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Hand tracking has become a state-of-the-art technology in the modern
generation of consumer VR devices. However, off-the-shelf solutions do not
support hand detection for more than two hands at the same time at distances
beyond arm’s length. The possibility to track multiple hands at larger distances
would be beneficial for colocated multi-user VR scenarios, allowing user-worn
devices to track the hands of other users and therefore reducing motion artifacts
caused by hand tracking loss. With the global focus of enabling natural hand
interactions in colocated multi-user VR, we propose an RGB image input-based
hand tracking method, built upon the MediaPipe framework, that can track
multiple hands at once at distances of up to 3 m. We compared our method’s
accuracy to that of Oculus Quest and Leap Motion, at different distances from the
tracking device and in static and dynamic settings. The results of our evaluation
show that our method provides only slightly less accurate results than Oculus
Quest or Leap motion in the near range (with median errors below 1.75 cm at
distances below 75 cm); at larger distances, its accuracy remains stable (with a
median error of 4.7 cm at the distance of 2.75 m) while Leap Motion and Oculus
Quest either loose tracking or produce very inaccurate results. Taking into
account the broad choice of suitable hardware (any RGB camera) and the ease
of setup, ourmethod can be directly applied to colocatedmulti-user VR scenarios.
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1 Introduction

Optical markerless hand tracking enables Virtual Reality (VR) applications where users
can interact intuitively using only their hands, without any additional input controllers or
external tracking infrastructure. Numerous games1 and applications2 already make use of
this technology.

As an example, (Khundam et al., 2021) argue that hand tracking will play an important
role in medical applications since it is more natural for real-world situations and comparable
in usability to conventional controllers. A user study by Voigt-Antons et al. (2020) also

OPEN ACCESS

EDITED BY

Anıl Ufuk Batmaz,
Concordia University, Canada

REVIEWED BY

David Lindlbauer,
Carnegie Mellon University, United States
Louis Nisiotis,
University of Central Lancashire, Cyprus
Filip Škola,
CYENS Centre of Excellence, Cyprus

*CORRESPONDENCE

Dennis Reimer,
reimerde@rwu.de

RECEIVED 19 February 2023
ACCEPTED 10 July 2023
PUBLISHED 19 July 2023

CITATION

Reimer D, Podkosova I, Scherzer D and
Kaufmann H (2023), Evaluation and
improvement of HMD-based and RGB-
based hand tracking solutions in VR.
Front. Virtual Real. 4:1169313.
doi: 10.3389/frvir.2023.1169313

COPYRIGHT

© 2023 Reimer, Podkosova, Scherzer and
Kaufmann. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

1 https://arvore.io/project/the-line

2 https://www.vrdesktop.net/

Frontiers in Virtual Reality frontiersin.org01

TYPE Original Research
PUBLISHED 19 July 2023
DOI 10.3389/frvir.2023.1169313

https://www.frontiersin.org/articles/10.3389/frvir.2023.1169313/full
https://www.frontiersin.org/articles/10.3389/frvir.2023.1169313/full
https://www.frontiersin.org/articles/10.3389/frvir.2023.1169313/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frvir.2023.1169313&domain=pdf&date_stamp=2023-07-19
mailto:reimerde@rwu.de
mailto:reimerde@rwu.de
https://doi.org/10.3389/frvir.2023.1169313
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arvore.io/project/the-line
https://www.vrdesktop.net/
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://doi.org/10.3389/frvir.2023.1169313


revealed a higher presence for the user doing a grab interaction and
better usability for typing interactions.

Several commercial state-of-the-art VR systems offer
integrated hand tracking solutions: Oculus Quest (Han et al.,
2020), HTC Vive Focus 3, and Leap Motion controller that can be
easily attached in front of a head-mounted display. Although
these systems are robust and easy to use, they primarily target
single-user applications. Multi-user scenarios, especially in a
colocated setup, are problematic for off-the-shelf hand
tracking solutions. Usually, hand tracking algorithms expect
only two hands within the tracking volume, those belonging to
the user who is wearing the tracking device and is alone in the
tracking space. When hands of colocated users enter the view
frustum of the hand tracking device, they often get erroneously
recognized in place of the correct pair of hands or disrupt an
already established hand tracking process. A narrow field of view
of tracking devices leads to a further problem: when the user’s
hands are not held in front of the device they are not tracked (this
situation is illustrated in Figure 1 on the left). In single-user
applications, the virtual hands are simply not rendered in such
cases. For multi-user applications, however, loss of hand tracking
is more problematic: if avatar hands stop being rendered, other
users lose important information on the posture and activities of
their collaborators; if the hands are rendered but not tracked the
avatars of others take on unrealistic or uncanny postures. Such
disruptions are especially noticeable in full-body avatars.

The global goal of our work is to enable natural and reliable hand
interactions in colocated multi-user VR scenarios. In order to
accomplish this, our aim is to enhance the 3D pose estimation of
tracked hands within an existing hand tracking system, thereby
enabling such interactions over a wide tracking range. Ensuring
consistent tracking of all users’ hands within the shared workspace is
crucial for this endeavor. To achieve reliable hand tracking for all
colocated users, we propose a method that takes advantage of the
tracking system’s capability to track more than two hands and
operates within an extended range of distances, and furthermore
accurately position the hands in a three-dimensional space, thereby
facilitating colocated hand interactions; this way, each tracking
device which is worn by a user can provide tracking input not
only for this user’s virtual hands but also for virtual hands of

colocated others. This idea is presented in Figure 1 on the right:
although the hands of user B are outside the field of view of their
hand tracking camera, they are tracked by the camera of user A and
can be rendered correctly. In this case, the camera of user A is
tracking four hands at the same time. This is not possible with the
integrated hand tracking of the Oculus Quest, where Han et al.
(2020) present the recognition algorithm with the fact that they
expect a maximum output of two hands, making the recognition of
more than two hands impossible. The same applies to Leap Motion
or integrated hand detection systems of other HMDs (like the HTC
Vive Cosmos).

Since hand trackingmethods integrated into off-the-shelf devices are
closed systems, it is currently impossible to adjust them to closer align
with the interaction requirements of colocated multi-user VR. For this
reason, we turn to methods that use RGB input to detect the user’s
hands. RGB-basedmethods have certain advantages: they canwork with
any RGB source, not being bound to any specific hardware, and they
work at larger distances, the limits of tracking being set only by the
resolution of users’ hands in the images. However, most RGB-based
solutions offer the capability of detecting the hand pose in 2D image
coordinates only, additional calculations being necessary to obtain the
full 3D pose.

This paper presents a hand tracking method that is based on the
MediaPipe framework, a cross-platform solution for object
recognition (including hand recognition) in 2D images using
machine learning. To calculate the full 3D hand pose based on
finger joint coordinates provided by MediaPipe, we have developed
an algorithm that uses an estimation of the user’s hand size to obtain
its distance from the tracking camera. We evaluate the performance
of our method in comparison with hand tracking methods provided
by Oculus Quest and Leap Motion, providing an accuracy
assessment for each method in static and dynamic conditions in
the range from 0.25 m to 3 m from the tracking camera. The results
indicate comparable performance for all evaluated methods in the
near range (at arm’s length) distances; however, our RGB-based
method provides better accuracy at mid-range and keeps working at
larger distances. With good tracking accuracy at typical tracking
area-scale distances and the ability to track more than two hands,
our method presents a step towards enabling reliable natural hand
interactions in colocated multi-user VR.

FIGURE 1
A colocated multiuser VR setup. User B’s hands are outside the range of their own hand tracking, but visible to user A. With off-the-shelf solutions,
only two hands can be detected at the same time within a short range (left). Our solution allows us to detect and position the hands of other users in 3D
space. This way the hands of user B can still be detected (right).
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2 Related work

Research on hand recognition and its application in VR setups
has gained significant attention. Precise and natural hand
recognition is essential for enabling immersive interactions.
Consequently, several studies have explored hand interaction in
multiuser scenarios and demonstrated the positive impact of such
interactions. For instance, Li et al. conducted user testing to assess
the influence of interactions in colocated multiuser scenarios related
to cultural heritage, and their findings indicated that social influence
positively affects performance expectancy and effort expectancy (Li
et al., 2018).

Streuber et al. conducted user tests in multiuser scenarios and
discovered that the absence of haptic and tactile feedback can be
compensated for if users are fully immersed in the virtual
environment. Their study highlighted the significance of user
immersion in mitigating the absence of physical feedback (Gong
et al., 2020).

Furthermore, Gong et al. conducted a case study on interaction
systems in multiuser VR settings, further contributing to the body of
knowledge in this area (Gong et al., 2020).

In addition to these studies, the following sections will delve into
research on RGB hand tracking and existing evaluations of hand
tracking accuracy, which are crucial factors for effective hand
interactions.

2.1 Hand tracking with RGB and RGB-D
cameras

This section reports related work on hand detection and hand
tracking based on single-image input from RGB and RGB-D
cameras. In contrast to pure RGB, RGB-D cameras provide
additional depth information on the scene in the image.
However, RGB cameras are more commonly available, and
therefore hand tracking methods based on RGB input only could
apply to a wider range of hardware.

For our use case, we need a hand tracking algorithm, which is
able to recognize the user’s hand and finger joints in real-time.
Various research was carried out in the area of hand detection
(detect a user’s hand in an image) and 3D position estimation (for
finger joints) for RGB (Panteleris et al., 2017; Zhang et al., 2020; Sun
et al., 2021) and RGB-D (Sharp et al., 2015; Malik et al., 2018; Huang
et al., 2021) cameras.

Huang et al. (2021) conducted a survey and performance
analysis of hand shape and pose estimation approaches using
RGB and RGB-D cameras. They find that there exist several
state-of-the-art methods which achieve a low estimation error
(<10 mm) enabling usable interactable applications. In terms of
effectiveness and efficiency, some challenges (such as occlusion or
self-similarity) have to be tackled further. Malik et al. (2018)
deduced 3D mesh representations of a hand from a single depth
image. They used a synthetic dataset with accurate joint annotations
(joint location error <15 mm), segmentation masks, and mesh files
of depth maps for neural network recognition with a processing time
from depth image to mesh of 3.7 ms. Zimmermann and Brox (2017)
published a method of 3D hand pose estimation based on RGB
input, tested on a synthetic dataset for neural network hand

recognition. The performance of this method was comparable to
existing depth approaches. Lin et al. (2020) used a neural network-
based pipeline for hand tracking and created a new 3d dataset for
training the algorithm. They did this for two simultaneously tracked
hands. They report a mean End Point Error of 12.47 mm but only at
an arm’s length range and for a maximum of two simultaneously
visible hands.

A method for transforming 2D finger joint poses into 3D points
was developed by Panteleris et al. (2017). They used OpenPose for
2D hand recognition and non-linear least-squares minimization to
fit a 3D model of the hand to the estimated 2D joint positions,
recovering the 3D hand pose. Additional recognition methods were
developed by Che and Qi (2021) and Sun et al. (2021) recognizing
the hand region and deriving 2D and 2.5D points of the hand using
networks. Wang et al. (2020) presented a method to track 3D real-
time interactions with a monocular RGB camera.

MediaPipe framework (Lugaresi et al., 2019) offers perception
pipelines to enable object detection among other things for RGB
cameras with the help of machine learning. Zhang et al. (2020)
showed a hand tracking implementation with MediaPipe offering
3D joint recognition for more than two simultaneously visible hands
with good performance and precision. Due to its open accessibility
and good performance (especially on mobile devices with
1.1 ms–7.5 ms on iPhone 11, depending on the used model
(Zhang et al., 2020)), we chose the MediaPipe framework as the
bases of our hand tracking method using RGB input. However, the
method presented by Zhang et al. (2020), like many similar methods,
provides 3D finger joint positions relative to the origin in the middle
of the hand. The distance from the hand to the tracking camera
remains unknown.

In this paper, we describe an extension of the method that
provides the calculation of the hand position in the 3D coordinate
frame of the tracking camera, resulting in the full world pose that is
necessary for interactions in MR applications with objects
positioned in the virtual environment.

2.2 Evaluating hand tracking accuracy

Previous studies have investigated various accuracies related to
hand tracking systems. Schneider et al. (2021) report the accuracy of
finger tracking for touch-based tasks such as pointing or drawing.
They report lower spatial accuracy for HTC Vive hand tracking than
for Oculus Quest and Leap Motion; users mostly preferred the Leap
Motion sensor. Their previous results indicated better tracking
accuracy for Leap Motion than for HTC Vive, with a Z-error of
approximately 2.6 cm when interacting with horizontally aligned
surfaces (and 1 cm for vertically aligned surfaces respectively) in
walk-up-and-use scenarios Schneider et al. (2020).Another accuracy
study for Leap Motion was performed by Vysocký et al. (2020),
reporting an error that can be up to 1 cm for measurements made at
a distance of 20 cm.

Mizera et al. (2020) compared the visual tracking accuracy of the
Leap Motion sensor to the accuracy of two data gloves. They found
that the Leap Motion was less precise when measuring finger
bending but very precise in estimating fingertip positions. They
describe the Leap Motion as the best device to do fine manipulation
tasks with the thumb and an opposite finger.A framework to
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measure tracking accuracy for VR hand tracking systems was
presented by Abdlkarim et al. (2022), demonstrating its use on
Oculus Quest 2. They used a height-adjustable table which can be
lowered to a height difference of 82 cm. The Oculus was attached on
top so it could track the user’s hand while executing the experiment.
Ground truth data was collected from infrared markers that were
put on the table and tracked by an optical camera system. Users were
instructed to point at different markers during the experiment to
collect data. The authors reported an average error of 1.1 cm in the
position of fingertips for the Oculus Quest 2.Ferstl et al. (2021)
introduced and evaluated strategies to mitigate the impact of hand
tracking loss. Since they show that tracking loss can influence the
experience of users, we designed our evaluation to include tracking
loss distances for all assessed hand tracking systems.

Due to the lack of standardized evaluation techniques for
dynamic hand movements [besides methods for machine tools
and iGPS and laser tracker (Wang et al., 2011; Ding et al.,
2020)], we present our own method, tailored to our experiment,
to determine the tracking accuracy and error curve for dynamic
hand movements.

3 Methodology

Our workflow of hand tracking based on RGB input consists of
three stages:

1. Hand Detection: Hands are detected in the RGB image; 3D
positions of finger joints are calculated relative to the center of
each hand. This stage is performed by the hand tracking
implementation of Zhang et al. (2020) in the MediaPipe
framework.

2. Hand Size Estimation: Real-world hand size of the user is
estimated according to one of the methods described in
Section 3.2.

3. Depth Estimation:Distance of the hand to the tracking camera is
calculated according to the method described in Section 3.3,
using the estimation of the real hand size.

This workflow is presented in Figure 2, which includes the
details of each stage described in the sections below.

Our objective is to develop a workflow for calculating the hand sizes
of users and utilizing this information to accurately position the tracked
virtual hand (using the MediaPipe framework) within a three-
dimensional environment, thereby enabling natural hand interactions.
To evaluate the effectiveness of our approach, we will compare it with
existing off-the-shelf tracking solutions.By leveraging hand size
estimation for positioning, we anticipate higher accuracy in hand
tracking as the precision of hand size estimation improves. We also
expect to achieve accurate hand size estimation by inferring the hand size
from the user’s body height.Overall, expect a system capable of
facilitating 3D hand interactions with a much larger tracking range,
surpassing the capabilities of existing off-the-shelf tracking solutions.
This advancement will make our solution highly advantageous for use in
colocated VR scenarios.

3.1 MediaPipe hand detection

We chose the MediaPipe framework (Lugaresi et al., 2019) as the
hand detection step in our workflow (and the implemented hand
and finger detection of Zhang et al. (2020)) due to its capacity to
detect more than two hands at the same time. As they report an
average precision between 86.22% and 95.7% for palm detection we
can assume a similar detection accuracy in our experiment.

With the help of two TensorFlow machine learning models
(palm detector and hand landmark model), MediaPipe tracks the
finger joints of the hand with a high prediction quality. As a result of
the recognition, we get the following information from the
framework for each detected hand:

FIGURE 2
Step-by-step diagram for adjusting and positioning a detected hand from MediaPipe. After detection, the virtual hand is adjusted to the real-world
hand size and then positioned with the help of the intercept theorem.
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• Handedness: A label (“left” or “right”) and an estimation
probability for this handedness.

• World Landmarks: 21 landmarks consisting of x, y, and z
coordinates with the origin at the hand’s approximate
geometric center.

• Normalized Landmarks: 21 landmarks consisting of x, y, and
z coordinates in the normalized viewport space of the camera.

The landmark definitions can be seen in Figure 3 (taken from the
official MediaPipe hand tracking website3). The marked landmarks
are later used for hand length calculation in the virtual space.
Together with the remaining landmarks in the coordinate frame
of the center of the hand and normalized landmarks, they are used in
the calculation of the distance of the hand to the tracking camera.
This detection step can be seen as the first step in Figure 2.

3.2 Hand size estimation

We use the real-world length of the user’s hand to estimate the
distance of the hand to the camera. To obtain the hand’s size, three
different methods are used, resulting in three variants of our hand
tracking method that were evaluated. In Figure 2 these methods are
visualized in the second step.

1. We use 3D hand landmarks with the origin in the center of the
hand from MediaPipe to calculate the distance between the wrist
position and the tip of the middle finger. This distance represents
the length of the hand. We refer to this method of hand size
calculation as MediaPipeInternal in the rest of the paper.

2. We measure the real hand length of the user (wrist to the tip of
the middle finger) and use measurement as an input to our
program (later referred to as MediaPipeHand).

3. The third method requires more calculations but could provide an
easier setup experience for the user. Since most people do not know
the length of their hand, we use the body height as an input parameter
to infer the length of the hand (later referred to as MediaPipeBody).

Pheasant (2003) conducted an examination of different body
part sizes and their frequency in the English population.
Figure 4 is an excerpt from this book and shows different
body part size estimations (in mm) with three percentiles
(including the mean) and the standard deviation for a
normal distribution. We use these values to create normal
distributions and derive body part sizes from another
reference body part size. Zafar et al. (2017) evaluated the
body-hand relations by calculating the body size based on
hand size with an accuracy of 2.9 cm. Since their method also
requires the age of the user and we want to keep the input data
set as small as possible, we calculate the hand size using the
tables from Pheasant (2003).

This way, the actual body part does not have to be physically
measured. In our case, we use the body size of the user to get its
percentile in the normal distribution which is then used to
recalculate the hand length size for this percentile. For this we
use the following equations:

z � x0 − μ

σ

p � 1
2

1 + erf
z�
2

√( )[ ]
x � μ + σ p z( )

(1)

For our experiments, our user had a body size (height) of 1892 mm.
For this size we look up μ = 1740 mm (given at a percentile of 50%)
and σ = 70 in Figure 4. With Eq. 1 we calculate a percentile of
0.985.For the hand size we look up μ = 190 mm and σ = 10. With the
percentile of 0.985, we can estimate a hand size of 211.71 mm for the
given body size. In comparison, we have determined a measured
hand size of 213 mm for the user.

We calculated the hand size based on the body height of all
participants in our user test (see Section 4.2) and compared the
resulting value to the measured hand size. The box-plot of the
difference between the calculated and the measured hand length can
be seen in Figure 5. With the mean difference of 0.0787 cm, it can be
seen that the hand length can be calculated accurate from the body
size, even though differences of up to 1 cm are possible depending on
the user. The exact measurement results can be found in the
Supplementary Material.

FIGURE 3
Landmark indices of the MediaPipe framework. Marked landmarks are used for hand length calculations.

3 https://google.github.io/mediapipe/solutions/hands.html
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3.3 Hand depth estimation

The MediaPipe hand tracking solution detects 3D landmarks in
the coordinate frame associated with the hand’s approximate
geometric center. Additionally, MediaPipe delivers 2D space
coordinates of the detected landmarks in the camera image. To
obtain the 3D position of the hand in the coordinate frame of the
tracking camera, we use an expected real-world hand length of the
user to adjust the 3D position of the landmarks to fit the size of the
hand in the image and then set the depth of the hand along the
z-coordinate of the camera frame.

To fit the landmarks to the expected size, we calculate a scaling
factor s which we use to scale the landmark’s 3D position along its
connected finger part (e.g., see Figure 3—(12,11), (11,10), (10,9),
(9,0)). This factor is calculated with:

s � lR
lV

(2)

where lR is the expected hand length and lV is the calculated virtual
hand length. For the method where we use the given 3D landmarks
of MediaPipe to calculate the expected hand length, the scaling
factor will always be 1. In Figure 2 this can be seen in the third step.

3.3.1 Hand depth estimation with expected hand
length

With the fitted 3D coordinates of the tracked landmarks we now
have a correctly scaled hand with the expected hand length, which
only has to be adjusted in the distance to the virtual camera. To
achieve this we use the intercept theorem (Schupp, 1977), which
describes rules about the ratio of parallel line segments which are
intersected by a line. We calculate the hand length of the normalized
2D landmark positions in the camera’s image space (lsm), which are
obtained from MediaPipe. We also transform our fitted 3D
coordinates to the viewport space and calculate the hand length
of these transformed viewport points (lsr).

With the intercept theorem, we know the following about the
ratios:

dR

dV
� lsr
lsm

(3)

To get the final depth dR to the camera we solve the equation to.
dR � lsr

lsm
pdV � sf pdVwhere dV in this step is the current distance

of the virtual hand to the virtual camera. The step-by-step procedure
from detecting the hand to virtual positioning can be seen in
Figure 2.

4 Hand tracking evaluation

We conducted three experiments to evaluate the effectiveness of our
hand trackingmethod. InExperiment 1, we conducted a comprehensive
technical assessment to compare the accuracy of ourmethod against two
off-the-shelf solutions: Leap Motion and Oculus Quest. This evaluation
focused on the hand data from a single user. Experiment 2 aimed to
validate the performance of our hand trackingmethodwith hand images
from multiple users. We analyzed three variants of our method using
data input fromnine users. InExperiment 3, we conducted a pilot test to
assess the application of our hand trackingmethod in an actual colocated
scenario, involving a pair of users.

The following sections will present each experiment sequentially,
along with their corresponding results. This organization facilitates a
clear grouping of each experiment with its respective results, enhancing
readability and understanding of the outcomes.

FIGURE 4
Body size estimations excerpt from Pheasant (2003).

FIGURE 5
Discrepancy between measured hand length and calculated
hand length of all participating users.
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4.1 Experimental setup

As hand tracking devices we used a Leap Motion sensor, an
Oculus Quest 2 HMDwith its integrated hand tracking, and a 1080p
webcam with a 60° horizontal field-of-view and with MediaPipe as
the tracking framework. Figure 6 shows a sketch of the experimental
setup.

The tracking devices were mounted on a fixture that can move
back and forth along a rail. The real-world position offset between
the Vive tracker and the real-world position of the hand tracking
device (as well as the offset between the Vive tracker and the real
hand) was measured and taken into account in the virtual world
calculations. The rail is 4 m long, which was sufficient for the
maximum tracking distance of the evaluated methods. Vive
Lighthouse base stations were positioned around the rail system.
One Vive tracker was attached to a fixed position on the bracket and
the other to the hand to be detected. Offsets to the tracking devices
and the center of the hand were measured and added to the
respective positions in the evaluation.

The VR application for collecting evaluation data was developed
with Unity3D (v.2021.2.14). The rendering of tracked user hands
was achieved with the help of an in-house developed framework that
provides a universal layer for collecting and distributing hand
tracking data obtained from any input source. For hand tracking
the following versions of the hand tracking API were used: Oculus
Integration v.38, Ultraleap Plugin v.5.4.0 and
MediaPipeUnityPlugin4 v.0.8.3 with MediaPipe backend v.0.8.9.

4.2 Experiment 1: hand tracking accuracy in
comparison with integrated solutions

In this experiment, we access the performance of our hand
tracking method based on RGB input by comparing it to the
methods integrated into Oculus Quest and Leap Motion. All

selected solutions can be combined with HMDs and are therefore
in principle suitable for use in a colocated VR setup. We evaluate
three variants of our RGB-based hand tracking method:

• MediaPipeInternal: Hand size is calculated based on 3D
landmarks (in the coordinate frame of the hand center)
detected by MediaPipe.

• MediaPipeHand: Hand size is given as input, following a
physical measurement of the user’s hand.

• MediaPipeBody: Hand size is approximated from the body
height that is given as input.

Since our MediaPipe-based method is not fine-tuned for a
specific interaction range, in contrast to Leap Motion and Oculus
Quest, we do not expect it to be more accurate than those methods in
the close range (within the arm’s length). Nevertheless, we expect to
be able to cover a larger tracking range with MediaPipe hand
tracking and to achieve higher tracking accuracy at distances
beyond arm’s length. We expect our method to provide a usable
tracking capability that works with a simple RGB camera, is simple
to set up and has the ability to detect more than two hands at a time.

We analyze the following metrics:

• Static distance error: Error in the distance of the hand from the
tracking device, compared to the ground-truth, while the hand
is held still in one position. This metric is calculated at
different distances from the tracking device.

• Dynamic distance error: Error in the distance of the hand from
the tracking device, compared to the ground-truth, while the
hand is moving away relative to the tracking device. We
analyze the correlation between the dynamic error and the
distance to the tracking device for all methods.

• Tracking lost and tracking acquired distances: Distance at
which tracking is lost when the hand is moving away and the
distance at which tracking is found when the hand is moving
towards the tracking device.

The ground-truth distance dr of the hand to the tracking device is
measured with an externally mounted Lighthouse 2.0 tracking system,

FIGURE 6
Sketch of the experimental setup.

4 https://github.com/homuler/MediaPipeUnityPlugin
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the tracking accuracy of which has been shown to be in the millimeter
range with high replicability of position measurements (Borges et al.,
2018; Bauer et al., 2021). HTC Vive trackers were attached to the wrist
of the hand and the tracking device, allowing the ground-truth distance
dr in the frame t to be calculated as the distance between two trackers,
adjusted by the offset between the center of the tracker and the center of
the hand and between the center of the second tracker and the center of
the tracking device.

The virtual distance dv of the virtual hand to the virtual camera is
calculated from the hand tracking data. The absolute distance error
δ(t) for a frame t can thus be calculated with

δ t( ) � |dv − dr| (4)

4.2.1 Measuring static tracking error
For the static error measurement, the tracking device and the

tracked hand of a user were positioned at fixed distances from each
other with d ∈ 25, 50, 75, 100, 150, 200, 250 cm. Smaller intervals of
25 cm were chosen in the range where Leap Motion and Oculus
Quest could consistently track the hand. For d > = 100, the sampling
interval was increased to 50 cm since only MediaPipe was able to
consistently track the hand for these distances.

At every sampling position, we collected hand tracking data overN=
400 consecutive frames. This was done 25 times per position for each
tracking method (Quest, Leap Motion, and three variants of the
MediaPipe method). Each sample containing tracking data of
400 consecutive frames was collapsed to its median value, to account
for possible small movements of the user’s hand. This way, our resulting
evaluation sample for each tracking method consists of 25 median static
error values per one sampling position. The collections were only carried
out if there was consistent tracking during the 400 frames. For Oculus
Quest and LeapMotion this worked in the range [25 cm; 75 cm] and for
all variations of the MediaPipe method in the range [25 cm; 250 cm].

4.2.2 Results: static tracking error
A few outliers were observed, which likely resulted from the

temporary tracking loss of the deployed ground truth trackers in the
environment. As these outliers were not attributed to the hand tracking
itself, they were excluded from the analysis to prevent any false influence
on the results. Following the removal of outliers, the Shapiro-Wilk
normality test was performed on all median error samples. Because not

all median error distributions were normal and because sampling
position ranges were different for the evaluated methods, we
compare the median static error of the evaluated methods separately
for each sampling position, using the non-parametric Independent-
Samples Median test. We also analyze the impact of the distance to the
tracking device on the median static error for each method in the non-
parametric Friedman’s 2-way ANOVA test. The corresponding box-
plots are presented in Figure 7.

As expected, the tracking error for close distances [25 cm;
50 cm] is the lowest for Oculus Quest and Leap Motion.
Interestingly, MediaPipeHand delivered a lower error of 1.53 cm
than Oculus Quest with a distance of 75 cm to the camera (p <
0.001), which is still within the user’s arm’s reach. Except for Leap
Motion, the other tracking methods show an increasing median
error for increasing distances to the camera. This is in line with our
results from the dynamic evaluation.

For distances greater than 75 cm, only the values of the
MediaPipe methods can be compared. However, a significant
difference in mean error can be found between all three methods
for all distances (p < 0.001). The error for MediapipeInternal is
significantly larger at all further sampling positions than for
MediaPipeBody and MediaPipeHand. For large distances, the
error of MediaPipeInternal increases to values significantly above
10 cm, which can be too inaccurate for precise interactions. The
results show that this error can be significantly reduced by using the
real hand size (p < 0.001). With a maximum error of 4.47 cm at a
distance of 250 cm from the camera, reasonably precise interactions
in virtual space at greater distances are also possible with this
method. The derivation of the hand size by the body size also
shows a significantly lower error. As expected, however, the accuracy
is not quite as good as when the actual hand size is given. With a
maximum error of 8.57 cm at a distance of 250 cm from the camera,
the error is significantly larger, but still improves the initial
recognition of MediaPipe by more than three times (with an
initial error of 28.48 cm). A summary of the resulting mean-,
median- and p-values can be found in the Supplementary Material.

These results show that the accuracy of MediaPipe tracking in
3D space can be significantly improved by inputting the user’s real
hand size and allowing 3D interactions for large distances, which is
not possible for the Leap Motion sensor or the Oculus Quest hand
tracking.

FIGURE 7
Box-plots for static data collection for each method and distance.
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4.2.3 Measuring dynamic tracking error
For the dynamic evaluation, the user held his hand at a fixed

position while the tracking device moved away from it on a rail
system (starting at the distance of 25 cm), at a constant speed up to a
distance at the edge of the device tracking range. While a user
walking away from the tracking device would have presented a more
ecological hand tracking situation, the rail system was used in order
to ensure repetitiveness and uniformity of data collection for this
technical evaluation. The movement range was: for the Leap Motion
sensor r → [0.25; 0.75], for Oculus Quest r → [0.25; 1.75] and for
MediaPipe r → [0.25; 2.75]. This procedure was repeated 10 times
for each tracking method. Dynamic error data resulting from these
recordings were averaged and analyzed according to a procedure
described in detail in the following section.

4.2.4 Results: dynamic tracking error
For each frame, we get the real-world distance dr and the virtual

world distance dv of the hand to the camera. Tracking error for was
calculated with Eq. 4 and paired with the real-world distance
dr.Examples of dynamic error data samples for OculusQuest and
MediaPipeHand prepared in this way are illustrated in the scatter
plot in Figure 8, where the total range of the collection is shown.

The discretized dynamic error distributions are used to perform
linear regression, with the gradient of the fitted regression line
determining the rate of the error increase with distance from the
tracking device. Since the tracking ranges of the evaluated tracking
methods are different, we perform the linear regression separately in

three distance ranges: NearRange [< 75 cm], MidRange [75 cm;
150 cm] and FarRange [>150 cm]. This procedure results in 10-
entry distributions of regression coefficients for every tracking
method, in distance ranges covered by the method. We can now
compare all five tracking methods in NearRange, Oculus Quest and
three MediaPipe variants inMidRange, and three MediaPipe methods
in FarRange. We use one-way ANOVA to compare mean regression
coefficient values between themethods within each distance range (data
is normally distributed in the Shapiro-Wilk test).

The resulting ANOVA plots are shown in Figure 9. The scaling
of the gradients is cm

cm, showing the increase of the tracking error in
cm per each cm of distance from the tracking device.

InNearRange, LeapMotion shows themost consistent trackingwith a
mean gradient of 0.0007. This is a significantly smaller error increase rate
than for the Oculus Quest and the MediaPipe methods. Oculus Quest has
the steepest error increase rate with the distance with a mean gradient of
0.213 and shows significant differences to MediaPipeBody (p = 0.006) and
MediaPipeHand (p = 0.002). The mean gradient of 0.098 for
MediaPipeHand is the lowest for the three MediaPipe methods, with a
mean gradient of 0.117 for MediaPipeBody and 0.162 for
MediaPipeInternal. The statistical analysis, along with a substantial effect
size of η2 = 0.827 (as measured by eta-squared), reveals significant
differences among all MediaPipe methods, except for MediaPipeHand
and MediaPipeBody. Further information regarding means and pairwise
comparisons can be found in the Supplementary Material.

MidRange shows significant differences (p < 0.001) and an effect
size of η2 = 0.992 for all pairwise comparisons of mean gradients,

FIGURE 8
Scatter plots of two example dynamic error distributions for OculusQuest andMediaPipeHand. Regression lines for OculusQuest data are illustrated
separately forNearRange,MidRange and FarRange due to the rising gradients in each range. The linear equations for the regression lines are in cm

cm. Quest
median error shows a higher rising error for large distances.
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except (as in NearRange) between MediaPipeHand and
MediaPipeBody (p = 0.333). With a gradient of 0.567, the Quest
has the largest gradient here, which more than doubled compared to
NearRange. Since the gradient of MediaPipeHand with 0.054 and
MediaPipeBody with 0.064 has decreased somewhat compared to
theNearRange, the tracking error in these areas does not increase as
much. In comparison, the gradient of MediaPipeInternal with
0.144 is similarly high as in NearRange. This shows that the
external input of hand size (whether measured or by body size)
improves the tracking error. A significant difference between hand
size by measurement and by body size cannot be found in
MidRange.

In FarRange, the Oculus Quest again shows a higher gradient
compared to the closer ranges (with a mean gradient of 0.749). This
is again significantly higher than in the MediaPipe methods (p <
0.001). This shows a strongly increasing error for Oculus Quest and
large distances and that the hand tracking of the Quest does not
seem to be aligned for these distances. The MediaPipe methods
again show similar mean gradients as in MidRange. With a mean
gradient of 0.102, MediaPipeInternal shows the largest change in
tracking error among the 3 methods, with a significant difference
from MediaPipeHand (p = 0.006; a significant difference from
MediaPipeBody could not be shown at p = 0.170). With a mean
gradient of 0.059 for MediaPipeBody and 0.047 for MediaPipeHand,
these two gradients are close to each other. As there is again no
significant difference for FarRange between these two (p = 0.915), it
can be generally stated that the increasing error can be significantly
improved by entering the hand size compared to the internal hand
size, but no significant difference could be determined between hand
size calculation by measurement and by derivation by body size. The
one-way ANOVA analysis yielded an effect size of η2 = 0.98, as
measured by eta-squared. This substantial effect size indicates a
strong influence of the methods on the observed differences in the
gradients. The findings highlight the significant impact that the
choice of method has on the measured outcomes.

Figure 8 shows the distributed points with its linear regression lines
where one can see, how fast the error rises for Oculus Quest in
comparison to the MediaPipe method with inputting the measured
real hand size.

4.2.5 Lost tracking distance
For each tracking method, we recorded the distance at

which the tracking device loses the hand while being moved

away. To do this, the user positioned his hand at a distance
where it was reliably tracked. After the hand was tracked for at
least 1 s, the device was moved away from the hand and the
moment in which the device lost the hand was recorded. To
avoid recordings for moments in which the tracking was only
briefly disrupted, the hand had to be lost for at least one second.
This procedure was repeated 25 times for each tracking
method.

4.2.6 Results: lost tracking distance
A total of 25 data points were collected for each tracking

method. The medians proved to be normally distributed in the
Shapiro-Wilk test (Shapiro and Wilk, 1965) after three outliers
(caused by interferences in the ground truth tracking) had been
removed (p = 0.229 for the MediaPipe tracking, p = 0.557 for the
Leap Motion, p = 0.293 for the Quest tracking). The resulting box-
plots can be seen in Figure 10.

For the main analysis, Welch’s test (Welch, 1947) was
employed, yielding a significance level of p < 0.001 and an
effect size of η2 = 0.827. Subsequently, the post-hoc analysis
was conducted using Games-Howell test. The findings from the
post-hoc analysis demonstrated that the mean lost tracking
distance for the MediaPipe tracking method (mean distance
of 412.48 cm) was significantly greater than that of all other
methods (p < 0.001). The mean lost tracking distance of the
Oculus Quest was significantly larger than with Leap Motion
(p < 0.001), but also significantly lower than with MediaPipe
tracking (p < 0.001). The lowest mean distance where the
tracking is lost is the lowest for Leap Motion with 95.6 cm.
With 237.78 cm the Oculus Quest has quite a large tracking
range, but also has severe tracking errors at longer distances, as
can be seen in the previous sections. The detailed results can be
found in the Supplementary Material.

4.2.7 Acquired tracking distance
The measurement of the distance at which the tracking

device acquires the tracking of the hand follows a similar
procedure. The device was set at a distance where the hand is
not detected. After the program ensured that the hand was not
tracked for at least 1 s, the device was moved toward the hand
until the hand was tracked. Again, the hand has to be tracked for
at least 1 s to record the distance. The procedure was repeated
25 times per method.

FIGURE 9
Mean gradient values for each method and distance range. Gradients are in cm

cm.
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4.2.8 Results: acquired tracking distance
Distributions of recorded distances at which tracking was

acquired deviated from normal (in the Shapiro-Wilk normality
test) for two out of three tracking methods; therefore, median
tracking acquired distance values were compared in the
Independent-Samples Median test. The corresponding box-plots
are illustrated in Figure 10.

The pairwise comparisons of the Independent-Samples Median
test demonstrate significant differences between the methods, with a
notable effect size (as measured by eta-squared) of η2 = 0.827. These
comparisons reveal that the median distance of 324.94 cm for
MediaPipe is significantly greater than that of Leap Motion,
which measures 46.05 cm (p < 0.001), as well as Oculus Quest,
with a median distance of 40.33 cm (p < 0.001). The difference in
acquired tracking distance between Oculus Quest and Leap Motion
is also statistically significant (p = 0.008), although the
corresponding median values are much closer (with a difference
of 5.72 cm). The fact that MediaPipe consistently acquires hand
tracking in a range of approximately 3 m shows that this method
could be used for larger areas while Leap Motion and Oculus Quest
are limited to near-range distances within arm’s length. The full
statistical results can be found in the Supplementary Material.

4.3 Experiment 2: accuracy MediaPipe-
based hand tracking on data of multiple
users

The primary objective of this second experiment was to validate
the effectiveness of our MediaPipe-based method for various users

and to assess the influence of hand size estimation on the accuracy of
the 3D positioning error in greater depth. While the first experiment
primarily focused on performance evaluation and method
comparison, the second experiment aimed to explore the
application of our method with multiple users. Although it did
not involve an extensive user study with joint-error measurements,
it served to confirm the usability of our method and highlight other
impacts on positioning errors.

In this experiment, we repeated the procedure for static and dynamic
tracking error measurement from Experiment 1, this time focusing only
on MediaPipeInternal, MediaPipeBody, and MediaPipeHand methods.
For the static error measurement, four hand tracking data recordings
(400 frames each) per distance per user userweremade at distances d∈ 25,
50, 75, 100, 150, 200, 250 cm between the tracking device and the user’s
hand. One recording of dynamic tracking error data per user (for each
method)was conducted. The calculations of the distance error in the static
and dynamic conditioned were the same as in the previous experiment.

The hardware and software setup used for data recording was
the same one as in Experiment 1. In total, hand tracking data was
collected from 9 users, 3 female and 6 male, ranging in age from
20 to 56 years. Including measurements of body and hand size and
introduction, the procedure took about 45 min per user.

4.3.1 Results: static tracking error
Figure 11 presents box plots illustrating the average static error

of MediaPipeInternal, MediaPipeBody, and MediaPipeHand at
different distances. To maintain a consistent analysis metric and
account for the relatively low variance observed in the four median
error values obtained for each user at each distance, we consolidated
these errors by calculating their median value and employed this

FIGURE 10
Box-plots medians for lost and acquired tracking distance for tracking methods. Labels are median values.
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value for the analysis. As evident from the results, outliers are
observed, which may have been caused by temporary tracking
losses of the ground truth system. Despite their presence, these
outliers were retained in the analysis because it could not be
guaranteed that their removal would be advantageous for
maintaining the integrity of the test, as previously mentioned.

With the data deviating from the normal distribution inmany cases,
we again used the Independent-Samples Median Test to find whether
the error depends on the hand tracking method at each distance. The
methodwas statistically significant for the error at the distance of 200 cm
(p = 0.016; follow-up pairwise comparisons did not find any statistical
significance), with the result at the distance of 250 cm being marginally
below statistical significance. From the pattern seen in the box-plots with
MediaPipeInternal producing visibly higher errors at larger distances, we
believe that more detailed results could be achieved with a larger sample
size of users. Nevertheless, the available data supports the results of the
main analysis. The detailed results can be found in the Supplementary
Material.

Analyzing the error dependence on the distance from the tracking
camera for each method, we found that the error increases with the
distance for MediaPipeInternal (p = 0.002 in Independent-Samples
Median Test) and MediaPipeBody (p = 0.029). For MediaPipeHand,
no statistically significant dependency of an error on the distance could
be found.

4.3.2 Results: dynamic tracking error
We used the same approach for calculating the gradients of error

change in the near, middle and far range on the evaluation data of
multiple users. Figure 12 shows the gradients for each method in
NearRange, MidRange and FarRange.

We used Mixed ANOVA with the range as a repeated-
measures factor (with three levels) and the method as a
between-subject factor (also with three levels). In this
analysis, only the range was found to be statistically
significant (F = 4.683, p = 0.014), with within-subject
repeated contrasts showing the increase of gradient from
MidRange (mean = 0.035) to FarRange (mean = 0.112), p =
0.002. Figure 12 shows mean gradients for each tested range and
method.

4.4 Experiment 3: pilot demonstration in a
colocated scenario

The goal of this last experiment was to test the usability of our
hand tracking method in a real-world colocated VR scenario. To do
this, we developed a simple VR application in which two users can
see each other’s avatars consisting of the virtual HMD and hands
steered by head and hand tracking input. The aim was not to create a
detailed qualitative user analysis, but rather a proof-of-concept
demonstration.

In our setup, each user has an HTCVive tracker attached to their
hand, which provides position and rotation data of the real hand
positions in the space of the Lighthouse 2.0 Tracking and serves as
ground-truth. Both users have a VR headset on (we used Oculus
Quest with its own hand tracking feature turned off). User 1 has an
RGB camera attached to the HMD (in this scenario a ZED mini
camera that only provided the RGB image of one lens). With this
camera, all hands were detected and visualized in the shared virtual
environment. Since only User 1 had a running hand detection
system, it was ensured that only one system tracked all hands
and placed them in the virtual space. The users stood facing each
other at a distance of about 1.5 m and held their hands in the
tracking area of the RGB camera. The camera simultaneously
detected and tracked the hands of User 1 and User 2. In the
virtual environment, the user’s hands were positioned with the
hand tracking input. Our proof-of-concept colocated VR scenario
can be seen in the Supplementary Video S1 in the supplemental
materials.

4.4.1 Results: experiment 3
Figure 13 shows a snapshot of the scenario experienced by users

in the experiment. The RGB image of the tracking camera is
overlayed with the virtual scene seen in VR to give a better
illustration of hand tracking. The plane that can be seen in
Figure 13 is the floor plane in the virtual environment. Since
only User 1 had a hand tracking device attached to his HMD,
the view of all virtual hands, his own and those of User 2, is enabled
by his hand tracking camera. The same virtual hands were displayed
to User 2 and animated by hand tracking data.

FIGURE 11
Box-plots of the mean error at every measured distance in the test with multiple users.
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Hand tracking data was recorded over a period of about 30 s,
resulting in snapshots of 1242 consecutive frames. Detected hands
were assigned in pairs to the corresponding Vive trackers, and the
deviation from the ground truth tracker position was calculated as
tracking error. The position errors for each user are plotted in
Figure 14. Peaks and missing values in the plot are moments where
corresponding hands were not tracked for a moment. Since a
smoothing filter is used when applying tracking input to virtual
hands for smoother movements, inaccurate positioning can occur
right before losing or after acquiring tracking.

The calculated mean error for the hands of User 1 was 5.1 cm
with a standard error of 0.154. The 95% confidence interval provides
a lower limit of 4.8 and an upper limit of 5.41 cm. For user 2, we
obtain a mean of 8.21 cm with a standard error of 0.17, a lower limit
of 7.88, and an upper limit of 8.55 cm for the 95% confidence
interval.

The higher position error values for User 2 were expected since
User 2 was further away from the camera. The values correspond to
the expectations of a more realistic scenario based on the results of
the dynamic and static tracking error evaluations.

Although we calculated the error of the tracked hands in this
scenario, it is important to note that a single user pair is insufficient
to provide a comprehensive user study for real-world colocated
applications. Nevertheless, we aim to demonstrate that our method
is not limited to controlled scenarios with fixed machinery but can
also be applied in real colocated setups involving two users. To
further evaluate the presented method, it would be valuable to
conduct a qualitative user study that measures interaction
precision, usability, and user experience. Such a study would
provide an interesting avenue for future research and a more
comprehensive evaluation of our approach.

5 Discussion

The results of Experiment 1 show that Oculus Quest and Leap
Motion are more accurate at arm’s length range than RGB input-
based tracking with MediaPipe, which was to be expected. The
tracking errors for Oculus Quest and Leap Motion are in line with
previous research results (Schneider et al., 2020; Abdlkarim et al.,

FIGURE 12
Mean gradient values for each method and distance range in Experiment 2. Gradients are in cm

cm.

FIGURE 13
POV of the user with the tracking device attached tracking also the hands of another user. Both users are colocated, the real-world view of the
camera can be seen slightly overlayed.

Frontiers in Virtual Reality frontiersin.org13

Reimer et al. 10.3389/frvir.2023.1169313

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2023.1169313


2022). However, if the user’s hand length is used to improve the
MediaPipe-based method (either being estimated based on the
height or entered from a real measurement), RGB tracking
delivers comparable accuracy with a distance error in the range
of 12.4 mm–21.3 mm (see the lowest and largest error in Figure 7 for
MediaPipeHand and MediaPipeBody in distances between 25 cm
and 75 cm). This shows that in this distance range the improved
RGB hand recognition offers interactions with similar precision as
the off-the-shelf solutions.

At the best value in the close range of 25 cm, the error of the RGB
method with a real measured hand is 3.36 times lower than without
external input. In the outer range at a distance of 250 cm even by a
factor of 6. Due to the improvement through external hand size
input, this even allows interactions in ranges of 2.5 m, which is not
possible with Oculus Quest or Leap Motion. This also qualifies this
method for use in colocated multi-user scenarios, although these
would need to be investigated in more detail together.

The results of the acquired and lost tracking distance show that
Oculus Quest and Leap Motion are in a similar range at which
distance a hand is recognized for the first time. This makes sense in
the sense that both systems were designed for interactions in the
hand length range. In comparison, MediaPipe has an almost eight
times higher distance at which the hand is recognized for the first
time, which also allows for a significantly higher range and more
possibilities, for example, to recognize the hands of other users that
are further away from the own user.

After a hand has been detected once, all methods have a greater
distance where the tracking of the hand is lost again. It is striking that
Leap Motion only allows hand detection in the areas where tracking is
guaranteed to be as accurate as possible, whereas the Oculus Quest goes
beyond this range and continues tracking the detected hand up to a
distance of 235 cm. These differences between acquired and lost tracking
are shown by the purple boxes in Figure 10. This lack of limitation of the

Oculus Quest for distances beyond arm’s length also leads to very
strongly increasing tracking errors in this case. This makes the Quest
unusable due to high tracking errors in Mid- and FarRange detection,
even though hand tracking would be possible for the system in this
range.

This is also reflected in the results of dynamic tracking. Within
the tracking range, Leap Motion has significantly fewer
discrepancies in tracking error than, for example, the Oculus
Quest. The latter shows significantly increasing tracking errors,
especially in tracking outside the NearRange.

MediaPipe is much more consistent here, even though the
tracking error still increases as the distance increases. However,
this slope is nowhere near as steep as in Oculus Quest. Even between
the different presented depth estimations for MediaPipe, the
increasing error is significantly lower in the variants where the
user’s hand size was added externally. Thus, the error is less at larger
distances. This is also reflected in the results of the static evaluation.
This is a further indication that RGB methods (such as MediaPipe)
can be improved and are thus suitable for enabling hand tracking
and hand interactions even at greater distances.

During the real-world application, we observed that the computation
time and occurrences of temporal tracking losses increased as the number
of simultaneously detected hands increased. This behavior aligns with
expectations for an image-tracking system designed for multi-object
recognition. While the presence of four hands within the tracking
frame did not cause significant issues, the limitations of the current
state of the MediaPipe system became more apparent as the number of
hands increased. However, it is important to note that these observations
did not impact our calculations, and we anticipate that future versions of
the framework will address these limitations and enhance stability. This
information is mentioned here for the sake of completeness.

As has also been shown, the way the real hand size is determined
has a significant impact on tracking accuracy. The more accurately

FIGURE 14
Error of hand pairs in centimeters during the preliminary user test. Spikes can occur due to tracking losses and wrongly positioning due to a
smoothing filter.
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the hand size is determined, the smaller the error. Unfortunately, the
3D coordinates of the finger joints provided by MediaPipe did not
accurately match the real hand size and the size had to be input
externally to effectively improve depth calculation.

The results of Experiment 2 largely reflect the pattern of the
main analysis, although significance was not shown everywhere.
The error of the 3D hand positioning increases with the distance
to the tracking camera. However, the error can be reduced
(especially for high distances) by inputting the users’ hand
size. We believe that a larger data set and extended user
testing (which unfortunately was not possible at this time)
would increase the significance and further increase the level
of detail in the results.

Furthermore, it can be seen that when deriving from body
size to hand size for 10 users (from Experiment 1 and
Experiment 2), the deviation of the calculated hand size to
the actual hand length was less than 1 cm for all users. The
algorithm can be used as an alternative when the user’s body size
is known rather than their hand length. For future applications,
it would be interesting to find a method to perform this
measurement more universally and without external input.
One possibility would be a calibration step at the beginning
of the application, where the hand is measured at a certain
distance, or where the body size is determined based on the
height of the VR headset and then the hand size is derived. For
applications where full-body avatars are used, for example, these
could also be used to improve the tracking error that still exists.
If they are scaled to the user’s size, their maximum arm length
can be used as an improvement metric to position the hand more
accurately to the avatar.

The mean hand position errors calculated in Experiment 3
are in line with the results from the controlled static and
dynamic tests. With continuously detected hands, consistent
positioning can take place. In the test, we noticed that the quality
of positioning is also dependent on the quality of the underlying
tracking (MediaPipe in this case). A more consistent and better
recognition in the future also improves the real error of our
algorithm. Coupled with a high-resolution camera, consistent
multi-user hand tracking in colocated rooms can be
realized.Further user tests regarding user experience would be
interesting in the future. Furthermore, this kind of multi-user
hand tracking raises another problem. The recognized hands
have to be reliably assigned to the virtual users. This would be a
task for future work. Approaches to this already exist, such as by
Tsutsui et al. (2020), but these are so far limited to a two-
dimensional image and are not applied in three-dimensional
space.

6 Conclusion

This study evaluated the tracking error and tracking range of three
different hand tracking technologies, one of which works via RGB
cameras and is not tied to a specific manufacturer’s hardware. In
addition, a method was developed that significantly improves the
tracking result of RGB hand tracking.

The evaluation shows that although the hand tracking of Oculus
Quest and Leap Motion is more accurate in the arm’s length range,

they are not designed for hand detection outside this range.
Therefore, we achieve comparatively higher precision at larger
distances with the RGB method. This can be further increased if
additional information about the user’s hand length is used in the
calculation of the 3D positions. Direct measurement of the hand
length is more precise, but deriving the hand length from the user’s
height also produces acceptable tracking errors. For more general
use, the body height input is probably more intuitive, as many
people know their body height rather than their hand length. It
might even be possible to automatically determine the body height
in a virtual reality application through an initialization phase. This
would be a use case for future research.

It has also been shown that hand tracking using the (improved)
RGB method has significantly higher tracking ranges (with usable
distance well above arm’s length range) as well as the ability to track
more than just two hands at a time. This can be especially useful for
hand recognition in larger tracking areas with multiple users. Thus,
we have also shown that by inputting the user’s real hand size, a
tracking system based on a single image RGB camera can provide
results that provide a tracking error that allows interactions in
virtual space, as well as significantly expand the tracking range
for hands. This method could be superior to the presented
commercial systems such as Leap Motion or Oculus Quest for
specific scenarios as colocated multi-user scenarios, where one
also wants to track the hands of the other users.

Therefore, it would be interesting in future experiments to see the
effects of such RGB tracking in multi-user VR scenarios and to find out
how it can disrupt or improve hand tracking in such applications. Since
our setup and use case focuses on a single camera for tracking, using a
camera array to improve tracking of colocated users’ hands would be an
interesting extension for the future.
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