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Abstract: A bubble expanding and collapsing near a solid boundary develops a liquid jet toward the
boundary. The jet leaves a torus bubble and induces vortices in the liquid that persist long after the
bubble oscillations have ceased. The vortices are studied numerically in axial symmetry and compared
to experiments in the literature. The flow field is visualized with different methods: vorticity with
superimposed flow-direction arrows for maps at a time instant and colored-liquid-layer flow-field
maps (dye advection) for following the complete long-term fluid flow up to a chosen time since
bubble generation. Bubbles with equal energy—maximum radius in a free liquid R∞

max= 500 µm—are
studied for different distances Dinit from the solid boundary. The interval of normalized distances
D∗ = Dinit/R∞

max from 0.4 to 1.8 is covered. Two types of vortices were reported in experiments,
one moving toward the solid boundary and one moving away from it. This finding is reproduced
numerically with higher resolution of the flow field and in more detail. The higher detail reveals
that the two types of vortices have different rotation directions and coexist with individually varying
vorticity amplitude throughout the interval studied. In a quite narrow part of the interval, the two
types change their strength and extent with the result of a reversal of the dominating rotational
direction of the fluid flow. Thereby, the experimentally found transition interval could be reproduced
and refined. It is interesting to note that in the vortex transition interval, the erosion of a solid surface
is strongly augmented.

Keywords: cavitation bubble; vortices; multiphase flow; single bubble; laser-induced cavitation;
computational fluid dynamics; OpenFOAM; PIV; PTV; dye advection

1. Introduction

The fluid flow around bubbles in liquids develops complicated structures as soon
as the bubbles do not stay spherical. A prominent example is a bubble collapsing in the
neighborhood of a solid boundary. The most spectacular phenomenon is the liquid jet that
develops toward the solid from the distal side of the bubble by involution of the bubble
surface (for mainly numerical studies, see, e.g., [1–6]). The jet traverses the bubble interior,
hits the opposite bubble wall and pushes it ahead. That way, the bubble attains the form of
a gaseous torus with a liquid flow through the torus hole (the jet flow). This “standard jet”
develops velocities of the order of 100 m/s.

Recently, a different type of jet formation toward a solid surface has been found
for bubbles expanding and collapsing very close to the solid: the “thin, fast jet”. It was
found first numerically (Lechner et al. [5,7]) and soon after experimentally (Koch [8] and
Koch et al. [6]) with later confirmation (Reuter et al. [9]). The fast jet is not produced by
involution of the distal side of the bubble but by a ring-shaped involution with self-impact
at the axis of symmetry. The fast jet develops velocities of the order of 1000 m/s.
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In addition to the jet flow with torus bubble formation, further distinct liquid flows, no-
tably vortices, are generated in the liquid in the vicinity of the bubble. Lauterborn et al. [10]
posed the question of whether a collapsing bubble is a short-living vortex. To really decide
the question, advanced methods had to be developed in fluid flow visualization. Lauter-
born et al. [11] discuss how fluid flows could be measured and visualized. As the methods
were all not well suited to the fluid flows that appear in bubble dynamics, Vogel et al. [12,13]
developed a time-resolved particle-image-velocimetry (PIV) method to study the flow in the
vicinity of a collapsing cavitation bubble. The method consists of a sequence of double-
exposure and multi-exposure photographs of tracer particles to give a time sequence of
flow vectors in space. It has since then been developed further significantly for all kinds
of flows, resolving both space and time (for an overview see, e.g., [14–17] and references
therein, as well as, e.g., [18–22] for a very small selection of recent developments).

Previously, a distinction was made for applications, where the density of the tracer
particles of the PIV method is too high, by introducing the particle-tracking-velocimetry
(PTV) method with lower particle densities. In case of the PTV, instead of making use of
the cross-correlation of the subsequent photographs, the particles are tracked individually.
Nowadays, the two methods share an overlap of applicability (see, e.g., [20]) and indi-
cate whether the image-processing algorithm makes use of the cross-correlation between
subsequent images (PIV) or performs Lagrangian particle tracking (PTV).

The PTV method has also been applied to acoustically driven bubbles. Bolaños-
Jiménez et al. [23] applied the astigmatic particle tracking velocimetry (APTV) [24] to
acoustically driven bubbles in small holes in a plane solid to determine the induced flow
(acoustic streaming) of a radially oscillating bubble. In this method, spherical tracer particles
are imaged as ellipsoids. The elongation of the ellipsoid depends on the depth of the optical
path by using the astigmatism induced by a cylindrical lens. This way, depth information is
added to normal particle tracking velocimetry. Three-dimensional (3D) information of the
flow can then be obtained from a succession of high-speed images. As a result, it was found
experimentally that the flow of a fixed, acoustically driven bubble is rotationally symmetric
about the axis through the bubble center perpendicular to the surface. Fauconnier et al. [25]
applied the PTV method to a single, wall-attached, acoustically driven bubble undergoing
asymmetric shape modes, which are excited subharmonically. The authors were mainly
interested in the particle trajectories, more than in the velocity field. Hence, for the main
body of their study, the method was simplified to backlight illumination, where the particles
appear as small dark spots. After recording an image series, the minimum value of the
brightness for each pixel over time is plotted. That way, the authors revealed the flower-like
micro-streaming patterns around the bubble that oscillates in spherical harmonics.

The focus of the present study is on single, laser-generated bubbles in the vicinity
of a plane, solid boundary. The PTV method has been applied for laser-induced, single
cavitation bubbles in the literature. A low particle density is favorable in this case, because a
higher particle density would obstruct the laser pulse producing the bubble-forming plasma
via optical breakdown. Kröninger and Kröninger et al. [26,27] made use of fluorescent
tracer particles and double-exposure photography to give more details about the fluid
flow forming the jet in the case of a bubble collapse near solid boundaries. In particular,
they experimentally determined flow velocities in the jet very near to the bubble and very
near the time of complete collapse. Figure 1 gives an example. The photograph of the
bubble and the velocity field was taken 10 µs before the collapse. The velocity arrows were
gained by PTV with fluorescent tracer particles. The velocity is seen to reach about 30 m/s.
This is consistent with numerical calculations in view of the time of 10 µs before collapse.
The corresponding numerically found maximum jet speed is about 60 m/s [5,28]. The
normalized distance D∗ in the experiment of Figure 1 is 0.5. D∗ is defined as [29]

D∗ = Dinit/R∞
max, (1)
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where Dinit is the initial distance of the bubble center (focus of the laser light in the experi-
ment) to the solid boundary and R∞

max is the maximum radius the bubble would attain by
expansion in an unbounded liquid. In the present work, R∞

max = 500 µm is used throughout.
The results from a PTV/PIV measurement, i.e., the obtained velocity field, can be used

to visualize the temporal evolution of the flow in a post-processing step. Reuter et al. [30]
made use of the PTV method to follow the flow field around such a bubble, like the
one in Figure 1, also long after the collapse. During post-processing, the authors turned
the obtained velocity field into a color-coded map—just as in dye advection, which is a
form of the Lagrangian–Eulerian advection (LEA), as described by Jobard et al. [31] and
Laramee et al. [32] —mimicking the disturbance of a layer of submerged ink by the bubble.
Although the authors computed the texture warping with a forward Eulerian time-step
and millions of particle traces instead of using the optimized algorithm described for LEA,
the dynamical evolution of the flow is visualized, because each fluid parcel is given a
specific color that is advected with it. They found that the jet generates a liquid vortex that,
depending on the distance of the bubble to the solid boundary, travels either orthogonally
away from the solid boundary or toward the solid boundary. These two types of vortices
were called by them a free vortex and wall vortex, respectively.

Saini et al. [33] showed one single experimental case of a collapsing bubble cap
(negative value for D∗ according to Equation (1)) disturbing a dye layer. They found a
vortex traveling orthogonally away from the solid boundary. The authors calculated the
corresponding vorticity field by means of their in-house solver. As will be shown in the
present work, the vortices generated by the bubble in the work of Saini et al. [33] stem from
different dynamics than the one induced by the bubble in the work of Reuter et al. [30].

Similar vortex dynamics as the ones in Reuter et al. [30] were observed by Sieber et al. [34]
with a bubble close to a sand bed. The sand gravels acted as tracer particles after the bubble
collapse and were partially carried away from the bed by vortex shedding after the bubble
dynamics have ceased.

Figure 1. Example of an experimental photograph of a jetting bubble with its jet flow close to a solid
boundary shortly (10 µs) before collapse (reprinted from [26] under license CC BY-NC 2.0 [35]). The
velocity arrows are gained by the particle-tracking velocimetry method. The white cone above the
bubble (black) is the plasma of the optical breakdown at t = 0. D∗= 0.5.

In the present numerical study, the experimental findings of Reuter et al. [30] on vortex
formation and motion are compared to numerical work. The simulations are performed
using a modified finite-volume CFD-solver from the framework of OpenFOAM [36,37].
In this framework, the concept of a passive scalar exists, meaning a scalar quantity that is
advected passively with the flow, not interfering with it. This is completed via solving
the advection equation for the passive scalar during solver run-time. The method has
been termed color-layer tracer-field advection when applied to bubble dynamics [28]. It is
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further described in the body of the present work. Here, the simplified and historically
more correct term dye advection is used because the flow-field visualization concept of the
color layer tracer-field advection method falls into the subcategories dye injection and dye
advection of LEA [31,32]. The difference is that no streamlines or cross-correlations need to
be computed anymore since the visualization is computed by solving a partial differential
equation during the solver run-time.

The article is organized as follows. In Section 2, the bubble model and the numerical so-
lution method are introduced with more information and definitions in Sections 2.1 and 2.2.
In Section 2.3, the reason for the choice of time instants for vortex visualization is given,
as the presentation of the full sequence is too space filling. The two types of vortex visual-
ization used here (flow and vorticity maps) are presented in Section 2.4. In Section 3, the
results are presented with series of flow fields with their vortices and a comparison with
experiments from the literature (Reuter et al. [30]). The results are discussed in Section 4 in
view of the erosion problem, among others. Section 5 outlines the conclusions to be drawn,
together with an outlook to further research.

2. Bubble Model and Numerical Solution Method

A bubble model for a cold liquid (a liquid far from its boiling point, cf. [38]) with the
following properties is used. The bubble contains a small amount of non-condensable gas
to comply with experiments [39–41]. The vapor pressure is small compared to the ambient
pressure and is neglected. The liquid is taken as compressible for the inclusion of pressure
waves up to weak shock waves, as a significant amount of energy is radiated in the form
of acoustic waves (see, e.g., [12,37,42–45]). Thermodynamic effects and mass exchange
through the bubble wall are neglected. Gravity can be omitted due to the small size of the
bubble.

The equations of motion of the two-phase flow are formulated in the “one-fluid”
approach, i.e., with one density field ρ(x, t), one velocity field U(x, t), and one pressure
field p(x, t), satisfying the Navier–Stokes Equation (2), including a term for the surface
tension σ and the continuity Equation (3) [46–48]:

∂(ρ U)

∂t
+∇ · (ρ U ⊗U) = −∇p +∇ ·

[
µ

(
∇U + (∇U)T − 2

3
(∇ ·U) I

)]
+ σκv∇αl where κv = −∇ · (∇αl/|∇αl |) , (2)

∂ρ

∂t
+∇ · (ρ U) = 0 . (3)

∇ denotes the gradient,∇· is the divergence, and⊗ is the tensorial product. µ(x, t) denotes
the viscosity field and I denotes the unit tensor. The surface tension coefficient σ of water
is set to σ = 0.0725 kg m−2. With the one-fluid approach, it is possible to use the Volume of
Fluid (VoF) method, where volume fraction fields αl(x, t) and αg(x, t) are introduced to dis-
tinguish between the two fluids, liquid (l) and gas (g), with αl = 1 in the liquid phase, αl = 0
in the gas phase, and αg(x, t) = 1− αl(x, t). The position of the interface is then given implic-
itly by the transition of αl from 1 to 0. The viscosity field µ(x, t) can be written as µ(x, t) =
αl(x, t)µl + αg(x, t)µg (see, e.g., [49]). The dynamic viscosities µl of the liquid and µg of the
gas are taken to be constant (µl = 1.002× 10−3 kg s−1 m−1, µg = 1.86× 10−5 kg s−1 m−1).
The density field ρ(x, t) is given by ρ(x, t) = αl(x, t)ρl(x, t) + αg(x, t)ρg(x, t) with ρl and
ρg denoting the densities of the liquid and gas, respectively. As there is no mass transfer
between the bubble interior (gas) and exterior (liquid), the respective phase-fraction density
fields αlρl and αgρg separately obey the continuity equation:

∂(αiρi)

∂t
+∇ · (αiρiU) = 0 , i = l, g . (4)
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The equations of motion are closed by the equations of state for the gas and the liquid. For
the gas in the bubble, the change of state is assumed to be adiabatic,

ρg(p) = ρgn(p/pn)
1/γg , (5)

with pn and ρgn representing the pressure and the density of the gas in the bubble at normal
conditions, respectively, and γg = 1.4 indicating the ratio of the specific heats of the gas
(air). For the liquid, the Tait equation of state for water is used (see, e.g., [39]):

ρl(p) = ρ∞((p + B)/(p∞ + B))1/nT , (6)

with p∞ representing the atmospheric pressure, ρ∞ representing the equilibrium density,
the Tait exponent nT = 7.15 and the Tait pressure B = 305 MPa.

The pressure-based two-phase solver compressibleInterFoam of the open source
package OpenFOAM, precisely foam-extend, is used for the implementation of the equa-
tions. For details, see the description and validation in, e.g., Koch et al. [28,37] and Lechner
et al. [5]. Discretization of the above partial differential equations is performed with the
finite volume method [48,50].

2.1. Mesh, Initial Conditions, Boundary Conditions and Time Stepping

Simulations are carried out in axial symmetry on a computational domain shaped like
a half circle with a radius of 100R∞

max. The domain is meshed such that the cells spread
radially outward and align to the center core with an edge length of 80 µm, where the cells
are oriented in a Cartesian manner. A sketch of the mesh is shown in Appendix A. The idea
is to align the cells as much as possible to the bubble interface, i.e., a polar orientation with
an apex at the initial bubble center, while at the same time dissipating the shock wave in
the outer regions and avoiding a high total cell amount for the whole mesh.

The initial data for the bubble are set in the following way. The compressed bubble
is initiated at a distance Dinit from the solid boundary. The normalized distance D∗ is
defined as in Equation (1). From the user-given initial bubble radius Rinit= 20 µm, the
bubble volume is calculated analytically. The cells within that radius are set to αl = 0
(gas). The discretized volume of the gas is determined numerically. The pressure then is
recomputed to yield the same compression energy as given by the original set of parameters
Rinit and Rn, Rn being the radius of the bubble at equilibrium. The resulting adaption of
the pressure is usually in the range of 1 %, but it matters in terms of convergence [8]. The
bubble pressure at t = 0 in the cases investigated is pinit = 1.132 GPa for a sphere with
Rinit = 20 µm, Rn = 184.1 µm and the smallest cell edge length of 2 µm in the mesh center
core. The technical details about bubble mass correction methods and bubble mass controls
are given in Appendices C and D. The parameters for the fluids entering the calculation are
given in Table A2.

The discretized equations are solved implicitly in a segregated manner. Therefore,
the solver allows for large time steps under certain circumstances. In the present work,
the flow patterns are of interest that persist long after the bubble oscillations have ceased.
The simulation therefore has to pass a long period of time where the dynamics are not
violent anymore. Hence, a suitable time stepping is important for the different phases of
the bubble dynamics for a trade-off between numerical stability and computational effort.
The Courant number Co is calculated to determine the time step size ∆t for adaptive time
stepping. It is defined as the spatial maximum of the ratio of the local flow speed U(x) at
location x to the maximum resolvable flow speed by the spatial and temporal discretization
(∆x(x)/ ∆t) [51]:

Co = max
x

(
∆t

∆x(x)
· |U|(x)

)
. (7)
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We also use the acoustic Courant number, where the velocity |U|(x) is replaced by (c + |U|)(x),
with c representing the speed of sound. The implicit solver allows for acoustic Courant num-
bers � 1. The time step size is adaptive, and a supervisor script controls the maximum
allowed values of the Courant criteria over time. Details are given in Appendix B.

2.2. Vorticity

The vorticity Ω is defined as the curl of the velocity field [52]:

Ω = ∇×U . (8)

Vorticity maps are given for selected time instants together with flow-field direction arrows
to characterize the vortex strength in the liquid. Due to the constraint of axial symmetry,
Ωaxisymm ∝ eθ , with eθ representing the unit vector in the azimuthal direction. When taking
the cut through the bubble on the plane z = 0, only the value of the z-component is plotted:

Ωaxisymm
∣∣
z=0 =

(
∂Ux

∂y
− ∂Uy

∂x

)∣∣∣∣
z=0

ez . (9)

2.3. Selection of Time Instants for Vortex Visualization

In order to have an idea of the bubble volume versus time (bubble oscillation) com-
pared to the time of vortex generation and existence, the equivalent radius, Requiv, versus
time is given for the normalized distance of the bubble to the boundary D∗ = 0.4 and 1.8 in

Figure 2. The equivalent radius is defined as Requiv =
( 3

4π Vbubble
)1/3

, where Vbubble is the
corresponding volume of the bubble.

It is seen in Figure 2 that with the bubble model applied (Equations (1)–(6)), the bubble
exhibits rebounds with different strengths. However, in any case, the bubble oscillations
have ceased after about 550 µs. Nevertheless, the liquid flow induced persists and may
form liquid flow structures. The most prominent ones are liquid vortices of different kinds.
As the vortices fully develop only long after the bubble oscillations have ceased, most
vortex plots are given at tmap = 550 µs after bubble generation. To decide about the type of
vortex in critical cases, the vortices at tmap = 1000 µs are given. The decision on the vortex
type at 1 ms is called the 1 ms criterion.

 0
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Figure 2. Equivalent radius, Requiv, versus time for D∗ = 0.4 and 1.8. The flow-field maps are given
at times either tmap = 550 µs or tmap = 1000 µs, when the oscillations of the bubble have ceased. The
liquid, however, is still flowing.
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2.4. Flow-Field Visualization

As indicated in Section 1, there exist different methods to experimentally visualize
liquid flows. With the PTV and/or PIV method, not only the flow can be visualized, but also
the velocity field can be measured. The particles used in PTV and PIV can either be reflective
or fluorescent. Their location and motion is followed photographically or holographically.
For reflecting particles applied in the flow around bubbles, see, e.g., Lauterborn and
Vogel [11], Vogel et al. [13] and Lauterborn and Kurz [53], and for fluorescent particles,
see, e.g., Kröninger et al. [26] and Reuter et al. [30]. From consecutive illumination flashes,
velocity vectors can be derived from the illuminated particles.

A more compact method is dye advection applied to experiments, where the liquid is at
rest in the beginning: An ink-colored liquid layer is put into the liquid sample at the start
of the measurement, which is then distorted by the flow to give a flow-field map when
photographed at times wanted.

When post-processing the data of a time-varying velocity field, gained by either
experiment or numerical simulation, the dye advection method can be set up a posteriori
by digitally coloring the liquid and advecting the color with the corresponding, calculated
tracer trajectories. When the dye is injected also at different times t 6= 0, this is termed
dye injection [31]. In the case of a laser-induced cavitation bubble it is, however, more
suitable to inject the color only at time zero, since the dynamics is very fast.

A similar method is used here with digitally colored liquid layers, stratified parallel to
the flat surface of the solid in a quiet liquid at bubble generation, whereby the liquid flow
is not obtained from measurements but from numerical calculations. The numerical dye or,
in OpenFOAM-terminology, passive scalar Γ is advected passively with the velocity field by
an advection equation [51]:

∂Γ
∂t

+∇ · (ΓU)− (∇ ·U)Γ = 0. (10)

Γ is initiated varying only in direction orthogonal to the solid surface and thus as stratified
color layers when applying an adequate color map to the values of Γ. The validity of the
method was investigated in Koch [8]. The initial data of Γ are set to:

Γ =


y

1.5 · R∞
max

y < 1.5 · R∞
max

1 else
,

for the center of the bubble in x = (0, 0) at t = 0. With these initial data, the color layers
extend from the solid surface, y = −Dinit, to y = 1.5 · R∞

max. For different Dinit, hence
different D∗, the thickness of the color layers is adapted.

Figure 3 shows an example of one type of a liquid vortex after the expansion, collapse
and rebounds of a bubble close to a solid boundary. The vortex is visualized from the
simulation with the dye advection method via Equation (10). The stratified colors from
bottom to top are: whitish, dark blue, black, green, light blue and purple. The bubble
oscillation has long gone, but the liquid set into motion still persists and forms the large
vortex shown at 550 µs after bubble generation. The initial bubble is modeled by a small
sphere of high pressure, which is given by the small, white sphere at the center of the
large, transparent sphere in the cut through the axis of symmetry. The transparent sphere
with radius R∞

max is copied in to show the maximum extension the bubble would reach
in an unbounded liquid. It gives an impression of the normalized distance D∗ (smaller
than one, here D∗ = 0.8) by crossing the solid boundary and lets us imagine that the actual
bubble must have undergone a (rotationally symmetric) distortion during expansion by
the existence of the solid surface.

For this type of diagram, also, the motion direction of the vortex can be inferred from
the color it carries. In the given case of D∗ = 0.8, the motion is upwards for the large vortex.
The near-boundary liquid is carried upwards into the free liquid. The colors in the large
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ring vortex from inside of the vortex ring to outside are dark blue, black, green, light blue
and violet.

Figure 3. Example of a numerically obtained dye advection map as used in the present article. Shown
is the bubble-induced vortex flow after jet formation, the second collapse and further rebounds for
D∗ = 0.8 up to the state at tmap = 550 µs. The small white sphere denotes the initial bubble size and
position. The large, transparent, filled circle (a sphere in 3D) denotes the maximum extension the
same bubble would attain in an unbounded liquid. With a boundary, the maximum extension is
reached at tmax = 53 µs. The lower boundary of the figure coincides with the surface of the solid. It is
cut perpendicular to the surface, including the axis of symmetry. The frame size can be seen from the
size of the transparent sphere of radius R∞

max = 500 µm and from the bar denoting 500 µm.

Figure 4 shows the same vortex as in Figure 3 but in a different way with the vorticity
Ωz =(∇×U) · ez (z-direction pointing toward the reader) and superimposed flow-field
direction arrows to show the actual flow field at tmap = 550 µs. In this case, the flow of
the large vortex is upwards (away from the solid boundary) at the axis of symmetry and
redirected back downwards at larger distances from the axis to form a large-scale, dipole-
like vortex flow. Due to the axial symmetry, the rotation is clockwise (in this example) in
the right half of the cut and anti-clockwise in the left half. From the flow-field direction
arrows and the vorticity colors, it is seen that there are several small-scale ring vortices
present at the solid boundary and one with opposite turning direction between the solid
surface and the large-scale vortex.

Figure 4. Same vortex as in Figure 3 but in a different presentation with vorticity and superimposed
flow-field direction arrows. It is cut perpendicular to the surface, including the axis of symmetry. The
lower boundary coincides with the surface of the solid.
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The two forms of flow-field visualization as presented in this section will be used
in the following to characterize the vortices found in laser-generated bubbles. They give
different insights as to the properties of the vortices. The dye advection maps incorporate
the flow up to the plot time, and the vorticity maps with superimposed flow-field direction
arrows are a snapshot of the vortex at plot time. Thus, they carry different information and
add to one another.

3. Results

The color-layer mixing dynamics of the dye advection is explained by means of a
time series. Afterwards, two types of vortices in the case of a bubble close to a solid
boundary are introduced with their different rotation and translational motion directions
(Section 3.2). They coexist throughout the interval of D∗ investigated. In a transition
interval, they exchange their dominating strength, as given by the modulus of the vorticity,
|∇× U|, and the spatial extent. As the settling time for the flow field becomes larger,
when approaching the transition threshold, the respective simulations were extended to
1 ms since bubble generation. Finally, the numerically found transition interval is compared
to the experimentally determined one by Reuter et al. [30] (Section 3.4).

3.1. Color-Layer Mixing Dynamics

The color mixing—as seen in Figure 3 for the bubble at D∗ = 0.8 at tmap = 550 µs—shows
a complicated structure explained as a large vortex with additional details. The green needle
along the axis of symmetry, for instance, can be attributed to the motion of the bubble and
its surrounding liquid from the green layer toward the solid and the squeezing back of the
green liquid toward the axis of symmetry in the course of collapses and rebounds. This will
become clear when the development of the flow is depicted in a time series of dye advection
maps in Figure 5. The first bubble collapse produces a liquid microjet toward the solid. The
jet then drives liquid toward the solid boundary. Liquid from the green layer around the axis
of symmetry is transported downwards by the jet (frames 2–6, Figure 5). Liquid from the
light blue and black color layers are sucked into the jet as well. In frame three of Figure 5, a
ring sheet (in 3D) of liquid shoots into the bubble. This phenomenon, termed annular nanojet,
has been described in Lechner et al. [43] and the reader is referred to this reference for details.
After impact at the solid surface, liquid from the jet spreads along the surface, as seen in
frame 4. The reason as to why the final motion of the liquid is directed into the liquid bulk
is the inversion of motion by the second bubble collapse and only small rebound (frames
5–9). The second collapse (frame 5) starts at the outer rim of the gas torus, and the flow is
directed inwards toward the axis of symmetry (frames 6 and 7). The rebound (frame 7) of the
gas phase then takes place from near the solid boundary with a layer of liquid in between.
The second rebound is of small amplitude (see Figure 2) and is not able to stop the inflow
of liquid from the second collapse. The former downwards-oriented part of the light-blue
and green layer is now squeezed to the axis by the inward liquid motion from the second
collapse and necessarily pushed upwards together with all layers except the whitish one.
The whitish layer has been pushed so far away from the axis of symmetry by the surface
flow from other layers that it no longer takes part in the essential dynamics.

Additionally, several small-scale vortices are seen along the surface of the solid (see
also Figure 4, the vorticity diagram). Prominently seen is the small bubble vortex following
the jet impact during first collapse. It spreads along the surface by the ongoing inflow
of liquid (frame 4 at time 109.61 µs in Figure 5). The complete set of vortices found is
described next.
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Figure 5. Time series of the vortex for D∗ = 0.8 at selected times. The bubble interior is colored
green to show that the bubble is generated in the green liquid layer. The outline of the bubble is
given in white. The series starts with the first collapse (first four frames), proceeds with the second
collapse from 140 µs onwards, and ends with the second rebound (last two frames), where the vortex
is generated. The remaining gas fractions from the second rebound are of too small volume to be seen.
Compare the decaying bubble oscillations in Figure 2. The lower boundary of the frames coincides
with the surface of the solid.

3.2. The Two Types of Vortices and Their Origins

In axial symmetry, there are two types of bubble-jet-induced liquid vortices close to a
solid boundary. Either the liquid flow through the vortex center along the axis of symmetry
is upwards, away from the boundary—“up-vortex” (motion of the forming vortex also
upwards as can be guessed from the color advection or seen from a succession of frames),
or downwards, toward the solid boundary—“down-vortex” (motion of the forming vortex
downwards as demonstrated later). An example of an up-vortex is given in Figure 6, and
an example of a down-vortex is given in Figure 7. The figures are a combined version of
a flow and a vorticity map, as shown separately in Figures 3 and 4. Because of the axial
symmetry, a half part of the cut is sufficient.

The two types of vortices can further be distinguished by the second type of visual-
ization, as presented in Figure 4 by a toroidal rotation criterion. When in the cut only the
right half part of the flow-direction map is considered, then the flow around an up-vortex
is “clockwise”. Figure 6 shows an example of a vortex with clockwise rotation of the liquid,
i.e., an up-vortex. Note that the rotation direction is only valid for the right part of the cut
through the torus vortex. It is known that a ring vortex in an unbounded liquid propagates
in the direction of the flow along its axis (see, e.g., Fraenkel [54]). When the vortex axis coin-
cides with the axis of symmetry in an axially symmetric setting, then for a single vortex, the
translational motion is upwards—using the terms introduced in the present work—when
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rotating clockwise, hence downwards when rotating counter-clockwise. However, when
vortices come in larger numbers and are densely packed, the rotation criterion is best suited
to characterize the type of vortex in an axially symmetric setting.

Figure 6. Up-vortex at tmap = 550 µs for D∗ = 0.8. The dominating large-scale flow is clockwise. Left
part: Flow-field map from colored liquid layers. Right part: Vorticity map according to Equation (9)
with superimposed flow-direction arrows. Small-scale vortices are seen along the solid surface. The
small white sphere denotes the initial bubble size and position. As before, the large, transparent,
filled circle (a sphere in 3D) denotes the maximum extension the numerical bubble would attain in an
unbounded liquid. It is cut perpendicular to the surface, including the axis of symmetry.

In Figure 7, an example of a down-vortex is given with its counter-clockwise rotation
for D∗ = 1.4. It is located near the solid surface. A small, locally confined region with
clockwise rotation is seen at the axis of symmetry near the location of bubble generation
(the small white circle), too.

The temporal dynamics of the down-vortex generation are shown in the montage
in Figure 8 for a bubble at D∗ = 1.4. The main difference in the dynamics compared
to the ones for the up-vortex in Figure 5 is the sequence of the bubble shape in the first
rebound and second collapse. Here again, flow focusing is the main driving force [5,55].
Flow focusing is the phenomenon generating the strongest acceleration where interface
curvatures are highest. When comparing frame 5 of Figure 5 to frame 6 of Figure 8, it is
noted that the curvature of the torus bubble during the second bubble maximum volume
and onset of the second collapse is highest at the outer rim for the up-vortex case, and
the curvature is highest in the inner region for the down-vortex case. Therefore, the fluid
motion is accelerated highest toward the axis of symmetry in case of the up-vortex, and it
is accelerated outwards in case of the down-vortex during the second bubble collapse.

The vortices are dynamical objects that may move and/or change their form. Up-
vortices move upwards away from the solid boundary, while down-vortices move toward
the solid boundary. Reuter et al. [30] use the motion criterion for classification and call
the upwards moving vortices “free vortices” and the downwards moving vortices “wall
vortices”. The authors introduced a third status as well, tagged “no vortex”, when neither
an up-vortex nor down-vortex was observed within experimental uncertainties. However,
in the numerical simulations presented here, it becomes evident that the vortices are always
present after the bubble oscillations have ceased. The difference is only in the intensity
of the vorticity. In fact, both types of vortices are generally present. It is the ratio of their
respective intensities that determines the macroscopic diagnosis made by an observer. An
example is given in Figure 9 for D∗ = 0.4. The clockwise rotation direction indicates an
up-vortex, while the vortex does not seem to have moved upwards up to tmap = 550 µs but
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is located away from the boundary. There, the flow rather rolls up, as seen in the left part
of the plot. The extension to tmap = 1 ms indicates a vortex with very slow motion upwards,
confirming the classification of an up-vortex by its rotation direction from one frame only.

Figure 7. Down-vortex at tmap = 550 µs for D∗ = 1.4. The dominating large-scale flow is counter-
clockwise. The vortex is located near the solid surface and is best seen in the right part in its extension.
One small-scale up-vortex is located near the axis of symmetry.

Figure 8. Time series of the down-vortex for D∗ = 1.4 at selected times. The bubble interior is colored
violet to show that the bubble has been generated in the violet layer. The outline of the bubble is
given in white. The series starts with the first collapse (first two frames) and ends with the forming of
the down-vortex after the second collapse (last three frames).
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Figure 9. Up-vortex at D∗ = 0.4 according to the clockwise flow at the time instants tmap = 550 µs
and 1 ms. The dominating large-scale flow is clockwise, but the up-vortex does not depart upwards
like previous up-vortices away from the surface of the solid (see the left part of the left frame and the
depression of the green layer downwards). However, it very slowly moves upwards when comparing
with a longer time scale (tmap = 1 ms) as predicted from the rotation direction and the flow upwards
along the axis of symmetry already in the left part of the left frame.

3.3. Survey of Vortex Structures in Dependence on D∗

The aim is to find the (dominating) vortices for 0.4 < D∗ < 1.8 and whether they are
up-vortices or down-vortices. The vortices for the values D∗ = 0.4, 0.8 and 1.4 were already
given in Figures 6, 7 and 9. The flow maps for the D∗-values of 0.6, 1.0 and 1.2 are given
in Figures 10–12, respectively, and in Figure 13 for D∗ = 1.6 and 1.8. It is seen that up to
D∗ = 1.2, the up-vortices dominate (clockwise rotation). For the values of D∗ higher than
or equal to 1.4, the turning direction of the dominating vortex changes by fading of the
up-vortex and by the increasing in strength and extent of the down-vortex. The result is a
down-vortex with its counter-clockwise rotation and a location close to the solid surface
(Figures 7 and 13).
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Figure 10. Up-vortex at tmap = 880 µs for D∗ = 0.6. Small-scale down-vortices are present below the
bubble near the solid surface as seen from the color in the vorticity map. Liquid from the green layer
has both been advected upwards as well as downwards.

Figure 11. Up-vortex at tmap = 550 µs at D∗ = 1.0. Localized, small-scale down-vortices are seen below
the bubble near to the surface from the color depression downwards and in the flow direction field.
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Figure 12. Up-vortex at tmap = 550 µs for D∗ = 1.2. It is the dominating vortex with its clockwise
rotation direction.

Figure 13. Down-vortices near the wall at tmap = 550 µs for D∗ = 1.6 and 1.8. They are the dominating
vortices with counter-clockwise rotation direction.

3.4. The Transition Interval

To better locate the change in the vortex rotation direction from clockwise (up-vortex)
to counter-clockwise (down-vortex), the interval 1.2 < D∗ < 1.4 was scanned in steps
of ∆D∗ = 0.01. The result is presented in Figures 14–17 for the transition interval from
dominating clockwise rotation to dominating counter-clockwise rotation. The simulations
have been extended to tmap = 1 ms, as a unique rotation direction obviously needs time to
settle near the transition threshold (1 ms criterion). It is seen that the dominating rotation
direction is clockwise at D∗ = 1.27 and up to D∗ = 1.29 and counter-clockwise at D∗=̃ 1.35
and for further values of D∗. A quite sharp transition interval D∗tr is found between
D∗ = 1.30 and 1.34. At D∗ = 1.31, it seems that both rotation directions are of equal
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strength, and thus, there is no overall flow field rotation, and the vortex region is locally
confined.

Up- and down-vortices of about equal strength coexist. As D∗ increases, the up-vortices
gradually become slower in their upward motion. A closer inspection of the vortex structure
reveals that a coexistence of up- and down-vortices is always the case for the D∗-values
studied. It is the large-scale rotation direction that changes between D∗ = 1.30 and 1.34.
The region of the fading up-vortex has a surrounding clockwise flow field of fading extent
superimposed on the counter-clockwise overall flow field from D∗ = 1.34 onwards.

Figure 14. Up-vortices and down-vortices at D∗ = 1.27, 1.28 and 1.29 at tmap = 550 µs and 1 ms.
At least three clearly visible vortices are generated with two strong up-vortices and only a small
down-vortex.
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Figure 15. Up-vortices and down-vortices at D∗ = 1.30, 1.31 and 1.32 at tmap = 550 µs and 1 ms.
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Figure 16. Up-vortices and down-vortices at D∗ = 1.33, 1.34 and 1.35 at tmap = 550 µs and 1 ms. The
large-scale flow changes from clockwise (D∗ = 1.30) to counter-clockwise (D∗ = 1.34) according to the
1 ms criterion).

Figure 17. Up-vortices and down-vortices at D∗ = 1.36, at tmap = 550 µs and 1 ms.
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3.5. Comparison with Experiments

The numerical findings are compared to the experimental findings of Reuter et al. [30]
in Figures 18 and 19.

dominating
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Figure 18. Comparison of numerically obtained vortex types (red crosses) to experiments by Reuter
et al. [30] (gray circles). An excellent agreement is found. The approximation γ ≈ D∗ is assumed.
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Figure 19. Comparison of numerically obtained vortex types (red crosses) to experiments by Reuter
et al. [30] (gray circles). Magnification into the transition interval. The numerical transition interval is
found to be 1.30 < D∗tr < 1.34. The experimental transition interval was found to be 1.30 < γtr < 1.36.
The approximation γ ≈ D∗ is assumed.

Reuter et al. [30] use a different definition for the normalized distance, γ, from the one
used here, D∗. In the experiment, it is impossible to obtain the maximum radius in the un-
bounded liquid of the bubble just generated if the current setup contains restrictive objects
or dimensions. Therefore, instead of using R∞

max (refer to Equation (1)) corresponding to
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the maximum radius of the same bubble in an unbounded liquid, the apparent maximum
radius from the measurement was taken, resulting in a Req

max, meaning the radius of a sphere
with equivalent volume. The precise algorithm of how Dinit and Req

max were extracted from
the measurement data is not clear from the publication. Here, it was decided to plot the
data from Reuter et al. [30] as if the relation γ ≈ D∗ would hold, which is assumed to be
justified for D∗ ≥ 0.4, where fast-jet dynamics are not present yet. The data points from
the experiment are plotted with a larger diameter to account for the uncertainty of that
assumption.

Reuter et al. [30] discern between three types of vortices: the free vortex, the wall
vortex and “no vortex” according to their translational motion. No vortex then means no
discernible vortex motion. Here, only two categories of vortices are introduced: the up-
vortex and the down-vortex according to their rotation direction. Usually, a free vortex is
an up-vortex and a wall vortex is a down-vortex. There is no correspondence to a no-vortex.
Using the derived knowledge from the present work, the terminology was adapted to the
notation of the rotation direction, up- or down-vortex and whether the vortex propagation
velocity nearly vanishes (“several, locally confined”).

When comparing the experimental data points with the numerical ones, an excellent
agreement is found. In particular, the numerical transition interval (1.30 < D∗tr < 1.34)
fits perfectly into the experimental transition interval 1.30 < D∗tr,exp < 1.36, where
Reuter et al. [30] could find no definite signs for a free or wall vortex.

4. Discussion

An oscillating bubble is an object with long-range interaction forces. In the spherically
symmetric case of a free bubble in an infinite, incompressible liquid, it is the breathing
mode of the oscillation that leads to a spherically symmetric, quadratically decaying liquid
motion. Thus, in principle, the interaction range is infinite. For numerical calculations in
single-bubble dynamics, this means that the boundaries must be sufficiently far away from
the bubble. It has been found that the boundaries should be at least about 100 times the
maximum extension of a spherical cavitation bubble away in order to not significantly alter
the dynamics [37] and for numerical convergence reasons [8].

In the non-spherical case with boundaries nearby, the dynamics is totally different
with its liquid jet and vortex formation. However, even in a free liquid, jet formation occurs
when the liquid is not in a spherically symmetric condition, as for instance with pressure
gradients in a gravitational field [56,57] or in a standing acoustic field [58]. As non-spherical
conditions prevail in nature and applications, the study of the flow in non-spherical cases is
of general interest. There are an infinite number of non-spherical cases. The most important
one from a technical application standpoint (cleaning and erosion) is the case of a bubble
near a surface or surfaces with the special case of a plane solid surface. There are only
a few experimental studies on the flow in this case, in particular on the flow vortices.
The, at the time being, most advanced experimental study on vortex formation is from
Reuter et al. [30]. Since then, numerics has improved significantly and now is capable of
modeling and simulating practically any non-spherical case.

In the present work, the liquid motion of a bubble near a plane solid surface is stud-
ied numerically for several distances of the bubble from the solid boundary. A bubble
with a radius of 500 µm in an unbounded liquid has been chosen. The focus is on the
vortices—generated by the liquid jet, torus bubble collapse, rebound and the further de-
caying oscillations—and their long-term behavior with respect to translational motion
and rotation direction. The experimentally found two types of vortices could be con-
firmed numerically, which are here called the up-vortex and down-vortex. Both types
are present simultaneously with one type being dominant in strength and extent. In a
transition interval, one type ceases and the other type takes over. The transition interval is
located at 1.30 < D∗tr < 1.34. It lies inside the experimentally found transition interval of
1.30 < D∗tr,exp < 1.36 [30]. The two vortex types can be discerned by the rotation direction
of the flow (see Section 3.3 and Figures 6 and 7). The flow needs some time to develop and
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settle to a dominant type. Therefore, the numerical transition interval was determined at
1 ms after bubble generation, i.e., a long time after jet formation compared to the collapse
time of about 50 µs (see Figure 2).

The origin for the two main vortex propagation directions, upwards and downwards,
has been determined to be flow focusing during the second collapse (refer to Section 3.3
and Figures 5 and 8). High bubble interface curvatures are accelerated faster than low
curvatures. The torus–bubble cross-sectional shape (volume) after rebound determines the
fluid acceleration direction afterwards.

It is assumed that there must be a connection to the dynamics of the bubble and there-
with to the erosion of the surface. The erosion pattern strongly alters with the normalized
distance in a characteristic manner as does the bubble dynamics. Both show a strong
correlation: erosion is only observed for bubbles collapsing directly in contact with the
solid. In the interval 1.2 < D∗ < 1.4 around the transition, the erosion is strongly increased
(Figure 21 [59]). Already at D∗ ≈ 1.1 and higher values, the first collapse does not take
place directly at the solid boundary anymore; however, in this aforementioned interval,
the second collapse is from a torus bubble directly sitting on the surface. Correspondingly,
the erosion pattern is ring-like as observed. Wang et al. [60], with a modified BIM model
(boundary integral method), was able to numerically follow the bubble oscillations to
the second collapse, when it becomes a torus bubble sitting on the surface. The torus
size coincided with the damage ring found by Philipp and Lauterborn [59]. Moreover, at
D∗ = 1.2, the bubble lifts off the surface after the second collapse, and the third collapse
takes place away from the surface just like the first collapse before and like the following
ones (Figure 2f [59]). This is observed in the simulation of the present work for the same D∗,
too. This is in correspondence with the final up-vortex, here carrying a larger gas fraction
with it.

Now, when looking at the bubble dynamics in the experiment for D∗ = 1.4, it is seen
that after the second collapse, the torus bubble does not lift up but rather stays at the surface
and spreads there. Thus, the flow of liquid connected with it is downwards, and it is in
correspondence with the down-vortex. The transition 1.30 < D∗tr < 1.34 is well in between
1.2 < D∗ < 1.4. Tomita and Shima [61] measured the maximum collapse pressure for the
second collapse at D∗ = 1.3. This is an extremely interesting experimental finding in view
of the numerical findings here. At D∗ = 1.3, the transition from a dominating up-vortex to
a dominating down-vortex takes place. Simultaneously, Philipp and Lauterborn [59] found
the maximum erosion around this D∗. Thus, there seems to exists a correlation between all
four quantities/events: maximum pressure, maximum erosion, second collapse (directly at
the solid surface for D∗ = 1.3), and the transition. The erosion is increasingly diminished
for growing D∗ > 1.4 by the growing distance of the relevant events (jet impact pressure
and bubble collapse pressure) from the solid surface. At about D∗= 2.0, erosion ceases.

At first sight, it could be expected that the jet flow dominates the more the nearer the
bubble collapses to the surface, i.e., at small D∗. However, the example of D∗ = 1.2 shows
that it is not the case: the final flow is upwards. The reason is that there is a competition
between the jet flow from the first collapse and the subsequent rebound and second collapse.
The time when the bubble touches the solid boundary is always between the first bubble
volume minimum and the second maximum for D∗ > 1.1 in the investigated interval of D∗.
The higher the value for D∗, the later the bubble touches the solid boundary during the
first rebound. It seems to matter how much of the rebound momentum takes place along
the solid boundary in order to create a flow reversal during second collapse against the
inflow from the jet from the first collapse.

For values below D∗ = 0.4, the transition to the fast jet is entered with the fast-jet
region below D∗ ≈ 0.2. These values are left for further studies in view of their special
dynamics and jet production mechanism.
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5. Conclusions and Outlook

Vortex dynamics following the jet formation of a bubble expanding and collapsing
close to a plane solid boundary is studied numerically. Two types of vortices, up- and
down-vortices, exist simultaneously with one type dominating in strength and extent.
The interval of D∗ from 0.4 to 1.8 has been studied. In the interval 1.30 < D∗ < 1.34,
a transition from one type to the other takes place with the up-vortices below and the
down-vortices above the transition value. The numerically found transition value lies well
in the experimentally found transition interval.

The benefit of the comparison of the numerical results to the experimental results
is threefold. Firstly, the stability of the solver with its extensions (see Appendices A–C)
is demonstrated for long calculation times. Secondly, the perfect agreement with the
experiments validates the solver for the cases studied, in particular long-term vortex
formation. Thirdly, it is shown that the main bubble and vortex dynamics are essentially
axially symmetric, even if this is not evident from the experiments (2D projections).

Moreover, by comparison of different works, a correlation between erosion, bubble
dynamics, pressure at the solid and vortex dynamics has been established in the range
0.4 < D∗ < 1.8, which is valid for a bubble with a maximum radius of 500 µm. Only bubbles
collapsing in direct contact with the solid cause erosion.

With these results, new tasks come into reach: for instance, long-term studies of
acoustic bubble oscillations with extreme bubble surface deformations near solids. Further
bubble mass control methods may be necessary for this case. Then, studies as to the growth
to a stable state or to instability in dependence on the acoustic pressure amplitude can be
conducted and compared with experiments. Long-term bubble interaction studies may
profit from the knowledge of the large spatial extent of the liquid vortex motion and the
longevity of the vortices. Thus, the present work opens up a large area for future research.
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Appendix A. Mesh, Initial Conditions and Boundary Conditions

The simulations are carried out in axial symmetry. A sketch of the mesh is shown in
Figure A1. A similar type of mesh has been introduced already in Koch et al. [37]. The
parameters and details since then have constantly been adapted with further experience.The
idea is to align the cells as much as possible to the bubble interface, i.e., a polar orientation
with apex at the initial bubble center, while at the same time dissipating the shock wave
in the outer regions and avoiding a high total cell amount for the whole mesh. The mesh
center core region (C = {x ∈ [0, Xi], y ∈ [−Xi, Xi]}) consists of a rectangular block with cells
in Cartesian orientation and a homogeneous minimum cell size of ∆xmin. The follow-up

https://doi.org/10.25625/4PPDVQ
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region (Xii = {r < Xii}\C) serves as the transition region from Cartesian to polar cell
orientation. The next region (X = {r < X}\(C ∪ Xii)) consists of cells with an edge aspect
ratio almost equal to 1. Because of the spreading in the ϕ-direction, the cell closest to X
must have an edge length δxX that is by a factor of λ = X/Xii larger than the edge length
δxXii of the cell closest to Xii (see calculation in Koch [62]). λ is called grading. In the last
region (XF = {X ≤ r ≤ XF}), the grading that is neccessary to maintain a cell edge ratio
of unity is exaggerated by a user-defined grading factor g f to dampen the outgoing shock
wave. The geometric parameters for the investigation were chosen as given in Table A1.

θ

φr

Xii
Xi X

 
XF

x

y

y=0

x=0

axis of symmetry

p

p

p

c

cell orientation
p = polar
c = cartesian

f

gr
ad

in
g

fa
ct

or
 g

wave transmissive
boundary

initial
bubble

apply snappyHexMesh

wall boundary
condition

Figure A1. Sketch of the mesh with axial symmetry and polar cell orientation except for the immediate
surrounding of the initial bubble, which is Cartesian. Not to scale.

Table A1. Setup parameters for the mesh. R∞
max = 500 µm.

∆xmin Xi Xii X XF Grading Factor g f Amount of Cells

2 µm 80 µm 2 ·
√

2 · Xi 1.2 · R∞
max 100R∞

max 4 30,000

The boundary conditions are set as follows: the wall boundary has a no-slip condition
for U and a vanishing normal gradient for αl as well as for p. The mesh is set to be a
wedge mesh, meaning axial symmetry in OpenFOAM terms. The outer boundary is set
to be wave transmissive for p [63,64], pressure-inlet-outlet-velocity for U and vanishing
normal gradient for αl . The pressure-inlet-outlet-velocity condition, in general, specifies
zero normal gradient. In case of inflow, the tangential component is set to zero [65].

The initial data for the bubble are set in the following way. The liquid is at rest at
ambient pressure p∞. The user-given initial equilibrium radius Rn,1, the starting radius
of the bubble Rinit and the ambient pressure p∞ determine the energy of the bubble [66].
At a later stage during calculation, condensation effects are accounted for by reducing
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the equilibrium radius to Rn,2, as described later in Appendix D. With the user-given
set of parameters, the initial gas region is discretized on the mesh. The discretized gas
volume Vdiscr is computed and transformed from axisymmetric to a 3D volume Vinit,discr =
Vdiscr · 180◦/ϑ, with ϑ the half opening angle of the wedge mesh. With that volume, the
pressure that produces the same potential energy of the bubble as the ideal one from the
user-given parameters is calculated. This pressure is usually less than 1% different from
the ideal one, but this adaption is necessary for grid convergence studies. The maximum
bubble radius and collapse time sensitively depend on the initial pressure when accuracy
higher than 5% is anticipated. The precise algorithm is as follows:

Vn =
4π

3
R3

n,1

Vinit =
4π

3
R3

init

pn = p∞ +
2σ

Rn,1

pinit = pn ·
(

Rn,1

Rinit

)3γg

Einit =
pinitVinit − pnVn

γg − 1
+ p∞(Vinit −Vn) (A1)

Rinit,discr =
3

√
Vinit,discr

3
4π

pinit,discr =
(γg − 1)

[
Einit − p∞(Vinit,discr −Vn)

]
+ pnVn

Vinit,discr

⇒ pinit,discr = pinit
Vinit

Vinit,discr
+

p∞(Vinit −Vinit,discr)(γg − 1)
Vinit,discr

Table A2. Fluid properties entering the calculation. Rspec is the specific gas constant of air.

Fluid µ [kg s−1 m−1] ρ(p = p∞) [kg m−3] nT ; γg B [Pa]; Rspec [J kg−1 K−1]

liquid 1.002× 10−3 998.2 7.15 305× 106

gas 18.6× 10−6 derived 1.4 287.0

σ [kg m−2] p∞ [Pa] T0 [K]

0.0725 101315 293.15

Appendix B. Time Stepping

In the present work, the flow patterns are of interest that persist long after the bubble
oscillations have ceased. The simulation therefore has to pass a long period of time where
the dynamics are not violent anymore. Hence, a suitable time stepping is important for the
different phases of the bubble dynamics for a trade-off between numerical stability and
computational effort.

The Courant number Co is calculated to determine the time step size ∆t for adaptive
time stepping. It is defined as the spatial maximum of the ratio of the local flow speed
U(x) at location x to the maximum resolvable flow speed by the spatial and temporal
discretization (∆x(x)/ ∆t):

Co = max
x

(
∆t

∆x(x)
· |U|(x)

)
. (A2)

Not only the Courant number Co of the advective flow but also the acoustic Courant
number CoAc and the flow Courant number of the bubble interface, Coα, were considered.
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The latter two are formed with (c + |U|)(x), where c denotes the local speed of sound, and
the flow velocity at the interface Uα(x|αl≈0.5), respectively, instead of the velocity |U|(x).

The upper limits of the three criteria are set to the values given in Table A3. There is
also the restriction for the size of the time step for all times, ∆tmax. The ∆tmax is set to 50 ns
or 500 ns. Since the vortices fully develop very late in the bubble process, the simulation
needs to run for a long time. Therefore, a script was written to supervise the calculation and
change the time stepping for times when the fast bubble collapses are over. The changes
made are given in Table A3.

Table A3. Time stepping of the simulations to save calculation time. R(t) is the bubble radius at time
t and Rn is the radius at rest.

time Comax Coα,max CoAc,max CoAc,max = 1 for
R(t)/Rn <

∆tmax

0 s–120 µs 0.2 0.2 8 0.3 5 · 10−8 s
120 µs–200 µs 0.2 0.2 30 0.01 5 · 10−7 s
200 µs–end 0.4 0.4 100 0.01 5 · 10−7 s

Appendix C. Bubble Mass Correction Methods

It was noted already in Miller et al. [67] and Koch et al. [37] that due to the segregated
nature of the solver, the mass of the bubble undergoes an error over time. We apply
two versions of compensation. Both of them are applied after the last iteration of the
pressure equation.

Appendix C.1. Global Mass Correction

The first approach has been described in Koch et al. [37]. The density in each cell of
the gas phase simply is multiplied by the ratio of the initial bubble mass to the current
bubble mass:

ρg,new(x, t) =
m0

m(t)
ρg(x, t).

This approach has been validated by comparison to the Gilmore model [68] and to exper-
imental data also in axial symmetry in Koch et al. [37]. It has been proven to work very
well until the first collapse and slightly longer. The disadvantage is that when the bubble
becomes fragmented, each of the fragments is treated the same regardless of the local mass
errors of the fragments.

Appendix C.2. Local Mass Correction

The second approach aims to compensate the error where it occurs. After the last
iteration of the pressure equation, the continuity equation for the gas is reconsidered in
the form

∂α̃gρg

∂t
+∇ ·

(
α̃gρgU

)
= 0

and solved for the field α̃gρg. The gas density ρg is obtained from the field α̃gρg by division
by α̃g, where α̃g is a copy of the field αg = 1− αl with

α̃g =


0.999 αg ≥ 0.999
0.001 αg ≤ 0.001
αg else

in order to avoid division by zero. This approach has been validated by a direct comparison
of simulations in axial symmetry and full 3D to experiments in Koch [8] and Koch et al. [6].
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Appendix D. Bubble Mass Control

In order to model a strong collapse of the bubble, as seen in the experiments, the
following procedure is applied. The phenomenon of laser-induced breakdown to produce
a bubble is not modeled in the present work. Instead, an initial bubble of high internal
pressure is taken that expands to the experimental maximum radius. The condensation of
the vapor part in the bubble is modeled by a reduction of the radius at rest of the bubble,
Rn. Hentschel and Lauterborn [69] stated that good agreement between the Gilmore model
and experiments is found when the equilibrium radius Rn of the bubble is reduced by 60 %
at the time when the bubble is at its maximum radius. In the present work, this approach
was incorporated by a linear reduction of Rn from Rn,1 to Rn,2 in the time interval between
ta and tb:

Rn = Rn(t) =


Rn,1 t < ta

(t− ta) · (Rn,2 − Rn,1)/(tb − ta) + Rn,1 ta ≤ t < tb

Rn,2 t > tb

. (A3)

The density of the bubble is changed in the same manner by a global mass correction
step (see Appendix C.1) after the new m0 has been determined:

m0,new = m0 ·
(

Rn(t)
Rn,1

)3

ρg,new(x, t) =
m0,new

m(t)
ρg(x, t)

The values of Rn,1 and Rn,2 in this work are chosen as follows: for fixed Rinit, Rn,1 is a
parameter that is varied for different initial bubble energies and hence different maximum
radii the bubble expands to. Akhatov et al. [40] gave experimental data on the rebound
radius compared to the maximum radius of a bubble in unbounded liquid for a total of
16 experiments. When fitting these data with the present code, the following relation is
found:

Rn,2 = 0.127R∞
max. (A4)

Hentschel and Lauterborn (see Figure 6 [69]) found that Rn,2 = 0.175R∞
max. A compre-

hensive analysis on the ratio of the first rebound radius to R∞
max is given in Liang et al.

(see Figure 15 [45]), where it is also mentioned that this ratio depends on the focusing
quality of the optics producing the plasma. In the present work, Rn,2 was chosen to be fixed
at 64 µm.

This method to reduce the gas content during simulation has been proven to work
well by comparison with experiments, as shown here and previously in Koch et al. [37].
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