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Abstract 

The progressive development of condition monitoring systems, as well as the 
necessary sensor technologies and IoT-platforms used for information processing, 
enable data-driven approaches in production planning, maintenance, and quality 
management. Considering the keywords “predictive maintenance” and “prescriptive 
maintenance” and the research area prognostics and health management (PHM), 
maintenance is already discussed in detail regarding the utilization of condition data. 
Nevertheless, such approaches remain limited in production planning and control. The 
research areas of condition-based production scheduling and its integration with 
condition-based maintenance are still in an early stage.  

This thesis focuses on integrating condition data in production planning and a holistic 
view of production planning and maintenance. The goal is to show improvements for 
existing approaches by bringing together cross-disciplinary knowledge and making it 
usable. The approaches, models, and methods analyzed are incorporated into the 
procedural model presented, which intends to facilitate the implementation of 
condition-based production planning in practice. The presented model is then applied 
to a use case in the form of a physical demonstrator. The results obtained allow 
conclusions to be drawn about optimization potential for the integrative consideration 
of production planning and maintenance, as well as data-driven methods for condition 
determination.  

For further work, the approach presented provides an orientation to the cross-
disciplinary state-of-the-art. It can serve as a basis for developing new models and 
methods that focus on the holistic consideration of new production systems. 
Implementing a condition data-driven production planning and its holistic integration 
with maintenance planning holds greater cost reduction potentials than the separate 
optimization of these disciplines. Furthermore, the approach could support 
implementing approaches already discussed in the literature into practical applications. 
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Kurzfassung 
Die fortschreitende Entwicklung von Zustandsüberwachungssystemen, sowie dafür 
notwendigen Sensortechnologien und zur Informationsverwertung verwendeten IoT-
Plattformen ermöglichen datengeriebene Ansätze in der Produktionsplanung, 
Instandhaltung und im Qualitätsmanagement. Während der Bereich der 
Instandhaltung mit den Schlagwörtern „predictive maintenance“ und „prescriptive 
maintenance“, sowie dem Forschungsbereich prognostics and health management 
(PHM) bereits ausführlich in Bezug auf Verwertung von Zustandsdaten diskutiert wird, 
bleiben solche Ansätze für die Produktionsplanung- und Steuerung überschaubar. Die 
Forschungsbereiche der zustandsbasierten Reihenfolgeplanung, sowie deren 
Integration mit zustandsbasierter Instandhaltung stehen noch am Anfang. 

Diese Arbeit fokussiert sich auf die Integration von Zustandsdaten in der 
Produktionsplanung und eine ganzheitliche Betrachtung von Produktionsplanung und 
Instandhaltung. Ziel ist es, Verbesserungen für bestehende Ansätze aufzuzeigen, 
indem Fachgebietsübergreifendes Wissen zusammengeführt und nutzbar gemacht 
wird. Die analysierten Ansätze, Modelle und Methoden fließen in das vorgestellte 
Vorgehensmodell ein, das die Implementierung einer zustandsbasierten 
Produktionsplanung in der Praxis erleichtern soll. Das vorgestellte Modell wird dann 
auf einen Anwendungsfall in Form eines physischen Demonstrators angewendet. Die 
erhaltenen Ergebnisse lassen Rückschlüsse auf Optimierungspotentiale für die 
integrative Betrachtung von Produktionsplanung und Instandhaltung, sowie 
datengetriebene Methoden zur Zustandsermittlung zu. 

Für weiterführende Arbeiten bildet der vorgestellte Ansatz eine Orientierung am Stand 
der Technik und kann als Grundlage für die Entwicklung neuer Modelle und Methoden 
dienen, die die ganzheitliche Betrachtung neuer Produktionssysteme fokussieren. Die 
Implementierung einer zustandsdatengetriebenen Produktionsplanung und deren 
ganzheitliche Integration mit der Instandhaltungsplanung birgt größere 
Kostensenkungspotentiale als die getrennte Optimierung dieser Fachgebiete. Darüber 
hinaus könnte der Ansatz verwendet werden, um in der Literatur bereits diskutierte 
Ansätze in praktische Anwendungen zu bringen. 
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1 Introduction 

1.1 Condition monitoring and production planning 
Digitization is anchoring itself ever more deeply in the industry. The massive increase 
of sensorization and thing-to-thing information transfer is often referred to as industry 
4.0, which started as “a German initiative for improving manufacturing technologies”1. 
It is characterized by merging the operational and information technology layers, which 
link the physical world with the virtual world and create so-called cyber-physical 
systems (CPS).  

Real-time-based information technologies connecting devices over the internet form 
the internet of things (IoT). “The increasing advances of information technology and 
the internet of things have made real-time data easily accessible.”2 It enables a new 
level of automation, control, and knowledge distribution. The physical devices 
participating in the network are often described as smart or intelligent things/devices. 
By 2025 30 billion IoT devices are expected to be connected to the internet3 and 
actively participate in communication processes. Those numbers are mainly driven by 
the booming consumer market for connected devices, especially in home automation. 
However, the increasing trend is the same in the industry. “The share of electronics 
and software in terms of value has risen steadily in recent years and is now around 40 
percent in vehicle construction, for example.”4  

The progress of IoT has been fueled in recent years by technological advances and 
favorable price trends in sensors, internet protocols, microcomputers (embedded 
systems), wireless systems, and database systems. Communication protocols, 
distributed systems, and cloud computing are examples of enablers for the internet of 
things and are described by the collective term IoT-technologies. 

In the industry, the field of maintenance is impacted by the rise of those technologies. 
As sensors and monitoring systems developed, new data-driven maintenance 
strategies emerged as an alternative to conventional rule-based approaches.5 
Inexpensive sensors and increasing computing power drive the implementation of 
condition monitoring systems in various applications. Machines are equipped with 
sensors to provide data on their condition. Nevertheless, the presence of information 
alone does not provide added value unless it is utilized to, for example, improve 
maintenance activities. Also, “in practice, the state of degradation is neither available 
nor measurable in the majority of cases. It must be deducted from the physical 

 
1 Xhafa et al. 2017, p. 5. 
2 cf. Malekpour et al. 2021, p. 2. 
3 see https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/. 
4 Eigner et al. 2017, p. 5. 
5 cf. Matyas 2019, p. 300. 
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knowledge, expert knowledge, and available measurements.”6 This fact displays one 
of the biggest challenges regarding data quality in fault prognosis. Nevertheless, data-
driven approaches have the advantage of not being dependent on human perception 
and can make use of the advancing computing and processing tools. The most 
dominant use case for condition monitoring is to use the acquired data to improve the 
planning of necessary maintenance activities. Using data-driven predictions to enable 
acting before machine failures occur is often described as predictive maintenance. As 
maintenance activities represent a significant cost driver for production facilities, 
typically causing between 15-40% of total expenses, it seems evident that 
improvement potential may have a considerable impact on the industry.7 Also, “over 
80% of surveyed manufacturing companies are aware of the enormous upside 
potential of predictive maintenance and are currently elaborating their opportunities 
intensively”.8 In the field of maintenance, the integration of machine condition data 
therefore has been widely researched within the last decade and has already found its 
way to numerous applications in the industry. 

In production planning and control (PPC), however, this information remains largely 
unused.9 In production, the condition of machines and tools can be decisive for whether 
a production order can be executed or not. If a machine’s condition deteriorates, it may 
still be able to execute specific processing steps before maintaining the machine. The 
solutions are either to maintain the machine as soon as possible or to adjust the 
production sequence so the machine only operates on process steps that can be 
executed with its deteriorated condition. This insight opened the door to the research 
field of condition-based scheduling and sequencing. Another approach recently 
proposed in the literature is called condition-based production (CBP) and describes 
adapting production rate to control the deterioration of a machine. Nevertheless, CBP 
is largely dismissing production scheduling and is mainly addressed separately to 
condition-based maintenance.10 Both approaches require the machine’s condition data 
that can be utilized for maintenance planning as well.  

In a perfect factory, production and maintenance would require an interconnected 
planning process for operating ideally. Therefore, joint optimization of production and 
maintenance extends those mostly isolated considered research areas and deals with 
mostly very complex optimization problems. This research area is not yet widespread 
in literature especially when considering the utilization of a machine’s condition data. 

 
6 Djeziri et al. 2020, p. 2. 
7 cf. uit het Broek et al. 2021, p. 1. 
8 Zhai et al. 2019 - 2019, p. 1. 
9 cf. Karner 2019, p. 2. 
10 cf. uit het Broek et al. 2021, p. 1. 
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1.2 Problem statements, objectives, and research 
questions 
In this thesis, the impact of utilizing condition data in production planning and control 
is discussed. In particular, the thesis focuses on the research area of condition-based 
scheduling and the integration of condition monitoring, maintenance, and production 
planning. While the individual parts of mentioned topics are partly well-represented 
research areas already, their integration is not yet widespread in the literature and 
lacks practical examples for conveying knowledge on the topic.  

Problem statements: 

P1: Condition monitoring data of machines and equipment is already commonly used 
for maintenance purposes but largely neglected in production planning. 

P2: Systems for determining a health index (HI) for a machine’s condition are therefore 
mainly designed for maintenance purposes.  

P3: The research area on condition-based scheduling lacks practical examples for 
conveying knowledge on the topic. 

P4: The research areas of production and maintenance scheduling are mainly 
discussed isolated. Therefore, joint optimization of both is underrepresented in the 
literature. 

P5: The economic benefit of utilizing condition data for PPC, maintenance, or both 
depends on the observed machine(s). Also, the possibilities for how this data can be 
utilized depends on the case at hand, hindering the generalization of models and 
methods on the topic. 

Objectives: 

O1: Determine the state-of-the-art of condition-based production scheduling, joint 
optimization of PPC and maintenance, and focus on machine and equipment condition 
in both cases. 

 

O2: Create a practical example for demonstrating condition-based scheduling and 
conveying knowledge on the topic. 
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O3: Develop and evaluate an artifact11 for integrative condition-based PPC and 
maintenance planning. 

Non-objectives: 

• Developing a new production and maintenance scheduling optimization 
algorithm or method. 

• Developing a new algorithm for machine or equipment fault prognosis. 

Research questions: 

Q1: How can machine and equipment conditions be determined and utilized for 
condition-based production scheduling? 

Q2: How can knowledge on condition-based scheduling be effectively conveyed? 

Q3: How can machine and equipment condition be utilized for integrated PPC and 
maintenance? 

 

P1

P2

P3

O1

O2

O3

Q1

Q2

Q3P4

P5
 

Figure 1: Relations between problem statements, objectives, and research questions 

 
11The definition of an artifact follows Hevner et al. 2004 (p. 2.) and comprehends “constructs (vocabulary 
and symbols), models (abstractions and representations), methods (algorithms and practices), and 
instantiations (implemented and prototype systems)”. 
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1.3 Solution approach 
The thesis’ research methodology is based on the design science in information 
systems framework by Alan Hevner12, as described in chapter 4. 

To answer the first research question, the underlying theoretical foundations are first 
explained in Chapter 2. The theoretical foundations for integrating condition data into 
production planning can mainly be found in the broad areas of industrial maintenance 
and production planning and control. A discussion on the state-of-the-art is covered 
within the systematic literature review in chapter 3. 

Research question two is answered by providing a demonstrator on condition-based 
scheduling with a dedicated use case for demonstration purposes. The product 
development part of the physical demonstrator is supported by the iterative procedure 
model, according to VDI 2221 (Part 113 and Part 214). 

To answer research question three, the literature review findings in chapter 3 are 
incorporated into the design of a procedural model in chapter 6. As provided in the 
design science method, an artifact in the form of a model is presented, describing the 
possibilities for integrating condition monitoring, maintenance and PPC in a case study. 
A use case to support the design phase and the evaluation of the procedural model is 
defined in chapter 5 by developing a physical demonstrator.  

  

 
12 Hevner et al. 2004. 
13 VDI Society Product and Process Design 2019a. 
14 VDI Society Product and Process Design 2019b. 
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1.4 Thesis structure and design 
1) Introduction 
• Condition monitoring and production planning 
• Problem statement, objective, and research question 
• Solution approach 
• Thesis structure and design 
2) Theoretical foundations 
• Industrial maintenance 
• Production planning and control  
• Prognostics and health management 
3) Practical application of condition data in the context of production planning: 

State of the art 
• Planning a systematic literature review 
• Conducting the review 
• Summary of the literature review 
4) Applied methodologies 
• Research methodology: Design science 
• Product development 
• Systematic literature review 
5) Physical demonstrator for condition-based scheduling  
• Definition of the use-case 
• Modification of demonstrator 
• Demonstrator evaluation 
6) Design and implementation of a procedural model 
• Overview of the procedural model 
• Model evaluation 
7) Summary and consolidation of key findings 
• Results of applied methods 
• Results with respect to research questions 
8) Outlook and limitations 

Table 1: Thesis structure 

Figure 2 shows the research design. The tasks displayed in Figure 2 are mapped to 
the chapters in table 1 by color:  
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Research idea

Formulate problem 
statements and 

research questions

Literature 
review

State of the art

Summary of 
literature 
review

Definition of 
the use-case

 Iterative 
development process

Demonstrator 
evaluation

Summary and 
consolidation of key 

findings

Determine 
research 

methodology

Theoretical 
foundations

Specify 
research 
questions

Results of applied 
methods

Results with respect 
to research questions

Outlook and 
limitations

1 2 3 4 5 7 8
Chapters

Design and 
implementatin of 
procedural model

6

Procedural model 
evaluation

 
Figure 2: Thesis design 

The iterative development process is executed according to guidelines for the product 
design of technical products and systems. It is described in more detail in chapter 4 
and is based on the following foundational schematic: 

solution

idea
activities results

synthesis

Cycles of thought and action

analysis

objectives

 

Figure 3: Iterative development process15 

 
15 cf. VDI Society Product and Process Design 2019a, p. 17. 
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2 Theoretical foundations  

2.1 Industrial maintenance 

2.1.1 Foundations of maintenance 
Objectives 

“The purpose of maintenance is to preserve the function and performance of a machine 
or plant.”16 The importance of maintenance increases because of the growing 
complexity of production and transport, including automation and interlinking. Today, 
in order to maintain the highest possible availability of production equipment, it is no 
longer sufficient to repair after failure occurrences (reactive maintenance). Planned 
and preventive measures are necessary to avoid expensive failures and risks to safety 
and the environment.17 

The main goals of maintenance are to minimize overall operational costs and to 
maximize reliability and safety.18 A notable research area therefore is midterm 
maintenance scheduling (MMS), which aims to maximize the return of investment of 
equipment for its entire life cycle by optimizing maintenance activities.19 The two goals 
of optimizing overall costs and reliability are interlinked, as a safety risk is usually also 
a cost risk. Machines and equipment that either have very high production numbers (in 
most manufacturing companies today) or whose failure can have drastic 
consequences (e.g., aircraft, vehicle, medical technology) require well-planned 
maintenance. 

In any case, it is necessary to find an optimum between the costs of preventive 
maintenance and the costs of machine breakdowns with the help of a suitable 
strategy.20 

The following statements quotes are intended to illustrate the importance of 
maintenance costs: 

“In typical manufacturing companies, maintenance costs are between 15 and 40 
percent of total production costs.”21 

 
16 Matyas 2016, p. 27. 
17 cf. Matyas 2016, p. 27. 
18 cf. Ibid., p. 32. 
19 cf. Xu et al. 2020, p. 1. 
20 cf. Matyas 2016, p. 28. 
21 cf. uit het Broek et al. 2021, p. 1. 
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“Around 140 billion euros are spent annually by German companies on the 
maintenance of machinery and equipment, experts estimate.”22 

Maintenance costs 

A lack of maintenance means high unplanned maintenance costs, whereas excessive 
maintenance means excessively high planned maintenance costs. The model, 
according to Hahn and Lassmann (1993), illustrates this relationship: 

One can split the total maintenance costs (𝐾𝐼) into planned maintenance costs (𝐾𝑉𝐼) 
and unplanned maintenance costs (𝐾𝑆). These include planned costs for machine 
downtime, inspection, investment and repair, and unplanned costs for machine 
downtime, machine failure (and their consequences), and repair. Also, not directly 
quantifiable cost factors (adherence to schedules, maintenance of product quality, risk 
reduction,...) should be considered.23 It is evident that with more frequent maintenance, 
planned costs increase, and unplanned costs decrease. If we denote the intensity of 
maintenance activities by (n), then (𝐾𝐼)=( 𝐾𝑉𝐼)+( 𝐾𝑆) for the total maintenance costs (𝐾𝐼) 
results in a higher-order curve with a global minimum. 

 

Figure 4: Planned and unplanned maintenance costs24 

These relationships seem trivial. However, what is not trivial is whether one is currently 
“to the left or the right” of this minimum since the costs of a lack of maintenance are 
often not realized until years later. The exact correlation between maintenance activity 

 
22 Matyas 2016, p. 28. 
23 cf. Ibid., p. 32. 
24 cf. Hahn and Lassmann 1993, p. 353. 
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and improved machine life would have to be given to make this statement accurately.25 
However, this is not the case in a practical application. 

Measures 

The following measures can be taken to maintain the functional condition: 

Service Has the goal of maintaining the target condition (cleaning, adjusting, 
calibrating). The main objective is to maintain the wear margin.26 

Inspection Includes checking for wear, corrosion, leakage points, loosened 
connections, and periodic or continuous measurement and evaluation, 
as well as any other activities that determine and evaluate the 
equipment’s current condition and determine follow-up steps. 

Overhaul Process of making components and machine parts accessible in order 
to replace them if necessary. 

Repair Modifies a component so that it restores the 
functional state. The same level as before a failure 
is restored. Improvements are excluded from this.27 

Improvements Combines technical changes with administrative 
changes to the system or component, aiming for 
assured function, but does not change the function. 

 

Table 2: Measures of maintenance  

The German Institute for standardization provides a similar structure of maintenance 
measures: 

 

Figure 5: Measures of maintenance28 

 
25 cf. Matyas 2016, p. 49. 
26 cf. Bertsche 2004, pp. 338–339. 
27 cf. DIN31051 2018, p. 5. 
28 cf. Ibid., p. 4. 
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2.1.2 Maintenance strategies 
„Maintenance strategies are rules that specify at which times which actions are to be 
performed on which units or components. The task is to make the right decisions in the 
conflicting areas of the economy, safety, and availability in order to minimize costs and 
maximize machine availability.“29 

Various definitions of maintenance strategies can be found in the literature. In the 
following section, the maintenance strategies, according to Matyas (2016), are 
presented, and reference is made to other standard terms in the relevant literature: 

Reactive 
maintenance 
(corrective 
maintenance) 

The machines are operated until damage occurs and maintenance 
takes place in response to a defect. The consequences associated 
with the damage are therefore accepted. However, since every 
shutdown is unexpected, no planned measures can be taken for 
maintenance activities, which results in a lengthy repair time.  
However, since maintenance is only performed in the fault 
condition, maintenance cannot be scheduled “earlier than 
necessary,” which allows for a maximum maintenance interval. 
This strategy only makes sense in exceptional cases. For example, 
it is suitable for small, non-critical units and a low probability of 
failure. 

Preventive 
maintenance  
(time-based, 
periodic 
maintenance)  

In time-controlled periodic maintenance, machines are maintained 
preventively at a particular time interval, regardless of their 
condition. In this case, an optimal maintenance interval must be 
found to prevent failures and, at the same time, to not perform 
maintenance activities “earlier than necessary.” Without being able 
to infer the machine’s condition, an exact determination of an 
optimal interval is only possible to a limited extent or not at all, 
which is why a good failure safety and good utilization of the wear 
margin cannot be realized simultaneously with this strategy. This 
strategy is a common maintenance method and is useful when 
safety or environmental impacts are possible, or the machine’s 
approximate life is known. 
 

Condition-
based 
maintenance 

Condition-based maintenance offers a solution to the problem of 
maintenance interval optimization in time-controlled periodic 
maintenance. With proper monitoring and diagnostic systems, 
information about the current machine condition can be obtained, 
enabling more targeted maintenance activities to make the best 
possible use of the machine’s wear stock. 

Predictive 
maintenance 

Predictive maintenance extends condition-based maintenance by 
data analytics methods and incorporates other data sources 
(environmental data, historical data, third party data) to provide a 
more accurate condition determination and a forecast for the 
machine’s remaining useful life. 

Table 3: Maintenance strategies30 

 
29 Matyas 2016, p. 119. 
30 cf. Ibid., pp. 120–124. 
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Table 4 provides an overview of similar terms on maintenance strategies used in the 
literature: 

R2F – run-to-failure Equals reactive/corrective maintenance 
PvM – preventive maintenance Equals time-based and periodic maintenance 
PdM – predictive maintenance In the literature, there is often no precise 

distinction between a condition-based and a 
predictive maintenance strategy (since 
condition monitoring is a prerequisite for 
predictive maintenance). The terms condition 
monitoring (CM) or condition-based monitoring 
(CbM) are often used to describe condition-
based maintenance. 

Table 4: Maintenance strategies31 32 33 

The progress on maintenance strategies by utilizing data from condition monitoring 
systems is often referred to as smart maintenance or maintenance 4.0.  

2.1.3 Condition Monitoring and predictive maintenance 
A prerequisite for predictive maintenance is the monitoring of a machine’s condition. 
This monitoring can take place continuously or at periodic intervals. “The increasing 
popularity of sensor technology for recording the condition of tools and machines is 
driven by the change in maintenance strategies.”34 The appropriate selection of 
sensors (and test equipment) is crucial to cover all relevant fault conditions while 
keeping the investment costs low and not generating irrelevant data. Since the prices 
for sensors and wireless systems have dropped considerably in the last years 
(tendency further decreasing), it is nowadays possible to find cost-effective solutions 
for many applications.  

„Condition-based maintenance is based on the assumption that most machine failures 
do not occur suddenly but develop over a period of time and are announced by specific 
warning signals before they occur. These signals are called potential failures. They 
can be graphically represented in a so-called PF-curve. P is the point at which a 
potential fault is detected, and F is the failure time.“35 The PF-interval is defined as the 
time between potential failure and functional failure36 and therefore describes the 
available timeframe for generating proactive recommendations about maintenance 
actions. 

 
31 cf. Susto et al. 2012, p. 638. 
32 cf. Mobley 2002, pp. 3–6. 
33 cf. Susto et al. 2015, p. 812. 
34 Karner 2019, p. 24. 
35 Matyas 2016, p. 125. 
36 cf. Bousdekis et al. 2021, p. 2. 
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Figure 6: PF-curve37,38 

If we consider the condition as a health index between 100% and 0%, where 0% of the 
health index means machine failure, we can visualize the maintenance strategies in 
analogy to the PF-curve: 

 
37 cf. Matyas 2016, p. 125. 
38 cf. Bousdekis et al. 2021, p. 2. 
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Figure 7: Maintenance strategies on PF-curves39 

The time interval between the P and F points (Figure 6) is called PF-interval and 
indicates the advance warning time. A bigger interval means more time for corrective 
measures to prevent a failure occurrence. As the PF interval is usually unknown, 
condition monitoring aims to improve the early recognition of potential failures and 
thereby increase the PF interval.40  

Thus, once a potential failure is detected, there is a certain amount of time to perform 
maintenance activities (see M points in Figure 7) before the failure occurs. This period 
can last “from a few milliseconds to months or years.“41 The red and green intervals 
indicate corrective and preventive maintenance activities, respectively. For a reactive 
maintenance strategy, maintenance activities occur only after a failure has been 
recognized. In a preventive maintenance strategy, maintenance activities usually take 
place long before the machine’s condition is strongly deteriorated to ensure the 
prevention of machine failure and avoidance of corrective maintenance activities. 
Therefore, by utilizing condition data for condition-based or predictive maintenance, 

 
39 cf. Hoffmann et al. 2020, p. 2. 
40 cf. Matyas 2019, p. 129. 
41 cf. Matyas 2016, p. 125. 
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preventive maintenance tasks can be scheduled at a later point in time while still 
avoiding machine failure. 

The simplest possibility of condition-based maintenance would be to equip a machine 
with a single sensor and initiate a maintenance activity when a certain threshold is 
reached. Example: A spindle is equipped with a sensor for measuring the wear margin, 
and a tool change takes place at a defined level. 

The more complex the machine to be monitored, the more sensors can be effectively 
fitted to predict a specific fault condition. This quickly results in a massive amount of 
data, which, on the one hand, requires a sufficient infrastructure and, on the other 
hand, has to be processed. Therefore, the PF-curve can be modeled as a function that 
depends on many variables (some of which influence each other). 

As described, condition-based maintenance uses information that can be obtained 
directly from a condition monitoring system. However, depending on the problem’s type 
and complexity, this approach cannot always guarantee the required system reliability. 
Predictive maintenance requires processing and storing data of the monitored 
machine. Data analysis methods are used to predict fault conditions based on 
anomalies in the measurement data or by means of classification of known fault 
conditions. Thus, a machine-specific model is created, which analyzes current and 
historical data and provides conclusions about the remaining useful life (RUL). It should 
be noted that such a model can (and should) not only process the data of the condition 
monitoring system, but all possible influencing variables can be taken into account in 
the form of data. E.g., include expert knowledge, human experience data, and third-
party data. 

2.2 Production planning and control 
Scheduling and sequencing are subareas of the production planning and control area. 
Therefore, this chapter starts with a review of the history and the foundations of 
production planning and control. The main focus is on the relevance to condition-based 
scheduling and sequencing. 

2.2.1 History on production planning and control (PPC) 
The introduction of automation technology in the industry, referred to as the third 
industrial revolution, led to a massive reduction of routine production activities. Before 
this, attempts were made to separate simple physical routine activities from mental 
activities to increase productivity through easier learning and a higher degree of 
specialization. As these routine activities became automated to a higher degree, the 
complexity of humans’ work content increased. Also, the machine hours of the ever-
improving systems became more valuable, while the production halls’ complexity also 
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increased. Further development of production planning systems became inevitable. As 
a result, approaches for holistic production planning systems and approaches for lean 
production arose. “Concepts such as the Toyota production system (kanban and pull 
principle), just-in-time (JIT), and just-in-sequence (JIS), and later the holistic Aachner 
PPC model emerged.”42 Today, enterprise resource planning (ERP) and supply chain 
management (SCM) are well-established terms within production planning and control, 
supporting holistic cross-company approaches.43 

The focus of production planning and control has shifted from singular production 
plants to cross-company value chains in the last decades. However, while today the 
focus is still primarily on rigid and linear supply chains, the specific framework 
conditions of temporary production networks will gain more importance in the future. 
Current concepts and instruments of supply chain management mainly address the 
design, operation, and optimization of long-term value creation structures, such as 
those common in the automotive or consumer goods industries. Project-related 
cooperation in temporary production networks in mechanical and plant engineering 
poses challenges that are not adequately met by the current state of business research 
and operational information systems.44 

2.2.2 Foundations of production planning and control (PPC) 
Production planning and control (PPC) is the process of ensuring the availability of all 
resources at the right time, place, and quantities to ensure the progress of operation 
according to predetermined schedules at the minimum possible costs. Production 
planning and control still forms the core of every industrial company today and is an 
essential component of the production system.45 The core task of production planning 
and control is coordinating the competing orders under consideration of the 
subordinate production-economic target system.46 As it is inevitable that plans have to 
be adopted in some circumstances, PPC is a dynamic process. Some of the main 
objectives of PPC are minimizing idle times, minimizing inventory turnover, maximize 
product quality, and keeping inventory levels low.47 

Production planning is carried out based on customer orders or sales forecasts for the 
product types to be manufactured in the planning period and is therefore closely linked 
to sales planning. The result is determining the planned primary requirements, e.g., 
the finished products and spare parts to be sold on the market. Based on the 
production plan, the determination of requirements is carried out as part of quantity 

 
42 Karner 2019, p. 18. 
43 cf. Schuh and Stich 2012a, pp. 3–5. 
44 cf. Schuh and Stich 2012b, p. 61. 
45 cf. Schuh 2006, p. 26. 
46 cf. Vahrenkamp 2008, p. 196. 
47 cf. KIRAN 2019, pp. 1–2. 
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planning. This comprises the raw materials, vendor parts, and semi-finished products 
needed to produce the primary requirements. Quantity planning also includes the 
planning of order quantities, order dates, and order frequencies (optimum order 
quantity). While quantity planning can also be assigned to procurement or materials 
management, scheduling is closely related to process planning and is therefore 
strongly dependent on the organizational type of production (flow production, shop 
floor production, etc.). 

Production planning 

According to Kiran, production planning can be split into six basic functions:48 

1. Product planning 
2. Forecast planning 
3. Process planning 
4. Equipment planning 
5. Materials planning 
6. Production planning 

The first two focus on product design/development and forecasting demands. Process 
planning includes selecting the technology, processes, machines, and tools used. 
Equipment planning includes selecting equipment types, numbers, and maintenance 
plans, whereas material planning includes materials specifications & volumes and 
planning for inventory and store. Production planning focuses on machine loading, 
operations scheduling, and job sequencing. Implementing condition-based scheduling 
and sequencing will affect this function of the production planning process firsthand, 
as it aims to optimize operations scheduling and job sequencing. However, changes 
in the production planning function may also open the door to improvements in 
materials planning, equipment planning, and process planning. For example, the 
equipment planning process is affected due to the impact of condition-based 
scheduling on maintenance activities. 

Production control 

Production controlling must enable two views of production. From the order point of 
view, the focus is on lead time and adherence to delivery dates. From the resource 
point of view, the focus is on throughput or capacity utilization and inventories. Control 
consists of comparing actual and planned values based on key figures. More in-depth 
analyses are required if there are serious deviations. It is often a good idea to start by 
analyzing the throughput behavior of the orders. If this reveals an intolerable level of 

 
48 cf. KIRAN 2019, p. 5. 
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delivery capability or reliability, the causes can be uncovered by means of further 
analyses at the work system level.49  

According to Kiran, production control can be split into five basic functions:50  

1. To give directives so that the products can proceed without hindrance and 
interruptions. 

2. To deliver orders to the workforce so that the production can be carried out as 
planned. 

3. To make available necessary resources (machines, materials, workers, jigs 
and fixtures, tools,…) in the right time. 

4. To monitor the progress for ensuring the quality and quantity to be as per the 
specifications. 

5. To achieve all these at optimal cost. 
 
Challenges 

On the one hand, it is increasingly necessary to ensure not only resource planning in 
a narrow sense, but also complete order processing along the entire supply chain. On 
the other hand, maximum compatibility must be achieved with the system landscape 
of the network partners. 

Schuh and Stich (2012b) cite the poor organization of inter-firm order processing and 
weaknesses in the software systems used as one of the main challenges. The highly 
complex production network structures in mechanical and plant engineering often 
encounter interface problems in the software systems used. First of all, this concerns 
the multitude of different types of software used within an individual company. Practical 
experience shows that in order to process a specific customer order, software solutions 
from different providers as well as numerous proprietary solutions are often used within 
the departments of a single company.51 

Those challenges could be overcome by standardizing data models and defining 
reference processes for intercompany order processing in mechanical and plant 
engineering. A corresponding data standard would enable the integration of order 
processing, and a process standard would significantly increase the efficiency and 
transparency of order processing. This arises from the different levels of confidentiality 
in inter-company order processing, which inevitably characterize business 
relationships in temporary production networks. Data exchange and processes of inter-
company order processing must be differentiated according to the confidentiality level 
of a business relationship.52 

 
49 cf. Schuh and Stich 2012b, p. 24. 
50 cf. KIRAN 2019, p. 9. 
51 cf. Schuh and Stich 2012b, pp. 64–65. 
52 cf. Ibid., pp. 73–74. 
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2.2.3 Production scheduling 
Production scheduling and sequencing are subareas of the production planning and 
control area. Scheduling determines when an operation has to be performed in order 
to meet the desired delivery dates. It is a timetable for the use of resources and 
processes. Scheduling allocates resources, applying the limiting factors of time and 
cost. Starting and completion times are assigned to the operations to be performed. 
Therefore, production is systematically arranged by due dates and priorities.53 

“Scheduling is the most important function of production planning and control activity 
in manufacturing and engineering.”54  

Achieving inventory optimization under the focus of a logistics chain-oriented view 
requires the use of scheduling strategies in line with requirements. This means that 
corresponding storage and retrieval quantities and times, as well as minimum and 
safety stocks, must be harmonized, considering the structural setup of the logistics 
chain on the one hand and the item-specific requirements on the other.55 

Two basic strategies for manufacturing settings can be differentiated: Job shop and 
flow shop. A job shop environment is suitable for low-quantity, high-variety custom 
products that require unique setups, production sequences, and priorities. On the other 
hand, flow shop systems utilize mostly linearly designed production process structures 
to achieve a smooth, less interrupting production flow.56 

2.3 Prognostics and health management (PHM) 
„Three main approaches can be distinguished in the literature for failure prognosis: 
model-based fault prognosis, data-driven fault prognosis, and experience-based fault 
prognosis.”57 Experience-based fault prognosis is the simplest procedure of the three. 
It considers a relationship between observed situations and a history of failure data. 
The experience of domain experts and operators thereby is the primary source of 
information for deriving a model, mainly in the form of if-then rules. An obvious 
disadvantage of this method is the factor of human perception. The most used methods 
nowadays are data-driven. The ongoing technological advancements regarding 
sensors and tools for processing and computing data further drives the usage of data-
driven methods. A downside of data-driven approaches is that data quality is crucial 
for model performance. In fault prognosis, data points along with the degradation 
profile of the machine, especially in fault conditions, are often rarely available. Another 

 
53 cf. KIRAN 2019, pp. 321–322. 
54 Ibid., p. 321. 
55 cf. Schuh and Stich 2012b, p. 391. 
56 cf. Moghaddam 2020, p. 85. 
57 Djeziri et al. 2020, p. 1. 
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challenge is that the practical use of monitoring tools showed that the real degradation 
of a system might involve different profiles that can shift or variate abruptly.58 

The research area of prognostics and health management focuses on monitoring a 
machine’s or system’s condition in the actual operating environment in real-time and 
predict its future state based on up-to-date information. Thereby, predictive 
maintenance is the underlying maintenance strategy that utilizes the information 
acquired by techniques from prognostics and health management. The main tasks of 
prognostics are state estimation, state prediction, and remaining useful life (RUL) 
prediction. State estimation and prediction describe the estimation/prediction of the 
health or degradation state of the system based on historical data. In contrast, RUL 
prediction describes determining the time left before failure (or exceeding a set 
degradation threshold) occurs. Different operational conditions are an obstacle for 
PHM because they result in different states of sensor signals that need to be treated 
accordingly. Also, varying the operational condition can speed up machine 
deterioration and cause sudden signal changepoints and, therefore, high variance in 
raw sensor values. Another challenge for data-based RUL prediction is the scarcity of 
labeled failure data needed for incorporating supervised machine learning. 
Nevertheless, machine learning is commonly used in prognostics as supervised, semi-
supervised, and unsupervised machine learning.59 

Since machine learning can be successfully applied in the industry, publications in this 
field have ever increased. Also, “the trend has been recently fueled by many 
government initiatives, like Industry 4.0 (Germany), Smart Factory (South Korea), and 
Smart Manufacturing (USA), calling for a radical change in the manufacturing 
paradigm.”60 

2.3.1 Data mining (DM) and knowledge discovery in databases 
(KDD) 

The KDD process includes the six phases of selection, preprocessing, transformation, 
data mining, interpretation, and evaluation. The CRISP-DM (Cross Industry Standard 
Process for Data Mining) comprises the six phases of domain understanding, data 
understanding, data preparation, modeling, evaluation, and deployment.61 

Preprocessing 

Data preprocessing is a fundamental step in data analysis. Since much low-quality 
information is available in various data sources and the Internet, many organizations 

 
58 cf. Djeziri et al. 2020, pp. 1–2. 
59 cf. Zhai et al. 2021, p. 2. 
60 Bertolini et al. 2021, p. 2. 
61 cf. Runkler T. A. 2015, p. 3. 
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or companies are interested in putting this data into a cleansed form and thus profit 
from it. This goal creates the need to target raw data cleansing with data analytics. In 
practice, it has been found that data cleansing and pre-processing accounts for about 
80% of the total effort in the data engineering process.62 

 

3 aspects for the importance of data preprocessing63 

1. Data from real-world applications can be incomplete, noisy, and inconsistent, which 
can obscure meaningful patterns. This is caused by: 

• Incomplete data: Missing attribute values, Missing attributes of interest, or 
contains only aggregated data. 

• Noisy data: Contain errors and outliers. 
• Inconsistent data: Contain discrepancies in the code or the name. 

2. Data preprocessing generates a smaller and more refined data set than the original 
one, which can significantly improve the efficiency of data mining. This process 
includes: 

• Select relevant data: Attribute selection, remove anomalies and eliminate 
duplicate data. 

• Reduce data: Sampling or sample selection. 

3. Data preparation generates qualitative data, which leads to patterns. For example, 
one can: 

• Improve incomplete data: Fill in missing values, reduce ambiguities. 
• Clean data: Correct errors, remove outliers. 
• Resolve data conflicts: Using expertise or domain expert knowledge to mitigate 

discrepancies. 

From the above three observations, we can derive that data preparation, in general, is 
a comprehensive task. While data mining technologies support data analysis 
applications, it must be possible to prepare qualitative data from the raw data to enable 
efficient and qualitative knowledge extraction from the given data.64 

 

Data Mining 

Data mining is the process of discovering interesting knowledge from large amounts 
of data stored in databases or other information repositories.65 

 
62 cf. Zhang S., Zhang C., Yang Q. 2003, p. 375. 
63 cf. Ibid., p. 377. 
64 cf. Ibid., p. 377. 
65 cf. Han J., Kamber M., Pei J 2012, p. 1. 
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Cross-Industry Standard Process for Data Mining (CRISP-DM)66 

A widely used procedure model for data mining processes is the Cross-Industry 
Standard Process for Data Mining (CRISP-DM), which was developed in 1996 as part 
of an EU-funded project. 

 

Figure 8: Cross-industry standard for data mining (CRISP-DM)67 

Business understanding: Before applying data mining, it is necessary to understand 
the goals of this implementation. The business goals and requirements are examined 
to determine if data mining can be applied to achieve them. It is determined what data 
can be collected to create an implementable model. 

Data understanding: An initial data set is defined and examined to determine if it is 
suitable for subsequent processes. If the data quality is poor, it may be necessary to 
collect new data using more stringent criteria. It is also possible that new insights from 
the data will lead to a new perspective on the data mining goals of the use case at 
hand. Thus, a renewed domain understanding phase may be triggered. 

Data Preparation: This phase involves preprocessing the raw data into a form from 
which machine learning algorithms can create a model. This data preprocessing may 

 
66 cf. Chapman 2000, pp. 13–34. 
67 cf. Ibid, p. 13. 
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also include model creation, as many preprocessing tools create a model for 
(automatic) data transformation. 

Modeling: Creating a data mining model, possibly by application of machine learning 
algorithms. Data preparation and modeling go hand in hand. New insights from a 
created model can influence decisions around data preparation process, which is why 
an iterative cycle of these two phases is almost always practical. 

Evaluation: The importance of this phase cannot be emphasized strongly enough. It 
must be determined whether the structural description derived from the data contains 
any prognostic added value at all, which is not necessarily the case. The model may 
just as well reflect only distorted or incorrect features/regularities from the data. 
Suppose it is determined in this step that the model is poor/useless. In that case, it 
may be necessary to revisit the entire project and define more appropriate goals during 
domain understanding or to enable the acquisition of more valuable data.  

Deployment: Once the model has sufficient accuracy, it must be implemented in 
practice. Typically, it must be integrated into a more extensive software system. Here 
it depends on the detailed implementation of the model and how it can be transferred 
into the software system (possibly in another programming language). 

2.3.2 Machine Learning (ML) 
Machine learning is one of the oldest and most important sub-disciplines of artificial 
intelligence, but it can also be seen (at least when stochastic processes play a role in 
it) as a further development of classical statistical decision and classification methods. 
This is because machine learning, unlike most statistical methods, generally does not 
require any particular assumptions about the nature of the statistical distributions of 
the underlying data.68 

There are two types of learning:  

1. Supervised learning, 

where the classifications of the training data set are already known. The learning 
algorithm can therefore check its own decisions. The training data set contains input 
variables x and output variables y. The goal of the learning procedure is to 
approximate a function f -which can calculate the output variables from the input 
variables [y=f(x)]- as accurately as possible from the data set. The predicted output 
variables can be compared with the actual ones in order to improve the model 
iteratively. 

2. Unsupervised learning,  

 
68 cf. Wysotzki F. 1997, p. 526. 
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where the classifications of the training data set are unknown, and the number of 
classes to be learned are not necessarily known in advance. Thus, input variables x 
are given without associated output variables y. It is tried to assign groups of similar 
data points to new classes. 

In practice, problems often arise where a mixture of these two types of learning is 
required. This is called semi-supervised machine learning. In this case, a large data 
set is available, which for the most part, does not contain any output variables.  

Selection of algorithms 

Choosing a suitable machine learning algorithm can seem complicated. There are 
dozens of supervised and unsupervised machine learning algorithms, with each 
algorithm taking a different approach to learning. There is no best method or one-for-
all solution. Finding the correct algorithm happens through systematic trial and error. 
Even highly experienced data analysts cannot predict (without trial and error) which 
algorithm will produce the best results. Highly flexible models tend to over-interpret the 
data ("overfitting") so that even slight variations are modeled that could just be 
measurement noise. Simpler models are easier to interpret but may have lower 
accuracy. Therefore, choosing a suitable algorithm means making a trade-off between 
different advantages such as model speed, accuracy, and complexity. Systematic trial 
and error is part of machine learning - if one approach does not work, try another.69 

 

We can foremost distinguish between classification problems, regression problems, 
and clustering problems: 

1. Regression:  

To predict a continuous value. Example: 

• Based on the size of a house, predict its value. 

2. Classification:  

Predict a discrete value or assign it to a finite number of classes. Examples: 

• Classify whether a picture contains a dog or a cat. 
• Predict whether an e-mail is a spam or not. 

3. Clustering:  

 
69 see https://de.mathworks.com/help/stats/machine-learning-in-matlab.html. 
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Formation of groups (clusters) based on similarities in the input data. It differs from 
classification primarily in that the classes themselves are not known in advance and 
are therefore formed in the learning process. 

1) Regression70 

Regression analysis estimates functional dependencies between characteristics to 
understand and target relationships. The following three are examples for regressions: 

• Linear regression: Linear regression provides linear functional relationships 
between characteristics. The approximation x(i) of a characteristic by a linear 
function f of another characteristic x(j) can be formulated as: 𝒙𝒌(𝒊) ≈ 𝒂 ∗ 𝒙𝒌(𝒋) + 𝒃 

Equation 1: Linear regression 

Linear regression estimates the parameters a and b of this linear function from 
X by minimizing a suitable error function. 

• Linear regression with nonlinear substitution: If the nonlinear functions are 
given for nonlinear regression models, they can be determined efficiently with 
linear regression methods. For example, if a quadratic relationship is known, its 
square can be considered instead of considering a feature itself, and the 
associated coefficient can be determined using linear regression. 

• Robust regression: The quadratic error function of ordinary linear regression 
is very sensitive to outliers since they strongly influence the error. Robust error 
functions try to reduce the influence of outliers 

2) Classification71 

„Classification is a supervised learning method that uses labeled data to assign objects 
to classes.“72 

Data classification is a process that consists of two steps: Learning (where the 
classification model is constructed) and classifying (where the model is used to predict 
the classes of existing data).73 

In order to evaluate a classifier, its classification quality must be determined. For this 
purpose, the possible correct and incorrect statements have to be distinguished. In the 
case of two classes, these can be described as:  

• TP – True Positive: Positive output correctly predicted 

 
70 cf. Runkler T. A. 2015, pp. 67–69. 
71 cf. Ibid., pp. 89–106. 
72 Ibid., p. 89. 
73 cf. Han J., Kamber M., Pei J 2012, p. 328. 
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• TN – True Negative: Negative output correctly predicted 
• FP – False Positive: Negative output incorrectly predicted 
• FN – False Negative: Positive output incorrectly predicted 

Therefore, two or more classification criteria are usually considered when evaluating 
classifiers. 

One way of doing this is the receiver operating characteristic (ROC) curve. This is a 
scatter plot of true-positive rate (TPR) and false-positive rate (FPR). [y-TPR; x- FPR] 
The classifier's quality can be represented as a point in the ROC diagram. Thus, the 
more one approaches the upper-left corner in the ROC diagram, the better the 
classifier's goodness (TPR →1, FOR →0). Another possibility is offered by the 
accuracy-hit rate diagram (PR - Precision-Recall), a scatter plot of accuracy (Positive 
Predictive Value) TP/P, and hit rate (True Positive Rate). A good classifier maintains 
high accuracy even for increasing hit rate. The intersection of the PR curve with the 
main diagonal is called the Precision-Recall Breakeven Point. This value should be as 
high as possible. A test data set (independent of the training data set) is used to 
estimate the learned classification accuracy. The reason for this is a possible 
"overfitting" of the training data set, which means that during the learning process, 
certain anomalies from the training data set can also be included, which are not present 
in the general data set.74 

The following three are examples for classifications: 

• LDA – Linear Discriminant Analysis 
Linear discriminant analysis is a method to distinguish between two or more 
sample groups. For this purpose, a discriminant line is calculated (can also be 
a plane or hyperplane), which results in the best possible separation of the 
classes present. One can consider the discriminant line as a boundary between 
the classes, where it is written in normal form as follows: 𝒘 ∗ 𝒙𝑇 + 𝑏 = 0, 𝒘 ∈ ℝ𝑝, 𝑏 ∈ ℝ 

Equation 2: Linear discriminant analysis 

 
74 cf. Runkler T. A. 2015, pp. 90–93. 
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Figure 9: Linear discriminant analysis 

For a given data set, linear discriminant analysis determines the parameters w 
and b of a discriminant line such that a given criterion is optimized. 

• SVM – Support Vector Machine 
As in linear discriminant analysis, linear class boundaries are also used in the 
support vector machine. However, it is required that the data keep a minimum 
distance b>0 from the class boundary. Accordingly, for two classes, it is required 
that: 𝑤 ∗ 𝑥𝑘𝑇 + 𝑏 ≥ +1  𝑓𝑎𝑙𝑙𝑠  𝑦𝑘 = 1 𝑤 ∗ 𝑥𝑘𝑇 + 𝑏 ≤ −1  𝑓𝑎𝑙𝑙𝑠  𝑦𝑘 = 2 

Equation 3: Support vector machine for two classes 

If several solutions exist for these boundary conditions, the SVM searches for 
the solution with minimum 𝑱 = ‖𝒘‖𝟐 

Equation 4: SVM maximization of distance 

which corresponds to a maximization of the distance b. 
Using the so-called "kernel trick," data with nonlinear bounds can be 
transformed into a higher-order with approximately linear bounds, allowing 
support vector machines to find nonlinear class boundaries as well. 

• NN – Nearest Neighbor 
A simple classification method is the nearest neighbor classifier. This assigns 
an object with a given feature vector to the class of the training object with the 
most similar feature vector. Thus, for a given feature vector x, the nearest 
neighbor classifier returns class yk, if ‖𝑥 − 𝑥𝑘‖ = 𝑚𝑖𝑛𝑗=1,…,𝑛‖𝑥 − 𝑥𝑗‖ ,         ‖. ‖ … 𝑎𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 

Equation 5: Nearest neighbor classifier 

In cases of multiple minima, a random selection can be made from these. 
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The nearest neighbor classifier is poorly suited near noisy data or overlapping 
class boundaries. Here, the nearest-k-neighbor classifier (k-NN) provides better 
results. This considers the k nearest neighbors instead of just the nearest 
neighbor and returns their most frequent class. For two classes, a unique class 
assignment can be ensured if k is odd. 

3) Clustering 

Clustering is an unsupervised learning procedure in which unlabeled data are assigned 
to clusters. If the data to be clustered is also assigned to classes, then the obtained 
cluster memberships may correspond to the class memberships. However, cluster and 
class memberships can also be different.75 

An example for clustering methods would be the k-means algorithm, where the data 
set is divided into (a predefined number of)  k partitions such that the sum of squared 
deviations from the cluster centroids is minimal. 

 
75 cf. Runkler T. A. 2015, p. 109. 
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3 Practical application of condition data in the 
context of production planning: State-of-the-Art 

3.1 Planning a systematic literature review 
The state-of-the-art is analyzed by conducting a systematic literature review of 
research regarding the integration of condition monitoring in production planning. The 
research methodology is designed along the lines of Tranfield et al.76, as described in 
chapter 4.3. The state-of-the-art analysis covers the execution and the results of the 
systematic literature, as discussed below. 

The systematic literature review aims to answer the research question Q1 and provide 
the necessary knowledge for answering research questions Q2 and Q3. 

3.2 Conducting the review 
The systematic literature review was conducted in the Scopus77 database, which is 
one of the most extensive databases for scientific publications worldwide. 

3.2.1 Keywords and search terms 
The goal for the keywords is to identify publications that combine content about 
production planning and control (ID “P”) and condition monitoring (ID “C”). A first 
research on how many results potential keywords deliver showed that including the 
terms “production planning” and “production control” as such would lead to more 
results than the scope of this work allows for analyzing. Also, in a previous systematic 
literature review, the combination of “production planning and control” or “PPC” with 
one of the C keywords delivered relatively few relevant results.78 Therefore, the 
keywords on production planning are chosen with more detail towards scheduling. 

 
76 Tranfield et al. 2003. 
77 https://scopus.com. 
78 cf. Karner 2019, p. 169. 
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ID Keywords 
P1 „Detailed production planning“ 
P2 „Scheduling and sequencing“ 
P3 „Production scheduling“ 
P4 „Production sequencing“ 
P5 “Job-shop scheduling” 
C1 “Condition” AND “maintenance” 
C2 “Condition-based monitoring” OR “condition based 

monitoring” OR “condition monitoring” 
C3 “Predictive maintenance” 
C4 “Machine condition” 
C5 “Tool condition” 

Table 5: Keywords for literature review 

As there are five different keywords for each category, there are 25 possible ways to 
combine P keywords with C keywords. However, the Scopus database allows for 
writing complex search queries. Therefore, all the publications that can be found by 
searching for the 25 combinations can be found with one longer search query as well. 
The advantage of this procedure is that there are no duplicate results that need to be 
sorted out. 

Search query: 

("condition monitoring" OR "predictive maintenance" OR "condition based 
monitoring" OR "condition-based monitoring" OR (condition AND maintenance) 
OR "machine condition" OR "tool condition") AND ("detailed production 
planning" OR "production scheduling" OR "production sequencing" OR 
"scheduling and sequencing" OR "job-shop scheduling") 

Looking at the results, we see a substantial increase in the number of publications on 
the topic in recent years. Notably, the search was conducted in mid-2021. Therefore, 
the following graph allows for predicting an even stronger increase by the end of 2021: 

 

Figure 10: Search query results by June 2021 
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3.2.2 Classification of publications 
The total number of search results is 1684. In the work of Karner79, a systematic 
literature review with similar search terms was performed for publications between the 
years 2000 and mid-2018. The results of that work and its sources have been analyzed 
according to the topic at hand. Therefore, the timeframe of the literature review 
conducted in this thesis extends the work of Karner and emphasizes literature 
published in 2018 and later. After limiting the results to the publication year 2018 and 
newer, and only publications in English and German language, the remaining results 
include 878 publications.  

The following criteria were applied to the publications: 

• Inclusion criteria: Considers condition data for PPC or maintenance or deals 
with integrative consideration of machine condition, PPC, and maintenance. 

• Exclusion criteria: Not a scientific article or published before 2018. 

Therefore, these 878 publications were analyzed by their title and filtered to a number 
of 119 documents. Sixty-one of those did not meet the inclusion criteria at first analysis. 
For the literature review discussion, the remaining 58 publications were reduced to a 
number of 40 by considering the relevance to research questions and novelty of 
content. 

Those publications were classified by the following categories, referencing the 
previous literature review of Karner:80 

1. Type of publication: 

• Review: Publications that focus on analysis and discussion of already existing 
literature 

• Concept: Publications that focus on a conceptual presentation of approaches, 
models, and methods for integrating condition data, production planning, and 
maintenance. 

• Case-study: Publications that focus on applying existing approaches, models, 
methods for the integration of condition data, production planning, and 
maintenance. 

2. Type of solution: 

• Approach: A not very concrete idea for solving the problem. Under this category 
are classified publications that identify the problem and present conceptual 
ideas for its solution. 

 
79 Karner 2019. 
80 cf. Ibid., pp. 165–172. 
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• Model: Publications that present models for application-specific or general 
solutions 

• Method: Publications that propose a new method for the utilization of a particular 
model. 

3. Scope 

• Specific: Publications in this category involve the development of solutions for 
specific use cases. Thereby, it specifically refers to the initial problem definition. 

• General: Solutions are considered general if they can be applied to similar 
problems with little effort. 

4. Focus: 

• Condition Monitoring: The publication focuses on CM. 
• Maintenance: The publication focuses on maintenance. 
• PPC: The publication focuses on production planning and control. 
• CM & maintenance: The publication focuses on condition monitoring and its 

integration into maintenance 
• Maintenance & PPC: The publication focuses on maintenance and its 

integration in production planning and control. 

5. Maintenance strategy: 

• Reactive: The publication considers maintenance activities only due to machine 
failure. 

• Preventive: The publication considers time-based, simple models to carry out 
maintenance preventively. 

• Predictive: The publication considers a maintenance strategy that utilizes 
prediction models for predicting machine or equipment failure. 

• Prescriptive: The publications consider not only predicting failure times, but also 
derives plans or suggestions from the gained information. 

6. Production planning 

• Production planning: This category includes those publications that incorporate 
CM systems into long-term production planning. 

• Detailed production planning: Publications in this category deal with the 
integration of CM into detailed production planning (short-term). 

• Production control: This category includes those publications that integrate CM 
as part of production control. 

7. Condition monitoring: 
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• None: Condition monitoring is not described explicitly. Machine condition is 
considered as given or derived from mathematical models. 

• Offline: The machine condition evaluation is not conducted continuously, for 
example, within the scope of inspections. 

• Online: The evaluation of the machine condition happens continuously. 

8. Evaluation: 

• None: The proposed solution is not validated within the publication. 
• Theoretical: The proposed solution is evaluated by utilizing theoretical methods 

(e.g., simulation) 
• Practical: The proposed solution is evaluated by conducting a case study.  

9. Algorithm:  

 The proposed solution utilizes algorithms according to the following table: 

Abbreviation Algorithm 
SA Simulated annealing 
MP Markov Process 
RA R-Algorithm 
RL Reinforcement Learning 
H Heuristic 
SW swarm algorithm 
TLB teaching-learning-based algorithm 
NDBM nonlinear drifted Brownian motion 
PA pareto algorithm 
BHA black hole algorithm 
HS harmony search 
TS tabu search 

Table 6: Abbreviations of algorithms 

Table 7 shows the classification of publications analyzed in this literature review: 
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3.2.3 Discussion of literature review 
The world experiences a shift in industrial maintenance: By the increasing popularity 
of machine learning algorithms and tools for deploying them, preventive maintenance 
is being replaced by predictive maintenance more and more often, as the required 
technology becomes easier accessible.81 Due to the emergence of cyber-physical 
production systems Ansari et al. go one step further by defining prescriptive 
maintenance.82 However, predictive or prescriptive maintenance does not always have 
to make economic sense. This can depend on several factors, such as the degree of 
complexity of the machine, the operating mode, and whether it is a series device. Either 
way, integrating a predictive maintenance system into a production system remains a 
complex task. In practice, some potential for optimization is lost because production 
planning is not linked to the machine’s condition.83 In the literature review conducted 
by Karner, over 60% of the analyzed publications that discuss integrating condition 
data into production planning are based on preventive maintenance, where condition 
monitoring is used as thresholds for triggering alarms for preventive maintenance 
actions.84 This indicates a lack of connection between predictive maintenance and 
production planning and control.  

Sharifi and Taghipour also state that production scheduling and maintenance planning 
are interdependent, but this dependency is ignored in most research work.85 They 
propose a single-machine multi-failure mode production environment regarding 
machine deterioration for joint optimization of production sequences and repair 
strategies. Similar to using health indices, they consider discrete deterioration states 
that influence the job’s processing time. They aim to optimize job sequence and state-
dependent deterioration thresholds.86 

Ait-El-Cadi et al propose one of few publications focusing on joint optimization of 
maintenance policy, production policy, and quality policy but neglect the integration of 
condition monitoring.87,88 Zhang et al. present a model for minimizing makespan and 
maintenance costs in assembly permutation flow shop scheduling by considering an 
age-based preventive maintenance strategy.89 Therefore, they consider probability-
based preventive and corrective maintenance activities and neglect the usage of actual 
condition data. In their recent literature review, Bousdekis et al. as well identified 

 
81 cf. acatech 2015, p. 7. 
82 cf. Ansari et al. 2019, p. 482. 
83 cf. Zhai and Reinhart 2018, p. 299. 
84 cf. Karner 2019, p. 40. 
85 cf. Sharifi and Taghipour 2021, p. 1. 
86 cf. Ibid., p. 5. 
87 cf. Ait-El-Cadi et al. 2021, p. 4. 
88 cf. Ibid., p. 19. 
89 cf. Zhang et al. 2021b, p. 552. 
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research gaps in taking into account the current level of degradation and utilizing real-
time data90. 

Yang et al. address a single-machine multi-product production problem. They criticize 
that the interdependent production scheduling and maintenance problems are primarily 
approached by assuming fixed preventive maintenance activities according to the plan 
created in advance. They, therefore, model machine condition as a function of usage 
time but dispense with integrating a data-driven approach for machine condition. They 
identified two categories for integrating maintenance and production scheduling 
(considering deterioration effects) discussed in the literature: Models that represent 
deterioration effects by usage time and models that use certain probability distributions 
for classifying the condition within a discrete multi-state deterioration process.91 

Uit het Broek et al. describe their approach to be the first to combine the isolatedly 
well-studied policies of condition-based maintenance and condition-based production 
into condition-based maintenance and production policy.92 They utilize condition 
information for both scheduling maintenance and adapting production rate but do not 
consider production scheduling within their approach. Notably, they also discuss 
various maintenance strategies and production planning parameters according to the 
impact on costs/revenue.93 Different situations and their corresponding effectiveness 
for condition-based monitoring, condition-based production, and a combination of both 
are highlighted. 

Zhai et al. aim to close the gap between research and industry considering predictive 
maintenance by proposing a holistic framework that directly aims to integrate PdM-
models with production scheduling. They propose a framework for predictive 
maintenance-integrated production scheduling by operation-specific health 
prognostics. The framework utilizes sensor data, failure events, historical production 
data, and future production orders as input. It considers data preparation, a health 
indicator model, and PdM integrated production scheduling as main modules to create 
a production and maintenance plan.94  

 
90 cf. Bousdekis et al. 2021, pp. 6–7. 
91 cf. Yang et al. 2021, pp. 1–2. 
92 cf. uit het Broek et al. 2021, p. 9. 
93 cf. Ibid., pp. 7–8. 
94 cf. Zhai et al. 2021, p. 4. 
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Figure 11: Framework for predictive maintenance-integrated production scheduling95 

The publication focuses on state prediction and state estimation instead of RUL 
predictions because a high amount of failure data (required for creating RUL labels for 
supervised prediction techniques) is often not available in practice.96 

Moghaddam presents a repairable multi-tasking manufacturing machine problem with 
multiple components and criticizes that in the literature, the relationship between 
maintenance and production scheduling is commonly described as a single machine 
problem with an explicit mathematical model representing machine degradation.97 
Even though, „recent technological complexity of modern manufacturing machines has 
increased the level of inherent interdependencies between production plans and 
maintenance operations systems.”98 

Branda et al. use metaheuristics for integrating maintenance activities into a flow shop 
scheduling problem. They state that researchers assume preventive maintenance 
without unexpected failures or random machine failures in the literature on this 
problem. They also refer to the problem of maintenance planning commonly not being 
integrated with production scheduling activities.99 

Therefore, the authors Branda et al. provide a new solution to the flow shop scheduling 
problem by integrating preventive maintenance and machine failure. They thereby do 

 
95 cf. Zhai et al. 2021, p. 4. 
96 cf. Ibid., p. 2. 
97 cf. Moghaddam 2020, p. 84. 
98 Ibid., p. 83. 
99 cf. Branda et al. 2021, p. 1. 
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not make use of condition data, as machine failure is modelled stochastically to be 
subject to a Weibull distribution.100 

Hajej et al. introduce an approach for the simultaneous integration of production, 
maintenance, and quality, which they state a minimal number of studies yet deal with. 
They consider the influences of the production rate on machine condition and quality 
deterioration but reduce the complexity by assuming i) quality inspections only at the 
end of manufacturing operations and ii) negligible durations of preventive and 
corrective maintenance activities.101  

Kolus et al. propose a mathematical model that integrates production scheduling and 
predictive maintenance planning or a single-machine problem. They try to minimize 
tardiness costs by defining an optimal production and PM schedule simultaneously.102 
Like most other publications on integrating production and maintenance scheduling, 
they assume stochastic machine failure. The failures follow a Weibull distribution with 
a shape parameter greater one, indicating that the failure rate rises over time. 

The operating setting of a machine is sometimes referred to as operating condition 
(OC) in the literature. Hu et al. propose a two-machine flow shop model taking into 
account job-dependent OC. They state to be the first to consider OC in the joint 
optimization of job scheduling and PM planning and demonstrate the necessity of 
considering OC in a numerical study. Maintenance activities are considered imperfect 
maintenance (IM), where the state of the machine is restored to a state between good-
as-new and bad-as-old, representing the effect of maintenance on a real machine.103 
In many publications on prediction and maintenance scheduling, a simplifying 
assumption is that maintenance cannot be conducted while a machine operates but 
only when a job is finished. Hu et al. consider a use case of a milling machine and a 
grinding machine, where jobs can be continued at the same stage they were 
interrupted. They, therefore, assume resumable jobs in their model.104 

One of few publications that consider integrated production and maintenance 
scheduling utilizing condition data from online condition monitoring is the work of 
Ghaleb et al. Due to the recent “advent of information technology and industrial 
informatics in manufacturing (e.g., Industry 4.0), information about the state of the 
machine and its degradation level have become instantly available.”105 Therefore they 
consider such a data source, whereby their results show an increase in average 
savings by 35% if precise information about the state of the machine and its 

 
100 cf. Branda et al. 2021, p. 10. 
101 cf. Hajej et al. 2021, p. 237. 
102 cf. Kolus et al. 2020, p. 926. 
103 cf. Hu et al. 2020, p. 232. 
104 cf. Ibid., pp. 232–233. 
105 Ghaleb et al. 2020, p. 2. 
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degradation level is available.106 They identified studies in the literature that discuss 
the integration of production and maintenance scheduling and put them into two 
categories: i) Models that represent the condition of the machine using its age and 
lifetime information, where failure times follow a particular probability distribution (e.g., 
Weibull distribution, which is used in several publications cited in this thesis) and ii) 
models that represent the condition of a machine as a discrete multi-state deterioration 
process, where transitions between a machine’s states follow a certain probability 
distribution.107 Ghaleb et al. consider m discrete deterioration states, where 
maintenance activities cause a better state, and a worse state occurs with a rising 
probability over time. Different types of maintenance are possible, so the state after a 
maintenance activity can improve by one or several states.108 The discrete states can 
be considered similar to methods from prognostics and health management, where 
machine condition is often categorized into discrete states as well. 

Another factor that increases complexity in production scheduling is re-scheduling. 
Takeda Berger et al., therefore, propose a conceptual model for predictive-reactive 
production scheduling. While their approach is only data-driven by considering 
inventory data but no condition data, the work still emphasizes the importance of 
predictive and reactive schedules in real applications.109 

Zhai et al. identified that many scheduling approaches exist for the job shop, a widely 
applied manufacturing process model. However, few have taken into account 
maintenance activities and current and future machine conditions. Integrating the job 
shop scheduling problem (JSSP) is vital for the success of predictive maintenance in 
the industry. They propose a novel conceptual framework for maintenance integrated 
production scheduling.110  

3.3 Summary of the literature review 
While condition monitoring and remaining useful life (RUL) predictions are well 
established in the literature and are on the rise for industrial applications, there is a 
further need for additional research regarding the interpretation and application of 
machine condition information in production scheduling processes. This research gap, 
for example, led to the formulation of the maintenance integrated job shop scheduling 
problem (MIJSSP).111 However, yet hardly any publications emphasize the MIJSSP or 
other, similarly derived problems.  

 
106 cf. Ghaleb et al. 2020, p. 2. 
107 cf. Ibid., p. 3. 
108 cf. Ibid., p. 5. 
109 cf. Takeda Berger et al. 2019, p. 1345. 
110 cf. Zhai et al. 2019, p. 1. 
111 cf. Ibid., p. 3. 
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Joint consideration of predictive maintenance and production planning is still rarely the 
case in today's literature. The majority of the publications thus analyzed preventive 
maintenance. Depending on the main area of the researchers, a clear focus on either 
i) maintenance or prognostics and health management or ii) production planning and 
control can also be identified.  

Publications that focus on the maintenance or prognostics and health management 
domain usually emphasize improving condition estimation for predictive maintenance. 
The technically complex part of such work is often in the area of data mining and the 
use of machine learning algorithms to make better predictions. If production planning 
processes are integrated, this usually results in simplifying assumptions, or reference 
is made in the outlook to further research possibilities. 

Publications that focus on the production planning and control domain usually 
emphasize production optimization problems, which are often solved with heuristics. 
There are approaches to include condition data of machines and equipment in 
production planning. However, the majority of them assumes condition information to 
be available or stochastically determined condition information, which, for example, 
assume a condition degradation based on probability over time. Some publications, 
however, also deal with the integration of actual condition data or refer to their 
necessity. If integration with maintenance strategies is considered, more simplifying 
assumptions are usually made on the maintenance part. Often only reactive or only 
preventive maintenance activities are considered, sometimes both. Consideration of 
predictive maintenance is largely neglected. 

The several different ways in which production systems can be implemented pose a 
particular challenge for generalizing concepts. An example that clearly shows this are 
the model assumptions made in the analyzed publications. As an example, the 
assumptions of Zhang et al. (2021) are given here, which imply an adaptation to a 
particular type of production system:112 

• All jobs are ready at zero time (typical for group production when demand is 
fixed) 

• Only one job can be processed at one time with no interruption, and PM can 
only be performed before or after processing one job 

• The machine can only process a job or perform PM at one time 
• The machine must be re-setup for processing jobs after PM 
• setup time for processing identical jobs ignored 

 
112 cf. Zhang et al. 2021a, p. 7. 
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Another vital assumption that must be made is about the effect of maintenance 
activities. The terms “as good as new”, “not as good as new”, and “as bad as old” are 
therefore commonly used in the literature.  

“As good as new” assumes that the machine or equipment condition is fully restored. 
Therefore, the health indicator of the observed component is set to its maximum again 
after maintenance is conducted. “Not as good as new” describes improving the 
machine or equipment condition, but not necessarily restoring the full health by 
conducting a maintenance activity. “As bad as old” is the assumption of restoring the 
same condition state of the machine or equipment as it was before a failure and is 
therefore used for certain corrective maintenance activities. For example, if a machine 
is in "2" state and a sudden error occurs, the corrective maintenance activity will restore 
it to "2" state. The majority of the analyzed models and methods utilize the assumption 
of “as good as new” for preventive (or predictive) maintenance activities. 

To our best knowledge, the first publication that integrates predictive maintenance and 
condition-based production scheduling into one model is the work by Zhai et al.113 that 
proposes a predictive maintenance integrated production scheduling (PdM-IPS) 
model. This model incorporates data of future production order and planned production 
sequences for an improved health indicator prediction. Their model that utilizes deep 
learning with three layers is validated on simulated data (NASA’s C-MAPSS turbofan 
engine datasets) and on CM data from flexible machining centers in a real industrial 
production environment114. Thereby they use clustering methods to be able to work 
with unlabeled data. This impedes the process of model creation. On the other hand, 
delivers results that are more likely implementable in real industry use cases because 
failure data for labeling is often nonexistent.  

The output of their proposed framework is a production schedule, which incorporates 
required maintenance actions. Like other scheduling applications, the plan can be 
optimized regarding several objectives, such as makespan, tardiness, costs and the 
predicted machine degradation. However, the paper focuses on the presented health 
model, which extracts an operation specific health indicator from condition monitoring 
data. For actual utilization of the proposed degradation model for predictive 
maintenance integrated production scheduling is referred to as an outlook for future 
publications.115 

In conclusion, it can be said that the integration of condition data in production 
scheduling has not yet been discussed extensively in the literature, although the 
potential was recognized some time ago. However, especially in the last few years, the 
topic came in sharper focus. Thus, integrating condition data into production 

 
113 Zhai et al. 2021. 
114 cf. Ibid., p. 13. 
115 cf. Ibid., p. 4. 
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scheduling is also developing into a more extensive research area after the paradigm 
of condition-based maintenance was substantially researched. 
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4 Applied research design methodology 

4.1 Design science 
Research in the Information Systems discipline can be categorized into behavioral 
science and design science. While behavioral science focuses on human or 
organizational behavior, design science seeks to extend human and organizational 
capabilities through innovation. Design science is a method to foster knowledge of a 
problem domain and its solution by building and applying a designed artifact.116 

The essence of design science is to deliver a process for finding profound solutions for 
scientifically or economically relevant problems. Therefore, the design science 
methodology can be structured into the following seven research guidelines:117 

1. Design an artifact: Building of a construct, model, method, or an instantiation 

By definition, the result of design science research is a purposeful artifact addressing 
organizational problems. Thereby, an artifact can be instances, constructs, models, or 
methods applied in the practical implementation of information systems. Human 
behavior and the organizational and social contexts of using the artifact are not 
considered within the artifact. The behavioral science part is considered 
interdependent and coequal with artifacts in business needs.118 

2. Problem relevance: Development of technology-based solutions to important and 
relevant business problems 

The second guideline focuses on developing and defining relevant problems. In the 
field of information systems, the research's objective is to acquire knowledge for 
enabling the development and implementation of technology-based solutions. The 
solutions thereby should be derived from essential yet unsolved business problems. 
Design science, therefore, focuses on developing innovative artifacts, allowing for a 
change in the occurring phenomena. On the other hand, behavioral science addresses 
the same issues by constructing theories explaining or predicting occurring 
phenomena. An example is technology acceptance, which can be described by 
behavioral theories. An approach from both the design and the behavioral science side 
can be required to address such issues.119 

3. Design evaluation: Evaluation of the design artifact by evaluation methods 

 
116 cf. Hevner et al. 2004, p. 75. 
117 cf. Ibid., p. 83. 
118 cf. Ibid., p. 82. 
119 cf. Ibid., p. 84. 
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Evaluation methods assessing the quality and utility of an artifact are emphasized in 
the third guideline. Evaluating an artifact strongly depends on the business 
environment and the related problems the artifact is designed for. These problems can 
define the requirements and, therefore, the foundation for evaluation. Appropriate 
metrics need to be defined in advance, just like relevant data for measuring predefined 
attributes need to be gathered. Evaluation of an artifact can emphasize functionality, 
completeness, consistency, accuracy, performance, reliability, usability, or fit with the 
organization. Considering an iterative design process, evaluation should also occur 
throughout the project instead of within one final assessment. Iterative evaluation can 
deliver valuable feedback already during the construction phase. Hevner et al. 
summarized the following five groups of evaluation methods:120 

Observational Case study: Study artifact in depth in business environment 
Field study: Monitor use of artifact in multiple projects 

Analytical 

Static analysis: Examine structure of artifact for static qualities 
(e.g., complexity) 
Architecture analysis: Study fit of artifact into technical IS 
architecture 
Optimization: Provide optimality bounds on artifact into technical IS 
architecture 
Dynamic analysis: Study artifact in use for dynamic qualities (e.g., 
performance 

Experimental 
Controlled experiment: Study artifact in controlled environment for 
qualities (e.g., usability) 
Simulation: Execute artifact with artificial data 

Testing 
Functional (black box) testing: Perform coverage of some metric 
(e.g., execution parts) in the artifact implementation 
Structural (white box) testing: Perform coverage testing of some 
metric ( e.g., execution paths) in the artificial implementation 

Descriptive 

Informed argument: Use information from the knowledge base 
(e.g., relevant research) to build a convincing argument for the 
artifact’s utility 
Scenarios: Construct detailed scenarios around the artifact to 
demonstrate its utility 

Table 8: Evaluation methods and categories 

4. Research contributions: Providing clear and verifiable contributions in the areas 

Guideline four focuses on answering the question: “What are the new and interesting 
contributions?” Design science research has to provide contributions in one of the 
following three areas: The design artifact, the foundations (design construction 
knowledge), or methodologies (design evaluation knowledge). The design artifact itself 
is often also the contribution of design science research. Thereby it should either 
extend the knowledge base or apply existing knowledge in new and innovative ways. 
The foundations comprehend the development of constructs, models, or instantiations, 

 
120 cf. Hevner et al. 2004, p.85f. 
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which are not the artifact itself. A requirement is that they need to extend existing 
foundations in the design science knowledge base. The third form of research 
contribution is methodologies, which describe the development of new evaluation 
methods and metrics for experimental, analytical, and observational testing or 
descriptive evaluation. 

5. Research rigor: Application of rigorous methods in the construction and evaluation 
of the design artifact 

Rigorous research methods are often linked to mathematical formalism describing the 
specified artifact. Design science requires rigorous methods. Nevertheless, it is worth 
mentioning that applicability and generalizability have to be considered as well. Over-
abstraction and omission of essential parts of the problem should be avoided. 
Therefore, research rigor in design science aims to use knowledge from theoretical 
foundations and research methodologies in an effective manner.121 

6. Design as a search process: The search for an effective artifact requires utilizing 
available means while satisfying laws in the problem environment 

Design science is iterative. It can be described as a cycle of generating design 
alternatives and testing alternatives against requirements/constraints. The design 
process is a search process, utilizing available means to discover effective solutions 
while satisfying restrictions existing in the environment. Thereby, the means 
comprehend the actions and resources available for artifact construction. All possible 
means that can satisfy all end conditions specify the set of all possible design solutions. 
Nevertheless, due to the nature of possible design problems, it may not always be 
possible to determine the appropriate means, ends, and laws. Therefore, knowledge 
in both the application domain and the solution domain is required for successful 
problem-solving.122 

7. Communication of research: Presentation to technology-oriented as well as 
management-oriented audiences. 

Both, the technology-oriented and the management-oriented communication channel 
has its importance. Communicating results on a technological level focus on describing 
the artifact in detail and clarifying construction and application. Researchers and 
practitioners must be provided with an understandable description of the artifact and 
its development to enable reproducibility and creating a knowledge base for further 
extension. Communicating results on a managerial level focus on the benefits and 
effectiveness of the provided solution for the underlying problem, as well as the 
required effort for implementing the solution. Therefore, management-oriented 

 
121 cf. Hevner et al. 2004, pp. 87–88. 
122 cf. Ibid., p. 88. 
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communication emphasizes the problem relevance and requirements for utilizing a 
particular solution rather than the artifact's functionality.123 

4.2 Product development 
The starting point for product development is often external or internal product 
planning, which results in a description of a development request, depending on the 
project situation. The spectrum can range from clients and customers to development 
for abstract customer groups or market segments. A development request can thus 
cover a wide range and include ideas, wishes, visions, goals, etc., as well as already 
detailed use cases, requirements for functions, features or characteristics, and 
interfaces of the product. Depending on the complexity of the task, activities can be 
subdivided into further sub-activities. The activities do not have to run rigidly one after 
the other. However, they are often iterated through by going back to previous sections 
in order to achieve better solutions or optimizations step by step. Thus, depending on 
the development task, activities within the scope of product development can be 
necessary for various intensities. The following activities are therefore described within 
product design:124 

1. Clarifying and itemizing the problem or task 

Clarifying the problem or task can deliver new requirements, which have not been 
obvious from the perspective of given objectives. These activities include gathering all 
available information on the product context, identifying information gaps, reviewing 
and adding to the requirements received, adding one's own requirements, or 
consciously formulating the problem from the developer's point of view. A formulation 
and itemization of the problem to be solved facilitates the search for a solution. The 
advantage of a precise formulation of the problem at hand is that it focuses on the core 
problem and its requirements, without prematurely favoring certain solution 
approaches. The requirements are not static but build an information base for all 
subsequent activities and can be further refined. Findings during the development 
process can lead to existing requirements having to be changed and new requirements 
having to be added.125 

2. Determining functions and their structures 

In the design process, a function-oriented approach may expand the search space and 
support the search for alternative or innovative solution principles. Functions define 
how a product or one of its components operates and what they do. Determining 
functions and their structures also supports widespread development methods such 

 
123 cf. Hevner et al. 2004, p. 90. 
124 cf. VDI Society Product and Process Design 2019a, pp. 33–35. 
125 cf. Ibid., pp. 35–36. 
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as failure mode and effects analysis (FMEA). Undesired disruptive functions should be 
differentiated from desired purpose functions so that solutions for their avoidance or 
mitigation can also be identified. Differentiation between primary and secondary 
functions can help to emphasize the relevance of individual functions. For simple 
products, a purely verbal description in the form of function lists is often sufficient. For 
more complex products with more extensive energy, material, and information flows, 
functional models, such as hierarchically structured function diagrams, are more 
appropriate.126 

3. Assessing and selecting the solution concept 

A continuous review of the results against the requirements can already limit possible 
solutions continuously. Nevertheless, often several alternatives that satisfy all 
previously defined requirements remain. Since it is usually impossible to detail all 
alternatives for time or financial reasons, there must be planned activities to evaluate 
and select the most promising solution concepts. Therefore, a vital part is the definition 
of suitable assessment criteria, which can be done by weighting the existing 
requirements. The execution of assessments depends on their complexity and 
objective. Many assessment methods rely on textual or mathematical comparison of 
solution concepts. Regardless of the assessment method used, it is almost inevitable 
that they cannot be free of subjective influences, which is why it is permissible to take 
experience and intuition into account.127 

4. Subdivision into modules – interface definitions 

The selected solution concepts can then be divided into modules for realization. As a 
result, a systems architecture with its interfaces is developed. Thereby, the intended 
solution is subdivided into main groups and elements necessary for its implementation. 
The importance of modularization before starting the design steps is higher for complex 
products. Possibilities for structuring the modules are discipline-specific or 
pragmatically work-related. At that point, parallel lines of product development are 
created that can be considered individually and separately but still must be coordinated 
with each other.128 

5. Design of the modules 

This activity describes the realization of the modules by specifying them in more detail. 
It can be performed separately for different modules as well and aims to deliver a 
preliminary design that allows for identifying and selecting an optimum design.129 

 
126 cf. VDI Society Product and Process Design 2019a, pp. 36–37. 
127 cf. Ibid., pp. 38–39. 
128 cf. Ibid., pp. 39–40. 
129 cf. Ibid., p. 40. 
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6. Integrating the product as a whole 

The previously specified modules are then designed in detail in order to link all groups 
and elements for merging them to a product. Thereby this phase can be described as 
the final design. The result of this activity is an overall design necessary for product 
realization.130 

7. Elaborating the details of execution and use 

This activity interacts with the previous ones because they have already created 
essential specifications for the technical production realization as well as for the 
product use. Elaborating on the details of execution and use should deliver the product 
documentation regarding manufacturing, usage, and certification.131 

8. Assurance of the fulfillment of the requirements 

The assurance covers all activities of analysis that aim for the comparison of results 
and objectives. One can thereby differentiate between verification and validation. 
Verification aims to determine whether the product fulfills the requirement of its 
specification. Validation describes whether the product meets the purpose of its 
intended usage.132 

 

In a practical application, the activities described above, as well as their objectives, are 
planned in phases. The results of those product design activities, which can be 
requirements, function models, basic solution concepts, the solution concept, systems 
architecture, partial design, overall design, and product documentation, are considered 
iteratively improved artifacts that interact with the objectives and activities.133 

 
130 cf. VDI Society Product and Process Design 2019a, p. 40. 
131 cf. Ibid., pp. 40–41. 
132 cf. Ibid., pp. 41–42. 
133 cf. VDI Society Product and Process Design 2019b, p. 8. 
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Figure 12: Specific model of a product design process134 

4.3 Systematic literature review 
The research methodology is designed along the lines of Tranfield et al.135, by depicting 
a three-step process for conducting literature reviews:136 

i. Planning the review 
a. Identification for the need for a review 
b. Preparation of a proposal for a review 
c. Development of a review protocol 

ii. Conducting a review 
a. Identification of research 
b. Selection of studies 
c. Study quality assessment 
d. Data extraction and monitoring progress 
e. Data synthesis 

 
134 VDI Society Product and Process Design 2019b, p. 9. 
135 Tranfield et al. 2003. 
136 cf. Ibid., p. 214. 
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iii. Reporting and dissemination 
a. The report and recommendations 
b. Getting evidence into practice 

4.3.1 Planning a review 
Tranfield et al. describe the first stage as an iterative process consisting of the 
definition, classification, and refinement of research objectives. Essential steps are the 
creation of a review protocol and the formulation of a review question. The review 
protocol serves to ensure the objectivity of the review by defining and recording all 
essential steps. Boundary conditions such as time periods, publications, and 
databases are defined. In addition, a definition of quality criteria is created according 
to the relevance and quality of the publications to be evaluated, taking into account the 
context of the review question. Any exclusion of publications can thus be evaluated 
objectively.137 

4.3.2 Conducting a review 
The fundamental differences between a traditional (narrative) and a systematic 
literature review are comprehensiveness and objectiveness. The starting point of the 
review is the selection of keywords from a selective preliminary analysis. Logical 
combinations of the keywords then form the search terms. The literature review is 
conducted under consideration of the boundary conditions defined in the review 
protocol. The result is a list of publications that form the basis of the literature analysis. 
Next, the publications are evaluated regarding their quality, whereby the quality criteria 
defined in the review protocol serve as evaluation criteria. If the criteria are not fulfilled, 
the observed publication is excluded from the list. Once the list of publications has 
been selected, data and information must be extracted from them. In addition to 
general information, certain features and specific information are also analyzed. The 
features that are used to classify the publications are defined initially. 

Nevertheless, as the analysis continues, it may be necessary to add additional 
features. The process of information extraction is, therefore, iterative. The result of 
information extraction is an aggregated representation of the knowledge contained in 
the publications that have been considered independently up to this step. In 
information synthesis, the task is to compare the different publications. In the field of 
management sciences, comparability between publications is often difficult due to the 
significant differences in the research questions. Therefore, meta-analyses are 
suitable for information synthesis. Narrative analyses are also suitable for describing 

 
137 cf. Tranfield et al. 2003, pp. 214–215. 
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and comparing the content of different publications, but these often have a notable 
subjective influence.138 

4.3.3 Reporting and dissemination 
A characteristic of high-quality literature analysis is that they are synthesized from the 
primary literature and thus provide users with a better insight into the research subject. 
Specifically for the discipline of management science, results should be analyzed in 
two stages. The first stage is a descriptive analysis of the research results, including 
categorizing the literature based on a set of features. The second stage is a thematic 
analysis of the researched publications (e.g., narrative literature discussion).139 

 
138 cf. Tranfield et al. 2003, pp. 215–218. 
139 cf. Ibid., pp. 218–219. 
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5 Physical demonstrator for condition-based 
production scheduling 

5.1 Definition of the use-case 
At the beginning of the project, the concrete task and the available resources were not 
explicitly given. Therefore, defining those was an essential part of the work. With 
regards to the VDI2221, the product development process was thus started with the 
product planning. Therefore, the first steps are clarifying the problem or task and 
determining functions and their structures. 

5.1.1 Requirements 
In the initial situation, an application was available that performed condition-based 
scheduling using an algorithm based on production and condition data. This application 
was developed in a PHD thesis140 at TU WIEN and is further referred to as “scheduling 
application”. To illustrate condition-based scheduling and sequencing, we lacked a use 
case to provide production and condition data and show the connection between 
machine condition and production planning. So, on the one hand, the project should 
cover the physical demonstrator to deliver condition data. On the other hand, a use 
case that allows assumptions for production data should be developed. The 
environment in which the demonstrator will mainly be used is at fairs. Thus, knowledge 
transfer through interaction should be possible even with short attention spans or within 
limited timeframes. 

Physical Demonstrator Scheduler Application

Human
Interaction

Condition Data

 

Figure 13: Integration of physical demonstrator 

The demonstrator represents a production machine and serves as a data source for 
condition data acquired by applied sensors. It should be applicable for different use 

 
140 Karner 2019. 
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cases, such as a single production machine or as part of a production system with 
multiple machines. 

We could therefore derive the following requirements: 

1. Deliver condition data like a real production machine equipped with sensors 
2.  Emphasize the applicable pillars of industry 4.0: System integration, cloud 

computing, IoT 
3. Utilize condition data for production scheduling 
4. Convey knowledge on condition-based scheduling 

o In a limited timeframe 
o Suitable for short attention span 

5. Integrate the available scheduling application 
6. Transportability 

5.1.2 Functions 
The scheduler application requires the condition data in the form of a single value that 
describes the machine's condition with respect to the processing step required for 
production. The term health points (HP) is widely used in prognostics. In this case, this 
term describes the value the demonstrator will send to the scheduling application. A 
higher HP value thereby means a better condition of the demonstrator for the purpose 
of production planning in the scheduling application.  

The initial approach was to develop the physical demonstrator from scratch. To 
determine the demonstrator’s condition in a data-driven manner for calculating the HP 
value, sensors need to be installed first. In order to use a data infrastructure that can 
also be used in real production environments, a gateway should be able to send the 
sensor values (after optional preprocessing) into a cloud environment, where the HP 
of all connected machines can be calculated and utilized. For simulating a production 
process, actuators like motors need to be installed. To allow users to interact with the 
demonstrator, possibilities to affect sensor values and actuators by hand must be 
designed as well.  



Physical demonstrator for condition-based production scheduling 
 56 

 

Physical Demonstrator

Sensors Actuators

PLC
(optional)

Gateway

Human
Interaction

Cloud

Scheduling 
Application

 

Figure 14: Basic functions of demonstrator 

5.1.3 Solution principles 
In several brainstorming sessions, we created a variety of solution principles. Those 
concepts included several features for monitoring and interacting, like oil temperature, 
leakage detection, hydraulic pressure, bearing condition, and more. However, most 
concepts were dropped later because an industry partner agreed upon cooperation 
during the project. This partner provided a demonstrator with already implemented 
features beyond this project’s initial timely and budgetary possibilities. Therefore, we 
decided to develop additional features for that existing demonstrator in order to 
implement a suitable use case. 

Furthermore, some ideas of those solution principles were later on implemented into 
the existing demonstrator. Thus, the solution principles can be divided into three main 
parts: 

1. Hardware and data infrastructure: What features does the physical 
demonstrator need? How do we get the sensor data into a cloud environment? 

2. Calculation of health points: How do we get from sensor data to health points 
for utilizing them in the scheduler application? 

3. Use Case: How can we easily communicate the benefits of utilizing this data? 
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5.1.4 Hardware and data infrastructure 
Before discussing further solution principles, we need to describe the demonstrator 
provided. The hardware contains a drive motor with integrated temperature, angular 
velocity, voltage, and current monitoring. The driveshaft is connected to a gearbox and 
a disk brake, with two claw couplings and a rotating torque sensor in between. Users 
can actuate the disk brake via a rotary knob. The gearbox connects to a clutch that 
can be switched by pushing a button on the HMI (human-machine interface). The 
clutch can connect a spindle to the drive. One of the bearings of the spindle is equipped 
with a vibration sensor. So, users have two ways of interacting with the demonstrator: 

1. HMI: 
a. Switch motor on/off 
b. Activate ‘demo mode’ (program that automatically changes mot speed 

and rotary direction over time) 
c. Control motor speed 
d. Control motor rotary direction 
e. Switch spindle on/off (actuate clutch) 

2. Rotary knob 
a. Actuate disc brake 

Torque 
Sensor

Motor
Temperature Sensor

Angular Velocity Sensor
Voltage & Current Measurement

Brake

Vibration 
Sensor

HMIBrake
Actuation

PLC Motor Control

Spindle
Coupling

 

Figure 15: Front of unmodified demonstrator 
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The PLC gets input data from the HMI, controls the motor and the clutch, and receives 
sensor data. The demonstrator is also equipped with a CMS (condition monitoring 
system) that preprocesses data from the vibration sensor. A gateway connected to an 
LTE module receives data from the PLC and CMS and publishes it to the cloud. This 
way, a data infrastructure to send sensor data to a cloud environment for further 
calculation is already available. Figure 16 shows a schematic of the mechanical 
components and the signal flow: 

 

Sensors

PLC CMS

Gateway

Drive

Voltage 
Measurement

Current 
Measurement

Brake

Spindle

Temperature 
Sensor

Vibration Sensor

Torque Sensor

Angular Velocity 
Sensor

Motor control

Bearing

HMI

Cloud

Human
Interaction

Clutch

Signal Flow

Mechanical Connection

 

Figure 16: Schematics of unmodified demonstrator 

Therefore, the data processing from sensors to the cloud happens according to 
standards predefined by the industry partner. Therefore, there are some limitations 
regarding preprocessing and configuration. Configurations can only be changed to 
some degree and only by a technician of the industry partner. By default, the gateway 
automatically establishes a connection to the internet on boot. The PLC, condition 
monitoring system (CMS), and the gateway communicate within one network via OPC 
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UA (Open Platform Communications Unified Architecture). The gateway establishes a 
connection to a time-series database within the Mindsphere cloud platform. A snapshot 
of all sensor values is sent to the cloud each second. There exists a cloud platform to 
visualize the transmitted sensor data on a timeline view. The data transmission has a 
delay of about 5 seconds.  

 

Figure 17: Dashboard of Mindsphere cloud platform 

Machine data can be visualized in a chart on the Mindsphere platform. One can browse 
historical data by utilizing a date- and time-range picker. Also, the chart automatically 
updates with a delay of about 5 seconds, which helps verify the data empirically when 
running the demonstrator. 

However, no interface allows for receiving that time-series data automatedly at this 
point. There is only the possibility to export data manually via the graphical user 
interface. For the purpose of analyzing the data and building prediction models, this is 
sufficient, but it would not allow for deploying the prediction model. 

Figure 18 shows the sensor data’s correlation i) motor current and motor torque and ii) 
motor voltage and motor speed. As they correlate as expected (linear correlation of 
motor torque and motor current, and linear correlation of motor speed and motor 
voltage), it can be validated that the sensor measurements of the demonstrator are 
physically reasonable. We plotted a dataset of 1141 datapoints acquired during test 
runs and manually exported from the mindsphere platform for this graphic. The second 
chart shows the correlation between motor speed and motor voltage. We color-
mapped the absolute value of the motor torque, showing high torque due to 
acceleration or deceleration for data points between the predefined motor speed levels 
(where we see data point clusters). 
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Figure 18: Validation of demonstrator sensor values 

As a conclusion of what we talked about in this subchapter so far, we derived two main 
tasks on modifying the demonstrator at hand: 

• Modify hardware of demonstrator to allow for additional user interaction and 
additional data points 

• Modify infrastructure to allow for connecting the demonstrator and the condition-
based scheduling application 

5.2 Modification of demonstrator 

5.2.1 Hardware modifications 
Two additional possibilities for interaction were integrated into the physical 
demonstrator: 



Physical demonstrator for condition-based production scheduling 
 61 

 

• Vibration motor: For simulating a change in environmental conditions, we 
installed a vibration motor that can be controlled independently and affects the 
vibration sensor at the spindle bearing. 

• Light sensor: We installed a light sensor inside a pipe to simulate the machine's 
filter contamination. Users can simulate filter contamination by covering the end 
of the pipe with their hands or objects. 

 

Setup of vibration motor 

To operate a vibration motor, we need a motor driver and a human-machine interface 
to control it. The demonstrator already has an HMI which allows for controlling the 
demonstrator’s motor via colored buttons. However, it was not feasible trying to use 
this HMI for the vibration motor as well for two reasons: 

• All buttons of the existing HMI were already in use 
• Controlling different devices within the same frame of buttons might be 

misleading 

We, therefore, decided to develop a web application for controlling the vibration motor. 
A Raspberry Pi 3b+ brings all features necessary to do so: It has sufficient computation 
power for hosting a web application, features an integrated wireless LAN module for 
accessing the application, and brings GPIO (general purpose input/output) pins that 
provide an I2C interface for communicating with a motor driver.  

The demonstrator features a 24V power supply. Therefore, to avoid using additional 
power supply units, we designed the solution to use the power from within the 
demonstrator. Thus the demonstrator will still only need one power cable after the 
modification. 

Voltage transformer  
 

 
 

Raspberry Pi 3b+
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Motor driver L298N 

 

Vibration motor 12V DC 

 
Figure 19: Components for vibration motor 

For the software part of controlling the vibration motor, all code is running on the 
Raspberry Pi. It can be divided into four parts: 

• Controlling the L298N motor driver using the RPi.GPIO141 python library: 
 
The code mainly consists of a python script, providing a function that handles 
controlling the motor driver via the raspberry’s GPIO pins. Depending on one 
input parameter, one of the modes “stop, low, medium, high” can be executed, 
as shown in the following schematic: 

function motorcontrol(input_param): 
    if input_param == 'stop': 
        →stop motor  
    elif input_param  == 'low': 
        →run motor on 25% 
    elif input_param  == 'medium': 
        →run motor on 50% 
    elif input_param  == 'high': 
        →run motor on 75% 
    else: 

             →remove voltage from output pins 
Figure 20: Schematic of motor control function 

 

• Running a Flask142 application to provide the HMI: 
 
Flask is a micro-web-framework for python. It is an API of python that enables 
a simplified way of building web applications. In this case, we use flask to handle 
user input data from an HTML page to use in our python application to control 
the vibration motor. The HTML page contains a dropdown menu to select the 
desired mode and an “apply” button to confirm the selection. It is designed so 
that clicking the button without opening the dropdown first will always stop the 
motor. The current state is displayed at the bottom. In the background, when 

 
141 https://pypi.org/project/RPi.GPIO/. 
142 https://flask.palletsprojects.com/en/2.0.x/. 
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clicking the apply button, we retrieve the selected option in our main python file 
(that is running flask) and call the “motorcontrol” function from the previous 
python file (see Figure 20: Schematic of motor control function). After styling the 
HTML page with a CSS (cascading style sheet) file, the application looks like 
this: 

 

Figure 21: GUI of vibration motor control 

 
• Using RaspAP143 to make the app accessible directly via WLAN connection to 

the Raspberry Pi 
 
The application should neither be accessible over the internet nor require a 
network cable to view it for the use-case at hand. Therefore RaspAP allows for 
configuring the raspberry to establish a WIFI access point on boot. After 
configuring the network so that the raspberry can be accessed via a fixed IP 
address when a device connects to that WIFI hotspot, the flask application can 
be accessed as well via its specified port. The WIFI hotspot is called 

 
143 https://raspap.com/. 
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“Demonstrator-control” and will be visible a couple of seconds after the 
raspberry is powered. 

 

Figure 22: Wifi access point for vibration motor control 

 
• Using crontab144 to execute a shell script that properly starts the flask server on 

boot 
 
Crontab utilizes the cron-daemon, which is used for the time-based execution 
of processes. It also features executing processes on boot, which we use in this 
case. Before running the flask application, environment variables need to be 
declared, and the desired port to run the application needs to be specified. Also, 
the flask application is run in a virtual environment. A short shell script takes 
care of this. This shell script is then executed on booting the raspberry by 
crontab. 

The vibration motor is mounted on the aluminum carrier near the rolling bearing of the 
spindle, where the vibration sensor is located. Out of two different vibration motors, the 
smaller one was sufficient for the vibration sensor to detect it properly. Even with the 
demonstrator’s primary motor running, a slight change in the vibration sensor’s output 
is noticeable when turning the vibration motor on and off. 

 
144 https://www.raspberrypi.org/documentation/linux/usage/cron.md. 
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Figure 23: Installed vibration motor 

 

Setup of light sensor 

The light sensor’s output value needs to be sent to the time-series database in the 
Mindsphere cloud platform just like the other machine data. Therefore, the light 
sensor’s signal output triggers a relay on which 24 Volts are applied from the 
demonstrator’s power supply. So the light sensor can switch 24V on and off via the 
relay. The 24V can trigger a free DI (digital input) on the demonstrator’s PLC, which 
allows for processing this value the same way as other machine data from the PLC.  

Light sensor 

 

Relay 

 
Figure 24: Components for light sensor 

The light sensor is installed into a pipe so users can trigger it by covering the pipe. A 
cover that can be attached to the demonstrator by magnets for triggering the light 
sensor is also installed. 
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Figure 25: Installed light sensor 

 

Installing modifications on demonstrator 

The demonstrator has its own power supply, which has a free 24V output. This power 
supply is used to power all modifications described above. In addition, the available 
24V can be used to switch a digital input at the PLC. The following schematic shows 
how these components are connected: 
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Figure 26: Schematic of demonstrator modifications 

  
Figure 27: Demonstrator modification unit 
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5.2.2 Software modifications 
To also get the light sensor data into the cloud platform, it is first necessary to forward 
the signal of the digital input used for this together with the other data from the PLC. 
For this, we are supported by our industry partner. The next step is to develop a cloud 
application for calculating the health points. 

Cloud application 

The goal of the cloud application is to provide a service that allows for providing the 
scheduling application with the current health points status of the demonstrator. The 
time-series database containing the demonstrators’ raw data can only be accessed 
from the cloud application within this cloud framework. Also, there is no possibility for 
a live connection to retrieve the data immediately when it is written into the database. 
Therefore, we created a REST (REpresentational State Transfer) service within the 
cloud application, providing specified API endpoints for the scheduling application to 
call. At the endpoint /hp, the scheduling application receives a JSON message of the 
following format: 

{“value”: $healthpoints, “ts”: $current_timestamp}145 

While the demonstrator is running, health points will deteriorate according to user 
interaction. The scheduling application requires health points in the range of 0 to 100, 
where 100 means a perfect condition and 0 means machine failure. At another API 
endpoint /reset, the scheduling application can reset the demonstrator’s health points 
to 100. The calculation of the health points is described in the next chapter. 

The cloud application is deployed utilizing Cloudfoundry146, a tool for easier 
deployment of applications with Kubernetes147, which is an open-source system for 
automating deployment, scaling, and management of containerized applications. Once 
the application is deployed to the Mindsphere cloud platform using Cloudfoundry, it will 
run permanently, waiting for requests. To make a get request, specific credentials for 
receiving a temporary authorization token are necessary. Only the scheduler 
application has access to such a token, which prevents random access. 

 

5.2.3 Calculation of health points 
a) First version of calculating health points 

 
145 As commonly used in several programming languages the “$” prefix marks a statement as a variable, 
showing that the statement is a placeholder in this example 
146 https://www.cloudfoundry.org/. 
147 https://kubernetes.io/. 
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The first version of the cloud application had to function without the light and vibration 
sensors’ data. A connection of these data sources to the cloud platform was not yet 
possible. Therefore, the brake was the only possible user interaction that could 
deteriorate the demonstrator’s health points. Of course, the actuation of the brake 
highly correlates to motor torque and motor current. After some test runs and analyzing 
the data, we discovered that a straightforward model utilizing only data on motor 
current already delivers good results. Regardless of the setting for the motor speed, 
the values for motor current would not interfere with the clusters of data points recorded 
when actuating the brake. Therefore, a simple model classifying instances into three 
classes based on the motor-current value was preferred over building a sophisticated 
one, utilizing several input values or machine learning algorithms. The three classes 
determine i) no deterioration ii) low deterioration iii) high deterioration. Nevertheless, 
deterioration is not the same as health points. Health points still need to be calculated 
from deterioration according to the use case at hand.  

According to the use case, actuating the brake cannot bring the health points to zero. 
Also, the same amount of actuating the brake would have a higher impact on the health 
points when the health points score is still high, compared to when they are already 
lower. The health points are calculated as a function of deterioration since the last 
maintenance activity to account for this in the model. A suitable function for this 
purpose is a first-degree rational function. Choosing the appropriate parameters can 
return the maximum health points at x = 0 and asymptotically converge towards the 
minimum health points at x→∞. 𝑓(𝑥) = 𝑎𝑥 + 𝑏 + 𝑐 

𝑓(0) = 𝑎𝑏 + 𝑐 = ℎ𝑒𝑎𝑙𝑡ℎ𝑝𝑜𝑖𝑛𝑡𝑠_𝑚𝑎𝑥 lim𝑥→∞ 𝑓(𝑥) = 𝑐 = ℎ𝑒𝑎𝑙𝑡ℎ𝑝𝑜𝑖𝑛𝑡𝑠_𝑚𝑖𝑛 

Equation 6: Deterioration to health points 

After using those two boundary conditions, there is still one degree of freedom left to 
parameterize the function’s gradient. The degree of freedom is to change a and b along 
the dimension that 𝑎𝑏 stays constant to meet the two boundary conditions. The higher 

the values for a and b are chosen, the flatter the curve, hence the health points will 
deteriorate slower. 

b) Second version of calculating health points: 

As described above, the procedure for calculating health points utilizes severely 
simplifying assumptions for demonstration purposes due to the lack of necessary 
sensor data and the proposed function for calculating the health points works well for 
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demonstration purposes. We also developed a data pipeline for preprocessing under 
the assumption that the acquired data allows for entirely data-driven predictions 
without an underlying function. Thereby we could receive the following raw data: 

• Motor current 
• Motor speed 
• Motor torque 
• Motor voltage 
• Motor temperature 
• Spindle position 

Samples containing those values were labeled during test runs by actuating the brake, 
where the actuation level was defined as the label. The temperature change could be 
calculated as a linear interpolated time derivative of the motor temperature and was 
added as an additional attribute because it can be assumed that it correlates with the 
brake actuation level. After analyzing the correlations of all attributes, including the 
label, the attributes were reduced to motor speed, motor torque, and temperature 
gradient. The neglected attributes either showed insufficient correlation to the label or 
correlated strongly with another attribute, making it redundant. The next preprocessing 
steps were to exclude instances with missing and invalid values and normalize the 
data by scaling values to an interval of [-1,1].  

At that stage, the instance can be split into training and test data sets. The dataset 
splitting was conducted utilizing five-fold cross-validation. This means that the dataset 
was split into five subsets equal in size where a model is trained on 4 of those subsets 
and then tested on the remaining one. This can be done five times, so each subset 
was used for testing once. Cross-validation is a common technique to prevent 
overfitting and reduce vulnerability to inaccurate data. 

The brake actuation level was labeled with the values “0”, “1”, and “2”, indicating best 
to worst condition respectively. Therefore, the class label can be considered numeric 
or nominal, allowing for utilizing regression or classification techniques.  

The next step is to select a regression or classification algorithm and tweak its 
parameters. A metric is necessary to evaluate the setting of a parameter. In the case 
of a linear regression model, this can be the mean absolute error. Then the model can 
be tested with different settings of the parameter. As we utilize cross-validation, we 
apply the different settings of the observed parameter five times (to all five 
combinations of training and test datasets) and calculate the mean of the five split tests 
of the observed metric for each parameter setting. So, testing n different parameter 
settings for a dataset of m subsets (for cross-validation), we receive 𝑛 ∗ 𝑚 values for 
the specified metric and n mean values (one for each parameter setting) of the metric 
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to decide for the best setting according to the available data. The model can then be 
exported (e.g., serialized) for deployment.  

The linear regression model described in this section was developed to prepare the 
procedure of model creation. The goal for utilizing machine learning for the 
demonstrator’s condition was to detect the influences of the vibration motor. In this 
case, the label of the dataset would be the vibration intensity of the controllable 
vibration motor. As the vibration sensor of the spindle bearing could not deliver data, 
the data acquired from the residual sensors was not sufficient to create a working 
model for that use case. Therefore, for the actual use-case, the label was considered 
the brake actuation level. For this purpose, the first version of calculating the health 
points delivered satisfactory results and was therefore preferred over the second one. 

5.3 Demonstrator evaluation 
For the evaluation of the demonstrator, we present a narrative discussion on the 
requirements defined at the beginning of this chapter: 

1. Deliver condition data like a real production machine equipped with sensors 

The demonstrator features measurements of voltage, current, temperature, and 
angular velocity of a drive motor, a torque measurement sensor on a drive shaft, the 
(simulated) failure state of a filter, and a vibration sensor linked to a CM system, 
delivering the root mean square (RMS) for a bearing. These sensors acquire data from 
real machine elements and therefore behave similarly to real applications. 

2. Emphasize the applicable pillars of industry 4.0: System integration, cloud 
computing, IoT 

System integration: The demonstrator integrates the previously available application 
for condition-based scheduling and is integrable into other systems as well by providing 
an interface for sharing its condition via a REST API. 

Cloud computing: Some preprocessing of sensor values is conducted locally (e.g., a 
transformation of acceleration to RMS vibration values that are applied to the vibration 
sensor's raw data). The data is then transmitted to a cloud in a specified format. The 
database for storing historical data, as well as an application that calculates the 
machine’s condition by utilizing this historical data and the recent data retrieved from 
the demonstrator, both operate in a cloud environment 

IoT: The demonstrator can be considered a connected thing, participating on the 
internet of things. It is equipped with a gateway to establish its own connection via LTE 
to communicate with the corresponding cloud environment. 

3. Utilize condition data for production scheduling 
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In the cloud environment, we deployed a model for calculating health points from the 
received sensor data. This condition data is provided to the scheduling application and 
therefore closes the gap to combine a production scheduling application and condition 
data in one use case. 

4. Convey knowledge on condition-based scheduling 

One use case covering the condition monitoring of the demonstrator and its utilization 
in the scheduling application was specifically designed to showcase it on fairs. We, 
therefore, developed possibilities for physical interaction of users that can affect the 
health points. For example, a filter failure can be simulated interactively by covering a 
pipe. The vibration motor can be controlled via a mobile web app, delivering additional 
interaction. The live raw sensor data of the vibration sensor can be displayed on a 
separate monitor, showing the effects of the vibration motor. Furthermore, we 
developed an additional view that allows for showing the current health point status of 
the demonstrator on a separate monitor. 

5. Integrate the available scheduling application 

All use cases utilize the provided scheduling application for demonstrating condition-
based scheduling. 

6. Transportability 

The modifications of the demonstrator do not extend its size. Therefore, the 
dimensions remain the same to when the demonstrator was provided by the industry 
partner and can be transported in its wheeled case. 
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6 Design and implementation of the procedural 
model 

6.1 Overview of the procedural model 
The starting point of the procedural model is defined by considering an existing 
production process or the planning phase of creating or changing a production 
process. The objective of the procedural model is to enable the utilization of machine 
and equipment conditions in PPC and maintenance if there is economic potential for 
doing so. Therefore, at first, the specific situation needs to be analyzed regarding 
machine and equipment conditions. The provided model deliberately describes the 
problems on a high level due to the wide variety of production systems. The model can 
therefore be seen as a conceptual design applicable for cross-industry use cases. 
Nevertheless, the description of the model’s components covers action statements for 
specific usage as well.  

The first step is “domain understanding” and focuses on investigating the considered 
production process and currently available data from machines, production processes, 
and maintenance. Some of the questions to be answered are:  

What is the status quo of production scheduling and maintenance? How do the 
machines or equipment deteriorate? What data is currently utilized for production and 
maintenance planning? How could condition data improve the overall effectiveness of 
the production system?  

After carrying out the domain understanding process, the gathered knowledge will not 
yet allow for an economic evaluation, but a rough estimation of the economic potential 
of the new strategy will be possible. Cases where it is not economically beneficial could 
be production processes with low setup time and repair costs (in comparison to 
production rate and product value), or when the deterioration of machines and 
equipment is not measurable and has no effect on the production process (e.g., 
makespan or quality) until machine failure occurs (sudden breakdown). In such a case, 
condition data could be neglected for production planning and maintenance can be 
scheduled preventively or carried out reactively. 

Nevertheless, for the majority of production systems, the economic potential for 
optimization is indisputable. Therefore, the next step of the procedural model is 
“condition data exploitation”. It emphasizes the procedure of analyzing possible data 
sources and making that data accessible for gaining information on a machine’s 
condition. The result of this step is a model that predicts the current machine condition 
from data that can be recorded live. 
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“Integrative production and maintenance planning” covers the utilization of the 
acquired condition information for integrative planning of condition-based production 
scheduling and maintenance. Due to the high complexity of scheduling optimization 
problems that become more complex when integrating condition data and 
maintenance planning, the procedural model emphasizes the necessary simplifying 
assumptions. It delivers a set of valid simplifying assumptions that comply with the 
objective of integrative and condition-based production scheduling and maintenance 
planning. As a result, the output is a production scheduling and maintenance plan that 
depends on the acquired data and future production orders and is updateable on new 
live data.  

As shown in Figure 28, the initially linear process of the three main blocks described 
above transforms into a circular process when evaluation processes deliver improved 
knowledge for the previous steps. The evaluation instances of the procedural model’s 
main blocks, therefore, feature iterative connections to symbolize a feedback loop for 
continuous improvement: 

 

 

Figure 28: Procedural model for integrative condition-based production scheduling and 
maintenance planning 
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6.1.1 Domain understanding 
a) production understanding 

A solid understanding of the production plant or production system at hand forms the 
basis for initial assessments. As a guideline in terms of condition-based planning, the 
production process at hand can be categorized, e.g., into production type, 
differentiating job-shop and flow-shop systems. The categories are based on the 
influence that the respective production type has on possible production optimization 
models. Multi-machine problems have a higher complexity than single-machine 
problems. The mathematical models and methods used in each case differ in the 
literature, as they require different degrees of simplifying assumptions to keep the 
production scheduling problem within manageable complexity. The same is true for 
other categories. Machines that can produce or process different products may 
deteriorate differently depending on the product. At the same time, the production or 
processing of different products may have different levels of the machine’s tolerable 
deterioration (of machine condition). This can be taken into account in production 
scheduling as well. Products also may be produced or processed in groups, so group 
scheduling needs to be considered. In many machines, the rate of condition 
deterioration depends on the production rate. This allows for integrating production 
rate into condition-based production scheduling. Depending on the production system, 
jobs may be resumable or not. A resumable job can be continued where it was stopped 
in case of interruption (e.g., unexpected machine failure). In contrast, non-resumable 
jobs need to be redone entirely if not finished as planned. 

Table 9 shows an overview of the categorization of production systems regarding 
condition-based production scheduling. 

Categories Options 
Production type Job-shop Flow-shop 
Number of machines Single-machine Multi-machine 
Different jobs on the same machine Yes No 
Group scheduling Yes No 
Machine degradation is dependent on the 
production rate 

Yes No 

Different jobs cause different machine 
degradation 

Yes No 

Different jobs require different machine 
condition 

Yes No 

Jobs are resumable Yes No 
Table 9: Categorization of production systems 

b) data understanding 
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Data understanding comprehends the assessment of the production system’s 
available data sources. Therefore, a solid production understanding is necessary to 
assess the possible impact information from specific data sources could deliver.  

The question to be answered by utilizing data is: In what condition state is a particular 
machine now, and how will this state behave in the future? 

Whether and how well this question can be answered depends on the use case. At 
first, it is crucial to identify all data sources that can allow conclusions to be drawn 
about machine condition states. These can include:  

• Machine data 
o Sensors 
o Dedicated condition monitoring systems 
o The machine’s system or PLC 

• Production data 
o Production rates 
o History on production activities 
o Production plan (planned utilization, future orders) 

• Maintenance data 
o maintenance reports (inspection, repair, service) 
o History on maintenance activities 

Machine data requires an infrastructure to make it accessible. Relevant data points to 
be transmitted need to be selected according to their influence on the machine or 
equipment condition. Domain experts can support the selection process for suitable 
sensors, condition monitoring systems, and the selection of data points from a 
machine’s system. The effects of degradation of mechanical components can be 
fracture, wear, geometry changes, vibration, and force changes. These changes can 
be detected with sensors for acceleration, force, electricity, imaging, wear volume, 
roughness, angle measurement, hardness, gyroscope measurements, temperature, 
torque, or magnetism. If the sensors are manually selected and attached, a 
transformation of the raw data may be necessary to derive meaningful information from 
it (e.g., Fourier transform of an accelerometer to assess vibration). For common use 
cases, such as vibration monitoring of rolling bearings, ready-made condition 
monitoring systems that can perform this kind of edge computing can also be used. In 
any case, the data must be made accessible via a gateway at a specific sampling rate. 
After pre-processing the data, simple correlations such as a wear index calculated from 
measurements of the wear volume can be established directly. More complex 
correlations such as machine conditions, which can have multiple sensor values and 
other data as influencing variables, can be handled using prognostics and health 
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management methods. Most commonly, after a dimensional reduction148, machine 
learning algorithms are used to obtain the desired model. The goal is to calculate the 
RUL from the data, which corresponds to a failure prediction. Nevertheless, depending 
on the use case at hand, a simpler, rule-based approach perhaps also yields sufficient 
results. 

Production data can be recorded and merged with machine data to enhance the quality 
of information within the dataset. If the machine can operate at different production 
rates, which affects the machine deterioration differently, historical data on production 
rates can be exploited. Also, the information on which production activity was 
performed when on which machine can yield additional improvement. In many 
production systems, machine degradation is estimated by the jobs it has processed. 
Those estimations can be improved by analyzing historical production data and 
evaluate the assumptions using data points with a known condition state. Data on the 
planned utilization of a machine can, at a later stage, improve maintenance and 
production planning by improving the timely prediction of necessary maintenance or 
rescheduling events. 

Maintenance data comprehend information that can be acquired during maintenance 
activities. For example, when inspection or repair is carried out, the machine condition 
before and after can be assessed, allowing more precise estimations of the machine 
condition for certain data points. Also, historical data on when which maintenance 
activity was conducted can be utilized in the modeling process. 

6.1.2 Condition data exploitation 
a) data acquisition 

This subitem aims to define the relevant data sources for determining the state of a 
machine. After the existing data sources have been determined in the point "data 
understanding," these existing data sources can now be used, improved, or neglected. 
Furthermore, new data sources can be created.  

Machines with a comprehensive control unit usually also offer the possibility of 
querying a wide range of data from the control system. Here, domain experts must 
evaluate which data could correlate with the machine condition to be determined. Much 
of that data will not be related to the machine condition and should therefore not be 
included in a corresponding model.  

 
148 Reducing the dimension of a prognostics problem is a commonly used method, where the number 
of features is reduced while losing little (or no) information, because the excluded features contribute 
little (or not at all) to correlations with the label to predict. The most common method for this is called 
principal component analysis (PCA). 
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Improving an existing data source can make sense if a correlation is already known or 
suspected. For example, replacing a vibration sensor for bearing monitoring with a 
more sensitive sensor could significantly increase the quality of condition monitoring. 
However, not only the data quality but also the provision of the data can be improved. 
If, for example, data from maintenance reports is to be used, it usually needs to be 
made processable manually. The use of predefined error codes or automated 
evaluation with methods from text mining can simplify processes here and make data 
available more quickly.  

b) data preparation 

Machine data, production data, and maintenance data can occur in various forms and 
need to be transformed in order to apply health indicator modeling methods.  

The data preparation process can be executed similarly to its description in the CRISP-
DM model: 

select data clean data construct data integrate data format data
 

Figure 29: data preparation149 

Data selection is already covered in the previous step when analyzing data sources. 

Clean data: Remove invalid instances or replace missing and invalid values with 
default values or modeled values (e.g., interpolation of neighbor instances). It is also 
possible to select a clean subset of a dataset. 

Construct data: Constructing new data out of the given dataset. For example, 
calculating the time derivative of the temperature values to obtain a column of 
temperature gradients in the dataset. 

Integrate data: Combining information from multiple tables or records to create new 
records or values. For example, merge data of operational settings and maintenance 
reports into the dataset of sensor values. 

Format data: Prepare the dataset for health indicator modeling without changing the 
information content of the dataset. 

c) health indicator modeling 

The goal is to create a model that calculates health points from the prepared dataset. 
Therefore, techniques from the research area of prognostics and health management 
(PHM) can be utilized. The options are regression, classification, and clustering. 
Regression and clustering both require a particular amount of failure data in order to 

 
149 cf. Chapman 2000, p. 23. 
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train a model according to labeled failure states. If this data is available, PHM literature 
delivers comprehensively researched methods for model creation and evaluation 
based on labeled condition data and regression and classification algorithms. 
Nevertheless, in industrial production systems, this data is often absent or rarely 
available.150 Clustering and anomaly detection methods usually cannot deliver as 
precise results as regression or regression but enable health indicator modeling 
without labeled data.  

Regardless of the method, operational settings need to be considered when modeling. 
Operational settings can heavily influence sensor values, so if this is the case, models 
need to be trained independently according to operational settings. Therefore, new 
instances must be evaluated according to the model with the corresponding 
operational settings when the model is deployed. 

d) evaluation 

The evaluation of a condition predicting model can be conducted according to PHM 
literature. The quality of the model can be mathematically described by metrics such 
as weighed classification accuracy. It is important to remember that evaluating the 
model quality must only be done on dedicated test data, which was not used in the 
model creation process.  

The evaluation and modeling processes are iterative because the evaluation metrics 
deliver feedback for model optimization. This feedback can be utilized for parameter 
optimization or even changing the underlying algorithm. 

6.1.3 Integrative production and maintenance planning 
A solid domain understanding and the exploitation of condition data are prerequisites 
for proper strategic planning. In previous literature, the planning phases of production 
planning and maintenance were described mostly as separate processes. The 
procedural model presented here deliberately combines these tasks in one process.  

One common assumption to be avoided is that the reliability degradation of machines 
is time-dependent when in real production most machine failures are operation 
dependent. The benefit of that assumption is that modeling time-based failures 
drastically reduces the complexity compared to operation-based failures.151 

a) assumptions 

Simplifying assumptions are inevitable for the integrative optimization of production 
and maintenance of modern production systems. An overview of the assumptions 

 
150 cf. Zhai et al. 2021, p. 7. 
151 cf. Ait-El-Cadi et al. 2021, p. 3. 
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made in the relevant literature can provide orientation and at the same time help to 
become aware of previously ignored influencing variables. Some of the assumptions 
listed here may only be relevant for certain production systems, but at the same time, 
they provide an overview of usable information. 

Setup time 
All jobs are ready at zero time 
Setup time for processing identical jobs ignored 
 
The machine must be re-setup for processing jobs after PM 
 
Processing 
Only one job can be processed at one time with no interruption 
The machine can only process a job or perform PM at one time 
 
Each job-processing duration depends on the machine’s deterioration state at the 
beginning of the job processing 
Maintenance activities 
Inspection Inspection has negligible duration and cost 

Inspection always identifies defective components or delivers the 
current condition state 

Repair 
(corrective 
maintenance) 

The repair strategy can be one-state repair, multi-state repair (i.e., 
more than one state), full repair, or no repair. 
The repair time is variable and depends on the type of repair and the 
machine’s deterioration state. 
Defective jobs are reproduced after the machine is fully repaired. 
(non-resumable) 

Service 
(preventive 
maintenance) 

PM can be executed instantly.  
PM can only be performed before or after processing one job 
after each maintenance activity – “good as new” / “bad as old 

Deterioration 
Machine deterioration states are known and finite (m). A set of n jobs is available at 
the beginning of a working day. 
 
The expected value of the condition deterioration is known for the occurring jobs 
Other 
The energy consumption for processing each job depends on the machine’s 
deterioration state at the start of the job processing. 
 

Table 10: Assumptions for maintenance and condition-based scheduling optimization 

For clarity, variations and the logical opposites of the assumption presented in Table 
10 are not displayed but can also be considered possible assumptions. 

b) production and maintenance optimization modeling 

The next step is the development of the mathematical formulation of the described 
system under an integrated production-maintenance policy. 
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At first, a definition of the optimization goals is required. These, for example, can be: 

• Utilization 
• Inventory levels 
• Makespan 
• Tardiness 

The formulation of a target function depends on the use case at hand. However, a 
rough formulation of the target function can support the analysis of influencing factors 
for the optimization problem.152 The observed production system then needs to be 
transformed into a mathematical representation model, utilizing the assumptions from 
the previous step. The goal thereby is to establish the mathematical relations of the 
target function and the input values.  

Emphasis is placed on linking the scheduling of jobs and maintenance activities 
according to the underlying assumptions and depending on operation-based condition 
degradation. 

As those optimization problems usually have a high degree of complexity in real 
production systems, the research area of operations research delivers methods for 
solving those optimization problems. 

The result is a model to calculate a production and maintenance plan for the 
considered jobs to be scheduled. 

c) evaluation 

To evaluate the effectiveness of the obtained production and maintenance optimization 
model, it can be tested against the current state of production planning.  

If historical production data is available, the orders, inventory levels and production 
schedules can be reconstructed. Therefore, the new model can be used to create 
production and maintenance plans for historical situations, so the output can be 
compared with the actual course of production from the past. 

If there is already a model for production optimization in use, another possibility is 
simulation. The models can be tested against each other by defining several initial 
conditions that enable the models to calculate their results from the same input values.  

 
152 cf. Karner 2019, pp. 72–73. 
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6.2 Model evaluation 

6.2.1 Definition of case study 
According to design science methodology, artifacts or models can be evaluated 
observationally, analytically, experimentally, by testing, or descriptive. One way for 
observational model evaluation is its utilization in a case study, which is a commonly 
used method if mathematically derived evaluation metrics are not possible or 
reasonable.153  

For conducting the case study, the physical demonstrator and the corresponding use 
case described in chapter 5 are utilized. For the case study, one deteriorating machine 
component of the demonstrator is defined as decisive for production planning and 
therefore represents the whole machine condition of the demonstrator. The 
demonstrator is one part of a production system of multiple equal machines. In the 
initial situation, production planning for this production system neglects the utilization 
of condition data, and preventive maintenance is scheduled periodically, according to 
stochastic estimations of probable machine failures. 

The objective of the case study is to utilize the proposed procedural model to integrate 
condition data and maintenance planning into the production planning process and to 
evaluate the results of doing so. 

Therefore, the following three subchapters represent the three main blocks of the 
proposed procedural model, applied on the physical demonstrator and defined case 
study. 

6.2.2 Domain understanding 
a) production understanding 

The first step of the presented procedural model comprehends the description of the 
current state. The use case consists of the physical demonstrator and the scheduling 
application. The underlying conditions represent the initial situation of a production 
system. The demonstrator is one of several machines to which the jobs can be 
distributed. Other machines of the production system are only represented virtually.  

The initial situation is a production planning, where no condition data is used. 
Maintenance activities are planned according to stochastically expected machine 
failures. Most maintenance activities can be performed preventively before a machine 
failure occurs. Since the actual machine condition is not known, it is assumed that 
corrective maintenance activities are necessary with a certain probability. These 

 
153 cf. Hevner et al. 2004, pp. 85–86. 
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unintentional machine failures are scheduled as buffers in production planning based 
on probability.  

As described in the procedural model, the production system can be categorized as 
follows: 

• The production system consists of multiple machines 
• Different jobs can be processed on the same machine 
• Different jobs cause different machine degradation 
• Different jobs require different machine condition 
• Production rate is independent of machine condition 
• There is no group scheduling 
• Jobs are non-resumable 

 

b) data understanding 

The next step is to evaluate existing data sources according to their potential 
production and maintenance planning improvement.  

• Machine data 
The demonstrator initially records data for motor current, motor voltage, motor 
temperature, motor speed, shaft torque, spindle position, and bearing vibration. 
Two different failure types can be distinguished: Bad condition of the ball 
bearing at the spindle and bad condition of the drive shaft. Bearing vibration and 
spindle position may indicate a condition state of the ball bearing, whereas the 
other values may indicate a condition state of the drive shaft. In this case study, 
however, the relevant failure for production planning is only the one failure case 
of the drive shaft.154 Therefore, there is one failure mode of the production 
system to be observed. 
 

• Production data 
The production system consists of multiple equal production machines. The 
production rates are independent of the machine condition, but certain jobs can 
only be carried out when the machine’s condition is above a particular threshold.  
There is no historical data on production activities, and the jobs to be processed 
are randomly generated for the planning horizon. A production scheduling 
algorithm creates a production plan according to the randomly generated 
production orders. 

 
154 On the one hand, considering the physical demonstrator it is legitime to define it as a production 
machine that operates without the spindle, making the potential ball bearing failure obsolete. On the 
other hand, this is also the only option for the case study, as the vibration sensor of the bearing could 
not be put into operation during the term of this work, making it impossible to use it. 
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• Maintenance data 

Maintenance is conducted according to a simple regime: Each job is assigned 
a specific value that decreases the machine’s health points when processed. If 
a machine’s health points fall below a certain threshold, preventive maintenance 
is conducted. However, in practice, it is possible that a machine’s condition 
deteriorates faster and therefore fails before the planned preventive 
maintenance activity. Therefore, the planned maintenance activities are 
available maintenance data, but there is no historical data on maintenance 
activities.  
 

6.2.3 Condition data exploitation 
a) data sources 

The machine data considering the observed machine condition is transmitted to a 
database via a predefined data pipeline that does not allow editing. The machine data 
is therefore utilized as it is available in the database. We had the possibility to simulate 
failure states and therefore create labeled data. In several sessions such data was 
created in test runs in order to produce a dataset of sufficient size. Condition data of 
test runs, therefore, was added as an additional data source.  

Historical production data is unavailable in this use case. The previous assumption that 
a particular job causes a certain decrease in the machine’s health points after 
processing the job deliberately remains unused for health indicator modeling because 
there is no link to the failure state in this use case. In a real industry application, such 
data could be used to create a usage indicator that can be used as an additional feature 
in the condition prediction model. Maintenance data is also not applicable in this use 
case because there is already labeled data available, and maintenance is assumed to 
restore the full machine health. In real industrial applications, however, maintenance 
data may be utilized to create or improve the condition label in the dataset. 

b) data preparation 

The data from the test runs was cleaned by removing instances with empty or invalid 
values and excluding redundant features and features with little (or no) correlation to 
the label. The motor temperature gradient was created as a new feature by calculating 
the time derivative of the motor temperature, utilizing the timestamps within the 
dataset. The remaining features were then normalized in order to have an equal impact 
on the modeling process. 

c) health indicator modeling 



Design and implementation of the procedural model 
 85 

 

The metric used for evaluating the model was the overall accuracy. As in this use case 
the one motor torque feature highly correlated with the label, state-of-the-art machine 
learning algorithms could not significantly improve the accuracy compared to a simple 
rule-based model obtained utilizing the OneR155 algorithm. 

d) evaluation 

The model was evaluated using dedicated sub-datasets for testing from the initial 
dataset and later on as well utilizing new data recorded, delivering similar results. 

6.2.4 Integrative production and maintenance planning 
a) assumptions 

The following assumptions that also describe the observed production system were 
made in the case study: 

• All jobs are ready at zero time 
• Setup time for processing identical jobs is neglected 
• There is no setup time after corrective or preventive maintenance activities  
• Only one job can be processed at one time with no interruption 
• Maintenance activities cannot be performed while a job s processed 
• Job-processing duration is independent of machine degradation 
• There are no inspection activities 
• Corrective maintenance and preventive maintenance both restore the full health 

of the machine (“good as new”) 
• Jobs are non-resumable (after machine failure, the job at which the failure 

occurred needs to be restarted) 
• There are three known machine deterioration states 
• The expected condition deterioration for processing each job is known. 

b) production and maintenance optimization modeling 

For production scheduling optimization in this case study, the scheduling application 
of the physical demonstrator was utilized (as described in chapter 5), as a new 
optimization algorithm is not within the scope of this thesis. The utilized scheduling 
optimization aligns with the assumptions described in the previous steps and delivers 
production plans optimized for machine utilization, inventory levels, makespan, and 
tardiness. Nevertheless, we could incorporate the information from the condition data 

 
155 The OneR („one rule“) algorithm utilizes only one feature and creates simple, human-readable rules 
for that feature to predict the label. For example: If motor torque < 1 → condition = “green”, if motor 
torque < 2 → condition = “yellow”, else → condition = “red” 
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exploitation step into the existing optimization to create an integrated maintenance and 
production optimization.  

The provision of the live calculated condition information could thus create the 
possibility to identify machine conditions deviating from the expected value and to 
optimize rescheduling measures utilizing this knowledge. 

c) evaluation 

The use case of the physical demonstrator does not feature historical production data. 
Nevertheless, the previous production optimization strategy featured a model that 
allows comparing results in simulations. 

Since the demonstrator is not a real production machine, a few points have to be taken 
into account during evaluation. The overall performance depends on the following 
parameters that need to be determined in real production systems but can be defined 
in the use case of the physical demonstrator: 

• The accuracy of condition prediction 
• Condition thresholds for being able to process a particular job 
• The time it takes to conduct preventive maintenance 
• The time (and other consequences) it takes to conduct corrective maintenance 

With an educated estimation of the initial settings, we could determine an improvement 
of utilization, inventory level, makespan, and tardiness between 2% and 6% each in 
several simulations. As an example, the influence of those parameters can be shown 
by setting the duration (and other consequences) of corrective maintenance the same 
as for preventive maintenance activities. Of course, that probably will never be the case 
in a real production system, but the model shows that in that case, a condition-based 
maintenance strategy causes no improvement over a run-to-failure strategy. 

Therefore, those parameters can be seen as characteristics of a production system 
that allow a conclusion on the potential economic benefit of an integrated condition-
based scheduling and maintenance strategy. 
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7 Summary and consolidation of key findings 

7.1 Results of applied methods 
a) systematic literature review 

A systematic literature research on the topic of condition-based scheduling was 
conducted, the methodology and objectives of which are linked to a previous literature 
research within the scope of a doctoral thesis at the Vienna University of Technology. 
The methodology for planning and conducting the review is thereby based on the work 
of Tranfield et al.156 It was found that the number of relevant publications has increased 
disproportionately in recent years (and thus in the interim period since the literature 
search referred above). This indicates growing research interest in the integration of 
condition data into production planning.  

Overall, the integration of condition data in production scheduling has not yet been 
discussed extensively in the literature, although its potential is acknowledged in 
numerous (also older) publications. Nevertheless, especially in the last few years, the 
topic came in sharper focus. Thus, integrating condition data into production 
scheduling is also developing into a more extensive research area after the paradigm 
of condition-based maintenance was substantially researched. 

The results are a systematic comparison of recent publications listed in Table 7: 
Classification of publications, and the discussion and summary of relevant literature in 
chapter 3.2.3 and chapter 3.3. 

b) Product development 

A physical demonstrator on the topic of condition-based production scheduling was 
developed, utilizing an existing production scheduling algorithm. A condition-based 
scheduling application based on that algorithm was modified in order to integrate the 
physical demonstrator’s condition data into that application via a cloud platform. The 
physical demonstrator's development methodology was based on the latest VDI 
product and process design guidelines157,158. 

The result is a cloud-connected physical demonstrator that represents one machine of 
a production system and allows user interaction for carrying out a dedicatedly designed 
use case for demonstration purposes. The development, implementation, and 
evaluation of this demonstrator are addressed in chapter 5. A summary of the 

 
156 Tranfield et al. 2003. 
157 VDI Society Product and Process Design 2019a. 
158 VDI Society Product and Process Design 2019b. 
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demonstrator development can also be found in chapter 7.2 by answering research 
question Q2. 

c) Procedural model development 

A procedural model on integrating machine conditions into production scheduling and 
maintenance planning was developed, utilizing the physical demonstrator for 
conducting a case study. The methodology of model development is based on design 
science, more specifically on the artifact construction described by Hevner et al.159.  

The result is a procedural model that can be seen as a conceptual framework for 
establishing condition-based production scheduling and maintenance optimization on 
existing production systems. The construction of the procedural model and the 
execution of the case study are described in chapter 6. A summary of the procedural 
model can also be found in chapter 7.2 by answering the respective research question 
Q3. 

7.2 Results with respect to research questions 
Q1: How can machine and equipment condition be determined and utilized for 
condition-based production scheduling? 

A prerequisite for condition-based scheduling is the data-driven acquisition of machine 
conditions. In the field of maintenance, the term "predictive maintenance" has created 
a use case that has been discussed in detail in the literature and has already made the 
leap into industry with numerous practical applications. Thereby, machines are 
equipped with sensors to monitor their condition. This data is then utilized to predict 
machine failure and to form a better knowledge base for maintenance planning. We 
could identify the research area of prognostics and health management (PHM) that 
focuses exactly on the topic of predicting machine conditions and failure occurrences 
by utilizing certain input data. The machine condition is expressed by a health indicator 
(HI), which can, e.g., be remaining useful life (RUL). As it is a prediction to when the 
machine will fail, the RUL is a suitable indicator for maintenance purposes. 

PHM methods for health indicator modeling emphasize data mining, data analytics, 
and developing models (mostly utilizing machine learning methods). Those methods 
are also appropriate for health indicator modeling regarding production planning. One 
difference that should be noted is the formulation of the health indicator. For condition-
based scheduling, the indicator RUL would not be as appropriate since it refers to the 
time to machine failure. In production scheduling, however, machines may require a 
certain condition for processing a particular job, which is why the machine condition is 
expressed as health points (HP) in this work. The health indicator class can be 

 
159 Hevner et al. 2004. 
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numerical or nominal, whereby we identified a finite number of nominal classes to be 
the most common method used in the literature considering condition-based 
scheduling. 

The exploitation of the condition data in relation to production planning depends 
strongly on the production system at hand, which is why a procedural model was 
created that exploits the assumptions of concrete examples available in the literature 
in a generalized form. 

Q2: How can knowledge on condition-based scheduling be effectively 
conveyed? 

Considering real production systems, the complexity of the scheduling optimization 
problem increases disproportionally fast when increasing the number of involved 
machines or different types of jobs to be processed. Moreover, since the integration of 
condition data into those optimization problems just started to be researched more in-
depth in the last years, practical applications utilizing condition-based production 
scheduling optimization are almost nonexistent in the industry yet.  

Aiming at the lack of practical examples, in this work, a physical demonstrator for 
condition-based scheduling was developed, showcasing the core components of 
utilizing condition data for production scheduling and maintenance. The demonstrator 
was designed to represent a deteriorating production machine as one part of a 
production system consisting of several equal machines.  

The development of the demonstrator was conducted according to the latest VDI 
process and product development guidelines. Since it is an iterative development and 
evaluation process, some of the discarded concepts can be found in the appendix of 
this work. The physical demonstrator presented embodies the best possible solution 
within the scope of this work and according to the predefined evaluation criteria. It 
features an HMI to control the demonstrator’s motor and clutch and is equipped with 
several sensors (e.g., current, voltage, torque, temperature, vibration) to allow health 
indicator modeling. The machine data is periodically sent to a cloud environment, 
where it is utilized as the input for condition determination. For demonstration 
purposes, several possibilities for interaction are incorporated into the demonstrator. 
For example, a remote-controlled vibration motor for simulating deteriorated bearing 
conditions. An application in the cloud environment was developed to enable the 
integration of the demonstrator to a condition-based scheduling application. This 
application is the result of a former doctoral thesis at the Vienna University of 
Technology and features a condition-based production scheduling optimization 
algorithm. The scheduling application was altered to meet the requirements for the 
demonstration use case. 
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To date, the recently finished demonstrator was yet put to action on fairs twice to 
showcase the dedicated use case and raise awareness on condition-based production 
scheduling. 

 

Figure 30: Physical demonstrator set up for showcasing 

Q3: How can machine and equipment condition be utilized for integrated PPC 
and maintenance? 

In the course of the literature review, it was identified that practice-oriented publications 
have a strong focus on either maintenance or production planning optimization. 
Researchers from the field of maintenance or PHM emphasize algorithms for 
determining and predicting the machines' condition, while researchers from the field of 
production planning tend to focus on scheduling algorithms. 

Therefore, in this work, a procedural model was presented that merges the PPC and 
maintenance layers. The result is a high-level model based on the more general 
CRISP-DM160 model. The model consists of the three main categories: 

• Domain understanding 
• Condition data exploitation 
• Integrative production and maintenance planning 

 
160 see Chapman 2000. 
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"Domain understanding" addresses the examination of the production system at hand, 
as well as the available data. The production system is categorized, and existing data 
sources such as machine, production, or maintenance data are analyzed.  

"Condition data exploitation" includes the analysis of possible new data sources, as 
well as the improvement of existing data sources and the processing of the data. The 
main focus is modeling a health indicator that can be constructed utilizing methods 
from prognostics and health management. It must subsequently be available in a 
usable form, such as a finite number of nominal classes. The thereby developed model 
allows the determination and prediction of machine conditions. 

"Integrative production and maintenance planning" describes the process of production 
planning optimization, taking into account condition data and maintenance activities. 
Since the scheduling optimization problem can reach a high degree of complexity, an 
essential step is determining suitable simplifying assumptions. The result is an 
algorithm to compute optimized production and maintenance plans. When the 
deviation of actual machine conditions to the condition predicted when creating the 
production and maintenance plan exceeds a certain threshold, the algorithm can 
suggest rescheduling actions for re-optimization to the current state. 

 

Figure 31: Main categories of the procedural model 

The procedural model was evaluated by conducting a case study utilizing the physical 
demonstrator described in chapter 5. It showed that utilizing condition data for 
integrative production and maintenance planning has the potential to improve the 
overall efficiency of production systems significantly. Nevertheless, it must be 
considered that certain characteristics of a production system (such as the impact on 
cost and time of conducting an unplanned maintenance activity versus conducting a 
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planned maintenance activity) have a substantial impact on the economic potential of 
integrative condition-based production scheduling and maintenance planning. 
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8 Outlook and limitations 
The industry is starting to recognize the importance of integrating production 
scheduling and maintenance planning. Consequently, one can identify an increasing 
research effort to provide different methodologies for achieving this integration in 
recent years.161 As the contributed research grows, different mathematical models for 
joint optimization of production scheduling and maintenance planning emerge. 
Nevertheless, actual industrial applications incorporating such models are barely 
existing yet. 

The physical demonstrator presented in this work utilizes a previously developed 
mathematical model for scheduling optimization. Thereby, a significant limitation is that 
jobs cannot be fixed in their current schedule when computing a rescheduled 
production plan. Nevertheless, in an actual production facility, jobs soon to be executed 
on a machine would be subject to restrictions as to when they can no longer 
(meaningfully) be redirected to another machine. So, to conduct rescheduling in a real 
production system, such jobs would have to be fixed at the respective machine in order 
to consider only the remaining jobs for the optimization by the algorithm. 

There is also improvement potential for the demonstrator itself. The existing cloud 
infrastructure provides a realistic system for processing and providing condition data, 
but it also causes considerable latencies in the data pipeline, which can be suboptimal 
for the demonstration use case. As the research methodology of this thesis is based 
on design science, which excludes behavioral science, another outlook would be to 
analyze human behavior interacting with the demonstrator and quantify learning 
effects. 

The proposed procedural model for integrative condition-based production scheduling 
and maintenance planning utilizes knowledge and assumptions of recent literature and 
can be improved and adopted by considering later publications that present 
optimization problems for particular production systems. Also, the procedural model 
was evaluated by conducting a case study that utilizes the physical demonstrator 
developed within the scope of this work. Compared to purely simulated evaluation, the 
conducted procedure has the advantage of utilizing actual machine data from sensors 
and the machine control system. On the other hand, the physical demonstrator only 
embodies a replica of a real production system. Therefore, an evaluation that utilizes 
a case study or field study on actual production systems represents an outlook for 
improvement. 

 
161 cf. Kolus et al. 2020, p. 935. 
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9 Appendix 

9.1 Discarded concepts for physical demonstrator 
The product development process is an iterative one. The following illustrations show 
concepts that have reached a certain degree of maturity but were subsequently 
discarded. As the German language was used in the development process, the text in 
the following figures is German. 

In the beginning, the goal was to develop the physical demonstrator from scratch. The 
following three figures show the drafts of the furthest developed concept at that stage: 

M
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Figure 32: Schematic of discarded demonstrator concept 
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Figure 33: Data infrastructure of discarded demonstrator concept 
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Figure 34: Draft for application of discarded demonstrator concept 

 

For integrating the vibration motor into the provided physical demonstrator, two options 
were developed. The discarded version featured a bigger vibrations motor, mounted 
on the ground plate of the physical demonstrator with a 3D-printed mount, as shown 
in Figure 35: 

  
Figure 35: 3D-printed mount for vibration motor 
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9.2 LOG 
Date of version Remarks 
26.09.2021 • Chapters 7-9 finished 

• Whole thesis and formatting reviewed 
16.09.2021 • Chapter 6 finished 
22.08.2021 • Abstract finished 

• Chapters 1-5 reworked and finished 
• Chapter 6 started 

18.07.2021 • Chapter 1 finished 
• Chapter 2 finished until 2.2.3 
• Chapter 3 started 
• Chapter 4.1 finished 
• Chapter 5 started 

10.01.2021 • First version of chapter 1 and chapter 2.1 
• Initial formulation of research questions 

10.03.2020 • Project Kick-Off for demonstrator development 
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JSSP job shop scheduling problem 
CRISP-
DM cross-industry standard for data mining 
KDD knowledge discovery in databases 
RMS root mean square 
MIJSSP maintenance integrated job shop scheduling problem 
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