downtime”)

Remarks on the Search Results of the Publication Databases The search
functionality on Springer Link is somewhat different from that of the other publication
databases, as in the former the title-only search with the defined search term had not
worked properly and thus no result rows were obtained. Therefore, the search term was
used for the full-text search, as this returned results. However, this search resulted in
1601 hits. Since some of the search terms often led to articles that were not relevant,
the final search string for the search on Springer Link was reduced to some extent. In
addition, entire books were excluded from the results and only the specific articles where
the corresponding search terms occurred were considered. The search string used for
Springer Link is therefore:
Text:(“dynamic updat*” OR “dynamic software updat*” OR “dynamic
update method?”) AND (“real time system?” OR “automation
system?” OR “zero downtime” OR “no downtime” OR “container
environment?” OR “Virtual PLC?”) NOT "signal processing"

Thus, compared to the original search string, those search terms were omitted that mainly
led to non-relevant results. In addition, the term signal processing was excluded, as this
also led to non-relevant hits. Under these constraints, the number could be reduced to a
manageable amount of 33 papers.

Table 4.5 summarizes the final result in terms of relevant papers found in a quantitative
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Source # of Results # of Selected # of Relevant
IEEE Xplore 11 6 6

ACM Digital Library 2 2 2
Scopus 20 3 2

Springer Link 33 7 5
Total 66 18 15

Table 4.5: Final Results Based on the Defined Search Term for Deployment Strategies
for Machine Learning Models, performed on 13.07.2022

way. A total of four publication databases were considered and altogether 66 papers were
found that matched the defined search terms and were further evaluated. The number
of selected papers indicates the number of papers for which both the title and abstract
appear promising to contribute to answering the defined research questions. Duplicates
were also removed in this step. It is important to note that many duplicates were found in
the Scopus database that were already included in the search results of those publication
databases in which they were originally published. Therefore, papers published by IEEE
count as selected directly for IEEE. The same policy applies to ACM and Springer Link.
On IEEE Xplore, 11 entries were found, of which six had a promising title and abstract,
and all of which were also considered relevant. In the ACM Digital Library two papers
were found, both of which were selected and eventually classified as relevant. Through
the Scopus search, 20 papers were originally found, some of them were duplicates or
did not contribute to answering the research question based on title and abstract. Of
the selected three papers, two could be finally classified as relevant. Of the 33 papers
originally found on Springer Link, the analysis of title and abstract already excluded a
large number of papers, since the full-text search also found many papers that contained
these words but covered a completely different topic. Finally, five of the seven selected
papers were classified as relevant.

4.2.1 Summarizing the Findings
In the following section, the key messages of the relevant papers are summarized after a
thorough reading of the selected papers. Therefore, all 15 papers summarized contribute
to answering the defined research questions and are therefore considered relevant to the
field of research.

Wahler et al. [WRO09] propose an approach to dynamically update components in an
embedded systems without violating real-time constraints. First, they had to determine
the times at which an update is actually possible, since real-time systems always have to
meet certain deadlines. Additionally, the update must be completed within a deterministic
amount of time. In their approach, the updates are performed in the period after the
execution of the code and the beginning of a new cycle. Within this period, the state
transfer of the internal information from the old to the new component must also take
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place. Basically, their framework consists of components and channels that interconnect
the former, and a component manager that coordinates operations and updates. During
a time-critical update phase, the component manager gives the old component the signal
to terminate. Then, the latter hands over the channels to the component manager
and terminates itself. Finally, the new component takes over the connections from the
component manager and starts operating. The state transfer between the old and new
components is done via a shared memory and must be completed in the same cycle in
which the update occurs, including possible data type conversions [WRO09].
Yi [Yi19] mentions that there is a trend of transitioning from currently often single-
purpose embedded real-time systems to open platforms that allow the integration of
additional software components to improve or customize functionality or protect against
security threats. Therefore, he suggests that such systems need to be upgraded in a
component-wise, incremental manner, without the need to redesign, update, or verify the
entire system. Such real-time systems require a deterministic input-output and timing
behavior. Although simulation tools can be used to test and verify the semantic behavior
of entire systems, in order to obtain reliable and predictable systems, the extension of such
systems is complicated because new components must fit exactly into the time schedules.
Yi [Yi19] therefore proposes a design architecture, consisting of three layers (function
layer, software layer, and hardware layer), to address the challenges of building updatable
real-time systems, such as ensuring the verifiability of updates while considering runtime
and resource efficiency. New or updated components must meet the defined functional
and non-functional requirements [Yi19].
Seifzadeh et al. [SKKM09] propose an approach to dynamically update tasks without
making assumptions about task properties such as execution times, as these may differ
between the original and updated versions of a task. They defined a task that is executed
periodically in each hyper-period and is responsible for checking for new task updates
and replacing the outdated task with the new task if it is still schedulable, otherwise the
update request is rejected. In this context, a schedulability or acceptance test ensures
that a set of tasks can be executed without missing deadlines, which is an essential
requirement in real-time systems. For the next job of this task in the following hyper-
period, the updated version will then be executed. An essential metric for the update task
in real-time environments, but one that is difficult to calculate due to the I/O operations
performed, is its Worst Case Execution Time (WCET) [SKKM09].
In the literature, such an approach is referred to as Dynamic Software Updating (DSU).
Such DSU techniques aim at updating or modifying computer programs during runtime
without the need to shut down and restart the system, but by performing code and state
transformations from the currently running program to the new program. Beyond that,
redundant hardware is also not required [MAAJ19].
Ribeiro and Baunach [RB17] identified approaches for remote updates and proposed
a concept for applying remote updates to dynamically composed real-time systems,
focusing on schedulability analysis during dynamic updates to ensure real-time capability
throughout the update process and beyond. Their proposed update protocol consists
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of steps that can be performed either on the server side, which transfers an executable
module to the target device, or on the device itself, as well as hybrids that result in a
trade-off between overhead incurred on the server or device side. An essential element
for performing dynamic updates is metadata, which creates this overhead. However,
this metadata is required to perform compatibility checks defined by pluggability (i.e.,
checking whether new modules fit into the existing system and references can be resolved)
and interoperability (i.e., execution behavior), as well as for linking and relocation.
Therefore, an approach in which the entire overhead is shifted to the resource-constrained
target devices is rather inconceivable for real-time systems [RB17].

Mugarza et al. [MAAJ19] propose a mixed-criticality software architecture based on the
Cetratus runtime framework for implementing a high-availability smart energy application.
Cetratus enables DSUs for safe live updates of software components for industrial control
systems. Before a new update goes into production, the modified component is tested and
validated in a quarantine environment. If the auditor confirms the safety and correctness
of the update, it is put into production. In the proposed architecture, the components
defined as upgradable have two containers associated with them, which provide isolated
execution environments in both spatial and temporal domains. These containers can be
used to dynamically update one container without affecting the other container in order
to perform a safe upgrade strategy with quarantine-mode and final switch to the new
version [MAAJ19].

Pina et al. [PAHC19] propose an approach to perform reliable low-latency updates for
stateful services that combines DSU with multi-version execution (MVE) to solve the
problem that DSU techniques alone cannot guarantee continuous availability, since the
updated code itself may contain new bugs or state transformations may be incorrect.
So, they called it Mvedsua. A MVE system runs multiple instances of a program and
gives each instance the same input and then compares the output to check if they are
the same. In their approach, the current program can be forked into the leader and
a follower, while both receive the same input and thus can maintain the same state.
The follower is then updated and the results of the two are compared for equality. If
there are discrepancies between the outputs, then this indicates an error in the new
version or during the updating process, and the update can subsequently be reverted.
Otherwise, the updated program (the follower) is promoted to the leader and the leader
is then the follower as standby backup that can be terminated at the end if the update is
considered successful overall. To deal with expected differences, programmers can define
such deviations using domain-specific languages provided by MVE systems. In Mvedsua
this even works with new commands in the new program version [PAHC19].

Sollfrank et al. [SLVH19] investigated the impact of time delays on time-sensitive appli-
cations due to application virtualization using Docker containers in embedded systems.
Application virtualization requires additional software components and incurs additional
processing overhead. However, in CPSs and Cyber-Physical Production Systems (CPPSs)
it enables platform-independent development and deployment of applications and sup-
ports security and scalability. For their research, they studied the impact on time-sensitive
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applications in distributed networked control systems. To do this, they specified three
criteria for evaluation: (1) round trip times, (2) processing time delays, and (3) suitability
for networked control systems. Their experiments showed that applications in Docker
containers, given the highest real-time priority, can be used for applications with real-time
requirements. The additional time delay when using Docker for round-trip time was 43
µs, and the added processing delay was not significantly higher with 5 µs [SLVH19].
In a subsequent work, Sollfrank et al. [SLDVH21] extended their previous research and
used similar evaluation criteria: (1) round trip times, (2) CPU time delays, and (3) time
distributions and outlier detection to meet safety requirements. They conducted a similar
experiment, but with the new approach of observing 10,000 request/response patterns,
they wanted to gain more detailed insight into the impact on performance and prove the
suitability of using containerized applications for real-time tasks. Their results showed
again that Docker-based applications with the highest real-time priority are well suited
for soft real-time requirements in industrial automation [SLDVH21].
Abdollahi et al. [VSTK19] evaluated the possibility of using Kubernetes to orchestrate
containerized stateful microservices and subsequently proposed a solution to improve
the availability of these microservices by enriching Kubernetes with an additional state
controller. The state controller initially assigns active and standby labels to pods after
they are deployed. If a pod providing a service fails, this is detected by the state controller,
which can then redirect to a standby pod that can resume providing the service. Due to
state replication, the standby pod is always aware of the state of the active pod, as data
from the active pod is also sent to the standby pod via a state replication service. Their
experiments have shown that Kubernetes can be used in combination with an additional
state controller to deploy stateful microservices in a resilient manner by reducing the
recovery time of such microservices [VSTK19].
Silva et al. [SGB16] performed a theoretical study and evaluated strategies for the
deployment of updated services to mitigate or even eliminate service unavailability as
this leads to lower customer satisfaction or financial issues. They address blue-green
deployments and canary releases, both of which basically have two separate environments,
one of them is upgraded, and differ primarily in the strategy for switching requests
between them. In addition, these two strategies can be combined with virtualization
techniques or lightweight virtualization techniques such as containerization. In their study,
they compared blue-green deployments and canary releases strategies, each combined
with virtualization and lightweight virtualization, in terms of their advantages and
disadvantages regarding costs, complexity, performance, effort, and impact on users.
Their results showed that none of these combinations is clearly better than the others,
but in their implementation they used a blue-green deployment strategy in combination
with virtualization because lightweight virtualization was associated with high complexity
since this technology was newer at that time [SGB16].
A blue-green deployment strategy for industrial control application updates at runtime
using microservices is proposed by Koziolek et al. [KBA+21]. They developed a dynamic
update mechanism for virtual PLCs that cyclically execute control algorithms in produc-
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tion processes and are deployed as Kubernetes microservices. A recent trend is to shift
from dedicated embedded controllers to more flexible container environments in order
to reduce costs and simplify application management. A crucial point in this context is
the updating of such stateful virtual PLCs as the updated version must have the same
internal state information as the outdated one. Their approach allowed them to complete
a full update of a PLC within the cycle slack time (i.e., cycle time minus actual execution
time), including the transfer of up to 100,000 state variables, in less than 15 ms, so that
it could be performed between two cycle executions and without interrupting production
processes. Basically, they started a second container with the updated PLC logic, then
transferred the state variables and finally switched to the output of the updated controller
after validating both PLC behaviors [KBA+21].

Ahmadighohandizi and Systä [AS18] propose a platform for the development and de-
ployment of Internet of Things (IoT) applications based on DevOps principles. They
also discussed different deployment strategies for updated versions of applications in the
context of IoT devices. In their proof-of-concept, they implemented a simple blue-green
deployment strategy for their applications. However, they also mention that for mass
deployment to a larger number of IoT devices in production, a canary deployment strategy
is the better choice, as the new version can be tested on a small set of devices first and
in case of defects, the other devices are not affected [AS18].

Boyer et al. [BEdPT18] propose an architecture-based approach for automated microser-
vice updates in the domain of Platform-as-a-Service sites. For this purpose, update
strategies are defined as sequences of elementary changes (transitions) on an architec-
tural model of a microservice application, where the model describes in principle how
microservices are configured and deployed. Applying updates to a model first has some
advantages, such as ease of use, previewing changes, or better control of the update
process. Therefore, microservices are updated by simply specifying the desired target
architecture and the respective update strategy as transitions. Possible upgrade strate-
gies include a blue-green deployment strategy that aims for zero-downtime and uses an
intermediate architecture to evaluate the new version before putting it into production.
Other strategies implemented and evaluated by the authors included canary deployment
and variations thereof, clean redeploy, or straight (without any intermediate architecture).
Since update strategies are defined as transitions, the current and target architectures are
always compared and updates are thus idempotent and can be restarted in case of errors
during a previous run. In addition, rollbacks are also possible, i.e. it is only necessary to
set the original architecture as the target architecture and perform the update process
again [BEdPT18].

Képes et al. [KLZ20] propose an approach for modeling and executing software updates
in a situation-aware manner in order to perform the updates at the right time. This
means that the context of the system in terms of time, application state, environment or
people can be observed and the WCET of an update is also taken into account. The first
step of the proposed method deals with modeling of an update, such as the components
and relationships required to achieve the desired target deployment model. In the second

43



4. Related Work

Dynamic Update Method [V
ST

K
19

]

[A
S1

8]

[B
E

dP
T

18
]

[K
LZ

20
]

[K
B

A
+

21
]

[M
A

A
J1

9]

[N
N

P
+

20
]

[P
A

H
C

19
]

[R
B

17
]

[S
K

K
M

09
]

[S
G

B
16

]

[S
LV

H
19

]

[S
LD

V
H

21
]

[W
R

O
09

]

[Y
i1

9]

DSU X X X X X X
Containerization/Partitioning X X X X X X

Blue-Green Deployment X X X X
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Microservices X X X
State Transfer X X X X

Situation-Aware Updating X X
Modeling of Update Strategies X X

New Design Architecture X X X X X X

Table 4.6: Mapping of Papers to Dynamic Update Methods

step, the model is annotated with information about the situations in which the update
can occur and the WCET. During the third step, the imperative deployment model is
generated, which contains the operations to achieve the target deployment model and
takes into account the annotations. If all situational conditions are met and there is
enough time to safely perform the update and also apply possible compensatory measures
(rollback), the update is performed [KLZ20].

Naseer et al. [NNP+20] propose a framework used at Facebook to enable disruption-
free global releases. Their approach aims to avoid any limitations for users and their
user experience, to have no downtime, and to maintain cluster capacity, as well as the
robustness of the infrastructure. Their framework uses three update mechanisms to meet
the requirements of different tiers of their architecture: (1) socket takeover, (2) partial
post-reply, and (3) downstream connection reuse. Compared to a traditional upgrade
approach, where updates are rolled out in batches and the restarting instances enter the
draining mode and thus do not accept new connections until the end of that period, their
approach achieved reduced completion times and an improved cluster capacity [NNP+20].

Table 4.6 provides a list of the main approaches, concepts and strategies to perform
dynamic updates of software components and the corresponding papers in which they
are stated. DSU as an update method is mentioned quite frequently in the analyzed
literature, as it is a very broad term for updating or modifying systems at runtime without
stopping and restarting the system. For stateful applications, this dynamic updating
also requires a method for a state transfer between the old and updated version of an
service or application. Very often, dynamic update methods also use containerization
and orchestration techniques and deploy applications as microservices. Some authors
also developed an entire framework or architecture to implement such update strategies.
Moreover, some papers discuss the switch between the legacy and updated versions, as
well as their advantages and disadvantages. A few papers also chose a model-based
approach to address this subject.

Table 4.7 provides a list of aspects mentioned by researchers in their work that are
relevant for evaluating dynamic updating methods and for implementing such strategies
in practice. In all the papers examined, it is pointed out that the updating method used
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Table 4.7: Relevant Aspects Mentioned in Literature for Dynamic Updates

must comply with certain time constraints. This includes the requirement that there
must be zero-downtime, the WCET of update procedures, the completion of updates in
a fixed time slot, or the availability of services in general. Therefore, cycle times and
the execution of updates within these cycles are a requirement especially for real-time
systems. Furthermore, depending on the specific update strategy, the quality assurance of
the updates installed and the possibility of going back to the previous version in the event
of errors are properties that are regularly mentioned. Other aspects are not mentioned
as frequently because they are more specific to a particular research topic in the broader
field of dynamic updating methods.

Description of the Aspects Relevant for DSU

The following paragraphs briefly describe the aspects listed in Table 4.7.

Functional and Nonfunctional Correctness: Functional Correctness comprises the
need that new components do not interfere with the existing system. Nonfunctional
Correctness describes the requirement that the platform has still enough resources to
not be overloaded and to meet timing requirements. Real-time systems thus have a
deterministic input-output and timing behavior [Yi19].

Timing Constraints: In many real-time environments, stopping a program for update
reasons is unacceptable because they are mission-critical and/or safety-related software
systems or the interruption incurs significant costs or leads to prohibitive losses [MAAJ19],
[SKKM09]. Taking into account the WCET of update processes also goes in this direction,
since in systems where users or processes in general should not be interrupted, there
is only a limited time available to complete the update [KLZ20]. In addition, time
constraints also include the aspect of service availability. This means that highly available
systems should be accessible at least 99.999% of the time [VSTK19]. Another aspect of
time constraints is disruption to web application users when they lose their connection
and then experience a degradation in quality of experience [NNP+20]

Additional Delays: Using additional software components such as Docker for virtu-
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alization introduces an additional processing overhead by adding another layer to the
software stack [SLVH19]. This must be taken into account because it could possibly
violate the real-time requirements of some systems, since response or execution times can
no longer be met.

Cycle Times: These are the time periods that the jobs have available to complete their
task before the next cycle begins. Typical cycle times for controllers are between 10 and
1000 ms [KBA+21].

Fallback Strategy/Backwards Compatibility: This refers to the ability to revert
to the old version quickly, or even within the same update cycle, if the new version does
not meet the expected or defined requirements.

Quality Assurance: This measure ensures that a new version of a software component is
tested and validated in a secure environment before the update is released into production.
Only if the required quality criteria are met, the update will be accepted.

Infrastructure Requirements: Sometimes it is required that a certain software or
commercial, unmodified operating system is used, for example, to fulfill support conditions
or for other business reasons [WRO09].

Complexity: This criterion describes how complicated or time-consuming it is to
implement the deployment strategy or how much know-how is required. It also takes
into account how long the technology has been around, as newer ones are often more
complex due to less information and guidance being available [SGB16].

Situation Awareness: This means that the context of a system or application in
the course of an update should be observable and taken into account by the updating
process. This includes factors such as time, application state, environment, and people
involved [KLZ20].

Loose Coupling / Portability: Components should be completely isolated so that
updating one does not require a rebuilt of the entire system. In addition, the use of
special features of compilers or architectures and the modification of standards should be
avoided [RB17].

Figure 4.2a quantitatively summarizes the dynamic update methods and concepts for
achieving such on-the-fly updates mentioned above. The vertical axis of this bar chart
lists the methods and concepts, while the horizontal axis indicates the number of mentions
in the relevant papers. As with the chart for the first part of the SLR, a paper can be
assigned to several methods or concepts. In Figure 4.2b, the aspects that are either
required for the evaluation of dynamic updating methods in practice or are an essential
part thereof are summarized. Again, multiple assignments are possible.

4.2.2 Answer to Research Question RQ1b and RQ1c
As shown in Table 4.5, 66 papers were initially found that matched the search terms.
After reviewing the title and abstract, 18 papers were selected for thorough reading.
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Finally, 15 papers were considered as relevant to answer the research questions RQ1b
and RQ1c. The following sections therefore address these questions.

RQ1b: Which dynamic update methods for software components in the pro-
duction environment are mentioned in existing literature and which software
frameworks do they use? Because dynamic updating of software components implies
that updates are performed “on-the-fly” without disrupting running operational programs
or users and to avoid halting and restarting a systems, a widely used approach is DSU.
DSU is a fairly broad term for updating or modifying systems at runtime. Depending on
the specific use case, this method can have different characteristics, but the underlying
idea remains the same. For example, if a stateful service in an embedded real-time
system needs to be updated, the reliable transfer of internal state information from the
old component to the new version of the component is also required, including possible
changes in data types, commands, etc. For stateless applications, on the other hand,
switching between old and new versions is much easier. Furthermore, a DSU strategy for
containerized microservices has different technical and operational requirements than for
an embedded real-time system that runs directly on the hardware and thus relies heavily
on operations and functionalities provided by the operating system and the programming
language.

In recent years, virtualization and containerization technologies are also used in the
field of dynamic software updates. Docker and Kubernetes are therefore widely used
software frameworks for deploying various applications, for example, as microservices,
and updating them by deploying a container that hosts the new version and reconfiguring
the dispatcher to serve the user or other applications with the output of the updated
service. In addition, state transfers can also be an issue in virtualized environments.
Furthermore, especially in the context of containerized applications or the partitioning
of applications into staging and production areas, or when an application is initially
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validated in a quarantine environment, a switchover strategy from the old to the new
version is essential. Thus, blue-green deployments and canary releases are regularly
mentioned in the literature in order to perform such switches, with the strategy chosen
depending on the anticipated objectives.

Some authors have also proposed their own framework or architecture for implementing
dynamic update strategies. Other, less frequently mentioned approaches to address chal-
lenges in dynamic updates include situational awareness of systems and their respective
update processes and modeling of update strategies to assess possible impacts on the
system already in the architectural model.

RQ1c: Which requirements are mentioned in the literature that are relevant
for dynamic deployments in production environments? Since dynamic update
approaches are often used for embedded real-time systems, time-sensitive applications, or
systems that require high-availability overall, time constraints are the most important
requirement mentioned in the literature. This includes, for example, the demand for
zero-downtime during the update process and no interruption of any running operational
routines or users, as well as ensuring that upgrades can be completed in the cycle
slack time, including state transfers and taking into account the WCET. Two other
requirements that were mentioned quite frequently are a possible fallback or rollback
strategy and the necessity to approve a version in a safe environment first. The former
refers to the ability to quickly or even immediately revert to the original replaced version
in case an error occurs during the update process or the updated version of an application
does not perform as expected. The latter aims to avoid such situations in the first place,
as new applications are first validated in a safe or isolated environment before going into
production.

Adding an additional software layer by introducing virtualization or containerization
techniques can also lead to additional delays and processing overhead, which could affect
the real-time requirements of some systems. Therefore, this should also be considered
when designing dynamic update strategies. Further aspects that are not as frequently
mentioned in the literature include the consideration of infrastructure requirements,
complexity of technologies and their implementation, and the importance of systems
being aware of their environment and context when performing updates. For some
authors, loose coupling of components and portability is also important, as this allows
for component-wise adaptability. This facilitates updates of isolated components without
having to rebuild or validate the entire system.

Based on these requirements, the criteria for evaluating the identified approaches for a
model switching strategy for fault detection models in the production domain are derived
in Chapter 5.
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4.3 Integration of Models into an Asset Administration
Shell

An essential part during the development of a concept for the dynamic exchange of
ML models in production environments is the possibility of integrating these models
into an AAS. However, for the integration of ML models into an AAS there is no SLR
conducted, since, to the best of our knowledge, there exists very little literature regarding
this topic so far. Nevertheless, there is a metamodel description for the AAS as well as
documentations for AAS implementations that can be used to evaluate the current state
of the literature in terms of integrating models into the AAS. In the following, these
key aspects mentioned in the literature are summarized, while in Section 3.2 the general
aspects of the AAS are discussed.

Rauh et al. [RGB+22] propose a management approach for AI artifacts and integrated
their lifecycle into the digital twin domain. For this purpose, they defined a semantic
specification model, based on the AAS metamodel, to describe AI models and their
associated dataset and learning algorithm entities. Their defined AI assets can be divided
into three groups of entities: (1) model, (2) dataset, and (3) learning algorithm. To
this end, they use AAS submodels to describe general but also specific properties. For
example, all entities contain an identification, contact information and an appendix
property. Entity-specific properties include, for example, references to the dataset and
learning algorithm, training phase information such as hyperparameters, validation
information, and properties describing the deployment and operation. The implemented
proof of concept consists of an automatic generation of AI AAS instances using the
Eclipse BaSyx Framework and incorporating metadata from the MLOps pipelines. In this
context, the trained AI model is exported in the ONNX format and is tightly linked to the
metadata to finally obtain a self-describing model. As a downside to their solution, they
pointed out that there is currently no direct integration for an AAS into AI frameworks,
but they see their approach as a starting point for a standardization process using already
supported protocols [RGB+22].

A logical, generic, and technology-independent model for predictive maintenance in the
context of a smart factory is proposed by Cavalieri and Salafia [CS20a], which uses the
AAS as a standardized abstraction layer to overcome the technological heterogeneity of
assets in manufacturing environments. For this purpose, they defined the required general
functions for a predictive maintenance solution as so called logical blocks. In this context,
these blocks are modular but cooperating elements that group functionalities, such as
data acquisition, data manipulation, or the predictive model, and abstract the actual
necessary operations. These logical blocks are then implemented in submodels in their
AAS, with the exception of the prediction model and maintenance actions, as these were
considered too computationally intensive to be implemented on AAS-enabled devices.
However, they also point out that this is not a limitation, since for certain solutions
the functionalities of the predictive model can also be implemented in a submodel. In
their case study they demonstrated this approach based on an AAS-based predictive

49



4. Related Work

maintenance model for 100 milling machines, which also leverages the concept of logical
blocks. The majority of the logical blocks are implemented as submodels on edge devices,
while the predictive model and maintenance decision making reside in the cloud [CS20a].

In a further paper, Cavalieri and Salafia [CS20b] proposed a submodel template to describe
an IEC 61131-3 program and its relationships with PLCs and the respective production
facility using the AAS metamodel. The IEC 61131-3 standard defines the syntax and
semantics for PLC programming languages. To this end, the authors defined the elements
of such an IEC 61131-3 configuration, such as resources, program organization unit, tasks,
and so on, using elements from the AAS metamodel. Therefore, an AAS is required
for the PLC where the program is executed. This AAS contains the previously defined
submodels and enriches it with references to the real I/O connections provided by the
PLC. After all, this approach supports tasks in the lifecycle of a production system
and facilitates, for example, the test operation of a plant, maintenance during runtime,
reconfiguration processes of plants, but also documentation in general [CS20b].

Göllner et al. [GPS21] propose an automated and generic generation process for dynamic
simulation models based on the AAS as standardized information model containing the
necessary machine topology. The generation process uses the Functional Mockup Interface
(FMI)-standard and consists of a two-step procedure that allows different simulation
tools to be linked. The FMI-standard is used to represent a dynamic simulation model
as a black box, but where the interfaces and parameters are visible and the latter can
be adjusted accordingly. Within an AAS, the information is encapsulated in submodels
that can contain properties or also files. Accordingly, specific submodel templates are
defined as standards in order to enable a uniform provision of information by different
companies. Furthermore, a simulation model can also be integrated into a machine’s
AAS submodel by referencing the simulation model file and additionally providing the
input and output interfaces [GPS21].

Juhlin et al. [JKS+22] describe a cloud-enabled simulation platform for drive-motor-
load simulations with a focus on composite assets – that are systems that consist of
multiple assets – and therefore require a systematic integration and synchronization
of the individual properties. Thus, they use the concepts of the AAS and Functional
Mockup Units (FMUs) to address existing challenges in composite system engineering,
such as the lack of interoperability at the system level, both data and component-
wise, software deployment and administrative overhead, or security concerns during
information exchange. The former allows for automatic data exchange while the latter
enables interoperable simulations. To enable a software independent integration model,
AAS submodels were used, which are linked to each other, but also refer to proprietary
data models. The simulation models can be included in AAS submodels as FMU model
files or by using AutomationML. In addition, simulation results and parameter files can
also be added to the submodels. The basic structure of the proposed simulation platform is
based on a cloud solution using containerization and runs the actual simulation. Based on
a mapping, the implemented Drive-Motor-Load Integration Model links asset models from
different manufacturer tools as well as from different engineering phases via their inputs
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and outputs. After the integration model is set up and linked, the simulation models
and data can be exchanged. The load simulation model can be developed in any tool
and then loaded into the simulation platform as FMU. With the parameters and settings
contained in the submodel, the relevant information can be linked and subsequently
provide the simulation with the required parameters. Moreover, this architecture and
the information it contains make it possible to perform advanced tasks such as predictive
maintenance or asset recommendations [JKS+22].

The IDTA3 is an association founded by the two major industry associations in this field
(ZVEI4 and VDMA5) and several companies active in the field of Industry 4.0. Its aim
is to accelerate digitization in industry by simplifying and standardizing the individual
developments of the industrial digital twin, using the AAS with the idea of establishing
it as an international standard, as the world moves towards more interoperability and
standards [Bö21]. On its homepage6, the IDTA summarizes use cases from the industrial
practice as well as submodel templates that describe content-related or functional aspects
of assets [IDT23]. However, most of the accessible use cases do not deal with the
integration of external software components into an AAS. In addition, a majority of the
listed submodels have a status of “In Review” or “In Development” and primarily address
data encapsulation and data sharing issues.

One submodel template called Provision of Simulation Models7 addresses the interoperable
provision of simulation models by providing them as ASCII or binary files to be used
with a simulation software. In addition, they provide information about the type, use,
and application areas of the model. Moreover, the assets to be used for such a simulation
model must also have their own AAS [IDT23].

There are four more submodel templates listed on the IDTA homepage that have promising
names and descriptions: (1) Artificial Intelligence Dataset, (2) Artificial Intelligence
Deployment, (3) Artificial Intelligence Model Nameplate, and (4) Predictive Maintenance.
However, all four of these templates are in the “In Development” state and there is
no information about these submodel templates other than a brief description. The
first template covers the unique identification and explanation of datasets used to train
and subsequently instantiate AI models. In addition, other metadata descriptions such
as data source, dataset properties, and references to the origin should be captured in
a submodel. The second submodel template is intended to encapsulate the necessary
information associated to the operation of AI models such as runtime and dependencies,
but also deployment requirements, which in turn should facilitate automatic and dynamic
deployments of AI models. The AI Model Nameplate is supposed to provide a unique
identification and explanation of AI models. This includes, for example, the type of

3https://industrialdigitaltwin.org/en/
4https://www.zvei.org/
5https://www.vdma.org/
6https://industrialdigitaltwin.org/en/content-hub/submodels
7https://industrialdigitaltwin.org/en/wp-content/uploads/sites/2/2023/01/

IDTA-02005-1-0_Submodel_ProvisionOfSimulationModels.pdf
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model, the class of the training algorithm, information about the input and output data,
but also the possibility to include the artifact as a binary file. The fourth submodel
template shall make it possible to describe the predictive maintenance process along with
its sub-processes in a structured form based on industry standards [IDT23].

4.3.1 Summary
To conclude this section on integration approaches for external software components
into an AAS, the most important aspects of the previously discussed literature are
summarized.

The AAS metamodel itself offers basically two ways to include external data, i.e., files
or binary data, namely via the submodel elements File and Blob. This is also true for
the papers mentioned here. Basically, if at all, relevant software components such as AI
models or simulation models are packaged in such submodel elements and additionally
supplemented with all necessary information, resulting in a comprehensive representation
of such components as a digital twin.

For example, Rauh et al. [RGB+22] complemented in their AI AAS the binary model
in ONNX format with textual metadata to obtain a self-description of these AI models.
Also, Göllner et al. [GPS21] followed a similar approach. They integrated a FMU model
file and supplemented this simulation model with references to the digital representation
of the physical components that provide the required inputs and receive the outputs
of the performed simulation [GPS21]. In addition, Juhlin et al. [JKS+22] also mention
that simulation models can be integrated into an AAS submodel if it is exported in the
appropriate format.

Cavalieri and Salafia [CS20a] said that it is possible to incorporate a predictive mainte-
nance model into a submodel, but did not do so in their work because of the excessive
computational complexity for the device used. In their other work, Cavalieri and
Salafia [CS20b] modeled IEC 61131-3 elements with AAS metamodel elements, but did
not deal with the integration of whole software components.

The simulation model submodel template on the IDTA website is essentially the equivalent
of the core statement about integrating simulation models into an AAS mentioned above.
Moreover, the four submodel templates referred to, for which no further details are yet
specified, provide a strong indication that it is also possible to integrate AI models into
AAS submodels [IDT23].
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CHAPTER 5
Criteria and Requirements

Definition

The aim of this chapter is to define a list of relevant criteria and requirements, both for
the integration concept and for the model deployment and switching strategies. The
subsequent Chapter 6 introduces a detailed approach for integrating fault detection
models into an AAS. Afterwards, in Chapter 7, an exploration of model deployment and
switching strategies designed to minimize downtime during model switching is presented.
The defined list of criteria and requirements is to a large extent based on the insights
gained from the literature review in Chapter 4, especially on the relevant aspects identified
for ML model deployments and dynamic update approaches for software components. The
remaining criteria are derived from the properties of the AAS metamodel as well as the
characteristics of the BaSyx implementation of the AAS. The criteria and requirements
relevant for this use case can be categorized into three groups: (1) Deployment Concepts,
(2) Dynamic Updates of Software Components, and (3) AAS Related Aspects. The
details of each group are elaborated in the following sections.

5.1 Deployment Concepts
The following list of criteria and requirements primarily originates from the findings of
the SLR on deployment strategies for ML models from Section 4.1. Specific solutions
identified by the SLR on this topic are directly mapped to the requirements for dynamic
updates in Section 5.2 to avoid duplicates and overlaps. Hence, the integration approach
of ML models into an AAS and especially the deployment of these models should consider
the following points:

• R-5.1.a - Containerization/Partitioning The concept of using containeriza-
tion with products such as Docker in combination with orchestration tools like
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Kubernetes was mentioned quite frequently for deployment concepts as well as
dynamic updates. This enables, among other things, microservice deployments
of applications or their publication as a web service and the provision of their
functionalities via an API. In addition, this concept has the advantage of providing
pre-configured images that can be easily deployed on a variety of systems running
different environments.

• R-5.1.b - Microservices, Web Services, API Both microservices and web
services are frequently discussed (both as deployment concepts and for dynamic
updates) as software architectures and methods for providing application access
to users. Microservices provide a way to structure and deploy different types of
applications, including ML models. Typically, microservices are combined with
containerization, which requires a well-defined API to provide access to the model.
Web services can be used to implement a microservice architecture by exposing the
service through a web interface, such as REST APIs.

• R-5.1.c - Deployment Strategy Different deployment strategies are mentioned
in the literature for deploying ML models and providing them as services and
updating them depending on different requirements. Basically, two strategies
can be considered for this use case: (1) Blue-Green Deployment and (2) Rolling
Deployment.
Blue-Green Deployment: With this strategy, the model can be prepared and
tested in a separate standby environment before switching it to the active model to
serve all incoming requests. Furthermore, this strategy allows for zero downtime
deployments, but also enables a rollback to the previous model version in case of
an unexpected condition regarding the model’s performance.
Rolling Deployment: This deployment strategy can be used when there are
multiple instances running and during an update only a part of them is updated
while the others can serve incoming requests. In this way, deployment without
downtime is possible.
Therefore, the characteristics of the mentioned deployment strategies should already
be taken into account during the development of the integration concept, as they
are well-defined ways for deploying different types of applications.

5.2 Dynamic Updates
The following list addresses the aspects that are primarily related to the findings discussed
in Section 4.2 about dynamic update methods for software components. Therefore, the
identified deployment strategies, but also possible implications in this regard in the
integration concept, should take these points into account:

• R-5.2.a - Dynamic Software Updating (DSU) This is a broader term for
updating or modifying systems during runtime without having to stop and restart
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the system. Therefore, a key requirement for dynamic updating in this case is to
aim for zero downtime when switching between two model versions used for fault
detection. Accordingly, timing constraints can also be considered as a sub-criterion
of DSU.
Timing Constraints This term, as defined in Section 4.2, includes several require-
ments related to timing, such as downtime, service availability, or connection losses
that result in degradation of the quality of user experience. In this approach, zero
downtime and high service availability are the main criteria that should be met.
Specifically, the goal is to have no downtime for ML inference, ensuring very high
service availability and excellent user experience.

• R-5.2.b - Fallback Strategy/Backwards Compatibility A frequently men-
tioned point in the literature on dynamic updates is the need to quickly roll back to
a previous version, in case the new version of the model does not meet the specified
requirements or causes an error condition. In addition, backward compatibility
should be ensured so that the introduction of a new version of the model does
not cause any changes, that would make older versions unusable. One way to
accomplish this is by following a blue-green deployment strategy.

• R-5.2.c - Quality Assurance This requirement ensures that a new version of
a ML model can first be tested and validated in a safe environment before it is
released for production. Only if the required quality criteria are met, the switch
between the models will actually be performed. Thus, a standby environment
should be available to prepare and test the new model in advance. This can be
achieved, for example, with a blue-green deployment strategy or by means of A/B
testing.
A/B Testing: This is one way to ensure the quality of new models by comparing
at least two model versions in terms of their performance by splitting the incoming
requests among the models to be tested.

• R-5.2.d - Infrastructure Requirements It is important to consider that the
identified deployment strategies must take into account the requirements of other
software components that are essential for the definition and implementation of
fault detection models within the defined integration concept. As such, these
components can be considered as essential infrastructure and cannot be neglected.
Therefore, the requirements imposed by the BaSyx SDK and the AAS metamodel
should be met. Some of these requirements are defined in the following list in the
upcoming section.

5.3 Desired Features of the ML Model Integration
Approach

In addition to the requirements that emerged from the literature research, the following
list defines AAS-specific requirements that arise either from the AAS metamodel or
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the BaSyx SDK, along with requirements that are intended primarily for usability and
practical applicability. Therefore, the integration approach of ML models into an AAS
should provide or enable at least the following points:

• R-5.3.a - Strive for a Generic Integration Approach: The integration con-
cept to be developed should be as generic as possible in a way that it should be as
independent as possible from the actual implementation. This implies that it should
not matter, for example, which type of ML model is used, in which programming
language it is implemented or, in principle, how it is hosted or made available. The
concept should only define a few fixed aspects, such as interfaces or endpoints. In
addition, it should not just be designed for a specific use case. For example, the
number or data type of sensor values used should not play a role, nor where the
data must be actually read from the AAS.

• R-5.3.b - Independence from the Deployment Strategy Used: The fault
detection submodel should be designed in a way that it is not tailored to a specific
deployment strategy. This means that no submodel elements should be added, which
limit this integration concept to a single deployment strategy or are designated for
a specific purpose (e.g., by their name). This should allow that the concept does
not only work for one deployment strategy, but for several. After all, not for every
use case the same deployment strategy is the best one.

• R-5.3.c - Fault Detection Submodel should form a Logical Unit: The goal
is that the submodel, which represents the fault detection, encapsulates all the
necessary properties collected as submodel elements within one submodel. This
is necessary to ensure that this submodel can be hosted as a logical unit on any
server. Based on that, one further aspect can be derived as a requirement: The
fault detection submodel should be able to be hosted as a self-contained unit on a
separate server (edge node) in order to be as close as possible to the nodes that
provide the data in order to keep latency as low as possible.

• R-5.3.d - Possibility to Archive Models: It should be possible to keep old
models that were used for fault detection earlier even after their use in the AAS.
This facilitates a possible rollback to a previous version if problems occur during
the operation of a new version, but also to keep a transparent history of the used
models or to compare their properties between the versions.

• R-5.3.e - Quality Criteria based Decision Making: It should be possible to
switch from an older to a newer version of an ML model based on objective quality
criteria. These can be performance metrics depending on the model type. The
latest values of these metrics should be persisted in a submodel in the AAS.
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5.4 Deliberately Excluded Criteria
Besides the aspects mentioned above that should be fulfilled by the developed integra-
tion concept and the identified deployment strategies based on it, there are also some
requirements mentioned in the literature that have been deliberately excluded for various
reasons, which are explained in the following list.

• Cycle Times Although cycle times are a central element in real-time systems,
there is no PLC in service in this use case and also in the prototype based on it,
and furthermore, no hard real-time requirements are applicable. Thus, cycle times
do not play a role for this application.

• Additional Delays Additional software components such as Docker for container-
ization and virtualization add processing overhead and may violate real-time
constraints as a result. However, since this use case does not require hard real-time
requirements, but only soft real-time requirements, this limitation can be neglected.

• State Transfer The ML models used in this work do not have an internal state
or state variables that must first be transferred to the new version, which is why
just considerations for stateless deployments are relevant.

• Canary Deployment This deployment strategy can be used to compare different
models in terms of their performance. Additionally, this strategy also allows a
rollback if an undesired condition occurs, as well as zero downtime deployments.
In the case of fault detection, this type of testing and comparison of models and
their performance is not reasonable because live requests trigger an event in the
case of a detected fault and might subsequently initiate further implications in a
productive system. This can lead to an undesirable state since the suggestions for
possible faults come from two different systems. Therefore, other testing strategies
are better suited to ensure model quality.

• Complexity In Section 4.2, this term was defined as a factor that takes into account
the time required and the level of expertise needed, but also the maturity level of
the technology used for implementing the deployment strategy. In this approach,
primarily state-of-the-art components (such as Docker for containerization) should
be used and, in general, the level of complexity should be as low as possible but as
high as required for the implementation according to the other aspects. However,
this is a criterion whose fulfillment/non-fulfillment is very difficult to determine
objectively and was therefore taken into account but not included in the above list.
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CHAPTER 6
Conceptualization of an AAS

Integration Approach

The objective of this chapter is to present a comprehensive approach for integrating fault
detection models into an AAS. Based on the criteria and requirements defined above
and in particular taking into account the existing AAS metamodel as defined in the
specification Details of the Asset Administration Shell in the version 3.0RC02 [Pla22],
the resulting concept for integrating ML models into an AAS is discussed below. The
technical possibilities and limitations of the BaSyx SDK also play an essential role in the
development of the integration concept as well as the findings and restrictions resulting
from the identified deployment strategies for ML models, which are described in detail in
Chapter 7.

6.1 Eclipse BaSyx™ – Particularities and Restrictions
The following sections elaborate on some special features and limitations that the usage
of the BaSyx framework impose on the development of the integration concept of ML
models into an AAS submodel.

6.1.1 AAS Operations in BaSyx

Through operations in BaSyx it is possible to push runtime behavior to a server and
subsequently perform this functionality on the server. This functionality is added during
the implementation phase of the AAS using a BaSyx SDK (currently existing for Java,
.NET, C++, and Python). In the further course, only the Java side is considered, since
this is relevant for the implementation of the prototype (reasons for that are provided in
Section 2.2.3 on the methodology of the evaluation).

59



6. Conceptualization of an AAS Integration Approach

Considering now just the Java-based SDK, the functionality that can be embedded into a
BaSyx operation is quite manifold. The essential condition is that it must be an invokable
object set to the operation element and correspond to one of the four types:

• Function<Object[], Object>

• Runnable

• Supplier<Object>

• Consumer<Object[]>

As all the defined operations for this concept have both input and output variables, the
set invokables are of type Function<Object[], Object>. This approach works well
in principle as long as these operations are not hosted directly on an AAS server, but on a
separate server that hosts only one or more submodels, e.g. on the BaSyxHTTPServer.
If, on the other hand, the operations are hosted directly on the AAS server (within the
identical submodel as before), then this will lead to an error when invoking such an
operation. The reason for this behavior is the current implementation of the invocation
process within the AAS server. Technically it is possible to provide operations also on an
AAS server. However, for security reasons the invocation is not supported at the current
state1.

Operation Delegation One possibility to overcome this issue is to use the operation
delegation approach. With this approach it is possible to redirect the invocation of an
operation to another server. The called operation can be hosted on an AAS server, but
the operation that performs the actual functionality must be published on a separate
server. The operation to which the delegation is made can also be implemented in another
programming language. Furthermore, there is no need to implement the entire submodel
interface [Sch22c].

To define an operation using the delegation approach, it must have neither input nor
output variables. In addition, the operation must be declared as a delegation operation by
means of a qualifier. The qualifier must have the type “invocationDelegation” and
the URL of the operation to be invoked must be set as the value of this qualifier. However,
when calling the delegation operation, the in and out parameters must be provided. These
are automatically passed on to the actual operation. The client must therefore know
which In/Out/InOut variables are expected by the actual operation [Sch22c].

6.1.2 Persistency Backend in BaSyx
Within BaSyx, the hosted AAS with all contained submodels and the respective submodel
elements can be persisted using the storage backend of the AAS server component, which
uses MongoDB as data store. However, this must be configured explicitly, otherwise the
InMemory backend is used by default [Sch22d].

1https://github.com/eclipse-basyx/basyx-java-components/issues/217
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In addition to text or numeric based submodel elements, it would also be possible to
store Java bytecode in a MongoDB collection. However, this would introduce potential
problems and is therefore currently not supported by the BaSyx framework2. Another
point to note in this context is that the storage backend capability is only available
for the AAS server, but not for other servers that only host submodels, such as the
BaSyxHTTPServer. This implies that any elements contained in the same submodel
as operations cannot be stored in MongoDB through the standard BaSyx functionality.
This is because it cannot be hosted on an AAS server with a MongoDB backend due to
the restricted functionality of operations within an AAS server, and on the other hand, if
hosted on a separate server due to the lack of an storage backed available for this type of
server.

6.1.3 Eventing in BaSyx
The BaSyx framework supports the publication of MQTT events and uses a hierarchical
topic structure for this purpose. Eventing exists for both the AAS registry and the
various server components provided by BaSyx. In principle, events are published for
the creation, modification and deletion of an AAS, submodels or submodel elements
or their corresponding values. Since this behavior is impractical for certain submodel
element types, for example BLOBs, this can be disabled for defined submodel elements
using a qualifier with the type emptyValueUpdateEvent and the value true [Sch22b].
Furthermore, it is possible to activate the publishing of events only for selected components
(submodels, submodel elements, etc.) by means of whitelisting and to deactivate it for
the remaining components by default. However, this configuration option exists only for
an AAS server [Fis21].

Other configuration options, such as defining custom topics or triggering the publication
of messages based on certain conditions, do not work at the current stage of the BaSyx
framework. For example, if you only want to publish an event via MQTT in case a
potential error has been detected (i.e., if the property FaultDetected is set to the value
true), then this cannot be achieved with the existing functionality of BaSyx.

6.1.4 Implications for the Concept
Based on these findings, there are basically two possible ways to map the necessary
functionality by means of operations in the AAS:

1. Cloud-Edge-Deployment: This approach implies that there exists at least two
types of servers, an AAS server and one or more separate servers that just host
one or more submodels. For the integration of ML models this would mean that
the AAS is hosted on the AAS server along with the submodels, which contain
mainly static information that needs to be persisted in the data store. In contrast,
those submodels that contain operations or constantly changing sensor values are

2see footnote 1
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hosted on a separate HTTP server, which hosts the submodels contained in servlets
to provide access to their properties. In such a scenario, the AAS server is also
referred to as “Cloud Server”, while the second server is called “Edge Server”, as it
is also described on the BaSyx project site3.

2. Using Operation Delegation: This approach means that the submodel covering
the elements related to fault detection is split into two separate submodels. The first
submodel, which we call FaultDetectionModel, contains all the submodel elements
required to integrate an ML model, provide access to it, and perform the switch
between model versions, as well as the operations that delegate the call. These
operations have no operation variables defined, but do have the required qualifier
for delegation. The second submodel, FaultDetectionModelOperations, contains
only the operations with all required operation variables and functionality. The first
submodel is hosted on the AAS server along with the AAS itself, while the second
submodel must be pushed to an HTTP server in order to invoke the implemented
functionality. However, this approach would clearly conflict with the requirement
R-5.3.c by breaking logical unity and increasing management and maintenance
overhead. Figure 6.1 depicts the splitting of the fault detection submodel into two
separate ones that will have to be hosted on different servers. On the other hand,
this approach would provide the automatic functionality of persisting the submodel
elements, such as the references for the active and standby environments or the
endpoint in MongoDB using the BaSyx native functionality.

Custom MongoDB Client Since the operation delegation approach, as mentioned
earlier, contradicts the requirement R-5.3.c and would also double the number of op-
erations modeled, the cloud-edge-deployment approach is chosen for the ML model
integration approach. This implies that the FaultDetectionModel submodel runs on its
own HTTP server and, therefore, the elements within this submodel are not automati-
cally persisted to the MongoDB data storage. This comprises elements like the reference
element values to the active and standby environment as well as to the serialized ML
model in the archive. Besides that, there is also the requirement that the parameters
needed during the implementation of each operation in BaSyx as well as those needed
for the ML model deployment must also be persistently stored somewhere.

For this reason, a custom MongoDB client was implemented. This client allows to
store the properties contained in the FaultDetectionModel submodel (SerializedFDModel,
ActiveFDM, StandbyFDM ) but also the parameters used in the implementation of the ML
model deployment operations in a dedicated collection in MongoDB, such as the currently
used Docker image version, the currently actively used container, and so on. This ensures
that basically all properties are persistently stored in a MongoDB collection and can
be read from it accordingly, like when the submodel is hosted on an AAS server with a
MongoDB backend. Thereby, it is guaranteed that after a restart of the AAS server or a

3https://wiki.eclipse.org/BaSyx_/_Scenarios_/_Cloud_Edge_Deployment
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Figure 6.1: Potential AAS Design using the Operation Delegation Approach

server on which a submodel is hosted, the state can be restored and all parameters have
the value they had before the restart.

Custom MQTT Client Since the existing configuration and customization options
of BaSyx regarding MQTT eventing are not sufficient to publish selected MQTT
messages with a specific topic whenever a potential error has been detected, a sep-
arate MQTT client is used for the realization, which fulfills exactly these require-
ments. Using Java, this is relatively easy using the MqttClient from the package
org.eclipse.paho.client.mqttv3. This client is also used internally by BaSyx
for its MQTT functionality.

To enable eventing (with BaSyx or the custom MQTT client) an MQTT broker must be
accessible to which the client can connect and where the events with the corresponding
topics are published. For this purpose, a property named MQTTBrokerEndpoint was
defined in the AAS in the Datasheet submodel where the current URL of the MQTT
broker is stored. The reason why it is not in the FaultDetectionModel submodel but in
the “general” Datasheet submodel is simply because the MQTT broker cannot be used
exclusively for publishing fault detection events but also for other messages, such as if
BaSyx’s MQTT messages are also used when creating, modifying, or deleting elements.

The topic specified for this purpose is given as AAS/FaultDetection/FAULT, and the
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corresponding message is structured as ({AAS Identifier},{FaultDetectionModel Submodel
Identifier},FaultDetected). Both the topic and the message can be easily customized by
using the custom MQTT client.

The hierarchical topic structure for the message in case of a fault was defined solely in
the implementation of the AAS in BaSyx. One could also include this as a property
in the FaultDetectionModel submodel and always retrieve the current value from the
property when publishing a new message. However, since this is not directly related to a
dynamic deployment approach for ML models and the topic of MQTT and publishing
messages is only marginally touched upon anyway, the decision was made to define the
topic just in the implementation in BaSyx.

6.2 UML Diagram of the AAS Integration Concept
The following section describes in detail the integration concept for ML models into
an AAS, in particular for a fault detection model, and is structured as follows: First,
an overview of the integration concept is provided. Subsequently, the details of the
submodels are presented and in particular the FaultDetectionModel and the FDMArchive
submodel are discussed in detail.

For the concept to be developed, it has been attempted to make it as abstract and generic
as possible, so that it can be used for different (industrial) applications. This refers, for
instance, to the fact that it is suitable for different machine types, number and type
of sensors, but also as independent as possible of specific ML model types. UML class
diagrams are used for the graphical representation of the concept using AAS metamodel
elements. This diagram type is also used by the IDTA for the documentation of their
published submodel templates.

6.2.1 Overview of the AAS Integration Concept
In this section, an overview of the integration concept for a ML model into an AAS with
the goal of performing fault detection is presented. Figure 6.2 shows the defined submodels
with their respective submodel elements such as properties, operations, reference elements,
SMC, and so on. In addition, the dependencies and interrelationships between the different
submodel elements of the various submodels are depicted.

The UML diagram in Figure 6.2 shows that an AAS for a ML fault detection approach
consists of at least five submodels, of which each serves a different purpose. The
composition link between the AAS and the submodels, but also between the submodels
and further operation elements or SMCs have specified not only the name to which
they refer, but also a multiplicity. This multiplicity is also specified directly at the
element in the respective container and determines whether this element is mandatory
or optional in this context, but also if this element can occur more than once, such as
sensor submodels or quality measures for ML models. The dependencies (dashed lines
with arrows) between submodels and operation elements or SMCs represent the demand
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for information, such as sensor values, or because the reference elements refer to elements
in the other submodels, as it is the case with the active standby fault detection model.

The following list provides the necessary details on the five submodels required to model
the digital representation of a fault detection approach:

• Datasheet: The Datasheet submodel, which was defined in the course of the
concept development, contains primarily general information of the machine for
which the fault detection is performed and properties that are not intended to be
used solely by the fault detection model. Therefore, this submodel contains:

– MQTTBrokerEndpoint: This mandatory property of the type anyURI
contains the URL of the MQTT broker that is used for publishing MQTT
events in case of an identified fault. However, this endpoint can also be used
for other purposes of publishing MQTT events, such as for simple threshold
monitoring of sensor values.

– Documentation: This property of type ReferenceElement is optional and
can be used to link general information about the machine, such as sketches,
plans, maintenance documents, manuals, etc., to the AAS. Within the Ref-
erenceElement, one or more references can be defined to refer to a variety of
elements within an AAS but also to files and URLs that do not necessarily
have to be included in any AAS.

– {arbitrary} Properties: The Datasheet submodel can also contain any
number of further properties that are required to describe the machine or are
helpful to the overall topic of fault detection in this AAS. These properties
can have basically any data type that is provided by the AAS metamodel.
In addition, these properties can also be used for the fault detection itself
as they may contain values that are relevant for determining potential faults.
Obviously, this depends very much on the intended use case, but such properties
include for instance the date of the last maintenance or the number of loading
cycles since the last cleaning.

– ContactInformation: The ContactInformation submodel is already a sub-
model template standardized and published by the IDTA. This submodel
template by Bayha et al. [BBB+20] called ”Submodel for Contact Information”
and in particular the SMC named ”ContactInformation” describes in detail
all possible fields in order to clearly reach the right contact person for the
service avoiding any ambiguity.
For this scenario, the optional ContactInformation submodel is used not only
in the Datasheet submodel but also in two further submodels. It is used
to provide the possibility to store contact data of responsible persons for a
module, be it for the machine and general information or, for example, for the
fault detection model.
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6.2. UML Diagram of the AAS Integration Concept

• {arbitrary} Sensor: Within an AAS for fault detection, any number of sensor
submodels can be defined. The sensor submodel can be used to model any physical
sensor that provides values that are used for the fault detection inference. Moreover,
the submodel element contained in a sensor submodel, which actually stores the
measured value, can be basically of any data type that is supported by the AAS
metamodel, like integer, floating point, or string data types. The name of the
encapsulated variable is not of importance. Of course, multiple submodel elements
can be defined for sensor values within a sensor submodel. During operation, the
sensor values are usually updated periodically with the latest values. How this can
happen is beyond the scope of this paper. In this context, it is merely assumed
that this happens periodically.

• Capabilities: This submodel contains the capabilities that this AAS provides for
fault detection functionalities. The capabilities basically describe the functionalities
in an implementation-independent way. Therefore, in this submodel, there is always
a capability along with a “RealizedBy” relationship element that links the capability
to the operation that actually provides the functionality. A relationship element
has always two values. The first is the reference to the capability element, the
second is the reference to the operation.

For performing the actual tasks of ML inference, ML model upload to the AAS, or
switching between model versions, the capabilities are not required because they
were not needed for the implemented prototype. However, they have been included
in the concept to both demonstrate the available features of the AAS metamodel
and to provide the basis for further tasks such as capability testing, which checks
whether the provided capabilities of a resource match the required ones [BBB+20].
However, these tasks have not been addressed in this paper.

• FaultDetectionModel: The FaultDetectionModel submodel contains all those
elements together with the operations that are directly related to performing fault
detection using a ML model. Further details on this submodel are provided in
Section 6.2.2.

• FDMArchive: Within the FDMArchive submodel, all current and previous ML
models that are or were used for fault detection are stored along with their necessary
properties. Additional information on this submodel is given in Section 6.2.3

6.2.2 Fault Detection Model Submodel

This section describes in detail all submodel elements required to achieve the desired goal
of performing ML inference, preparing new ML models, and switching between model
versions. Figure 6.3 shows a section of the overall diagram and focuses exclusively on the
representation of the fault detection model without depicting the dependencies to other
submodels.
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<<Submodel>>
FaultDetectionModel

+ inference : Operation [1]
+ loadNewModelIntoArchive : Operation [1]

+ updateEnvironment : Operation [1]
+ swapActiveEnvironment : Operation [1]

+ Endpoint:anyURI [1]
+ FaultDetected:boolean [1]

+ SerializedFDModel:ReferenceElement [1]
+ ActiveFDM:ReferenceElement [1]

+ StandbyFDM:ReferenceElement [0..1]
+ ContactInformation : SMC [0..*]

+ Documentation : ReferenceElement [0..*]

<<Operation>>
inference

+ (IN) {arbitrary} : ReferenceElement [1..*]
+ (OUT) Response : string [1]

<<Operation>>
loadNewModelIntoArchive

+ (IN) SerializedFaultDetectionModelBlob : BLOB [1]
+ (IN) Trained : string [1]

+ (OUT) Response : string [1]

<<Operation>>
updateEnvironment

+ (IN) ModelToBeActivatedID : string [1]
+ (OUT) Response : string [1]

<<Operation>>
swapActiveEnvironment

+ (OUT) Response : string [1]

1

1

1

1

Figure 6.3: UML Diagram of the FaultDetectionModel Submodel
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First, the elements of type property and reference element are discussed, then the
operations are explained in detail. The following list describes the first element group in
detail:

• Endpoint: This property of the type anyURI contains the URL of the REST
API endpoint of the ML model used for inference. This endpoint normally retains
its value during runtime, even when switching between two model versions. It
could only be changed if the whole setup with the container and the REST API
configuration is changed intentionally.

• FaultDetected: This element of type boolean always captures the response of the
most recent call of the inference operation. Therefore, this value can potentially
change during runtime. Normally it has the value false, unless a potential fault
has been detected, in which case the value is set to true. In addition, the path to
this property is published within the MQTT message as AAS identifier, submodel
identifier and property ID in case a fault was detected.

• SerializedFDModel: The SerializedFDModel property references the currently
active ML model that is stored in one of the FDModel SMCs in the FDMArchive
submodel. More precisely, the serialized BLOB element is referenced here. After a
swap of the actively used ML model, this reference is updated as well.

• ActiveFDM: This property references the FDModel SMC in the FDMArchive
that is currently used as the active one. This means that this model is used for
inference.

• StandbyFDM: The StandbyFDM property is similar to the ActiveFDM but refers
to the model that is currently not actively used for inference. Furthermore, this
property is not mandatory as it depends on the actual deployment strategy chosen
whether a standby environment is also available or not.
During the swap between two model versions, the StandbyFDM and the ActiveFDM
references are exchanged (if this is required by the deployment strategy). The
StandbyFDM property is used to specify the model that is ready to be set as the
active model, but also to keep it as a potential rollback option after a switch until
it is overwritten by a reference to a newly uploaded model.

• ContactInformation and Documentation: This submodel contains also the
two optional elements ContactInformation and Documentation. The roles of these
two elements are basically identical to those already described in the Datasheet
submodel.

Besides the above mentioned properties and reference elements included in this submodel,
the defined operations are also an essential part of it. Therefore, the operations that are
also represented in Figure 6.3 are explained in the subsequent sections, together with
their input and output parameters. Each operation has input and/or output variables
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which are a submodel element of type OperationVariable. An OperationVariable has a
value defined that can be one of a specified list of submodel elements, such as property,
BLOB, SMC, or reference element. The level of OperationVariables was not considered
in the UML diagram for reasons of clarity, and for the property elements the specific
data type of the property value was specified directly.

inference This operation defines the functionality of sending the specified (sensor)
values to the respective ML model that is currently defined as active in order to potentially
detect a fault. The operation requires the following parameters:

• IN: {arbitrary} Sensor Value: This operation requires an arbitrary number of
sensor values, or any properties that contain a value, as an input variable that is
needed by the ML model for inference. Each of these input variables references a
property in one of the sensor submodels or the Datasheet submodel that capture the
respective value. Before the actual ML model is called, the references are resolved
and the latest values are retrieved from the linked properties.

• OUT: Response: The outcome of this operation is a variable that indicates
whether a fault has been detected or not. It is defined as a string variable and can
therefore contain a text message, but also the text representation of simple data
types such as integer or boolean (e.g., ”0”, ”1”, ”false”, or ”true”).

loadNewModelIntoArchive This operation is used to store a new ML model in the
AAS. For this purpose, a SMC is first created in the FDMArchive with all the elements
that are required according to the definition. The newly uploaded model, which is
received as BLOB, is stored in this SMC and the other properties are also filled with
their values. The operation loadNewModelIntoArchive expects two input variables and
provides a response message as output variable:

• IN: SerializedFaultDetectionModelBlob: With this parameter, the operation
gets the ML model as BLOB. It is actually expected that the uploaded model is
base64 encoded as the MIME type of this variable is text/plain. This ensures
that the model can be stored as a code page independent ASCII string in the
MongoDB backend of the AAS and thus avoids encoding problems.

• IN: Trained: The date or timestamp when the ML model was trained is specified
via this parameter. This is actually done for two reasons: Firstly, this value is used
to create a unique ID for the SMC. Secondly, this value is also specified in the
archive as an additional property for documentation purposes.

• OUT: Response: The return value of this operation is defined as a string. No
particular output is expected, but it can be used, for example, to return an ID,
”OK”, an error message, or some other message to the caller.
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updateEnvironment This operation defines the steps required to prepare the new
environment containing the ML model defined by the specified ID in the input parameter.
The individual steps performed as part of this operation depend heavily on the deployment
strategy chosen. Steps that typically happen within this operation are the reading of
property values from the AAS or MongoDB, creating the new Docker images, preparing
the new Docker containers, or updating the references in the AAS. This operation expects
just one input parameter and returns an output variable:

• IN: ModelToBeActivatedID: This variable contains the ID of the model stored
in the FDMArchive submodel that should be loaded into the standby environment
for preparation. The expected data type of this variable is string. The provided
model ID can be that of the most recently uploaded model as well as that of an
older one. Accordingly, all models in the archive can be used for the preparation in
the standby environment. This may be necessary, for example, in the event of a
rollback to a previous version or for performance comparison reasons.

• OUT: Response: The return value of this operation is defined as a string. No
particular output is expected, but it can be used, for example, to return a status
code, an error message, or some other message to the caller.

swapActiveEnvironment The operation swapActiveEnvironment is used to swap the
standby environment with the active environment, i.e. the previous standby environment
is then the active one and vice versa. Nonetheless, this also depends on the deployment
strategy chosen, as not all strategies require two separate environments. For example,
one could also use a previously defined Docker image to patch the existing running
container(s). This process also updates the corresponding references in the AAS. However,
this operation does not require any input parameters, but like the other operations, has
a response output variable of type string that can be used to return a status code, an
error message, or any other message.

6.2.3 Fault Detection Model Archive Submodel
In this section, the submodel elements of the FDMArchive submodel and the therein
contained FDModel SMCs are described. In Figure 6.4, the components of the archive
are shown and it can be seen that the archive consists of an arbitrary number of fault
detection models. In turn, any number of quality measures can be assigned to them. The
task of the archive is to store all the models that are used both actively or in the standby
environment, as well as all those that were previously used or even just uploaded. This
is to preserve the history of the used models but also to offer the possibility to switch to
any version and use it as active model for the inference.

In the following, the SMCs of FDModel and QualityMeasures are explained. The FDModel
element is used to describe one ML model along with its properties and store them
together in the AAS. The following list describes the contained submodel elements in
more detail:
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<<Submodel>>
FDMArchive

+ FDModel : SMC [0..*]

<<SMC>>
FDModel

+ Trained : string [1]
+ LastRun : string [1]

+ DirectEndpoint: anyURI [1]
+ SerializedFaultDetectionModelBlob : BLOB [1]

+ QualityMeasures : SMC [0..*]
+ ContactInformation : SMC [0..*]

+ Documentation : ReferenceElement [0..*]

FDModel

0..*

<<SMC>>
QualityMeasures

+ {arbitrary} : double | string | ... [0..*]

QualityMeasures

0..*

Figure 6.4: UML Diagram of the FDMArchive Submodel

• Trained: This property contains the date or timestamp when the model was
trained. This is provided via an input variable when uploading the model into the
AAS. It is used mainly for documentation purposes, but is also part of the ID of
the FDModel element.

• LastRun: The LastRun property always contains the timestamp when the model
was used the last time for inferences. If it is the active model, then the property is
updated regularly on each inference call. On the other hand, if it has never been
used, the property is empty or set to a constant value.

• DirectEndpoint: This property of type anyURI stores the URL of the REST
API endpoint for this model, which can be used to access the ML model and use it
for inference without declaring it as an active model. The active model also has
this property set but differs from that endpoint defined in the FaultDetectionModel
submodel, which is intended for productive use only. However, it is still necessary
that the model is provided in either the active or standby environment. Otherwise,
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the model will not be able to perform the fault detection and will not be accessible.
Therefore, this property is empty or set to a constant value for all models that are
neither in the active nor in the standby environment. This endpoint can be used to
test the ML model or to determine the quality measures without interfering with
the productive use of the active model.

• SerializedFaultDetectionModelBlob: This property contains the uploaded ML
model as BLOB object. As has already been mentioned at the upload operation,
the ML model in this property has to be exported beforehand from any ML tool so
that it can be base64 encoded and stored as code page independent ASCII string
in the AAS. This is especially important if one designs the AAS with the AASX
Package Explorer, for example, to save it as a template, use it as a starting point
for an implementation, or to share it with another person. Since currently the
supported mime types are limited and thus not all file types can be successfully
saved as a BLOB in an aasx package file. For example, serialized ML models cannot
be imported into an aasx package directly as .joblib files, because the package could
not be opened anymore. However, after base64 encoding the serialized ML model,
everything works fine.

• QualityMeasures: The SMC of quality measures contains any number of quality
or performance metrics for the ML model. It does not matter which metrics are
chosen as they serve documentation purposes and should help to make decisions
on model switches. In addition, the measures also depend on the selected model
class, for example, whether it is a classification or a regression model. Each of the
properties can basically be of any data type supported by the AAS metamodel, but
will most likely be a floating point type.
Via the direct endpoint element in the FDModel, if actually set, the model can
be tested against a defined test dataset to determine the defined quality measures
and store them in the AAS in the respective SMC. If this is done for two or more
models, they can be compared based on their metrics and the model with the best
performance can be used as the active model for inference. This can subsequently
also serve as a decision support mechanism when it comes to switching from one
model to another based on the performance metrics. However, this possibility was
modeled only in the theoretical concept, but is for the prototype out of the scope
of this work.

• ContactInformation and Documentation: This submodel contains also the
two optional elements ContactInformation and Documentation. The roles of these
two elements are basically identical to those already described in the Datasheet
submodel.

6.2.4 Remarks on the Developed Integration Concept
During the conception of the integration concept, fields for comments by the user or notes,
as well as additional (technical) information fields were deliberately omitted in order to
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keep it as clear as possible and focus on the essentials. For example, for the ML models
in the archive, additional fields could have been added for ML model type, information
about the dataset used for training, details about the hyperparameters, and so on. These
would be added to the submodel as a SMC, analogous to the quality measures. However,
since these are not relevant for the deployment strategy, they were omitted.

6.3 AAS Integration Concept – Use Case of the
Packed-Bed Regenerator

This section deals with the application of the rather generic integration concept described
above to the chosen use case – the Packed-Bed Regenerator – which also serves as the
basis for the prototype developed later in this thesis. Therefore, a concrete model of an
AAS based on the concept described in Section 6.2 will be discussed in the following.
The basic structure as well as the mode of operation of a Packed-Bed Regenerator,
which provide essential input for the AAS modeled here, have already been described in
Section 3.5. In addition, Figure 3.1 illustrates the relevant sensors, which are defined as
submodels with corresponding properties in the AAS.

Figure 6.5 shows how such an AAS for a Packed-Bed Regenerator looks like when created
in the AASX Package Explorer. The left side of the figure shows a schematic structure
of an AAS along with a customized thumbnail. On the right side, the defined AAS is
presented with its submodels. There, the first submodel, which is the Datasheet submodel
together with its submodel elements (properties and reference elements), is visible. The
other submodels are collapsed and therefore their submodel elements are not shown.
More detailed explanations of the individual submodels are provided below.

Datasheet In the Datasheet submodel, essentially all elements from the concept are
represented except for contact information elements. Not only properties such as the
location, height, or weight of the Packed-Bed Regenerator were considered, but also
the number of charging cycles since the last cleaning or refilling was taken into account.
This last property is also relevant for fault detection, as temperature or pressure profiles
can change depending on the degree of clogging and introduction of additional particles.
Furthermore, a reference to the diploma thesis by Michalka [Mic18] can be found here as
a documentation element as well as the endpoint of the MQTT broker, which is needed
to send events in case of a fault detected. Since this submodel contains mainly static
data, it is hosted on an AAS server.

PressureDifferenceSensor and TemperatureSensors These two submodels are
concrete definitions of the rather generic Sensor submodel. Figure 6.6 shows that such a
submodel can contain not only one measured sensor value, but also several, for example,
the temperature values measured in the different layers in the regenerator. Furthermore,
several submodels can be defined for different types of sensors to provide a context and a
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Figure 6.5: AAS Integration Concept for a Simplified Packed-Bed Regenerator

Figure 6.6: Sensor and Capabilities Submodels of an AAS for a Simplified Packed-Bed
Regenerator
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Figure 6.7: Fault Detection Model and Archive Submodels of an AAS for a Simplified
Packed-Bed Regenerator

certain structure in the AAS. Therefore, the value of the pressure difference sensor and
the values of the three temperature sensors are included in separate submodels.

Since these submodels contain values that are updated periodically, it is likely these
two submodels will be hosted on a separate node at the edge in close proximity to the
machine that provides the values to avoid high latency compared to hosting them on a
central AAS server.

Capabilities The submodel Capabilities and the submodel elements it contains can be
seen as well in Figure 6.6. The purpose of this submodel is essentially to provide a list
of the capabilities that this AAS offers and link these capabilities with the respective
operations that implement the actual functionality. This submodel is more likely to be
located on an AAS server, since it contains mainly static information.
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FaultDetectionModel First of all, this submodel contains all four of the defined
operations together with the operation variables for input and output. For the operation
inference it was specified in the corresponding concept that any number of input param-
eters can be specified. In this case, there are five input variables defined: one for the
pressure difference value, three for temperature values, and one for the loading cycles.
The concrete type of these input variables is ReferenceElement. This means that they
directly reference the properties located in the Sensor submodels, which can also be seen
in Figure 6.7. There, the identifier of the respective submodel and the ID of the property
are indicated in gray. Other operations, like the loadNewModelIntoArchive operation,
require their values to be provided directly.

Further properties in this submodel are the endpoint of the REST API for the ML model
for inference, the property that stores whether a fault was detected or not in the last
run of inference, and the references to the respective elements in the archive required for
preparing and deploying new ML model versions. Whether the standby environment is
linked to a model in the archive or remains empty depends on the chosen deployment
strategy. The references to the elements in the archive can also be seen via the identifiers
in Figure 6.7.

The optional submodel elements for contact information and documentation were not
included in the model for this use case. Since it was specified as a requirement in one of
the research questions, it is clear that this submodel should be hosted on a node as close
as possible to the source of the sensor values in order to provide results as quickly as
possible and to keep latency low.

FDMArchive The archive contains all uploaded models that are either active, on
standby, recently uploaded, or were already used for inference and are still retained for
historization purposes. The archive can contain any number of models, each of which has
its own submodel elements defined. An example of this is shown in Figure 6.7. Most of
the elements of the concept have been implemented, except for the contact information
and reference to documentation. Within the quality measures, any number of properties
can be defined, which represent quality criteria for the respective model.

Since the archive mainly contains data that changes only occasionally, this submodel will
be located on an AAS server. This offers the possibility that the entire archive can be
persisted automatically in the MongoDB.
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CHAPTER 7
Identification of Possible

Deployment and Switching
Strategies

In this chapter, possible deployment strategies for ML models are identified that should
enable seamless switching between different model versions without causing service
interruptions or downtime. To this end, as with the integration concept for an AAS, there
is first a theoretical elaboration of this topic presented, followed by practical applications
of these identified deployment strategies, which are also used in the prototype evaluation.

Deployment strategies, also called deployment patterns, provide the ability to control
which of the deployed versions of a service actually receive user traffic, since deployment
does not necessarily mean that a service is already accessible to users [Cen20]. For
a seamless transition from one version to a new version, the objective of having zero
downtime is an important prerequisite. There exist three major strategies for performing
zero downtime deployments: (1) blue-green deployment, (2) canary deployment, and
(3) rolling deployment. The canary deployment strategy is similar to the blue-green
deployment, but instead of switching all traffic to the new service at once, as with a
blue-green deployment, the former initially redirects only a certain fraction based on
factors such as region, user type, user privileges, and so on [Rud20]. However, since
such a request segmentation is not helpful for the use case of fault detection, e.g., for a
Packed-Bed Regenerator, this strategy will not be discussed further.

7.1 Manual Deployment / Recreate Deployment Pattern
Although the manual deployment strategy or recreate deployment pattern is not considered
a deployment strategy in the context described above, it will be mentioned briefly as it
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Figure 7.1: Manual Deployment / Recreate Deployment Pattern – Diagram based
on [Cen20]

serves as the baseline for evaluating the other deployment strategies. The process for a
recreate deployment pattern is graphically illustrated in Figure 7.1. Initially, all instances
of the application are stopped, followed by updating the instances, and finally starting
all instances with the new version.

This approach provides the advantage of simplicity by eliminating the need to manage
multiple versions of an application or multiple environments. Furthermore, it removes
challenges related to backward compatibility. However, the major disadvantage with this
approach is downtime [Cen20]. Depending on the duration of the update and the time
required to stop and restart the instances, the application is unavailable to users. In
addition, rollbacks also lead to downtime.

7.2 Blue-Green Deployment Strategy
The basic principle of a blue-green deployment is to replace an old version of a service
running in one environment (the blue environment) by a newer version of this service
running in another environment (the green environment) without causing service inter-
ruptions or downtime [Rud20]. Figure 7.2 shows the basic procedure of this strategy. At
the beginning, the current state of the application runs in the blue container and only
this one is active at that time (step A). In the course of the update (steps B and C), the
new version of the service is first prepared and tested in the separate environment (green)
before the switch is performed, based on the test results. Then, all traffic is routed to the
services in the green container. Afterwards, the old state can be removed from the blue
container to prepare it as staging area for the next update or this state of the application
is still retained to perform a possible rollback (step D). The application in the green
container is active at this time [Cen20].
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Figure 7.2: Blue-Green Deployment Pattern – Diagram based on [Cen20]

According to the Google Cloud Architecture Center [Cen20], this strategy has the following
advantages, but also some considerations that must be taken into account:

Advantages

• Zero Downtime: The switch from one version to another can be performed
without any downtime.

• Instant Rollback: In case of a detected problem with the new version, it is
possible to immediately roll back to the previous version if it is still in the standby
environment.

• Clear Separation of Environments: This strategy can be used to prepare a
parallel environment without affecting the resources that are used by the active
environment, thus reducing the deployment risks.

Considerations

• Overhead: This strategy entails an administrative and cost overhead, as two
separate environments need to be managed and maintained.

• Backward Compatibility: Different versions of applications can share data stores
and resources. It is important to ensure that shared resources are also backward
compatible so that it is always possible to switch between versions in the event of a
rollback.

81



7. Identification of Possible Deployment and Switching Strategies

• Appropriate Connection Shutdown: An appropriate connection shutdown
should be considered for remaining open sessions when decommissioning the current
version. This ensures that the requests processed by this version can be properly
completed or terminated.

7.2.1 A Blue-Green Deployment Strategy using Traefik
This section discusses a blue-green deployment strategy using the Traefik Proxy to
provide access to the fault detection service and seamlessly switch between two ML model
versions.

Traefik 1 Traefik is a reverse proxy, or edge router, that processes incoming requests
and routes them to the appropriate services that can handle them based on a defined
regulatory framework (such as path, host, headers, etc.). Major components in this
context are entrypoints, routers, optional middleware, and services. Entrypoints are part
of the static configuration of Traefik and basically define the access to Traefik, which
in its simplest form is just a port number. Routers are connected to these entrypoints
and analyze incoming requests based on rules and optionally transform them using the
middleware components. Services are used to define access to the application that will
handle the incoming request. They are configured dynamically, which means that changes
to the configuration can be made during runtime without any disruption to services or
requests. In addition, Traefik offers several ways to define the dynamic configuration,
called providers.

For the blue-green deployment strategy, the File Provider and Docker Provider are of
interest. Traefik is easily integrated with Docker containers and can be configured using
the yaml file (used to compose the containers) by defining commands and specifying
certain labels for the Docker objects, which can then be used by Traefik for configuration.
To implement the strategy, Entrypoints, Routing Rules, Serivces, and Providers must
be defined, as shown in Figure 7.3. The first two entries are for the Traefik API and
the dashboard, while the others provide access to the fault detection services. The rule
essentially specifies the URL for the service, the entrypoint is the defined port, and the
service is the name of the Docker container that handles incoming requests on a specific
route. The entry in the third line is one that is configured via a configuration file and
can dynamically route requests between the blue or green Docker container at runtime.
Currently, it is configured to forward requests to the green service.

General Structure and Workflow The basic structure and the components used
for a blue-green deployment strategy using Traefik can be seen in Figure 7.4.

User requests for inference can come both from the FaultDetectionModel submodel, which
invokes the service via the URL fdm-api.localhost, and from individual user requests

1based on Traefik Proxy Documentation at https://doc.traefik.io/traefik/ - last accessed:
2023-02-18
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Figure 7.3: Entrypoints, Routing Rules, Serivces, and Providers for a Blue-Green De-
ployment Strategy visualized the Traefik Dashboard
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Figure 7.4: General Architecture of a Blue-Green Deployment Strategy using Traefik

that invoke either the red-colored service (the service used productively) or one of the
yellow-colored services to invoke the respective model directly in the container. Depending
on the used host in the request, the Traefik proxy, which runs as a separate Docker
container, processes these requests and forwards them to the respective service, which
in turn passes them on to the corresponding model running in one of the containers.
It should be noted that the entrypoint on the proxy is defined as port 8091, while the
services accept the request on port 8090 and the ML model exposes its interface on
port 5000. The reasons for the different port numbers used in different places in this
architecture are, on the one hand, that Traefik seemed to have problems with using ports
in the range of 5000 directly as entrypoints during implementation and, on the other
hand, to make the separation between the individual components visible.

Preparation of the New Environment Before the actual switch between two model
versions can be done, the container that is not actively used by the main service must
be prepared with the new model version. For this, the following steps are necessary
considering the use of the previously described AAS:
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Figure 7.5: Procedure of a Model Switch using Traefik

1. The necessary information for preparing the environment (e.g., currently active
environment, reference to standby model, etc.) is read from the AAS and the
MongoDB backend.

2. The BLOB object of the model to be loaded is retrieved from the archive and
temporarily stored as joblib file.

3. The serialized ML model is copied to the standby container and saved as a new
Docker image with the minor version number incremented by one.

4. The standby container is stopped and subsequently removed.

5. The standby container is restarted with the newly created image.

6. The temporarily stored joblib file as well as the old Docker image are deleted.

7. The corresponding properties of the AAS and in the MongoDB backend are updated
with the new values (e.g. direct endpoint, set the new uploaded model as standby
reference, etc.).

Switching Between Model Versions Only three steps are necessary for performing
the actual switch between the model versions:

1. Retrieve the active environment from the AAS.

2. Modify the dynamic Traefik configuration so that the former standby environment
is the active one and vice versa.

3. Update the references for the active and standby environments as well as for the
serialized FDM model in the AAS.
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Figure 7.5 illustrates the above process and it can be seen (compared to Figure 7.4)
that the green Docker container is now used as the active service. The other routes and
redirects for the services remain in place and direct access via the corresponding URLs is
still possible.

Customized Traefik Docker Image As it can be seen in Figure 7.5, there is also
an API highlighted in red on the Traefik Proxy container. However, this is not the
standard API provided by Traefik, but a custom API. An additional endpoint was added
as there was no other feasible approach to modify the dynamic configuration of the file
provider. Alternatively, it would have been possible to use Docker’s directory mount
feature and use a file, which is synchronized with the one in the container and set that
as the configuration file for Traefik. However, this did not work properly on Windows,
because there are some issues when files are changed outside the container and, therefore,
Traefik did not detect the changes in the configuration file.

Listing 7.1 shows this configuration file. For the switch between the two environments,
all what needs to be done in this dynamic configuration is to change the last line to
either fdm-blue-svc@docker or fdm-green-svc@docker.

Listing 7.1: File Provider for fdm-api Service
http :
r o u t e r s :
fdm−api−l o c a l h o s t :
en t rypo in t s :
− " f a u l t d e t e c t i o n "
r u l e : Host ( ‘ fdm−api . l o c a l h o s t ‘ )
s e r v i c e : " fdm−green−svc@docker "

This API endpoint proposed above has one route that listens on port 9000 and accepts
either blue or green as payload of the request and sets the respective service in the
configuration file and saves the changes. Traefik detects these changes as it constantly
monitors this file for changes and adjusts the registered service accordingly.

In order to add this functionality to the ready-to-use Traefik Docker image, a new
Docker image was created using the Traefik Docker image as a base and adding the
functionality implemented in Python with its dependencies. In addition, the Traefik
script entrypoint.sh, which normally processes the Traefik commands defined in the yaml
file, had to be adapted to provide the additional functionality as well.

7.2.2 A Blue-Green Deployment Strategy using Kubernetes
In this section, a blue-green deployment strategy is discussed utilizing the Kubernetes
container orchestration platform to provide not only access to the fault detection service,
but also allow switching between two ML model versions without downtime.
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Figure 7.6: General Architecture of a Blue-Green Deployment Strategy using Kubernetes

Kubernetes 2 Kubernetes is a well known and widely used open source container
orchestration platform. It allows automating the deployment of containerized applications,
but also scaling and managing them. When using Kubernetes for orchestration, it is
called a cluster. The main components of such a Kubernetes cluster are the worker nodes
on which the containerized applications run. Within these worker nodes, the so-called
pods are hosted. Pods are the smallest deployable units that can be managed and refer
to a group of one or more containers that share common resources (such as storage or
networking). The most well-known runtime used in pods is Docker.

Services are another important component. In Kubernetes, a service is a conceptual
representation that identifies a group of pods running within the cluster, each serving
the same purpose or functionality. They are mainly used for enabling network access,
load balancing, scaling, and traffic splitting for purposes such as A/B testing, canary
deployments, or blue-green deployments.

The control plane manages the cluster with the worker nodes and pods. For this purpose,
various components run within this control plane for various administrative tasks. A
deployment in Kubernetes allows pods and replica sets to be updated declaratively. By
describing a desired state in the deployment, the deployment controller can modify the
actual state of the deployment to match the desired state.

General Structure and Workflow The basic structure and components used for a
blue-green deployment strategy utilizing Kubernetes for load balancing, scaling, and
traffic splitting can be seen in Figure 7.6.

2based on Kubernetes Documentation at https://kubernetes.io/docs/home/ - last accessed:
2023-02-18
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Similar to the approach with Traefik, there are also three services here, each serving a
slightly different purpose. The FDM-Service is the one used productively. In the case of
Figure 7.6, it refers to the pods with the tag blue. The other two services are those for
providing direct access to the models in the pods. When defining these services, it was
specified that there are two replicas of a Docker image behind each service to illustrate
this aspect of Kubernetes as well.

User requests for inference can come both from the FaultDetectionModel submodel, which
invokes the service via the URL localhost:5000, and from individual user requests that
invoke either the FDM-Service or one of the other two services to access the respective
model directly. The last two services have the ports 5001 and 5002 assigned. All the
management, routing, forwarding of requests, internal IP and port management is all
handled by Kubernetes. Which of the pods processes a specific request is also under the
responsibility of Kubernetes.

Preparation of the new Environment In preparation for the model switch between
the two versions, the environment that is not currently being used by the FDM-Service
actively must be updated with the new model version first. This requires the following
steps, taking into account the use of the AAS mentioned above:

1. The necessary information for preparing the environment (e.g., currently active
environment, reference to standby model, etc.) is read from the AAS and the
MongoDB backend.

2. The BLOB object of the model to be loaded is retrieved from the archive and
temporarily stored as joblib file.

3. The serialized ML model is copied to a base template container, based on which a
new Docker image is created with the minor version number incremented by one.

4. The pods that are not actively used are patched by means of a deployment. This
deployment defines the newly created image together with some settings as the
desired state and lets the controller perform the update.

5. It is waited until all pods with the old image are stopped.

6. The temporarily stored joblib file as well as the old Docker image are deleted.

7. The corresponding properties of the AAS and in the MongoDB backend are updated
with the new values (e.g., direct endpoint, set the new uploaded model as standby
reference, etc.).

Switching Between Model Versions Only three steps are required for the actual
switch between the model versions:

1. Reading the active environment from the AAS.
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API
requests
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Image: pbr-fdm-api:3.0
Port: 5000
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Port: 5000
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FDM-Service-Blue

Replicas: 2
Host: localhost

Port: 5001

FDM-Service-Green

Replicas: 2
Host: localhost

Port: 5002

FDM-Service
Selector: green

Type: LoadBalancer
Host: localhost

Port: 5000

CMD: kubectl patch service

Figure 7.7: Procedure of a Model Switch using Kubernetes

2. Update the FDM-Service by changing the selector to the app tag that was not
active before.

3. Update the references for the active and standby environments as well as for the
serialized FDM model in the AAS.

Figure 7.7 illustrates the steps described above. It can be seen (compared to Figure 7.6)
that the selector in the FDM service is changed to green and requests are now forwarded
to these pods. The other routes and redirects for the services remain in place and direct
access via the corresponding URLs is still possible.

In contrast to changing the configuration with Traefik in order to switch between models,
in this case, it is not done via an API call but via a Kubernetes command on the command
line. The command, exemplified for Windows Powershell, is:

kubectl patch service fdm-service -p
"{\"spec\":{\"selector\":{\"app\": \"green\"}}}"

This simply tells Kubernetes that incoming requests should now be forwarded to the other
environment. All further configurations and changes are made by Kubernetes. Yet again,
there is no downtime when switching between model versions, as both environments
with their respective pods are already up and running and only the selector needs to be
adjusted.
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Figure 7.8: Rolling Update Deployment Pattern – Diagram based on [Cen20]

7.3 Rolling Update Deployment Strategy
In a rolling deployment strategy, updates are rolled out incrementally. Hence, only a
subset of the application instances is updated to a new version simultaneously. This
number of nodes is called window size and its value depends primarily on the size of
the cluster. Figure 7.8 illustrates a rolling deployment strategy with a window size of
1, which implies that only one application is updated at a time [Cen20]. This means
that during an update (steps B and C), some of the nodes are already running the new
version of an application, others are in the process of being patched, and some are still
running the old version. Therefore, rolling deployments can be used effectively when
there is always spare capacity for the roll out of a new version [Rud20].

The Google Cloud Architecture Center [Cen20] also identified benefits and considerations
for this strategy:

Advantages

• Zero Downtime: Since only a certain number of instances are updated at a time,
the remaining ones are available for requests.

• Limited Deployment Risk: As updates are rolled out gradually, only some users
are affected by any issues of the new application version.

Considerations

• Gradual Rollback: In case of a detected problem with the new version, the
rollback has to be performed incrementally as well, which is slower than with other
strategies.

• Backward Compatibility: Since old and new application versions coexist during
deployment and it is not certain to which version a request will be forwarded, it is
important that the new version is backward compatible, meaning that it can read
data written by the other version, for example.
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• Advanced Session Handling: If certain session conditions must be met by
the application, it might be helpful that the sessions can be decoupled from the
underlying resources.

7.3.1 Docker Swarm – A Rolling Deployment Strategy
Docker Swarm 3 Docker Swarm is an orchestration tool that is embedded in the
Docker engine and enables the management of a cluster of Docker nodes in swarm mode.
The nodes in a swarm can act as either managers or workers, or perform both roles
simultaneously. Worker nodes receive tasks from manager nodes and execute them as
running containers managed by the swarm manager. Tasks are essentially the running
containers that are part of a swarm service. The service, on the other hand, is basically
the definition of a task to be executed. Within a service, the desired state is defined
in terms of the Docker image used, the number of replicas, networks, storage resources,
ports, etc. The swarm manager aims to achieve the desired state of the service, ensuring
that the specified number of replicas is running, and taking action to schedule tasks on
other nodes if a worker node fails unexpectedly.

Swarm services offer the advantage over standalone containers that configuration changes
can be made without requiring service restarts. This is achieved by Docker stopping
the containers with outdated configuration and creating new containers with the desired
configuration.

General Structure and Workflow The basic architecture and components used for
a rolling deployment strategy using Docker Swarm for orchestrating task replicas on
different nodes are shown in Figure 7.9.

The swarm service definition specifies that there should be four replicas of the task and
that the container should provide a port mapping of 8095 (external) to 5000 (internal).
Additionally, an update delay of 30 seconds has been configured, which staggers the
updates of individual replicas during the rolling restart process. This helps to ensure a
smooth and gradual update process for the service.

User requests for inference can come both from the FaultDetectionModel submodel and
from individual user requests. In contrast to the strategies mentioned above, there are no
separate endpoints for productive access to the currently active model or direct access to
the models themselves. In addition, there is neither a standby environment where models
can be prepared for switching, nor the possibility to quickly go back to the previous
version. The decision to which node an incoming request is forwarded is up to the internal
Docker Ingress Load Balancer.

Preparation of the new Environment Compared to the other two deployment
strategies mentioned, this rolling deployment strategy does not involve preparing the

3based on Docker Swarm Documentation at https://docs.docker.com/engine/swarm/ - last
accessed: 2023-02-19
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Docker Swarm Manager

Image: pbr-fdm-api:2.0
Replicas: 4

Update Delay: 30s
Port: 8095

API
requests

Task Replica 1 Task Replica 2 Task Replica 3 Task Replica 4

Figure 7.9: General Architecture of a Rolling Deployment Strategy using Docker Swarm

model in a separate standby environment. Nevertheless, some preparation steps are still
performed, taking into account the use of the AAS mentioned above:

1. The BLOB object of the model to be loaded is retrieved from the archive and
temporarily stored as joblib file.

2. The serialized ML model is copied to a base template container, based on which a
new Docker image is created with the minor version number incremented by one.

3. The temporarily stored joblib file is deleted.

4. The reference to the model to be loaded is stored in the standby reference in the
FaultDetectionModel submodel, but only for internal purposes, since this information
is then needed for the actual switch. This property is also saved in the MongoDB
backend.

Switching Between Model Versions Since only the Docker image with the new
model was prepared during the preparations for the model switch, more extensive as well
as longer lasting steps are now required to perform the actual switch between the models.
To accomplish this, the following steps need to be performed:

1. Retrieving the relevant information from the AAS.

2. Update the Docker swarm service with the previously created Docker image.
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Docker Swarm Manager

Image: pbr-fdm-api:2.1
Replicas: 4

Update Delay: 30s
Port: 8095

API
requests

Task Replica 1 Task Replica 2 Task Replica 3 Task Replica 4

CMD: docker service update

Figure 7.10: Procedure of a Model Switch using Docker Swarm

3. Delete the old Docker image.

4. Update the references for the active and standby environments as well as for the
serialized FDM model in the AAS.

Figure 7.10 illustrates the steps described above. It can be seen (compared to Figure 7.9)
that, except the Docker image version, nothing has changed. The way of accessing the
service, port numbers and routes remain completely unchanged.

As with the Kubernetes switching procedure, the switch is triggered via a command
on the command line. This is also indicated by the command line icon highlighted in
red in Figure 7.10. The corresponding command may look like the following: docker
service update -image pbr-fdm-api:2.1 fdm-swarm

Since nothing else was specified in the definition of the service, except for the update
delay, the default behavior is used for performing the update. This essentially involves
the following steps:

1. Stop the task replica.

2. Perform the update for the stopped task and restart it afterwards.
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3. After an updated task returns the state RUNNING, the scheduler can continue
with the next update after waiting for the update delay time.

4. However, if FAILED is returned during the update, the update will be paused by
default. This can also be changed using the -update-failure-action option
(possible values: pause, continue, or rollback).

By default, one task at a time is updated if no specific instructions are provided.
Furthermore, the update order is stop-first by default, but can be configured using
the -update-order option. This means that the outdated container is stopped first
before the updated one is started. However, it is possible to change the update order to
start-first, where the new container is started before the old one is decommissioned. In
this use case, having four replicas of the service, there was no need to change the update
order as three tasks were always available to handle requests.

Unfortunately, the Docker documentation on rolling updates4 does not provide a clear
statement on how incoming requests are handled during such an update process, for
example, whether requests are forwarded only to the updated tasks or if they are
distributed equally between old and updated tasks. However, some of the statements
on this website imply that both old and new containers handle incoming requests. On
the other hand, the internal ingress load balancer might be aware of the status of each
replica and direct traffic only to those replicas that have been updated with the new
image, while avoiding those that are still running an old image.

4https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/

93

https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/




CHAPTER 8
Evaluation and Results

This chapter presents the evaluation results based on the implemented prototype. For
this purpose, the use case that serves as the basis for implementing the prototype is
explained first. Afterwards, the results of the criteria-based evaluation are presented,
followed by the time measurements of the technical experiments as the second part of
the evaluation. To this end, Section 2.2 elaborates on the methodological approach for
conducting the evaluation of the artifact for both criteria-based and prototype evaluation
along with the technical experiments.

8.1 Use Case Description
In Section 3.5, general aspects of the Packed-Bed Regenerator have already been discussed.
Based on this explanation, a simplified use case is created, which serves as the basis for
the comparative evaluation of different deployment strategies. Therefore, this section
deals with the explanation of the created use case, which is implemented as a prototype.

First, an overview of the system architecture for fault detection in the use case of a
Packed-Bed Regenerator is given. This includes both the connection and the interaction of
the necessary components required for the proper functioning of this use case. Therefore,
it builds upon the AAS integration concept described in Section 6.3 and links it with the
components necessary for the practical implementation.

The basic idea of this use case can be described as follows: The Packed-Bed Regenerator is
equipped with three temperature sensors on three different levels and a pressure difference
sensor. However, since there is no access to a physical regenerator, the measured sensor
values are simulated by an emulator according to a simple pattern. Thereafter, this
emulator updates the simulated values directly in the properties in the AAS at regular
intervals via the REST API provided by the AAS as an actual PLC would do. In addition
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Figure 8.1: Overview of the System Architecture of the Described Use Case

to the sensor values mentioned above, the number of charging cycles is also simulated
and updated accordingly in the AAS.

Among other things, the fault detection operation is defined in a dedicated submodel in
the AAS and provides the operations described above. If a potential fault is detected by
the ML model, an event is published as an MQTT message to the MQTT broker with
the specified topic. This fault detection operation is executed regularly according to the
predefined interval, accessing the sensor values contained in the respective submodels and
transmitting them to the fault detection ML model. Furthermore, the values that are
not constantly changing are stored directly in corresponding collections in the MongoDB.
The operations described above for uploading the model, preparing the environment and
switching between the environments are invoked via the REST interface provided by
the AAS. How exactly the individual operations execute their functionality and which
software components are required depends primarily on the selected deployment strategy.

Figure 8.1 provides an overview of this system architecture, which can be organized into
three layers. The bottom layer is the physical layer that mainly contains the Packed-Bed
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Regenerator, which is emulated in this use case. The middle layer is the digital or
virtualization layer. This layer includes the AAS defined for the Packed-Bed Regenerator
on the physical layer. On top is the application layer that contains the ML models running
in the deployment environment as well as further applications required for persisting
AAS properties and publishing fault events.

In the left area of Figure 8.1, a more general representation of this architecture is presented,
illustrating the three major components: (1) the “physical” Packed-Bed Regenerator, (2)
the AAS defined for this regenerator, and (3) other software components needed for this
use case. Towards the right, the AAS implementation is broken down in more detail into
the registry as well as the individual servers and focuses primarily on the technical details
as they were implemented in the prototype. Furthermore, this representation depicts
how these components are implemented as a whole and how they are interconnected. In
the following sections, the main details of the individual components are presented.

8.1.1 Packed-Bed Regenerator Emulator
The emulator is implemented in Python and runs in its own Docker container. The only
information needed in this emulator is the URL of the AAS registry and the IDs of the
submodels as well as the IDs of the properties. Using the registry and the provided
submodel IDs, the emulator queries the actual endpoints of the submodels at startup, i.e.,
the URL of the server where they are actually hosted. This ensures that the emulator is
independent of the actual distribution of the submodels, namely where they are actually
hosted.

At regular intervals, which in the prototype implementation is one second, a random
number generator is used to generate new “measured” sensor values within a predefined
interval of values that depend on the sensor type. In addition, the number of loading
cycles is incremented by one for every tenth update. These values are updated directly
in the respective submodels in the AAS using the standardized REST interface of the
BaSyx framework.

8.1.2 AAS Implementation using Eclipse BaSyx™
The AAS integration concept described above is implemented using the Eclipse BaSyx
platform. BaSyx provides ready-to-use components for hosting, accessing, manipulating,
and adding functionality to an AAS. This includes amongst others a registry component,
an AAS server component, simple HTTP servers for hosting submodels, but also integrated
features for communicating with other components like an MQTT broker or MongoDB.

First, the general structure of the AAS for a Packed-Bed Regenerator was modeled using
the AASX Package Explorer and the resulting AAS was saved as an .aasx package. This
package file was subsequently loaded and processed in BaSyx. The individual submodels
contained in this AAS are registered at the AAS registry and hosted on a server depending
on the submodel type. Submodels like the Datasheet or the FDMArchive are hosted on
the AAS server with the MongoDB persistence backend, while the sensor submodels are
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hosted on their on BaSyx HTTP server. Likewise, the FaultDetectionModel is hosted on
its own BaSyx HTTP server.

Operations The operations required to perform fault detection and to enable dynamic
deployment of new ML models are contained in the submodel FaultDetectionModel. In
Figure 8.1, these operations are indicated by the head icon containing a cogwheel.

Since it is not possible to store operations permanently in a persistence backend, they
must be set each time the server is started. In practice, however, the server will not
be restarted that often. Users can invoke the provided operations via the standardized
REST interface provided by BaSyx.

However, the operations can be also invoked directly within BaSyx. This is done in the
prototype with the inference operation, which is called automatically at regular intervals
after the server has been started and the operation functionalities have been defined.
Hence, this operation is completely independent of any external input, since it always
receives the most recent values via the defined references to the sensor values and supplies
them to the fault detection model for inference, retrieves the result and, in case of a fault,
sets the property in the AAS and publishes the corresponding MQTT message.

Dynamic Deployment of New Models The actual setup required to enable dynamic
deployments and switching between models does not play a significant role in the
description of the use case. The AAS concept and thus also the implementation were
deliberately kept as generic as possible and independent of any specific strategy. Of
course, the aspects of the identified deployment strategies from Chapter 7 had to be
taken into account when implementing the concrete operations in the submodel.

8.1.3 Other Software Components
For this use case, in particular for the implemented prototype, the MQTT eventing
functionality provided by BaSyx is not used but a custom messaging service was defined.
The reasons for this have already been outlined in Chapter 6. As MQTT broker, the open
source message broker Eclipse Mosquitto was used, since it is a lightweight implementation
of the MQTT protocol and can also be run on low-power nodes. For the prototype,
the officially provided Docker image of Eclipse Mosquitto was used with the default
configuration.

An essential component to store property values permanently is MongoDB and the
interface to it is already integrated in the BaSyx framework as a persistence backend.
The implications of using this backend in combination with the different server types
provided by BaSyx have already been discussed in Chapter 6.

In this use case, the AAS server can automatically store and also retrieve its property
values in the MongoDB collections, while for the FaultDetectionModel submodel, this
functionality had to be implemented from scratch for certain properties that are essential
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Deployment Strategies
Requirement Baseline Traefik Kubernetes Swarm

G
ro

up
1 R-5.1.a - Containerization + + + +

R-5.1.b - Microservices + + + +
R-5.1.c - Deployment Strat. – + + +

G
ro

up
2 R-5.2.a - DSU/Timing Const. – + + +

R-5.2.b - Fallback Strategy – + + ◦
R-5.2.c - Quality Assurance – + + –
R-5.2.d - Infrastructure Req. + + + +

Table 8.1: Fulfillment of the Defined Deployment and Dynamic Update Requirements
per Strategy

for preparing and interchanging ML models. In the prototype implementation, MongoDB
was deployed as a Windows service using the default configuration.

8.2 Fulfillment of the Requirements
This section outlines to what extent each of the identified deployment strategies from
Chapter 7 meet the defined criteria and requirements of Chapter 5. In addition, the
integration concept from Chapter 6 is also evaluated against these aspects. Likewise, the
baseline approach was assessed in this regard.

Table 8.1 and Table 8.2 summarize this evaluation in terms of how well each aspect is
met or not by each strategy. To this end, three different levels of fulfillment are defined.
Thus, the following coding is used: (+) completely fulfilled, (◦) partially fulfilled, and (–)
not fulfilled. Moreover, the assignment of the criteria to the groups is explained once
more: The first group relates to deployment concepts, the second group to dynamic
updates of software components, and the third group to AAS-related aspects. In the
following, brief remarks on the respective concepts and strategies are presented.

Baseline Approach The baseline approach uses a container to encapsulate the model.
Given that the models are identical, the REST interface is also the same as for the
other strategies. However, the baseline approach, which follows the recreate deployment
pattern, does not have a standby environment and therefore does not support the ability
to perform A/B tests for quality assurance, nor does it allow for an advanced deployment
strategy.

As for the dynamic update methods, the baseline approach only considers the infras-
tructure requirements imposed by the AAS concept, all other requirements are not met.
Therefore, with this approach, new models cannot be deployed without downtime, there
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Requirement AAS Concept

G
ro

up
3

R-5.3.a - Generic Integration Approach +
R-5.3.b - Deployment Strategy Independence +
R-5.3.c - Fault Detection Submodel forms Logical Unit +
R-5.3.d - Possibility to Archive Models +
R-5.3.e - Quality Criteria based Decision Making +

Table 8.2: Fulfillment of the Defined Integration Concept Requirements

is no possibility for rollbacks, and there is no possibility to test the model to ensure its
quality before it is set as active.

Deployment Strategies All three strategies rely on containerization using Docker
containers for deployment. The model in the containers is made externally available
via a REST API for ML inference. In terms of well-defined deployment strategies, all
three strategies follow either a blue-green deployment strategy or a rolling deployment
strategy, meaning that this requirement is fully met for all three. Specifically, a rolling
deployment approach is not feasible with the Traefik approach presented here. However,
it would be possible with Kubernetes, but the configuration would have to be adjusted.
With Docker Swarm, as a concrete implementation of a rolling update approach, this is
obviously possible. In return, no blue-green deployment is possible with Docker Swarm,
but it is feasible with Kubernetes and Traefik.

Regarding the aspects of dynamic update methods, Traefik and Kubernetes meet all
five requirements listed here. Together with the rolling update approach, they achieve
zero downtime and thus meet the DSU criteria and the timing constraint. While Traefik
and Kubernetes fully support a fallback strategy with backward compatibility, Docker
Swarm has limited functionality to rollback to a previous version, primarily because
no standby environment is available. This is also the reason why Docker Swarm lacks
quality assurance capabilities, as no tests can be performed until the model is set as
active. Nevertheless, all three deployment strategies follow the infrastructure requirements
imposed by the AAS concept.

With regard to the requirement to enable A/B testing, this is technically possible with the
blue-green deployment strategies (Traefik and Kubernetes), since at least two separate
environments exist here. With Docker Swarm, on the other hand, such an A/B test is
not possible, since a second separate environment is missing here.

AAS Concept Although the first two groups of requirements are not relevant for
the AAS concept, several criteria are still met but are not explicitly stated in Table 8.1
because they were actually defined for the deployment strategies. Of the first group, all
criteria are fulfilled except for R-5.1.a, the containerization. However, this requirement
does not play a role, since this is exclusively about the deployment of ML models. The
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upl. to archive image created cont. stopped cont. run. clean up total service n.a.

µ 142 2,093 18,135 7,970 699 29,039 26,105
σ 43 740 8,051 1,802 233 9,273 8,851

Table 8.3: Manual Deployment Times (Duration in ms) – Grouped By Step

AAS concept supports a web API and the use of a microservice architecture. Furthermore,
different deployment strategies are supported and it is also possible to define a standby
environment to perform tests.

Regarding the dynamic update requirements of the second group, the concept fulfills
both the requirement for a fallback strategy and the possibility for quality assurance
via the possible standby environment. In addition, the consideration of infrastructure
requirements is also complied with. However, the first two criteria of the second group
deal exclusively with dynamic update approaches and are thus not relevant.

For the third group, listed in detail in Table 8.2, all defined requirements are completely
fulfilled. Therefore, the developed concept is a generic integration approach that is not
specifically tailored to any particular deployment strategy and, furthermore, encapsulates
all elements related to fault detection in one submodel. In addition, there is also the
possibility to archive models and store quality metrics for each fault detection model.

8.3 Technical Experiment Results
This section presents the results obtained from performing the test runs according to the
procedure described in Section 2.2.3.

8.3.1 Tabular Representation of the Measured Execution Times
Table 8.3 shows the measured execution times for the baseline approach, a manual deploy-
ment following the recreate deployment pattern as described in Section 7.1. Additionally,
the average total time as well as the average time in which the service is not available are
given in the last column. All times are in milliseconds (ms) and are rounded to whole
numbers.

Although the total time for a manual deployment does not seem as long compared to
some of the other times in Table 8.4, the service for fault detection is unavailable most of
the time, while it is always available for the approaches presented below. The service
n.a. column contains the time when the service is unavailable and is basically the sum of
the values of cont. stopped (old container stopped) and cont. run. (new container up
and running). This means that almost 90% of the total time is needed for stopping the
old container and starting the new one.

Table 8.4 summarizes the measured execution times of the four operations defined in the
FaultDetectionModel submodel (see further Section 6.2.2), including the sub-steps, for
the three identified deployment strategies. If no sub-steps are defined for an operation,
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Operation Step Traefik Kubernetes Swarm

inference total µ 156 169 145
σ 55 62 39

model upload total µ 125 144 127
σ 46 50 43

update environment

retr. aas prop. µ 125 142 30
σ 42 48 17

BLOB creation µ 28 30 34
σ 16 16 15

new img. created µ 1,013 782 708
σ 285 82 55

new env. prep. µ 14,895 61,875 0.05
σ 4,395 11,415 0.22

aas prop. upd. µ 96 101 7
σ 36 38 3

total µ 16,157 62,929 778
σ 4,476 11,412 64

swap environment

switch act. env. µ 21 267 159,322
σ 18 186 2,398

aas prop. upd. µ 11 12 6
σ 6 5 2

total µ 32 278 159,327
σ 21 187 2,398

Table 8.4: Operation Time Comparison (Duration in ms) – Grouped By Step and
Deployment Strategy

only the total time of the entire operation is provided. However, if sub-steps are present,
the times of these individual steps as well as a total time are given in each case. For each
time measurement of a step, the arithmetic mean (µ) of the individual times of the test
runs is given together with the respective standard deviation (σ). All times are given in
ms and are rounded to whole numbers. Except for the new environment prepared cell for
Swarm, where values have been rounded to two decimal places to avoid loss of precision.
The sub-steps listed in this table coincide with those defined in the concrete elaborations
of the deployment strategies in Chapter 7.

The measured times for inference and uploading the model do not distinguish between
the different ML model types used, since the goal was not to measure the time for the
different model types, but for the execution times as a whole. In addition, all models are
fairly simple examples of fault detection models. So, considering them separately would
not be meaningful anyway.
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Figure 8.2: Manual Deployment – Duration per Step

The times for certain steps in the update environment and swap environment operations
differ greatly. This is because the respective strategies have to perform different tasks in
these steps. However, this does not mean that the fault detection service is unavailable
at any time. For example, in the new environment prepared sub-step for Kubernetes,
two replicas need to be prepared, while in the approach with Docker Swarm there is no
standby environment at all and therefore no preparations need to be made. This also
explains why the standard deviation for the Swarm strategy is larger than the mean,
since there is a relatively large scatter here for a very short period of time. This happens
because only whole milliseconds are logged in the time measurement and for most of the
140 runs the time period is so small that the value is zero due to rounding, but in some
cases it is one.

8.3.2 Graphical Evaluation and Details of the Execution Times

In the following, the obtained results of the technical experiment runs are presented.
First, the temporal composition for a manual deployment is presented. Afterwards, the
measured times for the four operations, separated by the three identified deployment
strategies from Chapter 7, are presented. For the operations update environment and
swap environment, the sub-steps are also considered.

Manual Deployment Assessment Initially, the graphical representation of the mea-
sured results of the manual deployment is given. Since the sub-steps and operations
here do not correspond to the other deployment strategies anyway, a different type of
presentation was chosen in this respect, namely a pie chart.

Figure 8.2 illustrates the duration of each step required for a manual deployment. Both
the absolute value in the description and the relative percentage in the slice are displayed.
The graphic also highlights the time the fault detection service is not reachable on average,
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Figure 8.3: Distribution of Execution Times for (a) Inference and (b) Model Upload

represented by the striped sections in shades of red. Once again, it becomes clear that
this accounts for almost 90% of the total duration, while pre- and post-work is minimal.

Deployment Strategies Assessment The color coding of the strategies is consis-
tently the same: blue represents the blue-green deployment with Kubernetes, orange
stands for the rolling deployment method with Docker Swarm, and green is the blue-green
deployment using Traefik. In the cumulative views of the last two operations, the color
coding does not represent the deployment strategy, but the individual sub-steps. The
first two graphics utilize a violin plot to display the distribution of durations, since no
sub-step times were determined for these two operations. For operations with sub-steps,
both a bar chart is used to allow for comparison of mean values, and a box plot is used to
depict the distribution of the measured times. To illustrate the temporal composition of
the update environment and swap environment operations, a stacked bar plot was used.

Figure 8.3a depicts the distribution of the measured durations in ms for the inference
operation. It is worth noting that the Interquartile Range (IQR) method was used
to remove outliers from the underlying dataset for this plot. The lower bound of the
included data range was defined as Q1 − 1.5 ∗ IQR, while the upper bound was defined
as Q3 + 1.5 ∗ IQR. This was done because there were some outliers, particularly for
Kubernetes and Traefik. For completeness, according to the measurements in Table 8.4,
the mean values for Kubernetes, Swarm, and Traefik are 169, 145, and 156 ms, respectively.
Figure 8.3b shows the distribution of upload times for new models into the AAS. No
removal of outliers was necessary to get a well arranged graph. Figure 8.4 displays the
distribution of the measured values for preparing the new environment using box plots.
Important to note is the range of values of the y-axis, because there are different value
ranges depending on the sub-step.

In Figure 8.5, the distribution of the measured values is depicted when switching between
the environments. Particular in this graphs is the partitioning of the y-axis for the sub-
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Figure 8.4: Update Environment – Distribution of Duration per Step per Strategy
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Figure 8.5: Swap Environment – Distribution of Duration per Step per Strategy

step switch_active_environment. This is necessary because the Docker Swarm approach
has a very high duration on average for this step compared to the other two, which is due
to the rolling deployment approach and the tasks required for it in this sub-step. One
can clearly see that the two blue-green deployment approaches perform this sub-step
on average in under 300 ms, while the Swarm approach requires on average nearly 160
seconds for that, which is also due to the defined update delay.

Figure 8.6a represents the total time of the update environment operation, composed of
the times for the individual sub-steps. This is intended to show which step takes how
much time, and puts this in direct comparison with the other sub-steps. The y-axis is
also split in this figure because the average durations per strategy are quite different,
which would otherwise distort the representation and thus the smaller shares would not
be visible at all. However, the direct comparability of the bar sections is negatively
affected by this. At the bottom of the stacked bar is always the first sub-step and at the
top the last one. Because the time portion for updating the properties in the AAS is so
small compared to the preparation time, the light blue bar for updating the properties is
not visible, although it is included. The total time of the swap environment operation,
which is composed of the times of the two sub-steps, is depicted in Figure 8.6b. Again,
the y-axis was split for the same reasons as before. Furthermore, the same problem arises
with the Swarm approach. Due to its total duration of almost 160 seconds, the 6 ms
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Figure 8.6: Cumulated Mean Duration for (a) Update Environment and (b) Swap
Environment

required for updating the properties cannot be accurately represented.
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CHAPTER 9
Discussion of Results

In this chapter, the obtained results, which have already been presented in Chapter 8, will
be discussed as well as their implications explored. First, the results of the criteria-based
evaluation are discussed, also highlighting the key findings. Afterwards, the deployment
strategies as well as the results achieved are analyzed and interpreted. This includes
a discussion of the performance of the strategies compared to the baseline approach.
Finally, the wider implications of the results are discussed and moreover, limitations of
this work are pointed out.

9.1 Discussion of the Criteria-Based Evaluation
This section discusses the results of the criteria-based evaluation, which are presented
in Table 8.1 and Table 8.2. At the beginning, there is a brief discussion of the AAS
concept on how well the requirements are met, followed by a detailed elaboration of the
requirement fulfillment of the deployment strategies. At the end, they are compared with
the baseline approach in terms of their requirement fulfillment.

9.1.1 AAS Concept
The integration concept for ML models into the AAS meets all of the criteria specified for
it (those numbered R-5.3.<x>), as well as some from the other groups, although they were
not considered essential for it. The AAS model, and in particular the FaultDetectionModel
submodel, was developed in an iterative process to meet all defined requirements. This
required intermediate checks of requirements fulfillment and, in parallel, verification that
the dynamic deployment approaches could also be achieved.

This ensured that the developed concept was largely independent of the deployment
strategy chosen. This was also successfully demonstrated with the prototype using the
three deployment strategies and the manual deployment approach. Accordingly, this
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concept can be used for deployments that require a second environment in order to
perform the corresponding preparations for the switch, as well as for those that do not
require a second environment. Since Docker is used to encapsulate the fault detection
model and only one endpoint to the outside world is required for ML inference, the
concept is also independent of the type of model or its specific implementation.

In addition, the submodel for a sensor is also designed in a very generic way and allows
the definition of any number of properties. This makes it largely independent of a specific
use case. Multiple sensors can be modeled and defined in the AAS, which can be used
for fault detection. It is worth mentioning that the input features for the ML model do
not have to be restricted to sensors and their corresponding values. Other properties can
also be used, even with constantly changing values. Therefore, the sensor submodel can
be used to model these properties as well. For description and documentation purposes,
as well as to provide contact information and to define responsibilities, corresponding
elements have been provided.

Furthermore, the requirement for the fault detection module to form a logical unit is
fulfilled. All elements that are exclusively required for fault detection are located within
one submodel. This is also true for operations where a way has been found to enable all
these requirements with the existing capabilities of the AAS metamodel and the BaSyx
framework, despite the issues described above regarding invocation of operations in an
AAS server and storage in MongoDB. Some elements associated with fault detection,
such as the archive, have been deliberately outsourced to enable automatic saving in
MongoDB and to keep the actual fault detection submodel as lean as possible. Among
other aspects, this is also intended to avoid resource problems on edge nodes.

Models that have already been used are stored in the archive previously mentioned and
newly uploaded models are also initially stored there. References to the models used as
active or standby models are deposited in the fault detection submodel. In addition, the
SMCs of the models in the archive contain elements for recording quality metrics of the
models. This enables well-founded decisions on when to switch between models.

In conclusion, the defined integration concept for ML models completely fulfills all the
defined requirements and, thus, the criteria-based evaluation for the concept can be
considered a success.

9.1.2 Deployment Strategies

This section examines the extent to which the specified criteria and requirements are met
by the deployment strategies. This comprises the first two sections of the Table 8.1. The
requirements for deployment approaches are discussed first, followed by the requirements
for dynamic updates. Thereby, the following designations are used: Traefik refers to a
blue-green deployment strategy that uses the Traefik proxy to manage access to the active
and standby environment. Kubernetes also refers to a blue-green deployment strategy,
but with Kubernetes as the container management and routing service. And Swarm
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refers to the rolling deployment approach, with Docker Swarm as the management service
for containers and access.

Deployment Concepts All three strategies are based on the same basic structure:
The model is containerized and made available for external use via a defined API for
ML inference. Therefore, these models can basically be used wherever Docker can be
installed and network access is available.

Regarding the deployment strategy requirement, the blue-green and rolling deployment
strategies are actually mutually exclusive. Thus, Traefik only fully satisfies the blue-green
provisioning requirement and does not satisfy the rolling deployment requirement at all.
This would require that the management service is able to update one container while at
least one other container is able to serve the incoming requests. In principle, this would
be possible with Kubernetes, since it enables the simple scalability of pods and thus
accommodates a rolling deployment approach. However, this would require changes to
the procedure and configuration shown here. The blue-green deployment approach, on
the other hand, is fully implemented by Kubernetes. Swarm, in contrast, only fulfills the
requirement for the rolling deployment approach, since a different strategy would simply
require a second environment. However, all three strategies are based on a well-defined
deployment strategy and thus fully meet this requirement.

It can be concluded that in terms of deployment concepts all three strategies meet the
defined requirements and can be rated as equivalent in this regard. Which strategy is
best depends primarily on the intended use case as well as the additional requirements
and needs specified.

Dynamic Updates A similar picture emerges with regard to dynamic updates. Traefik
and Kubernetes fully meet all the criteria and requirements defined for this section. These
two strategies allow switching between two model versions without the fault detection
service being unavailable in the meantime, i.e., zero downtime is achieved without any
interruptions. Swarm also fulfills these aspects completely.

Where Traefik and Kubernetes differ from Swarm is in the requirements for a fallback
strategy and quality assurance. While the first two also meet these requirements, Swarm
only partially meets the fallback strategy requirement and does not meet the quality
assurance requirement at all. One aspect of quality assurance that Traefik and Kubernetes
do not sufficiently address is enabling A/B testing. Although this has been mentioned
several times in the literature, it is only of limited use in the case of fault detection,
whereas it would be different for a recommendation system, for example. However, it is
important to test models before they go live, and this is still possible with the Traefik
and Kubernetes strategies as they provide a second environment for preparation and
testing.

The reason why Swarm differs from the other two strategies in this respect is primarily
the lack of a standby environment. Therefore, it is not possible to immediately roll back
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to a previous or any version of a model, as it is possible with Traefik and Kubernetes.
However, Swarm has internal rollback capabilities during an update itself in case of an
error, but also to perform a rollback of a service configuration. Nevertheless, this is not
implemented directly as an operation in the fault detection submodel and is also not as
flexible as with the other approaches. There, it is feasible to swiftly switch to the previous
model using the switch operation, or alternatively, to prepare any archived model in the
standby environment before making the switch. With regard to the mentioned quality
assurance, it is not possible with Swarm to test in advance a model that is not defined as
active. This makes it difficult to determine the corresponding quality metrics for the ML
models and to base a decision to switch between models on them.

All three strategies mentioned fulfill the compatibility requirement regarding the AAS
metamodel as well as those imposed by the BaSyx framework. In addition, the infras-
tructure requirement that the fault detection submodel should be able to run on an edge
node is met. This was achieved by using a separate BaSyx HTTP server to host the
submodel and Docker as a containerization solution.

In conclusion, both Traefik and Kubernetes are two very well-suited strategies for
performing dynamic updates while striving for zero downtime and also taking quality
aspects and fallback possibilities into account. Swarm, in contrast, lacks the latter two
aspects and thus can be ranked below Traefik and Kubernetes, which are again tied for
the lead. If quality aspects and rollback options are not essential in a use case, then
Swarm can also be a safe option.

9.1.3 Comparison With Baseline Approach
This section focuses on comparing the previously discussed strategies with the baseline
approach, which was evaluated in Table 8.1 as well. The baseline approach is a simple
recreate deployment pattern and can be simplified as a stop-restart approach. Therefore,
only some of the defined criteria and requirements are fully met, while the majority of
them are not met at all.

The baseline approach likewise uses Docker to containerize the ML model and provides
its functionality via an API. It also takes into account infrastructure and compatibility
requirements and supports the defined AAS integration concept.

Compared to the other strategies, the baseline approach lacks the avoidance of downtime
of the fault detection service. This is because it lacks both a standby environment or,
alternatively, a methodology to ensure continuous availability of the service. This fact
also eliminates the possibility of testing models with regard to their functionality and
performance before they are actually made operational. As a result, service availability
and user experience also suffer due to downtime.

The lack of a fallback strategy also has a negative impact on the assessment of the
baseline approach. If an error is detected in relation to the model or the provided results
during productive use, then the same procedure must be performed for a rollback as if
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a new model is to be provided. This, too, leads to further downtime. In addition, the
baseline approach also eliminates the possibility of mitigating this risk through separate
tests before the model is set live.

In summary, all three deployment strategies described, namely Traefik, Kubernetes
and Swarm, are superior to the baseline approach in all defined aspects. Traefik and
Kubernetes can in principle compensate for all weaknesses of the baseline approach,
while Swarm can mitigate some of the mentioned drawbacks, with the exception of
quality assurance and rollback features. Thus, it can be clearly stated that in terms of
the criteria-based evaluation, all three deployment strategies outperform the baseline
approach, and Traefik and Kubernetes have performed very well overall, while Swarm
also has performed satisfactorily. As mentioned earlier, the strengths of each approach
also depend on the use case in which they are deployed.

9.2 Discussion of the Prototype Evaluation and Technical
Experiment Results

This section discusses the results of the technical experiment runs performed with the
implemented prototype. These results include the measured execution times of the
individual operations for each deployment scenario as well as for the baseline approach.
In Section 8.3, these results have already been evaluated in the form of a tabular as
well as a graphical representation. The Tables 8.4 and 8.3 summarize the measured
execution times for the strategies and the baseline approach. Furthermore, the graphical
evaluations are presented in Section 8.3.

The procedure for this purpose is as follows: First, the results for the baseline approach
are analyzed and compared to the results of the three identified deployment strategies.
Afterwards, the four operations are analyzed step by step for each strategy, then the gained
insights are used to provide a justification for the superiority of the three deployment
strategies over the baseline approach.

9.2.1 Discussion of the Baseline Results
This section analyzes the results of the baseline approach, which are presented in Table 8.3
and summarized graphically in Figure 8.2. In the following, the baseline approach is also
referred to as Manual Deployment (MD).

For uploading a new model via the loadNewModelIntoArchive operation, the MD took
an average of 142 ms, which is in the range of Kubernetes but nearly 15 to 20 ms slower
than Traefik and Swarm, although the time was measured here in the invoking script and
not in the operation within the AAS. Creating a new Docker image requires essentially
the same steps for the MD as for the other strategies. With the MD, however, this
takes about 2 seconds, while it is only 0.7 to 1 second with the others. The standard
deviation is also higher than for the other strategies. Since the commands used are
basically the same, the significant difference can probably be traced back to the way they
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were executed. For the other strategies, these are executed via cmd.exe, while with MD
they are started via the Powershell, which is more modern but also more complex and
usually more resource-intensive.

The next steps can not be compared directly with the other strategies anymore. Stopping
the container takes 18.1 seconds on average with a standard deviation of about 8 seconds.
Afterwards, the container will be restarted with the previously created image, which takes
on average just under 8 seconds. After startup, the process will wait until the model
contained therein is accessible via the API. Finally, the old Docker image is removed,
which takes approximately 0.7 seconds.

Overall, the fault detection service is unavailable for an average time of 26.1 seconds,
beginning from the moment the container is stopped until the new one is available. The
MD can be most appropriately compared to the Traefik strategy, where essentially the
same steps are performed in the new environment prepared step, but with some additional
steps as well. Traefik takes about 14.9 seconds on average to complete this entire step.

What happens in MD directly after starting the container, which is not the case in
Traefik, is waiting for the model to be reachable. With Traefik, however, this is checked
later in the evaluation program. This implies that in the meantime the container has
fully started and the model is reachable with Traefik, while in MD there is always a delay
of five seconds before the reachability is checked again. In addition to this factor, the
execution of commands via the Powershell once again plays a role to the disadvantage of
MD.

9.2.2 Discussion of Operation Execution Times
The results for the four defined operations for the three deployment strategies are discussed
below.

inference This operation consists of only one step. The time measurement starts
before the reference elements are resolved and stops after the result is retrieved and the
values in the AAS properties are updated accordingly, along with possibly publishing an
MQTT message.

Swarm has the lowest average time for the inference at around 145 ms. The standard
deviation is also the lowest of the three strategies. This means that the measured times
for this strategy have the lowest scatter, since this strategy hardly has any extreme
outliers.

Traefik has a mean execution time of around 156 ms and is thus in the midfield of the
three strategies, as does the corresponding standard deviation. The larger standard
deviation can be attributed to some larger outliers, among other things. The overall
slightly larger mean execution time could be due to Traefik’s additional proxy service,
which might lead to additional overhead or delays compared to Swarm, which uses only
existing Docker components.
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Kubernetes has the longest duration for this operation with an average execution time of
169 ms. Likewise, the standard deviation shows the largest value for this strategy, as there
are some larger outliers here as well. Again, the administrative overhead of Kubernetes
for managing the cluster could explain these slightly longer times for inference. When
Kubernetes is activated on the machine, several containers are started that need to run
continuously as they are required to perform all of Kubernetes’ management tasks.

Overall, the time differences between these execution times are not really severe. Espe-
cially since, as shown in Figure 8.3a, 75% of the data points for all three deployment
strategies are around or noticeably below 200 ms and there are only a few outliers that
are significantly above that. However, no definitive conclusion can be drawn as to why
some of these inference calls took so much longer than others and are therefore considered
outliers. One possible explanation is that the workload of the entire system was quite high
at these moments. In the technical experimental runs, the time required for publishing
an MQTT message was not measured explicitly, but is included in the total time for
inference. However, additional tests have shown that the time required to publish such
an MQTT message is around 7.5 ms, which is far below the standard deviations for the
individual deployment strategies and thus not indicative as a cause for the aforementioned
outliers.

model upload Again, only the total time was measured without subdivision into steps.
To this end, the same pre-trained ML models were repeatedly uploaded for all three
strategies. Although these were of different sizes, this factor was the same for all test
runs. However, no distinction was made between the respective models for the time
measurements, since these were relatively simple and identical for all three strategies
anyway. This was not distinguished for the other operations either. In retrospect,
additional logging of the actual model type would have improved the interpretation.

Traefik and Swarm are almost on par for this operation in terms of average execution
times, with Traefik having a slightly lower mean runtime of around 125 ms compared
to just under 127 ms for Swarm. The standard deviation, in contrast, is slightly lower
for Swarm than for Traefik. Kubernetes has the longest measured execution time for
this operation at just under 144 ms on average. Similarly, the standard deviation is
also slightly higher for this strategy than for the others. However, no outliers could be
identified for all three strategies.

Since a connection is established solely between the evaluation program and the FDM-
Archiv submodel hosted on the AAS server, and thus the routing of messages between
Docker containers does not play a role at this point, the nearly equal performance of
Traefik and Swarm can be explained. One reason why it still takes longer for Kubernetes
than for the others can still be indirectly attributed to the setup regarding the containers
and their management. As mentioned earlier, Kubernetes requires a number of constantly
running containers for cluster management, which leads to a higher system load. This in
turn can affect the upload and storage time of new models in the archive, since everything
runs on one machine despite being distributed to individual servers.
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As can be seen in Figure 8.3b, all three strategies exhibit a bimodal distribution to some
degree, suggesting that there are two clusters of execution times. One explanation could
be the size of the uploaded model. The pre-trained models range in size from a few KB
through 100- and 200-KB models to a model over 1800 KB in size (all in BLOB format).
However, a manual examination of the time logs and an attempt to relate them to the
particular model uploaded did not reveal a clear relationship. Adding the model name or
size to the timing logs would therefore have been helpful for this interpretation.

In conclusion, despite the differences between Traefik/Swarm and Kubernetes, model
upload times are completely acceptable. There are no outliers, the scatter of the measured
values is also not too high and for all three strategies more than 75% of the measured
times are well below 200 ms. Since the implementation of this functionality in the
FaultDetectionModel submodel is the same for all three strategies, the timing differences
between the strategies are likely due to the containerization setup. Furthermore, it can
be stated that the model size does not have a significant impact on the duration of upload
times.

update environment This operation consists of five sub-steps, each will be analyzed
and interpreted separately. A comparison in terms of better or worse between the three
strategies is not possible for this operation, since there are some main differences in the
way this operation is performed, as described in Chapter 7. Nevertheless, a more general
comparison is still possible.

• retrieve AAS properties This step already reveals a clear difference between
the strategies. While Traefik and Kubernetes need to load both the SMC for the
model being prepared and the reference element for the standby environment, and
update the direct endpoint property in the archive, Swarm only needs to retrieve
the SMC for the model being prepared. This is directly noticeable in the measured
times. While Swarm only needs about 30 ms on average, Traefik and Kubernetes
need 125 and 142 ms, respectively.

Especially the full loading of the SMC for the standby model and subsequently
writing back the modification in the direct endpoint property that this environment
is currently unavailable increases the execution time significantly, especially since
this change is also persisted in the MongoDB.

• BLOB creation In this step, the same is happening for each strategy. The BLOB
is loaded from the model in the archive, decoded, and stored as a .joblib file in a
defined directory. The measured execution times for all three strategies are around
30 ms, with Traefik and Kubernetes below and Swarm above at around 34 ms. The
scatter of these times is proportionally much larger than for other steps and quite a
few outliers in the upper time range could also be identified. Figure 8.4 illustrates
this vividly.
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One possible reason for these fluctuations is the size of the model and thus the size
of the BLOB file. However, why this value is higher for Swarm than for the other
two strategists cannot be determined in more detail.

• new image created For this step, basically the same things happen for all three
strategies. First, the necessary information is determined and afterwards the new
image is created using the defined model. Nevertheless, the measured times differ
significantly.
Swarm and Kubernetes achieved similar average execution times of around 708 and
782 ms, respectively. Traefik, on the other hand, reached an average time of about
1010 ms. Moreover, the determined standard deviation of the first two is quite low
compared to Traefik. In Figure 8.4, the identified outliers contributing to this high
standard deviation for Traefik can be clearly seen.
One main difference of Traefik from Swarm and Kubernetes is the base used to
create the new image. While the latter two require a separate base container with
a template image from which the new image is derived, Traefik uses the current
image of the standby environment container to create the new Docker image. This
factor could lead to the shorter creation times for the new image for Swarm and
Kubernetes, since the base container is not running while the standby environment
container is still running. This fact could also explain the higher standard deviation
for Traefik, as more variability is prevalent here.
Swarm requires a separate base container with its own image, as there is no standby
environment that could be used as a base for creating the new Docker image.
Kubernetes, on the other hand, does not provide direct access to the containers and
images used, as it is possible with the Traefik approach, since they are managed by
Kubernetes and deployed as pods. However, this indicates that using a separate
container with its own image as the basis for creating the new image containing
the updated model could noticeably reduce the average execution time as well as
its scatter, since the other factors are not considerably different for these three
strategies.

• new environment prepared The goal of this step is to set up the standby
environment with the new model. However, significant differences can be observed
between the three strategies in terms of their average execution times. Since
Swarm does not provide a standby environment, almost no time is spent on it
in this step. For Traefik and Kubernetes, though, the time required for this step
varies significantly due to the different tasks involved in the preparation process.
Figure 8.4 shows this difference impressively.
The tasks for the environment preparation using Traefik are quite straightforward
and are managed by the implemented operation. After the old container is stopped
and subsequently removed, a new container can be started based on the previously
created image. Afterwards, the temporary .joblib file and the old Docker image are
deleted. These tasks take about 15 seconds on average, with a standard deviation
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of about 4.4 seconds. For most of the 140 test runs, execution times were less
than 20 seconds, although some outliers were identified that heavily influence the
calculated mean execution time.
Kubernetes has two replicas for each environment, as can be seen in Figure 7.6.
Therefore, two replicas must also be patched during an upgrade. In addition,
patching of containers in pods is managed solely by Kubernetes. So, to clean up
after this step by removing unused Docker images, it is necessary to wait until all
pods running the old image are stopped. Kubernetes, however, does not stop the
old pods immediately, but stops them when the new ones are running stable. Since
this takes some time, it only checks every 10 seconds to see if the old pods are all
stopped so that cleanup can begin. But this task is managed by the implemented
operation. On average the new environment is ready in about 62 seconds, with a
standard deviation of just over 11.4 seconds. If a 10-second wait time starts just
before the pods are actually stopped, it inevitably results in clusters of execution
times with intervals of about 10 seconds. Hence, this wait time also delays the
actual execution time slightly.
Establishing a clear basis for comparison is difficult here, and it is challenging to
draw conclusions. The time saved by Swarm in this step is realized only later.
With regard to the two blue-green deployment strategies, the longer execution time
of Kubernetes is not necessarily negative, since only the standby environment is
affected by downtime and the pods with the new image and model are available
relatively quickly. Only the cleanup tasks take considerably longer than with
Traefik.

• AAS properties updates In this step, it depends again on the number of proper-
ties and how these properties are updated. For Traefik and Kubernetes, the direct
endpoint for the model and the corresponding reference for the standby environment
have to be updated. Additionally, the latter change must also be persisted to the
MongoDB. For Swarm, the reference of the model in the archive is stored in the
StandbyFDM element, even if there is no standby model available in this strategy.
However, this information is needed for the actual switch. Subsequently, this change
is also stored in MongoDB. Traefik and Kubernetes each take around 100 ms on
average, while Swarm only needs 7 ms.
A key difference between Swarm and the other two strategies when saving the
reference is that the former creates a completely new reference, while Traefik and
Kubernetes adapt the existing reference. This procedure requires processing via
a loop and might suggest that this accounts for the significant time difference.
Otherwise, only the endpoint is additionally set in Traefik and Kubernetes. Unlike
the other steps, these times are not too significant and are also much shorter than
retrieving information from the AAS.

Looking at the total duration for this operation in comparison, it can be seen that on
average Swarm needs less than 0.8 seconds for the preparation tasks. This is mainly
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because only the new Docker image is created. Traefik, on the other hand, takes just
over 16 seconds on average to prepare the standby environment with the new model and
make it operational and ready for access. Kubernetes needs an average of 63 seconds.
However, it should be mentioned that two replicas are involved here.

In Figure 8.6a, this composition of the total time is provided as well as a comparison
between the strategies. For Traefik and Kubernetes, the majority of the time is spent
starting the new container and cleaning up the components that are no longer used,
followed by creating the new Docker image. In the case of Swarm, the latter accounts
for the largest amount of time, as there is no standby environment to prepare. From an
overall perspective, the other sub-steps are only marginally involved.

swap environment The fourth operation results to be discussed concern the actual
switch from one model to another. This operation consists of two sub-steps and differs
greatly between the strategies, as they all perform this switch based on a different
approach. The details are discussed below.

• switch active environment This step is responsible for the critical task of
switching incoming traffic from the old to the new fault detection model, resulting
in significant differences in execution times between strategies.
While Traefik simply calls a switch operation within the Traefik proxy container
to update the dynamic configuration, Kubernetes requires patching of the service
configuration through the command line. In Traefik, all these tasks are contained
in self-implemented functions, whereas in Kubernetes, the changes to the service
configuration are managed by Kubernetes itself. Swarm, on the other hand, takes
a completely different approach by performing a rolling update.
Traefik needed an average of 21 ms to change the configuration, with a standard
deviation of 18 ms, which is a relatively high spread. Since the configuration change
is made via a REST API call, the overall system load can also negatively affect
the request and response times. In addition, there are also some outliers that have
a negative impact on the mean value. However, since this API call only changes
the dynamic configuration file in the container, the switching of traffic from one
environment to the other is the exclusive responsibility of the Traefik proxy and,
thus, only happens within this container. This is therefore executed immediately
after the configuration change is detected by the proxy. Furthermore, the third
quartile is at low 19 ms and more than 90% of the measured execution times are
still below 40 ms.
Kubernetes took an average of 267 ms to patch the service configuration, with a
standard deviation of 186 ms, also indicating a larger scatter. This configuration
update is managed by Kubernetes and is initiated via a command line command.
There are two factors that may affect these execution times: First, the overall
system load tends to be higher when using Kubernetes, and second, executing a
command via the command line from Java and reading the response from stdin or
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stderror could be slower than a simple REST API call when running on the same
machine. For this strategy, the third quartile is 258.25 ms and 90% of the measured
execution times are below 300 ms, which is indicative of some severe outliers that
can also be seen in Figure 8.5.
For Swarm, on the other hand, only the new Docker image was created in the
previous step. Therefore, in this step, the image needs to be distributed to each
replica through service updates. Since each replica is updated individually and an
additional update delay can be specified, the final execution time for the switch
is influenced by the number of replicas and the delay time. For this particular
case, there were four replicas and a 30-second update delay, which resulted in
an average execution time of just under 160 seconds. As can be seen by the low
relative standard deviation of 2.4 seconds as well as in Figure 8.5, the majority
of the measured values are close to the mean. Especially in the range above the
mean, there are still some values that deviate significantly from the distribution
and, therefore, some of them can be classified as outliers. The third quartile is at
161 seconds just above the mean and the maximum value of about 170 seconds is
also not too far away.
In summary, the switch with Traefik is very fast and Kubernetes also performs
reasonably well. It is worth noting that these times do not represent any downtime,
but rather reflect the time needed to adjust the configuration. In contrast, switching
with Swarm takes longer due to a different underlying strategy. Reducing the number
of replicas and eliminating update delays could reduce these execution times even
further. However, the primary goal with rolling updates is often to achieve stable
updates without any downtime, not to complete updates as quickly as possible.

• AAS properties updates As with the previous operation, this step writes back
the changes in the reference elements. For Traefik and Kubernetes, this includes the
active environment, swapping the references of the active and standby environments,
and updating the reference of the serialized fault detection model currently used. In
addition, these changes are also updated in the MongoDB. For Swarm, the value of
the standby environment reference is set to the active environment reference, then
the standby environment reference is deleted. Also, the reference to the serialized
model is updated and all these changes are persisted in the MongoDB.
On average, Traefik and Kubernetes require 11 ms for these updates, while Swarm
only needs about 6 ms. As shown in Figure 8.5, all three strategies have some
outliers, but those of Traefik and Kubernetes are more widely spread. The shorter
execution times of Swarm can be attributed to the lower number of updates. Overall,
these updates are performed quickly for all three strategies.

The Traefik approach can perform the switch the fastest and is clearly ahead of Kubernetes.
Switching environments accounts for the majority of the time required here. Swarm is
far behind, but this is due to the different approach. Figure 8.6b provides a graphical
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summary of this composition. Overall, it is worth mentioning again that none of these
approaches result in any downtime.

9.2.3 Disadvantages of the Baseline Approach
In this section, based on the comparison of the results of the baseline approach with those
of the three strategies above, it is argued why the latter are superior over the baseline
approach.

As has already been mentioned above, the baseline approach follows a recreate deployment
pattern. The division of the steps differs therefore from the other presented strategies,
as all steps are executed within one operation, which is additionally not contained in
the FaultDetectionModel submodel. This is because it is not an actual automatism, but
rather the processing of a script. In addition, the time measurement of the inference
operation was not considered, since it does not differ from the other strategies and is
performed exclusively within the AAS.

In summary, the comparison between the Traefik, Kubernetes, and Swarm strategies in
the experimental test runs showed that they are superior over the baseline approach.
Even though a downtime of approximately 26 seconds may not seem long, it is still too
much when a downtime of zero is required. Especially, if the other three strategies are
able to achieve this required downtime avoidance.

Another clear downside is the lack of integration into the AAS and the cumbersome way
to access or change values in the AAS. In addition, the integrated persisting possibilities
of values in the MongoDB, which is defined in the operations, is not available with this
script-based approach. In addition, it is also important to consider the aspects already
discussed in Section 9.1.3, which also highlight the advantages of the three strategies over
the baseline approach.

9.3 Answering the Research Questions
This section answers the defined research questions from Section 1.2 based on the findings
and insights gained.

Research Question 1
RQ1: Which deployment strategies for ML models and dynamic update
methods for software components are mentioned in existing literature or
have been applied in production environments that could be transferred to
the AAS?
This research question formed the basis for the SLR and specifically for the research
questions within the SLR, which have already been discussed in detail in Chapter 4. The
deployment strategies and dynamic updating methods found were thereby categorized
and their occurrence quantitatively measured. Most of the identified concepts that
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can be applied to the AAS were also used to derive the criteria and requirements for
the integration concept to be developed and the deployment strategies to be identified.
Therefore, the following conclusions can be drawn:

Deployment Strategies for ML Models Regarding deployment strategies, con-
tainerization techniques are mentioned very often because they offer many advantages,
such as easy model packaging, easy deployment, and easy creation of new images. Most
models are deployed as a web service and offer their functions through an API. In addition,
specific deployment and testing strategies were named, such as canary deployment, rolling
deployment, and A/B testing. All of these strategies aim for zero downtime and can also
be used in combination with an AAS, but only the rolling deployment approach is useful
in the context of a fault detection model.

Dynamic Update Methods DSU as a term for updating software without interrupt-
ing users or programs is a quite frequently mentioned method, which can also be used to
dynamically exchange models contained in the AAS. Virtualization and containerization
technologies are also used for dynamic updates, especially in combination with a traffic
management dispatcher. Thus, microservices also play a role for dynamic updates and
can be combined with the AAS. In addition, deployment strategies for seamless switching
during updates play a key role. Blue-green or canary deployments are mentioned, as is
the requirement for testing capabilities in a separate environment.

Some relevant aspects in the course of dynamic updates are the consideration of timing
constraints, compliance with infrastructure requirements and ensuring the quality of new
models by means of a separate and isolated test environment. Also, the need to perform
fast rollbacks and to ensure backward compatibility are aspects that can be applied to
the proposed approach.

Research Question 2

RQ2: Given the current state of the AAS, what is a feasible approach to
integrate a fault detection model into the AAS considering that the models
should be called directly from the edge nodes that contain the real-time data?
The identified way to integrate a fault detection model into an AAS is to encapsulate all
relevant elements, such as operations, endpoint information, references to the currently
used model, and references to te active and standby environments, in a single submodel.
This submodel can be hosted on a separate edge node by running it on a simple HTTP
server. Sensor values are also encapsulated in their own submodels and can be either
co-hosted with the AAS or on their own server near the physical device. The actual
functions for inference, uploading new models, preparing the environment, and switching
between model versions are defined as operations in this submodel together with the
required input and output parameters. These operations can be called from external
clients via an API but also internally.
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Figure 9.1: Decision Tree for Choosing the Optimal Deployment Strategy

In addition to the submodel for the fault detection model, there exists also an archive
submodel. This does not have to be on an edge node as it contains all ML models that
have been used before, are currently being used, or have just been uploaded but are not
yet in use. In the archive, the serialized ML models are stored as BLOBs along with
some relevant properties and quality metrics. The actual inference is invoked within the
AAS. Thereby, the latest sensor values are retrieved from the submodel elements and
subsequently the ML model running in the active container is invoked with them.

Research Question 3
RQ3: What is an appropriate strategy to deploy a fault detection model in
a production environment and switch from the previous to the new model
without stopping production processes?
A suitable approach that meets the specified criteria and requirements is to encapsulate
the fault detection model in a container. This enables effortless deployment and facilitates
the creation of new containers with the latest model. In addition, a deployment strategy
that does not cause any downtime can be used to seamlessly switch between these
deployed containers. All three deployment strategies identified meet this requirement.

The optimal strategy for switching between the old and new model depends on the
use case and the associated requirements. Therefore, the decision tree in Figure 9.1
offers guidance on determining the optimal strategy. If the objective is to provide a
standby environment for performing tests to ensure model quality and facilitate fast and
straightforward rollbacks, a blue-green deployment approach with Traefik or Kubernetes
would be preferable. On the other hand, if the priority is scalability to accommodate a
high volume of incoming traffic, the strategies utilizing Kubernetes or Swarm would be
favored. Although, no standby environment is available for the latter.
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Alternatively, if a test environment is not required and the management overhead of
Kubernetes or an additional proxy is too high, a rolling deployment strategy using
Swarm would be the best choice. In summary, there is no universally “best” strategy,
but depending on the use case, one of the three strategies can be considered the most
appropriate.

9.4 Limitations of the Developed Approach
This section focuses on the limitations of this work and in particular of the created
artifact. The developed approach aims to solve the problem of integrating a ML model
for fault detection into an AAS and to enable dynamic updates of this model. Although
it has shown promising results in initial tests and evaluations, it is crucial to identify
the limitations and potential drawbacks. This knowledge is important to understand the
scope and applicability of the proposed solution.

Integration Concept Related Limitations The following list summarizes the lim-
itations, which were recognized or consciously accepted in relation to the developed
integration concept for ML models for fault detection:

• Missing Standardized Semantics Within an AAS, elements should be provided
with a semantic reference so that a context for understanding is provided. Any
system accessing a property will know what that specific value means. This can be
done in a number of ways, such as using ECLASS or providing a concept description
within the AAS. For example, in the case of a temperature sensor, the unit of
measure or type of sensor is described with such semantics. However, no data
specifications or semantic IDs were provided in the presented integration concept
for the AAS, since this was not required for the model integration and switching
approach. This is because only one system used the provided values and, thereby,
having knowledge of the context and the subsequent interpretation of the values.
The use of semantic information would have made the entire concept and prototype
much more comprehensive and complex without any direct benefit.

• Security Aspects Omitted During the development of the concept and also
during the implementation of the prototype, topics related to security such as
authorization or encryption were deliberately omitted. Taking this aspect into
account would have made the concept and the prototype unnecessarily complex
without adding any direct value for demonstrating the benefits of this approach.
However, BaSyx for Java as well as the other software components used offer
functionalities in this regard.

• Maximum Model Size not Determined During the evaluation it was not
tested what the maximum BLOB size supported by an AAS is. There was also no
indication of the maximum size for BLOBs in the documentation. Therefore, this
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can be considered a limitation, since it cannot be stated at which size of the ML
models saved as BLOB would cause the AAS to stop working.

• No Event Handling One aspect that has been defined outside the scope of this
work is the fact that once a potential fault is detected, only an MQTT event is
published, but no further action is taken.

Evaluation Related Limitations The evaluation is limited by the absence of recorded
information about the type of model utilized during test runs, which makes it difficult to
analyze more precisely the effect of model size on performance. Although this was not
the main focus of the work, it would still be valuable to investigate how model size affects
overall performance. Moreover, the developed concept and its prototype implementation
used in the evaluation cannot be generalized to all types of ML models, since only some
have been tested. Nevertheless, they should be theoretically supported considering the
specifications presented above.

A second aspect related to the prototype and evaluation is that the technical experiments
were conducted only on one machine. The reasons for this are explained in Section 2.2.4.
Despite the same conditions for all strategies, the system performance or network latencies
will have a different effect than if everything runs on separate components. Furthermore,
the practicality of this approach is limited in its generalizability to various industrial
application scenarios as it was evaluated using only emulated sensor data.
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CHAPTER 10
Conclusion and Future Work

In this chapter, the main findings and contributions of this thesis are presented. For this
purpose, the developed integration concept and the subsequently identified deployment
strategies are briefly summarized and conclusions are drawn based on the evidence
presented in previous chapters. It also identifies possible ways to extend this research
and outlines open questions.

10.1 Conclusion
In this thesis, a generic concept for the integration of data-driven ML fault detection
models into an AAS was developed. In addition, deployment strategies for these models
were identified that allow dynamic switching from one model version to another without
downtime. The foundation for the concept and deployment strategy approaches were
requirements and criteria derived from the findings of a SLR. They were supplemented with
requirements imposed by the AAS metamodel and implementation prerequisites of BaSyx.
Both the integration concept and the three deployment strategies were assessed against
these requirements and criteria in a qualitative evaluation. Furthermore, a prototype
of this concept was implemented using the Eclipse BaSyx™ framework to subsequently
conduct technical experiments to measure the execution times of the operations of
the three deployment strategies for inference, uploading new models, preparing the
environment, and switching between model versions. This prototype evaluation proved
that the concept does indeed work and demonstrated the utility and suitability of this
approach. In addition, a quantitative evaluation of these deployment strategies was
performed and a comparison of the different deployment strategies was done.

AAS Concept The defined integration concept for ML fault detection models into
an AAS meets all defined requirements and criteria. The core elements of this concept
are the FaultDetectionModel submodel along with the FDMArchive submodel. The
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Blue-Green Deployment Rolling Depl.
BL Traefik Kubernetes Swarm

Standby Environment – X X –
Separate Access to Active Model – X X –
Direct Access to Standby Model – X X –
Conduct Tests before Activated – X X –
Immediate Rollback – X X –
Easy Scalability – – X X
Out of the Box Switching – – X X
Avg. Inference Time (ms) 156 169 145
Avg. Model Upload Time (ms) 125 144 127
Avg. Update Env. Time (ms) 16,157 62,929 778
Avg. Swap Env. Time (ms) 32 278 159,329

Table 10.1: Comparison of the Three Deployment Strategies

former contains all properties together with operations directly related to performing
fault detection using a ML model as well as uploading a new model and preparing the
environment. The latter contains all current and previous ML models, where each model
is described by a set of properties and contains the serialized model as BLOB along with
a set of quality metrics. In addition, three further submodels (for general information,
sensors, and capabilities) have been defined.

It can be concluded that this integration concept is a generic approach and allows to define
various types of sensors for different application scenarios and also to incorporate different
types of ML models. Moreover, this concept could not only be used as a way to integrate
fault detection models, but also for other use cases such as predictive maintenance or
further scenarios where data is periodically collected from sensors or other components
and fed into a ML model to predict a specific outcome. Overall, this concept is generic,
but also kept quite simple to allow many possible extensions for further use cases.

The following provides a concise overview of the commonalities and differences among the
three presented deployment and switching strategies, namely both blue-green deployment
strategies and the rolling deployment strategy. To this end, Table 10.1 contrasts these
three strategies as well as the baseline (BL) approach. A comparison criterion is listed in
each row. If the approach of that column fulfills this criterion or offers this possibility, it
is acknowledged with a ‘X ’, otherwise it is marked with a ‘–’. Furthermore, the average
execution times for each operation for the three deployment strategies are given at the
end of Table 10.1.

Table 10.1 highlights similarities between these strategies, but also shows key differences.
Only the blue-green deployment strategies provide a standby environment and thus
can provide separate access to a model in this environment. Moreover, only in this
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environment the newly created model can be tested before it is declared the active model.
Traefik and Kubernetes additionally provide a separate way to access the model in the
active environment without affecting the endpoint used for production purposes. This
can be useful, for example, when quality metrics need to be compared between active and
standby models. Another advantage of the standby environment is that an immediate
rollback can be performed if a particular condition does not meet the expectations.

In contrast, Kubernetes and Swarm allow easy scalability due to their native features
provided by both orchestration tools. Therefore, if a model should be hosted on a cluster
of nodes, these strategies are the right choice. All traffic management and routing is
handled by these tools. Both of these approaches provide the ability to seamlessly move
from one version to another with out-of-the-box functionality via the command line
interface. Traefik, on the other hand, required some customization in the originally
provided Docker image to allow for easy configuration changes via an API. At the end
of Table 10.1, the average execution times of the four operations are listed again for
comparison purposes. A detailed explanation can be found in the Chapters 8 and 9.
It can be concluded that all three deployment strategies described, namely Traefik,
Kubernetes, and Swarm, outperform the baseline approach in all defined aspects. Traefik
and Kubernetes have the potential to address all the weaknesses of the baseline approach,
while Swarm can alleviate some of the aforementioned drawbacks with the exception of
quality assurance and rollback features.

10.2 Future Work
This section provides ideas for future work and addresses open questions related to
dynamic deployment of fault detection models using digital twins, such as the AAS. While
the integration concept of the fault detection submodel and the identified deployment
strategies discussed in this thesis have shown promising results, there is still room for
improvement.

One possible starting point is to incorporate features of advanced ML methods into the
submodel as well. In general, the focus of this thesis was not to develop high-performing
ML models for fault detection, but on developing a solid and generic submodel template
for integrating a variety of different types of ML models. However, since only a number of
rather simple models were used in the prototype implementation, the integration concept
cannot be generalized to all types of ML models. Thus, future work could integrate
advanced ML concepts, such as deep learning, reinforcement learning, or different types
of neural networks, into the presented concept and reevaluate it. Moreover, MLOps
platforms, in particular their pipelines to automate development and deployment, could
also be integrated into an AAS to cover the whole lifecycle of models, which necessarily
requires an extension of the presented integration concept to also cover, for example, the
properties of training data, etc. in the AAS as has been done by Rauh et al. [RGB+22],
among others. In addition, it could be investigated how the ML model size and type
affect the performance for uploading the new model as well as for preparing the standby
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environment.

But there is also work to be done in the area of the practicality of this integration
concept and the deployment and switching strategies. This includes, on the one hand,
the implementation on physically distributed nodes, perhaps even at different production
sites, and, on the other hand, the use of real sensor data from physical and continuously
operating machines. The former means that the AAS registry operates on a completely
different node than the AAS server hosting the AAS and the node hosting the fault
detection submodel. After all, this concept was only evaluated on a test bench with
emulated sensor data. However, in order to prove the practicality of this approach,
the modeling of one or more real machines equipped with sensors is essential. In this
context, various application scenarios should be considered to further demonstrate the
generalizability of this approach. In addition, it could be examined whether the fault
detection model can run directly on the hardware on which the PLC of a machine is
running.

Other aspects that can be addressed in future work are some of the constraints mentioned
in the previous chapter, such as considering security aspects like authorization or encryp-
tion, since data could be confidential or certain aspects contained in the AAS should
not be accessible or visible for everyone. Additionally, the use of semantic references,
such as ECLASS, in order to provide a semantic context especially for inter-application
communication are another interesting aspect.
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