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Kurzfassung

In den letzten Jahren hat Deep Learning den Bereich des maschinellen Lernens domi-
niert und konventionelle Techniken in Bereichen wie Sprach-, Bild- und Texterkennung
übertroffen. Diese Domänen haben eine sehr große praktische Bedeutung, weshalb Deep
Learning auch viel Aufmerksamkeit erhält. Dies hat zu Anwendungen von Deep Learning
Techniken bei sicherheitskritischen Aufgaben geführt. Neural Networks sind jedoch anfäl-
lig für “adversarial“ Beispiele, gut ausgearbeitete kleine Anpassung der Eingabe. Daher
ist die Frage der Widerstandsfähigkeit und Sicherheit von Deep Learning Modellen zu
einem wichtigen Thema geworden.

In dieser Arbeit werden mehrere state-of-the-art white-box- und black-box Angriffe, wie
Carlini und Wagner L2 und L∞, HopSkipJump und Universal Perturbations, gegen state-
of-the-art Convolutional Neural Networks (CNN) in der Bilderkennungsdomäne unter
verschiedenen Zieleinstellungen verglichen und bewertet. Verschiedene Abwehrtechniken,
wie zum Beispiel “adversarial“ Training und Pre-processing Abwehr, werden gegen
solche Angriffe verwendet, um die Verbesserung der Widerstandsfähigkeit der CNNs zu
bewerten. Darüber hinaus wird eine Kombination dieser Abwehrmechanismen getestet,
in der Hoffnung, neue Abwehrmechanismen mit einer erhöhten Widerstandsfähigkeit zu
bekommen.

Die Experimente zeigen, dass der Einsatz von Abwehrmechanismen notwendig ist, um
CNNs eine höhere Widerstandsfähigkeit zu verleihen, insbesondere in der ungezielten
Zieleinstellung. Die Auswertung der Ergebnisse zeigt, dass “adversarial“ Training im
Vergleich zu Pre-Processing Abwehr ähnliche Widerstandsfähigkeit bietet, jedoch mit dem
Preis einer geringeren Genauigkeit des Modells auf den Originaldaten. Die Pre-Processing
Techniken waren dagegen sehr effektiv gegen “adversarial“ Angriffe, die “adversarial“
Beispiele erzeugten, die den Originalbildern, gemessen in der Metrik L2, sehr nahe
kommen.
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Abstract

Over the past few years, deep learning has been dominating the field of machine learning,
outperforming conventional techniques in domains such as speech, image, and text
recognition. These domains have very big practical significance, which is also why deep
learning is receiving a lot of attention. This has led to applications of deep learning
techniques in safety-critical tasks. However, neural networks are vulnerable to adversarial
examples, well-crafted small perturbations of the input. Therefore, the question of
robustness and security of deep learning models has become a major concern, indirectly
also affecting safety.

In this thesis, several state-of-the-art white-box and black-box adversarial attacks, like
Carlini and Wagner L2 and L∞, HopSkipJump and Universal Perturbations, are compared
and evaluated against state-of-the-art Convolutional neural networks (CNN) under
different target settings in the image recognition domain. Additionally, defense techniques
against such attacks, like adversarial training and pre-processing defenses, are used to
evaluate the improvement of the robustness of the CNNs. Furthermore, a combination of
these defenses is tested with the hope to potentially obtain new defenses that have an
increased level of robustness.

The experiments show that the use of defense mechanisms is necessary to provide CNNs
with a higher level of robustness, especially in the untargeted setting. The evaluation of
results indicates that adversarial training provides a similar level of robustness compared
to pre-processing techniques, but with the cost of lower accuracy of the model on the
original data. The pre-processing techniques were very effective against adversarial
attacks that generated adversarial images, which are very close to the original images
measured in the L2 metric.
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CHAPTER 1
Introduction

1.1 Motivation

Over the past few years, deep learning has been dominating the field of machine learning,
outperforming conventional techniques in domains such as speech, image, and text
recognition. For example, in the image recognition domain, they can recognize objects
with very high accuracy. Other domains where deep neural networks also excel include
natural language processing and playing games. These domains have very big practical
significance, which is also why deep learning is receiving a lot of attention. This has led to
applications of deep learning techniques in safety-critical tasks. For example, in healthcare,
convolutional neural networks are used to classify skin cancer based on photographic
images, referable diabetic retinopathy based on optical coherence tomography (OCT)
images of the retina, and pneumonia based on chest X-ray images. Another example, in
autonomous vehicles, convolutional neural networks are used to recognize road signs.

As promising results in this field kept piling up, and machine learning systems are conse-
quently employed in an increasing number of systems involved in potentially autonomous
decision making, naturally, the question of security of machine learning models is raised.
Imagine if the model fails to recognize skin cancer. That would potentially lead to fatal
patient outcomes. If the model fails to recognize the STOP sign and the vehicle does not
stop, it would lead to a dangerous situation that could result in a car accident. Therefore,
the question of robustness and security of deep learning models has become a major
concern, indirectly also affecting safety.

In recent years, researchers have demonstrated several ways to successfully attack machine
learning models, but also, to some extent, to defend against these attacks.
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1. Introduction

1.2 Threat model
We discuss in this section, how to model threats against the mentioned attacks. We
define the attacker’s goal, knowledge, and capability of manipulating the input data,
to subsequently define an optimization problem corresponding to the optimal attack
strategy, which we mainly base on the discussion by Biggio and Roli (2018) [BR18]. The
solution to this problem provides a way to manipulate input data to achieve the attacker’s
goal.

Attacker’s Goal

The attacker’s goal is defined in the following terms:

• Security violation. The attacker may aim to cause: an integrity violation, i.e. to
evade detection without compromising normal system operation; an availability vio-
lation, i.e. to compromise the normal system functionalities available to legitimate
users; or a privacy violation, to obtain private information about the system, its
users or data by reverse-engineering the learning algorithm. Integrity, availability,
and confidentiality are also known as the CIA triad and represent the fundamental
principles of information security [Per08].

• Attack specificity. The attack can be either targeted or untargeted. Targeted
attacks aim to cause the model to misclassify a specific set of samples (to target
a given system user or protected service), while with the untargeted attacks the
attacker aims to cause misclassification of any sample (to target any system user or
protected service).

• Error specificity. It can be either specific if the attacker aims to have a sample
misclassified as a specific class; or generic, if the attacker aims to have a sample
misclassified as any of the classes different from the true class.

Attackers Knowledge

Additionally, different attack scenarios can be described based on the attacker’s knowledge
of the targeted system. This includes different levels of knowledge such as the training
data, the feature set, the learning algorithm along with the objective function and possibly
even its trained hyper-parameters.

• White-box setting - attacker is assumed to know everything about the targeted
system.

• Gray-box setting - attacker is assumed to know something about the targeted
system.

• Black-box setting - attacker is assumed to know nothing about the targeted system.
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1.2. Threat model

The white-box setting allows one to perform a worst-case evaluation of the security of
the learning algorithm and is the main focus of this thesis.

Attacker’s Capability

This characteristic depends on the influence that the attacker has on the input data and
application-specific data manipulation constraints.

• Attack influence. It can be causative if the attacker can manipulate both training
and test data, or exploratory if the attacker can only manipulate test data. These
scenarios are more commonly known as poisoning and evasion attacks.

• Data manipulation constraints. Another aspect related to the attacker’s capability
depends on the presence of application-specific constraints on data manipulation.
For example, to evade malware detection, malicious code has to be modified, but
without compromising its intrusive functionality.

Summary

Table 1.1 shows a categorization of these attacks based on the attacker’s goals (CIA
triad) and capabilities to manipulate test and/or training data.

Integrity Availability Confidentiality
Test data Evasion - Model extraction /

stealing and model in-
version

Training data Poisoning (to al-
low subsequent
intrusions) - e.g.
backdoors or neural
network Trojans

Poisoning to maxi-
mize classification er-
ror

-

Table 1.1: Attacks against machine learning models based on the discussed threat model,
taken from Biggio and Roli (2018) [BR18]

Evasion attacks, a.k.a adversarial attacks are the type of attacks that this thesis will be
focused on. These are attacks that manipulate the test data, aimed to maximize the test
error. They use imperceptible, adversarially chosen perturbations to the test data. In
many cases, the changes done are so subtle that a human observer does not even notice
them, but the classier still make a mistake. They can be successfully performed even if
the adversary has no access to the underlying model, i.e. in a black-box setting, which
increases security concerns even more and most existing machine learning classifiers are
highly vulnerable to them.
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1. Introduction

To give a practical example of an adversarial attack, if we were to feed a state-of-the-art
image recognition model a picture of an animal, say a panda, the model should recognize
the panda. But, one can add a specifically tailored noise to this image, which would result
in the model recognizing the panda as a shoe instead. The noise aims to be minimal so
that to the human eye, the original and modified image look the same.

To this date, different types of adversarial attacks and defenses have been proposed.
However, only a few defense mechanisms can be used to defend against more than one
attack type.

1.3 Aim of the Work
This thesis focuses primarily on image recognition applications. The first goal is to develop
recommendations for which defense mechanisms work best for which types of adversarial
attacks under given settings and datasets. These recommendations will be created based
on the results obtained through empirical tests and evaluations of adversarial attacks and
defenses. The experiments will be conducted on different image datasets under various
settings. The robustness of neural networks against adversarial attacks will be measured
with different metrics.

Another goal is to improve detection of and defenses against adversarial attacks. The
detection of adversarial attacks means that the model can detect adversarial examples
as adversarial and refuse to classify them, whereas the defense means that the model
can classify the adversarial examples correctly, despite the adversarial perturbation.
Therefore, a combination of existing defenses will be tested with the hope to potentially
obtain new defenses that have an increased level of robustness. Such attempts have
proven to be fruitful in the past, since some proposed defense mechanisms are a fusion of
two or more defense mechanisms, like Fine-pruning defense against backdooring attacks
proposed by Liu et al. (2018) [LDG18].

This thesis aims to answer the following research questions:

RQ1. Against the state-of-the-art adversarial attacks, which defense mechanisms have the
highest level of robustness, measured using different robustness evaluation metrics?
The practical significance of the neural networks implies the importance of the
robustness of neural networks against these attacks. We aim to investigate the
current state-of-the-art in the field of adversarial defenses. And in addition to
answering the proposed question, we aim to analyze the possible defense strategies
that could potentially offer higher levels of robustness against these attacks.

RQ2. How do different neural network architectures impact the robustness of the defense
mechanisms?
Adversarial examples that are adversarial on one model are often also adversarial
on another model, even if the two have different architectures or were trained on
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different training sets, so long as both models were trained to perform the same
task. However, it is not clear to which extent does this holds and whether the
defense mechanisms then provide the same (or at least similar) levels of robustness
as when the adversarial examples are generated with the same (defended) model.
To showcase the importance of this topic, consider that an attacker may train their
substitute model, craft adversarial examples against the substitute, and transfer
them to a victim model, with very little information about the victim. For this
reason, it is important to better understand the transferability behavior of different
neural networks regarding adversarial attacks. We aim to answer this question
by evaluating defense mechanisms with several state-of-the-art neural network
architectures.

RQ3. How do different characteristics of datasets impact the robustness of the defense
mechanisms?

Different image datasets have different characteristics, such as the size of an image,
level of details, resolution, quality, etc. These differences have a big impact on what
architectures and accuracy results do the models achieve on these datasets. For
example, a simpler dataset means that a less complex model is needed to obtain
high accuracy scores. We look to investigate these differences with adversarial
attacks and defenses by performing the same experiments on different datasets.

RQ4. How well do defense mechanisms work against universal perturbations?

Different from other attacks, universal perturbations represent modifications that
are applied to each image, i.e. they are not custom for each image, but the same
for all attacked samples. It is a different approach to generating adversarial images
that should be considered when evaluating adversarial attacks. In our experiments,
we aim to evaluate different state-of-the-art defense mechanisms against universal
perturbations.

RQ5. To which extent can we improve the defense against adversarial attacks by adapting
or combining different defense mechanisms?

Since there is no clear best state-of-the-art defense that defends against all or most
of the adversarial attacks, any improvement in that direction would be considered
good. By its definition, most of the defense mechanisms are compatible with
other defense techniques. This allows us to, for example, stack them together
with the hope of achieving better results. We aim to investigate and analyze such
possibilities.

1.4 Structure of the work
The rest of this thesis is organized as follows:

5



1. Introduction

Chapter 2 Background presents an overview of machine learning techniques that
are needed to follow the rest of the thesis. The chapter is mainly focused on
Convolutional Neural Networks.

Chapter 3 State-of-the-art presents the existing state-of-the-art adversarial attacks
and defense mechanisms in the image recognition domain. Additionally, an adver-
sarial robustness metric called CLEVER is discussed.

Chapter 4 Experimental Setup presents the experimental setup of attacking and
defending the pre-trained models. The datasets used in the experiments are also
described.

Chapter 5 Experimental results chapter presents the experimental results, failed
attempts, and also discusses other observations from the experiments.

Chapter 6 Summary and Conclusion chapter summarizes and concludes the work of
this thesis, to form guidelines for best defenses against different adversarial attacks.
This includes the analysis of the modifications and combinations performed on the
defense mechanisms.

6



CHAPTER 2
Background

This chapter briefly explains the background needed to follow the work of this thesis.
First, we explain the basics of machine learning, followed by the introduction to neural
networks and their core features. We close this chapter with a discussion on convolutional
neural networks (CNNs).

2.1 Machine Learning
One of the first definitions of machine learning is attributed to the work of Samuel
[Sam59] as “a field of study that gives computers the ability to learn without being
explicitly programmed“. A more precise and formal definition of machine learning was
given by Tom Mitchell in his book Machine Learning (1997) [Mit97] as “a computer
program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E“. For this ability “to learn from experience“, machine learning is seen as a
part of artificial intelligence. Over the past two decades, machine learning has become
one of the most popular technologies. It is used almost everywhere, from automating
mundane tasks to offering intelligent insights. Some of the main tasks that it tackles are
classification, image and speech recognition, medical diagnosis, financial trading, and so
on. In this section, we focus on aspects of machine learning that are important for the
scope of this thesis, including a brief introduction to the image classification problem, so
that the reader can follow the upcoming chapters.

Image classification is a supervised learning approach, where the goal is to learn a function
f : Rn �→ {1, ..., k} that maps an n-dimensional input vector to one or more of k classes.
There is another variant of the function f , where f outputs a probability distribution
over all k classes, thus stating how likely each class is. The learning process is called
training, whereas the trained function is referred to as a trained model. Models that are
used for classification tasks are also called classifiers. The best state-of-the-art algorithms

7



2. Background

for most image classification tasks are convolutional neural networks, a special type of
neural network that we discuss later in this chapter.

One of the main properties of supervised learning approaches is that a set D = {(xi, yi) :
i ∈ [N ]} of N input-output pairs is given. The output elements yi are called the ground
truth (or, sometimes, the gold standard). They carry the information of which is the
correct class for the corresponding input xi. The set D is called the dataset.

Naturally, we are interested in knowing the effectiveness of the learned function f , i.e.
knowing how good does the function f classifies the input images. Different measures
describe this, and they vary depending on the domain of the problem, but the most
commonly used measure is the accuracy of the model, which is the ratio of the correctly
classified images over the total number of classified images. For example, if the classifier
correctly classifies 758 out of 1 000 images, then its accuracy is 75.8 %.

To simulate how the model performs and behaves in production we measure its perfor-
mance on a set of input data that the model did not see during the learning (training)
process. This set of data is called the test set and is often obtained by splitting the
dataset D into two parts before the training process starts. The other part is then used
for training and is called the training set.

Furthermore, the training set is often split into two disjoint subsets, the training set, and
the validation set. The validation set is used e.g. to optimize hyperparameters, which are
parameters that control the behavior of the learning process, or for deciding on an early
stopping criterion. We start the training by fitting models with different hyperparameters
on the training subset. Next, we evaluate the candidate models on the validation set, and
then we select the one with the best performance. We call this process hyperparameter
tuning. Hence, the main purpose of the validation set is to verify whether an increase of
accuracy on the training subset also yields an increase of accuracy on a set of the model
unknown images.

The optimal scenario that we are aiming to achieve is that a trained classifier has high
accuracy during training, and then also on the test set. However, a scenario that can
occur is that a classifier has high accuracy on the training and validation sets, but low
on the test set. In this case, we say the classifier overfits.

Deep learning and Convolutional Neural Networks are the most popular field of machine
learning in the domain of image classification tasks, and we thus cover these in detail
in the following. In Section 2.2 we give an introduction to neural networks, followed by
introductions to Gradient Descent in Section 2.3 and Backpropagation in Section 2.4.
The Gradient Descent is used for the optimization of cost functions, whereas the Back-
propagation is used to compute a derivation of a composition of functions in backward
direction within neural networks. Lastly, we discuss Convolutional Neural Networks
(CNNs) and some of the most important architectures of CNNs in Section 2.5.

8



2.2. Feedforward Neural Networks

2.2 Feedforward Neural Networks
Feedforward neural networks [ZMH+94] are the simplest type of artificial neural network
[Dre90]. A good understanding of how these networks work helps one understand and
follow more complicated architectures such as Convolutional [LGTB97] and Recurrent
Neural Networks [MC01].

The goal of a feed-forward neural network is to approximate some function f . Say that
this function f maps an input x to a value y. A feedforward neural network defines
a mapping y = f(x; θ) and learns the value of the parameters σ that then hopefully
results in the best function approximation. This approximation function is a composition
of different functions. The first function in the composition is called the input layer,
whereas the last function is called the output layer. The functions in-between are called
hidden layers. If there are no hidden layers, then a feedforward neural network is known
as a single-layer perceptron [Ros60], otherwise, it is known as a multi-layer perceptron.
The number of hidden layers is also referred to as the depth of a neural network. An
example of the architecture of a multi-layer perceptron and one of its neurons can be
seen in Figure 2.1.

A feed-forward network is a directed graph, whose vertices are called neurons, and whose
edges are called weights. Neurons compute an output by applying the activation function
of the sum of inputs multiplied with weights, i.e. output = f(�n

i=1 xiwi). Edges (weights)
define the flow of information, which in the case of the feedforward neural networks is, as
the name suggests, is in forward direction only.

(a) A Neuron with an Activation Function 1 (b) Multi-layer Perceptron Architecture 2

Figure 2.1: An example of a Multi-layer Perceptron and a single neuron within this
architecture

When using these networks in a classification task, a so-called softmax layer is used
as the output layer, which outputs a vector of probabilities that a given input belongs

1Figure taken from https://www.researchgate.net/figure/A-hypothetical-example-
of-Multilayer-Perceptron-Network_fig4_303875065

2Figure taken from https://www.cc.gatech.edu/~san37/post/dlhc-fnn/
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2. Background

to a specific class. The sum of all these probabilities equals 1 and the predicted class
corresponds to the index with the highest probability.

2.3 Gradient Descent
The learning process mentioned previously means that we are trying to find the best
weights. To express how wrong the model is on a given input for some weights, we use
loss functions. Naturally, we want that our model makes as few mistakes as possible,
which leads us to the optimization problem of minimizing the loss function.

For classification tasks, the most common loss function used is cross-entropy, which is
used to quantify the difference in probability distributions p and q ∈ Rn and is defined
as:

H(p, q) = −
n�

i=1
pi × log qi (2.1)

If we denote p to be the ground-truth label and q to be the predicted softmax probabilities,
then H measures how (dis)-similar are the true and predicted probabilities on a single
sample. On the entire dataset, cross-entropy is then defined as:

L(θ) = 1
|D|

�
i = 1|D|H(pi, qi) (2.2)

where pi and qi are the ground-truth label and predicted softmax probabilities for the
sample i. Other commonly used loss functions include Mean Square Error, Mean Absolute
Error, etc.

In general, optimization methods are divided into two groups, constrained and uncon-
strained. Unconstrained methods are further divided into closed-form and iterative form
methods. To give an example of closed-form methods, consider that the steepest descent
converges when every element of the gradient is zero, or very close to zero. Hence, we
can in simple cases easily solve the equation ∇xf(x) = 0 for x. If the loss function has
many variables, a closed-form method could become very complicated and extremely
expensive to calculate. This is where iterative methods work better.

Gradient Descent [Lem12] is such an iterative optimization method. Recall from calculus
that for a function f : RN �→ R the vector that contains all partial derivatives ∇xf(x) of
the function f w.r.t x is called the gradient. Gradient descent is the technique of moving
x in small steps with the opposite sign of the derivative. In other words, the positive
gradient points uphill, and the negative downhill. Hence by moving in the direction of
the negative gradient we get lower and lower values of our cost function.

Formally, if we are at point x, the next point x� is calculated as:

x� = x − α∇xf(x) (2.3)

where α represents the learning rate, i.e. the size of the step. The choice of learning great
can have a big impact on the overall results. Larger learning rates have a higher chance
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2.4. Backpropagation

of missing the global minimum, as the learning curve will show large oscillations of the
cost function values. In contrast, a smaller learning rate leads to a slow convergence – if
the learning rate is too low, the learning process may even get stuck with high-cost value.

The pseudo-code for this method is outlined in Algorithm 2.1. Note that the gradient is
calculated on the whole dataset.

Algorithm 2.1: Gradient descent
Input: x, f, �

1 do
2 x� = x − �∇xf(x)
3 while x� = 40;

The only requirement of Gradient Descent is that f must be differentiable. It is a simple
and efficient optimization method, but it also has limitations. For a good generalization
of a problem, we should have a large training set, which comes with an increased
computational cost. As the training set grows in size, the time it takes to make a single
gradient step becomes longer and the algorithm eventually becomes infeasible.

To overcome this challenge, instead of evaluating the algorithm on a whole dataset, we
take a random subset, called mini-batch, of the training samples of some cardinality C,
at each step of the algorithm. An algorithm obtained this way is called the Stochastic
Gradient Descent (SGD) [Bot10]. It is called stochastic because samples are selected
randomly for each iteration. The cardinality of the mini-batches is, for efficiency reasons,
usually taken to be a power of 2 (64, 128, 256, or 512). It is important to note that the
mini-batches have to be sampled randomly. The learning rate is a crucial parameter for
SGD. It is recommended to decrease the learning rate during the execution. That means
that our � now depends on the iteration and is denoted as �k.

2.4 Backpropagation
Feedforward neural networks process the input x in the forward direction and produce an
output y. The loss function f is then applied on y. By using backpropagation [RDGC95],
the flow of data goes back through the layers, to compute the gradient. To achieve this,
the so-called chain rule is used:

dz

dx
= dz

dy

dy

dx
(2.4)

This rule gives the way to calculate derivatives of a composition of functions. If you
recall, an edge from one neuron to another is a simple function. Hence, moving forward
from one layer to another means that we are building a composition of compositions of
functions. This is where we need the chain rule. It allows us to go back one step at a
time calculating the partial derivatives and in the end the entire gradient.
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2.5 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) [LGTB97] are a type of feedforward neural
network that is primarily used in the field of pattern recognition within images. The
name convolutional is derived from the mathematical operation convolution, which
these networks aim to imitate. The reason for their supreme application in the image
recognition tasks lies in the fact that one of the largest limitations of traditional forms
of neural networks is that they struggle with spatial structures, partially, due to the
computational complexities involved.

CNNs are made of three types of layers: convolutional layers, pooling layers, and fully
connected layers. An example of a CNN architecture is shown in Figure 2.2.

Figure 2.2: A graphic example of CNN layers 3

The convolutional layer is the most important layer of CNNs. It uses learnable kernels
that have smaller width and height, but the same depth as the input. The layer convolves
each filter across the height and width of the output to create an activation map, a
mapping that corresponds to the activation of different parts of the image. As we move
through the input, the layer calculates the scalar products for each value in the kernel. By
doing this, the layer obtains kernels that are triggered by specific features. This means
that every kernel has its corresponding activation map. This layer reduces significantly
the number of weights, while still also successfully learning the features of the input.

The activation function that is most commonly used in CNNs is the ReLU (rectified
linear unit), defined as:

ReLU(x) = max(0, x) (2.5)

Figure 2.3 shows an illustration of the ReLU function. Other common activation functions
include Sigmoid, Hyperbolic Tangent (Tanh), Leaky ReLU, etc.

3Figure taken from https://aditimukerjee.medium.com/step-by-step-vgg16-
implementation-in-keras-for-beginners-for-image-classification-problem-
cbeec9c0d7a3
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Figure 2.3: ReLU Activation function

The main goal of a pooling layer is to further reduce the dimensions of the input and the
number of parameters. In the case of a max-pooling layer, the layer operates over each
activation map and scales its dimensionality using the max function. In other words, it
takes only the maximum output in the scanned neighborhood.

Finally, the fully connected layer consists of multiple standard feed-forward, fully con-
nected neural network layers used to predict the class probabilities based on the features
extracted by previous convolutional and pooling layers.

Even though the CNNs are made of only three types of layers, there is no clear recipe for
designing a CNN architecture. Over the years, several well-working CNN architectures
have been proposed for different tasks, scoring state-of-the-art results. In this thesis,
we use three of these well-known CNN architectures, namely ResNet, Inception, and
MobileNet, which we discuss in the following sections. They have been chosen because
they are state-of-the-art architectures that vary in complexity, performance, and accuracy.

2.5.1 Deep Residual Network Architecture
With Deep Residual Network (ResNet), proposed by He et al. (2015) [HZRS16], we can
train models with up to hundreds of layers, while maintaining efficiency. The proposal of
ResNet architecture has improved the results in tasks such as image classification, object
detection, or face recognition. It scored the first position at the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 2015 competition.

The ResNet architecture successfully tackled one of the biggest problems when adding
more and more layers is the problem of the vanishing gradient. As the gradient is
backpropagated to previous layers, the big number of multiplication operations can make
the gradient infinitely small, thus saturating the performance of the network.

The main base element of this architecture is the residual block. As can be seen in
Figure 2.4, the residual block takes an input and if it does not have any additional
weight layers, it simply outputs the identity, meaning the input itself. If there are some
additional weight layers the block tries to learn some delta, a "residual" from the input
X.

4Figure taken from https://neurohive.io/en/popular-networks/resnet/
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Figure 2.4: A residual block in ResNet architecture 4

Figure 2.5: The architecture of ResNet-50, taken from [MOB+20]

We have many variants of ResNet architecture, ResNet-18, ResNet-34, ResNet-50, ResNet-
101, ResNet-110, etc. The trailing number indicates the number of neural network layers,
the concept of the architecture is the same between these variants. Figure 2.5 shows the
entire architecture of the ResNet-50.

2.5.2 Inception Neural Network Architecture

The Inception architecture by Szegedy et al. (2014) [SLJ+15] is complex, heavily engi-
neered, and has been evolving constantly. So far, several versions of this architecture are
proposed, InceptionV1 (a.k.a GoogleNet) [SLJ+15], InceptionV2 [SVI+16], InceptionV3
[SVI+16], InceptionV4 and Inception-ResNet [SIVA17].

The core idea behind this architecture and also the reason why the network is called
Inception is the following. If we observe an image of a dog, then the area occupied by
the dog is different in each image. In some images, the dog occupies a big portion of the
image, but in other a rather small portion of the image. Because of the huge variation in
the size and position of the relevant information, choosing the right kernel size for the
convolution layers becomes hard.

5Figure taken from https://www.programmersought.com/article/90163515785/
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Figure 2.6: An example of an inception block 5

A larger kernel is preferred for images where the dog occupies a bigger portion of the
image, and likewise, a smaller kernel is preferred for images where the dog occupies
a smaller portion. But what if we add filters with multiple sizes that operate on the
same level? Figure 2.6 shows an example of an inception block from the first version. It
performs convolution on an input with 3 different sizes of filters (1 × 1, 3 × 3 and 5 × 5).
Max pooling is also performed, the outputs are concatenated along the depth dimension
and sent to the next inception module.

As stated before, deep neural networks are computationally expensive. To make it
cheaper, the authors reduce the number of input channels by adding an extra 1 × 1
convolution before the 3 × 3 and 5 × 5 convolutions. A 1 × 1 convolution simply maps an
input pixel with all its channels to an output pixel. To see how do 1 convolutions reduce
the input, consider the following example. Given an input of size 28 × 28 × 192, if we
only apply 5 × 5 convolutions with same 32 filters we get an output of size 28 × 28 × 32.
The computational cost of computing this output is 28 · 28 · 32 · 5 · 5 · 192, which totals to
approximately 120M.

On the other hand, if we first apply 1 × 1 with 16 same filters and then apply 5 × 5
convolutions with the same 32 filters, we again get an output of size 28 × 28 × 32. This
time, the computational cost is (28 · 28 · 16 · 192 · 1 · 1) + (28 · 28 · 32 · 5 · 5 · 16), which
total to approximately 12.4M. Thus, even though adding an extra operation may seem
counter-intuitive, 1 × 1 convolutions are far cheaper than 5 × 5 convolutions, and the
reduced number of input channels contributes to cheaper computation.

Figure 2.7 shows the architecture of the first version of Inception networks, InceptionV1,
which was popularly known as GoogLeNet.

Lastly, we discuss some of the tweaks made between the second and third version. In
InceptionV2 [SVI+16], the 5 × 5 convolution has been split into two 3 × 3 convolutions to
improve computational speed. Authors have shown empirically that a 5 × 5 convolution

6Figure taken from https://towardsdatascience.com/10-invaluable-tips-tricks-for-building-successful-
neural-networks-566aca17a0f1
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Figure 2.7: The architecture of InceptionV1 (also known as GoogleNet) 6

is 2.78 times more expensive (parameter-wise) than a 3 × 3 convolution. This means that
stacking two 3 × 3 convolutions together indeed leads to a boost in performance.

Convolutions of size N × N have been split into a combination of 1 × N and N × 1
convolutions. An N ×N convolution is equivalent to first performing a 1×N convolution,
and then performing a N × 1 convolution on its output. But the authors have measured
empirically that a combination of, for example, a 1 × 3 and a 3 × 1 convolution is 33%
cheaper than a single 3 × 3 convolution. These two alterations to the inception block
allowed for 7 × 7 convolutions to be included in the architecture without significantly
impacting the performance in the InceptionV3.

2.5.3 MobileNet Neural Network Architecture
Howard et al. (2017) [HZC+17] introduced a neural network architecture optimized
for mobile devices. They wanted to create a model that could deliver high accuracy,
but also that could keep the number of parameters and the number of mathematical
operations as low as possible. Achieving this was necessary to bring neural networks to
low-performance devices such as smartphones.

The MobileNet architecture uses depth-wise separable convolutions, which are made from
two operations, depth-wise convolution and point-wise convolution. The architecture
thus significantly reduces the number of parameters when compared to networks with
regular convolutions and with the same depth. This idea originated from the idea that a
filter’s depth and spatial dimension can be separated.

To explain the depth-wise separable convolutions and the improvements that they bring,
we will use a simple example. Say, we have an input image of size 12 × 12 × 3. If we
perform convolution using a 5 × 5 × 3 kernel, we will get an output of the size 8 × 8 × 1.

7Figure taken from https://www.pluralsight.com/guides/transfer-learning-in-deep-learning-using-
tensorflow-2.0
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Figure 2.8: The architecture of MobileNetV2 7

Additionally, during the convolution operations, we specify that we need N number
of channels in output. This means that the same operation is repeated N times with
different kernels. Suppose N = 10. The total computational cost in this example equals
to 8 · 8 · 5 · 5 · 3 · 10 = 48 000.

Now, consider first the depth-wise convolution. We have three channels for input and we
have three 5 × 5 × 1 kernels. A 5 × 5 × 1 kernel iterates over the corresponding channel
of the input image to produce an 8 × 8 × 1 output. Next, we stack all three of these
outputs together and obtain an output of the size 8 × 8 × 3.

Next, consider the point-wise convolution. A 1 × 1 × 3 kernel is used on the 8 × 8 × 3
output from the previous step. We repeat this with 10 different 1 × 1 × 3 kernels to
produce 10 feature maps and stack these features maps together. This creates an output
of the size 8×8×10, the same as in the standard case. The total computational cost with
depth-wise separable convolutions equals to 8 ·8 ·5 ·5 ·3 ·8 ·8 ·10 ·3 = 4 800+1 920 = 6 720,
which is a computational improvement of more than 7 times.

The entire MobileNet architecture consists of 28 convolutional layers and 1 fully connected
layer, followed by a softmax layer, as can be seen in Figure 2.8.
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CHAPTER 3
State-of-the-Art

In this chapter, we will discuss the adversarial attacks and defenses that this thesis relies
on. These attacks and defenses are currently state-of-the-art in this field. In addition
to this, we are also going to discuss an adversarial robustness metric called CLEVER,
which is used to measure and compare the robustness of models.

3.1 Adversarial Attacks
Szegedy et al. [SZS+14] first noticed the existence of adversarial examples in the image
classification domain. They showed that despite their high accuracies, current state-
of-the-art neural networks are surprisingly vulnerable to adversarial attacks. These
attacks add small perturbations to images, unrecognizable to the human eye. Such small
transformations can cause a neural network to change its prediction. What is even worse,
the attacked models usually report high confidence for the adversarial images.

The degree to which attackers can find adversarial examples impacts the applications
in which neural networks can be used. For instance, in self-driving cars, adversarial
examples could allow an attacker to cause the car to take unwanted actions, such as
ignoring certain traffic signs. A successful attack like that could lead to a tragic outcome,
as it would impact safety. This is just one example, but it clearly shows the dangerous
potential of adversarial attacks. This has inspired research on how to harden neural
networks against these kinds of attacks. However, since the discovery of Szegedy et al,
researchers have also proposed many new ways to successfully craft adversarial examples.

This thesis primarily assumes a white-box setting, which means that the adversary has
complete access to a neural network, including the architecture and the parameters. The
reason for this assumption is twofold. On the one hand, white box is the harder setting to
defend against – if CNNs can be protected when the attacker knows all the information
about its target, then one could conclude that CNNs can be protected in the same way
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and to the same degree even when the attacker knows less. On the other hand, Papernot
et al. [PMG16] have shown that it is possible to train a substitute model given black-box
access to a target model, and by attacking the substitute model, we can then transfer
these attacks back to the target model. Thus, it is possible to transform, to some extent,
an originally black-box setting into a white(r) box setting.

Based on their importance, performance, and diversity, we have selected the following
adversarial attacks, which we compare and evaluate in our experiments:

• Fast Gradient Sign Method (FGSM) [GSS15]

Published in 2014, this attack has become arguably the most popular adversarial
attack, because it is simple and is capable of crafting close adversarial examples fast.
It is optimized for the L∞ norm, which means that authors used this norm as a
distance metric to quantify the similarity between original and adversarial samples.
Since its publication, many changes and adaptations have been proposed that
improve the attack’s success rate to overcome newly proposed defense techniques.
This attack is discussed in more detail in Section 3.1.1.

• Carlini and Wagner L2 and L∞ attacks (CW) [CW17]

Published in 2016, these attacks are still one of the strongest attacks known. Apart
from proposing the attacks, Carlini and Wagner have made another contribution.
Initially, Papernot et al [PMW+16] proposed a defense technique called distillation
and have believed that they have solved the problem of adversarial attacks since
the distillation technique worked on all of that moment known adversarial attacks.
However, Carlini and Wagner have refuted that statement, using their Lp attacks
as counter-examples. These attacks are discussed in more detail in Section 3.1.2.

• Universal Perturbations [MFFF17]

While the FGSM and CW attacks make transformations specific to one single image
to fool the model on that image, a universal adversarial perturbation is able to fool
a network on many images with the same perturbation, also with high confidence.
These image-agnostic perturbations also remain quasi-imperceptible. This attack is
discussed in more detail in Section 3.1.3.

• HopSkipJump [CJW20]

Since we are primarily interested in the white-box setting, this is the only black-box
setting attack that we consider. It is based on a novel estimate of the gradient
direction using binary information at the decision boundary. The proposed attack
includes both untargeted and targeted attacks optimized for L2 and L∞ metrics
respectively. The authors have empirically shown that the HopSkipJump attack
is also strong against several state-of-the-art defense techniques. This attack is
discussed in more detail in Section 3.1.4.
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• Shadow Attack [GSG20]
Shadow attack is a generalization of the well-known Projected gradient descent
(PGD) [MMS+18] attack, a descendent of the aforementioned FGSM attack. It
exploits the labeling function of a classifier. The proposed method applies large
perturbations that place images far from a class boundary while maintaining the
imperceptibility property of adversarial examples. This attack is discussed in more
detail in Section 3.1.1.

3.1.1 Fast Gradient Sign Method (FGSM)
Intuitively, for each pixel, the Fast Gradient Sign method [GSS15] uses the gradient of
the loss function to determine in which direction the pixel’s intensity should be changed
(whether it should be increased or decreased) to minimize the loss function. Then, it
shifts all pixels simultaneously. More formally, given an image x the Fast Gradient Sign
method sets:

x� = x − � · sign(∇lossF,t(x)) (3.1)

where � is chosen to be sufficiently small to be undetectable, F is the full neural network
including the softmax layer, and t is the target label.

It is important to note that the fast gradient sign attack was designed to be fast, rather
than optimal.

Basic Iterative Method (BIM)

Sometimes referred to as the Iterative Gradient Sign method, Basic Iterative Method
(BIM) [KGB17] is a simple improvement of the FGSM, where a single step of size � in
the direction of the gradient sign is replaced with multiple smaller steps α. Additionally,
the result is clipped by the same �.

To be more precise, we set the initial sample to:

x�
0 = x (3.2)

and then in each iteration, the next samples is defined as:

x�
i = clip(x�

i−1 − α · sign(∇lossF,t(x�
i−1))) (3.3)

Projected Gradient Descent (PGD)

The Projected Gradient Descent attack [MMS+18] is an iterative method in which, after
each iteration, the perturbation is projected on an lp-ball of specified radius. That is
done in addition to clipping the values of the adversarial sample so that the samples lie
in the permitted data range.

The attack is formulated as a constraint optimization problem to find a perturbation
that maximizes the loss function used to train the CNN model such that the crafted
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perturbation is inside the Lp ball of the original sample:

max
δ

loss(x + δ) (3.4)

such that
�δ�p ≤ �. (3.5)

As it can be seen in Equation (3.5), the Lp ball represents all attacked samples whose Lp

distance to the given sample is smaller or equal to �. The algorithm can be summarized
with the following steps:

1. Start from a random perturbation in the Lp ball around the given sample;

2. Take a gradient step in the direction of greatest loss;

3. Project perturbation back into Lp ball if necessary:

4. Repeat steps 2 and 3 until convergence.

More formally, the next sample is defined as:

x�
i =

�
x+S

(x�
i−1 + α · sign(∇xlossF,t(x))) (3.6)

This attack is a more sophisticated version of the BIM and was proposed for adversarial
training purposes, which we discuss later in this chapter in Section 3.2.2.

Shadow Attack

Instead of solving the constrained optimization problem that the PGD attack solves, the
Shadow attack [GSG20] solves the following problem featuring a range of penalties:

max
δ

loss(x + δ) − λcC(δ) − λtvTV (δ) − λsDissim(δ) (3.7)

where λc, λtv, λs are scalar penalty weights.

Penalty TV (δ) forces the perturbation δ to have small total variation (TV ), and so
appear more smooth and natural.

Penalty C(δ) limits the perturbation δ globally by constraining the change in the mean
of each color channel c. This constraint is needed since the total variation is invariant to
constant/scalar additions to each color channel, and it is desirable to suppress extreme
changes in the color balances of images.

Penalty Dissim(δ) promotes perturbations δ that assume similar values in each color
channel. In the case of an RGB image of shape 3 × W × H, if Dissim(δ) is small, then
the perturbations to red, green, and blue channels are similar, i.e., δR,w,h ≈ δG,w,h ≈
δB,w,h, ∀(w, h) ∈ W × H. This amounts to making the pixels darker/lighter, without
changing the color balance of the image. Two effective ways of enforcing such similarity
between RGB channels are proposed:
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• 1-channel attack that strictly enforces δR,i ≈ δG,i ≈ δB,i, ∀i by using just one array
to simultaneously represent each color channel δW ×H . On the forward pass, we
duplicate δ to make a 3-channel image. In this case, Dissim(δ) = 0, and the
perturbation is greyscale.

• 3-channel attack that uses a 3-channel perturbation δ3×W ×H , along with the
dissimilarity metric Dissim(δ) = �δR − δB�p + �δR − δG�p + �δB − δG�p.

Altogether, the three penalties minimize the perception of perturbations by forcing them
to be a) small, b) smooth, and c) without dramatic color changes. At the same time,
these penalties allow perturbations that are very large in Lp-norm.

3.1.2 Carlini and Wagner (CW)
Carlini and Wagner [CW17] proposed three different attacks, one for each of the following
Lp norms, L0, L2 and L∞. These attacks are still among the strongest attacks. For this
thesis, we use L2 and L∞ attacks, as they are stronger than the L0 attack.
Carlini and Wagner formally define the problem of finding an adversarial transformation
for a sample x as follows:

minimize D(x, x + δ)
s.t. C(x + δ) = t

x + δ ∈ [0, 1]n
(3.8)

where x is fixed, D represents the distance metric, either L0, L2 or L∞, and the goal is
to find δ that minimizes D(x, x + δ). That is, we want to find some small change δ that
we can make to an image x, such that it changes the classification of that image, but
such that the result is still a valid image, i.e. the pixel values are in [0, 1].
Since the above formulation is difficult for existing algorithms to solve directly, as
the constraint C(x + δ) = t is highly non-linear, the problem is reformulated as an
appropriate optimization instance that can be solved by optimization algorithms. An
objective function f such that C(x + δ) = t if and only if f(x + δ) ≤ 0 is defined. A total
of seven possible choices for f are empirically tested and the following definition was
found to be the most effective:

f(x�) = (max
i�=t

(Z(x�)i) − Z(x�))t)+ (3.9)

At this point, the formulation of the problem becomes:
minimize �δ�p + c · f(x + δ)

x + δ ∈ [0, 1]n
(3.10)

Another empirical result is that the best way to choose c is to use the smallest value
of c for which the resulting solution x∗ has f(x∗) ≤ 0. This causes gradient descent to
minimize both of the terms simultaneously instead of picking only one to optimize over
first.
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L2 attack

Given x, they chose a target class t (such that t �= C∗(x)) and then they searched for w
that solves

minimize
����1

2(tanh w + 1) − x

����2

2
+ c · f(1

2(tanh w + 1)) (3.11)

with f defined as

f(x�) = max(max Z(x�)i : i �= t − Z(x�)t, −κ). (3.12)

This f is based on the best objective function found earlier, modified slightly so that one
can control the confidence with which the misclassification occurs by adjusting κ.

L∞ attack

The L∞ distance metric is not fully differentiable and standard gradient descent does
not perform well for it. The �δ�∞ term only penalizes the largest (in absolute value)
entry in δ and has no impact on any of the other. As such, gradient descent very quickly
becomes stuck oscillating between two sub-optimal solutions.

Carlini and Wagner resolved this issue by using an iterative attack. They replaced the
L2 term in the objective function with a penalty for any terms that exceed τ (initially 1,
decreasing in each iteration). This prevents oscillation, as this loss term penalizes all
large values simultaneously. Specifically, in each iteration they solve

minimize c · f(x + δ) +
�

1
[(δi − τ)+] (3.13)

After each iteration, if δi < τ, ∀i, they would reduce τ and repeat; otherwise, they would
terminate the search.

3.1.3 Universal Perturbations
Let µ denote a distribution of images in Rd, and F define a classification function that
outputs for each image x ∈ Rd an estimated label F (x). The main focus of this attack
is to find perturbation δ ∈ Rd that fool the classifier F on most samples from µ. This
perturbation is called universal because it is a fixed perturbation that does not depend
on a particular sample and that causes label change for most images in the dataset
[MFFF17].

More formally, the attack is searching for δ such that F (x + δ) �= F (x) for “most“ x ∼ µ.
Furthermore, this kind of perturbation is desired to be small in terms of the Lp norm with
p ∈ [1, ∞)). The goal is therefore to find δ that satisfies the following two constraints:

�δ�p ≤ ξ,

Px∼µ(F (x + v) �= F (x)) ≥ 1 − γ.
(3.14)
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The parameter ξ controls the magnitude of the perturbation vector δ, and γ quantifies
the desired fooling rate for all images sampled from the distribution µ.

The experiments indeed showed the existence of such small universal perturbations.
Furthermore, universal perturbations generalize well across different classification models
and result in universal perturbations that are both image- and network-agnostic. The
authors believe that an explanation for the existence of such transferable perturbations
is probably due to the geometrical correlations between different regions of the decision
boundary.

3.1.4 HopSkipJump
HopSkipJump [CJW20] is a query algorithm and a decision-based generator of adversarial
examples which utilizes distance-vector as a hyperparameter. It is based on an estimate
of the gradient direction using binary information at the decision boundary. Proposed
are both untargeted and targeted versions of the attack, which are optimized for l2 and
l∞ similarity metrics respectively.

The algorithm works as follows. For an untargeted attack, it is initialized with a sample
in the target class, while for a targeted attack, the initialization is with a misclassified
sample blended with uniform noise. Each iteration of the algorithm has three major
steps.

• Push the iterate from the last iteration towards the decision boundary by using the
so-called binary search algorithm,

• Estimate the gradient direction,

• Update step size along the gradient direction and decrease it via geometric progres-
sion1 until perturbation becomes successful.

The next iteration starts with projecting the perturbed sample back to the boundary
again. Figure 3.1 shows an intuitive visualization of the three steps in l2 metric. For a
detailed technical explanation of how the algorithm works, please refer to the original
paper [CJW20].

Experiments show that the HopSkipJump attack requires significantly fewer model
queries than several state-of-the-art decision-based adversarial attacks, like Boundary
Attack [BRB18], Limited Attack [IEAL18] and Opt Attack [CLC+19]. It also achieved
competitive performance in attacking several widely-used defense mechanisms, such as
defensive distillation [PMW+16] and adversarial training Section 3.2.2. Through the
experimental analysis, the authors also suggest that the HopSkipJump attack can be used
as a simple and efficient first step for researchers to evaluate new defense mechanisms.

1i.e. a sequence where each subsequent term after the first is found by multiplying the previous term
by a fixed number
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Figure 3.1: Intuitive illustration of HopSkipJump attack, taken from [CJW20]. (a)
Perform a binary search to find the boundary. (b) Estimate the gradient at the boundary
point. (c) Geometric progression. (d) Perform another binary search

3.2 Adversarial Defenses
Adversarial examples demonstrate that most of the state-of-the-art neural networks
are vulnerable and can be fooled. Since this discovery, the research community has
been working on practical defenses against adversarial examples. However, adversarial
examples are hard to defend against, due to the following reasons:

• A theoretical solution to the process of generating adversarial examples is difficult
to construct. This is due to adversarial sample crafting being a non-linear and
non-convex complex optimization problem. If we do not have the proper theoretical
background to describe the solution to these optimization problems, then it is
equally hard to derive any theoretical conclusions that a given defense indeed
improves robustness against adversarial examples.

• If a defense mechanism makes a considerable modification to the model, then this
may affect the ability of the model to correctly predict legitimate, unmodified inputs.
The increase of robustness could thus lead to a general drop in the effectiveness of
the model.

Furthermore, most of the current defense strategies are not fit against all types of
adversarial attacks, as one method may mitigate one kind of attack, but be still vulnerable
to some other types of adversarial attack.

The current defense mechanisms against adversarial attacks can be split into four distinct
categories [NST+18]:

1. Preprocessor – a type of defense that does not modify the model, but instead the
input (image) that the model is supposed to classify. The modification is done,
as the name suggests before the image is passed to the model. Many different
preprocessing defense mechanisms were proposed in recent years, and we will discuss
selected approaches in Section 3.2.1
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2. Trainer – this defense technique is used to re-train the model in a specific way so
that it is more robust to adversarial samples. The input images and the outputs
are not modified, but adversarial examples crafted by the defender are added to
the training set. An example of this defense is the so-called Madry’s Protocol
defense [MMS+18], which performs adversarial training with a PGD attack as the
adversary. These defenses are described in Section 3.2.2.

3. Transformer - this defense technique is somewhat similar to the trainer technique,
as the model is also re-trained. However, transformers can also introduce an
additional transformation to the network architecture. An example of this defense
is the so-called Defensive Distillation technique [PMW+16]. At the moment of
publication, the authors believed that they have solved the problem of adversarial
attacks, mainly because it was believed that the reason adversarial examples exist
is due to “blind spots“ (as Szegedy et al. (2013) [SZS+13] call them) in highly
non-linear neural networks. However, the publication of the Carlini and Wagner
[CW17] attacks showed that this is incorrect. Namely, these attacks have a 100 %
success rate on both distilled and undistilled neural networks.

4. Detector - these defense techniques primarily attempt to detect the adversarial
images. In other words, they try to find the subtle adversarial perturbations added
to inputs. This technique is utilized more in other types of attacks on neural
networks, such as Poisoning attacks. Nonetheless, there are several successful
detectors for adversarial examples. For example, Detector based on the Fast
Generalized Subset Scan [SSR+18], which adapts the so-called subset scanning
methods from the anomalous pattern detection domain to the task of detecting
adversarial examples for neural networks. The anomalous pattern detection task
arises in many domains: customs monitoring, where we attempt to discover patterns
of illicit container shipments; disease surveillance, where we must detect emerging
outbreaks of disease in the very early stages; network intrusion detection, where we
attempt to identify patterns of suspicious network activities; and various others.

In this thesis, we focus primarily on the first two categories, preprocessors and adversarial
training for several reasons. We are more interested in defenses and their combinations that
enable the classifier to correctly classify images despite the adversarial noise. Furthermore,
pre-processors and adversarial training are currently state-of-the-art, whereas for the best
transformer defense (Defensive Distillation [PMW+16]) Carlini and Wagner [CW17] have
proposed attacks that are not affected by this defense at all. In the following sections,
we discuss some of the best-known defenses from these two categories.

3.2.1 Preprocessors
Spatial Smoothing

The Spatial Smoothing [XEQ18] defense is a part of the approach called Feature Squeezing
proposed by Xu et al. (2017) [XEQ18]. The core motivation behind feature squeezing is
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that the feature input spaces in image recognition tasks are often very large, and hence
enable a lot of freedom for an adversary to craft adversarial examples. Therefore, the goal
is to shrink the adversary’s freedom by “squeezing“ out unnecessary input features. After
the original input is preprocessed, both the original and preprocessed inputs are given
to the model to classify. If the predictions are significantly different, then the input is
regarded as an adversarial example. Xu et al. (2017) focus primarily on two simple types
of Feature Squeezing: reducing the color depth of images and using smoothing (local and
non-local) to reduce the variation among pixels. Namely because of its superiority, we
use the latter type in this thesis, also known as Spatial Smoothing, which is a group of
techniques widely used in image processing for reducing image noise, sometimes regarded
as blur

Local smoothing methods make use of the nearby pixels to smooth each pixel. There
exist different techniques for weighing the neighboring pixels, but this defense uses the
so-called median smoothing, also known as median blur or median filter. The median
filter runs a sliding window over each pixel of the image and replaces the center pixel with
the median value of the neighboring pixels within that window. The number of pixels
in the image remains unchanged. The feature squeezing process thus means making
neighboring pixels more similar to each other.

The size of the window can be defined from 1 pixel to up to the image size, whereas the
shape is square. If the size of the window setting is configured to 1 pixel, then the image
remains unchanged, whereas if it is configured to the image size, the image is changed to
one color.

Median smoothing is particularly effective at removing sparsely occurring black and
white pixels in an image (known as "salt-and-pepper noise"), whilst preserving edges of
objects well. Authors reported that empirical results show that it performs especially
well against the adversarial attacks based on the L0 norm.

In contrast, non-local smoothing smooths over similar pixels in a much larger area instead
of just nearby pixels.

For this reason, the Spatial Smoothing defense can be easily combined with other defenses,
because it does not modify the model, only the input image before it is given to the
classifier. The authors have found that this defense works very well when coupled with
adversarial training.

JPEG Compression

The inspiration for this defense approach lies in the fact that most datasets that are
used for training the neural networks for image classification have been JPG compressed.
When a JPG image is transformed into an adversarial example, likely, that image is
no longer in the JPG space. This leads to the idea behind that JPEG re-compression
[DGR16] could potentially revert the adversarial perturbation, such that the image is no
longer adversarial and the classifier outputs the original prediction.
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By performing JPG re-compression to reverse adversarial perturbations, the authors have
hypothesized that the following could happen:

• Adversarial perturbations could be very sensitive and reverted by most image
processing steps

• Adversarial perturbations might be “orthogonal“ to the JPG subspace, in which
case we would expect the modifications to be removed by JPEG compression.

The former hypothesis was shown to be false – standard image processing does not
revert the tailored adversarial perturbations. However, the latter hypothesis was not
contradicted. Namely, for small perturbations, JPEG compression was able to successfully
revert the adversarial perturbation. On the other hand, if the adversarial perturbations
are larger, JPEG compression does not reverse the adversarial perturbation. This result
is not promising because these larger perturbations are still barely visible to an untrained
human eye.
Even though this defense alone does not provide strong protection to the model, it is
fairly simple and can be easily combined with other defenses. For this, we speculate that
JPEG Compression combined with other defenses could increase the robustness of the
model.

Total Variance Minimization

Guo et al. (2018) [GRCvdM18] proposed a new defense technique against adversarial
attacks that is a Compressed Sensing approach 2 that combines pixel dropout with total
variation minimization (Rudin et al., 1992 [ROF92]). The technique works by randomly
selecting a small set of pixels and reconstructing an image that is consistent with the
selected pixels. Because the adversarial perturbations are usually small and localized,
the reconstructed image is not adversarial anymore.
More formally, they first select a random set of pixels by sampling a Bernoulli random
variable X(i, j, k) for each pixel location (i, j, k). A pixel is maintained when X(i, j, k) = 1.
Next, they use total variation minimization to constructs an image z that is similar to
the (perturbed) input image x for the selected set of pixels, whilst also being “simple” in
terms of total variation by solving:

min
z

||(1 − X) � (z − x)||2 + λTV · TVp(z) (3.15)

where � denotes element-wise multiplication, and TVp(z) represents the Lp-total variation
of z:

TVp(Z) =
K�

k=1

 N�
i=2

||z(i, :, k) − z(i − 1, :, k)||p +
N�

j=2
||z(:, j, k) − z(:, j − 1, k)||p

 .

(3.16)
2Compressed Sensing is a signal processing technique for efficiently acquiring and reconstructing a

signal [DDEK12]
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The total variation (TV) measures the amount of fine-scale variation in the image z,
which leads to the removal of adversarial perturbations by Total Variance Minimization.

Wang et al. (2016) [WGZ+16] proposed a strategy for adversary-resistant deep neural
networks, stating that a strong input-transformation defense should be non-differentiable
and randomized. Total variation minimization fulfills both of the properties:

• It is difficult to differentiate because it involves solving a complex minimization of
a function that is inherently random.

• It randomly selects the pixels that it uses to reconstruct the image.

The randomness of the defenses is important because it makes it difficult to attack
the model - it implies that the adversary has to find a perturbation that changes the
prediction for the entire dataset, which is harder than attacking a single image as shown
in [MFFF17].

Lastly, the authors note that Total Variation Minimization has an advantage over
adversarial-training approaches, because adversarially trained networks are differentiable,
implying that they can be successfully attacked easier. An additional disadvantage of
adversarial training stated by the authors is that it is based on one specific adversar-
ial attack, whereas the Total Variance Minimization generalizes well across different
adversarial attacks.

3.2.2 Adversarial Training
Adversarial training defense works by generating adversarial examples on the fly during
training and including the newly crafted adversarial example into the training set.
However, the correct choice of the adversary is not clear. The research of this defense
technique started with the choice of the FGSM attack, mainly because of its speed of
crafting adversarial robustness and the fact that many state-of-the-art adversarial attacks
are extensions and generalizations of the FGSM.

One of the most significant results for this defense technique comes from the work of
Madry et al. (2017) [MMS+18], who have shown empirically that FGSM adversaries do
not increase robustness for large �. This is due to the that when training the network
using adversarial examples generated with the FGSM, it can be observed that the network
easily overfits these adversarial examples. They believed that this behavior stems from
the fact that the adversary produces a very restricted set of adversarial examples that
the network can overfit on. Moreover, these networks have poor performance on natural
examples and do not exhibit any kind of robustness against PGD adversaries. On the
other hand, for the case of smaller � the loss is often linear enough in the L∞-ball around
natural examples so that the FGSM finds adversarial examples close to those found by
PGD. Thus being a good choice of an adversarial attack to train against.
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Instead of the FGSM, Madry et al. (2017) proposed to use their PGD attack as the
re-training adversary. This became the default adversarial training defense and has
also remained very robust since the publications. However, this approach comes at a
non-trivial additional computational cost, often increasing training time by an order of
magnitude over standard training because the adversarial images are generated in each
training step and for all samples in the batch.

Due to this high computational overhead, scaling to more complex state-of-the-art neural
networks was difficult. Training such a neural network is already a computational
challenge on its own. To overcome this issue, the last couple of years have seen many
improvements in the performance of the algorithms that craft adversarial examples.
Shafahi et al., 2019 [SNG+19] proposed an algorithm that eliminates the overhead cost
of generating adversarial examples by recycling the gradient information computed when
updating model parameters. Their so-called "free" adversarial training algorithm achieves
comparable robustness to Madry et al.. However, even with such improvements, the
training of neural networks is significantly slowed down when adversarial training defense
is utilized, depending on the dataset even by the factor of 10.

Wong et al., 2020 [WRK20] showed empirically that adversarial training with FGSM with
random initialization is as robust as with PGD. On top of that, adversarial training with
FGSM with random initialization combined with techniques for efficient training achieves
a training runtime that is significantly faster compared to the overhead-free adversarial
training from Shafahi et al., 2019. Specifically, they were able to train an ImageNet model
in 12 hours, whereas the same training takes 50 hours with free adversarial training.
Thus, adversarial become computationally feasible.

A key difference between these two methods is in one of the key properties of free
adversarial training, namely that the perturbation from the previous iteration is used
as the initial starting point for the next iteration. However, Wong et al. argued that
there is no reason to believe that an adversarial perturbation from the previous mini-
batch should be carried over into the next mini-batch. Furthermore, they claimed that
the benefit that the free adversarial training has achieved comes from simply starting
the mini-batches from a non-zero initial perturbation. With this small modification,
Wong et al. achieved a defense as robust as the adversarial training with PGD. Finally,
by utilizing the top-performing training methods, such as AIACC-Training 3 from the
DAWNBench competition (Coleman et al., 2017 [CNK+17]), they achieve the above
mentioned computational improvements.

Lastly, Wong et al. explain what is the reason behind the results that claimed that
the FGSM adversarial training overfits the network for larger �. This phenomenon has
been the reason why FGSM has been avoided for years in adversarial training. Wong et
al. observed empirically that the model would indeed very rapidly appear to overfit to
the FGSM adversarial examples. What was previously a reasonably robust model will
quickly transform into a non-robust model which suffers 0% accuracy with respect to

3https://www.alibabacloud.com/help/doc-detail/162795.htm
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PGD attack. They refer to this as “catastrophic overfitting“. One of the reasons for this
failure lies in the lack of diversity in adversarial examples generated by FGSM. Using
a zero initialization or using the random initialization scheme will result in adversarial
examples whose features have been perturbed by −�, 0, �, and so the network learns a
decision boundary that is robust only at these perturbation values. On the other hand,
the PGD attack can easily overcome such a defense.

3.3 Adversarial Robustness Metrics

3.3.1 CLEVER
CLEVER [WZC+18], which is short for Cross Lipschitz Extreme Value for nEtwork
Robustness, is a robustness metric that is attack-agnostic and computationally feasible for
large neural networks. The CLEVER score is well supported by the theoretical analysis
on formal robustness guarantees and the use of extreme value theory which we briefly
present here.

Lemma (Lipschitz continuity and its relationship with gradient norm [PŽ06]). Let
S ⊂ Rd be a convex bounded closed set and let h(x) : S �→ R be a continuously
differentiable function on an open set containing S. Then, h(x) is a Lipschitz function
with Lipschitz constant Lq if the following inequality holds for any x, y ∈ S:

|h(x) − h(y)| ≤ Lq||x − y||p, (3.17)

where Lq = max{||∇h(x)||q : x ∈ S}, ∇h(x) = (∂h(x)
∂x1

), ..., ∂h(x)
∂xd

)T is the gradient of h(x)
and 1

p + 1
q = 1, 1 ≤ p, q ≤ ∞.

Theorem (Formal guarantee on lower bound βL for untargeted attack). Let x0 ∈ Rd

and f : Rd �→ RK be a multi-class classifier with continuously differentiable components
fi, and let c = arg max1≤i≤K fi(x0) be the class which f predicts for x0. For all δ ∈ Rd

with
||δ||p ≤ min

j �=c

fc(x0) − fj(x0))
Lj

q

(3.18)

arg max1≤i≤K fi(x0 + δ) = c holds with 1
p + 1

q = 1, 1 ≤ p, q ≤ ∞ and Lj
q is the Lipschitz

constant for the function fc(x) − fj(x) in lp norm. In other words:

βL = minj �=c
fc(x0)−fj(x0))

Lj
q

is a lower bound of minimum distortion.

The intuition behind this Theorem is shown in ?? with a one-dimensional example.

The value g(x0 + δ can be bounded by g(x0), δ and the Lipschitz constant Lq. When
g(x0) + δ decreases to 0, an adversarial example is found.

Corollary (Formal guarantee on βL for untargeted attack). Let Lj
q,x0 be local Lipschitz

constant of function fc(x) − fj(x) at x0 over some fixed ball
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Bp(x0, R) := {x ∈ R|||x − x0||p ≤ R} and let δ ∈ Bp(0, R). By the previous Theorem, we
obtain the bound in (Hein and Andriushchenko, 2017 [?]):

||δ||p ≤ min{min
j �=c

fc(x0) − fj(x0)
Lj

q,x0

, R} (3.19)

Figure 3.2: The intuition behind the formal guarantee on lower bound βL for the
untargeted attack, taken from [WZC+18].

An important use case of the above-stated Theorem and Corollary is the bound for
targeted attacks:

Corollary (Formal guarantee on βL for targeted attack). Assume the same notation as
in the previous Theorem and Corollary. For a specified target class j, we have

||δ||p ≤ min{fc(x0) − fj(x0)
Lj

q,x0

, R} (3.20)

Based on this theoretical conclusion, Weng et al. [WZC+18] proposed an algorithm to
compute with the aid of extreme value theory a robustness score of a neural network,
where CLEVER can be viewed as an efficient estimator of the lower bound βL and is
the first attack-agnostic score that applies to any neural network classifiers. Through
experiments, the authors have shown that the CLEVER score corresponds to the practical
robustness indication of several state-of-the-art neural networks, even when a defense
mechanism is deployed.

One approach to compute Lj
q,x0 is through sampling a set of points x(i) in a ball Bp(x0, R)

around x0 and taking the maximum value of ||∇g(x)(i)||q. However, a significant amount
of samples might be needed to obtain a good estimate of max ||∇g(x)||q and it is unknown
how good the estimate is compared to the true maximum. Fortunately, Extreme Value
Theory ensures that the maximum value of random variables can only follow one of
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the three extreme value distributions, which is useful to estimate max ||∇g(x)||q with
only a tractable number of samples. The details of this algorithm are out of the scope
of this thesis. For the detailed analysis and explanations, please refer to the original
publications.
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CHAPTER 4
Experimental setup

In this chapter, the experimental setup is described. In Section 4.1 we discuss the datasets
(ImageNet, CIFAR-10) and the neural network architectures (MobileNetV2, InceptionV3,
ResNet-50 and PreActResNet18) that are used in the experiments. Next, the process of
generating adversarial examples with different attacks is presented in Section 4.3. Finally,
in Section 4.4 we describe defense strategies and how we evaluate the defenses against
the generated adversarial examples.

4.1 Datasets and Neural Network Architectures

Table 4.1: Benchmark datasets used with adversarial attacks and defenses

Dataset References

ImageNet

[CH20], [MFFF17],
[GSS15], [CW17], [XEQ18],
[GRCvdM18], [DGR16],
[WRK20]

CIFAR-10

[CH20], [MMS+18],
[GSS15] [CW17],
[MFFF17], [XEQ18],
[GSG20], [WRK20]

CIFAR-100 [CH20]

MNIST
[CH20], [MMS+18],
[GSS15], [CW17], [XEQ18],
[WRK20]
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Table 4.1 shows an overview of the datasets of the related work on adversarial attacks
and defenses and which datasets they use. Based on this overview, we have selected
ImageNet and CIFAR-10 datasets, as two datasets that are more complex and are most
commonly used.

CIFAR-10 [KH09] dataset consists of 6 000 examples for each of its 10 classes (airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck). Each image has dimensions
of 32 × 32 pixels. The total of 60 000 images are split into 50 000 training and 10 000
test images. CIFAR-10 is a dataset that is commonly used in research as a benchmark
(please refer to Table 4.1 for the overview). The CNN models that we use for this dataset
are the PreActResNet18 (from [WRK20]) and adversarially trained version of it that
we refer to as AdvTrainedPreActResNet18. The adversarial training that we use is the
procedure called “Faster is better than free“, discussed in Section 3.2.2. To adversary
used in the adversarial training is the Projected Gradient Descent which we discussed in
Section 3.1.1. Since we, among others, want also to evaluate the current state-of-the-art
adversarial training technique, it also makes sense to use the same model which was used
in the paper. Hence the reason why this model has been selected.

For our experiments, we selected randomly a test set consisting of 1000 images from the
CIFAR-10 test data, such that all 10 classes are evenly distributed. This test set is used
for generating adversarial images. Table 4.2 shows the state-of-the-art accuracy and the
accuracy of these two models on our selected test set.

Model Accuracy on our
test set

State-of-the-art
accuracy

PreActResNet18 83.0 % 85.18 %
AdvTrained- PreAc-
tResNet18 95.1 % 96.03 %

Table 4.2: Model accuracy on the CIFAR-10 dataset

ImageNet [DDS+09] is an image dataset organized according to the WordNet hierarchy.
Each meaningful concept in WordNet, possibly described by multiple words or word
phrases, is called a “synonym set“ or “synset“. There are more than 100 000 synsets in
WordNet; the majority of them are nouns (80,000+). In ImageNet, they aim to provide
on average 1 000 images to illustrate each synset. Images of each concept are quality-
controlled and human-annotated, with a total of more than 14 million images. The
dataset contains more than 20 000 categories.1 For our experiments, we selected randomly
a test set consisting of 1000 images from the validation images from the ImageNet Large
Scale Visual Recognition Challenge 2012. This test set is used for generating adversarial
images.

1The entire description taken from https://image-net.org/about.php
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For ImageNet, we use three state-of-the-art pre-trained CNN models, MobileNetV2,
ResNet-50, and InceptionV3. These selected models vary in complexity, performance,
and accuracy on ImageNet.

Model Accuracy on our test set State-of-the-art accuracy

Top-1 Top-5 Top-1 Top-5 No. of
params.

InceptionV3 75.8 % 92 % 78.95 % 94.4 % 24M
MobileNetV2 63.2 % 84 % 74.7 % 90.81 % 3.4M
ResNet-50 62.8 % 85.7 % 83.2 % 96.5 % 23M

Table 4.3: Model accuracy on ImageNet dataset

As such, they have been selected to evaluate if and how do different CNN models affect
adversarial attacks and defenses. The pre-trained weights are loaded from the Keras and
Pytorch frameworks. Table 4.3 shows the state-of-the-art accuracy, the accuracy of the
selected models on our selected test set, and the number of parameters that they have.

4.2 Adversarial Robustness Toolbox (ART)
The Adversarial Robustness Toolbox (ART) [NST+18] is a Python library for Machine
Learning Security, developed by IBM. ART provides tools that enable developers and
researchers to defend and evaluate Machine Learning models and applications against
the adversarial threats of Evasion, Poisoning, Extraction, and Inference. We use ART
implementations of the selected adversarial attacks for generating adversarial images.
We also use ART implementations of the selected defensive techniques to defend our
classifiers from adversarial attacks. Lastly, we use the ART implementation of the
CLEVER robustness metric to evaluate the robustness of our classifiers.

4.3 Generating Adversarial Examples
Due to their diversity, strength, and importance, we use the following adversarial at-
tacks: Auto-PGD [CH20], Carlini and Wagner L2 and L∞ [CW17], FGSM [GSS15],
HopSkipJump [CJW20], Shadow attack [GSG20] and Universal Perturbations [MFFF17].
These attacks are widely used in the research as benchmarks for other adversarial attacks
and defenses, to see we refer the reader to the publications of the selected attacks and
defenses. They are also among the strongest state-of-the-art adversarial attacks and their
implementations are available in the ART.

We calculate the success of an adversarial attack by its success rate, i.e. the ratio of
the successfully attacked images over the total number of classified images. An image is
considered successfully attacked if, given the target setting, the classifier predicts the
targeted class for the attacked image. In the case of the untargeted setting, an image is
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considered successfully attacked if the classifier classifies the image as any other class than
the original. We evaluate attacks only on the portion of the test set that was correctly
predicted by the classifier. One of the main benefits of this is that we can evaluate the
success of an attack more precisely.

We also calculate the (dis)-similarities of adversarial images and original images by
measuring their L2 and L∞ pixel-wise distances.

4.4 Defending against Adversarial Attacks
For defending against adversarial attacks we use adversarial training, called “Fast is better
than free“ [WRK20], and three pre-processing defensive techniques: Spatial Smoothing
[XEQ18], JPEG Compression [DGR16], and Total Variance Minimization [GRCvdM18].
These defense techniques are commonly used in the research as benchmarks for how
strong the adversarial attacks are, as well as for evaluating other adversarial defenses.
Additionally, they are easy to combine together and have implementations available in
the ART.

Same as with the adversarial attacks, we evaluate defenses only on the portion of the test
set that was correctly predicted by the classifier. We calculate the success rates of the
attacks on the classifier that additionally uses these selected defenses. We are interested
to determine if and how much do the defenses reduce the success rates of the attacks.
Additionally, we combine defenses and evaluate if this improves the robustness of the
classifier. We exhaust all different combinations.

4.5 Hardware and Software setup
We run our experiments on several machines equipped with the GeForce RTX 2080 Ti
and the Tesla V100-PCIE-32GB GPUs.

For our experiments, we use the following software:

1. Python 3.7

2. ART 1.8.0

3. TensorFlow 2.3.1

4. Keras 2.4.3

5. PyTorch 1.8.1
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CHAPTER 5
Experimental results

This chapter presents the results from the experiments described in Chapter 4.

We structure it into two parts:

1. results obtained from the experiments on the CIFAR-10 dataset, where we compare
two models, PreActResnet18 and an adversarially re-trained version of this model
called AdvTrainedPreActResNet18.

2. results obtained from the experiments on the ImageNet dataset, where we compare
three models, MobileNetV2, InceptionV3, and ResNet-50.

The first part of this chapter focuses on the experimental results obtained by attacking the
models with different adversarial attacks, without applying any pre-processing defensive
technique beforehand. Here, we focus on the following measures:

1. Success rates of the attacks against the models

2. (Dis)-similarities of the adversarial images and the original images, calculated and
presented by L2 and L∞ metrics.

3. CLEVER scores

4. Runtimes for generating adversarial images and evaluating them

In the second part, we discuss the same measures, but with pre-processing defense
techniques used, both separately and combined. The discussion is first grouped by target
setting and by dataset.
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5.1 Adversarial attacks without pre-processing defense
techniques

CIFAR-10 dataset

For this dataset, we present and compare results for PreActResNet18 and AdvTrained-
PreActResNet18 models, which use adversarial training as a defense mechanism.

While PreActResNet performs slightly better on the original (clean) data, it is affected
more by adversarial images. As shown in Figures 5.1 to 5.3, the success rates of our
selected adversarial attacks are generally higher on the PreActResNet model under all
three settings. This, however, does not hold for Auto-PGD and Carlini and Wagner
L∞ attacks in the targeted settings. In both targeted settings, these two attacks have
approximately 80 % success rate against AdvTrainedPreActResNet18, compared to on
average approximately 45 % success rate against PreActResNet18. It is hard to speculate
as to why this is the case since the original paper [WRK20] does not present results
against these two attacks. Compared to the original paper, we can only conclude that
we obtained very similar results for the FGSM attack in the untargeted setting. In their
work, they report that the AdvTrainedPreActResNet18 model has a lower accuracy on
adversarial images than on original images by about 30 %.

Figure 5.1: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models targeting
the least likely class

In our experiments, adversarial training has been very effective in both targeted settings
against every selected attack, except the mentioned Auto-PGD and Carlini and Wagner
L∞. But while these two attacks have a high success rate against adversarial training,
they also have had to modify original images more than the other attacks to make them
adversarial. The only exception to this is the ShadowAttack, which has the highest
L2 distances, but a very low success rate in both targeted settings. For the case of
Auto-PGD, the mean L2 distance of the adversarial images and the original images is
4.66 for the targeted least likely class and 4.74 for the targeted next class settings. For
PreActResNet, it is 4.09 for the targeted least likely class and 4.08 for the targeted next
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class settings. The larger the modification, the less stealthy the attack is. If the attack
fools the classifier, but the introduced adversarial modification is very substantial and
easy to notice by a human, then we can argue that in this instance the attack is rather
unsuccessful.

Figure 5.2: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models targeting
the next class

It is important to notice that CW L2 attack has very low success rates in both targeted
settings against AdvTrainedPreActResNet18, whereas it has about 60 % success rate
against the original model. However, while it was successful against most of the attacks
(except Auto-PGD, CW L∞) in the targeted settings, HopSkipJump has managed to
penetrate the adversarial training defense in the untargeted settings, scoring % and
90.12 success rates, but with a high L2 distance. We also have to highlight that other
attacks as well have scored higher success rates than in the targeted settings. For
example, ShadowAttack and Universal Perturbations, with 23.6 % and 26.5 % success
rate. Such behavior was expected since, for an untargeted setting, the attacker aims for
any misclassification, contrary to the targeted setting, where it aims at a specific one.

Looking at L2 (dis)-similarities between adversarial images and the original images, there
are several points to notices. Against the original model, CW L2 and L∞ introduced
only small changes to original images, but achieve almost perfect success rates in all
three target settings. Auto-PGD modified the images much more than CW L∞ attack
(approximately 4.5 compared to approximately 1.5), still with a similar success rate in all
three target settings. On the other hand, the Shadow attack, despite causing the highest
modifications (on average around 8) of the original images (compared to other attacks),
achieved low success rates in both targeted settings, even on the original model.

In general, across all attacks and all three settings, attacks had to modify images much
more for them to be adversarial against adversarially re-trained PreActResNet18 than
against the original model. Some examples of that:

1. Carlini and Wagner L∞ - in the targeted least likely class 1.2 L2 for PreActResNet18,
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Figure 5.3: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models with no
specific target

2.8 for AdvTrainedPreActResNet18

2. HopSkipJump - in the untargeted setting 1.2 L2 for PreActResNet18, 4.6 for
AdvTrainedPreActResNet18

As for runtimes, there is not much to report for the CIFAR-10 dataset, since all attacks
generated adversarial images at the rate of approximately 1 second per image, except
in the case of the CW L2 attack, which took approximately 15 seconds per image. But
even at the rate of 15 seconds per image, we could not notice any significant runtime
issues. This was, however, an indicator that we could potentially have computational
struggles on the ImageNet dataset with CW attacks.

ImageNet dataset

For this dataset, we evaluate InceptionV3, MobileNetV2 and ResNet-50 models. For
their different architectures and baseline accuracy, it is very interesting to see how do
different adversarial attacks and pre-processing defenses affect them.

Figures 5.4 to 5.6 show the success rates of the different adversarial attacks and also the L2

distances of the adversarial images and the original images under all three target settings.
The first observation is that under all three settings, the selected adversarial attacks
scored (slightly) lower success rates against InceptionV3 than against MobileNetV2 and
ResNet-50. We speculate that this is due to the InceptionV3 being a more complex
neural network architecture and having more parameters than the other two. While
this behavior is less apparent in the untargeted and the targeted next class setting, it is
quite obvious in the targeted least likely class with Carlini and Wagner attacks. With
relatively similar L2 distances between adversarial and original images, both Carlini and
Wagner L2 and L∞ attacks have scored 80+ % success rates against MobileNetV2 and
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ResNet-50, whereas InceptionV3 remained fairly robust with very low success rates of
7.27 % and 22.2 % respectively.

Figure 5.4: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2, and ResNet-50 models targeting the least
likely class

Interestingly, the other attacks in the targeted least likely class setting have been unsuc-
cessful and did not produce any success rates. This observation highlights several points,
one of them being the testament to how strong the Carlini and Wagner attacks are.
Another point is that it is hard to successfully attack a specific class in the probability
distribution such that the modification to the images is “almost“ unnoticeable. This
trend holds also for the targeted next class setting. Albeit, the success rates in this
targeted setting are slightly better than in the first targeted setting. We speculate that
the reason for this could be the fact that ImageNet has 1000 classes and some of the
classes are closer than the others, like for example pan and wok pan. Hence, it would
make sense that attacks with such targets are more successful than when attacks with
targets that are more distant, like for example least likely class.

Figure 5.5: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2, and ResNet-50 models targeting the next
class
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However, the results are quite different, when it comes to the untargeted setting. The
general conclusion is that all of the attacks have scored high success rates against all of
the models In particular, Auto PGD, Carlini and Wagner attacks, HopSkipJump, and
Universal Perturbations have scored 80+ % success rates against all three models. A
very interesting result to highlight is the Shadow attack on InceptionV3, which has had
to generate adversarial images that are more distant to original images than the ones
generated against the other two models, but still scored a much lower success rate (40, 3
% compared to 88.6 and 80.8 %).

Figure 5.6: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2, and ResNet-50 models with no specific
target

The L2 distances between adversarial and original images are low for the Carlini and
Wagner attacks, FGSM and Universal Perturbations, which means that these attacks
have generated adversarial images that are close to the original images. These distances
are higher for the other three attacks, Auto-PGD, HopSkipJump, and especially for
Shadow attacks. We conclude that in this experiment the Shadow attack is the weakest
because it scored the lowest success rates while generating the adversarial images with
the highest L2 distance.

Lastly, we comment on the runtimes when generating adversarial images. While it is hard
to compare our results directly, because we generated adversarial images with different
attacks on different GPUs, there are some interesting trends to be highlighted. Namely,
all attacks except for Carlini and Wagner L2 and L∞ and Universal Perturbations have
been fast with a runtime of approximately 1 seconds per sample. Among them, we
highlight only the HopSkipJump that had a slightly higher runtime of 3 seconds per
sample. For Carlini and Wagner L2 and L∞ and Universal Perturbations, the runtimes
are 234, 19, and 134 seconds respectively.
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5.2 Adversarial attacks with pre-processing defense
techniques

5.2.1 targeted least likely class setting
CIFAR-10 dataset

The first observation (and perhaps also the most important) is that all defense scenarios
have reduced the success rates of all attacks except Auto PGD on the AdvTrainedPre-
ActResNet18 model. The reduced success rates are very similar to the success rates
against the adversarially re-trained model without pre-processing defenses, except in
the case of Auto-PGD and CW L∞, which successfully broke the adversarial training
defense, as discussed in the previous section. For example, In other words, the effect of
pre-processing defense techniques was about the same (with an exception of Auto-PGD
and CW L∞ attacks) as adversarial training alone. But, AdvTrainedPreActResNet18
paired with pre-processing defenses has overall reduced success rates to single digits
against most of the attacks.

Figure 5.7: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models targeting
the least likely class, with Spatial Smoothing as the pre-processing defense

It is important to highlight that while the pre-processing defenses while adversarial
training could not defend against Auto-PGD and CW L∞ attacks in the baseline, the
pre-processing defenses have had much better success in that regard. For example,
Auto-PGD and CW L∞ have scored only about 2 % success rate against PreActResNet18
with Total Variance Minimization defense. But perhaps even more interesting is that CW
L∞ has scored much lower success rates against AdvTrainedPreActResNet18 with the
pre-processing defenses (for example, from 87.7 % in the baseline to 3.7 % with all three
pre-processing defenses combined), while only the Total Variance Minimization defense
managed to reduce the success rate of the Auto-PGD attack, from 89.4 % to 15.5 %.

Comparing the baseline results without pre-processing defenses from Figure 5.1 for the
target least likely class, we notice that the pre-processing defenses and their combinations
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Figure 5.8: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models targeting
the least likely class, with JPEG Compression as the pre-processing defense

have overall reduced the success rates for several attacks on the original model (for
example CW L2 from about 60 % to less than 5 % on average and CW L∞ from about
60 % to approximately 10 % on average).

Figure 5.9: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models targeting
the least likely class, with Total Variance Minimization as the pre-processing defense

For the complete overview of the success rates of our selected adversarial attacks against
the pre-processing defenses in this targeted setting, please refer to Figures 5.7 to 5.13.

We are now turning our attention to L2 distances of the adversarial images pre-processed
with different combinations of the pre-processing defenses to the original images (see
Figures 5.10 to 5.13). While one could have expected that these images would be closer
(more similar) to the original images in the L2 metric than the baseline non-pre-processed
adversarial images, that was not the case. What is even more interesting, when two
or more pre-processing defenses are combined, the L2 metric norms for the images are
higher than when pre-processing with only one defense. But, this does not translate
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Figure 5.10: Success rates of the different adversarial attacks and the L2 distances
to the original images for PreActResNet18 and AdvTrainedPreActResNet18 models
targeting the least likely class, with Spatial Smoothing and JPEG Compression as the
pre-processing defenses

to higher success rates of the attacks. The combinations in this target setting do not
improve success rates significantly either.

Figure 5.11: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models targeting
the least likely class, with Spatial Smoothing and Total Variance Minimization as the
pre-processing defenses

Overall, it is hard to conclude which pre-processing defenses were the best in this targeted
setting. However, using Total Variance Minimization only scored the lowest success rates,
while also keeping the adversarial images and original images very similar for most of the
attacks.
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Figure 5.12: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models targeting
the least likely class, with JPEG Compression and Total Variance Minimization as the
pre-processing defenses

Figure 5.13: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models targeting
the least likely class, with Spatial Smoothing, JPEG Compression, and Total Variance
Minimization as the pre-processing defenses
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ImageNet dataset

While the discussion and the experimental results for the targeted least likely class setting
have been very interesting on the CIFAR-10 dataset, here we have fewer highlights. This
is mainly because the adversarial attacks were unsuccessful in the baseline as well. Auto
PGD, FGSM, HopSkipJump, and Shadow attacks remained unsuccessful, with almost no
success rate.

Figure 5.14: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2, and ResNet-50 models targeting the least
likely class, with Spatial Smoothing as the pre-processing defense

Figure 5.15: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2, and ResNet-50 models targeting the least
likely class, with JPEG Compression as the pre-processing defense

Hence the only interesting case is the Carlini and Wagner attacks, where we report that
pre-processing defenses have managed to defend the models very well. If you recall from
Figure 5.4, these two attacks have had very high success rates against MobileNetV2 and
ResNet-50, whereas now with pre-processing defenses they have almost no success rates.
Only in the case of the JPEG Compression (see Figure 5.15) has Carlini and Wagner L∞

had some success, scoring a success rate of 16.6 % on ResNet-50, 6.2 % on MobileNetV2
and 2.22 % on InceptionV3. This result is still a good improvement from the baseline
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case. Carlini and Wagner L2 did not record any success.

Since the discussion above is very much applicable to all defenses and their combinations in
this targeted setting, we present here only the results for Spatial Smoothing (Figure 5.14)
and JPEG Compression (Figure 5.15) pre-processing defenses individually, and present
the others in Appendix Chapter A in Figures A.8 to A.12.

Overall, we cannot conclude which of the defenses has had the best success in this
setting, because all of them were equally successful. We can only conclude that the JPEG
Compression has the worst results because it was unable to reduce the success rate of
Carlini and Wagner L∞ attack as others did.

5.2.2 Targeted next class setting
CIFAR-10 dataset

The trends and observations for the experiments when targeting the next class are very
similar as in the previous case when targeting the least likely class, only with slight
differences. For example, with the Total Variance Minimization defense (see Figure A.3
on the PreActResNet18 model, the ShadowAttack has scored a success rate of 37.7
% (compared to 2.2 % on the AdvPreActResNet18). This result becomes even more
interesting when we consider that in the non-defended baseline, ShadowAttack scores a
7.4 % success rate against PreActResNet18. This occurrence is however unique in the
targeted settings and we cannot speculate what is the reason for it.

Because the discussion and the conclusions are very similar as in the case of the targeted
least likely class and for better readability of this chapter, we show the results for this
targeted setting in Appendix A and refer to Figures A.1 to A.7 for detailed results that
are structured and presented in the same way as in the previous target setting.

ImageNet dataset

Figure 5.16: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2, and ResNet-50 models targeting the next
class, with Spatial Smoothing as the pre-processing defense
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The trends and observations for the experiments when targeting the next class are again
very similar as in the case when targeting the least likely class, only with slight differences.
The success of the pre-processing defenses has been only slightly worse than in the
targeted least likely class setting. We speculate that this directly correlates with the
properties of the ImageNet dataset. Namely, ImageNet has 1000 classes and some of the
classes are closer than the others, like for example pan and wok pan. Hence, it would
make sense that attacks with such targets are more successful than when attacks with
targets that are more distant, like for example least likely class.

Figure 5.17: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2, and ResNet-50 models targeting the next
class, with JPEG Compression as the pre-processing defense

As we saw in the baseline, three attacks had the most success in this target setting,
namely Carlini and Wagner L2 and L∞, and FGSM. Similar to in the targeted least likely
class setting, all three defenses and their combinations have managed to reduce these
success rates significantly (to single digits). The JPEG Compression defense had again
less success against Carlini and Wagner L∞ attack.

Figure 5.18: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2, and ResNet-50 models targeting the next
class, with Total Variance Minimization as the pre-processing defense
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As can be seen in Figures 5.16 to 5.18, the recorded success rates for this target setting
indicate that, in contrast to the not defended baseline case, all attacks are now equally
successful (or rather unsuccessful). We highlight the FGSM attack for being stronger
than Auto-PGD (its successor) in almost all scenarios in this targeted setting.

Between the three models, InceptionV3 turned out to be less robust with pre-processing
defenses than the other two models, which is also opposite to the baseline case. Albeit,
this does not hold in every scenario, especially against Carlini and Wagner attacks and
with the Total Variance Minimization pre-processing defense (and also combinations that
include this defense).

For better readability and because they do not show any improvement we present the
results for the different combinations of the pre-processing defenses in Appendix Chapter A
in Figures A.13 to A.16. It is again hard to conclude which defense scored the best
results in this targeted setting, with success rates being > 0 overall. By a slight margin,
the Total Variance Minimization pre-processing defense and the combinations which
include this defense have overall lower success rates, but probably the most important
observation is that all of the pre-processing defenses have been successful in the targeted
next class setting.

5.2.3 Untargeted setting
CIFAR-10 dataset

Figure 5.19: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models with no
specific target and Spatial Smoothing as the pre-processing defense

Since the attacker in the untargeted setting aims for any misclassification, it makes sense
to expect higher success rates overall than in the targeted setting, similarly as we saw
higher success rates in the untargeted setting in the baseline discussion. This has been
confirmed in our experiments, which we discuss here.

Different from the targeted setting, where adversarial training combined with Total
Variance Minimization provided very good protection, here this combination fails in at
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least 20 % of adversarial images, see Figure 5.21. For example, Auto PGD which had a
success rate (against the combination of these defenses??) of 4, 6 % in the targeted next
class setting now has 74.2 % in the untargeted setting.

Figure 5.20: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models with no
specific target and JPEG Compression as the pre-processing defense

However, if we consider the baseline results (from Figure 5.3) we notice overall a great
reduction in success rate on the PreActResNet18 model. These results are similar to
the results obtained in the baseline with the adversarially trained model, albeit slightly
worse. But interestingly, the adversarially trained model did not introduce a further
significant reduction in success rates. AdvTrainedPreActResNet18 paired with pre-
processing defenses only provided better defenses by on average approximately 10 − 20
%. These results are not at all optimal. For example, we have, 30.8 % success rate of
FGSM with AdvTrainedPreActResNet18 and Total Variance Minimization (Figure 5.21)
or 25 % success rate of Shadow attack with AdvTrainedPreActResNet18 and Spatial
Smoothing and JPEG Compression combined (Figure 5.22).

ShadowAttack remained very strong against all defense combinations and both models.
The highest measured success rate with the original model is 79.3 %, whereas with the
adversarially trained model it is 23.1 %, both with JPEG Compression (Figure 5.20).
Only noteworthy improvement of the defense was recorded with the combination of
Spatial Smoothing and JPEG Compression, which managed to reduce the success rate of
the ShadowAttack on the AdvTrainedPreActResNet18 model to 3.6 %.

All three defenses individually offer a very similar level of protection and the trends
between the attacks translate from defense to defense. While Total Variance Minimization
is again the only defense that can reduce the success rates of the Auto-PGD (albeit to
60.9 % on the PreActResNet18 and 79 % on the AdvTrainedPreActResNet18, which is
still a high success rate), the JPEG Compression has kept CW L2 attack at a low success
rate against both PreActResNet18 and AdvTrainedPreActResNet18, 13.3 % and 10.3 %
respectively. it provides the best protection against HopSkipJump and also combined
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Figure 5.21: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models with no
specific target and Total Variance Minimization as the pre-processing defense

Figure 5.22: Success rates of the different adversarial attacks and the L2 distances to
the original images for PreActResNet18 and AdvTrainedPreActResNet18 models with
no specific target and Spatial Smoothing and JPEG Compression as the pre-processing
defenses

with Spatial Smoothing it provides the best protection against Universal Perturbations.
For this and more details, please refer to Figures 5.19 to 5.21.

When we look at the combination of these defenses, no significant improvement can be
noticed, apart from that L2 distances are higher than in the individual cases. The most
notable is the combination of Spatial Smoothing and JPEG Compression, where they
combined best together, keeping CW attacks, HopSkipJump and Universal Perturbations
to their lower success rates of about 20 % (compared to other results in the untargeted
setting). The drawback of this combination is that Auto PGD against both models
and ShadowAttack against PreActResNet18 remained very strong against it. To be
more precise, Auto PGD scored almost perfect 95 % success rate against AdvTrained-
PreActResNet18, and 83.4 % against dPreActResNet18, whereas ShadowAttack scored
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Figure 5.23: Success rates of the different adversarial attacks and the L2 distances
to the original images for PreActResNet18 and AdvTrainedPreActResNet18 models
with no specific target and Spatial Smoothing and Total Variance Minimization as the
pre-processing defenses

77.8 % success rate against PreActResNet18. For this and more details, please refer to
Figures 5.22 to 5.25.

Figure 5.24: Success rates of the different adversarial attacks and the L2 distances
to the original images for PreActResNet18 and AdvTrainedPreActResNet18 models
with no specific target and JPEG Compression and Total Variance Minimization as the
pre-processing defenses

The trends regarding the L2 distance of the adversarial images and original images are
the same as in the previous two targeted settings.

We now give an example of one of the images from the CIFAR-10 dataset (see Figure 5.26).
In this example, we have the original image of the truck correctly predicted with Pre-
ActResNet18. Next, we have the adversarial version of this image, generated with the
Carlini and Wagner L2 in the untargeted setting, which PreActResNet18 recognized as an
airplane. But then we show that the Spatial Smoothing defense defends (pre-processes)
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Figure 5.25: Success rates of the different adversarial attacks and the L2 distances
to the original images for PreActResNet18 and AdvTrainedPreActResNet18 models
with no specific target and Spatial Smoothing, JPEG Compression and Total Variance
Minimization as the pre-processing defenses

this image successfully, meaning that the model was able to predict the image correctly
as a truck.

The last thing that we want to highlight in this example is the L2 distances. Namely,
the L2 difference between the adversarial image and the original is 14.68, whereas the
L2 difference between the defended image and the original is 14.49, which shows us that
(in the L2 metric) the defended image is not much closer to the original image than the
adversarial image, but the model has predicted the defended image correctly.

(a) Original Image, pre-
dicted as truck

(b) Adversarial image,
predicted as airplane

(c) Defended Image, pre-
dicted as truck

Figure 5.26: A comparison of the original image (a), the same image attacked with Carlini
and Wagner L2 attack (b) in the untargeted setting and the attacked image defended with
the Spatial Smoothing defense (b). The figure shows that the attack was successful, but
also that the defense successfully defended against the attack. The L2 difference between
the adversarial image and the original is 14.68, whereas the L2 difference between the
defended image and the original is 14.49.
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ImageNet dataset

As expected, the untargeted setting on the ImageNet dataset was the most difficult to
defend against, because the attacker is satisfied with any misclassification. And since
in the baseline (see Figure 5.6) all of the attacks were very successful, this setting gives
us a good playground to evaluate the effect of the pre-processing defenses with different
adversarial attacks.

The spatial Smoothing had the most success against Carlini and Wagner attacks, Hop-
SkipJump and Universal Perturbations, see Figure 5.27 The adversarial images generated
with these attacks have also lower L2 distances compared to others, which indicates
a correlation between the success of a pre-processing defense and a small distance of
the adversarial and original images. In other words, the less modification the attack
introduces to the original images, the easier it is for a pre-processing defense to correct
the classification. On the other hand, Spatial Smoothing had less success against FGSM,
and against Auto PGD and Shadow attack it made almost no difference. The adversarial
images generated with these two latter attacks have the highest L2 distance, which
only supports our observation. Interestingly, the FGSM attack remained strong, scoring
approximately a 65 − 70 % success rate, but did not beat the Auto-PGD as seen in the
previous target settings.

Figure 5.27: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2, and ResNet-50 models with no specific
target and Spatial Smoothing as the pre-processing defense

The JPEG Compression was not as good as Spatial Smoothing but did manage to reduce
the success rates on average by approximately 50 %, see Figure 5.28. While this seems
like quite a good result, keep in mind that this means that every other adversarial image
was misclassified, which is not an optimal defense. The trends for which attacks were
stronger and which were weaker against this defense are similar as in the case of Spatial
Smoothing.

Unlike the Spatial Smoothing, The Total Variance Minimization was able to reduce the
success rate of the Auto PGD attack (see Figure 5.29), but was, on the other hand,
less successful than the Spatial Smoothing against the HopSkipJump and the Universal
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Figure 5.28: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2, and ResNet-50 models with no specific
target and JPEG Compression as the pre-processing defense

Perturbations. It also provided the same level of protection for Carlini and Wagner
attacks as the Spatial Smoothing.

Figure 5.29: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2, and ResNet-50 models with no specific
target and Total Variance Minimization as the pre-processing defense

But interestingly, the combination of Spatial Smoothing and Total Variance Minimization,
as can be seen in Figure 5.31, has scored worse results than the defenses individually. In
addition, it has increased the L2 distances significantly. This is most obvious in the case
of the Carlini and Wagner attacks, which in other scenarios had very low L2 distances.
This example indicated that combining defenses requires careful tailoring and that the
outcome is highly situational.

Other combinations of defenses have also notably increased the L2 distances between
the adversarial images and the original images, but have managed to keep the improve-
ments from the individual cases or even slightly improve them. A good example is the
combination of Spatial Smoothing and JPEG Compression (see Figure 5.30).
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Figure 5.30: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2, and ResNet-50 models with no specific
target and Spatial Smoothing and JPEG Compression as the pre-processing defense

Figure 5.31: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2, and ResNet-50 models with no specific
target and Spatial Smoothing and Total Variance Minimization as the pre-processing
defense

Turning our attention to adversarial attacks, we have to stress that the pre-processing
defenses have made little to no impact on the adversarial images generated by the Shadow
attack. This is interesting because this attack was the weakest one in the baseline
experiment. Now, in the untargeted setting, it is the strongest attack alongside Auto
PGD.

To conclude, we have seen that the pre-processing defenses indeed reduce the success
rates of most of the attacks significantly. However, in the untargeted setting, none of the
classifiers managed to defended successfully against the attacks, where with successfully we
mean that the success rate was on average a single-digit number. The lowest success rates
were recorded with the Spatial Smoothing defense against Carlini and Wagner attacks.
We also see from our experiments that the attacks that generate more distant adversarial
images are stronger against these defenses. We conclude that Spatial Smoothing and the
combination of Spatial Smoothing and JPEG Compression were overall the best defenses
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Figure 5.32: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2, and ResNet-50 models with no specific
target and JPEG Compression and Total Variance Minimization as the pre-processing
defense

in this setting.

Figure 5.33: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2, and ResNet-50 models with no specific
target and Spatial Smoothing, JPEG Compression and Total Variance Minimization as
the pre-processing defense

We give an example of one of the images from the ImageNet dataset (see Figure 5.34).
In this example, we have the original image of the cabbage butterfly correctly predicted
with MobileNetV2 with 92.6 % confidence. Next, we have the adversarial version of this
image, generated with the HopSkipJump in the untargeted setting, which MobileNetV2
recognized as a plastic bag with 10.7 % confidence. The attack was successful. But then
show that the Spatial Smoothing defense defends (pre-processes) this image successfully,
meaning that the model was able to predict the image correctly as a cabbage butterfly,
with the 94.9 % confidence.

The last thing that we want to highlight in this example is the difference in L2 distances.
Namely, the L2 difference between the adversarial image and the original is 21.02, whereas
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the L2 difference between the defended image and the original is 13.71, which shows us
that the defense has managed to bring the adversarial image closer to the original image,
which helps the model to be able to make the correct decision again.

(a) Original Image, predicted
as cabbage butterfly with
92.6% confidence

(b) Adversarial Image, pre-
dicted as plastic bag with 10.7
% confidence

(c) Defended Image, pre-
dicted as cabbage buttetfly
with 94.9 % confidence

Figure 5.34: A comparison of the original image (a), the same image attacked with
HopSkipJump attack (b) in the untargeted setting and the attacked image defended with
the Spatial Smoothing defense (b). The figure shows that the attack was successful, but
also that the defense successfully defended against the attack. The L2 difference between
the adversarial image and the original is 21.02, whereas the L2 difference between the
defended image and the original is 13.71. The classifier is MobileNetV2.
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Table 5.1: CLEVER scores of the PreActResNet18 and AdvTrainedPreActResNet18 on
the adversarial images generated by Carlini and Wagner L2 adversarial attack under
different target settings and with different pre-processing defenses

CLEVER norm L2 CLEVER norm L∞

least
likely
class

next
class

no
target
class

least
likely
class

next
class

no
target
class

PreActResNet18
No defenses 0.11729 0.12792 0.11187 0.00252 0.00286 0.00295

SS 0.02599 0.02626 0.0236 0.00071 0.00072 0.00072
JPEG 0.04642 0.06952 0.04384 0.00149 0.00186 0.0012
TVM 0.00399 0.01235 0.01937 0.0000 0.00013 0

SS + JPEG 0.00558 0.00574 0.00609 0.0002 0.00018 0.00023
SS + TVM 0.00593 0.0219 0.00337 0.00027 0.00101 0.00013

SS + JPEG + TVM 0.0118 0.01104 0.00387 0.00043 0.00043 0.00015
JPEG + TVM 0.05579 0.04603 0.03179 0.00136 0.001 0.00135

AdvTrainedPreActResNet18
No defenses 0.15272 0.05773 0.00132 0.00338 0.00304 5e-05

SS 0.02314 0.00647 0.01898 0.00072 0.00017 0.00058
JPEG 0.04138 0.02351 0.0007 0.00306 0.0008 3e-05
TVM 0.01287 0.01305 0.01225 0.00012 0.00027 0.00042

SS + JPEG 0.00552 0.02028 0.0082 0.00021 0.0008 0.00032
SS + TVM 0.0267 0.01433 0.00719 0.00079 0.00078 0.00033

SS + JPEG + TVM 0.00338 0.00204 0.02905 9e-05 8e-05 0.00116
JPEG + TVM 0.05983 0.0345 0.02796 0.002 0.00178 0.00097

5.3 CLEVER scores
In this subsection, we discuss CLEVER scores recorded in our experiments with and
without pre-processing defenses, where a higher CLEVER score indicates the higher
robustness of the classifier.

CIFAR-10 dataset

Our main goal when examining the obtained CLEVER scores is to evaluate if they
correlate positively with the success rates through different settings. CLEVER calculates
the robustness score and if it is reliable in most cases, then it would be a practical
measurement for evaluating attacks and defenses. Table 5.1shows the CLEVER scores
grouped by the Carlini and Wagner L2 adversarial attack. From this table, there are
several interesting observations to be made.

If we look at the baseline case (no defenses), we can see that in the least likely class
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targeted setting, the AdvTrainedPreActResNet18 scored a higher CLEVER score w.r.t
L2 norm than the PreActResNet18 (0.15272 compared to 0.11729, which is in line with
success rates of CW L2 attack in the baseline, see Figure 5.4. But consider also that
0.11729 is one of the highest scores in Table 5.1 for the L2 norm. This indicates that the
classifier, in this case, is more robust than the others. However, when we look at the
success rates for the baseline, we see that CW L2 attack has a high success rate (of about
60 %) against PreActResNet18. The same conclusion holds for the other two settings
(targeted least likely and untargeted) as well.

With pre-processing defenses, CW L2 attacks have very similar success rates in all three
target settings, which is why one would expect that their CLEVER scores are also similar
as well. This indeed is the case for several cases, like for example 0.01235 and 0.01305
with Total Variance Minimization in the targeted next class setting or 0.05579 and 0.05983
with JPEG Compression combined with Total Variance Minimization in the targeted least
likely class setting. However, this also does not hold for several cases, like for example
0.04384 and 0.0007 with JPEG Compression in the untargeted setting.

This means that while some CLEVER scores are in line with the success rates and
observations made in the previous sections, others are not, and so using the CLEVER
score as the only indicator of robustness would not be very useful for our experiments on
CIFAR-10. When we compare the CLEVER scores for the CW L2 attack with CLEVER
scores for other attacks we notice that similar conclusions that we just discussed also
hold in these cases as well. For better readability, the complete results are presented in
Appendix A in Tables A.1 to A.6 and discuss here all important highlights.

Lastly, one would expect that with pre-processing defenses, the models would be more
robust and that the CLEVER scores would reflect that. However, our experimental
results do not allow us to conclude that. We would argue that the results are slightly
worse with pre-processing defenses, indicating a lower level of robustness.

ImageNet dataset

Similar to CIFAR-10, we present CLEVER scores for ImageNet grouped by a single
adversarial attack in ??. This way, we can see the changes in the CLEVER score with
different pre-processing defenses under different target settings. We notice that the
CLEVER scores from different adversarial attacks lead to similar trends and conclusions
and thus we only present here the CLEVER scores obtained with the FGSM adversarial
attack. The complete results are presented in Appendix Chapter A in Tables A.7 to A.9
and A.11 to A.13.

From the Table A.10 we can notice some trends that correlate positively and some that
correlate negatively with the actual success rates of the attacks. For example, we notice
that in cases with individual pre-processing defenses we have in most cases an increase in
the CLEVER score. However, this does not hold for the combinations of defenses.

An interesting observation is that the combination of Spatial Smoothing and JPEG
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Table 5.2: CLEVER scores of the InceptionV3, MobileNetV2 and ResNet-50 on the
adversarial images generated by FGSM adversarial attack under different target settings
and with different pre-processing defenses

CLEVER norm L2 CLEVER norm L∞

least
likely
class

next
class

no
target
class

least
likely
class

next
class

no
target
class

InceptionV3
No defenses 0.16298 0.23112 2.0 0.00036 0.00791 0.00668

SS 0.24742 0.00494 2.0 0.00112 0.00136 0.00366
JPEG 0.68033 0.78041 2.0 0.002 0.00229 0.00629
TVM 0.03564 0.02002 0.03752 0.0001 0.00007 0.0001

SS + JPEG 0.79638 0.80107 1.86768 0.00144 0.00229 0.00235

SS + TVM 0.02222 0.01779 0.02942 0.0001 0.00014 8.00E-
05

SS + JPEG + TVM 0.03715 0.04149 0.03496 0.00012 0.00011 0.0001
JPEG + TVM 0.0289 0.02801 0.02677 0.0001 0.00012 7e-05

MobileNetV2
No defenses 0.18426 0.14277 1.01925 0.00061 0.00062 0.00331

SS 0.25983 0.26468 2.0 0.00118 0.00112 0.00272
JPEG 0.47149 0.58493 1.24635 0.0027 0.00263 0.00483
TVM 0.03391 0.00014 0.02647 0.0001 0.0001 0.0001

SS + JPEG 0.64274 0.33064 0.90888 0.00117 0.00128 0.00174
SS + TVM 0.04123 0.03478 0.03833 0.00014 0.0001 0.0002

SS + JPEG + TVM 0.05212 0.03565 9e-05 9e-05 0.00017
JPEG + TVM 0.02359 0.01683 0.02974 7e-05 7e-05 0.00012

ResNet-50
No defenses 2.0 0.65432 2.0 0.011 0.00336 0.04222

SS 2.0 0.38601 2.0 0.00449 0.00184 0.00917
JPEG 2.0 1.72062 2.0 0.00606 0.00336 0.02721
TVM 0.02947 0.02442 0.02637 0.00014 0.00015 0.00012

SS + JPEG 2.0 1.01856 2.0 0.00734 0.0032 0.01041
SS + TVM 0.03284 0.01449 0.02144 0.00013 6e-05 7e-05

SS + JPEG + TVM 0.01557 0.01153 0.00678 9e-05 3e-05 0.00011
JPEG + TVM 0.01015 0.00939 0.01425 8e-05 6e-05 7e-05
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5.3. CLEVER scores

Compression has higher CLEVER scores, which somewhat correlates with the discussions
above, where this combination usually performed very well (compared to others).

It is also noteworthy that the untargeted setting scores higher CLEVER scores, which
is not expected because the success rates have been far higher in that setting than in
the other two targeted settings. Similar conclusions and trends that we made in the
case with the CIFAR-10 dataset, can be also made here. This means again that while
some CLEVER scores are in line with the success rates and observations made in the
previous sections, others are not, and so using the CLEVER score as the only indicator
of robustness would not be very useful for our experiments on ImageNet as well.
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CHAPTER 6
Conclusion and Future Work

This thesis compares and evaluates several different adversarial attacks and defenses on
ImageNet and CIFAR-10 datasets under three different target settings. Additionally,
adversarial defenses have been combined and evaluated with the hope to potentially
obtain new defenses that have an increased level of robustness.

Let us look at our research questions and give answers to them.

RQ1. Against the state-of-the-art adversarial attacks, which defense mechanisms have the
highest level of robustness, measured using different robustness evaluation metrics?
In the targeted setting, we have observed that models on both datasets (ImageNet
and CIFAR-10) are much more robust against adversarial attacks, i.e. it is more
difficult to force a specific class. The only attacks that managed to target specific
classes with higher success rates were Carlini and Wagner attacks on both datasets
and Auto PGD on the CIFAR-10. In the untargeted setting, PreActResNet18,
MobileNetV2, InceptionV3 and ResNet-50 were weak against most of the attacks.
While AdvTrainedPreActResNet18 was vulnerable against Auto PGD, CW L∞,
and HopSkipJump, it was stronger against other attacks. Comparing the results
of the pre-processing defenses in the targeted setting, we notice a common trend
where the defenses have almost entirely removed the success rates of the attacks.
With an exception being Auto PGD against AdvTrainedPreActResNet18. It is also
interesting to note that while Auto PGD was the strongest attack on the CIFAR-10
dataset in this setting, it was not successful on ImageNet at all.
When comparing the two targeted settings, we have to stress that the targeted least
likely and targeted next class settings were not that similar on ImageNet as they
were on the CIFAR-10 dataset.
When it comes to the untargeted settings the results match, as all models are very
weak against all of the attacks. This does not hold for the AdvTrainedPreActResNet-
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18, but as this model is adversarially re-trained, it hence already has a defense
mechanism applied. We have noticed good improvements (i.e. reductions of success
rates) in the untargeted setting with different pre-processing defenses on both
datasets, with very similar trends.
Most notably, Auto PGD and Shadow attacks were very strong against all of the
pre-processing defenses. Against those, the defenses have barely reduced their
success rates. We argue here that pre-processing defenses provide better protection
against attacks that generate adversarial images which are closer to the original
images. An example of such an attack is Carlini and Wagner L2 attack, which has
been affected by the pre-processing defenses the most throughout our experiments.
Lastly, we highlight that adversarial training combined very nicely with the pre-
processing defenses. In the experiments on the CIFAR-10 dataset, the different
attacks on the AdvTrainedResNet-18 have scored lower success rates in most of the
scenarios. However, adversarial training comes with the cost of lower accuracy of
the model on natural images. In our case, we had a drop of about 12 % (from 95.1
to 83 %), which is significant and poses the question of whether this defense should
be used.

RQ2. How do different neural network architectures impact the robustness of the defense
mechanisms?
First, We noticed that attacks have lower success rates against InceptionV3 in the
baseline, without defenses. This trend continued in the untargeted setting when we
introduced pre-processing defenses as well. Even though it was close, we conclude
that in the untargeted setting the attacks had slightly higher success rates against
MobileNetV2 compared to the other two models. Lastly, the trend from the baseline
that the attacks have lower success rates against InceptionV3 was not true for the
targeted case. In future work, one could investigate these relations in more detail,
possibly with more state-of-the-art neural network architectures.

RQ3. How do different characteristics of datasets impact the robustness of the defense
mechanisms?
On ImageNet, the success of the pre-processing defenses has been slightly worse
than in the targeted least likely class setting than in the targeted next class setting.
We speculate that this directly correlates with the properties of the ImageNet
dataset. Namely, ImageNet has 1000 classes and some of the classes are closer than
the others, like for example pan and wok pan. Hence, it would make sense that
attacks with such targets are more successful than when attacks with targets that
are more distant, like for example least likely class. On CIFAR-10 we had more
similar results between these two targeted settings.

RQ4. How well do defense mechanisms work against universal perturbations?
Overall in our experiments, the Universal Perturbations attacks have scored on
average about 55 − 60 % success rate on ImageNet and about 40 % success rate
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on CIFAR-10, which is a reduction from about 90 % on ImageNet and 50 % on
CIFAR-10 in the baseline without defenses. Still, we have to consider that the 50 %
success rate means that every other image is misclassified. This indicates that the
defense mechanisms do not work very well against this attack. We point out the
adversarial training, Spatial Smoothing, and JPEG Compression combination of
the defenses which reduced the success rate of this attack to 1.2 % on the CIFAR-10
dataset.

RQ5. To which extent can we improve the defense against adversarial attacks by adapting
or combining different defense mechanisms?
We have seen that adversarial training and pre-processing defenses combine easily
together. We have also seen that in the general case they either maintain the success
rates of the attack from the cases when the defenses are used individually or they
slightly improve the results. Some of the combinations, like adversarial training,
Spatial Smoothing, and JPEG Compression, have had more success than others.
We conclude that while combining defenses is easy, finding the optimal combination
is challenging and also specific to the given case. In our experiments, we did not
have any combination that worked well in all (or at least most) of the cases. In
future work, one could dive deeper into the analyses of how to engineer/tailor the
best defense combination for which case.
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APPENDIX A
Auxiliary Tables and Figures

Figure A.1: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models targeting
the next class, with Spatial Smoothing as the pre-processing defense
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A. Auxiliary Tables and Figures

Figure A.2: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models targeting
the next class, with JPEG Compression as the pre-processing defense

Figure A.3: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models targeting
the next class, with Total Variance Minimization as the pre-processing defense
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Figure A.4: Success rates of the different adversarial attacks and the L2 distances to the
original images for PreActResNet18 and AdvTrainedPreActResNet18 models targeting
the next class, with Spatial Smoothing and JPEG Compression as the pre-processing
defenses

Figure A.5: Success rates of the different adversarial attacks and the L2 distances
to the original images for PreActResNet18 and AdvTrainedPreActResNet18 models
targeting the next class, with Spatial Smoothing and Total Variance Minimization as the
pre-processing defenses
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A. Auxiliary Tables and Figures

Figure A.6: Success rates of the different adversarial attacks and the L2 distances
to the original images for PreActResNet18 and AdvTrainedPreActResNet18 models
targeting the next class, with JPEG Compression and Total Variance Minimization as
the pre-processing defenses

Figure A.7: Success rates of the different adversarial attacks and the L2 distances
to the original images for PreActResNet18 and AdvTrainedPreActResNet18 models
targeting the next class, with Spatial Smoothing, JPEG Compression, and Total Variance
Minimization as the pre-processing defenses
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Table A.1: CLEVER scores of the PreActResNet-18 and AdvTrainedPreActResNet-18 on
the adversarial images generated by Auto-PGD adversarial attack under different target
settings and with different pre-processing defenses

CLEVER norm L2 CLEVER norm L∞

least
likely
class

next
class

no
target
class

least
likely
class

next
class

no
target
class

PreActResNet-18
No defenses 0.9308 0.08752 0.04154 0.02561 0.0322 0.01552

SS 0.25715 0.1233 0.12816 0.00795 0.02307 0.0038
JPEG 0.64702 0.22174 0.07669 0.01998 0.03048 0.01553
TVM 0.00306 0.39472 0.21266 0.01281 0.01225 0.00744

SS + JPEG 0.00108 0.03017 0.03669 0.00527 0.02073 0.00257
SS + TVM 0.34424 0.01748 0.0065 0.00949 0.01457 0.00804

SS + JPEG + TVM 0.00404 0.04759 0.01311 0.00752 0.01347 0.0091
JPEG + TVM 0.49231 0.012 0.01489 0.0168 0.0124 0.00587

AdvTrained PreActResNet-18
No defenses 0.14538 0.11798 0.02013 0.0037 0.00257 0.02179

SS 0.0079 0.0114 0.05771 0.00024 0.00039 0.00132
JPEG 0.08887 0.15577 0.00468 0.00238 0.00353 0.01799

TVM 0.00029 0.02462 0.02273 -
0.00022 0.00132 0.00097

SS + JPEG 0.01771 0.03708 0.01543 0.00077 0.00139 0.00055
SS + TVM 0.0194 0.03339 0.00406 0.00052 0.00134 0.00015

SS + JPEG + TVM 0.01477 0.03611 0.00463 0.00058 0.0012 0.00023
JPEG + TVM 0.01321 0.03585 0.02662 0.00062 0.00169 0.00074

Figure A.8: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2 and ResNet-50 models targeting the least
likely class, with Total Variance Minimization as the pre-processing defense
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Table A.2: CLEVER scores of the PreActResNet-18 and AdvTrainedPreActResNet-18
on the adversarial images generated by Carlini and Wagner L∞ adversarial attack under
different target settings and with different pre-processing defenses

CLEVER norm L2 CLEVER norm L∞

least
likely
class

next
class

no
target
class

least
likely
class

next
class

no
target
class

PreActResNet-18
No defenses 0.02752 0.16636 0.01065 0.00204 0.00328 0.003

SS 0.24904 0.15573 0.00487 0.00694 0.00428 0.00243
JPEG 0.07636 0.00424 0.05161 0.00207 0.00327 0.00149
TVM 0.06215 0.00148 0.26539 0.0075 0.00774 0.0088

SS + JPEG 0.30187 0.18715 0.13131 0.00921 0.00432 0.00406
SS + TVM 0.3129 0.00941 0.51441 0.01112 0.01081 0.0178

SS + JPEG + TVM 0.3369 0.01457 0.50715 0.01196 0.01046 0.01591
SS + TVM 0.0082 0.00509 0.34403 0.00058 0.00782 0.01341

AdvTrained PreActResNet-18
No defenses 0.16989 0.05629 0.04181 0.00386 0.00196 0.00175

SS 0.02539 0.01131 0.00976 0.00062 0.00034 0.00027
JPEG 0.03794 0.01533 0.02924 0.0021 0.00096 0.00098

TVM 0.02393 -
0.00105 0.00695 0.00029 0 0.00039

SS + JPEG 0.00398 0.02229 0.00939 0.00021 0.00074 0.00037
SS + TVM 0.02311 0.01671 0.00897 0.00078 0.00065 0.00025

SS + JPEG + TVM 0.003 0.00174 0.01437 0.00012 8e-05 0.00063
SS + TVM 0.03702 0.00975 0.02344 0.00162 0.00037 0.00107

Figure A.9: Success rates of the different adversarial attacks and the L2 distances to
the original images for InceptionV3, MobileNetV2 and ResNet-50 models targeting the
least likely class, with Spatial Smoothing and JPEG Compression as the pre-processing
defense
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Table A.3: CLEVER scores of the PreActResNet-18 and AdvTrainedPreActResNet-18
on the adversarial images generated by FGSM adversarial attack under different target
settings and with different pre-processing defenses

CLEVER norm L2 CLEVER norm L∞

least
likely
class

next
class

no
target
class

least
likely
class

next
class

no
target
class

PreActResNet-18
No defenses 0.55593 0.61692 0.44223 0.01766 0.01785 0.01305

SS 0.5017 0.01824 0.36401 0.01438 0.01156 0.01021
JPEG 0.60855 0.05411 0.07848 0.02025 0.01817 0.01208
TVM 0.23673 0.2455 0.22036 0.0068 0.00848 0.00799

SS + JPEG 0.53258 0.07995 0.38962 0.01912 0.01379 0.01334
SS + TVM 0.32653 0.01782 0.43475 0.01137 0.01445 0.01517

SS + JPEG + TVM 0.00391 0.02908 0.00731 0.01242 0.01498 0.00581
JPEG + TVM 0.01713 0.00601 0.01345 0.01157 0.01289 0.01194

AdvTrained PreActResNet-18
No defenses 0.02025 0.03223 0.05117 0.00076 0.00112 0.00151

SS 0.0068 0.00683 0.00651 0.00018 0.00016 0.00024
JPEG 0.03803 0.06079 0.03532 0.0015 0.00242 0.00171
TVM 0.01201 0.00686 0.00167 0.00015 0.00031 0

SS + JPEG 0.01548 0.02878 0.01837 0.00063 0.00091 0.00063
SS + TVM 0.00218 0.01867 0.01809 9e-05 0.00087 0.0006

SS + JPEG + TVM 0.02546 0.00252 0.00486 0.00093 0.00011 0.00018
JPEG + TVM 0.01377 0.00452 0.02025 0.0004 0.00015 0.00077

Figure A.10: Success rates of the different adversarial attacks and the L2 distances
to the original images for InceptionV3, MobileNetV2 and ResNet-50 models targeting
the least likely class, with Spatial Smoothing and Total Variance Minimization as the
pre-processing defense
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Table A.4: CLEVER scores of the PreActResNet-18 and AdvTrainedPreActResNet-18
on the adversarial images generated by HopSkipJump adversarial attack under different
target settings and with different pre-processing defenses

CLEVER norm L2 CLEVER norm L∞

least
likely
class

next
class

no
target
class

least
likely
class

next
class

no
target
class

PreActResNet-18
No defenses 0.55593 0.61692 0.44223 0.01766 0.01785 0.01305

SS 0.5017 0.01824 0.36401 0.01438 0.01156 0.01021
JPEG 0.60855 0.05411 0.07848 0.02025 0.01817 0.01208
TVM 0.23673 0.2455 0.22036 0.0068 0.00848 0.00799

SS + JPEG 0.53258 0.07995 0.38962 0.01912 0.01379 0.01334
SS + TVM 0.32653 0.01782 0.43475 0.01137 0.01445 0.01517

SS + JPEG + TVM 0.00391 0.02908 0.00731 0.01242 0.01498 0.00581
JPEG + TVM 0.01713 0.00601 0.01345 0.01157 0.01289 0.01194

AdvTrained PreActResNet-18
No defenses 0.02025 0.03223 0.05117 0.00076 0.00112 0.00151

SS 0.0068 0.00683 0.00651 0.00018 0.00016 0.00024
JPEG 0.03803 0.06079 0.03532 0.0015 0.00242 0.00171
TVM 0.01201 0.00686 0.00167 0.00015 0.00031 0

SS + JPEG 0.01548 0.02878 0.01837 0.00063 0.00091 0.00063
SS + TVM 0.00218 0.01867 0.01809 9e-05 0.00087 0.0006

SS + JPEG + TVM 0.02546 0.00252 0.00486 0.00093 0.00011 0.00018
JPEG + TVM 0.01377 0.00452 0.02025 0.0004 0.00015 0.00077

Figure A.11: Success rates of the different adversarial attacks and the L2 distances
to the original images for InceptionV3, MobileNetV2 and ResNet-50 models targeting
the least likely class, with JPEG Compression and Total Variance Minimization as the
pre-processing defense
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Table A.5: CLEVER scores of the PreActResNet-18 and AdvTrainedPreActResNet-18
on the adversarial images generated by ShadowAttack adversarial attack under different
target settings and with different pre-processing defenses

CLEVER norm L2 CLEVER norm L∞

least
likely
class

next
class

no
target
class

least
likely
class

next
class

no
target
class

PreActResNet-18
No defenses 0.97576 0.02598 0.01818 0.00409 0.02549 0.02273

SS 0.01856 0.00136 0.00625 0.00702 0.01094 0.01339
JPEG 1.10684 0.01587 0.04054 0.03084 0.00878 0.02411
TVM 0.01459 0.06115 0.23896 0.00919 0.0088 0.00751

SS + JPEG 0.00559 0.01256 0.03042 0.01114 0.01501 0.01646
SS + TVM 0.00683 0.39461 0.00958 0.00047 0.01342 0.00726

SS + JPEG + TVM 0.39715 0.40332 0.27376 0.01324 0.01373 0.01097
JPEG + TVM 0.3319 0.3281 0.03402 0.00998 0.01086 0.00776

AdvTrained PreActResNet-18
No defenses 0.02414 0.05133 0.03456 0.00068 0.00151 0.00088

SS 0.01315 0.01051 0.00414 0.00039 0.00028 8e-05
JPEG 0.03068 0.03399 0.02205 0.00082 0.00094 0.00069
TVM 0.08146 0.0168 0.0481 0.00246 0.0006 0.0012

SS + JPEG 0.00384 0.00169 0.02062 0.00012 5e-05 0.0006
SS + TVM 0.00923 0.04199 0.03576 0.00043 0.00146 0.00139

SS + JPEG + TVM 0.01481 0.03676 0.04863 0.00061 0.00125 0.002
JPEG + TVM 0.04792 0.0065 0.04845 0.00183 0.00025 0.00169

Figure A.12: Success rates of the different adversarial attacks and the L2 distances
to the original images for InceptionV3, MobileNetV2 and ResNet-50 models targeting
the least likely class, with Spatial Smoothing, JPEG Compression and Total Variance
Minimization as the pre-processing defense
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Table A.6: CLEVER scores of the PreActResNet-18 and AdvTrainedPreActResNet-18
on the adversarial images generated by Universal Perturbations adversarial attack with
different pre-processing defenses

CLEVER norm L2 CLEVER norm L∞

no target class no target class
PreActResNet-18

No defenses 0.59704 0.01764
SS 0.00747 0.01562

JPEG 0.00269 0.01812
TVM 0.27069 0.00866

SS + JPEG 0.62079 0.00103
SS + TVM 0.37318 0.01239

SS + JPEG + TVM 0.39718 0.01291
JPEG + TVM 0.31617 0.01257

AdvTrained PreActResNet-18
No defenses 0.05259 0.00299

SS 0.00918 0.0002
JPEG 0.03259 0.00141
TVM 0.01556 0.00034

SS + JPEG 0.01653 0.00047
SS + TVM 0.01846 0.00062

SS + JPEG + TVM 0.02389 0.00084
JPEG + TVM 0.02185 0.00094

Figure A.13: Success rates of the different adversarial attacks and the L2 distances to
the original images for InceptionV3, MobileNetV2 and ResNet-50 models targeting the
next class, with Spatial Smoothing and JPEG Compression as the pre-processing defense
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Figure A.14: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2 and ResNet-50 models targeting the next
class, with Spatial Smoothing and Total Variance Minimization as the pre-processing
defense

Figure A.15: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2 and ResNet-50 models targeting the next
class, with JPEG Compression and Total Variance Minimization as the pre-processing
defense
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Figure A.16: Success rates of the different adversarial attacks and the L2 distances to the
original images for InceptionV3, MobileNetV2 and ResNet-50 models targeting the next
class, with Spatial Smoothing, JPEG Compression and Total Variance Minimization as
the pre-processing defense
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Table A.7: CLEVER scores of the InceptionV3, MobileNetV2 and ResNet-50 on the
adversarial images generated by Auto-PGD adversarial attack under different target
settings and with different pre-processing defenses

CLEVER norm L2 CLEVER norm L∞

least
likely
class

next
class

no
target
class

least
likely
class

next
class

no
target
class

InceptionV3
No defenses 0.80329 0.8182 0.03852 0.0309 0.00076 0.00014

SS 0.03333 0.0043 0.03158 0.0345 0.00074 0.00005
JPEG 0.00429 0.04037 0.00991 0.0032 0.0015 0.00254
TVM 0.0053 0.0049 0.03275 0.0057 0.00488 0.00299

SS + JPEG 0.00367 0.01527 0.03762 0.0279 0.00253 1.34E03
SS + TVM 0.03129 0.01324 0.03673 0.0268 0.0041 0.00384

SS + JPEG + TVM 0.0054 0.01598 0.00365 0.0369 0.00111 0.00457
JPEG + TVM 0.00533 0.03012 0.03082 0.02483 0.00245 0.00287

MobileNetV2
No defenses 0.71059 0.7507 0.01548 0.03043 0.03923 0.00639

SS 0.03322 0.02881 0.00572 0.00752 0.00161 0.00277
JPEG 0.03864 0.03418 0.0011 0.03441 0.00648 0.00805
TVM 0.02456 0.02939 0.01727 0.00299 0.00656 0.00279

SS + JPEG 0.00578 0.0213 0.03768 0.0321 0.03116 0.00274
SS + TVM 0.03735 0.03399 0.00431 0.02007 0.0079 0.00701

SS + JPEG + TVM 0.03859 0.03352 0.00732 0.00394 0.01593 0.00385
JPEG + TVM 0.03015 0.01947 0.02097 0.03527 0.02283 0.00558

ResNet-50
No defenses 0.50749 0.8302 0.02287 0.00086 0.0102 0.0069

SS 0.03752 0.04065 0.01991 0.00672 0.00351 0.00791
JPEG 0.01678 0.01431 0.00928 0.00624 0.00149 0.00151
TVM 0.0407 0.01528 0.00481 0.00097 0.00951 0.00289

SS + JPEG 0.0002 0.01171 0.0074 0.00327 0.00213 0.00147
SS + TVM 0.00114 0.00405 0.0351 0.0083 0.00233 0.00285

SS + JPEG + TVM 0.03789 0.03132 0.03429 0.0043 0.00642 0.00579
JPEG + TVM 0.00811 0.01296 0.01507 0.00814 0.00384 0.0002
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Table A.8: CLEVER scores of the InceptionV3, MobileNetV2 and ResNet-50 on the
adversarial images generated by Carlini and Wagner L2 adversarial attack under different
target settings and with different pre-processing defenses

CLEVER norm L2 CLEVER norm L∞

least
likely
class

next
class

no
target
class

least
likely
class

next
class

no
target
class

InceptionV3
No defenses 0.11259 0.11256 0.11129 0.00031 0.0003 0.0003

SS 0.23928 0.23604 0.20907 0.00047 0.00051 0.00049
JPEG 0.26619 0.24266 0.23917 0.00063 0.00064 0.00055
TVM 0.09552 0.09336 0.09385 0.00025 0.00025 0.00025

SS + JPEG 0.52552 0.43048 0.50905 0.00059 0.0006 0.00045
SS + TVM 0.0516 0.05181 0.05093 0.00013 0.00013 0.00013

SS + JPEG + TVM 0.03214 0.02915 0.02808 0.00013 0.00014 0.00014
JPEG + TVM 0.02124 9e-05 0.01938 7e-05 6e-05 6e-05

MobileNetV2
No defenses 0.07542 1.43311 0.07616 0.00019 0.00081 0.00018

SS 0.05842 0.12913 0.06278 0.00014 0.00043 0.00019
JPEG 0.06295 0.2868 0.06029 0.00018 0.00064 0.00013
TVM 0.04165 0.02081 0.04194 0.00011 4e-05 0.00013

SS + JPEG 0.03783 0.09011 0.0001 0.00013 0.00027 7e-05
SS + TVM 0.03771 0.01523 5e-05 3e-05 7e-05 3e-05

SS + JPEG + TVM 0.03734 0.00707 0.02697 0.0002 1e-05 0.00018
JPEG + TVM 0.01749 0.01747 0.01386 8e-05 7e-05 8e-05

ResNet-50
No defenses 0.41826 0.40558 0.34706 0.00054 0.00058 0.00055

SS 0.00014 0.0262 0.02767 0.0002 0.00027 0.00036
JPEG 0.10825 0.0822 0.08155 0.00044 0.00031 0.0004
TVM 0.01405 0.01362 0.01621 0.00012 0.00011 0.00011

SS + JPEG 0.03184 0.03245 0.03273 0.00017 0.00022 0.00016
SS + TVM 0.01348 0.01073 0.00771 6e-05 6e-05 4e-05

SS + JPEG + TVM 0.00645 0.0077 0.00667 6e-05 7e-05 5e-05
JPEG + TVM 0.00855 0.00834 0.01022 5e-05 6e-05 7e-05
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Table A.9: CLEVER scores of the InceptionV3, MobileNetV2 and ResNet-50 on the
adversarial images generated by Carlini and Wagner L∞ adversarial attack under different
target settings and with different pre-processing defenses

CLEVER norm L2 CLEVER norm L∞

least
likely
class

next
class

no
target
class

least
likely
class

next
class

no
target
class

InceptionV3
No defenses 0.11259 0.11256 0.11129 0.00031 0.0003 0.0003

SS 0.23928 0.23604 0.20907 0.00047 0.00051 0.00049
JPEG 0.26619 0.24266 0.23917 0.00063 0.00064 0.00055
TVM 0.09552 0.09336 0.09385 0.00025 0.00025 0.00025

SS + JPEG 0.52552 0.43048 0.50905 0.00059 0.0006 0.00045
SS + TVM 0.0516 0.05181 0.05093 0.00013 0.00013 0.00013

SS + JPEG + TVM 0.03214 0.02915 0.02808 0.00013 0.00014 0.00014
JPEG + TVM 0.02124 9e-05 0.01938 7e-05 6e-05 6e-05

MobileNetV2
No defenses 0.07542 1.43311 0.07616 0.00019 0.00081 0.00018

SS 0.05842 0.12913 0.06278 0.00014 0.00043 0.00019
JPEG 0.06295 0.2868 0.06029 0.00018 0.00064 0.00013
TVM 0.04165 0.02081 0.04194 0.00011 4e-05 0.00013

SS + JPEG 0.03783 0.09011 0.0001 0.00013 0.00027 7e-05
SS + TVM 0.03771 0.01523 5e-05 3e-05 7e-05 3e-05

SS + JPEG + TVM 0.03734 0.00707 0.02697 0.0002 1e-05 0.00018
JPEG + TVM 0.01749 0.01747 0.01386 8e-05 7e-05 8e-05

ResNet-50
No defenses 0.41826 0.40558 0.34706 0.00054 0.00058 0.00055

SS 0.00014 0.0262 0.02767 0.0002 0.00027 0.00036
JPEG 0.10825 0.0822 0.08155 0.00044 0.00031 0.0004
TVM 0.01405 0.01362 0.01621 0.00012 0.00011 0.00011

SS + JPEG 0.03184 0.03245 0.03273 0.00017 0.00022 0.00016
SS + TVM 0.01348 0.01073 0.00771 6e-05 6e-05 4e-05

SS + JPEG + TVM 0.00645 0.0077 0.00667 6e-05 7e-05 5e-05
JPEG + TVM 0.00855 0.00834 0.01022 5e-05 6e-05 7e-05
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Table A.10: CLEVER scores of the InceptionV3, MobileNetV2 and ResNet-50 on the
adversarial images generated by FGSM adversarial attack under different target settings
and with different pre-processing defenses

CLEVER norm L2 CLEVER norm L∞

least
likely
class

next
class

no
target
class

least
likely
class

next
class

no
target
class

InceptionV3
No defenses 0.16298 0.23112 2.0 0.00036 0.00791 0.00668

SS 0.24742 0.00494 2.0 0.00112 0.00136 0.00366
JPEG 0.68033 0.78041 2.0 0.002 0.00229 0.00629
TVM 0.03564 0.02002 0.03752 0.0001 0.00007 0.0001

SS + JPEG 0.79638 0.80107 1.86768 0.00144 0.00229 0.00235

SS + TVM 0.02222 0.01779 0.02942 0.0001 0.00014 8.00E-
05

SS + JPEG + TVM 0.03715 0.04149 0.03496 0.00012 0.00011 0.0001
JPEG + TVM 0.0289 0.02801 0.02677 0.0001 0.00012 7e-05

MobileNetV2
No defenses 0.18426 0.14277 1.01925 0.00061 0.00062 0.00331

SS 0.25983 0.26468 2.0 0.00118 0.00112 0.00272
JPEG 0.47149 0.58493 1.24635 0.0027 0.00263 0.00483
TVM 0.03391 0.00014 0.02647 0.0001 0.0001 0.0001

SS + JPEG 0.64274 0.33064 0.90888 0.00117 0.00128 0.00174
SS + TVM 0.04123 0.03478 0.03833 0.00014 0.0001 0.0002

SS + JPEG + TVM 0.05212 0.03565 9e-05 9e-05 0.00017
JPEG + TVM 0.02359 0.01683 0.02974 7e-05 7e-05 0.00012

ResNet-50
No defenses 2.0 0.65432 2.0 0.011 0.00336 0.04222

SS 2.0 0.38601 2.0 0.00449 0.00184 0.00917
JPEG 2.0 1.72062 2.0 0.00606 0.00336 0.02721
TVM 0.02947 0.02442 0.02637 0.00014 0.00015 0.00012

SS + JPEG 2.0 1.01856 2.0 0.00734 0.0032 0.01041
SS + TVM 0.03284 0.01449 0.02144 0.00013 6e-05 7e-05

SS + JPEG + TVM 0.01557 0.01153 0.00678 9e-05 3e-05 0.00011
JPEG + TVM 0.01015 0.00939 0.01425 8e-05 6e-05 7e-05
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Table A.11: CLEVER scores of the InceptionV3, MobileNetV2 and ResNet-50 on the
adversarial images generated by HopSkipJump adversarial attack under different target
settings and with different pre-processing defenses

CLEVER norm L2 CLEVER norm L∞

least
likely
class

next
class

no
target
class

least
likely
class

next
class

no
target
class

InceptionV3
No defenses 0.0125 0.11601 0.05103 0.0009 0.00031 0.00132

SS 0.00216 0.00215 0.00621 0.0010 0.00048 0.00012
JPEG 0.03575 0.25317 0.0655 0.0042 0.00052 0.00532
TVM 0.01033 0.09274 0 0.0002 0.00025 0.00341

SS + JPEG 0.0007 0.44147 0.001 0.0006 0.00063 1.20E-
02

SS + TVM 0.01208 0.00052 0.00199 0.0003 0.00013 0.0004
SS + JPEG + TVM 0.03472 0.002 0.0009 0.00017 0.00006

JPEG + TVM 0.002 0.02088 0.00027 0.0004 0.0001 0.0004
MobileNetV2

No defenses 1.39674 1.39246 1.37913 0.00085 0.0009 0.00081
SS 0.12904 0.13131 0.13386 0.00045 0.00043 0.00047

JPEG 0.15425 0.3076 0.23951 0.0007 0.00072 0.00075
TVM 0.02055 0.02104 0.01983 4e-05 5e-05 4e-05

SS + JPEG 0.00206 0.08923 0.08058 0.00028 0.00027 0.00029
SS + TVM 0.01576 0.01878 0.01264 8e-05 5e-05 9e-05

SS + JPEG + TVM 0.01575 0.0067 0.0066 3e-05 2e-05 3e-05
JPEG + TVM 0.01458 0.01732 0.01878 6e-05 7e-05 5e-05

ResNet-50
No defenses 0.97145 0.93654 0.85776 0.0003 0.00035 0.00032

SS 0.13815 0.12662 0.13415 0.00031 0.00027 0.00026
JPEG 0.06248 0.05899 0.06706 0.00054 0.00027 0.00031
TVM 0.00034 0.0001 0.02675 9e-05 0.00011 7e-05

SS + JPEG 0.02896 0.02649 0.02674 0.0001 0.0001 0.0001
SS + TVM 0.00017 0.00017 0.01781 5e-05 4e-05 5e-05

SS + JPEG + TVM 0.0085 0.01906 0.02543 9e-05 2e-05 0.0001
JPEG + TVM 0.01583 0.00715 0.01612 3e-05 4e-05 3e-05
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Table A.12: CLEVER scores of the InceptionV3, MobileNetV2 and ResNet-50 on the
adversarial images generated by ShadowAttack adversarial attack under different target
settings and with different pre-processing defenses

CLEVER norm L2 CLEVER norm L∞

least
likely
class

next
class

no
target
class

least
likely
class

next
class

no
target
class

InceptionV3
No defenses 0.203 0.40572 0.02628 0.0047 0.00816 0.00294

SS 0.00868 0.02447 0.0134 0.0060 0.00708 0.00869
JPEG 0.00956 0.02054 0.01725 0.0073 0.00802 0.00636
TVM 0.01345 0.01907 0.01571 0.0080 0.00633 0.00283

SS + JPEG 0.00894 0.01367 0.0306 0.0023 0.00712 2.00E-
05

SS + TVM 0.00801 0.0283 0.00395 0.0027 0.00706 0.00324
SS + JPEG + TVM 0.00958 0.031 0.02444 0.0033 0.00372 0.00236

JPEG + TVM 0.03813 0.01466 0.03571 0.00297 0.00516 0.00634
MobileNetV2

No defenses 0.09708 0.09754 0.08136 0.00157 0.00776 0.00238
SS 0.01136 0.02699 0.00348 0.00928 0.00226 0.00969

JPEG 0.02331 0.00263 0.02664 0.00032 0.00764 0.00626
TVM 0.04076 0.03959 0.00539 0.0067 0.00945 0.00451

SS + JPEG 0.02078 0.00005 0.00277 0.00894 0.0053 0.00253
SS + TVM 0.01222 0.00119 0.01983 0.00956 0.00084 0.00181

SS + JPEG + TVM 0.02728 0.02237 0.00824 0.01008 0.00599 0.00078
JPEG + TVM 0.00076 0.00682 0.02812 0.00825 0.00985 0.00774

ResNet-50
No defenses 0.73786 0.90548 0.04448 0.00525 0.00639 0.00236

SS 0.01213 0.00398 0.01925 0.00566 0.00617 0.00936
JPEG 0.03686 0.02042 0.03717 0.00262 0.00845 0.00783
TVM 0.00057 0.02638 0.01535 0.00673 0.00902 0.00261

SS + JPEG 0.01347 0.03104 0.00418 0.00091 0.00898 0.00269
SS + TVM 0.00279 0.01219 0.03646 0.00889 0.00525 0.00545

SS + JPEG + TVM 0.0091 0.003 0.00255 0.0089 0.00802 0.00759
JPEG + TVM 0.00961 0.03566 0.00793 0.00653 0.00736 0.00309
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Table A.13: CLEVER scores of the InceptionV3, MobileNetV2 and ResNet-50 on the
adversarial images generated by Universal Perturbations adversarial attack with different
pre-processing defenses

CLEVER norm L2 CLEVER norm L∞

no target class no target class
InceptionV3

No defenses 1.2941 0.00473
SS 2.0 0.00333

JPEG 2.0 0.00349
TVM 0.02806 9e-05

SS + JPEG 1.31211 0.00236
SS + TVM 0.02124 4e-05

SS + JPEG + TVM 0.01187 5e-05
JPEG + TVM 0.02636 5e-05

MobileNetV2
No defenses 0.1142 0.00049

SS 0.07698 0.00035
JPEG 0.17065 0.0005
TVM 0.02082 6e-05

SS + JPEG 0.05791 0.00022
SS + TVM 0.02058 5e-05

SS + JPEG + TVM 0.01268 5e-05
JPEG + TVM 0.03737 0.0001

ResNet-50
No defenses 0.03724 0.00019

SS 0.06448 0.00021
JPEG 0.30148 0.00607
TVM 0.0248 0.00017

SS + JPEG 0.08048 0.0004
SS + TVM 0.01551 4e-05

SS + JPEG + TVM 0.01545 5e-05
JPEG + TVM 0.01025 3e-05
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