
Dependability in Multi-Agent
Systems for Smart Grid

Applications

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. Thomas Frühwirth, BSc.
Registration Number 0927088

to the Faculty of Informatics
at the TU Wien

Advisor: Dipl.-Ing. Dr.techn. Wolfgang Kastner

The dissertation has been reviewed by:

Wilfried Elmenreich Thomas Strasser

Vienna, 4th August, 2021
Thomas Frühwirth

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. Thomas Frühwirth, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 4. August 2021
Thomas Frühwirth

iii

Danksagung

Die Erstellung einer Dissertation ist oft ein langer Prozess, der ohne entsprechende
Betreuung und Mitwirkung nur schwer möglich scheint. Der größte Dank gilt daher
Prof. Wolfgang Kastner, der durch seine unermüdliche inhaltliche sowie moralische
Unterstützung maßgeblich zum erfolgreichen Abschluss dieser Arbeit beigetragen hat.
Sein Beitrag zum Gelingen dieser Dissertation kann kaum hoch genug eingeschätzt
werden.

Ebenso dankbar bin ich allen Kollegen und Freunden aus der Automation Systems Group,
anderen Instituten der TU Wien und des Austrian Center for Digital Production für die
zahlreichen Diskussionen und die spannende und hoffentlich noch längerfristig anhaltende
Zusammenarbeit in den verschiedensten Projekten.

Und schließlich wirken sich die Anstrengungen, vor allem im Zusammenhang mit der
Verschriftlichung der Ergebnisse, auch auf den persönlichen Lebensbereich und in vielen
Momenten sicher auch auf den Gemütszustand aus. Über die bedingungslose Unterstüt-
zung meiner Eltern, Verwandten und Freunde aus Oberösterreich, Wien und anderswo
bin ich daher besonders dankbar.

v

Kurzfassung
Die digitale Transformation, also die anhaltende Verbreitung von Informations- und
Kommunikationstechnologien in vielen verschiedenen Bereichen unseres täglichen Lebens,
ist im elektrischen Stromnetz unter der Bezeichnung Smart Grid bekannt. Die zunehmend
regionale Erzeugung und Einspeisung von Energie führt zu einer Dezentralisierung des
Stromnetzes. Darüber hinaus verursacht steigender Energieverbrauch z.B. aufgrund
von Elektromobilität eine höhere Belastung existierender Verteilnetze. Durch diese und
ähnliche Entwicklungen werden Smart-Grid-Anwendungen zunehmend wirtschaftlich
attraktiv und teilweise sogar notwendig, um einen effizienten Betrieb von Verteilnetzen
zu ermöglichen.

In dieser Arbeit wird ein Systems Engineering Life Cycle vorgestellt und diskutiert, der At-
tribute der Verlässlichkeit bei der Entwicklung von Multiagentensystemen für Smart-Grid-
Anwendungen einbezieht. Der dahinterliegende Prozess baut stark auf bestehenden Me-
thodiken aus den Bereichen Smart Grid, Multiagentensystem und Ontologie-Entwicklung
auf. Die einzelnen Agenten und Ontologien werden in insgesamt elf Aktivitäten, welche
in fünf Systems Engineering Life Cycle Phasen gegliedert sind, ständig verfeinert. Im
resultierenden Multiagentensystem ist jeder Agent mit einer Wissensbasis ausgestattet,
die es ihm ermöglicht, die darin gespeicherten Attribute in seinen Entscheidungsprozessen
zu berücksichtigen.

Leistungsschalter in städtischen Verteilnetzen ermöglichen es, die Netzkonfiguration
dynamisch zu ändern, beispielsweise um Fehler zu isolieren. Die Schalterzustände (offen
oder geschlossen) beeinflussen jedoch auch die Transformator- und Leitungsverluste,
die durch die Versorgung der angeschlossenen Lasten entstehen. Daraus ergibt sich
unmittelbar ein Schaltoptimierungsproblem, welches als begleitender Anwendungsfall in
dieser Arbeit dient. Schaltoptimierung zielt darauf ab, Verluste zu reduzieren, indem das
Verteilnetz dynamisch umstrukturiert wird, wenn sich Lasten zwischen verschiedenen
Bereichen, z.B. von Wohnhäusern zu Bürogebäuden, verschieben.

Das aus der Anwendung des Systems Engineering Life Cycle auf das Schaltoptimierungs-
problem entstehende Multiagentensystem wir mithilfe eines Co-Simulationsframeworks
evaluiert. Dadurch lässt sich die mögliche Energieeinsparung abschätzen, die von einem
verteilten Multiagentensystem zur Schaltoptimierung erreicht werden kann. Darüber
hinaus zeigen die Ergebnisse, dass die Einbeziehung von Attributen der Verlässlichkeit
in die Entscheidungsprozesse von Agenten die Leistung von Multiagentensystemen im
Smart-Grid-Bereich verbessern kann.

vii

Abstract
Over the past decades, the spread of information and communication technologies has
affected many different domains and industries and is known under equally many keywords.
This ongoing digital transformation has also been affecting the electric grid and led to
the notation of Smart Grids. With the shift towards decentralization caused by adopting
distributed energy resources and increased power consumption partly driven by the
popularity of electric vehicles, Smart Grid applications are becoming economically viable
and even necessary to cope with increasing energy demands in existing power distribution
networks.

This thesis presents and discusses a systems engineering life cycle that incorporates
dependability attributes in developing multi-agent systems for Smart Grid applications.
It builds upon existing methodologies from Smart Grid, multi-agent system, and ontology
development. The individual agents and ontologies are developed and refined during
eleven activities structured into five main phases of the systems engineering life cycle.
Each agent is equipped with a knowledge base, which allows the agent to consider the
dependability attributes stored therein in its decision-making process.

Switches and circuit breakers in urban power distribution networks allow to dynamically
change the network configuration, e.g., to isolate faults. However, the switch states (open
or closed) also affect the transformer and line losses caused by supplying the connected
loads. This insight gives rise to the switching optimization problem, which serves as
an ongoing use case throughout this thesis. It aims at reducing losses by dynamically
restructuring the distribution network as loads shift between different areas, e.g., from
residential homes to office buildings.

An existing co-simulation framework is extended to support agents and ontologies that
resulted from applying the systems engineering life cycle to the switching optimization
problem. The evaluation results provide an indication of energy savings achievable by a
distributed switching optimization approach. Furthermore, they show that incorporating
dependability in the decision-making processes of agents can improve the performance of
multi-agent systems in the Smart Grid domain.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Smart grids . 2
1.2 Dependability . 5
1.3 Multi-agent systems . 7
1.4 Knowledge representation . 8
1.5 Research question and research objectives 11
1.6 Methodology and structure of this thesis 13
1.7 Scientific publications . 15

2 State of the art 17
2.1 Smart grid standards . 17
2.2 Smart grid design . 21
2.3 MAS design . 32
2.4 Ontology design . 50
2.5 Related scientific work . 56

3 Systems engineering life cycle definition 65
3.1 SELC phases . 65
3.2 Definition of SELC activities . 66
3.3 Methodologies supporting the SELC activities 68

4 Planning 71
4.1 Use case description . 71
4.2 Requirements description . 81

xi

5 Analysis 83
5.1 Switching optimization algorithms . 83
5.2 Dependability requirements analysis . 86

6 Design 99
6.1 System architecture definition . 99
6.2 MAS design . 106
6.3 Ontology design . 114

7 Implementation 131
7.1 Agent implementation . 131
7.2 Ontology instantiation . 137

8 Evaluation 145
8.1 Smart grid simulation . 145
8.2 Functional evaluation . 148
8.3 Non-functional evaluation . 151

9 Conclusion and future work 157
9.1 Effects of the research objectives on the results 158
9.2 Critical reflection . 160
9.3 Future work . 161

Acronyms 163

Bibliography 171

List of Figures

1.1 Illustration of today’s power grid topology . 2
1.2 Single-line diagram of a power distribution network 3
1.3 SGAM layers, domains, and zones . 4
1.4 Dependability tree . 5
1.5 Centralized, decentralized, and distributed (communication) networks 8
1.6 VOWL notation exemplified . 10
1.7 SELC of SG applications . 12
1.8 Methodological approach of this thesis . 14

2.1 IEC SG standards and their mapping to the SGAM 19
2.2 IEC 62559 use case methodology process . 22
2.3 SGAM Toolbox methodology and its mapping to MDE 27
2.4 NISTIR 7628 user’s guide activities . 28
2.5 NIST IR 7628 logical reference model . 31
2.6 MAS design methodologies . 33
2.7 Gaia agent design methodology . 34
2.8 MaSE agent design methodology . 37
2.9 Passi agent design methodology . 40
2.10 Life-cycle of FIPA specifications . 46
2.11 FIPA abstract architecture and concrete realizations 47
2.12 FIPA agent management reference model . 47
2.13 Ontology development 101 design methodology 51
2.14 UPON ontology design methodology . 54
2.15 Interplay of UPON cycles, phases, iterations, and workflows 54

3.1 Extended SELC . 66
3.2 SELC phases and activities . 67

4.1 Planning phase: activities and tools . 71

5.1 Analysis phase: activities and tools . 83
5.2 Failure rate of a technical system – the bathtub curve 88
5.3 NIST IR 7628 logical reference model for switching optimization 94

xiii

6.1 Design phase: activities and tools . 99
6.2 Administration shell defined by RAMI 4.0 . 101
6.3 Agent controlling a power system component 102
6.4 Distribution network with MAS-based component control 103
6.5 PASSI agent identification diagram for the switching optimization use case . 107
6.6 PASSI roles identification diagram for automated switching optimization . . . 108
6.7 PASSI task specification diagram for the Switch Agent 109
6.8 PASSI roles description diagram for automated switching optimization 111
6.9 FIPA agent interaction protocol diagram for the automated switching opti-

mization . 113
6.10 Methodology for reusable ontology design . 115
6.11 Three-level methodology for the switching optimization MAS ontology 118
6.12 Step 1: Identifying and adding domains to the graph 119
6.13 Step 2: Adding fragments to the graph and assigning them to domains 121
6.14 FIPA fragment ontology . 122
6.15 Dependability tree fragment ontology . 123
6.16 Metrics and scales fragment ontology . 124
6.17 Step 3: Adding fragment ratings to the graph 125
6.18 Step 4: Removing unused fragments from the graph 126
6.19 Rating ontology domain . 127
6.20 Agents and services domain ontology . 128
6.21 Switching optimization application-specific ontology 129

7.1 Implementation phase: activities and tools . 131
7.2 PASSI MASD diagram for automated switching optimization 132
7.3 PASSI SASD diagram for the Switch Agent 133
7.4 PASSI MABD diagram for savings estimation 134
7.5 PASSI SABD diagram for the GetNeighboringAgents method 135
7.6 Application-specific ontology instantiation for Switch Agent 1 138
7.7 Modeling service availability . 140
7.8 Modeling service reliability . 141
7.9 Modeling service maintainability . 142
7.10 Modeling communication protocol integrity 142
7.11 Modeling communication protocol scalability 143

8.1 Evaluation phase: activities and tools . 145
8.2 FNCS architecture with GridLAB-D and NS3 147
8.3 Switch Agent and Transformer Agent implementation in GridLAB-D 148
8.4 Functional evaluation setup and messages exchanged during optimization . . 149
8.5 24 h load profiles of the commercial and residential loads used for simulation 150
8.6 Supplied power and transformer losses of the functional evaluation scenario . 151
8.7 Non-functional evaluation setup . 152
8.8 Switch Agent 2 ontology for the non-functional evaluation 154
8.9 Supplied power and transformer losses of the non-functional evaluation 155

List of Tables

2.1 Services defined by IEC 62559 . 25
2.2 NIST CIA impact levels definitions . 30
2.3 Gaia role schema template . 35
2.4 Feature analysis of MAS design methodologies 45
2.5 FIPA communicative acts . 48
2.6 Dependability attributes and relevant literature in the context of MASs . . . 63

3.1 Methodologies and the SELC phases they support 68

4.1 Use case identification . 72
4.2 Version management . 72
4.3 Scope and objectives of use case . 72
4.4 Narrative of use case . 73
4.5 KPIs . 74
4.6 Use case conditions . 74
4.7 Further information to the use case for classification/mapping 75
4.8 General remarks . 75
4.9 Diagrams of use case . 76
4.10 Actors . 77
4.11 References . 77
4.12 Overview of scenarios . 78
4.13 Steps for Scenario 1 – Automated switching optimization 79
4.14 Information exchanged . 80
4.15 Common terms and definitions . 80
4.16 Custom information . 81
4.17 Requirements . 82

5.1 Evaluation of dependability attributes in various application scenarios 87
5.2 Smart grid organizational business functions 91
5.3 Organizational business function risk profile 92
5.4 Inventory of mission and business processes that support and interface with

identified organizational business functions 92
5.5 SG systems inventory . 93
5.6 SG systems inventory with CIA impacts . 94

xv

5.7 SG systems inventory with organizational impacts, unique technical require-
ments, and requirement enhancements . 96

5.8 SG systems inventory with assessment scores and assessment gaps 97

8.1 Software and versions used for evaluation . 146

CHAPTER 1
Introduction

In our everyday life, Information and Communication Technology (ICT) is ubiquitous and
has led to an increased interconnection and interaction between the “cyber-world” and the
“physical-world”, resulting in the notion of Cyber-Physical Systems (CPSs). An important
field of application for CPSs is the monitoring and control of critical infrastructures, such
as the power distribution network. In particular, the rise of Distributed Energy Resources
(DERs) and power generation at consumer premises requires a more distributed approach
to power systems control and causes devices in the distribution networks to become
increasingly intelligent. This new generation of distribution networks constitutes an
essential part of the Smart Grid (SG). SG applications are manifold, including substation
automation, transmission line monitoring, customer energy management, advanced
metering infrastructure, and many more [1].

The control of critical infrastructures requires particular precautions to be taken, as any
malfunction imposes potential physical harm to people or damage to property. Thus,
CPSs have to be planned and operated in a dependable fashion. Furthermore, today’s
trend of connecting control systems to the Internet of Things (IoT) or even operating
them via the IoT offers additional opportunities regarding flexibility and new application
scenarios but exposes these systems to a large number of potential threats, in particular
concerning information security and associated attack scenarios.

Individual components of a CPS may offer and invoke services among each other. In
particular in the scientific literature, the predominant architectural styles for realizing
CPSs in the SG field are Multi-Agent Systems (MASs), in which each device is considered
as an independent, self-contained entity with well-defined goals. Each agent handles
certain, simple functionalities on its own but seeks cooperation with other agents to
solve more complex tasks. Deploying MASs in the SG environment requires a Systems
Engineering Life Cycle (SELC) that takes dependability considerations into account from

1

1. Introduction

the very beginning throughout the entire process, i.e., during planning, analysis, design,
implementation, and evaluation. Thereby, Knowledge Representation (KR) provides a
suitable means to express these dependability considerations. The main hypothesis of this
thesis is that extending MASs with sophisticated KR functionality enables the individual
agents to exchange semantically meaningful information and to consider dependability
requirements in their decision-making process. This knowledge can be used to improve
the performance of SG applications and to improve the dependability of the overall SG.

1.1 Smart grids
Although DERs are currently gaining importance, relatively few large power stations still
produce the majority of electrical energy. From there, it is distributed to a vast number
of consumers. The power grid follows this topology and can roughly be divided into the
transmission network and the distribution network, as illustrated in Figure 1.1.

Power Stations

Power Stations
Step-up

Transformer

Step-up
Transformer

Step-down
Transformer

Step-down
Transformer

HV & MV
Transmission

Lines

LV Distribution
Lines LV Distribution

Lines

Consumers Consumers

Colors:
Green: Generation
Red: Transmission
Blue: Distribution
Black: Consumer

Figure 1.1: Illustration of today’s power grid topology, adapted from [2]

The transmission network handles power transmission over long distances at High Voltage
(HV) (≥ 35 kV) or Medium Voltage (MV) (≤ 35 kV, ≥ 1 kV), while the distribution
network connects individual homes and other customers to the grid at Low Voltage (LV)
(≤ 1 kV) [3]. Transformers convert the voltage between different levels. Availability and
reliability requirements differ between the two network types, and so do the predominant
network topologies. Redundant paths (in many cases mesh or ring topologies) ensure
operation of the transmission network even in the case of a single fault as an outage of
the transmission network would have far-reaching consequences and affect a large number

2

1.1. Smart grids

of consumers. Contrary, the focus in distribution networks is mainly on cost efficiency by
keeping the amount of necessary cabling low. For this reason, distribution networks on
MV and LV level often follow a radial structure.

From a graph-theoretical point of view, an individual radial structure used in distribution
networks is a tree having a transformer as its root node, busbars as internal nodes, and
consumers (loads) as leaf nodes. A distribution network supplying a specific geographic
area via multiple transformers forms a forest [4]. The graphical notation used to illustrate
distribution networks throughout this thesis also highlights this forest structure, as
depicted in Figure 1.2. The distribution network shown in the figure is based on the
power grid structure of Figure 1.1. Power generation and the power transmission network
are thereby abstracted and represented only by a red, hatched box. Transformers are
illustrated via two overlapping circles, busbars via straight, thick lines, cabling via thin
lines, and loads via triangles.

Busbar

Load

LV Distribution
Line

MV/LV
Transformer

HV/LV
Grid

Figure 1.2: Single-line diagram of a power distribution network

During the past decades, the application of ICT in the power grid has led to a trans-
formation towards the SG. Components are becoming more intelligent and cooperative
while the grid itself shifts from the traditional generation - transmission - distribution
structure towards a more decentralized structure. This development causes a change
in the power grid architecture. The three-dimensional Smart Grid Architecture Model
(SGAM) serves as a framework and allows assigning SG use cases, processes, products,
and utility operations to three different dimensions in a technology-agnostic way. The
SGAM framework is depicted in Figure 1.3.

The first dimension of the SGAM framework consists of six different zones. The process
zone includes transformation and transportation of energy, and the equipment involved
(e.g., generators, transformers, switches, cables and loads); the field zone includes
equipment for process protection, control, and monitoring (e.g., protection relays and
bay controllers); the station zone covers field data aggregation (e.g., data concentrators,

3

1. Introduction

Figure 1.3: SGAM layers, domains, and zones [5]

substation automation, and local Supervisory Control and Data Acquisition (SCADA));
the operation zone hosts power system control operations (e.g., Distribution Management
Systems (DMSs) and Energy Management Systems (EMSs)); the enterprise zone reflects
commercial and organizational processes (e.g., asset management and logistics); and the
market zone covers market operations (e.g, energy trading).

In its second dimension, the SGAM framework is divided into five different domains:
generation covering energy generation in large power stations (e.g, nuclear, fossil, and
large-scale renewable); transmission and distribution as previously mentioned; DER
including small-scale, mainly renewable energy sources (small solar or wind plants); and
customer premises covering consumption as well as production on a consumer level (e.g.,
PhotoVoltaic (PV) and Electric Vehicle (EV) storage).

Finally, the third dimension of the SGAM framework is built from five different layers: the
component layer includes the physical distribution of all SG components; the communica-
tion layer describes protocols and mechanisms for information exchange; the information
layer covers the exchanged information and the associated data models; the function layer
describes functions and services independently from underlying equipment and protocols;
and the business layer presents the business view, which includes regulations, market
structures, and policies.

4

1.2. Dependability

1.2 Dependability
Traditional fields of dependable applications are X-by-wire systems, e.g., steer-by-wire in
the automotive industry or fly-by-wire in the aerospace industry, operation of industrial
plants, and many other applications where human health is at risk if the (computer) system
fails. All these systems are employed in well-controlled environments with clear limits
regarding their physical expansion and the number and types of interconnected devices.
These assumptions are no more valid for dependable, highly distributed computing
systems found in the IoT. Therefore, new ideas are required to bring the know-how
gathered from years of research and development in the field of dependability to a
larger scale. The dependability tree [6] allows the various aspects of dependability to be
structured in a comprehensive manner. Figure 1.4 illustrates the dependability tree. It
covers threats, attributes, and means. The following paragraphs briefly discuss each of
these aspects.

Dependability

Threats

Attributes

Means

Faults
Errors
Failures

Availability

Reliability
Safety
Confidentiality
Integrity

Maintainability
(Scalability)
(Privacy)
Fault Prevention
Fault Tolerance
Fault Removal
Fault Forecasting

Security

Figure 1.4: Dependability tree, adapted from [6]

Any computing system, whether or not it needs to operate in a dependable fashion, is
subject to threats. The root cause of a malfunction is called fault. Faults are either
human-made or caused by physical effects. Human-made faults may be intentional
(e.g., security attacks) or unintentional (e.g., design faults, improper operation, or
incorrect maintenance). A fault is active if it produces an error; otherwise, it is dormant.
Furthermore, faults can be transient or permanent. In contrast to permanent faults,
which are easier to find and repair, transient faults appear and disappear spontaneously.
A fault may lead to a corrupted system state if it is activated. This corrupted system
state is called error. An error is still internal to the affected computing system, i.e., it
is not visible by other connected systems. If neither the fault nor the error is detected
and corrected, the system might deviate from its specified behavior. This situation is
then called a failure. In any dependable system, special precautions shall avoid failures
whenever possible. Furthermore, a failure of a subsystem (e.g., a temperature sensor)
becomes a fault to the supersystem (e.g., a controller), where it again might cause an
error. This causal relationship is known as fundamental chain [6].

5

1. Introduction

Avizienis, Laprie, Randell, et al. defined six dependability attributes. Availability specifies
the system’s uptime in percentage, i.e., a system having 0.99 availability is operational
99 % of the time. Thus, availability gives a metric for the readiness of usage for a
service and is a key attribute regarding dependability. Equation 1.1 specifies how to
calculate availability from the system’s up- and downtime. On the other hand, reliability
gives the probability that a system conforms to its specification up to a given time
t. Mathematically, reliability is therefore specified as a complementary Cumulative
Distribution Function (CDF), called the reliability or survival function. It is defined by
Equation 1.2, whereby f(t) is the Probability Density Function (PDF) specifying the
system’s failure probability, and F (t) is the corresponding CDF. With the definitions
provided by Avizienis, Laprie, Randell, et al., only the availability and the reliability
attribute can be defined quantitatively. Safety addresses the impact of a system on its
environment. It is defined as the absence of catastrophic consequences on the user and
the environment. Confidentiality refers to preventing information from unauthorized
disclosure. The absence of improper system state modifications is called integrity.
Confidentiality, integrity, and availability are often subsumed under the term security.
Maintainability is the system’s capability to be repaired and modified. Scalability and
privacy, which are not present in the classical dependability tree but of particular interest
for the IoT, were added to the dependability tree in [7]. Several definitions of scalability
exist, but none of them is particularly precise [8]. For this thesis, scalability shall be
defined as “the ability of a system to be extended with additional components”. Privacy
is often used interchangeably with confidentiality. However, this is not quite accurate.
Confidentiality is rather a technical prerequisite to achieve privacy, which is defined as
“the interest an individual has to control how information about them is collected, used,
and shared” [9].

Availability[%] = 100 ∗ uptime[s]
uptime[s] + downtime[s] (1.1)

Reliability(t) = 1 − F (t) =
∞

t
f(x) ∗ dx (1.2)

Developing dependable systems is motivated by four means. Development guidelines,
international standards, and other procedures improve fault prevention. However, it
is impossible to prevent faults with absolute certainty. The key to developing high
dependable systems is fault tolerance, which is most commonly achieved by redundancy.
The number of replicas required to tolerate one or even multiple faults varies depending
on the failure-mode [10]. Once a fault is detected, fault removal may be applied. Finally,
fault forecasting techniques enable statements about the type and frequency of faults
expected to occur in the future, which is a crucial aspect of maintenance.

6

1.3. Multi-agent systems

1.3 Multi-agent systems
There are different architectural styles known for realizing CPSs, e.g., based on a Service-
Oriented Architectures (SOAs), but MASs gain more and more importance in the SG
field. The exact definitions of a MAS and agents themselves vary. McArthur et al. [11,
12] analyzed the available literature on this topic with a strong focus on power system
applications. They heavily build upon Wooldridge’s definitions of basic and intelligent
agents: an agent is “a software (or hardware) entity that is situated in some environment
and is able to autonomously react to changes in that environment” [13]. i.e., agents are
autonomous and reactive. These properties do not set agents apart from many existing
embedded systems [14]. Therefore, the notions of intelligent agents and flexible autonomy
were introduced, whereby intelligent agents show flexible, autonomous behavior. This is
reflected by two additional agent properties: pro-activeness and social ability. Building
upon these definitions, an intelligent agent is an agent that has four characteristics:

• Autonomy: An intelligent agent can “make decisions about what to do” based on
some internal state, “without the direct intervention of humans or others” [15].
Furthermore, when an agent makes a decision and takes the corresponding action
is not pre-defined but depends on external circumstances.

• Reactivity: An intelligent agent can “react to changes in its environment”. Therefore,
an agent must be able to observe and interact with its environment, e.g., via sensors
and actuators in a physical environment or via software interfaces in a computational
environment.

• Pro-activeness: An intelligent agent can “change its behavior in order to achieve its
goals”. It can search for alternative courses of action. For example, if a particular
communication partner is unreachable, it can search for another agent offering the
required service.

• Social ability: An intelligent agent can “interact with other intelligent agents”
by exchanging messages. Thereby, they communicate using a well-defined Agent
Communication Language (ACL). Furthermore, agents interact via conversations,
i.e., a sequence of exchanged messages, rather than simply exchanging data. They
keep track of the state of each ongoing conversation.

Strictly following the above definitions, intelligence is not mandatory for agents to interact
in a MAS. However, for many applications, and also in the course of this thesis, it is
beneficial to agree that a MAS is a system comprising two or more intelligent agents.
Ye, Zhang, and Vasilakos point out that the “capacity of a single agent is limited by its
knowledge, its computing resources, and its perspectives” [16]. Therefore, no single agent
in a MAS can have a full understanding of the complete system. Instead, the information
is distributed. They also recognize that, when “interdependent problems arise, the agents
in the system must coordinate with one another to ensure that interdependencies are
properly managed”. Thus, agents within a MAS must be able to communicate. The

7

1. Introduction

behavior of a MAS emerges from the behavior of the individual agents, rather than from
following an overall system goal [11].

Intelligent agents are embedded in physical nodes and use communication networks
to cooperate and exchange messages. These communication networks are generally
classified into centralized, decentralized and distributed [17] topologies, as illustrated in
Figure 1.5. They differ regarding the number of nodes that may fail without interrupting
the communication between the remaining agents. For a centralized network (a), a failure
in the central node immediately disrupts all communication in the network. A single
node failure in any decentralized network (b) only leads to a separated network in which
the individual agents in each of the segments are still able to communicate with one
another. And, finally, in a distributed network, there is no distinct subset of nodes that,
if these nodes fail, completely cuts communication between agents. If a sufficient number
of nodes fail, the network is separated. However, the remaining subsets are still able to
communicate and perform their tasks. All nodes in the distributed network are roughly
equally important for its functionality. It is furthermore noteworthy that the logical
topology does not necessarily equal its physical communication network structure. For
example, there may as well be a central controlling instance in a physically distributed
communication network.

(a) Centralized (b) Decentralized (c) Distributed

Node

Link

Figure 1.5: Centralized, decentralized, and distributed (communication) networks [17]

1.4 Knowledge representation
According to the above definition, intelligent agents can interact with their environment
and communicate with other agents. For this purpose, they require some mechanism to
refer to their environment, services, and attributes in a semantically meaningful way. The

8

1.4. Knowledge representation

corresponding field of research providing this functionality is Knowledge Representation
(KR) [18]. The expressiveness of the various KR systems differs:

• Catalog: collection of terms without any additional information about the terms
themselves or relations between them

• Glossary: collection of terms amended by human-readable explanations; such as
this list

• Classification/Taxonomy: model for assigning terms to classes; classes are often
hierarchically ordered

• Semantic network: collection of terms and arbitrary relations between them, without
formal semantics

• Ontology: collection of terms and relations between them, including formal seman-
tics

The predominant KR system for the IoT are ontologies as defined by the World Wide
Web Consortium (W3C). Thereby, an ontology is simply a graph consisting of nodes
representing specific attributes (literal data), objects (individuals), or classes of objects as
well as edges representing relations between nodes, which are called properties. Classes,
in the context of ontologies, are often called concepts. The Terminological Box (TBox)
contains elements of the conceptual level that describe the principle mechanisms of the
domain. The Assertional Box (ABox) contains a set of real-world instantiations of the
elements defined in the TBox. A combination of a NameSpace (NS) and name uniquely
identifies each element of the ontology. Each relation in conjunction with the nodes
it connects constitutes a triple. Triples are of the form Subject Predicate Object, as in
“Paper” hasColor “White”. A knowledge graph is an elegant and illustrative way of
representing the triples of an ontology.

Even though ontologies are listed as a separate class of systems for KR, the expressiveness
of ontologies themselves differ w.r.t. the Semantic Web language used for their represen-
tation (storage and exchange). Ordered from least expressive to most expressive these
are Resource Description Framework (RDF), Resource Description Framework Schema
(RDFS), RDFS-plus, and Web Ontology Language (OWL) [19]. And, finally, the most
commonly used Semantic Web language OWL comes in different versions: OWL Lite,
OWL Description Logic (DL), and OWL Full.

Ontologies and knowledge graphs are principal components of this thesis. Therefore, they
are briefly introduced in the following. Figure 1.6 depicts a simple ontology in Visual
Notation for OWL Ontologies (VOWL) [20]. It exemplifies the modeling concepts most
relevant for this thesis and their graphical representation. The following list discusses
these concepts. The numbers (except for 0) used for enumeration correspond to the
numbers in the figure.

9

1. Introduction

Fictional
Character

Homer
Simpson

rdf:type

Fictional Town

Springfield

rdf:type

date

dateOfBirth
(functional)

livesIn
(asymmetric)

livesIn
(asymmetric)

1956-05-12

dateOfBirth
(functional)

isMarriedTo
(irreflexive, symmetric)

Marge
Simpson

rdf:type

isMarriedTo
(irreflexive, symmetric)

wasCreatedBy
Person

 (external)

Subclass of

Matt Groening

rdf:type

wasCreatedBy

wasCreatedBy

(disjoint)(disjoint)

wasCreatedBy ∀∀ 1.

2.

3.4.

5.

6.

8. 8. 8.

8.

7.

9.

9.

9.

9.
9.

Figure 1.6: VOWL notation exemplified

0. Person, Fictional Town, and Fictional Character are classes, while Springfield,
Homer Simpson, Marge Simpson, and Matt Groening are individuals.

1. Person is marked as external. It is defined in a different NS. NSs are omitted in
VOWL.

2. A Fictional Character inherits all properties of Person, which is indicated by the
Subclass of property.

3. Fictional Characters can be married to one another, which is indicated by the
isMarriedTo property. This property is irreflexive: an individual of class Fictional
Character cannot be married to itself. Additionally, the isMarriedTo property is
symmetric: if individual A isMarriedTo individual B, it directly follows that B
isMarriedTo to A.

4. A Fictional Character can live in a Fictional Town.
5. An individual can have multiple types and, therefore, combine properties of vari-

ous classes. The keyword disjoint explicitly states that Fictional Character and
Fictional Town are different classes and no individual can be of both types simul-
taneously.

10

1.5. Research question and research objectives

6. For both, Fictional Characters and Fictional Towns, their creator can be specified
using the wasCreatedBy property. Properties relating classes (and their individuals)
to one another are called object properties.

7. Classes cannot only be related to each other but also to data values. For example,
the dateOfBirth property enables specifying a data value for the birthday of a
Person. Its type is xsd:date. Properties relating classes (and their individuals) to
data values are called data properties.

8. The rdf:type property is used to specify the corresponding type for each individual
(Springfield, Homer Simpson, Marge Simpson, and Matt Groening).

9. Properties that have formally been defined within the TBox on the class level (3.,
4., 5., 6., 7.), are used to relate individuals among each other and to their specific
data values. This creates the ABox.

To make ontologies easily accessible via the Web, they are often stored in ontology
documents (typically in eXtensible Markup Language (XML) file format), just as Hyper-
Text Markup Language (HTML) documents. The process of generating such a textual
representation of an existing ontology is called serialization. Naturally, textual rep-
resentations of ontologies have to be de-serialized/parsed to load them into programs
and perform operations on them. As mentioned, ontologies are a collection of triples.
Thus, databases holding theses triples are typically called triple stores or RDF stores. A
powerful mechanism integrated into ontologies is the possibility to import other, already
existing ontology files by referring to their online-accessible textual representation. Once
another ontology is imported, its triples can be used directly, expanded with further
information, or even linked to other imported ontologies.

Due to their expressiveness, the design of ontologies is a rather complex and time-
consuming task. A detailed discussion of all aspects and design principles would exceed
the scope of this thesis. [21, 22, 23] provide a good starting point for this topic and list
many best practices for ontology design.

1.5 Research question and research objectives
The design and implementation of complex systems inevitably follow a sequence of steps,
known as the SELC. A SELC commonly applied in the SG domain has been identified
by Andrén [24] and is depicted in Figure 1.7. It starts with the design phase, in which
the system requirements are specified and the intended functionality is defined. The
system is implemented according to its specification in the implementation phase. For SG
systems, this certainly includes software development and may require the development of
additional hardware. As SG applications often include the risks of personal damage and
high economic costs in case of failure, the system needs to be validated before it can be
deployed. Simulation is a common means to verify the functionality during the validation
phase. The system is then deployed, i.e., necessary devices and software are installed in

11

1. Introduction

the field during the deployment phase. Finally, while no engineering is performed in the
operation phase, it is sometimes also considered part of the SELC, as the system needs
to be monitored during operation to identify problems and possible improvements.

Figure 1.7: SELC of SG applications

The steps required in each of the phases of the SELC vary depending on the domain,
the system that shall be developed, and the system requirements. This gives rise to the
research question that will be answered in the course of this thesis:

Research question:
Which activities need to be conducted during the Systems Engineer-
ing Life Cycle to incorporate dependability in Multi-Agent Systems
for Smart Grid applications? How can state-of-the-art methodologies
support this process?

In the following, several problem statements regarding the design of such systems are
given. Each problem statement results in a research objective. These research objectives
guided the definition of the activities for the SELC presented in this thesis.

Methodologies are an essential tool to guide developers in systematically creating their
applications. Applying a suitable methodology has several benefits: a better understand-
ing of the problem setting, a more comprehensive analysis of the application scenario,
improved system design, reduced implementation effort, and improved documentation.
A vast amount of methodologies for many different kinds of problems and applications
already exists. However, researchers often tend to create a new methodology rather than
combining or improving existing ones.

Research objective 1:
Whenever possible, existing methodologies shall be studied, compared,
and the most suitable ones shall be applied during the systems engineer-
ing process.

Likewise, developers often tend to create new frameworks, technologies, tools, software,
and protocols rather than investing time and effort in investigating existing solutions
and applying them to their specific problem. While this approach yields fast results at
relatively low costs, it often turns out to be problematic, and the initial benefits vanish
later in the development process. This may be caused by underestimating the required
implementation effort, errors manifesting later in the development process, undiscovered
security vulnerabilities, or many other reasons.

12

1.6. Methodology and structure of this thesis

Research objective 2:
Whenever possible, existing frameworks, technologies, tools, software,
and protocols shall be studied, compared, and the most suitable ones
shall be applied during the systems engineering process.

Many SG applications found in the scientific community primarily focus on defining and
realizing functional requirements, i.e., the tasks that shall be performed by a system.
While this certainly is the most important aspect, including non-functional requirements in
decision-making processes often would improve the overall system behavior. In particular,
dependability attributes are examples of non-functional requirements.

Research objective 3:
In addition to functional requirements, non-functional requirements
(in particular dependability attributes) shall be considered in decision-
making processes.

It is commonly approved that the creation of inherently secure computing systems requires
security considerations to be an integral part of every step of the systems engineering
process. This idea is known as the “security by design” principle. A similar mindset is
required for designing dependable systems.

Research objective 4:
The systems engineering process shall follow a “dependability by design”
principle.

Including existing ontologies is an integral part of almost any ontology design method-
ology and a crucial step towards reducing the time required for ontology engineering.
Furthermore, including existing ontologies increases interoperability between different
applications and should be considered whenever designing a new ontology.

Research objective 5:
Existing ontologies shall be included in the ontology design process but,
equally important, ontologies created during the design process shall
themselves be reusable in other applications and domains.

1.6 Methodology and structure of this thesis
The methodological approach that has been applied to answer the research question is
depicted in Figure 1.8. It starts with performing a literature study to identify existing
work that can be incorporated in the SELC. Next, the SELC itself is defined and required

13

1. Introduction

activities for each phase are identified. The result is an adapted version of the classical
SELC for SGs. The main phases of the SELC and the corresponding activities are then
extensively discussed and conducted based on a SG example use case. The thesis concludes
with a critical discussion summarizing the main results and future work. Additionally,
the methodological approach serves as a basis for the structure of this thesis, which is
organized as follows.

Perform Literature
Study

Define Systems
Engineering Life

Cylce (SELC)

Discuss and
Conduct Activities

of the SELC

Conclude and Discuss
Future Work

Figure 1.8: Methodological approach of this thesis

Chapter 2 presents the state of the art, starting with an overview of existing SG standards.
SG, MAS, and ontology design methodologies are summarized with a focus on their
suitability for SG applications. Furthermore, a suitable MAS framework is presented,
and related scientific work in the field of MAS-based SG applications and dependability
in MASs are discussed.

Chapter 3 builds upon the state of the art and combines SG, MAS, and ontology design
methodologies in a SELC. The resulting SELC consists of five main phases: planning,
analysis, design, implementation, and evaluation. Deployment & operation is added as
an additional sixth phase.

Chapter 4 starts the SELC with the planning phase. It provides some general infor-
mation about distribution networks, their main components, and their basic structure.
Additionally, the switching optimization use case, which serves as a motivating example
throughout this thesis, is described following the IEC 62559 use case methodology.

Chapter 5 continues with the analysis phase. Functional (algorithmic) and non-functional
(dependability) requirements of the previously described use case are analyzed. Thereby,
functional requirements are covered by presenting algorithmic approaches to the switch-
ing optimization problem. Non-functional requirements are covered by performing a
dependability requirements analysis.

Chapter 6 covers the design phase. Based on the findings of the previous analysis phase,
a distributed MAS is chosen as system architecture. Therefore, the design phase is
split into two major parts: the MAS design and the ontology design. The MAS design
builds upon the Process for Agent Societies Specification and Implementation (PASSI)
methodology, resulting in the definition of several agent types, their services, and an
agent interaction protocol defining the communication pattern. Additionally, a new
ontology design methodology focusing on reusability is introduced and followed to create
the required ontologies on a class level.

14

1.7. Scientific publications

Chapter 7 covers the implementation phase. A software architecture for agents, including
their interfaces to external components, is defined and implemented based on several
existing open-source software libraries, including a library that serves as triple store and,
therefore, provides the means to store and access the necessary ontologies. The ontologies
themselves are instantiated, i.e., extended with individuals.

Chapter 8 corresponds to the evaluation phase. Simulation is used to illustrate how
agents interact and how they include dependability considerations in their decision-
making process. Furthermore, the performance of the switching optimization use case is
evaluated based on a near real-world consumption scenario to provide estimations about
achievable energy savings.

Chapter 9 concludes this thesis. It provides some critical reflection upon a distributed
MAS as a system architecture for SG applications, the potential of switching optimization
in LV power grids, and a discussion about dependability of MASs for this and similar
use cases. Furthermore, ongoing and future work are presented.

1.7 Scientific publications
The main contributions of this thesis rest on several scientific publications:

T. Frühwirth, L. Krammer, and W. Kastner. “Dependability Demands and State of the
Art in the Internet of Things”. In: Proceedings of the 20th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA). Luxembourg, Sept. 2015, pp. 1–4

T. Frühwirth, A. Einfalt, K. Diwold, and W. Kastner. “A distributed multi-agent system
for switching optimization in low-voltage power grids”. In: Proceedings of the 22nd
IEEE Conference on Emerging Technologies and Factory Automation (ETFA). Limassol,
Cyprus, Sept. 2017, pp. 1–8

T. Frühwirth, L. Krammer, and W. Kastner. “A methodology for creating reusable
ontologies”. In: Proceedings of the 1st IEEE International Conference on Industrial
Cyber-Physical Systems (ICPS). Saint Petersburg, Russia, May 2018, pp. 65–70

G. Steindl, T. Frühwirth, and W. Kastner. “Ontology-Based OPC UA Data Access via
Custom Property Functions”. In: Proceedings of the 24nd IEEE Conference on Emerging
Technologies and Factory Automation (ETFA). Zaragoza, Spain, Sept. 2019, pp. 95–101

D. Herbst, M. Lager, R. Schürhuber, E. Schmautzer, L. Fickert, A. Einfalt, H. Brunner,
D. Schultis, T. Frühwirth, and W. Prüggler. “Zukünftige Anfoderungen an NS-Netze
und deren Lösungsansätze am Beispiel PoSyCo”. In: 16. Symposium Energieinnovation.
Graz, Austria, Feb. 2020, pp. 1–11

15

CHAPTER 2
State of the art

The goal of this thesis is to combine existing technologies, protocols, and methodologies to
incorporate dependability in MASs for SG applications, which requires a detailed analysis
of the state of the art in multiple fields. Standards created by various standardization
organizations provide a reliable source of information about the electric grid in general
and SGs in particular. Thus, this chapter starts with examining existing standards
and assigning them to the different layers of the SGAM. It continues by introducing
existing methodologies that support the planning phase and the analysis phase of SG
applications, as well as methodologies for designing MASs and ontologies. Furthermore,
some information about MAS platforms is presented to provide the technical background
for the implementation and the evaluation phases. The chapter concludes with a selection
of existing related scientific work in the area of SG MASs, and existing approaches to
increase the dependability of MASs.

2.1 Smart grid standards
Standards often define the legal requirements that have to be considered when creating
applications for the SG field. Furthermore, they serve as a valuable source of information
regarding existing knowledge about the specific field of application in general and provide
best practices, terminology, and information models. Among the existing standardization
organizations that publish material relevant for SG applications are:

• Institute of Electrical and Electronics Engineers (IEEE)
• National Institute of Standards and Technology (NIST)
• International Society of Automation (ISA)
• American National Standards Institute (ANSI)
• International Organization for Standardization (ISO)

17

2. State of the art

• Deutsches Institut für Normung (DIN)
• Comité Européen de Normalisation Électrotechnique (CENELEC)
• European Telecommunications Standards Institute (ETSI)
• International Electrotechnical Commission (IEC)

The IEC uses the domains (x-axis) and zones (y-axis) defined by the SGAM framework to
arrange the vast number of SG-related standards in its “Smart Grid Standards Mapping
Tool”. It is available online as an interactive chart [30]. The IEC standards map currently
contains more than 300 standards, which is still only a fraction of the existing IEC
standards, not to mention material provided by other standardization organizations.
However, it provides a good starting point for engineers to filter for standards relevant to
their device or application. Standards are often relevant in multiple domains and zones.
In addition, according to the IEC, four crosscutting functionalities must be taken into
account in all SG applications: telecommunication, security, EMS, and power quality.

The IEC standards map is a two-dimensional tool and, thus, cannot associate standards
to one of the five vertical SGAM interoperability layers directly. To compensate for this,
the following brief introduction of the standards that are related to the contents of this
thesis is based on the SGAM interoperability layers from bottom to top. It also includes
IEC standards that have not been added to the IEC standards map yet, as well as several
relevant standards from other standardization organizations. For any standard series
(also called standard family), the discussion only provides a reference to the first relevant
document of the series. Figure 2.1 illustrates a selection of these standards and their
association to the various SGAM layers.

Standards on the SGAM component layer specify properties of physical SG components.
IEC 60038 [3], IEC 60059 [31], and IEC 60196 [32] define standard voltages, stan-
dard currents, and standard frequencies, respectively. The IEC 60076 [33] standard
series provides information about different transformer types, winding types, naming
conventions, operating conditions such as altitude and temperature, transformer rat-
ings, measurement procedures to determine characteristic values of transformers such as
winding resistance, short-circuit impedance and no-load losses, and many more different
aspects relevant for planning, building, and operating power transformers. In addition,
definitions for these terms are given. Likewise, relevant specifications for overhead
lines primarily include recommended materials and alloys for overhead line conduc-
tors (IEC 60104 [34], IEC 60889 [35], IEC 61394 [36]), insulators (IEC 60305 [37],
IEC 60383 [38], IEC 61109 [39], IEC 61325 [40], IEC 61466 [41], IEC 61467 [42],
IEC 61211 [43], IEC 61952 [44]), and testing (IEC 60652 [45]). IEC 60105 [46] and
IEC 60114 [47] recommend materials to be used for busbars. Information about elec-
trical switches is provided in IEC 61020 [48] and IEC 61058 [49]. Safety is another
important topic on the component layer, as improper design and operation of equipment
imposes a threat to people and the infrastructure. Most important in this regard is the
IEC 61508 – Functional safety of electrical/electronic/programmable electronic safety-

18

2.1. Smart grid standards

Communication
Layer

Information Layer

Function Layer

Business Layer

Component Layer

Field

Process

Station

Operation

Enterprise

Market

Zones

Domains

Interoperability
Layers

Protocol

Protocol

Protocol

Protocol

Protocol

Protocol

Data Model

Data Model

Data Model

Data Model

Data Model

Data Model

Outline of Usecase

Functions

Outline of Usecase

Functions

IEC 60038, IEC 60059, IEC 60196, IEC 60076,
IEC 61020, IEC 60104, IEC 60105, IEC 60605, ...

IEC 61158, EN 13757, IEEE 802.3,
IEEE 802.15.4, IEC 62443, IEC 62351, ...

IEC 62541, IEC 61850, IEC 61970, IEC 61968,
IEC 60050, IEC 60027, IEC 60617 ...

IEC 61131, IEC 61499, ...

Business Plans, Contracts, Legal Codes, ...

Business Objectives
Polit. / Regulat. Framework

Figure 2.1: IEC SG standards and their mapping to the SGAM, adapted from [5]

related systems [50] standard series, which introduces, among many general aspects about
safety, the Safety Integrity Levels (SILs). These SILs provide a metric that combines the
likelihood and severity of failures for a component or a complete system into a single
value from SIL 1 (lowest requirements) to SIL 4 (highest requirements). SILs play an
important role in certification. Information associated to reliability of SG equipment can
be found in IEC 60605 [51], IEC 61709 [52], and IEC 61163 [53]. Availability is addressed
in IEC 61070 [54], and maintainability of equipment is covered, e.g., by the IEC 60706 –
Maintainability of equipment [55] standard series. Furthermore, IEC 61703 [56] defines
Mathematical expressions for reliability, availability, maintainability, and maintenance
support terms. Standards defining properties of communication equipment, e.g., for
optical fibers (IEC 60793 [57], IEC 60794 [58]), can also be assigned to the component
layer.

The SGAM communication layer enables devices of the component layer to exchange
messages by making use of communication protocols. For example, the IEC 61158 [59]
in combination with the IEC 61784 [60] set of standards specifies Process Field Bus
(PROFIBUS) (IEC 61784-5-3 [61]), Ethernet for Control Automation Technology (Ether-
CAT) (IEC 61784-5-12 [62]), MODBUS (IEC 61784-5-15 [63]), and many other industrial
communication protocols. In addition, IEC 62734 [64] defines the ISA100.11a wireless
communication protocol (adopted from the International Society of Automation (ISA)).
However, other standardization organizations than the IEC are more active in the field

19

2. State of the art

of communication protocols. For example, the Meter-Bus (M-Bus) (EN 13757-2[65],
EN 13757-3 [66]), and Wireless Meter-Bus (Wireless M-Bus) (EN 13757-4 [67]) protocols
are particularly used in Advanced Metering Infrastructure (AMI) applications. As IoT
protocols are increasingly being adopted in SG applications, the IEEE 802 standard series
gains importance, including well-known technologies such as the IEEE 802.3 [68] set of
standards specifying Ethernet with all its different physical layers, the IEEE 802.11 [69]
set of standards specifying Wireless Local Area Network (WLAN), the IEEE 802.15.4 [70]
set of standards providing the lower layers for protocols such as ZigBee [71], IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPAN) [72], wireless Highway Ad-
dressable Remote Transducer protocol (wirelessHART) [73], and the IEEE 802.1 set of
standards providing, among other features, the groundwork for Time-Sensitive Network-
ing (TSN). An important topic on the communication layer is security, which is covered
e.g., by the IEC 62443 – Industrial communication networks – Network and system
security [74] standard series and IEC 62351 – Power systems management and associated
information exchange – Data and communications security [75] standard series, but is
of course also addressed by other standardization organizations, e.g., in NISTIR 7628 –
Guidelines for Smart Grid Cyber Security [76] with its corresponding user’s guide [77].

The information layer provides the means to model information and to use these data
models for communication. Thereby, the communication layer handles the exchange of
messages, but the information layer defines the semantics of these messages. As the
communication layer and the information layer are so closely related, many protocols
such as the OPC Unified Architecture (OPC UA) (IEC 62541 [78]) include both aspects.
Likewise, the IEC 61850 [79] standard series also covers aspects of the communication as
well as the information layer. It defines an Ethernet-based, object-oriented communication
standard to be used by Intelligent Electronic Devices (IEDs) in SG systems. The objective
of this standard series is to increase interoperability between devices by standardizing the
content of messages. Other standards only focus on information modeling aspects and
rely on mechanisms of the communication layer for message exchange: the IEC 61970 [80]
standard series defines the Common Information Model (CIM), which contains terms
and definitions for many components and concepts of SGs. Moreover, part IEC 61970-
501 [81] of the series specifies an RDFS format for CIM. IEC 61970 is accompanied
by the IEC 61968 [82], which extends the CIM with information specifically related to
electrical distribution networks. The corresponding RDF representation can be found
in IEC 61986-13 [83]. There are many more standards that might at least partly be
assigned to the information layer even though they are primarily used for information
exchange between professionals rather than between IEDs: IEC 60050 – International
Electrotechnical Vocabulary [84] standard series, IEC 60027 – Letter symbols to be used
in electrical technology [85] standard series, and IEC 60617 – Graphical symbols for
diagrams [86].

Standards on the SGAM function layer provide the means to specify the functionality of
the SG system independently of the underlying technologies. The IEC 61131 – Industrial-

20

2.2. Smart grid design

process measurement and control – Programmable controllers [87] standard series, in
particular IEC 61131-3: Programming languages [88], provide languages to describe the
functionality of industrial automation systems by making use of a cyclic execution model.
The IEC 61499 – Function blocks [89] standard series is based on IEC 61131 but it
encapsulates the functionality in Function Blocks (FBs) and replaces the cyclic execution
model by an event-driven execution model, in which FBs interact by exchanging events
and data. Furthermore, FBs can be nested to be able to model a system on different
levels of abstraction.

Finally, the SGAM business layer focuses on economic and legal aspects. It is not
discussed in detail here for two reasons: (1) the corresponding documents are business
plans, contracts, and legal codes rather than technical specifications and standards, and
(2) these topics are out of the scope of this thesis.

2.2 Smart grid design
The first type of design methodologies covered by this thesis is targeting the SG domain.
Most SG design methodologies only focus on specific aspects of the systems engineering
process, such as the use case description or security guidelines. Model-Driven Engineering
(MDE) can be applied to support and partly automate this process [24]. All SG design
processes, whether or not they are MDE-based, should start with a proper definition of the
intended use cases. Furthermore, many MAS design methodologies and ontology design
methodologies presume that the requirements have already been analyzed a priori to
applying the MAS/ontology design methodology itself. Therefore, the use case description
can serve as valuable input for subsequent phases in the systems engineering process.

2.2.1 IEC 62559 use case methodology
The IEC 62559 use case methodology [90, 91] can be used for use case specification in
various domains. However, its main field of application is the SG domain. It provides
a template to describe the static and dynamic aspects of the system under develop-
ment [92]. Thereby, a description of the involved actors covers the static aspects, while
detailed descriptions of use cases and the necessary interactions between actors cover the
dynamic aspects. The template contains eight template sections and additional template
subsections. Each template subsection of IEC 62559-2 (or the template section itself if it
does not have template subsections) specifies a table to be filled in by domain experts or
future users of the system. Some of these tables are considered optional.

The IEC 62559 use case methodology follows an almost completely linear process, i.e.,
the tables can almost strictly be filled in one after another, as illustrated in Figure 2.2.
Only template subsection 1.8, as well as template sections 7 and 8 are accompanying
the otherwise linear process and allow to collect additional information. Additionally,
the IEC 62559 use case methodology supports storage, exchange, and reuse of use
case descriptions by specifying an XML schema. This enables use case descriptions

21

2. State of the art

to be collected in use case repositories, such as the Use Case Management Repository
(UCMR) [93]. The following paragraphs briefly discuss the template sections and their
purposes. The names of the tables and the corresponding table fields are emphasized.

Business Case

Describe General
Information

Describe Additional
Information

Describe Function

Describe Technical Details

Use Case

Store Use Case in a
Repository

High-level / Generic Use Case

Specialized / Individual Use Case

Sections:
1.1, 1.2, 1.3, 1.4,
1.5, 1.6, 1.7 & 3.2

Sections:
1.4 & 2

Sections:
3.1, 4, 5 & 6

Sections:
1.8, 7 & 8

Figure 2.2: IEC 62559 use case methodology process [92]

Template section 1: Description of the use case

Template section 1 provides the most general information about the use case. It consists
of eight template subsections, and, therefore, eight tables. Template subsection 1.1. (Use
case identification) specifies an ID for the use case that should be unique within the project,
the corresponding Area/Domain(s)/Zone(s), and a name (Name of use case). If the use
case is related to the SG area, it is suggested to use the corresponding areas and domains
of the SGAM. Template subsection 1.2. (Version management) is intended to document
changes in the use case description and defines the Version No., Date, Name of author(s),
Changes, and Approval status fields. Template subsection 1.3. (Scope and objectives of use
case) gives some background information and motivation about the use case by defining
its Scope, Objective(s) and Related business case(s). Template subsection 1.4. (Narrative
of use case) consists of a Short description and a Complete description of the use case.
These descriptions should help non-domain-experts to understand the use case in such a
way as to enable them to decide if the use case description fits their specific problem.

22

2.2. Smart grid design

The short description is in textual form and should not exceed 150 words. The complete
description can be more comprehensive and use drawings for additional explanation.
Template subsection 1.5. (Key performance indicators (KPI)) defines metrics to be able
to evaluate the use case after its implementation. Each Key Performance Indicator (KPI)
has an ID, a Name, a Description, and some Reference to mentioned use case objectives,
i.e., the objectives of template subsection 1.3 that are measured by the KPI. Template
subsection 1.6. (Use case conditions) defines Assumptions and Prerequisites of the use
case. Thereby, assumptions are general conditions at the design time of the use case, e.g.,
about existing systems and their configurations. Prerequisites define specific conditions,
e.g., states of sensors and actuators, that should be met before initiating the use case.
Template subsection 1.7. (Further information to the use case for classification/mapping)
defines the Relation to other use cases, e.g., if the use case is an alternative to another
use case, Level of depth of the use case description, e.g., high level, generic, or specialized,
Prioritisation, typically High/Medium/Low or a similar scale, Generic, regional, or
national relation, e.g., if the use case describes national-specific circumstances, the Nature
of the use case, e.g., if it is a technical or a business use case, and a list of Further
keywords for classification. Template subsection 1.8. (General remarks) can be used for
additional comments that do not fit into any of the previous template subsections.

Template section 2: Diagrams of use case

Template section 2 (Diagram(s) of use case) complements the use case description with
additional diagrams, usually Unified Modeling Language (UML) diagrams. A typical and
obvious starting point for this section is a use case diagram. Additional diagrams like
sequence diagrams and activity diagrams then refine the use case. The purpose of this
section is to provide a better understanding of the use case regarding its interactions and
procedures.

Template section 3: Technical details

Template section 3 consists of two subsections. In template subsection 3.1 (Actors), the
actors that are involved in the use case are described. This description also involves
Grouping (a name for the group of actors) and a short Group description. Actors may be
grouped hierarchically, e.g., by using a group name like “InputOutput.Actuators”. Each
group is a dedicated table starting with the group-specific information and then listing
the corresponding actors by specifying an Actor name, Actor type, Actor description,
and Further information specific to this use case. Examples for actor types are “Human”,
“Device”, “Software program”, and “Organization”. Grouping and Actor type provide
orthogonal classifications, e.g., the group “InputOutput.Actuators” may include actors of
type “Device”, “Human”, etc., while actors of type “Device” may also be members of
other groups, e.g., “InputOutput.Sensors”. The Further information specific to this use
case field can be used to describe the actor and the properties relevant for this use case
in more detail. Template subsection 3.2 (References) is used as a collection of relevant
literature. Each reference should have a No., References type, e.g., “Standards” or “Laws”,

23

2. State of the art

the actual Reference to identify the document, e.g., the standard number and title, the
Status of the referenced document, the expected Impact on the use case, i.e., how the use
case is affected by the referenced document, the Originator/organization that created
the referenced document, and possibly a Link, i.e., the Uniform Resource Locator (URL)
to the referenced standard or legal paragraph.

Template section 4: Step by step analysis of use case

Template section 4 adds additional information to the description of the use case in the
form of describing possible scenarios step by step. The various scenarios can be derived
from, and should comply with, the Complete description field of template subsection 1.4
and the diagrams of template section 2. In addition to the normal success scenario,
additional scenarios like alternative solutions and failure scenarios may be specified.
Template section 4 contains two template subsections. Template subsection 4.1 (Overview
of scenarios) summarizes all scenarios of the use case in a single table and defines a
No. for each scenario, the Scenario name, a short Scenario description, the Primary
actor (or multiple) which triggers the scenario, the corresponding Triggering event(s),
Pre-condition(s), and Post-condition(s). After this general overview of the scenarios, a
dedicated template subsections 4.2 (Scenarios) describes each scenario step by step. Each
table links to the scenario it describes by stating the Scenario name, which is followed
by the list of steps. Steps are defined starting with a sequential Step No., which is a
number optionally followed by a letter. Steps are hierarchically organized by separating
them with a dot, e.g., with Step No. 1b.3a. The Step No. is followed by the Event
triggering the step, e.g., the completion of the previous step, the Name of process/activity
that can be used in a process diagram to illustrate the overall scenario, a Description of
process/activity focusing on the interactions and information flow rather than technical
details, the Service describing the “nature of the information flow” (typically one of
Services defined in Table 2.1), the Information producer (actor), the Information receiver
(actor), the Information exchanged (IDs) (cf. template section 5), and the Requirement,
R-IDs field to state requirements (cf. template section 6) relevant for the step.

Template section 5: Information exchanged

Template section 5 provides details about the information exchanged while executing
a step of one of the scenarios defined in template section 4. It does not have any
template subsections. The table (Information exchanged) consists of a unique Information
exchanged ID, which is also used in template subsection 4.2, a short but unique Name of
information, a Description of information exchanged, and a Requirement, R-IDs field to
state requirements (cf. template section 6) relevant for the information exchange.

Template section 6: Requirements

Template section 6 defines the requirements that were used in the various steps of the
scenarios of template section 4. It does not have any template subsections. The template

24

2.2. Smart grid design

Table 2.1: Services defined by IEC 62559, adapted from [90]

Service Description
GET The Receiver requests information from the Producer. GET is the default

value if no service is defined.
CREATE The information object is to be created at the Producer.
CHANGE The information object is to be updated, i.e., the Producer updates the

Receiver’s information.
DELETE The information is to be deleted, i.e., the Producer deletes information from

the Receiver.
CANCEL/
CLOSE

Triggers a stop action related to processes, such as the closure of a work order
or the cancellation of a control request.

EXECUTE A complex transaction is being conveyed using a service, which potentially
contains more than one verb.

REPORT Unsolicited or asynchronous information is transferred from the Producer to
the Receiver.

TIMER Defines a waiting period in the scenario. When using the TIMER service, the
Producer and Receiver fields shall refer to the same actor.

REPEAT A series of steps is repeated until a condition or trigger event. The condition is
specified as the text in the “Event” column for this row or step. The first and
last step to be repeated are defined in parentheses after the keyword REPEAT
in the form REPEAT(X-Y).

section is optional. Alternatively, a separate document can be used to collect and describe
the requirements in more depth. It uses a separate table (Requirements (optional)) for
each requirement category, whereby each table contains a list of requirements of the
specific category. Therefore, it starts with the definition of the category. Categories have
a Categories ID, a Category name for requirements, and a short Category description. The
Category IDs can again be hierarchically organized. The category-related information is
followed by a number of requirements that fit into this category. Each requirement is
defined by a Requirement R-ID, a Requirement name, and a Requirement description.

Template section 7: Common terms and definitions

Template section 7 provides a glossary for terms and definitions. It does not have any
template subsections but only uses a simple table (Common terms and definitions) with
one row for each Term and its corresponding Definition. If terms are used in multiple
use cases, they should be added to template section 7 of each use case description.

Template section 8: Custom information

Template section 8 is optional. It should only be included if it contains additional
relevant information that does not fit into one of the other seven template sections. The
table Custom information (optional) defines a unique Key to identify the information, a

25

2. State of the art

Value (typically a short description, number value, etc.), and a Refers to section field to
reference the corresponding template section.

2.2.2 SGAM Toolbox
SG applications are generally considered to be complex distributed systems. Their
complexity mainly arises from the many stakeholders, technologies, and protocols in-
volved. The SGAM Toolbox [94], which was introduced in [95] and described in detail
in [96], applies MDE techniques to cope with this complexity. It is available as plug-in
for Enterprise Architect (EA) [97], a software modeling tool created by Sparx Systems
Ltd., and supports its users in the typical phases of MDE: creating the Computational
Independent Model (MDE-CIM)1, Platform Independent Model (PIM), Platform Specific
Model (PSM), and finally the Platform Specific Implementation (PSI). The correspond-
ing models build upon UML. UML profiles are used to cover domain-specific aspects.
Furthermore, the SGAM Toolbox provides a number of SGAM templates to support and
simplify the modeling process. The individual models are created during three subsequent
phases: the System Analysis Phase, the System Architecture Phase, and the Design &
Implementation Phase, as illustrated in Figure 2.3. This development process is based
on the Use Case Mapping Process (UCMP) introduced in [5] and briefly presented in the
following.

Phase 1: System analysis

During the system analysis phase, stakeholder needs and system requirements are de-
termined by conducting a use case analysis. Thereby, using the SGAM Toolbox, use
case diagrams are created and detailed using activity diagrams and sequence diagrams.
These diagrams make up the MDE-CIM and cover the top two layers of the SGAM: the
business layer and the functional layer.

Phase 2: System architecture

Based on the MDE-CIM, the PIM is developed during the system architecture phase. It
starts with identifying the relevant components. Actors derived from the use case analysis
are mapped to physical components of the SGAM component layer or an application
hosted by one of these components. According to the SGAM specification, the component
layer should also include the communication hardware that allows the physical components
to exchange messages. However, the developers of the SGAM Toolbox argue that it might
be more useful to define the network topology and architecture rather than the devices
and communication media on the component layer. On the SGAM information layer,
information exchange between the physical components as well as the corresponding data
model standards are defined. The necessary communication paths and protocols between
components are added to the SGAM communication layer.

1Note that for the Computational Independent Model, MDE-CIM is used as an acronym here to
distinguish it from the Common Information Model

26

2.2. Smart grid design

Use Case Mapping Process

System Analysis Phase System Architecture Phase

Develop
Communication
Layer

Develop
Information
Layer

Develop
Component
Layer

Develop
Business
Layer

Develop
Function
Layer

Perform
Use Case
Analysis

Development Process with MDA Artifacts

Computation
Independent
Model (CIM)

Platform
Independent
Model (PIM)

System
Analysis
Phase

System
Architecture

Phase

Design &
Implementation

Phase

Platform
Specific Model

(PSM)

Platform Specific
Implementation

(PSI)

<<output>> <<output>> <<output>>

<<output>>

Figure 2.3: SGAM Toolbox methodology and its mapping to MDE [95]

Phase 3: System design & implementation

The system design and implementation phase is an iterative process, whereby each
iteration extends the PSM and the PSI by an additional use case. Thus, implementation
is performed vertically across the SGAM layers, rather than layer per layer. The
implementation is based on the diagrams and information derived during the previous
two phases of the development process. Features of EA can be used to generate parts of
the required code automatically. Generating not only structural elements of the code like
classes and methods but also the corresponding functionality based on the specifications
corresponding to the SGAM function layer is envisioned [96].

2.2.3 NISTIR 7628 guidelines for smart grid cybersecurity

Security is an important aspect of dependability as security flaws not just affect the
attributes confidentiality, integrity, and availability directly but may also impact most
remaining dependability attributes. In almost any case, exploitation of a security
vulnerability causes the system to deviate from its intended behavior, thus, affecting its
reliability. Depending on the type of system, attackers may disable safety mechanisms or
even directly cause damage, e.g., by overloading individual power system components.
They may also target maintainability, e.g., by disabling remote access, scalability by
occupying computational resources, or privacy by collecting user-specific information.

27

2. State of the art

Therefore, several standards and documents specifically target security considerations of
SG applications. Many of them, such as the IEC 15408 – Common Criteria [98] and
the IEC 27000 – Information technology – Security techniques – Information security
management systems – Overview and vocabulary [99] set of standards specify the termi-
nology and give general recommendations, but do not provide a full guide for system
developers to follow to derive a secure system. In this regard, the National Institute of
Standards and Technology Interagency Report (NISTIR) 7628 – Guidelines for Smart
Grid Cybersecurity [76] with its corresponding user’s guide [77] are more useful. The
National Institute of Standards and Technology (NIST) identified seven different SG
domains: marketing, operations, service provider, bulk generation, transmission, distri-
bution, and customer. Depending on the specific use case, only some of these domains
and connections might be subject to the NISTIR 7628 security analysis. Identifying the
relevant domains and connections is an integral part of the methodology.

NISTIR 7628 is separated into eight activities, each containing several steps to be
performed. The activities and steps are conducted one after another in strict order,
which is illustrated in Figure 2.4. The activities are briefly summarized in the following.
Each of the steps generates a specific outcome. This outcome typically is the selection of
a responsible person, creation of a specific document, or creation/extension of a table.
Outcomes of the individual steps are emphasized. It should be noted that NISTIR
guidelines and the individual steps are intended to conduct a security assessment of an
existing SG system, rather than supporting the development of new systems.

1: Identify Smart Grid
Organizational Business

Functions

2: Identify Smart Grid
Mission and Business

Processes

3: Identify Smart Grid
Systems and Assets

4: Map Smart Grid Systems
to Logical Interface

Categories

5: Identify Smart Grid
High-Level Security

Requirements

6: Perform a Smart Grid
High-Level Security
Requirement Gap

Assessment

7: Create a Plan to
Remidate the Smart Grid

High-Level Security
Requirement Gaps

8: Monitor and Maintain
Smart Grid High-Level
Security Requirements

Figure 2.4: NISTIR 7628 user’s guide activities

Activity 1: Identify smart grid organizational business functions

This activity addresses risk management on an organizational level. The company defines
an Executive Sponsor for Cybersecurity Risk Management Governance. The executive
sponsor selects the Executive Cybersecurity Risk Management Governance Team, which
is responsible for implementing and monitoring the Risk Management Process (RMP).
The executive cybersecurity risk management governance team identifies Smart Grid
Organizational Business Functions and creates an Organizational Business Function Risk

28

2.2. Smart grid design

Profile Table. Thereby, the possible threats and vulnerabilities for each business function
are identified and rated. Furthermore, a Priority Rating is created for all organizational
business functions, which reflects the business functions’ criticality for the organization.

Activity 2: Identify smart grid mission and business processes

In this activity, a group of managers and subject matter experts are assigned to the
previously defined business functions. They identify Supporting Business Processes
(Dependencies), i.e., mission and business processes that support the business functions.

Activity 3: Identify smart grid systems and assets

First, the Smart Grid Systems Inventory is created by associating SG systems to the indi-
vidual business processes of the previous activity. Next, a Risk Prioritization determines
the impact on the security attributes (Confidentiality, Integrity, and Availability (CIA)),
their probability, and the risk for each system. Ratings (including impact levels, risks,
and probabilities) in NISTIR 7628 typically use a metric based on three different values:
H .. High, M .. Moderate, and L .. Low. The meanings of the various levels are defined
in detail in Table 2.2. In a third step, information about available hardware for each of
the SG systems is collected in a Smart Grid Asset Inventory table, which includes the
assets’ names, locations, serial numbers, logical addresses, and other information.

Activity 4: Map smart grid systems to logical interface categories

Activity 4 is supported by NISTIR 7628 “Logical Reference Model” depicted in Figure 2.5.
It is based on the seven different SG domains identified in NIST (cf.Section 2.2.3). Addi-
tionally, it specifies common actors for each of the domains, e.g., actor “27 – Distribution
Management System”. Actors that typically interact with each other are connected via
logical interfaces. These logical interfaces have a unique number (starting with “U”), and
each of them is associated to a Logical Interface Category (LIC), e.g., logical interface
U9 between actor “27 – Distribution Management System” and actor “29 – Distribution
SCADA” is member of LIC “5. Interface between control systems within the same
organization”, as highlighted by the red box in Figure 2.5. Detailed descriptions of all
domains, actors, and LICs can be found in [76]. Even though the Logical Reference Model
is fairly comprehensive, it is not intended to be complete. The system name specified in
the Smart Grid Systems Inventory of Activity 3 may differ from the names of the actors
specified in Figure 2.5. However, in many cases it is still possible to assign each system
to an existing actor. Otherwise, an actor and the corresponding logical interfaces have
to be added. Thus, within Activity 4, the Smart Grid Systems Inventory table of the
previous activity is extended by three additional columns: Actor(s), Logical Interfaces,
and Logical Interface Category(s).

29

2. State of the art

Table 2.2: NIST CIA impact levels definitions [76]

Potential Impact Levels
CIA attribute Low Moderate High
Confidentiality
Preserving autho-
rized restrictions on
information access
and disclosure,
including means
for protecting
personal privacy
and proprietary
information.

The unauthorized dis-
closure of information
could be expected to
have a limited ad-
verse effect on orga-
nizational operations,
organizational assets,
or individuals.

The unauthorized dis-
closure of information
could be expected to
have a serious ad-
verse effect on orga-
nizational operations,
organizational assets,
or individuals.

The unauthorized dis-
closure of information
could be expected
to have a severe
or catastrophic ad-
verse effect on orga-
nizational operations,
organizational assets,
or individuals.

Integrity
Guarding against
improper informa-
tion modification
or destruction, and
includes ensuring
information non-
repudiation and
authenticity.

The unauthorized
modification or
destruction of in-
formation could be
expected to have
a limited adverse
effect on organiza-
tional operations,
organizational assets,
or individuals.

The unauthorized
modification or
destruction of in-
formation could be
expected to have
a serious adverse
effect on organiza-
tional operations,
organizational assets,
or individuals.

The unauthorized
modification or
destruction of in-
formation could be
expected to have a
severe or catas-
trophic adverse
effect on organiza-
tional operations,
organizational assets,
or individuals.

Availability
Ensuring timely and
reliable access to
and use of informa-
tion.

The disruption of ac-
cess to or use of in-
formation or an infor-
mation system could
be expected to have
a limited adverse ef-
fect on organizational
operations, organiza-
tional assets, or indi-
viduals.

The disruption of ac-
cess to or use of in-
formation or an infor-
mation system could
be expected to have
a serious adverse ef-
fect on organizational
operations, organiza-
tional assets, or indi-
viduals.

The disruption of ac-
cess to or use of in-
formation or an infor-
mation system could
be expected to have
a severe or catas-
trophic adverse ef-
fect on organizational
operations, organiza-
tional assets, or indi-
viduals.

Activity 5: Identify smart grid high-level security requirements

NISTIR 7628 recommends CIA security levels for each of the LICs derived in the previous
activity. These CIA security levels are termed the NIST CIA Impact and added as
an additional column to the Smart Grid Systems Inventory of the previous activity.
Additionally, a new metric – the Organizational CIA Impact – is derived by choosing
either the CIA ranking from the Risk Prioritization of Activity 3 or the NIST CIA Impact
from the column that has just been added. The choice should be made in a way such that
it reflects the organization’s opinion about the risk associated with the specific SG system.

30

2.2. Smart grid design

Actor Color Key

45 - Phasor
Measurement

Unit

47 -
Transmission

RTU

46 -
Transmission

IED

1 - Plant
Control
System

2 - Customer

9 - Customer
Premise
Display

U127

3 - Customer
Appliances and

Equipment

8 - Meter
U120

10 - Submeter
(EUMD)

U47

U129

6 - Electric
Vehicle

(EVSE/PEV)

U50

4 - Customer
DER:

Generation
and Storage

U48

5 - Customer
Energy Mngmnt

System

7 - Energy
Services

Interface/ HAN
Gateway

29 -
Distribution

SCADA 27 - Distribution
Management

System

21 - AMI
Headend33 - Meter Data

Management
System

34 - Metering/
Billing/Utility
Back Office

31 - ISO/RTO
Operations

30 - Energy
Management

System

22 - Bulk
Storage

Management

23 - Customer
Information

System

24 - Customer
Service

Representative

38 -
Customer

Portal

36 - Outage
Management

System
28 -

Distribution
Operator

37 -
Transmission

SCADA

25 -
Distributed

Generation &
Storage

Management

26 -
Distribution
Engineering 40 - Work

Management
System

49 -
Transmission
Engineering

39 - Wide Area
Measurement

System

42 - Billing

44 - Third
Party

43 - Energy
Service

Provider

41 -
Aggregator /
Retail Energy

Provider

11 - Water/Gas
Metering

19 - Energy
Market

Clearinghouse

20 - ISO/RTO/
Wholesale

Market

32 - Load
Management

System / Demand-
Response

Management System

16 - Field
Crew Tools

18 -
Distribution

Sensors

12 -
Distribution

Data Collectors

13 - Distributed
Intelligence
Capabilities

15 -
Distribution
RTUs or IEDs

17 - Geographic
Information

System

Transmission

Bulk
Generation

Marketing

Operation

CustomerService
Provider

Distribution

U44

U41
U43

U46

U62

U49

U45
U60

U130U95U128

U18

U64
U42

U126

U124

U119

U96
U25

U6

U98U1

U5

U21
U24

U35

U38

U39

U40

U14

U125
U110

U102

U37

U111

U112

U108

U137 U105

U131
U34

U3
U31

U33U32

U22

U113

U7

U26

U29

U30

U12

U13

U11U101
U100

U59

U104

U99
U36

U114

U109

U67

U117

U135
U136

U81

U65

U27

U106

U92

U88

U2

U8

U15

U54

U51

U56

U55

U63

U4

U53

U20

U91
U58

U52
U93

U17

U72

U90

U66
U89

U97

U116

U10

U83 U87

U115

U57

U75
U80

U77

U16

U74

U70
U134

U85

U82

U78

U79

U9

Figure 2.5: NIST IR 7628 logical reference model [76]

The Organizational CIA Impact is added to the table. Any differences between the NIST
CIA Impact rating and the Organizational CIA impact rating should be investigated as
they may indicate shortcomings in the organization’s risk assessment process.

Next, the Requirements Type and the Requirements for Each System columns are added
to the Smart Grid Systems Inventory table. NIST distinguishes between three types
of requirements: “Governance, Risk, and Compliance (GRC) Smart Grid Require-
ments”, “Common Technical Requirements (CTRs)”, and “Unique Technical Require-
ments (UTRs)”. For each combination of LIC (1-22) and Organizational CIA Impact (H,
M, L), NISTIR 7628 specifies GRC Smart Grid Requirements, CTRs, and UTRs that
should be fulfilled by the system. These requirements and their types are inserted into
the two columns that have just been added. Furthermore, a Consolidated UTR Reqs. for
each system column is added that combines only the UTRs of all LICs of the system.

31

2. State of the art

Activity 6: Perform a smart grid high-level security requirement gap
assessment

From the previous activity, a list of relevant requirements (GRC Smart Grid Requirements,
CTRs, and UTRs) has been derived. Next, it has to be checked to which extent these
requirements are already fulfilled by the system. They can either be satisfied (“S”)
or other than satisfied (“O”). Therefore, the Assessment Ratings (S or O) column is
added to the table, and each requirement is rated. Additional information about the
assessment gaps between the requirement and the current situation has to be collected
for all requirements not satisfied yet. Therefore, the Assessment Gaps column is added
and filled with the corresponding information for each unsatisfied requirement.

Activity 7: Create a plan to remediate the smart grid high-level security
requirement gaps

The objective of this activity is to define the necessary steps towards closing the gaps
identified in the previous activity. The Proposed Mitigations column is added to the
table to document the risk response actions and provide a short description for each
Assessment Gap of the unsatisfied requirements. Specific actions to be taken are not
provided by the standard but have to be specified by the organization individually. Under
certain conditions, e.g., if the costs for closing a particular gap outweigh the benefits, the
organization may decide to omit the corresponding requirement. Furthermore, a Priority
(H, M, L) is added in a separate column to each of the Proposed Mitigations. Ordered
by priority, detailed plans to address selected gaps are created based on the proposed
mitigations.

Activity 8: Monitor and maintain smart grid high-level security
requirements

In this final activity, the progress of executing each of the plans to address selected gaps
specified in the previous activity is monitored and documented. The standard does not
prescribe how the documentation of the progress should be implemented but suggests
the use of automated tools and documented processes whenever possible. In the event
of significant changes, e.g., the identification of new security threats, the whole process
(Activities 1-8) shall be repeated, and the corresponding documentation shall be revised.

2.3 MAS design
Even though the definition of MASs does not restrict agents to being software compo-
nents (an agent is “a software (or hardware) entity” [13]), most agents are implemented
in software, possibly controlling hardware. In many cases, presupposed that the pro-
gramming language chosen provides the possibility, agents are objects in the sense of
Object-Oriented Programming (OOP). Thus, OOP techniques are often applied when
designing and implementing agents. However, a comprehensive MAS design method-

32

2.3. MAS design

ology has to cover additional aspects, e.g., distributing functionality across different
types (classes) of agents and the design of agent interaction protocols required for agent
communication. According to Urbano, Wagner, and Göhrner [100], existing MAS design
methodologies cover different phases of the systems engineering process. The most
prominent MAS design methodologies, and which phases of the development process they
cover, are illustrated in Figure 2.6. A distinct selection of the most widely used MAS
design methodologies is discussed in the following. However, many other methodologies
(e.g., Agent UML [101] and Decentralized Iterative Multiagent Open Networks Design
(DIAMOND) [102]) exist.

MaSE

PASSI

Gaia

Agent-UML

Figure 2.6: MAS design methodologies [100]

2.3.1 Gaia
The Gaia agent-oriented analysis and design methodology [103] owes its name to the Gaia
hypothesis, which proposes that all living organisms interact in a self-regulating system
that maintains conditions for life on the planet [104]. This point of view is closely related
to the idea of MASs, in which individual, self-organizing agents cooperate to achieve a
common goal. Gaia considers a MAS to be “an artificial society or organization” [103].
It comes with several assumptions and limitations:

• Agents can make use of “significant computational resources”.
• Agents cooperate to achieve a common goal, e.g., optimizing or minimizing some

property. There are no true conflicts, in which the common goal cannot be achieved
because of the self-interests of individual agents.

• Agents are heterogeneous, i.e., they may be implemented using different hardware,
programming languages, and architectures.

• Inter-agent relationships are static, i.e., they do not change during runtime.
• The abilities of agents are static.
• The number of different agent types is limited (less than 100).

33

2. State of the art

The Gaia methodology is separated into two stages: the Analysis stage and the Design
stage. Each stage yields several models. Figure 2.7 illustrates how these models relate to
one another. Concepts for identifying and describing requirements are out of the scope
of the Gaia methodology. Thus, the following discussion starts with the analysis stage.
Thereby, the individual models are emphasized.

Requirements statement

Interactions modelRoles model

Agent model Services model Acquaintance model

Analysis

Design

Figure 2.7: Gaia agent design methodology [103]

Stage 1: Analysis

The analysis stage is implementation-independent and intended to develop a basic
understanding of the MAS. Following the view of MASs as a society or organization, the
overall system is constructed from a set of roles. These roles are covered by the roles
model. Interactions between roles yield the interactions model (cf. Figure 2.7). Thereby,
roles are abstract concepts, i.e., there is no individual (computing system or person)
defined that takes on a specific role. An example of such a role is “President”: at this
stage of development, it is irrelevant which specific person currently is president.

The roles model consists of all the roles that participate in the MAS. A role is defined
by its responsibilities, permissions, activities, and protocols. Responsibilities describe
the functionality of the role, i.e., the tasks it is designed to fulfill. Thereby, Gaia distin-
guishes between liveness responsibilities, which state that “something good eventually
happens” [105], i.e., the agent is alive and performs specific tasks, and safety responsi-
bilities, which state that “some bad thing does not happen”. The agent is required to
have a set of permissions, e.g., to access specific data or to interact with its environment
by exchanging messages, reading sensor values, and controlling actuators. Activities are
associated with a specific role, but in contrast to responsibilities, activities are internal
operations invisible to other agents. Finally, protocols are the link between roles and
interactions. Gaia defines a template for role schemata (cf. Figure 2.3) to support the
developer in this aspect of the process. The template provides fields for responsibili-
ties, permissions, activities, and protocols as well as placeholders for some additional
information, in particular the role’s name and its description.

34

2.3. MAS design

Table 2.3: Gaia role schema template [103]

Role schema Name of role
Description Short description of the role
Protocols and activities Protocols and activities in which the role plays a part
Permissions “Rights” associated with the role
Responsibilities

Liveness Liveness responsibilities
Safety Safety responsibilities

Interactions define the way a role can interact with other roles on a high level. Therefore,
the interactions model consists of several protocol definitions. Details like the type,
structure, and sequence of exchanged messages are omitted at this point. Instead, each
protocol definition only contains information about the purpose of the protocol (in the
form of a few words), the initiating role, other (responding) roles, inputs (information
provided by the initiating agent at the start of the protocol), outputs (information
provided by/to the responding agent during protocol execution), and processing (a short
textual description about processing performed by the initiating agent during protocol
execution). Unfortunately, Gaia does not provide a protocol specification template.

Stage 2: Design

The Design stage is the second and final stage of the Gaia methodology. The objective
of the Design stage is to refine the role model and the interaction model, which were
created during the Analysis stage, to a level allowing traditional software development
techniques to be used to implement the specified agents. Thereby, three more models are
created: the agent model, the services model and the acquaintance model (cf. Figure 2.7).
They are briefly discussed in the following.

The agent model is the set of all agent types. An agent type is thereby built from
a single or a combination of agent roles. While there is a one-to-one correspondence
between agent roles and agent types in many cases, this is not mandatory. A single agent
type may also incorporate multiple roles. However, a single role cannot be split among
multiple agent types. For example, the agent role “President” requires the definition of
a corresponding agent type, e.g., “PresidentAgent”. Assuming there is another agent
role “HeadOfGovernment”, the PresidentAgent may combine both roles into a single
type. However, as an individual role can never be split among multiple types, only a
single PresidentAgent can incorporate the President role. Additional agent types may be
introduced, which combine the functionality of several other agent types. This structure
can be thought of and documented as a tree structure, having agent roles as leaves and
agent types as inner nodes. The number of instances of each agent type is specified using
annotations. This annotation may be an exact number (n), a range of possible numbers
(m..n), zero or more (∗), or at least one (+).

35

2. State of the art

For every activity defined in the roles model during the Analysis stage, an associated
service is defined during the Design stage and added to the services model. Additionally,
there may also be services defined that do not origin from the roles model. A service can
best be described as a function of an agent or a “single, coherent block of activity in which
an agent will engage” [103]. For each service, four properties have to be specified: inputs,
outputs, pre-conditions, and post-conditions. Typically, a table is used to document the
services and their properties.

Finally, the acquaintance model simply defines which communication relationships exist
between agent types. The acquaintance model is a simple directed graph, having an arc
a → b if agent type a can send a message to agent type b. This model completes the
Gaia methodology. The derived agent model, services model, and acquaintance model
can now be implemented.

2.3.2 MaSE

In contrast to Gaia, the Multiagent Systems Engineering (MaSE) methodology [106,
107] also covers the detailed design and implementation phases of the agent development
life-cycle. It comes with a number of limitations regarding the suitable types of MASs:

• The MAS has to be closed, meaning that all communication happening within the
system is only performed directly between agents. However, agents themselves may
have interfaces to communicate with entities outside of the MAS.

• Systems in which agents can be added, removed, or changed during runtime are
out of scope.

• MaSE does, in general, assume that all conversations between agents follow a
one-to-one scheme. However, multicast may still be used for message exchange at
a lower level.

• It is suggested to use the MaSE methodology only for MASs with a small number
(typically ten or less) of different agent types, as it has not been validated for larger
systems.

MaSE is fundamentally based on the fact that agents are significantly more complex
than software objects known from Object-Oriented Design (OOD). Therefore, it specifies
a sophisticated methodology, which is illustrated in Figure 2.8. Arrows between the
individual models show their interdependencies, i.e., how models within different phases
are built upon one another. The individual phases of this methodology and their
corresponding graphical models are discussed in more detail in the following. Like
Gaia, MaSE also assumes that the requirements description is given. Therefore, the
requirements description is not covered by the methodology.

36

2.3. MAS design

Requirements

Goal Hierarchy

Deployment Diagrams

Agent architecture

Use Cases

Sequence Diagrams

Concurrent Tasks Roles

Agent Classes

Conversations

Capturing Goals

Assembling Agent Classes

Applying Use Cases

Refining Roles

Creating Agent Classes

Constructing Conversations

System Design

Analysis
Design

Figure 2.8: MaSE agent design methodology [106]

Phase 1: Capturing goals

During this phase, the overall system goals are defined. Furthermore, they are refined in
the sense that complex goals are subdivided into simpler, more fine-grain ones. Each
goal is identified by a unique number. A hierarchy diagram (the Goal Hierarchy model)
is used to keep track of how the goals build upon one another. Each fine-grain goal may
contribute to achieve multiple, more complex goals. Thus, the hierarchy diagram is not
necessarily a tree-like structure.

Phase 2: Applying use cases

Use cases are derived directly from the system requirements. During this phase of the
methodology, the use cases are defined in terms of messages exchanged between individual
agent roles. Sequence diagrams are used for this purpose. For each identified use case,
there should be at least one sequence diagram. However, there may be multiple sequence
diagrams per use case, if it covers several possible scenarios.

37

2. State of the art

Phase 3: Refining roles

Goals of the MAS are accounted for by associating them to roles. Typically, there are
one-to-one associations between roles and goals. However, it may also be the case that a
single role handles multiple goals, but also that a single goal requires multiple roles to be
created. As a starting point for refining roles, a conventional Object Role Model (ORM)
is used to denote the roles (as rectangles), their associated goals (within the rectangles),
and possible communication paths (using undirected and directed arcs for bidirectional
and unidirectional message exchange between roles, respectively).

MaSE also defines a more detailed version of a conventional ORM, the MaSE role model.
It adds the notion of tasks. Tasks are derived from the goals of each agent role, added as
additional nodes in the form of ovals to the diagram, and connected to their responsible
roles. Tasks cannot be shared among multiple roles. Instead, additional roles and tasks
have to be added in this case. Furthermore, communication paths are illustrated in more
detail than in a conventional ORM diagram. Communication paths link specific tasks to
one another, rather than the corresponding roles. Communication links are illustrated
with directed arcs, pointing from the initiator to the responder, and are annotated with
the names of the communication protocols involved. Communication links between
concurrent tasks of the same role are illustrated with a dashed arc. Thus, the MaSE
role model covers Roles as well as Concurrent Tasks. Finally, a detailed state diagram is
defined for each task. Thereby, transitions between the individual states are typically
triggered by sending messages to/receiving messages from other agents.

Phase 4: Creating agent classes

During this phase, Agent Classes are created, and the identified agent roles are assigned to
these classes. The resulting agent class diagram is based on the previously created MaSE
role model, whereby all roles are consolidated into the same number or fewer classes. Arcs
between classes represent conversations. These conversations are derived from the MaSE
role model, whereby, if a role was participating in a specific communication protocol
in the MaSE role model, the class subsuming this role now has to participate in the
corresponding conversation. Regarding the directions of arcs, the same rule as in the
MaSE role model applies.

Phase 5: Constructing conversations

The Conversations identified in the previous phase are now modeled using a pair of
state diagrams for each conversation, one state diagram for each participant. The state
diagrams have to be consistent with all sequence diagrams derived in Phase 2. Phase 5 is
closely related to the subsequent Assembling agent classes phase, as any activity causing
a state transition has to be added as a method to the corresponding agent class.

38

2.3. MAS design

Phase 6: Assembling agent classes

Agent classes are defined in detail during this phase. An agent typically consists of
various components, e.g., a controller, Input/Output (I/O)-interfaces, and communication
interfaces. Robinson introduces five templates to describe the various components [108].
The MAS developer may build upon these templates or specify completely new ones.
Additionally, MaSE uses a class-diagram-like model to define the components, their
internal variables, operations (methods), connections among each of the components
of an agent, and connections to external resources like sensors, actuators, and other
agents. The interactions between components can be described in more detail, e.g., by
using state diagrams. All diagrams combined provide a detailed description of the Agent
Architecture.

Phase 7: System design

The System design phase is considered to be the most straight-forward phase of the MaSE
methodology. Therein, agent classes are instantiated as individual agents. Instantiating
agents from agent classes in MaSE is essentially equivalent to instantiating objects
from classes in OOP. Deployment diagrams are used to show the “numbers, types, and
locations of agents within a system” [106]. Lines connect agents participating in the same
conversations. Furthermore, agents sharing the same physical platform are placed within
a dashed box. This completes the MaSE design process. Code generation is suggested to
transform the derived models to code fragments automatically. However, code generation
is not mandatory and, therefore, not part of MaSE itself.

2.3.3 PASSI
Another commonly used approach for MAS design is the PASSI [109] methodology. It
builds upon concepts known from OOD and Artificial Intelligence (AI). In contrast to
the previously discussed methodologies Gaia and MaSE, the PASSI approach has been
designed with a specific target environment in mind: the Foundation for Intelligent
Physical Agents (FIPA) MAS framework (cf. Section 2.3.5). It uses slightly extended
UML diagrams for specifying the MAS. The PASSI methodology guides the user in step-
wise improving and detailing the various MAS models. Furthermore, code generation is
supported by the corresponding tools. Figure 2.9 illustrates the models and phases of the
PASSI methodology. The specification of the PASSI methodology primarily builds upon
its models. Therefore, also the next sections follow this structure. Phases conducted to
derive these models are emphasized.

Model 1: System requirements

During the Domain Requirements Description phase, a functional description of the MAS
is created. This description is based on use case diagrams on an abstract level. The
individual scenarios are discussed in more detail using sequence diagrams at a later point
in the methodology.

39

2. State of the art

Agent Society Model

System Requirements Model

Domain Req.
Description

Agent Identification

Role Identification Task Specification

Ontology Description Role Description Protocol Description

Initial Requirements

Agent Implementation Model

Ag. Structure
Definition

Ag. Behavior
Description

Code Model

Code Reuse

Code Production

Agent Test

Deployment Model

Deployment
Configuration

Society Test

Next Iteration

Figure 2.9: Passi agent design methodology [109]

Already from the very beginning, the Agent Identification phase tries to identify which
agents might exist in the final MAS by grouping closely related use cases from the use
case diagrams to packages. Each of these packages defines the functionalities of an
agent and is named accordingly. The «include» and «extend» relationships between the
use cases remain unless the connected use cases are associated with different packages,
i.e., agents. In these cases, the relationships are renamed to «communicate», as agent
communication is required if the corresponding use case is triggered. These relations
shall point from the initiator to the participant.

Each communication path in the modified use case diagram, i.e., each sequence of «com-
municate» relationships, is a specific interaction scenario. Thus, the set of communication
paths is equal to the set of scenarios. However, many of these scenarios are not relevant
for real applications. These are not examined any further. The remaining scenarios form
the set of possible scenarios. Agents play specific roles when participating in possible sce-
narios. They may even participate in the same scenario multiple times by taking several
different roles simultaneously. This distinction between agents and roles is made during
the Role Identification phase. Possible scenarios are defined using sequence diagrams,
whereby the objects of the sequence diagrams are named using the following syntax:
«role_name» : «agent_name». Agent roles are derived from the objects participating in
possible scenarios.

Next, during the Task Specification phase, agents are described in more detail by breaking
their roles down to a set of tasks. A task is some well-defined, encapsulated functionality.
For this purpose, PASSI introduces task specification diagrams, a special type of activity
diagram. These task specification diagrams have exactly two swimlanes, whereby the
right swimlane contains activities having a one-to-one relation to the agent’s tasks, and
the left swimlane contains activities of other interacting agents. One task specification
diagram is created for each agent.

40

2.3. MAS design

Model 2: Agent society

Agents have to share the same notion of semantics to be able to communicate. In
PASSI, ontologies are used to explicitly model semantics. Approaches using UML
diagrams for ontology design exist in the literature [110, 111] and are adopted by the
PASSI methodology in the Ontology Description phase in the form of a domain ontology
diagram and a communication ontology diagram. Both are class-diagram-like diagrams,
and classes can be related via arbitrary relationships. In the domain ontology diagram,
each class implements one of the following interfaces:

• Concept: A concept represents some entity of the domain. Concepts can have
attributes as their class members, e.g., a book has a title and a publisher.

• Predicate: Predicates are “assertions on properties of concepts” [109]. For example,
to successfully purchase a book, there has to be an associated successful negotiation
about a specific price and delivery time.

• Action: Actions describe events that already happened. Thereby, they typically
refer to concepts of the ontology and probably provide some extra information. For
example, a book has been delivered at a specific date.

The communication ontology diagram is derived from the results of the Agent Identification
phase. As a starting point, each agent is represented by a dedicated class. For each
agent, the data structures required for the interactions it participates in are specified
as class attributes. Relationships between classes represent interactions between agents.
The direction of the relationship remains unchanged, i.e., it still points from the initiator
to the participant. As agents play a specific role when participating in an interaction,
these roles are stated at the beginning and the end of each relationship arc. Additional
information, modeled as an association class, is added to each of the relationships to
define three interaction properties:

• Protocol: Interactions in MASs follow a specific sequence, i.e., order and type of
messages. This sequence is called interaction protocol, communication protocol, or
simply protocol. As mentioned, PASSI uses FIPA as MAS framework. Therefore,
FIPA communication protocols (cf. Section 2.3.5) shall be used as protocols
whenever suitable.

• Ontology: The ontology used during the interaction is stated. This ensures seman-
tically meaningful messages, as it eliminates the risk that the same term may have
different meanings in different ontologies.

• Language: The language attribute defines message encoding. Multiple languages
may be used in a single MAS.

The Roles Description phase describes the life-cycle of agents (how they change roles),
the conversations they participate in, and their collaborations. Therefore, PASSI defines
the roles description diagram, which is again similar to a class-diagram but uses agent

41

2. State of the art

roles as classes. These roles and the corresponding classes can easily be derived from
the communication ontology diagram, where they have been stated on the relationships.
Roles originating from the same agent are grouped into packages. Tasks, which already
have been defined based on agents in the Task Specification phase, are now assigned to
the individual roles by putting them in the operations compartment of the corresponding
class. Additional methods may be added if they are required from an implementation
point of view. Of course, tasks may be used by more than one role of an agent and,
therefore, put into multiple classes. If an agent incorporates multiple roles and these roles
depend on one another (e.g., a Purchaser agent has to act as Negotiator and, if successful,
then acts as OrderPlacer), a dashed, directed edge is drawn from the first to the second
role and marked with the keyword [ROLE CHANGE]. Conversations between roles are
also derived from the communication ontology diagram. Finally, roles may depend on one
another to achieve their goals. Such a dependency may indicate a service that another
agent has to offer or a resource that another agent has to provide. Dependencies are
added to the roles description diagram in form of additional relationships named “service”
or “resource”, respectively.

Each conversation between agents follows a specific sequence of messages. FIPA already
specified several sequence diagrams, which can be used by the developer for this purpose.
If no suitable conversation is provided by FIPA, developers can define sequence diagrams
during the Protocol Description phase.

Model 3: Agent implementation

In any MAS design methodology, the question arises whether it should focus on the
structural or the behavioral definition of agents first. As they are typically closely
intertwined, it is hardly possible to consider all relevant aspects of one, while entirely
postponing the other. PASSI proposes an iterative approach to address this issue.
The corresponding phases are the Agent Structure Definition and the Agent Behavior
Definition. They are conducted in parallel to form the agent implementation model.
Furthermore, they both operate on two different structural levels, which themselves are
suggested to be developed iteratively: the multi-agent and the single-agent level.

The Multi-Agent Structure Definition (MASD) uses a class diagram to depict all agents
and their connections on a rather high level of abstraction. Thereby, classes represent
agents. Methods (still representing tasks at this point) of the corresponding roles are
simply combined and listed in the agents’ operation compartments. Communication
relations between agents are indicated via directed, unnamed relationships. Furthermore,
relations to the outside world, e.g., via sensors or actuators are added to the diagram in
the form of actors. Relationships/interactions among actors and agents are illustrated
via directed edges in the direction of causality from the initiator to the participant.

During the Single-Agent Structure Definition (SASD), a class diagram is designed for
each agent. Each class diagram describes an agent’s internal structure and functionality

42

2.3. MAS design

in detail and forms the basis of later code generation and implementation. Thus, it
already has to take the Agent Platform (AP) into account. PASSI assumes FIPA as
an AP. The class diagram consists of two parts: the description of the agent’s main
class (its attributes and methods), and one class per task, i.e., per method in the MASD.
Attributes and methods required for implementing each task are added to the classes.
The classes representing tasks from the MASD are also called the agent’s inner classes.

The Multi-Agent Behavior Description (MABD) consists of several activity diagrams
defining the necessary communication between agents as well as method invocations
within agents. Each activity diagram describes a scenario that may occur in the MAS.
The starting point of each scenario is a function call that can be triggered by an actor, a
timeout, or some other event. Each swimlane of such an activity diagram represents a
task of an agent that participates in the scenario.

The Single-Agent Behavior Description (SABD) defines how agent and task methods
shall be implemented. No specific diagram type is suggested by PASSI for this purpose.
Any methods known from classical OOP like flow charts, state diagrams, and textual
descriptions may be applied.

Model 4: Code

PASSI tries to largely automate the code generation process by reusing predefined
design patterns of agents and tasks during the Code Reuse phase. Thereby, patterns are
considered to be “pieces of design and code to be reused in the process of implementing
new systems” [109]. PASSI identifies three different types of patterns:

• Patterns concerning models about the static structure of agents
• Patterns concerning models about the dynamic behavior of agents
• Patterns concerning the agents’ program code

Additional literature elaborates on patterns in the PASSI methodology in more detail,
e.g., [112, 113]. Two software components that support developers in the design process
and encourage the use of patterns were developed in accordance with the PASSI method-
ology: the PASSI Tool Kit (PTK) [114] and the PASSI Agent Factory [115]. Thereby,
the PTK is used to compile the PASSI diagrams and to generate code skeletons, which
are then filled by the PASSI Agent Factory. While most of the PASSI methodology
itself is in principle independent from the choice of an AP, the PTK and Agent Factory
are designed to be compatible with the Java Agent DEvelopment framework (JADE)
platform [116], which itself builds upon the FIPA specifications.

Program code that cannot be automatically generated, e.g., because it is specific to
the MAS’s purpose and, therefore, no pattern exists, has to be written manually by
programmers during the Code Production phase. However, they can build upon the code

43

2. State of the art

skeleton generated by the PTK and, therefore, fully concentrate on implementing the
methods rather than building the complete code structure themselves.

After having implemented the individual agents, their functionality is tested during
the Agent Test phase. These tests are carried out based on the initial requirements
specification. PASSI does not address this phase in detail but leaves it to standard
software testing techniques.

Model 5: Deployment

During the Deployment Configuration phase, the locations, movements, and communica-
tion support (which depends on the processing unit they are executed on) of agents are
specified using a PASSI deployment configuration diagram, which builds upon a standard
UML deployment diagram. Processing units are represented by boxes, containing the
agents they host as components. A simple syntax extension, the introduction of directed,
dashed lines with a move_to stereotype, allows to additionally represent agent mobility,
i.e., the possibility of moving agents from one AP to another during runtime.

Finally, the PASSI methodology is completed by performing a Society Test. In contrast
to the Agent Test, the Society Test is performed after the MAS has been deployed. It
validates the compliance of the complete system with the requirements specification.

2.3.4 MAS methodology comparison
With over 80 MAS design methodologies [117], there are plenty of options available to
design and implement a specific MAS use case. The difficulty primarily lies in selecting
a methodology that is suitable for the present application. For this reason, various
publications [118, 119, 120] define lists of criteria used to analyze existing MAS design
methodologies. These lists include hard facts, such as the SELC phases supported by
each methodology and the number of steps within these phases, but also more subtle
properties like clear notation, adequateness and expressiveness of the language, clarity of
concepts, easiness to learn, and easiness to use. Tran, Low, and Williams [118] define
such a list of criteria and provide the results for five different MAS design methodologies,
including Gaia and MaSE. Table 2.4 summarizes a subset of the criteria for these two
methodologies. Additionally, the PASSI methodology, which is not present in the original
publication, has been evaluated based on the information provided in Section 2.3.3 and
added to the table.

2.3.5 FIPA MAS framework
MASs are deployed in many different fields of application, including SGs, energy mar-
kets, manufacturing, and telecommunications. The predominant MAS framework for
applications in all of these domains is the FIPA framework. FIPA consists of a set of
specifications, some of which are considered mandatory when designing a FIPA-compliant

44

2.3. MAS design

Table 2.4: Feature analysis of MAS design methodologies, extended from [118]

Evaluation criteria GAIA MaSE PASSI
Process-related criteria

Development life cycle Iterative across
all phases

Iterative across
all phases

Iterative across
all phases

Coverage of the life cycle Analysis &
Design

Analysis &
Design

Analysis, Design,
Implementation
& Evaluation

Application domain Any Any Any, focus on
FIPA platform

Size of MAS ≤ 100 agents ≤ 10 agents not specified

Usability of the methodology
Medium. Missing
many important

steps

High, except for
internal agent

modeling
High

Approach towards MAS devel-
opment

object-oriented,
role-oriented,
organisation-

oriented

object-oriented,
role-oriented,
goal-oriented

object-oriented,
role-oriented,

use-case-oriented

Model Related Criteria
Completeness Medium High High
Formalization/Preciseness High High High
Ease of understanding High High High
Adaptability No No No
Communication ability No Yes Yes
Concurrency No Yes Yes
Human–computer interaction No No Yes
Models reuse Yes Yes Yes

Supportive Feature Criteria
Software and methodological
support

No Yes Yes

Open systems and scalability Yes No Yes
Dynamic structure Yes No Yes*
Agility and robustness No No No
Support for conventional objects No No Yes
Support for mobile agents No No Yes*
Support for self-interested
agents

Yes No not specified

Support for ontology No No Yes

* provided by the AP

45

2. State of the art

MAS. Others, e.g., specifications defining details about agent communication such as
the various agent interaction protocols, are optional and, typically, only implemented if
required for the specific use case.

FIPA rigorously keeps track of the different states and versions of the specifications. The
FIPA specification life-cycle is illustrated in Figure 2.10. Most of the 25 specifications that
made it to standardization so far can roughly be assigned to three different categories:
FIPA basic concepts, agent communication, and ontologies. In the following, a separate
section is devoted to each of these three categories. Additionally, the FIPA Nomadic
Application Support Specification [121] specifies how to implement agent mobility, and
FIPA Design Process Documentation Template [122] provides information about the
MAS design process essentially by referring to the PASSI methodology (cf. Section 2.3.3).

Deprecated

Preliminary Experimental Standard Obsolete

Figure 2.10: Life-cycle of FIPA specifications [123]

FIPA basic concepts

The main objective of FIPA is not to define a specification that can directly be imple-
mented in software but to identify architectural elements of MASs and their relationships.
This information is summarized in the FIPA Abstract Architecture [124] specification.
The FIPA Abstract Architecture and possible mappings to concrete realizations are
illustrated in Figure 2.11. The minimum set of architectural elements that should be
supported by any FIPA-compliant MAS consists of Message Transport, Agent Directory,
Service Directory, and ACL. Agent Directory and Service Directory allow agents and
services to be registered and discovered. Message Transport and ACL are outlined in
more detail in the following section.

According to the FIPA Agent Management Reference Model, which is defined in the
FIPA Agent Management Specification [125], agents require an AP to be executed on.
The AP subsumes the machine, operating system, agent support software, Directory
Facilitator (DF), Agent Management System (AMS), Message Transport System (MTS),
and the agents themselves. It is illustrated in Figure 2.12, and its components are briefly
discussed in the following.

The first component of the AP is the Agent. FIPA defines an agent as a “a compu-
tational process that implements the autonomous, communicating functionality of an
application” [125]. However, it is not clearly defined, whether the Agent itself should be
considered an integral part of the AP, or just be executed on the AP. Both view points
are common, and their distinction is not particularly relevant in practice.

46

2.3. MAS design

Abstract Architecture

Message
Transport

Agent
Directory

Service
Directory ACL

Concrete realization: CORBA Elements
Concrete realization: Java Elements

Message
Transport

Agent
Directory

Service
Directory ACL

Figure 2.11: FIPA abstract architecture and concrete realizations [124]

Agent Platform

Software

Agent Platform

Agent
Agent

Management
System

Directory
Facilitator

Message Transport System

Message Transport System

Figure 2.12: FIPA agent management reference model [125]

The AP itself is controlled by the AMS, which is a mandatory component on each AP.
It manages how the AP may be accessed by other agents and used by agents that are
executed on the same AP. Each agent has to register with an AMS to receive its unique
Agent IDentifier (AID).

Agents may register themselves, including their full description (cf. Section 2.3.5) and
descriptions of their services, at the DF. The DF is an optional component and, as such,
need not be implemented on every AP. If present, it can be used (also by agents that are
executed on other APs) to register and discover agents and services.

Finally, the mandatory MTS provides the communication mechanisms. It enables
communication among the individual components of the AP but also to other APs. The

47

2. State of the art

MTS may use different encoding mechanisms depending on the destination of the message.
For example, if the message is sent over a wireless connection, the MTS may choose a
very efficient encoding scheme in terms of message size to minimize power consumption.

Agent communication

Most of the FIPA specifications (20 out of 25) define various aspects of agent communi-
cation. Some of them specify FIPA-ACL, a concrete realization of the ACL architectural
element. Others specify the message transport, i.e., how FIPA-messages can be encoded
in XML, binary format, or plain text [126], and how messages are transported, e.g., via
HyperText Transfer Protocol (HTTP).

The FIPA-ACL Message Structure Specification [127] is of particular interest. It lists
the basic components and the structure of FIPA-ACL messages. FIPA specifies a total
number of 13 different fields for a FIPA-ACL message, some of which are optional.
The first and most important field of a FIPA message is the performative denoting
the type of the Communicative Act (CA). All predefined CAs are defined in the FIPA
Communicative Act Library Specification [128]. A selection is listed in Table 2.5.

Table 2.5: FIPA communicative acts [128]

Communicative act Description (simplified)
query-ref Ask another agent for some specific information.
inform-ref Inform another agent about some specific information.
inform Inform another agent that a specific proposition is true.
call for proposal Ask for proposals to perform a specific action.
propose Submit a proposal as a response to a call for proposal.
accept proposal Accept a received proposal.
reject Reject a received proposal.
request Request a specific action from another agent. Note that a

request for inform-ref is the same as query-ref.
agree Agree to perform some requested action.
refuse Refuse to perform some action or to offer a proposal.
not understood The agent received a message it did not understand.

Often, the sequence of CAs follows a predefined agent interaction protocol, which is denoted
in the FIPA message by the protocol field. Popular examples are the FIPA Query
Interaction Protocol [129] and the FIPA Contract Net Interaction Protocol [130]. Messages
can be associated to a specific interaction by making use of the conversation-id
field. Using different conversation-ids allows an agent to participate in multiple
interactions simultaneously without much additional programming effort.

48

2.3. MAS design

The performative specifies the FIPA message type, whereas additional information is
stored in the content field. The information in this field, and also the way it is encoded,
is completely application specific. Nevertheless, FIPA provides a specification for the
semantically meaningful communication language FIPA Semantic Language (SL) [131],
which may be used. The encoding used for the information within the content field is
defined by the language field.

FIPA ontologies

FIPA does not provide its ontologies in a standard W3C format, e.g., RDF or OWL, but
rather specifies them using several tables per ontology. Ontologies are primarily used to
enable agents to exchange semantically meaningful messages. FIPA defines three main
ontologies: fipa-agent-management, fipa-device, and fipa-qos.

The basic structure of FIPA agents is specified by the fipa-agent-management
ontology, which is provided by the Agent Management Specification [125]. It specifies
the classes required to describe the agent itself, including its AID, addresses, supported
protocols, supported ACLs, as well as the classes required to describe the agent’s services,
such as the name, type, and the ownership. This information is of particular interest
when it comes to registering and searching agents and services at the DF.

The fipa-device ontology is defined by the FIPA Device Ontology Specification [132].
It provides classes to describe many different hardware and software aspects of compu-
tational devices, such as their available memory, Central Processing Unit (CPU), user
interfaces, Operating System (OS), and AP. It can be used by agents when communicating
about these aspects, e.g., because an agent wants to evaluate if a computational device is
capable of performing a specific task.

Finally, the FIPA Quality of Service Specification [133] defines the fipa-qos ontology.
It allows to model additional aspects of the transport protocols and communication
channels, e.g., the throughput, delay, and frame error rate. The fipa-qos can be used
by agents when communicating about Quality of Service (QoS).

FIPA-compliant APs

An AP has to realize the four architectural elements Message Transport, Agent Directory,
Service Directory, and ACL to be FIPA-compliant. The technologies used to implement
these architectural elements are not prescribed. Developers can build their own AP based
on existing technologies such as HTTP for message transport, Lightweight Directory
Access Protocol (LDAP) for agent directory and service directory functionality, and
possibly a custom ACL. However, in most cases it is beneficial to build upon existing
APs such as JADE [116], Mobile-C [134], Aglets [135], Agent Tcl [136], Concordia [137],
D’Agents [138], ZEUS [139], or Mole [140]. They reduce the implementation effort by
providing all the general services like message transport, agent registration, discovery,

49

2. State of the art

and agent life-cycle management. Therefore, developers can focus on implementing the
agents themselves and their application-specific functionality. JADE and Mobile-C are
briefly introduced in the following.

JADE [116] is an AP implemented in the Java programming language. It is the most
commonly used AP, in particular in the field of SGs. JADE implements the AMS, DF, and
MTS components of the FIPA Agent Management Reference Model (cf. Section 2.3.5).
In addition, it implements the Agent Communication Channel (ACC) as an additional
component designed to handle message exchange with agents running on another AP. The
AMS, DF, and ACC are themselves implemented as agents. The following list provides a
subset of additional features that are implemented by JADE and are often very useful to
the agent programmer:

• Graphical User Interface (GUI) to manage the AP and the corresponding agents
• AP can be split among multiple hosts to increase performance
• Possibility to run several DFs on the same host to enable multi-domain applications
• MTS enables lightweight message exchange for agents running on the same host
• FIPA agent interaction protocol implementations
• Message encoding and decoding
• Agent mobility [141]

Mobile-C [134, 142] is another FIPA-compliant AP implementation. It is implemented in
C programming language, specifically targeting resource constrained, embedded devices.
Mobile-C agent code can either be compiled and executed directly on the host, or
interpreted by integrating the C/C++ interpreter Ch [143]. The ability to transfer
and interpret code enables agent mobility and easy update of agents in Mobile-C. The
Mobile-C AP is built from a number of separate Application Programming Interfaces
(APIs), including the AMS, DF, and ACC APIs. Furthermore, it provides an optional
security API, the Agent Security Manager (ASM).

2.4 Ontology design
Earlier ontology design methodologies started by following rather simple, step-wise
approaches, as in [144, 145, 21]. Later on, as ontologies became more extensive and
more complex, so did the corresponding ontology design methodologies by adopting ideas
from software engineering and other disciplines. Ontology design methodologies became
incremental, i.e., adding only small portions of information at a time, and iterative, i.e.,
performing the different phases of ontology design (e.g., analysis, modeling, and test)
for each increment, as in [146, 147]. An overview of existing scientific work on ontology
design can be found in [148]. Furthermore, ontology design can be supported by MDE
techniques. An overview of existing work on this topic, as well as a novel approach

50

2.4. Ontology design

that identifies and avoids inconsistencies during the design phase, is provided in [149].
The following sections briefly present “Ontology Development 101: A Guide to Creating
Your First Ontology” [21] as an example for step-wise approaches, and UP for ONtology
(UPON) – “A software engineering approach to ontology building” [147] as an example
for incremental and iterative approaches.

2.4.1 Ontology development 101

In “Ontology Development 101: A Guide to Creating Your First Ontology” [21], Noy,
McGuinness, et al. provide some motivation for the use of ontologies, outline the differences
to classical OOD, give a short introduction to most crucial building blocks of ontologies,
and present Protégé [150], the most commonly used ontology design tool, to create their
examples. Additionally, some general advice on how class hierarchies are built efficiently,
naming conventions, and other aspects of ontology design is given. Thus, they provide
an excellent starting point for ontology development in general. However, the focus here
shall be on their ontology design methodology. Therefore, the seven (almost strictly
consecutive) steps their methodology consists of are briefly discussed in the following.
The steps of the methodology are illustrated in Figure 2.13.

Step 1: Determine the
Domain and Scope of

the Ontology

Step 2: Consider
Reusing Existing

Ontologies

Step 3: Enumerate
Important Terms in the

Ontology

Step 4: Define the
Classes and the Class

Hierarchy

Step 5: Define the
Properties of Classes -

Slots

Step 6: Define the
Facets of the Slots Step 7: Create Instances

Figure 2.13: Ontology development 101 design methodology

Step 1: Determine the domain and scope of the ontology

The design process starts with answering several general questions used to define the
domain and scope of the ontology to be developed, as a single ontology cannot cover a
domain entirely and from all perspectives. Thus, this first step gives a basic orientation
about which information should be modeled, and the level of detail required. This view
of the domain might evolve during the subsequent steps of the methodology. However,
it should not change drastically. In addition to these general questions, formulating
competency questions [151] has become a proven means to ensure the quality of the
designed ontology and is also suggested by the Ontology development 101 methodology.
Thereby, competency questions are simple and human-readable questions that should be
answerable by making use of the ontology after the design process. The list of competency
questions is intended to be exemplary rather than exhaustive.

51

2. State of the art

Step 2: Consider reusing existing ontologies

As ontology design becomes increasingly popular, the probability increases that parts of
the desired ontology are already available. Thus, developers should consider incorporating
this existing knowledge in their ontology, which improves compatibility and reduces
the amount of work involved with building ontologies. The authors of the Ontology
development 101 methodology limit the reuse of existing knowledge to existing ontologies,
which can be found, for example, in online libraries such as Ontolingua [152], and DARPA
Agent Markup Language (DAML) ontology library [153].

Step 3: Enumerate important terms in the ontology

At this step of the methodology, a comprehensive list of terms that should appear in the
final ontology is created. This list is based on the general questions and the competency
questions that have been defined during Step 1. There is neither a hierarchy defined on
these terms, nor are there any relations specified.

Step 4: Define the classes and the class hierarchy

Defining the classes and the class hierarchy is closely intertwined with the subsequent
Step 5, defining the properties of the classes. Thus, Step 4 and Step 5 are typically not
performed in strict order. Instead, developers should jump back and forth, first defining
several classes and their hierarchical order, then specifying relations between them in the
form of properties.

The order in which classes and their hierarchy should be defined can follow one of three
approaches: top-down, bottom-up, or a combination of these two [154]. The top-down
approach follows the idea of specialization. It starts with specifying the most general
concepts first and adds related, more specific ones along the way. Contrary, the bottom-up
approach follows the idea of generalization. It adds specific concepts first, grouping them
to more general concepts during the process. The combination of the top-down and
the bottom-up approach defines the most important, salient concepts first and applies
specialization and generalization on them simultaneously. None of the three approaches
can be considered best in any perspective, but the choice is subject to the personal
preferences of developers and their view of the domain.

Independent of the chosen approach, Step 4 starts with adding terms identified in the
previous step as classes. These terms should identify types of objects (e.g., Transformer
Agent) rather than properties of these objects (e.g., address, name). Superclass/subclass
relationships are added between classes, just like inheritance in OOP: if class B (e.g.,
Transformer Agent) is a subclass of class A (e.g., Agent), then every individual of class B
is also an individual of class A. Furthermore, B inherits all properties of A. Additionally,
some practical advice on how to organize classes in a class hierarchy is provided in [21].

52

2.4. Ontology design

Step 5: Define the properties of classes – slots

During this step, terms that represent properties are added to the ontology by assigning
them to classes. At this point in the process, no distinction is made between object
properties and data properties. The term slot/slots is used for both. As properties are
inherited according to the class hierarchy, they should be added to the most general
applicable class. For example, the property “name” is applicable for any type of agent.
Therefore, it should be added to the class Agent, rather than to all its subclasses.

Step 6: Define the facets of the slots

Facets specify additional information about slots like their type, allowed values, and
cardinality. The cardinality defines how many instances a slot can have, e.g., an agent
must have precisely one name and one to infinitely many addresses. During this step,
it is determined whether a slot is a data property or an object property according to
its data type: data properties relate classes (and their instantiated individuals) to data
values while object properties relate classes among each other. The domain and range
are used to add additional information about slots. Thereby, the domain specifies to
which classes a property can be attached to. The range specifies allowed data types and
classes the property can point to. The domain and range should contain all relevant
classes but not be overly generous.

Step 7: Create instances

As a last step of the Ontology development 101 methodology, individuals are added to
the ontology as instances of classes. The slots of each individual are filled with concrete
values, e.g., the actual name of an agent.

2.4.2 UPON

The UPON ontology design methodology [147] is heavily inspired by the Unified Software
Development Process / Unified Process (UP) software engineering approach [155]. UPON
is intended to be used for the development of large-scale ontologies and, therefore, specifies
an iterative and incremental development process. Furthermore, UPON is use-case-driven,
i.e., it produces an ontology for a specific use case rather than a general ontology for
a complete domain. Like UP, UPON uses the notion of cycles, phases, iterations, and
workflows as illustrated in Figure 2.14. Each cycle adds additional details and produces
a new version of the ontology. There are four phases executed during each cycle: 1.
inception (capturing requirements) 2. elaboration (identifying and sketching fundamental
concepts), 3. construction (detailed design and implementation), and 4. transition (test
of the ontology and collection of information for the next cycle). Each phase may involve
multiple iterations over five workflows. Figure 2.14 only exemplifies the workflows for the
construction phase. However, the same five workflows are executed during each of the
four phases.

53

2. State of the art

Cycle 1

Cycle 2

Cycle 3

...

CYCLES PHASES

W
2-Elaboration

1-Inception 3-Construction

4-Transition

W ... W ...

W
WORKFLOWS

1-Requirements

2-Analysis

3-Design

4-Implementation5-Test

ITERATIONS

W

Figure 2.14: UPON ontology design methodology

As the interplay of cycles, phases, iterations, and workflows is the central aspect of the
UPON methodology, it shall be discussed in more detail based on Figure 2.15. Each
of the five workflows is executed in every iteration, and, therefore, also in each of the
four phases. However, their contribution to each phase differs depending on how far the
design of the ontology has already evolved. For example, the test workflow does not
contribute during the inception phase, as there is nothing to be tested at this point. The
contribution of each workflow across the various phases is sketched in Figure 2.15.

Involvement

Iteration nIteration n-1Iteration 1 Iteration 2

Requirements

Analysis

Design

Implementation

Test

W
or

kf
lo

w
s

Inception Construction
Elaboration Transition

Phases

Cycle

DE: Domain Expert
KE: Knowledge Engineer

DE

KE

...

Lexicon

Semantic Network

Glossary

Ontology.owl

Figure 2.15: Interplay of UPON cycles, phases, iterations, and workflows

54

2.4. Ontology design

Each of the UPON phases produces a different outcome: lexicon, glossary, semantic
network, and finally, the ontology. However, for the sake of not over-complicating things,
it may be helpful to think about the lexicon, glossary, and semantic network as unfinished
ontologies. Furthermore, two main characters are expected to participate in the process:
a Domain Expert (DE) and a Knowledge Engineer (KE). Their involvement in each of
the workflows differs, as illustrated in the figure. For example, specifying the system’s
requirements is almost exclusively done by the DE, while the KE gains importance later
in the process when it comes to modeling the concepts. While the cycles, phases, and
iterations provide the structure of the UPON methodology, the actual work is done by
executing the workflows. Therefore, they are briefly discussed in the following. Each of
the workflows produces/extends several outcomes like lists of terms and diagrams. These
outcomes are emphasized and numbered (i, ii, iii, ...).

Workflow 1: Requirements

The goal of the requirements workflow is to capture the needs of future users of the
ontology. Therefore, (i) the domain and scope of the ontology are defined by identifying
the most important concepts and properties. (ii) The business purpose/motivating scenario
of the ontology is defined based on the users’ objectives. (iii) Motivating scenarios are
outlined in more detail using storyboards, i.e., short written or drawn descriptions of
the steps comprising the scenario. (iv) A preliminary list of the relevant terms, an
application lexicon in UPON terminology, is created from the information given in the
storyboards. (v) Competency questions are formulated (cf. Section 2.4.1). (vi) Simple
use case diagrams are created from the competency questions and prioritized.

Workflow 2: Analysis

During the analysis workflow, the requirements identified in the previous workflow are
refined. The application lexicon is enriched step by step until a reference glossary, i.e.,
a list of terms and their definitions in the domain context, is derived. Therefore, (i) a
domain lexicon, i.e., a collection of terms based on information from existing material like
standards, manuals, and reports, is built. (ii) The application lexicon and the domain
lexicon are used as a basis to create the reference lexicon. Thereby, all terms included in
both of these lexica are added to the reference lexicon. Whether or not terms that are
present only in either the application lexicon or the domain lexicon, but not in both, shall
be added to the reference lexicon has to be decided individually. (iii) The information
given by the use case diagram is detailed based on class diagrams and activity diagrams to
create models of the application scenarios that can be used for validation of the ontology
later on. (iv) The reference glossary is generated by extending the reference lexicon with
explanations of the terms.

55

2. State of the art

Workflow 3: Design

During the design workflow, “ontological structure” is given to elements of the reference
glossary using the Object, Process, Actor modelling Language (OPAL) [156]. OPAL is an
ontology modeling framework providing a limited number of design patterns to simplify
the process of building ontologies. (i) Concepts from the reference glossary are assigned
to one of five categories: business actor, business object, business process, message,
or attribute. Additional information about these categories can be found in [147] and
[156]. (ii) Relationships between concepts are modeled. As a first step, a class hierarchy
is established using the top-down, bottom-up, or a combined approach. Furthermore,
aggregation relationships and associations are added between concepts. The design
workflow results in several class diagrams that represent the ontology.

Workflow 4: Implementation

During the implementation workflow, the (i) diagrams derived in the design workflow
are encoded in a formal language, such as RDF or OWL. Therefore, this task is primar-
ily performed by the KE. Additional ontology design constructs (e.g., range, domain,
cardinality, and disjunction) are also added during the implementation workflow.

Workflow 5: Test

The test workflow ensures the quality of the derived ontology in terms of four different
characteristics. (i) Syntactic quality ensures that the ontology file is syntactically correct
and is typically done by automated tools, e.g., by verifying the ontology file against the
corresponding XML Schema Definition (XSD). (ii) Semantic quality mainly focuses on
the absence of logical contradictions within the ontology like an individual having type A
and B simultaneously, where A and B are disjoint classes. (iii) Pragmatic quality refers
to “the ontology context and usefulness for users” [147]. (iv) Social quality provides a
measure of how well an ontology is accepted, in particular by determining how many
other ontologies link to it and how developers use it within and outside of the community.
This workflow concludes the execution of one iteration of the five workflows. The next
iteration, phase, or cycle may follow if the ontology needs further refinement.

2.5 Related scientific work
The MAS used as an example in this thesis shall cover functional as well as non-
functional (in particular dependability) aspects of actors in the SG field. Therefore,
this section addresses related scientific work regarding MASs for SG applications first.
The corresponding MASs are thereby grouped by their organizational structure, i.e.,
centralized, decentralized, and distributed. After that, existing scientific work about
the way MASs address dependability is presented based on the various dependability
attributes.

56

2.5. Related scientific work

2.5.1 Functional aspects: MASs for SG applications

According to a survey paper of Kantamneni et al. [157], MASs in SG applications can be
categorized into centralized, distributed, and two/three-level hierarchical approaches. Two-
level and three-level structures are predominant [158], and, according to the definitions
provided in Section 1.3, fall into the class of decentralized communication systems. The
individual approaches found in the scientific literature cover many different applications.
In the following, work available on MASs in SGs is discussed with a focus on systems
designed to minimize losses in the distribution network.

Centralized MASs

Centralized approaches are heavily inspired by traditional control structures: agents
that are deployed in the field (field agents) report directly to and get instructions from
a central control agent only. There is no direct communication between field agents.
However, they are intelligent and can perform actions autonomously, as far as these
actions do not require the agent to coordinate with other agents. An approach of this
type is presented in [159]. It implements an energy management algorithm that optimizes
the operation of water pumps based on the available energy in batteries across multiple
houses. Thereby, agents are categorized into Reactive Agents and Cognitive Agents,
whereby Reactive Agents are simpler and can react to changes in the environment more
quickly while Cognitive Agents are more sophisticated and used for applications that
require “increased intelligence” [159]. Intelligent Load Controllers (ILCs) are placed at
the power line outside of each building. Each ILC is equipped with an intelligent agent
and hosts a web server for remote access. Major, non-local functionalities of the control
system, e.g., coordinating battery charging among multiple houses, are implemented in
the Cognitive Agent.

Two- and three-level decentralized MASs

In [160], Merdan et al. present a MAS for fault detection and correction in distribution net-
works. The architecture comprises six types of agents: System Agent, Automation Agent,
Data Agent, Substation Agent, Switch Agent, and Generation/Load Agent. Conceptually,
the approach is a two-level hierarchical approach: the Management Layer (containing
high-level agents) is responsible for network stability and functionality while the Execution
Layer (containing low-level agents) provides access to the system’s equipment. If an agent
detects a fault, it informs the System Agent, which then calculates options for network
reconfiguration. The main objective is to optimize (maximize) the number of supplied
loads. In the case of multiple possible configurations, the one that causes minimum
losses is chosen. Based on this result, the System Agent requests switching actions from
the Switch Agents. It furthermore informs other agents of the system to update their
world models. As the paper focuses on the MAS architecture, it remains unclear whether
the System Agent has to know the complete structure of the distribution network to
perform its algorithm and which optimization algorithm is used. Three-level hierarchical

57

2. State of the art

approaches are conceptually similar to two-level hierarchical approaches but add mid-level
agents for tasks such as fault location and grid-connected/islanded mode switching [157].

Distributed MASs

As one of few examples for a distributed control approach, Jiang presents an “Agent-Based
Control Framework for Distributed Energy Resources Microgrids” [161]. The test system
is made up of three agent types: Energy source agent, Energy storage agent and Load
agent. Furthermore, it comprises a Directory Service, which enables agent registration
and discovery. All agents are equal and not organized in any type of hierarchy. They
rather coordinate their actions via a simple agent interaction protocol. The overall system
goal is voltage regulation. Thereby, safety considerations regarding a battery for energy
storage (which is controlled by the Energy storage agent) are of particular importance.
Simulation results presented in the paper indicate that the approach is well suited for the
control of distributed energy resources in microgrids. The effects of the communication
network are neglected in this early stage of development.

2.5.2 Non-functional aspects: Dependably in MASs
In the following discussion, existing scientific work in the field of dependable MASs is
grouped by the dependability attribute addressed. Even though the nomenclature varies,
e.g., the terms “dependable” and “robust” are often used interchangeably, most papers
can very well be related to one of the dependability attributes defined in Section 1.2.

Reliability in MASs

Measures to increase the reliability of MASs can generally be applied before as well as
during runtime. Techniques applied before runtime include static verification (e.g., model
checking) and other software testing approaches. An overview of “Specification and
Verification of Multi-agent Systems” is given by Dastani, Hindriks, and Meyer in [162].
In [163], Lomuscio, Qu, and Raimondi present their Model Checker for Multi-Agent
Systems (MCMAS). The Interpreted Systems Programming Language (IPSL) is thereby
used to describe the environment and the individual agents, regarding their initial states,
variables, agent interaction protocols, or actions. MCMAS provides a GUI that supports
the user in checking this description of the MAS against Alternating-time Temporal Logic
(ATL) [164], Computation Tree Logic (CTL) [165], and other types of specifications.
Similar model-checking approaches for MASs are presented in [166, 167, 168, 169, 170].

A common measure to increase the reliability of MASs during runtime is self-checking.
This is typically achieved on the MAS level, i.e., agents check one-another to verify that
the counterpart is still operating reliably and its behavior can be trusted. A general
overview of the ideas and existing work on this and related topics (e.g., self-optimization
and self-healing) is presented in [16]. In [171, 172], Costantini suggests to use a simple
Interval Temporal Logic (ITL) [173] to describe constraints on the behavior of an agent,

58

2.5. Related scientific work

including the notion of time. ITL allows to define that some action has to performed
before or after a specified time. If an agent violates such a constraint, it can be concluded
that the agent is no longer functioning properly. Additionally, suitable reactions can be
defined for violations of each of the constraints, which provides the basis for self-healing
capabilities. In [174], Haegg introduces sentinels as a special agent type that is responsible
for monitoring agent communication within the MAS, building models of other agents,
and ultimately performing specific actions (e.g., informing the operator) if any abnormal
behavior is detected. The MAS is thereby implemented first, and sentinels are added as
an additional control system later.

In [175], Matsumoto, Maruo, and Tanimoto argue that large MASs suffer from additional
communication overhead introduced by the self-checking mechanisms (e.g., [176]) and
a scalable approach to this problem is required. They suggest to address this problem
by introducing middle agents, each responsible for carrying communication between a
subset of client agents – so-called local groups. Local groups contain three to four client
agents. Client agents only test one another within local groups, and middle agents are
aware of the test results. Middle agents exchange information about possibly faulty client
agents. Furthermore, client agents are switched between local groups from time to time
to account for the fact that more than one client agent of a local group may be faulty.

Lockemann and Nimis present a different approach. They address “agent dependability
as an architectural issue” [177]. Thereby they refer to a software agent as dependable
“if it maintains its service according to specifications even if disturbances occur within
the agent” [178], which, according to the definitions used in this thesis (cf. Section 1.2),
actually better fits the term reliability than dependability. Lockemann and Nimis propose
to build upon a five-layer reference architecture for agents and to define a dependability
model for each of the layers. Each dependability model precisely states the services of
the layer, which errors may occur, if they are handled and how, or if they are propagated
to the next higher layer.

Safety in MASs

The amount of scientific work addressing safety in MASs is plentiful, though not as
vast as on reliability. According to Musliner, Durfee, and Shin [179], a key challenge
in designing intelligent systems for safety-critical applications is the trade-off between
flexibility and predictability, in particular regarding real-time aspects of safety-critical
applications. In their Cooperative Intelligent Real-Time Control Architecture (CIRCA),
they separate the task level goals, which require intelligence and are, therefore, hardly
predictable regarding real-time guarantees, from the control level goals, which cover
safety-critical operation, among other functionality. Communication between both parts
of the architecture is enabled by a special asynchronous interface, which ensures that
no timing-guarantees of the control level are violated. The drawback of their approach
is that it provides timing guarantees only within a single component, but not among
components, which would be preferable for MASs.

59

2. State of the art

Giese et al. [180] address this issue by separating the MAS design into a macro architecture
and a micro architecture part. The macro architecture defines the overall system structure
and behavior. The system structure is thereby defined using class diagrams, instance
diagrams, and social diagrams. The behavioral description is based on the definition
of possible behavioral patterns using an extended real-time variant of state machines.
Behavioral patterns include information about timing, in particular upper limits for how
long each component can reside in a specific state before a timeout is triggered and
appropriate actions are performed. The micro architecture refines the internal behavior
of agents. Thereby, all applied refinements have to conform to the time-limits prescribed
by the macro architecture. A similar approach to guaranteeing real-time capabilities of
MASs is presented by Hayes-Roth in [181].

Additionally to the real-time aspects of safety-critical applications, few scientific publica-
tions address safety explicitly during the MAS analysis and design phases. For example
in [182], Jamont and Occello extend their DIAMOND [102] methodology by an additional
activity that guides the developer in identifying safety-related (and other) non-functional
requirements. Agent design accounts for these requirements by defining corresponding
states and actions to be taken if one of these requirements is violated. Jamont and
Occello stress out that, although in a MAS the individual agents typically do not have
access to all information, for safety-critical incidents, it is essential that all agents “react
collectively”. This behavior is achieved by introducing a state of alertness that is shared
among all agents.

Security and privacy in MASs

Security and privacy are very much related and build upon the same technical means.
Surveys about existing work on security in MASs can be found in [183, 184, 185, 186].
In general, MASs suffer from the same security issues as any other computing system,
including distributed systems, but also impose several new security issues. This is
particularly the case if agents act on behalf of some owner, are executed on a potentially
compromised AP, are mobile (i.e., they can migrate between multiple APs), or if the
number and types of agents of the MAS are unknown at design time. All of these scenarios
raise trust issues. Several possible solutions to these and additional considerations are
discussed in [187, 183, 184, 186].

To ensure that an agent is indeed representing its owner and the owner is accountable
for the agent’s actions, the agent should possess some secret of its owner (typically a
Personal Identification Number (PIN) or private key). Furthermore, the owner’s identity
has to be known to all participants of the MAS interacting with the specific agent [187].

If agents, including mobile agents, are executed on an AP, sandboxing techniques may
be applied to ensure that agents do not misuse the AP’s resources. Thereby, agents may
only use a predefined API to interact with the AP, thus limiting its potential for misuse
but also its functionality [188]. This approach was implemented for JADE in [189].

60

2.5. Related scientific work

In dynamic systems, where new agents and even new agent types connect and disconnect
during runtime, agents may keep track of previous interactions and the degree of trust
they place in each of their interaction partners to decide if they continue cooperat-
ing [190]. Prerequisites for establishing trust among multiple agents are authentication,
authorization, and access control. These topics have been studied extensively [191, 192,
193] and can typically be handled adequately by applying existing solutions. Likewise,
communication security in MASs is essentially achieved by applying existing solutions,
as done in [194].

Paruchuri et al. [195] address another aspect of MAS security, namely that adversaries
often try to analyze the behavior and communication of a system they are going to
attack. Thus, they suggest policy randomization, i.e., the individual agents should not
show deterministic behavior but rather randomize their actions.

Few scientific publications exist on integrating security into the MAS design process from
the very beginning rather than adding it to an existing MAS. Examples are [196, 195].
They both extend existing MAS design methodologies: the Tropos [197] MAS design
methodology and the FAME Agent-oriented Modeling Language (FAML)2, respectively.

Maintainability in MASs

Maintainability is hardly addressed explicitly in the scientific literature about MASs.
However, some aspects of MASs discussed so far also contribute to their maintainability.
Based on the definition of agents as self-contained entities, their functionality and
interfaces are precisely defined. Therefore, it is fairly easy to replace or update individual
agents. If supported, which is the case for both APs presented in Section 2.3.5, agent
mobility can be used for remote updates.

Furthermore, applying MAS design methodologies (cf. Section 2.3) produces, as a side-
effect, a precise documentation of the MAS, including the agent types, their instantiations,
and locations. This documentation as well as additional services provided by the AP
(e.g., the agent directory service) can serve as a valuable source of information when it
comes to repairing or modifying agents.

Scalability in MASs

Scalability in the context of MASs is typically addressed regarding the number of agents
in a MAS rather than regarding the complexity of individual agents. Thereby, scalability
means that adding agents to the MAS should have no noticeable effect on the performance
or administrative complexity. In [198], Wijngaards, Van Steen, and Brazier provide an
overview of MAS scalability. They identify three basic techniques to improve scalability,
which can also be applied to MASs: (1) Communication latencies should be hidden, which

2Framework for Agent-oriented Method Engineering (FAME) is the acronym of the project under
which FAML has been developed.

61

2. State of the art

is generally known as asynchronous communication scheme, i.e., agents should be able to
continue their operation while they are waiting for a response to a previous request. (2)
Processing complexity and large data sets should be distributed across multiple servers
or, in the context of MASs, across multiple agents. (3) Likewise, data sets, services, and
possibly agents as a whole, which are heavily used, should be replicated. Furthermore, the
basic MAS services like the naming and the directory service should be scalable, which
can easily be achieved by applying existing technologies that already take scalability into
account, like the Domain Name System (DNS), and LDAP.

Turner and Jennings [199] use an exemplary trading scenario, in which customer agents
buy products that are sold by supplier agents. They use this scenario to address scalability
by analyzing three different organizational forms and agent interactions. Two of them can
be classified as distributed approaches and the third as two-level hierarchical approach, in
which an intermediary agent keeps everyone updated about current product availability
and prices. Turner and Jennings conclude that hierarchical approaches reduce the overall
number of machine instructions because the intermediate agent can perform a task,
which otherwise would have to be performed by all customer agents or all supplier agents
individually. However, the latency of information sharing increases compared to the
distributed approaches.

In [200], Rana and Stout examine metrics for measuring scalability in MASs. They
propose a “Complexity Metric” to be able to reason about the performance of MASs with
varying sizes, coordination mechanisms, and APs. The complexity metric is constructed
from several performance values. These performance values may be rated based on
domain-dependent constraints and summed up. The performance values represent
processing times required for starting an agent, activating and deactivating an agent,
message reception from/delivery to an agent on a specific AP, and similar parameters.

Summary

Table 2.6 summarized the scientific publications categorized by the dependability at-
tributes they address. It shows that, even though dependability is not covered as a whole
by any referenced paper, various ideas and techniques exist to address each attribute
individually.

The cited literature covers many different solutions for increasing dependability in MASs.
However, depending on the particular system requirements, not all of these solutions are
actually relevant for each MAS. Thus, a SELC addressing dependability in MASs needs
to identify requirements early in the process. Furthermore, it needs to be flexible enough
to incorporate the necessary measures to achieve these requirements.

62

2.5. Related scientific work

Table 2.6: Dependability attributes and relevant literature in the context of MASs

Dependability
attribute

Relevant literature

Reliability Survey: [162]
Model-checking: [169], [170], [163], [166], [168], [167]
Self-checking: [171], [172], [174], [176], [175], [16]
Architectural-based: [177], [178]

Safety Separation of criticality: [180], [181], [179]
Methodology-based: [182]

Security & Privacy Survey: [183], [185], [186], [184]
Trust: [183], [184], [187]
Sandboxing: [188], [189]
Accountability: [194], [191], [190], [192], [193]
Randomization of behavior: [195]
Methodology-based: [196], [195]

Maintainability MAS platforms: [140], [116], [134], [142], [124], [136], [135], [137],
[139]
Documentation: [109], [106], [103]

Scalability Survey: [198]
MAS structure: [199]
Expressing scalability: [200]

63

CHAPTER 3
Systems engineering life cycle

definition

The information gathered during the previous chapter, in particular the presented SG,
MAS, and ontology design methodologies, shall now be incorporated into a comprehensive
SELC. For this purpose, a suitable SELC is selected from existing scientific literature
and adapted to emphasize the importance of earlier phases. Next, activities that need
to be conducted in each phase are identified, and a corresponding process specifically
for MASs incorporating dependability is defined. Finally, it is discussed to which extent
existing methodologies can support the individual activities, how they are interlinked,
and where gaps may exist in the process.

3.1 SELC phases
In most scientific literature, the terms system(s) engineering and system(s) development
are used interchangeably. They describe a “robust approach to the design, creation, and
operation of systems” [201]. This definition already indicates that systems engineering
accompanies the system that shall be developed across all the system’s life cycle phases.
Models that describe these phases are termed SELCs and Systems Development Life
Cycles (SDLCs), respectively. SELCs are iterative processes, which enable improving
the system by reverting to earlier phases of the SELC after the system has already been
developed and deployed. This iterative nature is reflected by the life cycle aspect of
SELCs and is the case for all SELCs. However, it is not always explicitly stated in favor
of simpler models.

Moreover, in many cases the SELC may be processed incrementally, i.e., a base version
of the system with reduced functionality may be created to gain experience and then
improved upon following an incremental approach. For these reasons, systems engineering

65

3. Systems engineering life cycle definition

is not a linear process, and the phases of SELCs do not need to be conducted in strict
order. Traversing back and forth along the phases of the SELC in an agile manner is
expected.

The phases and activities that need to be conducted vary greatly among different SELCs
depending on the type of system, the requirements, the domain, and other factors. An
extensive overview and comparison of various SELCs is provided in [202]. Andrén [24]
identified the SELC depicted in Figure 1.7 as a suitable model for the SG domain. It is
also used as a starting point for the SELC specified in this thesis. However, the planning
and the analysis phase were added to emphasize the work required in preparation for
the design phase. Furthermore, deployment and operation are not fully covered here, as
the system resulting from this thesis is only evaluated using simulation but not deployed
or operated in the field. The final SELC is depicted in Figure 3.1. It consists of five
main phases: planning, analysis, design, implementation, and evaluation. Deployment &
operation is added as an additional sixth phase, but, as mentioned, not covered in detail.
The phases and the related activities within each phase are discussed in more detail in
the next section.

Planning Analysis Design Implemen-
tation Evaluation Deployment &

Operation

Figure 3.1: Extended SELC, adapted from Figure 1.7

3.2 Definition of SELC activities
Figure 3.2 illustrates the activities that need to be conducted in each of the five main
SELC phases. As for the SELC itself, there is no need to follow the process in strict
order, but an iterative and incremental approach may be applied. The definition of these
activities is driven by the research objectives defined in Section 1.5, existing SELCs, and
state of the art methodologies. In the following discussion, the activities of the various
SELC phases are emphasized.

During the planning phase of the SELC, a detailed use case description is formulated
to define the system’s expected functionality. The use case description also includes a
description of the components and actors involved and describes the information that
needs to be exchanged. The scope of the problem and the objectives that should be
achieved by the system are defined. KPIs are identified, which can be used in the
evaluation phase to verify that the objectives have been met. Additionally, identifying
and specifying the system requirements during the requirements description activity
is of particular importance as the subsequent phases of the SELC heavily rely on the
appropriateness of this information. The planning phase should focus on a detailed
description of the problem, rather than on possible solutions (technical or otherwise).
These are developed in later phases of the process.

66

3.2. Definition of SELC activities

Planning

Analysis

Design

Implementation

Evaluation

Use Case Description Requirements Description

Functional Analysis Non-functional Analysis

System Architecture
Definition

MAS Design

Ontology Design

Agent
Implementation

Ontology
Instantiation

Non-functional EvaluationFunctional Evaluation

Figure 3.2: SELC phases and activities

During the analysis phase, preliminary work to support the subsequent design phase is
conducted. Requirements are analyzed in more detail than in the previous phase to gain
additional insights into the overall system. The functional analysis investigates possible
solutions (mostly algorithms) that fulfill the functional requirements. The non-functional
analysis defines the importance of each non-functional requirement (e.g., availability,
reliability, and maintainability) for the use case. Furthermore, it identifies means allowing
to define and reason about non-functional attributes.

During the system architecture definition activity, the type of MAS (centralized, decen-
tralized, or distributed), the required agent types, the main services, and their internal
structure, i.e., their basic software and hardware components, are specified. Furthermore,
the general idea of how agents interact to solve the given problem is discussed. Based on
this knowledge, the MAS and the corresponding ontology are designed. As the support

67

3. Systems engineering life cycle definition

for ontologies is an important aspect but typically out of scope in the MAS design
methodology [118], a hybrid design approach consisting of the MAS design activity and
the ontology design activity is followed.

The agents are then implemented following a classical software design process during the
agent implementation phase. An existing MAS framework, or parts of such a framework,
may be used to reduce the implementation effort. Furthermore, each agent is equipped
with its configuration and an initial knowledge base during the ontology instantiation
activity.

Finally, a functional evaluation and a non-functional evaluation are conduced using
simulation. The functional evaluation ensures that each agent operates as specified
during the design process and that the overall MAS fulfills its intended task. During
the non-functional evaluation activity, the effect of agents considering non-functional
requirements in their decision-making process on the system’s overall performance is
evaluated.

3.3 Methodologies supporting the SELC activities
As specified by research objective 1, whenever possible existing methodologies shall be
applied to support the individual phases and activities of the SELC. Therefore, Table 3.1
provides an overview of the methodologies presented in Chapter 2 and the SELC phases
they can be assigned to. As already noted, the exact meaning of the various phases varies
across different SELC definitions. The association shown in Table 3.1 refers to the SELC
and the activities as defined in the previous section. Furthermore, the methodologies
listed do not cover all relevant aspects of each SELC phase and have to be substituted
with additional tools and methodologies. These gaps are also briefly addressed in the
following and covered more extensively in the remaining chapters.

Table 3.1: Methodologies and the SELC phases they support

Methodology Planning Analysis Design Impl. Eval.
IEC 62559 +
NISTIR 7628 +
Gaia +
MaSE + +
PASSI + + +
Ontology 101 + +
UPON + + +

Particularly for SG applications, the IEC 62559 standard provides a comprehensive
methodology for the planning phase through use case descriptions and a requirements
description. As mentioned, the functional analysis requires a detailed discussion of

68

3.3. Methodologies supporting the SELC activities

possible algorithmic solutions to the specific problem that shall be solved. The non-
functional analysis is partly covered by the NISTIR 7628 standard, which provides
a detailed security analysis methodology. However, additional discussion is required
for the remaining non-functional dependability requirements. Furthermore, possible
metrics for dependability attributes are identified to support ontology design. Functional
aspects of the design, implementation and partly the evaluation phase are well-covered by
several MAS design methodologies, e.g., PASSI, which has been identified as a suitable
MAS design methodology in Section 2.3.4. However, non-functional aspects are mostly
neglected in MAS design. Furthermore, existing ontology design methodologies are
only partly suitable to be applied in MASs. For these reasons, the non-functional
aspects of the design and implementation phases require a dedicated ontology design
methodology that allows creating ontologies that can easily be reused across multiple
agents and applications. This methodology is introduced and applied during the design
phase. The resulting ontology is instantiated during the implementation phase. Finally,
the functional and non-functional evaluation are conducted using SG simulation. The
following Chapters 4 to 8 cover the individual activities of the SELC, including a more
detailed discussion of appropriate methodologies and tools.

69

CHAPTER 4
Planning

The activities that need to be conducted during the planning phase of the SELC are
depicted in Figure 4.1. The figure also includes appropriate tools/methodologies sup-
porting each activity. Throughout the rest of this thesis, the switching optimization use
case serves as a motivating example of a SG application. It is introduced during the use
case description activity based on template sections 1-5 and 7 of the IEC 62559 use case
methodology. The requirements are identified during the requirements description phase,
which is covered by IEC 62559 template section 6.

Planning
Use Case Description Requirements Description

cf. Chapter 5:
Analysis

IEC 62559:
Template Section 1-5, 7

IEC 62559:
Template Section 6

Figure 4.1: Planning phase: activities and tools

4.1 Use case description
As discussed in Section 2.2.1, the IEC 62559-2 [90] standard provides numerous templates
to be filled in when following the methodology. Furthermore, the standard also provides
an example to illustrate how to use these templates. Additional examples can be found
in [24, 92]. In the following, the switching optimization use case is presented based on
these templates. The structure follows the IEC 62559 template sections, each containing
one or multiple template subsections/tables.

71

4. Planning

4.1.1 Description of the use case
This template section of the IEC 62559 use case methodology provides information relevant
for project management and general information about the use case (cf. Section 2.2.1).
Results are provided in Tables 4.1 to 4.8.

Table 4.1: Use case identification
Use case identification

ID Area/Domain/Zone(s) Name of
use case

UC1 • Areas (Layers): Component, Communication, Information, Function
• Domains: Distribution
• Zones: Process, Field, Station, Operation

LV switch-
ing opti-
mization

Table 4.2: Version management

Version management
Version
No.

Date Name of
author(s)

Changes Approval
status

0.1 January 11, 2019 TF Initial version Draft

Table 4.3: Scope and objectives of use case

Scope and objectives of use case
Scope Power losses in transmission and distribution networks account for about

6 % of electric energy consumption in Europe in 2010 [203]. Thereby, the
main sources of power losses are transformers and cables [204]. Distribution
networks often contain switches, e.g., to change the power grid topology in
case of faults. The states of these switches (open or closed) determine the
grid topology and, therefore, influence the losses caused by the distribution
network. Thus, determining which switches should be closed and which
should be opened constitutes an optimization problem. This switching opti-
mization problem is typically solved offline during the distribution network
planning phase. However, people following their daily routine and other
effects cause loads to shift from one area of the distribution network to
another. Adjusting the switch states more dynamically can reduce power
losses, which is the focus of this use case.

Objective(s) • Reduce losses: Losses caused by the distribution network to supply a given
test area shall be reduced

• Incorporate dependability: Dependability requirements shall be considered
in the decision-making process

Related busi-
ness case(s)

• Overload prevention of line segments and transformers
• Improved fault detection and response
• Distributed fault record provisioning
• Service restoration acceleration in case of faults

72

4.1. Use case description

Table 4.4: Narrative of use case
Narrative of use case

Short description
Adding ICT to components deployed in the distribution network allows dynamically adjusting
the grid topology by opening and closing switches during runtime. Therefore, such systems can
react to short-term changes in power consumption and continuously adjust the grid topology
so that the losses caused by the distribution network are minimal. Such systems have to fulfill
several functional (e.g., connectedness) and non-functional (e.g., availability) requirements.
Complete description
Distribution networks generally follow a forest structure. Each load within the distribution
network is thereby supplied by one transformer only, as effects of faults (e.g., tripped fuses
in case of a short circuit) shall be kept local. Each transformer may supply numerous loads.
Thus, in this analogy, transformers correspond to the forest’s roots, loads correspond to leaves,
and busbars correspond to inner nodes. Particularly in urban areas, a certain degree of
redundancy is integrated into the distribution network by adding connections between the
forest’s individual trees. To maintain the locality of faults, normally open switches are added
to the connections between the individual trees. Open switches are closed only in abnormal
situations. Thus, strictly speaking, the graph-theoretical structure of distribution networks
is often not a forest anymore, but a mesh network switched and operated as a forest, as
exemplified in the figure below. Both graphs represent the same distribution network, whereby
the individual elements in the right graph have been rearranged so that the forest structure
becomes visible. Bus bars and loads are thereby placed underneath the transformer supplying
them. In this configuration, Transformer 1 supplies Busbars 1-4 (and their connected loads),
Transformer 2 supplies Busbars 5-7, and Transformer 3 supplies Busbars 8-10.

Bu
sb

ar
 1 Transformer 1

Trans-
former 2

Transformer 3

MV Grid

Bu
sb

ar
 2

Bu
sb

ar
 3

Busbar 4

Bu
sb

ar
 5

Busbar 6

Busbar 7

Busbar 8

Busbar 9

Busbar 10

Cl
os

ed
 S

w
itc

h

Open
Switch

Closed
Switch

Cl
os

ed

Sw
itc

h

Load

Busbar 1

Transformer 1 Transformer 2 Transformer 3

MV Grid

Busbar 2

Busbar 3

Busbar 4

Busbar 5

Busbar 6

Busbar 7

Busbar 8

Busbar 9

Busbar 10

Cl
os

ed

Sw
itc

h

Open
Switch

Load

Cl
os

ed

Sw
itc

h

Cl
os

ed

Sw
itc

h

The distribution network structure illustrated above constitutes a valid configuration: no
transformers and no lines are operated above their rated levels, all loads are connected to a
transformer, and there are no closed cross-connections between trees, i.e., the forest structure
is preserved. Requirements defining valid configurations are called functional requirements.

73

4. Planning

Depending on the power consumption of the various loads, the distribution network topology
illustrated above might be non-optimal regarding losses caused by transformers and lines.
Under most circumstances, transformer losses are minimal if the loads are evenly distributed
among the available transformers. Assuming identical line properties, line losses are minimal if
short lines are favored over long lines. Furthermore, dependability considerations such as the
reliability of components are called non-functional requirements and shall be considered in the
decision-making process.

Table 4.5: KPIs
Key performance indicators (KPI)

ID Name Description Reference
to
mentioned
use case
objectives

KPI-01 Relative
loss
reduction

Loss reduction achieved by the system for a specific dis-
tribution network and load profile; measured in abso-
lute values or in percentage of total energy losses of the
same setup when the loss optimization system is dis-
abled; may be improved by considering non-functional
requirements

Reduce
losses

Table 4.6: Use case conditions
Use case conditions

Assumption
The transmission network is continuously monitored and controlled. Therefore, effects on the
transmission network do not have to be considered.
Prerequisite
Initially (before enabling the switching optimization system), the distribution network is in a
state such that no equipment ratings (e.g., current levels) are violated, all loads are connected,
and the network topology is a forest.
Transformers and switches are controlled by IEDs.
The distribution network topology is known and can be provided to the IEDs.
IEDs have a decent amount of memory, processing capabilities, and at least one communication
interface.
Voltage and current can be measured by all IEDs.

74

4.1. Use case description

Table 4.7: Further information to the use case for classification/mapping

Further information to the use case for classification/mapping
Relation to other use cases
N/A
Level of depth
Detailed
Prioritisation
Medium
Generic, regional, or national relation
Generic
Nature of the use case
System use case
Further keywords for classification
Switching optimization, overload prevention, automated reconfiguration, load shift

Table 4.8: General remarks
General remarks

The use case focuses on its realization from an ICT point of view. It shall serve as a motivating
example to analyze the suitability of distributed MASs in SG applications. Therefore, challenges
arising from an electrical engineering perspective are not addressed in detail.

4.1.2 Diagrams of use case
This template section of the IEC 62559 use case methodology provides diagrams about
the use case, particularly in the form of a use case diagram (cf. Section 2.2.1). Results
are provided in Table 4.9. The main actors in the use case diagram are the switch control
and the transformer control. They are both executed on IEDs and operate autonomously
to implement switching optimization and perform the required actions and calculations.
Furthermore, an operator has been added to the use case diagram to indicate how the
use case could also support manual intervention, e.g., manually changing a switch state
in case of a fault. However, this second scenario is not the main focus of this work and is
eventually not further pursued.

75

4. Planning

Table 4.9: Diagrams of use case

Diagrams of use case

Switch
Control

Determine
Current Losses

Switching Optimization

Operator

Transformer
Control

Estimate Losses
for Alternative

Topologies

<<include>> <<include>>

<<include>>

Respect
Functional Req.

Balance Non-
functional Req.

Manually Change
Switch State

<<include>>
<<include>>

Establish New Topology

<<extend>>

a „better“(in terms of non-
functional requirements)
topology , which fulfills all
functional requirements,

has been found

Choose New Topology

<<include>>

Calc. Trans-
former Losses Calc. Line Losses

<<include>>

<<include>>

<<include>>

<<include>>

Monitor Grid State

<<include>>

Determine Current
Non-functional

Attrib.

Estimate Non-
functional Attrib.

for Alt. Topologies

Det. Trans-
former Non-

functional Attrib.

Det. Switch Non-
functional Attrib.

<<include>>

<<include>>

<<include>>

<<include>>

<<include>> <<include>>

4.1.3 Technical details
This template section of the IEC 62559 use case methodology focuses on the techni-
cal aspects of the use case. It describes the involved actors and relevant technical
documentation (cf. Section 2.2.1). Results are provided in Table 4.10 and in Table 4.11.

76

4.1. Use case description

Table 4.10: Actors
Actors

Grouping Group description
Computational actors IEDs, being computational devices, possess a certain amount of

intelligence and can participate in the use case or trigger the use
case.

Actor
name

Actor
type

Actor description Further information spe-
cific to this use case

Switch con-
trol

Device A switch control is an IED that
controls an electrical switch.

Transformer
control

Device A transformer control is an IED
that controls a transformer.

Grouping Group description
Human actors The use case is typically executed by computational actors only.

However, in case of abnormal situations, human actors can over-
rule the automated system.

Actor
name

Actor
type

Actor description Further information spe-
cific to this use case

Operator Human Personnel (typically employed by
the DNO company) responsible
for distribution network opera-
tion.

The operator can open/close
any switch at any time by
requesting this functionality
from the corresponding switch
control.

Table 4.11: References
References

No. Refer-
ences
type

Reference Status Impact
on the
use
case

Origi-
nator/
organi-
zation

Link

[203] Report Power Statistics &
Trends 2012

Pub-
lished

Scope,
Motiva-
tion

Eurelec-
tric

https://www3.
eurelectric.org/
powerstats/2012/
key-documents/

[204] Scien-
tific
paper

Towards decentral-
ization: A topolog-
ical investigation of
the medium and low
voltage grids

Pub-
lished

Scope,
Motiva-
tion

Pagani,
Andrea
Giuliano,
Marco
Aiello

https://
ieeexplore.ieee.
org/document/
5783965

[3] Stan-
dard

IEC standard volt-
ages (IEC 60038)

Pub-
lished

Terms
& Defi-
nitions

IEC TC 8 https://
webstore.iec.ch/
publication/153

77

https://www3.eurelectric.org/powerstats/2012/key-documents/
https://www3.eurelectric.org/powerstats/2012/key-documents/
https://www3.eurelectric.org/powerstats/2012/key-documents/
https://www3.eurelectric.org/powerstats/2012/key-documents/
https://ieeexplore.ieee.org/document/5783965
https://ieeexplore.ieee.org/document/5783965
https://ieeexplore.ieee.org/document/5783965
https://ieeexplore.ieee.org/document/5783965
https://webstore.iec.ch/publication/153
https://webstore.iec.ch/publication/153
https://webstore.iec.ch/publication/153

4. Planning

4.1.4 Step by step analysis of use case
This template section of the IEC 62559 use case methodology discusses different scenarios
of the use case (cf. Section 2.2.1). Results are provided in Table 4.12 and Table 4.13.

Table 4.12: Overview of scenarios
Overview of scenarios

No. Scenario
name

Scenario
description

Primary
actor

Trig-
gering
event(s)

Pre-
condi-
tion(s)1

Post-
condi-
tion(s)1

1 Automated
switching
optimiza-
tion

The grid topology
shall be changed to
be more efficient.

Switch
control

Change/
Shift in
power con-
sumption

FR-01 –
FR-03

FR-01 –
FR-03

2 Manual
switch
control

The operator wants
to set the state of a
switch manually.
Post-conditions may
be overruled, e.g.,
isolating a fault may
require violating
FR-02.

Operator Scheduled
mainte-
nance,
fault

FR-01 –
FR-03

FR-01 –
FR-03

The focus of the motivating example for this thesis lies on the automated switching
optimization. Therefore, only Scenario 1 is fully covered from hereon. Scenario 2 could
easily be analyzed using the same process but would not provide much additional insights.
Throughout the rest of this thesis, Scenario 2 it is only addressed scarcely, e.g., during
the security analysis.

The IEC 62559 standard provides numerous predefined services to describe the individual
steps of scenario tables (cf. Table 2.1). These services cover the steps that involve
communication between two actors very well. However, the standard does not suggest
any service that allows to express internal operations of individual actors like complex cal-
culations or optimizations. For this reason, a new service called PROCESS is introduced.
It is described as “used to indicate that the step is performed within a single actor (no
communication with other actors is required); the actor performing the process/activity
shall be stated in the Information producer and the Information receiver fields”. It is
used in Steps 1 and 4 of the scenario described in Table 4.13.

1Functional Requirements (FR) and Non-Functional Requirements (NFR) are defined in Table 4.17

78

4.1. Use case description

Table 4.13: Steps for Scenario 1 – Automated switching optimization

Scenario
Scenario
name

No. 1 — Automated switching optimization

Step
No.

Event Name
of pro-
cess/
activity

Description
of pro-
cess/activity

Service Inf.
pro-
ducer
(ac-
tor)

Inf.
re-
ceiver
(ac-
tor)

Infor-
mation
ex-
changed
(IDs)1

Require-
ments,
R-IDs2

1 - Monitor
grid
state

Power
consumption is
permanently
monitored

PRO-
CESS

Switch
control

Switch
control

N/A FR-01,
NFR-01,
NFR-08

2 Load
shift

Deter-
mine
losses

Power
consumption
has shifted
between grid
parts; Losses
are determined

GET,
EXE-
CUTE

Switch
control,
Trans-
former
control

Switch
control

InfEx-01,
InfEx-02

NFR-03 –
NFR-05,
NFR-07,
NFR-08

3 Losses
deter-
mined

Estimate
losses
for alter-
native
topolo-
gies

Transformer
losses and line
losses caused
by other valid
configurations
are estimated

GET,
EXE-
CUTE

Switch
control,
Trans-
former
control

Switch
control

InfEx-03,
InfEx-04

FR-01,
NFR-03 –
NFR-05,
NFR-07,
NFR-08

4 Esti-
mated
losses
deter-
mined

Choose
new
topol-
ogy

Possible new
topologies are
evaluated w.r.t.
functional and
non-functional
requirements

PRO-
CESS

Switch
control

Switch
control

N/A FR-01 –
FR-03,
NFR-01 –
NFR-08

5 Im-
proved
topol-
ogy
possi-
ble

Establish
new
topol-
ogy

A new
topology is
established

EXE-
CUTE,
CHAN-
GE

Switch
control

Switch
control

InfEx-05 FR-01 –
FR-03,
NFR-01 –
NFR-08

4.1.5 Information exchanged
This template section of the IEC 62559 use case methodology specifies the information
exchanged by actors during each step of the various scenarios (cf. Section 2.2.1). Results
are provided in Table 4.14.

1Information Exchanged (InfEx) items are defined in Table 4.14
2Functional Requirements (FR) and Non-Functional Requirements (NFR) are defined in Table 4.17

79

4. Planning

Table 4.14: Information exchanged

Information exchanged
Information
exchanged
ID

Name of
information

Description of information ex-
changed

Require-
ments,
R-IDs1

InfEx-01 Transformer
losses

Losses caused by a transformer for supply-
ing a specific area in the current topology

NFR-01,
NFR-03 –
NFR-05,
NFR-08

InfEx-02 Line losses Losses caused by all lines for supplying a
specific area in the current topology

NFR-01,
NFR-03 –
NFR-05,
NFR-08

InfEx-03 Estimated
transformer
losses

Losses estimated to be caused by a trans-
former for supplying a specific area in a new
topology

NFR-03 –
NFR-05,
NFR-08

InfEx-04 Estimated line
losses

Losses estimated to be caused by all lines for
supplying a specific area in a new topology

NFR-03 –
NFR-05,
NFR-08

InfEx-05 Requested
switch state

New switch state (open / closed) requested
to be set by a switch control

FR-01 –
FR-03
NFR-03 –
NFR-05,
NFR-08

4.1.6 Common terms and definitions

This template section of the IEC 62559 use case methodology is intended to serve as a
glossary (cf. Section 2.2.1). Results are provided in Table 4.15.

Table 4.15: Common terms and definitions
Common terms and definitions

Term Definition
Switch control A switch control is an IED. Its purpose is to control an electric

switch in a low-voltage distribution network.
Transformer control A transformer control is an IED. Its purpose is to control a trans-

former in a low-voltage distribution network.
Busbar A busbar is a metal bar (typically copper, brass, or aluminum) used

to connect multiple distribution lines.
Transmission network The transmission network is typically operated at HV/MV.
Distribution network The distribution network is typically operated at LV.

1Functional Requirements (FR) and Non-Functional Requirements (NFR) are defined in Table 4.17

80

4.2. Requirements description

4.1.7 Custom information
This template section of the IEC 62559 use case methodology provides the possibility to
add additional information about the use case that does not fit into one of the previous
template sections (cf. Section 2.2.1). Results are provided in Table 4.16.

Table 4.16: Custom information
Custom information

Key Value Refers to section
HV High Voltage

≥ 35 kV (IEC 60038)
3.4 Narrative of use case (Table 4.4),
3.7 Common terms and definitions (Table 4.15)

MV Medium Voltage
≤ 35 kV, ≥ 1 kV (IEC 60038)

3.4 Narrative of use case (Table 4.4),
3.7 Common terms and definitions (Table 4.15)

LV Low Voltage
≤ 1 kV (IEC 60038)

3.4 Narrative of use case (Table 4.4),
3.7 Common terms and definitions (Table 4.15)

4.2 Requirements description
Requirements description is either covered in a separate document or by template section 6
of the IEC 62559 use case methodology and the corresponding table (cf. Section 2.2.1). For
the simple switching optimization use case, the template section suffices. Therefore, the
results of the requirements description are provided in Table 4.17. Functional requirements
have to be met by each valid solution of the switching optimization algorithm, while
non-functional requirements are considered in the decision-making process when selecting
the best solution. The identified requirements determine possible solutions and serve as
a starting point for the subsequent analysis phase.

81

4. Planning

Table 4.17: Requirements

Requirements
Category
ID

Category
name

Category description

F-RQ Functional
require-
ments

Switching optimization shall reduce losses while not having any
adverse effects on consumers and SG components. These are
strict functional requirements and have to be fulfilled by any
switching optimization algorithm/system.

Req. ID Req. name Requirement description
FR-01 Respect rat-

ings
Line and transformer ratings must not be violated at any time.

FR-02 Connect-
edness

All consumers have to be connected to at least one transformer
at any time.

FR-03 Forest struc-
ture

The network topology before and after any reconfiguration process
has to be a forest with exactly one transformer at each tree’s root.
During reconfiguration, two trees are temporarily connected.

Requirements
Category
ID

Category
name

Category description

NF-RQ Non-
functional
require-
ments

Solutions to the switching optimization problem have to be within
the boundaries set by the functional requirements. Multiple
solutions may exist within these boundaries, and the best solution
shall be chosen based on the non-functional requirements.

Req. ID Req. name Requirement description
NFR-01 Reliability The system has to conform to its specification. Deviations thereof

shall be determined, and appropriate actions shall be taken.
NFR-02 Safety The system may not endanger people or damage equipment.
NFR-03 Confiden-

tiality
Measures to ensure unauthorized disclosure of information shall
be taken.

NFR-04 Integrity Measures to ensure unauthorized altering of information of infor-
mation shall be taken.

NFR-05 Availability Measures to ensure that the system stays operational shall be
taken.

NFR-06 Maintain-
ability

Even though the system may contain many self-contained devices
distributed in the field, maintainability shall be ensured. Relevant
aspects are keeping track of devices’ location and configuration
and enabling remote software updates.

NFR-07 Scalability The system shall be scalable regarding the size of the distribution
network, i.e., the number of transformers, switches, lines, busbars,
and consumers.

NFR-08 Privacy No data that allows deducing any information about the behavior
of individual customers shall be collected or stored.

82

CHAPTER 5
Analysis

As illustrated in Figure 5.1, the system analysis is performed according to the two
requirement categories identified in the previous phase: functional and non-functional
requirements. Thereby, functional requirements are covered by a more detailed analysis
of the technical aspects of the switching optimization problem and a discussion of
possible algorithms, including optimal solutions and greedy heuristics. Non-functional
requirements are covered by the subsequent dependability requirements analysis with
a particular focus on security requirements analysis according to the NISTIR 7628 –
Guidelines for Smart Grid Cybersecurity [76] (cf. Section 2.2.3). Finally, possible system
architectures are discussed, and a distributed MAS is selected as a suitable approach.

Analysis
Functional Analysis Non-functional Analysis

Tools: Application-
specific Research

Tools: Dependability
Analysis, NIST IR 7628
Security Analysis

cf. Chapter 4:
Planning

cf. Chapter 6:
Design

Figure 5.1: Analysis phase: activities and tools

5.1 Switching optimization algorithms
The main sources of power losses within the distribution network are transformer and
line losses [204]. Losses caused by busbars are negligibly small and, therefore, typically
not considered by switching optimization algorithms. The power losses of transformers

83

5. Analysis

and lines are second-order functions of the current [205] and, thus, the switching opti-
mization problem constitutes a non-linear optimization problem. Furthermore, individual
characteristics like ratings and electrical impedance have to be considered. Mathematical
modeling and analysis show that switching optimization, in general, is a Non-deterministic
Polynomial-time (NP)-hard [206, 207, 208] problem.

5.1.1 Centralized, graph-theory-based approaches

As already argued and exemplified in Figure 1.2, power distribution networks are typically
represented as graphs. In [204], Pagani and Aiello define power grid graphs as nodes
(substations, transformers, and consuming units) that are connected via edges (physical
cables). Adding the possibility to represent cable properties, particularly the cables’
resistance, resulted in weighted power grid graphs. The definitions formulated by Pagani
and Aiello are given in Definition 5.1.1 and Definition 5.1.2. A more comprehensive
analysis of how power grids can be represented using graphs and various definitions
related to this topic are provided by Pagani and Aiello in [209].

Definition 5.1.1. Power Grid Graph: A power grid graph is a graph G(V, E) in which
each element vi ∈ V is either a substation, transformer, or consuming unit of a physical
power grid. If there is an edge ei,j ∈ E between two nodes, there is a physical cable
connecting directly the elements represented by vi and vj . [204]

Definition 5.1.2. Weighted Power Grid Graph: A weighted power grid graph is a
power grid graph Gw(V, E) with an additional function f : E → R associating a real
number with an edge representing the resistance, expressed in Ohm, of the physical cable
represented by the edge. [204]

The resulting graphs are models of the power distribution network and, as such, can only
provide a simplified abstraction of the real world. In particular, as the weights assigned
to each edge are limited to the set of real numbers R, it is only possible to represent
the real part of the impedance Z, i.e., the resistance R, but not its imaginary part, i.e.,
the reactance X. Nevertheless, weighted power grid graphs provide a sufficiently detailed
model to start addressing problems like switching optimization in LV power grids.

A popular approach to solving graph-based problems is mapping them to already existing
graph algorithms. The number of available graph algorithms and their variations to
choose from is enormous, and a profound analysis cannot be performed in this thesis.
Nevertheless, a first analysis regarding the nature of the switching optimization problem
and the requirements imposed resulted in the class of transshipment problems to be
identified as a closely related problem. In addition to the problem definition of the
classical transshipment problem, however, the switching optimization problem adds at
least two more requirements:

84

5.1. Switching optimization algorithms

• Capacities: Ratings of transformers and lines limit the amount of current that can
be transported, i.e., the flow on each edge is capacitated.

• Non-linear cost functions: Line and transformer losses are quadratic functions of
the current, i.e., the cost function is non-linear.

The corresponding variant of the switching optimization problem could therefore be
named capacitated quadratic transshipment problem. Capacitated quadratic transporta-
tion problems1 [210, 211] and capacitated (but linear) transshipment problems [212] have
already been solved by Khurana and Verma. However, the capacitated quadratic trans-
shipment problem still needs to be addressed. A comprehensive survey about variants of
the transshipment problem is provided in [213].

A more straightforward (and less formal) approach to solving the switching optimization
problem is applying a simple greedy algorithm. Thereby, the algorithm starts with a
graph having all switches opened and closes one switch after the other until all consumers
are supplied while respecting line and transformer ratings if possible. The quality of
the strategy which switch to close next determines the quality of the solution. If this
selection can be computed in linear time, such a greedy algorithm falls into the class of
polynomial-time algorithms and (unless P was equal to NP) cannot deliver an optimal
solution to the switching optimization problem, which is NP-hard. Such approximations
have already been implemented in commercial software like Siemens’ PSS R SINCAL [214]
net planning tool.

Both of the mentioned graph-based approaches assume that the entire LV distribution
network, including its current state and all necessary parameters, is modeled in a single
weighted power grid graph and stored on a computer executing the switching optimization
algorithm. In many cases, particularly during the planning phase and in small power
distribution networks, this is a valid assumption. However, if the optimization shall
be performed during runtime in large networks, this imposes several challenges and
limitations, as all necessary data have to be communicated to, stored, and processed by
this central unit. In addition to computational limitations, limiting the size of power
distribution networks that can be processed in a reasonable amount of time, a central
unit constitutes a Single Point of Failure (SPoF).

5.1.2 Decentralized & distributed approaches

Particularly in the scientific community, the problems arising from centralized approaches
are most commonly approached by implementing decentralized solutions. For SG applica-
tions, these are often two-level or three-level hierarchical MASs (cf. Section 2.5.1). Agents
within the lowest level have limited processing and storage capabilities and mainly forward
information to or receive commands from the higher levels. Optimization problems like

1Transportation problems are simplified transshipment problems. Transportation problems only
consider supply and demand locations but no intermediate nodes.

85

5. Analysis

the switching optimization problem are solved for subareas of the distribution network by
more powerful middle-level agents. Middle-level agents thereby use the same graph-based
algorithms already discussed, but on a smaller scale. Optional top-level agents coordinate
the actions of middle-level agents and handle more complex tasks, e.g., fault recovery.
Decentralized approaches are well suited for many SG applications because they can
easily be integrated into the existing distribution network structure. The optimization
problem each middle-level agent needs to solve is simplified, and, from a system-wide
perspective, the SPoF is eliminated. However, the failure of a single middle-level agent
still causes a service outage for the corresponding subarea of the distribution network.
While decentralized systems are superior over centralized approaches in many aspects,
they still use the same concepts on a smaller scale and suffer from similar problems.

An alternative approach is to assume that all components of the SG are equal in the sense
that they may have different capabilities in processing power, storage, and connected
hardware, but no component exercises direct control over any other component. In such
distributed settings, the switching optimization algorithm itself is not executed on a single
component, but the individual components exchange messages and cooperate closely
to find a switching configuration that is superior to the current situation. Therefore,
information about the grid topology and the current state does not need to be consolidated
at a single component but can remain distributed among all components. Depending on
the optimization algorithm that is cooperatively executed by the individual components,
this approach may increase communication overhead and lead to less-optimal results but
eliminates the SPoF and is superior regarding the scalability of the system.

5.2 Dependability requirements analysis

As dependability is not a single property but a combination of the various dependability
attributes, there is no simple metric to rate an application’s dependability. Furthermore,
the nature of the individual attributes themselves is very diverse: while, for example,
availability can easily be expressed in quantitative terms, this is not as straight-forward for
maintainability or scalability. To address this issue, Krammer [7] uses a three-value scale
(–, ~, +) to compare the dependability properties of various communication protocols
found in the building automation domain. Similarly in [25], another three-value scale (1, 2,
3) is used to discuss dependability requirements of various IoT applications. NISTIR 7628
relies on Federal Information Processing Standard (FIPS) 199’s [215] and ISA 99’s [216]
definitions (L .. Low, M .. Moderate, H .. High) for their SG security analysis and risk
assessment (cf. Table 2.2). Based on these references, the following three-value scale is
introduced to rate the importance of each dependability attribute for applications like
switching optimization.

• L .. Low: The dependability attribute is of low relevance for the application. No
special measures have to be taken to ensure that the application’s requirements
regarding the dependability attribute are met.

86

5.2. Dependability requirements analysis

• M .. Moderate: The dependability attribute is of moderate relevance for the
application. Appropriate measures have to be taken to meet the requirements
regarding the dependability attribute. The application only provides benefits to its
users if the requirements regarding the dependability attribute are met. However,
violating the requirements does not have a severe negative effect on assets or
individuals.

• H .. High: The dependability attribute is of high relevance for the application.
Appropriate measures have to be taken to meet the requirements regarding the
dependability attribute. Violating the requirements is expected to have a severe or
catastrophic adverse effect on assets or individuals.

In Table 5.1, the priority of dependability attributes in applications of the SG, Intelligent
Transportation System (ITS), and Ambient Assisted Living (AAL) domains are given.
A brief discussion of the top three applications is provided in [25]. The table has been
extended with the switching optimization application. In the following subsections,
the significance of each dependability attribute for switching optimization is stated.
Furthermore, the considerations taken into account when deriving these ratings are
outlined.

Table 5.1: Evaluation of dependability attributes in various application scenarios.
L .. Low, M .. Moderate, H .. High priority, adapted from [25]

Domain / Appl. Scenario R
el

ia
bi

lit
y

Sa
fe

ty

C
on

fid
en

ti
al

it
y

In
te

gr
it

y

A
va

ila
bi

lit
y

M
ai

nt
ai

na
bi

lit
y

Sc
al

ab
ili

ty

P
ri

va
cy

SG / Smart Meter M L M H M H H M
ITS / Variable Speed Limit H H L H L M H L
AAL / Emergency Call System H H M H H L M L
SG / Switching Optimization H L L H M H M L

5.2.1 Reliability
The reliability of a system is defined as the probability that the system conforms to its
specification up to a given time t. A suitable metric to measure reliability is therefore
a complementary CDF, expressed as 1 − F (t). The corresponding PDF f(t), which
describes the failure probability, can be one of many different distribution functions.
Most commonly, an exponential distribution function or a Weibull distribution function
is applied [217]. A closer look at failure rates of systems that are available and tested
in sufficient quantity (e.g., Complementary Metal-Oxide-Semiconductor (CMOS) chips)

87

5. Analysis

reveals that many technical systems suffer from infant mortality, i.e., a high failure rate
within the first phase of operation caused by problems like material defects and improper
handling. This phase is followed by a relatively constant failure rate for most of the
system’s expected lifetime. Finally, in the third and last phase, the failure rate increases
due to wearout. The graphical representation of the failure rates in these three phases
follows a bathtub curve (cf. Figure 5.2). Bathtub curves can be mathematically described
by specifying a different distribution function for each of the three phases. Furthermore,
statistical methods, e.g., Markov models, provide the means to estimate the reliability of a
complex system from the reliability of its components. Thereby, either simple probability
matrices [218] or more complex models [219] can be used to specify how the overall
system’s reliability depends on the reliability of the individual components.

The Bathtub Curve
Hypothetical Failure Rate versus Time

In
cr

ea
se

d
Fa

ilu
re

 R
at

e

Infant Mortality
Decreasing Failure Rate

Normal Life (Useful Life)
Low „Constant“ Failure Rate

Increasing Failure Rate
End of Life Wear-Out

Time

Figure 5.2: Failure rate of a technical system – the bathtub curve [220]

The main objective of switching optimization is to reduce the costs of distribution network
operation. Outages caused by failures of the system defeat this objective. Therefore, it
is only viable to implement switching optimization if the system is operating reliably.
The exact reliability requirements on the system in terms of acceptable failure rates are
subject to economic considerations.

Significance for switching optimization: H

5.2.2 Safety
Avizienis, Laprie, Randell, et al. define safety as the absence of catastrophic consequences
on the user and the environment in the event of a failure [6]. This is a noble goal
but infeasible in real-world technical systems. A more practical approach to safety is
putting the likelihood of failures, i.e., the system’s reliability, in perspective to their
severity. The most commonly used metric for safety in technical systems, including
power system components, is the notion of SILs defined in IEC 61508 [50]. Each SIL is
specified by a combination of failure rate and severity. The conformity of components
and systems to the individual SILs is ensured by a certification process and enforced by
law. Thereby, documentation and testing requirements are more strict for higher SILs.

88

5.2. Dependability requirements analysis

The combination of multiple, individually “safe” components in a new system typically
requires re-certification as new risks may emerge. Additionally, controllability, i.e., the
difficulty of managing possible accidents, may be incorporated in safety analysis [221].
Methodologies like Functional Hazard Assessment (FHA), Fault Tree Analysis (FTA),
Failure Mode and Effects Analysis (FMEA), and many more exist to support developers
in identifying, analyzing, and managing risks associated with their products or systems.

Switching optimization can be considered as an “add-on” to an existing distribution
network. As such, its safety relies on existing equipment, e.g., enclosed switches. However,
it has to be ensured that the new control mechanisms do not cause new risks to emerge.

Significance for switching optimization: L

5.2.3 Maintainability

Similarly to safety, Avizienis, Laprie, Randell, et al. consider maintainability to be
an essential attribute of dependability but do not specify the means to express the
maintainability of a component or system quantitatively. However, the theory of repairable
systems [222] provides the necessary concepts for analyzing the maintainability of systems.
A commonly used definition for maintainability is “the ability of equipment to be
maintained or the probability of performing a successful repair action within a given
time” [223]. Therefore, the mathematical techniques for analyzing maintainability are
very similar to the ones used for reliability. Additionally, concepts originating from the
field of repairable systems, such as Preventive Maintenance (PM) (servicing components
before they fail) and the introduction of different repair models (e.g., perfect vs. minimal
repair), enable exact quantitative analysis of maintainability [224].

While maintainability, as defined above, provides a profound mathematical analysis,
other aspects should also be considered when rating the maintainability of components
within the context of switching optimization. Due to the long life-span of SG devices,
the number of devices, and the fact that they are distributed in the field, aspects like
location information, version management, and the possibility to update devices remotely
cannot be neglected.

Significance for switching optimization: H

5.2.4 Scalability

Most dependable systems follow a centralized or decentralized structure and are hardly
changed during operation. Therefore, scalability has been of minor importance and
was not included in the earlier definition of dependability [225]. However, the term is
more frequently used in context with distributed dependable systems as, e.g., in the
building automation domain [7]. Most commonly, systems are considered scalable if
adding additional components to the system is generally possible, and a performance

89

5. Analysis

gain may be expected. For example, a multi-processor computing system is perfectly
scalable if its performance increases linearly with the number of processors installed.

For specific applications, the overall performance increase gained by adding additional
components may even scale better than linearly. For example, considering the switching
optimization problem, energy savings may improve substantially if only a few switches
are added at the correct positions within the distribution network. Of course, scalability
must also be considered in its more traditional sense, as individual distribution networks
may grow in size and connected to other distribution networks. This has to be supported
from a technological point of view, whereby the potential for additional energy savings is
considered an extra benefit.

Significance for switching optimization: M

5.2.5 Privacy
Like scalability, privacy is not present as an attribute in the initial definition of de-
pendability. As dependable systems may require to collect data and public awareness
regarding privacy has increased over recent years, the need arises to analyze privacy in
this context. Privacy is concerned about the link between peoples’ identities and their
data. This definition offers two approaches to ensuring privacy: protecting the person’s
identity or protecting the person’s data [226]. In the former case, the data are collected
and stored completely. However, measures are taken to avoid the possibility of linking
the data to an individual’s identity like anonymizing data2 by not storing any unique
identifier. Practical studies have shown that an adversary may still draw conclusions
about an individual’s identity by combining multiple attributes [226, 228]. In the latter
case, the quality of the stored data itself is reduced so that the data are sufficient for the
application but not unnecessarily precise. This can be achieved, for example, by only
using averaged or approximated data. A combination of both approaches may be applied
and is prescribed by various regulations [229]. Privacy is a rather vague concept, and the
degree of privacy guaranteed by a specific solution can hardly be expressed in precise
mathematical terms. Instead, multi-value metrics have been defined that allow describing
to which extent an individual’s privacy is assured in a specific computing system [230].

Regarding the switching optimization problem, privacy is of little concern as no in-
formation on a per-load/per-individual basis is collected or stored. However, it has
to be ensured that only consolidated power consumption is measured. Thereby, the
number of loads has to be above the limits prescribed by regulations. This measure
reduces the risk posed by Non-Intrusive Load Monitoring (NILM) techniques, in which
an adversary compares measured data to known load characteristics to draw conclusions
about individuals.

Significance for switching optimization: L
2“anonymized” data can only be linked to its owner with “extraordinary” effort [227]

90

5.2. Dependability requirements analysis

5.2.6 Security
The NISTIR 7628 – Guidelines for Smart Grid Cybersecurity [76] with their corresponding
user’s guide [77] are used as a methodology for conducting a detailed security analysis of
the switching optimization use case. The involved steps/activities of the methodology
have already been briefly discussed in Section 2.2.3. However, not all activities and steps
within these activities suggested by the user’s guide are relevant for this thesis. The
focus of the analysis presented in the following is on technical aspects of the switching
optimization use case, as seen from the operator’s perspective. Therefore, organizational
and business-related considerations are not covered. Furthermore, the NISTIR user’s
guide is intended for performing a security assessment of an existing system. Thus, some
minor changes are required to identify requirements for a system under development.

Activity 1: Identify smart grid organizational business functions: Step 1.1
(identify an Executive Sponsor for Cybersecurity Risk Management Governance) and
Step 1.2 (select the Executive Cybersecurity Risk Management Governance Team) of this
activity are skipped for the reasons mentioned. Thus, the first task to be performed is
Step 1.3 (identify the Smart Grid Organizational Business Functions). From the operator’s
point of view, the business function corresponding to the switching optimization use case
could be termed power loss reduction. The result is documented in Table 5.2. Next, in
Step 1.4, an Organizational Business Function Risk Profile Table is created and filled in
for the business function covering power loss reduction. The meaning of the metric is
H .. High, M .. Moderate, and L .. Low. The exact criteria applied to rate a risk as H,
M, or L are defined in [77]. In Step 1.5, the Priority Rating is added to the table created
in the previous step. The results of Step 1.4 and Step 1.5 are summarized in Table 5.3.

Table 5.2: Smart grid organizational business functions

Organizational business functions
Power loss reduction

Activity 2: Identify smart grid mission and business processes: Step 2.1, in
which a group of managers and subject matter experts are assigned to the previously
defined business function, is again skipped. In Step 2.2, Supporting Business Processes
(Dependencies) are identified. In this example, switching optimization is the supporting
business process that enables the power loss reduction business function. For switching
optimization, the topology of the distribution network has to be known. It is assumed
that the distribution network operation business function provides this information.
Additionally, manual intervention (e.g., opening a specific switch by the operator for
maintenance) is also enabled by this business function. Thus, the distribution network
operation process contributes to the power loss reduction business function and is added
to Table 5.4.

Activity 3: Identify smart grid systems and assets: The Smart Grid Systems
Inventory is compiled during Step 3.1 and lists all device classes (or systems) but not the

91

5. Analysis

Table 5.3: Organizational business function risk profile
O

rg
.

bu
si

ne
ss

fu
nc

ti
on

s

T
hr

ea
ts

V
ul

ne
ra

bi
lit

ie
s

Im
pa

ct

P
ro

ba
bi

lit
y

C
on

st
ra

in
ts

To
le

ra
nc

es

R
is

k
ra

ti
ng

R
is

k
re

sp
on

se

P
ri

or
it

y
ra

ti
ng

Power
loss
reduc-
tion

Unautho-
rized
control of
system
compo-
nents

Accessi-
bility of
devices
deployed
in the
field

H –
Power
outage,
negative
financial
impact

M –
Physical
security
measures
may be
bypassed

Budget –
depending on
cost-saving
potential due
to switching
optimization

Results have
to be
convincing in
simulation
before
deployment

H Imple-
menting
adequate
cyberse-
curity
mecha-
nisms

M

Table 5.4: Inventory of mission and business processes that support and interface with
identified organizational business functions

Prioritized list of organiza-
tional business function(s)

Supporting business processes (dependencies)

1. Power loss reduction a. Switching optimization
b. Distribution network operation

individual devices. In Step 3.2, a Risk Prioritization is performed for each system. The
results of Step 3.1 and Step 3.2 are provided in Table 5.5. This table is extended during
each of the following activities. The individual devices, i.e., assets, alongside additional
information such as their names, locations, and serial numbers, are usually collected
during Step 3.3 in the Smart Grid Asset Inventory table. As the switching optimization
system has not been deployed yet, there is no content for the Smart Grid Asset Inventory,
and Step 3.3 is skipped in this analysis activity.

Activity 4: Map smart grid systems to logical interface categories: For each
system of Table 5.5, the associated actor is chosen from the actors stated in Figure 2.5.
Figure 5.3 illustrates the parts of the NISTIR logical reference model relevant for this
use case. To support this, the exact meaning of actors is specified in [76]. As already
mentioned, the naming may differ. However, in many cases, it is still possible to map
each system to an actor. According to this description, switches and transformers
both include functionalities of actors Distribution Data Collector (actor number 12),
Distributed Intelligence Capabilities (actor number 13), Distribution Remote Terminal
Unit/Intelligent Electronic Device (actor number 15), and Distribution Sensor (actor
number 18). Furthermore, the Distribution Management System (actor number 27)
together with the Distribution SCADA (actor number 29) provide information about the
distribution network topology and enable distribution network control. These actors are

92

5.2. Dependability requirements analysis

Table 5.5: SG systems inventory

Steps: 3.1 3.2 4.1 4.2 4.3
Risk prioritization

P
ri

or
it

y
bu

si
-

ne
ss

fu
nc

ti
on

(s
)

B
us

in
es

s
pr

oc
es

se
s

Sy
st

em
na

m
e(

s)

Im
pa

ct

P
ro

ba
bi

lit
y

R
is

k
ra

nk
in

g

A
ct

or
s

Lo
gi

ca
l

in
te

rf
ac

es

Lo
gi

ca
li

nt
er

-
fa

ce
ca

te
go

ry
(s

)

C I A
Power loss a. Switch- Switch L H M M H 12, 13, U108 12
reduction ing optimi- control 15, 18 U111 11

zation U112 12
Transformer L H M M H 12, 13, U108 12
control 15, 18 U111 11

U112 12
b. Distri- Distrib. net- L M M L M 15, 27 U9 5
bution work topology 29 U117 1
network Distrib. net- L H H M H 15, 27, U9 5
operation work control 29 U117 1

therefore added to the table during Step 4.1. Next, in Step 4.2, each logical interface
connecting two of the identified actors is documented in an additional column. These
interfaces are derived from Figure 2.5 with additional information provided in [76].
Additionally, the standard associates each logical interface to one or multiple LICs.
During Step 4.3, the corresponding LICs for each logical interface are selected and
added to the table in an additional column. In this example, these are Interface between
control systems and equipment with high availability, and with compute and/or bandwidth
constraints (LIC 1), Interface between control systems within the same organization
(LIC 5), Interface between sensors and sensor networks for measuring environmental
parameters (LIC 11), and Interface between sensor networks and control systems (LIC 12).
The relevant results of this step are then added to the new Table 5.6.

Activity 5: Map smart grid systems to logical interface categories: The stan-
dard [76] defines a CIA impact for each LIC. These CIA impacts are added to Table 5.6
in Step 5.1. Next, in Step 5.2, the Organizational CIA Impact is specified by combining
the results from Step 3.2 and Step 5.1 according to the criteria defined in Section 2.2.3.
The CIA Impact is added to the table. The standard [76] prescribes Requirements for
Each System for each combination of LIC and Organizational CIA impact. Requirements
are categorized into three different Requirement Types: GRC Smart Grid Requirements,
CTRs, and UTRs. Therefore, GRCs rows and the relevant GRC requirements themselves

93

5. Analysis

Actor Color Key

29 -
Distribution

SCADA 27 - Distribution
Management

System

18 -
Distribution

Sensors

12 -
Distribution

Data Collectors

13 - Distributed
Intelligence
Capabilities

15 -
Distribution
RTUs or IEDs

Operation Distribution

U111

U112

U108
U117

U9

Figure 5.3: NIST IR 7628 logical reference model for switching optimization (excerpt
of [76])

Table 5.6: SG systems inventory with CIA impacts

Steps: 3.1 3.2 4.1 4.2 4.3 5.1 5.2
Risk prioritization

Sy
st

em
na

m
e(

s)

Im
pa

ct

P
ro

ba
bi

lit
y

R
is

k
ra

nk
in

g

A
ct

or
s

Lo
gi

ca
l

in
te

rf
ac

es

Lo
gi

ca
li

nt
er

fa
ce

ca
te

go
ry

(s
)

N
IS

T
IR

C
IA

im
pa

ct

O
rg

an
iz

at
io

na
l

C
IA

im
pa

ct

C I A C I A C I A
Switch
control

L H M M H 12, U108 12 L M M L H M
13, U111 11 L M M L M M
15, U112 12 L M M L H M
18 U117 1 L H H L H M

Transformer
control

L H M M H 12, U108 12 L M M L H M
13, U111 11 L M M L M M
15 U112 12 L M M L H M
18 U117 1 L H H L H M

Distribution
network
topology

L M M L M 15, U9 5 L H H L H H
27, U117 1 L H H L H M
29

Distribution
network
control

L H H M H 15, U9 5 L H H L H H
27, U117 1 L H H L H M
29

94

5.2. Dependability requirements analysis

are added to the table in Step 5.3. The same process is repeated for CTRs in Step 5.4
and UTRs in Step 5.5. With over 130 requirements in this category, GRC contributes by
far the most requirements. However, they focus on an organizational and personnel level,
including security-relevant topics such as documentation about access control, interaction
with external information systems, how to manage publicly accessible content, security
awareness and training of employees, conducting audits, and many more topics that are
highly relevant on an organizational level but are skipped in this analysis. CTRs and
UTRs, contributing the more technical aspects of SG security, are determined and listed
in Table 5.7. Additionally, the standard defines requirement enhancements for some
requirements of any of the three requirement types. These requirement enhancements are
added next to the corresponding requirement (within parentheses) in Step 5.6. Steps 5.3
to 5.6 are rather complex in practice, and it is recommended to consult the NISTIR 7628
user’s guide [77] for instructions. A slightly different table format than suggested by the
user’s guide has been chosen for Table 5.7, resulting in Step 5.7 (consolidating UTRs for
each system) being unnecessary. Therefore, this step is omitted.

Activity 6: Perform a smart grid high-level security requirement gap assess-
ment In Step 6.1 each of the requirements identified during the previous activity are
rated satisfied (“S”) or other than satisfied (“O”). As the system is still in its analysis
phase, all requirements are currently other than satisfied (cf. Table 5.8). Furthermore,
Step 6.2 (conducting the gap assessment) and Step 6.3 (adding the gaps to the smart grid
systems inventory table) are not applicable, as the gap is always equal to the requirement
in a non-existing system.

Activity 7: Create a plan to remediate the smart grid high-level security
requirement gaps In Step 7.1 and Step 7.2, additional columns for Proposed Mitigations
and Priorities are added (cf. Table 5.8). In Step 7.3 and Step 7.4, the requirements are
analyzed, and their priority is rated considering aspects like potential impact, probability,
constraints, and tolerances. A priority rating is documented in the table for each
requirement. In Step 7.5, proposed mitigations are identified for each of the requirements.
The NISTIR 7628 standard lists detailed information for all of the requirements and
provides many useful hints about how they can be addressed.

95

5. Analysis

Table 5.7: SG systems inventory with organizational impacts, unique technical require-
ments, and requirement enhancements

Steps: 3.1 4.3 5.2 5.3 5.3–5.6
Sy

st
em

na
m

e(
s)

Lo
gi

ca
li

nt
er

-
fa

ce
ca

te
go

ry
(s

)

O
rg

an
iz

at
io

na
l

C
IA

im
pa

ct

R
eq

ui
re

m
en

t
ty

pe

R
eq

ui
re

m
en

ts
fo

r
ea

ch
sy

st
em

SG
.*

C I A
Switch
control /
Transformer
control

12 L H M GRC n/a

CTR

AC-6, AC-7, AC-8, AC-9, AC-16, AC-17,
AC-21, AU-2(1), AU-3, AU-4, AU-15, CM-7,
CM-8, SA-10, SA-11, SC-11, SC-12, SC-15,
SC-17, SC-18, SC-19, SC-20, SC-21, SC-22,

SC-30, SI-8, SI-9
UTR IA-5(1–2), SC-5, SC-7(1–3), SC-8(1), SI-7(1)

11 L M M GRC n/a
CTR same as for LIC 12
UTR SC-8(1)

1 L H M GRC n/a
CTR same as for LIC 12

UTR AC-14(1), IA-4, IA-5(1–2), IA-6, SC-3, SC-4,
SC-5, SC-7(1–3), SC-8(1), SC-29, SI-7(1)

Distribution
network
topology /
Distribution
network
control

5 L H M GRC n/a
CTR same as for switch control LIC 12

UTR

AC-14(1), IA-4, IA-6, SC-5, SC-6, SC-7,
SC-8(1), SC-29, SI-7(1), AC-14(1), IA-4,
IA-5(1–2), IA-6, SC-3, SC-5, SC-7(1–3),

SC-8(1), SC-29, SI-7(1)
1 L H M GRC n/a

CTR same as for switch control LIC 12

UTR AC-14(1), IA-4, IA-5(1–2), IA-6, SC-3, SC-5,
SC-7(1–3), SC-8(1), SC-29, SI-7(1)

96

5.2. Dependability requirements analysis

Table 5.8: SG systems inventory with assessment scores and
assessment gaps

Steps:
5.3–5.6 6.1 6.2 7.1, 7.5 7.2–

7.4

R
eq

ui
re

m
en

ts
fo

r
ea

ch
sy

st
em

SG
.*

A
ss

es
sm

en
t

ra
ti

ng
s

(S
/

O
)

A
ss

es
sm

en
t

ga
ps

P
ro

po
se

d
m

it
ig

at
io

ns

P
ri

or
it

ie
s

AC-6 O n/a Impl. authentication mechanism H
AC-7 O n/a Impl. Role-Based Access Control (RBAC) H
AC-8 O n/a Log unsuccessful auth. attempts L
AC-9 O n/a Issue warning before executing commands L

AC-14(1) O n/a Authentication and authorization shall not be
bypassed, even in emergency situations

H

AC-16 O n/a Encrypt wireless communication H
AC-17(1–4) O n/a Impl. auth. & RBAC H

AC-21 O n/a Specify password rules M
AU-2(1) O n/a Not a technical requirement -

AU-3 O n/a Not a technical requirement -
AU-4 O n/a Not a technical requirement -
AU-15 O n/a Not a technical requirement -
CM-7 O n/a Impl. firewall and restrict enabled services H
CM-8 O n/a Store inf. about assets in a knowledge base L
IA-4 O n/a Impl. auth. & RBAC H

IA-5(1-2) O n/a Impl. device authentication mechanism H
IA-6 O n/a Obscure feedback of authentication

information
H

SA-10 O n/a Not a technical requirement -
SA-11 O n/a Not a technical requirement -
SC-3 O n/a Specify access rights for security functions H
SC-4 O n/a Impl. auth. & RBAC H
SC-5 O n/a Out of scope -
SC-6 O n/a Specify priorities for resources and services L

97

5. Analysis

SC-7(1-3) O n/a Out of scope -
SC-8(1) O n/a Apply state of the art cryptography

mechanisms
H

SC-11(1) O n/a Apply state of the art key management
systems

H

SC-12 O n/a Apply state of the art cryptography libraries H
SC-15 O n/a Apply state of the art Public Key

Infrastructure
H

SC-17 O n/a Use state of the art VoIP if necessary L
SC-18 O n/a Secure external connections L
SC-19 O n/a Implement RBAC H
SC-20 O n/a Apply state of the art cryptography

mechanisms
H

SC-21 O n/a Covered by authentication mechanisms -
SC-22 O n/a Out of scope -
SC-29 O n/a Impl. auth. & RBAC H
SC-30 O n/a Implement decentralized / distributed system M
SI-7(1) O n/a Apply state of the art cryptography

mechanisms for software and databases
H

SI-8 O n/a Apply consistency checks & message
authentication

H

SI-9 O n/a Categorize errors and define responsibilities L

Activity 8: Monitor and maintain smart grid high-level security requirements
During this activity, the progress of each proposed mitigation is monitored and docu-
mented. This task is again primarily relevant to the organizational/management level
and, therefore, omitted here.

The results provided in Table 5.7 can be combined to derive the significance of each CIA
attribute for the switching optimization use case. Thereby, the highest entry of Table 5.7
for each attribute determines its overall significance.

Significance for switching optimization: Confidentiality: L, Integrity: H, Availability: M

Furthermore, Table 5.8 provides technical solutions that can be incorporated in the
design and implementation phases to ensure the required level of security. This activity
completes the analysis of the analysis phase. Next, the insights gained so far are used to
design a system that meets the functional and non-functional requirements.

98

CHAPTER 6
Design

The activities and tools of the design phase are illustrated in Figure 6.1. Based on
the information gathered during the planning and analysis phases, a suitable system
is designed. As mentioned, for the course of this thesis, the system architecture is a
distributed MAS. Some additional concepts and considerations regarding the system
design are introduced and discussed. Next, the MAS design and ontology design activities
are conducted in parallel. The MAS design process follows the PASSI methodology
and starts with defining the system requirement model and agent society model. For
the ontology design activity, a reusable ontology design methodology is introduced and
followed to create the required ontologies for the switching optimization use case.

Design
System Architecture

Definition

MAS Design

Ontology Design

cf. Chapter 5:
Analysis

cf. Chapter 7:
Implementation

Tools: General
Discussion

Tools: Reusable
Ontology Design

Methodology

Tools: IEC 62559,
PASSI System

Requirements Model,
Agent Society Model

Figure 6.1: Design phase: activities and tools

6.1 System architecture definition
The insights gained in the previous chapter shall now be exploited to select a suitable
system architecture among the various architectures that are typically found in the SG

99

6. Design

or the industrial domain, respectively. Thereby, the focus is on distributed MASs for the
reasons outlined in the following section. Afterward, the system architecture is defined
and several general concepts required in the subsequent MAS design step are discussed.

6.1.1 Smart grid system architectures

Early power utilities employed human dispatch operators equipped with SCADA systems
to manage plant control, protective relaying, transmission switching, and communication
protocols, along with economic operation of large interconnected power plants. While
SCADA systems offer timely and detailed monitoring of traditional grid resources,
additional analysis by engineers using multiple data sources is required to obtain useful
information about the power systems’ state and operation. Such a manual analysis of
data can be time-consuming. For example, in the event of a grid failure, SCADA systems
can generate thousands of fault records in a matter of only a few hours. Real-time manual
analysis of these data is unfeasible [157].

In particular with the spread of DERs, it is expected that centralized and hierarchical
SCADA systems will soon reach their limits regarding scalability, computational complex-
ity, and communication [231]. More flexible architectures like SOA and MAS have been
heavily researched in the SG domain and gradually find their way into industrial applica-
tions [11]. SOA and MAS are often described as being complementary paradigms [232].
While the scientific debate about the differences and similarities of SOA vs. MAS are not
settled yet, both paradigms build upon the idea of loosely coupled entities that cooperate
and exchange messages to implement an application [231]. The general opinion tends
towards ascribing an agent of a MAS a higher degree of independence than a service in a
SOA.

Thus, a MAS is a suitable architecture for implementing many SG applications, including
the switching optimization problem. However, it remains to decide whether a centralized,
de-centralized, or fully distributed approach shall be followed. While the latter leads to
higher complexity of the individual agents and limits the number of applicable switching
optimization algorithms (cf. Section 5.1), it provides several unique advantages over the
other options. A distributed approach eliminates SPoFs. If one agent fails due to an
attack or a defect, all others can still fulfill their purpose. Furthermore, the autonomy
of agents is preserved in the way envisioned by the definition of McArthur et al. and
Wooldridge and Jennings. In centralized and in multi-level hierarchical approaches,
agents are often directly controlled by more powerful agents, which, in a way, contradicts
the initial idea of MASs. And finally, scalability is inherent to a distributed approach
because the view of each agent can be limited to the parts of the distribution network
it is connected to. Thus, extending the distribution network geographically and with
additional components provides an additional potential for optimization rather than
increasing the complexity.

100

6.1. System architecture definition

6.1.2 Similarities to the industrial domain
Industry 4.0 and the SG face similar challenges, e.g., long life-cycles of components and
the necessity to include existing assets in new applications. Consequently, concepts are
exchanged from one domain to the other. In particular, the SGAM of the SG domain
found its counterpart in the industrial domain as the Reference Architectural Model for
Industrie 4.0 (RAMI 4.0) [234]. Likewise, concepts from the industrial domain like the
Asset Administration Shell (AAS) may also contribute to the development of SGs. The
concept of an AAS is defined as part of the RAMI 4.0 and illustrated in Figure 6.2.

Thing
(e.g., Machine)

Administration
Shell

I4.0
Communication

Figure 6.2: Administration shell defined by RAMI 4.0 [234]

As the name suggests, the AAS primarily focuses on the administration of assets. Such
an asset can either be a software component (e.g., a database) or a hardware component
(e.g., an industrial robot). The AAS provides information about and access to the asset
via standardized or proprietary interfaces and data structures [18]. It shall include all
data available about the asset across all phases of the asset’s life cycle, including but
not limited to data about identification, engineering, configuration, and runtime [235].
Additionally, the Industry 4.0 platform glossary also assigns the AAS an active aspect
and defines it as a “virtual digital and active representation of an I4.0 component in the
I4.0 system” [236].

The definition of an intelligent agent provided Section 1.3, which includes the behavior,
computing, and control aspects, partly coincides with the concept of AASs known from the
industrial domain. In many situations, an agent can be considered a virtual representation
of some asset or thing. Thereby, the agent allows other agents to access the services of
the asset it controls. These insights inspired the following system architecture definition.

6.1.3 System architecture definition

The similarities between the industrial domain and SGs give rise to the idea of an agent
controlling a power system component like a switch or a transformer enabling these
devices to participate in a SG similarly to the way an AAS enables assets/things to

101

6. Design

participate in an I4.0 system. Such an agent shall be named Component Administration
Agent (CAA). An architecture building upon this concept is described in more detail in
the following.

A CAA and the power system component it controls are illustrated in Figure 6.3. The
architecture is FIPA-compliant. However, although FIPA strictly distinguishes between
the agent and the AP, this is generally not common. Instead, most scientific literature
only refers to agents as a general concept subsuming the agent’s functionalities and the
AP it is executed on. This allows for more natural formulations and is also the preferred
approach in this thesis. Consequently, the term agent control is used to explicitly refer
to the component that contains the application-specific agent logic.

Se
ns

or
/

Ac
tu

at
or

In

te
rfa

ce
s

Agent Control

Communication Interfaces

Control
Interfaces

Triple Store

Directory
Facilitator

Software
Libraries

Agent
Management

System
Message Transport System

Power System ComponentPower System Component

Component Administration Agent

Figure 6.3: Agent controlling a power system component

As illustrated in Figure 6.3, an CAA consists of the following components:

• Agent control: core element containing all use-case-specific functionality

• Message Transport System, Directory Facilitator, and Agent Management System:
components defined by FIPA (cf. Section 2.3.5)

• Communication interfaces: enable communication with other agents or external
systems

• Triple store: software component used to store and manipulate ontologies

• Software libraries: third-party software libraries that can be used by the agent,
e.g., for cryptography and optimization algorithms

102

6.1. System architecture definition

• Sensor/actuator and control interfaces: interfaces used to interact with the power
system component either directly via digital or analog I/O, or via control interfaces
like bus systems or Industrial Ethernet (IE)

Figure 6.4 illustrates how components of a distribution network are equipped with agents
enabling them to communicate and actively participate in the SG. In this example, only
transformers and switches are equipped with agent technology, but the same concept
can easily be extended to busbars, loads, additional sensors, smart meters, and other
components in the transmission and distribution networks. In addition, an area is
highlighted in the figure. An area is the smallest subset of the distribution network that
can be supplied via an alternative path by opening/closing the corresponding switches.
Areas play an important role in the optimization procedure and are defined more precisely
in Section 6.1.5.

Agent

Ag
en

t

Ag
en

t

Agent

Ag
en

t

Ag
en

t

Agent

Ag
en

t

Ag
en

t

Ag
en

t

Busbar 1

Transformer 1 Transformer 2 Transformer 3

MV Grid

Busbar 2

Busbar 3

Busbar 4

Busbar 5

Busbar 6

Busbar 7

Busbar 8

Busbar 9

Busbar 10

Closed
Switch

Open
Switch

Load

Closed
Switch

Closed
Switch

One „Area“
Del imited
by Agents

Figure 6.4: Distribution network with MAS-based component control

103

6. Design

6.1.4 Agent types and services

The base version of the MAS presented in this thesis incorporates two types of agents:
Switch Agents and Transformer Agents. Naturally, switches are controlled by Switch
Agents, and transformers are controlled by Transformer Agents.

Agents within the MAS may implement two types of services: the Switching Service and
the Loss Evaluation Service. The Switching Service allows any Switch Agent to open or
close its switch. Additionally, the service is offered to other agents, allowing agents to
request opening and closing switches from any Switch Agent. In general, a Switch Agent
is obligated to serve a switching request when received. The Loss Evaluation Service is
offered by Switch Agents and Transformer Agents. It evaluates the losses that would
be caused if an additional load was supplied by the agent offering the service and the
possible savings if the load supplied by the agent was reduced by a certain amount.

6.1.5 Definition of areas

It is assumed that all switches and all transformers within the LV grid of interest are
equipped with agent technology. Switching optimization in the course of this thesis is
performed in the granularity of areas. Thereby, an area is the smallest group of inner
nodes (busbars) and leaf nodes (loads) delimited by Switch Agents or Transformer Agents.
Delimited in this context means that each possible connection between the area and the
transmission network involves at least one agent. Areas can easily be identified by using
a breadth-first search. The search algorithm starts at an agent and stops when another
agent is found at each branch. Agents do not need to store the complete topology of the
distribution network but only the topology of the areas they are directly connected to.
Agents that are connected to the same area are termed neighbors or neighboring agents.

Areas are always delimited by agents, even if there are no switches at all (and, therefore,
no Switch Agents). In this case, the areas just correspond to the individual trees of the
distribution network. Furthermore, each area is supplied by precisely one Transformer
Agent (either directly or via exactly one other area), i.e., there is only a single path
connecting the area to the transmission network. Any other possible path from the area
to the transmission network must be interrupted by at least one open switch to ensure
the tree topology.

It is assumed that switches (and, therefore, also Switch Agents) are placed in a way so
that they connect two different areas A and B. According to the definition of an area, if a
Switch Agent connected an area to itself, i.e., A = B, there had to be a connection from A
to B which does not involve a Switch Agent. While this is, in principle, possible, closing
such a switch would always create a cycle and violate the tree structure. Transformer
Agents are only connected to one area because they are connected to the transmission
network via their primary side.

104

6.1. System architecture definition

6.1.6 Optimization procedure

The overall optimization procedure repeatedly tries to answer the following question: “Is
there an area (or multiple areas) that could be connected to the transmission network
with less power losses than caused by the current configuration?”. If so, the distribution
network should be restructured. In the proposed distributed MAS, where no agent knows
the complete distribution network, each agent tries to answer this question only for
the areas it is directly connected to. Restructuring is performed by swapping an area
(possibly including other areas supplied by it) from one transformer to another.

For this purpose, the agent has to know the current losses caused by supplying an area
and possible alternatives to supply it. Therefore, one optimization run is separated into
two phases. During Phase 1, the agent tries to evaluate the losses caused by the current
configuration, and during Phase 2 it requests proposals for alternative configurations.

6.1.7 Trigger for the optimization run

Naturally, the question arises which agent should start the optimization run and when
to do so. A possible approach is to let the Transformer Agents initialize the procedure,
i.e., a top-down approach. Starting from the root nodes, the information about the
current losses would propagate through the distribution network. The information should
not be kept within the tree supplied by the initiating Transformer Agent but should
also be forwarded to neighboring areas. This allows Switch Agents to compare the
current configuration with alternative configurations (in terms of losses). However, the
top-down approach has several drawbacks. (1) Each agent within a MAS should have a
clear motivation for its actions. Arguably, spreading information for the sake that it is
possibly useful for other agents is not considered a clear motivation. (2) Communication
bandwidth is used for information that is not needed and without consequences for
most agents receiving it. (3) The exact losses for alternative configurations depend on
the power consumption within specific areas. However, in a top-down approach, the
Transformer Agents do not have any information thereof.

There are certainly counter-arguments and measures to be taken for each of the men-
tioned drawbacks. However, for a first approach, a bottom-up approach seems more
reasonable. Any agent that encounters optimization potential requests the losses caused
by the energy consumed within the relevant area(s) from the agent located closer to the
transmission network. Thus, the request travels bottom-up and can be answered once it
reaches the responsible Transformer Agent. Only agents required to answer the request
are involved in the communication process.

The question of when the Switch Agent should start the optimization procedure remains.
Agents may coordinate with each other so that the optimization procedure is started by
the Switch Agents one after another (i.e., sequentially). It may do so periodically,
e.g., at every full hour (periodically synchronized), or 24 times a day scatter based

105

6. Design

on the agent’s ID (periodically scattered). These ideas are all valid, but neglect that
time itself is not a good indicator of optimization potential. An approach that takes
changes in consumption into account (e.g., +/- 5 % within a specific area) was chosen
for this work, but in fact, when to start the optimization procedure is up to the individual
agent and may vary. Consequently, an optimization procedure is only started by the
Switch Agent currently supplying a specific area because only this agent can determine
changes in consumption.

6.1.8 Resource reservation

Agents are not allowed to participate in multiple optimization runs at the same time. In
particular during Phase 2, an agent proposes additional losses for supplying a given load
value (i.e., the consumption within an area to be supplied) and verifies that supplying
this additional load would not violate any line or transformer ratings. The proposal’s
validity must be ensured until the optimization run has been completed to maintain the
stability of the grid. However, an agent does not know beforehand whether or not its
proposal will be accepted. Thus, it has to reserve the resources until its proposal has
been accepted or declined. Meanwhile, it has to refuse other Call For Proposals (CFPs).

6.2 MAS design

The basic ideas and concepts presented in the previous section shall now serve as a starting
point for the MAS design activity. Therefore, a suitable MAS design methodology is
needed. As in many cases, no MAS methodology comes out clearly beneficial over the
others (cf. Section 2.3.4). However, the PASSI methodology has been identified as an
appropriate MAS design methodology as it supports most of the desired features. The
decisive criteria of Table 2.4 for selecting PASSI over GAIA and MaSE are:

• Coverage of the life cycle: PASSI includes implementation and evaluation (testing)
elements.

• Application domain: FIPA is the most commonly used AP, particularly in the SG
domain. The close relation of PASSI and FIPA will reduce the effort of mapping
the results of the MAS design methodology to FIPA as a specific AP.

• Communication ability: The ability of PASSI to support knowledge-based commu-
nication simplifies interaction with already existing agents.

• Human–computer interaction: According to the use case description (cf. Chapter 4),
for certain scenarios the operator shall be able to interact with the MAS. The MAS
design methodology should, therefore, also consider human-computer interaction.

• Support for ontology: An ontology provides the necessary means for knowledge-
based communication and can serve as a very flexible data store.

106

6.2. MAS design

6.2.1 System requirements model
The PASSI methodology starts with the system requirements model, including the
Domain Requirements Description in the form of a use case diagram. This diagram has
already been created as part of the IEC 62559 use case description during the planning
phase in Chapter 4. It is provided in Table 4.9.

Next, the use case diagram is further refined during the Agent Identification phase.
The result thereof is depicted in Figure 6.5. The Operator is included in this figure to
illustrate how personnel can interact with the MAS via a user interface agent. However,
as mentioned, the focus is on the automated switching optimization scenario, and the
manual switch control scenario is not discussed any further.

<<Agent>>
TransformerAgent

<<Agent>>
ScadaUi

Determine
Current Losses

Switching Optimization

Operator

Estimate Losses
for Alternative

Topologies

<<include>> <<include>>

<<include>>

Respect
Functional Req.

Balance Non-
functional Req.

Manually Change
Switch State

<<include>>

Establish New Topology

<<extend>>

a „better“(in terms of non-
functional requirements)
topology , which fulfills all
functional requirements,

has been found

Choose New Topology

<<include>>

Calc. Trans-
former Losses

Calc. Line Losses

<<communicate>>

<<include>> <<include>>

<<communicate>>

Monitor Grid State

<<include>>

Determine Current
Non-functional

Attrib.

Estimate Non-
functional Attrib.

for Alt. Topologies

Det. Trans-
former Non-

functional Attrib.

Det. Switch Non-
functional Attrib.

<<communicate>>

<<include>>
<<include>>

<<communicate>>

<<include>> <<include>>

<<Agent>>
SwitchAgent

<<communicate>>

Figure 6.5: PASSI agent identification diagram for the switching optimization use case

The interactions between agents are examined in more detail during the Role Identification
phase. Thereby, each scenario of the use case analysis is transformed into a sequence
diagram or a roles identification diagram in PASSI terminology. This allows identifying
the various roles each agent can take. The roles identification diagram for the automated
switching optimization scenario is depicted in Figure 6.6.

107

6. Design

Initiator :
SwitchAgent

Initiator :
SwitchAgent

Participant1 :
SwitchAgent
Participant1 :
SwitchAgent

ParticipantN :
SwitchAgent

ParticipantN :
SwitchAgent

ActiveTransformer :
TransformerAgent

ActiveTransformer :
TransformerAgent

PassiveTransformer :
TransformerAgent

PassiveTransformer :
TransformerAgent

get losses caused by C
these are the

current losses X
caused by C

get estimated losses
caused by C + line losses

measure con-
sumption C

get estimated losses
caused by C + line losses get estimated losses

caused by C + line losses

these are the
estimated losses Ythese are the

estimated losses Y +
line losses

these are the
estimated losses Y +

line losses

altalt

[Y + line losses < X]

please close switch

switch closed

open switch

[else]

Figure 6.6: PASSI roles identification diagram for automated switching optimization

An optimization run is always initiated by a Switch Agent, taking the role of the Initiator.
This is because only the Initiator is currently supplying the corresponding area(s) and
can, therefore, determine changes in the power consumption and trigger the optimization
run (cf. Section 6.1.7). The Initiator first has to determine the losses caused within the
distribution network for supplying power to the area. It does so by sending a request to
the Transformer Agent that is currently supplying the area. This Transformer Agent
takes the Active Transformer role. Additional Switch Agents between the Initiator and
the Active Transformer are omitted for the sake of clarity in this figure. The Active
Transformer estimates the losses caused by supplying the area and responds to the
Initiator.

Next, the Initiator requests all other Switch Agents to estimate the additional losses
caused by supplying the area via a different path. These Switch Agents take the roles of
Participants. The requests are forwarded from Participant to Participant until reaching
the corresponding transformers. Because of the forest structure of the distribution
network, these transformers are currently not supplying the area, thus, taking the role

108

6.2. MAS design

of Passive Transformers. The responses are again forwarded to the Initiator, which
decides if a switching action is desirable. If so, it requests closing the switch from the
corresponding Participant and opens its own switch. To conclude, the roles identified
during the PASSI Role Identification phase are the Initiator and Participant for Switch
Agents, and the Active Transformer and Passive Transformer for Transformer Agents.

The next phase of the PASSI methodology is the Task Specification phase. The resulting
task specification diagram for the Switch Agent is depicted in Figure 6.7. It summarizes
all tasks required for the Switch Agent to be able to fulfill its roles. The right part
of the figure provides a detailed list of all tasks for the Switch Agent, while the left
part of the figure only illustrates tasks of other agents that directly interact with switch
tasks via message exchange. These can be transformer tasks as well as tasks of other
Switch Agents. Each agent implements a Listener task, which dispatches incoming
messages. The individual tasks processing the incoming messages are not discussed in
more detail, as they largely coincide with the various steps already presented for the roles
identification diagram. Also, the PASSI task specification diagram for the Transformer
Agent is skipped, as it is much simpler and would not provide any additional insights.

SwitchAgent.AskSwitch
Close

SwitchAgent.Listener

Listener

ReceiveSwitch
CloseReq. CloseSwitch NotifySwitch

Closed

Other agents SwitchAgent

MeasurePower
Consumption

ReceiveSavingsEs-
timationReq.

EstimateLine
Savings

GetNeighbor-
ingAgents

TellEstimated
Savings

ReceiveEstimated
Savings

SwitchAgent.AskLosses
Estimation

ReceiveSwitch
ClosedNotification OpenSwitch

SwitchAgent.Notify
SwitchClosed

CheckOptimiza-
tionRunTrigger

AskLosses
Estimation

TransformerAgent.
Listener

AskSwitchClose

TransformerAgent.Tell
EstimatedLosses

SwitchAgent.Tell
EstimatedLosses

Check
Requirements

ReceiveEstimated
Losses

ReceiveLosses
EstimationReq

SwitchAgent.Tell
EstimatedSavings

TransormerAgent.Tell
EstimatedSavings

EstimateLine
Losses

TellEstimated
Losses

StartSavings
Estimation

AskSavings
Estimation

FinishOptimiza-
tionRun

StartOptimiza-
tionRun

SwitchAgent.AskSavings
Estimation

StartLosses
Estimation

FinishLosses
Estimation

FinishSavings
Estimation

Figure 6.7: PASSI task specification diagram for the Switch Agent

109

6. Design

6.2.2 Agent society model

Having identified the roles each agent can take, how they interact, and the tasks they
have to implement on a very abstract level, the PASSI agent society model refines this
information for later use by traditional software development techniques. It starts with
the Ontology Description phase, which models the information required for operation in
the domain ontology diagram and the information required for communication in the
communication ontology diagram. The authors of the PASSI methodology provide a
detailed example of each of these ontologies but do not suggest a specific methodology [109].
Considering the vast amount of existing ontology design methodologies (cf. Section 2.4),
this is a very reasonable approach. While investigating ontologies in the context of MASs,
however, it has been found that agents impose a particular requirement on ontology
design that is not well-covered by existing methodologies: the reusability of ontologies.
Reusability is required because agents that interact in a MAS, such as the Transformer
Agent and the Switch Agent, share large portions of their ontologies. However, at the
same time, they implement very specific functionality that is not relevant to other agents
at all or to the same level of detail. A new ontology design methodology is required to
cover these MAS-specific aspects. The methodology is presented in Section 6.3, and the
ontology is instantiated in Section 7.2. Therefore, the Ontology Description phase is
postponed for now.

The next step of the PASSI methodology is Role Description phase. The resulting roles
description diagram, is depicted in Figure 6.8. Its purpose is to illustrate interactions
between roles, and, thus, it is a refinement of the PASSI task specification diagrams
(cf. Figure 6.7), which provide similar information but based on agents instead of roles.
Each role is represented by a separate class, and the classes belonging to the same agent
are grouped into packages. Each role only requires a subset of the tasks specified for
the agent. These tasks are listed in the operations compartment of the corresponding
role. Furthermore, interactions between different roles of the same agent can now be
visualized. For example, the AskSwitchClose request can only be issued by an Initiator
Switch Agent towards a Participant Switch Agent.

The interactions between agents are examined in full detail during the Protocol Description
phase. Thereby, each scenario of the use case analysis is transformed into a sequence
diagram or an agent interaction protocol in PASSI/FIPA terminology. The diagram
specifying the automated switching optimization scenario is depicted in Figure 6.9. It
is inspired by the FIPA Query Interaction Protocol [129] and the FIPA Contract Net
Interaction Protocol [130]. Combining these two protocols in a new agent interaction
protocol allows ensuring resource reservation (cf. Section 6.1.8). The agent interaction
protocol is discussed in the following. Furthermore, it is stated how the agent interaction
protocol addresses the functional and non-functional requirements (cf. Table 4.17).

The Initiator starts the optimization run by requesting information about the possible
savings from the Active Transformer. It includes the power consumption of its area (and

110

6.2. MAS design

Initiator : SwitchAgentInitiator : SwitchAgent

Listener()
MeasurePowerConsumption()
GetNeighboringAgents()
CheckOptimizationRunTrigger()
StartSavingsEstimation()
FinishSavingsEstimation()
EstimateLineSavings()
AskSavingsEstimation()
StartLossesEstimation()
FinishLossesEstimation()
AskLossesEstimation()
EstimateLineLosses()
CheckRequirements()
AskSwitchClose()
OpenSwitch()
FinishOptimizationRun()
ReceiveEstimatedSavings()
ReceiveEstimatedLosses()
ReceiveSwitchClosedNotification()

ActiveTransformer :
TransformerAgent
ActiveTransformer :
TransformerAgent

Listener()
MeasurePowerConsumption()
EstimateTransformerSavings()
ReceiveSavingsEstimationRequest()

PassiveTransformer :
TransformerAgent
PassiveTransformer :
TransformerAgent

Listener()
MeasurePowerConsumption()
EstimateTransformerLosses()
ReceiveLossesEstimationRequest()

Participant : SwitchAgentParticipant : SwitchAgent

Listener()
MeasurePowerConsumption()
GetNeighboringAgents()
EstimateLineSavings()
AskSavingsEstimation()
FinishSavingsEstimation()
TellEstimatedSavings()
AskLossesEstimation()
StartLossesEstimation()
FinishLossesEstimation()
EstimateLineLosses()
TellEstimatedLosses()
CheckRequirements()
CloseSwitch()
NotifySwitchClosed()
ReceiveSavingsEstimationRequest()
ReceiveEstimatedSavings()
ReceiveLossesEstimationRequest()
ReceiveEstimatedLosses()
ReceiveSwitchCloseRequest()

AskSavingEstimation

AskLossesEstimation

AskSavingsEstimation

AskLossesEstimation

AskSwitchClose

AskSavingsEstimation

AskLossesEstimation

AskSavingsEstimation

AskLossesEstimation

Figure 6.8: PASSI roles description diagram for automated switching optimization

possibly other areas supplied by it) in the request. Additional Switch Agents between
the Initiator and the Active Transformer are again omitted. The Active Transformer
may refuse to answer the request if it is already participating in another optimization
run. Otherwise, it informs the Initiator about the transformer losses caused by supplying
the load, i.e., the possible savings, using an inform-ref message.

The Initiator then sends a CFP message to its neighboring Participants. The CFP may
include non-functional requirements, which allows Participants to refuse making an offer
if they cannot meet these requirements. For example, a description of NFR-01 – NFR-08
(Reliability, Safety, Confidentiality, Integrity, Availability, Maintainability, Scalability,
Privacy) can be added to the CFP. Participants may also refuse to propose to the CFP
in case they are busy, or cannot fulfill a NFR. Otherwise, they forward the CFP message
until it reaches the corresponding Passive Transformers.

After checking the requirements, each Passive Transformer can send a propose message
back to the Participant it received the CFP message from, or refuse to make a proposal.
The messages are forwarded to the Initiator, which collects all incoming proposals. Only
the best proposal (in terms of possible savings and non-functional requirements) is
accepted via an accept-proposal message. All other proposals are rejected via reject-
proposal messages.

With accepting the proposal, the Initiator instructs the corresponding Participant to
close its switch. The Participant responds to the Initiator once the switch is closed using

111

6. Design

an inform message. In the current state of the specification, the Participant cannot reject
the request to close its switch after it has made the offer. The Initiator is now safe to
open its switch (FR-02: Connectedness and FR-03: Forest structure) and then informs
the corresponding Participant that the reconfiguration is completed. Upon that, the
Participant finishes the conversation corresponding to the open CFP that led to the new
configuration via an accept-proposal message, which is in turn confirmed with an inform
message.

The agent interaction protocol is fully distributed, i.e., it does not rely on the existence
of any orchestrating agent. Furthermore, the optimization procedure is not implemented
in a single agent explicitly but emerges from the interaction of the participating agents.
Extending the network does not increase the amount of data a single agent has to process
(NFR-07: Scalability). However, the size of areas (i.e., the number of its components)
must be kept in a range still manageable by all delimiting agents.

Message loss during the optimization run is a particular problem. If, for example, the
final inform message did not reach its destination, the optimization run would not
complete, and the Transformer Agent could not participate in further optimization runs.
Message losses can be reduced by using reliable communication protocols. Furthermore,
redundant network interfaces may be used to address the risk of broken communication
links. However, ultimately, error-free completion of the agent interaction protocol can
never be guaranteed. As a last fall-back mechanism, all agents should use timeouts to
detect lost messages, broken communication links, and unresponsive communication
partners and start a recovery procedure.

As mentioned, the agents may include statements about non-functional requirements in
their messages. For this purpose, they require a way to communicate via semantically
meaningful messages, which can be achieved using ontologies. Furthermore, they use this
information to select the best reconfiguration option among multiple possibilities.

112

6.2. MAS design

ActiveTransfomer :
TransformerAgent
ActiveTransfomer :
TransformerAgent

PassiveTransformer :
TransformerAgent

PassiveTransformer :
TransformerAgent

Initiator :
SwitchAgent

Initiator :
SwitchAgent

Participant :
SwitchAgent
Participant :
SwitchAgent

refuse

altalt

request

inform-ref
cfp

refuse

cfp

altalt

refuse

propose
propose

altalt

reject proposal
reject proposal

accept proposal

accept proposal

inform

inform

altalt

inform

inform

[TransformerAgent busy]

[else]

[else]

[else]

[not the best proposal]

[SwitchAgent busy]

[TransformerAgent busy
OR cannot make a better

proposal]

[else]

close switch

open switch

Figure 6.9: FIPA agent interaction protocol diagram for the automated switching
optimization

113

6. Design

6.3 Ontology design
Most ontology design methodologies target the creation of a single ontology covering the
complete application scenario. These methodologies typically follow a step-wise approach,
which often motivates the use of existing ontologies but, on the other hand, does not
support the generation of reusable ontologies. The probably best-known example of this
approach is “Ontology Development 101: A Guide to Creating Your First Ontology” [21].
It describes a methodology for ontology design structured into seven simple steps (cf.
Section 2.4.1). “A lightweight methodology for rapid ontology engineering” [144] is
another (six-step) approach falling into this category of ontology design methodologies.

Later on, ontology design methodologies were developed that start with a small or
even empty ontology and add other ontologies and concepts incrementally. Such an
iterative methodology is presented in “An Incremental and Iterative Process for Ontology
Building” [237]. Again, reusing existing ontologies and other sources is a core aspect of
the ontology design but deriving reusable ontologies along the way is not of particular
importance. This is addressed by the reusable ontology design methodology presented in
the following.

6.3.1 Reusable ontology design methodology

A methodology that focuses on deriving reusable ontologies as well as reusing existing
ontologies is illustrated in Figure 6.10. It follows a “divide and conquer” or “divide
and combine” approach using different levels. At the very beginning, the application-
specific ontology is created, but no concepts are added yet. Instead, it is divided into
smaller (Tier 1) ontologies, each intended to cover a well-defined subset of the required
information. In general, Tier n ontologies are again divided into Tier n + 1 ontologies
until reasonably small ontologies are derived.

Tier n + 1 ontologies are then combined (imported to) Tier n ontologies and extended
with concepts that are not present in the Tier n + 1 ontologies already but arise from
their combination. Individual basic Tier n + 1 ontologies, e.g., such modeling timing or
unit concepts, may thereby be imported in multiple Tier n ontologies. Others might not
be used at all, e.g., because they were found to be redundant or too complex. Combining
ontologies is continued until the application-specific ontology is derived. Ontologies
on each level should be self-contained to allow them to be reused in ontologies for
other applications. The individual steps of the methodology are briefly discussed in the
following. They can be documented, for example, using a tabular or graphical notation
and adding information along the way.

Methodology step: divide

At the beginning of the methodology, the application-specific ontology is recursively
divided into smaller parts. This process stops for a specific Tier n ontology for one

114

6.3. Ontology design

Divide Model Select & Combine

Start: Divide Select & CombineModel

Divide

Model

Model Select & Combine

Application-Specific Ontology

Tier 1 Ontologies

Tier 2 Ontologies

Tier n Ontologies

Figure 6.10: Methodology for reusable ontology design

of the following three reasons: (1) it is already covered by an existing ontology, (2) it
is already covered by another source of information (e.g., books and papers), or (3) it
cannot reasonably be divided any further. The quality of each potentially useful source of
information is thereby rated and documented. According to the reason why the process
stopped at a certain point, (1) the ontology is either used directly or (2) & (3) the
ontology is created following standard ontology modeling techniques.

The divide step should put a strong focus on reusing existing ontologies and other sources
of information. Thus, developers should analyze available material and choose their
sub-ontologies accordingly. Thereby, information already being available as an ontology
and probably in some standardized ontology document format is preferred over other
kinds of information. Nevertheless, developers should not completely ignore other sources
of information and consider including them in this step. In the following, some valuable
sources for existing ontologies and additional valuable information are listed:

• Conventional search engines: Conventional search engines mainly focus on human-
readable information. Nevertheless, they often include all types of online-available
documents in their search results and even provide options to search for specific
file types (e.g., *.rdf or *.owl).

• Ontology search engines: On the other hand, there are search engines specifically
focusing on ontologies. Their benefit lies in providing meta-information about the
ontology itself, e.g., the number of classes, properties, and individuals contained.

115

6. Design

• Scientific publications: Ontologies still are a somewhat scientific way of structuring
information, and the concepts many ontologies are built upon are published in
papers and theses. Sometimes, these publications refer to the corresponding
online-available ontology document.

• Databases: Databases and, in particular, their structure often may directly be
translated to ontologies or at least provide a good starting point.

• Human readable documents: Finally, plenty of information about all different kinds
of domains is available in standards, specifications, books, articles (scientific or oth-
erwise), company-internal documents, diagrams, or similar sources of information.
Often, this information is structured already and can easily be converted into an
ontology. A typical example are existing UML diagrams.

The exact number and types of ontologies on each level depend on the application’s
complexity and on the different views developers might have on their specific problem.
Once reasonably small sub-ontologies are derived, they are not divided any further but
the model step and the select & combine step are applied alternately on each level.

Methodology step: model

Existing ontologies do not need to be re-modeled. However, in many cases, the required
information is not available in a standard file format. Existing ontology modeling
techniques (cf. Section 2.4) are used to generate ontologies from this information and
model new concepts that are not found in any existing source. Besides, concepts that
emerge from selecting and combining Tier n + 1 ontologies are added in this step. The
model step is performed on each level of the methodology and alternates with the select
& combine step until the application-specific ontology is derived.

Methodology step: select & combine

In this step, Tier n + 1 ontologies are analyzed and rated to select suitable subsets
that are then combined to Tier n ontologies. Thereby, the rating does not follow a
strict, predetermined scheme but is subject to the developer’s experience. Multiple
considerations have to be taken into account:

• Comprehensive ontologies reduce the effort of implementing missing concepts.
• On the other hand, concepts that are not used by the application cause unnecessary

overhead in memory consumption and processing power.
• Preferably, existing sources should be well known and well accepted by the corre-

sponding domain experts.
• In general, ontologies already used in other applications are preferred to others.
• Tier n + 1 ontologies may contain information that is relevant for multiple Tier n

ontologies.

116

6.3. Ontology design

Unfortunately, selecting the “best” subset of ontologies is not a straightforward procedure
and – taking the required effort into account – in most cases, it is not practicable.
However, results from the previous analysis provide a sound basis. The preferable
approach for selecting and combining Tier n + 1 ontologies is to select each ontology only
if it adds considerable value to the corresponding Tier n ontology. It is thereby necessary
to re-evaluate each ontology’s rating after each step to avoid the selection of multiple,
similar ontologies. After having selected and combined all relevant Tier n + 1 to Tier n
ontologies, the methodology continues with the model step on the Tier n level.

Brief discussion on the reusable ontology design methodology

The reusable ontology design methodology allows to create application-specific ontologies
faster and easier by strongly encouraging the reuse of existing work, not only in the form
of existing ontologies but also including books, articles, specifications, and standards.
Furthermore, each of the designed ontologies generated while following the procedure,
except for the application-specific ontology, focuses on being reusable by other developers
or other projects. An obvious drawback of this approach is that the resulting, application-
specific ontology might contain more classes, individuals, and properties than required
for the specific use case. This causes additional resource consumption for storing and
processing, which has to be considered if resource-constrained devices need to store these
ontologies.

6.3.2 Reusable ontology design
The exact number of levels of the methodology presented in the previous section is not
predetermined and may also be fixed while following the methodology. The switching
optimization MAS ontology uses a hierarchy of three types of ontologies, as illustrated in
Figure 6.11. While the application-specific ontology keeps its name, Tier 1 ontologies
are referred to as domain ontologies or domains, and Tier 2 ontologies are referred
to as fragment ontologies or fragments. The individual steps of the methodology are
documented using a graphical notation.

A. Divide application-specific ontology

This first step aims to reduce the complexity of the application-specific ontology by
separating it into multiple domains. The use case description of the switching optimization
use case provides a good starting point to divide the application-specific ontology into
smaller domain ontologies:

• Agents and services: Agents in the sense of MAS-theory typically have a specific
structure and several attributes like a name and possibly multiple addresses. They
are often closely related to the services they offer and are, therefore, part of the
same domain. Services themselves also may have multiple attributes like a name
and additional information required to invoke the service.

117

6. Design

G. Model
Appl.-spec. Ontology

B. Divide Domains E. Model Domains
D. Select & Combine Fragments

A. Divide Application-
specific Ontology

C. Model Fragments

Application-specific Ontology

Domains

Fragments

F. Select & Combine Domains

Figure 6.11: Three-level methodology for the switching optimization MAS ontology

• Power system components: As the intended MAS operates in the SG-field, power
system components form the most crucial part of the agents’ environment. Never-
theless, they are not directly related to agents and services but merely one field of
application where MASs can be applied. Therefore, they form a separate domain.

• Communication protocols: Communication protocols form another domain because
they are used not only by agents but also by other devices in the IoT.

• Rating: Due to the openness and flexibility of MASs, there often exist many
different possibilities to achieve the same goal. The various possibilities need to be
comparable to choose the best option, which can be achieved via a rating ontology.
The rating domain includes QoS and dependability attributes. Furthermore, it
provides concepts to assign these attributes to individuals of the other domains,
e.g., the availability of a service, the reliability of an electric switch, or some
communication protocol’s integrity features.

As a starting point, the four identified domains are arranged in a simple graph, as shown
in Figure 6.12. This graph is complemented with additional information along following
the process.

B. Divide domains

The domain ontologies are now divided into fragments. The following list briefly discusses
possible sources for each domain and their fragments:

• Agents and services domain: Despite being a major field of application for on-
tologies, there are not many ontologies specifically focusing on MASs and agents

118

6.3. Ontology design

Agents and Services

Power System C
om

po
ne

nt
s

Com
munication

Ra
tin

g

Figure 6.12: Step 1: Identifying and adding domains to the graph

on a meta-level. One example is the Onto2MAS framework [238], Donzelli et al.
define an agent primarily based on its behavior and its role within the MAS, which
is a reasonable approach for their intended use case of generating MASs directly
from information given within the ontology. As most publications about MASs
in the SG-field do, Donzelli et al. themselves refer to the FIPA specifications for
specific functionality, e.g., FIPA-ACL [127] for specifying the encoding of messages
exchanged between agents.

Besides the ACL, FIPA also gives a quite general description of agents in their FIPA
agent management specification [125]. Although not being available in standard file
formats, in this specification FIPA introduces the fipa-agent-management ontology,
which defines the basic components of a FIPA-compliant MAS. Unfortunately, the
ontology itself is not very sophisticated and would impose severe limitations if
it were directly translated to an RDF or OWL ontology: most parameters are
specified to be of type string or set of string. Considering, for example,
the languages supported by a service, creating dedicated individuals that represent
the corresponding languages and referencing them in the ontology is beneficial over
listing the supported languages as a set of strings.

The concept of agents can also be found in other ontologies, such as the COm-
mon Semantic MOdel (COSMO) [239], the FIESTA-IoT [240] ontology and the
DOLCE+DnS UltraLite (DUL) [241] ontology. However, they do not specify the
inner structure of an agent as detailed as FIPA does and are therefore not very
suitable for the present use case.

119

6. Design

• Power system components domain: The CIM is probably the best-known model
for power system components and very comprehensive. The standard document
IEC 61970-501 [81] specifies the RDFS format for CIM.

The Prosumer-Oriented Smart Grid (ProSG) ontology [242] has a stronger focus
on the consumer level and is, therefore, less comprehensive regarding power system
components. However, it might be a valuable source once the example use case is
extended towards DERs.

• Communication domain: A core aspect of any MAS is the cooperation between
agents, which heavily builds upon communication. While application layer protocols
are often designed for a specific MAS or AP, e.g. FIPA, they typically build upon
existing lower-layer protocols like Transport Layer Security (TLS), Transmission
Control Protocol (TCP), and Internet Protocol (IP), and corresponding Link layer
protocols. In an open MAS, knowledge about the communication network topology
and which protocols are supported by each agent is required to select a suitable
communication partner. A typical source for such information are ontologies about
the IoT or the Internet in general, like the IoT Network ontology, described in [243].
Another valuable starting point for an ontology about communication protocols
is provided by Jablonski’s “Guide to Web Application and Platform Architec-
tures” [244]. Therein, Jablonski provides a comprehensive classification of Internet
standards and technologies. The root classification entities are Interaction, Logic,
Security, Data Management, Description, Presentation, Export/Import Interface,
and Platform Software. These root classification entities are then further subdivided
into Category Bags (CBs). The author states that the classification is incomplete
and can be extended by additional CBs. Finally, many existing Internet standards
and technologies are assigned to each CB, and additional items (e.g., upcoming
protocols) can easily be added.

• Rating domain: In MASs, agents may offer their services via multiple interfaces.
Therefore, some form of rating scheme is required to select the most appropriate
interface. For this reason, FIPA specifies the fipa-qos ontology [245].

In regards to W3C-compliant ontologies, the Quality of Service Modeling Ontology
(QoS-MO) is a very sophisticated approach [246]. It includes a variety of QoS and
dependability attributes and provides concepts for rating these attributes, enabling
agents to select a suitable service, e.g., based on their availability values.

When dealing with critical infrastructure, traditional QoS attributes are often
extended by aspects targeting the notion of dependability as defined by Avizienis,

120

6.3. Ontology design

Laprie, Randell, et al. [6]. Their structured view on dependability in the form
of a dependability tree and the corresponding statements about the relationships
between dependability attributes, means, and threats provide an excellent starting
point for an ontology about dependability.

A separate ontology is required to assign ratings (values) to the various non-
functional attributes like dependability attributes. This ontology should combine
and generalize information from various sources and domains into a comprehensive
collection of metrics and scales.

The various ontologies and other sources of information identified, i.e., the fragment
ontologies, can now be added to Figure 6.12. The result is depicted in Figure 6.13.

Agents and Services

Power System C
om

po
ne

nt
s

Com
munication

Ra
tin

g
Onto2MAS FIPAAgentManag. COSMO

D
U

L
FIE

S
TA

-
IoT

C
IM

ProSG
IoT Netw ork

Jablonski's

C
lassification

FI
PA

Q
oS

Q
oS

-M
O

Dep.

Tree

M etrics
and

Scales

Figure 6.13: Step 2: Adding fragments to the graph and assigning them to domains

C. Model fragments

Identified fragments that are not already available as ontologies in any standardized
ontology file format are modeled using existing ontology design methodologies (cf. Sec-
tion 2.4). The Ontology development 101 methodology was used in this thesis. It is
sufficiently sophisticated for this purpose, as the complexity of the application-specific
ontology has already been reduced by separating it into domains and fragments.

The ontologies derived until this point are not at all specific to the use case but reflect
small portions of the identified domains in very abstract and general ways (e.g., attributes,
threats, and means of dependability; main elements of an agent; known IoT communi-
cation protocols; power system components). This increases the likelihood of deriving

121

6. Design

fragment ontologies that are also useful for researchers beyond the exact same field of
expertise, e.g., someone who specialized in MASs for production facilities or developers
who want to extend their ontologies with dependability concepts. The fragments that
had to be modeled in the course of this thesis are discussed in the following. For all other
fragments, the reader may refer to the sources provided in the previous section.

• FIPA agent management fragment: The FIPA agent management ontology is
depicted in Figure 6.14. It is based on the formal definition provided in the FIPA
Agent Management Specification [125]. Its intended purpose is to describe each
agent in the Directory Facilitator, hence the name of its main class: DfAgentDe-
scription. Information about the services offered by each agent is modeled via the
ServiceDescription class. Among various other attributes, the specification already
foresees the possibility to “discriminate” between multiple services (possibly offered
by different agents) via the Property class, whereby property is not specified any
further at this point. Although the original specification does not foresee this, the
same concept can also be applied to the DfAgentDescription class, which allows
adding properties to the agent description. Additional information about the
remaining concepts illustrated in Figure 6.14 is provided by the specification [125].

DfAgent
Description

Service
Description

offersService

hasOwner

∩∩ Ontology
supportsOntology

Interaction
Protocol

supportsInteractionProtocol

hasServiceType

ServiceType

AgentIdentifier

hasAgentIdentifier

string

hasName

∩∩

string

hasAddress

string

hasResolver

dateTime

hasLeaseTime

Property

hasProperty

Figure 6.14: FIPA fragment ontology

• Dependability tree fragment: The dependability tree ontology is depicted in Fig-
ure 6.15 and based on [6]. A description of the various threats, attributes, and
means is provided in Section 1.2. The illustrated ontology deviates from the original
dependability tree (cf. Figure 1.4), as there are no connections between the various
aspects to a central Dependability class. This is because there is no pre-defined
property available in OWL that would match the required semantics, e.g. isAs-
pectOf. Furthermore, such a property would not add any useful information and it
is therefore not added.

122

6.3. Ontology design

Dependability
Means

Fault
Forecasting

Fault
Prevention

FaultToleranceFaultRemoval

Subclass of

Subclass of

Subclass of

Subclass of

Dependability
Attribute

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Dependability
Threat

Fault

Failure

Error

Subclass of

Subclass of

Subclass of

Dependability
Threat

Fault

Failure

Error

Subclass of

Scalability

Subclass of

Privacy

Subclass of

Figure 6.15: Dependability tree fragment ontology

• Metrics and Scales fragment: The metrics and scales ontology depicted in Fig-
ure 6.16 enables the rating and comparison of non-functional attributes. It is
designed to be used along with other ontologies that define the meaning of these
attributes. The RateableAttribute is used as a base class in this ontology. However,
this class should not be used as a type for individuals but an appropriate sub-class
should be chosen. Thereby, the following modeling convention is used and also
reflected in the naming scheme: the first level of sub-classes defines the nature of
the attribute, and the second level of sub-classes defines the nature of the value
that is used to rate this attribute.

A NominalAttribute can take one of several, typically non-overlapping nominal
values. Following the naming convention, the value of a CategoricalNominalAt-
tribute represents a category (e.g., “LV”, “MV”, “HV”). A DichotomousAttribute
can only take one of exactly two categorical values and, therefore, is a further
specialization of a CategoricalNominalAttribute. There is no intrinsic order within
nominal values, i.e., one value cannot be regarded better or worse than another.

An OrdinalAttribute is defined as an attribute taking values that can be ordered.
LiteralOrdinalAttributes take literal values that can be ordered in a relative manner
to each other. Typically, these literal values are of some numeric data type.
CategoricalOrdinalAttributes take OrdinalCategoricalValues, which are values that
are represented by categories that can be ordered (e.g., “very good”, “good”,
“medium”, “bad”). While OrdinalAttributes can be ordered relative to each other,
there is no equal distance between successive values, i.e., there might be only a
negligible small difference between “very good” and “good”, but a larger difference
between “medium” and “bad”.

The definition of an IntervalAttribute adds the possibility to model the concept
of equal distances, i.e., the distance of two IntervalAttribute values is meaningful.

123

6. Design

Rateable
Attribute

Interval
Attribute

Nominal
Attribute

Ordinal
Attribute

Ratio
Attribute

Literal
Interval

Attribute

Categorical
Nominal
Attribute

Literal
Ordinal

Attribute

Categorical
Ordinal

Attribute

Literal
Ratio

Attribute

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Dichotomous
Nominal
Attribute

Subclass of

Categorical
Value

Nominal
Categorical

Value

Dichotomous
Value

Subclass of

Subclass of

Ordinal
Categorical

Value

Subclass of

∩∩

hasUpperLiteralBound
(functional)

hasLowerLiteralBound
(functional)

hasLiteralValue
(functional)

Literal

Literal

Literal

1

isOppositeOf

∩∩

hasCategoricalValue

hasNominalValue

hasOrdinalValue

hasDichotomousValue

hasRelationTo
(transitive)

isWorseThan
(transitive)

isBetterThan
(transitive)

Figure 6.16: Metrics and scales fragment ontology

For example, 40 ◦C and 20 ◦C have the same distance as 80 ◦C compared to 60 ◦C.
However, while the distance is meaningful, most mathematical operations, in
particular multiplication, are not. This characteristic can be traced back to the
lack of an absolute/true zero in interval scales. For example, by the definition of
IntervalAttributes, 40 ◦C is not twice as warm as 20 ◦C, as the Celsius scale lacks a
true zero.

For this reason, the RatioAttribute is introduced as a final class that adds the
possibility to model scales with true zeros. The LiteralRatioAttribute takes literal
values. For example, a load of 2 kW electrical power consumes twice as much power
as a load with only 1 kW and the same as four loads with 500 W each.

D. Select & combine fragments

For selecting possibly relevant sources of information, it is useful to first collect and rate
them according to their suitability for the domain. The rating for each fragment has
been added to Figure 6.13, resulting in Figure 6.17. The height of each bar, starting from
the center of the diagram, directly corresponds to the associated rating, i.e., high bars =∧
high ratings, low bars =∧ low ratings. For example, the Onto2MAS framework does not
cover agents’ inner structure to the same level of detail as the FIPA agent management
specification and is, therefore, rated lower.

124

6.3. Ontology design

Agents and Services

Power System C
om

po
ne

nt
s

Com
munication

Ra
tin

g
Onto2MAS FIPAAgentManag. COSMO

D
U

L
FIE

S
TA

-
IoT

C
IM

ProSG
IoT Netw ork

Jablonski's

C
lassification

FI
PA

Q
oS

Q
oS

-M
O

Dep.

Tree

M etrics
and

Scales

Figure 6.17: Step 3: Adding fragment ratings to the graph

Ontologies that are excluded based on their low ratings are removed from Figure 6.17,
resulting in Figure 6.18. The remaining fragments are combined by importing them to
the corresponding domain ontologies. It is thereby without problems to use the same
fragments for multiple domain ontologies.

In this example, the Agents and services, Power system components, and Communication
protocol domains consist of only one fragment. Thus, these fragments can be imported
into their corresponding domain ontology, and no additional domain modeling is required.
The dependability tree fragment and the metrics and scales fragment have to be imported
for the rating domain. The concepts that establish the relations between both fragments
are modeled in the next step.

E. Model domains

The Dependability tree fragment and the Rating fragment shall now be combined. Ap-
propriate rating metrics for each dependability attribute have been identified in the
dependability requirements analysis phase (cf. Section 5.2). The combination of both
fragments and additional concepts are illustrated in Figure 6.19. Most importantly,
the DependabilityAttribute is declared a subclass of RateableAttribute, i.e., each De-
pendabilityAttribute is also a RateableAttribute. The corresponding metrics of each
DependabilityAttribute are discussed in the following.

125

6. Design

Agents and Services

Power System C
om

po
ne

nt
s

Com
munication

Ra
tin

g FIPAAgentManag.

C
IM

Jablonski's

C
lassification

FI
PA

Q
oS

Dep.

Tree

M etrics
and

Scales

Figure 6.18: Step 4: Removing unused fragments from the graph

Reliability, maintainability, and availability are all probabilistic values. Availability is
defined by a simple probability value. Reliability and maintainability are defined by
a PDF. The PDF can easily be converted to a complementary CDF. Neither of these
metrics has been defined in the Rating fragment ontology. Thus, they need to be added
to the rating ontology domain. The matter is relatively straightforward for availability:
the Probability class is simply defined as a subclass of LiteralRatioAttribute. The
availability can, therefore, be defined by the hasLiteralValue property. For reliability and
maintainability, the hasFunctionalValue property is introduced. It allows specifying a
function, e.g., a PDF or CDF, that has to be evaluated to derive the corresponding value.

As mentioned in Section 5.2.1, a Weibull PDF is a suitable mathematical model to specify
reliability and maintainability. It is defined by Equation 6.1 and, in its standard form,
requires two parameters: k and λ. Furthermore, the time offset Δt has been added,
allowing to take the installation time of a component into account. The corresponding
properties hasK, hasLambda, and hasTimeOffset are therefore added to the rating domain
ontology.

f(t) =

 k
λ

t−Δt
λ

k−1
e−((t−Δt)/λ)k

t − Δt ≥ 0,

0 t − Δt < 0,
(6.1)

126

6.3. Ontology design

Dependability
Attribute
 (external)

Availability
 (external)

Reliability
 (external)

Safety
 (external)

Confiden-
tiality

 (external)

Integrity
 (external)

Maintain-
ability

 (external)

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Rateable
Attribute
 (external)

Ratio
Attribute
 (external)

Literal
Ratio

Attribute
 (external)

hasUpperLiteralBound
(functional)

hasLowerLiteralBound
(functional)

hasLiteralValue
(functional)

Literal

Literal

Literal

Subclass of

Subclass of ProbabilitySubclass of

Subclass of

Subclass of

Subclass of

Ordinal
Attribute
 (external)

Categorical
Ordinal
Attribute
 (external)Subclass of

Subclass of

Ordinal
Categorical

Value
 (external)

hasOrdinalValue

Subclass of

Subclass of

Subclass of

L

M

H

SIL 0

SIL 1

SIL 2

SIL 3SIL 4

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type
rdf:type

rdf:type

hasFunctionalValue
(functional)

PDF

isBetterThan
(transitive)

isBetterThan
(transitive)

isBetterThan
(transitive)

isBetterThan
(transitive)

isBetterThan
(transitive)

isBetterThan
(transitive)

Subclass of

Scalability
 (external)

Privacy
 (external)

Subclass of

Subclass of

Subclass of

Subclass of

Weibull
PDF

Subclass of

hasK
(functional)

hasLambda
(functional)

Literal

Literal

hasTimeOffset
(functional)

Date

Subclass of

Figure 6.19: Rating ontology domain

Safety, scalability, privacy, confidentiality, and integrity are each modeled as Categor-
icalOrdinalAttribute. For all attributes except safety, H, M, and L are used as Ordinal-
CategoricalValues. Their meaning is defined in Section 5.2. Naturally, H isBetterThan
M, and M isBetterThan L. Similarly, the SIL levels defined in IEC 61508 [50] (SIL 1 to
SIL 4) are modeled as OrdinalCategoricalValues for safety, whereby SIL 4 isBetterThan
SIL 3, etc. Additionally, SIL 0 is introduced to indicate that no safety evaluation has
been performed for the rated individual and, thus, no safety guarantees can be given.

The agent and services domain ontology is illustrated in Figure 6.20. The FIPA specifica-
tion and, therefore, the FIPA fragment ontology allows to assign contact information
to Agents via the hasAddress property and the hasResolver property. However, this

127

6. Design

approach is limited as it does not support assigning these addresses or other properties
to specific communication interfaces of the agent like LTE, LoRaWAN, or power line
communication [247]. For this purpose, the CommunicationInterface class is added in the
Agents and services domain ontology illustrated in Figure 6.20. The hasAddress property
is used to assign addresses to CommunicationInterfaces. The hasProperty property allows
model properties of CommunicationInterfaces and, therefore, enables the possibility to
discriminate between multiple CommunicationInterfaces.

DfAgent
Description

 (external)

Service
Description
 (external)

offersService

hasOwner

∩∩

Ontology
 (external)

supportsOntology

Interaction
Protocol

 (external)

supportsInteraction
Protocol

hasServiceType

ServiceType
 (external)

Agent
Identifier

 (external)

hasAgentIdentifier

string

hasName

∩∩

string

hasAddress

string

hasResolver

dateTime

hasLeaseTime

Property
 (external)

hasProperty

Communication
Interface

string

hasAddress hasCommunication
Interface

hasProperty

Figure 6.20: Agents and services domain ontology

F. Select & combine domains

All of the identified domain ontologies are selected for the automated switching opti-
mization application. Therefore, they are combined and form the application-specific
ontology.

G. Model application-specific ontology

Information about interdependencies between the individual domains is now added to
the application-specific ontology. The main concepts are illustrated in Figure 6.21.
Each Property discriminates a Service, an Agent, or a CommunicationInterface and, as
such, is a RateableAttribute. Therefore, the Property class is declared as a subclass of
RateableAttribute. Furthermore, as this is the application-specific ontology, the Automat-
edSwitchingOptimization literal is added as InteractionProtocol, and the fragment and
domain ontologies are added. Finally, the LossEvaluation and Switching services are also
added to the ontology. This completes the ontology design, and the application-specific
ontology is now ready to be instantiated for the individual agents.

128

6.3. Ontology design

DfAgent
Description

 (external)

Service
Description

 (external)

∩∩ Property
 (external)hasProperty

Rateable
Attribute
 (external)

Subclass of

Dependability
Attribute
 (external)

hasServiceType

ServiceType
 (external)

Loss
Evaluationrdf:type

Switching

rdf:type

∩∩

Ontology
 (external)

supportsOntology

Interaction
Protocol
 (external)

supportsInteractionProtocol

Automated
Switching

Optimization

rdf:type

Rating

rdf:type

Fipa
Agent

Manage-
ment

rdf:type

CIM

rdf:type Depend-
ability
Tree

rdf:type

Non-
functional
Attributes rdf:type

Agents
And

Services

rdf:type

Power
System

Resources

rdf:type
Switching
Optimiza-

tion

rdf:type

Communi
cation

Interface
 (external)

hasCommunicationInterface
hasProperty

supports
Standard

TLS
rdf:type

InternetStand
ardAnd

Technology
 (external)

hasProperty

Security
 (external)

Subclass of

Communi
cation

 (external)

Subclass of

Subclass of

Figure 6.21: Switching optimization application-specific ontology

129

CHAPTER 7
Implementation

The implementation phase consists of the agent implementation and ontology instantiation
activities, as depicted in Figure 7.1. Both activities are mostly independent of each
other and can be conducted in parallel. The agent implementation activity builds
upon the PASSI agent implementation model and code model. During the ontology
instantiation activity, the ontology created in the previous phase is instantiated for each
agent. Thereby, the required individuals and literal values are added. For non-functional
attributes, ontology instantiation is exemplified based on the switching service and a
communication protocol for invoking this service.

Implementation Agent
Implementation

Ontology
Instantiation

cf. Chapter 6:
Design

cf. Chapter 8:
Evaluation

Tools: PASSI Agent
Implementation

Model

Tools: Reusable
Ontology Design

Methodology

Figure 7.1: Implementation phase: activities and tools

7.1 Agent implementation
Agent implementation directly builds upon the results of the MAS design activity and
refines them to create executable software. Thereby, the focus is primarily on developing

131

7. Implementation

the individual agents and the algorithms they execute, rather than on implementing
services like agent registration and discovery. These services are either provided by an
existing AP (cf. Section 2.3.5) or need to be developed and implemented separately.

7.1.1 Agent implementation model

The PASSI methodology continues with the agent implementation model that includes
several diagrams to define the structure and behavior of the overall MAS and individual
agents. Thereby, the Agent Structure Definition phase and the Agent Behavior Def-
inition phase are closely intertwined and typically conducted in parallel. The agent
implementation model closes the gap between MAS development and classical software
development.

The agent structure definition results in a MASD diagram for the overall MAS and
multiple SASD diagrams (one per agent). The MASD diagram for automated switching
optimization is depicted in Figure 7.2. It builds upon the roles description diagram of
Figure 6.8. However, from a software development point of view, there is no need to
separate the various agent roles, as they will be implemented in a single class. Thus,
each agent is represented by a class in the MASD diagram, subsuming all the various
roles it can take.

<<Agent>>
SwitchAgent
<<Agent>>

SwitchAgent

Listener()
MeasurePowerConsumption()
CheckOptimizationRunTrigger()
StartOptimizationRun()
StartSavingsEstimation()
EstimateLineSavings()
AskSavingsEstimation()
StartLossesEstimation()
AskLossesEstimation()
EstimateLineLosses()
CheckRequirements()
AskSwitchClose()
OpenSwitch()
FinishOptimizationRun()
ReceiveEstimatedSavings()
ReceiveEstimatedLosses()
ReceiveSwitchClosedNotification()
TellEstimatedSavings()
TellEstimatedLosses()
CloseSwitch()
ReceiveSavingsEstimationReq()
ReceiveLossesEstimationReq()

<<Agent>>
TransformerAgent

<<Agent>>
TransformerAgent

Listener()
MeasurePowerConsumption()
EstimateTransformerSavings()
ReceiveSavingsEstimationReq()
ReceiveLossesEstimationReq()

 Three-phase Meter
(IEC 61850 MMXU)

Controllable Switch
(IEC 61850 XCBR)

Figure 7.2: PASSI MASD diagram for automated switching optimization

Additionally, external systems the agent interacts with are added as actors. The Trans-
former Agent and the Switch Agent receive data from a three-phase meter (e.g., an
IEC 61850 MMXU measurement node), which measures the currents and voltages on

132

7.1. Agent implementation

each phase. Additionally, the Switch Agent interacts with the controllable switch (e.g.,
an IEC 61850 XCBR circuit breaker node) to determine and control the switch state.

The SASD diagram for the Switch Agent is depicted in Figure 7.3. It defines a class for
the Switch Agent itself as a subclass of the more general FIPA_Agent class. Additionally,
the PASSI methodology suggests defining one class per task. The necessary attributes
and internal methods are defined for each task. For example, the CheckOptimization-
RunTrigger task requires a powerConsumptionHistory array to be able to detect changes
in power consumption and trigger the optimization run, as defined in Section 6.1.7. The
CheckOptimizationRunTrigger() is the class constructor and the StartTask() method
actually performs the task. All other tasks listed in the MASD diagram are added to the
SASD diagram in the same manner. The SASD diagram is well-suited for automated
code generation if the intended programming language supports OOP. Otherwise, it is
still a valuable means of documentation.

......

TaskTask GetNeighboringAgentsGetNeighboringAgents

- nodesVisited
- queue
+ GetNeighboringAgents()

ListenerListener

+ Listener()
+ HandleReq()
+ StartTask()

SwitchAgentSwitchAgent

SwitchAgent()

FIPA_AgentFIPA_Agent

CheckOptimizationRunTriggerCheckOptimizationRunTrigger

- powerConsumptionHistory[]
+ CheckOptimizationRunTrigger()
+ StartTask()

StartOptimizationRunStartOptimizationRun

- receivedSavings
- receivedLosses[]
+ StartOptimizationRun()
+ StartTask()

StartSavingsEstimationStartSavingsEstimation

+ StartSavingsEstimation()
+ AskSavingsEstimation()
+ HandleInform()
+ FinishSavingsEstimation()
+ StartTask()

EstimateLineSavingsEstimateLineSavings

+ EstimateLineSavings()

Figure 7.3: PASSI SASD diagram for the Switch Agent

The interaction between various classes within each agent and among multiple agents are
examined in more detail using one or several MABD diagrams. They are intended to
illustrate the flow of events and the messages exchanged between agents when executing
specific scenarios. Complex tasks, potentially lengthy tasks, and tasks that require
communication with other agents are implemented asynchronously, which is indicated
by the StartTask method. Furthermore, the message type used for communication with
other agents is specified in parentheses.

Figure 7.4 depicts the MABD diagram for estimating the losses caused by a distribution
line and the corresponding transformer. As defined in the task specification diagram (cf.
Figure 6.7), this scenario is either triggered by an Initiator Switch Agent upon starting

133

7. Implementation

an optimization run or by a Participant Switch Agent upon receiving the corresponding
request via a message. The MABD diagram depicted shows that a task is started for
evaluating the losses. First, the Switch Agent examines the associated area to determine
neighboring agents via the GetNeighboringAgents task. Because the distribution network
follows a forest structure, it can only be supplied by a single agent, which in this example,
is a transformer agent.

SwitchAgent.Start
LossesEstimation

SwitchAgent.
EstimateLineLosses

TransformerAgent.
Listener

TransformerAgent.
ReceiveLosses
EstimationReq

StartLosses
Estimation.Start
LossesEstimation

EstimateLine
Losses.Estimate

LineLosses

ReceiveLossesEsti-
mationRequest.

ReceiveLossesEsti-
mationRequest

ReceiveLosses
Estimation

Request.StartTask

message(request) Listener.
HandleRequest

newTask(ReceiveLosses
EstimationRequest)

EstimateTransfor-
merLosses.

EstimateTransfor-
merLosses

StartLosses
Estimation.Handle

Inform

StartLosses
Estimation.Finish
LossesEstimation

message(inform)

TransformerAgent.
EstimateTransformer

Losses

StartLosses
Estimation.Ask

LossesEstimation

SwitchAgent.Get
NeighboringAgents

GetNeighboring
Agents.GetNeigh-
boringAgentsStartLosses

Estimation.
StartTask

Figure 7.4: PASSI MABD diagram for savings estimation

Next, the losses caused by the line connecting the switch to the corresponding trans-
former are estimated by the EstimateLineLosses task. The Switch Agent then asks the
Transformer Agent to estimate the losses caused by its transformer. The request is
received by the Transformer Agent’s Listener task and forwarded to its ReceiveLossesEs-
timationRequest task. The request is handled by estimating the transformer losses using
the EstimateTransfomerLosses task. The Switch Agent is then informed about the result
and can add it to the line losses calculated before, providing an estimation about the
losses caused by the distribution network in its current configuration.

As a next step towards creating executable code, the individual methods are specified
by means of SABD diagrams. Figure 7.5 exemplifies this for the GetNeighboringAgents
method. The method performs a breadth-first search to identify all neighboring agents
connected to the same area and returns them as a list.

134

7.1. Agent implementation

GetNeighboringAgents(areaNum)

foreach
node in
queue

queue.add(busbar con-
nected via area areaNum)

foreach
component in node.

neighbors

!nodesVisited.
contains(component)

component.
isAgent

T

neighboringAgents.
add(component)

T F

queue.
add(component)

F

return
neighboringAgents

nodesVisited.add(component)

Breadth-first
Search

Components =
Agents, Busbars,

etc.

Figure 7.5: PASSI SABD diagram for the GetNeighboringAgents method

7.1.2 Code model

As argued, the primary focus of the PASSI methodology is on developing the agent
control logic. This is also the case for the code model and supported by the PASSI PTK
and the PASSI Agent Factory (cf. Section 2.3.3), which both build upon JADE as an AP.
However, an agent following the concept of an CAA as defined in Section 6.1.3, includes a
lot more software than an AP. Thus, while an existing AP to build upon is an important
aspect when selecting a suitable programming language and computing platform, the
following components and aspects should also be taken into account:

• Triple store: As KR is a key aspect for this thesis, an agent must include a triple
store. Triple stores are available in various programming languages. However,

135

7. Implementation

they differ regarding performance and features to access, serialize, de-serialize, and
manipulate the information.

• Software libraries: The agents may require access to existing software libraries for
tasks like communication, encryption, and graph algorithms.

• Hardware and processing platform: The agents may be required to be deployed
on existing hardware and processing platforms, resulting in limitations in terms
of processing and storage capabilities, available communication interfaces, and
available OSs. Even if this is not the case, economic considerations may impose
similar limitations.

• Simulation environment: Being able to test and improve agent control code in SG
simulation tools and then reuse as much program code as possible in the real-world
MAS has obvious benefits.

• Sensor/actuator and control interfaces: Sensors/actuators and existing control
equipment may be connected to the agents via industrial communication systems
and protocols that are not necessarily vendor-neutral or have an open specification.
Therefore, the programming language used for the agent’s logic must be compatible
with the available APIs, or additional gateways need to be implemented.

Considering the above list, the C++ programming language has been identified as the
most suitable candidate to implement the Switch Agent and the Transformer Agent. C++
is object-oriented, supports a broad range of existing software libraries, has excellent
compatibility with existing hardware platforms, and supports many existing sensor/actu-
ator and control interfaces, often implemented in C or C++. Furthermore, as will be
discussed in the evaluation chapter, agents implemented in C++ can easily be tested in
the Framework for Network Co-Simulation (FNCS) SG simulation frameworks.

A minor drawback of using C++ as a programming language is the limited availability
of software to store and operate on ontologies. However, very basic triple stores are
also available for C++, and the remaining required functionality for extracting specific
information from the triple store can easily be implemented. Alternatively to using a
C++ triple store with limited functionality, it would also be possible to follow a more
modular programming approach, use a triple store as a standalone component, and access
the information via a standardized interface like SPARQL Protocol and RDF Query
Language (SPARQL)1.

1SPARQL Protocol and RDF Query Language (SPARQL) is a recursive acronym

136

7.2. Ontology instantiation

7.2 Ontology instantiation

The ontology created in the previous chapter contains all relevant concepts between
ontology classes, i.e., the TBox of the switching optimization ontology. Additionally, it
contains some individuals relevant to all agents within the MAS and, therefore, already
a part of the ABox of the switching optimization ontology. However, as argued, in a
large distributed MAS, each agent only requires a certain subset of the complete SG
information like the local grid structure, its neighboring agents, and the communication
protocols it supports. Therefore, the ontology instantiation activity complements the
ABox of each agent-specific ontology with additional individuals.

Agent-specific information can either be added before deploying the ontologies or during
operation. However, also a combination of both approaches may be suitable: some
information, e.g., the agent’s name and the services it supports, may be added in advance,
while other, e.g., the switch state, can only be obtained during run-time and may change.
It immediately follows that synchronizing distributed ontologies may simplify the control
logic of agents in a MAS. If synchronization was handled transparently, individual agents
would not need to bother requesting information from other agents. Instead, they
could just rely on the information in their local triple store. Synchronizing distributed
ontologies is heavily researched under the topic “Change Management for Distributed
Ontologies” [248].

Furthermore, the situation may arise that agents within a MAS support entirely different
ontologies, e.g., because they participate in multiple applications and require multiple
application-specific ontologies. This possibility is already taken into account for by the
FIPA ontology via the supportsOntology property and the Ontology class. For the
switching optimization use case, it is assumed that each agent supports the complete
switching optimization ontology, including all its domain and fragment ontologies.

7.2.1 Application-specific ontology instantiation

Figure 7.6 exemplifies how the automated switching optimization application-specific
ontology is instantiated. It defines the SA1_DfAgentDescription and related infor-
mation for Switch Agent 1. SA1_DfAgentDescription is an instance of the DfAgent-
Description class. Its name is SwitchAgent1 and it can be contacted via its address
asoip://sa1.auto.tuwien.ac.at2.

SwitchAgent1 offers a SwitchingService, which is further described using the SA1_Switch-
ingServiceDescription of type ServiceDescription. In the following sections, additional
non-functional attributes are added to the SA1_SwitchingServiceDescription by making
use of hasProperty and the rating domain ontology.

2asoip is short for automated switching optimization interaction protocol

137

7. Implementation

DfAgent
Description

 (external)

Service
Description

 (external)

∩∩

Property
 (external)

hasProperty

Rateable
Attribute
 (external)

Subclass of

Dependability
Attribute
 (external)

ServiceType
 (external)

Loss
Evaluation

rdf:type

Switching

rdf:type

SA1_Switching
Service

Description

SA1_DfAgent
Description

rdf:type

rdf:type

offersService

offersService

hasServiceType

dateTime

hasLeaseTime string

hasAddress
string

hasResolver

hasAddress

asoip://sa1.auto.tuwien.ac.at

hasName

string

hasName

SwitchAgent1

hasName

SA1SwitchingService

hasProperty

cf. Following

Sections

cf. Following

Sections

SA1_DfAgent
Identifier

hasAgentIdentifier

Agent
Identifier
 (external)

rdf:type

hasAgentIdentifier

Communi-
cationInterface

 (external)

hasAddress

hasCommunication
Interface

supportsStandard

TLS

SA1_CI1

hasCommunication
Interface

hasProperty

cf. Following

Sections

cf. Following

Sections

hasAddress
Communi-

cation
 (external)

Security
 (external)

InternetStan-
dardsAndTech-

nologies
 (external)

Subclass of

Subclass of

rdf:type

hasServiceType

Subclass of

hasName

string

Figure 7.6: Application-specific ontology instantiation for Switch Agent 1

7.2.2 Assigning dependability attributes to ontology elements

The rating domain ontology provides the necessary concepts to assign dependability
attributes and ratings to various ontology elements of the other three domain ontologies.
However, not every dependability attribute can reasonably be assigned to every existing
ontology element. For example, specifying the availability of a communication protocol
like TCP or UDP is not meaningful in most circumstances. Instead, availability should
be assigned to the corresponding communication interface or communication link.

Additionally, assigning dependability attributes to ontology elements is only beneficial
if the values are actually included by the agent control in its decision-making process.

138

7.2. Ontology instantiation

For these reasons, it is not useful to discuss the applicability of each dependability
attribute to each ontology domain exhaustively. Instead, examples of how the switching
optimization use case may benefit from specifying dependability attributes for various
ontology elements are given in the following. Thereby dependability attributes of a
service also include the properties of the corresponding hardware. For example, if a
SwitchingService is unavailable, this can either be caused by a software problem within
the agent, a problem regarding the control interface, or a problem concerning the physical
switch.

In the following, examples are provided of how agents may make use of their knowledge
about dependability to improve the overall performance of the switching optimization
use case. These examples cover availability, reliability, maintainability, integrity, and
scalability. Confidentiality, safety, and privacy are not discussed because, according to the
analysis provided in Table 5.1, no special measures have to be taken to ensure that the
application’s requirements regarding these attributes are met. Therefore, they will not
influence the decision among multiple reconfiguration options and need not be modeled.

Modeling service availability

Assuming there exist multiple reconfiguration possibilities providing roughly the same
power savings, considering the availability of components may have several benefits. For
example, if the Initiator agent possesses knowledge about the availability of each switch,
it may choose to close the switch with the highest availability. This reduces the risk of
getting stuck in a non-optimal configuration if loads shift again at a later point in time.

Furthermore, the overall availability of a specific configuration depends on the availability
of multiple components, for example, the switches and transformers involved in supplying
a specific area. If the LossEvaluationService of one of the switches or the transformer is
unavailable, the system may again get stuck in a non-optimal configuration. Therefore,
in a more sophisticated setup, the Initiator may apply techniques such as Markov models
with probability matrices to determine a more complex but also more precise availability
rating.

Figure 7.7 illustrates how the availability of the SwitchingService of SwitchAgent1 is
modeled. The SA1_SwitchingServiceAvailability individual is added via the hasProperty
property. Availability is thereby expressed as a simple probability value. In the illustrated
example, the SwitchingService of SwitchAgent1 is operational 99.8 % of the time.

Modeling service reliability

Similarly to availability, the Initiator agent may balance possible savings with varying
reliability of multiple possible configurations. It may choose to close the switch with the
highest reliability, thus, reducing the risk of a failure like the malfunction of a switch,
which could cause a power outage within the corresponding area.

139

7. Implementation

Property
 (external)

Rateable
Attribute
 (external)

Subclass of

Subclass of

Dependability
Attribute
 (external)

Availability
 (external)

Subclass of

SA1_Switching
Service

Availability

rdf:type

Ratio
Attribute
 (external)

Literal
Ratio

Attribute
 (external)

Subclass of

Subclass of

Subclass of
rdf:type

Propability
 (external)

Subclass of

∩∩

hasLiteralValue
(functional)Literal

1

hasLiteralValue
(functional) 0.998

Service
Description

 (external)

hasProperty

hasServiceType

ServiceType
 (external)

Switching

rdf:type

SA1_Switching
Service

Description

rdf:type

hasServiceType

hasProperty

Figure 7.7: Modeling service availability

As reliability is modeled using a PDF (or its complementary CDF), determining the more
reliable option among multiple configurations is not as trivial as in the case of availability.
However, the Mean Time To Failure (MTTF) or the probability of a failure occurring
before the next expected reconfiguration can easily be calculated from the PDF and used
as a suitable rating. Furthermore, as in the case of availability, the overall reliability
depends on the reliability of the involved components.

Figure 7.8 illustrates how the reliability of the SwitchingService of SwitchAgent1 is mod-
eled. The SA1_SwitchingServiceReliability is added as an individual of class Reliability
and connected to the service description via hasProperty. Its value is defined by the
SA1_SwitchingServiceReliabilityPDF, which is an individual of type WeibullPDF. The
parameters are set to λ = 16, k = 0.7, and Δt = 2016-01-31 in this example. If the
argument t (cf. Equation 6.1) is given in years, this distribution specifies that the devices
will have failed with 50 % probability after about 10 years, starting from 2016-01-31. The
MTTF is approximately 20 years.

Modeling service maintainability

Maintainability expresses the ability of a component to be repaired after a failure.
Therefore, if the Initiator considers maintainability of components in its decision-making
process and supplies as many loads as possible via well-maintainable equipment, the
accumulated downtime across these loads can be reduced.

Modeling maintainability builds upon the same mathematical concepts as modeling
reliability. Again, it can be expressed via a Weibull PDF or a similar probability
distribution. In the example illustrated in Figure 7.9, parameter λ is set to 20 and k is
set to 3. Parameter t is expected to be given in days, resulting in a 50 % chance of a

140

7.2. Ontology instantiation

Service
Description

 (external)

Property
 (external)

hasProperty

Rateable
Attribute
 (external)

Subclass of

Subclass of

Dependability
Attribute
 (external)hasServiceType

ServiceType
 (external)

Switching

rdf:type

SA1_Switching
Service

Description

rdf:type

hasServiceType

Reliability
 (external)

Subclass of

hasProperty

SA1_Switching
Service

Reliability

rdf:type

Ratio
Attribute
 (external)

Literal
Ratio

Attribute
 (external)

Subclass of

Subclass of

Subclass of
rdf:type

Propability
 (external)

Subclass of

1

PDF
 (external)

hasFunctionalValue

Weibull
PDF

 (external)

Subclass of

hasK
(functional)

hasLambda
(functional)

Literal

Literal
hasTimeOffset

(functional)

Date

SA1_Switching
Service

ReliabilityPDF
rdf:type

hasFunctionalValue

hasK
(functional)

hasLambda
(functional)

0.7

16

hasTimeOffset
(functional)2016-01-31

Figure 7.8: Modeling service reliability

device being repaired within the first 17 h, and a Mean Time To Repair (MTTR) of 20 h.
In contrast to the Weibull PDF for reliability, Δt is set to 0 in the case of maintainability.
Therefore, t = 0 corresponds to the moment the service or the controlled device fails, and
any time t > 0 corresponds to the time passed since this event.

Modeling communication protocol integrity

Agents may support multiple communication interfaces and communication protocols
with varying integrity features, e.g., using no, basic, or very sophisticated encryption
mechanisms. Knowledge about these features allows selecting an interface and protocol
with an appropriate degree of integrity for a specific service or data request. For example,
the content of a switching request message or its confirmation must be well protected
against unauthorized modification as changing this information would immediately cause
severe problems in the grid. However, if an agent does not provide appropriate integrity
mechanisms or the corresponding communication link fails, this does not mean that the
agent cannot at all contribute to the system. It may still be possible for this agent to
offer the LossEvaluationService or other services with reduced integrity requirements.

Figure 7.10 illustrates how the integrity of a communication protocol is modeled. The
integrity of the TLS protocol is defined via the hasProperty reference to TLSIntegrity.
Furthermore, the TLSIntegrity is rated high by assigning the H ordinal categorical
value to the TLSIntegrity individual via the hasOrdinalValue property. The SA1_CI1

141

7. Implementation

communication interface supports the TLS standard. Finally, the SA1_CI1 is offered as
a communication interface by the SwitchingService of SA1.

Property
 (external)

Rateable
Attribute
 (external)

Subclass of

Subclass of

Dependability
Attribute
 (external)

Maintain-
ability

 (external)

Subclass of

SA1_Switching
Service

Maintainability

rdf:type

Ratio
Attribute
 (external)

Literal
Ratio

Attribute
 (external)

Subclass of

Subclass of

Subclass of
rdf:type

Propability
 (external)

Subclass of

1

PDF
 (external)

hasFunctionalValue

Weibull
PDF

 (external)

Subclass of

hasK
(functional)

hasLambda
(functional)

Literal

Literal
hasTimeOffset

(functional)

Date

SA1_Switching
Service

Maintainability
PDF

rdf:type

hasFunctionalValue

hasK
(functional)

hasLambda
(functional)

3

20

hasTimeOffset
(functional)0

Service
Description

 (external)

hasProperty

hasServiceType

ServiceType
 (external)

Switching

rdf:type

SA1_Switching
Service

Description

rdf:type

hasServiceType

hasProperty

Figure 7.9: Modeling service maintainability

Service
Description

 (external)

Property
 (external)

hasProperty

Rateable
Attribute
 (external)

Subclass of

Subclass of

Dependability
Attribute
 (external)

has
Communication

Interface

Communica-
tionInterface

 (external)

SA1_CI1

rdf:type

SA1_Switching
Service

Description

rdf:type

has
Communication

Interface

Safety
 (external)

Subclass of

hasProperty

TLS
Integrity

rdf:type

Ordinal
Attribute
 (external)

Categorical
Ordinal
Attribute
 (external)

hasOrdinalValue

Subclass of

Subclass of

OrdinalCate-
goricalValue

 (external)

H
hasOrdinalValue

Subclass of

rdf:type

rdf:type

TLS

supportsStandard

Figure 7.10: Modeling communication protocol integrity

142

7.2. Ontology instantiation

Modeling communication protocol scalability

Although most communication protocols are point-to-point/unicast protocols, more
scalable alternatives exist in multicast protocols. These can either be broker-based like
Message Queuing Telemetry Transport (MQTT) and Apache Kafka, or broker-less like
Internet Protocol version 6 (IPv6) multicast. Multicast protocols allow reducing the
communication loads that need to be handled by individual agents as the communica-
tion system takes care of replicating and delivering messages. Therefore, choosing a
communication protocol that supports multicast over unicast alternatives may reduce
the required processing power, memory consumption, and power consumption of agents.
Additionally, multicast protocols may reduce the message load and power consumption
of the communication network. It is also possible to address a large group of agents via a
single multicast message while using unicast messages for the remaining agents that do
not support the multicast protocol if this information is available in the triple store.

As illustrated in Figure 7.11, modeling communication protocol scalability builds upon
the same concepts as modeling communication protocol integrity. The scalability of
MQTT is rated medium (M) in this example, as MQTT requires a broker. This may
constitute a communication bottleneck if many agents communicate simultaneously if no
additional measures like a scalable MQTT broker are implemented.

Service
Description

 (external)

Property
 (external)

hasProperty

Rateable
Attribute
 (external)

Subclass of

Subclass of

Dependability
Attribute
 (external)

has
Communication

Interface

Communica-
tionInterface

 (external)

SA1_CI1

rdf:type

SA1_Switching
Service

Description

rdf:type

has
Communication

Interface

Safety
 (external)

Subclass of

hasProperty

MQTT
Scalability

rdf:type

Ordinal
Attribute
 (external)

Categorical
Ordinal
Attribute
 (external)

hasOrdinalValue

Subclass of

Subclass of

OrdinalCate-
goricalValue

 (external)

M
hasOrdinalValue

Subclass of

rdf:type

rdf:type

MQTT

supportsStandard

Figure 7.11: Modeling communication protocol scalability

This completes the implementation phase. The agents can now be implemented and
equipped with the knowledge they require by storing the information in their individual
triple stores. SG simulation is used as a means to evaluate the resulting MAS.

143

CHAPTER 8
Evaluation

The evaluation phase is the last phase of the SELC to be discussed. Its activities and
associated tools are depicted in Figure 8.1. Similarly to the phases before, the evaluation
includes functional and non-functional aspects. The functional evaluation ensures that
the agents, communication systems, interaction protocols, and other functional aspects
perform as expected. This also includes the overall algorithms that implement the use case,
i.e., the distributed switching optimization algorithm in this thesis. The non-functional
evaluation elaborates to which extent considering non-functional attributes, such as
dependability attributes, improves the solution regarding the KPIs that were identified
during the IEC 62559 use case methodology in the planning phase (cf. Table 4.5).

Evaluation
Non-functional EvaluationFunctional Evaluation

cf. Chapter 7:
Implementation

Tools: Smart Grid
Simulation

Tools: Smart Grid
Simulation

Figure 8.1: Evaluation phase: activities and tools

8.1 Smart grid simulation
The functional and non-functional evaluation of the MAS developed throughout this
thesis is conducted using SG simulation. As SGs arise from the application of ICT in
the power grid, a SG simulation framework needs to support both aspects. However,
this requirement is a challenge, as simulation tools for the two domains are based on
fundamentally different concepts. Power systems are electrical networks and, as such,

145

8. Evaluation

are continuous systems. In contrast, ICT systems are mostly discrete systems1, e.g., a
processor operates on a discrete clock and communication networks exchange individual
messages/packets. In [249], Palensky, Widl, and Elsheikh provide an overview of SG
simulation approaches.

Sophisticated simulation tools exist for both types of systems. For example, PY-
POWER [250], GridLAB-D [251], Siemens PSS R SINCAL [214], and DIgSILENT Power-
Factory [252] target power systems simulation and load-flow calculations, while SimPy [253],
NS3 [254], and OMNeT++ [255] were developed for discrete-event simulation. Therefore,
instead of creating new tools to simulate SG applications, co-simulation frameworks allow
to combine multiple simulation tools. Thereby, the individual simulation tools connect
to a central component, e.g., a broker or coordinator. The broker then orchestrates the
simulation steps and handles data exchange between the simulation tools. Examples for
co-simulation frameworks are Simantics [256], Mosaik [257], and FNCS [258].

8.1.1 Framework for Network Co-Simulation (FNCS)
FNCS combines GridLAB-D for power grid simulation and Network Simulator 3 (NS3)
for communication network simulation in a co-simulation framework. The individual
power system components are already provided by GridLAB-D in the form of GridLAB-D
objects. Agent functionality has to be added by implementing agents as additional
GridLAB-D objects. This approach provides agents with easy access to the required data
and functionality, e.g., voltage levels, transformer configurations, and switch control. The
communication network is simulated using a simple Carrier Sense Multiple Access/Colli-
sion Detection (CSMA/CD) network with very low latency in NS3. FNCS acts as an
orchestrator between GridLAB-D and NS3, as illustrated in Figure 8.2. Furthermore,
it and handles message exchange between the simulation tools. The software versions
used for the functional and non-functional evaluations are summarized in Table 8.1. The
following section discusses how agents can be introduced in GridLAB-D.

Table 8.1: Software and versions used for evaluation

Software Version
FNCS 1.0
GridLAB-D 3.0.0-5269 (Hassayampa) 64-bit LINUX RELEASE
NS3 3.19

8.1.2 Agents in GridLAB-D
Out of the box, GridLAB-D supports a number of components typically found in
power distribution networks, e.g., energy sources, transformers, switches, and loads.

1On a lower level, ICT systems build upon physical (and arguably continuous) phenomena, e.g., a
crystal oscillator for clock generation and electromagnetic waves for wireless signal transmission. However,
except for very detailed analyses, ICT systems are typically simulated on a more abstract, discrete level.

146

8.1. Smart grid simulation

FNCS

Figure 8.2: FNCS architecture with GridLAB-D [251] and NS3 [254]

Physical connections between the individual components are modeled via various types
of transmission and distribution lines. Furthermore, GridLAB-D allows to specify objects
that do not necessarily have a physical counterpart in a real world scenario, e.g., recorders
to store simulation results as Comma-Separated Values (CSV) in files and players allowing
to load time-dependent configurations (e.g., load values) from CSV files. The FNCS-
compatible version of GridLAB-D includes the Network Interface object. It allows
GridLAB-D objects to exchange string messages via FNCS and NS3. Furthermore, in
the course of this work, the Switch Agent and the Transformer Agent objects have been
developed and added to GridLAB-D. The behavior of each object in GridLAB-D is
specified in C++. Therefore, agents can make full use of existing C++ libraries.

The realization of the Switch Agent (a) and the Transformer Agent (b) object as well
as their interconnections to other GridLAB-D objects are illustrated in Figure 8.3. As
mentioned, the Switch Agent directly controls a Switch object, i.e., it can open and
close the switch and also determine the switch’s current state. Additionally, the Switch
Agent has access to metering data of Meter objects, which are placed at either side of
each Switch object to be able to measure power consumption, voltage levels and electric
currents. The Network Interface object allows the Switch Agent to communicate with
other agents via FNCS and NS3. The current implementation of the Switch Agent
includes a FIPA ACL library originally developed within the Mobile-C project [134].
It allows to easily encode/decode FIPA ACL messages. Non-functional attributes are
stored in an owlcpp [259] triple store. Furthermore, a Switch Agent uses the Boost Graph
Library (BGL) to store the grid topology of both areas it is connected to as weighted
power grid graph (cf. Section 5.1.1).

147

8. Evaluation

The Transformer Agent follows the same basic structure. Unfortunately, the GridLAB-D
version used does not model no-load losses of transformers directly. Therefore, additional
Load objects (termed Shunt objects in this context to distinguish them from real loads)
have been added at both sides of the transformer. These changes provide the necessary
functionality to implement agents in GridLAB-D and to conduct the functional and
non-functional evaluations.

Switch Agent

GridLAB-D Agent
Implementation and
Included Software

Libraries

Network Interface

FNCS
CommInterface

Switch

Meter

Meter
Transformer Agent

Network Interface

FNCS
CommInterface

Transformer

Meter

Meter

Shunt

Shunt

(a) (b)

GridLAB-D Agent
Implementation and
Included Software

Libraries

GridLAB-D Object Software Component used
within a GridLAB-D Object

Figure 8.3: (a) Switch Agent and (b) Transformer Agent implementation in GridLAB-D

8.2 Functional evaluation
The functional evaluation ensures that the FNCS co-simulation environment performs as
expected and that the individual agents act according to their specifications. Furthermore,
it sets a baseline for energy savings achievable by implementing the switching optimization
use case developed throughout this thesis.

8.2.1 Evaluation setup
Figure 8.4 depicts the GridLAB-D power system used as evaluation setup for the functional
evaluation. Circled numbers and their corresponding arrows represent exchanged messages
and are not relevant at this time, but are explained in the next section. The distribution
network is supplied by two Transformer Agents and contains five Switch Agents, which
enable dynamic restructuring of the grid topology. It consists of 6 areas (as they have
been defined in Section 6.1.5), each containing a single busbar. The distribution network
supplies one commercial load and three residential loads. It is assumed that the grid
topology has already been optimized based on estimated loads when the distribution
network was planned and built. The outcome of this optimization process is given in the
figure. However, this might not be the optimum solution at any given time of the day.

148

8.2. Functional evaluation

Assuming people, following their daily routine, work at the office building during the
day and spend their evenings at home, load values shift from residential loads 1-3 to the
commercial load during office hours and back afterwards. Regarding the overall power
losses, it is therefore beneficial to restructure the distribution network and try to equally
distribute the loads among the available transformers multiple times a day. How this is
achieved by the developed MAS is the topic of the next section.

Switch
Agent 1

Commercial
Load

Residential
Load 3

Residential
Load 2

Residential
Load 1

Transformer
Agent 1

Switch
Agent 2

Switch
Agent 3

Switch
Agent 4

Switch
Agent 5

Transformer
Agent 2

Power
Source

1

2
3

4

5

6

7

8 9

10

1112
13

14

Agent
Agent

Agent

Agent

Agent

Agent

Agent

Figure 8.4: Functional evaluation setup and messages exchanged during optimization

Load values for the commercial and the three residential loads are illustrated in Figure 8.5.
They were obtained from the Open Data Catalog [260] of the U.S. Department of Energy
and from the Pecan Street project [261]. The commercial load represents a medium sized
office building while the three residential loads aggregate load values of 25 arbitrarily
chosen apartments, single-family homes, and town homes. All four datasets contain a
24 h load profile with one hour resolution on a normal working day in Texas, U.S.

8.2.2 Exemplary optimization run
The messages exchanged during a simple optimization run are illustrated in Figure 8.4.
The optimization run takes place at 07:00. From there on, only the commercial load
is supplied by transformer 1, while all residential loads are supplied by transformer 2.

149

8. Evaluation

 0

 50

 100

 150

 200

 250

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Ap
pa

re
nt

 P
ow

er
 [k

VA
]

Time

Residential Load 1
Residential Load 2
Residential Load 3
Commercial Load

Figure 8.5: 24 h load profiles of the commercial and residential loads used for simulation

Another optimization run at 20:00 restores the topology to its original state but is not
discussed in following. It is assumed that all agents are idle at the beginning, i.e., they
do not participate in any other optimization run at the moment. The optimization run
follows the interaction protocol specified in Figure 6.9.

1 Switch Agent 2 sends the first request message to Switch Agent 1 upon recognizing
that the power consumption dropped in the bottom left area due to the reasons outlined
in the previous section. It asks Switch Agent 1 about the current losses that are caused
by suppling residential load 3 and to not participate in any other optimization run
meanwhile. 2 Switch Agent 1, forwards the request in direction of the power source (i.e.,
the transmission network) to Transformer Agent 1. Transformer Agent 1 calculates the
losses based on its electrical parameters and the current load situation. 3 It replies to
Switch Agent 1 using an inform-ref message. 4 The information is forwarded to Switch
Agent 2. 5 Switch Agent 2 now asks all neighboring agents in the area to be optimized
(just Switch Agent 3 in this example) for proposals better than the current situation
by using a CFP message that includes the current loss value. Again, two actions are
specified in the CFP message: a request to offer a proposal for supplying the load, and a
request to not participate in other optimization runs meanwhile. 6 7 8 In the same
manner, Switch Agent 3, Switch Agent 4 and finally Switch Agent 5 themselves issue
CFP messages until Transformer Agent 2 is reached. 9 10 11 12 Transformer Agent 2
answers the CFP by issuing a propose message to Switch Agent 5, which is forwarded to
Switch Agent 4, Switch Agent 3 and finally to Switch Agent 2. 13 Assuming the proposed
configuration is better than the current one, Switch Agent 2 accepts the proposal and
asks Switch Agent 3 to close its switch by sending an accept proposal message. 14 Switch
Agent 3 closes its switch and confirms the request by sending an inform message back to
Switch Agent 2. As residential load 3 is now supplied by Switch Agent 3, Switch Agent 2
opens its switch and the reconfiguration process has finished. A number of inform and
accept proposal messages follow to inform all participants that the optimization run has
been completed and they are free to participate in other optimization runs or start their
own ones. For the sake of clarity, these messages are not included in Figure 8.4.

150

8.3. Non-functional evaluation

8.2.3 Evaluation results
The functional evaluation results are illustrated in Figure 8.6. Transformer losses with
optimization disabled are approximately 58.8 kWh within the simulation period of 24 h.
With optimization enabled, they reduce to approximately 54.5 kWh, thus being cut by
7.3 %. Line losses have currently not been investigated but can be added to the simulation
environment easily. However, using longer lines in favor of equal load balancing among
transformers generally reduces the overall energy savings. If the switching optimization
MAS is disabled, transformer 1 is at up to 110.85 % of its rated power of 250 kVA in this
scenario. A pleasant side-effect of the proposed system is that overload situations of the
transformers are avoided if the switching optimization MAS is enabled.

 0
 50

 100
 150
 200
 250
 300
 350

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Su
pp

lie
d

Po
w

er
 [k

VA
]

Time

Optimization Disabled

Transformer 1 Power
Transformer 2 Power

 0

 1

 2

 3

 4

 5

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Tr
an

sf
or

m
er

 L
os

se
s

[k
W

]

Time

Optimization Disabled

Transformer 1 Losses
Transformer 2 Losses

 0
 50

 100
 150
 200
 250
 300
 350

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Su
pp

lie
d

Po
w

er
 [k

VA
]

Time

Optimization Enabled

Transformer 1 Power
Transformer 2 Power

 0

 1

 2

 3

 4

 5

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Tr
an

sf
or

m
er

 L
os

se
s

[k
W

]

Time

Optimization Enabled

Transformer 1 Losses
Transformer 2 Losses

Figure 8.6: Supplied power and transformer losses of the functional evaluation scenario

8.3 Non-functional evaluation
In the functional evaluation performed so far, agents only consider possible savings during
network reconfiguration. The non-functional evaluation shows that considering non-
functional requirements, in particular dependability attributes, in the decision-making
process can improve the overall performance of the MAS, which is specified by its KPI.
This is exemplified based on the availability attribute of switching services in the following.

8.3.1 Evaluation setup
The evaluation setup used for the non-functional evaluation is depicted in Figure 8.7.
It is an extension of the previously presented distribution network (cf. Figure 8.4). In

151

8. Evaluation

particular, Transformer Agent 3, Switch Agents 6-8, residential load 4+5, and three
additional busbars have been added. Residential loads 4+5 use the same load profiles
as residential loads 1+2 (cf. Figure 8.5). Furthermore, the scenario is similar as before:
throughout the day, loads shift from the residential loads towards the commercial load,
which triggers Switch Agent 2 to start an optimization procedure. However, the more
complex distribution network provides two possible reconfigurations, either by closing
Switch 3 as before, or by closing Switch 6. The transformer managed by Transformer
Agent 3 is slightly more efficient than the transformer managed by Transformer Agent 2.
This favors closing Switch Agent 6 over Switch Agent 3 to supply residential load 3 if no
additional considerations are taken into account.

Switch
Agent 1

Commercial
Load

Residential
Load 3

Residential
Load 2

Residential
Load 1

Transformer
Agent 1

Switch
Agent 2

Switch
Agent 3

Switch
Agent 4

Switch
Agent 5

Transformer
Agent 2

Power
Source

Residential
Load 5

Residential
Load 4 Switch

Agent 7

Switch
Agent 8

Transformer
Agent 3

Switch
Agent 6

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Availability: 0.98Availability: 0.98 Availability: 0.995Availability: 0.995

Figure 8.7: Non-functional evaluation setup

For evaluation purposes, the availability of each agent’s switching service is configured
using two parameters. The first parameter specifies the availability via an absolute
value between 0.0 and 1.0, e.g., 0.995 for Switch Agent 3. This value corresponds
to the definition of availability as specified in Section 1.2. Furthermore, the service
remains unavailable for a specific duration, e.g., for 24 h, which reflects the downtime in
Equation 1.1. If a switching service is unavailable, the Switch Agent does not trigger
an optimization run. Therefore, the network cannot be reconfigured if the switching
service of an agent supplying a particular area becomes unavailable. From these values
(availability and downtime), the corresponding uptime required to satisfy Equation 1.1
can be calculated according to Equation 8.1. For the exemplary values of Availability

152

8.3. Non-functional evaluation

= 0.995 and downtime = 24 h, the uptime results to 4776 h. Therefore, the switching
service of Switch Agent 3 is unavailable for 24 h every 200 days. The switching service of
Switch Agent 6 has an availability of 0.98 and a downtime of 36 h in this scenario. It is
unavailable for 36 h every 75 days. The availability of all remaining services, including
the ones of Switch Agent 2, are not relevant in this evaluation scenario and set to 1.0.

uptime[s] = Availability ∗ downtime[s]
1.0 − Availability

(8.1)

8.3.2 Considering availability
As mentioned, considering the evaluation setup of Figure 8.7, Switch Agent 2 can either
select the switch controlled by Switch Agent 3 or Switch Agent 6 to temporarily supply
the commercial load. Due to the slightly better efficiency of transformer 3, it favors
Switch Agent 6 if availability is not considered in its decision. Otherwise, it selects
Switch Agent 3 over Switch Agent 6 because this reduces the risk of temporarily getting
stuck in a non-optimal configuration. As shown by the evaluation results in the following
section, considering availability of individual services when selecting between multiple
reconfiguration options improves the savings achievable by the switching optimization
use case in this evaluation setup. In any case, either Switch Agent 3 or Switch Agent 6
select Switch Agent 2 to supply residential load 3 again after the power consumption
shifts back to the residential loads.

The necessary information about the availability of the relevant services is modeled
using the ontologies developed throughout the previous phases of the SELC. Fig-
ure 8.8 shows the corresponding parts of the instantiated application-specific ontol-
ogy for Switch Agent 2. It preliminary includes information to identify the agents
it interacts with (SA3_DfAgentIdentifier and SA6_DfAgentIdentifier), the services
they offer (SA3_SwitchingService and SA6_SwitchingService), the individuals for de-
scribing the availability of each service as instances of both Property and Availability
(SA3_SwitchingServiceAvailability and SA6_SwitchingServiceAvailability), and their
corresponding literal values (0.995 and 0.98). Furthermore, individuals of types DfAgent-
Description and ServiceDescription are required to connect the agents to their services.

8.3.3 Evaluation results
To perform the non-functional evaluation, three different settings of the distribution
network illustrated in Figure 8.7 are used. First, as a baseline for the evaluation, the
optimization functionality is disabled, i.e., the switches do not perform any reconfigu-
rations. Second, the switching optimization services are enabled, but the switches do
not consider availability when choosing among possible reconfigurations. And third, the
switches do consider availability by accessing the information stored in their ontologies.
The simulation time is extended from 24 h (in the functional evaluation setup) to six
months from the begin of April to the end of September. During this time frame, the

153

8. Evaluation

Service
Description

 (external)

Property
 (external)hasProperty

Rateable
Attribute
 (external)

Subclass of

Subclass of

Dependability
Attribute
 (external)

hasServiceType

ServiceType
 (external)

Switching

rdf:type

SA3_Switching
Service

Description

rdf:type

hasServiceType

Availability
 (external)

Subclass of

hasProperty
SA3_Switching

Service
Availability

rdf:type

Ratio
Attribute
 (external)

Literal
Ratio

Attribute
 (external)

Subclass of

Subclass of

Subclass of

rdf:type

Propability
 (external)

Subclass of

hasLiteralValue
(functional)

Literal

hasLiteralValue
(functional)

0.995

SA6_Switching
Service

Description

rdf:type

hasServiceType

hasProperty

SA6_Switching
Service

Availability

rdf:typerdf:type

hasLiteralValue
(functional)

0.98

DfAgent
Description

 (external)

SA3_DfAgent
Description

rdf:type offersService

hasName

SwitchAgent3

hasName

SA6SwitchingService

SA3_DfAgent
Identifier

hasAgentIdentifier

Agent
Identifier
 (external)

rdf:type

hasName

SA3SwitchingService

SA6_DfAgent
Description

rdf:type

offersService

hasName

SwitchAgent6

SA6_DfAgent
Identifier

hasAgentIdentifier

rdf:type

hasName

string

hasName

string

Figure 8.8: Switch Agent 2 ontology for the non-functional evaluation

switching services of both Switch Agents (Switch Agent 3 and Switch Agent 6) become
unavailable at least once.

Figure 8.9 compares the load and loss values of the three transformers for each setting.
Note that the supplied power and loss values for transformer 2 and transformer 3 are
virtually identical for the first setting as they both supply loads with the same load
profiles. The figure contains the time period from 12:00 on August 6 to 24:00 on August 7,
which is particularly interesting because Switch Agent 6 becomes unavailable during
August 6. At around 08:00 that day, the network is reconfigured such that Switch Agent 6
supplies residential load 3. It would return to its initial configuration at 21:00, when
power consumption shifts back from the commercial to the residential loads. However,
as the switching service of Switch Agent 6 is unavailable at this time, it is not possible
to re-establish the initial configuration. The issue with Switch Agent 6 is resolved on
August 7 and the initial configuration is restored at 21:00.

The depicted graphs show that the loads are very poorly balanced among the available
transformers if the switching optimization algorithm is disabled entirely. If switching

154

8.3. Non-functional evaluation

optimization is enabled but availability is not considered, the system is stuck in a non-
optimal configuration leading to additional losses between 21:00 on August 6 and 08:00
on August 7. Finally, if availability is considered, Switch Agent 3 is chosen over Switch
Agent 6 to supply residential load 3. Therefore, the issue that the switching service of
Switch Agent 6 becomes unavailable does not cause additional losses during the time
period from 12:00 on August 6 to 24:00 on August 7. However, Switch Agent 3 is
unavailable once for 24 h withing the 6 month simulation period, which is not covered
in the depicted time period but reduces the achieved energy savings. In conclusion,
enabling the optimization algorithm without considering availability reduced transformer
losses from 13 844 kWh to 13 061 kWh during six months simulation period. Considering
availability further reduced the transformer losses to 13 058 kWh.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

08/06 12:00 08/06 20:00 08/07 04:00 08/07 12:00 08/07 20:00

Su
pp

lie
d

Po
w

er
 [k

VA
]

Time

Optimization Disabled

Transformer 1 Power
Transformer 2 Power
Transformer 3 Power

 0

 1

 2

 3

 4

 5

 6

08/06 12:00 08/06 20:00 08/07 04:00 08/07 12:00 08/07 20:00

Tr
an

sf
or

m
er

 L
os

se
s

[k
W

]

Time

Optimization Disabled

Transformer 1 Losses
Transformer 2 Losses
Transformer 3 Losses

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

08/06 12:00 08/06 20:00 08/07 04:00 08/07 12:00 08/07 20:00

Su
pp

lie
d

Po
w

er
 [k

VA
]

Time

Not Considering Availability

Transformer 1 Power
Transformer 2 Power
Transformer 3 Power

 0

 1

 2

 3

 4

 5

 6

08/06 12:00 08/06 20:00 08/07 04:00 08/07 12:00 08/07 20:00

Tr
an

sf
or

m
er

 L
os

se
s

[k
W

]

Time

Not Considering Availability

Transformer 1 Losses
Transformer 2 Losses
Transformer 3 Losses

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

08/06 12:00 08/06 20:00 08/07 04:00 08/07 12:00 08/07 20:00

Su
pp

lie
d

Po
w

er
 [k

VA
]

Time

Considering Availability

Transformer 1 Power
Transformer 2 Power
Transformer 3 Power

 0

 1

 2

 3

 4

 5

 6

08/06 12:00 08/06 20:00 08/07 04:00 08/07 12:00 08/07 20:00

Tr
an

sf
or

m
er

 L
os

se
s

[k
W

]

Time

Considering Availability

Transformer 1 Losses
Transformer 2 Losses
Transformer 3 Losses

Figure 8.9: Supplied power and transformer losses of the non-functional evaluation

155

CHAPTER 9
Conclusion and future work

The work presented in this thesis aimed at answering the research question formulated in
the first chapter of this document:

RQ: Which activities need to be conducted during the Systems Engineering Life Cycle to
incorporate dependability in Multi-Agent Systems for Smart Grid applications? How can
state-of-the-art methodologies support this process?

To address this question, a SELC was defined in Chapter 3. It combines the development
of a MAS with ontology design to allow the description of functional and non-functional
aspects of the system. The SELC consists of five consecutive phases: planning, analysis,
design, implementation, and evaluation. Each phase was then discussed in a separate
chapter (Chapters 4 – 8). The activities within each phase heavily rely on existing SG,
MAS, and ontology design methodologies. The switching optimization use case served
as a motivating example throughout this thesis. It aims at reducing losses within LV
power distribution networks by utilizing their ability to be reconfigured by opening and
closing electrical switches. However, aside from this motivating use case, the SELC is
also applicable to other MASs in the SG domain.

The planning phase in Chapter 4 introduced general aspects of the use case independently
of the system architecture. The IEC 62559 use case methodology was conducted during
the use case description activity. During the requirements description, the dependability
attributes defined by Avizienis, Laprie, Randell, et al. were introduced as non-functional
requirements. Furthermore, these “classic” dependability attributes were complemented
by scalability and privacy, as suggested in [7].

The analysis phase in Chapter 5 covered functional and non-functional aspects in more
detail than the planning phase. Thereby, the functional analysis focused on the use case,

157

9. Conclusion and future work

specifically existing algorithms and approaches to addressing the switching optimization
use case. Dependability attributes were examined in more detail during the non-functional
analysis, which focused on potential metrics for each dependability attribute. Furthermore,
the importance of each dependability attribute for the present use case was investigated.

The design phase in Chapter 6 highlighted similarities to the industrial domain, which
uses the concept of AASs to incorporate assets in Industry 4.0 systems. In the same
manner, agents can be used to integrate power system components into the SG, resulting
in the definition of a Component Administration Agent (CAA). The main software
components of agents for SG applications were defined in a FIPA-compliant way in the
system architecture definition activity. PASSI was identified as a suitable MAS design
methodology to cover the functional aspects of the design phase and the relevant parts
of the methodology were conducted during the MAS design activity. Ontologies provided
the means to model various aspects of non-functional attributes and link them to other
concepts of the SG domain like components of the distribution network. However, while
state-of-the-art ontology design methodologies encourage incorporating existing ontologies,
they themselves typically do not focus on creating reusable ontologies. Therefore, the
reusable ontology design methodology was defined and conducted for the switching
optimization use case during the ontology design activity.

The implementation phase in Chapter 7 proceeded with the PASSI MAS design methodol-
ogy in the agent implementation activity. Based on the switching optimization use case, it
provided examples of all models defined by the PASSI methodology. These models could
then be implemented using existing OOP software development techniques. The ontology
instantiation activity described and exemplified how each non-functional attribute of the
previously defined ontology can be instantiated, assigned to other elements of the ontology,
and rated. This enabled the individual agents to consider dependability attributes in
their decision-making process.

Finally, the evaluation phase in Chapter 8 presented a number of distribution networks
and load scenarios. The functional evaluation demonstrated that the MAS implementing
the switching optimization algorithms can indeed reduce the distribution network’s
losses. It does so by dynamically redistributing loads among the available transformers
when loads shift from one area of the distribution network to another throughout the
day. Furthermore, the non-functional evaluation showed that considering dependability
attributes in deciding how the distribution network shall be restructured may further
improve the performance of the MAS.

9.1 Effects of the research objectives on the results

In addition to the research questions, the work presented in this thesis was guided by
numerous research objectives. In the following, it is briefly summarized how each research
objective influenced the results of this thesis.

158

9.1. Effects of the research objectives on the results

RO1: Whenever possible, existing methodologies shall be studied, compared, and the most
suitable ones shall be applied during the systems engineering process.

Numerous SG, MAS, and ontology design methodologies were examined and presented
extensively in the state of the art analysis. Furthermore, existing SG standards were
summarized and assigned to the various SGAM layers. Suitable methodologies were
selected to support the various activities of the SELC. Furthermore, the reusable ontology
design methodology referred to existing ontology design methodologies for modeling the
individual concepts.

RO2: Whenever possible, existing frameworks, technologies, tools, software, and protocols
shall be studied, compared, and the most suitable ones shall be applied during the systems
engineering process.

The design of agents was inspired by FIPA and the concept of AASs, resulting in the
concept of a CAA. CAAs were defined and implemented in a very modular approach. The
various components (communication interfaces, DF, MTS, AMS, triple store, sensor/ac-
tuator interfaces, control interfaces, and other software libraries) were implemented based
on existing open-source software. The agent interaction protocol defined for switching
optimization heavily relies on the FIPA Query Interaction Protocol [129] and the FIPA
Contract Net Interaction Protocol. Messages are encoded in the FIPA-ACL.

RO3: The systems engineering process shall follow a “dependability by design” principle.

The different aspects of the dependability tree were introduced at the very beginning of this
thesis. Dependability attributes were selected as the main non-functional requirements,
and the considerations and measures to address them were refined during each phase of
the SELC.

RO4: In addition to functional requirements, non-functional requirements shall be con-
sidered in decision-making processes.

The functional aspects, which were covered by the algorithms incorporated in the MAS,
were accompanied by non-functional requirements throughout the complete SELC. These
non-functional requirements were analyzed, appropriate metrics were identified, and
the required concepts were modeled in the rating domain ontology. Furthermore, the
non-functional evaluation showed that considering non-functional requirements when
selecting among multiple distribution network configurations improves the performance
of the system.

RO5: Existing ontologies shall be included in the ontology design process but, equally
important, ontologies created during the design process shall themselves be reusable in
other applications and domains.

159

9. Conclusion and future work

The reusable ontology design methodology was developed to cover these two aspects.
During the top-down phase, the reusable ontology design methodology encouraged
identifying existing ontologies that cover the concepts relevant for the particular level
within the methodology. By subdividing ontologies into smaller parts (e.g., domains
and fragments), the resulting ontologies – except for the top-level application-specific
ontology – can also be reused in other applications and domains. The fragments were
then re-combined into more complex ontologies during the bottom-up phase of the
methodology.

9.2 Critical reflection
While the above discussions highlight the findings and contributions of this thesis,
disclosing the various problems, challenges, and insights that arose while conducting the
underlying research is equally important. Therefore, several issues that could not be
sufficiently addressed in this work are critically discussed in the following.

9.2.1 Distributed MAS as system architecture for the SG
A MAS was chosen as a system architecture for the SG application presented in this thesis.
Furthermore, by examining the definitions formulated by Wooldridge, it was concluded
that a MAS should be a distributed system with a very high degree of independence
of its components. The individual agents are equal in the sense that no agent exercises
direct control over any other agent. This type of MAS is less well researched compared
to the more common centralized and multi-level hierarchical approaches. While a fully
distributed approach provides benefits like inherent scalability and resilience in case of
failures of individual agents, the algorithms each agent can execute are restricted due
to its limited knowledge. The presented MAS can only perform localized optimization
by switching a single area between transformers in each optimization run. Higher-level
agents could be added to the system in a two-level or three-level hierarchical approach to
enable optimization of larger portions of the distribution network.

9.2.2 Switching optimization use case
The presented evaluation scenarios indicate that distributed MASs are a suitable paradigm
to address the challenges of today’s distribution networks. However, while switching
optimization is a nice and illustrative use case, first simulation results suggest that the
achievable energy savings alone will, in most cases, not justify the additional hardware
and implementation effort. In particular, changes to the initial configuration of the
distribution network will often increase the average line length between transformers and
loads, which limits the potential savings. Just like transformer losses, these line losses
could be modeled and considered by the agents when deciding if the distribution network
shall be reconfigured. Additional simulations with larger distribution networks are
required to provide better estimations of the achievable energy savings with a distributed
MAS-based approach.

160

9.3. Future work

9.2.3 Improving dependability
The work presented in this thesis aims at incorporating non-functional attributes in
MASs enable considering dependability in the decision-making-processes of agents. It was
shown that this can increase the performance of the switching optimization use case, i.e.,
further increase the energy savings compared to a system that only considers functional
aspects to reduce losses. However, while it is supported by the presented SELC, the thesis
did not investigate in detail how modeling and considering availability could improve the
dependability of the overall SG. Other use cases like Fault Localization, Isolation, and
Supply Restoration (FLISR) would be more suitable to investigate this matter.

9.3 Future work
This thesis provides the groundwork to incorporate dependability considerations in MASs
and showed that this approach is suitable to improve the performance in certain use
cases. However, there still remain some open questions and challenges for the system to
be applicable in real-world scenarios. The effects of the communication network such as
delay (possibly triggering unexpected timeouts) and message loss have to be investigated,
for which FNCS provides a profound basis. MASs in general require mechanisms for
agent registration and discovery. Implementing them on a number of different or even on
a single node, e.g., some sort of Discovery Agent, could quickly compromise the overall
idea of a fully distributed approach.

Regarding the developed ontologies, an open topic to be discussed is their reusability
during the SELC and beyond, including operation and decommission of the system.
For this purpose, it may be beneficial to separate non-functional requirements among
the various SELC phases while conducting the use case IEC 62559 methodology. Some
attributes, e.g., scalability are more relevant during design time and influence how the
system is designed and built, while others, e.g., availability, are more relevant during
runtime and influence how the system operates. As a final note on the topic of ontologies,
the reuse of existing information may be restricted by copyright and licensing issues.
Further information about legal aspects of linked data can be found in [262].

Regarding the switching optimization use case, the various dependability attributes have
to be balanced with the KPIs of the use case, e.g., the relative loss reduction. Whether
or not to select a more available component at the cost of a less-optimal configuration
is itself an optimization problem that quickly becomes increasingly complex if multiple
dependability attributes shall be considered in the decision-making process.

As argued, the energy savings achievable with the switching optimization use case alone
will likely not justify the additional hardware and implementation effort required to
deploy the system in existing distribution networks. However, additional use cases may
easily be implemented on the same devices following the methodology presented in
this thesis. In particular if other opportunities like reducing the time to identify and

161

9. Conclusion and future work

recover from faults or addressing the challenges arising from increasing energy demands
in existing distribution networks are taken into account, adding communication and
control capabilities to power system components may quickly become economically viable.
Such applications are investigated in detail in the ongoing Power System Cognification
(PoSyCo) project [29].

162

Acronyms

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks. 20

AAL Ambient Assisted Living. 87

AAS Asset Administration Shell. 101, 158, 159

ABox Assertional Box. 9, 11, 137

ACC Agent Communication Channel. 50

ACL Agent Communication Language. 7, 46, 48, 49, 119, 147, 159

AI Artificial Intelligence. 39

AID Agent IDentifier. 47, 49

AMI Advanced Metering Infrastructure. 20

AMS Agent Management System. 46, 47, 50, 159

ANSI American National Standards Institute. 17

AP Agent Platform. 43–47, 49, 50, 60–62, 102, 106, 120, 132, 135

API Application Programming Interface. 50, 60, 136

ASM Agent Security Manager. 50

ATL Alternating-time Temporal Logic. 58

BGL Boost Graph Library. 147

CA Communicative Act. 48

CAA Component Administration Agent. 102, 135, 158, 159

CB Category Bag. 120

CDF Cumulative Distribution Function. 6, 87, 126, 140

CENELEC Comité Européen de Normalisation Électrotechnique. 18

163

Acronyms

CFP Call For Proposal. 106, 111, 112, 150

CIA Confidentiality, Integrity, and Availability. 29–31, 93

CIM Common Information Model. 20, 120

CIRCA Cooperative Intelligent Real-Time Control Architecture. 59

CMOS Complementary Metal-Oxide-Semiconductor. 87

COSMO COmmon Semantic MOdel. 119

CPS Cyber-Physical System. 1, 7

CPU Central Processing Unit. 49

CSMA/CD Carrier Sense Multiple Access/Collision Detection. 146

CSV Comma-Separated Values. 147

CTL Computation Tree Logic. 58

CTR Common Technical Requirement. 31, 32, 95

DAML DARPA Agent Markup Language. 52

DE Domain Expert. 55

DER Distributed Energy Resource. 1, 2, 4, 100, 120

DF Directory Facilitator. 46, 47, 49, 50, 159

DIAMOND Decentralized Iterative Multiagent Open Networks Design.
33, 60

DIN Deutsches Institut für Normung. 18

DL Description Logic. 9

DMS Distribution Management System. 4

DNO Distribution Network Operator. 77

DNS Domain Name System. 62

DUL DOLCE+DnS UltraLite. 119

EA Enterprise Architect. 26, 27

EMS Energy Management System. 4, 18

EtherCAT Ethernet for Control Automation Technology. 19

ETSI European Telecommunications Standards Institute. 18

EV Electric Vehicle. 4, 162

164

Acronyms

FAME Framework for Agent-oriented Method Engineering. 61

FAML FAME Agent-oriented Modeling Language. 61

FB Function Block. 21

FHA Functional Hazard Assessment. 89

FIPA Foundation for Intelligent Physical Agents. 39, 41–46, 48–50,
102, 106, 110, 119, 120, 122, 124, 127, 137, 147, 158, 159

FIPS Federal Information Processing Standard. 86

FLISR Fault Localization, Isolation, and Supply Restoration. 161

FMEA Failure Mode and Effects Analysis. 89

FNCS Framework for Network Co-Simulation. 136, 146–148, 161

FTA Fault Tree Analysis. 89

GRC Governance, Risk, and Compliance. 31, 32, 95

GUI Graphical User Interface. 50, 58

HTML HyperText Markup Language. 11

HTTP HyperText Transfer Protocol. 48, 49

HV High Voltage. 2, 123

I/O Input/Output. 39, 103

ICT Information and Communication Technology. 1, 3, 73, 75, 145,
146

IE Industrial Ethernet. 103

IEC International Electrotechnical Commission. 18, 20

IED Intelligent Electronic Device. 20, 74, 75, 77, 80

IEEE Institute of Electrical and Electronics Engineers. 17

ILC Intelligent Load Controller. 57

IoT Internet of Things. 1, 5, 6, 9, 20, 86, 118, 120, 121

IP Internet Protocol. 120

IPSL Interpreted Systems Programming Language. 58

IPv6 Internet Protocol version 6. 143

ISA International Society of Automation. 17, 20, 86

165

Acronyms

ISO International Organization for Standardization. 17

ITL Interval Temporal Logic. 58, 59

ITS Intelligent Transportation System. 87

JADE Java Agent DEvelopment framework. 43, 49, 50, 60, 135

KE Knowledge Engineer. 55, 56

KPI Key Performance Indicator. 23, 66, 145, 151, 161

KR Knowledge Representation. 2, 9, 135

LDAP Lightweight Directory Access Protocol. 49, 62

LIC Logical Interface Category. 29–32, 93

LV Low Voltage. 2, 3, 15, 84, 85, 104, 123, 157

M-Bus Meter-Bus. 20

MABD Multi-Agent Behavior Description. 43, 133, 134

MAS Multi-Agent System. 1, 2, 7, 8, 14, 15, 17, 21, 32–34, 36, 38–44,
46, 56–63, 65, 67–69, 75, 83, 85, 99, 100, 104–107, 110, 117–121, 131,
132, 136, 137, 143, 145, 149, 151, 157–161

MASD Multi-Agent Structure Definition. 42, 43, 132, 133

MaSE Multiagent Systems Engineering. 36, 38, 39, 44, 45, 106

MCMAS Model Checker for Multi-Agent Systems. 58

MDE Model-Driven Engineering. 21, 26, 50

MDE-CIM Computational Independent Model. 26

MQTT Message Queuing Telemetry Transport. 143

MTS Message Transport System. 46–48, 50, 159

MTTF Mean Time To Failure. 140

MTTR Mean Time To Repair. 141

MV Medium Voltage. 2, 3, 123

NILM Non-Intrusive Load Monitoring. 90

NIST National Institute of Standards and Technology. 17, 28–31

NISTIR National Institute of Standards and Technology Interagency
Report. 28–31, 83, 86, 91, 92, 95

166

Acronyms

NP Non-deterministic Polynomial-time. 84

NS NameSpace. 9, 10

NS3 Network Simulator 3. 146, 147

OOD Object-Oriented Design. 36, 39, 51

OOP Object-Oriented Programming. 33, 39, 43, 52, 133, 158

OPAL Object, Process, Actor modelling Language. 56

OPC UA OPC Unified Architecture. 20

ORM Object Role Model. 38

OS Operating System. 49, 136

OWL Web Ontology Language. 9, 49, 56, 119, 122

PASSI Process for Agent Societies Specification and Implementation.
14, 39–46, 69, 99, 106, 107, 109, 110, 131–133, 135, 158

PDF Probability Density Function. 6, 87, 126, 140, 141

PIM Platform Independent Model. 26

PIN Personal Identification Number. 60

PM Preventive Maintenance. 89

PoSyCo Power System Cognification. 162

PROFIBUS Process Field Bus. 19

ProSG Prosumer-Oriented Smart Grid. 120

PSI Platform Specific Implementation. 26, 27

PSM Platform Specific Model. 26, 27

PTK PASSI Tool Kit. 43, 44, 135

PV PhotoVoltaic. 4

QoS Quality of Service. 49, 118, 120

QoS-MO Quality of Service Modeling Ontology. 120

RAMI 4.0 Reference Architectural Model for Industrie 4.0. 101

RBAC Role-Based Access Control. 97, 98

RDF Resource Description Framework. 9, 11, 20, 49, 56, 119

167

Acronyms

RDFS Resource Description Framework Schema. 9, 20, 120

RMP Risk Management Process. 29

SABD Single-Agent Behavior Description. 43, 134

SASD Single-Agent Structure Definition. 42, 132, 133

SCADA Supervisory Control and Data Acquisition. 4, 93, 100

SDLC Systems Development Life Cycle. 65

SELC Systems Engineering Life Cycle. 1, 11–14, 44, 62, 65, 66, 68, 69,
71, 145, 153, 157, 159, 161

SG Smart Grid. 1–4, 7, 11, 13–15, 17–22, 26, 28, 29, 31, 44, 50, 56,
57, 65, 66, 68, 69, 71, 75, 82, 85–87, 89, 95, 99–101, 103, 106, 118, 119,
136, 137, 143, 145, 146, 157–161

SGAM Smart Grid Architecture Model. 3, 4, 17–19, 21, 22, 26, 27,
101, 159

SIL Safety Integrity Level. 19, 88, 127

SL Semantic Language. 49

SOA Service-Oriented Architecture. 7, 100

SPARQL SPARQL Protocol and RDF Query Language. 136

SPoF Single Point of Failure. 85, 86, 100

TBox Terminological Box. 9, 11, 137

TCP Transmission Control Protocol. 120

TLS Transport Layer Security. 120, 141, 142

TSN Time-Sensitive Networking. 20

UCMP Use Case Mapping Process. 26

UCMR Use Case Management Repository. 22

UML Unified Modeling Language. 23, 26, 39, 41, 44, 116

UP Unified Software Development Process / Unified Process. 53

UPON UP for ONtology. 51, 53–55

URL Uniform Resource Locator. 24

UTR Unique Technical Requirement. 31, 32, 95

VOWL Visual Notation for OWL Ontologies. 9, 10

168

Acronyms

W3C World Wide Web Consortium. 9, 49, 120

Wireless M-Bus Wireless Meter-Bus. 20

wirelessHART wireless Highway Addressable Remote Transducer pro-
tocol. 20

WLAN Wireless Local Area Network. 20

XML eXtensible Markup Language. 11, 22, 48

XSD XML Schema Definition. 56

169

Bibliography

[1] V Cagri Gungor, Dilan Sahin, Taskin Kocak, Salih Ergut, Concettina Buccella,
Carlo Cecati, and Gerhard P Hancke. “A survey on smart grid potential appli-
cations and communication requirements”. In: IEEE Transactions on Industrial
Informatics 9.1 (2013), pp. 28–42.

[2] A Muir and J Lopatto. Final report on the August 14, 2003 blackout in the
United States and Canada: causes and recommendations. Accessed: March 22,
2021. 2004. url: https://www.energy.gov/sites/default/files/
oeprod/DocumentsandMedia/BlackoutFinal-Web.pdf.

[3] International Electrotechnical Commission (IEC). IEC 60038:2009 IEC standard
voltages. 2009.

[4] Deepjyoti Deka, Scott Backhaus, and Michael Chertkov. “Structure learning
and statistical estimation in distribution networks-part i”. In: arXiv preprint
arXiv:1501.04131 (2015).

[5] Smart Grid Coordination CEN-CENELEC-ETSI. “Group.(2012)”. In: Smart Grid
Reference Architecture (2012), pp. 1–107.

[6] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, et al. Fundamental concepts
of dependability. University of Newcastle upon Tyne, Computing Science, 2001.

[7] Lukas Krammer. “Dependability in building automation networks”. PhD thesis.
TU Wien, 2014.

[8] D.R. Law. “Scalable means more than more: a unifying definition of simulation
scalability”. In: Simulation Conference Proceedings. Vol. 1. Dec. 1998, 781–788
vol.1. doi: 10.1109/WSC.1998.745064.

[9] Paul Madsen, NTT Marco Cassasa Mont, and Robin Wilton. A Privacy Policy
Framework–A position paper for the W3C Workshop of Privacy Policy Negotiation.
2006.

171

https://www.energy.gov/sites/default/files/oeprod/DocumentsandMedia/BlackoutFinal-Web.pdf
https://www.energy.gov/sites/default/files/oeprod/DocumentsandMedia/BlackoutFinal-Web.pdf
https://doi.org/10.1109/WSC.1998.745064

Bibliography

[10] H. Kopetz. “On the Fault Hypothesis for a Safety-Critical Real-Time System”.
English. In: Automotive Software-Connected Services in Mobile Networks. Ed. by
Manfred Broy, Ingolf H. Krueger, and Michael Meisinger. Vol. 4147. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 31–42. isbn:
978-3-540-37677-4. doi: 10.1007/11823063_3. url: http://dx.doi.org/
10.1007/11823063_3.

[11] Stephen DJ McArthur, Euan M Davidson, Victoria M Catterson, Aris L Dimeas,
Nikos D Hatziargyriou, Ferdinanda Ponci, and Toshihisa Funabashi. “Multi-agent
systems for power engineering applications—Part I: Concepts, approaches, and
technical challenges”. In: IEEE Transactions on Power systems 22.4 (2007),
pp. 1743–1752.

[12] Stephen DJ McArthur, Euan M Davidson, Victoria M Catterson, Aris L Dimeas,
Nikos D Hatziargyriou, Ferdinanda Ponci, and Toshihisa Funabashi. “Multi-agent
systems for power engineering applications—Part II: Technologies, standards, and
tools for building multi-agent systems”. In: IEEE Transactions on Power Systems
22.4 (2007), pp. 1753–1759.

[13] M. Wooldridge and Ed. G. Weiss. “Intelligent Agents”. In: Multi-agent Systems 9
(1999), pp. 3–51.

[14] Stan Franklin and Art Graesser. “Is it an Agent, or just a Program?: A Taxon-
omy for Autonomous Agents”. In: International Workshop on Agent Theories,
Architectures, and Languages. Springer. 1996, pp. 21–35.

[15] Michael Wooldridge. “Agent-based software engineering”. In: IEE Proceedings-
Software Engineering 144.1 (1997), pp. 26–37.

[16] Dayong Ye, Minjie Zhang, and Athanasios V Vasilakos. “A Survey of Self-
Organization Mechanisms in Multiagent Systems”. In: IEEE Trans. Systems,
Man, and Cybernetics: Systems 47.3 (2017), pp. 441–461.

[17] Paul Baran. “On distributed communications networks”. In: IEEE transactions
on Communications Systems 12.1 (1964), pp. 1–9.

[18] Wei Wang, Suparna De, Ralf Toenjes, Eike Reetz, and Klaus Moessner. “A
comprehensive ontology for knowledge representation in the internet of things”.
In: Trust, Security and Privacy in Computing and Communications (TrustCom),
2012 IEEE 11th International Conference on. IEEE. 2012, pp. 1793–1798.

[19] Dean Allemang and James Hendler. Semantic web for the working ontologist:
effective modeling in RDFS and OWL. Elsevier, 2011.

[20] Steffen Lohmann, Stefan Negru, Florian Haag, and Thomas Ertl. “Visualizing
ontologies with VOWL”. In: Semantic Web 7.4 (2016), pp. 399–419.

[21] Natalya F Noy, Deborah L McGuinness, et al. Ontology development 101: A guide
to creating your first ontology. 2001.

172

https://doi.org/10.1007/11823063_3
http://dx.doi.org/10.1007/11823063_3
http://dx.doi.org/10.1007/11823063_3

Bibliography

[22] Vojtech Svátek and Ondrej Šváb-Zamazal. “Entity naming in semantic web on-
tologies: Design patterns and empirical observations”. In: University of Economics,
Prague, Czech Republic (2010), pp. 1–12.

[23] Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens, and Chris
Wroe. “A Practical Guide To Building OWL Ontologies Using The Protégé-OWL
Plugin and CO-ODE Tools Edition 1.3”. In: University of Manchester (2011).

[24] Filip Pröstl Andrén. “Model-Driven Engineering for Smart Grid Automation”.
PhD thesis. TU Wien, 2018.

[25] T. Frühwirth, L. Krammer, and W. Kastner. “Dependability Demands and State
of the Art in the Internet of Things”. In: Proceedings of the 20th IEEE Conference
on Emerging Technologies and Factory Automation (ETFA). Luxembourg, Sept.
2015, pp. 1–4.

[26] T. Frühwirth, A. Einfalt, K. Diwold, and W. Kastner. “A distributed multi-agent
system for switching optimization in low-voltage power grids”. In: Proceedings of
the 22nd IEEE Conference on Emerging Technologies and Factory Automation
(ETFA). Limassol, Cyprus, Sept. 2017, pp. 1–8.

[27] T. Frühwirth, L. Krammer, and W. Kastner. “A methodology for creating reusable
ontologies”. In: Proceedings of the 1st IEEE International Conference on Industrial
Cyber-Physical Systems (ICPS). Saint Petersburg, Russia, May 2018, pp. 65–70.

[28] G. Steindl, T. Frühwirth, and W. Kastner. “Ontology-Based OPC UA Data Access
via Custom Property Functions”. In: Proceedings of the 24nd IEEE Conference on
Emerging Technologies and Factory Automation (ETFA). Zaragoza, Spain, Sept.
2019, pp. 95–101.

[29] D. Herbst, M. Lager, R. Schürhuber, E. Schmautzer, L. Fickert, A. Einfalt, H.
Brunner, D. Schultis, T. Frühwirth, and W. Prüggler. “Zukünftige Anfoderungen
an NS-Netze und deren Lösungsansätze am Beispiel PoSyCo”. In: 16. Symposium
Energieinnovation. Graz, Austria, Feb. 2020, pp. 1–11.

[30] International Electrotechnical Commission (IEC). Smart Grid Standards Map.
Accessed: March 12, 2021. url: http://smartgridstandardsmap.com.

[31] International Electrotechnical Commission (IEC). IEC 60059:1999+AMD1:2009
CSV Consolidated version IEC standard current ratings. 1999.

[32] International Electrotechnical Commission (IEC). IEC 60196:2009 IEC standard
frequencies. 2009.

[33] International Electrotechnical Commission (IEC). IEC 60076-1:2011 Power trans-
formers – Part 1: General. 2011.

[34] International Electrotechnical Commission (IEC). IEC 60104:1987 Aluminium-
magnesium-silicon alloy wire for overhead line conductors. 1987.

[35] International Electrotechnical Commission (IEC). IEC 60889:1987 Hard-drawn
aluminium wire for overhead line conductors. 1987.

173

http://smartgridstandardsmap.com

Bibliography

[36] International Electrotechnical Commission (IEC). IEC 61394:2011 Overhead lines –
Requirements for greases for aluminium, aluminium alloy and steel bare conductors.
2011.

[37] International Electrotechnical Commission (IEC). IEC 60305:1995 Insulators for
overhead lines with a nominal voltage above 1000 V – Ceramic or glass insulator
units for a.c. systems – Characteristics of insulator units of the cap and pin type.
1995.

[38] International Electrotechnical Commission (IEC). IEC 60383-1:1993 Insulators
for overhead lines with a nominal voltage above 1000 V – Part 1: Ceramic or
glass insulator units for a.c. systems – Definitions, test methods and acceptance
criteria. 1993.

[39] International Electrotechnical Commission (IEC). IEC 61109:2008 Insulators for
overhead lines – Composite suspension and tension insulators for a.c. systems with
a nominal voltage greater than 1 000 V – Definitions, test methods and acceptance
criteria. 2008.

[40] International Electrotechnical Commission (IEC). IEC 61325:1995 Insulators for
overhead lines with a nominal voltage above 1000 V – Ceramic or glass insulator
units for d.c. systems – Definitions, test methods and acceptance criteria. 1995.

[41] International Electrotechnical Commission (IEC). IEC 61466-1:2016 Composite
string insulator units for overhead lines with a nominal voltage greater than 1 000
V – Part 1: Standard strength and end fittings. 2016.

[42] International Electrotechnical Commission (IEC). IEC 61467:2008 Insulators for
overhead lines – Insulator strings and sets for lines with a nominal voltage greater
than 1 000 V – AC power arc tests. 2008.

[43] International Electrotechnical Commission (IEC). IEC 61211:2004 Insulators of
ceramic material or glass for overhead lines with a nominal voltage greater than 1
000 V – Impulse puncture testing in air. 2004.

[44] International Electrotechnical Commission (IEC). IEC 61952:2008 Insulators for
overhead lines – Composite line post insulators for A.C. systems with a nominal
voltage greater than 1 000 V – Definitions, test methods and acceptance criteria.
2008.

[45] International Electrotechnical Commission (IEC). IEC 60652:2002 Loading tests
on overhead line structures. 2002.

[46] International Electrotechnical Commission (IEC). IEC 60105:1958 Recommenda-
tion for commercial-purity aluminium busbar material. 1958.

[47] International Electrotechnical Commission (IEC). IEC 60114:1959 Recommenda-
tion for heat-treated aluminium alloy busbar material of the aluminium-magnesium-
silicon type. 1959.

174

Bibliography

[48] International Electrotechnical Commission (IEC). IEC 61020-1:2009 Electrome-
chanical switches for use in electrical and electronic equipment – Part 1: Generic
specification. 2009.

[49] International Electrotechnical Commission (IEC). IEC 61058-1:2016 Switches for
appliances – Part 1: General requirements. 2016.

[50] International Electrotechnical Commission (IEC). IEC TR 61508-0:2005 Func-
tional safety of electrical/electronic/programmable electronic safety-related systems
– Part 0: Functional safety and IEC 61508. 2005.

[51] International Electrotechnical Commission (IEC). IEC 60605-2:1994 Equipment
reliability testing – Part 2: Design of test cycles. 1994.

[52] International Electrotechnical Commission (IEC). IEC 61709:2017 RLV Redline
version Electric components - Reliability - Reference conditions for failure rates
and stress models for conversion. 2017.

[53] International Electrotechnical Commission (IEC). IEC 61163-1:2006 Reliability
stress screening – Part 1: Repairable assemblies manufactured in lots. 2006.

[54] International Electrotechnical Commission (IEC). IEC 61070:1991 Compliance
test procedures for steady-state availability. 1991.

[55] International Electrotechnical Commission (IEC). IEC 60706-2:2006 Maintain-
ability of equipment - Part 2: Maintainability requirements and studies during the
design and development phase. 2006.

[56] International Electrotechnical Commission (IEC). IEC 61703:2016 Mathematical
expressions for reliability, availability, maintainability and maintenance support
terms. 2016.

[57] International Electrotechnical Commission (IEC). IEC 60793-1-1:2017 RLV Red-
line version Optical fibres – Part 1-1: Measurement methods and test procedures –
General and guidance. 2017.

[58] International Electrotechnical Commission (IEC). IEC 60794-1-1:2015 RLV Red-
line version Optical fibre cables - Part 1-1: Generic specification - General. 2015.

[59] International Electrotechnical Commission (IEC). IEC 61158-1:2014 Industrial
communication networks - Fieldbus specifications - Part 1: Overview and guidance
for the IEC 61158 and IEC 61784 series. 2014.

[60] International Electrotechnical Commission (IEC). IEC 61784-1:2014 Industrial
communication networks – Profiles – Part 1: Fieldbus profiles. 2014.

[61] International Electrotechnical Commission (IEC). IEC 61784-5-3:2018 Indus-
trial communication networks – Profiles – Part 5-3: Installation of fieldbuses –
Installation profiles for CPF 3. 2018.

[62] International Electrotechnical Commission (IEC). IEC 61784-5-12:2018 Indus-
trial communication networks – Profiles – Part 5-12: Installation of fieldbuses –
Installation profiles for CPF 12. 2018.

175

Bibliography

[63] International Electrotechnical Commission (IEC). IEC 61784-5-15:2010+AMD1:
2015 CSV Consolidated version Industrial communication networks – Profiles –
Part 5-15: Installation of fieldbuses – Installation profiles for CPF 15. 2010.

[64] International Electrotechnical Commission (IEC). IEC 62734 – Industrial networks
– Wireless communication network and communication profiles – ISA 100.11a. 2014.

[65] Comité Européen de Normalisation (CEN). EN 13757 Communication systems
for meters – Part 2: Physical and link layer. 2014.

[66] Comité Européen de Normalisation (CEN). EN 13757 Communication systems
for meters – Part 3: Application layer. 2014.

[67] Comité Européen de Normalisation (CEN). EN 13757 Communication systems
for meters – Part 4: Wireless M-Bus communication. 2014.

[68] Institute of Electrical and Electronics Engineers (IEEE). IEEE 802.3-2018 – IEEE
Standard for Ethernet. 2018.

[69] Institute of Electrical and Electronics Engineers (IEEE). IEEE 802.11-2016 –
IEEE Standard for Information technology–Telecommunications and information
exchange between systems Local and metropolitan area networks–Specific require-
ments – Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications. 2016.

[70] Institute of Electrical and Electronics Engineers (IEEE). IEEE 802.15.4-2015 -
IEEE Standard for Low-Rate Wireless Networks. 2015.

[71] ZigBee Alliance. “Zigbee specification. Technical Report Document 053474r20”.
In: Zigbee Alliance (2012).

[72] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of IPv6
Packets over IEEE 802.15.4 Networks. Internet Requests for Comments. RFC.
Internet Engineering Task Force, Sept. 2007. url: http://www.rfc-editor.
org/rfc/rfc4944.txt.

[73] Jianping Song, Song Han, Al Mok, Deji Chen, Mike Lucas, Mark Nixon, and Wally
Pratt. “WirelessHART: Applying wireless technology in real-time industrial process
control”. In: 2008 IEEE Real-Time and Embedded Technology and Applications
Symposium. IEEE. 2008, pp. 377–386.

[74] International Electrotechnical Commission (IEC). IEC TS 62443-1-1:2009 Indus-
trial communication networks - Network and system security - Part 1-1: Termi-
nology, concepts and models. 2009.

[75] International Electrotechnical Commission (IEC). IEC TS 62351-1:2007 Power
systems management and associated information exchange - Data and communica-
tions security - Part 1: Communication network and system security - Introduction
to security issues. 2006.

[76] Smart Grid Interoperability Panel Cyber Security Working Group et al. “Introduc-
tion to NISTIR 7628 guidelines for smart grid cyber security”. In: NIST Special
Publication 154 (2010).

176

http://www.rfc-editor.org/rfc/rfc4944.txt
http://www.rfc-editor.org/rfc/rfc4944.txt

Bibliography

[77] Victoria Y Pillitteri and Tanya L Brewer. Cybersecurity User’s Guide to the
Guidelines for Smart Grid Cybersecurity (NISTIR 7628 Vol. 1 2010). 2014.

[78] International Electrotechnical Commission (IEC). IEC TR 62541-1:2012 OPC
unified architecture – Part 1: Overview and concepts. 2012.

[79] International Electrotechnical Commission (IEC). IEC TR 61850-1:2013 Commu-
nication networks and systems for power utility automation – Part 1: Introduction
and overview. 2013.

[80] International Electrotechnical Commission (IEC). IEC 61970-1:2005 Energy man-
agement system application program interface (EMS-API) – Part 1: Guidelines
and general requirements. 2005.

[81] International Electrotechnical Commission (IEC). IEC 61970-501 Energy man-
agement system application program interface (EMS-API) – Part 501: Common
Information Model Resource Description Framework (CIM RDF) schema. Mar.
2006.

[82] International Electrotechnical Commission (IEC). IEC 61968-1:2012 Application
integration at electric utilities – System interfaces for distribution management –
Part 1: Interface architecture and general recommendations. 2012.

[83] International Electrotechnical Commission (IEC). IEC 61986-13:2008 Application
integration at electric utilities – System interfaces for distribution management –
Part 13: CIM RDF Model exchange format for distribution. 2008.

[84] International Electrotechnical Commission (IEC). IEC 60050-102:2007 Interna-
tional Electrotechnical Vocabulary – Part 102: Mathematics – General concepts
and linear algebra. 2007.

[85] International Electrotechnical Commission (IEC). IEC 60027-1:1992+AMD1:1997+
AMD2:2005 CSV Consolidated version. 1992.

[86] International Electrotechnical Commission (IEC). IEC 60617:2012 DB Graphical
symbols for diagrams – 12-month subscription to regularly updated online database
comprising parts 2 to 13 of IEC 60617. 2012.

[87] International Electrotechnical Commission (IEC). IEC 61131-1:2003 Programmable
controllers – Part 1: General information. 2003.

[88] International Electrotechnical Commission (IEC). IEC 61131-3:2013 Programmable
controllers – Part 3: Programming languages. 2013.

[89] International Electrotechnical Commission (IEC). IEC 61499-1:2012 Function
blocks – Part 1: Architecture. 2012.

[90] International Electrotechnical Commission (IEC). IEC 62559-2:2015 Use case
methodology – Part 2: Definition of the templates for use cases, actor list and
requirements list. 2015.

[91] International Electrotechnical Commission (IEC). IEC 62559-3:2017 Use case
methodology – Part 3: Definition of use case template artefacts into an XML
serialized format. 2017.

177

Bibliography

[92] Marion Gottschalk, Mathias Uslar, and Christina Delfs. The Use Case and Smart
Grid Architecture Model Approach: The IEC 62559-2 Use Case Template and the
SGAM Applied in Various Domains. Springer, 2017.

[93] Marion Gottschalk and Mathias Uslar. “Ein Use Case Management Reposi-
tory zur Unterstützung der Normungsarbeit”. In: Mensch und Computer 2015–
Workshopband (2015).

[94] Center for Secure Energy Informatics (EN-TRUST). SGAM Toolbox. Accessed:
March 12, 2021. url: https://www.en-trust.at/downloads/sgam-
toolbox/.

[95] Christian Dänekas, Christian Neureiter, Sebastian Rohjans, Mathias Uslar, and
Dominik Engel. “Towards a model-driven-architecture process for smart grid
projects”. In: Digital enterprise design & management. Springer, 2014, pp. 47–58.

[96] Christian Neureiter. A Domain-Specific, Model Driven Engineering Approach for
Systems Engineering in the Smart Grid. MBSE4U - Tim Weilkiens, 2017. url:
https://www.amazon.de/Domain-Specific-Driven-Engineering-
Approach-Systems/dp/3981852923/.

[97] Sparx Systems. Enterprise Architect. Accessed: March 12, 2021. url: https:
//www.sparxsystems.de/uml/ea-function/.

[98] International Electrotechnical Commission (IEC). IEC 15408-1:2009 Information
technology – Security techniques – Evaluation criteria for IT security – Part 1:
Introduction and general model. 2009.

[99] International Electrotechnical Commission (IEC). IEC 27001:2013 Information
technology – Security techniques – Information security management systems –
Requirements. 2013.

[100] PG Urbano, Th Wagner, and P Göhrner. “Softwareagenten–Einführung und
Überblick über eine alternative Art der Softwareentwicklung. Teil 1: Agentenorien-
tierte Softwareentwicklung”. In: Automatisierungstechnische Praxis atp 45 (2003),
pp. 48–57.

[101] Bernhard Bauer, Jörg P Müller, and James Odell. “Agent UML: A formalism
for specifying multiagent software systems”. In: International journal of software
engineering and knowledge engineering 11.03 (2001), pp. 207–230.

[102] Jean-Paul Jamont and Michel Occello. “Designing embedded collective systems:
The DIAMOND multiagent method”. In: IEEE International Conference on Tools
with Artificial Intelligence-ICTAI 07. IEEE Computer Society. 2007, pp. 91–94.

[103] Michael Wooldridge, Nicholas R Jennings, and David Kinny. “The Gaia method-
ology for agent-oriented analysis and design”. In: Autonomous Agents and multi-
agent systems 3.3 (2000), pp. 285–312.

[104] James E Lovelock and Lynn Margulis. “Atmospheric homeostasis by and for the
biosphere: the Gaia hypothesis”. In: Tellus 26.1-2 (1974), pp. 2–10.

178

https://www.en-trust.at/downloads/sgam-toolbox/
https://www.en-trust.at/downloads/sgam-toolbox/
https://www.amazon.de/Domain-Specific-Driven-Engineering-Approach-Systems/dp/3981852923/
https://www.amazon.de/Domain-Specific-Driven-Engineering-Approach-Systems/dp/3981852923/
https://www.sparxsystems.de/uml/ea-function/
https://www.sparxsystems.de/uml/ea-function/

Bibliography

[105] Bowen Alpern and Fred B Schneider. “Defining liveness”. In: Information process-
ing letters 21.4 (1985), pp. 181–185.

[106] Mark F Wood and Scott A DeLoach. “An overview of the multiagent systems
engineering methodology”. In: International Workshop on Agent-Oriented Software
Engineering. Springer. 2000, pp. 207–221.

[107] Mark F Wood. Multiagent systems engineering: A methodology for analysis and
design of multiagent systems. 2000.

[108] David J Robinson. A component based approach to agent specification. 2000.
[109] Massimo Cossentino. “From requirements to code with PASSI methodology”. In:

Agent-oriented methodologies. IGI Global, 2005, pp. 79–106.
[110] Federico Bergenti and Agostino Poggi. “Exploiting UML in the design of multi-

agent systems”. In: International Workshop on Engineering Societies in the Agents
World. Springer. 2000, pp. 106–113.

[111] Stephen Cranefield and Martin Kent Purvis. UML as an ontology modelling
language. Department of Information Science, University of Otago New Zealand,
1999.

[112] Massimo Cossentino, Luca Sabatucci, and Antonio Chella. “Patterns reuse in the
PASSI methodology”. In: International Workshop on Engineering Societies in the
Agents World. Springer. 2003, pp. 294–310.

[113] Luca Sabatucci, Massimo Cossentino, and Salvatore Gaglio. “Pattern Repository
and Reuse in the PASSI Methodology”. In: (2010).

[114] Massimo Cossentino. PASSI Toolkit. Accessed: March 12, 2021. url: https:
//sourceforge.net/projects/ptk/.

[115] Massimo Cossentino. PASSI Agent Factory. Accessed: March 12, 2021. url:
https://sourceforge.net/projects/ptk/files/AgentFactory/.

[116] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. “JADE – A FIPA-
compliant agent framework”. In: Proceedings of PAAM. Vol. 99. London. 1999,
p. 33.

[117] Zina Mecibah and Fateh Boutekkouk. “Comparative study between Multi Agents
Systems methodologies according to intelligent embedded systems requirements”.
In: The 4th International Conference on Automation, Control Engineering and
Computer Science (ACECS-2017). 2017, pp. 28–30.

[118] Quynh-Nhu Numi Tran, Graham Low, and Mary-Anne Williams. “A preliminary
comparative feature analysis of multi-agent systems development methodologies”.
In: International Bi-Conference Workshop on Agent-Oriented Information Systems.
Springer. 2004, pp. 157–168.

[119] Emilia Garcia, Adriana Giret, and Vicente Botti. “An evaluation tool for multiagent
development techniques”. In: Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: volume 1-Volume 1. International
Foundation for Autonomous Agents and Multiagent Systems. 2010, pp. 1625–1626.

179

https://sourceforge.net/projects/ptk/
https://sourceforge.net/projects/ptk/
https://sourceforge.net/projects/ptk/files/AgentFactory/

Bibliography

[120] Khanh Hoa Dam and Michael Winikoff. “Comparing agent-oriented methodolo-
gies”. In: International Bi-Conference Workshop on Agent-Oriented Information
Systems. Springer. 2003, pp. 78–93.

[121] FIPA TC Nomadic Application Support. FIPA Nomadic Application Support
Specification. 2002.

[122] IEEE FIPA DPDF Working Group. Design Process Documentation Template.
2012.

[123] Foundation for Intelligent Physical Agents (FIPA). Standard FIPA specifications.
Accessed: March 12, 2021. url: http://www.fipa.org/repository/
standardspecs.html.

[124] FIPA TC Architecture. FIPA Abstract Architecture Specification. 2002.
[125] FIPA TC Agent Management. FIPA Agent Management Specification. 2002.
[126] FIPA TC Agent Management. FIPA ACL Message Representation in String

Specification. 2002.
[127] FIPA TC Communication. FIPA ACL Message Structure Specification. 2002.
[128] FIPA TC Communication. FIPA Communicative Act Library Specification. 2002.
[129] FIPA TC Communication. FIPA Query Interaction Protocol Specification. 2002.
[130] FIPA TC Communication. FIPA Contract Net Interaction Protocol Specification.

2002.
[131] FIPA TC Communication. FIPA SL Content Language Specification. 2002.
[132] FIPA TC Gateways. FIPA Device Ontology Specification. 2002.
[133] FIPA TC Nomadic Application Support. FIPA Quality of Service Ontology Speci-

fication. 2002.
[134] Bo Chen, Harry H Cheng, and Joe Palen. “Mobile-C: a mobile agent platform

for mobile C/C++ agents”. In: Software: Practice and Experience 36.15 (2006),
pp. 1711–1733.

[135] Danny B Lange and Oshima Mitsuru. Programming and Deploying Java Mobile
Agents Aglets. Addison-Wesley Longman Publishing Co., Inc., 1998.

[136] Robert S Gray. “Agent Tcl: A flexible and secure mobile-agent system”. In: Tcl/Tk
Workshop. 1996.

[137] David Wong, Noemi Paciorek, Tom Walsh, Joe DiCelie, Mike Young, and Bill Peet.
“Concordia: An infrastructure for collaborating mobile agents”. In: International
workshop on mobile agents. Springer. 1997, pp. 86–97.

[138] Robert S Gray, George Cybenko, David Kotz, Ronald A Peterson, and Daniela
Rus. “D’Agents: Applications and performance of a mobile-agent system”. In:
Software: Practice and Experience 32.6 (2002), pp. 543–573.

180

http://www.fipa.org/repository/standardspecs.html
http://www.fipa.org/repository/standardspecs.html

Bibliography

[139] Hyacinth S Nwana, Divine T Ndumu, Lyndon C Lee, et al. “ZEUS: An advanced
tool-kit for engineering distributed multi-agent systems”. In: Proceedings of PAAM.
Vol. 98. 1998, pp. 377–391.

[140] Joachim Baumann, Fritz Hohl, Kurt Rothermel, Markus Strasser, and Wolfgang
Theilmann. “MOLE: A mobile agent system”. In: Software: Practice and Experience
32.6 (2002), pp. 575–603.

[141] Fabio Bellifemine, Giovanni Caire, Agostino Poggi, and Giovanni Rimassa. “JADE:
A software framework for developing multi-agent applications. Lessons learned”.
In: Information and Software Technology 50.1-2 (2008), pp. 10–21.

[142] Yu-Cheng Chou, David Ko, and Harry H Cheng. “An embeddable mobile agent
platform supporting runtime code mobility, interaction and coordination of mobile
agents and host systems”. In: Information and software technology 52.2 (2010),
pp. 185–196.

[143] HH Cheng. Ch—an Embeddable C/C++ Interpreter. 2009.
[144] Antonio De Nicola and Michele Missikoff. “A lightweight methodology for rapid

ontology engineering”. In: Communications of the ACM 59.3 (2016), pp. 79–86.
[145] Mariano Fernández-López, Asunción Gómez-Pérez, and Natalia Juristo. “Methon-

tology: from ontological art towards ontological engineering”. In: (1997).
[146] York Sure, Steffen Staab, and Rudi Studer. “On-to-knowledge methodology

(OTKM)”. In: Handbook on ontologies. Springer, 2004, pp. 117–132.
[147] Antonio De Nicola, Michele Missikoff, and Roberto Navigli. “A software engineering

approach to ontology building”. In: Information systems 34.2 (2009), pp. 258–275.
[148] Matteo Cristani and Roberta Cuel. “A survey on ontology creation methodologies”.

In: International Journal on Semantic Web and Information Systems (IJSWIS)
1.2 (2005), pp. 49–69.

[149] Claudia Zanabria. “Adaptable engineering support framework for multi-functional
battery energy storage systems”. PhD thesis. TU Wien, 2018.

[150] Stanford University. Protégé. Accessed: March 12, 2021. url: https://protege.
stanford.edu/.

[151] Michael Grüninger and Mark S Fox. “Methodology for the design and evaluation
of ontologies”. In: (1995).

[152] Stanford University. Ontolingua. Accessed: March 12, 2021. url: http://www.
ksl.stanford.edu/software/ontolingua/.

[153] Defense Advanced Research Projects Agency (DARPA). DAML Ontology Library.
Accessed: March 12, 2021. url: http://www.daml.org/ontologies/.

[154] Mike Uschold and Michael Gruninger. “Ontologies: Principles, methods and
applications”. In: The knowledge engineering review 11.2 (1996), pp. 93–136.

[155] Ivar Jacobson. The unified software development process. Pearson Education India,
1999.

181

https://protege.stanford.edu/
https://protege.stanford.edu/
http://www.ksl.stanford.edu/software/ontolingua/
http://www.ksl.stanford.edu/software/ontolingua/
http://www.daml.org/ontologies/

Bibliography

[156] Fulvio D’Antonio, Michele Missikoff, and Francesco Taglino. “Formalizing the
OPAL eBusiness ontology design patterns with OWL”. In: Enterprise Interoper-
ability II. Springer, 2007, pp. 345–356.

[157] Abhilash Kantamneni, Laura E Brown, Gordon Parker, and Wayne W Weaver.
“Survey of multi-agent systems for microgrid control”. In: Engineering applications
of artificial intelligence 45 (2015), pp. 192–203.

[158] Robin Roche, Benjamin Blunier, Abdellatif Miraoui, Vincent Hilaire, and Abder
Koukam. “Multi-agent systems for grid energy management: A short review”.
In: IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society.
IEEE. 2010, pp. 3341–3346.

[159] AL Dimeas and ND Hatziargyriou. “Control agents for real microgrids”. In: Intel-
ligent System Applications to Power Systems, 2009. ISAP’09. 15th International
Conference on. IEEE. 2009, pp. 1–5.

[160] Munir Merdan, Wilfried Lepuschitz, Thomas Strasser, and Filip Andren. “Multi-
Agent system for self-optimizing power distribution grids”. In: Automation, Robotics
and Applications (ICARA), 2011 5th International Conference on. IEEE. 2011,
pp. 312–317.

[161] Zhenhua Jiang. “Agent-based control framework for distributed energy resources
microgrids”. In: Proceedings of the IEEE/WIC/ACM international conference on
Intelligent Agent Technology. IEEE Computer Society. 2006, pp. 646–652.

[162] Mehdi Dastani, Koen V Hindriks, and John-Jules Meyer. Specification and verifi-
cation of multi-agent systems. Springer Science & Business Media, 2010.

[163] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. “MCMAS: A model
checker for the verification of multi-agent systems”. In: International conference
on computer aided verification. Springer. 2009, pp. 682–688.

[164] Rajeev Alur, Thomas A Henzinger, and Orna Kupferman. “Alternating-time
temporal logic”. In: Journal of the ACM (JACM) 49.5 (2002), pp. 672–713.

[165] Robert S Boyer and J Strother Moore. A computational logic handbook: Formerly
notes and reports in computer science and applied mathematics. Elsevier, 2014.

[166] Wojciech Penczek and Alessio Lomuscio. “Verifying epistemic properties of multi-
agent systems via bounded model checking”. In: Proceedings of the second inter-
national joint conference on Autonomous agents and multiagent systems. ACM.
2003, pp. 209–216.

[167] Michael Wooldridge, Michael Fisher, Marc-Philippe Huget, and Simon Parsons.
“Model checking multi-agent systems with MABLE”. In: Proceedings of the first
international joint conference on Autonomous agents and multiagent systems: part
2. ACM. 2002, pp. 952–959.

[168] Franco Raimondi and Alessio Lomuscio. “Automatic verification of multi-agent
systems by model checking via ordered binary decision diagrams”. In: Journal of
Applied Logic 5.2 (2007), pp. 235–251.

182

Bibliography

[169] Rafael H Bordini, Michael Fisher, Willem Visser, and Michael Wooldridge. “Ver-
ifying multi-agent programs by model checking”. In: Autonomous agents and
multi-agent systems 12.2 (2006), pp. 239–256.

[170] Mika Cohen, Mads Dam, Alessio Lomuscio, and Francesco Russo. “Abstraction in
model checking multi-agent systems”. In: Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems. 2009, pp. 945–
952.

[171] Stefania Costantini. “Self-checking logical agents”. In: Proceedings of the 2013
international conference on Autonomous agents and multi-agent systems. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems. 2013, pp. 1329–
1330.

[172] Stefania Costantini and Giovanni De Gasperis. “Runtime Self-Checking via Tem-
poral (Meta-) Axioms for Assurance of Logical Agent Systems”. In: CILC. Citeseer.
2014, pp. 241–255.

[173] James F Allen and George Ferguson. “Actions and events in interval temporal
logic”. In: Journal of logic and computation 4.5 (1994), pp. 531–579.

[174] Staffan Haegg. “A sentinel approach to fault handling in multi-agent systems”.
In: Australian Workshop on Distributed Artificial Intelligence. Springer. 1996,
pp. 181–195.

[175] Keinosuke Matsumoto, Tomoaki Maruo, and Akifumi Tanimoto. “A dependable
multi-agent system with self-diagnostic function”. In: Parallel and Distributed
Computing, 2009. ISPDC’09. Eighth International Symposium on. IEEE. 2009,
pp. 213–217.

[176] T Kohda, K Yoshida, Y Sujaku, et al. “Decentralized self-diagnosis in multi-
agent systems”. In: Proceeding of the 6th Multi-Agent and Cooperative Computing
Workshop. 1997.

[177] Peter C Lockemann and Jens Nimis. “Agent dependability as an architectural
issue”. In: Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems. ACM. 2006, pp. 1101–1103.

[178] Peter C Lockemann and Jens Nimis. “Dependable multi-agent systems: layered
reference architecture and representative mechanisms”. In: Safety and Security in
Multiagent Systems. Springer, 2009, pp. 27–48.

[179] David J Musliner, Edmund H Durfee, and Kang G Shin. “CIRCA: A cooperative
intelligent real-time control architecture”. In: IEEE Transactions on Systems,
Man, and Cybernetics 23.6 (1993), pp. 1561–1574.

[180] Holger Giese, Sven Burmester, Florian Klein, Daniela Schilling, and Matthias
Tichy. “Multi-agent system design for safety-critical self-optimizing mechatronic
systems with UML”. In: OOPSLA. 2003, pp. 21–32.

183

Bibliography

[181] Barbara Hayes-Roth. “Architectural foundations for real-time performance in
intelligent agents”. In: Real-Time Systems 2.1-2 (1990), pp. 99–125.

[182] Jean-Paul Jamont, Clément Raievsky, and Michel Occello. “Handling safety-
related non-functional requirements in embedded multi-agent system design”. In:
International Conference on Practical Applications of Agents and Multi-Agent
Systems. Springer. 2014, pp. 159–170.

[183] Niklas Borselius. “Security in multi-agent systems”. In: Proceedings of the 2002
international conference on security and management (SAM’02). 2002, pp. 31–36.

[184] MA Oey, M Warnier, and FMT Brazier. “Security in large-scale open distributed
multi-agent systems”. In: Autonomous Agents. Intech. 2010.

[185] Rodolfo Carneiro Cavalcante, Ig Ibert Bittencourt, Alan Pedro da Silva, Marlos
Silva, Evandro Costa, and Robério Santos. “A survey of security in multi-agent
systems”. In: Expert Systems with Applications 39.5 (2012), pp. 4835–4846.

[186] Yaqin Hedin and Esmiralda Moradian. “Security in multi-agent systems”. In:
Procedia Computer Science 60 (2015), pp. 1604–1612.

[187] H Chi Wong and Katia Sycara. “Adding security and trust to multiagent systems”.
In: Applied Artificial Intelligence 14.9 (2000), pp. 927–941.

[188] Lars Braubach, Kai Jander, and Alexander Pokahr. “A Practical Security In-
frastructure for Distributed Agent Applications”. In: German Conference on
Multiagent System Technologies. Springer. 2013, pp. 29–43.

[189] X Vila, A Schuster, and Adolfo Riera. “Security for a Multi-Agent System based
on JADE”. In: computers & security 26.5 (2007), pp. 391–400.

[190] Sarvapali D Ramchurn, Dong Huynh, and Nicholas R Jennings. “Trust in multi-
agent systems”. In: The Knowledge Engineering Review 19.1 (2004), pp. 1–25.

[191] Agostino Poggi, Giovanni Rimassa, and Michele Tomaiuolo. “)Multi-user and
security support for multi-agent systems”. In: In: Proceedings of WOA 2001 (Dagli
oggetti agli. Citeseer. 2001.

[192] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. “Role-Based Access Control
in MAS using Agent Coordination Contexts”. In: 1st International Workshop
“Agent Organizations: Theory and Practice”(AOTP’04). 2004, pp. 15–22.

[193] Pongsin Poosankam et al. “Authentication and Access Control in Multi-agent
Systems”. In: (2008).

[194] Petr Novák, Milan Rollo, Jiří Hodík, and Tomáš Vlček. “Communication security in
multi-agent systems”. In: International Central and Eastern European Conference
on Multi-Agent Systems. Springer. 2003, pp. 454–463.

[195] Praveen Paruchuri, Milind Tambe, Fernando Ordóñez, and Sarit Kraus. “Security
in multiagent systems by policy randomization”. In: Proceedings of the fifth
international joint conference on Autonomous agents and multiagent systems.
ACM. 2006, pp. 273–280.

184

Bibliography

[196] Haralambos Mouratidis, Paolo Giorgini, and Gordon Manson. “Modelling secure
multiagent systems”. In: Proceedings of the second international joint conference
on Autonomous agents and multiagent systems. ACM. 2003, pp. 859–866.

[197] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John
Mylopoulos. “Tropos: An agent-oriented software development methodology”. In:
Autonomous Agents and Multi-Agent Systems 8.3 (2004), pp. 203–236.

[198] Niek Wijngaards, Maarten Van Steen, and Frances Brazier. “On MAS scalability”.
In: Proc. 2nd Int’l Workshop on Infrastructure for Agents, MAS and Scalable
MAS. 2001.

[199] Phillip J Turner and Nicholas R Jennings. “Improving the scalability of multi-agent
systems”. In: Workshop on Infrastructure for Scalable Multi-Agent Systems at the
International Conference on Autonomous Agents. Springer. 2000, pp. 246–262.

[200] Omer F Rana and Kate Stout. “What is scalability in multi-agent systems?” In:
Proceedings of the fourth international conference on Autonomous agents. ACM.
2000, pp. 56–63.

[201] Robert Shishko and Robert Aster. “NASA systems engineering handbook”. In:
NASA Special Publication 6105 (1995).

[202] Kevin Forsberg, Hal Mooz, and Howard Cotterman. Visualizing project manage-
ment: models and frameworks for mastering complex systems. John Wiley & Sons,
2005.

[203] Union of the Electricity Industry - Eurelectric. Power Statistics & Trends 2012.
2012.

[204] Giuliano Andrea Pagani and Marco Aiello. “Towards decentralization: A topologi-
cal investigation of the medium and low voltage grids”. In: IEEE Transactions on
Smart Grid. Vol. 2. IEEE, 2011, pp. 538–547.

[205] V Glamocanin. “Optimal loss reduction of distributed networks”. In: IEEE Trans-
actions on Power Systems 5.3 (1990), pp. 774–782.

[206] Karsten Lehmann, Alban Grastien, and Pascal Van Hentenryck. “The complexity
of DC-switching problems”. In: arXiv preprint arXiv:1411.4369 (2014).

[207] Karsten Lehmann, Alban Grastien, and Pascal Van Hentenryck. “The complexity
of switching and FACTS maximum-potential-flow problems”. In: arXiv preprint
arXiv:1507.04820 (2015).

[208] Burak Kocuk. “Global optimization methods for optimal power flow and transmis-
sion switching problems in electric power systems”. PhD thesis. Georgia Institute
of Technology, 2016.

[209] Giuliano Andrea Pagani and Marco Aiello. “The power grid as a complex network:
a survey”. In: Physica A: Statistical Mechanics and its Applications 392.11 (2013),
pp. 2688–2700.

185

Bibliography

[210] Archana Khurana, Deepa Thirwani, and SR Arora. “An algorithm for solving fixed
charge bi-criterion indefinite quadratic transportation problem with restricted
flow”. In: International Journal of Optimization: Theory, Methods and Applications
1.4 (2009), pp. 367–380.

[211] Archana Khurana and SR Arora. “Fixed charge bi-criterion indefinite quadratic
transportation problem with enhanced flow”. In: Investigación Operacional 32.2
(2014), pp. 133–145.

[212] Archana Khurana and Tripti Verma. “On a class of capacitated transshipment
problems with bounds on rim conditions”. In: International Journal of Mathematics
in Operational Research 7.3 (2015), pp. 251–280.

[213] Archana Khurana. “Variants of transshipment problem”. In: European Transport
Research Review 7.2 (2015), p. 11.

[214] Siemens. PSS R SINCAL. Accessed: March 12, 2021. url: https : / / new .
siemens.com/global/en/products/energy/energy-automation-
and-smart-grid/pss-software/pss-sincal.html.

[215] Susan Zevin. Standards for security categorization of federal information and
information systems. DIANE Publishing, 2009.

[216] ISA99 ISA. Industrial automation and control systems security. 2018.
[217] Govind S Mudholkar and Deo Kumar Srivastava. “Exponentiated Weibull family

for analyzing bathtub failure-rate data”. In: IEEE transactions on reliability 42.2
(1993), pp. 299–302.

[218] John R Clymer. Systems analysis using simulation and markov models. Prentice
Hall Englewood Cliffs, NJ, 1990.

[219] Daijiro Mizutani, Nam Lethanh, Bryan T Adey, and Kiyoyuki Kaito. “Improving
the Estimation of Markov Transition Probabilities Using Mechanistic-Empirical
Models”. In: Frontiers in Built Environment 3 (2017), p. 58.

[220] Dennis J Wilkins. The Bathtub Curve and Product Failure Behavior Part One-The
Bathtub Curve. Accessed: March 22, 2021. 2002. url: Infant%20Mortality%
20and%20Burn-in%20https://www.weibull.com/hotwire/issue21/
hottopics21.htm.

[221] S Khoussi and A Mattas. “A Brief Introduction to Smart Grid Safety and Security”.
In: Handbook of System Safety and Security. Elsevier, 2017, pp. 225–252.

[222] Harold Ascher and Harry Feingold. Repairable systems reliability: modeling, infer-
ence, misconceptions and their causes. M. Dekker New York, 1984.

[223] Québec (Province). Comité interministériel de régie pédagogique. Dictionary
of Production Engineering/Wörterbuch Der Fertigungstechnik/Dictionnaire Des
Techniques de Production Mechanique Vol IV: Assembly/Montage/Assemblage.
Springer Berlin Heidelberg, 2011.

186

https://new.siemens.com/global/en/products/energy/energy-automation-and-smart-grid/pss-software/pss-sincal.html
https://new.siemens.com/global/en/products/energy/energy-automation-and-smart-grid/pss-software/pss-sincal.html
https://new.siemens.com/global/en/products/energy/energy-automation-and-smart-grid/pss-software/pss-sincal.html
Infant%20Mortality%20and%20Burn-in%20https://www.weibull.com/hotwire/issue21/hottopics21.htm
Infant%20Mortality%20and%20Burn-in%20https://www.weibull.com/hotwire/issue21/hottopics21.htm
Infant%20Mortality%20and%20Burn-in%20https://www.weibull.com/hotwire/issue21/hottopics21.htm

Bibliography

[224] Khairy Ahmed Helmy Kobbacy and DN Prabhakar Murthy. Complex system
maintenance handbook. Springer Science & Business Media, 2008.

[225] Jean-Claude Laprie. “Dependable computing and fault-tolerance”. In: Digest of
Papers FTCS-15 (1985), pp. 2–11.

[226] E Bordenabe Nicolás. “Measuring privacy with distinguishability metrics: Defini-
tions, mechanisms and application to location privacy”. PhD thesis. PhD thesis,
Ph. D. dissertation, École Polytechnique, Palaiseau, France, 2014.

[227] Marek Jawurek. “Privacy in Smart Grids”. PhD thesis. Friedrich–Alexander
University Erlangen–Nürnberg, 2013.

[228] Pierangela Samarati. “Protecting respondents identities in microdata release”. In:
IEEE transactions on Knowledge and Data Engineering 13.6 (2001), pp. 1010–
1027.

[229] Klaus Kursawe, George Danezis, and Markulf Kohlweiss. “Privacy-friendly aggre-
gation for the smart-grid”. In: International Symposium on Privacy Enhancing
Technologies Symposium. Springer. 2011, pp. 175–191.

[230] Tracy Ann Kosa, Khalil El-Khatib, and Stephen Marsh. “Measuring Privacy”. In:
J. Internet Serv. Inf. Secur. 1.4 (2011), pp. 60–73.

[231] Pavel Vrba, Vladimír Mařík, Pierluigi Siano, Paulo Leitão, Gulnara Zhabelova,
Valeriy Vyatkin, and Thomas Strasser. “A review of agent and service-oriented
concepts applied to intelligent energy systems”. In: IEEE transactions on industrial
informatics 10.3 (2014), pp. 1890–1903.

[232] Luís Ribeiro, José Barata, and Pedro Mendes. “MAS and SOA: complementary
automation paradigms”. In: International Conference on Information Technology
for Balanced Automation Systems. Springer. 2008, pp. 259–268.

[233] Michael Wooldridge and Nicholas R Jennings. “Intelligent agents: Theory and
practice”. In: The knowledge engineering review 10.2 (1995), pp. 115–152.

[234] Karsten Schweichhart. Reference architectural model industrie 4.0 (RAMI 4.0). Ac-
cessed: March 22, 2021. 2016. url: https://ec.europa.eu/futurium/en/
system/files/ged/a2-schweichhart-reference_architectural_
model_industrie_4.0_rami_4.0.pdf.

[235] Petr Marcon, Christian Diedrich, Frantisek Zezulka, Tizian Schröder, Alexander
Belyaev, Jakub Arm, Tomas Benesl, Zdenek Bradac, and Ivo Vesely. “The Asset
Administration Shell of Operator in the Platform of Industry 4.0”. In: 2018 18th
International Conference on Mechatronics-Mechatronika (ME). IEEE. 2018, pp. 1–
5.

[236] German Feder Ministry for Economic Affairs and Energy, German Federal Ministry
of Education and Research. Definition of Administration shell in the Industrie
4.0 Glossary. Accessed: March 17, 2021. url: https://www.plattform-
i40.de/PI40/Redaktion/EN/Glossary/A/administration_shell_
glossary.html.

187

https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
https://www.plattform-i40.de/PI40/Redaktion/EN/Glossary/A/administration_shell_glossary.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Glossary/A/administration_shell_glossary.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Glossary/A/administration_shell_glossary.html

Bibliography

[237] André Luís Andrade Menolli, Helena Sofia Pinto, Sheila S Reinehr, and Andreia
Malucelli. “An Incremental and Iterative Process for Ontology Building.” In:
ONTOBRAS. Citeseer. 2013, pp. 215–220.

[238] Corentin Donzelli, Solomon Asres Kidanu, Richard Chbeir, and Yudith Cardinale.
“Onto2MAS: An Ontology-Based Framework for Automatic Multi-Agent System
Generation”. In: 12th International Conference on Signal-Image Technology &
Internet-Based Systems (SITIS). IEEE. 2016, pp. 381–388.

[239] Patrick Cassidy. COSMO ontology. Accessed: March 12, 2021. url: http://
micra.com/COSMO/COSMO.owl.

[240] Rachit Agarwal, David Gomez, Tarek Elsaleh, Jorge Lanza, Luis Sanchez, Amelie
Gyrard. FIESTA-IoT Ontology and Taxonomy. Accessed: March 12, 2021. url:
https://github.com/fiesta-iot/ontology.

[241] Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE), Aldo
Gangemi. DOLCE+DnS Ultralite (DUL) ontology. Accessed: March 12, 2021. url:
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl.

[242] Syed Gillani, Frederique Laforest, and Gauthier Picard. “A Generic Ontology for
Prosumer-Oriented Smart Grid”. In: EDBT/ICDT Workshops. 2014, pp. 134–139.

[243] Mujahid Mohsin, Zahid Anwar, Farhat Zaman, and Ehab Al-Shaer. “IoTChecker: A
data-driven framework for security analytics of Internet of Things configurations”.
In: Computers & Security 70 (2017), pp. 199–223.

[244] Stefan Jablonski, Ilia Petrov, Christian Meiler, and Udo Mayer. Guide to web
application and platform architectures. Springer, 2004.

[245] FIPA TC Nomadic Application Support. FIPA Quality of Service Ontology Speci-
fication. 2002.

[246] Gustavo Fortes Tondello and Frank Siqueira. “The QoS-MO ontology for semantic
QoS modeling”. In: Proceedings of the 2008 ACM symposium on Applied computing.
ACM. 2008, pp. 2336–2340.

[247] Lars Torsten Berger, Andreas Schwager, and J. Joaquin Escudero-Garzas. “Power
line communications for smart grid applications”. In: Journal of Electrical and
Computer Engineering 2013 (2013).

[248] Michel Christiaan Alexander Klein. Change management for distributed ontologies.
2004.

[249] Peter Palensky, Edmund Widl, and Atiyah Elsheikh. “Simulating cyber-physical en-
ergy systems: Challenges, tools and methods”. In: IEEE Transactions on Systems,
Man, and Cybernetics: Systems 44.3 (2013), pp. 318–326.

[250] Richard Lincoln. Pypower. Accessed: March 12, 2021. url: https://pypi.org/
project/PYPOWER/.

188

http://micra.com/COSMO/COSMO.owl
http://micra.com/COSMO/COSMO.owl
https://github.com/fiesta-iot/ontology
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
https://pypi.org/project/PYPOWER/
https://pypi.org/project/PYPOWER/

Bibliography

[251] David P Chassin, K Schneider, and C Gerkensmeyer. “GridLAB-D: An open-
source power systems modeling and simulation environment”. In: Transmission
and distribution conference and exposition, 2008. t&d. IEEE/PES. IEEE. 2008,
pp. 1–5.

[252] DIgSILENT. PowerFactory. Accessed: March 12, 2021. url: https://www.
digsilent.de/de/powerfactory.html.

[253] Stefan Scherfke. “Discrete-event simulation with SimPy”. In: OFFIS–Institute for
Information Technologie, USA (2014).

[254] Gustavo Carneiro. “NS-3: Network simulator 3”. In: UTM Lab Meeting April.
Vol. 20. 2010, pp. 4–5.

[255] András Varga and Rudolf Hornig. “An overview of the OMNeT++ simulation
environment”. In: Proceedings of the 1st international conference on Simulation
tools and techniques for communications, networks and systems & workshops. 2008,
pp. 1–10.

[256] Tommi Karhela, Antti Villberg, and Hannu Niemistö. “Open ontology-based
integration platform for modeling and simulation in engineering”. In: International
Journal of Modeling, Simulation, and Scientific Computing 3.02 (2012), p. 1250004.

[257] Steffen Schütte, Stefan Scherfke, and Martin Tröschel. “Mosaik: A framework for
modular simulation of active components in smart grids”. In: 2011 IEEE First
International Workshop on Smart Grid Modeling and Simulation (SGMS). IEEE.
2011, pp. 55–60.

[258] Selim Ciraci, Jeff Daily, Jason Fuller, Andrew Fisher, Laurentiu Marinovici, and
Khushbu Agarwal. “FNCS: a framework for power system and communication
networks co-simulation”. In: Proceedings of the Symposium on Theory of Modeling
& Simulation-DEVS Integrative. Society for Computer Simulation International.
2014, p. 36.

[259] Mikhail K. Levin. owlcpp C++ library for parsing, querying, and reasoning
with OWL 2 ontologies. Accessed: March 22, 2021. url: http://owl-cpp.
sourceforge.net/.

[260] U.S. Department of Energy. OpenEI. Accessed: March 12, 2021. url: https:
//openei.org/doe-opendata/dataset/.

[261] Pecan Street Inc. Pecan Street Dataport. Accessed: March 12, 2021. url: https:
//dataport.pecanstreet.org/.

[262] Víctor Rodríguez-Doncel, Cristiana Santos, Pompeu Casanovas, and Asunción
Gómez-Pérez. “Legal aspects of linked data–The European framework”. In: Com-
puter Law & Security Review 32.6 (2016), pp. 799–813.

189

https://www.digsilent.de/de/powerfactory.html
https://www.digsilent.de/de/powerfactory.html
http://owl-cpp.sourceforge.net/
http://owl-cpp.sourceforge.net/
https://openei.org/doe-opendata/dataset/
https://openei.org/doe-opendata/dataset/
https://dataport.pecanstreet.org/
https://dataport.pecanstreet.org/

Thomas Frühwirth
Curriculum Vitae

Education
2014–Present Doctoral programme in Engineering Sciences, Technical University of

Vienna.
2012–2014 Master of Computer Engineering, Technical University of Vienna.
2009–2012 Bachelor of Computer Engineering, Technical University of Vienna.

Work Experience
2017–Present Research Engineer, CDP Center for Digital Production GmbH, Vienna.
2014–Present Project Assistant, Institute of Computer Engineering, Automation Systems

Group, TU Wien, Vienna.
2012/13 Tutor for Distributed Automation, 4 months at the Department for Com-

puter Aided Automation, Technical University of Vienna.
2011 Tutor for Theory and Logic, 4 months at the Department for Computer

Languages, Technical University of Vienna.

Research Projects
2019–Present PoSyCo, Power System Congnification, Call: Energy Research 4th call, Project

Number 867276.
https://www.ascr.at/power-system-cognification-posyco/

2019-Present Safety over TSN, via the Young Researchers Program of the Austrian Com-
petence Center for Digital Production, Project Number 854 187.
https://acdp.at/de/

2017-2021 Demonstrator Project 2.4, Real-Time Factory Network, via the Austrian
Competence Center for Digital Production, Project Number 854 187.
https://acdp.at/de/

2019 Digital Transformation Manager, Executive Course, TU Wien.
2016–2018 DigiTrans 4.0, Innovationslehrgang zur Gestaltung der Digitalen Transforma-

tion in der Produktentwicklung und Produktion, 2. Ausschreibung Innovation-
slehrgange, Project Number 854 157.
https://www.digitrans.at/

2015–2017 ABS4SmartGrids, Agent-based System for Smart Grids, TU Wien in coopera-
tion with Siemens AG.

2014–2016 OPC4Factory, OPC UA based Communication for Flexible Automated Manu-
facturing Cells, Call: Produktion der Zukunft, Project Number 843 613.
https://www.ift.at/forschungsbereiche/forschungsprojekte/
opc4factory/

Thomas Frühwirth – Treitlstraße 1-3, 4. Floor – 1040 Vienna, Austria

Publications
T. Trautner, I. Ayatollahi, D. Strutzenberger, T. Frühwirth, F. Pauker, and B. Kittl. “Behavioral
modeling of manufacturing skills in OPC UA for automated execution by an independent cell
controller”. In: Procedia CIRP 99 (2021), pp. 633–638

D. Strutzenberger, R. Hinterbichler, F. Pauker, and T. Frühwirth. “Information model for human-
machine (tool) interaction”. In: Procedia CIRP 99 (2021), pp. 98–103

D. Etz, T. Frühwirth, and W. Kastner. “Flexible Safety Systems for Smart Manufacturing”.
In: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA). vol. 1. IEEE. 2020, pp. 1123–1126

S. Gent, P. Gutiérrez Peón, T. Frühwirth, and D. Etz. “Hosting functional safety applications
in factory networks through Time-Sensitive Networking”. In: 2020 25th IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA). vol. 1. IEEE. 2020, pp. 230–237

D. Herbst, M. Lager, R. Schürhuber, E. Schmautzer, L. Fickert, A. Einfalt, H. Brunner, D.
Schultis, T. Frühwirth, and W. Prüggler. “Zukünftige Anfoderungen an NS-Netze und deren Lö-
sungsansätze am Beispiel PoSyCo”. In: 16. Symposium Energieinnovation. Graz, Austria, Feb. 2020

D. Strutzenberger, T. Frühwirth, T. Trautner, R. Hinterbichler, and F. Pauker. “Communica-
tion interface specification in OPC UA”. in: Proceedings of the 24nd IEEE Conference on Emerging
Technologies and Factory Automation (ETFA). Zaragoza, Spain, Sept. 2019

G. Steindl, T. Frühwirth, and W. Kastner. “Ontology-Based OPC UA Data Access via Cus-
tom Property Functions”. In: Proceedings of the 24nd IEEE Conference on Emerging Technologies
and Factory Automation (ETFA). Zaragoza, Spain, Sept. 2019, pp. 95–101

M. Messner, F. Pauker, G. Mauthner, T. Frühwirth, and J. Mangler. “Closed Loop Cycle Time
Feedback to Optimize High-Mix / Low-Volume Production Planning”. In: Proceedings of the 52th
CIRP Conference on Manufacturing Systems. Ljubljana, Slovenia, June 2019, pp. 689–694

D. Etz, T. Frühwirth, A. Ismail, and W. Kastner. “Self-Configuring Safety Networks”. In: Kommu-
nikation in der Automation - KommA. Lemgo, Germany, Nov. 2018, pp. 1–9

D. Etz, T. Frühwirth, A. Ismail, and W. Kastner. “Simplifying functional safety communica-
tion in modular, heterogeneous production lines”. In: Proceedings of the 14th IEEE International
Workshop on Factory Communication Systems (WFCS). Imperia, Italy, June 2018, pp. 1–4. doi:
10.1109/WFCS.2018.8402371

T. Frühwirth, L. Krammer, and W. Kastner. “A methodology for creating reusable ontologies”. In:
Proceedings of the 1st IEEE International Conference on Industrial Cyber-Physical Systems (ICPS).
Saint Petersburg, Russia, May 2018, pp. 65–70

T. Frühwirth, A. Einfalt, K. Diwold, and W. Kastner. “A distributed multi-agent system for
switching optimization in low-voltage power grids”. In: Proceedings of the 22nd IEEE Conference
on Emerging Technologies and Factory Automation (ETFA). Limassol, Cyprus, Sept. 2017, pp. 1–8

F. Pauker, T. Frühwirth, B. Kittl, and W. Kastner. “A systematic approach to OPC UA in-
formation model design”. In: Proceedings of the 49th CIRP Conference on Manufacturing Systems.
Stuttgart, Germany, May 2016, pp. 321–326

Thomas Frühwirth – Treitlstraße 1-3, 4. Floor – 1040 Vienna, Austria

T. Frühwirth, F. Pauker, A. Fernbach, I. Ayatollahi, W. Kastner, and B. Kittl. “Guarded state
machines in OPC UA”. in: Proceedings of the 41st Annual Conference of the IEEE Industrial
Electronics Society (IECON). Yokohama, Japan, Nov. 2015, pp. 4187–4192

T. Frühwirth, L. Krammer, and W. Kastner. “Dependability Demands and State of the Art in the In-
ternet of Things”. In: Proceedings of the 20th IEEE Conference on Emerging Technologies and Fac-
tory Automation (ETFA). Luxembourg, Sept. 2015, pp. 1–4. doi: 10.1109/ETFA.2015.7301592

T. Frühwirth, W. Steiner, and B. Stangl. “TTEthernet SW-based End System for AUTOSAR”. in:
Proceedings of the 10th IEEE International Symposium on Industrial Embedded Systems (SIES).
Siegen, Germany, June 2015, pp. 1–8. doi: 10.1109/SIES.2015.7185037

Thomas Frühwirth – Treitlstraße 1-3, 4. Floor – 1040 Vienna, Austria

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Smart grids
	Dependability
	Multi-agent systems
	Knowledge representation
	Research question and research objectives
	Methodology and structure of this thesis
	Scientific publications

	State of the art
	Smart grid standards
	Smart grid design
	MAS design
	Ontology design
	Related scientific work

	Systems engineering life cycle definition
	SELC phases
	Definition of SELC activities
	Methodologies supporting the SELC activities

	Planning
	Use case description
	Requirements description

	Analysis
	Switching optimization algorithms
	Dependability requirements analysis

	Design
	System architecture definition
	MAS design
	Ontology design

	Implementation
	Agent implementation
	Ontology instantiation

	Evaluation
	Smart grid simulation
	Functional evaluation
	Non-functional evaluation

	Conclusion and future work
	Effects of the research objectives on the results
	Critical reflection
	Future work

	Acronyms
	Bibliography

