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c Institute of Geodesy and Photogrammetry, ETH Zurich, Robert-Gnehm-Weg 15, 8093 Zurich, Switzerland 
d SPACE-SI, Slovenian Centre of Excellence for Space Sciences and Technologies, Aškerčeva 12, 1000 Ljubljana, Slovenia   
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A B S T R A C T   

The increasing frequency and intensity of severe droughts over recent decades have led to substantial crop yield 
losses in the Pannonian Basin in southeastern Europe. Their socioeconomic consequences can be minimized by 
accurate crop yield forecasts, but such forecasts often underestimate the impact of severe droughts on crop 
yields. We developed a gradient-boosting-based crop yield anomaly forecasting system for the Pannonian Basin 
and examined its performance, with a focus on drought years. Winter wheat and maize yield anomalies are 
forecasted for 42 regions in the Pannonian Basin using predictor datasets from Earth observation and reanalysis 
describing vegetation state, weather, and soil moisture conditions. 

Our results show that crop yield anomaly estimates in the two months preceding harvest have better per
formance (maize errors 14–17%, wheat 13–14%) than earlier in the year (maize errors 21%, wheat 17%). The 
forecast models can satisfactorily capture the interannual yield anomalies, but spatial yield variability is only 
partially reproduced. In years of severe drought, the wheat model performs better than under average conditions 
with errors below 12%. The errors of the maize forecasts in drought years are larger than average forecast skill: 
31% two months ahead and 20% one month ahead. However, for both crops the yield losses remain under
estimated by the forecasts in severe drought years. The feature importance analysis shows that during the last 
two months before harvest, wheat yield anomalies are controlled by temperature and evaporation and maize by 
the combined effects of temperature and water availability as expressed by several drought indices. In severe 
drought years, during the two months before harvest the seasonal temperature forecast becomes the most 
important predictor for the wheat forecasts and soil moisture for the maize model. Overall, this study provides in- 
depth insights into the impact of droughts on crop yield forecasts in the Pannonian Basin.   

1. Introduction 

In recent decades, droughts have heavily affected agricultural pro
duction in the Pannonian Basin, a lowland area in southeastern Europe 
(e.g. Crocetti et al., 2020). Agriculture in this region is particularly 
vulnerable to droughts, as the majority of cultivated land is rain-fed 
(Crocetti et al., 2020). The already challenging conditions for crop 
production are expected to worsen due to climate change (Kis et al., 
2020; Nistor et al., 2017; Zhu et al., 2021) and the area is even regarded 
as the region with the most negative impacts of climate change on crop 
production in Europe (Olesen et al., 2011). A potential tool to support 
the adaptation to these challenging circumstances is crop yield 

forecasting. This has proven being a vital method to minimize socio
economic impacts of crop losses (Ceglar et al., 2018) by allowing miti
gation measures such as compensation planning, effective water 
management, or if known early enough, even sowing planning for more 
drought-resistant crops (Li et al., 2021; Udmale et al., 2014). 

Crop yield forecasts have been implemented using machine learning 
(Filippi et al., 2019; Kern et al., 2018; Kogan et al., 2013; Peng et al., 
2018; Potopová et al., 2020) or process-based crop yield models 
(Donohue et al., 2018; Pagani et al., 2019; Zhuo et al., 2019). While 
machine learning has advantages regarding flexibility, simplicity, and 
efficiency (Feng et al., 2020; Leng and Hall 2020) process-based models 
have their strengths regarding their lower use of training data and their 
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ability to account for interactions of the predictors (Droutsas et al., 
2022; Zhang et al., 2022). Process-based models often showed to not 
optimally simulate the effects of extreme weather events (Eitzinger 
et al., 2013; Barlow et al., 2015; Feng et al., 2020; Song and Jin 2020) 
and proper parameter tuning requires extensive training data to reflect 
various conditions (Akhavizadegan et al., 2021). Machine learning 
models can provide reasonable results during the impact of extreme 
weather events, as long as they are properly trained (Droutsas et al., 
2022). An optimal training does not only require enough data during 
extreme events (O’Gorman and Dwyer 2018), but meaningful predictors 
too. Key predictors for most machine learning-based crop yield forecast 
models are climatological drivers, using data from in situ measurements 
(Kogan et al., 2013; Potopová et al., 2020) or meteorological reanalysis 
(Kern et al., 2018; Pagani et al., 2019). An important additional source 
of input to crop yield models is Earth observation (EO). With its diversity 
of spectral ranges, EO data provides a unique source of information 
about the state of crops and the conditions they are facing (Li et al., 
2022; Pagani et al., 2019; Zhuo et al., 2019). Useful crop yield forecasts 
can be obtained around two months before harvest (Li et al., 2022; 
Pagani et al., 2019; Zhuo et al., 2019) but most forecasting models tend 
to underestimate the impacts of severe droughts on crop yield (Bussay 
et al., 2015; Kang et al., 2020; Pagani et al., 2017; van der Velde et al., 
2018). Accurate modeling of yield anomalies in drought years is of 
particular importance because crop losses in these years can be sub
stantial and may have significant economic consequences (Guarin et al., 
2020). Mathieu & Aires (2018) and Potopová et al. (2020) improved 
crop yield forecasts in severe drought years by including the Standard
ized Precipitation-Evapotranspiration Index (SPEI) (Vicente-Serrano 
et al., 2010) as an explanatory variable of drought conditions in their 
models. A challenge for crop yield anomaly forecasting is an intensifi
cation of drought conditions after the moment of the forecast, which can 
still significantly reduce the forecast performance (Bognar et al., 2011). 
To mitigate this, seasonal weather forecasts can help by providing in
formation on how the weather conditions are expected to change, and 
they have already proven their capability to improve crop yield forecasts 
in general (Filippi et al., 2019; Peng et al., 2018). Hence, a proficient 
crop yield forecast model for drought conditions requires the combi
nation of a comprehensive set of predictors describing crop, soil, and 
climatic conditions, including drought indices, EO data, and seasonal 
weather forecast data. To our knowledge, such combination has not yet 
been reported in literature to forecast drought-related yield losses. 

Therefore, this study aims to fill this gap by developing machine 
learning-based crop yield forecast models for the Pannonian Basin and 
testing their reliability, with a focus on drought years. Given the wide
spread cultivation of winter wheat and maize in the Pannonian Basin 
and their economic relevance for the region, we constrain our analysis to 
these two crops. More specifically, we want to answer to the following 
questions: 

How does a machine learning-based crop yield forecasting system in 
the Pannonian Basin perform in normal years and in severe drought 
years? 

How do various explanatory variables contribute to the model per
formance at different times during the growing season, and for different 
crops? 

Answers to these questions could guide mitigation measures 
addressing the socioeconomic impact of large crop yield losses, and at 
the same time improve our understanding of drivers and processes 
affecting crop yield variability. 

2. Study area 

The Pannonian Basin covers the central section of the Danube Basin. 
With a total area of 445,000 km2, it extends over multiple countries in 
central and southeastern Europe (Hungary, Romania, Serbia, Austria, 
Czech Republic, Slovakia, Ukraine, Bosnia & Herzegovina, Croatia, 
Slovenia, and Austria) and is surrounded by the Alps in the west, the 

Dinaric Alps in the south, and the Carpathians in the north and east 
(Lukić et al., 2019). The Pannonian Basin has a continental climate with 
warm to hot summers and cold and snowy winters (Mohammed et al., 
2022), which corresponds to the classes Cfa and Cfb of the 
Köppen-Geiger classification (Kottek et al., 2006). The dominant land 
use type of the Pannonian Basin is agriculture, with croplands covering 
more than 70% of its area (Crocetti et al., 2020), and of which only a 
small fraction is irrigated (Bussay et al., 2015). Mean annual precipi
tation ranges from 400 to 600 mm (Nistor et al., 2017), equally 
distributed over all months, with a small peak in summer (Crocetti et al., 
2020; Jakubinski et al., 2019). Especially in summer months, precipi
tation is characterized by large inter-annual variability, e.g., rainfall in 
July can range from close to 0 to 150 mm (Nagy et al., 2018). In com
bination with the relatively high annual potential evapotranspiration 
rates of 586 to 739 mm in the last three decades (Nistor et al., 2017) 
these varying precipitation rates in summer often lead to a shortage of 
water availability (Nagy et al., 2018). The Pannonian Basin has expe
rienced several severe drought episodes over the last two decades, i.e., in 
2003, 2007, 2012, 2015, 2017, and 2018 (Alsafadi et al., 2020; Crocetti 
et al., 2020; Trnka et al., 2020). These years are characterized as severe 
drought years by crop yield losses of up to 40% (Nagy et al., 2018) and 
outstanding numbers of reported drought impacts (Crocetti et al., 2020). 

3. Data and methods 

3.1. Crop yield data 

Crop yield data on the district level, i.e., Nomenclature of Units for 
Territorial Statistics level 3 (NUTS3) (Fig. 1) have been provided by the 
national statistical offices of the individual countries (Potopová et al., 
2023). The dataset consists of yearly yields, expressed in t/ha, for winter 
wheat, spring barley, potatoes, sugar beet, and maize (Jakubínský et al., 
2019) for the period 2000–2017. However, due to gaps in the data, only 
the period 2002–2016 is considered in this study. We focus on winter 
wheat and maize since these are the dominant crop types present in the 
region (Bognar et al., 2017; Kern et al., 2018). Furthermore, we 
excluded districts with less than ten years of data available. Besides, 
districts where the given crop (either winter wheat or maize) was 
cultivated over an area smaller than 1000 ha in a given year were 
removed from further analysis. The quality control of the yield data 
included a consistency check with data at a higher spatial aggregation 
level. The higher-level data includes FAO yield data from the FAOStat 
database (https://www.fao.org/faostat/en/#data/QCL) on the country 
and Eurostat data (https://ec.europa.eu/eurostat/web/agriculture/da 
ta/database) on NUTS2 level for countries within the EU. It was evalu
ated if the interannual variability of the yield data at NUTS3 level is in 
line with the FAOStat and Eurostat data. In addition, the quality control 
included a consistency check of the neighboring areas and testing for 
deviations from the long-term mean. For the former it was checked if 
adjacent NUTS3 areas are not significantly deviating from each other. 
For the latter the crop yields of each NUTS3 area were compared with 
their individual long-term mean. All the yield reports at the NUTS3 level 
passed these quality checks. 

Typical harvest periods in the Pannonian Basin are beginning of July 
for winter wheat (Kern et al., 2018), and September for maize (Bussay 
et al., 2015). As spatial autocorrelations in the crop yield data can affect 
the forecasting negatively (Ferraciolli et al., 2019) the spatial autocor
relations in the yield data are quantified by calculating Morańs I 
(Table 1). Morańs I compares the values of individual regions with the 
adjacent regions. It ranges from − 1 (perfectly dispersed) to 1 (perfectly 
clustered) (Upton and Cook 2014). 

3.2. Predictor data 

A wide range of predictors is used to capture the wide range of 
meteorological conditions and the status of the crops (Table 2). The 
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selection of the datasets to be used as predictor was largely motivated by 
the availability of long-term records (i.e., covering the period 
2002–2016). 

3.2.1. Canopy status 
The canopy status is described by Leaf Area Index (LAI), Normalized 

Difference Vegetation Index (NDVI), and Vegetation Optical Depth 
(VOD). These three variables provide complementary information 
(Jones et al., 2011) and are used to get a comprehensive representation 
of the status of the crops: NDVI is sensitive primarily to green leaf 
biomass and its area (Tucker, 1979), LAI is a proxy for the leaf surface 
area that is available to photosynthesis (Norman and Jarvis 1975), and 
VOD shows the water content and biomass of the canopy (Moesinger 

et al., 2020). The NDVI and LAI datasets are provided by Copernicus 
Global Land Service (CGLS) and have a spatial resolution of 1 km and a 
temporal sampling of 10 days (CGLS, 2020). VOD Ku-band data from the 
VOD Climate Archive is used as it provides a unique long time series of 
VOD retrievals from multiple sensors (Moesinger et al., 2020). In addi
tion, it is independent from optical sensors and provides more regular 
information than the NDVI and LAI datasets (Vreugdenhil et al., 2022), i. 
e., approximately once per day. Ku-Band data is chosen as it reflects the 
fine structure of crops well (Chen et al., 2020; Teubner et al., 2018). 

3.2.2. Meteorological data and drought indicators 
Key meteorological drivers of crop growth are temperature, radia

tion, and water availability (Nagy et al., 2018; Papagiannopoulou et al., 
2017; WMO 2010). On large spatial scales such information can be 
obtained from EO, reanalysis and interpolated in situ measurements 
(Cornes et al., 2018; Hersbach et al., 2020; Wan 2008). The main 
advantage of in situ data is its higher accuracy in data-rich areas 
(Bandhauer et al., 2021), while reanalysis and EO observations offer 
valuable data over data-poor regions and are generally available with 
short temporal lags. In this study, data from all three sources are used to 
combine their advantages. Daily precipitation and air temperature are 
obtained from E-OBS v20.0 gridded in situ data, because of the relatively 
high station density in the Pannonian Basin (Cornes et al., 2018). E-OBS 
provides meteorological variables with a spatial resolution of 0.25◦

based on the interpolation of several thousands of in situ stations over 
Europe (Cornes et al., 2018). From the daily precipitation, the fraction of 
wet days (daily precipitation > 1 mm) per month is calculated to gain 

Fig. 1. Overview of the study area and the considered NUTS3 level regions, showing the mean maize yield from 2002 to 2016 per NUTS3 level region [2- 
column, color]. 

Table 1 
Characteristics of observed yield data, showing the median crop yield, the 
spatial variance, which depicts the variance of the crop yields between the re
gions per year (median of all years is shown), temporal variance showing the 
variance of the crops per region between the years (median of all regions is 
shown), and Morańs I shows the spatial autocorrelation of the crop yields 
(median of all years is shown).  

Crop Wheat Maize 

Median crop yield [t/ha] 4.26 6.18 
Spatial variance [t/ha] 0.53 2.05 
Temporal variance [t/ha] 0.62 2.46 
Median Morańs I 0.39 0.55  
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information about the distribution of precipitation. 
Hourly temperature from ERA5-Land reanalysis (Munoz-Sabater 

et al., 2021) is used to compute the diurnal temperature range (DTR), i. 
e., the difference between daily minimum and maximum temperatures. 
Hernandez-Barrera et al. (2016) indicated that the DTR can have a larger 
impact on crop yield than daily minimum or maximum temperatures 
alone. 

Incoming shortwave radiation, obtained from ERA5 reanalysis 
(Hersbach et al., 2020), is used as an individual predictor as well as in 
combination with other variables, i.e., air temperature, dewpoint tem
perature, wind speed, and precipitation, to compute SPEI. For consis
tency, all variables used to compute SPEI are taken from ERA5. SPEI is 
used as an indicator of the drought intensity. It determines the climatic 
water balance as the difference between the precipitation and the 
computed reference evapotranspiration (Allen et al., 1998). SPEI is 
calculated for the periods of one (SPEI1) and three months (SPEI3), to 
consider the short-term variations as well as conditions representing the 
cumulative effects of water availability during longer parts of the 
growing cycle. It is computed using the R-package SPEI (Vice
nte-Serrano et al., 2010). 

Also the Evaporative Stress Index (ESI) is used as a drought indicator. 
ESI is well-suited for early warning of flash drought development (Otkin 
et al., 2013; McEvoy et al., 2016). In addition, it has been shown that ESI 
can provide key information in the Pannonian Basin to assess drought 

impacts on wheat yields (Jurečka et al., 2021). ESI is based on the actual 
and reference evapotranspiration (Allen et al., 1998) and quantifies the 
standardized anomalies of their ratio (Anderson et al., 2011). For this 
study, it is calculated using the Atmosphere-Land Exchange Inverse 
(ALEXI) model driven by day/night land surface temperatures from 
MODIS (Hain and Anderson, 2017). The anomaly is computed for win
dows with a width of one month (ESI1) and three months (ESI3). 

Seasonal forecasts of mean air temperature (2 m) and total monthly 
precipitation are used as estimates of meteorological conditions beyond 
the forecast date. For this, the seasonal forecasts from the European 
center for Medium-Range Weather Forecasts (ECMWF) are used 
(Johnson et al., 2019), which have been shown beneficial for crop yield 
and drought forecasting (Ceglar and Toreti 2021; Portele et al., 2021). 
These forecasts are based on the SEAS5 model and provide forecasts for 
lead times between six hours and seven months. Seasonal forecasts exist 
since 2017 with hindcasts from 1993 to 2016 (Johnson et al., 2019). For 
this study, the hindcasts for lead times of one and two months are used. 
A validation study of the forecasts over Europe showed good perfor
mance of the seasonal temperature forecast in the Pannonian Basin 
(Crespi et al., 2021).For a one-month lead-time the correlations to ERA5 
temperature values are up to 0.8 and a mean bias of around 1–2 ◦C in 
spring and summer. The precipitation forecasts are less reliable, with 
mean correlation below 0.2, and considerable biases during summer 
months (up to 100 mm in the period from June to August) (Crespi et al., 
2021). 

3.2.3. Soil moisture 
EO-based soil moisture datasets are used as an indicator of the water 

available to the crops. ESA CCI Soil Moisture COMBINED product v7.1 
(Dorigo et al., 2021) is used, as it provides consistent quality-controlled 
data with a unique combination of various active and passive microwave 
sensors (Dorigo et al., 2017; Gruber et al., 2019). It is globally available 
for the time span from 1978 to 2021 with a spatial resolution of 0.25◦

and a temporal resolution of one day (Dorigo et al., 2021). In addition, 
the Soil Water Index (SWI) is derived from ESA CCI surface soil moisture 
data by applying time-based filtering following Albergel et al. (2008). 
This serves as a proxy for root-zone soil moisture, which is the water 
actually available for root uptake (McElrone et al., 2013). 

3.3. Data preparation 

The data preprocessing is summarized in Fig. 2. The first step is to 
calculate detrended anomalies, to minimize the impact of long-term 
environmental and climatological changes and changes in agricultural 
management (Eck et al., 2020; García-León et al., 2019; Lu et al., 2017; 
Mathieu and Aires, 2018). This is done for both the crop yield data and 
all predictors, except for the drought indices. For those, the detrending is 
done too, but the anomalies are not calculated, as they are already 
standardized values (Anderson et al., 2011; Vicente-Serrano et al., 
2010). The detrended anomalies are calculated as in Eq. (2) (Papa
giannopoulou et al., 2016) before the temporal resampling of the pre
dictors using a linear detrending function from the python package scipy 
(Virtanen et al., 2020). 

At = Dt − St (2)  

with At describing the anomaly at time t, Dt the linearly detrended value 
at that time, and St the long-term climatology computed from the 
detrended data. The latter is calculated as the mean of all years 
(2002–2016) at the considered month including a moving average 
window of 30 days. In the case of crop yield data, St describes the mean 
of all crop yield values per location and crop, as there is no seasonality. 
For predictors with a monthly resolution, i.e., seasonal forecasts, 
monthly precipitation, and fraction of wet days, the moving average 
window is not applied. 

Finally, spatial and temporal harmonization of the data is applied, as 

Table 2 
Summary of used predictor datasets.  

Dataset Name Source Spatial 
Resolution 

Temporal 
Resolution 

Yield data   NUTS3 yearly 
Canopy status 
VOD Ku-Band VOD VODCA (Moesinger 

et al., 2020) 
0.25◦ daily 

NDVI NDVI CGLS (CGLS, 2020) 0.01◦ 10-daily 
Leaf Area Index LAI CGLS (CGLS, 2020) 0.01◦ 10-daily 
Meteorological variables 
Precipitation precip E-OBS (Cornes et al., 

2018) 
0.25◦ daily 

Fraction of wet 
days 

wet_days E-OBS (Cornes et al., 
2018) 

0.25◦ monthly 

Seasonal 
forecast 
precipitation 

sf_precip ECMWF (Johnson 
et al., 2019) 

1◦ monthly 

Air 
temperature 

T2m E-OBS (Cornes et al., 
2018) 

0.25◦ daily 

Surface net 
solar 
radiation 

rad ERA5 (Hersbach 
et al., 2020) 

0.25◦ daily 

Diurnal 
temperature 
range 

DTR ERA5-Land ( 
Munoz-Stabater 
et al., 2021) 

0.1◦ daily 

Seasonal 
forecast 
temperature 

sf_T ECMWF (Johnson 
et al., 2019) 

1◦ monthly 

Drought indices 
SPEI (1 month) SPEI1 Based on ERA5 ( 

Hersbach et al., 
2020) 

0.25◦ monthly 

SPEI (3 
months) 

SPEI3 Based on ERA5 ( 
Hersbach et al., 
2020) 

0.25◦ monthly 

ESI (1 month) ESI1 Based on MODIS ( 
Anderson et al., 
2011) 

0.05◦ weekly 

ESI (3 months) ESI3 Based on MODIS ( 
Anderson et al., 
2011) 

0.05◦ weekly 

Soil water availability 
Soil Moisture SM ESA CCI (Gruber 

et al., 2019) 
0.25◦ daily 

Soil Water 
Index 

SWI Based on ESA CCI ( 
Gruber et al., 2019) 

0.25◦ daily  
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the model is developed on a monthly basis and for each NUTS3 level 
region separately. For the spatial harmonization, the individual spatial 
resolutions of the explanatory variables are resampled to the areas of the 
NUTS3 level. Hence, all pixels of which the center coordinate lies within 
an individual region are averaged. For the temporal harmonization, 
monthly means of the detrended anomalies are calculated, except for 
precipitation and the variables that already have a monthly resolution (i. 
e., wet days, seasonal forecasts, and SPEI). 

3.4. Correlation analysis between predictors and crop yield anomalies 

First, the Spearman’s rank correlation is calculated to assess how 
well the predictors correlate to the crop yield anomalies at various lead 
times. The correlations are calculated for each month at NUTS3 level. 
We further stratify our analysis for drought and non-drought years in 
order to compare how extreme conditions can potentially affect such 
correlations. The 95%-confidence intervals for the correlations are 
calculated using Fisher transformation (Upton and Cook 2014). 

3.5. Extreme gradient boosting 

Extreme gradient boosting (XGBoost) is a machine learning algo
rithm that uses scalable end-to-end tree boosting (Chen and Guestrin 
2016). It is used in this study, as it outperforms other machine learning 
techniques for crop yield forecasting (Kang et al., 2020) and provides 
information about the importance of the predictors (Shahhosseini et al., 
2021). Additionally, tree boosting methods can handle multicollinearity 
of predictors (Kotsiantis 2011; Piramuthu 2008) which is a major 
concern given the large number of predictors employed in this study. 
Nevertheless, we test two methods for reducing the number of pre
dictors, i.e., remove the ones with high cross-correlations, thus reducing 
model complexity (Chapter 3.5.1.). 

3.5.1. Feature elimination 
Two methods are chosen to reduce the number of predictors due to 

possible cross-correlations between the input variables: Variance infla
tion factor (VIF) (Craney and Surles, 2002) and by assessing the 
cross-correlations between the predictors. Feature elimination based on 
VIF follows a simple logic: the model is run using all predictors and for 
each predictor the VIF is calculated. All predictors with a VIF exceeding 
a threshold are eliminated and the model is rerun with the remaining 
predictors. Again, the VIF is calculated for each predictor at all months 
and the ones exceeding the threshold are again eliminated. This pro
cedure is repeated until all predictors get VIFs below a predefined 
threshold (Craney and Surles, 2002). The thresholds used in this study 
are 10 and 5, which are typical cut-off points (Craney and Surles, 2002). 

Feature elimination based on the cross-correlation of the predictors 
is applied by removing features with correlations above certain 
thresholds. As for the VIF method, various thresholds are used: Pearsońs 
R of 0.8, 0.7, 0.6, 0.5. We do one model run for each of these thresholds 
excluding the concerned features. The feature elimination is done by 

excluding features that with absolute values of the cross-correlations 
exceeding these threshold. When two features have cross-correlations 
above these thresholds, the feature with the overall lower correlation 
to the other features is kept and the other eliminated. This rule is not 
applied in case that one feature has correlations exceeding the used 
threshold to more than one other predictor. In that case, the feature with 
the fewer correlations above the threshold is eliminated. 

3.5.2. Calibration and validation 
For both, wheat and maize, we setup the model at four different 

times starting with a lead time of three months (Fig. 3). The models are 
calibrated for each prediction month separately. Each month the models 
are recalibrated by adding new data (LT2, LT1, and LT0 for the harvest 
month) (Fig. 3). The models are implemented using the Python package 
xgboost (Chen and Guestrin 2016). Automated hyperparameter-tuning is 
applied to improve the performance of the model, by tuning the pa
rameters max_depth, learning_rate, n_estimator, colsample_bytree (Table 3). 
The hyperparameters are tuned once per crop type using all predictors of 
all months. For the hyperparameter-tuning a random 20-fold cross 
validation is applied. 

To validate the models, the datasets are divided into a training and a 
testing set. To get a robust assessment of the models’ accuracy, training 
and test sets must be independent (Rebala et al., 2019). However, 
environmental data might be correlated (Mathieu and Aires, 2018): 
neighbouring regions (in this study NUTS3 regions) might be charac
terized by varying degrees of spatial autocorrelation; temporally, envi
ronmental conditions might persist in two or more consecutive years, e. 
g., drought impacts can last several years (Bales et al., 2018). Yet, it is 
generally accepted that the weather of two consecutive years is not 
heavily correlated (Mathieu and Aires, 2018). To reduce the impact of 
the spatial correlation on the validation of the model, many authors used 
entire years of all regions for the validation of their model (Johnson 
et al., 2016; Kern et al., 2018; Kogan et al., 2013; Mathieu and Aires, 
2018), while others used cross-validation (CV) to improve the reliability 
of the validation (Filippi et al., 2019; Gómez et al., 2019; Johnson et al., 
2016; Kogan et al., 2013). In this study, a leave-one-year-out CV is 
applied to ensure a sufficient amount of training data. 

Yearly crop yield estimates obtained through CV are then examined 
in more detail. In particular, we assess: (1) the overall performance on 
NUTS3 level, which includes forecasts for all regions and years; (2) the 
performance to forecast spatial crop yield variability, where the crop 
yield forecasts of all NUTS3 regions are validated on a yearly basis, to 
evaluate the models’ skill to reproduce spatial patterns of crop yield 
anomalies; (3) the regional performance, which compares time series of 
forecasted and observed crop yields per NUTS3 region, to evaluate the 
models’ ability to capture temporal dynamics of yield anomalies; (4) the 
Pannonian mean forecast (PB means), showing if the forecasted yearly 
mean crop yields of all NUTS3 regions correspond to the observed mean. 
This allows for verifying if the forecasted small-scale deviations at 
NUTS3 level have better skill than those obtained over the whole Pan
nonian Basin. In (1), (2), and (4) drought years are also separately 

Fig. 2. Flowchart of the data preprocessing steps. The points in the spatial resampling plot represent the center points of the observations with the most coarse 
resolution (0.25◦) [2-column, color]. 
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analyzed. The years that are considered as drought years are 2003, 
2007, 2012, and 2015. Those years are defined as severe drought years 
in this study based on a drought impact report database by Jakubínský 
et al. (2019). There are over 30 reported drought impacts in each of 
those years, which is more than twice the average of around 14 drought 
impacts per year in the Pannonian Basin (Crocetti et al., 2020). Reported 
drought impacts have been shown to be highly beneficial for drought 
monitoring (Bartošová et al., 2022) and allows to define drought years 
independently from datasets that are used in the model development, 
such as SPEI. 

Model performance is assessed by calculating the Pearson’s corre
lation coefficient and the normalized root mean squared error (NRMSE) 
between observed and forecasted crop yield anomalies. NRMSE is 
calculated as the ratio between the RMSE and the mean crop yields of all 
observations per crop type, and is selected instead of the RMSE because 
it allows to compare results characterized by different amplitudes. 
Pearsońs correlation depicts the linear dependencies of the forecast and 
observations well, but is of limited use when forecasted and observed 
values are not matched (Li, 2017). 

3.5.3. Feature importance 
As a final step, it is tested how important the different explanatory 

variables are for the models at different lead times. The feature impor
tances are based on the average Gini impurity index (Rebala et al., 2019) 
taken from all the CV runs. An additional analysis is done by checking 
the feature importance when using only drought years for training the 
models. Finally, the feature importances obtained for each CV run (i.e., 
considering different years for training) are compared to assess the 
consistency of the individual models. 

4. Results 

4.1. Correlation analysis between predictors and crop yield anomalies 

The correlations between predictor variables and winter wheat and 
maize yield anomalies are shown in Figs. 4 and 5, respectively. Impor
tant differences exist between the two crops. For wheat, absolute values 
of correlations are in most cases smaller than 0.5, and do not show major 
changes throughout the season. On the contrary, maize yield anomalies 
show high (absolute values of) correlations with a number of predictors 
three and two months before harvest. As expected, the correlations be
tween yield anomalies and temperature-related variables (mean tem
perature, radiation, DTR, and seasonal temperature forecast) are mostly 
negative. Conversely, proxies of vegetation status (NDVI, LAI, and 
VOD), moisture availability (precipitation, wet days, seasonal forecast of 
precipitation, soil moisture, SWI), and drought indices, are generally 
characterized either by positive or non-significant correlations with crop 
yield anomalies. 

The correlations in drought years (bottom panels in Figs. 4and 5) 
show less distinct patterns and vary a lot between months. The pre
dictors with the highest correlations to wheat yield anomalies are ESI1 
and ESI3 for LT3 and LT2, and soil moisture, LAI, and NDVI for LT2 and 
LT1 for maize. There are even some unexpected negative correlations 
between precipitation and wheat yield anomalies for LT3 and LT2. 
Overall, the correlations are higher for wheat than for maize during 

Fig. 3. Logic of the crop yield forecasting system. The initial model run is done with a lead time of three months before harvest. Only data that is available by the end 
of this month is used for the forecast. Hence, the observations of the meteorological, canopy, and soil moisture data, as well as the seasonal forecasts that are 
established by then until the harvest month [2-column, color]. 

Table 3 
Used values of the hyperparameters for the tuning and the resulting values per 
crop type.  

Hyperparameter Tested 
values 

Selected 
wheat 

Selected 
maize 

Definition 

max_depth 3, 6, 10 6 10 Describes 
complexity of 
model 

Learning_rate 0.01, 
0.05, 0.1 

0.05 0.01 Step size 
shrinkage 

n_estimator 100, 500, 
1000 

1000 1000 Number of 
decision trees 

colsample_bytree 0.3, 0.7 0.3 0.3 Subsample ratio of 
columns  
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drought years. 

4.2. Validation of crop yield forecasts 

Fig. 6 shows the agreement, expressed in terms of Pearson R and 
NRMSE, between predicted and reference crop yield anomalies per 
NUTS3 region for different lead times, while Figs. 7A and 8A show re
sults for the yearly average regional forecasts over the Pannonian Basin 

for wheat and maize, respectively. Both validations show that the best 
forecasts are obtained from around two months before harvest. NRMSE 
is below 17% for both crops, while the correlation between predicted 
and observed yields reach ~0.7 for maize, and 0.43 for wheat. Earlier 
forecasts, with a lead time of three months, yield considerably lower 
accuracies (Fig. 6 and Table 4). Indeed, maize shows medium correla
tions (Pearson’s R around 0.4) and high errors (NRMSE around 25%). 
Early wheat forecasts are characterized by medium errors (NRMSE 

Fig. 4. Correlations of the monthly mean anomalies of the explanatory variables to wheat yield anomalies for all years on top and for the individual drought years 
below. Green colors show canopy status related variables, blue colors precipitation-related variables (total precipitation, ratio of wet days per month and the seasonal 
precipitation forecast for one and two months ahead), gray temperature-related predictors (land surface temperature, radiation, diurnal temperature range), violet 
soil moisture and soil water index, and orange the drought indices [2-column, color]. 

Fig. 5. Same as Fig. 4 for maize [2-column, color].  
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around 18%) but low correlations (Pearson’s R around 0) (Fig. 6). There 
is only one outlier with exceptionally high errors for a region in Austria 
(in the west of the Pannonian Basin) for maize. The remaining regions 
show a similar range of errors for both maize and wheat. The differences 
in performance between LT1 and LT0 are only minor. Overall, yield 
forecasts are more reliable for maize than for winter wheat regardless of 
the lead time (Table 4). 

Negative yearly mean yield anomalies for the entire Pannonian Basin 
observed during drought years, are generally reproduced by our fore
casting models (Figs. 6 and 7). For wheat, the forecasts during drought 
years have higher correlations than on average and the errors are 
smaller than 12% from two months before harvest (Table 4). Yet, the 

mean wheat yield losses of the Pannonian Basin are significantly 
underestimated (Fig. 7A). Conversely, the amplitude of maize yield 
anomalies is well captured during dry years, especially in 2003 and 2015 
(Fig. 8A). It should also be highlighted that, the model underestimates 
positive and negative extremes alike. I.e., the range of forecasted wheat 
and maize yield anomalies is from around − 1 to 1, − 2 to 2 respectively, 
while the observed range of the yield anomalies are almost twice as large 
for both crops. Even though errors during drought years are on average 
higher than during non-drought years, the difference between errors in 
drought and non-drought years is decreasing closer to harvest (Table 5). 

On a yearly basis, there is a large variability in the correlations be
tween forecasted and observed yield anomalies (Fig. 9D). They range 

Fig. 6. Validation of the crop yield forecasts per NUTS3 region. The first two rows show the correlation of the predicted and measured crop yield anomalies and the 
last two show the errors of the forecast (NRMSE) [2-column, color]. 
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from around 0 to 0.75 and are in 2004 even strongly negative for maize 
at LT2. The impact of severe drought years is diverging too. While two 
drought years (2003 and 2012) are among the years with highest cor
relations, in the drought years 2007 and 2015 correlations are low. 

Fig. 9A–C shows the development of some important explanatory 
variables (temperature, SPEI3, and NDVI) over the growing season to 

analyze how this impacts crop yield anomalies. All three variables show 
high fluctuations within and between the years. Droughts are clearly 
visible in SPEI3 and the temperature anomalies, whereas the negative 
NDVI anomalies are not so clearly distinguishable from non-drought 
years. 

Fig. 7. (A) Measured (bars) and predicted (lines) wheat yield anomalies over entire Pannonian Basin. The color of the line indicates the month at which the forecast 
was calculated. The correlations of the predicted yearly mean anomalies to the actual ones are printed in the legend. (B) and (C) show all measured yield anomalies 
for all regions and all years and their forecasts in the last two months before the harvest. Drought years are shown with bright orange background in the bar plot and 
as orange points in the scatter plot [2-column, color]. 

Fig. 8. Same as Fig. 7 for maize [2-column, color].  
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4.3. Feature elimination 

Table 6 shows the results of the different model runs using the two 
feature elimination techniques. It shows that the model runs using all 
predictors outperform almost all model runs using feature elimination. 
Only the wheat model shows significant improvements at LT3 with 
increasing Pearsońs R and decreasing NRMSE for most model runs. The 
best feature elimination technique in this study seems to be the ones 
excluding features with cross-correlations above 0.8. In this case, wet 
days and SPEI1 are eliminated due to their high correlation to precipi
tation, and DTR because of its high correlation to radiation. As the im
provements are not consistent, i.e. the forecasts for maize at LT3 and LT2 
decrease substantially, it is decided not to use any feature elimination. 
This also has the advantage that no additional uncertainties are intro
duced by defining a cross-correlation threshold for exclusion. 

4.4. Impact of the explanatory variables on the models 

Fig. 9 shows the development of the relative importance of predictors 
throughout the growing period, for all years and drought years sepa
rately. For wheat, the variables with the highest importance are air 
temperature and its seasonal forecast, the drought indices ESI and SPEI, 
and NDVI. Notably, the importance of these predictors changes 
throughout the season: for instance, the impact of ESI3 increases 
strongly from LT3 to LT0, while the contribution of seasonal forecasts 
and precipitation-related variables decreases. For maize, the explana
tory variables with the highest feature importance are SPEI3, tempera
ture, and LAI. The impact of temperature is considerably decreasing 
after LT3, whereas the importance of SPEI3, ESI1, and ESI3 is increasing 
towards the harvest date. All these variables show relatively high cor
relations in the respective months in the correlation analysis (Fig. 5). 

For drought years, feature importances are different from all years 
together. All temperature-related predictors together reach an impor
tance higher than 50% for wheat in all LTs considered. The impact of the 
drought indices is lower than on average within the last two months 
before harvest for both crops (Fig. 10). On the other hand, in the wheat 
forecast model, the seasonal forecast of temperature in the first two 
months and temperature and DTR in the last two months have high 
predictive power. For maize, soil moisture, SWI, and precipitation are 

among the most important features during drought years. 
Fig. 11 compares the feature importance of the different model runs 

during the CV, hence providing insight into the model consistency. 
Overall, there is good agreement between the feature importance ob
tained from the different test-train splits carried out through the CV. For 
wheat, most of the predictors with the high importance are from LT2, 
while in the maize model most of the features with highest importance 
(drought indices and LAI) are from LT1. 

5. Discussion 

5.1. Overall model performance 

The maize models tend to perform better than the wheat models. 
They can capture the interannual yield variability. For most regions high 
correlations (R>0.7) and low NRMSE between forecasted and observed 
yields from around two months before harvest have been obtained 
(Fig. 6). The predictive skill from two months before harvest is in line 
with the correlation analysis between predictors and crop yields, which 
also showed a marked increase in correlation two months before harvest 
(Figs. 4 and 5). Some predictors have already similar large correlations 
with the crop yield anomalies in LT3 as in LT2. However, according to 
the feature importance analysis these “early” predictors do not have a 
large overall impact on the model: for wheat, the most important vari
able changes between from the seasonal temperature forecasts and soil 
moisture in LT3 to air temperature and ESI3 at LT1 (Fig. 10). For maize, 
the most important explanatory variable changes from observed and 
forecasted temperature in LT3 to soil moisture and SPEI3 in the last two 
months before harvest (Fig. 10). In both cases, the correlations between 
these predictors and crop yield anomalies is higher for the same months. 
Our results indicate that the crop yield anomaly forecasts in the last 
months before harvest largely depend on water availability for maize, 
and temperature and ESI3 for wheat. This can be explained by the 
phenology of the crops. The critical phenological stages are flowering 
(around 5–8 weeks before the start of harvest) and grain filling (1–5 
weeks before the start of harvest) (Bussay et al., 2015). Winter wheat 
starts growing at a daily mean temperature of around 0 ◦C while con
ditions for crop growth become less favourable around daily mean 
temperature of around 25 ◦C (McMaster and Wilhelm, 1997). This 
condition is usually met in spring and early summer. Air temperatures 
above 30 ◦C, generally associated with low ESI values, negatively affect 
wheat yields (Hlavacova, 2017). Maize, on the contrary, mainly depends 
on soil water availability. Healthy growth of maize requires sufficient 
soil moisture at rooting depth throughout the growing cycle, but it is 
most vulnerable to water scarcity during flowering (WMO, 2010), which 
occurs in the summer months when potential evapotranspiration is 
normally at its peak. 

5.2. Model behavior throughout the season 

The Pannonian Basin mean forecasts (Figs. 7A and 8A) confirm that 
the specific conditions up to two months before harvest can significantly 

Table 4 
Forecast validation of the model for different validation techniques as described in Section 4.5.1: overall for the comparison of all regions and years, PB means shows 
the mean forecasted observed yields over the Pannonian Basin, and Drought for the performance during all drought years. The scale bar for the color coding of the two 
metrics is shown in the last row.    

Overall PB means Drought  Overall PB means Drought 

maize_LT3 Pearsońs R 0,33 0,44 − 0,10 NRMSE 0,21 0,16 0,60 
maize_LT2 0,69 0,85 0,39 0,17 0,10 0,31 
maize_LT1 0,79 0,94 0,47 0,14 0,06 0,20 
maize_LT0 0,76 0,90 0,36 0,15 0,08 0,22 
wheat_LT3 − 0,17 − 0,20 0,07 0,17 0,14 0,16 
wheat_LT2 0,43 0,48 0,43 0,14 0,11 0,12 
wheat_LT1 0,50 0,58 0,63 0,13 0,10 0,10 
wheat_LT0 0,54 0,62 0,64 0,13 0,10 0,09  

Table 5 
Median absolute error of the forecast of drought and non drought years, and p 
value of T-test comparing the distributions of the errors during drought and non 
drought years.   

Median error non- 
drought [t/ha] 

Median error 
drought [t/ha] 

T-test error non-drought 
and drought [p value] 

Wheat_LT2 0.32 0.49 0.00 
Wheat_LT1 0.34 0.43 0.01 
Wheat_LT0 0.35 0.4 0.08 
Maize_LT2 0.65 0.77 0.00 
Maize_LT1 0.47 0.6 0.02 
Maize_LT0 0.55 0.6 0.01  
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impact the final yield. For example, the beginning of the year and early 
spring in 2009 is characterized by high SPEI3 and average to low air 
temperatures, which cause the model to forecast positive wheat yield 
anomalies. In April and May, the air temperature anomalies become 
positive and SPEI3 drops (Fig. 9A and 9B) and so does the yield forecast. 
The subsequent high temperatures and low rainfall, which persisted 
until June (i.e. 1 month before harvest), caused large wheat yield losses 
over the Pannonian Basin (Fig. 7). Later in the growing season, i.e. be
tween July and August, SPEI3 and air temperature anomalies return to 
normal. Consequently, the maize yield models of July (LT2) and August 
(LT1) forecast higher yields than in June (LT3), but still substantially 
underestimate the actual maize yield anomalies observed later in the 
year. Similar patterns can be observed in other years, e.g., in 2013 and 
2015. These years start with high SPEI3 and average temperature values 
and only towards the summer months the conditions are getting adverse 

for crop growth, showing increasing positive temperature anomalies and 
lower SPEI3 (Fig. 9A and 9B). Wheat yields are not much impacted by 
these unfavorable conditions due to the earlier harvest, but maize yields 
show large negative anomalies. The development of maize in 2002 and 
2011, which start very dry, shows that this works also the other way 
around. SPEI3 is low throughout the first half of the year and increases 
significantly in July and August (LT2 and LT1 for maize) causing 
average or even positive maize yield anomalies. Hence, the yield 
anomalies highly depend on the conditions during the last two months 
before harvest. This complicates accurate crop yield forecasts with lead 
times longer than two months. Hence, early season crop yield forecasts 
need to rely on seasonal weather forecasts which can be highly uncertain 
(Crespi et al., 2021). Still, including seasonal temperature forecasts to 
some degree adds value to the maize forecast at LT3, where the forecast 
shows medium correlations between forecasted and observed maize 

Fig. 9. Development of three explanatory variables during time span of the study (A-C) and the yearly correlations of the forecasted and observed crop yield 
anomalies of all available NUTS3 regions. The vertical lines in A-C indicate the approximate timing of the harvest – dashed line for wheat and dotted line for maize 
[2-column, color]. 
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yield anomalies in many regions (Fig. 6). 

5.3. Comparison to similar studies 

Our results are in line with previous studies carried out in the same 
region. For instance, various authors found an increase in performance 
around two months before harvest (Bussay et al., 2015; Kern et al., 2018; 
Potopová et al., 2020), while other studies could predict maize yields 
consistently better than wheat yields (Frieler et al., 2017; Kern et al., 
2018; Nagy et al., 2018; Pinke and Lövei, 2017). Generally, these studies 
obtained better overall performance than our results. Bussay et al. 
(2015) forecasted maize yields over Hungary on NUTS3 level regions 
obtaining a correlation between forecasted and observed wheat yields of 
0.82 seven weeks before harvest. They used a regression-based approach 
to forecast crop yields and evaluated it using leave-one-year-out CV. The 
main difference to this study is that they used a biophysically-based crop 
growth simulation model and used different predictors. Similar results 
to Bussay et al. (2015) were obtained by Bognár et al. (2017), who 
forecasted wheat yields in Hungary on a NUTS3 level with a correlation 
of 0.83 around 45 days before harvest. They applied a statistical model 
on NDVI data with a spatial resolution of 250 m and a temporal reso
lution of 5 days. They validated each year separately by using all ante
cedent years as training data. However, direct comparisons are 
hampered by different validation techniques, study region, and 
observed periods. Another important aspect is that the above-mentioned 
studies employed absolute crop yields as reference data, which generally 

leads to higher validation scores compared to using crop yield anoma
lies, as in this study. Still, what we learn from the comparison to other 
studies is that our models could be further improved by considering 
spatial autocorrelations in the data, different temporal and spatial res
olutions, considering cropland masks, or by using different detrending 
methods. In addition, the time series length and the diversity of the crop 
yield data are crucial for training the model. Hence, more crop yield data 
than the 10 to 15 years of data used here would most likely improve the 
results. 

5.4. Forecasting spatial crop yield variability 

The performance of the model to forecast spatial crop yield vari
ability (Fig. 9D) clearly shows the weakness of the model to distinguish 
the crop yields between different NUTS3 regions within the years. This is 
likely related to high spatial autocorrelations of the predictors and the 
crop yield anomalies (Table 1) and the rather coarse resolution of the 
predictors. In addition, the spatial autocorrelation leads to a rather low 
range of yield anomalies (Table 1). All together, these factors make 
forecasts of the spatial anomaly patterns between regions challenging. 
On the other hand, at interannual time scales, the range of yield 
anomalies is larger and the autocorrelation lower. This makes a reliable 
forecast easier, which is reflected in the higher regional performance. It 
shows correlations around 0.6 for most regions two months before 
harvest (Fig. 6). This is in agreement with the findings of Li et al. (2019), 
who state that the performance of the model to distinguish yields be
tween different regions is strongly related to the spatial yield variability. 
This is related to a general issue of gradient boosting and other machine 
learning techniques, which do not consider the timing of the predictors, 
i.e., many climatic conditions can both reduce and increase crop growth 
in adjacent regions depending on the antecedent conditions and the 
local boundary conditions (Lischeid et al., 2022). An additional factor 
that could contribute to the issue of a low performance to forecast spatial 
crop yield variabilities are the different spatial resolutions of the pre
dictor datasets which are harmonized to NUTS3 level regions. Parame
ters with coarse spatial resolutions can have a significant part of their 
footprint outside the actual region and inside neighbouring regions. This 
makes an accurate comparison of neighbouring regions even more 
difficult. 

This issue of the model to forecast the spatial variability impacts the 
overall performance significantly (Table 4). Especially as there are more 
regions (around 40) than years (15), high performances can only be 
achieved when the spatial crop yield variabilities are well reflected by 
the models. Under these circumstances, the overall correlations of 0.79 
for maize of LT1 and errors below 0.15 for wheat of LT2 (Table 4) are 
reasonable results. 

5.5. Performance in years of severe drought 

Despite the availability of only four years characterized by severe 
droughts, the availability of crop yield data for more than 40 regions per 
year results in more than 160 observations per crop and allows for some 
cautious conclusions. During the four drought periods under investiga
tion the forecast errors are higher than during non-drought years 
(Table 5), caused by a general underestimation of the magnitudes of the 
crop yield losses. For example, the mean Pannonian Basin forecast of 
maize with LT1 overestimates the actual yield on average by around 
20% in drought years. For wheat, the forecasted yearly mean Pannonian 
Basin yield losses in drought years are only around 50% of the observed 
losses. This could be improved by using more training data, especially 
during extreme conditions, as machine learning models require a good 
coverage over all conditions to provide reasonable results for each 
condition. Nevertheless, the wheat forecast model performs in drought 
years even better than on average for all years. The errors are below 12% 
two months before harvest and the correlations even reach 0.63 in the 
last month before harvest as opposed to only 0.5 for all years together. 

Table 6 
Validation of the model runs with applied feature elimination techniques. The 
values show the difference of the correlations and NRMSE values to the original 
model run using all predictors. The resulting predictors for each of the model 
runs are summarized in the lower half of the table. VIF_10 and VIF_5 show the 
used predictors when a Variance Inflation Factor threshold of 10, respectively 5, 
is applied and Cor_08 to Cor_05 represent the thresholds used for the cross- 
correlation analysis. E.g. for Cor_07 all predictors with cross-correlations 
above 0.7 are excluded. The seasonal forecasts are always included. The scale 
bar for the color coding of the metrics are shown in the row after wheat_LT0 for 
both metrics.   

Improvements to baseline 

VIF 10 VIF 5 Cor_08 Cor_07 Cor_06 Cor_05 
Δ R Δ R Δ R Δ R Δ R Δ R 

maize_LT3 0 − 0,07 − 0,09 − 0,02 − 0,06 − 0,07 
maize_LT2 − 0,05 − 0,08 − 0,04 0,01 − 0,04 − 0,04 
maize_LT1 − 0,05 − 0,03 − 0,01 0 − 0,02 − 0,01 
maize_LT0 − 0,03 − 0,01 0,01 0,01 0 − 0,01 
wheat_LT3 − 0,19 0,15 0,14 0,18 0,2 0,4 
wheat_LT2 − 0,12 − 0,05 0,04 0,04 − 0,14 − 0,12 
wheat_LT1 − 0,06 − 0,14 0 − 0,01 0,03 − 0,05 
wheat_LT0 − 0,14 − 0,16 0,01 − 0,03 − 0,01 − 0,03  

Δ 
NRMSE 

Δ 
NRMSE 

Δ 
NRMSE 

Δ 
NRMSE 

Δ 
NRMSE 

Δ 
NRMSE 

maize_LT3 0,01 0,02 0,01 0 0 0 
maize_LT2 0 0,01 0 − 0,01 0 0 
maize_LT1 0,01 0,01 0 0 0,01 0 
maize_LT0 0,01 0 − 0,01 0 0 0 
wheat_LT3 0,03 0,01 0 0 − 0,01 − 0,02 
wheat_LT2 0,01 0,01 − 0,01 0 0,01 0,01 
wheat_LT1 0,01 0,02 0 0 0 0,01 
wheat_LT0 0,01 0,01 0 0 0 0,01 

Used predictors. 
Reference: all. 
VIF 10: NDVI; LAI; VOD; precip; wet days; Diurnal; SM; SWI; ESI1; sf_tg; 
sf_precip. 
VIF 5: NDVI; VOD; Diurnal; SM; ESI1; sf_tg; sf_precip. 
Cor_08: NDVI; LAI; VOD; precip; LST; rad; SM; SWI; SPEI3; ESI1; ESI3; sf_tg; 
sf_precip. 
Cor_07: LAI; VOD; LST; SM; SPEI1; SPEI3; ESI1; sf_tg; sf_precip. 
Cor_06: LAI; VOD; LST; SWI; SPEI1; ESI1; sf_tg; sf_precip. 
Cor_05: LAI; VOD; SPEI1; ESI1; sf_tg; sf_precip. 
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This is in agreement with the higher correlations of the predictors to 
wheat yield anomalies when comparing drought years to all years 
(Fig. 4). Overall, the models are able to early predict crop yield losses in 
drought years, but underestimate their magnitude. This is in agreement 
with other studies showing that crop yield losses in drought years are 
often underestimated (Kang et al., 2020; van der Velde et al., 2018; 
Pagani et al., 2017; Bussay et al., 2015). 

5.6. Impact of the explanatory variables 

The yield anomaly forecasting in this study is based on 18 different 

explanatory variables, including data from EO, ground observations, 
reanalysis, and seasonal forecasts. The feature importance shows that 
datasets of all sources impact the models to some degree (Figs. 10 and 
11). Therefore, combining different sources for crop yield forecasting is 
recommendable. The predictors with the largest impacts on the models 
are EO and reanalysis-based datasets of the drought indices (ESI and 
SPEI) and air temperature based on in situ data. Other relevant EO 
datasets are soil moisture, NDVI (mainly for wheat), and LAI (mainly for 
maize). While seasonal forecasts of temperature have a high feature 
importance, seasonal precipitation forecasts have only minor impact on 
the model, which is explained by the low reliability of seasonal 

Fig. 10. Temporal evolution of the feature importance of the models. The four plots show the mean feature importance of the predictors of the wheat model of all 
years, the mean feature importance of the predictors of the wheat model trained in drought years, and then the same for maize. For color coding of the predictors, see 
caption of Fig. 3 [2-column, color]. 

Fig. 11. Development of the feature importance of the models over the different calibrations in the cross-validation. The values of the models in June for wheat and 
August for maize are displayed. For better visibility, three year-intervals are merged by adding up the feature importance of those years. Only variables with a feature 
importance larger than 0.2 are displayed [2-column, color]. 
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precipitation forecasts southeastern Europe (Crespi et al., 2021; 
Gospodinov et al., 2020). Measured precipitation up to the forecast date 
has low predictive power. This suggests that precipitation does not 
reliably represent the water in the ground, while soil moisture and 
combined indices like SPEI, ESI are more representative. We found that 
the wheat model mainly depends on temperature, whereas water 
availability (in the form of drought indices and soil moisture) is vital for 
maize. This supports findings from Kern et al. (2018), who stated that in 
this region, the temperature in May (LT2) is key for winter wheat yield, 
while water availability in July and August (LT2 and LT1) is crucial for 
maize yield. 

In severe drought years, the impact of the drought indices is lower 
than on average (Fig. 10), which shows that in these years soil moisture 
and SWI better reflect the actual water availability. This supports the 
findings of Sohrabi et al. (2015), who showed that soil moisture data can 
help to improve the quantification of droughts over established drought 
indices. For wheat, the impact of the seasonal temperature forecast is 
more important in drought years indicating its value for drought fore
casting as already pointed out in Hao et al. (2018). It is surprising that 
the impact of ESI3 is lower in drought years compared to all years, as one 
would expect a drought indicator to provide key information especially 
in drought years. Moreover, as single predictor ESI3 showed high cor
relations with wheat yield anomalies in drought years (Fig. 4). This 
shows the importance of combining multiple datasets from different 
sources, instead of only considering the most obvious predictors. 

6. Conclusion 

In this study, an XGBoost-based crop yield anomaly forecast system 
using EO, climate and weather data is established for various NUTS3 
regions in the Pannonian Basin. Pannonian mean crop yield forecasts 
show a reasonable performance from two months before harvest for all 
years considered (2002–2016). We observe a strong dependency on 
water availability for maize and on temperature for wheat in the two 
months before harvest. However, the model is not able to reliably 
differentiate yield anomalies between the NUTS3 regions within indi
vidual years and underestimates the negative impacts of severe drought. 
Future work should focus on how these conditions can be better repre
sented in the forecast models, either by considering other input datasets 
or by increasing the temporal and spatial resolutions of the predictors. A 
finer spatial resolution could help to better distinguish the yields be
tween the different regions and even bring crop yield forecasts to a field- 
level. Above all, more crop yield data at various spatial scales (from field 
to regional) are needed for improved calibration and validation of such 
machine learning models. 
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aided analysis of boreal forest backscatter at Ku band. Int. J. Appl. Earth Observ. 
Geoinform. 91 (April), 102133 https://doi.org/10.1016/j.jag.2020.102133. 

Cornes, R.C., van der Schrier, G., van den Besselaar, E.J.M., Jones, P.D., 2018. An 
ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. 
Res.: Atmosp. 123 (17), 9391–9409. https://doi.org/10.1029/2017JD028200. 

Craney, T.A., Surles, J.G., 2002. Model-dependent variance inflation factor cutoff values. 
Qual. Eng. 14 (3), 391–403. https://doi.org/10.1081/QEN-120001878. 

Crespi, A., Petitta, M., Marson, P., Viel, C., Grigis, L., 2021. Verification and bias 
adjustment of ecmwf seas5 seasonal forecasts over Europe for climate service 
applications. Climate 9 (12), 181. https://doi.org/10.3390/CLI9120181/S1. 
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Geiger climate classification updated. Meteorol. Z. 15 (3), 259–263. https://doi.org/ 
10.1127/0941-2948/2006/0130. 

Leng, G., Hall, J.W., 2020. Predicting spatial and temporal variability in crop yields: an 
inter-comparison of machine learning, regression and process-based models. 
Environ. Res. Lett. 15 (4), 044027 https://doi.org/10.1088/1748-9326/AB7B24. 

Li, H., Li, Y., Huang, G., Sun, J., 2021. Probabilistic assessment of crop yield loss to 
drought time-scales in Xinjiang, China. Int. J. Climatol. 41 (8), 4077–4094. https:// 
doi.org/10.1002/JOC.7059. 

Li, Y., Guan, K., Yu, A., Peng, B., Zhao, L., Li, B., Peng, J., 2019. Toward building a 
transparent statistical model for improving crop yield prediction: modeling rainfed 
corn in the U.S. Field Crops Res. 234, 55–65. https://doi.org/10.1016/J. 
FCR.2019.02.005. 

Li, J., 2017. Assessing the accuracy of predictive models for numerical data: Not r nor r2, 
why not? Then what? PLOS ONE 12 (8), 1–16. https://doi.org/10.1371/JOURNAL. 
PONE.0183250. 

Li, Z., Ding, L., Xu, D., 2022. Exploring the potential role of environmental and multi- 
source satellite data in crop yield prediction across Northeast China. Sci. Total 
Environ. 815, 152880 https://doi.org/10.1016/J.SCITOTENV.2021.152880. 

Lischeid, G., Webber, H., Sommer, M., Nendel, C., Ewert, F., 2022. Machine learning in 
crop yield modelling: a powerful tool, but no surrogate for science. Agric. For. 
Meteorol. 312, 108698 https://doi.org/10.1016/J.AGRFORMET.2021.108698. 

E. Bueechi et al.                                                                                                                                                                                                                                 

https://doi.org/10.1038/s41612-021-00198-3
https://land.copernicus.eu/global/products/lai
http://refhub.elsevier.com/S0168-1923(23)00287-3/sbref0016
http://refhub.elsevier.com/S0168-1923(23)00287-3/sbref0016
http://refhub.elsevier.com/S0168-1923(23)00287-3/sbref0016
https://doi.org/10.1016/j.jag.2020.102133
https://doi.org/10.1029/2017JD028200
https://doi.org/10.1081/QEN-120001878
https://doi.org/10.3390/CLI9120181/S1
https://doi.org/10.1007/s10113-020-01710-w
https://doi.org/10.1007/s10113-020-01710-w
https://doi.org/10.1016/j.fcr.2018.08.005
https://doi.org/10.1016/J.RSE.2017.07.001
https://doi.org/10.1016/J.RSE.2017.07.001
https://catalogue.ceda.ac.uk/uuid/c3bd175b6ed64020b439eb08ed9c8fc2
https://catalogue.ceda.ac.uk/uuid/c3bd175b6ed64020b439eb08ed9c8fc2
https://doi.org/10.1093/INSILICOPLANTS/DIAC017
https://doi.org/10.1016/J.AGRFORMET.2020.108053
https://doi.org/10.1016/J.AGRFORMET.2020.108053
https://doi.org/10.1017/S0021859612000779
https://doi.org/10.1017/S0021859612000779
https://doi.org/10.1016/J.AGRFORMET.2020.107922
https://doi.org/10.1016/J.AGRFORMET.2020.107922
https://doi.org/10.1016/j.compag.2018.09.003
https://doi.org/10.1007/s11119-018-09628-4
https://doi.org/10.1007/s11119-018-09628-4
https://doi.org/10.1002/2016EF000525
https://doi.org/10.1016/j.agwat.2018.10.030
https://doi.org/10.3390/rs11151745
https://doi.org/10.22620/agrisci.2021.30.009
https://doi.org/10.22620/agrisci.2021.30.009
https://doi.org/10.5194/essd-11-717-2019
https://doi.org/10.5194/essd-11-717-2019
https://doi.org/10.1016/j.fcr.2018.03.006
https://doi.org/10.1002/2017GL074952
https://doi.org/10.1002/2017GL074952
https://doi.org/10.1002/2016RG000549
https://doi.org/10.1002/2016RG000549
https://doi.org/10.1007/S00704-016-1779-9
https://doi.org/10.1002/QJ.3803
https://doi.org/10.17221/73/2017-PSE
https://doi.org/10.17221/73/2017-PSE
https://doi.org/10.11118/actaun201967040925
https://doi.org/10.11118/actaun201967040925
https://doi.org/10.1016/J.AGRFORMET.2015.11.003
https://doi.org/10.1016/J.AGRFORMET.2015.11.003
https://doi.org/10.5194/gmd-12-1087-2019
https://doi.org/10.5194/gmd-12-1087-2019
https://doi.org/10.1016/J.RSE.2010.12.015
https://doi.org/10.1016/J.AGWAT.2021.107064
https://doi.org/10.1016/J.AGWAT.2021.107064
https://doi.org/10.1088/1748-9326/AB7DF9
https://doi.org/10.1088/1748-9326/AB7DF9
https://doi.org/10.1016/j.agrformet.2018.06.009
https://doi.org/10.28974/idojaras.2020.2.2
https://doi.org/10.28974/idojaras.2020.2.2
https://doi.org/10.1016/j.jag.2013.01.002
https://doi.org/10.1016/j.jag.2013.01.002
https://doi.org/10.1007/S10462-011-9272-4
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1088/1748-9326/AB7B24
https://doi.org/10.1002/JOC.7059
https://doi.org/10.1002/JOC.7059
https://doi.org/10.1016/J.FCR.2019.02.005
https://doi.org/10.1016/J.FCR.2019.02.005
https://doi.org/10.1371/JOURNAL.PONE.0183250
https://doi.org/10.1371/JOURNAL.PONE.0183250
https://doi.org/10.1016/J.SCITOTENV.2021.152880
https://doi.org/10.1016/J.AGRFORMET.2021.108698


Agricultural and Forest Meteorology 340 (2023) 109596

16

Lu, J., Carbone, G.J., Gao, P., 2017. Detrending crop yield data for spatial visualization of 
drought impacts in the United States, 1895–2014. Agric. For. Meteorol. 237 (238), 
196–208. https://doi.org/10.1016/J.AGRFORMET.2017.02.001. 
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Bartošová, L., Zahradníček, P., Bláhová, M., Skalák, P., Farda, A., Hayes, M., 
Svoboda, M., Wagner, W., Eitzinger, J., Fischer, M., Žalud, Z., 2020. Czech Drought 
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