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Abstract

Graph search strategies are important methodologies in order to solve combinatorial
optimization problems (COPs). Thereby a search tree or search graph is usually considered
during the search that covers certain parts of a COP’s solution space. In this thesis
the search graphs will be mainly based on a state-space representation, where a node of
the search graph corresponds to a state that represents a set of partial solutions of the
considered COP. A transition from one state to another state, indicated by an arc in
the search graph, represents a feasible extension of the partial solutions. We will apply
different search techniques to obtain (proven optimal) solutions as well as dual bounds
for different COPs. Most considered approaches in this thesis are based on the informed
search algorithm A∗ search, which uses a heuristic function to guide the search towards
the solution space and, under certain conditions, is able to terminate with a proven
optimal solution.

The first part of this thesis focuses on turning A∗ search into an anytime A∗ search
such that the algorithm is able to find a feasible heuristic solution shortly after the
start and then continuously updates it until a proven optimal solution is finally found.
To find heuristic solutions, the approach switches in regular intervals from best-first
search to an advanced diving mechanism based on beam search (BS). The novel anytime
A∗ approach is tested on the job sequencing problem with one common and multiple
secondary resources (JSOCMSR), which consists of a set of jobs that must be feasible
scheduled, a common resource, and a set of secondary resources. Each job needs during
its execution the common resource and one of the secondary resources. The common
resource acts as a bottleneck resource. The objective is to minimize the makespan. One
main application of the JSOCMSR is in the field of scheduling treatments for cancer
patients who are to receive particle therapies. Experimental evaluation will show an
excellent anytime behavior of our novel anytime A∗ search. Furthermore, the anytime A∗

approach is compared to other anytime algorithms as well as to different exact approaches.

The second part of this thesis considers decision diagrams (DDs), which are a rather new
methodology for solving COPs that has a strong connection to state-space representations
as well. Decision diagrams provide graphical representations of a COP’s solution space.
In particular relaxed DDs represent compact discrete relaxations of the solution space.
Thus, relaxed DDs have the potential to provide strong dual bounds on problems
where traditional relaxations, e.g. linear programming relaxations, may be rather weak.

ix



Restricted DDs are another important kind of DDs, which encode a compact subset
of a COP’s solution space. Hence, they are able to provide heuristic solutions. This
thesis will propose a novel construction algorithm of relaxed DDs that is based on the
principles of A∗ search. The construction algorithm is tested by creating relaxed DDs for
two NP-hard problems. The first problem is a prize-collecting variant of the JSOCMSR,
where each job is equipped with a prize and a set of time windows such that a job can
only be feasibly scheduled within one of its time windows. The task is to find a subset of
jobs that can be feasible scheduled and that maximizes the total prize over the selected
jobs. The second problem is the well known classical longest common subsequence (LCS)
problem, which consists of multiple input strings over a finite alphabet. The task is to
find a longest subsequence that is common to all input strings. The LCS problem has its
application, for instance, in bioinformatics, where strings often represent RNA or DNA
segments. For both problems we are able to compile in a shorter time relaxed DDs with
the novel A∗-based compilation method that are smaller and yield stronger dual bounds
than relaxed DDs compiled with traditional methods from the literature.

For the JSOCMSR variant we create further restricted DDs by using structural information
of a previously compiled relaxed DD such that the compilation time of the restricted
DDs is substantially accelerated. This idea of exploiting structural information of relaxed
DDs is pursued further in this thesis by accelerating other search heuristics as well. In
particular, we used a previously compiled relaxed DD to accelerate a hybrid approach of
limited discrepancy search (LDS) and BS, which is used to heuristically solve the prize-
collecting variant of the JSOCMSR with additional precedence constraints. Exhaustive
experiments confirm that the LDS/BS approach exploiting a relaxed DD is substantially
faster than a standalone approach. In this way it is possible to scan larger parts of
the solution space in the same time as a standalone approach in order to obtain better
heuristic solutions.

Finally, this thesis considers the repetition-free longest common susequence (RFLCS)
problem, which consists of two input strings over a finite alphabet. The task is to find a
LCS of both input strings that is repetition-free, i.e., each character in the subsequence
appears no more than once. An instance of the problem is solved by transforming it into
an instance of the maximum independent set (MIS) problem, which is then solved by an
integer linear programming (ILP) approach. We contribute by using a relaxed DD to
extensively reduce the size of the MIS problem’s conflict graph. Numerical experiments
confirm that, as a consequence of the reduction, the corresponding ILP model can be
substantially faster solved.



Kurzfassung
Graph Suchstrategien sind wichtige Verfahren um kombinatorische Optimierungspro-
bleme (KOP) zu lösen. Dabei werden für gewöhnlich Suchbäume oder Suchgraphen
während der Suche betrachtet, die bestimmte Bereiche des Lösungsraumes eines KOPs
abdecken. In dieser Arbeit basieren die Suchgraphen hauptsächlich auf der Zustands-
raumdarstellung, in der ein Knoten des Suchgraphen einem Zustand entspricht, der
eine Teilmenge an unvollständigen Lösungen des betrachteten KOPs repräsentiert. Ein
Übergang von einem Zustand zu einem anderen Zustand, dargestellt durch eine Kante
im Suchgraphen, repräsentiert eine gültige Erweiterung der unvollständigen Lösungen.
Wir werden unterschiedliche Suchtechniken anwenden um sowohl (bewiesene optimale)
Lösungen als auch duale Schranken für verschiedene KOPs zu erhalten. Die meisten in
dieser Arbeit betrachteten Ansätze basieren auf dem informierten Suchalgorithmus A∗,
der eine Schätzfunktion verwendet, um die Suche durch den Lösungsraum zu leiten und,
unter bestimmten Umständen, mit einer bewiesen optimal Lösung terminieren kann.

Der erste Teil dieser Arbeit fokussiert sich auf die Adaptation der A∗-Suche in einen
“Anytime Algorithmus”, sodass der Algorithmus i.A. eine gültige Lösung kurz nach dem
Start findet und diese danach kontinuierlich verbessert, bis schließlich eine bewiesen opti-
male Lösung gefunden werden kann. Um heuristische Lösungen zu finden, wechselt dieses
Verfahren in regelmäßigen Intervallen von einer Bestensuche zu einem fortgeschrittenen
“Diving-Mechanismus” basierend auf Beam search (BS). Der neue anytime A∗ Ansatz
wird auf einem Job Scheduling Problem mit einer gemeinsamen Ressource und mehreren
Sekundärressourcen (“job sequencing problem with one common and multiple secon-
dary resources (JSOCMSR)”) getestet. Jeder Job benötigt während seiner Ausführung
die gemeinsame Ressource und eine Sekundärressource. Die Nutzung der gemeinsamen
Ressource stellt dabei einen Flaschenhals dar. Das Ziel ist die Bearbeitungsspanne über
alle Jobs zu minimieren. Eine Hauptanwendung des JSOCMSR liegt im Bereich der
Planung von Behandlungen von Krebspatienten, welche eine Strahlungstherapie erhalten.
In Experimenten, wird die anytime A∗-Suche mit anderen anytime Algorithmen sowie
mit verschiedenen exakten Ansätzen verglichen. Die Auswertungen zeigen ein exzellentes
“anytime” Verhalten der neuen anytime A∗-Suche.

Der zweite Teil dieser Arbeit betrachtet Entscheidungsdiagramme (ED), eine eher neue
Methodik um KOPs zu lösen, die ebenfalls eine starke Verbindung zur Zustandsraumdar-
stellung aufweist. Entscheidungsdiagramme sind Darstellungen des Lösungsraumes von
KOPs in From von Graphen. Insbesondere relaxierte EDs liefern eine kompakte diskrete
Relaxierung eines Lösungsraumes. Sie haben das Potential starke duale Schranken für
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Probleme zur Verfügung zu stellen, bei denen traditionelle Relaxierungen, zum Beispiel
lineare Programmierung, eher schwach sind. Eingeschränkte EDs sind eine weitere wichti-
ge Art von EDs, die eine kompakte Untermenge eines KOP Lösungsraumes darstellen.
Demzufolge liefern eingeschränkte EDs heuristische Lösungen. Diese Arbeit schlägt eine
neue Konstruktionsmethode für relaxierte EDs vor, die auf den Prinzipien der A∗-Suche
basiert. Die Konstruktionsmethode wird getestet, indem für zwei NP-schwierige Pro-
bleme relaxierte EDs erzeugt werden. Das erste Problem ist eine Auswahl-Variante des
JSOCMSR, bei der jeder Job mit einem Preis und einer Menge an Zeitfenstern ausge-
stattet ist, sodass ein Job nur gültig innerhalb eines seiner Zeitfensters geplant werden
kann. Aufgabe ist es eine Untermenge an Jobs zu finden, die gültig verplant werden kann
und den Gesamtpreis über alle ausgewählten Jobs maximiert. Das zweite Problem ist
das wohlbekannte klassische “longest common subsequence (LCS)” Problem, das aus
mehreren Eingabezeichenketten über ein endliches Alphabet besteht. Das Ziel ist die
längste Teilsequenz zu finden, die von allen Eingabezeichenketten abgeleitet werden kann.
Das LCS Problem hat Anwendungen zum Beispiel in der Bioinformatik, wo Zeichenketten
oft RNA oder DNA Segmente repräsentieren. Für beide Probleme sind wir in der Lage,
in kürzerer Zeit relaxierte EDs mit der auf A∗-basierenden Kompilierungsmethode zu
erzeugen, die kleiner sind und zu stärkeren dualen Schranken führen als relaxierte EDs
kompiliert mit traditionellen Methoden aus der Literatur.

Für die JSOCMSR Variante erzeugen wir darüber hinaus beschränkte EDs, indem wir
strukturelle Information eines zuvor erzeugten relaxierten EDs ausnützen, sodass die Kom-
pilierungszeit von beschränkten EDs beträchtlich beschleunigt wird. Die Idee, strukturelle
Information eines relaxierten EDs auszunutzen, wird in dieser Arbeit weiterverfolgt,
indem weitere Suchheuristiken beschleunigt werden. Im Speziellen verwenden wir ein
zuvor kompiliertes beschränktes ED, um einen hybriden Ansatz aus “limited discrepancy
search (LDS)” und BS zu beschleunigen, um damit die Auswahl-Variante des JSOCMSR
mit zusätzlichen Präzedenz-Beschränkungen heuristisch zu lösen. Ausgiebige Versuche
bestätigen, dass der LDS/BS-Ansatz mit der Ausnützung des relaxierten EDs wesentlich
schneller ist als ein eigenständiger Ansatz ohne relaxiertes ED. Dadurch ist es mög-
lich, in der selben Zeit größere Teile des Lösungsraumes zu durchsuchen als mit einer
eigenständigen Variante ohne relaxierten ED, um bessere heuristische Lösungen zu finden.

Abschließend, betrachtet diese Arbeit das “repetition-free longest common susequence
(RFLCS)” Problem, dass aus zwei Eingabezeichenketten über ein endliches Alphabet
besteht. Die Aufgabe ist eine LCS von beiden Eingabezeichenketten zu finden, die
wiederholungsfrei ist, d.h. jeder Buchstabe in der Teilsequenz darf nicht öfter als einmal
vorkommen. Eine Probleminstanz wird gelöst indem sie zu einer Instanz des “maximum
independent set (MIS)” Problems transformiert wird, welche dann über ganzzahligen
linearen Programmierung (GLP) gelöst wird. Unser Beitrag besteht aus der Nutzung
eines relaxierten ED, um die Größe des Konfliktgraphen des MIS-Problems beträchtlich
zu reduzieren. Numerische Experimente bestätigen, dass als Konsequenz der Reduzierung
das entsprechende GLP Modell substantial schneller gelöst werden kann.
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CHAPTER 1
Introduction

T he first time I had worked on a discrete optimization problem was shortly before
I started to study computer engineering. Back then I had the opportunity to
write together within a small group of talented software developers a program

to assist teachers of my old school to create school timetables. The main task was
to develop a graphical user interface that supports a client server architecture so that
multiple users can work together on the same school timetable. As soon as we finished
the task we started to wonder if it is possible to use the computational power of our
computers to create timetables automatically. This was a tough problem consisting over
200 teachers, 2000 pupils, many classrooms, heavily shared objects like gyms (partially
shared with other nearby schools too) and different kinds of laboratories. Besides different
resources and shareable objects, there are many additional restrictions ranging from
special availability times of teachers to regulatory requirements (e.g. mandatory lunch
breaks) that must be considered in order to get a feasible timetable. At this time I did not
have any knowledge about computational complexity or combinatorial optimization at all
and at the end we came up with a greedy construction algorithm that, after even hours
of computation time, was often not able to provide a feasible timetable. Nevertheless, in
retrospect, I learned a lot about the practical field of optimization. Despite the fact that
we are interested in a best solution for a problem it may sometimes be even challenging
to find any feasible solution. Moreover, it may not be clear how to differentiate between
“good” and “bad” solutions. Involved people may have divergent opinions on the quality
of a specific solution. For instance, pupils may assess timetables differently as teachers
and teachers in turn may have a different opinion of “good” timetables than the principle
of the school.

Later, during my studies I learned about the theoretical fundamentals of computer science
and discrete optimization. At that time I had also the great pleasure to work at the
operations research startup company DESTION that provides consulting and software
solutions in the field of industrial optimization. In particular different kinds of large
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1. Introduction

scaled vehicle routing problems (VRPs) were heuristically solved with up to ten thousand
of orders, which have to be delivered to costumers. The considered VRPs included a
heterogeneous fleet of vehicles, multiple depots, and different kinds of constraints, e.g.,
time window constraints, (multi-dimensional) capacity constraints, or site dependency
constraints. The objective functions consisted of various penalty terms including among
others the minimization of the total fuel consumption, waiting times, workload of drivers,
or the number of used vehicles. Due to my work at the startup company I became more
and more interested in optimization. Consequently, I decided to write my master thesis
about site-dependent VRPs under supervision of Günther Raidl and Andreas Chwatal [76].
In the following I accepted a PhD position at the Algorithms and Complexity group, TU
Wien, in the field of combinatorial optimization supervised by Günther Raidl as well and
funded by the Vienna Graduate School on Computational Optimization (VGSCO).

So what are combinatorial optimization problems (COPs)? Such problems do not just
ask for a feasible solution but rather they ask for a best solution of all feasible solutions.
The term “combinatorial” means that we are dealing with discrete objects (e.g. graphs,
permutations, integers, strings, . . . ) such that the set of all feasible solutions, sometimes
denoted as solution space, is countable. To differentiate between “good” and “worse”
solutions, a value is usually assigned to each solution such that solutions with smaller
values are considered as better/worse than solutions with higher values. Most practical
optimization problems are NP-hard and it is therefore unlikely that an efficient algorithm
exists to compute the optimal solution, unless P=NP. To find an optimal solution or a
near optimal solution for such NP-hard optimization problems we search for it in the set
of feasible solutions in a clever way. Therefore the solution space is also called search
space and the word clever is here the crucial point since the search space usually grows
exponentially with the problem size, an exhaustive enumeration of all feasible solutions
will not be practicable even for small instances in most cases.

This search process can be frequently represented, explicitly or implicitly, as a search
graph (or search tree). For instance, consider trajectory based (meta)heuristics, which
move during the search from one solution to another (better) solution by considering
neighborhood structures. This search process can be represented by a graph such that
each solution is mapped to a node and arcs between nodes represent the possible movement
from one solution to another solution. Although this search graph is usually not explicitly
created during the search, it has its application in landscape analysis of neighborhood
structures [146, 163]. Another example, where search graphs appear are exact methods
that are based on the divide-and-conquer principle. These methods partition the solution
space into disjoint subspaces in a recursive way. This partitioning can be represented
as a tree, where the root node represents the whole solution space and child nodes
represent subspaces [28]. This tree can be traversed by using one of the standard tree
traversal strategies, including uninformed search strategies like depth-first search or
breath-first search or informed search strategies like best-first search. A further example
is to consider the state space representation of the solution space, which is used e.g. in
the field of artificial intelligence [131, 139] but also construction algorithms may be based
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on such representations, e.g. the earlier mentioned greedy construction algorithm for
school timetabling. A state represents (a set of) partial (i.e. incomplete) solutions and a
transition from one state to another state represents the feasible extension of those partial
solutions. Thereby a state contains all necessary information to perform all feasible
transitions to successor states and to check if the state represents a complete solution.
The state space can be represented as a state graph where each node is associated to a
state and an outgoing arc represents the transition to a successor state. Furthermore,
each arc is typically labeled with transition costs, caused by taking the corresponding
transition. Usually there is a single root state representing an empty solution and one
or more goal states representing complete solutions. Solving the optimization problem
means to find a sequence of transitions from the root state to a goal state such that the
corresponding total transition cost are minimized. Due to the in general exponential size,
the state graph is usually only implicitly given by using a transition function that defines
how successor states are obtained from a given state. Searches on such state graphs can
be again performed by diverse tree traversal techniques.

This thesis focuses mainly on state space representations and we will apply different
search techniques to obtain heuristic solutions as well as proven optimal solutions. Most
of the approaches presented in this thesis are based on A∗ search [70], which is a well
known path-finding algorithm in artificial intelligence on possible huge graphs. The
search belongs to the class of informed search algorithms meaning that it uses a heuristic
function to guide the search towards the solution space. Depending on some properties
of the heuristic function, A∗ is able to terminate with a proven optimal solution as soon
as the first complete solution is explored. A common problem of A∗ search is that all
explored nodes of the underlying state graph must be kept in memory, leading to the
frequent case that the search runs out of memory before a feasible solution could be
found. In those cases A∗ is not able to provide any feasible solution at all. The first
part of this thesis focuses therefore on turning A∗ search into an anytime algorithm by
combining best first search with beam search (BS). An anytime algorithm is expected to
find a feasible (usually non-optimal) solution shortly after the start and then continuously
updates it until a proven optimal solution is finally found during the search. Hence, an
anytime algorithm can be interrupted at almost anytime and yields a heuristic or finally
optimal solution.

The second part of this thesis is about decision diagrams (DDs) which are well known in
computer since for decades in the fields of formal verification and logic circuit design.
In the last decade they got popular in the field of combinatorial optimization too, by
obtaining new state-of-the-art results on several classical problems [14]. In essence,
decision diagrams provide a graphical representation of solutions of COPs. They are
(weighted) directed acyclic multigraphs and have a strong relationship to the already
discussed state space representation. Each node can be associated to a specific state and
paths originating from the root node encode solutions of the considered combinatorial
optimization problem. Exact DDs represent precisely the set of feasible solutions of the
considered problem. For NP-hard problems such exact DDs tend to grow exponentially
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with the problem size. Heuristic methods try to overcome this combinatorial explosion
by, e.g., traversing only promising parts of the state graph. A similar strategy is used for
compiling restricted DDs which represent only a subset of feasible solutions by ignoring
non-promising parts of exact DDs. Thus they provide heuristic solutions. An alternative
approach to approximate exact DDs is to compile relaxed DDs, which represent a more
compact discrete relaxation of the solution space by superimposing (merging) nodes of
exact DDs. Thus, relaxed DDs represent a superset of all feasible solutions and can
provide, for instance, dual bounds. In recent years relaxed DDs have been successfully
applied to several classical optimization problems, including the maximum independent
set (MIS), set covering, and maximum cut problems as well as diverse sequencing and
scheduling problems [15, 40, 99]. This thesis presents a novel construction scheme for
relaxed DDs which is based on principles of A∗ search. It uses problem specific upper
bounds to guide the construction of relaxed DDs. For the considered prize-collecting
scheduling problem, which will be described below, more compact relaxed DDs could be
obtained within shorter computation time providing stronger dual bounds than relaxed
DDs compiled with standard methods from the literature. In a second step, we use the
compiled relaxed DDs to speed up the compilation time of restricted DDs as well as
to substantially accelerate standard heuristic search techniques. In particular we will
demonstrate how a hybrid approach of limited discrepancy search (LDS) and BS can
be accelerated in order to scan larger regions of the solution space than a standalone
approach without using relaxed DDs can do in the same time.

The anytime A∗ algorithm as well as the DD-based approaches are applied specifically on
different variants of a job sequencing problem with one common and multiple secondary
resources (JSOCMSR). A set of non-preemptive jobs needs to be scheduled, where each
job requires two resources: (1) a common resource that is shared by all jobs and (2)
a secondary resource, which is shared with only a subset of the other jobs. While the
common resource is only required for a part of the job’s processing time, the secondary
resource is required for the whole duration. Figure 1.1 shows an exemplary solution of
an instance with three secondary resources and seven jobs. An interesting property, from
a scientific point of view, is that a specific resource (the common resource) is needed by
all jobs and is therefore a bottleneck resource. Besides applications in the production
of certain goods on a single machine involving mixtures or molds, the problem appears
(as subproblem) also in the field of scheduling treatments for cancer patients who are to
receive a particle therapy [41, 90, 120]. In this rather novel treatment technique a particle
beam consisting of proton or carbon particles is accelerated in a particle accelerator to
almost the speed of light, and then directed into one of a few treatment rooms that are
differently equipped for specific kinds of radiations. Our considered sequencing problem
appears here as a simplified daily subproblem where the treatment rooms corresponds to
the secondary resources and the single particle beam, which can only be directed in one
of those rooms at a time, corresponds to the common resource.

In the first part of this thesis, our goal will be to minimize the makespan in the JSOCMSR
setting by using the anytime A∗ algorithm. The second part will extend the problem
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Figure 1.1: Example of a (possible not optimal) solution of a JSOCMSR instance with
seven jobs, common resource 0, and three secondary resources 1–3. The makespan MS
should be minimized. See Chapter 3 for further details on the JSOCMSR.

formulation by a selection aspect, yielding the so-called prize-collecting job sequencing
problem with one common and multiple secondary resources (PCJSOCMSR). Each job
is additionally equipped with a prize and a set of time windows where the job is allowed
to be scheduled. The task is to select a subset of jobs such that they can be feasibly
scheduled and to maximize the total prize over the selected jobs. These extensions are
considered mainly to have a more accurate model for the real world patient scheduling
problem where not all jobs can be selected for one single day and the start times of the
jobs are often limited due to underlying resources. Moreover, the extension makes it also
better suited to another application: pre-runtime scheduling of electronic systems within
aircraft, called avionic systems, as introduced in [21, 91]. There, a decomposition based
approach is used to tackle the complex and large-scaled industrially relevant instances
where the PCJSOCMSR appears as an important sub-structure. Simply said, an avionic
system consists of a set of nodes and each of these contains a set of modules (processors)
with jobs to be scheduled. In each node, there is a single module called the communication
module, which corresponds to the common resource. Moreover, each node also has a
set of application modules, which correspond to the secondary resources. The task is to
create schedules for the nodes by scheduling as many jobs as possible. Large instances of
the PCJSOCMSR are solved by compiling relaxed as well as restricted DDs. Furthermore,
since in avionic systems jobs often need to be finished before other jobs may start, we
extend the PCJSOCMSR with precedence constraints to address this aspect too. This
problem variant is solved heuristically by a hybrid LDS/BS approach using relaxed DDs
for speed-up.

Finally, we consider the longest common subsequence (LCS) problem consisting of a set
of input strings and a finite alphabet. The task is to find the longest subsection that is
common to all input strings. A subsequence is a string that can be derived by another
string by deleting zero or more characters from it, and it is common to the input strings
if the same subsequence can be derived from all input strings. Furthermore, we consider
the repetition-free longest common susequence (RFLCS) problem, which is a variant of
the LCS problem and usually limited to two input strings. The task is to find the LCS
that s repetition free, i.e., no character is allowed to appear more than once in the string.
Figure 1.2 shows an example of a LCS/RFLCS instance. The LCS problem has a wide
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Figure 1.2: Example of an RFLCS instance with two input strings ATAUBUWICEN and
CTUUWIBAENA. See Chapter 4 and 6 for further details.

range of applications, for example, in computational biology where strings often represent
segments of RNA or DNA [87, 145]. The RFLCS problem arises, for example, in the
context of gene duplication in the domain of genome rearrangement. We will improve
existing solving techniques by using relaxed multivalued decision diagrams (MDDs).

1.1 Outline of the Thesis

The remainder of this thesis is organized as follows. The next chapter gives an overview
of the relevant methodologies used to solve combinatorial optimization problem and
starts with a formal definition of combinatorial optimization problems. The following
sections will review several standard search algorithms followed by two sections that give
an overview on exact as well as heuristic methods with emphasis on approaches that are
used within this thesis. The last section discusses DDs in more depth by presenting exact,
relaxed, and restricted DDs as well as standard construction methods to compile DDs.

Chapter 3 is dedicated to the novel anytime A∗ search algorithms to tackle the JSOCMSR.
After discussing related work we give a formal problem definition and prove the NP-
hardness of the considered problem. Then we present different kinds of lower bounds
on the makespan objective and utilize them in a greedy construction algorithm called
least lower bound heuristic (LLBH). Afterwards we design an A∗ search algorithm that
uses the mentioned lower bounds as search guidance. Moreover, the A∗ search is turned
into an anytime algorithm by obtaining primal solutions during the search with an
advanced diving mechanism. This diving mechanism uses BS, which is based on LLBH,
to find primal solutions which are then further improved by a local search (LS) procedure.
Furthermore, for comparison purposes we provide mixed integer linear programming
(MILP) and constraint programming (CP) formulations. Finally, we present for hard-
to-solve instances a general variable neighborhood search (GVNS) that uses an efficient
evaluation scheme to scan neighboring solutions of the current incumbent solution. This
chapter is based on the following publications
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• M. Horn, G. R. Raidl, and C. Blum. Job sequencing with one common and
multiple secondary resources: A problem motivated from particle therapy for cancer
treatment. In G. Giuffrida, G. Nicosia, P. Pardalos, and R. Umeton, editors,
MOD 2017: Machine Learning, Optimization, and Big Data – Third International
Conference, volume 10710 of LNCS, pages 506–518. Springer, 2017

• M. Horn, G. Raidl, and C. Blum. Job sequencing with one common and multiple
secondary resources: An A*/Beam Search based anytime algorithm. Artificial
Intelligence, 277(103173), 2019

• T. Kaufmann, M. Horn, and G. R. Raidl. A variable neighborhood search for the job
sequencing with one common and multiple secondary resources problem. In T. Bäck,
M. Preuss, A. Deutz, H. Wang, C. Doerr, M. Emmerich, and H. Trautmann, editors,
Proceedings of PPSN XVI: Parallel Problem Solving from Nature, volume 12270 of
LNCS, pages 385–398. Springer, 2020.

In Chapter 4 we tackle the prize-collecting variant of the job sequencing problem to
obtain new state-of-the-art heuristic solutions as well as the LCS problem to obtain new
best dual bounds on the LCS length. For this purpose a novel A∗-based construction
(A∗C) algorithm is presented to compile relaxed DDs. This relaxed DD is then used to
further compile a restricted DD to get besides a dual bound also a heuristic solution for
the PCJSOCMSR. The first section of the chapter presents the basic concepts of the
A∗C algorithm. The next sections are dedicated to a detailed problem formulation of the
PCJSOCMSR, related work, and different upper bounds on the total prize. The strength
of those different upper bounds are evaluated by performing classical A∗ searches on
rather small instance sizes. The best combination of these upper bounds is then used
to compile relaxed DDs with the A∗C algorithm for larger instances. Moreover, for the
experimental evaluation we provide besides the relaxed and restricted DD approaches
also an integer linear programming (ILP) formulation and a CP formulation. The last
part of Chapter 4 is dedicated to the LCS problem where relaxed DDs are compiled with
A∗C to obtain dual bounds that in several cases are stronger than the best known dual
bounds from the literature. This chapter covers the publications

• M. Horn, G. R. Raidl, and E. Rönnberg. An A* algorithm for solving a prize-
collecting sequencing problem with one common and multiple secondary resources
and time windows. In E. K. Burke, L. Di Gaspero, B. McCollum, N. Musliu,
and E. Özcan, editors, Proceedings of the 12th International Conference of the
Practice and Theory of Automated Timetabling, PATAT 2018, pages 235–256,
Vienna, Austria, 2018

• M. Horn, G. R. Raidl, and E. Rönnberg. A* search for prize-collecting job sequencing
with one common and multiple secondary resources. Annals of Operations Research,
2020
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• M. Horn, J. Maschler, G. R. Raidl, and E. Rönnberg. A*-based construction of
decision diagrams for a prize-collecting scheduling problem. Computers & Operations
Research (COR), 126:105125, 2021

• M. Horn and G. R. Raidl. A*-based compilation of relaxed decision diagrams for
the longest common subsequence problem. volume 12735 of LNCS, 2021. To appear.
Accepted for the 18th International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, CPAIOR 2021.

Chapter 5 reveals how relaxed DDs can be used to accelerate heuristic search techniques.
In particular a hybrid approach of LDS and BS is accelerated to solve heuristically large
instances of the PCJSOCMSR with precedence constraints. After explaining how relaxed
DDs are compiled with A∗C, a detailed description of the LDS/BS approach is given. At
the end of the chapter experimental results are provided by comparing the performance
of our approach with the heuristic performance of MILP and CP solvers. This chapter is
based on the publication

• M. Horn and G. R. Raidl. Decision diagram based limited discrepancy search
for a job sequencing problem. In R. Moreno-Díaz, F. Pichler, and A. Quesada-
Arencibia, editors, Proceedings of the 17th International Conference of Computer
Aided Systems Theory, EUROCAST 2019, volume 12013 of LNCS, pages 344–351.
Springer, 2020.

The RFLCS problem is tackled in Chapter 6 by transforming instances of the RFLCS
problem to instances of the MIS problem. The MIS instance is than solved by the MILP
solver CPLEX. To reduce the size of the MIS instance a relaxed MDD is utilized. The
chapter gives first a formal definition of the RFLCS problem followed by a description
of the transformation to the MIS problem. Then the compilation of relaxed MDDs is
explained in detail as well as the reduction of the size of the corresponding MIS instance.
The chapter concludes with an experimental evaluation of the achieved reduction of the
MIS instance and the implications of the solving time of the MILP solver. This chapter
is based on the publication

• M. Horn, M. Djukanovic, C. Blum, and G. R. Raidl. On the use of decision
diagrams for finding repetition-free longest common subsequences. In N. Olenev,
Y. Evtushenko, M. Khachay, and V. Malkova, editors, Proceedings of the XI
International Conference Optimization and Applications, OPTIMA 2020, volume
12422 of LNCS, pages 134–149. Springer, 2020.

Chapter 7 concludes this thesis and gives an outlook of further research directions.
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CHAPTER 2
Basic Methodologies for

Combinatorial Optimization
Problems

T his chapter presents some of the fundamental solving techniques to tackle
combinatorial optimization problems (COPs) which are used and/or extended
in the upcoming chapters. However, this chapter is not indented to cover

all methodologies in detail since this would be clearly out of the scope of this thesis.
There are a lot of excellent books on these topics which provide in-dept coverage,
e.g. [28, 127]. Section 2.1 starts with some formal definition of COPs. Most solving
techniques perform searches for feasible solutions on search trees or search graphs.
Therefore, Section 2.2 presents some of the standard tree traversal strategies including
uninformed search strategies like depth-first search or breadth-first search as well as
informed search strategies including A∗ search. Section 2.3 gives an overview of exact
methods including mathematical programming approaches, constraint programming
approaches as well as dynamic programming. Exact methods are able to find an optimal
solution, however, their computation time may increase dramatically with the size of the
problem instance. On the contrary, heuristic and metaheuristic approaches, presented
in Section 2.4, are expected to find high-quality solutions in reasonable computation
time but usually cannot guarantee optimality. The last Section 2.5 introduces decision
diagrams (DDs) for combinatorial optimization by explaining fundamental concepts
like exact, relaxed and restricted DDs and describes standard construction methods to
compile DDs.
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2. Basic Methodologies for Combinatorial Optimization Problems

2.1 Combinatorial Optimization Problems
In this section we provide some fundamental definitions mainly following Papadimitriou
and Steiglitz [127], and Blum and Roli [29]. We start with the definition of general
optimization problems.

Definition 2.1.1 (Instance, Papadimitriou and Steiglitz [127])
An instance of an optimization problem is a pair (S , f) where S is any set of feasible
solutions or points and f is an objective function f : S → R that maps any solution
from S to a real number.

Definition 2.1.2 (Optimization problem, Papadimitriou and Steiglitz [127])
An optimization problem is a set of instances.

Depending on the problem, the task is to find a solution from S that minimizes
or maximizes f . Corresponding problems are called minimization or maximization
problems. Since each maximization problem can be reformulated to a minimization
problem by multiplying f with −1, we consider w.l.o.g. only minimization problems
within this chapter.

Definition 2.1.3 (Global optimum, Papadimitriou and Steiglitz [127])
A global optimum is any solution x∗ ∈ S that satisfy

f(x∗) ≤ f(x) ∀x ∈ S . (2.1)

Solution x∗ is also called globally optimal solution or if the context is clear and no confusion
can arise just optimal solution. It is important to distinguish between optimization
problem and an instance of an optimization problem since the latter is a specific realization
of an optimization problem providing enough input data to obtain a solution. On the
contrary, when we talk about the optimization problem then we mean the whole problem
including all possible instances. Optimization problems can be divided into continuous
optimization problems and into COPs. The former use continuous decision variables
and S is usually a set of real numbers or functions whereas COPs use discrete decision
variables and S is a countable set of discrete objects. In this thesis we will in almost
all cases deal with COPs, and therefore we assume that S is a countable set. The
only exceptions are linear programming (LP) models in Section 2.3.2, which are based
on continuous decision variables. Usually it is not practicable to describe set S by
stating each single solution. Instead, set S is described implicitly by input parameters
and constraints that allows expressing precisely set S and the corresponding objective
function f . For COPs we will therefore frequently use the description of Blum and
Roli [29] to express the set S by decision variables and constraints.

Definition 2.1.4 (Instance of a COP, Blum and Roli [29])
An instance of a combinatorial optimization problem P consists of a tuple (x, C, D, f)
of n decision variables x = (x1, x2, . . . , xn) and a (possible empty) constraint set C =
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{C1, C2, . . . }. Each variable xi, 1 ≤ i ≤ n has a finite domain Di and constraints are
defined on subsets of D = D1 × D2 × · · · × Dn such that a constraint is either satisfied or
violated by any given x. If x ∈ D satisfies all of the constraints in C then x is a feasible
solution of P. Objective function f : D → R maps any x ∈ D to a real number f(x),
called objective value of x.

The set of feasible solution can be expressed by S = {x ∈ D | x satisfies C}. Note that
the description of S is in general not unique and different solving approaches may obtain
better/worse results depending on the used formulation of S .

In general, set S may grow exponentially with the instance size such that checking all
solutions in S to find x∗ will be not practicable. Therefore, in practice it is difficult for
many relevant COPs to find the optimal solution. One reason for this difficulty, from a
theoretical point of view, is that such problems are often NP-hard. Consequently, under
the assumption that NP=P, finding an optimal solution of an NP-hard problem requires
in the worst case an exponential number of steps. In general, the literature distinguishes
between three kinds of approaches to solve such problems.

Exact Methods: Guarantee that the optimal solution will be found but may require
exponential time in the worst case. Section 2.3 provide an overview of the most
common exact approaches.

Approximation Algorithms: Guarantee that the algorithm will terminate after a
polynomial number of steps and provide a quality guarantee typically of the form
that the obtained objective value does not exceed the optimal value times a certain
approximation factor. These algorithms are just mentioned here for completeness
and are not considered in this thesis.

Heuristics: The goal of heuristic methods is to find high quality solutions in polynomial
time but with no optimality guarantee. Some heuristic methods and concepts are
described in Sections 2.2 and 2.4.

As we will see in the remaining sections of this chapter, there are plenty of different
exact methods as well as heuristic approaches. The reason for this diversity of exact and
heuristic solving strategies can be explained by the no free lunch theorem by Wolpert
and Macready [165]. According to Ho and Pepyne the theorem can be interpreted such
that “a general-purpose universal optimization strategy is theoretically impossible, and
the only way one strategy can outperform another is if it is specialized to the specific
problem under consideration” [73]. In other words, there is no “best” algorithm that
dominates all other algorithms on each problem for each possible instance. For different
NP-hard COPs and different instance classes there will be different approaches superior.
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2.2 Combinatorial Search
This section describes search strategies as discussed by Russel and Norvig [139] and Poole
and Mackworth [131]. While these authors describe search strategies in the context of
artificial intelligence, where so-called agents are searching for the best sequence of actions
to reach a certain goal, we will keep the discussion more in the context of combinatorial
optimization by searching for the best sequence of actions to construct an optimal solution
of a COP. For this purpose we consider the state space representation, where a state
represents a set of partial solutions of the considered COP. The set of all possible states
is denoted by state space S, and a transition from one state to another state represents
the feasible extension of the corresponding partial solutions such that a state contains all
necessary information to perform such feasible transitions. Transition function τ : S → 2S

returns for a given state s ∈ S the set of successor states τ(s) reachable by any single
feasible transition from s1. A single initial state s0 ∈ S represents an empty solution
whereas a state that represents a complete solution is called goal or target state. A
state s ∈ S contains all required information to check if s is a target state or not. Each
transition from state s to another state s causes some costs c(s, s ) such that the task is
to find a sequence of transitions s0, s1, . . . , sk from the initial state to a goal state sk that
minimizes the total cost f(s0, s1, . . . , sk) = k−1

i=1 c(si, si+1). This sequence can be used
to construct the optimal solution of the considered COP. Hence, the state space consists
of a set of states S, transition function τ(·), an initial state s0 ∈ S and transition costs
c(·, ·) for each transition. Note that the state space can also be represented by a state
graph where each state is associated to a node and arcs between two nodes represent
a transition between the corresponding states. Since the number of nodes and/or the
number of paths in such a state graph has exponential size, the state graph is usually
given implicitly by using transition function τ(·). Furthermore, we do not consider
cases where the state graph has an infinite number of nodes or where the state graph
contains cycles.

The idea is now to find (optimal) solutions by searching through the state space and
find sequences of states from the initial state to a goal state. This search process can
be represented by creating a search tree G = (V, A) with vertex set V (G) and arc set
A(G) where each vertex v ∈ V (G) is associated to a state s ∈ S such that function
σ : V (G) → S maps each node v ∈ V (G) to an associated state σ(s) ∈ S. The root
node r ∈ V (G) is associated with the initial state s0, i.e., σ(r) = s0. Consequently,
nodes that are associated with a goal or target state are called goal or target nodes. An
arc (u, v) ∈ A(G) between nodes u ∈ V (G) and v ∈ V (G) corresponds to a transition
σ(v) ∈ τ(σ(u)) labeled with transition costs c(σ(u), σ(v)). For convenience, we denote the
transition costs of an arc also as the length of the arc. Furthermore, Zsp(v) indicates for
node v ∈ V (G) the length of the so far shortest known path from r to node v.Algorithm 2.1

1Note that sometimes transition function τ(·) is slightly differently defined as τ : S × A → S by
mapping a given state s ∈ S to a specific successor state τ(s, a) when taking action a ∈ A from the set of
possible actions A. We will use this definition in some subsequent chapters and describe it there in more
detail. In this section it suffices to use the introduced definition of τ(·).
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demonstrates a general search procedure by maintaining an open list of nodes that must
be investigated further to find a solution. The search starts by initializing the open list
with the root node r ∈ V (G) of the search tree associated with s0. Depth d(u) indicates
the number of transitions from s0 to node u. At each iteration a node u is selected and
removed from the open list. The specific selection of a node as well as the implementation
of Q depends on the used search strategy. Different search strategies will lead to different
behaviors of the search algorithm, which will be described in the following subsections.
After selecting u we first check if u is associated to a goal state. If this is the case then
we return the found solution by considering the shortest path from r to u. Otherwise, we
expand node u by considering all successor states τ(σ(u)) and insert corresponding newly
created nodes into Q. Then we continue by selecting the next node from Q.

Algorithm 2.1: Generic Search Algorithm
Input: initial state s0

1 create root node r with σ(r) ← s0 and Zsp(r) ← 0;
2 Q ← {r};
3 for Q not empty do
4 pop u from Q;
5 if σ(u) is goal state then
6 return solution with minimum cost Zsp(u);
7 end
8 for s ∈ τ(σ(u)) do // expand node u
9 create node v with σ(v) ← s;

10 Zsp(v) ← Zsp(u) + c(σ(u), σ(v));
11 Q ← Q ∪ {v};
12 end
13 end
14 return no solution found

Note that Algorithm 2.1 terminates as soon as a solution is encountered. Depending on
the used search strategy this solution may be just a non-optimal solution. Therefore
the return statement can be seen as a suggestion and the search may also continue after
the first solution was found to obtain a better solution. Furthermore, Algorithm 2.1
generates a search tree, meaning that there may be multiple nodes associated with the
same state. Some search algorithms will create a search graph where such redundancies
are avoided. This is usually done by maintaining a closed list in addition to the open
list, which contains all states that are already encountered during the search. If a
state is re-encountered then an incoming arc is appended to the already existing node
that is associated to the re-encountered state, instead of creating a new node for the
re-encountered state.

13
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2.2.1 Uninformed Search
Uninformed searches select nodes in a way that does not take any additional problem
specific information into account, except Zsp(·) and d(·). There are different standard
search strategies which differ mainly in the order of selecting the next node to expand
depending on the implementation of Q from Algorithm (2.1).

Breadth-First Search

In breadth-first search (BFS) the open list is implemented as a first-in, first-out queue.
Thus, Algorithm 2.1 always selects the node from Q that was inserted earliest. The
algorithm systematically explores all nodes in G with a certain depth d before paths of
depth d + 1 are considered. This strategy, however, in general needs exponential memory
size as well as exponential time in O(bl) where b indicates the largest branching factor
over all nodes and l is the length of the first solution found at depth l. To see this
consider that the root node on the first level of the search tree generates b nodes for the
second level which in turn will generate b2 nodes for the third level. Thus, if the first
solution will be located at level l then at most l

i=0 bi nodes will be expanded before
finding a solution. However, the search strategy guarantees to find a target state and
thus a feasible solution if one exists and this solution will contain the smallest number
of transitions. If the transition costs coincide with the number of transitions then this
solution is an optimal solution.

Due to the typically high memory requirements, BFS is only applicable for small problem
instances where e.g. the state graph is explicitly given or when solutions should be found
with the smallest number of arcs. It can rather not be recommended for problems where
the state graph has exponential size.

Depth-First Search

The depth-first search (DFS) strategy always selects the last node that was inserted in
Q. Thus, Q is implemented as a last-in, first-out stack. This means that Algorithm 2.1
follows always the same path to its completion in G until another alternative path is
considered. For DFS the memory requirement is linear, but the time complexity is still
exponential. Suppose the search tree has a maximum depth dmax and branching factor b.
Then only dmax nodes are expanded and (b − 1)dmax un-expanded nodes are in Q until
depth dmax is reached the first time. Thus in total bdmax nodes are generated. The time
complexity is in the worst case, however, still O(bdmax) since the whole search tree may
be expanded until a solution is found. If there are many solutions then DFS can be
faster than BFS since DFS may expand only a small part of the search tree whereas BFS
has to expand all nodes until a certain depth is reached. Note also that Algorithm 2.1
does not specify the order in which successor nodes are added to Q. The search strategy,
however, is sensitive to this ordering and informed search strategies will use heuristic
information to decide an order, which may decrease the number of expanded nodes until
finding a solution.
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From a theoretical point of view DFS may never stop if the underlying state graph
contains cycles or has infinitely many nodes when using Algorithm 2.1. Note that we do
not consider such cases within this thesis, however, if the depth of the search tree is rather
large then DFS may not find a solution within reasonable time since it may happen that
DFS first follows paths that do not lead to feasible solutions. There are two prominent
DFS like search strategies to overcome these disadvantages. Depth-limited search imposes
a maximum depth limit of the search tree. This guarantees that depth-limited search
will finally terminate even if the underlying state graph contains paths with a larger
number of transitions. However, the success of depth-limited search strongly depends
on the chosen maximum depth limit. If it is chosen too small then depth-limited search
will not even find a feasible solution. Therefore, iterative deepening search will perform
multiple depth-limited searches by increasing systematically the maximum depth limit,
starting by one. In this way the algorithm can guarantee that it will eventually find a
solution and, similar to BFS, this solution will contain the smallest number of arcs. In
particular iterative deepening search is useful if BFS requires a lot amount of memory.

Lowest-Cost-First Search

Methods discussed so far could not guarantee that the first encountered solution by
Algorithm 2.1 is an optimal solution with fewest total transition cost. They have not
considered any information of transition costs at all. Thus, the lowest-cost-first search
will always select the node from Q with smallest Zsp-value; open list Q is therefore
implemented as a priority queue. The lowest-cost-first search can guarantee to find an
optimal solution if all transition costs are greater than a positive constant, the branching
factor is finite and a feasible solution exists. Since all nodes with a smaller Zsp-value
as the Zsp-value of the optimal solution will be generated before the optimal solution is
found, lowest-cost-first search is exponential in space and time.

2.2.2 Informed Search
In contrast to uninformed search strategies, where besides Zsp(·) and d(·) no further
information is used to guide the search, informed search strategies use some problem
specific heuristic information to guide the search. More precisely, they use a heuristic
function Zh : V (G) → R≥0 that estimate for each node v ∈ V (G) the remaining cost-to-go
to any target node. Furthermore, we assume that function Zh(·) maps target nodes to the
value zero. Nodes with smaller Zh-values are supposed to be a better choice to expand
next than nodes with higher values. We call function Zh(·) an admissible heuristic if
it never overestimates the real cost-to-go, i.e., if for each node v ∈ V (G) the estimated
costs Zh(v) to reach any target nodes are always smaller or equal to the actual costs of a
shortest path from v to any goal node. In this case Zh(·) is a lower bound to the actual
costs and we denote Zh(·) also as Z lb(·).
Heuristic functions are problem specific such that they need some knowledge of the actual
problem to solve in order to compute some estimations of the remaining cost-to-go. This
is frequently done by considering a simpler problem that can be solved efficiently and use
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the optimal cost of the simpler problem as heuristic value. There is usually a tread-off
between the amount of time to spend on solving the simpler problem and the quality of
the obtained heuristic value.

Search strategies that order the nodes in Q (see Algorithm 2.1) such that always the
most promising node is expanded first are called best-first-search strategies.

Heuristic Depth-First Search

Heuristic DFS is similar to DFS in the sense that the open list Q from Algorithm 2.1
is implemented as a last-in, first-out stack. However, heuristic DFS uses a heuristic
function Zh(·) to sort successor nodes before they are inserted into Q such that the most
promising successor node according to Zh(·) will be selected next for expansion. In other
words, the search strategy always selects locally the best node to select next. However,
heuristic DFS has in principle the same disadvantages as DFS since the search may not
find a feasible solution in reasonable time if the underlying state graph contains paths
with a rather large number of transitions.

Greedy Best-First Search

Greedy best-first search always selects the most promising node of Q according to
heuristic function Zh(·). The open list Q is therefore be implemented as a priority queue
in Algorithm 2.1. Again greedy best-first search may suffer if the underlying state graph
contains paths with a rather large number of transitions, i.e. a feasible solution may not
be found in reasonable time.

A∗ Search

A∗ search was introduced by Hart et al. [70] in 1968. The search maintains an open list
Q of open nodes that is implemented as priority queue sorted in non-decreasing order
according to priority function

f∗(u) = Zsp(u) + Zh(u) (2.2)

where Zsp(u) is the cost of the so far cheapest path from r to node u and Zh(u) is a
heuristic function that estimates the remaining cost-to-go from u to any target node.
Usually, Zh(u) is an admissible heuristic, i.e., a lower bound on the remaining cost-to-go.
Then priority function f∗(u) can be interpreted as the cost of the cheapest path from r
to any target node through node u.

In principle Algorithm 2.1 can be used to perform A∗ search with priority function
f∗(·). However, this generic search algorithm creates a search tree, meaning that there
may by multiple nodes that are associated with the same state, which may cause some
redundancies in the search tree since isomorphic sub-trees may emerge multiple times.
To save memory, A∗ is usually implemented as graph search where each encountered
state is associated to exactly one node of the generated search graph, as presented by
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Algorithm 2.2: A∗ search
Input: initial state s0, search heuristic Zh(·)

1 create root node r with σ(r) ← s0 and Zsp(r) ← 0;
2 Q ← {r};
3 for Q not empty do
4 pop u from Q that minimizes f∗(u) = Zsp(u) + Zh(u);
5 if σ(u) is goal state then
6 return solution with minimum cost Zsp(u);
7 end
8 for s ∈ τ(σ(u)) do // expand node u
9 if v ∈ V (G) : σ(v) = s then

10 create node v ∈ V (G) with σ(v) ← s;
11 Zsp(v) ← Zsp(u) + c(σ(u), σ(v));
12 Q ← Q ∪ {v};
13 else if ∃v ∈ V (G) : σ(v) = s ∧ Zsp(u) + c(σ(u), σ(v)) < Zsp(v) then
14 Zsp(v) ← Zsp(u) + c(σ(u), σ(v));
15 Q ← Q ∪ {v};
16 end
17 end
18 end
19 return no solution found

Algorithm 2.2. Similar to Algorithm 2.1, A∗ search selects and removes at each iteration
a node u from Q that minimizes f∗(u). If u is not a goal node then u gets expanded
by creating all successor states τ(σ(u)). This time, however we check for each successor
state s ∈ τ(σ(u)) if we have already generated a node v ∈ V (G) with the same state
σ(v) = s. If not then we proceed as in Algorithm 2.1 be creating a new node that is
inserted into Q. Otherwise, if such a node v exists and we found a cheaper path via
node u, i.e., Zsp(u) + c(σ(u), σ(v)) < Zsp(v) then we update the Zsp-value of node v
accordingly and (re)insert v into Q. Checking if a node with a specific states already
exists is usually efficiently implemented as a hash-table that maps states to nodes. Note
that Algorithm 2.2 uses the set of already generated nodes V (G) to check if a node with
a specific state already exists. Instead of V (G), A∗ search sometimes maintains in the
literature a so-called closed list that contains all nodes that got already expanded during
the search.

If A∗ search selects a goal node the first time then the algorithm terminates with a
solution that can be obtained from following the predecessor chain back to the root
node. Under some conditions, A∗ search is an admissible search meaning that whenever
a feasible solution exists, A∗ will return the optimal solution. Following theorem gives
sufficient conditions to guarantee the admissibility of A∗ search.

17



2. Basic Methodologies for Combinatorial Optimization Problems

Theorem 2.2.1 (A∗ admissibility, Poole and Mackworth [131])
If there is a solution, A∗ using heuristic function Zh always returns an optimal solution, if

• the branching factor is finite (each node has a bounded number of neighbors),
• all arc costs are greater than some ε > 0, and
• Zh is an admissible heuristic

Proof. Part A: A solution will be found. If the arc costs are all greater than some ε > 0,
we say the costs are bounded above zero. If this holds and with a finite branching factor,
Zsp(u) will eventually exceed any finite number for all nodes u in the open list and, thus,
will exceed a solution cost if one exists. Because the branching factor is finite, only a
finite number of nodes must be expanded before the search could get to this point, but
the A∗ search would have found a solution by then.

Part B: The shortest path to the first selected goal node corresponds to an optimal
solution. Heuristic Zh(·) is admissible, this implies that the f∗-value of a node on an
optimal solution path is less than or equal to the cost of an optimal solution, which, by
the definition of optimal, is less than the cost for any non-optimal solution. The f∗-value
of a solution is equal to the cost of the solution if the heuristic is admissible. Because an
element with minimum f∗-value is chosen at each step, a non-optimal solution can never
be chosen while there is a node in Q that belongs to an optimal solution path. So, before
it can select a non-optimal solution, A∗ will have to pick all of the nodes on an optimal
path, including an optimal solution.

As mentioned above, generates Algorithm 2.2 a search graph where each state is associated
to exactly one node. However, it can still happen that at Line 13 a node that was already
expanded is reinserted into Q if a cheaper path to that node could be discovered. We call
the event, that an already expanded node get selected for expansion again, a re-expansion.
Such cases force A∗ to reevaluate whole parts of the already generated search graph. To
avoid such re-expansions we have to consider consistent heuristics.

Definition 2.2.1 (Consistent Heuristic)
A heuristic Zh(·) is consistent if the constraints

Zh(u) ≤ cost(u, v) + Zh(v) ∀(u, v) ∈ A(G) and (2.3a)
Zh(u) = 0 for each target node u (2.3b)

are satisfied, where cost(u, v) is the cheapest cost of a path between node u and node v.

Note that a consistent heuristic Zh(·) satisfies constraint Zh(u) ≤ cost(u, v) + Zh(v) for
each pair of nodes u, v ∈ V (G). Furthermore, each consistent heuristic is always an
admissible heuristic too.

18



2.2. Combinatorial Search

Theorem 2.2.2
A consistent heuristic Zh(·) is also admissible.

Proof. By induction. Let Zh∗ (u) denotes the cost of the cheapest path from u to any goal
node. To prove admissibility we have to show that Zh(u) ≤ Zh∗ (u) for each node u. Thus
let the induction hypotheses be that for an arbitrary node u, Zh(u) ≤ Zh∗ (u) holds.

Base Case: Take a goal node v and consider an arbitrary predecessor node u. Then
we have Zh(u) ≤ cost(u, v) + Zh(v) = cost(u, v) = Zh∗ (u) by Definition 2.2.1. Hence, the
consistent heuristic Zh(u) ≤ Zh∗ (u) behaves like an admissible heuristic in this case.

Induction Step: Consider an arbitrary node v and an arbitrary predecessor node u of
v. Since Zh(·) is consistent we know that Zh(u) ≤ cost(u, v) + Zh(v). By induction step
we further know that Zh(v) + Zh∗ (v) implying that

Zh(u) ≤ cost(u, v) + Zh(v) ≤ cost(u, v) + Zh
∗ (v) = Zh

∗ (u) (2.4)

where the last equality is true since cost(u, v) is the cost of the cheapest path from u to
v and Zh∗ (v) indicates the cheapest cost to get from v to a goal node.

Consistent heuristics are sometimes called monotone heuristics since the f -values along
the paths in G are monotonically non-decreasing. Thus, f -values of nodes that get selected
for expansion do not get smaller. If a consistent heuristic is used for Algorithm 2.2 then
no re-expansions occur.

Theorem 2.2.3 (Re-expansions)
If Algorithm 2.2 uses priority function f∗(·) = Zsp(·) + Zh(·) and heuristic Zh(·) is a
consistent heuristic then no node is re-expanded.

Proof. We proof by contradiction. Suppose that during the expansion of node u we
encounter a successor state s ∈ τ(σ(u)) and an already expanded successor node v s.t.
s = σ(v) and Zsp(u) + c(σ(u), σ(v)) < Zsp(v). Then it must be that f∗(v) ≤ f∗(u) since
node u was selected before node v and consequently Zsp(v) + Zh(v) ≤ Zsp(u) + Zh(u).
From the two inequalities we conclude that

cost(σ(u), σ(v)) < Zsp(v) − Zsp(u) ≤ Zh(u) − Zh(v) (2.5)

which cannot happen if Zh(·) is consistent, i.e., if Zh(u) ≤ cost(u, v) + Zh(v).

Furthermore, A∗ search is optimally efficient if a consistent heuristic is used. Meaning
that up to tie breaking mechanism, there exists no other A∗ like algorithm using the
same consistent heuristic Zh(·) as A∗ search that expands a fewer number of nodes. See
Dechter and Pearl [47] for a detailed study of optimality criteria of A∗ search.

Although A∗ is optimally efficient, the time and space complexity is still exponential
in the worst case by O(bd), where b is the average branching factor and d denotes the
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solution depth, i.e., the number of transitions to obtain the optimal solution. The
practical performance of A∗, however, depends on the used heuristic function Zh(·) since
a powerful heuristic can prune away a substantial number of the bd nodes.

Beam Search

Beam search is a greedy search heuristic that builds a search tree by using a limited
best-first search strategy. The first use of beam search (BS) was in a speech recognition
system by Lowerre [110] and for image recognition by Rubin [138]. The search tree is
created level by level starting with the root node. Thereby a maximum number of β
nodes for each level of the search tree is imposed. At each major step, all nodes of the
current level are expanded and the newly created nodes are inserted into the next level of
the search tree. Then those newly created nodes are sorted according to some heuristic
Zh(·) and the β best nodes are kept. All other nodes are removed from the search tree.
Thus, the number of nodes of each level of the search tree is limited by β. According to
BS terminology, the set of nodes of the current level is denoted as beam B and parameter
β is denoted as beam width. If β is infinite then BS becomes BFS and if β = 1 then BS
behaves like heuristic depth-first search.

Algorithm 2.3 demonstrates a general BS approach. Note that Algorithm 2.3 terminates
as soon as the first goal node is selected for expansion. Another also common termination
strategy is to continue the search as long as there is a remaining node to expand, i.e.,
as long as B is not empty. This has the advantage that a better heuristic solution may
be obtained, but requires longer computation time. BS has in general a worst case
time and space complexity of O(βdmax) where dmax is the maximum depth of the search
tree. However, in practice the time and space complexity depends strongly on the used
heuristic Zh(·).

Algorithm 2.3: Beam Search
Input: initial state s0, search heuristic Zh(·), beam width β

1 create root node r with σ(r) ← s0;
2 B ← {r}; // current beam
3 for B not empty do
4 if ∃v ∈ B : σ(v) is goal state then
5 return solution with minimum cost Zsp(u);
6 end
7 B ← ∅;
8 expand all nodes from B and insert newly created nodes in B ;
9 sort nodes in B according to Zh(·);

10 B ← select β best nodes of B ;
11 remove nodes B \ B from search tree;
12 end
13 return no solution found
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Limited Discrepancy Search

Limited discrepancy search was first introduced by Harvey and Ginsberg [72] on binary
optimization problems. Each state s ∈ S of such binary problems has only two possible
successor states, i.e. |τ(s)| ≤ 2. Thus, a search tree generated by a search algorithm will
only have a branching factor of two. The idea of limited discrepancy search (LDS) is that
a heuristic depth-first search using a greedy heuristic Zh(·) will frequently lead directly
to a feasible heuristic solution. However, this solution is usually not an optimal solution,
since Zh(·) is just a heuristic which may select not always the right successor state to
expand further. Depending on the optimization problem, in some cases the heuristic
depth-first search will even fail to find any feasible solution. Suppose that there is a given
maximum depth of the search tree dmax. Then there are only dmax possibilities that Zh(·)
will fail one single time at some point and prefer the wrong successor state, leading to
a non-optimal solution or to no feasible solution at all. If Zh(·) fails two single times
then there are only dmax(dmax − 1)/2 possibilities. Now, LDS allows during the search a
small number k of so-called discrepancies, where the search algorithm decides against
heuristic Zh(·). Thus, LDS explores in a systematic way the paths on the search tree
that differs from the suggested path by Zh(·) by at most k discrepancies as described by
Algorithms 2.4 and 2.5. The latter is called by Algorithm 2.4 iteratively by increasing k
each time. Algorithm 2.5 performs recursively a depth-first traversal strategy exploring
all paths with maximum k discrepancies. At the beginning Algorithm 2.5 behaves with
k = 0 like heuristic depth-first search. With larger values for k Algorithm 2.5 explores
larger and larger regions of the search space until k reaches finally the maximum depth
of the search tree kmax where Algorithm 2.5 carries out an exhaustive search. Thus,
Algorithm 2.4 is a complete search algorithm that guarantees to finally find a feasible
solution if one exists.

Algorithm 2.4: Limited Discrepancy Search, adapted from [72]
Input: initial state s0, search heuristic Zh(·)

1 for k ← 0 to dmax do
2 create new root node r with σ(r) ← s0;
3 u ← LDS-Probe(r, k, Zh(·));
4 if u = ⊥ then return u;
5 end
6 return ⊥

For the sake of simplicity Algorithm 2.4 creates a whole new search tree at each major
iteration. Of course, this can be avoided by maintaining only one search tree, which is
extended accordingly by each call of Algorithm 2.5. Nevertheless, even when only one
search tree is maintained, LDS has to revisit large parts of the search tree by every call
of Algorithm 2.5. This drawback is avoided by the improved limited discrepancy search
(ILDS), introduced by Korf [102]. To this end, the remaining depth of the search tree is
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Algorithm 2.5: LDS-Probe, adapted from [72]
Input: node u, maximum discrepancies k, search heuristic Zh(·)

1 if σ(u) is goal state then return u ;
2 else if τ(σ(u)) = ∅ then return ⊥ ;
3 expand node u by creating two new nodes u1 and u2 s.t. Zh(u1) ≤ Zh(u2);
4 if k = 0 then return LDS-Probe(u1, 0, Zh(·));
5 else
6 v ← LDS-Probe(u2, k − 1, Zh(·));
7 if v = ⊥ then return ⊥;
8 return LDS-Probe(u1, k, Zh(·));
9 end

additionally forwarded to Algorithm 2.5 allows the search to prune some paths that are
already investigated at previous iterations.

Karoui et al. [93] proposed a further improvement of LDS for instances that are unsolv-
able. Following observation is used to terminate LDS early in such cases. If a call of
Algorithm 2.5 with k discrepancies did not find any solution and did not consume the full
quota of discrepancies k, i.e. the if-statement at Line 4 is never true during the recursion,
then subsequent calls of Algorithm 2.5 with increased values of k will not find a feasible
solution too. Therefore, in those cases LDS can be terminated early and the main loop
in Algorithm 2.4 do not need to iterate over the whole range from 0 to dmax.

Another important detail of LDS-based approaches is the order in which discrepancies
are taken. The original work of Harvey and Ginsberg [72] assumes that the used search
heuristic will make wrong suggestions rather at the beginning of the search when just a few
decisions have been made. Consequently, Algorithm 2.5 investigates paths of the search
tree first, where discrepancies are taken near the root node. However, this assumption
was inadvertently lost when Korf [102] proposed ILDS by taking discrepancies as late
as possible. That motivate Prosser and Unsworth [132] to compare ILDS when taking
discrepancies late or early during the search process. They concluded that LDS-based
approaches should take discrepancies rather early.

Both, LDS and ILDS can be extended to optimization problems with a lager branching
factor then two. However, there is no single unique way how this can be achieved. For
instance, Karoui et al. [93] consider problems with larger branching factors by taking the
i-th branch, ordered by heuristic Zh(·), as the i-th discrepancy. Furcy and Koenig [58]
follow a different strategy by taking the first branch with the lowest Zh-value as zero
discrepancy and each other branch as one discrepancy.

Besides various combination of LDS with other search techniques [9, 160] (e.g. iterative
deepening search) in the literature, we will in particular focus on the combination of BS
and LDS in Chapter 5 of this thesis. Therefore, let us describe here in more detail a
possible combination of both search techniques as suggested by Furcy and Koenig [58].
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Their algorithm, called beam search using limited discrepancy backtracking, does not only
expand one node at each call of Algorithm 2.5, but rather the algorithm expands a set
of β nodes similar to BS. The newly created nodes are sorted according to Zh(·) and
partitioned into slices such that the first slice contains the first β best nodes and so on.
Taking the i-th discrepancy means in this context that the i-th slice is expanded. The
term backtracking in the name of their algorithm refers to the ability to undo decision,
i.e. to take a discrepancy during the search process.

2.3 Exact Methods
In this section we provide an overview as well as basic concepts of the most prominent
exact solution approaches. For optimization problems that are known to be solvable in
polynomial time there is usually a specific algorithm available, which constructs a globally
optimal solution by exploiting some problem specific properties. This section concentrates
more on NP-hard optimization problems which cannot be solved in polynomial time,
unless P=NP. The simplest method to obtain a globally optimal solution for such problems
is to systematically enumerate the set of all feasible solutions S of a COP. However, this
method is only viable for very small instance sizes due to the combinatorial explosion of
the number of feasible solutions with respect to the instance size in general. Therefore
exact methods try to consider larger regions of the solution space only implicitly by ruling
out regions of the solution space where it is guaranteed that no new best solution can be
found. Almost all exact methods are based on the divide-and-conquer principle where
the solution space is partitioned into smaller disjoint subspaces in a recursive way. The
partitioning can be represented as a search tree and ruling out regions means to prune the
search tree. Therefore, the effectiveness of such approaches depends on the efficiency of
the pruning mechanism. Next we will discuss the basic branch and bound (BB) approach
which performs pruning based on lower and upper bounds on the objective value.

2.3.1 Branch and Bound
The branch and bound (BB) approach partitions the solution space of a COP into smaller
disjoint subspaces in a recursive way. The partitioning, also called branching, is done by
setting decision variables to a fixed value or by adding additional constraints. A naive
approach will recursively partition the subspaces further and further until single solutions
are obtained or the subspaces are empty. An effective BB approach aims to stop parts
of this recursive partitioning as soon as possible, by proving that the optimal solution
cannot be found in the considered subspace of feasible solutions. Consequently, splitting
this subspace into further smaller disjoint subspaces will be needless. This partitioning
process can be represented as a search tree where the root node corresponds to the whole
solution space and child nodes to disjoint subspaces. Search methods from Section 2.2 can
be used to traverse the search tree in a systematic way. Thereby, nodes are pruned from
the search tree where in the corresponding subspaces no better solution can be found
than the current best known solution. The pruning is done by deriving lower and upper
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Algorithm 2.6: Generic Branch-and-Bound [28]
Input: COP instance (S , f)
Output: globally optimal solution x∗

1 Q ← {S }; // list of open subspaces
2 U ← ∞; // global upper bound
3 for Q not empty do
4 pop subspace P from Q;
5 LP ← derive lower bound from P ;
6 if LP < U then // pruning
7 x ← search for heuristic solution in P ;
8 if ∃x ∧ f(x) < U then
9 x∗ ← x; U ← f(x); // found new best solution

10 end
11 end
12 if LP < U then
13 partition P into P1, . . . , Pk disjoint subspaces; // branching
14 Q ← Q ∪ {P1, . . . , Pk};
15 end
16 end
17 return x∗

bounds for each subspace of S . For minimization problems an upper bound corresponds
to any feasible solution that is contained in the corresponding subspace. Algorithm 2.6
shows the principle of BB by maintaining a list of open subspaces that needs to be
considered further, and a currently best known upper bound U . At each iteration a
subspace P is taken from Q and a lower bound on the objective value is derived. If the
lower bound is smaller than U then there may still be a better solution in P then U .
Therefore we search for a heuristic solution in P by using a problem dependent heuristic
procedure. If we find a solution x that has a better objective value than U we update
x∗ and U accordingly. Afterwards we check again if the derived lower bound is smaller
than U . If this is the case then there may be still a better solution in P and we start to
partition P into disjoint subspaces which are added to Q. Otherwise if the derived lower
bound is greater or equal then U we proved that there is no better solution contained in
subspace P . Consequently, we do not consider P further and continue with by selecting
the next open subspace from Q.

There are major non-trivial design decisions for devising an effective BB algorithm.
Two of the most important aspects are the ways to derive lower and upper bounds for
subspaces. Strong bounds allow the BB in general to prune nodes that are close to the
root node, which has usually a substantial impact on the computation time of the whole
algorithm. Other important choices are the selection of the next subspace from Q or the
partitioning of the current search space.
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2.3.2 Mathematical Programming
In the section we consider only basics of linear and (mixed) integer linear programming, as
these are used in the context of this thesis by following the concepts and ideas of Bertsimas
and Tsitsiklis [19], Nemhauser and Wolsey [125], and Wolsey [166]. Note, however, that
the field of mathematical programming includes many other advanced techniques like
quadratic programming, semidefinite programming, or stochastic programming. The
idea behind mathematical programming is to formulate an optimization problem in a
mathematical way by using decision variables that are restricted by a set of (in our
case) linear inequalities. Such formulations can then be solved by powerful general
purpose solvers. In Section 2.3.2 we consider linear programming (LP) formulations that
consists of continuous decision variables. Such formulations have the advantage that
the can be efficiently solved, but they can only represent a small subset of optimization
problems. To formulate COPs we have to consider mixed integer linear programming
(MILP) formulations, in Section 2.3.2, that use discrete decision variables. However,
MILP formulations are in general NP-hard.

Linear Programming

A linear programming (LP) problem can be stated in the form

min c x (2.6a)
subject to Ax ≥ b, (2.6b)

x ∈ Rn (2.6c)

with n continuous decision variables in the form of vector x ∈ Rn, m linear constraints
expressed by coefficient vector b ∈ Rm and coefficient matrix A ∈ Rm×n as well as a
linear objective function f(x) = c x given by cost vector c ∈ Rn. The set of feasible
solutions can be expressed by S = {x ∈ Rn | Ax ≥ b}. The goal is to find a globally
optimal solution x∗ ∈ S that minimizes f(·). To solve the LP (2.6a)-(2.6c) we first have
to consider some important geometrical interpretations of a LP problem. The set of
feasible points S forms a convex polytope which is described by the linear inequalities
of Equation (2.6b).

Figure 2.1a shows an example of a convex polytope, completely described by four linear
inequalities. If the polytope is not empty then there exists an optimal solution to the LP
being an extreme point of the polytope. Vector x ∈ S is an extreme point of polytope S
if there do not exists two vectors y, z ∈ S , both different from x, and a scalar λ ∈ [0, 1]
such that x = λy+(1−λ)z [19]. Informally spoken, the optimal solution of a LP problem
is located on one of the corner points of the convex hull of the polytope described by the
LP’s set of linear inequalities (see Figure 1.2a).

Linear programming problems of the form (2.6a)-(2.6c) were first independently consid-
ered by Leonid Kantorovich, Frank L. Hitchcock, and George B. Dantzig in the years
between 1939 and 1946 [45]. Perhaps the best known solving approach to find optimal
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Figure 2.1: (a): A LP problem with two decision variables x = (x1, x2) and four linear
inequalities. The gray area depicts the set of feasible solutions, a two dimensional
polytope, of the LP problem. The optimal solution, represented by a red dot, is located
at one of the corners of the polytope. The red line represents the cost function (or more
precisely a level set of the cost function) and the red arrow indicates the direction in
which we are optimizing. (b): An integer linear programming (ILP) problem with the
same variables and constraints as in (a), but with additional integrality constraints. The
set of feasible solutions is depicted by the black dots whereas the gray area represents
the set of feasible solutions of the LP relaxation. The optimal solution is not located at
one of the polytope’s corners anymore.

solutions is the simplex method proposed by Dantzig [44]. This approach starts at an
extreme point of the polytope and then traverse along the convex hull in a direction
which decreases the objective value towards the next extreme point. Since the number of
extreme points is finite this method will eventually find the optimal solution. Although
modern variants of the simplex method are highly efficient in practice, there are some
exceptions where they may need an exponential number of steps until an optimal solution
is found [101]. Nevertheless, the simplex method is widely used in leading LP solvers
due to an excellent average case performance. Another approach that is also present in
many solvers is the interior-point algorithm with a guaranteed polynomial computation
time [92]. From a theoretical point of view, the ellipsoid algorithm also is of interest
which has a polynomial computation time too [98].

Mixed Integer Linear Programming

Linear programming problems belong to the class of continuous optimization problems
and cover a wide range of practical problems. To express (NP-hard) COPs, however, we
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require mixed integer linear programming (MILP) formulations of the general form

min c x + h y (2.7a)
subject to Ax + Gy ≥ b, (2.7b)

x ∈ Rn
≥0, (2.7c)

y ∈ Zp
≥0, (2.7d)

with p additional discrete decision variables represented by vector y ∈ Zp
≥0, coefficient

matrix G ∈ Rm×p and cost coefficient vector h ∈ Rp. The feasible set of a COP instance
(S , f) is described by

S = (x, y) ∈ Rn
≥0 × Zp

≥0 | Ax + Gy ≥ b (2.8)

and the objective function is f(x, y) = c x+h y. Due to the integrality constraints (2.7d),
MILP problems are in general NP-hard. If a MILP formulation consists only of integer
decision variables then we call this formulation also integer linear programming (ILP)
formulation. See Figure 2.1b for an example of a graphical interpretation of an ILP. A
common way to solve MILP problems is to utilize BB based approaches as described in
Section 2.3.1. There we pointed out that for a BB approach several major design decision
have to be made. First we require some mechanism to compute lower bounds in order to
prune subproblems. A common way to obtain lower bounds is to consider relaxations,
where some constraints of a problem are omitted or weakened such that the problem
is simpler and can be efficiently solved. Solutions of relaxations are not necessarily a
feasible solution to the original problem, but they provide lower bounds. For MILP
problems a natural relaxation is to omit the integrality constraints (2.7d) and make the
variables continuous. The obtained relaxation is a LP problem denoted as LP relaxation
which can be efficiently solved. Clearly the set of feasible solutions of a LP relaxation
is a superset of the set of feasible solutions of the original MILP problem. Thus, every
MILP solution is also a solution of the LP relaxation. Moreover, if a globally optimal
solution of the LP relaxation is integral, i.e., all decision variables are integral then this
solution is also a feasible optimal solution of the MILP problem.

A second major design decision for BB approaches is the way how problems are partitioned
into smaller disjoint subproblems. For MILP problems the branching is typically done by
selecting a decision variable with a fractional value in the solution of the LP relaxation
yLP

j and creating the first subproblem with the additional constraint yj ≤ yLP
j and the

second subproblem with constraint yj ≤ yLP
j . The LP relaxations of these subproblems

can be later again solved by a LP solver possible yielding increased lower bounds.

Algorithm 2.7 depicts the LP-based BB algorithm for MILP problems [42]. The list of
open subproblems is initialized with the set of feasible solutions of the LP relaxation of the
MILP problem. At each iteration a set of feasible LP solutions p is selected and removed
from Q. First, the corresponding optimal solution (xLP, yLP) is computed. If p does
not contain any feasible solution then we prune the current subproblem by infeasibility.
Otherwise, if the obtained solution (xLP, yLP) is worse than the globally best known
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Algorithm 2.7: LP-based Branch-and-Bound [42]
Input: a MILP of the form min{c x + h y | (x, y) ∈ S }
Output: globally optimal solution (x∗, y∗)

1 Q ← {linear programming relaxation of S };
2 U ← ∞; // global upper bound
3 for Q not empty do
4 pop p from Q;
5 obtain optimal LP solution (xLP, yLP) for p;
6 if p = ∅ then prune p by infeasibility;
7 else if f(xLP, yLP) > U then prune p by bound;
8 else if (xLP, yLP) ∈ S then // yLP part is integral
9 if f(xLP, yLP) < U then

10 update upper bound U ← f(xLP, yLP);
11 update incumbent (x∗, y∗) ← (xLP, yLP);
12 end
13 prune p by optimality;
14 else
15 choose an integer variable yj that is still fractional;
16 Q ← Q ∪ {(x, y) ∈ p | yj ≤ yLP

j } ∪ {(x, y) ∈ p | yj ≤ yLP
j };

17 end
18 end
19 return (x∗, y∗)

upper bound U then we prune the subproblem since no better solution can be obtained
by considering p further. Next, we check if yLP of the obtained solution (xLP, yLP) is
integral. If this is the case than (xLP, yLP) is a feasible solution w.r.t. the MILP problem
and we have found the globally optimal solution of the current subproblem p. Thus, we
do not need to consider p further and can prune the subproblem by optimality. If the
feasible solution (xLP, yLP) is better than the current incumbent solution we update the
incumbent solution and the global best upper bound accordingly. Finally, if the obtained
solution contains decision variables yLP with fractional values and is better than U then
we branch the current subproblem by creating two new problems as described above.

2.3.3 Constraint Programming
Constraint programming (CP) relies on a problem formulation using decision variables
and constraints like MILP, but is not restricted to linear constraints and can express
substantially more complex constraints. It is primarily targeted towards constraint
satisfaction problems (CSPs) which do not have an objective function and where the goal
is to obtain any feasible solution that satisfies all constraints. Thus, a CSP has the form
of (x, C, D) with n decision variables expressed by vector x ∈ D with a corresponding
variable domain D = D1 × D2 × · · · × Dn where domain Di corresponds to the i-th
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variable xi. Moreover, the variables are constrained by constraint set C. For an overview
of CP see the Handbook of Constraint Programming by Rossi et al. [137].

There are two fundamental methods that are combined to solve CSPs: constraint propa-
gation and tree search. The latter is related to the traversal strategies which we already
discussed in Section 2.2. The idea behind constraint propagation is to reduce the search
space by removing values from the domains of decision variables that cannot be part of
any feasible solution. For instance, most readers will be familiar with this concept when
solving Sudokus or other logical puzzles from newspapers. Constraint propagation tries
to achieve some level of local consistency. We will describe the three most common levels
in the following. The simplest form of local consistency is the so-called node consistency
that is applied to domains of decision variables belonging to unary constraints, i.e., to
constraints where only one decision variable is involved. Thus, all values are removed
from the variable’s domain that are in conflict with the unary constraint. The next
level of local consistency is arc consistency involving two decision variables and a binary
constraint. We say that a variable is arc consistent with another variable w.r.t. a binary
constraint if there exists for each value of the domain of the first variable at least one
value of the domain of the second variable such that the binary constraint can be fulfilled.
Values are removed from the domain of the first variable for which no valid assignment
of the second variable exists. This process is iteratively applied to all pairs of decision
variables for which binary constraints exist until no domain can be further reduced.
Path consistency generalizes arc consistency by considering a third decision variable
and all corresponding binary constraints. Powerful constraint propagation algorithms
are known for achieving different levels of local consistency, e.g. the AC-3 algorithm by
Mackworth [111].

Constraint propagation is performed until no domain of a decision variable can be further
reduced by considering any of the described local consistency levels. There are three
possible outcomes after the constraint propagation: (1) there exists at least one variable
with an empty domain; in this case the CSP is not feasible and no solution exists, (2)
each domain is reduced to exactly one value in which case a feasible solution is obtained,
and (3) no domain is empty and some domains contain more than one value. In this
last case we have to continue the search to find a feasible solution or prove infeasibility.
This is done by branching, i.e., selecting one of the decision variable and partition the
search space into disjoint subspaces which are then considered further. As described in
Section 2.2 different traversal strategies can be applied to decide which subproblem to
consider next. As soon as a feasible solution is found the search is finished. To prove
that no feasible solution exists each branch of the search must be closed.

To solve COPs with objective function f(·) a sequence of CSPs is usually solved by
adding a variable xn+1 and an additional constraint xn+1 = f(x) to the problem which
is denoted as objective constraint. Hence, variable xn+1 expresses the objective value of
objective function f(·). The corresponding variable domain Dn+1 contains all possible
objective values. In the literature there are several proposed ways how to solve such
problems in the context of constraint programming. For instance Van Hentenryck [158]
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proposed a BB scheme based on constraint programming where initially a tree search
is used to find a first incumbent solution x∗. Afterwards the COPs is augmented by
the constraint xn+1 < f(x∗) to exclude solutions that are not better than x∗. If the
augmented COPs has no feasible solution then x∗ is a globally optimal solution of
the origin COP. Otherwise, x∗ is updated to the newly found better solution and a
corresponding constraint is again added to the COP. This process is repeated until no
feasible solution can be found. It is important that constraint propagation techniques are
applied to the objective constraint in order to get an effective solving approach for COPs.

2.3.4 Dynamic Programming
The dynamic programming (DP) approach was developed by Bellman [10, 11] and is
based on the divide-and-conquer principle. Hence, a problem is recursively divided into
multiple simpler subproblems until the subproblems are simple enough such that they
can be solved. The solution of the subproblems are then used to solve the whole problem.
To efficiently apply the DP approach, subproblems must be overlapping. Then solutions
of subproblems are stored to reuse them for solving other subproblems. In this way DP
avoids solving the same subproblem multiple times. Note that this is contrary to other
exact methods that are based on the divide-and-conquer principle, e.g. the BB approach
from Section 2.3.1 where subproblems are assumed to be disjoint. Another important
condition to efficiently apply DP is if the problem exhibits an optimal substructure, i.e.
if an optimal solution of the problem can be constructed by optimal solutions of its
subproblems. A prominent example of an optimization problem that exhibits an optimal
substructure is finding the shortest path on a graph width non-negative edge weights. If
the shortest path from node v1 to node v4 passes though node v2 and node v3 then the
shortest path from v1 to v3 must pass through v2 too. For a more detailed introduction
we refer to textbooks [18, 48].

Dynamic programming formulations of a COP are usually defined in terms of recursive
equations which are based on the state space representation as defined in Section 2.2.
Thus, they consist of a state space S and transition function τ(·) such that a state
s ∈ S represents a subproblem and τ(s) maps to successor states that represent simpler
subproblems as the subproblem represented by s. The initial state s0 ∈ S represents
the whole problem and cost function c(s, s ) maps to the costs that occurs when taking
state s after state s. The total minimum cost that occur when considering a subproblem
represented by state s can be expressed by

Z∗(s) = min{Z∗(s ) + c(s, s ) | s ∈ τ(s)} (2.9)

where Z∗(s0) denotes the minimum total costs of the whole considered COP. The
attraction of DP is that the recursive Equation (2.9) can be efficiently solved due to
the overlapping property of subproblems and their optimal substructure by storing into
a table already encountered states and their so far best known Z∗-value. Note that
formulation (2.9) is based on the notation introduced in Section 2.2 and may not be the
most general form of DP formulations. Furthermore, the states of a DP formulation are
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frequently partitioned into so-called stages such that a transition from one stage to a
subsequent stage represents a variable assignment to a specific value.

A well known example where DP can be successfully applied is the discrete 0–1 knapsack
problem, which can be solved by a DP-based pseudo-polynomial algorithm [113]. Another
prominent algorithm using the ideas of DP is the Floyd-Warshall algorithm to compute
all pairs of shortest paths in a graph [55, 162].

2.4 (Meta-)Heuristic Methods
Section 2.3 discusses exact methods that are able to find proven optimal solutions
for even NP-hard optimization problems, however, with an exponential worst case
complexity. Therefore, such methods are only applicable for small- and middle-sized
instances. Industrial relevant problems have usually to deal with larger instance sizes
that can frequently not be solved with exact methods in reasonable time. Apart from
that, in industry it is often not so important to obtain a globally optimal solution as
long as the obtained solution is near enough to an optimal solution. Therefore, heuristics
(from Greek ὺρίσκω “I find, discover”) try to efficiently find solutions near the optimal
solution by searching through promising parts of search space S . However, heuristic
approaches usually can not provide any guarantee on the quality of the found solution.

Heuristics range from constructive heuristics over improvement heuristics to metaheuris-
tics. The former assembles solutions from scratch within a polynomial number of steps.
On the contrary, improvement heuristics try to efficiently improve a given solution by
making small changes of the given solution. Finally, metaheuristics provide a powerful
problem independent description on a higher level to find near optimal solutions. They
describe a wide range of ideas how to combine different constructive and improvement
heuristics to efficiently search though the COP’s solution space. In general, metaheuristics
balance between two mechanism: intensification and diversification. In intensification
phases metaheuristics try to explore similar solutions to a currently considered (incum-
bent) solution in order to find better ones. This is usually achieved with variants of local
search (LS)-based approaches. If the intensification phase does not find further improved
solutions then the diversification phase guides the search into a different promising region
of the search space. This is usually done in a non-deterministic way.

The field of metaheuristics has been extensively studied over the last 50 years. Conse-
quently, a lot of different metaheuristics exists and there are several ways how to classify
them [29, 152]. One meaningful way is to differentiate between trajectory based methods
and population based methods. The former follows a single trajectory through the search
space by moving from one solution to another (better) solution. Such metaheuristics have
in common that they find some kind of global optima within the intensification phase
and then try to escape that local optima within the diversification phase. Examples of
such methods are simulating annealing (SA), tabu search (TS), or variable neighborhood
search (VNS). One of the first metaheuristics, proposed by Kirkpatrick et al. [100] is
SA, which tries to escape local optima by mimic the annealing process of crystalline
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solid. At each diversification phase a random solution is selected, which is accepted with
a certain probability even if the selected solution is worse than the current incumbent
solution. The acceptance probability depends on the quality of the selected solution
as well as on the elapsed time such that worse solutions are less accepted over time.
Another prominent metaheuristic is TS. Note that the term metaheuristic was coined by
Glover [62] when introducing TS. This method maintains a tabu list of previously found
solutions in order to prevent the search from visiting these solutions again as long as they
are on the tabu list. It explores the search space in a LS-based way by accepting also
possible worse solutions that are not in the tabu list. In this way, the search prevents
to stuck at local optima. The tabu list is usually limited in size such that solutions are
removed from it as soon as a new solution should be entered and the tabu list will thereby
get too large. The metaheuristic VNS will be discussed in more detail in Section 2.4.4.

On the contrary, population based methods improve multiple solutions simultaneously and
are often inspired by nature. For instance, Dorigo et al. [52] proposed the metaheuristic
ant colony optimization (ACO), which is inspired by ants that are seeking a source of
food. If an ant finds such a source then the ant will lay down a pheromone trail from
the source back to their colony. Consequently, other ants will follow the pheromone
trail too. The process of finding food as a metaphor for constructing a feasible solution
from scratch. Another nature inspired metaheuristic is genetic algorithm (GA) which
mimic the process of natural selection by selecting only the best solutions of a set of
solution population at each iteration. Then those selected solutions are used to create
new solutions by recombination and mutation. A further population based metaheuristic
is particle swarm optimization (PSO), proposed by Kennedy and Eberhart [97], which is
inspired by the movements of a bird flock or a fish swarm.

Note that Sörensen [151] states that in the last two decades the field of combinatorial
optimization was flooded by “novel” metaheuristics that are inspired from biology, physics,
chemistry, or in general from nature [54]. However, there is evidence that a lot of these
novel metaheuristics do not provide any new solving concepts that are interesting from a
scientific point of view. For example, Weyland [164] showed that harmony search [60],
which is inspired from musicians playing together and has lead to massive follow-up
research, is just a special case of the earlier introduced evolution strategies [20], where
all concepts are relabeled accordingly.

We just mentioned a few very prominent metaheuristics. There are much more proposed
approaches and discussing all of them will be clearly out of the scope of this thesis. For
a comprehensive overview we refer to textbooks [28, 29, 152]. In the remaining of this
section we are content to discuss in more detail only the heuristics used within this thesis.
We start in Section 2.4.1 with constructive heuristics followed by basic improvement
heuristics which are covered by Sections 2.4.2 and 2.4.3. Finally, Section 2.4.4 describes
the metaheuristic VNS.
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2.4.1 Constructive Heuristics
The simplest heuristic techniques are construction algorithms where solutions are assem-
bled step by step. Constructive heuristics are usually to a high extent problem specific
algorithms and the author of this thesis is not aware of any classification of construction
algorithms. There is typically a set of solution components that compose a feasible
solution. A construction algorithm starts with an empty solution and selects at each step
a promising solution component to extend the current partial solution until a feasible
solution is obtained. The crucial points are the selection of the next solution component
and the way a solution is extended by it. Usually there are multiple ways to extend a
partial solution by a given solution component. The algorithm can check at each step each
possible solution component and each possible way to extend the current partial solution
with it and take then that component that increases the objective function at least. This
may, however, too time expensive. Therefore, greedy construction algorithm choose the
next solution component in a greedy way by ranking the components according to some
criterion. Constructive heuristics do in general not lead to an optimal solution. Note that
some of the search algorithms from Section 2.2.2 can be seen as typical (advanced) greedy
construction algorithms, e.g. the heuristic depth-first search, BS, or LDS. Frequently,
constructive heuristics are also randomized by selecting next solution component at
random or by breaking ties at random.

2.4.2 Local Search
The basic idea of local search (LS) is to start from an existing solution and move to
another better solution by scanning a well-defined set of neighbor solutions. This process
is continued until no better solution can be found among the current considered set of
neighbor solutions. To define this more formally let us start with the definition of a
neighborhood structure.

Definition 2.4.1 (Neighborhood Structure, adapted from Blum and Raidl [28])
Let (S , f) be an instance of a COP. A neighborhood structure is a mapping

N : S → 2S (2.10)

that maps each feasible solution x ∈ S to a set of neighbor solutions N (x) ⊆ S , also
denoted as neighborhood of x.

A neighborhood structure N (·) is frequently defined implicitly be stating the changes
that must be applied to solution x to get all neighbor solutions N (x). The definition of
neighborhood structures allows us to define locally optimal solutions.

Definition 2.4.2 (Locally Optimal Solution, adapted from Blum and Raidl [28])
Let (S , f) be an instance of a COP and N be a neighborhood structure. A locally
optimal solution x̂ ∈ S with respect to N satisfies

f(x̂) ≤ f(x) ∀x ∈ N (x̂). (2.11)
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Algorithm 2.8: Local Search
Input: An initial solution xinit, a neighborhood structure N
Output: A probably improved solution x w.r.t N

1 x ← xinit;
2 repeat
3 select x ∈ N ;
4 if f(x ) < f(x) then
5 x ← x ;
6 end
7 until stopping criteria satisfied;
8 return x

A locally optimal solution x̂ is called strictly locally optimal if

f(x̂) < f(x) ∀x ∈ N (x̂). (2.12)

If the context is clear then a locally optimal solution x̂ is sometimes also called just
local solution. Algorithm 2.8 aims to find such a locally optimal solution x̂ with respect
to a neighborhood structure N (·). The algorithm starts from a given initial solution
xinit and selects at each iteration a solution x ∈ N (x) from the neighborhood of the
current incumbent solution x. Solution x becomes the current incumbent solution if x is
better than x. Usually the LS procedure terminates if no better solution can be obtained
from the neighborhood of the current incumbent solution. Note that in this case the
returned solution is a locally optimal solution according to Definition 2.4.2. Additionally,
the algorithm may terminate if a certain time limit is exceeded or a certain number of
iteration is reached. A crucial design option of Algorithm 2.8 is the selection operator at
Line 3. There are three possible selection strategies.

Best improvement: The whole neighborhood N (x) is scanned and the best solution
is returned. This option is the most expensive strategy in terms of computation
time. However, it does not depend on the order in which N (x) is search though.

First improvement: A faster option may be to select the first solution that is better
than the current incumbent solution x. This selection strategy, however, depends
strongly on the order in which the neighborhood of x is search through.

Random Neighbor: A neighbor solution x ∈ N (x) is selected at random. This
selection strategy is often with an additionally stopping criterion applied such that
the procedure terminates if selecting a better solution than the current incumbent
solution fails a certain number of times. Note that selecting a neighbor at random
can not guarantee that Algorithm 2.8 will terminate with a locally optimal solution
with respect to N (·).
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The neighbor selection strategy depends to some extent on the sizes of the considered
neighborhoods. For rather small neighborhoods the best improvement selection strategy
could be used whereas for larger neighborhoods the first improvement strategy may be a
better choice. For extremely large neighborhoods only the random neighbor selection
strategy may be practical. Overall, there is no clear rule which selection strategy should
be used. Furthermore, the quality of the obtained locally optimal solution depends also
on the used neighborhood structure (and their neighborhood sizes) as well as on the
used selection strategy. Often a trade-off must be chosen between solution quality and
computation time.

2.4.3 Variable Neighborhood Decent
An extension of LS is to consider more than one neighborhood structure. This is motivated
by the fact that locally optima depend on the used neighborhood structure. Thus using
another neighborhood structure may lead to better locally optimal solutions and we can
escape from the local optima that was obtained by using the first neighborhood structure.
Therefore, variable neighborhood descent (VND) search through different neighborhood
structures by alternating them in a systematic way. Thereby following principles are
considered [67, 68]:

• A local optimum with respect to one neighborhood structure is not necessarily one
for another.

• A global optimum is a local optimum with respect to all possible neighborhood
structures.

• For many problems local optima with respect to one or several neighborhoods are
relatively close to each other.

Algorithm 2.9 shows a VND by considering a finite set of kmax neighborhood structures
Nk(·), 1 ≤ k ≤ kmax. The algorithm starts with an initial solution xinit. First, the locally
optimal solution x̂ with respect to the first neighborhood N1(·) is determined. To escape
the current local optima the VND switches to the next neighborhood structure N2(·)
and determines the best neighbor x. If x is better than x̂, we take x as new incumbent
solution and switch back to the first neighborhood structure. Otherwise, if x is worse
than x̂ then x̂ is locally optimal with respect to N1(·) and N2(·). Consequently, we
consider the next neighborhood structure N3(·). This is continued until we reached the
last neighborhood structure. As soon as we obtain a best neighbor solution x that is
better than the current incumbent solution x̂ we switch back to the first neighborhood
structure and continue with x as new incumbent solution. The algorithm terminates
with a solution that is locally optimal with respect to all considered neighborhood
structures. The neighborhood structures are usually ordered according to their increasing
sizes, i.e., |N1(·)| ≤ |N2(·)| ≤ · · · ≤ |Nkmax(·)| or after their increasing effort to search
through them. However, note that it should be avoided to design them such that
N1(·) ⊆ N2(·) ⊆ · · · ⊆ Nkmax(·) holds.
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Algorithm 2.9: Variable Neighborhood Descent
Input: An initial solution xinit,

a sequence of neighborhood structures Nk, 1 ≤ k ≤ kmax
Output: A probably improved solution x̂

1 x̂ ← xinit;
2 k ← 1;
3 while k ≤ kmax do
4 x ← arg minx ∈Nk(x̂) f(x );
5 if f(x) < f(x̂) then
6 x̂ ← x;
7 k ← 0;
8 end
9 k ← k + 1;

10 end
11 return x̂

2.4.4 General Variable Neighborhood Search
The VNS was first introduced by Mladenović and Hansen [123] and combines deterministic
and stochastic changes of neighborhoods. To this end, two set of neighborhood structures
are used N vnd

k , 1 ≤ k ≤ kvnd
max and N vns

k , 1 ≤ k ≤ kvns
max. The basic idea behind VNS

is to first obtain a locally optimal solution x̂ with respect to neighborhood structures
N vns

k , 1 ≤ k ≤ kvns
max. This phase is also called descent phase or intensification phase

and corresponds to the deterministic part of the VNS. In the shaking or diversification
phase a solution is randomly selected in a controlled way from the shacking neighborhood
structures N vnd

k , 1 ≤ k ≤ kvnd
max in order to escape from local optima. If kvns

max = 1,
i.e., local search is applied in the descent phase by considering only one neighborhood
structure then VNS is also denoted as basic VNS. If more neighborhood structures are
applied and a locally optimal solution is obtained by using a VND approach then we speak
from a general variable neighborhood search (GVNS) which is depicted at Algorithm 2.10.
At each major iteration we randomly select form the first shacking neighborhood N vnd

1 (x)
of the current incumbent solution x a neighbor solution x which is afterwards improved
by applying a VND. If the obtained locally optimal solution x̂ is not better than the
incumbent solution, we switch to the next shacking neighborhood structure N vnd

2 (·) and
repeat the procedure. Otherwise, we found a new best incumbent solution. In this case
we switch back to the first shacking neighborhood structure. The same happens if the last
shacking neighborhood structure is reached. There are different standard termination
criteria. The most common ones are to terminate the GVNS when a certain threshold of
the number of major iterations is succeeded or a certain time limit is reached.

The shaking neighborhood structures are usually ordered according to their sizes, cf. the
VND approach in Section 2.4.3. Furthermore, such neighborhood structures are typically
larger as solutions are only sampled from them.
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Algorithm 2.10: General Variable Neighborhood Search
Input: An initial solution xinit,

a sequence of neighborhood structures N vnd
k , 1 ≤ k ≤ kvnd

max,
a sequence of neighborhood structures N vns

k , 1 ≤ k ≤ kvns
max

Output: A probably improved solution x
1 x ← xinit;
2 repeat
3 k ← 1;
4 while k ≤ kvns

max do
5 randomly select x ∈ N vns

k (x); // shaking phase
6 x̂ ←VND(x , N vnd

k , 1 ≤ k ≤ kvns
max); // descent phase

7 if f(x̂) < f(x) then
8 x ← x̂;
9 k ← 0;

10 end
11 k ← k + 1;
12 end
13 until stopping criteria satisfied;
14 return x

2.5 Decision Diagrams for Optimization

This section describes decision diagrams (DDs) which are a rather new solution approach
in the field of combinatorial optimization. A DD is a graphical data structure which
originally represents Boolean functions [4, 105] and has been successfully applied in
circuit design and formal verification [33, 85]. In the last decade DDs have shown to
be a powerful tool in combinatorial optimization [6, 17, 40]. For a variety of problems
that classical MILP and CP techniques cannot address effectively (due, e.g., weak
dual bounds), new state-of-the-art methodologies could be obtained with DDs at the
core. These problems comprise prominent ones such as the maximum independent set,
set covering, and maximum cut problems [14, 15] as well as diverse sequencing and
scheduling problems [40, 99], including variants of the traveling salesperson problem
(TSP). Bergman et al. [14] state that DDs are an interesting alternative to existing
methods, since they provide five primary solution strategies of general-purpose methods:
relaxation, branching search, constraint propagation, primal heuristics, and modeling to
exploit problem structure. This section does not intend to explain in all details these
five solution strategies and their applications in context of DDs since that would be
clearly out of the scope of this thesis. Instead, we rather provide a relatively short
introduction of DDs such that the reader is able to follow upcoming chapters of this
thesis. For a comprehensive reading on DDs we refer to the excellent textbook [14]
written by Bergman et al.
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2.5.1 Exact, Relaxed, and Restricted Decision Diagrams
Before we define DDs in a more formal way let us assume that we consider a COP with
instances of the form (x, C, D, f) as defined by Definition 2.1.4 in Section 2.1. Moreover,
let S = {x ∈ D | x satisfies C} be the set of feasible solutions. A DD is defined as a
rooted acyclic multi-graph D = (V, A) with node set V (D), arc set A(D), a single root
node r, and a single target node t. The node set is typically partitioned into layers
V (D) = V1(D) ∪ V2(D) ∪ . . . ∪ Vn+1(D), where n is the number of decision variables.
The first layer V1(D) and the last layer Vn+1(D) are singletons containing only r and t,
respectively. Each arc α ∈ A(D) is directed from a node in some layer Vi(D) to a node
in a subsequent layer Vi+1(D), 1 ≤ i ≤ n and is associated to a label val(α) ∈ Di that
represents the assignment of value val(a) to variable xi. There are no two arcs leaving the
same node and having the same label. The assignment of xi to value val(α) causes some
costs which is encoded by the length z(α) ∈ R of arc α. Every path p = (α1, . . . , αn)
from r to t specifies an assignment xp = (val(α1), . . . , val(αn)) of decision variables xi,
1 ≤ i ≤ n and the corresponding total length is given by z(p) = n

i=1 z(αi). The set of r
to t paths represents the set of assignments Sol(D).

Exact. We say that D is an exact DD if the r–t paths encode precisely the set of
feasible solutions S of the considered COP. More precisely, if

S = Sol(D), (2.13a)
f(xp) = z(p), ∀r–t paths p in D (2.13b)

holds. Given an exact DD D , finding the optimal solution is reduced to finding the
shortest r–t path in D . See Figure 2.2a for an example of an exact DD. If all decision
variables are binary, i.e. there are at most two outgoing arcs in a corresponding DD,
then the DD is called a binary decision diagram (BDD). Otherwise, if there are nodes
with more than two outgoing arcs then we speak from a multivalued decision diagram
(MDD). Exact DDs tend to grow exponential in size for NP-hard COPs. Thus, in general
it will not be possible to create exact DDs within reasonable time or within a reasonable
memory consumption. Therefore exact DDs are approximated by restricted or relaxed
DDs by usually imposing a limit on the layer size, i.e. the number of nodes each layer
is allowed to contain. Depending on the considered DD type, different mechanisms are
used to keep a layer below the maximum allowed layer size.

Furthermore, there is a strong relationship between a recursive DP formulation with
state space S, transition function τ(·, ·), and transition cost function c(·, ·) and an
exact DD D [74]. Each node u ∈ V (D) is associated to a state σ(u) ∈ S and an arc
α = (u, v) ∈ A(D) from node u ∈ Vi(D), 1 ≤ i ≤ n to a target node v ∈ Vi+1(D)
represents the transition from state σ(u) to state σ(v) = τ(σ(u), val(α)) by assigning
value val(α) ∈ Di to decision variable xi. The length of the arc is thereby equal to
the costs caused by the transition from σ(u) to σ(v), i.e. z(α) = c(σ(u), σ(v)). If the
assignment of value val(α) ∈ Di to variable xi is not feasible then the transition function
maps to the infeasible state 0̂ ∈ S, i.e. τ(σ(u), val(α)) = 0̂. It is possible to provide a
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generic framework for compiling different types of DDs by considering the underlying
state graph of a recursive DP formulation.

Restricted. The r–t paths of a restricted DD encodes a subset of feasible solutions S
such that

S ⊇ Sol(D), (2.14a)
f(xp) ≥ z(p), ∀r–t paths p in D (2.14b)

holds. Thus, the shortest path of a restricted DD encodes a heuristic solution of the
considered COP. Restricted DD are created by removing or ignoring nodes and incident
arcs of a corresponding exact DD as demonstrated in Figure 2.2b. By considering the
connection of the state space representation, each search tree or search graph created
by one of the search methodologies described in Section 2.2 can be seen as a restricted
DD. Consequently, each search approach may be a candidate to compile restricted DDs.
In particular a BS-based approach is used in the literature to compile restricted DDs
which is called top-down compilation (TDC) in DD-jargon. Hence, a restricted DD D
is compiled layer by layer starting with the root node r at layer V1(D). All nodes of
the current layer Vi(D), 1 ≤ i ≤ n are expanded using transition function τ(·, ·) and the
newly created nodes are inserted into the subsequent layer Vi+1(D). If the layer size of
Vi+1(D) exceeds some threshold β then |Vi+1(D)| − β nodes are heuristically selected
and removed from D . In this way the size of each layer is kept under β.

Relaxed. We say that a DD is relaxed if the r–t paths encode a superset of feasible
solutions S . More formally, a DD is relaxed if

S ⊆ Sol(D), (2.15a)
f(xp) ≤ z(p), ∀r–t paths p in D for which xp ∈ S (2.15b)

holds. The shortest path of a relaxed DD may not be feasible, however, the length of the
shortest path is a feasible lower bound on the optimal objective value. Relaxed DDs are
compiled by superimposing nodes of a corresponding exact DD. Thereby a subset of nodes
U ⊆ Vi(D), 1 < i ≤ n from the exact DD is replaced by a new node such that all incoming
and outgoing arcs from the selected nodes are redirected to the new node. See Figure 2.2c
for an example of a relaxed DD. In this way the size of layer Vi(D) can be limited to a
desired number of nodes. Due to this merging operation no paths of the exact DD are
removed, but new paths may emerge. Those new paths must correspond to non-feasible
assignments. To compute the state of the merged node a problem specific state merger
⊕(U) operation must be specified. Relaxed DDs represent a discrete relaxation of the
considered COP which may be a real alternative to e.g. a LP-relaxation (see Section 2.3.2).
They are able to provide strong dual bounds for classical problems including maximum
independent set problem [15] or variants of scheduling and sequencing problems [40, 99].
Note that sometimes it may be necessary to additionally modify the length of incoming
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(c) Relaxed DD

Figure 2.2: An example of an exact, restricted, and relaxed DD of a COP with four
decision variables x = (x1, x2, x3, x4). The nodes of the DDs are partitioned into layers
Vi, 1 ≤ 5, with V1 = {r} and V5 = {t}. Arcs are labeled with the corresponding transition
costs and a shortest r–t path is highlighted in each case. (a) Exact DD with shortest r–t
path of length 10. (b) Restricted DD obtained by removing node v5 and all incident arcs
such that the shortest r–t path encodes a heuristic solution with length 20. (c) Relaxed
DD where nodes v4 and v5 are replaced by the new merged node v leading to a new
shortest r–t path of length 5 which represents a non-feasible variable assignment.

arcs of merged nodes in order to obtain a feasible relaxation. However, in the following
we will ignore this detail since this thesis do not consider cases where this is required.

To conclude, DDs are a promising rather new solution approach where COPs can be
described in a recursive way by using a DP-based formulation. Furthermore, they provide
mechanisms to obtain heuristic solutions (restricted DDs) as well as dual bounds from
discrete relaxations (relaxed DDs) of the considered problem. All three concepts are for
instance combined in a DD-based BB approach which was able to provide state-of-the
art results on classical problems including maximum independent set problem, maximum
cut problem, or maximum 2-satisfiability problem [15].

2.5.2 Compilation Methods for Relaxed Decision Diagrams

We describe now a generic framework to compile relaxed DDs which is based on recursive
DP formulations. The idea is to extract relaxed DDs from the underlying state graph
of a DP formulation by imposing a maximum number of nodes β at each layer. In the
literature there are two prominent approaches for relaxed DDs compilation. The TDC is
a constructive approach which compiles relaxed DDs layer by layer. Alternatively, the
incremental refinement (IR) approach is an iterative procedure that starts with an initial
relaxed DD and strengthens the relaxed DD at each iteration by separating a constraint,
i.e. removing infeasible assignments from the relaxed DD.
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Top-Down Compilation

Algorithm 2.11 shows the TDC in detail. To compile a relaxed DD D the algorithm
checks if the current layer Vi(D), 1 ≤ i ≤ n exceeds the maximum allowed number of
nodes β at each iteration. If this is the case then we start to merge nodes by selecting
some nodes U ⊆ Vi(D) from layer Vi(D) and replacing them with a new node u with
a corresponding merged state σ(u ) = ⊕(U). Moreover, all incoming arcs from a node
u ∈ U are redirected to the new node u . Note that the selection of nodes at Line 4 is
problem specific. The most common way is to define some greedy criterion, e.g. based on
the length of the shortest path from r to nodes of the current layer, and select according
to this criterion |Vi(D)| − β + 1 nodes at once. But also more advance strategies are
possible, e.g. selecting only pairs of nodes until |Vi(D)| is reduced to β. After it is
guaranteed that the size of Vi(D) is below β, Algorithm 2.11 starts to expand all nodes of
layer Vi(D) by considering for each node u ∈ Vi(D) all possible assignments d ∈ Di that
can be feasible assigned to decision variable xi. Newly created nodes are inserted into
the subsequent layer Vi+1(D). Finally, all nodes in the last layer Vn+1(D) are merged to
one target node t.

Algorithm 2.11: Top-down compilation, adapted from Bergman et al. [14]
Input: Initial state s0, transition function τ(·, ·),

maximum width β, merge operator ⊕
Output: A relaxed DD D

1 create node r with σ(r) = s0 and let V1(D) = {r};
2 for i = 1 to n do
3 while |Vi(D)| > β do
4 U ← select nodes from Vi(D);
5 replace nodes in U with new node u with σ(u ) = ⊕(U);
6 forall u ∈ Vi−1(D) and (u, v) ∈ A(D) with v ∈ U do
7 remove (u, v) from A(D) and insert arc (u, u );
8 end
9 end

10 Vi+1(D) ← ∅;
11 forall u ∈ Vi(D) and d ∈ Di do
12 if τ(u, d) = 0̂ then
13 create node v with σ(v) = τ(u, d) and add v to Vi+1(D);
14 create arc α = (u, v) with z(α) = c(σ(u), σ(v));
15 end
16 end
17 end
18 merge nodes in Vn+1(D) into target node t;
19 return D
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Incremental Refinement

An alternative procedure to obtain relaxed DDs is the IR approach that modifies a
relaxed DD iteratively until an exact DD is obtained or the size of each layer is equal to
the maximum allowed width β. The modification is done by separating constraints in
order to remove infeasible variable assignments from the DD. Hence, at each iteration a
stronger relaxation of the considered COP is obtained. This can be seen as an analogy
to separation procedures in ILP where a continuous relaxation is strengthened by adding

Algorithm 2.12: Incremental refinement, adapted from Bergman et al. [14]
Input: Initial relaxed DD D , initial state s0,

transition functions τC(·, ·), ∀C ∈ C, maximum width β
Output: A possible strengthened relaxed DD D

1 while ∃ constraint C ∈ C violated in D do
2 σ(u) = χ for all nodes u ∈ V (D);
3 σ(r) = s0;
4 for i = 1 to n do // filtering step
5 for u ∈ Vi do
6 foreach α = (u, v) ∈ A(D ) do
7 if τC(σ(u), val(α)) = 0̂ then
8 remove arc α from A(D);
9 end

10 end
11 end
12 for u ∈ Vi do // refinement step
13 foreach α = (u, v) ∈ A(D) do
14 if σ(v) = χ then
15 σ(v) ← τC(σ(u), val(α));
16 else if σ(v) = τC(σ(u), val(α)) and |Vi+1(D)| < β then
17 remove arc α from A(D);
18 create new node v with σ(v ) = τC(σ(u), val(α));
19 add arc (u, v );
20 copy outgoing arcs from v as outgoing arcs from v ;
21 Vi+1(D) ← Vi+1(D) ∪ {v };
22 else
23 update σ(v) with τC(σ(u), val(α));
24 end
25 end
26 end
27 end
28 end
29 return D
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linear inequalities, so-called cuts, to the ILP model. Instead of linear inequalities we use
now the form of DP models to modify the DD. For this purpose let us assume that for
each constraint C ∈ C an own DP model is defined with its own states and transition
function τC(·, ·). Algorithm 2.12 depicts the general IR procedure. It starts with an initial
relaxed DD D , usually a DD that contains only one node at each layer, and removes at
each major iteration all violations of a specific constraint C ∈ C in a top-down fashion by
splitting corresponding nodes. The algorithm terminates if there is no further violated
constraint or each layer has reached the maximum allowed width β. Another additional
criterion may be to terminate as soon as the shortest path corresponds to a feasible
variable assignment, since in this case optimality could be proven.

At each major iteration a violated constraint C ∈ C is selected and all states are reset by
a value χ. Afterwards two main steps, filtering and refinement are applied on each layer
starting with the first layer V1(D).

Filtering step The filtering step consists of removing arcs between layer Vi(D) and
Vi+1(D), 1 ≤ i ≤ n that belong only to paths that encode an infeasible variable
assignment. Algorithm 2.12 identifies such infeasible arcs by checking if the cor-
responding transition leads to an infeasible state 0̂. If an upper bound on the
objective value is given then the algorithm may also remove arcs that belong only
to paths that total lengths exceed the given upper bound. Note that the filtering
step is here demonstrated in a rather abstract way. An IR approach for a specific
COP will usually apply problem specific filtering rules that sometimes requires also
to augment the used states in order to gather enough information for identifying
infeasible arcs.

Refinement step The refinement step split nodes to resolve violations of constraint
C by considering each arc (u, v) between layer Vi(D) and Vi+1(D), 1 ≤ i ≤ n
separately. If (u, v) is infeasible according to τC(·, ·) then it is removed from D .
Note that nodes without incoming or outgoing arcs are deleted automatically. If
node v is not associated to any state then we set σ(v) to the corresponding state
represented by arc (u, v). Otherwise, if node v is already associated to another state
and the maximum allowed width of layer Vi+1(D) does not exceed β we split node
v by creating a new node v with the corresponding state and removing arc (u, v).
Outgoing arcs from v are copied by v .

Note that filtering and refinement operations can be modified and applied in any order that
is suitable for the problem at hand. Moreover, the filtering operation can still be applied
even if the maximum allowed width is already met. Another problem dependent crucial
point is the order in which violated constraints are considered. Furthermore, problem
specific IR-based approaches may not consider all constraints during the refinement step.
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CHAPTER 3
Anytime A∗ Search

C onsidering the classical A∗ search from Section 2.2.2, good solutions are typically
only obtained in the very last phase of the search. If A∗ terminates early due
to limited memory or limited computation time then often no feasible solution

is available at all. In this chapter we will consider a novel anytime A∗ search that
periodically changes the search strategy from best-first-search to beam search (BS) in
order to obtain intermediate heuristic solutions. This anytime A∗ algorithm is used to
tackle a job sequencing problem that has its application as a subproblem in the field of
patient scheduling for cancer treatments. The objective is to minimize the makespan.

Preliminary work was presented at the Third International Conference on Machine
Learning, Optimization and Big Data (MOD 2017) [82]. There we proposed an anytime
A∗ search that uses a greedy construction algorithm as a diving mechanism to obtain
intermediate heuristic solutions. Furthermore, we provided an NP-hardness proof for the
considered job sequencing problem and we derived a basic lower bound on the makespan
objective such that the A∗ search is able to prove optimality. A substantially extended
version of this work was published in the Artificial Intelligence (AI) journal [79], where
both the exact and the heuristic performance of the anytime A∗ search got improved.
The former was achieved by additionally deriving two strengthened lower bounds for
the makespan, which enables A∗ to prove more instances faster to optimality whereas
the latter got boosted by using an advanced diving mechanism based on a combination
of BS and local search (LS) to provide high quality intermediate heuristic solutions in
regular intervals until a proven optimal solution is found. Finally, we presented a general
variable neighborhood search (GVNS) at the 16th International Conference on Parallel
Problem Solving from Nature (PPSN XVI) [95] to obtain heuristic high quality solutions
for hard-to-solve instances that could not be solved to proven optimality by the anytime
A∗ search. This work arises from Thomas Kaufmann’s master thesis [94] on heuristically
solving the patient scheduling problem for cancer treatment.
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The remainder of this chapter is structured as follows. First we informally introduce and
motivate the job sequencing problem in Section 3.1 followed by a detailed discussion of
related work in Section 3.2. A formal definition of the problem as well as a NP-hardness
proof is provided in Section 3.3 whereas Section 3.4 reveals three different functions for
lower bounds on the makespan. The next Section 3.5 describes a greedy construction
algorithm that utilizes the lower bounds as search guidance. Section 3.6 is about the
novel anytime A∗ algorithm that searches on a special state graph structure to efficiently
exploit symmetries. Moreover, the greedy construction algorithm is extended to an
advanced BS that is in turn used within the A∗ search as an advanced diving mechanism
to obtain regularly intermediate heuristic solutions. Hence, the A∗ algorithm is able
to return a feasible heuristic solution whenever the algorithm is stopped (except for
a short time period until the first solution is found). In addition, a LS procedure is
applied to any intermediate heuristic solution obtained from BS to further improve
these solutions. For comparison purposes a mixed integer linear programming (MILP)
formulation and a constraint programming (CP) formulation is provided in Sections 3.7
and 3.8, respectively. A GVNS is proposed in Section 3.9 for hard-to-solve instances.
The GVNS is based on move and exchange neighborhood structures and uses an efficient
evaluation scheme to scan the neighborhoods of the current incumbent solution. Extensive
experiments in Section 3.10 on difficult classes of problem instances demonstrate the
excellent performance of the hybrid A∗ search. Many even large instances with up to 2000
jobs can be solved to proven optimality within seconds, and for the remaining instances
solutions with small optimality gaps of usually less than one percent can be obtained.
These remaining optimality gaps can be even substantially further reduced by the GVNS.

3.1 Introduction
This chapter considers the following combinatorial optimization problem. A finite set
of jobs must be executed without preemption. Each job requires two resources during
its execution: (1) a common resource, which is required during a certain part of the
job’s processing period, and (2) a secondary resource, which is required during the whole
processing period. The common resource is shared by all jobs whereas the secondary
resource is shared only by a subset of the other jobs.
Problems with such characteristics arise, for example, in the context of the production of
certain products. Imagine a single machine (the common resource) sequentially processing
some fixtures or molds (the secondary resource) that contain some raw material. Before
the processed fixtures/molds are available for further usage again, some postprocessing
(e.g., cooling) might be required. However, our motivation for tackling this problem
has a different source: the scheduling of patients in modern particle therapy for cancer
treatment [115, 118, 120]. In this rather novel cancer treatment technique, carbon or
proton particles are accelerated in a cyclotron or synchrotron (i.e., a specific kind of
particle accelerator) to almost the speed of light. The particle beam is then directed into
a treatment room where it is used to radiate a patient. Typically, between two and four
differently equipped treatment rooms are available but only one particle accelerator, and
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the single particle beam can only be directed into one of these rooms at a time. The
treatment room for each patient is determined in advance and in dependence on the
patient’s specific needs. Each patient generally requires a specific preparation (related
to positioning, fixation, sedation, etc.) in the room before the actual irradiation can
start. Moreover, after the treatment some further time is usually needed for medical
inspections before the patient can actually leave the room and the treatment of a next
patient may start in the same room. Note that the available rooms correspond to the
secondary resources mentioned above, while the particle beam is the common resource.
We consider the scheduling of a set of patients in a given time period (for example, one
day) in such a facility. The optimization goal is to finish the treatment of all patients
as early as possible, which is known as makespan minimization in the related literature.
This problem, whose technical description will be provided in Section 3.3, is henceforth
denoted as job sequencing problem with one common and multiple secondary resources
(JSOCMSR).
Note that the JSOCMSR is rather easy to solve when (1) the common resource usage
is the exclusive bottleneck and enough secondary resources are available or (2) the pre-
and postprocessing times during which only the secondary resources are required, are
negligible in comparison to the jobs’ total processing times. In such cases the jobs can,
essentially, be performed in almost an arbitrary ordering and the common resource is
exploited without any breaks. The problem, however, becomes challenging when pre- and
postprocessing times are substantial and many jobs require the same secondary resources.
In this chapter we consider such difficult scenarios.

3.2 Related Work
We split the further treatment of related work into three parts. First we consider the
specific application background in particle therapy patient scheduling. The second
part addresses further related problems, and the third part deals with related solution
techniques.
Concerning particle therapy patient scheduling, the JSOCMSR clearly is a strongly
simplified formulation picking out only certain aspects. The complete practical scenario
comprises many more aspects, such as, for example, large time horizons of several weeks,
sequences of therapies for patients to be treated, additionally needed resources including
medical staff and their availability time windows, and a combination of more advanced
objectives and diverse soft constraints. A significant amount of previous work covers
patient scheduling for radiotherapy on a higher level without planning the detailed timing
within each day; see, e.g., [41, 89].
The single particle accelerator, which is only found in modern particle treatment facilities,
is an expensive bottleneck resource that needs to be exploited in conjunction with multiple
treatment rooms in the best possible way. As this technology is quite recent, there are
only a few existing works. Maschler et al. [120] proposed a greedy construction heuristic
which is extended towards an iterated greedy (IG) metaheuristic and a greedy randomized
adaptive search procedure (GRASP). These approaches treat the whole problem as a
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bi-level optimization problem in which the upper level is concerned with the assignment
of treatments to days, and the lower level corresponds to the detailed scheduling of
the treatments assigned at each day. Thus, our JSOCMSR represents the core of these
daily sub-problems. In [119], the IG metaheuristic was further refined by including an
improved makespan estimation for the daily scheduling problems, which, however, is still
a rather crude approximation. Last but not least, this IG metaheuristic was extended in
[115] to additionally consider soft constraints for unwanted deviations of starting times
of the individual treatments for each therapy. For more details on solving radiotherapy
based scheduling problems we refer to [114].

To the best of our knowledge, there are only a few further publications dealing with other
scenarios similar to the JSOCMSR. Among those, Veen et al. [157] consider a problem
that has the closest relation to the JSOCMSR. The common resource corresponds to a
machine on which the jobs are processed and secondary resources needed during pre-
and postprocessing are called templates. However, in this problem it can be assumed
that the postprocessing times are negligible compared to the total processing times of
the jobs. This implies that the starting time of each job only depends on its immediate
predecessor. More specifically, a job j requiring a different resource than its predecessor
j can always be started after a setup time only depending on job j, while a job requiring
the same resource can always be started after a postprocessing time only depending
on job j . Due to these characteristics, this problem can be interpreted as a traveling
salesperson problem (TSP) with a special cost structure. It is shown that this problem
can be solved efficiently in time O(n log n), where n is the number of jobs.

Another related problem is the no-wait flowshop problem. A survey covering this problem
in addition to similar problems can be found in [5]. Each job needs to be processed
on each of m machines in the same order and the processing of the job on a successive
machine always has to take place immediately after its processing has finished on the
preceding machine. This problem can be solved in time O(n log n) for two machines
via a transformation to a specially structured TSP [61]. In contrast, for three and
more machines the problem is NP-hard, although it can still be transformed into a
specially structured TSP. Röck [135] proved that the problem is strongly NP-hard for
three machines by a reduction from the 3D-matching problem.

Finally, note that the JSOCMSR can be modeled as a more general resource constrained
project scheduling problem (RCPSP) with maximal time lags. For a survey on RCPSPs
with various extensions and respective solution methods see Hartmann and Briskorn [71].
Among the state-of-the-art-techniques for solving general RCPSPs are in particular CP
techniques utilizing lazy clause generation and satisfiability modulo theory [7, 142]. A
corresponding RCPSP instance can, for example, be obtained from a JSOCMSR instance
by splitting each job into three activities which are the preprocessing, the main part
also requiring the common resource, and the postprocessing. These activities must
be performed for each job in this order with a maximal time lag of zero. Moreover,
all resource requirements must be respected. Another way to obtain a corresponding
RCPSP instance from a JSOCMSR instance is to use for each job two activities that
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must be scheduled at respectively related times: one activity for the part where the
common resource is required and a second activity for the whole processing time where
the secondary resource is required. We essentially make use of this point-of-view in our
CP approach presented in Section 3.8.

As mentioned already above, one of our core contributions to the algorithmic side is an
A∗ algorithm for solving the JSOCMSR. A∗ is one of the standard algorithms in the
field of artificial intelligence for path planning and, more generally, finding shortest paths
in possibly huge graphs [70, 134]. In particular, our approach belongs to the class of
Anytime A∗ algorithms, which are complete but also can be stopped at almost any time
and are then likely to yield a reasonable approximate solution. Most of the Anytime A∗

algorithms from the literature are based on so-called heuristic weighted A∗ algorithms
that were first introduced by Pohl [130]. These algorithms guarantee that the objective
value of the obtained solution is not worse than the objective value of the optimal solution
times an approximation ratio ε ≥ 1. Thus, ε determines a trade-off between solution
quality and the time it takes until the first heuristic solution is found. A large value for
ε makes the algorithm greedier, meaning that the algorithm will faster find a heuristic
solution. Hansen and Zhou [66] provide an anytime weighted A∗ algorithm which does
not stop after the first solution is found but rather continues with the search. This
algorithm produces a sequence of improved solutions as well as a sequence of improved
dual bounds until the optimal solution is found. A similar approach is suggested by
Likhachev, Gordon and Thrun [108], called anytime repairing A∗ (ARA∗), where ε is
decreased each time a new solution is found, instead of letting the parameter constant
over the whole search. Restarting weighted A∗ (RWA∗) introduced by Richter, Thayer
and Ruml [133] is based on ARA∗ and restarts the search each time ε is decreased. In
this way, the algorithm is able to undo bad decisions, which may have been taken at
the beginning of the search earlier. Another A∗ based anytime algorithm which does
not require any parameter is anytime nonparametric A∗ (ANA∗) introduced by van den
Berg et al. [156]. The same algorithm was also independently introduced under the name
anytime potential search (APTS) by Stern et al. [148, 149] via a different derivation [147].
Both algorithms maximize the greediness of the search based on the current incumbent
solution. This leads to the fact that APTS/ANA∗ finds an initial solution faster and
needs less time between improving solutions when compared to ARA∗.

As we will see in the remainder of this chapter, our new A∗ variant is able to rapidly
find high quality solutions for the JSOCMSR by exploiting strong lower bounds for the
makespan as search guidance. In order to obtain solutions of similar quality with one
of the above weighted A∗ algorithms, parameter ε would need to be set very close to
one. However, such a parameter choice typically leads in our case to a long-running time
until a first solution is found, which stays in contrast to our goal of achieving a good
anytime behavior. Using a larger ε to find a first solution faster in general reduces the
quality of this first solution substantially. In Section 3.10.8 we experimentally compare
ARA∗ to our anytime A∗ algorithm and the results verify this behavior. Therefore, using
a weighted A∗ based algorithm is not promising for solving the JSOCMSR.
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An anytime A∗ algorithm that is not based on weighted A∗ is anytime window A∗ (AWA∗)
as introduced by Aine et al. [3]. This algorithm uses a technique based on sliding windows
to reduce the set of partial solution extensions to quickly find a heuristic solution. At
each iteration the window width is increased such that improved solutions can be found
until AWA∗ can eventually prove optimality.

Anytime pack search (APS), introduced by Vadlamudi et al. [155], is based on BS.
The algorithm consecutively performs BS iterations, keeping partial solutions which are
pruned during the BS iterations in memory. A BS iteration ends if a heuristic solution is
found. Then a new BS iteration starts by selecting the best partial solution from the
set of pruned partial solutions. The algorithm terminates if the set of pruned partial
solutions is empty. In this case the last found solution must be an optimal solution.
The APS approach is similar to our anytime A∗ approach since we also use BS to find
intermediate heuristic solutions. The difference is that we embed BS into an A∗ algorithm
such that BS is performed each time after a specific number of classical A∗ iterations.
Our experimental comparison shows that for the JSOCMSR our anytime A∗ algorithm
performs better than APS, cf. Section 3.10.4.

Finally, note that our suggested anytime A∗ algorithm was simultaneously applied in a
similar way to the longest common palindromic subsequencing problem by Djukanovic [49].

3.3 Problem Definition and Complexity
In formal terms, an instance of the JSOCMSR consists of a set of n jobs J = {1, . . . , n}
that are to be executed without preemption, the common resource 0, and a set of m
secondary resources R = {1, . . . , m}. The set of all resources is denoted by R0 = {0} ∪ R.
Each job j ∈ J has a total processing time pj > 0 during which it fully requires a
secondary resource qj ∈ R. Furthermore, each job j requires the common resource 0
for a duration p0

j with 0 < p0
j ≤ pj − ppre

j , where ppre
j ≥ 0 is the preprocessing time. In

particular, the need for resource 0 starts at time ppre
j , counted from the start of the job’s

processing. A solution to the problem is described by the starting times s = [sj ]j∈J of all
jobs, with sj ≥ 0. Such a solution s is feasible if no two jobs require a resource at the
same time.

The objective is to find a feasible schedule that minimizes the finishing time of the job
that finishes last. This optimization criterion is known as the makespan, and it can be
calculated for a solution s by

MS(s) = max
j∈J

(sj + pj). (3.1)

As each job requires the common resource 0, and only one job can use this resource at
a time, a solution implies with respect to sj + ppre

j a total ordering of the jobs. Vice
versa, any ordering—i.e., permutation—π = [πk]k=1,...,n, of the jobs in J can be decoded
into a feasible solution in the straight-forward greedy way by scheduling each job in the
given order at the earliest feasible time. We call a schedule in which, for a certain job
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permutation π, each job is scheduled at its earliest time, a normalized schedule. Obviously,
any optimal solution is either a normalized schedule or there exists a corresponding
normalized schedule with the same objective value. We therefore also use the notation
MS(π) for the makespan of the normalized solution induced by the job permutation π.

For convenience, we further define the duration of the postprocessing time by ppost
j =

pj − ppre
j − p0

j , ∀j ∈ J and denote by Jr = {j ∈ J | qr = r} the subset of jobs requiring
resource r ∈ R as secondary resource. Note that J = r∈R Jr. The minimal makespan
over all feasible solutions, i.e., the optimal solution value, is denoted by MS∗.

3.3.1 Computational Complexity
The decision variant of the JSOCMSR answers the question if there exists a feasible
solution with a makespan corresponding to a given constant MS∗.

Theorem 3.3.1
The decision variant of the JSOCMSR is NP-complete for m ≥ 2.

Proof. Our problem is in class NP since a solution can be checked in polynomial time.
We show that the decision variant of the JSOCMSR is NP-complete by a polynomial
reduction from the well-known NP-complete partition problem (PP) [59], which is stated
as follows: Given a finite set of positive integers A ⊂ N, partition it into two disjoint
subsets A1 and A2 such that a∈A1 a = a∈A2 a.

An instance of the PP is transformed into an instance of the JSOCMSR as follows. Let
m = 2 and J consist of the following jobs:

• For each a ∈ A there is a corresponding job j ∈ {1, . . . , |A|} ⊂ J with processing
time pj = a requiring resource qj = 1 and the common resource 0 the whole time,
i.e., p0

j = pj and ppre
j = 0.

• Furthermore, there are two jobs j ∈ {|A| + 1, |A| + 2} ⊂ J with processing times
pj = 1

2 a∈A a + 1 requiring resource qj = 2 the whole time but the common
resource 0 just at the first time slot, i.e., p0 = 1 and ppre

j = 0.

Let MS∗ = p|A|+1 + p|A|+2 = a∈A a + 2. A feasible solution to the JSOCMSR with
makespan MS∗ must have the jobs |A| + 1 and |A| + 2 scheduled sequentially without any
gap and all other jobs in parallel to those two. A corresponding solution to the PP can
immediately be derived by considering the integers associated with the jobs scheduled in
parallel to job |A + 1| as A1 and those scheduled in parallel to job |A + 2| as A2. The
obtained solution to the PP must be feasible since a∈A1 a = a∈A2 a = 1

2 a∈A a holds
as the jobs corresponding to the integers do not overlap and there is exactly 1

2 a∈A a time
left at the common resource 0 when processing job |A| + 1 and job |A| + 2, respectively.
It also follows that if there is no JSOCMSR solution with makespan MS∗, then there
cannot exist a feasible solution to the PP.
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Figure 3.1: Resource-specific individual lower bounds and the overall lower bound MSLB0

for an example instance with n = 5 jobs and m = 3 secondary resources.

Clearly, the described transformation of a PP instance into a JSOCMSR instance as well
as the derivation of the PP solution from the obtained schedule can both be done in time
O(|A|), i.e., in polynomial time.

Consequently, the decision variant of the JSOCMSR is NP-complete.

Corollary 3.3.1.1
The makespan minimization variant of the JSOCMSR is NP-hard.

3.4 Lower and Upper Bounds
First of all, a trivial upper bound for MS∗ is obtained when scheduling all jobs strictly
sequentially, yielding MSUB = j∈J pj .

A simple lower bound for the makespan can be calculated on the basis of each resource
r ∈ R by taking the total time over all jobs requiring resource r, i.e.,

MSLB0
r =

j∈Jr

pj . (3.2)

Similarly, another lower bound can be obtained on the basis of resource 0 by

MSLB0
0 = min

j,j ∈J | j=j ∨|J |=1
(ppre

j + ppost
j ) +

j∈J

p0
j . (3.3)

Instead of taking only the sum of the time requirements for resource 0, this calculation
also considers the minimal times for preprocessing and postprocessing of the first and
last scheduled jobs, respectively. Now, we can take the maximum of these m + 1 resource-
specific lower bounds and obtain

MSLB0 = max
r∈R0

MSLB0
r . (3.4)

Figure 3.1 illustrates these relationships. It follows that taking any normalized solution
has an approximation factor of no more than m, since MSUB ≤ m · MSLB0.
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Theorem 3.4.1
MSLB0 is a lower bound for the makespan of the JSOCMSR.

Proof. Consider an arbitrary instance of the JSOCMSR and let MSLB0 be the computed
lower bound according to (3.4). Assume that there exists a normalized feasible solution
s with MS(s) < MSLB0. Let r be a resource that determines the maximum in (3.4), i.e.,
MSLB0

r = MSLB0. We have to consider two cases:

• r = 0: The lower bound is determined by the sum of the total processing times
of those jobs which require the secondary resource r ∈ R, that is, j∈Jr

pj . Since
the makespan of solution s is smaller than the sum j∈Jr

pj , resource r must be
used by more than one job at the same time. Hence, solution s would be infeasible,
which contradicts our original assumption.

• r = 0: The lower bound is determined by the common resource 0. We have to
distinguish between two cases: (1) MS(s) < j∈J p0

j and (2) j∈J p0
j ≤ MS(s) <

minj,j ∈J | j=j ∨|J |=1(ppre
j +ppost

j )+ j∈J p0
j . In the first case solution s is not feasible

because the common resource 0 must be used by more than one job at the same
time to achieve a makespan MS(s) < MSLB0. In the second case, the possibility
remains that the common resource 0 is not used by more than one job at the same
time. But then either there must exist a job j ∈ J with a starting time sj < 0 or
there must exist a job j ∈ J such that sj + pj > MS(s). Again, all these cases
contradict our original assumption.

We conclude that MSLB0 is indeed a lower bound for MS∗.

3.4.1 Strengthened Lower Bounds
The assumption of lower bound MSLB0 (from Eq. (3.4)) is that regarding a determining
resource r ∈ R all jobs Jr can be scheduled consecutively one after the other without
any gaps. MSLB0 can be further strengthened by checking if the usage of the common
resource 0 by all other jobs in J \ Jr causes a conflict with this assumed schedule of jobs
in Jr. This is done by considering the maximal possible continuous duration in which
resource 0 is not used when scheduling the jobs in Jr consecutively in any order. To
determine this duration we consider the maximum gap in the usage of resource 0 for
any consecutively scheduled pair of jobs from Jr if |Jr| > 1, or just the maximum of the
preprocessing and postprocessing times in case Jr is singleton, i.e.,

pprepost
max (Jr) =





max
j,j ∈Jr | j=j

(ppre
j + ppost

j ) if |Jr| > 1

max
j∈Jr

(ppre
j , ppost

j ) if |Jr| = 1

0 otherwise.

(3.5)
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Algorithm 3.1: Determine time gaps [gi]ki=1 for jobs Jr

Input: Jobs Jr

Output: Sequence of time gaps [gi]ki=1
1 g1 ← pprepost

max (Jr) with corresponding jobs j1 and j2 for ppre
j1 and ppost

j2 , resp.;
2 Jpre ← Jpre \ {j1}, Jpost ← Jpost \ {j2};
3 for k ← 2; Jpre = ∅ ∧ Jpost = ∅; k ← k + 1 do
4 (j1, j2) ← arg max(j,j )∈Jpre×Jpost(ppre

j + ppost
j );

5 gk ← ppre
j1 + ppost

j2 ;
6 Jpre ← Jpre \ {j1}, Jpost ← Jpost \ {j2};
7 end
8 return [gi]ki=1

Now, each job j ∈ J \ Jr that requires the common resource 0 longer then pprepost
max (Jr)

causes a delay of at least p0
j − pprepost

max (Jr) in the schedule of the jobs in Jr. Hence, the
sum of all minimum delays

h1
r =


j∈J\Jr

max p0
j − pprepost

max (Jr), 0 if Jr = ∅

0 otherwise
(3.6)

for each resource r ∈ R can be added to the corresponding lower bounds MSLB0
r . We

obtain MSLB1
r = MSLB0

r + h1
r as new bound for each secondary resource r ∈ R and the

overall strengthened lower bound

MSLB1 = max MSLB0
0 , max

r∈R
MSLB1

r . (3.7)

Lower bound MSLB1 can be even further strengthened. Instead of considering always
only the largest possible gap pprepost

max (Jr) in the usage of resource 0 to compute the sum of
delays as done in Eq. (3.6), we can more precisely consider a tighter set of maximal time
gaps [gi]ki=1 with k = |Jr| that possibly may occur together in a consecutive scheduling
of the jobs in Jr. Algorithm 3.1 shows the calculation of this set, which is obtained as a
decreasingly sorted sequence of time gaps [gi]ki=1, i.e., g1 = pprepost

max (Jr) ≥ g2 ≥ · · · ≥ gk,
for r ∈ R.

Line 1 ensures that the first element of the sequence is always g1 = pprepost
max (Jr). Sets Jpre

and Jpost contain the jobs whose pre- and postprocessing times are not already consumed
for calculating the next time gap, respectively. At each iteration k of the while-loop, jobs
j1 ∈ Jpre and j2 ∈ Jpost are determined such that gk = ppre

j1 + ppost
j2 is the next largest

time gap. At the end of the loop jobs j1 and j2 are removed from sets Jpre and Jpost,
respectively.

Algorithm 3.2 shows the calculation of the strengthened sum of minimum delays h2
r

exploiting the time gaps [gi]ki=1 for resource r ∈ R. Set J0 contains all jobs J \ Jr which
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Algorithm 3.2: Determine the strengthened sum of the minimum delays h2
r

Input: Resource r
Output: h2

r

1 if Jr = ∅ then return 0;
2 h2

r ← 0;
3 J0 ← J \ Jr;
4 determine time gaps [gi]ki=1 concerning Jr according to Alg. 3.1;
5 for i = 1; J0 = ∅ ∧ i ≤ k; i ← i + 1 do
6 j ← arg maxj∈J0 p0

j ;
7 if p0

j < gi then return h2
r ;

8 h2
r ← h2

r + p0
j − gi;

9 J0 ← J0 \ {j};
10 end
11 return h2

r + j∈J0 p0
j

are not yet consumed. After determining the time gaps [gi]ki=1, the for-loop iterates
through them starting with the largest time gap g1. At each iteration, the job j that,
among those currently being in J0, has the largest requirement of resource 0 is determined.
The loop terminates if set J0 becomes empty or p0

j is less than the currently largest
time gap gi. If p0

j ≥ gi then it is not possible to schedule job j without shifting some
of the starting points of the jobs in Jr. Therefore, we add the difference p0

j − gi to h2
r.

Afterwards job j is removed from set J0. In the last step of Algorithm 3.2 the total
processing times from the remaining jobs in J0 are added to h2

r .

Once all terms h2
r for r ∈ R are computed by Algorithm 3.2, they are added to the basic

individual lower bounds, that is, MSLB2
r = MSLB0

r + h2
r . Finally, the joined strengthened

lower bound is obtained by

MSLB2 = max MSLB0
0 , max

r∈R
MSLB2

r . (3.8)

Figure 3.2 shows an example where the bound MSLB2 corresponds to the optimum
makespan MS∗ and the bounds MSLB1 and MSLB0 are weaker. The example illustrates
an instance with n = 6 jobs and m = 2 secondary resources. Jobs J1 = {1, 2, 3, 4}
need secondary resource 1 and jobs J2 = {5, 6} resource 2. Note that all jobs in J1
require the common resource 0 exactly one unit of time whereas all jobs in J2 need
resource 0 during their whole execution. The optimal solution is shown in the upper
third of the figure with an optimal makespan of MS∗ = 14. However, according to
Eq. (3.4) MSLB0 = 12, which is illustrated in the lower part of the figure. The common
resource 0 is at most pprepost

max (J1) = 3 units of time free when considering only the
jobs in J1. Hence, h1

1 = 1 according to (3.6) since job 5 claims resource 0 for more
than 3 units of time and job 6 claims resource 0 for exactly 3 units. This gives us a
strengthened bound of MSLB1 = 13 according to (3.7), which is illustrated in the lower
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Figure 3.2: Example for the lower bounds MSLB0, MSLB1 and MSLB2.

part of Figure 3.2. However, considering the time gaps [gi]4i=1 = [3, 2, 2, 1] for resource 1
according to Algorithm 3.1, we get h2

1 = p0
5 − g1 + p0

6 − g2 = 4 − 3 + 3 − 2 = 2. This results
in an improved lower bound MSLB2 = 14 as shown in the middle part of Figure 3.2.

Theorem 3.4.2
MSLB1 and MSLB2 are lower bounds for the makespan and MSLB0 ≤ MSLB1 ≤ MSLB2

for any instance of the JSOCMSR.

Proof. See the Appendix A.

3.5 Least Lower Bound Heuristic
We construct a heuristic solution by iteratively selecting a not yet scheduled job, which is
executed after all already scheduled jobs at the earliest possible time. The crucial aspect
is the greedy selection of the job to be scheduled next, which is based on the lower bound
calculation from the previous section. Therefore, we call this heuristic least lower bound
heuristic (LLBH).

Let πp be the current partial job permutation representing the current normalized
schedule and J ⊆ J be the set of remaining unscheduled jobs. Initially, πp is empty and
J = J . Given πp, the earliest availability time for each resource—that is, the earliest
time when the resource could be used by a next yet unscheduled job—can be calculated

56



3.5. Least Lower Bound Heuristic

from the respective finishing time of the last job using this resource:

t0 = maxj∈J\J sj + ppre
j + p0

j for J = J

0 else
(3.9)

tr = maxj∈Jr\J sj + pj for Jr \ J = ∅
0 else

∀r ∈ R (3.10)

These times, however, can possibly be further increased (trimmed) as the earliest usage
time of resource r ∈ R by a successive job also depends on the remaining unscheduled
jobs and the earliest usage time of the common resource 0. We therefore apply the rule

tr ← max tr, t0 − max
j∈Jr∩J

ppre
j ∀r ∈ R | Jr ∩ J = ∅. (3.11)

Moreover, also t0 might be increased as its earliest usage time also depends on the
remaining unscheduled jobs and the earliest usage times of their secondary resources.
These relations are considered by applying the rule

t0 ← max t0, min
j∈J

(tqj + ppre
j ) = max t0, min

r∈R|Jr∩J =∅
(tr + min

j∈Jr∩J
ppre

j ) . (3.12)

Also note that after a successful increase of t0 by rule (3.12), it might be possible to
further increase the tr-value of some resource r ∈ R according to the respective rule
(3.11). We therefore apply the trimming rules repeatedly until no further increase of any
of the earliest availability times is achieved.

Following our general lower bound calculation for the makespan in (3.4), it is possible to
derive a more specific lower bound for a given partial permutation πp considering any
possible extension to a complete solution on the basis of each resource r ∈ R | Jr ∩ J = ∅
by

MSLB0
r (πp) = tr + j∈Jr∩J pj for Jr ∩ J = ∅

0 else
∀r ∈ R. (3.13)

We define MSLB0
r (πp) = 0 for any resource r that is not required by any remaining job in

J since these bounds are not relevant for our further considerations.

A lower bound w.r.t. the common resource 0 can be calculated similarly by

MSLB0
0 (πp) = max t0 + min

j∈J
ppost

j , min
j,j ∈J | j=j ∨|J |=1

(tqj + ppre
j + ppost

j ) +
j∈J

p0
j . (3.14)

Clearly, an overall lower bound for the partial solution πp is obtained by taking the
maximum of the individual bounds

MSLB0
max(πp) = max

r∈R0
MSLB0

r (πp). (3.15)
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For selecting the next job in LLBH to be appended to πp, we always consider the impact of
each job j ∈ J on each individual bound MSLB0

r , r ∈ R0, as this gives a more fine-grained
discrimination than just considering the impact on the overall bound MSLB0

max(πp), which
would often lead to ties.

More specifically, let f(πp) = [f0(πp), . . . , fm(πp)] be the vector of the bounds MSLB0
r (πp)

for r ∈ R0 sorted in non-increasing value order, i.e., f0(πp) = MSLB0
max(πp) ≥ f1(πp) ≥

. . . ≥ fm(πp) holds.

Let πp ⊕ j denote the partial solution obtained by appending job j ∈ J to πp. We
consider πp ⊕ j better than πp ⊕ j for j, j ∈ J iff there exists an i ∈ {0, . . . , m} such
that

fi(πp ⊕ j) < fi(πp ⊕ j ) ∧ ∀i < i | fi (πp ⊕ j) = fi (πp ⊕ j ). (3.16)

In other words, the sorted vectors f(πp ⊕j) and f(πp ⊕j ) are compared in a lexicographic
way.

LLBH selects at each iteration a job j ∈ J yielding a (locally) best extension. In the
case when multiple extensions have equal f -vectors, one of them is chosen at random.

3.5.1 Strengthened Lower Bounds for Partial Solutions
As done in Section 3.4.1, we can also strengthen the lower bound MSLB0(πp) for a
partial solution πp by checking for each secondary resource r ∈ R if a consecutive
schedule of all not yet scheduled jobs J ∩ Jr is possible. This is done by adding the
strengthening terms hi

r(πp) to MSLB0
r (πp) for each secondary resource r ∈ R—that is,

MSLBi
r (πp) = MSLB0

r (πp) + hi
r(πp)—and taking the maximum of these lower bounds to

get the final strengthened lower bound for partial solution πp and strengthening type
i ∈ {1, 2}, i.e.,

MSLBi(πp) = max MSLB0
0 (πp), max

r∈R
MSLBi

r (πp) . (3.17)

The terms h1
r and h2

r , for all r ∈ R, can be computed in a way similar to Section 3.4.1, by
either considering the maximum time gap pprepost

max (J ∩Jr) (see Eq. (3.5)) or by considering
a sequence of time gaps [gi]ki=1 as computed by Algorithm 3.1, respectively. This time,
however, we only consider jobs J ∩ Jr that are not already scheduled and require the
secondary resource r. Furthermore, we also have to take into account that some resources
are already used. If the earliest availability time of resource r is greater than the earliest
availability time of resource 0, i.e., tr > t0 then we also have to consider the additional
time lag tr − t0 for computing h1

r or h2
r. This can be achieved by temporarily adding a

pseudo job n + 1 with qn+1 = r, ppre
n+1 = 0, p0

n+1 = t0 and pn+1 = tr to set J . Note that
the postprocessing time is ppost

n+1 = tr − t0. Hence, for the calculation of the strengthening
terms we assume that the already consumed parts of resource r are represented by job
n+1. Concerning the LLBH, the vector of lower bounds f (πp) can be computed in exactly
the same way as described before by using the strengthened lower bounds MSLBi

r (πp)
instead of the basic lower bounds MSLB0

r (πp) for the secondary resources r ∈ R.
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3.5.2 Combined Lower Bounds
Although MSLB2 is—according to Theorem 3.4.2—the strongest lower bound among the
ones described in Section 3.3, in preliminary experiments it turned out that, in practice,
the basic lower bound MSLB0 tends to guide the LLBH better than MSLB2. This is because,
for a given partial solution πp, the evaluation vectors f2(πp ⊕ j) = [f2

0 (πp ⊕ j), f2
1 (πp ⊕

j), . . . , f2
m(πp ⊕ j)] with respect to MSLB2, for all j ∈ J , tend to be more similar to each

other than the evaluation vectors f0(πp ⊕ j) = [f0
0 (πp ⊕ j), f0

1 (πp ⊕ j), . . . , f0
m(πp ⊕ j)]

concerning the basic lower bound MSLB0. Furthermore, the elements of the vectors
f2(πp ⊕ j) tend to be more similar so that they are not such a good discriminator to
select more promising extensions. In order to obtain an evaluation vector with both
properties—that is, (1) a good search guidance for the LLBH and (2) a strong lower
bound for partial solutions πp—we combine vectors f2(πp) and f0(πp) in an interleaved
way. More precisely, in order to make use of a combination of lower bounds MSLB0 and
MSLB2, the vector of lower bounds f used in LLBH is defined as

f(πp) := f2
0 (πp), f0

0 (πp), . . . , f2
m(πp), f0

m(πp) . (3.18)

Hereby, the first element is always equal to the stronger lower bound MSLB2, whereas
the second element is always equal to the basic lower bound MSLB0.

3.6 A∗ Algorithm and Extensions
The proposed A∗ algorithm follows more or less the classical principle as described in
Section 2.2.2. It performs a minimum cost path search on a weighted directed acyclic
state graph from a root node r to a goal node. The algorithm manages an open list Q
and the set of all already considered nodes. Each node x can be evaluated by a function
f∗(x) = Zsp(x) + Zh(x), where the term Zsp(x) represents the so far smallest known cost
from the root node r to node x, and the heuristic term Zh(x) represents estimated cost
from node x to a goal node. Initially, the root node r is created and inserted into Q. At
each iteration of A∗ a node x minimizing function f∗(x) is taken from the open list. This
node is expanded by deriving all possible successor states. For each successor state x it
is checked if a corresponding node already exists. If this is the case, Zsp(x ) is updated if
a dominating (i.e., shorter) path to x has been found by reaching x from x; otherwise,
the transition from x to x can be skipped. If no node exists yet for state x , a new one
is created and inserted into the open list Q. The algorithm terminates when A∗ selects a
goal node for expansion.

If function Zh(·) is admissible, meaning that Zh(x) never overestimates the minimum
cost from node x to a goal node for all nodes x and Zh(x ) = 0 holds for any goal node x ,
then A∗ is known to be complete, i.e., it yields a proven minimum cost path. Under
some restrictions and conditions, it can further be shown that—using the same heuristic
information of function Zh(·)—there exists no algorithm which expands fewer nodes than
A∗ to find a proven minimum cost path, see Section 2.2.2 for more details.
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3. Anytime A∗ Search

Our idea is to extend the solution construction principle of LLBH to perform a systematic
search for a proven optimal solution. Let us reconsider the evaluation vector f(·) from
the LLBH. Since the first entry of this evaluation vector represents a lower bound for the
JSOCMSR according to Theorem 3.4.2, it can be used as admissible evaluation function
f∗(·). The vector t = [tr]r∈R0 of the trimmed earliest availability times tr, r ∈ R0 as
defined by Equations (3.9)–(3.12) can be seen as the already occurred costs, and the
remaining sums of processing times are the heuristic information used to estimate the
makespan of the optimal solution.

It remains to define the nodes in our weighted directed acyclic state graph in more detail.
In principle, each node represents any (partial-)schedule that already schedules exactly a
specific set of jobs. More precisely, each node contains the following information:

• an unordered set Ĵ ⊂ J of already scheduled jobs, implemented by a bit-vector, and

• a set of so-called non-dominated times (NDT) records.

Each NDT record represents a specific partial solution by storing:

• the vector t of earliest availability times,

• the last scheduled job jlast ∈ Ĵ after which t was obtained, and

• an evaluation vector f similar to f with one modification that will be described
below.

Thus, each node aggregates all partial solutions πp having the same jobs Ĵ scheduled,
and each NDT record provides more specific information for each non-dominated partial
solution. In our state graph there is exactly on goal node g which represents any complete
schedule and one root node r which represents the empty schedule. The ordering of the
scheduled jobs Ĵ of a specific partial solution is indirectly given. For a pair of a node and
one of its NDT records—henceforth called a (node, NDT record) pair—the corresponding
ordering can be derived in a reverse iterative manner by considering the fitting preceding
(node, NDT record) pairs, always continuing with a pair where the node is characterized
by Ĵ \ {jlast} and the NDT record has times tr allowing to schedule job jlast without
exceeding the tr values of the previous (node, NDT record) pair.

Initially a starting (node, NDT record) pair corresponding to the empty schedule is
generated with Ĵ = ∅, t = 0, jlast = none, and f = (MSLBi, . . . , MSLBi) with a chosen
lower bound type i ∈ {0, 1, 2}. The goal node is the node with Ĵ = J , corresponding to
all complete solutions. See Figure 3.3 for an illustration of a state graph.

The set of all so far considered nodes is implemented by a hash-table with Ĵ as key
in order to efficiently find already existing nodes for reached states. The open list is
more specifically realized by a priority queue Q containing references to all open (node,
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Open partial solution

Expanded partial solution

Dominated partial solution

Complete solution

∅

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4}

{1, 2, 3, 4}

1 2 3 4

2 3 4 1 2 3

3

4 2 4 2

3

2

Figure 3.3: Example of a partial state graph created by A∗ search with 4 jobs J =
{1, 2, 3, 4}. Each node contains an unordered set Ĵ ⊆ J of already scheduled jobs and a
set of NDT records depicted as small circles. Gray NDT records are currently in the open
list whereas red NDT records are already expanded during the search. Crossed NDT
records got dominated by another NDT record and are therefore removed from the set of
NDT records as well as from the open list. Arc labels corresponds to a scheduled job
j ∈ J \ Ĵ . Note that this is just an abstract example to sketch a state graph. Therefore,
we omit further details including earliest availability times, last scheduled jobs, and
evaluation vectors of NDT records.

NDT record) pairs, that is, the non-dominated partial solutions that have not yet been
expanded. As order criterion the is-better relation from the LLBH (see Eq. 3.16) is used.

Note that the first entry of our evaluation vector f from LLBH is not necessarily
monotonically non-decreasing when considering any path from r to g. Thus, it can
happen that the lower bound f i

0(πp ⊕ j) of an extension of a partial solution πp with
job j ∈ J \ Ĵ(πp) is less than the lower bound f i

0(πp). To establish monotonicity at least
for the first element in vector f—which corresponds to the lower bound of πp—we use a
modified evaluation vector f during the A∗ search, where the first element f i

0 (πp ⊕ j)
is always set to max(f i

0 (πp), f i
0 (πp ⊕ j)). In this way, the largest lower bound along a

path from r to g is always preserved.
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Algorithm 3.3 provides a pseudo-code of our A∗ algorithm, already including details about
the embedded beam search and local search, which will be described in the following
subsections. In each major iteration, a best (node, NDT record) pair is taken from the
open list Q in line 12 and expanded in line 19 by considering the addition of each job
j ∈ J \ Ĵ as shown separately in Algorithm 3.4. Hereby, the corresponding node x is
looked up—or created, in case it does not yet exist—and a respective NDT record is
determined by calculating the earliest usage times t and the evaluation vector f . If
the lower bound of the first element of vector f is larger than the makespan of our
current best solution MS(πbest), this new NDT record cannot lead to a better solution.
Therefore, in this case the new NDT record is disregarded and we move on to the next
unscheduled job j ∈ J \ Ĵ . Otherwise, the possibly multiple NDT records in the node
are checked for dominance: Only non-identical and non-dominated entries are kept. An
NDT record with time vector t dominates (denoted by ) another NDT record with
time vector t iff ∀r ∈ R0 (tr ≤ tr) ∧ ∃r ∈ R0 (tr < tr). Algorithm 3.4 returns all newly
created (node, NDT record) pairs which are then inserted into the open list. Note that
we implicitly assume that (node, NDT record) entries in the open list Q corresponding to
dominated and therefore removed NDT records are also deleted or skipped when selected
for expansion. The A∗ algorithm stops when the goal node representing a complete
solution is selected for expansion. This complete solution must be optimal since f0 is an
admissible lower bound for the makespan.

3.6.1 Advanced Diving with Beam Search
The A∗ algorithm described above aims at finding a proven optimal solution as quickly as
possible. Feasible solutions are, however, usually only found very late. To turn A∗ into
an anytime algorithm which is able to find also intermediate complete heuristic solutions
significantly earlier than when terminating with a proven optimum we proposed in our
preliminary work [82] a LLBH-based diving extension: In regular intervals, the search
switches from the A∗ strategy temporarily to depth-first search node expansion following
the successor selection from LLBH until a complete solution is obtained. In this work we
extend this simple diving to a more powerful beam search (BS).

Beam search is a heuristic search method to solve combinatorial optimization problems.
The search is performed on a graph and can be seen as an extension of depth first search.
However, instead of expanding always the most promising node at each level of the
generated search tree, BS expands the kbw-most promising nodes, where parameter kbw
is also called beam width. Note that if kbw = 1 BS behaves exactly like greedy depth
first search until a complete solution has been reached. Beam search was first used by
Lowerre [110] in a speech recognition system and by Rubin [138] for image recognition.
Furthermore, BS was also successfully applied to scheduling problems such as job shop
scheduling [56, 140] and single machine scheduling [159].

Our Algorithm 3.3 switches at the very beginning and after each δ regular iterations from
its classical best-first strategy temporarily to a BS-based completion strategy in order
to find promising complete solutions at regular intervals. After such a switch to diving
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Algorithm 3.3: A∗+BS+LS Algorithm for the JSOCMSR
1 initialize open list Q and B with (∅, (0, none, (MSLB0, . . . , MSLB0));
2 iter ← 0, diving ← true, Bext ← ∅;
3 repeat
4 if diving then
5 if B = ∅ then
6 B ← the best kbw entries from Bext according to f ;
7 Bext ← ∅;
8 end
9 (Ĵ , (t, jlast, f )) ← select randomly one entry from B;

10 remove (Ĵ , (t, jlast, f )) from Q and B;
11 else
12 (Ĵ , (t, jlast, f )) ← Q.pop();
13 end
14 if |Ĵ | = n and not diving then
15 πbest ← derive complete solution from (Ĵ , (t, jlast, f ));
16 return proven optimal solution πbest

17 end
18 if iter mod δ = 0 then diving ← true;
19 E ← expand((Ĵ ,(t, jlast, f )), πbest, diving); // see Alg. 3.4
20 Q.insert(E);
21 apply LS to all complete solutions in E; // see Alg. 3.5
22 if new πbest obtained from LS then
23 start injection of πbest; // see Alg. 3.6
24 end
25 if diving then Bext ← Bext ∪ E;
26 if not diving then iter ← iter + 1;
27 if B = ∅ ∧ Bext = ∅ then diving ← false;
28 until time- or memory-limit reached;
29 return heuristic solution πbest and lower bound f0

mode (indicated by setting the parameter diving to true), the currently selected node is
expanded. From all obtained extensions, only those that are new and non-dominated
are kept and added to the open list Q and to the set of current beam extensions Bext.
Afterwards only the best kbw extensions from set Bext are filtered out as beam set B.
The BS continues by expanding all extensions from set B with Algorithm 3.4. Again,
the hereby created extensions are added to open list Q and set Bext if they are new
and non-dominated. If an extension represents a complete solution then we also keep it
even if the corresponding earliest availability times are dominated. The reason for this
exception is that we apply a local search procedure to all complete solutions later in
line 21 of Algorithm 3.3. If all extensions from set B are expanded, set B is replaced by
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Algorithm 3.4: A∗ Node Expansion Algorithm
Input: (node, NDT record) pair (Ĵ ,(t, jlast, f )), current best solution πbest,

parameter diving indicating if in diving mode or not
Output: set E of extensions, i.e., new non-dominated (node, NDT record) pairs

1 E ← ∅;
2 forall j ∈ J \ Ĵ do
3 find or create node x with Ĵ(x) = Ĵ ∪ {j};
4 calculate new NDT record (tnew, j, fnew) from t;
5 if diving or MS(πbest) ≥ f0,new then
6 if ∃(td, jlast

d , fd) ∈ NDTs(x) | td = tnew ∨ td tnew then
7 Remove every (td, jd, fd) ∈ NDTs(x) | tnew td;
8 Add (tnew, j, fnew) to NDTs(x);
9 E ← E ∪ {(Ĵ , (tnew, j, fnew))};

10 else if |Ĵ(x)| = n then
11 E ← E ∪ {(Ĵ , (tnew, j, fnew))};
12 end
13 end
14 end

the best kbw extensions from set Bext. The process continues until set B as well as set
Bext become empty, in which case the algorithm switches back to A∗’s normal best-first
search strategy. Note that for beam width kbw = 1, our A∗ embedded BS corresponds
to the simple diving from [82]. Furthermore, each (node,NDT) pair which is expanded
during the BS phase is kept in the A∗ search tree such that A∗ will avoid expanding
them a second time.

3.6.2 Local Search and Solution Injection
We attempt to further improve any complete intermediate solution by the following local
search (LS) procedure based on the insertion neighborhood. Given a solution π, the
insertion neighborhood contains all solutions that can be obtained by removing a job
j ∈ J from π, which we denote by π j, and reinserting j at another position. Following
a best-improvement strategy, a best neighbor of the current solution always is selected as
incumbent solution for the next step until no further improvement is possible and thus a
local optimum has been reached. Algorithm 3.5 sketches this procedure.

Each insertion neighborhood is efficiently searched by only considering job removals that
actually may improve the makespan. To this end, let us consider the dependency graph
Gd(π) = [V d(π), Ad(π)] of solution π whose nodes V d(π) correspond to the jobs J and
whose arcs Ad(π) represent the dependencies in such a way that there is an arc (j, j )
between any two jobs j, j ∈ J , j = j iff job j starts to use some resource immediately
after job j has released this resource. All the paths in this dependency graph from any
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Algorithm 3.5: Local Search Procedure
Input: solution π

1 πbest ← π;
2 repeat
3 π ← πbest;
4 determine critical jobs Jc(π) by breadth-first search of dependency graph of π;
5 forall j ∈ Jc(π) | MS(π j) < MS(πbest) do
6 π ← greedily insert j into π j by trying all alternative positions;
7 if MS(π ) < MS(πbest) then
8 πbest ← π ;
9 end

10 end
11 until MS(πbest) = MS(π);
12 return πbest

scheduled job starting at time point zero to any job finishing last are so-called critical
paths, and together, they define the makespan. Now, observe that only the removal of
some node (job) lying on all these critical paths will yield an immediate reduction of
the makespan, and only these jobs are therefore of interest to find a better solution
within the insertion neighborhood. We call these jobs critical jobs Jc(π) and determine
them by breadth-first search (BFS) of the dependency graph in time O(nm). Figure 3.4
shows an example of such a dependence graph, for more information about critical paths
we refer to [129]. Moreover, only those critical jobs whose removal results in a partial
solution with a makespan that is lower than the makespan of the current best solution are
considered for greedy insertion at a best alternative position in order to determine a best
neighbor πbest. In preliminary experiments, we also tested an exchange neighborhood
in which pairs of jobs are swapped as an alternative or in addition to the insertion
neighborhood. However, it turned out that the evaluation of the exchange neighborhood
is too expensive regarding running time such that its application usually does not pay off.

If the LS procedure could improve the solution obtained from diving/BS then the solution
is injected into the A∗ search graph to possibly benefit from the respective nodes and
NDT records. Furthermore, we thereby want to guide the A∗ search better into more
promising areas of the search space so that A∗ is able to find faster an optimal solution
or to return with a smaller optimality gap in case of a termination due to the time or
memory limit, and we want to avoid expanding nodes a second time. Algorithm 3.6
shows the details of the injection operation. Let πimp be the improved solution. The
nodes are expanded along the improved solution πimp, starting at the root node with the
set of already scheduled jobs Ĵ = ∅ and the corresponding NDT record with the vector
of earliest availability times t0 = 0. Note, that we assume that this root node/NDT
pair is already created by the A∗ algorithm before Algorithm 3.6 is executed. If the
root node/NDT pair is not yet expanded then we expand it. Starting with k = 1, job
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Figure 3.4: Example for dependency graph of solution π with critical jobs Jc = {4, 5, 7, 8}.

πimp
k is dealt with by setting Ĵ ← Ĵ ∪ {πimp

k } and computing tk from tk−1 and πimp
k .

Moreover, node x with Ĵ(x) = Ĵ is retrieved and, among the NDT records of x, we search
for an NDT record η whose earliest availability times are equal to tk. If such an NDT
record does not exist, there must be at least one dominant NDT record whose earliest
availability times dominate tk. Therefore we select one such dominant NDT record η
with earliest availability time t and set tk ← t. If the (node, NDT record) pair (x, η) is
not yet expanded then we expand it by considering all possible extensions and keep only
new and non-dominated (node, NDT record) pairs, which are also inserted into the open

Algorithm 3.6: Solution Injection
Input: open list Q, improved solution πimp

1 initialize Ĵ ← ∅, t0 ← 0;
2 retrieve starting node x with Ĵ(x) = ∅;
3 get NDT record η = (t, jlast, f) ∈ NDTs(x) s.t. t = 0;
4 for k = 1 . . . n do
5 if (Ĵ , η) is not expanded then
6 E ← expand((Ĵ , η), πimp, diving=false); // (see Alg. 3.4)
7 Q.insert(E);
8 end
9 Ĵ ← Ĵ ∪ {πimp

k } and calculate tk from tk−1 and job πimp
k ;

10 retrieve node x with Ĵ(x) = Ĵ ;
11 get NDT record η = (t, jlast, f ) ∈ NDTs(x) s.t. t = tk ∨ t tk;
12 end
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list Q. Afterwards, k is incremented and the next job in solution πimp is considered. This
procedure is repeated until the last job of solution πimp—that is, πimp

n —has been dealt
with. Preliminary tests show that injecting improved solutions from LS back into the A∗

search graph, leads to an overall performance boost of the A∗ search. In particular for
larger instances, A∗ benefits from the fact that the search is led faster to promising areas
and avoids the expansion of nodes a second time so that on average smaller optimality
gaps can be obtained faster. In the following, we denote the A∗ algorithm variant with
the embedded BS and LS as A∗+BS+LS.

3.7 Mixed Integer Linear Programming Formulation
For comparison purposes, we consider the following position-based MILP formulation
from [82], which models solutions to the JSOCMSR in terms of permutations of all jobs.
Index i ∈ {1, . . . , n} refers to position i in a permutation. Decision variables xj,i ∈ {0, 1},
for all j ∈ J and i ∈ {1, . . . , n}, are set to one iff job j is assigned to position i in the
permutation. Variables si ≥ 0 represent the starting time of the jobs scheduled at each
position i = 1, . . . , n in the permutation. Finally, MS ≥ 0 is the makespan variable to be
minimized.

min MS (3.19)

j∈J

xj,i = 1 i = 1, . . . , n (3.20)

n

i=1
xj,i = 1 j ∈ J (3.21)

si +
j∈J

xj,i · pj ≤ MS i = 1, . . . , n (3.22)

s1 = 0 (3.23)
si +

j∈J

xj,i · ppre
j ≥ si−1 +

j∈J

xj,i−1 · (ppre
j + p0

j ) i = 2, . . . , n (3.24)

si − si +
j∈Jr

xj,i (M + pj) +
j∈Jr

xj,iM ≤ 2M

i = 2, . . . , n, i = 1, . . . , i − 1, r ∈ R (3.25)
xj,i ∈ {0, 1} j ∈ J, i = 1, . . . , n (3.26)
si ≥ 0 i = 1, . . . , n (3.27)
MS ≥ 0 (3.28)

Equations (3.20) ensure that exactly one job is assigned to the i-th position of the
permutation and (3.21) ensure that each job is assigned to exactly one position. The
makespan is determined by inequalities (3.22). Equation (3.23) sets the starting time of
the first job in the permutation to zero, and the remaining two sets of inequalities make
sure that no resource is used by more than one job at a time. Hereby, inequalities (3.24)
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take care of the common resource 0, while (3.25) consider the secondary resources. The
Big-M constant in these latter inequalities is set to the makespan obtained by LLBH.

Note that we considered three different MILP models for the JSOCMSR in the course of
our already mentioned preliminary work on the JSOCMSR [82]: (1) a time-indexed based
formulation, (2) a position-based formulation and (3) a disjunctive MILP model. All
three variants were clearly outperformed by our anytime A∗ approach. The best results
among the three MILP models were obtained from the position based formulation, and
its results were therefore included in [82]. For the sake of completeness we reconsider
here also the position-based MILP formulation.

3.8 Constraint Programming Formulation

The CP model proposed in the following for the JSOCMSR is also used for comparison
purposes. It makes use of so-called interval variables which represent intervals of time
and are a specific feature of ILOG CP Optimizer.1 For each job j ∈ J we use two
such interval variables: (1) xj , indicating the time interval during which resource qj is
consumed (pj units of time), and (2) x0

j , indicating the time interval during which the
common resource 0 is consumed (p0

j units of time) by job j. One feature of ILOG CP
interval variables is that they can be absent or present in the CP model to consider also
scenarios where for instance not all jobs have to be scheduled. Since in our case all jobs
needs to be scheduled to get a feasible solution, all used interval variables are present in
the CP model. The CP model is given by

min max
j∈J

end(xj) (3.29a)

startAtStart(xj , x0
j , ppre

j ) ∀j ∈ J (3.29b)
noOverlap({xj | j ∈ Jr}) ∀r ∈ R (3.29c)
noOverlap({x0

j | j ∈ J}) (3.29d)
xj : interval variable of size pj ∀j ∈ J (3.29e)
x0

j : interval variable of size p0
j ∀j ∈ J (3.29f)

where start(xj) and end(xj) represents the start time and the end time of interval xj ,
respectively. Constraints (3.29b) ensure that each job j ∈ J consumes the common
resources 0 exactly ppre

j units of time after the starting time of j using the ILOG CP
constraint startAtStart. Constraints (3.29c) guarantee that each secondary resource
r ∈ R is not used more than once at the same time, whereas Constraint (3.29d) ensures
that the common resource 0 is not used more than once at the same time. This is done
using the ILOG CP constraint noOverlap which ensures that all intervals in a given set
of interval variables are pairwise non-overlapping.

1https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-cp-optimizer
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3.9 Variable Neighborhood Search
To heuristically solve instances of the JSOCMSR that could not be solved to proven
optimality by A∗+BS+LS we use a GVNS, where two different sets of neighborhood
structures N vnd

i=1...kmax and N vns
i=1...lmax are alternatingly applied in intensification and

diversification phases. See Section 2.4.4 for a detailed introduction to GVNS. In the
intensification phase, a deterministic variable neighborhood descent (VND) uses a set of
kmax = 4 intensification neighborhood structures, which are searched, depending on their
computational cost, in either a first-improvement or best-improvement manner. In the
diversification phase a set of lmax = 23 increasingly perturbative shaking neighborhood
structures are used to perform random moves in order to reach parts of the search
space that are farther away from the incumbent solution. Algorithm 3.7 illustrates this
procedure. The initial solution—represented by permutation π—is created uniformly
at random. The GVNS terminates if a certain time-limit is exceeded or the incumbent
solution’s objective value corresponds to the strongest lower bound MSLB2 obtained from
Section 3.4. In the latter case a proven optimal solution has been found.

Algorithm 3.7: GVNS for JSOCMSR
Input: initial solution π, N vnd

i=1,...,kmax , N vns
j=1,...,lmax

1 πbest ← π; l ← 1;
2 repeat
3 π ← Shake(N vns

l , πbest); // diversification
4 π ← VND(N vnd, π ); // intensification
5 l ← l + 1;
6 if MS(π ) < MS(πbest) then // new incumbent solution found
7 πbest ← π ; l ← 1;
8 else if l > lmax then
9 l ← 1;

10 end
11 until MSLB2 = MS(πbest) ∨ time-limit reached;
12 return πbest

3.9.1 Solution Representation and Evaluation
As mentioned in Section 3.3, our GVNS interprets solutions of the JSOCMSR as linear
permutations that state the order in which the jobs acquire the common resource 0.
To obtain the makespan MS(π) of such a permutation π, the exact starting time sj

for each job j ∈ J must be determined. This is done by a linear time decoder that
greedily schedules each job as soon as its resources become available. As it becomes quite
inefficient to naively apply this decoder during neighborhood evaluation, we propose an
incremental evaluation scheme in which it is not always necessary to (re-)determine the
starting time for each job to obtain its makespan.
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However, due to the incremental nature of the decoding mechanism and a solution’s
consequential characteristic, that even small structural changes—like the removal of a
job from its current position–potentially propagate to distant sections in the solution,
a strictly constant-time incremental evaluation schema is not possible. Instead, we
concentrated on an alternative approach, where a certain subsection of a neighboring
solution is evaluated until a point of synchronization with respect to the incumbent
solution is identified. After this point, no structural differences besides a fixed time
offset occur. This point of synchronization in the permutation resides at the end of a
so-called synchronization border, consisting of a minimal set of jobs on different secondary
resources which are aligned w.r.t. their starting times in the incumbent solution and the
respective neighboring solution in the same way. In the following we define this formally.

Definition 3.9.1 (Synchronization Border)
Given two solutions π, π and the respective normalized starting times s and s , where
π is a neighbor of π w.r.t. some neighborhood structure N . Assume further that the
underlying permutation of jobs has only changed up to position i, 0 ≤ i < n. The
synchronization point is then the smallest position i with i < i ≤ n, where a set of jobs
B ⊆ {πk | k = i + 1, . . . , i }, denoted as the synchronization border, satisfies the following
conditions:

1. The set contains exactly one job for each secondary resource that is still claimed
by a job in the permutation at or after the synchronization point i .

2. The jobs are aligned with respect to their starting times in the same way in s and
s , i.e., ∃c ∈ Z ∀j ∈ B : sj − sj = c.

In order to evaluate the makespan of a neighbor π of the incumbent solution π, our
approach starts at the first position in the permutation subject to the structural change
induced by the move in the neighborhood and scans through the permutation to identify
the synchronization border. As soon as the synchronization border is established we are
able to determine the alignment offset c, i.e., the time difference between the solutions
concerning the border, and, consequently, can immediately derive the makespan MS(π ) of
the neighbor solution π . Figure 3.5 illustrates this approach, where a neighboring solution
π on the bottom is derived from π by removing job 4 from position 9 and reinserting it
at its new position 4. In this example, the synchronization border B = {5, 7, 6} can be
determined already after three steps, allowing to derive the makespan of π already at
position 8.

As identifying the synchronization border in a naive iterative way requires time O(nm)
in the worst case, we use additional auxiliary data structures for each incumbent solution
that frequently allow skipping certain parts of the scan through the permutation. In
this way the synchronization border can typically be identified much quicker and as a
consequence the exploration of the neighborhoods is more efficient. Besides simple lookup
tables to detect, for instance, the last job on a particular resource, most importantly,
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Figure 3.5: Illustration of an incumbent solution (top) and a neighboring solution obtained
after moving job 10 (bottom) and their synchronization border B = {2, 6, 9}.

our approach relies on a data structure α(π) = (αi,r(π))i=1,...,n, r∈R0 indicating for each
position i in permutation π the time from which on each resource r is available for
scheduling a job at this position i. Thus, αi,r(π) can be used to quickly determine the
starting time of a job which should be inserted in π at position i. As all our neighborhood
structures are essentially defined by removing and re-inserting jobs in the permutation
representation in certain ways, this data structure allows us to immediately determine
the starting time of an inserted job at any position, subsequently requiring only the
identification of the synchronization border to determine the implied change in the
makespan. Although the preparation of these data structures comes with an additional
computational cost of O(nm) per incumbent solution for which the VND is started,
our experiments in Section 3.10 indicate that in practice the whole approach requires
only constant amortized runtime with respect to the number of jobs for identifying the
synchronization border and thus the makespan of a neighboring solution.

3.9.2 Intensification

The VND, which is responsible for intensification within the GVNS, makes use of a set
of neighborhood structures for linear permutations, as formally defined by Schiavinotto
and Stützle [141].

The insertion neighborhood NI(π) of an incumbent solution π consists of any solution
π obtained by removing any job j from its current position in π and reinserting it at
any other position. We efficiently evaluate the whole neighborhood by considering the
removal of each job j ∈ J in an outer loop, yielding a partial solution π j for which the
corresponding auxiliary data structure α(π j) is derived and the partial neighborhood
NI(π j, j) corresponding to the re-insertion of j at any position except the original
one is evaluated in an inner loop. Algorithm 3.8 shows in more detail how the neighbor
solution in which job j is re-inserted at a position i in the partial solution π j is
evaluated by determining the synchronization border and the respective alignment offset.
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Algorithm 3.8: Evaluation of the neighbor: reinsert job j at position i

Input: partial solution π j, insertion position i, resource avail. times α(π j)
1 tr ← αi,r(π j), ∀r ∈ R0;
2 synchronization border B = ∅, aligned offset c ← 0;
3 for k = i, . . . , |π j| do // evaluate π j from i onwards
4 j ← (π j)k;
5 sj ← max{t0 − ppre

j , tqj
}; // evaluate new starting time for j

6 t0 ← sj + ppre
j + p0

j ; tqj
← sj + ppre

j ;
7 update B with job j ;
8 if B satisfies conditions from Definition 3.9.1 then
9 c ← derive alignment offset from B and π;

10 break;
11 end
12 end
13 return MS(π j) + c

Based on this evaluation scheme, it turned out to be advantageous in the implementation
to further divide the insertion neighborhood NI(π) into forward and backward insertion
neighborhoods such that jobs are only allowed to move forward or backward in the
permutation, respectively. This allows reusing some part of the auxiliary data structures
for the entire neighborhood evaluation.

The exchange neighborhood NX(π), contains any solution derived from the incumbent π
by exchanging any pair of jobs in the permutation. Again, the neighborhood evaluation is
based on determining synchronization borders, but instead of using intermediate partial
solutions, a dual synchronization approach has been devised, where the neighborhood
operation is essentially reduced to two insertion operations, where both the offset between
the respective exchanged jobs and the offset of the latter job to the makespan are obtained
with the synchronization technique.

In addition to efficient evaluation schemes for the considered neighborhood structures,
we further studied different approaches to reduce neighborhood sizes in order to avoid
the evaluation of unpromising neighbors at all. Besides neighborhood reduction based on
critical jobs as proposed in Section 3.6.2, we also considered heuristic approaches like
avoiding to schedule two jobs of the same secondary resource consecutively or reducing the
size of neighborhoods by limiting the maximum distance of move operations. While these
pruning techniques bring the danger of quickly approaching local optima of rather poor
quality, concentrating on critical jobs is particularly advantageous in the very beginning
of the search. Limiting the maximum distance of move operations particularly showed
its effectiveness for exchange neighborhoods, where instead of the dual synchronization
evaluation scheme, it becomes more the better option to partially evaluate the entire range
between the positions of the two exchanged jobs and perform a single synchronization
step at the end of this range. Experimentally, we determined a move distance limitation
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of k = 50 to provide a good trade-off between the size of the neighborhood and its
evaluation’s efficiency in the context of our benchmark instances. Nevertheless, note
that these restricted neighborhoods are primarily used in early VND phases, while more
comprehensive neighborhoods become important in latter phases to compensate the
limitations. More details on the pruning techniques and their impacts can be found in
Thomas Kaufmann’s master thesis [94]. Here, we will only look more closely on the
limitation of move distances.

We used findings of a landscape analysis, where the average quality and depth of local
optima were studied to prepare a meaningful parameter tuning configuration, and then
applied irace [109] to select concrete neighborhood structures and parameters like
the step function by which the neighborhoods are searched in the VND. For details
regarding the parameter tuning setup we refer to [94]. Finally, we investigated the
temporal behavior of our algorithm in a set of experiments to decide the neighborhood
change function in the VND [69]. Again, more details on this preliminary investigations
can be found in [94].

The finally resulting VND configuration uses four neighborhood structures, subject to
a piped neighborhood change function [69]. First, an exchange neighborhood structure
with a move distance limitation of 50 is used in conjunction with a first-improvement
step function to quickly identify local optima of already relatively high quality. This is
followed by the backward insertion neighborhood structure searched in a best improvement
manner. Next, the unconstrained exchange neighborhood structure is used and finally
the unconstrained insertion neighborhood structure, again searched in first and best
improvement manners, respectively.

3.9.3 Diversification
For diversification, the GVNS applies moves from a total of lmax = 23 shaking neighbor-
hood structures to the incumbent solution, where each shaking neighborhood N vns

i is
parameterized by κi describing the number of subsequent applications of the underlying
neighborhood move. In order to enable our shaking procedure to introduce fine-grained
structural changes into the incumbent solution, we use the exponentially growing function

κi = exp i · log(n)
κmax − 1 , (3.30)

with a maximum number of applied moves per shaking neighborhood of κmax = 32,
to generate two sets of 10 insertion and exchange shaking neighborhood structures
respectively. Starting with insertions, those sets are then interleaved and at positions
four, ten and twenty extended by a subsequence inversion shaking neighborhood applying
one, two and four inversions of five jobs respectively.

This configuration was mainly hand-crafted based on characteristics of the ruggedness
of the respective neighborhood structures and the general structure of the search space.
We used the autocorrelation function on random walks of length 106 to estimate the
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ruggedness of neighborhood structures and analyzed a large set of globally optimal
solutions obtained from 3.75 × 106 runs on a diverse set of 300 instances with n = 30
jobs, to gain insight on the distribution of globally optimal solutions in the search space.
We found that the studied instances contain a relatively high number of distinct globally
or at least nearly optimal solutions, being widely distributed in the search space. A
primary reason for this is likely the dependency structure inherent to the problem and
the induced symmetries, caused by resource imbalance or utilization gaps on secondary
resources, frequently allows exchanging of jobs on secondary resources without affecting
the makespan. For more details, see [94].

3.10 Experimental Evaluation
The proposed approaches were implemented in C++ using G++ 5.4.1 for compilation.
All tests were performed on a cluster of machines with Intel Xeon E5-2640 v4 processors
with 2.40 GHz in single-threaded mode and 15GB RAM. The CP model from Section 3.8
was solved with ILOG CP Optimizer 12.7 whereas the MILP model from Section 3.7 was
solved with CPLEX 12.7.

This section is organized as follows. First, the benchmark instances that are used are
described and the tuning experiments are summarized. Then, Section 3.10.3 presents
the impact of different algorithmic components used within our A∗ framework on the
solution quality. The anytime behavior of our A∗ in conjunction with the different
options for the lower bound calculation are analyzed in Section 3.10.5, the improvements
of the strengthened lower bound MSLB2 over MSLB0 are studied in Section 3.10.6,
further, the numbers of considered NDT records in our runs (i.e., essentially the sizes of
our state graphs) are discussed in Section 3.10.7. Afterwards, Section 3.10.8 presents
detailed main results for pure A∗, LLBH, A∗+BS+LS, the CP approaches with and
without using LLBH as search guidance—henceforth denoted by CP+LLBH/ILOG and
CP/ILOG, respectively—, the MILP approach, henceforth denoted by MIP/CPLEX,
and the weighted A∗-based anytime algorithm ARA∗. Whereas, Section 3.10.8 compares
mainly the ability to prove instances to optimality or terminate with small remaining
optimality gaps, Section 3.10.9 compares the pure heuristic performance of the GVNS
with A∗+BS+LS and CP/ILOG.

3.10.1 Benchmark Instances
In our preliminary work [82] we created two non-trivial sets of random instances to test
the presented algorithms. Basic characteristics of these instances are roughly inspired
from the particle therapy patient scheduling scenario. Each of these sets consists of
50 instances for each combination of n ∈ {10, 20, 50, 100, 200, 500, 1000, 2000} jobs and
m ∈ {2, 3, 5} secondary resources. As pointed out in Section 3.1 there are typically only
two to four treatment rooms available in the particle therapy scenario, and we therefore
do not consider here larger numbers of secondary resources than five. The difference
between the two benchmark sets lies in the workload concerning the secondary resources.
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The first set B is characterized by a balanced (B) workload over all resources from R.
This was achieved by sampling the secondary resource qj for each job j ∈ J uniformly
at random from the discrete distribution U{1, m}. The second set S has a skewed (S)
workload. For the S-instances this was achieved by assigning to resource m a probability
of 0.5 for resource m and a probability of 1/(2m − 2) for each of the remaining secondary
resources 1 to m − 1. In this way the expected workload on the common resource roughly
corresponds to the expected workload of the dominant resource m. Note that in the
preliminary work [82] we considered slightly different S-instances by assigning to resource
m a probability twice as high as the probabilities for the remaining secondary resources.
This scheme, however, has the disadvantage that for m > 2 the common resource tends to
become the sole bottleneck, making the instances rather easy to solve. The preprocessing
times ppre

j and postprocessing times ppost
j were sampled from U{0, 1000} for both instance

sets, while times p0
j were sampled from U{1, 1000} in case of set B and from U{1, 2500}

in case of set S.

Finally, note that we made use of a third set P of instances derived from a real-world
particle therapy patient scheduling scenario [120], which consists of 699 instances. How-
ever, this instance set consists to a large extent of instances with a similar structure
as the balanced instances of type B and of a few instances with a similar structure as
the skewed instances of type S. For the sake of completeness we nevertheless show the
main results obtained for those set P instances in the main result table in Section 3.10.8.
There, we partitioned the whole set of instances into groups with up to 10, 11 to 20,
21 to 50, and 51 to 100 jobs with 51, 39, 207 and 402 instances, respectively. All
these instances use m = 3 secondary resources. All instance sets are available from
https://www.ac.tuwien.ac.at/research/problem-instances/.

3.10.2 Parameter Tuning
The parameters of our hybrid A∗+BS+LS algorithm were tuned for the goal to obtain as
good solutions as possible within a CPU time limit of 900s per run using the automatic
parameter configuration tool irace [109] (version 2.1). We distinguish between two different
instance sizes: (1) instances with up to n = 500 jobs and (2) instances with more jobs.
For these we created two independent tuning instance sets, respectively. Both sets contain
only instances of type S, because it turned out that these instances are much more difficult
to be solved than instances of type B. The first tuning set T≤500 consists of 10 instances
for each combination of n ∈ {10, 20, 50, 100, 200, 500} jobs and m ∈ {2, 3, 5} resources,
whereas the second tuning set (T>500) consists of 10 instances for each combination
of n ∈ {1000, 2000} jobs and m ∈ {2, 3, 5} resources. We tuned four parameters with
irace: (1) the lower bound to be used from {MSLB0, MSLB1, MSLB2, (MSLB0, MSLB2)}
where (MSLB0, MSLB2) denotes the interleaved combination of MSLB0 and MSLB2 as
described in Section 3.5.2, (2) the usage of LS (on or off), (3) the iteration interval
for applying BS δ ∈ {1, 100, 200, 500, 1k, 2k, 5k, 10k, 20k, 50k, 100k, 200k} and (4) the
beam width kbw ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500}. For the tuning set T>500 we use
the different domain {1, 2, 3, 4, 5, 6, 7, 8} for the beam width kbw since larger values
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sometimes do not allow a single beam search to be completed within our time limit.
Also remember that the case kbw = 1 corresponds to simple diving. The irace tool
was applied with a budget of 7000 runs to tuning set T≤500 and with a budget of
4000 runs to tuning set T>500. In this way, the following configurations were obtained
by irace: C≤500 = {(MSLB0, MSLB2), LS turned on, δ = 1000, kbw = 200} and C>500 =
{(MSLB0, MSLB2), LS turned on, δ = 100, kbw = 8}, respectively. These results already
indicate that the improved lower bound calculations, our advanced diving by BS, as well
as the local search procedure are in practice indeed advantageous.

3.10.3 Analysis of Algorithmic Components

In this section, the impact of different algorithmic components of the A∗ framework—in
particular BS and LS—is analyzed. For this purpose we compare first LLBH and a
standalone variant of BS, both with LS and without. The variants with LS are denoted in
the following by LLBH+LS and BS+LS, respectively. Figure 3.6 shows results obtained
for middle-sized instances of types B and S with n ∈ {100, 200, 500} jobs and m = 3
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Figure 3.6: Comparison of standalone LLBH and BS with and without LS applied
afterwards. Results are visualized as barplots which are grouped according to the
instance type and number of considered jobs.
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Figure 3.7: Comparison of A∗+LLBH, A∗+LLBH+LS, A∗+BS and A∗+BS+LS. Results
are visualized as barplots which are grouped according to the instance type and number
of considered jobs.

secondary resources. The diagrams on the top present average optimality gaps of obtained
solutions π, which are calculated as 100% · (MS(π) − LB)/LB, where LB corresponds to
the strengthened lower bound MSLB2 according to Eq. (3.8). The diagrams on the bottom
show corresponding average computation times. Note that LLBH described in Section 3.5
actually is just the special case of BS with beam width kbw = 1. For the standalone
BS a beam width of kbw = 200 was used. As expected, LLBH is fastest, however it
also yields the highest average optimality gaps in all considered cases compared to the
other considered approaches. Conversely, the BS+LS approach leads to the smallest
obtained average optimality gaps with the largest obtained average computation times.
Remarkable is that BS with or without LS applied always leads to significantly smaller
average optimality gaps than LLBH or LLBH+LS. However, these BS variants also
require more computation time. Concerning LS, in particular for larger skewed instances
of type S, its application has a substantial impact on the obtained average optimality
gaps.

Next, we repeat the comparison of the four different heuristics LLBH, LLBH+LS, BS,
and BS+LS, however this time embedded in our A∗ algorithm. Corresponding results are
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shown in Figure 3.7. In the calculation of the optimality gaps, the lower bounds obtained
from the corresponding A∗ runs are now used as LB. In case of A∗+LLBH we set the
beam width to kbw = 1 otherwise to kbw = 200. In all cases a BS iteration is initiated after
every δ = 1000 classical A∗ iterations. Concerning the computation times, we split each
into three parts: the first white block on the bottom of the bars corresponds to the average
accumulated time needed by BS. If LS is applied then the black block in the middle
corresponds to the average accumulated time used by LS. Finally, the top-most remainder
of the bar represents the average time consumed by classical A∗ iterations. Consequently,
the whole bar corresponds to the average total running time of the whole algorithm. At
the first glance the results show similar relationships as the results in Figure 3.6. Again,
in all considered cases the best optimality gaps are obtained by A∗+BS+LS whereas
the worst ones are obtained by A∗+LLBH. However, this time A∗+LLBH is not always
fastest. In particular for skewed instances with n ∈ {100, 200} jobs A∗+LLBH requires
more time on average compared to all other considered approaches. This has the following
reason: Typically the lower bound obtained from the root node of A∗ is already rather
tight, therefore in order to further reduce the optimality gap it is more important to find
good feasible solutions instead of further improving the current best known lower bound
by performing classical A∗ iterations. As we have observed in Figure 3.6, the solution
quality achieved by LLBH is on average worse than the solution quality achieved by the
other considered approaches. Therefore A∗+LLBH has to perform more LLBH iterations
until a comparably small optimality gap is achieved. Putting more effort in finding the
optimal solution by applying LS afterwards or using BS leads to faster convergence since
A∗ needs less LLBH+LS or BS(+LS) iterations even if a single of such iteration takes
more time. For larger instances with n = 500 jobs this effect does not pay off anymore.
Here, A∗+BS and A∗+BS+LS are able to return smaller average optimality gaps than
A∗+LLBH or A∗+LLBH+LS, however they also need more time.

3.10.4 Comparison to Anytime Pack Search

As described in Section 3.2, anytime pack search (APS) from Vadlamudi et al. [155]
is an approach similar to our BS-enhanced A∗ algorithm and based on consecutive BS
iterations. In APS terminology the beam width kbw is called pack size. There are two
major differences: (1) APS does not perform classical A∗ iterations between consecutive
BS iterations—which corresponds in our case to a setting of the diving/BS interval
to δ = 1—and (2) if APS starts a new BS iteration then APS selects the best kbw
nodes—called seeds—from the open list Q instead of just selecting the best node as our
A∗+BS+LS algorithm does. For comparison purposes we implemented APS based on our
combined lower bound. A comparison of A∗+BS+LS and APS is shown in Figure 3.8.
APS was applied to all instances of type B and S, with a pack size corresponding to
the beam width kbw of the corresponding A∗+BS+LS runs. The results are grouped
according to the instance type and number of secondary resources and visualized as
boxplots.
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Figure 3.8: Comparison of A∗+BS+LS and APS. Results are visualized as boxplots which
are grouped according to the instance type and number of secondary resources.

These boxplots indicate the following: The obtained results for balanced instances of
type B are comparable. The median optimality gaps concerning the subsets of balanced
instances of type B are always zero for both algorithms. In particular, for instances with
m = 2 secondary resources both algorithms could solve all instances to optimality, and
for the instances with m ∈ {3, 5} both algorithms could solve almost all instances to
optimality, except a few outliers with optimality gaps < 0.6%. In contrast to the results
for the instances of type B, the results for the instances of type S show clear differences
between A∗+BS+LS and APS. Concerning A∗+BS+LS, the medians of the obtained
optimality gaps for the subsets of instances are 0.330%, 0.004% and 0.001% for 2, 3 and 5
secondary resources, respectively. In contrast, the corresponding medians obtained from
APS are 0.375%, 0.022% and 0.024% for 2, 3 and 5 secondary resources, respectively. The
largest optimality gaps obtained from A∗+BS+LS are < 2.1% for all skewed instances of
type S, whereas APS yielded a substantial number of times larger gaps of up to 6.7%, in
particular for m = 5 secondary resources.

3.10.5 Anytime Behavior
In order to study the anytime-behavior of the A∗ variants, Figure 3.9 and 3.10 show
solution quality over time (SQT) plots for the middle-sized instances of type S (skewed)
with n ∈ {100, 200, 500} jobs and m = 3 secondary resources. For this purpose, the
current optimality gap of A∗+BS+LS was taken every 0.01 seconds during each run. At
each of the resulting 90, 000 time points (remember our time limit of 900s), the average
optimality gap for the 50 corresponding problem instances is shown. In addition, in order
to visualize the variance, boxplots are shown for time points 5, 50 and 500 seconds. We
skip here results showing the anytime behavior of balanced instances if type B, since in
most cases the first solution obtained by BS+LS is due to the excellent search guidance
of our lower bounds already an optimal solution so that there is no further improvement.
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In Figure 3.9, the results are shown for four A∗ variants that differ in the used lower
bound: MSLB0, MSLB1, MSLB2 and the interleaved combination of MSLB0 and MSLB2.
The A∗ algorithm uses just simple diving (kbw = 1) every δ = 1000 iterations, and
heuristic solutions are here not further improved by LS. It can be observed that, for all
three values of n, the choice of the combined lower bounds MSLB0 and MSLB2 almost
always provides the smallest average optimality gap at the end of a run.

In Figure 3.10 we show SQT plots of A∗+BS+LS runs where the combined lower bounds
MSLB0 and MSLB2 are used and BS is started every δ = 1000 iterations with the four
different beam widths kbw ∈ {10, 20, 50, 200}. Each obtained solution from BS is further
improved by LS. The smallest average optimality gaps are obtained from A∗+BS+LS
when the largest beam width with kbw = 200 is used for all three values of n. Furthermore,
it can be observed that, with increasing beam width, we obtain smaller and smaller
average optimality gaps at the end of a run. Overall the SQT plots show a continuous
decrease of the optimality gaps over time. Finally, note that in case of the high beam
width kbw = 200—for instances with n = 500 jobs—A∗+BS+LS took about 125 seconds
until the first solution is obtained. To counteract this initial long waiting time for a first
feasible solution, using a smaller beam width for the very first BS application would be
an obvious possibility.

3.10.6 Comparison of Lower Bounds
We finally aim to quantitatively evaluate the improvement obtained by lower bound MSLB2

from Equation (3.8) in comparison to the basic lower bound MSLB0 from Equation (3.4).
To this end, we computed both lower bounds for all instances of our benchmark sets and
consider the relative improvement Δ = (MSLB2 − MSLB0)/MSLB0.

In case of the balanced instances of type B, these differences are always zero, thus, no
benefits could be observed. The reason for this is that instances of type B are created
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Figure 3.11: Relative improvement of bound MSLB2 over bound MSLB0 in the context of
the instances of type S (skewed).
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in such a way that it is likely that the assumption that all jobs Jr which require a
secondary resource r ∈ R can be scheduled consecutively one after the other without
any gaps holds. Hence, in such cases the basic lower bound MSLB0 will be the same as
MSLB2, see Section 3.4.1 for further details. For the more difficult skewed instances (type
S), however, the improvements are sometimes substantial. Figure 3.11 shows them as
boxplots grouped according to the number of secondary resources m and the number of
jobs n. It can be observed that these relative improvements are strongest for the skewed
instances with only two secondary resources and in particular just a moderate number
of jobs. There they are, however, also most needed: These are generally the instances
that are most difficult to solve for our A∗ variants in terms of the remaining optimality
gap, and we have already seen in the SQT plots of Section 3.10.5 that the usage of the
strengthened lower bound boosts the performance significantly.

3.10.7 Number of Considered NDT Records

Each bar in Figure 3.12 shows the average number of NDT records considered by
A∗+BS+LS, over all 50 instances (per instance type) and using the parameter setting
as determined by irace. In essence, these bars show the size of the considered part of
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instances of type B and S with the parameter setting as determined by irace.
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the state graph. Each bar is split into a lower part and an upper part. The lower part
presents the average number of created NDT records that were never dominated by
another NDT record. Thus, this average number of created NDT records essentially is
also proportional to the memory usage of A∗. The upper part shows the average number
of NDT records that were either dominated by another NDT record, or pruned since
the lower bound was greater than (or equal to) the makespan of the current incumbent
solution. Note that these records are either immediately discarded at the time of their
creation or removed during the A∗+BS+LS run since they got dominated by another
NDT record.

First of all, these plots show that the skewed instances of set S are much more demanding
concerning the total number of created NDT records, especially those instances with only
two external resources. Clearly, this can be explained with the lower bound calculation
being not that tight for these instances as for the balanced set. The number of NDT
records for the skewed instances has its peak for n = 50 jobs and m = 2 secondary
resources and generally decreases again for instances with more jobs, since fewer node
expansions are possible within our CPU time limit of 900s. Overall, there are instances
for which A∗+BS+LS explores more than 6 · 107 NDT records.

3.10.8 Comparison of LLBH, A∗+BS+LS, CP, MIP, and ARA∗

Table 3.1 presents the aggregated results for each combination of instance type and
the different numbers of jobs and secondary resources for LLBH, A∗+BS+LS, the CP
approach, the MILP approach, pure A∗ and ARA∗. Concerning CP we tested: (1) the
CP ILOG solver with default search heuristic—denoted as CP/ILOG—and (2) CP ILOG
solver with a custom search heuristic denoted as CP+LLBH/ILOG, which, similar to
LLBH, uses the combined lower bound MSLB2 and MSLB0 to decide which job should be
selected and appended to a current fixed partial schedule first.

In order to compare our A∗+BS+LS algorithm also to another state-of-the-art A∗-
based anytime algorithm we implemented ARA∗ [108] (see also Section 3.2, where
ARA∗ was already discussed). ARA∗ makes use of an inflated evaluation function
f∗(x) = Zsp(x) + ε · Zh(x), where ε is the approximation ratio. The algorithm has
two parameters: εinit > 1 and εstep > 0. Initially, ε is set to εinit such that the first
heuristic solution that is found is sub-optimal by a factor of at most εinit. The quality
of subsequently encountered heuristic solutions is forced to increase by continuously
decreasing ε by step size εstep. If enough time is given for ε to finally reach value one,
ARA∗ has reached a proven optimal solution. To achieve a reasonable anytime behavior
on our benchmark instances we tested different values for εinit and εstep. According to
these preliminary experiments we set εinit = 1.5 and the step size εstep = 0.01. Moreover,
our implementation makes use of the inflated version of evaluation vector f with the
combined lower bound MSLB2 and MSLB0.

Columns %-opt of Table 3.1 state the percentage of instances that were solved to proven
optimality. Columns %-gap list average optimality gaps of final solutions π, which are
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3. Anytime A∗ Search

calculated by 100 · (MS(π) − LB)/LB, where LB is the largest lower bound returned from
A∗+BS+LS, pure A∗, CPLEX or from ILOG CP Optimizer. Columns σ%-gap provide
the corresponding standard deviations. Columns t[s] show the median computation
times in seconds. The last row of each instance type shows the average percentage of
instances that were solved to proven optimality, the average optimality gap as well as
the corresponding average standard deviations over all instances. Remember that for
instances with n ≤ 500 jobs, A∗+BS+LS was run with configuration C≤500, and otherwise
with configuration C>500. Moreover, LLBH and CP+LLBH/ILOG was applied using the
combined lower bounds of MSLB2 and MSLB0. Again, the CPU time limit for each run
was 900s. Since the pure A∗ algorithm does not provide any solution in case of early
termination due to the time limit or memory limits, Table 3.1 just states the percentages
of instances that were solved to optimality and the total computation times.

The following observations can be made with respect to the balanced instances of set B.
First, A∗+BS+LS was able to solve all instances with m = 2 secondary resources and
more than 96% of the instances with m > 2 to proven optimality. In contrast, while
CP/ILOG also solves nearly all instances with m = 2 secondary resources to optimality,
its performance degrades significantly with growing n and m. In particular, instances
with m = 3 secondary resources are hard to solve for CP/ILOG, since those instances
are created in a way such that the expected workload of the common resource as well
as the expected workloads of the secondary resource are equal, which makes instances
hard to solve, whereas for instances with m ∈ {2, 5} secondary resources the common
resource becomes the sole bottleneck. Moreover, the average optimality gaps obtained
by A∗+BS+LS are always smaller than (or equal to) the ones of CP/ILOG. The largest
average optimality gap of A∗+BS+LS is only 0.021% while that of CP/ILOG is 4.220%.
Clearly, the most important ingredient for this success of A∗+BS+LS is the excellent
guidance of the search by our lower bound calculation so that even for instances with
m = 3 secondary resources excellent results are obtained. This is documented by the
fact that even LLBH yields comparably good results with average optimality gaps of
no more than 2.062%. Due to this excellent search guidance it can further be observed
that CP+LLBH/ILOG can solve significantly more instances to optimality as CP/ILOG.
Over all balanced instances of set B, CP+LLBH/ILOG is able to solve on average 93%
of the instances to proven optimality whereas CP/ILOG can only solve on average 76%
to proven optimality. However, A∗+BS+LS can solve on average 98% of the instances
to proven optimality. Moreover, CP+LLBH/ILOG is able to provide better average
optimality gaps as CP/ILOG for larger instances. Nevertheless, CP+LLBH/ILOG cannot
provide better average optimality gaps than A∗+BS+LS, since the combination of BS
and LS embedded in A∗ seems superior to the CP approach in combination with LLBH
as search heuristic.

The observations concerning the benchmark set S are as follows. First of all, these
instances are clearly more difficult to be solved than the instances from set B. In particular,
A∗+BS+LS was only able to solve instances up to size n = 20 consistently to optimality.
However, it still holds that the optimality gaps obtained by A∗+BS+LS are, in most
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3.10. Experimental Evaluation

cases, smaller than (or equal to) the ones of CP/ILOG. In those cases in which CP/ILOG
returns smaller gaps, A∗+BS+LS is usually able to solve more instances to optimality.
The average optimality gaps obtained by A∗+BS+LS never exceed 0.915%, whereas the
ones of CP/ILOG range up to 4.784%. Finally, LLBH again provides reasonable results
with optimality gaps of no more than 4.976% in the shortest computation times, although
as a pure heuristic, LLBH itself does not accompany its results with any lower bound.
For CP+LLBH/ILOG, the picture looks different than it does concerning the balanced
instances of type B. For instances in data set S, the CP+LLBH/ILOG approach is not
able to solve on average more instances to optimality or to provide better optimality gaps
than A∗+BS+LS or CP/ILOG. Since, CP+LLBH/ILOG uses LLBH as search guidance
it is not surprising that in particular for larger instances the average results are similar
to those results obtained from LLBH. However, for small and middle-sized instances
CP+LLBH/ILOG is able to provide smaller average optimality gaps than LLBH.

Regarding the observations of the benchmark set P: the A∗+BS+LS approach, CP/ILOG
as well as the pure A∗ approach could solve all instances with up to 20 jobs to optimality.
For instances with 21 to 50 jobs A∗+BS+LS is able to return the smallest average
optimality gaps and can solve most instances to proven optimality. For instances with
more than 51 jobs the results of A∗+BS+LS and CP/ILOG dominate, and they are
essentially on par concerning optimality gaps and instances solved to proven optimality.

The MIP approach is not even able to solve instances with up to n = 10 jobs to optimality
and in most cases not even able to derive primal solutions for instances with more than
10 jobs. In general, MIP/CPLEX is not able to yield solutions for instances with more
than 200 jobs. A reason for this weak performance are clearly the Big-M constraints and
the resulting weak linear programming relaxation of the model.

Regarding the pure A∗ approach, only instances with up to 20 jobs can be solved to
proven optimality. For instances with more than 20 jobs A∗ runs out of memory for
each single instance before the proven optimal solution could be found. In particular for
balanced instances of type B where A∗+BS+LS is able to solve 98% of the instances
to proven optimality, the poor performance of the pure A∗* algorithm seems surprising
at the first glance, since in those cases A∗ without BS and LS might be expected to
require fewer node expansions due to A∗’s optimality condition. However, as already
mention in Section 3.6 this optimality condition holds only under certain conditions.
Most importantly, the way how ties are handled can substantially impact the number
of expanded nodes. In our case the interleaved lower bounds MSLB2 and MSLB0 are
rather tight and ties occur in general relatively frequently. At least for the smaller
instances, it is therefore in many cases sufficient to find an optimal solution quickly
in order to also prove optimality. The A∗+BS+LS approach frequently achieves this
with its strong BS heuristic using MSLB2 and MSLB0 as search guidance, whereas the
pure A∗ algorithm tends in case of the ties towards a breadth-first-search behavior, such
that it runs rather soon out of memory. This behavior of the pure A∗ algorithm can
be fixed by adding a tie breaking criterion which prefers partial schedules where more
jobs are already scheduled over partial schedules with fewer jobs scheduled as we studied
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3. Anytime A∗ Search

it already in [82]. In conjunction with A∗+BS+LS, however, this kind of tie breaking
would be counter-productive as it is in fact beneficial to initiate the embedded BS from a
more diversified set of initial partial solutions, i.e., starting nodes.

The ARA∗ approach is only competitive to our A∗+BS+LS approach in the context of
small instances with up to 20 jobs. Concerning larger problem instances A∗+BS+LS
is generally able to solve more instances to proven optimality and to provide smaller
optimality gaps in those cases in which optimality could not be proven. In accordance
with observations in the literature [108], with an initial setting of ε = 1.5 ARA∗ behaves
rather greedily and quickly finds a heuristic solution. However, the quality of this solution
is generally worse than the initial solution obtained by A∗+BS+LS. This seems to be
the case because using BS with the non-inflated evaluation vector f as search guidance
is more powerful. To find better solutions ARA∗ decreases ε during the search. In
particular, the closer ε is to value one, the more ARA∗ behaves like the pure A∗ search.
However, as already mentioned above, the behavior of pure A∗ tends to be similar to
breadth-first search. Therefore, in many cases, ARA∗ runs either out of memory or out
of time before solutions of similar quality as those obtained by A∗+BS+LS are found.

In summary, we have shown that embedding BS and LS in our A∗ framework has a
clearly positive impact on the quality of the obtained solutions and can sometimes even
reduce the computation time in contrast to using A∗+LLBH. Furthermore, we analyzed
the anytime-behavior of A∗ by using different lower bounds and different beam widths
for the BS. Here it turned out that the combined lower bound MSLB0 and MSLB2 almost
always leads to the smallest average optimality gaps at the end of a run. Regarding
different beam widths we could observe that selecting a higher beam width will usually
provide solutions with smaller average optimality gaps. This, however, comes at the cost
of a higher waiting time until a first complete solution is obtained by the search.

3.10.9 GVNS Evaluation

In this section we present results of our experimental evaluation of the GVNS for hard to
solve instances. In order to study the practical efficiency of our incremental evaluation
approach, an experiment was conducted where 104 randomly selected neighborhood
moves in exchange and insertion neighborhoods where applied and the distance from the
structural change to the last job in the synchronization border—that is the number of
steps until the synchronization border could be determined—was traced. Figure 3.13
shows the synchronization distance of balanced and skewed instances of different sizes.
For the considered instances, it can be observed that our approach exhibits an average
amortized computation time behavior that is constant in the number of jobs, but increases
with the number of secondary resources due to the nature of the synchronization border.
Moreover, Figure 3.13 illustrates the sensitivity of the approach to significant resource
imbalance, indicated by a higher number of outliers observed in the skewed instance set,
likely due to large sections in the schedules where secondary resources are not utilized.
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Figure 3.13: Synchronization distance: Number of steps required to identify the synchro-
nization border in balanced and skewed instances, starting from the position of structural
change due to a neighborhood move.

Finally, Table 3.2 compares average results of our GVNS on different instance classes
to the baselines A∗+BS+LS and CP/ILOG. Columns %-gap state the final optimality
gaps in percent, which is calculated by 100% · (MS(π) − LB)/LB, where LB refers to the
strongest lower bound obtained from either A∗+BS+LS or CP/ILOG, whereas columns
%-opt lists the percentage of proven optimal solutions. Both columns use the best lower
bound obtained from experiments in Section 3.10.8. Columns σ%-gap show the standard
deviations of the corresponding average optimality gaps. Column t provides the median
time the GVNS required to obtain its best solution in a run. To obtain statistically more
stable results, we executed the GVNS ten times for each of the 50 instances per instance
class. For the anytime A∗ algorithm and for the CP solver, column t shows the median
time when the algorithms terminated either because the optimal solution has been found
or the time- or memory limit was exceeded.

Generally, Table 3.2 shows that the GVNS manages to obtain heuristic solutions compa-
rable to those of the A∗ search, while both approaches show their specific advantages
on particular subsets of instances. For balanced instances, on the one hand, A∗ search
already showed its effectiveness, where even large instances up to 2000 jobs could be
solved to proven optimality. The GVNS obtains similar results for instances with m = 2
and m = 5, with respect to solution quality, although the temporal performance decreases
with increasing instance size in comparison. For instances with m = 3 the GVNS’s
solutions are clearly worse than those of the A∗ search, although the average optimality
gap of ≤ 0.288% is still small and much better than the one of the CP approach. In
Kaufmann [94] we show that providing an initial solution obtained LLBH can further
improve the solution quality for this particular instance set, however, A∗ is still superior
both with respect to quality as well as temporal behavior.

For the harder skewed instances, on the other hand, our GVNS shows a significant
improvement compared to both baseline methods with an average optimality gap below
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Table 3.2: Average results of GVNS, A∗+BS+LS, and the CP approach.

GVNS A∗+BS+LS CP/ILOG
type n m %-gap σ%-gap %-opt t[s] %-gap σ%-gap %-opt t[s] %-gap σ%-gap %-opt t[s]

B 50 2 0.000 0.00 100.0 <0.1 0.000 0.00 100.0 1.1 0.000 0.00 100.0 <0.1
B 100 2 0.000 0.00 100.0 <0.1 0.000 0.00 100.0 2.0 0.000 0.00 100.0 <0.1
B 200 2 0.000 0.00 100.0 0.2 0.000 0.00 100.0 5.4 0.000 0.00 100.0 <0.1
B 500 2 0.000 0.00 100.0 2.4 0.000 0.00 100.0 35.3 0.000 0.00 100.0 1.3
B 1000 2 0.000 0.00 100.0 13.0 0.000 0.00 100.0 8.9 0.000 0.00 100.0 9.2
B 2000 2 0.000 0.00 100.0 83.5 0.000 0.00 100.0 46.3 <0.001 0.01 98.0 63.5
B 50 3 0.050 0.22 91.2 <0.1 0.017 0.08 96.0 1.1 0.068 0.30 92.0 <0.1
B 100 3 0.112 0.29 79.6 0.1 0.021 0.09 92.0 2.0 0.226 0.55 78.0 4.2
B 200 3 0.176 0.45 74.0 2.1 0.016 0.06 92.0 5.9 0.556 1.12 56.0 319.4
B 500 3 0.260 0.42 47.0 422.3 <0.001 <0.01 98.0 35.9 2.212 1.83 20.0 900.0
B 1000 3 0.216 0.33 31.0 385.0 0.001 <0.01 98.0 6.1 3.094 1.46 2.0 899.9
B 2000 3 0.288 0.34 15.0 843.2 0.005 0.04 98.0 23.8 4.220 1.20 0.0 900.0
B 50 5 <0.001 <0.01 99.4 0.1 0.000 0.00 100.0 1.2 0.000 0.00 100.0 0.7
B 100 5 0.000 0.00 100.0 0.4 0.000 0.00 100.0 2.2 0.000 0.00 100.0 9.5
B 200 5 0.000 0.00 100.0 2.3 <0.001 0.00 98.0 6.5 0.000 0.00 100.0 91.3
B 500 5 0.000 0.00 100.0 14.3 0.000 0.00 100.0 42.3 <0.001 <0.01 86.0 499.7
B 1000 5 <0.001 <0.01 96.0 49.2 0.000 0.00 100.0 7.9 0.359 0.12 0.0 900.0
B 2000 5 <0.001 <0.01 86.6 128.8 0.000 0.00 100.0 30.4 0.478 0.14 0.0 900.0
S 50 2 0.163 0.23 42.0 4.8 0.268 0.38 40.0 11.4 0.210 0.28 42.0 899.9
S 100 2 0.172 0.32 33.8 115.5 0.367 0.49 26.0 44.8 0.323 0.47 12.0 900.0
S 200 2 0.111 0.18 14.8 606.0 0.440 0.33 2.0 65.2 0.642 0.51 0.0 900.0
S 500 2 0.095 0.08 0.0 831.7 0.532 0.18 0.0 88.7 2.736 0.51 0.0 900.0
S 1000 2 0.105 0.06 0.0 813.3 0.725 0.20 0.0 176.8 4.636 0.43 0.0 900.0
S 2000 2 0.214 0.11 0.0 892.6 0.786 0.18 0.0 252.7 4.784 0.39 0.0 900.0
S 50 3 0.035 0.15 82.0 0.2 0.053 0.21 82.0 1.3 0.035 0.15 80.0 27.7
S 100 3 0.030 0.10 82.8 3.5 0.153 0.37 50.0 16.5 0.060 0.15 52.0 899.7
S 200 3 0.025 0.11 78.8 21.5 0.117 0.26 34.0 26.4 0.135 0.21 36.0 899.8
S 500 3 0.006 0.02 42.4 370.5 0.177 0.24 14.0 121.6 1.360 0.76 4.0 900.0
S 1000 3 0.009 0.02 19.2 584.5 0.621 0.47 2.0 48.0 2.872 0.93 0.0 900.0
S 2000 3 0.041 0.05 5.8 863.3 0.701 0.41 0.0 80.2 4.296 0.98 0.0 900.0
S 50 5 0.046 0.14 83.7 <0.1 0.077 0.19 80.0 1.4 0.045 0.14 84.0 15.0
S 100 5 0.006 0.02 88.4 1.2 0.064 0.18 66.0 6.1 0.019 0.04 70.0 899.6
S 200 5 0.034 0.14 77.2 18.3 0.281 0.49 34.0 38.8 0.161 0.25 28.0 900.0
S 500 5 0.009 0.02 46.8 351.7 0.347 0.34 16.0 188.6 1.229 0.95 8.0 899.9
S 1000 5 0.012 0.02 22.2 625.3 0.702 0.50 0.0 387.3 2.478 1.11 0.0 900.0
S 2000 5 0.105 0.10 2.0 893.6 0.915 0.54 0.0 789.3 4.229 1.22 0.0 900.0

0.214%. Instances with two secondary resources tend to be among the more difficult ones,
where even for small instances with 50 jobs, optimality could be proven with the lower
bound only in 42% of the runs. This, however, could as well be an indicator for the lower
bounds being off the optimum. Interestingly, the GVNS still shows an improvement with
respect to the number of obtained proven optimal solutions, where particularly for small
to moderately large instances up to 88% could be solved to proven optimality, despite
the inherent incompleteness of the GVNS.
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3.11 Conclusion
In this chapter we considered the problem of scheduling a set of jobs where each job
requires two resources: a common resource shared by all jobs for part of their processing,
and a secondary resource for the whole processing time. The objective is to minimize the
makespan. We showed that this problem is NP-hard and that we could derive tight lower
bounds for the makespan. These lower bounds are exploited in the fast construction
heuristic LLBH and a complete A∗ search. The A∗ algorithm features in particular a
special state graph structure with nodes holding sets of non-dominated time-records in
order to exploit symmetries and to keep the memory consumption reasonable. Since the
basic A∗ algorithm may find a complete solution for large, difficult instances only after
significant search, we enhanced the search by switching the search strategy in regular
intervals to a beam search. Nodes where the lower bound is greater than or equal to
the makespan of the so far best solution are pruned. Furthermore, complete solutions
undergo a LS based on the insertion neighborhood. In this way excellent heuristic
solutions are obtained early and the method exhibits a good anytime behavior while
remaining complete.

Our experimental evaluation shows that this A∗+BS+LS can solve very large non-trivial
instances with up to 2000 jobs either to proven optimality or with typically very small
remaining gaps of less than one percent. We observed, however, that the difficulty of
problem instances is not so much related to the number of jobs, but primarily determined
by the distribution of the workload on the resources. More specifically, if the instances
exhibit a skewed workload and the workload of the common resource is similar to the
workload of the dominant resource among the secondary resources, then these instances
are typically hard to solve. In our experiments we therefore considered such difficult
skewed instances as well as easier balanced instances and studied the impact of diverse
parameters like the different lower bounds, the beam width, and the usage of the LS.
Furthermore, we compared our approach to the anytime A∗ variants APS from [155] and
ARA∗ from [108], the pure A∗ algorithm and a basic CP model solved by the ILOG CP
solver. In particular for large instances A∗+BS+LS significantly outperforms the ILOG
CP approach and in almost all cases where the ILOG CP solver provides smaller average
optimality gaps our approach is able to solve more instances to optimality. In addition,
we compared our anytime A∗ algorithm to a position-based mixed integer programming
(MIP) model solved by CPLEX, which is, however, not competitive at all. Only for small
instances was CPLEX able to obtain heuristic solutions.

In addition, we devised a GVNS in order to obtain even better solutions from hard-to-
solve instances. We efficiently evaluate solutions in the course of a neighborhood search
in incremental ways and applied it to variants of insertion and exchange neighborhood
structures. Insertion and exchange moves were utilized in the intensification phase, a
piped VND, as well as in the diversification phase as for randomized shaking.

The experimental analysis of the GVNS first dealt with the practical efficiency of the
incremental evaluation scheme, which still has a linear computation time in the number
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of jobs in the worst-case but exhibits a essentially a constant average computation time
on all our benchmark instances. When comparing the GVNS to A∗+BS+LS and the CP
model, we observed the GVNS’s ability to obtain high-quality solutions for a diverse set
of large instances with an average optimality-gap of ≤ 0.288%. Although for balanced
instances, the A∗+BS+LS algorithm was out of reach, for particularly hard instances, In
particular for hard instances with skewed workloads the GVNS showed its effectiveness,
where significantly better solutions could be obtained than with A∗+BS+LS.

Further research may consider a closer investigation of different starting strategies for
the embedded BS as well as an adaptive tuning of the beam width. In fact, the proposed
general A∗+BS+LS framework is rather problem-independent, and its applications in
other problem domains appears promising. Concerning the GVNS it would be interesting
to investigate the computation time of the incremental evaluation scheme also from a
theoretical point-of-view, in the hope that the constant amortized time observed here in
practice can even be proven for a larger class of instances.
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CHAPTER 4
A∗-based Construction of

Multivalued Decision Diagrams

T his chapter presents a novel construction technique for multivalued decision
diagrams (MDDs) that relies on the principles of A∗ search and uses problem
specific upper bound functions to guide the compilation process. Another

specialty of this novel A∗-based construction (A∗C) mechanism is that the created MDDs
are not necessarily based on a layered structure. This has the advantage that multiple
nodes representing the same state can be avoided and consequently also many redundant
isomorphic substructures. In particular, A∗C can be advantageous over traditional
compilation methods from the literature if the considered problem exhibits selection and
sequencing aspects.

Sections 4.1 and 4.2 introduce the basic ideas of the A∗-based compilation process and of
non-layered MDDs. Section 4.3 provides in particular for relaxed MDDs the problem
independent details of A∗C. The A∗C is then applied on two NP-hard optimization
problems to demonstrate the benefits over traditional compilation methods. The first
problem, considered in Section 4.4, is an extension of the job sequencing problem with
one common and multiple secondary resources (JSOCMSR) from the previous Chapter 3
by considering in addition time window constraints as well as a prize for each job.
Instead of scheduling all jobs and minimizing the makespan, a subset of jobs must be
selected that can be feasibly scheduled and the total prize of scheduled jobs is maximized.
Preliminary work on this prize-collecting job sequencing problem with one common and
multiple secondary resources (PCJSOCMSR) was first presented at the 12th International
Conference of the Practice and Theory of Automated Timetabling (PATAT 2018) [83],
where a classical A∗ search was used to solve small and middle-sized instances. An
extended version of this work was published in the special issue The Practice and Theory
of Automated Timetabling of the journal Annuals of Operations Research [84], where
besides the application of treatment scheduling for cancer patients another application
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is additionally considered: pre-runtime scheduling of electronic systems within aircraft.
Works [83] and [84] are captured in the first part of Section 4.4. Moreover, this whole
chapter is mainly based on work [78], published in the Computers & Operations Research
journal. This work presents the layer-free compilation of relaxed MDDs with A∗C to
solve the PCJSOCMSR. In order to obtain not only an upper bound from the compiled
relaxed MDDs, work [78] proposes in addition a method to compile restricted MDDs by
using a previously compiled relaxed MDD to obtain heuristic solutions. In this way the
compilation time of the restricted MDD can be substantially decreased. Note that the
development of this restricted MDD compilation method was mainly conducted by my
coauthors and is here presented for the sake of completeness only. Section 4.5 reveals
how to compile relaxed MDDs with A∗C for the longest common subsequence (LCS)
problem. A corresponding article of Section 4.5 is submitted to the 18th International
Conference on the Integration of Constraint Programming, Artificial Intelligence, and
Operations Research (CPAIOR 2021) [81]. Finally, Section 4.6 concludes this chapter.

4.1 Introduction
Decision diagrams, as introduced in Section 2.5, are in essence data structures that
provide graphical representations of the solution space of a combinatorial optimization
problem (COP). More specifically, a relaxed decision diagram (DD) represents a superset
of all feasible solutions in a compact way and can therefore be seen as a discrete relaxation
of the COP. A relaxed DD can be used to obtain a dual bound, but it also provides a
fruitful basis for alternative branching schemes [14] and constraint propagation [6], for
example.

For the kind of problems where a subset of elements is to be selected, so-called binary
decision diagrams (BDDs) are typically used. Here, solutions are usually represented by
binary vectors and each layer of the BDD is associated with a Boolean decision variable
indicating whether an element is selected or not. In contrast, for problems in which
an optimal sequence of elements shall be found, it is more natural to apply so-called
MDDs. Then, a solution is represented by a permutation of the given elements, and
consequently a layer in the MDD is associated with the decision which element appears
at the respective position in the permutation.

In this chapter we consider DDs for COPs that combine the selection aspect with the
sequencing aspect, i.e., problems in which a subset of initially unknown size needs to
be selected from some ground set of elements and the selected elements need to be
ordered to form a complete solution. Problem-specific constraints restrict the solution
space so that not all subsets have a feasible order. More specifically, in this chapter we
consider the PCJSOCMSR and the LCS problem. The former problem, consists of a
set of jobs such that each job is associated with a prize and the objective is to select a
subset of jobs and find a feasible schedule such that the total prize is maximized. The
well known classical standard LCS problem consists of a set of input strings defined over
a finite alphabet and the task is to find a longest subsequence that is common to all
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input strings. A subsequence can be derived from an input string by removing zero or
more characters from the input string. For the LCS problem the finite alphabet can be
seen as the ground set of elements such that characters must be selected in a specific
order to obtain a common subsequence. In contrast to PCJSOCMSR, where jobs can
be selected only one time, the LCS problem allows selecting characters multiple times,
i.e. a common subsequence can contain the same character more than once. Note that
besides the PCJSOCMSR and the LCS problem, the type of problems that combines the
element selection aspect with the sequencing aspect is not uncommon. For example, the
prominent class of orienteering problems [64], also called selective traveling salesperson
problem (TSP), falls into this category as well as order acceptance and single machine
scheduling [126, 144], prize-collecting single machine scheduling [43], and other scheduling
problems in which the number of tardy jobs shall be minimized (which corresponds
to selecting and scheduling a subset of the jobs), see, e.g., [106, 124]. More generally,
similar problems also appear as pricing problems in column generation approaches, for
example for vehicle routing and parallel machine scheduling problems. Last but not
least, assortment problems also exhibit the selection aspect—although sometimes with
decisions beyond binary ones—and occasionally the sequencing aspect, for example when
optimizing over time [46].

For the type of problem with both selection and sequencing decisions we consider, it is
natural to build upon MDDs similar to those from Cire and van Hoeve [40], as solutions
can be represented by permutations of the chosen elements. In contrast, it does not seem
possible to effectively cover the sequencing aspect in some BDD variant. A particularity
of our case is that feasible solutions may have arbitrary size in terms of the number of
selected elements. This leads us to a novel technique for constructing relaxed MDDs.
The method is inspired by A∗ search, a commonly used algorithm in path planning and
problem solving [70]; see also Section 2.2.2 for more details. A priority queue is maintained
for open nodes that still need further processing. A fast-to-calculate exogenous dual
bound function is used as heuristic function to iteratively select the next node to be
processed. To keep the constructed relaxed MDD compact, nodes are merged in a carefully
selected way when the open list reaches a certain size. We show for the PCJSOCMSR as
well as for the LCS problem that the relaxed MDDs obtained by the A∗-based method
yield substantially stronger bounds than relaxed MDDs of comparable size constructed
by traditional compilation methods. The main reasons for this advantage are (a) the
guidance by the dual bound heuristic, (b) that our construction is able to effectively
avoid multiple nodes for identical states at different layers of the MDD, and (c) that
similar nodes can also be merged across different layers. Substantial redundancies that
cannot be avoided in the standard construction techniques are therefore less problematic
in our approach.

In order to not just obtain dual bounds, we further describe the construction of a
restricted DD that yields promising heuristic solutions for the PCJSOCMSR. Restricted
DDs in general represent subsets of all feasible solutions. Hereby we contribute with
a novel way of utilizing a previously constructed relaxed DD in order to substantially
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speed up the construction of a restricted DD. For the LCS problem we are content with
obtaining stronger dual bounds from relaxed DDs compiled with A∗C than dual bounds
obtained from existing dual bound procedures from the literature.

Furthermore, the proposed methods to compile restricted and relaxed DDs to obtain
primal and dual bounds can be straightforwardly combined in an exact branch and bound
(BB) approach similar as shown by Bergman at el. [15]. The BB algorithm branches
over a subset of nodes in the relaxed MDD, which is compiled by the proposed A∗ based
construction scheme. The same relaxed MDD can be used to obtain a dual bound as
well as to speed up the construction of a restricted MDD in order to obtain a primal
bound. Such an exact BB method, however, is beyond the scope of this dissertation and
therefore left for future work.

4.2 Decision Diagrams for Combinatorial Optimization
For the sake of completeness and clarity we briefly repeat here the definition of different
kinds of DDs as already done in Section 2.5 of Chapter 2. However, we will do this more
in the context of sequencing problems that exhibit also a certain selection aspect.

In this chapter a DD is defined as a directed weighted acyclic multi-graph D = (V, A)
with node set V (D) and arc set A(D). In the literature, the node set V (D) is usually
partitioned into layers V (D) = V1(D)∪ . . .∪Vn+1(D), where n corresponds to the number
of decision variables representing a solution. The first and the last layer are singletons
and contain the root node r ∈ V (D) and the destination node t ∈ V (D), respectively.
Each arc α = (u, v) ∈ A(D) is associated with a value val(α) and directed from a source
node u in some layer Vi(D) to a destination node v in the subsequent layer Vi+1(D),
i ∈ {1, . . . , n}. Such an arc refers to the assignment of value val(α) to the i-th decision
variable. While the domain of values in BDDs is restricted to {0, 1}, MDDs have arbitrary
finite domains corresponding to those of the respective decision variables.

Each path from the root node r to the target node t corresponds to a solution encoded
in the DD. An exact DD has a one-to-one correspondence between feasible solutions
and the existing r-t paths. Let us consider a sequencing problem where a subset of
the permutations π = (π1, . . . , πn) of the ground set {1, . . . , n} forms the set of feasible
solutions. Figure 4.1a shows an example for an exact MDD with n = 3 encoding the
permutations (1,3,2), (2,1,3), (2,3,1), (3,2,1), and (3,1,2).

Each arc α ∈ A(D) has a length z(α) (or prize, cost, etc.) which gives the corresponding
variable assignment’s contribution to the objective value if it is chosen. The total
length of an r-t path thus corresponds to the solution’s objective value. We assume
throughout this chapter that the considered optimization problem is a maximization
problem. Consequently, we are looking for a longest r-t path.

As long as the DD is not too large, a longest path can be found efficiently as the DD is
acyclic. Unfortunately, exact DDs for NP-hard optimization problems will in general have
exponential size. This is where relaxed DDs come into play: They are more compact,
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Figure 4.1: Examples of an exact, a relaxed, and a restricted MDD for a sequencing
problem with ground set {1, 2, 3}. Each arc label shows both the element to be assigned
to the corresponding variable and the arc length as val(α)|z(α). The longest path is
highlighted. For the exact MDD, the longest path encodes the optimal permutation
π∗ = (2, 3, 1) with a total prize of 30. The relaxed MDD approximates the exact MDD
by merging nodes u and v into node v . The corresponding longest path encodes the
infeasible solution π = (2, 3, 2) and yields the upper bound 35. In the restricted MDD,
node v and its incident arcs are removed and therefore only a subset of all feasible
solutions is encoded. Its longest path is the permutation π = (3, 1, 2) of length 25, which
provides a lower bound.

and they approximate an exact DD by encoding a superset of all feasible solutions. The
longest path of a relaxed DD therefore provides an upper bound to the original problem’s
optimum solution value. A restricted DD, in contrast, encodes only a subset of the
feasible solutions, and its longest path therefore yields a lower bound and a possibly
promising heuristic solution. Figure 4.1b and 4.1c show a relaxed and a restricted DD
for the exact DD in Figure 4.1a.

Each node u ∈ V (D) carries problem-specific information through its state σ(u) that
is reached by all the partial solutions corresponding to the paths from the root node
to node u. In our case, when the MDDs represent subsets of permutations, each state
includes the subset of elements by which the partial solutions may still be extended,
thereby defining which outgoing arcs exist; we denote this set as P (u).

Decision diagrams are usually derived from a dynamic programming (DP) formulation
of the considered problem, and therefore a strong relationship exists between the DP’s
state transition graph and the nodes of the a DD [74]. We will see this relationship in
more detail when considering the PCJSOCMSR or the LCS specifically in Section 4.4.3
and 4.5.3, respectively.

Section 2.5 in Chapter 2 states that there are two fundamental methods for compiling
relaxed DDs of limited size which will be briefly repeated here. These are, to the best of

97



4. A∗-based Construction of Multivalued Decision Diagrams

our knowledge, used in almost all so far published works where relaxed DDs are applied
to address combinatorial optimization problems. The top-down compilation (TDC)
starts with just the root node and iteratively creates the DD layer by layer, essentially
performing a breadth-first search. The size of the DD is controlled by imposing an upper
bound β, called width, on the number of nodes at each layer. If the size of a current layer
exceeds β, then some nodes of this layer are selected and merged so that the layer’s size
is reduced to at most β. This merging is done in such a way that no paths corresponding
to feasible solutions are lost; new paths corresponding to infeasible solutions may emerge,
however.

The second frequently applied approach for constructing relaxed DDs is incremental
refinement (IR). It starts with a trivial relaxed DD, e.g., a DD of width one, which has
just one node in each layer. Then two major steps are repeatedly applied until some
termination condition is fulfilled, e.g., a maximum number of nodes is reached. In the
filtering step, the relaxation represented by the DD is strengthened by removing arcs
that cannot be part of any path corresponding to a feasible solution. In the refinement
step, nodes are split into pairs of new replacement nodes in order to remove some of the
paths that correspond to infeasible solutions.

Besides TDC and IR, Bergman and Cire [12] proposed to consider the compilation of a
relaxed DD as an optimization problem and investigated a mixed integer programming
(MIP) formulation. While this approach is useful for benchmarking different compilation
methods on small problem instances, it is computationally too expensive for any practical
application. In another work, Römer et al. [136] suggested a local search framework that
serves as a more general scheme to obtain relaxed DDs. It is based on a set of local
operations for manipulating and iteratively improving a DD, including the node splitting
and merging from IR and TDC, respectively, and arc redirection as a new operator.
Again, both approaches are strongly layer-oriented.

Especially in the context of binary DDs, a commonly used extension that frequently yields
more compact DDs are so-called long arcs [33, 121]. They skip one or more layers and
represent multiple variable assignments with one arc. In zero-suppressed DDs, variables
corresponding to skipped layers take the value zero, while in one-suppressed DDs they
get value one. Alternatively, a long arc may indicate that the skipped variables can take
either value. For example, Bergman et al. [17] suggested to use zero-suppressed DDs for
the independent set problem, while Kowalczyk and Leus [103] applied them to solve the
pricing problem in a branch-and-price algorithm for parallel machine scheduling.

In conjunction with scheduling and sequencing problems, MDDs were already successfully
applied e.g. to single machine scheduling problems [40], the time-dependent traveling
salesman problem with and without time windows, the time-dependent sequential ordering
problem [99], and job sequencing with time windows and state-dependent processing
times [75].

All these approaches utilize MDDs for permutations similar to our example in Figure 4.1.
An alternative way of representing sets of permutations as DDs has been described by
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Figure 4.2: MDD variants for a problem with both selection and sequencing decisions
encoding the same set of solutions: (a) using artificial termination arcs with val(α) = T;
(b) redirecting all arcs leading to non-extendable states directly to the target node (if
appending an element may never yield a worse feasible solution); (c) additionally avoiding
multiple instances of isomorphic substructures (shaded parts).

Minato [122]. It builds upon zero-suppressed decision diagrams and encodes permutations
by binary decision variables that indicate the transposition of pairs of elements. While
this approach offers interesting advantages concerning certain algebraic operations, it
appears nontrivial to efficiently express typical objective functions from routing and
scheduling in terms of arc lengths on such DDs.

4.2.1 MDDs for Problems with Both Selection and Sequencing
Decisions

To address problems like the PCJSOCMSR/LCS, the above described MDDs for permu-
tations can be extended in natural ways.

A commonly used approach for modeling problems with multiple different goal states is to
use a single target node t and connect each other node that corresponds to a feasible end
state to this target node with a special termination arc of length zero. Such a termination
arc α has a special value val(α) = T and does not correspond to any classical variable
assignment. See Figure 4.2a for an example of such an approach in our case.

A simpler method can be used for optimization problems where appending an element to
a solution, if feasible, always leads to a solution that is not worse. This is, in particular,
the case when all arc lengths are non-negative. Here, we can avoid additional artificial
arcs and simply redirect all arcs that lead to a non-extendable state directly to the
target node t; see Figure 4.2b. These redirected arcs may now skip layers. In contrast to
the previously discussed long arcs, however, our arcs here still represent single variable
assignments. In the remainder of this work, we consider just this simpler redirection
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approach without explicit termination arcs. However, the algorithmic concepts we present
can also be adapted in a straightforward way to the more general DD structure with
termination arcs.

A further advantage of our MDDs for problems with both selection and sequencing
decisions is illustrated in Figure 4.2b–c. In Figure 4.2b, consider the substructures rooted
at nodes v and v and note thereby that due to the variable solution length, isomorphic
substructures appear. In Figure 4.2c, the MDD is condensed by storing this substructure
just once, with all arcs leading to the two substructures in Figure 4.2b redirected to the
single substructure. In this way, many redundancies might be avoided and substantially
more compact MDDs representing the same set of solutions may be obtained. Note,
however, that classical DD construction techniques such as TDC and IR are not able
to create such an MDD as they rely on the notion that an arc originating at layer i,
i = 1, . . . , n, (or a long arc passing a layer i) assigns a value to the i-th decision variable.
The A∗-based construction method we will propose in Section 4.3 does not rely on the
layer-to-variable relationship but more generally just assumes that on any r-t path, the
i-th arc represents an assignment to the i-th variable.

4.3 Basic Concepts of A∗-based Construction
We propose to construct relaxed MDDs for the PCJSOCMSR/LCS problem and possibly
other problems with both selection and sequencing decisions in a novel way that essentially
adapts the classical TDC towards the spirit of A∗ search, i.e., instead of following a
breadth-first search we turn towards a best-first search. Since A∗ search is a purely state
based approach, our compilation method does not require to define an ordering of decision
variables and to assign them to a fixed number of layers in advance. Hence, layers do
not play a role anymore. To compare this with traditional compilation methods in a
more systematic way, let us assume that the A∗ state graph is aligned to the underlying
decision variables. This means that in case of sequencing problems the i-th arc of an
r-t path corresponds to the i-th decision variable, whereas for DDs, compiled with
traditional layer-based methods, the i-th decision variable corresponds to the i-th layer
(cf. Section 4.2.1, Figure 4.2c and 4.2b, respectively). The resulting key characteristics of
this scheme are:

1. It naturally avoids multiple nodes for identical states at different layers and conse-
quently multiple copies of isomorphic substructures (cf. Section 4.2.1 and Figure 4.2).

2. Node expansions and the selection of nodes to be merged are guided by an auxiliary
upper bound function. This upper bound function may be stronger than longest
paths derived from DDs.

3. Partner nodes for merging are selected by considering state similarity and a more
flexible merging of nodes across different layers is enabled in a natural way.

4. Solutions of different lengths are represented naturally.
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These features may allow obtaining more compact relaxed MDDs that provide tighter
upper bounds than the so far used classical construction techniques. Note that, if the A∗

search is appropriately defined, there may also be connections to non-serial DP, where
the choice of the next decision variable may be state dependent. See Hooker [74] for
more details about non-serial DP.

The A∗ based approach may not be applicable or advantageous if it is not possible
to prevent the emergence of cycles in the underlying state graph when merging nodes.
Traditional methods naturally avoid such cycles by merging nodes only of the same layer.
We will discuss this topic and a possible cycle-avoidance mechanism in more detail in
Section 4.3.4. Another disadvantage of A∗ based compilation may be that the time
complexity of A∗ search is in general exponential in the worst case (see Section 2.2.2).
This implies that the A∗ based compilation of relaxed DDs has an exponential worst case
time complexity too. The practical compilation time, however, is competitive with the
traditional TDC method, which exhibits a polynomial time complexity in the worst case,
as our experimental results in Sections 4.4.10 and 4.5.6 will show.

4.3.1 A∗ Search

A∗ search [70] is a commonly applied technique in path planning and problem solving. It
is well known for its ability to efficiently find best paths in very large (state) graphs. The
following brief overview on A∗ search builds upon the notation already introduced in our
DD setting. For more details on A∗ search, we refer to Section 2.2.2 in Chapter 2. A∗

search follows a best-first-search strategy and uses as key ingredient a heuristic function
Zub(u) that estimates, for each node u reached, the cost to get to the target node t in a
best way, the so-called cost-to-go1. All not yet expanded nodes, called open nodes, are
maintained in a priority queue, the open list Q. This list is partially sorted according to
a priority function

f∗(u) = Z lp(u) + Zub(u) (4.1)

where Z lp(u) denotes the length of the so far best path from the root node r to node u.
Initially, Q contains just the root node. The A∗ search then always takes a node with the
highest priority from Q and expands it by considering all outgoing arcs. Destination nodes
that are reached in better ways via the expanded node are updated and newly reached
nodes are added to Q. Considering maximization, a heuristic function Zub that never
underestimates the real cost-to-go (i.e., is an upper bound function) is called admissible.
A∗ search terminates when t is selected from Q for expansion. If an admissible heuristic
is used, then Z lp(t) is optimal. From now on let us assume that Zub is indeed admissible.
The efficiency of A∗ search mostly relies on how well the heuristic function estimates the
real cost-to-go.

1Note that the term cost-to-go is more fitting in the context of minimization, as introduced in
Section 2.2.2. We aim at maximizing the total length, benefit, or prize, and one might therefore consider
“length-to-go” more suitable. Nevertheless, we stay here with the term cost-to-go as it is commonly used
in the literature.
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4.3.2 Constructing Exact MDDs by A∗ Search

When performing the A∗ search, all encountered nodes and arcs that correspond to
feasible transitions are stored. If the construction process is carried out until the open
list becomes empty and thereby all nodes have been expanded, then a complete MDD is
obtained. Alternatively, the A∗ search’s criterion can be applied, and then the search is
terminated already when the target node is selected for expansion. In this case, typically
substantially fewer nodes will have been expanded, and the obtained MDD is in general
incomplete. Nevertheless, we know due to the optimality condition of A∗ search that at
least one optimal path is contained and thus an optimal solution is indeed represented.

4.3.3 Constructing Relaxed MDDs

To obtain a compact relaxed MDD we now extend the above A∗-based construction
(A∗C) by limiting the open list. This is achieved by merging similar and less promising
nodes when the open list exceeds a certain size φ. Details on how we choose the nodes
to be merged will be presented in Section 4.3.4. Selected nodes are merged in the
same problem-specific ways as in traditional relaxed DD construction techniques. In
particular, it has to be guaranteed that no paths corresponding to feasible solutions get
lost. Sections 4.4.8 and 4.5.5 will show how this is done for the PCJSOCMSR and LCS
problem, respectively.

When performing this MDD construction until the open list becomes empty, we now
obtain a complete relaxed MDD that indeed represents a superset of all feasible solutions
and yields an upper bound on the optimal solution value.

Alternatively, we may also here already terminate early once the target node is selected
for expansion. Due to the merging and the optimality condition of A∗ search, we have
then obtained a path whose length is a valid upper bound to the optimal solution value,
and this bound cannot be further improved by continuing the MDD construction. Only
longer paths corresponding to weaker bounds may later arise due to further node merges.
Let us denote this best obtained bound by Zub

min.

Thus, the termination criterion to be used depends on the goal for which the MDD is
constructed. If we are only interested in the upper bound or, for example, a DD-based
BB [14] shall be performed, the early termination may be very meaningful and can save
much time. However, should we indeed need a representation of a complete superset of
all feasible solutions, the construction has to be continued.

Algorithm 4.1 shows the proposed MDD construction technique in pseudo-code. After
the initialization phase, the main loop is entered. At each major iteration, a node u
with maximum priority f∗(u) is taken from the open list Q. As long as the target node
t was not chosen for expansion, the node’s f∗-value provides a valid upper bound and
Zub

min is updated accordingly in Line 6. If t was chosen, the optional early termination
takes places.
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Algorithm 4.1: A∗-based construction of a relaxed MDD
Input: open list size limit φ
Output: relaxed MDD D = (V, A) and upper bound to optimal solution value

1 create root node r corresponding to initial state;
2 open list Q ← {(r, f∗(r) = Zub(r))};
3 Zub

min ← Zub(r); t-expanded ← false;
4 while Q = ∅ do
5 u ← pop node with largest f∗(u) from Q;
6 if not t-expanded then Zub

min ← min(Zub
min, f∗(u)) ;

7 if u = t then
8 t-expanded ← true;
9 // optional, if just the upper bound is of interest:

10 return incomplete MDD D and upper bound Zub
min;

11 end
12 if u not yet expanded then
13 foreach feasible successor state Σ of σ(u) do // expand node u
14 if ∃v ∈ V (D) | σ(v) = Σ then add new node v to V (D) with

σ(v) = Σ, Z lp(v) = 0 ;
15 add new arc α = (u, v) to A(D);
16 if Z lp(u) + z(α) > Z lp(v) then
17 Z lp(v) ← Z lp(u) + z(α);
18 Q ← Q ∪ {(v, f∗(v) = Z lp(v) + Zub(v))};
19 end
20 end
21 else
22 foreach arc α = (u, v) ∈ A(D) do // re-expand node u
23 if Z lp(u) + z(α) > Z lp(v) then
24 Z lp(v) ← Z lp(u) + z(α);
25 Q ← Q ∪ {(v, f∗(v) = Z lp(v) + Zub(v))};
26 end
27 end
28 end
29 if |Q| > φ then // reduce size of Q
30 try to merge nodes in Q until |Q| ≤ φ according to Alg. 4.2;
31 end
32 end
33 return relaxed MDD M and upper bound Zub

min
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Algorithm 4.2: Reduce Q by merging nodes
Input: open list Q, global set of collector nodes V c (initially empty)
Output: possibly reduced open list Q

1 for u ∈ Q in increasing order of values Z lp(·) do
2 if |Q| ≤ φ then break ;
3 while u not expanded ∧ ∃v ∈ V c | L(v) = L(u) ∧ u = v ∧ v not expanded do
4 create new node v with merged state σ(v ) = σ(u) ⊕ σ(v);
5 remove u from Q and v from Q and V c;
6 if ∃v ∈ V (D) | σ(v ) = σ(v ) then
7 fold ← f∗(v );
8 redirect all incoming arcs from v to v ;
9 if f∗(v ) > fold then Q ← Q ∪ {(v , f∗(v ) = Z lp(v ) + Zub(v ))} ;

10 v ← v ;
11 else
12 add node v to V (D);
13 Q ← Q ∪ {(v , f∗(v ) = Z lp(v ) + Zub(v ))};
14 end
15 u ← v ;
16 end
17 if u not expanded then insert u into V c;
18 end
19 return Q

Next, the case when node u has not yet been expanded is handled by considering all
feasible transitions from state σ(u) and creating new nodes and arcs accordingly. If
thereby a new path to a node v increases Z lp(v), then node v is (re-)inserted into Q. If
node u was already expanded, a re-expansion has to take place because a longer path
to u, yielding a larger Z lp(u), has been found in an iteration after the node’s original
expansion. This is done by propagating the updated Z lp(u) to all its successor nodes
and evaluating if they also need re-expansions. Note that, in general, we cannot avoid
such re-expansions even when the upper bound function is consistent since node merges
may lead to new longer paths.

After each node expansion, the algorithm checks if the size of the open list |Q| exceeds
the limit φ. If this is the case, then the algorithm tries to reduce Q by merging nodes
as explained in the next section. Algorithm 4.1 terminates regularly when the open list
becomes empty and returns the relaxed MDD together with the best obtained upper
bound Zub

min.

4.3.4 Reducing the Open List by Merging
Merging different nodes usually introduces new paths corresponding to infeasible solutions,
and this typically weakens the upper bound obtained. Therefore, we aim at quickly
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identifying nodes for merging that (a) are less likely to be part of some final longest
path; (b) are associated with similar states, since this should imply that the merged state
still is a strong representative for both; (c) do not introduce cycles in the MDD as they
would lead to infinite solutions; and (d) ensure that the open list gets empty after a finite
number of expansions. The last two aspects are crucial conditions to ensure a proper
termination of the approach, and they are not trivially fulfilled due to the possibility to
merge across different layers.

Aspect (a) is considered by iterating over the nodes in the open list in an increasing
Z lp-order and trying to merge each node with a suitably selected partner node in a
pairwise fashion until the size of the open list does not exceed φ anymore. The motivation
for the increasing Z lp-order is that A∗ search has so far postponed the expansion of
these nodes while other nodes with comparable Z lp values have already been expanded.
Therefore, the nodes with small Z lp values can be argued to be less likely to appear in a
longest path.2

The selection of the partner node for merging is done considering aspects (b) to (d)
by utilizing a global set of so-called collector nodes V c. To this end, we define a
problem-specific labeling function L(u) that maps the data associated with a node u—in
particular its state σ(u)—to a simpler label of a restricted finite domain DL, thereby
partitioning the nodes into subsets of similar nodes. Our labeling function, for example,
may drop, aggregate, or relax parts of the states considered less important and condense
the information in this way. Similar principles as in state-space relaxation [39] can be
applied. The labeling function, however, may additionally also consider the upper bound
Zub(u) as criterion for similarity; experimental results in Section 4.4.10 will show the
particular usefulness of this. The global set of collector nodes V c is initially empty and
realized as a dictionary (e.g., hash table) indexed by the labels so that for each label in
DL, there is at most one collector node in V c, and thus |V c| ≤ |DL|. In this way, we can
efficiently determine for any node u if a related collector node with the same label L(u)
already exists and, in this case, directly access it.

Algorithm 4.2 shows the whole procedure to reduce the open list. As long as the open list
is too large, nodes are selected in increasing Z lp-order. For a chosen node u, it is checked
if it is not yet expanded and if a corresponding collector node v, that is also not yet
expanded, exists (Line 3). In this case, u and v are merged, yielding the new node v with
state σ(v ) = σ(u) ⊕ σ(v), where ⊕ denotes the problem-specific state merging operation.
All incoming arcs from u and v will be redirected to the new node v . Consequently, u is
removed from Q and v from Q as well as V c. Next, we have to integrate the new node v
into the node set V by avoiding multiple nodes in the set V associated with the same
state (Line 6). Furthermore, v becomes a collector node in V c, essentially replacing the
former collector node v. Node v may, however, have a different label than the former v,

2We remark that we considered in preliminary experiments also an increasing f∗ order, thus processing
the priority queue essentially in reverse order. While we obtained mostly MDDs of roughly comparable
quality, they were sometimes significantly larger and more computation time was needed.
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and some other collector node with the same label as v may already exist in V c. In this
case, we iterate the merging with these nodes by continuing the while-loop in Line 3.

Note that Algorithm 4.2 shows the main idea pointing out the important steps. In a
concrete implementation, a few additional corner cases need to be considered, in particular
when collector nodes get changed (e.g., expanded) between two calls of Algorithm 4.2.
Furthermore, our implementation marks merged nodes such that non-merged nodes
may be preferred for expansion in case of ties (e.g. see the tie breaking criterion in
Section 4.4.8). Tagging merged nodes may also be useful for a later implementation of
an exact DD-based BB framework.

4.4 Prize-Collecting Job Sequencing with One Common
and Multiple Secondary Resources Problem

In this section we will create relaxed MDDs with the A∗C method for the PCJSOCMSR.
The goals are (1) to show that for PCJSOCMSR stronger relaxed MDDs can be compiled
with A∗C than with other standard compilation methods from the literature and (2)
to heuristically solve large instances of the PCJSOCMSR. Since the PCJSOCMSR is
a newly introduced problem we also consider a classical A∗ search approach compared
with a MIP formulation and a constraint programming (CP) formulation to solve small
instances to proven optimality. In this way we get an impression of the instance size
from which it makes sense to solve instances heuristically. To obtain heuristic solutions
we create restricted MDDs with the TDC by using some structural information of a
previously compiled relaxed MDD with A∗C. In this way we are able to speed up the
compilation process of the restricted MDD.

Chapter 3 introduced the JSOCMSR, which considers the scenario of scheduling a set of
jobs where each job, for part of its execution, requires a common resource and, for the
whole processing time, requires a secondary resource that is only shared with a subset of
the other jobs. The goal of the JSOCMSR is to find a feasible schedule minimizing the
makespan.

Besides an application of this problem in manufacturing, a more specific application
can be found in the daily scheduling of cancer patients that are to receive particle
therapy [120]. There, the common resource corresponds to a sophisticated particle
accelerator, which accelerates proton or carbon particles to almost the speed of light.
This particle beam is directed into one of a small set of treatment rooms where one
patient can be radiated at a time. The treatment rooms are here the secondary resources.
During the setup time, a patient is positioned and possibly sedated and after the actual
radiation with the particle beam, typically some medical examinations are to be done
before the patient can leave the room and it becomes available for a next patient. In
such particle therapy treatment centers, there is usually only a single particle accelerator
because of its huge cost and about two to three treatment rooms. Since these treatment
rooms are typically individually equipped for handling different kinds of treatments, the
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assignment of patients to rooms is pre-specified. Ideally, patients are scheduled in such a
way that the particle beam is directly switched from one room to another so that patients
are radiated without any significant breaks in between.

However, the JSOCMSR as presented in Chapter 3 is in most cases only a strongly
simplified model of real-world scenarios like the above patient scheduling. Most notably,
the jobs start times are in practice frequently constrained to certain time windows arising
from the availability of the underlying resources. Furthermore, in practice, it happens
frequently that not all jobs can be scheduled due to these time windows and instead, a
best subset of jobs that can be feasibly scheduled must be selected.

To also include such aspects is the focus of the current section: We extend the JSOCMSR
by considering job-specific time windows, and instead of minimizing the makespan we
aim at finding a feasible solution that maximizes the total prize of all scheduled jobs. To
this end, each job has an assigned prize, which can simply take the value one if we want
to maximize the number of scheduled jobs or it can take a value representing the priority
of the job. Another possibility is that these prizes are correlated to the processing times
of the jobs to avoid scheduling primarily short jobs.

These new aspects have a substantial impact on the structure of the problem and
consequently on the algorithmic side, and existing methods for the JSOCMSR cannot be
extended in efficient ways. Most importantly, the rather effective lower bound calculation
for the makespan in the JSOCMSR from Section 3.4 is useless for the new problem variant
due to the entirely different objective function and new decision variables. Therefore,
we propose in Section 4.4.5 a new A∗ search to solve this prize-collecting variant of the
JSOCMSR to proven optimality. In particular, we investigate four different upper bound
calculations for partial solutions which are used as heuristic functions to estimate the
costs-to-go within the A∗ search. A further aspect of our A∗ search is that there is no
specific target state known in advance.

There is also another application of the PCJSOCMSR: pre-runtime scheduling of elec-
tronics within an aircraft, called avionics. The industrially relevant instances considered
in [21, 91] are too complex and large-scale to be addressed directly and instead they
need to be solved by some decomposition. The PCJSOCMSR appears as an important
sub-structure both in the exact decomposition approach in Blikstad et al. [21] and the
matheuristic approach in Karlsson et al. [91].

The considered system consists of a set of nodes and each of these contains a set of
modules (processors) with jobs to be scheduled. Each node consists of one communication
module, corresponding to the common resource, and a set of application modules,
corresponding to the set of secondary resources. There are three types of jobs: partition
jobs, communication jobs and regular jobs. Partition jobs, which are executed on the
application modules run the system’s software applications. Each of these jobs has to
communicate with the communication module and we consider only the case where a
partition job has to communicate either at the beginning or at the end of its execution.
Typically, the processing time of partition jobs is long compared to other jobs and its
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usage of the common resource is short compared to the total processing time of the job.

The communication is handled by communication jobs and regular jobs, both executed on
the communication module. These have short processing times and in order to model that
they use the common resource only, an additional artificial secondary resource is included
for these jobs. The communication and regular jobs use both the common resource and
the artificial secondary resource for their whole processing time. Communication jobs
and regular jobs together handle different kinds of communication (system external, inter-
and intranode) and the communication jobs have the specific purpose of representing jobs
used for sending communication messages [21, 91]. For this reason, the communication
jobs can only be scheduled at specific time slots where communication messages can be
sent and the length of a communication job’s time window is equal to the job’s total
processing time. This distinguishes them from the regular jobs which have time windows
with similar characteristics as those of the partition jobs.

To mimic the situation of creating a partial schedule for a node in the system, only a
part of the total length of a schedule is considered and the tasks available exceed what
is possible to include in the partial schedule. The prize of a job reflects the individual
importance of including this job in the partial schedule. Note that compared to [21, 91],
some simplifications are made with respect to the types of jobs included and by omitting
precedence relations between jobs. Furthermore, we do not explicitly and fully consider
the scheduling of the communication network used for communication between the nodes.

After a more formal problem definition in the next section and a survey of related
work in Section 4.4.2, we describe the A∗ search in Section 4.4.5. This method relies
on a specific state strengthening procedure and the use of a good heuristic guidance
function corresponding to an upper bound calculation for the total prize that may still
be an achieved from a partial solution onward. Concerning the latter, we investigate
different possibilities based on linear programming (LP) and Lagrangian relaxations
of a multidimensional knapsack problem formulation. For comparison purposes, we
further consider, in Section 4.4.6, an order-based MIP model solved by Gurobi Optimizer
Version 7.5.1 and, in Section 4.4.7, a constraint programming model solved by MiniZinc.
To create relaxed MDDs, Section 4.4.8 describes the problem specific parts of the A∗C
method in order to apply it on PCJSOCMSR instances and Section 4.4.9 reveals how to
compile restricted MDDs with the TDC method by using an earlier compiled relaxed
MDD for large instance sizes that could not be solve to optimality by the considered
exact approaches. Section 4.4.10 presents and compares computational results for all
these approaches on instances of the avionics scenario as well as balanced instances of
the particle therapy scenario. The results show that the proposed A∗ search can solve
substantially larger instances with up to 80 jobs to optimality in shorter times than
the other considered exact methods. Furthermore, on the heuristic side, experiments
including comparisons with a variable neighborhood search heuristic on large benchmark
instances with up to 500 jobs show the advantages of the proposed relaxed and restricted
MDD construction techniques, respectively.
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4.4.1 Problem Formulation
The prize-collecting job sequencing problem with one common and multiple secondary
resources (PCJSOCMSR) considers the sequencing of a set of jobs where each job needs
to respect resource constraints and time windows. The resource constraints refer both to
a common resource that is used by all jobs and a set of secondary resources of which each
job uses exactly one. It is assumed that it is usually not possible to find a feasible schedule
that includes all jobs; instead each job is associated with a prize and the objective is to
choose a subset of the jobs such that the sum of prizes of the sequenced jobs is maximized.

Let the set of all jobs be denoted by J , with |J | = n, and let the prize of job j be zj > 0,
j ∈ J . The problem is to find a subset of jobs S ⊆ J that can be feasibly scheduled so
that the total prize of these jobs is maximized:

Z∗ = max
S⊆J

Z(S) = max
S⊆J

j∈S

zj . (4.2)

The set of (renewable) resources is denoted by R0 = {0} ∪ R, with R = {1, . . . , m}.
During its execution, job j uses resource 0, referred to as the common resource, and
one of the secondary resources qj ∈ R, j ∈ J . Let pj > 0 be the processing time of
job j, during which it fully requires the secondary resource qj , j ∈ J . Further, let
Jr = {j ∈ J | qj = r} be the set of jobs that require resource r, r ∈ R. For job j, j ∈ J ,
the use of the common resource begins ppre

j ≥ 0 time units after the start of the job, has
a duration of p0

j , and ends ppost
j = pj − ppre

j − p0
j ≥ 0 time units before the end of the job.

If a job j is scheduled, it must be performed without preemption and within one of
its ωj disjunctive time windows Wj = {Wjw | w = 0, . . . , ωj} with Wjw = [wstart

jw , wend
jw ],

where wend
jw − wstart

j,w ≥ pj , j ∈ J . We assume that each job has at least one time
window. For job j, let the release time be T rel

j = minw=0,...,ωj wstart
jw and the deadline be

T dead
j = maxw=0,...,ωj wend

jw . The overall time interval to consider is then T min, T max with
T min = minj∈J T rel

j and T max = maxj∈J T dead
j . Note that the existence of unavailability

periods of resources is also covered by the above formulation since these can be translated
into time windows of the jobs.

Since each job requires resource 0 and only one job can use this resource at a time, a
solution to PCJSOCMSR implies a total ordering of the scheduled jobs S. Vice versa, a
permutation π = (πi)i=1,...,|S| of a subset of jobs S ⊆ J that can be feasibly scheduled
can be decoded into a feasible schedule in a straight-forward greedy way by, in the order
given by π, placing each job from S at its earliest feasible time with respect to when the
resources are available after being used by all its preceding jobs. A schedule derived from
a job permutation π in this way is referred to as a normalized schedule. Note that if this
greedy approach is applied to a permutation of jobs and some job cannot be feasibly
scheduled in this way, this permutation does not correspond to a feasible solution. Also,
an optimal solution is either a normalized schedule or the order of the jobs in this optimal
solution can be used to derive a normalized schedule with the same objective value. For
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j pj pprej p0j qj zj Wj

1 4 1 2 1 2 {[0, 8]}
2 4 1 2 1 4 {[0, 8]}
3 4 0 3 2 3 {[3, 8]}
4 5 1 3 2 2 {[8, 14]} time

res.

0 2 4 6 8 10 12 14

1

2 33 4

2

Instance: Optimal Solution π: Z(π) = 9

Figure 4.3: A PCJSOCMSR instance with n = 4 jobs and m = 2 secondary resources.
Each job has exactly one time window in Wj . The optimal solution is given by the job
sequence π = (2, 3, 4) and its normalized schedule visualized on the right side. The white
region in each job denotes the part where, in addition to the job’s specific secondary
resource, also the common resource is needed. Job 1 cannot be additionally scheduled due
to the time windows and resource requirements. The solution’s total prize is Z(π) = 9.

this reason the notation Z(π) is used for the total prize of the normalized solution given
by the job permutation π. Figure 4.3 shows (1) an example of an instance with four
jobs and two secondary resources where each job has exactly one time window and (2) a
corresponding optimal solution.

It is not difficult to see that the PCJSOCMSR is NP-hard: The decision variant of
the JSOCMSR, which looks for a feasible schedule with a makespan not exceeding a
given M , has already been shown to be NP-hard in Section 3.3. One can reduce this
decision problem to the PCJSOCMSR in polynomial time by setting all time windows to
Wj = {[0, M ]} and all prizes to zj = 1. A solution to the JSOCMSR decision problem
exists if and only if a solution to the PCJSOCMSR can be found that has all jobs
scheduled.

4.4.2 Related Work
Since the PCJSOCMSR is an extension of the JSOCMSR, most of the related work of
JSOCMSR form Section 3.2 is also related to the PCJSOCMSR. Consequently, we do
not repeat these works here again.

Concerning the PCJSOCMSR, Maschler and Raidl [116] investigated TDC and IR
approaches to construct relaxed MDDs and a TDC for restricted MDDs. In addition, an
independent general variable neighborhood search (GVNS) metaheuristic was considered.
An extended version [117] was published by the same authors, where in particular a
smaller relaxed MDDs can be obtained during the IR approach by using techniques to
detect and remove redundancies. Instances with up to 300 jobs were studied, which
are so far clearly out of reach to be solved to proven optimality, as our experiments in
Section 4.4.10 will also confirm. It turned out that IR frequently yields relaxed MDDs of
roughly comparable size with a larger number of jobs. Incremental refinement’s running
times are, however, in general higher than those of TDC for constructing MDDs of
comparable size. The heuristic solutions obtained from the restricted MDDs were usually
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better than or on par with the solutions obtained from the GVNS, except for the largest
skewed instances, where the GVNS performed better. In our experimental investigations
in Section 4.4.10 we will also compare to these approaches.

Moreover, the PCJSOCMSR is to some extent related to the well studied orienteering
problem (OP), which essentially also combines the tasks of selecting a subset yielding a
maximum prize with finding a sequence of the selected elements that make the solution
feasible. Different variants of the OP have been studied, including OPs with time windows;
for a survey see Gunawan et al. [64]. In the OP, each node is associated with a prize and
travel times are known between all pairs of nodes. The task is to find a path from a given
start node to an end node within a given time budget such that the total prize of the
visited nodes is maximized. Due to the time budget not all nodes can be visited. In such
an OP, the arrival time at a visited node only depends on the immediate predecessor,
possible time windows, and the (constant) travel time between these two nodes. For
PCJSOCMSR, the situation is more complicated due to the secondary resources: A
much earlier scheduled job requiring the same secondary resource may impact the earliest
starting time of the job to be scheduled next. The PCJSOCMSR, however, also does
not generalize the OP with time windows as pairwise travel times are not covered by
the PCJSOCMSR.

4.4.3 State Graph
In order to solve the PCJSOCMSR exactly by a classical A∗ search, presented in upcoming
Section 4.4.5 and to compile relaxed MDDs with A∗C we have to define a state graph.
The mentioned algorithms will work on this state graph.

A state in PCJSOCMSR must describe all relevant aspects in order to determine the
earliest starting time of any successive job that can be scheduled. For a node u in this
state graph this is the tuple σ(u) = (P (u), t(u)) consisting of

• the set P (u) ⊆ J of jobs that can still be feasibly scheduled, and

• the vector t(u) = (tr(u))r∈R0 of the earliest times from which each resource r is
available for performing a next job.

To simplify the consideration of the time windows, we introduce the function

eft(j, t) = min({t ≥ t | ∃k : t , t + pj ⊆ Wjk} ∪ {T max}), (4.3)

that yields the earliest feasible time, not smaller than the provided time t ≤ T max, at
which job j can be scheduled according to the time windows Wj of the given job j ∈ J .
The value eft(j, t) = T max indicates that job j cannot be feasibly included in the schedule
at time t or later.

The state of the root node is σ(r) = (P (r), t(r)) = (J, (T min, . . . , T min)) and represents
the original instance of the problem, with no jobs scheduled or excluded yet, and the
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σ(r) =({1,2,3,4},(1,0,3))

({2,3,4},(3,4,3)) ({1,3,4},(3,4,3))

({4},(13,14,12))

(∅,(14,14,14))
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Figure 4.4: State graph for the problem instance from Figure 4.3 with n = 4 jobs and
m = 2 secondary resources. Node labels denote the corresponding states (P (·), t(·)), arc
labels the scheduled jobs j. The path that represents the optimal solution is highlighted.
Note that for the shown state graph the strengthening of states as described in Section 4.4.3
has been applied.

target node’s state is σ(t) = (P (t), t(t)) = (∅, (T max, . . . , T max)). An arc α = (u, v)
represents the transition from state (P (u), t(u)) to state (P (v), t(v)) that is achieved by
scheduling job j = val(α), j ∈ P (u), at its earliest possible time w.r.t. vector t(u). When
performing this transition, the start time of job j w.r.t. state (P (u), t(u)) is

s ((P (u), t(u)), j) = eft j, max(t0 − ppre
j , tqj ) . (4.4)

The transition function to obtain the successor state (P (v), t(v)) of state (P (u), t(u))
when scheduling job j ∈ P (u) is

τ ((P (u), t(u)), j) = (P (u) \ {j}, t(v)), if s((P (u), t(u)), j) < T max,

0̂, else,
(4.5)

with

t0(v) = s((P (u), t(u)), j) + ppre
j + p0

j , (4.6)
tr(v) = s((P (u), t(u)), j) + pj , for r = qj , (4.7)
tr(v) = tr(u), for r ∈ R \ {qj}, (4.8)

and where 0̂ represents the infeasible state. If a transition results in the infeasible state,
the corresponding arc and node are omitted in the MDD.

The prize associated with a state transition is the prize zj of the scheduled job j. Thus,
each path in this state graph originating in the initial state of the root node σ(r) and
ending in some other state than 0̂ corresponds to a feasible solution in which the jobs
associated with the arcs are greedily scheduled in the order in which they appear in
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the path. Note that a feasible state σ(u) = (P (u), t(u)) may, in general, be reached
via multiple different paths, i.e., by including different sets of jobs and/or by different
orderings of these jobs. Therefore, a feasible state does, in general, not represent a
unique solution. Figure 4.4 shows as example the state graph for the problem instance in
Figure 4.3.

Using these definitions of states and transitions, we can express the optimal solution
value of the PCJSOCMSR subproblem represented by a node u by the recursive DP
formulation

Z∗(u) = max {Z∗(τ(σ(u), j)) + zj | j ∈ P (u), τ(σ(u), j) = 0̂} ∪ {0} (4.9)

and the overall PCJSOCMSR solution value is Z∗(r).

Strengthening of States

A state can be replaced by a dominating state if it is ensured that the latter still allows
for the same feasible solutions. This dominance relation is defined as follows. A state
(P (u), t (u)) dominates a state (P (u), t(u)), denoted by (P (u), t (u)) (P (u), t(u)), when
P (u) ⊆ P (u), tr(u) ≥ tr(u) for all r ∈ R0, and (P (u), t (u)) = (P (u), t(u)). The feasible
extensions from (P (u), t (u)) towards complete solutions can then only be a subset of
those from (P (u), t(u)).

To possibly strengthen a state (P (u), t(u)), let P (u) = {j ∈ P (u) | s((P (u), t(u)), j) =
T max} include only the jobs from P (u) that can actually be scheduled. Then, set the
times

t0(u) = min
j∈P (u)

s((P (u), t(u)), j) + ppre
j , (4.10)

tr(u) = minj∈P (u)|qj=r s((P (u), t(u)), j), if {j ∈ P (u) | qj = r} = ∅,

T max, else,
r ∈ R,

(4.11)

such that they correspond to the earliest possible time when the corresponding resource
can actually be used considering the jobs in P (u). Here, tr(u) is set to T max if no job
that requires resource r remains in P (u). This strengthening also ensures that any
state for which no feasible extension exists anymore is mapped to the unique target
state t = (∅, (T max, . . . , T max)).

4.4.4 Upper Bounds for the Total Prize of Remaining Jobs
As described in Section 2.2.2, A∗-based algorithms use an upper bound function for a
given state (P (u), t(u)) of node u to guide the search process. An upper bound for the
cost-to-go, i.e. for the still achievable total prize for the remaining jobs in P (u) can be
calculated by solving the following LP relaxation of a multi-constrained 0–1 knapsack
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problem

Zub
MKP-LP(u) = max

j∈P (u)
zjxj (4.12)

s.t
j∈P (u)

p0
jxj ≤ W0(P (u), t(u)), (4.13)

j∈P (u)∩Jr

pjxj ≤ Wr(P (u), t(u)), r ∈ R, (4.14)

0 ≤ xj ≤ 1, j ∈ P (u), (4.15)

where variables xj is a continuous relaxation of a binary variable that indicates if job j is
scheduled (=1) or not (=0), j ∈ P (u). The right-hand-sides of the knapsack constraints
are

W0(P, t) =
j∈P,

k=1,...,ωj |
wend

jk −ppost
j ≥t0+p0

j

max t0, wstart
jk + ppre

j , wend
jk − ppost

j (4.16)

and

Wr(P, t) =
j∈P ∩Jr,

k=1,...,ωj |
wend

jk ≥tr+pj

max tr, wstart
jk , wend

jk , (4.17)

where the union of intervals is defined as i=1,...,k[αi, βi] = {γ ∈ R | ∃i : γ ∈ [αi, βi]}, and
function | · | denotes the sum of the lengths of the resulting disjoint continuous intervals
of this union. Thus, W0(P, t) and Wr(P, t) represent the total amount of still available
time for resource 0 and resource r, r ∈ R, respectively, considering the current state and
the time windows.

To solve this upper bound calculation problem for each state with an LP solver is
computationally rather expensive, as our experiments in the next section will document.
Instead, simpler upper bounds are determined by solving two types of further relaxations.
The first one is obtained by relaxing inequalities (4.14).

Zub
0 (u) = max

j∈P (u)
zjxj (4.18)

s.t
j∈P (u)

p0
jxj ≤ W0(P (u), t(u)) (4.19)

0 ≤ xj ≤ 1 j ∈ P (u) (4.20)
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The second relaxation is obtained by performing a Lagrangian relaxation of inequal-
ity (4.13), where λ ≥ 0 is the Lagrangian dual multiplier associated with this inequality.

hub(u, λ) = max
j∈P (u)

zjxj + λ

W0(P (u), t(u)) −
j∈P

p0
jxj

 (4.21)

s.t
j∈P (u)∩Jr

pjxj ≤ Wr(P (u), t(u)), r ∈ R (4.22)

0 ≤ xj ≤ 1 j ∈ P (u) (4.23)

Both, Zub
0 (u) and hub(u, λ), are computed by solving LP relaxations of simple knapsack

problems. In the latter case, this is possible since the problem separates over the
resources and for each resource, the resulting problem is an LP relaxation of a knapsack
problem. An LP relaxation of a knapsack problem can be efficiently solved by a greedy
algorithm that packs items in decreasing prize/time-ratio order; the first item that does
not completely fit is packed partially so that the capacity is exploited as far as possible,
see Kellerer et al. [96].

It follows from weak duality (see, e.g., [125], Prop. 6.1) that hub(u, λ) yields an upper
bound on Zub

MKP-LP(u) for all λ ≥ 0, but the quality of this upper bound depends on the
choice of λ. We have chosen to consider hub(u, λ) for the values λ = 0 and λ = zj̄/p0

j̄
,

where j̄ is the last, and typically partially, packed item in an optimal solution to the
problem solved to obtain Zub

0 (u). The value λ = zj̄/p0
j̄

is chosen since it is an optimal
LP dual solution associated with inequality (4.19) and therefore has a chance to be a
good estimate of a value for λ that gives a strong upper bound.

By solving the relaxations introduced above, the strongest bound on Zub
MKP-LP(u) we can

obtain, and the one that we use in our A∗-based construction of a relaxed MDD, is

Zub(u) = min Zub
0 (u), hub(u, 0), hub(u, zj̄/p0

j̄ ) . (4.24)

In our experimental comparisons in Section 4.4.10, we will illustrate the practical strengths
of the bounds

Zub
MKP-LP(u), (4.25)

Zub
0 (u), (4.26)

Zub
00 (u) = min Zub

0 (u), hub(u, 0) , and (4.27)

Zub
0j̄ (u) = min Zub

0 (u), hub(u, zj̄/p0
j̄ ) , (4.28)

and study which compromise of strength and computational effort pays off the most in
the context of our A∗ search.
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4.4.5 Classical A∗ Search

In this section we describe a classical A∗ search approach for the PCJSOCMSR. Remember
that a feasible state σ(u) of node u does not represent a unique solution since this node
may be reached via multiple different paths. As we want to find a solution with maximum
total prize, we are primarily interested in a path from r to u with a maximum total prize.
Let Z lp(u) be this maximum total prize to reach a feasible state σ(u). In order to solve
the PCJSOCMSR we have to find a node u with a feasible state σ(u) and maximum
Z lp(u). Such a state cannot have any feasible successor state, hence, either P (u) = ∅ or
τ((P (u), t(u)), j) = 0̂, j ∈ P (u), and otherwise Z lp(u) is not the maximum achievable
prize.

A∗ search belongs to the class of informed search strategies that make use of a heuristic esti-
mate for guidance in order to return a proven optimal solution possibly faster than a more
naive uninformed search like breadth- or depth-first-search. See Chapter 2/Section 2.2.2
for more details about A∗ search. Within our A∗ search, each encountered feasible state
(P (u), t(u)) of the state graph is evaluated by a priority function f∗(u) = Z lp(u) + Zub(u)
in which Z lp(u) corresponds to the prize of the so far best (i.e., longest) known path from
r to node u and Zub(u) is the A∗ search’s heuristic function estimating the “costs-to-go”.
The latter is in our case an upper bound on the still achievable prize by extending the
path from state (P (u), t(u)) onward as described in Section 4.4.4. The value of the
priority function f∗(u) is thus an upper bound on the total prize that a solution may
achieve by considering node u.

The proposed A∗ search is shown in pseudo-code in Algorithm 4.3. It maintains the
set W of all so far encountered states, implemented by a hash table; for each contained
state (P (u), t(u)), this data structure also stores the values Z lp(u) and Zub(u) as well
as a reference pred(u) to the predecessor node of a currently longest path from r to u,
and the last scheduled job j(u). Furthermore, the algorithm maintains the open list Q,
which contains all nodes queued for further expansion. It is realized by a priority queue
data structure that considers the states’ priority values f∗(u). Last but not least, our
A∗ search maintains a reference xmaxlp to the encountered node u with the so far largest
Z lp(u) value. Both W and Q, as well as xmaxlp, are initialized with the root node r at
Lines 2–4 of Algorithm 4.3.

At each major iteration, a node u with maximum priority value f∗(u) is taken from Q at
Line 9. This node u is then expanded, which means that each job in P (u) is considered
as next job to be scheduled by calculating the respective successor state obtained by
the transition x = τ((P (u), t(u)), j). If a job yields the infeasible state 0̂, it is skipped.
Similarly, if the obtained state has been encountered before and the new path via node u
is not longer than the previously identified path to the already existing node with state
x, we skip job j. Otherwise, if a new feasible state is reached, it is added to set W and a
new correspond node v is created. Since a new longest path to node v via u has been
found, line 24 sets Z lp(v) = Z lp(u) + zj and stores u as predecessor of v and job j as
the last scheduled job. The upper bound Zub(v) is then also calculated, and if there is
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Algorithm 4.3: A∗ Algorithm for PCJSOCMSR
1 Input: Root node r with initial state σ(r);
2 set of encountered states W ← {r}, Z lp(r) ← 0;
3 open list Q ← {(r, f∗(r) = Zub(r))};
4 node with maximum Z lp so far xmaxlp ← r;
5 do
6 if Q = ∅ then
7 return opt. solution given by xmaxlp and its predecessor chain
8 end
9 u ← pop node with maximum f∗(u) from Q;

10 if f(u) ≤ Z lp(xmaxlp) then
11 return opt. solution given by xmaxlp and its predecessor chain
12 end
13 foreach j ∈ P (u) do // expand node u
14 state x ← τ((P (u), t(u)), j); strengthen state x;
15 if x = 0̂ ∨ (∃σ(v) ∈ W : σ(v) = x ∧ Z lp(P, t) + zj ≤ Z lp(v)) then
16 // infeasible or existing state reached in no better way, skip
17 continue
18 end
19 if x ∈ W then let v be the node with σ(v) = x ;
20 else // new state reached
21 create new node v with σ(v) ← x;
22 W ← W ∪ {x};
23 end
24 Z lp(v) ← Z lp(u) + zj , pred(v) ← u, j(v) = j ;
25 if Zub(v) = 0 then Q ← Q ∪ (v, f∗(v) = Z lp(v) + Zub(v));
26 if Z lp(xmaxlp) < Z lp(v) then xmaxlp ← v ;
27 end
28 while time or memory limit not reached;
29 // terminate early:
30 u ← node with maximum f∗(u) from Q;
31 derive solution π from xmaxlp following predecessors;
32 π ← greedily augment π with jobs from P (u);
33 return heuristic solution π and upper bound f∗(u);
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potential for further improvement, i.e., Zub(v) > 0, node v is added to the open list Q for
a possible future expansion. Finally, reference xmaxlp is updated if a new overall longest
path is obtained.

A special aspect of our A∗ search therefore is that we do not have a specific target state
that is known in advance, and we only add states/nodes that may yield further successor
states to the open list. Lines 6 to 11 makes sure that we nevertheless recognize when
a proven optimal solution has been reached: This is the case when either the open list
Q becomes empty or the priority value f∗(u) of Q’s top element u (i.e., the maximum
priority value) is not larger than the length Z lp(xmaxlp) of the so far longest identified
path. Note that the priority value of Q’s top element always is a valid overall upper bound
for the total achievable prize. This follows from the fact that Zub(u) is an admissible
heuristic (see Section 2.2.2), i.e., it never underestimates the real prize that can still be
achieved from (P (u), t(u)) onward. Further, an optimal solution is derived from state
xmaxlp by following its chain of predecessor states and respectively scheduled jobs, and
the corresponding solution is returned.

A particular feature of our A∗ search is that it can also be terminated early by providing
a time or memory limit for the execution and it still yields a heuristic solution together
with an upper bound on the optimal solution value in this case. This heuristic solution
is derived from the so far best state xmaxlp by following its chain of predecessors and
additionally considering all remaining jobs in P (u) in their natural order (i.e., as given
in the instance specification) for further addition in a greedy way. The returned upper
bound is the priority value of Q’s top element.

4.4.6 A Mixed Integer Programming Model

For comparison purpose we propose the following mixed integer programming (MIP)
model to solve instances of the PCJSOCMSR. We use the binary variable tj to indicate
if job j, j ∈ J , is included in the schedule (=1) or not (=0) and the binary variable tjw

to indicate if job j is assigned to time window w (=1) or not (=0), w = 1, . . . , ωj , j ∈ J .
Let the continuous variable sj be the start time of job j. Binary variable yjj is further
used to indicate if job j is scheduled before j w.r.t. the common resource (=1) or not
(=0), if both jobs are scheduled, j, j ∈ J, j = j .

Let

δjj = pj , if qj = qj ,

ppre
j + p0

j − ppre
j , if qj = qj ,

(4.29)

be the minimum time between the start of job j and the start of job j if job j is scheduled
before job j , which depends on whether both jobs use the same resource or not.
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A solution to PCJSOCMSR can be obtained by solving the MIP model

max
j∈J

zjtj (4.30a)

s.t tj =
w=1,...,ωj

tjw, j ∈ J, (4.30b)

yjj + yj j ≥ tj + tj − 1, j, j ∈ J, j = j , (4.30c)
sj ≥ sj + δjj − (T dead

j − pj − T rel
j + δjj )(1 − yjj ),

j, j ∈ J, j = j (4.30d)

sj ≥ T rel
j +

w=1,...,ωj

wstart
jw − T rel

j tjw, j ∈ J, (4.30e)

sj ≤ T dead
j − pj +

w=1,...,ωj

(wend
jw − T dead

j )tjw, j ∈ J, (4.30f)

tj ∈ {0, 1}, j ∈ J, (4.30g)
tjw ∈ {0, 1}, w = 1, . . . , ωj , j ∈ J, (4.30h)
sj ∈ [T rel

j , T dead
j − pj ], j ∈ J, (4.30i)

yjj ∈ {0, 1}, j, j ∈ J, j = j . (4.30j)

Equations (4.30b) state that each scheduled job must be assigned to a time window and
inequalities (4.30c) ensure that if two jobs j and j are scheduled, either yjj or yj j must
be set to one, i.e., one of them needs to precede the other. If a job is to precede another
one, inequalities (4.30d) ensure this w.r.t. the jobs’ start times. If a job is assigned to a
time window, inequalities (4.30e) and (4.30f) make its start time comply with this time
window, and otherwise the job only complies with its release time and deadline.

In Chapter 3, a MIP model with position based variables was introduced for JSOCMSR
since this model showed better computational performance than a MIP model with order
based variables. Such position based model does, however, not extend well to the current
setting with multiple time windows since the time windows require explicit knowledge of
the start time of each job, and the position based model only has explicit times for the
start time of a certain position.

4.4.7 A Constraint Programming Model
We further propose the following constraint programming (CP) model for the PCJ-
SOCMSR, which we implemented in the constraint modeling language MiniZinc3. The
model makes use of so-called option type variables. Such a variable may either have a
value of a certain domain assigned or set to the special value that indicates the absence
of a value. For job j ∈ J we use the option type variable sj for the job’s start time. An
absent start time, i.e., sj = , indicates that the job is not scheduled. The CP model is

3https://www.minizinc.org
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given by

max
j∈J |occurs(sj)

zj (4.31a)

disjunctive_strict({(sj + ppre
j , p0

j ) | j ∈ J}), (4.31b)
disjunctive_strict({(sj , pj) | j ∈ J ∧ qj = r}), r ∈ R, (4.31c)
occurs(sj) → min

ω=1,...,ωj

wstart
jω ≤ sj ≤ max

ω=1,...,ωj

(wend
jω − pj), j ∈ J, (4.31d)

sj ∈ [T rel
j , . . . , T dead

j − pj ] ∪ { }, j ∈ J, (4.31e)

where for job j ∈ J the predicate occurs(sj) yields true if the option type variable sj is not
absent, i.e., job j is scheduled. Objective function (4.31a) considers the total prize over
all scheduled jobs. The strict disjunctive constraints (4.31b) and (4.31c) ensure that all
scheduled jobs do not overlap w.r.t. their usage of the common resource and the secondary
resource r ∈ R, respectively. Absent jobs are hereby ignored. Constraints (4.31d) state
that if job j ∈ J is scheduled, it must be performed within one of the job’s time windows.
The domains of variables sj are specified in (4.31e).

4.4.8 A∗-based Construction of Relaxed MDDs
In order to compile relaxed MDDs for the PCJSOCMSR with the A∗C Algorithm 4.1
from Section 4.3, we have to define some problem specific parts. First the A∗C algorithm
uses the state graph from Section 4.4.3 and we have to define an appropriate merge
operator that merges two states in such a way that no feasible solutions are removed
from the relaxed MDD. Second, we need to define a labeling function that selects pairs of
nodes from the open list Q for merging such that no cycles emerge and the merged node
is still a strong representative for both selected nodes. Furthermore the labeling function
has to ensure that the open list will get empty after a finite number of expansions. And
finally we reveal some further technical details about dominant node merging and tie
breaking criteria.

Merging of States

In order to compile a relaxed MDD D we further have to define the merging operation.
Here, when two nodes u, v ∈ V (D) are merged into a new single node, the merged state is

(P (u), t(u)) ⊕ (P (v), t(v)) = P (u) ∪ P (v), (min(tr(u), tr(v)))r∈R0
. (4.32)

By this construction, the merged state allows all feasible extensions that both original
states did. Additional extensions and originally infeasible solutions may, however, become
feasible due to the merge, as is usually the case in relaxed DDs. If possible, the obtained
state is further strengthened as described above.

We proof now the validity of the merge operator ⊕. In line with the common definition
of a relaxation, Bergman at el. [14] defines a relaxed DD as follows.
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Definition 4.4.1
A weighted DD is relaxed for an optimization problem P if

(i) the DD represents a superset of the feasible solutions to P and

(ii) each path that represents a feasible solution to P has a length that is an upper
bound on the objective value of this solution.

Given an exact DD formulation and a merge operator, this operator is considered valid
if (repeatedly) applying it to the DD will result in a DD that is relaxed with respect
to the original problem. In order to show this, it is sufficient to show that if the merge
operator is applied to a DD that complies with (i) and (ii), so will the resulting DD, and
the result will follow by induction. (For the initial step of the induction, we assume the
operator is applied to an exact DD, which trivially complies with (i) and (ii)).

Proposition 4.4.0.1
Given a relaxed MDD constructed for the PCJSOCMSR according to Section 4.4.3
that complies with (i) and (ii) in Definition 4.4.1. When the merge operator defined in
Equation (4.32) is applied to this MDD, then the resulting MDD will also comply with
(i) and (ii).

Proof. A state σ(u) = (P (u), t(u)) carries the following information. The set P (u) ⊆ J
of jobs that can still be feasibly scheduled, and the vector t(u) = (tr(u))r∈R0 of the
earliest times from which each resource r is available for performing a next job. When
the merge operator σ(u) ⊕ σ(v) is applied to the two states σ(u) = (P (u), t(u)) and
σ(v) = (P (v), t(v)), the resulting state is P (u) ∪ P (v), (min(tr(u), tr(v)))r∈R0

. For the
merged state, the set of jobs that can be feasibly scheduled is a superset of both the
original sets of jobs, and no feasible solutions are omitted due to the merge. As for the
earliest times, since the merged state gets the component-wise earliest time from each of
the original states, no feasible solution is lost. Because of this, (i) holds after the merge
operation is applied. Note that after the merge operation, paths from the merged state
that were not feasible with respect to neither σ(u) nor σ(v) might become feasible for
σ(u) ⊕ σ(v). Condition (ii) follows because the longest path from σ(u) ⊕ σ(v) is selected
from a superset of the paths that existed before the merge and that the cost of the arcs
are the same. Moreover, note that the DD stays acyclic and therefore feasible thanks to
the node selection mechanism.

Figure 4.5 shows an example of an exact MDD and a corresponding relaxed MDD for
the small PCJSOCMSR instance from Figure 4.3. The states associated with the nodes
are detailed in the tables below each MDD. Arc labels indicate the scheduled job and
its prize. In the exact MDD, the longest path is highlighted and it has a total length of
nine. The corresponding optimal solution is given by the sequence π∗ = (2, 3, 4) and the
respective schedule is depicted on the right side of the figure. A relaxed MDD is shown
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r

a b

c

t

1|2 2|43|3

4|22|4
3|3

4|2

1|2
3|3

4|2
4|2

Exact MDD

u P (u) t(u) Zlp(u)

r {1, 2, 3, 4} (1, 0, 3) 0
a {2, 3, 4} (3, 4, 3) 2
b {1, 3, 4} (3, 4, 3) 4
c {4} (9, 14, 8) 7
t {} (14, 14, 14) 9

r

d

c

t

1|2
2|4

3|3

4|2
1|3

2|4
3|3

4|2
4|2

Relaxed MDD

u P (u) t(u) Zlp(u)

r {1, 2, 3, 4} (1, 0, 3) 0
d {1, 2, 3, 4} (3, 4, 3) 4
c {4} (9, 14, 8) 7
t {} (14, 14, 14) 10

j pj ppre
j

p0
j qj zj Wj

1 4 1 2 1 2 {[0, 8]}
2 4 1 2 1 4 {[0, 8]}
3 4 0 3 2 3 {[3, 8]}
4 5 1 3 2 2 {[8, 14]}

time

res.

0 2 4 6 8 10 12 14

1

2 33 4

2

Instance:

Opt. solution π∗: Z(π∗) = 9

Figure 4.5: Examples of an exact MDD and a relaxed MDD for a PCJSOCMSR instance
with n = 4 jobs and m = 2 secondary resources. In the relaxed MDD, the original nodes
a and b have been merged.

in the middle; it has been obtained by merging nodes a and b from the exact MDD,
yielding node d. The longest path of this relaxed MDD has length ten and it represents
the sequence π∗ = (2, 2, 4), where job 2 is scheduled twice. It can here be easily verified
that all r–t paths in the exact MDD, which correspond to all feasible solutions of this
PCJSOCMSR instance, have corresponding paths in the relaxed MDD, but there exist
additional paths representing infeasible solutions such as (2, 2, 4).

Labeling Function for Collector Nodes

As a final major component, closely related to merging, we have to define the labeling
function L(u) used for indexing the collector nodes V c. Remember that this function
should partition the set of nodes into subsets such that nodes within a subset are similar
enough to be promising to merge; thus, similar nodes should tend to get the same label.

In case of PCJSOCMSR, we use for a node u the triple L(u) = (t0(u), r(u), Zub(u)) as
label, where t0(u) is again the time from which on the common resource is available, r(u)
refers to the secondary resource of the job scheduled last in the so far longest path to
node u (ties are resolved by using the resource identified first), and Zub(u) is the upper
bound for the cost-to-go.

Note that by this definition, we do not explicitly consider P (u), the set of jobs that
might still be scheduled, nor tr, r ∈ R, the individual availability times of the secondary
resources. Instead of the latter, r(u) is used as a rough substitute. The upper bound
Zub(u) is an important additional indicator that can be seen to somehow summarize
important information about the state of node u. In summary, two nodes are only merged
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in our A∗-based construction if (a) the common resource 0 is used to the same extent, (b)
the last used secondary resource is the same, and (c) the values of the problem-specific
upper bounds coincide.

Note that a merged node will have the same t0 value as the original nodes according to
Equation (4.32). Since each job requires the common resource 0 for a positive time, each
transition from a node to a successor node increases the corresponding t0 value. From
this follows the important property that the t0 values strictly increase along any path in
our MDD. Consequently, it holds that cycles cannot occur and that the open list gets
empty in a finite number of iterations (since when the t0 values strictly increase along
any path, the set of jobs that might be scheduled will decrease due to the deadline of
the jobs). Hence, the increase of t0 in each state transition helps to guarantee that the
algorithm terminates with a complete relaxed MDD.

In Section 4.4.10 we will experimentally investigate also the following simpler labeling
functions: L1(u) = t0(u), L2(u) = (t0(u), r(u)), and L3(u) = (t0(u), Zub(u)).

Besides the argued theoretical convergence, it might be the case that the practical running
time of the algorithm is still too large due to the not strongly limited domain size of
the labels: Values t0(u) as well as Zub(u) may be continuous and in the worst case,
exponentially many different values may emerge in the course of our algorithm, leading to
a potentially exponential number of collector nodes. In our experiments in Section 4.4.10,
this situation did not occur. In case that it does, discretizing these values in the labeling
function by appropriate rounding can be a solution. This technique will be applied for
the LCS problem in Section 4.5.

Dominated Merging

Algorithm 4.2 does not merge already expanded nodes since, in general, the operations of
re-evaluating and updating the expanded sub-graphs would be too expensive. However,
sometimes it is possible to merge nodes with already expanded collector nodes without
further evaluations and updates. Let v ∈ Q be a not yet expanded node and u ∈ V be
an already expanded node. If σ(v) ⊕ σ(u) = σ(u), Z lp(v) ≤ Z lp(u), and t0(v) = t0(u)
holds, then it is possible to merge v into u without changing the state of u and without
increasing the length of the currently longest path to it. The last two conditions are
important to (a) safely omit the re-expansion of node u and (b) to efficiently identify
such possible merges by additionally indexing all so far encountered nodes u ∈ V by their
t0(u) values.

After each node expansion, each new or changed node in Q is considered for this type of
merge by checking the condition in conjunction with all other nodes in V that have the
same t0 value. If a pair of nodes u and v that fulfills this condition is found, we remove v
from the open list and merge v into u by redirecting all incoming arcs from v to u. Since
this kind of merge does not introduce any relaxation loss, we perform this procedure
after every node expansion even if |Q| ≤ φ.
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Tie Breaking in the Priority Function

The nodes in the open list Q are sorted according to the value of the priority function f∗,
given in Equation (4.1). It is not uncommon that different nodes have the same f∗-value,
and we therefore use the following two-stage tie breaking in order to further guide the
algorithm in a promising way. First, if two nodes have the same f∗-value, we always
prefer exact nodes over non-exact nodes. We call a node exact when it has a longest path
from the root node that does not contain any merged node where the merging induced a
relaxation loss. In other words, an exact node is guaranteed to have a feasible solution
that corresponds to this longest path. Such nodes are considered more promising to
expand than non-exact nodes with the same f∗-value. In case of a remaining tie, we
prefer nodes where the corresponding state has fewer jobs that may still be scheduled,
i.e., we prefer nodes u with smaller |P (u)|.

4.4.9 Construction of Restricted MDDs based on Relaxed MDDs
A restricted MDD represents only a subset of all feasible solutions. It is primarily used
to obtain feasible solutions and corresponding lower bounds. The construction usually
follows a layer-by-layer top-down approach [15, 16], see also Chapter 2.1/Section 2.5.2.
As for relaxed MDDs, the size of a restricted MDD is typically limited by imposing a
maximum width β for each layer. Whenever the allowed width is exceeded, nodes are
selected from the current layer according to a greedy criterion and removed together with
their incoming arcs.

So far, most previous approaches in the literature construct restricted DDs independently
of relaxed DDs. However, an earlier construction of a relaxed DD will, in general, have
already collected substantial information. We propose to exploit this information in a
successive construction of a restricted DD. The goal is to speed up the construction of
the restricted DD and/or to obtain a stronger restricted DD representing better solutions.
Note that some recent works derive primal solutions directly from relaxed DDs without
compiling a successive restricted DD, e.g., by using exact states of the relaxed DDs as
done by Tjandraatmadja and van Hoeve [153] or by applying heuristic search methods
on the relaxed DD as done in Chapter 6.

Throughout this section, we denote all elements of restricted MDDs with primed symbols,
while corresponding symbols of relaxed MDDs are not primed. Our approach applies the
common top-down compilation principle. Each node u ∈ V (D ) in the restricted MDD
D always has a corresponding node u ∈ V (D) in the relaxed MDD D in the sense that a
path from r to u represents a feasible partial solution that is also represented in D by a
path from r to node u. In other words, the node u ∈ V (D ) that corresponds to a node
u ∈ V (D) is the node that can be reached by the same sequence of scheduled jobs. For
each newly created node in the restricted MDD, we keep track of its corresponding node
in the relaxed MDD.

When expanding node u , this corresponding node u will allow us to skip certain tran-
sitions in the restricted MDD without evaluating them, i.e., we avoid introducing the
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Algorithm 4.4: Construction of a restricted MDD based on a relaxed MDD
Input: relaxed MDD D = (V, A), maximum width β
Output: restricted MDD D = (V , A )

1 V1(D ) ← {r }; A(D ) ← ∅;
2 l ← 1;
3 while Vl(D ) = ∅ do
4 Vl+1(D ) ← {};
5 foreach node u ∈ Vl(D ) do
6 let u ∈ V (D) be the node corresponding to u w.r.t. the path from r;
7 foreach outgoing arc α = (u, v) of node u do
8 if τ(σ(u ), val(α)) = 0̂ then
9 continue with next arc;

10 end
11 if |Vl+1(D )| = β ∧ node v would be removed from Vl+1(D ) ∪ {v}

then
12 continue with next arc;
13 end
14 Σ ← τ(σ(u ), val(a)); strengthen Σ;
15 if ∃v ∈ Vl+1(D ) | σ(v ) = Σ then
16 add new node v to Vl+1(D ) and set σ(v ) = Σ;
17 end
18 add new arc α = (u , v ) to A(D );
19 if |Vl+1(D )| > β then
20 select and remove a node from Vl+1(D ) with its incoming arcs

according to a greedy criterion;
21 end
22 end
23 end
24 l ← l + 1;
25 end
26 return D = (V , A ) with V (D ) = V1(D ) ∪ . . . ∪ Vl−1(D );

corresponding arcs and successor nodes. In this way, a vast amount of arcs and nodes for
states that cannot lead to an optimal solution may be omitted.

Algorithm 4.4 shows this compilation of a restricted MDD D that utilizes the relaxed
MDD D . We start with the first layer that consists of the root node r . Then, each
successive layer Vl+1(D ) is built from the preceding layer Vl(D ) by creating nodes and
arcs for feasible transitions from the states associated with the nodes in Vl(D ).

Here comes the first novel aspect: For each node u in layer Vl(D ) we consider only
state transitions corresponding to outgoing arcs of the respective node u in the relaxed
MDD. Other potentially feasible state transitions do not need to be considered since we
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know from the relaxed MDD that they cannot lead to an optimal feasible solution. Note,
however, that the relaxed node u might have outgoing arcs representing transitions that
are actually infeasible for node u in the restricted MDD. This may happen since the
states of u and u do not need to be the same but u may dominate u due to merged nodes
on the path from r to u in the relaxed MDD. In Line 8, our algorithm therefore checks the
feasibility of the respective transition (remember that 0̂ represents the infeasible state)
and skips infeasible ones. For PCJSOCMSR, this feasibility check simply corresponds to
testing if val(a) ∈ P (u).

When we have reached the maximum allowed width at the current layer, we can make
an efficient pre-check if the node v that would be created next would be removed later
when the set Vl+1(D ) is greedily reduced to β nodes. To this end, we evaluate the
criterion that is used to decide which nodes are removed from the current layer for the
corresponding node v in the relaxed MDD in conjunction with the so far obtained set
Vl+1(D ). If this criterion is chosen in a sensible way, the evaluation for v will never
indicate a removal of node v when v would not be removed, since either the associated
states are identical or the state of v dominates the state of v. In our algorithm, Line 11
realizes this pre-check and correspondingly skips the respective transitions.

For the remaining transitions, Line 14 calculates the obtained new state Σ and creates
the corresponding node v if no node in V (D ) exists yet for Σ. Then, a new arc (u , v )
representing the transition in the restricted MDD is added to A(D ). Finally, if Vl+1(D )
has grown to more than β nodes, a node is removed according to the used greedy criterion.

A typical way to select the nodes for removal at each layer is to take the nodes with
the smallest lengths of their longest paths from the root node r , i.e., the nodes with
the smallest Z lp(v ), v ∈ Vl+1(D ) [16, 15]. As already observed by Maschler and
Raidl [116, 117] this strategy is not beneficial for PCJSOCMSR since it disregards the
advances in the time line. Instead, we remove nodes with the smallest Z lp(v )/t0(v )
ratios in our implementation for the PCJSOCMSR. When applying this removal criterion
to the corresponding node v of the relaxed MDD in Line 11, it holds that Z lp(v)/t0(v) ≥
Z lp(v )/t0(v ) as Z lp(v) ≥ Z lp(v ) and t0(v) ≤ t0(v ) since state σ(v ) is equal to or
dominates state σ(v). We can even sharpen this estimation by using (Z lp(u )+z(α))/t0(v)
and thus take advantage of our knowledge of Z lp(u ) and the respective transition cost
z(α) to reach node v.

The benefits of exploiting the relaxed MDD in the compilation of the restricted MDD
depends on how closely the exact states in the restricted MDD are approximated by
the corresponding states in the relaxed MDD as well as the size of the solution space
encoded in the relaxed MDD. Various filtering techniques, as for example described by
Cire and van Hoeve [40] for sequencing problems, can substantially reduce relaxed MDDs,
and consequently, their application to the relaxed MDD before its exploitation in the
construction of the restricted MDD may be advantageous.
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4.4.10 Experimental Results
The classical A∗ search, the A∗C for compiling a relaxed MDD, as well as the approach
from the last section to further derive a restricted MDD were implemented in C++ using
GNU g++ 5.4.1. All tests were performed on a cluster of machines with Intel Xeon
E5-2640 v4 processors with 2.40 GHz in single-threaded mode with a memory limit of
16 GB per run.

We created two non-trivial sets of benchmark instances with up to 500 jobs for the
experimental evaluation. The first set is based on characteristics from the particle
therapy application scenario and denoted here as set P, whereas the second instance set
is based on the avionic system scheduling scenario and called set A. All instances are
available at https://www.ac.tuwien.ac.at/research/problem-instances
and are described in the upcoming subsection.

This section is structured such that first, we will describe our used benchmark instances
in more detail. Then we will study the impact of different problem specific upper bound
functions from Section 4.4.4 on the classical A∗ search from Section 4.4.5. The next
experiments are dedicated to exact methods such that we compare the pure A∗ algorithm,
the MIP model from Section 4.4.6, and the CP model from Section 4.4.7 for small and
middle-sized instances.

The next part of our experimental evaluation is dedicated to solve large instances of the
PCJSOCMSR heuristically by compiling first a relaxed MDD with A∗C and then use
the structural information of it to compile a restricted MDD with TDC as explained
in Section 4.4.9. For this purpose we first present results from studying the impact of
different values for the open list size limit φ and of different choices for the labeling
function L(u) in the compilation of relaxed MDDs with A∗C. Thereafter, we compare
the quality of upper bounds obtained from relaxed MDDs compiled with A∗C to those
from other approaches. The last experiments finally compares primal bounds obtained
from the derived restricted MDDs to those from other heuristic and exact approaches for
PCJSOCMSR.

Benchmark Instances

We created two non-trivial benchmark instance sets in order to test our solution ap-
proaches. The first instance set, called P, is inspired from the particle therapy patient
scheduling application, while the second set, called A, exhibits characteristics from
the avionic system application. Each set consists of 30 instances for each combina-
tion of n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90} jobs for small and middle-sized instances
and n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500} jobs for large instances as well as
m ∈ {2, 3} secondary resources for the particle therapy based scenario and m ∈ {3, 4}
secondary resources for the avionic system based scenario.

Particle therapy instances (P) For these instances, the following values are sampled
for each job j ∈ J : (a) the secondary resource qj from the discrete uniform distribution
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U{1, m}, (b) the pre-processing times ppre
j and the post-processing times ppost

j from
U{0, 8}, (c) the times p0

j from U{1, 8}, and (d) the prize zj from U{p0
j , 2p0

j} (such that
this prize correlates to the usage of the common resource of job j). Time windows are
chosen such that, on average, roughly 30 % of the jobs can be scheduled. For this purpose
let the time horizon be T = 0.3 n E(p0) , where E(p0) is the expected value of the
distribution for p0

j . In the first step, the number of time windows ωj of job j is sampled
from U{1, 3}, i.e., a job can have up to three time windows. Second, for time window k,
k = 1, . . . , ωj , its start time wstart

jk is sampled from U{0, T − pj} and its end time from
wend

jk from wstart
jk + max {pj , U{ 0.1 T/ωj , 0.4 T/ωj }}. Overlapping time windows are

merged.

Note that we create here similar to Chapter 3 “balanced particle therapy instances”.
In [84] we also considered a third set of “skewed particle therapy instances”, in which the
usage of the secondary resources is not uniform. However, especially for large instances the
differences between the balanced and skewed instances turned out to be less interesting,
and we therefore do not consider the skewed instances here.

Avionic instances (A) For the avionic instance set A, a fixed time horizon of T = 1000
is considered, and there are 20% communication jobs, 40% partition jobs, and 40% regular
jobs. The time p0

j is for partition jobs and regular jobs sampled from the discrete uniform
distribution U{36, 44} and for communication jobs p0

j = 40. Each partition job is assigned
a secondary resource and each secondary resource has the same probability to be selected.
For partition jobs, the total processing time pj is sampled from U{5p0

j , 8p0
j} and then,

with equal probability, ppre
j or ppost

j is set to 0 and the respective other value is set to
pj − p0

j . Since the communication jobs and regular jobs do not use a secondary resource
in the real scenario, an artificial secondary resource is introduced and assigned to all
of these jobs, and pj = p0

j . The prize zj is for five of the partition jobs and ten of
the communication jobs set to the high value 70 to give these jobs a higher priority,
while for the remaining partition jobs and communication jobs the prize is sampled from
U{10, 50}. For all regular jobs, the prize is sampled from U{10, 25}. For partition jobs
and regular jobs, the number of time windows and the length of the time windows are
computed as in the particle therapy case, but for the communication jobs the structure is
different. The communication jobs can only be scheduled at certain points in time when
the communication can be performed; these time points are 0, 80, 160, . . . , 880. Each
time window of a communication job corresponds to one such time point and a job’s
total set of time windows corresponds to a number of consecutive such time points. The
number of time windows for a communication job is obtained by sampling a value from
the uniform distribution U{1, 3} and multiplying it by three.

Comparison of Problem Specific Upper Bound Functions

We start by experimentally evaluating the impact of the individual components of our
combined upper bound function Zub∗ (u) = min(Zub

0 (u), hub(u, 0), hub(u, zj̄/p0
j̄
)) from

Section 4.4.4. To this end, we performed the A∗ search on small- and middle-sized
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Figure 4.6: Success rates of upper bound subfunctions Zub
0 (u), hub(u, 0) and hub(u, zj̄/p0

j̄
)

to yield the smallest value, i.e., to determine Zub∗ (u).

benchmark instances with n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90} jobs, using Zub∗ (u) to
evaluate all states and count for the sub-functions Zub

0 (u), hub(u, 0), and hub(u, zj̄/p0
j̄
)

how often each one of them yields the minimum, i.e., determines Zub∗ (u). Figure 4.6
shows the obtained average success rates grouped according to the instance type, the
number of jobs n, and the number of secondary resources m for all three upper bounds.

Most importantly we can see that in most cases not a single sub-function is dominating,
i.e., it makes sense to calculate all three functions and to combine their results by taking
the minimum in order to get a generally tighter bound. More specifically, the success of
each sub-function obviously also depends on the specific characteristics of the problem
instances. For instances of type P with two secondary resources, hub(u, 0) is for each
instance class on average more than 50% of the times the strongest upper bound. In all
other cases hub(u, zj̄/p0

j̄
) is on average most successful.

The strongest upper bound function, however, does not necessarily yield the best perform-
ing A∗ search, since the time for calculating the bound also plays a major role. As already
stated in Section 4.4.4, we consider the upper bound functions Zub

MKP−LP(u), Zub
0 (u),

Zub
00 (u), Zub

0j̄
(u), and Zub∗ (u). The former is solved by the CPLEX 12.7 LP solver in single

threaded mode whereas the other upper bound functions make use of the sub-functions
hub(u, λ), λ ≥ 0 and Zub

0 (u) in different ways as stated in Equations (4.24)–(4.28).

Table 4.1 presents the aggregated results for each combination of instance type, numbers
of jobs, and secondary resources for our A∗ search using these different upper bound
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calculations. Columns %-opt show the percentage of instances which could be solved
to proven optimality. Columns Zub state the average final upper bounds and columns
%-gap list the average optimality gaps which are calculated by 100% · (Zub − Z(π))/Zub,
where π is the final solution and Zub the final upper bound. Columns t[s] list the
median computation times in seconds, whereas columns |W | state the average number of
encountered states during the A∗ search. The best values are printed bold.

In almost all cases, A∗ search with the combined bound Zub∗ (u) provides the tightest
final bounds. There are only two exceptions where Zub

00 (u) or Zub
0j̄

(u) yield tighter bounds
on average, but Zub∗ (u) is not far behind. Using the original LP relaxation Zub

MKP−LP(u)
yields in almost all cases where not all instances could be solved to optimality worse
final upper bounds than using Zub

0 (u), Zub
00 (u), Zub

0j̄
(u) or Zub∗ (u). The reason for this

is that, although the full LP relaxation Zub
MKP−LP(u) may provide the tightest upper

bound for a single state, substantially fewer nodes could be processed due to the higher
computational effort to solve each LP, cf. columns |W |.

When considering instance set P, in cases where not all instances could be solved to
optimality, the A∗ search with Zub

0 (u) was able to provide the smallest average optimality
gaps in most cases. For instances of set A the smallest average optimality gaps could be
obtained from the A∗ search with Zub

0j̄
(u) or Zub∗ (u). This observation is in accordance

with our previous observation concerning Fig. 4.6, where Zub
0j̄

(u) provides frequently more
often the strongest upper bounds for instances of type A. We conclude that Zub

0 (u) might
be a slightly better guidance for instances in set P for our simple greedy heuristic used
to find solutions when terminating early.

Considering only instance classes where all instances could be solved to optimality, the A∗

algorithm with upper bound function Zub
MKP−LP(u) encounters fewer states than A∗ with

Zub∗ (u) which in turn encounters fewer states than A∗ with one of the other functions
Zub

0 (u), Zub
00 (u), or Zub

0j̄
(u), respectively. This is not surprising since function Zub

MKP−LP(u)
solves the full LP relaxation which provides frequently the strongest upper bounds and
Zub∗ (u) dominates the other functions Zub

0 (u), Zub
00 (u), and Zub

0j̄
(u). However, again we

see that providing the strongest upper bounds cannot outweigh the disadvantage of
the longer computation times such that A∗ with Zub∗ (u) terminates in almost all cases
substantially earlier than A∗ with Zub

MKP−LP(u).

Last but not least, we point out that the memory limit of 16GB was the termination reason
in several runs for the largest instances. Thus, memory consumption plays a significant
role in our A∗ algorithm. One way to save memory would be to adopt the technique
applied in Chapter 3 where states with the same P (u) are stored in an aggregated fashion.
This can be done by storing P (u) only once and include the individual vectors t(u) and
further information in an attached list of so-called non-dominated time records.
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Table 4.1: Average results of A∗ search for different upper bound functions.
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4. A∗-based Construction of Multivalued Decision Diagrams

Comparison of A∗ Search, MIP, and CP

We finally compare our A∗ search using the generally dominating upper bound function
Zub∗ (u) to solve the MIP model from Section 4.4.6 using Gurobi Optimizer 8.1 in single-
threaded mode and the CP model from Section 4.4.7 using MiniZinc 2.1.7 with the
backend solver Chuffed. Note that we considered besides Chuffed also the backend solvers
Gecode and G12 LazyFD, but Chuffed clearly dominated these alternatives concerning
the number of instances solved to proven optimality, as it is documented in more detail
in [83]. Table 4.2 shows the aggregated results. Regarding the number of instances that
could be solved to proven optimality, the A∗ search consistently outperforms Gurobi
and Chuffed. For particle therapy based instances of type P, A∗ search could solve all
instances with up to 50 jobs to proven optimality. The avionic system based instances of
type A are harder to solve. Here, A∗ search was only able to solve all instances with up
to 30 jobs to proven optimality.

The largest instance which A∗ could solve to proven optimality consists of 80 jobs, whereas
the largest instances that Gurobi and Chuffed could solve to proven optimality have
50 and 60 jobs, respectively. Gurobi could solve all avionic based instances with up to
20 jobs, all particle therapy based instances with up to 40 jobs to proven optimality.
Computation times for those are, however, significantly larger than for A∗. In particular
for small instances with up to n = 30 jobs, A∗ only required median computation times
of no more than 0.1 seconds for instances of type P. The CP solver Chuffed could solve
all instances of type P up to n = 40 jobs to optimality and all instances of type A up
to n = 30 jobs to optimality. The A∗ algorithm was able to provide equally good or
better final solutions than Gurobi and Chuffed in almost all cases for instances of type P.
Exceptions occurred only for some of the largest instances with 90 jobs, where Gurobi’s
heuristic performance proved to be superior.

For instances of type A, Gurobi’s heuristic performance is also superior for instances
of smaller sizes. Note, however, that the derivation of just heuristic solutions is not in
the foreground in this section here. Concerning obtained upper bounds, the A∗ search
again clearly outperforms the MIP approach by a large margin, especially on the largest
instances with n = 90 jobs. Chuffed is not able to return any upper bounds. We conclude
that is seems reasonable to heuristically solve instances with more than 90 jobs.

4.4.11 Impact of Open List Size Limit φ and Different Labeling
Functions

In this and upcoming sections we focus on heuristically solving large instances of the
PCJSOCMSR with n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500} jobs. We start with
an experimental evaluation on the impact of parameters used for A∗C to compile relaxed
MDDs. We tested A∗C with different open list size limits φ and four different variants of
the labeling function L(u) used for mapping nodes to collector nodes. The considered la-
beling function variants are L1(u) = t0(u), L2(u) = (t0(u), r(u)), L3(u) = (t0(u), Zub(u))
and L4(u) = L(u) = (t0(u), r(u), Zub(u)), as proposed in Section 4.4.8. From now on
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4.4. Prize-Collecting Job Sequencing with One Common and Multiple Secondary Resources
Problem

Table 4.2: Average results of A∗, MIP, and CP.

A∗, Zub∗ (u) MIP CP, Chuffed

type n m %-opt obj Zub %-gap t[s] %-opt obj Zub %-gap t[s] %-opt obj t[s]
P 10 2 100 30.93 30.93 0.00 <0.1 100 30.93 30.93 0.00 <0.1 100 30.93 0.8
P 20 2 100 50.37 50.37 0.00 <0.1 100 50.37 50.37 0.00 0.1 100 50.37 0.4
P 30 2 100 75.33 75.33 0.00 <0.1 100 75.33 75.33 0.00 4.4 100 75.33 0.6
P 40 2 100 98.93 98.93 0.00 0.2 100 98.93 98.93 0.00 69.0 100 98.93 3.0
P 50 2 100 123.27 123.27 0.00 3.9 30 122.73 144.60 14.13 900.3 100 123.27 56.3
P 60 2 100 146.80 146.80 0.00 53.7 0 143.73 218.37 33.91 900.2 13 142.23 900.0
P 70 2 56 168.00 175.93 4.41 712.0 0 165.33 308.00 46.12 900.1 0 154.93 900.0
P 80 2 3 184.13 211.23 12.71 900.0 0 189.27 370.97 48.95 900.4 0 171.70 900.0
P 90 2 0 198.87 251.47 20.69 900.0 0 215.27 457.10 52.80 900.2 0 188.53 900.0
P 10 3 100 36.17 36.17 0.00 <0.1 100 36.17 36.17 0.00 <0.1 100 36.17 0.6
P 20 3 100 59.27 59.27 0.00 <0.1 100 59.27 59.27 0.00 0.1 100 59.27 0.5
P 30 3 100 86.30 86.30 0.00 <0.1 100 86.30 86.30 0.00 4.6 100 86.30 0.5
P 40 3 100 112.00 112.00 0.00 0.5 100 112.00 112.00 0.00 92.2 100 112.00 4.0
P 50 3 100 140.33 140.33 0.00 10.0 10 138.70 175.73 20.02 900.5 93 140.20 116.9
P 60 3 87 163.97 166.00 1.18 138.4 0 161.97 235.63 30.87 900.6 13 160.43 900.0
P 70 3 40 184.57 202.60 8.41 871.8 0 187.20 319.23 41.22 900.1 0 179.60 900.0
P 80 3 10 205.40 247.40 16.67 900.0 0 215.97 388.50 44.21 900.0 0 202.17 900.0
P 90 3 0 224.90 282.60 20.12 900.0 0 240.67 469.97 48.70 900.0 0 220.80 900.0
A 10 3 100 422.13 422.13 0.00 <0.1 100 422.13 422.13 0.00 14.2 100 422.13 1.0
A 20 3 100 707.27 707.27 0.00 0.1 100 707.27 707.27 0.00 15.1 100 707.27 1.1
A 30 3 100 903.97 903.97 0.00 2.0 83 903.97 908.40 0.47 42.6 100 903.97 3.3
A 40 3 97 1026.10 1030.00 0.36 40.0 0 1027.90 1126.87 8.76 900.7 37 979.53 900.0
A 50 3 33 1056.67 1177.67 9.96 377.2 0 1114.87 1360.57 18.03 900.2 0 887.03 900.0
A 60 3 3 1011.97 1225.57 17.28 416.6 0 1105.33 1506.27 26.56 900.1 0 807.13 900.0
A 70 3 0 1009.63 1270.53 20.44 442.8 0 1116.90 1696.97 34.11 900.1 0 803.57 900.0
A 80 3 0 985.60 1311.53 24.78 412.5 0 1106.03 1876.03 40.98 900.0 0 746.60 900.0
A 90 3 0 977.37 1323.67 26.13 445.5 0 1095.27 2055.27 46.65 906.0 0 726.13 900.0
A 10 4 100 451.07 451.07 0.00 <0.1 100 451.07 451.07 0.00 <0.1 100 451.07 0.7
A 20 4 100 751.73 751.73 0.00 0.1 100 751.73 751.73 0.00 2.6 100 751.73 1.2
A 30 4 100 951.97 951.97 0.00 2.9 83 951.97 959.73 0.77 208.3 100 951.97 13.9
A 40 4 93 1058.10 1062.07 0.36 68.1 0 1058.80 1191.53 11.11 900.2 17 970.57 900.0
A 50 4 20 1082.63 1196.73 9.30 397.3 0 1127.73 1443.30 21.79 900.1 0 874.40 900.0
A 60 4 10 1065.37 1250.40 14.60 402.6 0 1143.90 1592.60 28.10 900.1 0 821.60 900.0
A 70 4 3 1043.47 1294.20 19.28 393.5 0 1145.40 1769.70 35.25 900.0 0 809.90 900.0
A 80 4 0 990.23 1328.47 25.43 405.8 0 1130.87 1936.70 41.57 900.0 0 764.00 900.0
A 90 4 0 1019.07 1347.33 24.32 425.0 0 1128.27 2090.50 45.98 900.0 0 734.37 900.0

we always use A∗C with upper bound function Zub∗ (·) to guide the compilation process,
i.e., Zub(·) = Zub∗ (·). Figure 4.7 illustrates the impact of the different choices for φ and
the labeling function on instances with 250 jobs of set P with m = 2 and of set A with
m = 3, respectively.

For each combination of value for φ and labeling function variant, there is a box plot
drawn that summarizes the obtained results over all 30 instances of the corresponding
category. The diagrams at the top show the lengths Z lp(t) of the longest paths from the
obtained relaxed MDDs, whereas the diagrams in the middle show the corresponding
CPU-times for compiling the MDDs. Moreover, the diagrams at the bottom state the
size of the relaxed MDDs in terms of the number of nodes. The diagrams to the left in
Figure 4.7 show the results for instance set P using the values φ ∈ {1000, 2000, 3000, 5000}.
As one could expect, we see that with increasing φ, the lengths of the longest paths
of the obtained relaxed MDDs in general get smaller, i.e., the obtained upper bounds
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Figure 4.7: Comparison of open list size limits φ and labeling functions Li, i = 1, . . . , 4,
for instances of sets P and A with 250 jobs and m = 2 and m = 3 secondary resources,
respectively.

become stronger, while the MDD sizes and computation times naturally increase. Thus,
parameter φ indeed allows to control the MDD’s size, although not in such a direct
linearly related fashion as the width-limit in a classical top-down construction. This effect
can be observed for all labeling functions. Concerning the different labeling functions,
L1(u) = t0(u) yields relaxed MDDs with in general the smallest sizes, but also the
weakest bounds. This is, however, also achieved in the shortest times. The reason for
this is that labeling function L1 does only consider the time from which on the common
resource is available and has therefore the smallest domain among the four considered
labeling functions. Hence, when using L1, there are in general far more node merges
than with one of the other more complex labeling functions which provide larger domains
and therefore a finer differentiation of nodes. It can clearly be seen that the additional
consideration of r(u) or Zub(u) in the labeling function in general significantly improves
the obtained bounds Z lp(t), and the combination of all these aspects in L4 provides the
best results. This, however, at the cost of larger MDDs and higher running times. The
smallest median longest path length of 783 for instances with two secondary resources
were obtained when limiting the size of the open list to φ = 5000 nodes and using L4. In
more detail, note that parameter φ has more impact when using labeling function L1 and
less when using labeling function L4. This can again be explained by the domain sizes of
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the labeling functions, but also the fact that the bounds obtained with L4 are in general
already closer to the optimal solution values and it becomes more and more difficult to
find better bounds. When comparing the results of L2 and L3, we can see that L2 yields
mostly slightly better results, but this again at the cost of longer running times.
The diagrams to the right in Figure 4.7 shows the results for instance set A using the
values φ ∈ {10000, 20000, 30000, 50000}. Note that, since the time horizon in this case
never exceeds T = 1000, larger values of φ were considered than in the experiments for
instance set P. This implies that also the MDDs’ heights are restricted correspondingly,
and larger values for φ can be used to utilize roughly comparable computation times.
Again, we can see that parameter φ allows to control the quality of the obtained relaxed
MDDs. Hence, with increasing φ, the lengths of the longest paths of the obtained relaxed
MDDs in general get smaller, while the computation times and MDD sizes increase.
Structurally similar results are obtained for instances of set P with three secondary
resources as well as for instances of set A with four secondary resources, cf. Appendix B.
For all further experiments, we went for a compromise between expected quality of
the relaxed MDD and compilation time and fixed the following settings. Instance
set P: labeling function L3(u) and φ = 1000; instance set A: labeling function L4(u)
and φ = 20000.

4.4.12 Upper Bound Comparison from relaxed MDDs
The five types of upper bounds to be compared are the following. The first two are from
A∗C, namely Zub

min, which is obtained when the target node is chosen for expansion, and
Z lp(t), which is the longest path length of the completely constructed relaxed MDD. A
third one is obtained by solving a MIP model with a commercial solver, while the last
two come from MDDs built with traditional TDC and IR algorithms. Remember that
Z lp(t) may be larger than Zub

min due to additionally performed merging operations after
having found Zub

min.
The MIP model from Section 4.4.6 is solved again with Gurobi Optimizer 8.1 in single-
threaded mode with a CPU time limit of 900 seconds. The TDC and IR methods are
those from Maschler and Raidl [116, 117]. The latter is performed with a CPU time limit
of 900 seconds and TDC is executed with two different width limits β which were chosen
in a way so that the average running times are roughly in the same order of magnitude
and usually not smaller than those of A∗C: β ∈ {300, 500} for set P and β ∈ {3000, 5000}
for set A.
Figure 4.8 documents the results of this comparative study for instance sets P and A.
The diagrams at the top show the obtained upper bounds, the middle diagrams the
computation times, and the diagrams at the bottom the sizes of obtained relaxed MDDs
in terms of the number of nodes. Each group of bars on the horizontal axes corresponds
to a specific instance class with the stated number of jobs, and each bar indicates the
average value over all 30 instances of the corresponding instance class and the respective
approach.
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Figure 4.8: Instance sets P and A with two and three secondary resources, respectively,
average values of: upper bounds obtained from A∗C, the classical TDC, the IR, and the
order-based MIP approach; respective computation times; and the sizes of the obtained
relaxed MDDs.

Concerning the depicted computation times, each first bar shows A∗C’s average time to
obtain Zub

min, i.e., when the construction would stop according the classical A∗ termination
criterion, while the second bar shows the average time required for the construction of
the complete relaxed MDD. Since the MIP approach as well as IR exhausted the time
limit of 900 seconds in almost all runs, we omit corresponding bars. More specifically, the
MIP solver could only solve the smallest instances to proven optimality. The percentages
of the instances with n = 50 jobs are 23.3% and 10% of set P for m = 2 and m = 3,
respectively. The IR approach was not able to solve any instance to proven optimality.

The results for instance set P, shown in Figure 4.8 on the left side, give a rather clear
picture. The average upper bounds Zub

min obtained by the A∗C algorithm are always
the strongest. They are in particular substantially better than those obtained from the
TDC variants and the IR approach. The difference is more than a factor of four for the
largest instances. Even more dramatic are the differences in the sizes of the respectively
obtained MDDs. A∗C’s MDDs are usually more than an order of magnitude smaller than
those compiled with TDC and IR. The A∗C algorithm clearly can take advantage from
avoiding multiple nodes for the same state at different layers, and the merging strategy

136



4.4. Prize-Collecting Job Sequencing with One Common and Multiple Secondary Resources
Problem

we proposed appears to be effective. The bounds obtained from the MIP approach are
clearly better than those of TDC and IR, but also significantly worse than those of A∗C.
Differences between Zub

min and Z lp(t) are in comparison to the bounds from the other
approaches not that large, but still significant.

For instance set A, Figure 4.8 shows remarkable differences. The upper bounds obtained
from the MIP approach are far worse than those obtained from A∗C as well as TDC and
IR. Differences between A∗C, TDC, and IR are not that large anymore, but nevertheless,
in each case the strongest upper bounds could be obtained by A∗C. The better relative
performance of the classical approaches TDC and IR on these instances in comparison to
set P can be explained by the constant time horizon and the special prize structure, due
to which the height of the MDDs is limited in a stronger way. Concerning the size of
the obtained MDDs, A∗C exhibits again substantial advantages over TDC: A∗C’s MDDs
only have about half the size of TDC’s MDDs, and those of IR are even more than three
times larger than those of A∗C for the smaller instances.

Similar results are obtained for instances of instance set P with three secondary resources
as well as for instances of instance set A with four secondary resources, cf. B.

4.4.13 Lower Bound Comparison to Other Approaches
Finally, we consider the A∗C approach to construct a relaxed MDD followed by the
construction of a restricted MDD and compare to other heuristic methods to approach
larger PCJSOCMSR instances. Now, our focus is primarily on the quality of obtained
heuristic solutions, i.e., lower bounds, but since our approach also yields upper bounds
from the relaxed MDD, we will also study resulting gaps. We compare to a conventional
TDC of a restricted MDD, a general variable neighborhood search (GVNS) metaheuristic,
the MIP approach, and a basic CP formulation.

After a relaxed MDD has been constructed by A∗C, it is post-processed by filtering in
order to reduce its size and strengthen it before deriving the restricted MDD. This is
done as follows.

1. A first lower bound (and heuristic solution) is determined in a quick way by
compiling a small restricted MDD in an independent way (maximum width β = 100
for type P instances and β = 15000 for type A instances).

2. Using the obtained lower bound, cost-based filtering (see, e.g., Cire and van
Hoeve [40]) is applied in order to get rid of many arcs and nodes that cannot be
part of a path representing a better solution.

3. For each node u in the relaxed MDD, we have the upper bound for the cost-to-go
obtained from the auxiliary upper bound function Zub(u), but also the length of
the longest u-t path provides an upper bound, which we denote by Z lp↑(u). We
keep the better of these bounds and check if further arcs and nodes may be removed
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due to it by cost-based filtering. Note that Z lp↑(u) can be determined for all u ∈ V
efficiently by a single bottom-up traversal of the MDD.

4. When removing some ingoing arcs of a node, we always re-determine the state of
the node, and if the state changes, the auxiliary upper bound Zub(u). Changes are
always propagated to successor nodes as far as they are affected.

After the relaxed MDD has been filtered, it is used to compile the main restricted MDD.
Experiments showed that on average 51.57% and 88.90% of all arcs can be removed from
the relaxed MDD over all instance sizes for type P and type A instances, respectively. This
substantial reduction leads, in particular for type A instances, to shorter computation
times when compiling the main restricted MDD.

The conventional TDC of a restricted MDD uses the same greedy criterion from Sec-
tion 4.4.9 to select nodes for removal as our compilation method based on the relaxed
MDD. Figure 4.9 shows for different maximum widths β a comparison between the
conventional TDC and the TDC when utilizing a previously compiled and filtered relaxed
MDD by A∗C. The relaxed MDDs were compiled with different values of φ and used
labeling function L3(u) and L4(u) for instance set P and A, respectively. Although the
choice of φ has an impact on the quality of the obtained relaxed MDD, as shown in
previous sections, the plots in Figure 4.9 indicate that φ does not significant influence
the finally obtained objective values from a subsequently applied TDC for the consid-
ered instance classes. Regarding computation times, we can see that larger values of
φ will result in larger computation times. While the obtained objective values are not
substantially different compared to those from the conventional TDC, the diagrams at
the bottom row indicate substantial time savings when a relaxed MDD is used to compile
a restricted MDD. For example for instances with 250 jobs and two secondary resources
of instance set P the conventional TDC needs for β = 20000 1407 seconds to terminate
whereas the A∗C+filtering+TDC approach only needs 170 seconds. This time saving of
frequently almost an order of magnitude is the benefit of using the structural information
of a previously compiled and filtered relaxed MDD.

Moreover, we also tried to create restricted MDDs by a variant of A∗C in which nodes
are removed from the open list instead of merging them in Line 30 of Algorithm 4.1.
This, however, only yielded restricted MDDs with substantially worse objective values
than the conventional TDC. Increasing parameter φ to allow a larger open list size also
did not help much in this case but just led to larger computation times.

Note that the computational experiments reported in Figure 4.9 were done on a somewhat
different cluster environment at a later time than all other experiments of this chapter.
After a thorough analysis we concluded that computation times of our algorithms differed
by a factor of 2.2 between the different environments, and we have scaled the reported
times in Figure 4.9 accordingly to make them directly comparable.

For the main results in Table 4.3 we compile restricted MDDs with β = 2000 and
β = 12000 for benchmark sets P and A, respectively. Moreover, the A∗C+filtering+TDC
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approach compiles restricted MDDs with β = 12000 and β = 45000 for benchmark sets
P and A, respectively. These values have been selected so that the TDC terminates for
the largest instances in about 900 CPU-seconds.

The GVNS is the one from Maschler and Raidl [116, 117]. It applies a job permutation
encoding, starts with a random initial solution, and combines a classic exchange and
insertion neighborhood search for intensification. For diversification (shaking), up to four
random insertion moves are performed. The GVNS terminates when reaching a time
limit of 900 seconds.

Moreover, we compare to the objective values of the best feasible solutions provided by
the order-based MIP formulation from Section 4.4.6, solved again by Gurobi using a
single thread with a CPU time limit of 900 seconds.

Last but not least, we also consider the CP model from Section 4.4.7. The model was
implemented with MiniZinc 2.1.7 and we apply the backbone solver Chuffed with a time
limit of 900 seconds. Results with Chuffed consistently dominated those obtained with the
alternative backbone solvers Gecode and G12 LazyFD. Note that we further performed
tests with the newer MiniZinc version 2.3.2, but obtained results were inconsistent and
mostly worse than those from version 2.1.7.

The results of all approaches are presented in Table 4.3. Each row shows the aggregated
results over the 30 benchmark instances with the characteristics given in the first three
columns. For all approaches columns obj and σ(obj) state the mean objective values of
obtained heuristic solutions and corresponding standard deviations. For the MDD-based
approaches these values correspond to the lengths of the longest paths in the restricted
MDDs. Moreover, we list for the MDD-based approaches median total computation
times in seconds in the t[s] columns, and for the A∗C based approach more specifically
in column tf [s] median times just for filtering the relaxed MDDs including the times for
determining the required lower bound and in column tc[s] median times for compiling
the final restricted MDDs. For GVNS, MIP, and CP timing information is omitted as
they were always terminated with the time limit of 900 seconds. The only exceptions are
MIP and CP runs for the smallest instances with 50 jobs, which finished in some cases
earlier with proven optimality. In addition, we list for the A∗C based approach average
optimality gaps, where %-gap = 100% · (Zub

min − obj)/Zub
min.

If we disregard the results from the benchmark instances of type P with three secondary
resources for now, Table 4.3 gives a clear picture. A∗C+filtering+TDC provides in general
the best solutions, followed by the GVNS and the TDC. While the TDC performs, on
the P instances with two secondary resources, in most cases better than the GVNS, the
GVNS is superior to the TDC on the other instances. The weakest solutions have on
average been obtained by the MIP and CP approaches, which are only competitive for
type P instances with 50 jobs. Especially, for the medium to large instances, the A∗C
based method typically requires less time than TDC. A∗C+filtering+TDC is superior
to the conventional TDC in two ways. Not only are we able to construct much larger
restricted MDDs, usually yielding better solutions in less time, but since we first also
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A∗C+filtering+TDC TDC GVNS MIP CP

set m n obj σ(obj) %-gap tf [s] tc[s] t[s] obj σ(obj) t[s] obj σ(obj) obj σ(obj) obj σ(obj)
P 2 50 123.3 10.3 2.2 <1 <1 <1 123.3 10.3 <1 123.2 10.4 122.9 10.7 123.3 10.3
P 2 100 259.9 11.7 9.4 <1 5 6 259.2 11.7 5 259.0 11.9 238.5 13.3 200.7 20.0
P 2 150 401.2 18.9 11.5 <1 17 19 398.8 19.3 20 396.6 17.7 328.9 22.3 261.0 23.5
P 2 200 530.0 18.7 12.3 <1 43 50 526.1 19.3 54 527.1 19.0 383.4 29.5 273.6 61.2
P 2 250 667.2 21.1 12.6 1 84 100 661.7 20.0 108 660.8 22.4 475.6 29.7 281.0 52.9
P 2 300 797.4 16.8 13.1 2 145 170 792.0 16.8 193 790.0 17.5 570.8 32.1 308.1 78.5
P 2 350 931.3 25.6 13.7 3 231 282 923.9 25.2 313 923.0 26.7 626.5 53.8 326.7 122.2
P 2 400 1061.6 21.3 13.9 5 338 442 1054.4 21.4 481 1055.1 19.4 661.1 55.0 329.6 110.9
P 2 450 1197.0 28.7 13.5 7 485 679 1187.5 28.6 704 1180.9 27.4 704.7 48.5 348.6 152.4
P 2 500 1339.1 25.4 14.6 8 613 845 1330.3 25.0 949 1324.3 28.0 711.6 199.3 403.4 351.5
P 3 50 140.3 10.4 1.3 <1 <1 <1 140.3 10.4 <1 140.3 10.4 139.3 10.2 140.2 10.5
P 3 100 289.9 14.5 5.1 <1 5 6 288.4 14.6 7 288.5 14.3 268.7 16.0 240.0 16.4
P 3 150 437.4 15.1 7.1 <1 13 15 433.5 14.8 24 437.0 17.1 362.0 21.3 331.3 19.3
P 3 200 581.8 18.3 8.4 <1 27 33 576.9 18.2 59 582.9 16.3 460.8 26.7 367.2 44.4
P 3 250 716.7 13.6 9.5 1 44 63 712.0 14.4 117 721.9 16.5 573.4 22.2 380.6 89.3
P 3 300 850.3 16.0 11.2 2 71 107 846.0 15.3 210 864.0 19.8 675.1 27.6 419.5 109.8
P 3 350 988.0 26.8 11.7 3 107 171 983.3 27.7 341 1008.2 29.3 716.4 61.0 405.7 188.8
P 3 400 1124.6 24.5 12.3 5 152 296 1119.1 23.6 530 1142.5 24.1 757.8 61.9 527.5 161.1
P 3 450 1266.3 19.7 11.9 7 198 433 1257.7 20.9 751 1283.5 26.1 846.6 59.8 524.5 207.3
P 3 500 1397.8 25.3 12.3 10 269 672 1392.1 23.7 1082 1418.0 27.1 900.2 53.6 589.3 238.6
A 3 50 1130.3 39.8 5.0 7 20 57 1127.8 38.4 6 1130.3 39.8 1114.5 41.9 892.0 45.8
A 3 100 1201.1 36.5 5.6 9 81 110 1196.6 36.4 23 1201.4 37.0 1108.2 52.0 712.7 44.1
A 3 150 1215.5 26.3 6.0 11 141 169 1208.9 28.7 58 1215.5 27.0 936.7 58.0 643.4 41.9
A 3 200 1228.9 21.8 6.7 14 219 261 1220.4 25.6 109 1229.4 21.4 842.6 132.5 544.5 149.4
A 3 250 1244.7 28.6 6.6 18 279 331 1238.5 30.8 180 1245.4 28.7 703.2 79.3 575.3 48.0
A 3 300 1243.9 23.4 7.5 22 379 448 1234.4 22.9 265 1243.7 23.5 675.2 80.8 553.8 41.3
A 3 350 1256.2 22.6 7.4 30 440 542 1245.6 24.8 370 1255.5 23.6 683.8 84.4 536.5 50.3
A 3 400 1269.7 19.1 8.0 34 529 646 1262.5 19.1 493 1267.2 19.6 714.1 57.8 525.2 42.8
A 3 450 1268.4 19.2 8.3 41 609 748 1257.5 24.5 647 1268.2 18.3 730.1 79.1 516.6 48.6
A 3 500 1271.7 19.0 8.2 46 676 869 1260.4 22.7 799 1271.2 17.9 680.7 63.8 527.5 24.0
A 4 50 1141.8 35.5 3.4 7 2 45 1138.7 35.0 6 1142.4 36.2 1127.6 40.0 882.5 42.0
A 4 100 1218.8 40.6 4.0 8 57 82 1215.7 41.5 25 1218.9 40.6 1137.3 62.5 708.9 119.8
A 4 150 1253.8 30.6 4.4 10 118 146 1248.5 30.4 60 1253.5 30.9 963.7 77.7 655.6 48.5
A 4 200 1259.5 31.3 4.9 15 180 228 1253.6 32.0 118 1259.6 31.7 881.0 145.7 576.5 129.5
A 4 250 1280.4 27.0 5.9 20 277 339 1273.6 25.7 191 1280.4 28.2 702.8 60.0 541.4 134.8
A 4 300 1293.8 25.1 5.9 27 346 441 1282.6 28.0 287 1292.3 24.9 691.6 64.0 565.0 46.0
A 4 350 1298.9 23.9 5.8 32 394 504 1289.9 24.5 396 1297.2 22.9 684.6 75.4 548.8 38.1
A 4 400 1304.4 42.0 6.0 37 477 617 1298.1 41.2 533 1299.6 42.9 700.5 69.8 541.4 27.9
A 4 450 1308.4 25.2 6.9 45 551 752 1298.9 29.2 672 1304.7 26.7 696.4 65.2 546.5 56.6
A 4 500 1315.6 28.0 6.9 48 644 842 1304.0 25.8 858 1312.5 29.1 715.4 73.1 526.8 33.1

Table 4.3: Comparison of the subsequent application of A∗C, filtering, and the construction
of restricted MDDs to the conventional top-down construction of restricted MDDs, the
GVNS, MIP, and CP approaches.

determine the relaxed MDDs, our approach has the additional bonus of providing upper
bounds. Average gaps never exceed 15% and are in particular for instance set A usually
not larger than 8%.

On benchmark instances of set P with three secondary resources, GVNS typically provides
the best solutions when more than 150 jobs are considered. The relative differences
between the obtained objective values from GVNS and our A∗C-based approach are
typically about one to two percent. We believe that in these cases, the GVNS’s local
search is particularly effective. Clearly, an option would be to finally “polish” the solutions
of the MDD-based methods by applying a local search. Another particularity of the
results for set P with m = 3 are the required times tc for constructing the restricted MDDs.
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4. A∗-based Construction of Multivalued Decision Diagrams

Although the same maximum width is used as for the instances with two secondary
resources, these median times are considerably shorter for the case with three secondary
resources than for two. This indicates an even better exploitation of the relaxed MDD
and underlines the consistent performance improvements of A∗C+filtering+TDC over
the classical TDC of restricted MDDs.

The optimality gaps increase with the problem size on all instance sets, as one might
expect for a compilation of relaxed and restricted MDDs with fixed parameter values.
In comparison to instance set A, we obtain smaller optimality gaps on type P instances
with few jobs but get larger optimality gaps for the instances with many jobs. This can
be explained by the problem size independent time horizon of set A instances, which
implies a certain maximal number of jobs that can be scheduled independently of the
number of available jobs.

Last but not least, for some instances the optimality gap has been closed, i.e., they could
be solved to proven optimality. This was the case for nine of the type P instances with
two secondary resources and 50 jobs. For type P instances with three secondary resources
we could optimally solve ten instances that consider 50 jobs. Furthermore, for a single
benchmark instance with 50 jobs and four secondary resources of type A, the lower and
upper bound coincided.

4.5 Longest Common Subsequence Problem
In this section we will compile relaxed MDDs with A∗C for the longest common sub-
sequence (LCS) problem in order to obtain tight upper bounds on the solution length.
Another goal is to investigate the applicability of A∗C on the prominent LCS problem
in order to see if this construction method has the potential to lead to superior results
also on this different kind of problem and not only for the PCJSOCMSR in the previous
Section 4.4. Indeed, an extensive experimental evaluation on several standard LCS
benchmark instance sets shows that our novel construction algorithm clearly outperforms
also for the LCS problem a traditional top-down compilation (TDC) for MDDs. We are
able to obtain stronger and at the same time more compact relaxed MDDs than TDC
and this in a shorter time. Furthermore, we will compare the A∗C approach for the LCS
problem not only to a top-down MDD construction but also to several upper bounding
procedures for the LCS obtained from the literature. For several groups of benchmark
instances new best known upper bounds are obtained. In comparison to existing simple
upper bound procedures, the obtained bounds are on average 14.8% better.

The next section introduces the LCS problem in a formal way and Section 4.5.2 discusses
related work of the LCS problem. States and transitions for the LCS are defined in
Section 4.5.3 and Section 4.5.4 reviews two known procedures to obtain upper bounds
for the length of an LCS and presents a new one that extends one of those. Section 4.5.5
explains how relaxed MDDs are compiled for the LCS problem with A∗C. Results of
computational experiments are discussed in Section 4.5.6.
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4.5. Longest Common Subsequence Problem

4.5.1 Problem Formulation
The goal of the LCS problem [112] is to find the longest string which is a common
subsequence of a set of m input strings S = {s1, s2, . . . , sm} over a finite alphabet Σ.
We denote the length of a string s by |s|, and let n be the maximum length of the
input strings, i.e., n = maxi=1,...,m |si|. A subsequence is a string that can be derived
from another string by deleting zero or more characters. A common subsequence can be
derived from all input strings. For instance, for the input strings ABCDBA and ACBDBA,
an LCS is ABDBA. Determining the length of an LCS is a way to measure the similarity
of strings and has a wide range of applications, for example in computational biology
where strings often represent segments of RNA or DNA [87, 145]. Other applications
can be found in text editing, file comparison, data compression, and the production of
circuits in field programmable gate arrays, to just name a few [104, 8, 32]. If m is fixed
then the LCS problem can be solved by dynamic programming (DP) based algorithms
in polynomial time O(nm) [65]. For an arbitrary number of input strings, however, the
problem is known to be NP-hard [112].

Before we proceed, let us define further notation. We denote the character at position j
in a string s by s[j], and s[j, j ], j ≤ j , refers to the continuous subsequence of s starting
at position j and ending at position j . For j > j , substring s[j, j ] is the empty string
denoted by ε. Last but not least, let |s|a be the number of occurrences of character a ∈ Σ
in string s.

4.5.2 Related Work
In the literature plenty of exact approaches have been proposed for solving the LCS
problem. Besides the already mentioned DP based approaches, Blum and Festa [27]
investigated a MIP model, which is however not competitive and cannot be practically
applied to any of the commonly used benchmark sets in the literature due to its excessive
size. Further exact methods are for instance based on dominant point approaches and/or
parallelization [36, 107, 128, 161] or on a transformation to the max clique problem [26],
but they are still not applicable to practical instances with a large number of long input
strings.

Solving LCS instances of practical relevance to proven optimality is still a challenging
task in terms of computation time and memory consumption. Therefore, heuristic
approaches are used for larger m and n. Fast construction heuristics are, e.g., the
expansion algorithm [30] or the best next heuristic [57, 86]. Among the more advanced
search strategies, in particular beam search (BS) based approaches have been frequently
proposed differing in various details such as the heuristic guidance and filtering. This
culminated in a general BS-based framework by Djukanovic at el. [50] which can express
essentially all heuristic state-of-the-art approaches from the literature by respective
configuration settings. They authors proposed also a novel heuristic guidance function,
which approximates the expected length of a LCS for random strings. The BS framework
in combination with this novel guidance dominates the other existing approaches on
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most of the available benchmark instances. The same authors further described novel
A∗ based anytime algorithms by interleaving A∗ search with BS or anytime column
search, respectively [51]. Thereby the novel search guidance from before plays again a
crucial role.

4.5.3 State Graph
Since the A∗C Algorithm 4.1 from Section 4.3 operates on states and state transitions, we
have to define a state graph in order to compile relaxed MDDs for the LCS problem with
A∗C. Each node u in this state graph is associated with a state which is a position vector
p(u), with pi(u) ∈ {1, . . . , |si|}, i = 1, . . . , m. On the basis of this position vector it is
possible to define a subproblem S[p(u)] of S by considering the substrings si[pi(u), |si|],
i, . . . , m. Thus, S[p(u)] consists of the right part of each string from S starting from the
position indicated in position vector p(u). The root state represents the original problem
S, indicated by S[p(r) = (1, . . . , 1)]. An arc α = (u, v) represents the transition from
state p(u) to state p(v) by appending character c = val(α), c ∈ Σ to the sequences of
characters encoded by the paths from r to u. The prize associated with a state transition
is always one, i.e., z(α) = 1. The transition function to obtain successor state p(v) by
considering character c is defined as

τ(p(u), c) = (p1,c(u) + 1, . . . , pm,c(u) + 1) if c ∈ Σnd(u)
(n + 1, . . . , n + 1) if Σnd = ∅,

(4.33)

where pi,a(u), i = 1, . . . , m denotes for each character a ∈ Σ the position of the first
occurrence of a in si[pi(u), |si|] and set Σnd(u) ⊆ Σ contains all letters that can be feasibly
appended at state p(u), thus letters that occur at least once in each string in S[p(u)],
and are non-dominated. A character a ∈ Σ dominates character b ∈ Σ iff pi,a(u) ≤ pi,b(u)
for all i = 1, . . . , m, and therefore it never can be better to append a dominated letter
next. States that have no further feasible transition, i.e., where Σnd = ∅, are mapped to
state (n + 1, . . . , n + 1) of target node t.

4.5.4 Independent Upper Bounds
To compile MDDs based on A∗ search we need a fast-to-calculate independent upper
bound on the solution length of LCS subproblems to guide the construction mechanism.
We use two well known upper bounds from the literature as well as a third bound which
is an adaption of one of the former. The first upper bound from Fraser [57] was tightened
by Blum et al. [25] and is based on the number of occurrences of each character. Given
a node u and the associated position vector p(u), this bound calculates the sum of the
minimal number of occurrences of each character over all the strings of the corresponding
subproblem S[p(u)], i.e.,

UB1(u) = UB1(p(u)) =
a∈Σ

min
i=1,...,m

|si [pi(u), |si|]|a . (4.34)
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By using a suitable data structure prepared in pre-processing, UB1 can be efficiently
computed in O(m |Σ|) time.

The second upper bound is based on DP and was introduced by Wang et al. [161]. Since
the LCS for two input strings can be efficiently computed, for each pair {si, si+1} ⊆ S,
i = 1, . . . , m − 1 a so-called scoring matrix M2

i is computed, where an entry M2
i [p, q]

with p = 1, . . . , |si| and q = 1, . . . , |si+1|, stores the length of the LCS of strings si[p, |si|]
and si+1[q, |si+1|]. The scoring matrices are determined in a pre-processing step. Then

UB2(u) = UB2(p(u)) = min
i=1,...,m−1

M2
i [pi(u), pi+1(u)] (4.35)

is an upper bound for the subproblem S[p(u)] of a given node u and the associated
position vector p(u).

The third upper bound we consider adapts the above one as follows. For UB2, m−1 scoring
matrices are computed, one for each pair of input strings {si, si+1}, i = 1, . . . , m − 1.
However, the pairs of input strings are just chosen according to their natural order
given by the instance specification. We are aiming now to choose pairs of input strings
in a more controlled and more promising way by utilizing as guidance the version of
the first upper bound function for two strings, i.e., UB1(si, si ) = Σa∈Σ min(|si|a, |si |a),
si, si ∈ S, si = si . Pairs of strings for which this value is small can be expected to
typically also have shorter LCSs, possibly leading to an overall tighter bound. The
subset of pairs of input strings for which we will compute corresponding scoring matrices,
denoted by P , is determined as follows. We iterate over all pairs of input strings
{(si, si ) ∈ S × S | i < i } sorted according to UB1(·, ·) in non-decreasing order and add
each string pair for which not both strings already appear in some string pair earlier
added to P . In this way it is ensured that each input string is used at least once and
|P | = O(m). The upper bound of a given node u is then

UB3(u) = UB3(p(u)) = min
(si,si )∈P

M3
si,si

[pi(u), pi (u)], (4.36)

where M3
i,i is the scoring matrix for string pair (si, si ) ∈ P .

Finally, let
UB(u) = min {UB1(u), UB2(u), UB3(u)} (4.37)

be the strongest upper bound we can obtain.

4.5.5 A∗-based Construction of Relaxed MDDs
To construct a relaxed MDD D = (V, A) for the LCS problem we essentially apply the
A∗C Algorithm 4.1 from Section 4.3 by using the state graph from Section 4.5.3. In
this section we will define further LCS-specific parts of Algorithm 4.1. First, we define
an appropriate node merger that merges a set of states in such a way that no feasible
common subsequences are removed form the relaxed MDD. Furthermore, we will define
labeling functions that selects partner nodes for merging from the open list Q and discuss
some further technical details about the adopted A∗C method for the LCS problem.
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Merging of States

To create relaxed MDDs we have to define a state merger which computes the state of
merged nodes. Let U be a set of nodes that should be merged. An appropriate state
merger is

⊕ (U) = min
u∈U

pi(u)
i=1,...,m

. (4.38)

Since we take always the minimum of each position, each feasible solution of any sub-
problem S[p(u)], u ∈ U , will also be a feasible solution of the subproblem S[p(⊕(U))].
Hence, no feasible solution will be lost in the relaxed MDD, but new paths corresponding
to infeasible solutions may emerge. We proof now the validity of the merge operator ⊕.

Proposition 4.5.0.1
Given a relaxed MDD constructed for the LCS according to Section 4.5.3 that complies
with (i) and (ii) in Definition 4.4.1 from Section 4.4.8. When the merge operator defined
in Equation (4.38) is applied to this MDD, then the resulting MDD will also comply
with (i) and (ii).

Proof. A state for the LCS is a position vector p(u) that define a subproblem S[p(u)] of
S by considering the substrings si[pi(u), |si|], i, . . . , m. When the merge operator ⊕(U)
is applied to a set of nodes U , the resulting state is (minu∈U pi(u))i=1,...,m. This merged
state represents the substrings si[minu∈U pi(u), |si|], i, . . . , m. Moreover, each substring
si[pi(u), |si|], u ∈ U , i = 1, . . . , m is contained in substring si[minu∈U pi(u), |si|] since
always the smallest position over all position vectors from U is component-wise taken.
Thus, no feasible solution is lost and consequently (i) holds after the merge operation is
applied. Condition (ii) follows because the longest path from ⊕(U) is selected from a
superset of the paths that existed before the merge and that the cost of each single arc is
always one.

Labeling Function for Collector Nodes

If |Q| exceeds φ then nodes are selected in a pairwise fashion for merging. As already
explained in Section 4.3, this must be done carefully since we have to ensure that no
cycles emerge and that the open list gets empty after a finite number of expansions.
Furthermore, we do not merge nodes which are already expanded since this would require
to update all successor states from the expanded node onward.

To do the selection for pairing, we label each node u ∈ V (D) of the MDD D by a labeling
function L(u) that maps the state p(u) to a simpler label of a restricted finite domain
DL. The idea is that nodes with the same label are considered similar such that the
merged state is still a reasonable representative for both nodes. Hence, we only merge
nodes with the same label. Moreover, labels are chosen in such way that no cycles will
emerge through merging and the open list gets empty in a finite number of steps.

To efficiently select partner nodes for merging we use a global set of so-called collector
nodes V c. As long as Q is too large, nodes that are not yet expanded are selected from it
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in increasing Z lp-order. If for a selected node already a collector node V c with the same
label exists then the two nodes get merged s.t. all incoming arcs from the two nodes will
be redirected to the new merged node. The two original nodes are removed from Q and
V c and the new merged node is integrated into V (D) and becomes a new collector node
in V c. For more details we refer to Algorithm 4.2 in Section 4.3.

Static Labeling Function. For the LCS problem we label all nodes u ∈ Q by

L1(u) = (pilcs1(u), pilcs2(u)) (4.39)

where {silcs1 , silcs2} ∈ S is a pair of input strings with smallest M3
si,si

[0, 0] over all
(si, si ) ∈ P . Hence, we merge only nodes whose states have the same positions in strings
silcs1 and silcs2 and thus partially represent the same subproblems. Consequently, the
longest path in the relaxed MDD will never be worse than the upper bound obtained
from the corresponding scoring matrix and each path originating from r will be a feasible
common subsequence w.r.t. input strings {silcs1 , silcs2} ⊆ S. Since any merged node will
have the same values for pilcs1 and pilcs2 as the original nodes, and each transition from
a state to a corresponding successor state increases the values from pilcs1 and pilcs2 , the
values pilcs1 and pilcs2 strictly increase along each path in the relaxed MDD. Consequently,
no cycles can occur and the open list gets empty within a finite number of iterations.

Dynamic Labeling Function. To derive stronger relaxed MDDs we investigate further
the static labeling function

L2(u) = (pilcs1(u), pilcs2(u), pilcs3(u), pilcs4(u)) (4.40)

where {silcs3 , silcs4} ∈ S is the additional pair of input strings with smallest M3
si,si

[0, 0]
over all (si, si ) ∈ P \ {(ilcs1, ilcs2)}. Note that the convergence speed of A∗C depends
on the size of the domain |DL| of the used labeling function L. If the domain size is
large then nodes can be grouped into many subgroups and it may be harder to keep
the open list size under the desired threshold value φ since there are fewer possibilities
to merge nodes. If the domain size is small then nodes are merged more aggressively,
which makes it easier to keep the open list size under φ. However, the finally compiled
relaxed MDD will in general be weaker than a relaxed MDD compiled with a labeling
function of a larger domain size. For L1 the domain size is |DL1 | = a∈Σ |silcs1 |a |silcs2 |a.
Preliminary results showed that the domain size of L2 is already too large to let A∗C
finish in reasonable time on our benchmark instances, but the obtained relaxed MDDs
have the potential to be stronger than relaxed MDDs compiled with L1. Therefore we
follow a different strategy: Instead of using a labeling function that is static over the
whole compilation process we use a function that adapts its domain size depending on
the current situation. We propose the labeling function

L2
Δ(u) = (pilcs1(u), pilcs2(u), pilcs3(u)/Δ , pilcs4(u)/Δ ) (4.41)

which discretizes the values for pilcs3 and pilcs4 by discretization factor Δ. A∗C starts
with Δ = 1 and doubles this parameter after every k consecutive failures of reducing the
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open list size below φ. If the open list size could be reduced to size φ then Δ is reset to
one. Each time Δ is adapted, the set of collector nodes V c is cleared.

Further Details

Similar for relaxed MDDs for the PCJSOCMSR in Section 4.4.8, we merge an already
expanded node u ∈ V (D) and a not yet expanded node v ∈ Q if p(v) ⊕ p(u) = p(u),
Z lp(v) ≤ Z lp(u), and L1(u) = L1(v) holds since we do not need to update the state of
node u. This is efficiently done by indexing each expanded node by labeling function L1

and checking the condition after each node expansion for each newly created node

4.5.6 Results
To test our approaches we use six benchmark sets from the literature.

BL instance set from Blum and Festa [27]: Consists of 450 instances grouped by
different values for m, n, and |Σ|. For each combination there are ten uniform
random instances.

Rat, Virus, and Random instance set from Shyu and Tsai [143]: Three bench-
mark sets consisting of 20 instances each. The Rat and Virus benchmark sets
have a biological background whereas instances of the Random benchmark sets are
randomly generated.

ES instance set from Easton and Singireddy [53]: Consists of 600 instances which
are grouped by different values for m, n and |Σ|, where each group includes 50
instances.

BB instance set from Blum and Blesa [22]: Consists of 800 instances that were
artificially generated in a way such that input strings have a large similarity to
each other. There are ten instances for each combination of m and |Σ|.

We used all of these instances for the experimental evaluation but report here only
some due to the lack of space. In particular, the main results table to come in the
following section omits data for sets Virus and Random since they are similar to those
obtained for Rat, and from set BL only instances with n = 100 are considered as also
done in [51]. However, all instances from all mentioned benchmark sets are considered
in all the boxplots to come. Complete results over all benchmark instances are avail-
able from https://www.ac.tuwien.ac.at/files/resources/results/LCS/
cpaior21_mdds.zip. The algorithms were implemented using GNU C++ 7.5.0, and
all experiments were performed on a single core of an Intel Xeon E5649 with 2.53 GHz
and 32 GB RAM.

To evaluate the A∗C algorithm we use the standard top-down compilation (TDC) as
baseline, which compiles a relaxed MDD D layer by layer starting with the root node r.
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Figure 4.10: Relative differences of upper bounds UB2(r) and UB3(r).

All nodes of the current layer Vi(D), i = 1, . . . , n, are expanded and the newly created
nodes are inserted into layer Vi+1(D). The layer size is limited by parameter β. If the size
of Vi+1(D) exceeds β then Vi+1(D) is reduced, after all nodes of Vi(D) are expanded, by
sorting the nodes according to priority function f∗ in non-increasing order and replacing
the last nodes with smallest f∗-values from position β onward into a single merged node.
Note that TDC in general yields a MDD with be multiple target nodes at different layers.
In this case the notation Z lp(t) refers to the length of the longest path from r to any
target node.

Comparison of Independent Upper Bounds

We start with a comparison of the upper bounds UB2(r) and UB3(r) from Section 4.5.4.
Figure 4.10 shows boxplots for the relative differences 1 − UB3(r)/UB2(r) over the
different benchmark sets. Over all instances, tighter upper bounds can be obtained from
UB3(r) than from UB2(r) in 62.2% of the cases, and in these the relative difference
is on average 1.6%. Both upper bounds are equal in 17.6% of all instances. Overall,
upper bound UB3(r) has on average a relative difference to UB2(r) of 0.9%. However,
differences vary significantly with the type of benchmarks as the figure shows. The largest
relative differences could be observed on benchmark sets Rat and Virus. For randomly
generated instances, the relative differences seems to be smaller in general. Overall, we
conclude that UB3 provides in general slightly tighter upper bounds than UB2 but does
not dominate it. As both bounding procedures are relatively fast, we conclude that their
joint application makes sense.

4.5.7 Impact of Parameters φ and β

Next we investigate the impact of parameter φ as well as the choice of the labeling
function on the quality of the obtained relaxed MDDs. For this purpose we compile
MDDs for middle size instances from benchmark set BB with m = 100, n = 1000, and
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Figure 4.11: Relaxed MDDs obtained by A∗C and TDC for different settings of φ and β
for benchmark set BB, n = 1000, m = 100, |Σ| = 8.

|Σ| = 8. Figure 4.11 depicts aggregated characteristics of the relaxed MDDs created
by A∗C and TDC, respectively. The diagram to the left shows obtained upper bounds,
i.e., average lengths of longest r-t paths, for different values of φ and β in the range of
1 to 104. The different solid lines represent different choices of labeling functions for
A∗C as well as results obtained from TDC. The small tubes around the lines indicate
corresponding standard deviations. For A∗C we generally report the upper bound values
Zub

min obtained when t was selected the first time for expansion, and in case of labeling
function L1 additionally the longest path lengths in the complete relaxed MDDs. The
dashed line indicates the combined bound UB(r) from Section 4.5.4. The diagrams in the
middle and to the right report the corresponding average computation times in seconds
and average numbers of nodes of the relaxed MDDs, respectively.

In general, we can observe that tighter upper bounds can be obtained when choosing
larger values for φ or β. Naturally, this comes at the cost of larger compilation times
and lager relaxed MDDs. In comparison to TDC, A∗C provides consistently much better
results in terms of tightness of obtained upper bounds and for larger values of φ and β
also in terms of compilation time and compactness of obtained relaxed MDDs. A∗C with
the dynamic labeling function L2

Δ yields stronger bounds than with L1, requires, however,
more time than L1. This is not surprising since domain DL2

Δ
is larger than DL1 and thus

leads less frequently to merges. The tightest upper bounds can be obtained with function
L2

Δ where the discretization factor Δ is doubled after every k = 104 consecutive failures
of reducing Q below φ. Again this can be explained due to less merges than with other
parameter settings. For the same reason these settings need in general more computation
time and produce larger relaxed MDDs. Note also that, even for small values of φ, upper
bounds obtained from A∗C are substantially smaller than UB(r).

150



4.5. Longest Common Subsequence Problem

4 12 20

| |

0

10

20

30

40

50

U
p
p
e
r 

&
 L

o
w

e
r 

B
o
u
n
d
s

BL, m= 200

A * C: L1, = 1 A * C: L2, = 5000, k= 103 TDC best known LCS UB(r)

4 12 20

| |

10 2

100

102

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [

s
]

BL, m= 200

4 12 20

| |

101

102

103

104

105

#
n
o
d
e
s

BL, m= 200

2 8 24

| |

0

200

400

600

800

U
p
p
e
r 

&
 L

o
w

e
r 

B
o
u
n
d
s

BB, m= 100

2 8 24

| |

10 1

100

101

102

103

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [

s
]

BB, m= 100

2 8 24

| |

103

104

105

106

#
n
o
d
e
s

BB, m= 100

10 40 200

m

0

100

200

300

400

500

U
p
p
e
r 

&
 L

o
w

e
r 

B
o
u
n
d
s

Rat, | | = 20

10 40 200

m

100

102

104

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [

s
]

Rat, | | = 20

10 40 200

m

105

106

#
n
o
d
e
s

Rat, | | = 20

10 50 100

m

0

500

1000

1500

2000

2500

U
p
p
e
r 

&
 L

o
w

e
r 

B
o
u
n
d
s

ES, | | = 25

10 50 100

m

100

101

102

103

104

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [

s
]

ES, | | = 25

10 50 100

m

104

105

106

107

#
n
o
d
e
s

ES, | | = 25

Figure 4.12: Lower and upper bounds, respective compilation times, and sizes of obtained
relaxed MDDs for selected benchmark sets.

4.5.8 Main Comparison of A∗C and TDC
We start with a graphical comparison for a selected subset of instance classes in Figure 4.12.
Shown are upper bounds obtained from relaxed MDDs compiled with A∗C and TDC,
respectively, corresponding compilation times, and the sizes of the obtained MDDs. Each
group of bars corresponds to a specific instance class and shows average results, except

151
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for instance class Rat which contains only one instance per instance class. The first
two bars from the left to right always correspond to relaxed MDDs obtained from A∗C
with parameters {L1, φ = 1} and {L2

Δ, φ = 5000, k = 103}, respectively. The first
parameter setting is the case where A∗C merges nodes most aggressively whereas the
latter setting lets A∗C select nodes for merging more carefully, but still with a reasonable
total compilation time. The third bar corresponds to relaxed MDDs obtained from TDC
with β = 5000. The brighter parts of the bars indicate the results for the in general
incomplete relaxed MDDs obtained when A∗C terminates as soon as t is selected for
expansion whereas the darker parts show the results for the completed relaxed MDDs.
For instance, the brighter part of the bars in the diagrams on the left side show average
Zub

min values. Diamond markers indicate the average lengths of the best known LCSs from
the literature obtained from [51]. The black dashed lines show the independent upper
bounds UB(r).

We can see that if A∗C terminates as soon as t is selected for expansion then we obtain in
all considered cases MDDs yielding significantly tighter bounds than the MDDs obtained
from TDC. Moreover, compilation times are shorter and the obtained MDDs are smaller
in case of A∗C. Note that although these relaxed MDDs are incomplete in the sense
that not all feasible solutions are covered, they can still be further used, e.g., for the
DD-based branch-and-bound approach as described by Bergman et al. [15]. It is still
possible to derive an exact cut set of nodes to branch on by considering nodes that are not
expanded yet, too. If we consider complete relaxed MDDs from A∗C then the obtained
upper bounds are still tighter or equal than those from relaxed MDDs obtained from
TDC, however the compilation with A∗C is not faster anymore. Note that TDC was
not able to compile relaxed MDDs with β = 5000 within the time limit of three hours
for instances from set ES with n = 5000. Also, the A∗C approach could not compile a
complete relaxed MDD for instances of set Rat with m = 200, |Σ| = 20, and n = 600
within the three hours time limit. However, with the stopping condition of selecting t
for expansion, A∗C terminated much earlier. As the length of the longest path of the
incomplete relaxed MDD when A∗C aborts after three hours is also a feasible upper
bound, we show these values in these cases, too.

Finally, Table 4.4 presents more detailed main results of our computational experiments.
Here, A∗C is always terminated when t is selected for expansion. Each row contains
aggregated results of one instance class. The characteristics of the instance classes can
be seen in the first four columns whereas column UB(r) shows the average independent
upper bound. The next eight columns belong to results obtained from relaxed MDDs
compiled with A∗C and TDC, respectively. Hereby, columns Zub

min and Z lp(t) state
the average lengths of the longest paths obtained from the compiled MDDs. Columns
σ(·) report corresponding standard deviations. Average compilation times in seconds
are listed in columns t. Finally, columns gap report the remaining optimality gaps
(ub − obj)/ub · 100% in relation to the objective values of so far best known solutions
obtained from [51] and listed in column obj; value ub refers to the upper bound obtained
from the considered approach, i.e., Zub

min or Z lp. We remark that [51] shows experimental
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Table 4.4: Main results for A∗C and TDC and comparison to the anytime A∗ search
from [51].

A∗C TDC lit. best [51]

n |Σ| m UB(r) Zub
min σ(Zub

min) t[s] gap[%] Z lp(t) σ(Z lp(t)) t[s] gap[%] obj gap[%]

BB 10
00

2 10 807.4 781.6 9.1 8.9 13.4 882.7 4.4 18.7 23.3 676.7 16.2
100 792.7 767.3 4.5 43.2 26.5 871.8 4.3 74.2 35.4 563.6 30.6

4 10 796.5 759.5 6.7 6.4 28.2 879.5 4.1 27.7 38.0 545.5 29.4
100 779.0 739.4 8.2 22.5 47.2 868.2 4.7 181.3 55.1 390.2 50.9

8 10 794.8 732.8 11.3 7.7 36.9 874.9 5.7 45.5 47.1 462.7 38.0
100 772.3 708.2 5.3 23.1 61.4 857.6 3.3 386.4 68.1 273.4 65.0

24 10 786.1 689.1 14.5 12.5 44.0 846.9 3.5 131.8 54.5 385.6 40.5
100 768.4 669.8 9.9 42.0 77.7 818.3 1.8 1261.4 81.7 149.5 79.5

R
at 60
0

4

10 345.0 319.0 - 4.8 35.4 570.0 - 27.7 63.9 206.0 38.0
15 347.0 331.0 - 5.2 42.9 564.0 - 20.6 66.5 189.0 44.5
20 293.0 277.0 - 9.4 37.2 494.0 - 34.4 64.8 174.0 39.5
25 344.0 327.0 - 5.4 47.1 557.0 - 44.1 68.9 173.0 47.4
40 315.0 300.0 - 10.6 48.7 455.0 - 26.2 66.2 154.0 48.1
60 343.0 323.0 - 5.1 52.3 548.0 - 62.5 71.9 154.0 53.1
80 281.0 261.0 - 12.6 44.8 466.0 - 36.6 69.1 144.0 47.6

100 279.0 263.0 - 5.5 47.1 497.0 - 118.5 72.0 139.0 49.6
150 222.0 222.0 - 13.2 41.0 443.0 - 142.3 70.4 131.0 40.2
200 231.0 228.0 - 40.3 44.7 436.0 - 223.7 71.1 126.0 44.9

20

10 191.0 167.0 - 19.6 56.9 493.0 - 101.3 85.4 72.0 58.7
15 198.0 169.0 - 45.1 62.7 467.0 - 268.2 86.5 63.0 62.9
20 190.0 159.0 - 101.7 65.4 456.0 - 278.2 87.9 55.0 65.2
25 173.0 145.0 - 18.5 64.1 417.0 - 158.6 87.5 52.0 68.1
40 176.0 143.0 - 53.0 65.0 421.0 - 379.6 88.1 50.0 70.3
60 195.0 161.0 - 439.7 70.8 431.0 - 284.2 89.1 47.0 70.3
80 180.0 145.0 - 518.7 69.7 376.0 - 269.5 88.3 44.0 69.1

100 173.0 138.0 - 103.5 71.0 359.0 - 545.3 88.9 40.0 71.8
150 172.0 145.0 - 128.0 73.8 323.0 - 609.6 88.2 38.0 71.5
200 170.0 133.0 - 195.7 73.7 324.0 - 897.6 89.2 35.0 70.2

ES
10

00

2
10 795.3 783.6 4.3 5.6 21.0 987.5 1.3 19.7 37.3 618.9 21.2
50 791.0 779.4 3.0 12.8 30.6 982.7 1.2 40.8 45.0 540.9 30.6

100 788.7 777.3 3.0 18.4 32.8 980.8 0.9 77.6 46.8 522.1 32.9

10
10 477.6 462.2 2.9 4.9 55.6 951.8 2.7 138.4 78.5 205.0 54.9
50 473.7 455.7 1.8 15.4 69.8 928.7 2.1 339.4 85.2 137.5 69.1

100 472.2 454.0 2.0 28.9 72.7 919.5 2.1 591.8 86.5 124.1 71.9

25
00 25

10 820.1 800.1 2.4 11.5 70.4 2389.2 4.3 1453.7 90.1 236.6 70.1
50 816.5 791.0 1.7 39.1 82.3 2332.4 4.5 4367.0 94.0 140.4 81.9

100 814.4 788.3 1.4 74.2 84.3 2309.5 3.6 7514.3 94.7 123.4 84.0

50
00 100

10 888.3 853.9 2.6 62.7 82.9 - - - - 145.7 82.9
50 883.5 835.9 1.7 152.1 91.4 - - - - 72.0 91.3

100 882.3 829.5 1.6 373.3 92.7 - - - - 60.8 92.6

BL 10
0

4

10 58.8 47.5 1.6 0.5 28.2 75.6 2.0 3.0 54.9 34.1 10.8
50 56.2 41.7 1.4 2.1 42.0 65.0 1.2 6.1 62.8 24.2 18.7

100 54.7 40.6 1.1 3.2 45.8 61.0 1.8 9.6 63.9 22.0 20.4
150 53.8 38.7 1.2 3.9 46.8 58.0 1.4 11.6 64.5 20.6 18.1
200 53.0 38.3 0.8 5.0 47.8 56.8 1.8 15.9 64.8 20.0 20.2

12

10 37.4 21.2 1.7 0.2 40.1 36.3 4.1 3.7 65.0 12.7 0.0
50 34.4 8.7 2.1 0.2 20.7 9.6 3.0 0.3 28.1 6.9 0.0

100 28.8 5.2 0.4 <0.1 0.0 5.2 0.4 <0.1 0.0 5.2 0.0
150 23.8 4.7 0.5 <0.1 0.0 4.7 0.5 <0.1 0.0 4.7 0.0
200 22.8 4.1 0.3 <0.1 0.0 4.1 0.3 <0.1 0.0 4.1 0.0

20

10 29.2 9.5 1.0 <0.1 16.8 10.5 2.2 0.3 24.8 7.9 0.0
50 17.5 3.0 0.0 <0.1 0.0 3.0 0.0 <0.1 0.0 3.0 0.0

100 12.1 2.1 0.3 <0.1 0.0 2.1 0.3 <0.1 0.0 2.1 0.0
150 7.2 1.9 0.3 <0.1 0.0 1.9 0.3 <0.1 0.0 1.9 0.0
200 6.8 1.1 0.3 <0.1 0.0 1.1 0.3 <0.1 0.0 1.1 0.0
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Figure 4.13: Relative differences of upper bounds between Zub
min and UB(r) as well as

between Zub
min and Z lp(t).

results for two parameter settings, one tailored to obtain as good as possible heuristic
solutions, and one targeted towards smallest possible remaining optimality gaps. While
we use the better objective values from the former results, the gaps listed in our table for
[51] are those of the latter.

For the compilation of MDDs we set β = 5000 for TDC and φ = 5000 for A∗C with
labeling function L2

Δ and k = 104 for all instance except for benchmark set ES where k
is set to 103.

We observe that in all considered cases the obtained upper bounds Zub
min are tighter than

UB(r) as well as the upper bounds obtained from relaxed MDDs compiled with TDC.
Only in one single case, for benchmark set Rat with |Σ| = 4, m = 150, n = 600, the
upper bound UB(r) is equal to Zub

min. We notice an average relative difference between
Zub

min and UB(r) of 14.8% over all instances. Considering Zub
min and Z lp(t) from relaxed

MDDs compiled with TDC we get an average relative difference of 43.7%. The boxplots
shown in Figure 4.13 give deeper insight on the relative differences between Zub

min and
UB(r) as well as the differences between Zub

min and Z lp(t). The largest relative difference
between upper bounds obtained from relaxed MDDs compiled by A∗C and TDC occurs
for instance sets Rat, Virus, Random, and ES. For these benchmark sets the median of
the obtained relative differences is about 50%. Regarding instances of the BB benchmark
set, substantially smaller relative differences are obtained. The fact that BB instances
are created in a way s.t. input strings have a large similarity to each other seems to
be an explanation for this discrepancy. The median of the relative differences between
upper bounds Zub

min and UB(r) is about 10% for all benchmark sets. Only results from
benchmark set ES exhibit a median relative difference of about 4%, which can be explained
by the longer input strings of ES instances, e.g., n = 5000. Finally, BL instances exhibit
some outliers, e.g., instances with a relative difference between Zub

min and UB(r) of 80%
and differences between Zub

min and Z lp(t) (TDC) of 0%. This is not surprising, since
benchmark set BL contains small instances that could be solved to proven optimality
by exact methods, and both construction methods, A∗C and TDC, are able to compile
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relaxed MDDs that yield the optimal solution values as upper bounds. This is also
documented in Table 4.4 for instance classes of set BL with n = 100 and |Σ| ∈ {12, 20}
where the average optimality gap is 0%. In comparison to [51], we can observe that A∗C
is able to obtain even smaller optimality gaps in 315 cases and equal optimality gaps in
73 cases. Most of the gaps from [51] were only obtained after a time limit of 15 minutes,
while A∗C created the MDDs in much shorter time.

4.6 Conclusion
In this chapter we considered two NP-hard optimization problems. The first problem is
the PCJSOCMSR, a prize-collecting scheduling problem, where a subset of jobs must
be selected from a ground set of jobs and sequenced to form a feasible solution. The
second considered problem is the LCS problem, where a longest subsequence must be
derived that is common to a set of input strings over a finite alphabet. By a simple
extension, MDDs that are traditionally used for sequencing become suitable to represent
the search space of the PCJSOCMSR as well as the LCS problem, where the solutions
are of variable length.

By applying the principles of A∗ search, we proposed a new way of compiling relaxed
MDDs for large instances of the PCJSOCMSR and the LCS problem that are challenging
to solve to proven optimality. The suggested method has the advantage that it does not
rely on a layer-to-variable correspondence, and consequently, multiple nodes for the same
states at different layers are efficiently avoided. In contrast, traditional layer-oriented
TDC and IR approaches would, for the PCJSOCMSR, typically lead to relaxed MDDs
with a substantial amount of redundant isomorphic substructures. The same holds for
relaxed MDDs for the LCS problem. Note further that also the merging of nodes is done
across layers.

Moreover, our A∗-based method utilizes an auxiliary heuristic function to estimate the
cost-to-go from each reached node. This function guides the A∗ search, and thus the
relaxed MDD may be constructed in a more meaningful way. As in any A∗ search, the
better this heuristic function estimates the real cost-to-go, the more efficient the approach
becomes.

We propose to restrict the number of nodes in the open list instead of restricting the
width at each layer. If merging becomes necessary, a node that appears less promising to
be part of a finally longest path is selected first and a similar partner node is efficiently
determined by the proposed collector node concept. To this end, not yet expanded nodes
are labeled in a state-space-relaxation fashion and maintained in a dictionary for efficient
lookup. Choosing a proper labeling is important both to obtain a strong relaxation but
also to prevent cycles in the construction of the relaxed MDD and to ensure termination
of the construction. Our experiments confirmed that substantially smaller and stronger
relaxed MDDs could be obtained in the same or shorter times than with traditional
compilation methods.
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While a relaxed MDD yields an upper bound on the optimal solution value for a maximiza-
tion problem and encodes much useful information, it does in general not directly yield a
promising heuristic solution and lower bound. For obtaining heuristic solutions, restricted
MDDs are suitable. In previous works, they have been constructed independently of the
relaxed MDD. We showed for the PCJSOCMSR how the construction of a restricted MDD
can be improved by constructing a relaxed MDD first and then exploiting the encoded
knowledge. Again, our experiments for the PCJSOCMSR confirmed the advantages: The
main benefit is a substantial speedup in the construction of the restricted MDD. We even
showed that the total time for constructing the relaxed MDD, filtering it, and deriving a
restricted MDD of a certain size based on the relaxed MDD can take less time than the
classical independent construction of a restricted MDD of the same size. Thus, one might
say that in our combined approach, one gets the upper bound from the relaxed MDD
and thus a quality guarantee in addition to a promising heuristic solution “for free”.
We compared this overall approach for the PCJSOCMSR to an order-based MIP model
solved by Gurobi, to a GVNS metaheuristic, and to a basic CP approach solved by
MiniZinc. The MIP model only produced rather weak lower and upper bounds for all
instances except the smallest. For most cases, our approach yielded the best solutions.
Exceptions are the larger instances of the particle therapy benchmark set with three
secondary resources, where the GVNS outperformed the other methods.
For the LCS problem we were mainly interested to obtain strong upper bounds by
compiling relaxed MDDs with A∗C. As auxiliary heuristic function we suggested using
a combination of two fast-to-calculate bounds from the literature and the new variant
UB3 that is approximately equally fast to compute but occasionally stronger than the
former bounds. We investigated also a different LCS-specific dynamic labeling function
that adapts the domain dynamically during the compilation process such that depending
on the current situation nodes are merged more or less aggressively. When rigorously
comparing A∗C with a classical TDC on several LCS-specific benchmark instance sets
from the literature. We observed again that A∗C is able to provide more compact relaxed
MDDs that are significantly stronger than relaxed MDDs obtained from TDC in shorter
time. For several instance classes relaxed MDDs compiled with A∗C yielded stronger
bounds than the best known upper bounds from the literature.
Naturally, it is interesting to test the proposed methods in future work also on other
problems that include both the selection and sequencing aspects, like those referred to
in Section 4.1. Although not a strong limitation, an important property of a suitable
problem may be the order-invariance of the objective function, which is exploited by
the proposed approach. Moreover, note that the idea of exploiting relaxed DDs in
the construction of a successive restricted DD is more generally applicable. For some
problems, the proposed way of finding similar partner nodes for merging may also be
useful in the context of a classical layer-wise TDC of relaxed MDDs, where so far a
simpler bulk merging is primarily used.
For some applications of relaxed DDs, an important aspect is incrementability, i.e., that
a once obtained complete DD can be further refined, for example, to strengthen the

156



4.6. Conclusion

obtained bound. Naturally, known iterative refinement methods based on node splitting
and filtering can also directly be applied to relaxed DDs obtained from the A∗C. Moreover,
the A∗C may be iteratively applied with increasing open list size limits, yielding stronger
and stronger DDs over the time. Hereby, information contained in one DD can always be
exploited to speed up the construction of a successive DD in a similar way as we derived
a larger restricted DD on the basis of a relaxed DD. An interesting research question is
if a completely constructed DD can also be effectively updated in-place by a following
A∗-based refinement pass.

Last but not least, it is of relevance to investigate the proposed A∗-based MDD construc-
tion also from a more theoretical side. Unfortunately, a constant open list size limit φ
does in general not necessarily imply that the obtained relaxed MDD has polynomial
size, and therefore also the algorithm’s runtime is not necessarily polynomially bounded.
Note, however, that similarly no better performance guarantees can be given for classical
A∗ search without considering a more specific problem setting and a concrete heuristic
function. In fact, the resulting MDD’s actual size strongly depends on the interplay of φ,
the problem-specific heuristic function for the cost-to-go, the labeling function for the
merging, and how the merging is performed.

One extension to guarantee a termination with a complete relaxed MDD when reaching
a certain time limit or MDD size is to reduce φ to a very small value from this point
onward. However, this naive completion may in general degrade the strength of the
obtained MDD substantially. Studying more advanced methods, possibly by adaptively
adjusting φ over the whole run, or developing an entirely different way of deciding when
to merge which nodes, is desirable.
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CHAPTER 5
Decision Diagram Based Limited

Discrepancy Search

I n Chapter 4 a relaxed decision diagram (DD) has been used to accelerate the
compilation process of a restricted DD with the traditional top-down compilation
(TDC) method. This chapter extends this approach by using structural information

of previously compiled relaxed DDs to significantly speed-up a heuristic search for
solutions of a combinatorial optimization problem (COP). More precisely, we will use
relaxed DDs to improve the performance of a hybrid of a limited discrepancy search
(LDS) and a beam search (BS) approach. In order to evaluate our algorithm we tackle an
extension of the prize-collecting job sequencing problem with one common and multiple
secondary resources (PCJSOCMSR) in Section 4.4 of Chapter 4 by considering in addition
precedence constraints.

This chapter covers the work presented at the 17th International Conference of Computer
Aided Systems Theory (EUROCAST 2019) [80]. The remaining part of the chapter is
structured as follows. First, Section 5.1 gives a detailed introduction of the considered
topic. The following Section 5.2 introduces the considered PCJSOCMSR with precedence
constraints and Section 5.3 describes the used compilation process to construct relaxed
DDs for the PCJSOCMSR with precedence constraints. The hybrid LDS/BS approach
to find heuristic solutions is described in Section 5.4. Experimental results, which
demonstrate a substantial speed-up of the computation times of our hybrid approach
when using a relaxed DD are presented in Section 5.5. Furthermore, the obtained results
are compared with a mixed integer programming (MIP) approach and a constraint
programming (CP) approach. Finally, Section 5.6 concludes this chapter.
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5.1 Introduction

The PCJSOCMSR without precedence constraints was introduced in Section 4.4 of
Chapter 4 and consists of a set of jobs, one common resource, and a set of secondary
resources. The common resource is shared by all jobs whereas a secondary resource is
shared only by a subset of jobs. Each job has at least one time window and is associated
with a prize. A feasible schedule requires that there is no resource used by more than
one job at the same time and each job is scheduled within one of its time windows. Due
to the time windows it may not be possible to schedule all jobs. The task is to find a
subset of jobs that can be feasible scheduled and maximizes the total prize. As already
mentioned in Chapter 4, there are at least two applications. The first is in the field of
the daily scheduling of particle therapies for cancer treatments. The second application
can be found in the field of hard real time scheduling of electronics within an aircraft,
called avionics, where the PCJSOCMSR appears as a subproblem. See Section 4.4 for
more details.

In particular in the avionic system scenario it often appears that some jobs need to
be finished before other jobs may start. To address this aspect, we consider in this
work also precedence constraints. Thus, there are given relationships between pairs of
jobs as additional input such that one job can only be scheduled if the other job is
already completely scheduled earlier. These new constraints require an adaption on the
algorithmic side of Section 4.4 to incorporate the new precedence constraints. The goal
is to solve large problem instances of the PCJSOCMSR with precedence constraints
heuristically. Our solution approach builds upon the ideas from Section 4.4 but extended
them to a LDS combined with BS that exploits structural information contained in a
relaxed DD. The usage of the relaxed DD is two-folded: (1) to reduce computation time
of the LDS and (2) to provide besides a heuristic solution also an upper bound on the
total prize objective.

5.2 Prize-Collecting Job Sequencing with One Common
and Multiple Secondary Resources Problem with
Precedence Constraints

The PCJSOCMSR with precedence constraints is formally defined as follows. Given is a
set of n jobs J = {1, . . . , n}, a common resource 0 and a set of m secondary resources
R = {1, . . . , m}. Let R0 = {0}∪R be the complete set of resources. Each job j ∈ J needs
during its whole execution time pj > 0 one secondary resource qj ∈ R and, in addition,
after some preprocessing time ppre

j ≥ 0 also the common resource 0 for some time p0
j > 0.

Furthermore, each job has associated (1) ωj time windows Wj = ω=1,...,ωj
[wstart

jω , wend
jω ],

where wend
jω − wstart

jω ≥ pj , ω = 1, . . . , ωj , (2) a set of preceding jobs Γj , which must be
scheduled before job j can be scheduled w.r.t. the common resource 0, and (3) a prize
zj > 0. The task is to find a subset of jobs S ⊆ J which can be feasible scheduled such
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that the total prize of these jobs is maximized:

Z∗ = max
S⊆J

Z(S) = max
S⊆J

j∈S

zj . (5.1)

A feasible schedule assigns each job in S a starting time in such a way that all constraints
are satisfied. See Figure 4.3 in Section 4.4.1 for an example of a PCJSOCMSR instance and
a corresponding optimal solution. Note that a unique ordered sequence π = (π)i=1,...,|S|
of jobs is implied by each feasible schedule of jobs S ⊆ J , since the common resource
is required by each job and only one job can use this resource at a time. For each
given sequence π of jobs S that can be associated with a feasible schedule, a normalized
schedule without unnecessary waiting times can be computed greedily (see Section 4.4.1
for further details).

For related work of the PCJSOCMSR we refer to Section 3.2 and 4.4.2 of Chapters 3
and 4, respectively.

5.3 Relaxed Decision Diagrams and Filtering

In order to describe our approach in Section 5.4 we have to introduce some definition
and structures beforehand. In our context a multivalued decision diagram (MDD)
for the PCJSOCMSR is a weighted directed acyclic graph D = (V, A) with one root
node r ∈ V (D), corresponding to the empty schedule and one target node t ∈ V (D)
corresponding to all feasible schedules that cannot be further extended by any job. Each
arc α = (u, v) ∈ A(D) corresponds to adding a specific job, denoted by j(α) ∈ J , as the
next job after the ones already scheduled up to node u. The length of an arc α ∈ A(D)
is associated with the prize zj(α). Hence, each path from r to any node u ∈ V (D)
corresponds to a specific sequence of jobs π and the length of the path is equal to the
sum of prizes of jobs in π.

In an exact MDD each feasible normalized schedule S ⊆ J has a corresponding path in
the exact MDD originating from r and vice versa. The length of such a path corresponds
exactly to the total prize Z(S). Therefore, a longest path from r to t corresponds to an
optimal solution of the PCJSOCMSR. Furthermore, each node u ∈ V (D) is associated
to a state (P (u), t(u)), where set P (u) contains all jobs that can be feasibly scheduled
next, and vector t(u) = (tr(u))r∈R0 contains the earliest times from which on each of the
resources are available for performing a next job. The transition function to obtain the
successor state (P (v), t(v)) of state (P (u), t(u)) when scheduling job j ∈ P (u) is

τ ((P (u), t(u)), j) =




(P (u) \ {j}, t(v)), if s((P (u), t(u)), j) < T max ∧
P (u) ∩ Γj = ∅,

0̂, else,
(5.2)
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with

t0(v) = s((P (u), t(u)), j) + ppre
j + p0

j , (5.3)
tr(v) = s((P (u), t(u)), j) + pj , for r = qj , (5.4)
tr(v) = tr(u), for r ∈ R \ {qj}, (5.5)

where 0̂ represents the infeasible state and s((P (u), t(u)), j) corresponds to the earliest
start time of job j w.r.t. state (P (u), t(u)) and job j’s time windows. If it is not possible
to feasibly schedule job j then function s(·, ·) will return T max. See Equation 4.4 in
Section 4.4.3 for a formal definition of function s(·, ·). A state is denoted as exact state if
a longest path from the root node r to the node associated with the corresponding state
represents a feasible solution. Hence, a node of an exact state is guaranteed to have a
feasible solution that corresponds to this longest path.

Exact MDDs contain only exact states, which is not necessarily true for relaxed MDDs
since states are merged in order to get a more compact MDD. Thereby new paths will
emerge which correspond to infeasible schedules, denoted as infeasible paths. Let us
merge two nodes u, v ∈ V . The merged state is

(P (u), t(u)) ⊕ (P (v), t(v)) = (P (u) ∪ P (v), (min(tr(u), tr(v)))r∈R0). (5.6)

We compile relaxed MDDs with the A∗-based construction (A∗C) method from previous
Section 4.4.8 of Chapter 4 since it could be shown that at least for the PCJSOCMSR
without precedence constraints the A∗C can produce smaller relaxed MDDs in shorter
time that represent stronger relaxations than relaxed MDDs compiled with standard
methods from the literature. See Figure 4.5 in Section 4.4.8 for a graphical example of
an exact MDD as well as a relaxed MDD for an instance of the PCJSOCMSR. Note
that we initially ignore the precedence constraints in this compilation of a relaxed MDD.
Otherwise, we would need to extend the states of the nodes with additional information in
order to define a feasible merging rule for two nodes. Preliminary experiments had shown
that those larger states cause substantially longer compilation times, which we want to
avoid. However, we consider the precedence constraint after the initial construction by
applying a respective filtering on the compiled relaxed MDD. We try to identify arcs
which belong only to infeasible paths. Those arcs can be safely removed from the relaxed
MDD to reduce the number of infeasible paths without removing paths that correspond
to feasible schedules. To identify arcs that violate precedence constraints we adopted the
corresponding filter operation suggested by Cire and van Hoeve [40]. Moreover, if we
already got a primal solution then we can in addition filter arcs which only belong to
paths corresponding to solutions that are worse than this known primal solution. Hence,
paths that encode sub-optimal solutions will be removed from the relaxed MDD. These
cost-based filter operations are adopted from Section 4.4.
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Algorithm 5.1: LDSprobe
Input: node set N , relaxed DD D = (V, A), allowed discrepancies k, beam

width β
Output: sequence of jobs π

1 if N = ∅ then return empty sequence;
2 node set W ← ∅; job sequence πbest ← ∅;
3 foreach u ∈ N do
4 let u ∈ V (D) be the node corresponding to u w.r.t. the path from the root;
5 foreach outgoing arc α = (u, v) of node u do
6 if |W | = (k + 1) β ∧ node v would be removed from W ∪ {v} then
7 continue with next arc;
8 end
9 if τ((P (u ), t(u ), j(α)) = ∅ then continue with next arc;

10 add new node v to W and set (P (v ), t(v )) ← τ((P (u ), t(u )), j(α));
11 if |W | > (k + 1)β then remove worst node from W according to Zh(·);
12 end
13 end
14 if W = ∅ then return arg maxπ(u )|u ∈N Z(π(u ));
15 sort W according to Zh(·) and split W into k + 1 slices W [i], i = 0, . . . , k;
16 foreach i = k, . . . , 0 do
17 π = LDSprobe(W [i], M, k − i, β);
18 if Z(πbest) < Z(π) then πbest ← π;
19 end
20 return πbest;

5.4 Limited Discrepancy Search

Section 13 of Chapter 2 already introduces LDS and its extensions. However, for the sake
of clarity, we will briefly repeat here the basic LDS approach. Limited discrepancy search
was originally proposed by Harvey and Ginsberg [72] for heuristic binary searches where
at each decision point a heuristic Zh(·) decides between two possibilities to extend the
current partial solution. If Zh(·) is a perfect heuristic then the algorithm would return
the optimal solution as soon as a complete solution is encountered during the search.
However, in most cases Zh(·) will fail at some point and only a non-optimal solution can
be returned. To overcome this, LDS allows in a systematic way discrepancies during the
search. A discrepancy means that at some decision point the algorithm decides against
Zh(·). Hence, if k discrepancies are allowed then LDS will encounter all paths in the
search tree where the algorithm exactly decides k times against Zh(·). To apply LDS on
the PCJSOCMSR we have to consider in general multiple possibilities at each decision
point instead of just two, and we do this by counting i − 1 discrepancies if we take the
i-th best decision according to Zh(·).
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Algorithm 5.2: LDS+BS
Output: sequence of jobs π

1 compile relaxed MDD D = (V, A) by A∗C, ignoring precedence constraints;
2 πbest ← LDSprobe(r, D , 0, 10);
3 for k ← 0; k ≤ kmax ∧ time limit not exceeded; k ← k + 1 do
4 apply filtering on D ;
5 π ← LDSprobe(r, D , k, β);
6 if Z(πbest) < Z(π) then πbest ← π;
7 end
8 return πbest;

Algorithm 5.1 shows our LDS-based approach using the transition function (5.2) from
Section 5.3 to generate exact states. Note that we do not build an exact DD, but we
rather keep all not yet expanded nodes in memory and assign to each node v the so far
best encountered partial solution π(v ). Furthermore, we extend LDS in similar ways
as Furcy and Koening [58] by incorporating a BS like approach at each level into LDS.
Instead of expanding always one node at each step Algorithm 5.1 expands at each step
β nodes and keeps the (k + 1)β-best successor nodes according to Zh(·). As heuristic
decision function Zh(v ) for node v we use the ratio Z(π(v ))/t0(v ). In order to quickly
identify those (k + 1)β-best successor nodes we use the structural information contained
in the relaxed MDD D = (V, A) similar as in Section 4.4.9 in Chapter 4. For node
u ∈ N a corresponding node u ∈ V (D) from D can be determined by following the job
sequence π(u ) from r in D . We do not consider transitions to successor nodes of u
where the corresponding arcs were removed from the relaxed DD during the filtering step.
Furthermore, we can estimate Zh(·) without creating the successor nodes of u by using
the corresponding nodes in the relaxed MDD. Based on this estimation we can decide
quickly if a successor node is a candidate to be one of the β-best successor nodes or not.
Note that for simplification reasons Algorithm 5.1 shows a recursive version of LDS, our
implementation however, is implemented in an iterative way.

Algorithm 5.2 gives an overview of the overall approach to tackle the PCJSOCMSR with
precedence constraints. First a relaxed MDD D is compiled with A∗C with the same
parameter settings as in Section 4.4.10 in Chapter 4 and by ignoring the precedence
constraints. In order to get quickly an initial primal solution for filtering, Algorithm 5.1 is
applied with the small beam with β = 10 and no allowed discrepancies. In the main loop
we apply first the filtering for sup-optimal paths according to our current best primal
solution and precedence constraints violations. Then we apply Algorithm 5.1 with beam
width β and the number of current maximum allowed discrepancies k. After updating
the incumbent solution πbest, k is increased by one. The algorithm terminates if the
maximum allowed discrepancies kmax is reached or a certain time limit is exceeded.
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5.5 Experimental Results
The LDS-based algorithm for the PCJSOCMSR with precedence constraints was imple-
mented in C++ using GNU g++ 5.4.1. All tests were performed on a cluster of machines
with Intel Xeon E5-2640 v4 processors with 2.40 GHz in single-threaded mode with a
memory limit of 16 GB per run. We extended the two sets of benchmark instances
for the particle therapy application scenario (denoted as P) and for the avionic system
scheduling scenario (denoted as A) from Section 4.4.10 by adding randomly precedence
constraints between n pairs of jobs such that circular dependencies between jobs are
avoided. The instance sets contain 30 instances for each combination of different values
of n with up to 500 jobs and m with up to 4 secondary resources. For further details
on the benchmark characteristics we refer to Section 4.4.10 of Chapter 4. During the
LDS+BS approach, relaxed MDDs are compiled with A∗C by using the labeling function
L3 and limiting the open list to φ = 1000 for instances of set P. For instances of set A we
use the labeling function L4 and φ = 20000.

Figure 5.1 compares the obtained average total prizes and median computation times
between LDS+BS and a standalone variant of LDS+BS without using a relaxed MDD.
Both algorithms use different values for the beam width β and different numbers of
maximum allowed discrepancies kmax. The diagrams on the top visualize the obtained
average total prizes. There are two main observations regarding the solution quality:
First, as expected the solution quality tends to increase with increasing β and/or kmax;
second, similar results could be obtained from both LDS+BS variants. Therefore, we
conclude that for the considered instances the solution quality does on average not depend
on using a relaxed MDD to accelerate the LDS+BS when using the same parameter
settings. However, regarding computation times, the LDS+BS approach using the relaxed
MDD is in almost all cases except for kmax = 0 and smaller β substantially faster. Note
that we do not show the obtained results from standalone LDS+BS for kmax = 2, since
the approach exceeded in most cases the time limit of two hours.

Figure 5.2 compares the LDS+BS approach against a mixed integer programming (MIP)
approach and a constraint programming (CP) approach. The MIP formulation as well
as the CP formulation from Sections 4.4.6 and 4.4.7, respectively, were adapted to
additionally consider the precedence constraints. The MIP model is solved with Gurobi
Optimizer 7.5.1 whereas the CP model is solved with MiniZinc 2.1.7 using backbone
solver Chuffed. All tested approaches use a time limit of 900 seconds. For LDS+BS the
maximum allowed discrepancies kmax are set to infinity and β is set to 1000 and 10000 for
instance sets of type P and A, respectively. The first bar of each group of bars shows the
obtained average longest path length of the compiled relaxed MDD during the LDS+BS
approach and the darker block at the bottom shows the obtained average primal bounds.
In the same manner, the second bar shows the obtained upper- and primal bounds from
the MIP approach. The third bar shows the obtained average primal bounds obtained
from the CP approach. Note that this rather standard CP approach is not able to obtain
a dual bound. On average the LDS+BS approach finds in all considered cases better or
equally good solutions than the MIP or the CP solvers. In almost all cases the CP solver
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is not able to provide any better solutions than the MIP solver or the LDS+BS approach.
Moreover, LDS+BS is able to return in most cases on average stronger upper bounds
than the MIP solver.

5.6 Conclusion
In this chapter we solved the PCJSOCMSR with precedence constraints by an hybrid
approach of LDS and BS. The PCJSOCMSR is a prize-collecting scheduling problem,
where a subset of jobs must be selected from a ground set of jobs and sequenced to form a
feasible solution. The considered precedence constraints make the problem more suitable
for the avionic system scenario. Furthermore, we exploited the structural information of
relaxed MDDs within the LDS+BS which has following advantages: (1) a substantial
speed up of the heuristic search allows scanning larger regions of the search space
compared to a standalone LDS+BS approach and (2) a dual bound can be obtained from
the relaxed MDD. An exhausted experimental evaluation on two different benchmark
sets with up to 500 jobs and up to 4 secondary resources confirms that LDS+BS is
substantially faster than a standalone LDS+BS approach. Furthermore, we compared
our hybrid approach to a MIP model and a CP model. Both models are inferior to our
LDS+BS approach for large instance sizes.

Although we demonstrate these advantages specifically for the PCJSOCMSR, the general
approach also appears promising for other combinatorial optimization problems. Next
steps would be to incorporate other filtering techniques to further strengthen the relaxed
MDD by removing more arcs to speed-up the computation times even more. Another
promising research direction would be to apply the general idea of using the structural
information of relaxed MDDs on further search heuristics and metaheuristics.
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CHAPTER 6
Decision Diagrams for Finding

Repetition-Free Longest Common
Subsequences

T his chapter considers the repetition-free longest common susequence (RFLCS)
problem, where the goal is to find a longest sequence that appears as a sub-
sequence in two input strings and in which each character appears at most

once. Our approach is to transform a RFLCS instance to an instance of the maximum
independent set (MIS) problem which is subsequently solved by a mixed integer linear
programming (MILP) solver. To reduce the size of the underlying conflict graph of
the MIS problem, a relaxed decision diagram is utilized. An experimental evaluation
on two benchmark instance sets shows the advantages of the reduction of the conflict
graphs in terms of shorter total computation times and the number of instances solved
to proven optimality. A further advantage of the created relaxed decision diagrams is
that heuristic solutions can be effectively derived. For some instances that could not be
solved to proven optimality, new state-of-the-art results were obtained in this way. This
chapter covers work presented at the XI International Conference of Optimization and
Applications (OPTIMA 2020) [77].

The remaining part of the chapter focuses first on a more detailed introduction in
Section 6.1. Afterwards we give an overview of related work in Section 6.2 and a formal
problem definition in Section 6.3. The MIS problem and a corresponding integer linear
programming (ILP) model are described in Section 6.4. Decision diagrams for the RFLCS
are introduced in Section 6.5, and Section 6.6 describes the incremental refinement
of relaxed multivalued decision diagrams (MDDs). Section 6.7 provides experimental
results, showing that the suggested approach yields a performance improvement in terms
of average computation times, number of instances solved to optimality, and average
solution quality.
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6.1 Introduction
The longest common subsequence (LCS) problem asks for the longest string which is a
subsequence of a set of input strings. A subsequence is a string that can be obtained
from another string by possibly deleting characters. For instance a longest common
subsequence of the two input strings ABCDBA and ACBDBA is ABDBA. The LCS problem
has applications in bioinformatics, where strings often represent segments of RNA or
DNA [65, 87, 145]. Other fields where the LCS problem appears are text editing [104], data
compression, file comparison [2, 150], and the production of circuits in field programmable
gate arrays [32]. If the number of input strings m is constant, the problem is solvable
by dynamic programming (DP) in O(nm) time, where n is the length of the longest
input string [65]. Otherwise, if the number of input strings is arbitrary, the problem
is N P-hard. An additional constraint which arises in the context of gene duplication
in the domain of genome rearrangement and which we consider in this work is that
each character may appear in a common subsequence at most once. This problem, first
introduced by Adi at el. [1] and denoted as the repetition-free LCS (RFLCS) problem, is
usually considered for two input strings and is even then APX-hard [1].

The work presented in this chapter builds upon the work of Blum et al. [26], where
instances of the RFLCS problem are transformed to instances of the maximum indepen-
dent set (MIS) problem. Hereby, an independent set of the underlying conflict graph of
the MIS problem corresponds to a repetition-free common subsequence of the RFLCS
instance. To solve the MIS problem the ILP solver CPLEX is applied. The performance
of the ILP solver depends to a large extent on the size of the conflict graph. Therefore, in
[26] the size of the conflict graph is reduced by filtering redundant nodes based on lower
and upper bounds. This boosts the range of instances that can be solved to optimality
as well as the quality of heuristic solutions obtained for larger instances. In this way,
numerous new state-of-the-art results were obtained.

6.1.1 Contributions

To reduce the size of the conflict graph even further we compile a relaxed MDD for the
RFLCS problem, yielding a performance improvement of the subsequently applied ILP
solver. In the last decade, decision diagrams (DDs) have been recognized as a powerful
tool for combinatorial optimization problems; see Section 2.5 of Chapter 2 for more
details or the text book [14] for a comprehensive survey. In particular, relaxed DDs
may provide compact representations of discrete relaxations. Besides allowing for new
inference techniques in constraint programming and novel branching schemes, they may
also provide tight dual bounds. In case of the RFLCS problem it is further possible
to effectively derive heuristic solutions directly from the relaxed MDD. This has the
advantage that if the ILP solver is not able to solve an instance to proven optimality
within a given time limit then the compiled relaxed MDD may be able to provide a
tighter upper bound as the ILP solver does and/or may be able to deliver a better
heuristic solution.
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Furthermore, since our approach is able to derive both a dual and a primal bound by
compiling a relaxed MDD, it seems natural to devise an exact branch and bound (BB)
approach which is based on MDDs similar to the BB approach from Bergman et al. [15].
The BB scheme may branch over an appropriate selected subset of nodes from the relaxed
MDD. In contrast to [15], however, it is not necessary to compile an additional restricted
MDD for each subproblem in order to derive a primal bound, since our approach is able
to directly derive a primal bound from the previously compiled relaxed MDD. This BB
approach is left open for future work, since such method would be beyond the scope of
this dissertation.

6.2 Related Work

As already mentioned, the current work builds upon the approach of Blum et al. [26].
Besides the RFLCS, Blum et al. also consider the longest arc-preserving common subse-
quence (LAPCS) problem [88], where additional dependencies among characters must be
respected in a solution, as well as the longest common palindromic subsequence (LCPS)
problem [38], where the resulting sequence must also be a palindrome. All these LCS
variants were solved by transforming instances to instances of the MIS problem. Moreover,
the equivalent maximum clique problem of the complement of the conflict graph is solved
heuristically by the LSCC-BMS solver as well as exactly by the LMC solver. Both solvers
are currently among the leading solvers for the maximum clique problem.

In the literature LCS related problems with additional constraints are well known for
almost 40 years and research in that field is still active due the practical relevance and
computational difficulties. Besides RFLCS and the already mentioned LAPCS and LCPS
problems other considered variants are, for instance, the constrained longest common
subsequence problem [154] or the generalized constrained longest common subsequence
problem [37]. For further problem variants we refer to survey papers such as [31].

The RFLCS problem in particular was tackled by several heuristic approaches [1, 23, 35].
The best heuristic so far is a construct, merge, solve and adapt (CMSA) metaheuristic
combined with beam search as proposed by Blum and Blesa [24]. The authors showed
that this approach can outperform other heuristics as well as the CPLEX solver applied
to an ILP model of the RFLCS problem.

Furthermore, the MIS problem has been well studied in the context of DDs, e.g. [13,
15, 17, 34, 63]. However, the existing approaches cannot be applied directly in order to
compile DDs for the RFLCS problem, since the problem exhibits not only a selection
aspect, but also a sequential structure as well as repetition-free constraints. Therefore
we compile relaxed MDDs by explicitly using these additional properties of the RFLCS
problem. For instance, by applying an adapted version of the powerful incremental
refinement algorithm for sequencing problems, proposed by Cire and van Hoeve [40].
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6.3 Problem Definition
The RFLCS problem considers a set of two input strings S = {s1, s2} over a finite
alphabet Σ. The goal is to find the longest subsequence which is common for both input
strings s1 and s2 such that there is no character which occurs more than once. The
character at position i is denoted by s[i]. A matching m = (m1, m2) is a pair of positions
such that s1[m1] = s2[m2] and the corresponding character is denoted by c(m) = s1[m1].
Hence, the character c(m) of a matching m is a possible candidate to appear in a common
subsequence. This gives rise to define a domination relation among matchings.

Definition 6.3.1 (Domination relation among matchings)
A matching m dominates a matching n, denoted as m n, if m1 ≤ n1 ∧ m2 ≤ n2,
meaning that in a possible common subsequence c(m) may appear before c(n).

Therefore, a common subsequence can be represented by a sequence of matchings
(m1, m2, . . .) such that c(m1), c(m2), . . . maps to the common subsequence and each
matching of the sequence dominates each subsequent matching of the sequence. This
observation is important since relaxed MDDs for the RFLCS problem will encode such
sequences of matchings.

Another important property for the upcoming mixed integer programming (MIP) formu-
lation is the conflict relation amoung matchings. If for two matchings m and n neither
m n nor n m holds then c(m) and c(n) cannot appear together in a common subse-
quence which will be henceforth referred to as m and n are in conflict, denoted as n m.
Figure 6.1a shows an example of a RFLCS instance with input strings s1 = ABCDBA and
s2 = ACBDBA and an optimal solution of ACDB. In this example, matching m1 dominates
matching m2 and m3 whereas matching m2 is in conflict with matching m3.

6.4 Integer Linear Program and Independent Set Model
An instance of the RFLCS problem can be solved by transforming it into an instance of
the MIS problem. Thereby, each matching corresponds to a node of the underlying conflict
graph of the MIS problem. An edge is added between two nodes if the corresponding
matchings are in conflict or they refer to the same character; see Figure 6.1b for an
example. A solution of the MIS instance corresponds to a solution of the RFLCS instance
and vice versa, since only matchings are selected that are not in conflict with each other
and can therefore appear in the same common subsequence and for each character there
is at most one matching selected. The resulting common subsequence can be derived
from the set of selected matchings by a topological sort considering the domination
relationship.

We solve the MIS instance by a corresponding ILP model. Let M be the set of all
matchings of the RFLCS instance and thus nodes of the MIS instance. We use a binary
decision variable xm for each matching m ∈ M indicating whether the matching is
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Figure 6.1: (a) Example of a RFLCS instance with input strings s1 = ABCDBA and
s2 = ACBDBA. Gray circles correspond to the matchings M = {m1, . . . , m10} of the
instance. (b) Corresponding MIS instance. (c) Exact MDD DM with mat(DM ) =
{m1, . . . , m5, m10}. The state of each node u is partially indicated by m(u). (d) Relaxed
MDD where nodes associated with matching m4 in layer V3 are merged. (e) MIS instance
obtained from matchings mat(DM ).

selected (=1) for the solution or not (=0). The model is:

ILP(M) = max
xm∈M

xm (6.1a)

s.t. xm + xn ≤ 1 m, n ∈ M : m n (6.1b)

xm∈Ma

xm ≤ 1 a ∈ Σ (6.1c)

xm ∈ {0, 1} m ∈ M (6.1d)

The number of selected matchings is maximized. Inequalities (6.1b) ensure that the
common subsequence constraints are satisfied, i.e., no conflicting matchings are selected
together. The repetition-free constraints are realized by Inequalities (6.1c), where set
Ma = {m ∈ M | c(m) = a} contains all matchings corresponding to the same charac-
ter a ∈ Σ.

6.5 Relaxed Decision Diagrams for the RFLCS
We use a relaxed MDD to derive a reduced set of matchings M ⊆ M to subsequently
solve the model ILP(M ). Our approach compiles relaxed MDDs in an iterative way s.t.
if set M is derived from a relaxed MDD then another relaxed MDD is compiled w.r.t.
set M to possible derive an even smaller set M ⊆ M . This procedure is repeated until
some termination criterion is fulfilled.

A MDD w.r.t. a set of matchings M is a directed acyclic multi-graph DM = (V, A) with one
root node r. All nodes are partitioned into at most |Σ|+1 layers V1(DM ), . . . , V|Σ|+1(DM ),
where Vi(DM ), i > 0 contains only nodes that are reachable from r over exactly i − 1
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arcs and V1(DM ) is a singleton containing only r. An arc α = (u, v) ∈ A(DM ) is
always directed from a source node u in some layer Vi(DM ) to a target node v in a
subsequent layer Vi+1(DM ). Each arc α is associated with a matching mat(α) ∈ M
that represents the assignment of character c(mat(α)) ∈ Σ to the i-th position of a
common subsequence. For convenience, we write c(α) for c(mat(α)). Any directed path
p = (α1, α2, . . .) originating from r identifies a sequence of characters (c(α1), c(α2), . . .)
and thus a (partial) solution. A node without any further outgoing arcs is a sink node.
An exact MDD encodes precisely the set of all feasible solutions. Due to the NP-hardness
of the RFLCS problem such exact MDDs tend to have exponential size.

Therefore we consider more compact relaxed MDDs which encode supersets of all feasible
solutions. In such a relaxed MDD nodes of an exact MDD are superimposed (merged) so
that at each layer a maximum allowed number of nodes, called width, is not exceeded.
We do this merging in such a way that any path from the root still represents a common
subsequence, but repetition-free constraints may be violated. The length of the longest
path in such a relaxed MDD then represents an upper bound to the length of a RFLCS.

To compile a MDD, a DP formulation of the considered problem is usually the starting
point [74]. Each node u ∈ V (DM ) is associated to a state of the DP formulation. For
the RFLCS problem, the DP formulation is defined as follows. Consider for a matching
m ∈ M the set DM (m) = {m ∈ M \ {m} | m m } of possible successor matchings of
m that may appear in the same common subsequence after m. Note that set DM (m) can
be efficiently pre-computed for each m ∈ M . Then a state (m(u), P (u), S(u)) associated
to node u consists of

• a matching m(u) whose successor matchings DM (m(u)) represent the remaining
matchings to consider further,

• set P (u) ⊆ Σ containing all letters that may still be appended to the common
subsequence, and

• set S(u) ⊆ Σ containing all letters that appear on some paths from r to u.

The root state is (mr, Σ, ∅) with the artificial matching mr = (−1, −1), and all characters
may be appended to it. Note that DM (mr) = M . An arc α = (u, v) corresponds to a
transition from state (m(u), P (u), S(u)) to state (m(v), P (v), S(v)) that is achieved by
appending character c(α) to the common subsequence w.r.t. to the remaining matchings
DM (m(u)). Instead of considering all matchings from DM (m(u)) as possible outgoing
transitions, we consider only matchings that can appear directly after m(u) in a longest
common subsequence, i.e., matchings from the subset

ND(u) = {m ∈ DM (m(u)) | (6.2)
m ∈ DM (m(u)) \ {m } : c(m ) ∈ S(u) ∧ m m }

which are not dominated by any other matching in DM (m(u)). The transition function to
obtain the successor state (m(v), P (v), S(v)) by considering matching mat(α) ∈ DM (u)
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is defined as

τ((m(u), P (u), S(u)), mat(α)) = (6.3)

(mat(α), P (u) \ {c(α)}, S(u) ∪ {c(α)}) if c(α) ∈ P (u) ∧ mat(α) ∈ ND(u)
0̂ otherwise

where 0̂ represents the infeasible state. Note that no node 0̂ is created in DM and the
respective arcs are also skipped.

A state (m(u), P (u), S(u)) may be replaced by a strengthened state (m(u), P (u), S(u)),
where P (u) = {a ∈ P (u) | ∃m ∈ DM (m(u)) : a = c(m )} ⊂ P (u) without excluding
any feasible solutions.

So far, we considered exact MDDs. For relaxed MDDs we have to define a state
merger which computes the state of merged nodes. To still encode all feasible common
subsequences in the relaxed MDD, only nodes of the same layer and with the same
associated matching are merged. Let U be a subset of nodes such that all nodes are
associated to matching n, i.e. ∀u ∈ U : m(u) = n, then an appropriate state merger is

⊕ (U) = n,
u∈U

P (u),
u∈U

S(u) . (6.4)

Since we restrict the state merger to nodes with the same associated matching, the
possibilities to reduce the size of the relaxed MDD are also limited. However, since |M |
is at most the product |s1| |s2| of the lengths of the two input strings s1 and s2, the size
of each layer is still polynomially bounded by O(|s1| |s2|).
Let

mat(DM ) = {m(u) | u ∈ V (DM ) \ {r}} ⊆ M (6.5)

be the set of matchings derived from DM . To see that mat(DM ) is indeed a feasible set
of matchings to solve the model ILP(mat(DM )) from Section 6.4, remember that each
path from r in DM encodes a feasible common subsequence. Hence, each such path can
also be described as a sequence of matchings from M . In particular this is true for the
matchings of a RFLCS, which must be therefore also contained in mat(DM ).

6.5.1 Problem specific upper bounds
To reduce mat(DM ) further we filter arcs and nodes based on sub-optimality. The idea
is to compute for each node u an upper bound Zub(u) on the number of characters that
can appear in a common subsequence after the character c(m(u)) of matching m(u).
Then we can prune each node u in the relaxed MDD where Z lp(u) + Zub(u) < lb holds,
where lb is a known lower bound on the length of the RFLCS and Z lp(u) is the length of
the longest path from r to u. We compute the upper bound for each node u by

Zub(u) = min{|P (u)|, UBlcs(m(u)), max
α=(w,u)

{Zub(w) − 1}, Z lp↑(u)}. (6.6)
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The first term takes the number of characters into account that can still be appended to the
common subsequence after matching m(u). The second term UBlcs(m(u)) = LCS(m1, m2)
is based on DP and computes the length of the longest common subsequence from matching
m(u) onward. Note that this bound can be obtained in constant time by using a data
structure known as scoring matrix, which can be computed during preprocessing for two
input strings in O(|s1| |s2|) time [26]. The third term takes the upper bounds from the
parent nodes of u into account. Finally, the last term corresponds to the length of the
longest path from u to any sink node in the relaxed MDD. Note that this term is only
available if the whole relaxed MDD is already compiled.

6.6 Incremental Refinement
Our approach to compile a relaxed MDD DM w.r.t. matching set M for the RFLCS
problem is based on the incremental refinement (IR) algorithm from Cire and van
Hoeve [40] for sequencing problems. For a general description of IR-based approaches
we refer to Section 2.5.2 of Chapter 2. Since DM considers the common subsequence
constraints exactly and only relaxes the repetition-free constraint, paths in DM originating
from r will correspond to common subsequences where characters may appear more than
once. We use the ideas from [40] to ensure at least for some characters that they occur
at most once at each path for refining DM . Cire and van Hoeve [40] showed that the
size of a given relaxed MDD will be at most doubled to establish this property for one
more character.

The algorithm applies repeatedly two major steps—filtering and refinement—until some
termination condition is fulfilled. Let a∗

1, a∗
2, . . . , a∗

|Σ| be a ranking of the characters in
Σ such that a∗

1 is the most important character to appear at most once at each path in
DM to get a strong relaxation. The following refinement step is applied layer by layer
starting with V1(DM ): For each character a∗ = a∗

1, a∗
2, . . . , a∗

|Σ| we identify nodes u such
that a∗ ∈ P (u) ∩ S(u) and split them into two new nodes u1 and u2 where an incoming
arc α = (v, u) is redirected to u1 if a∗ ∈ P (u) \ {c(α)} and to u2 otherwise. All outgoing
arcs are replicated for both nodes u1 and u2. We do this as long as the size of the layer
is below a maximum width threshold W . For more details and a correctness proof in the
context of sequencing problems see [40]. Due to the splitting of nodes the corresponding
states may be changed and some of the outgoing arcs from the current layer to the next
layer may become infeasible. Those arcs are filtered for each layer after the refinement
step finishes. Algorithm 6.1 shows this at lines 13 and 14. The algorithm terminates if
set mat(DM ) could not be further reduced by the previously applied refinement/filtering
round. The other main parts of the algorithm are described in the following subsections.

6.6.1 Initial relaxed MDD
The IR algorithm starts with an initial relaxed MDD. Usually, this initial relaxed MDD
is a naive one of width one, i.e., a relaxed MDD with just a single node at each layer.
However, in our case we want to respect the common subsequence constraints and only
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Algorithm 6.1: Incremental Refinement
Input: set of matchings M , lower bound lb, maximum width threshold W

1 sbest ← ε;
2 construct initial relaxed decision diagram DM ;
3 do
4 filter-bottom-up(DM , max(lb, |sbest|));
5 if |sbest| < |srfcs| then
6 srfcs ← derive-primal-solution(DM ) and update sbest

7 end
8 while new best solution sbest found;
9 determine priority ranking a∗

1, . . . , a∗
|Σ| of all characters;

10 do
11 M ← mat(DM );
12 for i ← 1 to |Σ| + 1 do
13 refine(Vi(DM ), a∗

1, . . . , a∗
|Σ|, W );

14 filter arcs between Vi and Vi+1;
15 end
16 do
17 filter-bottom-up(DM , max(lb, |sbest|));
18 if |sbest| < |srfcs| then
19 srfcs ← derive-primal-solution(DM ) and update sbest

20 end
21 while new best solution sbest found;
22 while |mat(DM )| < |M |;
23 return (DM , sbest)

superimpose states that correspond to the same matching. Therefore we compile the
initial DM layer-by-layer in a top-down approach. At each layer Vi(DM ), i ≥ 1, we expand
all nodes using the transition function (6.3), thus creating for each feasible transition
a corresponding node in Vi+1(DM ) and adding the corresponding arc if the node is not
sub-optimal according to Equation (6.6). Then all nodes in Vi+1(DM ) with the same
corresponding matching are merged. Since no feasible common subsequence can be longer
than the upper bound Zub(r), the compilation of DM stops at the (Zub(r) + 1)-th layer.

Note that another, possible promising, way to compile an appropriate initial relaxed
MDD is to use the A∗-based construction (A∗C) algorithm from Section 4.5, which is
able to produce strong relaxed MDDs for the LCS problem with multiple input strings
(cf. numerical results in Section 4.5.6). However, such relaxed MDDs are not based on
layers. As a consequence, the IR algorithm from [40], which is based on layers, needs a
suitable adaptation. Although this is possible, we decided to use the top-down approach
and apply the IR algorithm in a straightforward way for the time being. Using A∗C to
compile the initial relaxed MDDs is left open for further research.
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6.6.2 Character ranking for refinement
To determine priorities for the characters we use some structural information obtained
from the initial MDD. For this purpose let All↑(u) for each node u ∈ V (DM ) be the
set of characters that appear on all paths from node u to a sink node. Note that set
All↑(u) can be efficiently computed in a recursive way by a single bottom-up pass. If
there exists a node v with an incoming arc α = (u, v) such that c(α) ∈ All↑(v) holds, then
each path originating from r and leading to any sink node will be infeasible if the path
traverses α since character c(α) will appear more than once in a corresponding common
subsequence, i.e., the repetition-free constraint will be violated. In [40] such arcs could
be safely removed without also removing any feasible solution from the relaxed MDD. In
our case this is not possible since solutions have arbitrary length and the path from r
to v could still correspond to a complete feasible solution. However, we can use these
violations to determine for which character it is most important to appear on all paths at
most once to get a strong relaxation. Hence, we count for each character how often such
a violation occurs in DM and sort the characters according to non-increasing numbers of
violations. Ties are resolved by preferring characters that appear in more matchings.

6.6.3 Filtering and deriving new primal solutions
Lines 3-8 and 16-21 from Algorithm 6.1 perform the following steps. First the function
filter-bottom-up performs a single bottom up pass where for each node u the length of
the longest path Z lp↑(u) from u to any sink node is computed and the upper bound
Zub(u) is updated accordingly. If Z lp(u) + Zub(u) < lb then node u and all incident arcs
are removed from DM .

After filtering we try to derive from DM a new best heuristic solution. Since each path
in DM originating from r corresponds to a CS, we can derive a repetition-free common
subsequence by removing duplicate letters. This is done in two steps. First, a bottom-
up pass is performed where primal bounds are computed: For each node u ∈ V (DM )
we recursively determine set B↑(u) = B↑(v) ∪ {c(α )} where outgoing arc α = (u, v)
maximizes the term |B↑(v) ∪ {c(α)}| over all outgoing arcs α = (u, v) ∈ A(DM ). Ties are
resolved by sticking at the first arc that maximizes the expression. If u has no outgoing arcs
then B↑(u) = ∅. Note that |B↑(r)| is a valid primal bound on the RFLCS problem, since
only the union is taken to compute B↑(.). To improve this bound further, the second step
performs a top-down pass where set B↓(v) is recursively computed for each node v using
the information of the precisely computed set B↑(v). Hence, B↓(v) = B↓(u) ∪ {c(α )}
where incoming arc α = (u, v) maximizes the term |B↓(u) ∪ {c(α)} ∪ B↑(v)| over all
incoming arcs α = (u, v) ∈ A(DM ) using |B↓(v)∪{c(α)}| as tie breaking criterion. A sink
node v that maximizes |B↓(v )| then provides the strongest primal bound. A respective
repetition-free common subsequence is derived by going from v backwards to r, skipping
any character that already occurred along the path.

If a new best heuristic solution could be obtained in this way then the filter-bottom-up
step is repeated and we try again to obtain a new best heuristic solution.
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6.6.4 Main Procedure

Algorithm 6.2 shows the main procedure to solve an instance of the RFLCS problem. As
input the algorithm takes the set of input strings S, a possibly known lower bound on
the RFLCS length or zero, and the maximum width threshold W for the relaxed MDDs.
The original set of matchings M is reduced by performing iteratively the following steps.
The first step processes the input strings s1 and s2 by removing characters that have no
associated matching in M and characters that appear immediately one after the other in
the input strings. For example, if character a ∈ Σ appears in an input string at both
position i and i + 1 then a can be removed from i + 1 without removing any feasible
solution. Furthermore, if the pattern abab with a, b ∈ Σ has been discovered in one
of the input strings then the last b can be removed from the input string due to the
repetition-free constraint. Next, M is reduced by removing matchings m ∈ M where
the upper bound used in [26], denoted by UBBLUM(m) is lower than our currently best
primal bound. This upper bound is based on the first two terms in Equation (6.6), i.e.,
on the number of characters that can appear in a repetition-free common subsequence
that contains m ∈ M and on the length of the LCS that contains m. Note that the
difference to Equation (6.6) is that UBBLUM(m) is an upper bound on the length of
a complete repetition-free common subsequence containing m whereas Equation (6.6)
describes an upper bound on the remaining part from m onward. With this reduced set
M we compile a relaxed MDD DM . If the length of the hereby derived repetition-free
common subsequence srfcs is equal to the longest path in DM then srfcs is an optimal
solution and the algorithm terminates. Otherwise, if due to the reduced set mat(DM )

Algorithm 6.2: Main Procedure for solving the RFLCS problem
Input: input strings S, lower bound lb, maximum width threshold W

1 sbest ← ε;
2 derive original M w.r.t. S;
3 do
4 process S w.r.t. M ;
5 M ← {m ∈ M | UBBLUM(m) ≥ max(lb, |sbest|)};
6 (DM , srfcs) ←IR(M, max(lb, |sbest|), W );
7 if |srfcs| > |sbest| then
8 M ← mat(DM ) and update sbest

9 end
10 if sbest = Z lp↑(r) then
11 return sbest

12 end
13 while further characters can be removed from input strings;
14 silp ← solve ILP(M);
15 update sbest if |silp| > |sbest|;
16 return sbest
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further characters can be removed from s1 and s2 then we repeat the procedure until
no further characters can be removed. Note that since the size of the input strings are
reduced at each iteration also UBBLUM(m) changes, which may further reduce set M .
Finally the ILP model from Section 6.4 is solved for set M .

6.7 Experimental Results
To test and compare our approach we used two benchmark sets from Blum and Blesa [23].
The first set, Set1, consists of 1680 randomly generated instances. For each combination
of the input string lengths n ∈ {32, 64, 128, 256, 512, 1024, 2048, 4096} and the alphabet
sizes |Σ| ∈ {n

8 , n
4 , 3n

8 , n
2 , 5n

8 , 3n
4 , 7n

8 } there are 30 instances. The second set, Set2, consists
of 30 randomly generated instances for each combination of the alphabet size |Σ| ∈
{4, 8, 16, 32, 64, 128, 256, 512} and the maximal repetition of each character, reps ∈
{3, 4, 5, 6, 7, 8}. This set has a total of 1440 instances.

The algorithms were implemented using GNU C++ 5.4.1. All tests were executed on a
single core of an Intel Xeon E5649 with 2.53 GHz and 16 GB RAM. The ILP model from
Section 6.4 was solved with CPLEX 12.7 with a CPU-time limit of 3600 seconds. For
Algorithm 6.2, henceforth denoted as MDD+CPLEX, the maximum width threshold was
set to W = 5000. This value was determined in preliminary experiments such that set
M could be reduced as much as possible and as many instances as possible can be solved
to optimality within the memory limit of 16 GB. MDD+CPLEX is compared to the
approach from Blum et al. [26], henceforth denoted as UB+CPLEX, where the ILP(M )
model is solved with the reduced set of matchings M = {m ∈ M | UBBLUM(m) < lb}.
Both approaches use the lengths of the currently best known solutions from the literature
as initial lower bound lb. Note that the compiled relaxed MDDs from Algorithm 6.1 are
not strictly limited to W since the initial relaxed MDD could already contain layers that
contain more nodes than W . However, such layers are not further refined during the
compilation.

6.7.1 Reduction Rates
The average reduction rate of matchings from M is shown in Figure 6.2 for 18 instance
classes by means of bar plots. The first bar always corresponds to the UB+CPLEX
approach whereas the next three bars corresponds to the MDD+CPLEX approach with
different values for W ∈ {1, 1000, 5000}. Note that W = 1 means that only the initial
relaxed MDD is compiled and no further refinement will take place. As expected, the
obtained reduction rate increases with W . In each case the MDD+CPLEX approach is
able to reduce the set of matchings M to a larger extend than the UB+CPLEX approach.
Furthermore, it seems that the set of matchings M is harder to reduce for instances from
Set1 with a rather small alphabet size / input string length ratio than for instances
with a larger ratio. This seems to be true for both tested approaches. For instance,
consider instances from Set1 with |Σ| = n/8 and n = 512, where an average reduction of
about ∼ 20% can be achieved whereas an average reduction of ∼ 80% could be obtained
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Figure 6.2: Average reduction rates of matchings obtained from UB+CPLEX and
MDD+CPLEX with different maximum width thresholds W .

for instances with the same input string length and |Σ| = 3n/8. For instances from Set2
it seems that set M gets more difficult to reduce for instances with larger alphabet size.

Figure 6.3 shows a reduction example of one single instance from Set2 with |Σ| = 16
and reps= 6. The original instance consists of 221 matchings and is drawn on the left
side of the figure, where black and red dots represent the corresponding set of matchings
M . Red dots connected by arcs indicate matchings that belong to an optimal solution
sequence of matchings. After applying Algorithm 6.2 the reduced set of matchings M
consists of only 20 matchings after the main reduction loop at Line 13. Relaxed DDs
are created with a maximum width threshold of W = 5000. The reduced instance after
the reduction is drawn on the right side of Figure 6.3. Note that the optimal solution
sequence of matchings is still contained in M . Furthermore, we can derive reduced input
strings from M by deleting all characters from the input strings that do not belong to
any matching in M .

The boxplots in Figure 6.4 report the average difference redMDD − redUB between the
average reduction rate redUB obtained from UB+CPLEX and redMDD obtained from
MDD+CPLEX in percentage points aggregated over the ratio between n and |Σ| in case
of Set1 and over |Σ| in case of Set2. On average the MDD+CPLEX approach is able
to reduce the original set of matchings by more than 25.79% and 41.28% as UB+CPLEX
does, for Set1 and Set2, respectively.

181



6. Decision Diagrams for Finding Repetition-Free Longest Common Subsequences

O E I N H G K I O I L D O L J K H O G K L B C F C P C B M D B B L H O L H K G N A N G L E B A F D P I I D K M E

A
B

D
I
G

M
H

K
B

E
L

K
O

K
P

O
K

H
N

K
F

H
F

E
A

F
E

P
G

O
G

P
C

F
P

L
K

A
B

C
L

D
H

L
P

C
E

J
L

G
E

C
D

P
L

E
I
H

B
E

N
H

O
G

C
F

P
L

K
A

B
D

I

E N H O G C F P L K A B D IO
rign

al
in
stan

ce:|M
|
=
221

E I N H G K O H O G C F P L K A B D I E

I
E

N
K

H
G

O
G

C
F

P
L

K
A

B
D

E
I

E
N

H
O

G
C

F
P

L
K

A
B

D
I

E N H O G C F P L K A B D IA
fter

red
u
ction

:|M
|
=
20

Figure
6.3:R

eduction
exam

ple
ofan

instance
from

Set2
with|Σ|=

16
and

reps=
6.The

originalinstance
isshown

on
the

left
side

whereasthe
reduced

instance
isdrawn

on
the

rightside.Both
instancescontain

the
optim

alsolution
E
N
H
O
G
C
F
P
L
K
A
B
D
I.

182



6.7. Experimental Results

n/8 n/4 3n/8 n/2 5n/8 3n/4 7n/8

| |

0

20

40

60

80

100

[%
]

Set1

4 8 16 32 64 128 256 512

| |

0

20

40

60

80

100

[%
]

Set2

Figure 6.4: Average difference between the obtained reduction rates of UB+CPLEX and
MDD+CPLEX with W = 5000.

6.7.2 Main Results
Detailed aggregated results are presented in Tables 6.1 and 6.2 where the first two columns
show the instance characteristics and the third column shows the average length of the so
far best known solution from the literature. Columns obj report for each tested approach
the average length of the best obtained solutions. In case of MDD+CLPEX these solutions
are either those obtained from the ILP model or the ones found during the compilation
of the relaxed MDDs. In case of UB+CPLEX a “-” symbol indicates that CPLEX was
not able at all to derive a primal solution within the time and memory limits. Average
optimality gaps, shown in columns gap, are calculated by 100% × (ub − obj)/ub where
ub is for each approach the best obtained upper bound. In case of MDD+CPLEX this is
either the upper bound obtained from the ILP model or the length of the longest path
from a compiled relaxed MDD. Columns tprep list average preprocessing times in CPU
seconds including the computation of the reduced set of matchings M (see Algorithm 6.2,
Line 13). Columns ttot list average total computation times in CPU seconds until the
algorithm terminates including tprep plus the time CPLEX needs and columns #opt
report the total numbers of instances solved to optimality. In case of MDD+CPLEX the
second number corresponds to the number of instances where optimality could already
be proven by the compiled relaxed MDD at Line 11 in Algorithm 6.2. Hence, the number
of times, where it was not required to solve the ILP model at all. Average reduction rates
of the original set of matchings are reported by columns red.

Regarding the number of instances solved to proven optimality, note that already
UB+CPLEX was quite successful with a total of 90.26%. More precisely, 1489 out
of 1680 instances from Set1 and 1327 out of 1440 instances of Set2 could be solved
to proven optimality by UB+CPLEX. Nevertheless, MDD+CPLEX is able to solve
significantly more instances to proven optimality: 1541 instances from Set1 and 1381
instances of Set2, and thus a total of 93.65%. Moreover, in 90.90% of all instances it
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Table 6.1: Results on Set1 instances.

so far UB+CPLEX MDD+CPLEX
|Σ| n best. obj gap [%] t [s] #opt red [%] obj gap [%] tprep [s] ttot [s] #opt red [%]

n/8

32 4.00 4.00 0.00 0.16 30 3.72 4.00 0.00 <0.01 <0.01 30/30 94.94
64 8.00 8.00 0.00 1.69 30 4.67 8.00 0.00 <0.01 <0.01 30/30 78.23
128 16.00 16.00 0.00 11.46 30 4.80 16.00 0.00 0.04 0.04 30/30 44.45
256 31.97 31.97 0.00 298.59 30 5.47 31.97 0.00 0.42 0.42 30/30 25.47
512 63.90 32.30 49.50 3615.63 0 8.16 62.80 1.82 60.82 3434.53 2/2 20.29
1024 116.30 0.00 100.00 3676.46 0 15.89 113.47 11.22 271.15 3946.52 0/0 23.34
2048 185.07 - - 0.48 0 22.45 186.23 16.29 1134.30 4135.18 0/0 28.49
4096 284.80 - - 2.04 0 28.71 292.03 11.05 4297.07 4297.07 0/0 36.59

n/4

32 7.83 7.83 0.00 0.03 30 22.13 7.83 0.00 <0.01 <0.01 30/30 79.54
64 14.67 14.67 0.00 0.21 30 21.08 14.67 0.00 <0.01 <0.01 30/30 84.06
128 25.93 25.93 0.00 4.82 30 21.76 25.93 0.00 0.47 0.47 30/30 87.34
256 43.97 43.97 0.00 22.93 30 33.17 43.97 0.00 4.61 4.61 30/30 90.67
512 68.57 68.57 0.00 389.04 30 39.54 68.57 0.00 28.43 38.93 30/28 91.01
1024 105.07 104.97 0.96 2064.94 21 48.42 105.07 0.00 122.81 188.27 30/24 91.56
2048 155.73 120.47 26.52 3314.28 4 56.72 156.87 0.37 576.39 1571.46 24/15 85.91
4096 227.23 12.77 95.05 3650.80 0 59.48 230.37 0.73 1996.26 4036.48 15/6 83.99

3n/8

32 8.77 8.77 0.00 0.02 30 30.44 8.77 0.00 <0.01 <0.01 30/30 78.03
64 15.53 15.53 0.00 0.06 30 32.30 15.53 0.00 <0.01 <0.01 30/30 81.16
128 24.90 24.90 0.00 0.70 30 36.58 24.90 0.00 0.06 0.06 30/30 86.44
256 39.97 39.97 0.00 1.52 30 55.50 39.97 0.00 0.50 0.50 30/30 89.20
512 59.97 59.97 0.00 17.62 30 57.92 59.97 0.00 4.26 4.26 30/30 91.16
1024 90.73 90.73 0.00 29.12 30 70.02 90.73 0.00 13.59 13.59 30/30 93.59
2048 131.13 131.17 0.05 476.47 29 72.92 131.17 0.00 50.39 50.39 30/30 94.79
4096 193.20 192.77 0.50 1030.16 25 78.79 193.37 0.00 163.90 163.99 30/29 96.65

n/2

32 8.87 8.87 0.00 0.01 30 37.51 8.87 0.00 <0.01 <0.01 30/30 75.08
64 14.80 14.80 0.00 0.02 30 46.60 14.80 0.00 <0.01 <0.01 30/30 81.22
128 22.93 22.93 0.00 0.08 30 52.04 22.93 0.00 0.01 0.01 30/30 82.57
256 35.20 35.20 0.00 0.46 30 60.22 35.20 0.00 0.07 0.07 30/30 87.37
512 53.13 53.13 0.00 2.72 30 69.40 53.13 0.00 0.92 0.92 30/30 90.49
1024 79.13 79.13 0.00 7.38 30 75.93 79.13 0.00 3.45 3.45 30/30 93.05
2048 115.70 115.70 0.00 21.32 30 80.40 115.70 0.00 19.65 19.65 30/30 94.59
4096 167.97 167.97 0.00 93.68 30 86.74 167.97 0.00 26.89 26.89 30/30 95.84

5n/8

32 8.60 8.60 0.00 0.01 30 46.29 8.60 0.00 <0.01 <0.01 30/30 72.45
64 13.30 13.30 0.00 0.01 30 52.75 13.30 0.00 <0.01 <0.01 30/30 78.35
128 21.20 21.20 0.00 0.03 30 59.95 21.20 0.00 <0.01 <0.01 30/30 83.47
256 32.53 32.53 0.00 0.11 30 67.54 32.53 0.00 0.02 0.02 30/30 86.36
512 47.83 47.83 0.00 0.61 30 74.69 47.83 0.00 0.10 0.10 30/30 88.68
1024 70.20 70.20 0.00 1.12 30 81.45 70.20 0.00 0.76 0.76 30/30 91.35
2048 103.97 103.97 0.00 4.66 30 84.96 103.97 0.00 3.27 3.27 30/30 93.98
4096 150.57 150.57 0.00 16.11 30 88.65 150.57 0.00 10.26 10.26 30/30 95.77

3n/4

32 8.17 8.17 0.00 0.01 30 47.56 8.17 0.00 <0.01 <0.01 30/30 71.83
64 12.53 12.53 0.00 0.01 30 53.92 12.53 0.00 <0.01 <0.01 30/30 71.72
128 19.70 19.70 0.00 0.02 30 65.68 19.70 0.00 <0.01 <0.01 30/30 79.50
256 29.97 29.97 0.00 0.04 30 72.89 29.97 0.00 0.01 0.01 30/30 84.41
512 44.57 44.57 0.00 0.26 30 77.45 44.57 0.00 0.03 0.03 30/30 88.28
1024 65.20 65.20 0.00 0.53 30 83.86 65.20 0.00 0.26 0.26 30/30 92.07
2048 94.67 94.67 0.00 1.45 30 88.57 94.67 0.00 0.51 0.51 30/30 94.18
4096 136.77 136.77 0.00 6.06 30 90.14 136.77 0.00 4.19 4.19 30/30 95.22

7n/8

32 7.67 7.67 0.00 0.01 30 47.37 7.67 0.00 <0.01 <0.01 30/30 64.92
64 11.57 11.57 0.00 0.01 30 56.15 11.57 0.00 <0.01 <0.01 30/30 73.63
128 18.40 18.40 0.00 0.02 30 63.40 18.40 0.00 <0.01 <0.01 30/30 76.54
256 27.80 27.80 0.00 0.03 30 74.05 27.80 0.00 0.01 0.01 30/30 84.25
512 40.60 40.60 0.00 0.09 30 80.25 40.60 0.00 0.03 0.03 30/30 87.14
1024 60.57 60.57 0.00 0.47 30 85.41 60.57 0.00 0.11 0.11 30/30 91.16
2048 88.00 88.00 0.00 2.54 30 85.93 88.00 0.00 0.63 0.63 30/30 91.89
4096 127.37 127.37 0.00 4.76 30 91.37 127.37 0.00 2.17 2.17 30/30 94.71
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Table 6.2: Results on Set2 instances.

so far UB+CPLEX MDD+CPLEX
|Σ| reps best obj gap [%] t [s] #opt red [%] obj gap [%] tprep [s] ttot [s] #opt red [%]

4

3 3.47 3.47 0.00 <0.01 30 34.16 3.47 0.00 <0.01 <0.01 30/30 65.78
4 3.77 3.77 0.00 <0.01 30 32.24 3.77 0.00 <0.01 <0.01 30/30 76.59
5 3.83 3.83 0.00 <0.01 30 35.31 3.83 0.00 <0.01 <0.01 30/30 81.44
6 3.90 3.90 0.00 0.01 30 25.62 3.90 0.00 <0.01 <0.01 30/30 85.92
7 3.97 3.97 0.00 0.02 30 18.34 3.97 0.00 <0.01 <0.01 30/30 88.59
8 3.97 3.97 0.00 0.02 30 19.01 3.97 0.00 <0.01 <0.01 30/30 89.54

8

3 6.23 6.23 0.00 <0.01 30 38.40 6.23 0.00 <0.01 <0.01 30/30 66.94
4 6.87 6.87 0.00 0.01 30 34.77 6.87 0.00 <0.01 <0.01 30/30 71.70
5 7.40 7.40 0.00 0.02 30 33.12 7.40 0.00 <0.01 <0.01 30/30 80.10
6 7.53 7.53 0.00 0.02 30 25.51 7.53 0.00 <0.01 <0.01 30/30 79.22
7 7.70 7.70 0.00 0.03 30 21.51 7.70 0.00 <0.01 <0.01 30/30 80.36
8 7.77 7.77 0.00 0.07 30 19.09 7.77 0.00 <0.01 <0.01 30/30 80.65

16

3 9.70 9.70 0.00 0.01 30 43.91 9.70 0.00 <0.01 <0.01 30/30 71.78
4 11.57 11.57 0.00 0.02 30 42.73 11.57 0.00 <0.01 <0.01 30/30 79.44
5 12.93 12.93 0.00 0.04 30 28.84 12.93 0.00 <0.01 <0.01 30/30 79.97
6 14.00 14.00 0.00 0.12 30 23.82 14.00 0.00 <0.01 <0.01 30/30 83.96
7 14.93 14.93 0.00 0.29 30 21.32 14.93 0.00 0.01 0.01 30/30 84.81
8 14.80 14.80 0.00 0.46 30 19.26 14.80 0.00 0.01 0.01 30/30 86.09

32

3 16.13 16.13 0.00 0.02 30 57.94 16.13 0.00 <0.01 <0.01 30/30 78.26
4 19.00 19.00 0.00 0.05 30 48.26 19.00 0.00 <0.01 <0.01 30/30 81.46
5 21.63 21.63 0.00 0.52 30 33.72 21.63 0.00 0.04 0.04 30/30 85.76
6 23.73 23.73 0.00 1.39 30 25.52 23.73 0.00 0.10 0.10 30/30 85.91
7 25.57 25.57 0.00 3.65 30 21.18 25.57 0.00 0.61 0.61 30/30 89.21
8 27.50 27.50 0.00 5.19 30 18.22 27.50 0.00 0.99 0.99 30/30 88.80

64

3 25.43 25.43 0.00 0.04 30 65.65 25.43 0.00 <0.01 <0.01 30/30 82.34
4 30.37 30.37 0.00 0.22 30 57.79 30.37 0.00 0.04 0.04 30/30 86.45
5 34.93 34.93 0.00 3.36 30 44.23 34.93 0.00 0.74 0.74 30/30 86.26
6 39.13 39.13 0.00 12.93 30 37.10 39.13 0.00 2.03 2.03 30/30 90.35
7 43.63 43.63 0.00 28.43 30 29.84 43.63 0.00 7.51 7.92 30/29 89.54
8 45.53 45.53 0.00 84.45 30 24.83 45.53 0.00 14.14 27.62 30/25 84.73

128

3 36.77 36.77 0.00 0.25 30 70.96 36.77 0.00 0.02 0.02 30/30 85.18
4 45.03 45.03 0.00 3.20 30 60.94 45.03 0.00 0.37 0.37 30/30 87.78
5 53.43 53.43 0.00 13.48 30 54.18 53.43 0.00 3.30 3.30 30/30 90.42
6 61.53 61.53 0.00 47.21 30 48.04 61.53 0.00 8.17 8.17 30/30 92.79
7 68.47 68.47 0.00 337.66 30 39.01 68.47 0.00 29.22 36.33 30/28 91.40
8 74.60 74.43 1.43 1941.38 20 33.90 74.60 0.11 74.85 1010.01 28/12 68.99

256

3 55.03 55.03 0.00 0.66 30 77.45 55.03 0.00 0.07 0.07 30/30 89.31
4 68.93 68.93 0.00 4.99 30 74.05 68.93 0.00 1.82 1.82 30/30 92.27
5 81.43 81.43 0.00 41.75 30 63.63 81.43 0.00 12.95 12.95 30/30 93.83
6 93.60 93.60 0.00 406.78 30 56.99 93.60 0.00 45.63 48.11 30/28 93.00
7 104.50 104.40 0.80 1764.49 24 52.06 104.50 0.00 129.27 369.43 30/20 87.91
8 115.07 110.77 8.91 3562.90 1 43.12 115.03 2.70 375.68 3167.78 10/2 62.22

512

3 81.63 81.63 0.00 0.83 30 86.31 81.63 0.00 0.58 0.58 30/30 92.84
4 101.13 101.13 0.00 10.56 30 80.23 101.13 0.00 9.01 9.01 30/30 93.71
5 121.03 121.03 0.00 162.42 30 72.44 121.03 0.00 37.06 37.06 30/30 95.16
6 138.40 137.13 1.81 2040.66 21 62.80 138.60 0.00 143.51 148.66 30/27 94.86
7 155.17 126.53 23.97 3570.00 1 55.24 156.00 0.70 679.41 2115.36 20/10 82.00
8 173.07 19.67 90.03 3633.19 0 47.95 174.23 3.25 1221.36 4499.14 3/1 64.24
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was not necessary to solve the ILP model at all, since Algorithm 6.2 terminated early
at Line 11. Hence, the obtained upper bound from the compiled relaxed MDD was
equal to the length of the currently best found solution in these cases. Concerning the
computation times, the UB+CPLEX approach was on average in only two cases faster
than the MDD+CPLEX approach regarding benchmark set Set1 and only in one case
regarding benchmark set Set2. Finally, the MDD+CPLEX approach is able to obtain
in 135 cases better results than the currently best-known-solutions from the literature.
For each considered problem class, MDD+CPLEX is able to provide on average better
results than UB+CPLEX.

6.8 Conclusion
In this chapter we approached the RFLCS problem by transforming an instance into a
maximum independent set (MIS) problem instance as this is done by Blum et al. [26]. The
MIS problem is subsequently solved by the ILP solver CPLEX. Our major contribution is
to heavily reduce the conflict graph of the MIS problem by means of relaxed MDDs. This
has multiple advantages: (1) reducing the conflict graph leads to an improved performance
of CPLEX such that more instances could be solved faster to proven optimality, (2) the
compiled relaxed MDDs present a discrete relaxation of the RFLCS problem meaning
that upper bounds can be additionally derived and (3) it is also possible to quickly derive
heuristic solutions from the MDDs. In many cases it was not necessary anymore to solve
the ILP for the MIS problem since the upper bound from the MDD corresponded to the
length of the derived heuristic solution and thus optimality was already proven. Overall,
for many benchmark instances new state-of-the-art results could be obtained.

In the literature there are works where relaxed decision diagrams are successfully embed-
ded into a branch-and-bound algorithm such that branching is done over nodes in the
relaxed decision diagram. Since relaxed MDDs provide also strong upper bonds for the
RFLCS problem it may be promising future work to develop such a branch-and-bound
algorithm for the RFLCS problem to solve even larger instances to optimality. Moreover,
it seems promising to apply relaxed decision diagrams also on other LCS-related problems.

Another promising research direction is to apply the A∗-based construction algorithm
from Chapter 4 in order to compile the initial relaxed MDD for the IR algorithm in
Section 6.6. This implies to adapt the proposed IR algorithm, since the A∗-based
construction algorithm compiles layer-free relaxed MDDs.
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CHAPTER 7
Conclusions

I n this thesis we considered different graph search strategies to solve a variety of
combinatorial optimization problems (COPs). In particular, we focused on the
state space representation of problems where a state represents a set of partial

solutions of the considered COP. A transition from one state to another state represents
the feasible extension of those partial solutions. Hence, each state contains all necessary
information to perform any feasible extension to a successor state and to check if the
state represents a complete feasible solution of the COP. This state space is usually
represented as a state graph where each node is associated to a state and an outgoing arc
represents the transition to a successor state. We applied diverse search techniques on
such state graphs to obtain proven optimal solutions as well as heuristic solutions and/or
dual bounds.

Chapter 3 focused on a novel anytime A∗ search algorithm to tackle the job sequencing
problem with one common and multiple secondary resources (JSOCMSR). There a set
of non-preemptive jobs needs to be scheduled, where each job requires two kinds of
resources: A common resource is required for a part of the job’s processing time and
a secondary resource is required for the whole duration of the job. While the common
resource is shared by all jobs, the secondary resources are shared with only a subset
of the other jobs. No resource can be claimed by more than one job simultaneously.
Hence, the common resource acts like a bottleneck resource since it is claimed by all
jobs. The objective is to minimize the makespan over all jobs. The JSOCMSR has
its application in the production of certain goods on a single machine and in the field
of particle therapy treatment scheduling for cancer patients. Besides an NP-hardness
proof of the JSOCMSR, we considered different kinds of lower bounds on the makespan
objective. We utilized these lower bound functions in a greedy construction algorithm.
Moreover, an A∗ search algorithm was designed which uses the lower bound functions as
search guidance. The A∗ algorithm is applied on a special state graph structure with
nodes holding sets of non-dominated time-records in order to exploit symmetries and
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to keep the memory consumption reasonable. In order to obtain also primal solutions
during the search, the A∗ search algorithm was turned into an anytime algorithm by
using an advanced diving mechanism, i.e., by switching in regular intervals from best-first
search to an advanced depth-first search. This diving mechanism uses in essence beam
search (BS), which is based on the devised greedy construction algorithm. Furthermore,
each obtained primal solution is improved by a local search (LS) procedure. Finally, the
proposed anytime A∗ search prunes nodes that can not lead to a better primal solution
than the current best incumbent solution. Our experimental evaluation showed that the
anytime A∗ algorithm is able to obtain high-quality solutions early and exhibits a good
anytime behavior. For this purpose we tested the algorithm on very large non-trivial
instances with up to 2000 jobs and compared the anytime A∗ algorithm to the A∗ based
anytime variants anytime pack search (APS) and anytime repairing A∗ (ARA∗), a pure A∗

algorithm, a position-based mixed integer programming (MIP) model solved by CPLEX,
a basic constraint programming (CP) model solved by ILOG CP solver, and an advanced
CP model using the same search guidance as A∗. For large instances the anytime A∗

search significantly outperforms the ILOG CP solver; in cases where the ILOG CP solver
provides smaller average optimality gaps our approach is usually able to solve more
instances to optimality. Overall, the proposed anytime A∗ search was able to either
solve instances with up to 2000 jobs to proven optimality or to obtain solutions with
usually small remaining gaps of less than one percent. Moreover, we designed a general
variable neighborhood search (GVNS) to obtain even better solutions from hard-to-solve
instances. The GVNS features an efficient evaluation scheme to quickly scan insertion
and exchange neighborhoods. In this way, we obtained high-quality solutions with an
average optimality gap of below 0.288%.

There are still some open research questions on this topic. For instance, the anytime
A∗ algorithm uses a rather simple start strategy to switch from best-first search to
BS by following a regular interval. It may be worthwhile to consider different start
strategies that depend also on the states stored in the open list of A∗. Another interesting
investigation is to consider adaptive tuning strategies of the beam width during the BS.
Furthermore, the proposed anytime A∗ algorithm is rather problem-independent, and its
applications in other problem domains appears promising.

In Chapter 4 we considered another technique to address COPs that is strongly related
to state graphs: decision diagrams (DDs). They provide a graphical representation of
the solution space of a COP. In particular, relaxed DDs provide a discrete relaxation of
the solution space by superimposing, i.e. merging, nodes of a state graph. This thesis
contributed by proposing a novel construction algorithm for non-layered relaxed DDs
that is based on the principles of A∗ search. While traditional construction methods for
relaxed DDs are based on layers, e.g., the top-down compilation (TDC), our A∗-based
construction (A∗C) method uses a problem specific fast-to-calculate dual bound function
that guides the compilation process such that no layers are necessary. We propose to
restrict the number of nodes in the open list instead of restricting the width of each
layer. In this way our construction method is able to effectively avoid multiple nodes for
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identical states at different layers and similar nodes can be merged across different layers.
The A∗C is especially well suited for problems that include both selection and sequencing
aspects. We tested the A∗C method on two different NP-hard COPs which have such
characteristics. The first problem adapts the JSOCMSR by considering a selection of the
jobs rather than minimizing the makespan: The prize-collecting job sequencing problem
with one common and multiple secondary resources (PCJSOCMSR) additionally equips
each job with a prize and a set of time windows where the job is allowed to be scheduled.
The objective is to select a subset of jobs that can be feasibly scheduled and maximizes
the total prize over the selected jobs. The aim of this extension was two-folded. First, it is
a more accurate model for the real world patient scheduling problem. Second, it becomes
suitable for a further application: pre-runtime scheduling of electronic systems within
aircraft, called avionic systems. We first proved the NP-hardness of the new PCJSOCMSR
and considered different upper bound functions on the total prize, which are based on
linear programming and Lagrangian relaxations of a multidimensional knapsack problem
formulation. The upper bound functions are evaluated by a classical A∗ search on the
PCJSOCMSR for small-sized instances. Afterwards, the best combination of these upper
bounds are used to compile relaxed DDs with A∗C for large-sized instances. The second
considered problem is the longest common subsequence (LCS) problem consisting on
multiple input strings and a finite alphabet. The task is to find a longest subsequence
that is common to all input strings. For the A∗C we considered two different problem
specific upper bound functions from the literature on the LCS as well as a third upper
bound which is an adaption of one of the former.

For both problems we could show that the proposed A∗C is able to produce relaxed DDs
that are stronger relaxations and at the same time are more compact than relaxed DDs
created with traditional compilation methods. More specifically, relaxed DDs are created
for the PCJSOCMSR with up to 500 jobs with the A∗C method as well as with the
traditional TDC and incremental refinement (IR) methods. In order to obtain heuristic
solutions we create also restricted DDs that provide a graphical representation of only a
subset of a COP’s solution space. To compile restricted DDs for the PCJSOCMSR we
use the traditional TDC approach and significantly speed up the compilation process
by using some structural information of a previously compiled relaxed DD with A∗C.
We compared this overall approach to a GVNS, an order-based MIP model solved by
Gurobi Optimizer, and to a basic CP model solved by MiniZinc with backbone solver
Chuffed. In general, our approach yielded the best solutions, except for larger instances
of the particle therapy benchmark set with three secondary resources, where the GVNS
outperforms all other considered methods. For the LCS problem we created relaxed
DDs with A∗C as well as with TDC on several standard LCS benchmark sets from
the literature. Experimental evaluation documented again that A∗C is able to compile
stronger and more compact DDs than TDC. In particular, the obtained upper bounds
from relaxed DDs compiled with A∗C are stronger than the LCS-specific upper bound
functions from the literature and in some cases even stronger than the currently best
known upper bounds for certain problem instances.
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7. Conclusions

In future work it will be interesting to test the proposed compilation method also on other
problems that include selection as well as sequencing aspects. One limitation for suitable
problems may be the order-invariance of the objective function, which is exploited by the
proposed method. Another important aspect for some applications of relaxed DDs is
that a once obtained complete DD can be further refined. This property is also known
as incrementability and an interesting research question in this regard is if a completely
constructed DD can be effectively updated in-place by a following A∗-based refinement
pass. Other relevant open research questions about A∗-based compilation are from a
more theoretical side. A constant open list size limit does in general not necessarily
imply that the obtained relaxed DD has polynomial size, and consequently also the A∗C’s
compilation time is in general not polynomially bounded. This is similar to the classical
A∗ search, where no better performance guarantee can be given without considering a
more specific problem setting and a concrete heuristic function. Studying more advanced
methods, possible by developing an entirely different way of deciding when to merge
which nodes, in order to obtain possible better performance guarantees is desirable.

Chapter 5 pursued the idea from Chapter 4 further, where a previously compiled relaxed
DDs is used to speed-up the compilation process of restricted DDs. However, instead of
obtaining heuristic solutions by compiling a restricted DDs, we used a limited discrepancy
search (LDS) based approach combined with BS. The previously compiled relaxed DD
was further strengthened by removing arcs that belong only to infeasible solutions or
to sub-optimal solutions. In this way, a substantial number of possible extensions could
be excluded during the LDS/BS hybrid, leaded to a substantial acceleration of the
search. This acceleration allowed our approach to search through significantly larger
promising parts of the search space than a standalone LDS/BS approach without using
a relaxed DD. Another advantage of the proposed approach is that the relaxed DD is
able to provide a feasible upper bound of the problem. The algorithm was tested on the
PCJSOCMSR with precedence constraints, which is in particular for the avionic system
application a reasonable extension of the PCJSOCMSR. The relaxed DD was compiled
with the A∗C method from Chapter 4 by ignoring the precedence constraints during the
compilation step and consider them only in the following filtering step. Thereby obtained
relaxed DDs are still a feasible relaxation of the considered problem. We tested our
proposed approach on two benchmark sets with up to 500 jobs. Numerical experiments
showed that our proposed LDS/BS hybrid with exhibiting a previously compiled and
filtered relaxed DD is able to outperform a standalone LDS/BS approach without using
a relaxed DD. Our approach is significantly faster and is therefore able to scan larger
subspaces of the solution space. Consequently, better heuristic solution can be found.
Furthermore, we compared our approach to an order-based MIP model solved by Gurobi
Optimizer and a basic CP model solved by MiniZinc with backbone solver Chuffed. In
general, the LDS/BS approach provided stronger upper bounds than the MIP approach
and better heuristic solutions than both MIP and CP approaches. Next steps to further
improve the quality of obtained solutions would be to incorporate other promising filtering
techniques from the literature to even further strengthen the relaxed DD. In this way
an even greater acceleration of the subsequently applied LDS/BS approach may be
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achieved. Furthermore, although the advantages of the considered approach was shown
on a rather specific scheduling problem, we believe that the general approach also seems
to be promising for other COPs. Another promising research direction would be to apply
the general idea of using the structural information of relaxed DDs on further search
heuristic and metaheuristics.

Finally, this thesis considered in Chapter 6 the repetition-free longest common susequence
(RFLCS) problem which consists of two input strings over a finite alphabet. The RFLCS
problem asks for the longest subsequence that is common to both input strings and is
repetition free, i.e., characters from the alphabet are not allowed to appear more than
once. We tackled this problem by transforming an instance of the RFLCS problem into
a maximum independent set (MIS) instance, which is subsequently solved by the MIP
solver CPLEX. The major contribution of this thesis in this regard is to heavily reduce
the underlying conflict graph of the MIS problem by using relaxed DDs in order to
accelerate the solving time of the MIP solver. The relaxed DDs for a RFLCS instance are
created by an IR approach and exhibit an important property: Each path from the root
node to any other node of such a relaxed DD encodes a feasible common subsequence that
is not necessarily repetition free. Hence, paths in the relaxed DD do not violate common
subsequence constraints but repetition-free constraints. Experimental evaluation showed
that such relaxed DDs represent a strong relaxation of the RFLCS problem and can be
used to heavily reduce the conflict graph of the corresponding MIS instance. Furthermore,
such relaxed DDs can be used to derive high quality heuristic solutions, which allowed us
to derive besides an upper bound from a relaxed DD also a primal bound. In 90% of
the considered benchmark instances, we were able to prove optimality from the obtained
upper- and primal bound from the relaxed DD. Hence, in these cases it was not necessary
to solve the corresponding MIS problem at all. Overall, for many benchmark instances
new state-of-the-art results could be obtained.

One possible interesting research direction is to embed the relaxed DDs for the RFLCS
problem into a DD-based branch-and-bound approach as already done in the literature
and branch over exact nodes of the relaxed DD. Since high-quality primal- and upper
bounds could be obtained from one relaxed DD, a branch-and-bound approach seems
promising to solve even more instances to proven optimality. Another open question in
this regard is the construction of relaxed DDs with the A∗C method from Chapter 4. Until
now, we used an IR-based approach to create relaxed DDs that ensures that no common
subsequence constraint is violated. It would be interesting to think of a possibility to
adapt the A∗C method such that this desired property remains. In this way it may
be possible to create with A∗C even stronger relaxed DDs, that are at the same time,
more compact.
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APPENDIX A
Proof of Theorem 3.4.2

Proof. We first show that MSLB0 ≤ MSLB1 ≤ MSLB2. The definition of MSLB1 differs
only by the additive terms h1

r , r ∈ R from the definition of MSLB0. Since these terms are
all non-negative it follows that MSLB0 ≤ MSLB1. For MSLB1 ≤ MSLB2 it is sufficient to
show that h1

r ≤ h2
r, ∀r ∈ R, since the definitions of MSLB1 (3.7) and MSLB2 (3.8) differ

only in the additional strengthened terms h1
r and h2

r. Consider an arbitrary secondary
resource r ∈ R. By the definitions of MSLB1 and MSLB2 both terms h1

r and h2
r become

zero if J = ∅ or Jr = ∅ or J \ Jr = ∅. Therefore, let us assume that all three sets contain
at least one element. Let S = {j ∈ J \ Jr | p0

j > pprepost
max (Jr)} be the set of jobs which

require the common resource 0 longer than pprepost
max (Jr) and which do not require the

secondary resource r. In this case it holds that h1
r = j∈S(p0

j − pprepost
max (Jr)). Next, we

show that Algorithm 3.2 selects in Line 6 or in Line 11 also each job j ∈ S for adding
the corresponding p0

j time to variable h2
r . At the start of the algorithm S ⊆ J0, since J0

is initially set to J \ Jr. At each iteration of the for-loop the job which requires resource
0 the most is selected from set J0 and removed at the end of the loop. Consider the case
that job j ∈ S is not selected during the loop. There are only two possibilities in which
the loop terminates. Either the if condition becomes true and the algorithm terminates,
or J0 = ∅∧ i ≤ k does not hold anymore. In the former case assume that at iteration i job
ji is selected from set J0 and p0

ji
< gi. Since ji = arg maxj ∈J0 p0

j it must also hold that
gi > p0

ji
≥ p0

j . But for job j it must further hold that p0
j ≥ pprepost

max (Jr) = g1 ≥ gi. Hence,
we have a contradiction and the if-condition cannot be fulfilled before all jobs from S are
selected. The latter case that J0 = ∅ ∧ i ≤ k becomes false remains. Since job j is not
selected yet, J0 = ∅ must hold. This implies that i must be larger than k for terminating
the loop. But then job j is still in J0 and the corresponding p0

j will be added to h2
r at

the end of the algorithm. Hence, p0
j , j ∈ S will be added either during the execution of

the for loop or afterwards at the end of the algorithm. Let G be the set of all time gaps
[gi]ki=1 that are subtracted from h2

r when a job from S is selected in the for-loop. Then,
h2

r ≥ j∈S p0
j − g∈G g ≥ j∈J(p0

j − pprepost
max (Jr)) = j∈J p0

j − |S|pprepost
max (Jr) = h1

r .
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A. Proof of Theorem 3.4.2

It remains to show that MSLB2 is a lower bound for the makespan. Assume that there
exists a normalized feasible solution s with MS(s) < MSLB2. We have to consider two
cases:

• MSLB0
0 ≥ maxr∈R MSLB2

r : The lower bound is determined by the basic lower bound
MSLB0

0 . This case has already been shown to yield a contradiction in the proof of
Theorem 3.4.1.

• MSLB0
0 < maxr∈R MSLB2

r : The lower bound is determined by the strengthened
lower bounds. Let r ∈ R be a secondary resource that determines maxr∈R MSLB2

r .
We have to distinguish between two cases: (1) MS(s) < MSLB0

r and (2) MSLB0
r ≤

MS(s) < MSLB0
r + h2

r , where h2
r > 0. In the first case solution s cannot be feasible

because the makespan of solution s would be smaller than MSLB0
r = r∈Jr

pj ,
which would imply that resource r is used by more than one job at the same time.
In the second case we assume that resource r is not used by more than one job at
the same time. Since h2

r > 0 there must be jobs which are selected by Algorithm 3.2
to add the corresponding difference at Line 11 and 6 to h2

r. Let S be the set of
these jobs and [σi]|S|

i=1 be the sequence of these jobs ordered according to decreasing
times p0, i.e., p0

σi
≥ p0

σi+1 for all i = 1, . . . , |S| − 1. Furthermore, let [gi]ki=1 be the
corresponding sequence of time gaps for resource r. Then h2

r = |S|
i=1 p0

σi
− gi where

gi = 0 for i > k. Now, consider a normalized partial solution s where exactly the
jobs in Jr are scheduled in the exactly same order as in solution s. Then we can
determine time gaps between two consecutive jobs in s regarding the common
resource 0. Let [ḡi]|Jr|+1

i=1 be the decreasingly sorted sequence of these time gaps.
Note, that each element of this sequence is the sum of one preprocessing and one
postprocessing time of jobs in Jr. Except for two jobs, which corresponds to the
preprocessing time of the first scheduled job from Jr in s and the postprocessing
time of the last scheduled job from Jr in s . Since Algorithm 3.1 determines
the sequence of time gaps [gi]ki=1 by taking at each iteration the maximum pre-
and postprocessing times which are not already consumed, it holds that ḡi ≤ gi,
∀i : 1 ≤ i ≤ k. This implies that h2

r ≤ |S|
i=1 p0

σi
− ḡi where ḡi = 0 for i > |Jr| + 1.

Now let us insert the jobs from S into solution s such that job σi is placed between
the jobs which are associated with time gap ḡi and causes a delay of p0

σi
− ḡi,

∀i : 1 ≤ |Jr| + 1. Jobs σi where i > |Jr| + 1 are appended to solution s . Then
MSLB0

r + h2
r ≤ MSLB0

r + |S|
i=1 p0

σi
− ḡi ≤ MS(s ) where ḡi = 0 for i > |Jr| + 1. Note

that any different schedule order of jobs in S will cause an increase of the delay and
therefore of the makespan of solution s . This holds in particular if we choose the
same schedule order for the jobs in S as in solution s. Therefore MS(s ) ≤ MS(s).
This contradicts the assumption that MS(s) < MSLB0

r + h2
r .

We conclude that MSLB2 is indeed a lower bound for MS∗. Since MSLB1 ≤ MSLB2 it
follows that also MSLB1 is indeed a lower bound for MS∗.
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APPENDIX B
Further Results for the

PCJSOCMSR

Figure B.1 shows additional results of the PCJSOCMSR from Chapter 4 for instances of
sets P and A with three and four secondary resources, respectively. As in Section 4.4.10
the impact of the open list size limit φ and different labeling functions are analyzed and
conclusions are similar: In general, with increasing φ the lengths of the longest paths
of the obtained relaxed multivalued decision diagrams (MDDs) from A∗C get smaller,
while the computation times and the MDD sizes increase. The smallest relaxed MDDs
with the weakest bounds could in general be obtained from labeling function L1 whereas
labeling function L4 typically provides the largest MDDs with the strongest bounds.

Regarding the comparison of upper bounds obtained from different approaches, Figure B.2
shows in addition to the results presented in Section 4.4.10 corresponding results for
instances of set P and A with three and four secondary resources, respectively. Average
values of upper bounds, computation times, and the sizes of relaxed MDDs, obtained
from A∗C, the classical TDC, the IR, and the order based MIP approach are shown.
Again, we observe remarkable differences between results obtained from instances of
set P and A. Nevertheless, in each case the strongest average upper bounds could be
obtained by A∗C thereby creating as well the smallest obtained relaxed MDDs.
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B. Further Results for the PCJSOCMSR
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Acronyms

A∗C A∗-based construction. 7, 8, 93, 94, 96, 102, 106, 108, 111, 120, 127, 132, 133,
135–142, 144, 145, 147, 148, 150–157, 162, 164, 165, 177, 188–191, 195, 197

ACO ant colony optimization. 32

ANA∗ anytime nonparametric A∗. 49

APS anytime pack search. 50, 78, 79, 91, 188

APTS anytime potential search. 49

ARA∗ anytime repairing A∗. 49, 74, 84, 85, 88, 91, 188

AWA∗ anytime window A∗. 50

BB branch and bound. 23, 24, 27, 30, 40, 96, 102, 106, 171

BDD binary decision diagram. 38, 94–96

BFS breadth-first search. 14, 15, 20, 65

BS beam search. ix, x, 3–6, 8, 20, 22, 23, 33, 39, 45, 46, 50, 62–65, 67, 76–79, 82, 86–88,
92, 143, 144, 159, 160, 168, 188, 190

CMSA construct, merge, solve and adapt. 171

COP combinatorial optimization problem. ix, x, 2, 3, 9–12, 23–27, 29–31, 33, 38–40, 42,
43, 94, 159, 187–189, 191

CP constraint programming. 6–8, 28, 29, 37, 46, 48, 49, 68, 74, 84, 86, 89–92, 106, 119,
127, 132, 133, 137, 140, 141, 156, 159, 165, 167, 168, 188–190

CSP constraint satisfaction problem. 28, 29

DD decision diagram. ix, x, 3–9, 37–43, 94–102, 106, 120, 121, 124, 152, 156, 157, 159,
160, 170, 171, 181, 188–191
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DFS depth-first search. 14–16

DP dynamic programming. 30, 31, 38–40, 43, 97, 101, 113, 143, 145, 170, 174, 176

GA genetic algorithm. 32

GRASP greedy randomized adaptive search procedure. 47

GVNS general variable neighborhood search. 6, 36, 45, 46, 69, 71, 73, 88–92, 110, 111,
137, 140, 141, 156, 188, 189

IG iterated greedy. 47, 48

ILDS improved limited discrepancy search. 21, 22

ILP integer linear programming. x, 7, 26, 27, 42, 43, 169–172, 180, 183, 186

IR incremental refinement. 40, 42, 43, 98, 100, 110, 135–137, 155, 176, 177, 186, 189,
191, 195, 197

JSOCMSR job sequencing problem with one common and multiple secondary resources.
ix–xii, 4–6, 47–53, 56, 60, 63, 67–69, 93, 106, 107, 110, 119, 187, 189

LAPCS longest arc-preserving common subsequence. 171

LCPS longest common palindromic subsequence. 171

LCS longest common subsequence. x, xii, 5, 7, 94–97, 99, 100, 102, 123, 142–147, 152,
155, 156, 170, 171, 177, 179, 186, 189

LDS limited discrepancy search. x, 4, 5, 8, 21, 22, 33, 159, 160, 163–165, 168, 190

LLBH least lower bound heuristic. 6, 56, 58–62, 68, 74, 76–78, 84–87, 89, 91

LP linear programming. 10, 25–28, 39, 108, 113–115, 129, 130

LS local search. 6, 31–35, 45, 46, 64, 65, 67, 76–79, 81, 82, 86–88, 91, 188

MDD multivalued decision diagram. 6, 8, 38, 93–106, 108, 110–112, 120–127, 132–138,
140–142, 144–152, 154–157, 161, 162, 164, 165, 168–180, 183, 186, 195

MILP mixed integer linear programming. 6, 8, 25, 27, 28, 37, 46, 67, 68, 74, 84, 169

MIP mixed integer programming. 91, 98, 106, 108, 118, 119, 127, 132, 133, 135–137,
140, 141, 143, 156, 159, 165, 167, 168, 172, 188–191, 195, 197

MIS maximum independent set. x, xii, 4, 8, 169–173, 186, 191

NDT non-dominated times. 60–62, 64–66, 83, 84
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OP orienteering problem. 111

PCJSOCMSR prize-collecting job sequencing problem with one common and multiple
secondary resources. 5, 7, 8, 93–95, 97, 99, 100, 102, 106–111, 113, 116–122, 126,
127, 132, 137, 142, 148, 155, 156, 159–165, 168, 189, 190, 195

PP partition problem. 51, 52

PSO particle swarm optimization. 32

RCPSP resource constrained project scheduling problem. 48

RFLCS repetition-free longest common susequence. x, xii, 5, 6, 8, 169–176, 178, 179,
186, 191

RWA∗ restarting weighted A∗. 49

SA simulating annealing. 31

SQT solution quality over time. 79–83

TDC top-down compilation. 39–41, 98, 100, 106, 108, 110, 127, 135–142, 148–156, 159,
188, 189, 195, 197

TS tabu search. 31, 32

TSP traveling salesperson problem. 37, 48, 95

VGSCO Vienna Graduate School on Computational Optimization. vii, 2

VND variable neighborhood descent. 35, 36, 69, 71, 73, 91

VNS variable neighborhood search. 31, 32, 36

VRP vehicle routing problem. 2
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[126] C. Oǧuz, F. Sibel Salman, and Z. Bilgintürk Yalçin. Order acceptance and scheduling
decisions in make-to-order systems. International Journal of Production Economics,
125(1):200–211, 2010.

[127] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and
complexity. Dover Publications, New York, 1998.

[128] Z. Peng and Y. Wang. A novel efficient graph model for the multiple longest
common subsequences (MLCS) problem. Frontiers in Genetics, 8:104, 2017.

[129] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 5th edition,
2015.

[130] I. Pohl. Heuristic search viewed as path finding in a graph. Artificial Intelligence,
1(3):193–204, 1970.

[131] D. L. Poole and A. K. Mackworth. Artificial Intelligence: foundations of computa-
tional agents. Cambridge University Press, 2010.

[132] P. Prosser and C. Unsworth. Limited discrepancy search revisited. ACM Journal
of Experimental Algorithmics, 16, 2011.

[133] S. Richter, J. T. Thayer, and W. Ruml. The Joy of Forgetting: Faster Anytime
Search via Restarting. In R. Brafman, H. Geffner, J. Hoffmann, and H. Kautz,
editors, Proceedings of the 20th International Conference on Automated Planning

213



and Scheduling, ICAPS 2010, pages 137–144, Toronto, Ontario, Canada, 2010.
AAAI Press.

[134] L. H. O. Rios and L. Chaimowicz. A Survey and Classification of A* Based
Best-First Heuristic Search Algorithms. In A. C. da Rocha Costa, R. M. Vicari,
and F. Tonidandel, editors, Proceedings of Advances in Artificial Intelligence:
20th Brazilian Symposium on Artificial Intelligence, volume 6404 of LNCS, pages
253–262. Springer, 2010.

[135] H. Röck. The three-machine no-wait flow shop is NP-complete. Journal of the
ACM, 31(2):336–345, 1984.

[136] M. Römer, A. A. Cire, and L.-M. Rousseau. A local search framework for compiling
relaxed decision diagrams. In Proceedings of the 15th International Conference
on Integration of Constraint Programming, Artificial Intelligence, and Operations
Research, CPAIOR 2018, volume 10848 of LNCS, pages 512–520. Springer, 2018.

[137] F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming.
Foundations of Artificial Intelligence. Elsevier, 2006.

[138] S. Rubin. The ARGOS Image Understanding System. PhD thesis, Carnegie-Mellon
University, 1978.

[139] S. Russell and P. Norvig. Artificial intelligence: a modern approach. Prentice Hall,
2002.

[140] I. Sabuncuoglu and M. Bayiz. Job shop scheduling with beam search. European
Journal of Operational Research, 118(2):390–412, 1999.

[141] T. Schiavinotto and T. Stützle. A review of metrics on permutations for search
landscape analysis. Computers & Operations Research (COR), 34(10):3143–3153,
2007.

[142] A. Schutt, T. Feydy, P. J. Stuckey, and M. G. Wallace. Solving RCPSP/max by
lazy clause generation. Journal of Scheduling, 16(3):273–289, 2013.

[143] S. J. Shyu and C.-Y. Tsai. Finding the longest common subsequence for multiple
biological sequences by ant colony optimization. Computers & Operations Research,
36(1):73–91, 2009.

[144] Y. L. T. Silva, A. Subramanian, and A. A. Pessoa. Exact and heuristic algorithms for
order acceptance and scheduling with sequence-dependent setup times. Computers
and Operations Research, 90:142–160, 2018.

[145] T. Smith and M. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147(1):195–197, 1981.

214



[146] P. F. Stadler and W. Schnabl. The landscape of the traveling salesman problem.
Physics Letters A, 161(4):337–344, 1992.

[147] R. Stern, A. Felner, J. van den Berg, R. Puzis, R. Shah, and K. Goldberg. Potential-
based bounded-cost search and anytime non-parametric A*. Artificial Intelligence,
214:1–25, 2014.

[148] R. Stern, R. Puzis, and A. Felner. Potential search: A new greedy anytime heuristic
search. In N. Sturtevant and F. Ariel, editors, Proceedings of the 3rd Annual
Symposium on Combinatorial Search, SOCS 2010, pages 119–120. AAAI Press,
2010.

[149] R. Stern, R. Puzis, and A. Felner. Potential search: A bounded-cost search
algorithm. In F. Bacchus, C. Domshlak, S. Edelkamp, and M. Helmert, editors,
Proceedings of the 21th International Conference on Automated Planning and
Scheduling, ICAPS 2011, pages 234–241. AAAI Press, 2011.

[150] J. A. Storer. Data Compression: Methods and Theory. Computer Science Press,
Inc., 1987.

[151] K. Sörensen. Metaheuristics—the metaphor exposed. International Transactions
in Operational Research, 22(1):3–18, 2015.

[152] E.-G. Talbi. Metaheuristics: from design to implementation. John Wiley & Sons,
Hobokon, New Yersey, USA, 2009.

[153] C. Tjandraatmadja and W.-J. van Hoeve. Incorporating bounds from decision
diagrams into integer programming. Mathematical Programming Computation,
pages 1–32, 2020.

[154] Y.-T. Tsai. The constrained longest common subsequence problem. Information
Processing Letters, 88(4):173–176, 2003.

[155] S. G. Vadlamudi, S. Aine, and P. P. Chakrabarti. Anytime pack search. Natural
Computing, 15(3):395–414, 2016.

[156] J. Van Den Berg, R. Shah, A. Huang, and K. Goldberg. ANA*: anytime non-
parametric A*. In Proceedings of Twenty-fifth AAAI Conference on Artificial
Intelligence, AAAI 2011, pages 105–111, San Francisco, California, USA, 2011.
AAAI Press.

[157] J. A. A. Van der Veen, G. J. Wöginger, and S. Zhang. Sequencing jobs that require
common resources on a single machine: A solvable case of the TSP. Mathematical
Programming, 82(1–2):235–254, 1998.

[158] P. Van Hentenryck. Constraint Satsifaction in Logic Programming. MIT Press,
1989.

215



[159] M. C. Vélez-Gallego, J. Maya, and J. R. Montoya-Torres. A beam search heuristic
for scheduling a single machine with release dates and sequence dependent setup
times to minimize the makespan. Computers & Operations Research (COR),
73:132–140, 2016.

[160] T. Walsh. Depth-bounded discrepancy search. In M. E. Pollack, editor, Proceedings
of the 15th International Joint Conference on Artificial Intelligence, IJCAI’97,
volume 2, pages 1388–1393, Nagoya, Japan, 1997. Morgan-Kaufmann.

[161] Q. Wang, D. Korkin, and Y. Shang. A fast multiple longest common subse-
quence (mlcs) algorithm. IEEE Transactions on Knowledge and Data Engineering,
23(3):321–334, 2011.

[162] S. Warshall. A theorem on Boolean matrices. Journal of the Association for
Computing Machinery (ACM), 9(1):11–12, 1962.

[163] J.-P. Watson. An Introduction to Fitness Landscape Analysis and Cost Models for
Local Search, pages 599–623. Springer US, Boston, MA, 2010.

[164] D. Weyland. A rigorous analysis of the harmony search algorithm: How the research
community can be misled by a “novel” methodology. International Journal of
Applied Metaheuristic Computing (IJAMC), 1(2):50–60, 2010.

[165] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[166] L. A. Wolsey. Integer programming. John Wiley & Sons, 1998.

216



Matthias Horn
Curriculum Vitae

Wiesfeldstraße 28
3130 Herzogenburg, Austria
matthias.g.horn@gmail.com

D.O.B: 25.08.1989
Birth place: St. Pölten

Nationality: Austria

Educational Background
2017 Doctoral programme in Engineering Science, TU Wien.

Field of Study Combinatorial Optimization
Advisor Günther Raidl

2014
2017

Master of Science, TU Wien.

Field of Study Computer Engineering
Thesis A heuristic framework for dynamic vehicle routing with site-dependent constraints

Advisor Günther Raidl

2010
2014

Bachelor of Science, TU Wien.

Field of Study Computer Engineering
Thesis Modellierung und Regelung einer Hebebühne

Advisor Andreas Kugi

Work Experiences
2017 Research Assistant,

TU Wien, Institute of Logic and Computation,
Algorithms and Complexity Group.

Published several research articles with other authors
Co-supervised several master theses
Research presented at international conferences

2019
2020

Six Month Research Stay,
Universitat Autònoma de Barcelona, Artifical Intelligence Research Institute.

2014
2017

Software Developer,
Company Destion – IT Consulting & Software Solutions GmbH.

Worked on heuristic optimization methods in the field of logistics
Worked on heuristic optimization methods in the field of school timetabling
Worked on the graphical user interface design

2010
2014

Technical CAD Drafter/Summer Internships,
Company KWI Engineers GmbH.

Electrical drafting

2009
2010

Military Musician/Mandatory Military Service,
Austrian Armed Forces.



Peer-Reviewed Publications

Journal Articles
2021

Computers &
Operations Research

M. Horn, J. Maschler, G. R. Raidl, and E. Rönnberg. A*-based construction
of decision diagrams for a prize-collecting scheduling problem. Computers &
Operations Research (COR), 126:105125, 2021

2020
Annals of Operations

Research
M. Horn, G. R. Raidl, and E. Rönnberg. A* search for prize-collecting job
sequencing with one common and multiple secondary resources. Annals of
Operations Research, 2020

2019
Artificial Intelligence M. Horn, G. Raidl, and C. Blum. Job sequencing with one common and multiple

secondary resources: An A*/Beam Search based anytime algorithm. Artificial
Intelligence, 277(103173), 2019

Conference Proceedings
CPAIOR 2021

M. Horn and G. R. Raidl. A*-based compilation of relaxed decision diagrams for
the longest common subsequence problem. volume 12735 of LNCS. Springer,
2021. To appear. Accepted for the 18th International Conference on the
Integration of Constraint Programming, Artificial Intelligence, and Operations
Research (CPAIOR 2021)

ISM 2020
M. Horn, N. Frohner, and G. R. Raidl. Driver shift planning for an online store
with short delivery times. Procedia Computer Science, 180:517–524, 2021.
Proceedings of the 2nd International Conference on Industry 4.0 and Smart
Manufacturing (ISM 2020)

ISM 2020
N. Frohner, M. Horn, and G. R. Raidl. Route duration prediction in a stochastic
and dynamic vehicle routing problem with short delivery deadlines. Procedia
Computer Science, 180:366–370, 2021. Proceedings of the 2nd International
Conference on Industry 4.0 and Smart Manufacturing (ISM 2020)

OPTIMA 2020
M. Horn, M. Djukanovic, C. Blum, and G. R. Raidl. On the use of decision
diagrams for finding repetition-free longest common subsequences. In N. Olenev,
Y. Evtushenko, M. Khachay, and V. Malkova, editors, Proceedings of the XI
International Conference Optimization and Applications, OPTIMA 2020, volume
12422 of LNCS, pages 134–149. Springer, 2020

PPSN 2020
T. Kaufmann, M. Horn, and G. R. Raidl. A variable neighborhood search for
the job sequencing with one common and multiple secondary resources problem.
In T. Bäck, M. Preuss, A. Deutz, H. Wang, C. Doerr, M. Emmerich, and
H. Trautmann, editors, Proceedings of PPSN XVI: Parallel Problem Solving
from Nature, volume 12270 of LNCS, pages 385–398. Springer, 2020



EUROCAST 2019
M. Horn and G. R. Raidl. Decision diagram based limited discrepancy search
for a job sequencing problem. In R. Moreno-Díaz, F. Pichler, and A. Quesada-
Arencibia, editors, Proceedings of the 17th International Conference of Computer
Aided Systems Theory, EUROCAST 2019, volume 12013 of LNCS, pages 344–
351. Springer, 2020

AI 2019
C. Blum, D. Thiruvady, A. T. Ernst, M. Horn, and G. R. Raidl. A biased random
key genetic algorithm with rollout evaluations for the resource constraint job
scheduling problem. In J. Liu and J. Bailey, editors, Proceedings of the 32nd
Australasian Joint Conference on Advances in Artificial Intelligence, AI 2019,
volume 11919 of LNCS, pages 549–560. Springer, 2019

PATAT 2018
M. Horn, G. R. Raidl, and E. Rönnberg. An A* algorithm for solving a
prize-collecting sequencing problem with one common and multiple secondary
resources and time windows. In E. K. Burke, L. Di Gaspero, B. McCollum,
N. Musliu, and E. Özcan, editors, Proceedings of the 12th International Con-
ference of the Practice and Theory of Automated Timetabling, PATAT 2018,
pages 235–256, Vienna, Austria, 2018

MOD 2017
M. Horn, G. R. Raidl, and C. Blum. Job sequencing with one common and
multiple secondary resources: A problem motivated from particle therapy for
cancer treatment. In G. Giuffrida, G. Nicosia, P. Pardalos, and R. Umeton,
editors, MOD 2017: Machine Learning, Optimization, and Big Data – Third
International Conference, volume 10710 of LNCS, pages 506–518. Springer,
2017

Presentations
2020• Conference, ISM 2020.

Title: Driver shift planning for an online store with short delivery times
Place: Online Conference, Austria

2020• Conference, OPTIMA 2020.
Title: On the use of decision diagrams for finding repetition-free longest common
subsequences
Place: Online Conference, Moscow, Russia

2020• Conference, CPAIOR 2020.
Title: On the use of decision diagrams for finding repetition-free longest common
subsequences
Place: Online Conference, Vienna, Austria

2019• Talk, Universitat Autònoma de Barcelona 2019.
Title: Job sequencing with one common and multiple secondary resources: an
A∗/beam search based anytime algorithm
Place: Universitat Autònoma de Barcelona, Barcelona, Spain



2019• Conference, EUROCAST 2019.
Title: Decision diagram based limited discrepancy search for a job sequencing
problem
Place: Las Palmas de Gran Canaria, Spain

2018• Symposium, DDOPT 2018.
Title: Exploiting relaxed decision diagrams to obtain heuristic solutions for a
prize-collecting scheduling problem
Place: Pittsburgh, PA, USA

2018• Conference, PATAT 2018.
Title: An A∗ algorithm for solving a prize-collecting sequencing problem with one
common and multiple secondary resources and time windows
Place: Vienna, Austria

2017• Conference, MOD 2017.
Title: Job sequencing with one common and multiple secondary resources: A
problem motivated from particle therapy for cancer treatment
Place: Volterra, Tuscany, Italy


	Abstract
	Kurzfassung
	Contents
	Introduction
	Outline of the Thesis

	Basic Methodologies for Combinatorial Optimization Problems
	Combinatorial Optimization Problems
	Combinatorial Search
	Uninformed Search
	Breadth-First Search
	Depth-First Search
	Lowest-Cost-First Search

	Informed Search
	Heuristic Depth-First Search
	Greedy Best-First Search
	A* Search
	Beam Search
	Limited Discrepancy Search


	Exact Methods
	Branch and Bound
	Mathematical Programming
	Linear Programming
	Mixed Integer Linear Programming

	Constraint Programming
	Dynamic Programming

	(Meta-)Heuristic Methods
	Constructive Heuristics
	Local Search
	Variable Neighborhood Decent
	General Variable Neighborhood Search

	Decision Diagrams for Optimization
	Exact, Relaxed, and Restricted Decision Diagrams
	Exact.
	Restricted.
	Relaxed.


	Compilation Methods for Relaxed Decision Diagrams
	Top-Down Compilation
	Incremental Refinement



	Anytime A* Search
	Introduction
	Related Work
	Problem Definition and Complexity
	Computational Complexity

	Lower and Upper Bounds
	Strengthened Lower Bounds

	Least Lower Bound Heuristic
	Strengthened Lower Bounds for Partial Solutions
	Combined Lower Bounds

	A* Algorithm and Extensions
	Advanced Diving with Beam Search
	Local Search and Solution Injection

	Mixed Integer Linear Programming Formulation
	Constraint Programming Formulation
	Variable Neighborhood Search
	Solution Representation and Evaluation
	Intensification
	Diversification

	Experimental Evaluation
	Benchmark Instances
	Parameter Tuning
	Analysis of Algorithmic Components
	Comparison to Anytime Pack Search
	Anytime Behavior
	Comparison of Lower Bounds
	Number of Considered NDT Records
	Comparison of LLBH, A*+BS+LS, CP, MIP, and ARA*
	GVNS Evaluation

	Conclusion

	A*-based Construction of Multivalued Decision Diagrams
	Introduction
	Decision Diagrams for Combinatorial Optimization
	MDDs for Problems with Both Selection and Sequencing Decisions

	Basic Concepts of A*-based Construction
	A* Search
	Constructing Exact MDDs by A* Search
	Constructing Relaxed MDDs
	Reducing the Open List by Merging

	Prize-Collecting Job Sequencing with One Common and Multiple Secondary Resources Problem
	Problem Formulation
	Related Work
	State Graph
	Strengthening of States

	Upper Bounds for the Total Prize of Remaining Jobs
	Classical A* Search
	A Mixed Integer Programming Model
	A Constraint Programming Model
	A*-based Construction of Relaxed MDDs
	Merging of States
	Labeling Function for Collector Nodes
	Dominated Merging
	Tie Breaking in the Priority Function

	Construction of Restricted MDDs based on Relaxed MDDs
	Experimental Results
	Benchmark Instances
	Particle therapy instances (P)
	Avionic instances (A)

	Comparison of Problem Specific Upper Bound Functions
	Comparison of A* Search, MIP, and CP

	Impact of Open List Size Limit  and Different Labeling Functions
	Upper Bound Comparison from relaxed MDDs
	Lower Bound Comparison to Other Approaches

	Longest Common Subsequence Problem
	Problem Formulation
	Related Work
	State Graph
	Independent Upper Bounds
	A*-based Construction of Relaxed MDDs
	Merging of States
	Labeling Function for Collector Nodes
	Static Labeling Function.
	Dynamic Labeling Function.

	Further Details

	Results
	Comparison of Independent Upper Bounds

	Impact of Parameters phi and beta
	Main Comparison of A*C and TDC

	Conclusion

	Decision Diagram Based Limited Discrepancy Search
	Introduction
	Prize-Collecting Job Sequencing with One Common and Multiple Secondary Resources Problem with Precedence Constraints
	Relaxed Decision Diagrams and Filtering
	Limited Discrepancy Search
	Experimental Results
	Conclusion

	Decision Diagrams for Finding Repetition-Free Longest Common Subsequences
	Introduction
	Contributions

	Related Work
	Problem Definition
	Integer Linear Program and Independent Set Model
	Relaxed Decision Diagrams for the RFLCS
	Problem specific upper bounds

	Incremental Refinement
	Initial relaxed MDD
	Character ranking for refinement
	Filtering and deriving new primal solutions
	Main Procedure

	Experimental Results
	Reduction Rates
	Main Results

	Conclusion

	Conclusions
	Proof of Theorem 3.4.2
	Further Results for the PCJSOCMSR
	Acronyms
	Bibliography

