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Abstract in german - Deutsche
Kurzfassung
Spinensembles in einem Resonator bilden Schnittstellen zwischen Licht und Ma-
terie und spielen eine tragende Rolle bei der Entwicklung zukünftiger quanten-
technologischer Bauelemente. Ein offenkundiger Vorteil ensemblebasierter Systeme
ist die kollektive Verstärkung der Kopplungsstärke, welche eine starke Wechsel-
wirkung zwischen den Licht- und Materiekomponenten ermöglicht. Besonders viel-
versprechend dabei sind Spinensembles in Festkörpern wie Stickstoff-Fehlstellen in
Diamant, Phosphor-Atome in Silizium oder mit Seltenen Erden dotierte Kristalle
aufgrund ihrer einfachen Handhabung und Integrierbarkeit. Solche Systeme sind
jedoch fast zwangsläuőg inhomogen verbreitert, da die verschiedenen Spins des
Ensembles unterschiedliche lokale Umgebungen aufweisen, was zu einer spektralen
Verteilung ihrer Übergangsfrequenzen führt. Diese sogenannte inhomogene Verbrei-
terung ist eine Hauptquelle für Dekohärenz in Festkörpersystemen und eine groûe
Herausforderung für zukünftige technische Anwendungen.

In dieser Arbeit soll der notwendige theoretische Rahmen geschaffen werden um
verschiedene Effekte von inhomogen verbreiterten Spinensemblen, die an eine ein-
zelne Resonatormode gekoppelt sind und in zahlreichen quantenoptischen Systemen
in sehr unterschiedlichen Parameterbereichen realisiert wurden, zu beschreiben und
zu verstehen.

Für makroskopische Spinensembles, d.h. Ensembles, die aus einer groûen Anzahl
an Spins bestehen, können Quantenŕuktuationen der einzelnen Spins typischerweise
vernachlässigt werden, was eine semiklassische Beschreibung auf Basis der Maxwell-
Bloch-Gleichungen ermöglicht. Hier untersuchen wir zwei prominente nichtlineare
Effekte: optische Bistabilität, die einem Phasenübergang erster Ordnung entspricht,
und kritische Verlangsamung. Insbesondere zeigen wir, dass das Einsetzen der Bi-
stabilität nicht nur von der Breite der spektralen Spinverteilung abhängt, sondern
auch stark von deren Form. Des Weiteren analysieren wir die Zeitdauer mit der
sich die Resonatoramplitude ihrem stationären Zustand annähert. In der Nähe
eines Phasenübergangs divergieren diese Einschwingzeiten exponentiell. Wir zei-
gen diese kritische Verlangsamung in einer Zusammenarbeit mit einem Experiment
durchgeführt unter der Leitung von Jörg Schmiedmayer am Atominstitut der Tech-
nischen Universität Wien. Dabei wurden negativ geladenen Stickstoff-Fehlstellen in
Diamant stark an einen supraleitenden Mikrowellenresonator gekoppelt und Ein-
schwingzeiten von bis zu 11 Stunden beobachtet.
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In mesoskopischen Spinensembles mit einer moderaten Anzahl von Spins werden
Quantenŕuktuationen wichtig und semiklassische Methoden versagen. Mit Hilfe
einer Kumulanten-Entwicklung untersuchen wir den Übergang zwischen dem se-
miklassischen und dem quantenmechanischen Regime für inhomogen verbreiterte
Spinensembles in einem Resonator. Darüber hinaus entwickeln wir eine zeitadaptive
Methode basierend auf der Dichtematrix-Renormierungsgruppe, um die vollständi-
ge Quantendynamik von Spinensembles mit bis zu hundert Spins berechnen zu kön-
nen. Mit Hilfe dieser Methode untersuchen wir mesoskopische Spinensembles, deren
Spin-Verteilungen eine kammförmige Struktur bilden. Diese sogenannten atomaren
Frequenzkämme haben vielversprechende Eigenschaften für Quantenspeicher. Zum
einen zeigen wir, dass beliebige Multiphotonen-Zustände durch das kammförmige
Spinensemble absorbiert und in periodischen Zeitabständen wieder in den Resona-
tor emittiert werden. Zum anderen lässt sich mit einem solchen Spinensemble ein
kohärenter Eingangspuls in eine periodische Serie von nicht-klassischen Lichtpulsen
umwandeln.

Schlieûlich befassen wir uns mit Spin-Echos, die sowohl in der Kernspinresonanz
als auch in der Elektronenspinresonanz eine fundamentale Rolle spielen. Insbeson-
dere übertragen wir das Hahn-Echo in den Bereich der starken Kopplung, wo wir ein
neues dynamisches Phänomen vorőnden, nämlich eine Folge von selbsterhaltenden
periodischen Echos nach einer konventionellen Hahn-Echo-Sequenz. In Zusammen-
arbeit mit einem Experiment durchgeführt unter der Leitung von Hans Hübl an der
Technischen Universität München, präsentieren wir die erste Realisierung dieser fas-
zinierenden Multiecho-Signatur in einem Elektronenspinresonanz-Experiment mit
Phosphor Atomen in Silizium.



Abstract
Spin ensembles inside a cavity act as light-matter interfaces that play an eminent
role in the development of future quantum devices. An apparent asset of ensemble-
based systems is the collective enhancement of the coupling strength, facilitating a
strong interaction between the light and matter components. Particularly promising
in this regard, due to their convenient handling and integrability, are solid state
spin ensembles such as nitrogen-vacancy centers in diamond, phosphorous donors
in silicon, or rare earth doped crystals. Such ensemble-based setups, however, are
almost inevitably inhomogeneously broadened as the different spins of the ensemble
typically have different local environments leading to a spectral distribution in their
transition frequencies. This so-called inhomogeneous broadening is a major source
for decoherence in solid state systems and a major challenge to be addressed for
future technical applications.

In this thesis, we aim to provide the theoretical framework necessary to describe
and understand various effects of inhomogeneously broadened spin ensembles cou-
pled to a single-mode cavityÐa system that has been realized in numerous different
quantum optical setups and in very different parameter regimes.

For macroscopic spin ensembles, i.e., ensembles consisting of a vast number of
spins, quantum ŕuctuations of the individual spins can typically be neglected, allow-
ing a semiclassical description based on Maxwell-Bloch equations. Here, we study
two prominent effects in the strongly nonlinear regime namely optical bistability,
resembling a őrst-order phase transition, and critical slowing down. In particular,
we show that the onset of bistability not only depends on the width of the spec-
tral spin distribution but also strongly depends on its exact shape. Furthermore,
we analyze the transient times of the cavity amplitude which show a power-law
divergence when an external parameter is changed in the vicinity of the phase tran-
sition. This critical slowdown is demonstrated in collaboration with the group of
Jörg Schmiedmayer at the Atominstitut of TU Wien. In the experiment, negatively
charged nitrogen vacancy centers in diamond are strongly coupled to a supercon-
ducting microwave resonator showing transient times of up to 11 hours.

In mesoscopic spin ensembles with moderate numbers of constituents, quan-
tum ŕuctuations gain importance, and semiclassical methods fail. We study this
crossover between the semiclassical and the quantum regime using a cumulant ex-
pansion approach to study the semiclassical-to-quantum boundary for inhomoge-
neously broadened spin ensembles inside a cavity. In addition, we develop a time-
adaptive variational renormalization group method to calculate the full quantum
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dynamics of spin ensembles containing up to one hundred spins. With the aid of
this method, we examine mesoscopic spin ensembles whose spin distributions form
a comb-shaped structure. These so-called atomic frequency combs have promising
properties for the storage of quantum information. On the one hand, we show
that arbitrary multi-photon states are absorbed by the comb-shaped spin ensemble
and re-emitted into the cavity at periodic time intervals. On the other hand, we
demonstrate that by means of such a spin ensemble a coherent input pulse can be
converted into periodic pulses of non-classical light.

Finally, we address spin echoes, which are a fundamental part in nuclear magnetic
resonance as well as in electron spin resonance. Speciőcally, we transfer the Hahn
echo to the strong coupling regime, where we őnd a new dynamical phenomenon
featuring a periodic sequence of self-sustained echoes after a conventional Hahn echo
pulse. In collaboration with the group of Hans Hübl at the Technical University
Munich, a őrst demonstration of this intriguing multiecho signature is presented in
an electron spin resonance experiment with phosphorus donors in silicon.
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Introduction
Cavity quantum electrodynamics (cavity QED) is the quantum theory of the in-
teractions between light and matter inside a cavity. The origins of this őeld date
back to the pioneering work of Purcell in the 1940s [1], realizing that coupling a
spin system to a resonant electrical circuit can dramatically enhance the sponta-
neous emission rate of the spins. Following the őrst experiments with ŕuorescent
molecules near a metallic mirror [2], both the enhancement and inhibition of spon-
taneous emission were demonstrated for atoms inside a cavity [3ś5].

By selecting particular electromagnetic modes, the cavity enables a signiőcant
simpliőcation in the theoretical treatment compared to conventional QED in free
space. In 1963, Jaynes and Cummings introduced an exactly solvable model [6], de-
scribing the interaction of one atom with a single mode of the quantized őeld. This
model, which now bears their name, became the paradigm model of cavity QED,
describing numerous quantum optical phenomena [7]. Even more importantly, the
cavity enables the control and a signiőcant enhancement of the light-matter in-
teraction. Cavity QED, therefore, became not only an ideal testing ground for
fundamental physics [8ś12] but also an invaluable tool for technological applica-
tions [13ś15], especially concerning quantum information processing [16ś18] with
hybrid quantum systems [19, 20].

Hybrid quantum systems aim to combine the complementary functionalities of
different quantum systems, e.g., photons, which are well suited for transmitting
quantum information [21], and spins serving as long-lived quantum memories [22].
The cavity, in turn, acts as an interface or “quantum busž for the input and output
of information [19]Ðconnecting light and matter. A prerequisite in this regard is
the coherent exchange of information between the individual subsystems enabled by
the so-called strong coupling regime [23, 24]. As the light-matter coupling strength
exceeds all dissipation rates of the system, the atoms or spins can reabsorb an
emitted photon before it is lost to the environment. Ultimately, this leads to co-
herent oscillations in the atomic excitations, known as quantum Rabi oscillations
[25, 26], and a pair of resolvable peaks in the cavity transmission spectrum (polari-
tonic peaks), known as vacuum Rabi splitting [27]. The strong coupling condition,
Ω ≫ 𝜅, 𝛾ℎ, 𝛾p, where Ω denotes the light-matter coupling strength and 𝜅, 𝛾ℎ, and
𝛾p describe various decay rates of the system, meanwhile has been realized in nu-
merous physical setups, including single molecules in plasmonic nanocavities [28,
29], artiőcial atoms based on superconducting qubits [30, 31] and quantum dots
[32], as well as solid-state spin ensembles [33ś44].
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In this thesis, we consider ensemble-based systems of which the most prominent
representatives are negavitely charged nitrogen-vacancy (NV) defects in diamond
[34ś39], rare-earth doped crystals [42ś44], and clouds of cold atoms [45, 46]. While
our methods are general and widely applicable, we will mainly consider concrete
experimental realizations with solid-state spin ensembles like NV centers in diamond
[39] or phosphorus donors in silicon [41].

Ensembles of emitters, be they atoms, spins, or molecules, play an integral role in
cavity QED and generally in quantum optics due to the cooperative enhancement of
the coupling, which was noted already by Dicke in his seminal treatment of superra-
diance [47]. For a homogeneous ensemble of emitters inside a cavity, the collective
coupling strength reads [36] Ω = 𝑔

√
𝑁 , where 𝑁 is the number of emitters in the

ensemble and 𝑔 their individual coupling strength. This cooperative enhancement
is essential in many physical platforms to actually reach the strong coupling regime
[33ś42, 45, 46, 48]. Naturally, however, the individual constituents in an ensemble
have slightly different local environments leading to differences in both their tran-
sition frequencies and coupling strengths. This inhomogeneous broadening can act
as the main source for dephasing in ensemble-based systems [37, 38], drastically
decreasing the coherence time, which plays a central role in restricting their perfor-
mance in processing and storing quantum information [49ś51]. Investigating and
understanding the effects of inhomogeneous broadening is, therefore, a central task
to overcome or even exploit the associated limitations for future applications [51].

First results in this direction were already made in the 1990s [52] with the re-
markable observation that the width of the transmission peaks of a strongly coupled
spin ensemble can be much narrower than expected from its inhomogeneous broad-
ening. Even more remarkably, this effect, which was later called “cavity protection
effectž, only occurs if the wings of the spectral distribution of the emitters fall off
faster than a Lorentzian [53, 54]. The cavity protection effect has been examined
experimentally using an ensemble of NV defects in diamond [37], offering exciting
prospects for coherent control schemes that allow a signiőcant suppression of deco-
herence in strongly coupled hybrid quantum systems. Notably, a precise knowledge
not only of the width but also the shape of the inhomogeneous spin broadening is
crucial for a qualitative and quantitative understanding of this effect [38]. Along
similar lines, it has been theoretically proposed [55] to suppress the decoherence of
a spin ensemble by modifying the spectral spin distribution through the technique
of spectral hole burning. Interestingly, it is sufficient to remove a small fraction
of the emitters at well-chosen frequencies to substantially increase the coherence
time of the spin-cavity system. This effect has recently been demonstrated in a
proof-of-principle experiment [56].

The increasing experimental control in quantum optical experiments and new
theoretical concepts, such as coherent spectral hole burning [57, 58], lead the way
to create spectrally engineered spin ensembles with new functionalities [59, 60].
Prominent examples in this regard are atomic frequency combs [61, 62], i.e., spin
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ensembles with a comb-shaped spectral spin distribution, which show promising
features for future quantum memories [62ś68].

The retrieval of information from an inhomogeneously broadened spin ensemble
is also the central task of spin-echo techniques [69], as used in nuclear magnetic
resonance (NMR) [70ś72] and electron spin resonance (ESR) [73]. Both of these
fundamental spectroscopic techniques are intimately connected with concepts from
cavity QED. In particular, the development of superconducting resonators enabled
the strong coupling of spin ensembles [33ś40] and thereby high-sensitivity appli-
cations in ESR [22, 74, 75]. However, a detailed study of the fundamental pulse
sequence in NMR and ESRÐthe Hahn echo [76]Ðin the strong coupling regime is
still missing.

This thesis is divided into two parts. The őrst part, consisting of chapters 1
to 3, is devoted to the theoretical methods necessary to describe inhomogeneously
broadened spin ensembles strongly coupled to a single cavity mode in different
regimes. Chapter 1 covers the microscopic description of this system based on the
Tavis-Cummings Hamiltonian. In particular, we focus on the driven and dissipative
dynamics using a Lindblad master equation and the corresponding equations of
motion for expectation values.

In Chapter 2, we introduce a Volterra integral approach and the semiclassical
Maxwell-Bloch equations, both very effective methods for macroscopic spin ensem-
bles where quantum ŕuctuations can be ignored.

Chapter 3 deals with methods for mesoscopic spin ensembles. Here, semiclas-
sical approximations no longer apply and quantum ŕuctuations have to be taken
explicitly into account. We őrst review the cumulant expansion approach, which
allows us to calculate quantum corrections to the semiclassical expectation values.
Then, we introduce a time adaptive variational renormalization group method that
provides a full quantum description of the mesoscopic spin-cavity system. Note
that this is only a selection and by no means an exhaustive list of methods for
treating spin ensembles in cavity QED. Methods not covered in this work are, for
example, stochastic wave function approaches [77, 78], phase space methods [78,
79], or master equations in the few-excitation limit [80, 81].

In the second part of this thesis, we apply the described methods to examine
various effects of inhomogeneously broadened spin ensembles inside a cavity. The
majority of recent studies on hybrid quantum systems based on solid-state spin
ensembles have been carried out in the linear regime of few excitations [33ś38]. In
Chapter 4, we go beyond this limitation exploring the nonlinear regime of cavity
QED. In particular, we provide a detailed analysis of optical bistability and critical
slowing down in the presence of inhomogeneous broadening [82]. Our theoreti-
cal őndings are augmented by an experimental realization with nitrogen-vacancy
centers in diamond [39]. Furthermore, we examine the validity of the semiclassi-
cal Maxwell-Bloch equations in the vicinity of the bistable regime and establish a
semiclassical-to-quantum boundary for spin ensembles in cavity QED [83].
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Chapter 5 is devoted to spectrally engineered spin ensembles in the form of
atomic frequency combs. Here, we őrst present the route from single-mode to
multimode strong coupling, őnding sustained photon pulse revivals from inhomo-
geneously broadened spin ensembles in the semiclassical regime [84]. Then we
provide a fully quantum mechanical treatment of atomic frequency combs coupled
to a cavity [85, 86].

Finally, in Chapter 6, we report on a novel phenomenon in electron spin reso-
nance, transferring the conventional Hahn-echo to the strong coupling regime of
cavity QED.



Part I.

Methods and theoretical framework





Chapter 1.

Light-matter interaction of spin
ensembles inside a cavity
The microscopic description of the interaction between matter in the form of a
single two-level system and a single quantized mode of light is given by the famous
Jaynes-Cummings Hamiltonian [6]. For a derivation and a review of this funda-
mental model, we refer to one of the numerous excellent quantum optics textbooks
[87ś91]. In this chapter, we introduce the Tavis-Cummings Hamiltonian, which is
a generalization of the Jaynes-Cummings Hamiltonian for many two-level systems
and forms the basis for the rest of the thesis. Furthermore, we present the relevant
master equation for the evolution of the open ensemble-cavity system and the cor-
responding equations of motion for expectation values. The methods for solving
these equations are then discussed in the two subsequent chapters.

1.1. Tavis-Cummings Hamiltonian
Our starting point for the physical description of 𝑁 two-level systems inside a
single-mode cavity is the Tavis-Cummings Hamiltonian [92] given by (� = 1)

𝐻 = 𝜔𝑐 𝑎
†𝑎+

1

2

𝑁∑︁
k=1

𝜔k𝜎
z
k+

𝑁∑︁
k=1

[𝑔k𝜎
−
k 𝑎

†+𝑔*k𝜎
+
k 𝑎]+ i[𝜂(t)𝑎†𝑒−i𝜔pt−𝜂*(t)𝑎𝑒i𝜔pt], (1.1)

where 𝑎† and 𝑎 are the creation and annihilation operators of the single cavity mode
satisfying the commutation relation

[𝑎, 𝑎†] = 1, (1.2)

and 𝜎z
k, 𝜎

+
k ≡ (𝜎x

k+i𝜎y
k)/2, 𝜎

−
k ≡ (𝜎x

k−i𝜎y
k)/2 are the Pauli operators corresponding

to the individual spins with

[𝜎+
k , 𝜎

−
j ] = 𝜎z

k 𝛿kj and [𝜎z
k, 𝜎

±
j ] = ±2𝜎±

k 𝛿kj. (1.3)

The őrst two terms in Eq. (1.1) correspond to the energy of the free cavity őeld
and spin ensemble with frequencies 𝜔𝑐 and 𝜔k, respectively, while the third term
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describes the Jaynes-Cummings type interaction between the individual spins and
the cavity mode with coupling strength 𝑔k. Since the two-level systems can absorb
any phase by the re-deőnition �̃�+

k ≡ 𝑒i𝜑𝜎+
k , the phase of the coupling is physically

not important. Hence, 𝑔k is often chosen as either real or imaginary for convenience;
in this thesis, we use 𝑔k = 𝑔*k. Note that, here, we neglect variations of the őeld over
the dimensions of the spins (dipole approximation) as well as the counter-rotating
terms, 𝜎−

k 𝑎 and 𝜎+
k 𝑎

† (rotating-wave approximation). The latter requires that the
coupling between the ensemble and the cavity is small compared to the transition
frequencies 𝜔k. Another implicit assumption is that the spin ensemble is dilute,
such that direct dipole-dipole interactions can be neglected. Finally, the last term
in Eq. (1.1) is a classical external driving őeld of amplitude 𝜂(t) and frequency
𝜔p, which is injected into the cavity. Without loss of generality, we typically take
𝜂(t) = 𝜂*(t).

It is often convenient to remove the explicit time dependence (∝ 𝑒−i𝜔pt) of the
external driving őeld by performing a transformation to a rotating frame with
respect to the driving frequency 𝜔p:

�̃� = 𝑈 𝐻 𝑈 † + i
∂𝑈

∂t
𝑈 †, (1.4)

where
𝑈 = 𝑒i𝜔pt(𝑎†𝑎+

∑︀
k

1
2
𝜎z
k) (1.5)

is a unitary transformation. After some calculation (see Appendix A), the Tavis-
Cummings Hamiltonian in the frame rotating with 𝜔p is given by

�̃� = Δ𝑐 𝑎
†𝑎+

1

2

𝑁∑︁
k=1

Δk𝜎
z
k +

𝑁∑︁
k=1

𝑔k[𝜎
−
k 𝑎

† + 𝜎+
k 𝑎] + i𝜂(t)[𝑎† − 𝑎], (1.6)

where Δ𝑐 ≡ 𝜔𝑐 − 𝜔p and Δk ≡ 𝜔k − 𝜔p is the detuning of the cavity frequency 𝜔𝑐

and of the individual spin frequencies 𝜔k with respect to the external driving őeld
of frequency 𝜔p.

It is worth mentioning that the Tavis-Cummings Hamiltonian without external
driving belongs to the class of exactly solvable Richardson-Gaudin models [93] and
can in principle be solved via a Bethe ansatz technique [94ś96]. Since, in this
thesis, however, we are dealing with realistic open systems, we will focus on the
driven and dissipative dynamics of the spin-cavity system. Below, we present the
corresponding master equation approach and the resulting equations of motion for
expectation values.
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1.2. Open system dynamics
In general, the cavity and spins in the ensemble are lossy due to the inevitable
coupling to the surrounding environment. In this thesis, we describe the dynamics
of the open spin-cavity system by a Lindblad master equation [97, 98]

𝑑

𝑑t
𝜌(t) = ℒ[𝜌] = −i[𝐻, 𝜌] + ℒ𝐷[𝜌], (1.7)

where 𝜌(t) is the density matrix of the spin-cavity system and ℒ𝐷 is a dissipator
given by

ℒ𝐷[𝜌] =𝜅 (2𝑎𝜌𝑎† − 𝑎†𝑎 𝜌− 𝜌 𝑎†𝑎) + 𝛾ℎ

𝑁∑︁
k=1

(2𝜎−
k 𝜌 𝜎

+
k − 𝜎+

k 𝜎
−
k 𝜌− 𝜌 𝜎+

k 𝜎
−
k )

+ 𝛾p

𝑁∑︁
k=1

(𝜎z
k𝜌 𝜎

z
k − 𝜌 ). (1.8)

Here, the őrst term accounts for cavity losses with rate 𝜅; the second term gives the
radiative decay of the individual spins with rate 𝛾ℎ, and the last term describes their
non-radiative dephasing with rate 𝛾p/2. Note that with the deőnition of the decay
rates in Eq. (1.8), 𝜅 corresponds to the half-width-at-half-maximum (HWHM) of
the cavity linewidth and the spin decay rates can be related to the longitudinal
and transverse decay times 𝑇1 = 1/(2𝛾ℎ) and 𝑇2 = 1/(𝛾ℎ + 2𝛾p), respectively. In
addition, it should be noted that we neglect thermal excitations in Eq. (1.8), always
assuming k𝐵𝑇 ≪ �𝜔𝑐, �𝜔k.

The derivation of the Lindblad master equation (1.7) can be found in numerous
textbooks [97ś99] and will not be repeated here. It bases on the fundamental Born-
Markov approximation, which is typically very well satisőed for spin-cavity systems.
The Born approximation assumes that the combined density matrix of the system
and of the environment can be factorized as 𝜌tot(t) = 𝜌(t)⊗ 𝜌𝑒nv(0), such that the
state of the large environment 𝜌𝑒nv(0) is not affected by the evolution of 𝜌(t). The
Markov approximation on the other hand assumes that the environment has a very
short memory time, i.e., correlations between operators of the environment decay
fast compared to the intrinsic time scale of the spin-cavity system.

Since the dimension of the system’s Hilbert space grows exponentially with the
number of spins, direct solutions of Eq. (1.7) are typically restricted to very few
spins (𝑁 � 10) [100ś102], very few excitations [103ś105], or identical spins without
inhomogeneous broadening [106ś109]. While we will later introduce a method to
solve the master equation (1.7) fully quantum mechanically for large spin ensembles
of up to one hundred spins, another common approach is to directly solve for
the expectation values of operators of interest instead [109ś112]. The equation of
motion for the expectation value of some operator 𝑂 can be obtained by multiplying
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the master equation (1.7) with 𝑂 and taking the trace, which gives

𝑑

𝑑t
⟨𝑂⟩ = Tr (−i[𝑂,𝐻]𝜌+𝑂ℒ𝐷[𝜌]) . (1.9)

For the operators, 𝑎, 𝜎−
k , and 𝜎z

k, straightforward calculations yield

𝑑

𝑑t
⟨𝑎⟩ = −(𝜅+ iΔ𝑐)⟨𝑎⟩ − i

𝑁∑︁
k=1

𝑔k⟨𝜎−
k ⟩+ 𝜂 , (1.10a)

𝑑

𝑑t
⟨𝜎−

k ⟩ = −(𝛾ℎ + 2𝛾p + iΔk)⟨𝜎−
k ⟩+ i 𝑔k⟨𝜎z

k𝑎⟩ , (1.10b)

𝑑

𝑑t
⟨𝜎z

k⟩ = −2𝛾ℎ(⟨𝜎z
k⟩+ 1) + 2i 𝑔k(⟨𝜎−

k 𝑎
†⟩ − ⟨𝜎+

k 𝑎⟩). (1.10c)

We notice that the above set of differential equations is not closed. In particular,
the equations of motion for the spin expectation values ⟨𝜎−

k ⟩ and ⟨𝜎z
k⟩ depend on

the expectation values ⟨𝜎z
k𝑎⟩ and ⟨𝜎−

k 𝑎
†⟩, respectively, which involve two operators.

In the same way, the equations of motion for expectation values with two operators
depend on expectation values with three operators, etc., as can be seen in the
example:

𝑑

𝑑t
⟨𝜎z

k𝑎⟩ =− (𝜅+ 2𝛾ℎ + iΔ𝑐) ⟨𝜎z
k𝑎⟩ − 2𝛾ℎ ⟨𝑎⟩+ 𝜂 ⟨𝜎z

k⟩ − i

𝑁∑︁
j=1
j ̸=k

𝑔j ⟨𝜎z
k𝜎

−
j ⟩+ i𝑔k ⟨𝜎−

k ⟩

+ 2i 𝑔k( ⟨𝜎−
k 𝑎

†𝑎⟩ − ⟨𝜎−
k 𝑎

†𝑎†⟩* ). (1.11)

This corresponds to the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierar-
chy [113], based on the fact that for a system of interacting particles, the dynamic of
an expectation value involving n operators depends on expectation values involving
n + 1 operators. The full set of equations for expectation values up to third-order
is presented in Appendix B.

To solve for the corresponding dynamics, this inőnite hierarchy of coupled dif-
ferential equations has to be truncated. In the following two chapters, we discuss
different approaches to obtain a closed set of equations for spin ensembles inside
a cavity in various physical regimes. In addition, we present a novel variational
renormalization group method [85] that enables a solution of the Lindblad master
equation (1.7) directly for mesoscopic ensembles of up to one hundred spins.



Chapter 2.

Macroscopic spin ensembles

Ensembles of spins coupled to a cavity form a peculiar many-particle system in the
sense that interactions among the individual spins are mediated by the common
cavity mode leading to extremely long-range interactions and a suppression of ŕuc-
tuations [47]. Since the quantum ŕuctuations decrease with 1/𝑁 [78, 114], semiclas-
sical mean-őeld descriptions often provide an accurate description for macroscopic
spin ensembles constituting a large number of spins. In this chapter, we őrst dis-
cuss the linear regime in which the number of excitations in the system is negligible
compared to the number of spinsÐa situation that occurs in many experimental
realizations [33ś37, 43]. Then, we move beyond this few-excitation limit entering
the nonlinear regime governed by the semiclassical Maxwell-Bloch equations.

2.1. Volterra integral equation1

A commonly used approximation in quantum optical setups involving spin ensem-
bles is the assumption that the number of excitations in the system is small com-
pared to the total number of spins within the ensemble. In this case, the inőnite
hierarchy of equations discussed in the previous section naturally truncates, re-
sulting in a closed set of equations, which can be readily solved. To obtain this
few-excitation limit, we note that

𝜎z
k = −1 + 2 𝜎+

k 𝜎
−
k⏟  ⏞  

n̂s
k

, (2.1)

where n̂s
k = 𝜎+

k 𝜎
−
k gives the excitation probability for the k-th spin. If the number

of spins in the ensemble is large compared to the total number of excitations in the
system, we can assume that most spins are in their ground state ⟨𝜎z

k⟩ ≈ −1, which
is also known as Holstein-Primakoff approximation [115]. In particular, we obtain

⟨𝜎z
k𝑎⟩ = −⟨𝑎⟩+ 2 ⟨𝜎+

k 𝜎
−
k 𝑎⟩ ≈ − ⟨𝑎⟩ , (2.2)

1 In this section, we closely follow the derivation of the Volterra integral formalism given in
ref. [38].
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which can be inserted in Eq. (1.10b) to truncate the inőnite hierarchy of equations.
It is worth noting that the latter approximation (2.2) becomes exact in the single-
excitation regime, since the product 𝜎−

k 𝑎 annihilates two excitations in total such
that ⟨𝜎+

k 𝜎
−
k 𝑎⟩ = 0.

The equations of motion for the spin-cavity system in the few-excitation limit
are then given by

𝑑

𝑑t
⟨𝑎⟩ = −(𝜅+ iΔ𝑐)⟨𝑎⟩ − i

𝑁∑︁
k=1

𝑔k⟨𝜎−
k ⟩+ 𝜂 , (2.3a)

𝑑

𝑑t
⟨𝜎−

k ⟩ = −(𝛾⊥ + iΔk)⟨𝜎−
k ⟩ − i 𝑔k⟨𝑎⟩ , (2.3b)

with 𝛾⊥ ≡ 𝛾ℎ+2𝛾p. Equations (2.3a) and (2.3b) form a closed set of 2+2𝑁 (real val-
ued) linear differential equations, which can be solved either directly by numerical
integration for speciőed initial conditions or by setting up a single Volterra equa-
tion for the cavity amplitude, as detailed below. Note that, since the equations of
motion (2.3a) and (2.3b) are linear, the cavity amplitude ⟨𝑎(t)⟩ is always directly
proportional to the driving amplitude 𝜂. Nonlinear phenomena, as presented in
Section 4, are therefore absent in this formalism.

To set up a single Volterra equation for the cavity amplitude, we formally inte-
grate Eq. (2.3b), which gives

𝐵k(t) = 𝐵k(0)𝑒
−(𝛾⊥+iΔk)t − i𝑔k

∫︁ t

0

𝑑𝜏 𝑒−(𝛾⊥+iΔk)(t−𝜏)𝐴(𝜏), (2.4)

where we have introduced the shorthand notation 𝐴(t)≡⟨𝑎(t)⟩ and 𝐵k(t)≡⟨𝜎k(t)⟩.
Substituting Eq. (2.4) into Eq. (2.3a), we obtain

𝑑

𝑑t
𝐴(t) =− (𝜅+ iΔ𝑐)𝐴(t)− i

𝑁∑︁
k=1

𝑔k𝐵k(0)𝑒
−(𝛾⊥+iΔk)t + 𝜂(t)

−
𝑁∑︁
k=1

𝑔2k

∫︁ t

0

𝑑𝜏 𝑒−(𝛾⊥+iΔk)(t−𝜏)𝐴(𝜏). (2.5)

Since we are considering macroscopic spin ensembles, in the following, we can go
to the continuous limit (in frequency) introducing the spectral spin density

𝜌(𝜔) ≡
𝑁∑︁
k=1

𝑔2k𝛿(𝜔 − 𝜔k)/Ω
2, (2.6)

with Ω2 ≡ ∑︀𝑁
j=1 𝑔

2
j being the collective coupling strength of the spin ensemble to the

cavity, which ensures the normalization condition
∫︀
𝑑𝜔 𝜌(𝜔) = 1. Using Eq. (2.6),
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we can rewrite Eq. (2.5) as

𝑑

𝑑t
𝐴(t) = −(𝜅+ iΔ𝑐)𝐴(t)− Ω2

∫︁ ∞

0

𝑑𝜔𝜌(𝜔)

∫︁ t

0

𝑑𝜏𝑒−i(𝜔−𝜔p−i𝛾⊥)(t−𝜏)𝐴(𝜏) + 𝜂(t), (2.7)

where the second term of Eq. (2.5) was omitted assuming that all spins are initially
in the ground state, 𝐵k(0) = 0. Performing a transformation to a rotating frame
with

𝐴(t) ≡ 𝐴(t)𝑒i(Δ𝑐−i𝜅)t (2.8)

yields

𝑑

𝑑t
𝐴(t) = −Ω2

∫︁ ∞

0

𝑑𝜔𝜌(𝜔)

∫︁ t

0

𝑑𝜏𝑒−i(𝜔−𝜔𝑐−i(𝛾⊥−𝜅))(t−𝜏)𝐴(𝜏) + 𝜂(t)𝑒i(𝜔𝑐−𝜔p−i𝜅)t. (2.9)

Next, we integrate Eq. (2.9), which gives

𝐴(t) =𝐴(0)− Ω2

∫︁ ∞

0

𝑑𝜔𝜌(𝜔)

∫︁ t

0

𝑑t′
∫︁ t′

0

𝑑𝜏𝑒−i(𝜔−𝜔𝑐−i(𝛾⊥−𝜅))(t′−𝜏)𝐴(𝜏)

+

∫︁ t

0

𝑑t′𝜂(t′)𝑒i(𝜔𝑐−𝜔p−i𝜅)t′ . (2.10)

The double integral in the second term of Eq. (2.10) can be further simpliőed by∫︁ t

0

𝑑t′
∫︁ t′

0

𝑑𝜏𝑒−i(𝜔−𝜔𝑐−i𝜉)(t′−𝜏)𝐴(𝜏) =

∫︁ t

0

𝑑t′𝑒−i(𝜔−𝜔𝑐−i𝜉)t′
∫︁ t′

0

𝑑𝜏𝑒i(𝜔−𝜔𝑐−i𝜉)𝜏𝐴(𝜏)

=

∫︁ t

0

𝑑t′
𝑑

𝑑t′

(︂
𝑒−i(𝜔−𝜔𝑐−i𝜉)t′

−i(𝜔 − 𝜔𝑐 − i𝜉)

)︂
⏟  ⏞  

v(t′)

∫︁ t′

0

𝑑𝜏𝑒i(𝜔−𝜔𝑐−i𝜉)𝜏𝐴(𝜏)⏟  ⏞  
u(t′)

= i
1

(𝜔 − 𝜔𝑐 − i𝜉)

∫︁ t

0

𝑑𝜏(𝑒−i(𝜔−𝜔𝑐−i𝜉)(t−𝜏) − 1)𝐴(𝜏), (2.11)

where we introduced the shortened notation 𝜉 ≡ 𝛾⊥ − 𝜅 and, in the last step, used
partial integration. Equation (2.10) is then given by

𝐴(t) =𝐴(0)− iΩ2

∫︁ ∞

0

𝑑𝜔
𝜌(𝜔)

(𝜔 − 𝜔𝑐 − i𝜉)

∫︁ t

0

𝑑𝜏(𝑒−i(𝜔−𝜔𝑐−i𝜉)(t−𝜏) − 1)𝐴(𝜏)

+

∫︁ t

0

𝑑𝜏 𝜂(𝜏)𝑒i(𝜔𝑐−𝜔p−i𝜅)𝜏 . (2.12)

After performing the inverse transformation of Eq. (2.8), we őnally arrive at the
following Volterra equation for the cavity amplitude

𝐴(t) =

∫︁ t

0

𝑑𝜏K(t− 𝜏)𝐴(𝜏) + ℱ(t), (2.13)
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which contains the kernel function K(t− 𝜏),

K(t− 𝜏) = Ω2

∫︁ ∞

0

𝑑𝜔
𝜌(𝜔)

[︀
𝑒−i(𝜔−𝜔𝑐−i𝜉)(t−𝜏) − 1

]︀
i(𝜔 − 𝜔𝑐 − i𝜉)

𝑒−i(𝜔𝑐−𝜔p−i𝜅)(t−𝜏), (2.14)

and the function ℱ(t),

ℱ(t) = 𝐴(0) +

∫︁ t

0

𝑑𝜏 𝜂(𝜏)𝑒−i(𝜔𝑐−𝜔p−i𝜅)(t−𝜏), (2.15)

where 𝐴(0) represents the initial cavity őeld and 𝜂(t) an arbitrarily shaped input
pulse. The Volterra equation (2.13) can be solved either by direct numerical inte-
gration or by the Laplace transformation technique (see refs. [38, 84] or Appendix
F for details).

Remarkably, the Volterra integral formalism presented above is valid not only
in the semiclassical but also in the quantum regime provided that the cavity is in
a single-photon state [55]. In particular, the number of photons inside the cavity
is given by 𝑁(t) = ⟨1, ↓ |𝑎†(t)𝑎(t)|1, ↓⟩, where we assume that the initial state
|1, ↓⟩ contains a single photon in the cavity and all spins are unexcited. Using the
completeness relation for the (at most) single-excitation space

1 = |0, ↓⟩ ⟨0, ↓|+ |1, ↓⟩ ⟨1, ↓|+
∑︁
k

|0, ↑k⟩ ⟨0, ↑k| , (2.16)

where |0, ↑k⟩ denotes a state with no photons in the cavity and a single excitation
in the k-th spin (with all other spins unexcited), we obtain

⟨1, ↓ |𝑎†(t)1𝑎(t)|1, ↓⟩= |⟨0, ↓ |𝑎(t)|1, ↓⟩|2+ |⟨1, ↓ |𝑎(t)|1, ↓⟩|2+
∑︁
k

|⟨0, ↑k |𝑎(t)|1, ↓⟩|2.
(2.17)

For each term in the expression above one can set up a Volterra equation formally
equivalent to Eq. (2.13). Since the only initial condition, which does not vanish is
given by 𝐴(0) = ⟨0, ↓ |𝑎(0)|1, ↓⟩ = 1, the cavity photon number reduces to

𝑁(t) = |⟨0, ↓ |𝑎(t)|1, ↓⟩|2 = |𝐴(t)|2, (2.18)

where 𝐴(t) is exactly given as the solution of the Volterra equation (2.13) with the
initial conditions 𝐴(0) = 1, 𝐵k(0) = 0, and 𝜂(t) = 0.

2.2. Maxwell-Bloch equations
Two-level systems such as ensembles of spins are inherently nonlinear so that beyond
a particular driving strength, the number of excitations in the ensemble can no
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longer be neglected. As a signiőcant number of spins get excited, the Holstein-
Primakoff approximation (⟨𝜎z

k⟩ ≈ −1) used in the previous section no longer holds,
and the inőnite hierarchy of equations originating from Eqs. (1.10a)-(1.10c) has to
be truncated by different means.

A prominent example of such a truncation scheme is the self-consistent őeld
approximation [116], which relies on factorizing the expectation values containing
őeld and spin operators, e.g.,

⟨𝜎z
k𝑎⟩ ≈ ⟨𝜎z

k⟩ ⟨𝑎⟩ . (2.19)

This factorization of expectation values is well justiőed in the limit of large spin
ensembles where correlations between the cavity őeld and individual spins become
negligible [78, 114]. The validity of this semiclassical approximation is discussed in
more detail in Section 4.3.

Applying the above factorization, the equations of motion for the expectation
values ⟨𝑎⟩, ⟨𝜎−

k ⟩, and ⟨𝜎z
k⟩ result in a closed set of nonlinear equations given by

𝑑

𝑑t
⟨𝑎⟩ = −(𝜅+ iΔ𝑐)⟨𝑎⟩ − i

𝑁∑︁
k=1

𝑔k⟨𝜎−
k ⟩+ 𝜂 , (2.20a)

𝑑

𝑑t
⟨𝜎−

k ⟩ = −(𝛾⊥ + iΔk)⟨𝜎−
k ⟩+ i 𝑔k ⟨𝜎z

k⟩ ⟨𝑎⟩ , (2.20b)

𝑑

𝑑t
⟨𝜎z

k⟩ = −𝛾‖(⟨𝜎z
k⟩+ 1) + 2i 𝑔k(⟨𝜎−

k ⟩ ⟨𝑎†⟩ − ⟨𝜎+
k ⟩ ⟨𝑎⟩), (2.20c)

where for convenience we introduced the decay rates 𝛾‖ ≡ 2𝛾ℎ = 1/𝑇1 and 𝛾⊥ ≡
𝛾ℎ + 2𝛾p = 1/𝑇2, with 𝑇1 and 𝑇2 being known as the longitudinal and transverse
relaxation time, respectively. Equations (2.20a)-(2.20c) are equivalent to the semi-
nal Maxwell-Bloch equations, which play an integral part in semiclassical quantum
optics describing phenomena like lasing [117], superradiance [47, 118, 119], optical
bistability [120ś123], or critical slowing down [39, 82, 124].

Importantly, the Maxwell-Bloch equations are nonlinear, which allows us to de-
scribe the dynamics and stationary states for large spin ensembles beyond the
few-excitation limit. Furthermore, note that for a őxed spin distribution 𝜌(𝜔), the
Maxwell-Bloch equations are invariant to changes in the number of spins 𝑁 under
the following transformation

𝑔k → 𝑔k/
√
𝑁, ⟨𝑎⟩ → ⟨𝑎⟩

√
𝑁, 𝜂 → 𝜂

√
𝑁, (2.21)

which can be used to reduce the number of spins in the numerical calculations.
In general, the Maxwell-Bloch equations form a closed set of 2+3𝑁 (real valued)

equations, which can be solved for given initial conditions, e.g., using a standard
Runge-Kutta method [125]. For the case of a homogeneous spin ensemble, i.e., when
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all spins have the same transition frequency and coupling strength, the effective
number of equations to be solved reduces to a total of őve (three, if Δ𝑐 = Δk = 0).
However, for an inhomogeneous spin ensemble, the distribution of spin frequen-
cies Δk and coupling strengths 𝑔k must be taken into account explicitly (see Ap-
pendix C). As shown through several examples in this thesis, the accurate modeling
of inhomogeneous broadening is essential for the description of many quantum op-
tical phenomena.



Chapter 3.

Mesoscopic spin ensembles

As described in the previous chapter, semiclassical methods often give an accurate
description in the limit of large spin ensembles. However, when the number of spins
in the ensemble decreases, quantum ŕuctuations start to play a prominent role and
have to be included in the theoretical model. We then speak of mesoscopic spin
ensemblesÐhere the number of spins is too large for a direct integration of the
master equation and not yet large enough to permit a semiclassical description.

While being theoretically challenging, the mesoscopic regime offers the unique
possibility to synergistically combine the collective behavior of spin ensembles with
the nonclassical features of individual spins. First results in this direction include
the observation of the unconventional photon blockade [126, 127], superbunching
[128], and collective dark states [129].

In this chapter, we discuss two complementary approaches to describe the dy-
namics of mesoscopic spin ensembles inside a cavity. First, we review the cumulant
or cluster expansion method [83, 130], which allows us to calculate corrections to
the semiclassical Maxwell-Bloch equations. Then we introduce a variational renor-
malization group method [85] to obtain the full quantum dynamics for spin-cavity
systems consisting of up to one hundred spins.

3.1. Cumulant expansion method2

The factorization of the expectation values [Eq. (2.19)], which lead to the Maxwell-
Bloch equations in the previous chapter, eliminates any correlations between the
cavity őeld and the individual spins in the ensemble. To preserve these correlations,
the corresponding hierarchic equations of motion must be truncated at some higher
order, which can be done systematically using the generalized cumulant expansion
method [83, 109ś112, 130, 131].

2 The cumulant expansion method for the inhomogeneous Tavis-Cummings system was devel-
oped during my diploma thesis [130] and is presented here only for completeness since this
method forms the basis for the publication [83], which is the topic of Section 4.3.
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The cumulant for the product of l operators �̂�1�̂�2 . . . �̂�l is deőned as [131]

⟨O(�̂�1�̂�2 . . . �̂�l)⟩𝑐 ≡
∂

∂𝜆1

∂

∂𝜆2

. . .
∂

∂𝜆l

ln
⟨
O(𝑒𝜆1�̂�1+𝜆2�̂�2+...+𝜆l�̂�l)

⟩⃒⃒⃒⃒⃒
𝜆1=...=𝜆l=0

,

(3.1)
where O speciőes the ordering of the operators. In the following, we denote an
expectation value involving l operators as an l-th order expectation value; similarly,
we denote a cumulant of l operators as an l-th order cumulant. Using the deőnition
(3.1), the expressions for cumulants up to fourth order are given by

⟨𝐴⟩𝑐 = ⟨𝐴⟩ , (3.2a)

⟨𝐴�̂�⟩𝑐 = ⟨𝐴�̂�⟩ − ⟨𝐴⟩ ⟨�̂�⟩ , (3.2b)

⟨𝐴�̂�𝐶⟩𝑐 = ⟨𝐴�̂�𝐶⟩ − ⟨𝐴�̂�⟩ ⟨𝐶⟩ − ⟨𝐴𝐶⟩ ⟨�̂�⟩ − ⟨�̂�𝐶⟩ ⟨𝐴⟩+ 2 ⟨𝐴⟩ ⟨�̂�⟩ ⟨𝐶⟩ , (3.2c)

⟨𝐴�̂�𝐶�̂�⟩𝑐 = ⟨𝐴�̂�𝐶�̂�⟩ −
(︁
⟨𝐴⟩ ⟨�̂�𝐶�̂�⟩+ ⟨�̂�⟩ ⟨𝐴𝐶�̂�⟩+ ⟨𝐶⟩ ⟨𝐴�̂��̂�⟩

+ ⟨�̂�⟩ ⟨𝐴�̂�𝐶⟩+ ⟨𝐴�̂�⟩ ⟨𝐶�̂�⟩+ ⟨𝐴𝐶⟩ ⟨�̂��̂�⟩+ ⟨𝐴�̂�⟩ ⟨�̂�𝐶⟩
)︁

+ 2
(︁
⟨𝐴�̂�⟩ ⟨𝐶⟩ ⟨�̂�⟩+ ⟨𝐴𝐶⟩ ⟨�̂�⟩ ⟨�̂�⟩+ ⟨𝐴�̂�⟩ ⟨�̂�⟩ ⟨𝐶⟩ (3.2d)

+ ⟨�̂�𝐶⟩ ⟨𝐴⟩ ⟨�̂�⟩+ ⟨�̂��̂�⟩ ⟨𝐴⟩ ⟨𝐶⟩+ ⟨𝐶�̂�⟩ ⟨𝐴⟩ ⟨�̂�⟩
)︁

− 6 ⟨𝐴⟩ ⟨�̂�⟩ ⟨𝐶⟩ ⟨�̂�⟩ .
Note that the őrst-order cumulant [Eq. (3.2a)] is given by the expectation value of
the operator itself and the second-order cumulant [Eq. (3.2b)] corresponds to the co-
variance of two operators. While the expressions for higher-order cumulants become
more complicated, Eq. (3.1) ensures that a cumulant can always be represented by
a combination of expectation values of equal or lower order.

In the cumulant expansion method, we exploit this latter property to system-
atically truncate the inőnite hierarchy of equations encountered in Section 1.2 by
neglecting cumulants above a certain order. Speciőcally, by setting all cumulants
of n-th order to zero, the expectation values of n-th order are fully determined by
lower-order expectation values. This allows us to truncate the hierarchy presented
in Appendix B to obtain a closed set of equations, which can be solved, e.g., by
standard Runge-Kutta integration [125]. In the following, we label the cumulant
expansion by the highest order of cumulants included in the equations of motion.
With this nomenclature, the semiclassical Maxwell-Bloch equations (2.20a)-(2.20c),
which contain only őrst-order moments, correspond to a őrst-order cumulant ex-
pansion (CE1).

The second-order cumulant expansion (CE2) consists of the equations of motion
for expectation values up to the second-order (see Appendix B): ⟨𝑎⟩, ⟨𝜎−

k ⟩, ⟨𝜎z
k⟩,
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⟨𝜎z
k𝑎⟩, ⟨𝜎z

k𝜎
−
j ⟩, ⟨𝜎−

k 𝑎
†⟩, ⟨𝜎+

k 𝜎
−
j ⟩, ⟨𝜎−

k 𝑎⟩, ⟨𝑎†𝑎†⟩, ⟨𝑎†𝑎⟩, ⟨𝜎z
k𝜎

z
j ⟩, ⟨𝜎−

k 𝜎
−
j ⟩. The equations

(B.1)-(B.12) form a closed set, if all third-order expectation values therein are ex-
pressed by lower-order expectation values through Eq. (3.2c) (assuming ⟨𝐴�̂�𝐶⟩𝑐 =
0),

⟨𝐴�̂�𝐶⟩ = ⟨𝐴�̂�⟩ ⟨𝐶⟩+ ⟨𝐴𝐶⟩ ⟨�̂�⟩+ ⟨�̂�𝐶⟩ ⟨𝐴⟩ − 2 ⟨𝐴⟩ ⟨�̂�⟩ ⟨𝐶⟩ . (3.3)

Similarly, for the third-order cumulant expansion (CE3), we extend the set of
equations by equations of motion for third-order expectation values (see Appendix
B), ⟨𝜎z

k𝑎
†𝑎⟩, ⟨𝜎−

k 𝑎
†𝑎⟩, ⟨𝜎−

k 𝑎
†𝑎†⟩, ⟨𝜎z

k𝑎𝑎⟩, ⟨𝜎−
k 𝑎𝑎⟩, ⟨𝑎†𝑎𝑎⟩, ⟨𝑎𝑎𝑎⟩, ⟨𝜎z

k𝜎
z
j𝑎⟩, ⟨𝜎−

k 𝜎
−
j 𝑎

†⟩,
⟨𝜎+

k 𝜎
−
j 𝑎⟩, ⟨𝜎z

k𝜎
−
j 𝑎

†⟩, ⟨𝜎z
k𝜎

−
j 𝑎⟩, ⟨𝜎−

k 𝜎
−
j 𝑎⟩ and replace fourth-order expectation values

by

⟨𝐴�̂�𝐶�̂�⟩ =
(︁
⟨𝐴⟩ ⟨�̂�𝐶�̂�⟩+ ⟨�̂�⟩ ⟨𝐴𝐶�̂�⟩+ ⟨𝐶⟩ ⟨𝐴�̂��̂�⟩

+ ⟨�̂�⟩ ⟨𝐴�̂�𝐶⟩+ ⟨𝐴�̂�⟩ ⟨𝐶�̂�⟩+ ⟨𝐴𝐶⟩ ⟨�̂��̂�⟩+ ⟨𝐴�̂�⟩ ⟨�̂�𝐶⟩
)︁

− 2
(︁
⟨𝐴�̂�⟩ ⟨𝐶⟩ ⟨�̂�⟩+ ⟨𝐴𝐶⟩ ⟨�̂�⟩ ⟨�̂�⟩+ ⟨𝐴�̂�⟩ ⟨�̂�⟩ ⟨𝐶⟩ (3.4)

+ ⟨�̂�𝐶⟩ ⟨𝐴⟩ ⟨�̂�⟩+ ⟨�̂��̂�⟩ ⟨𝐴⟩ ⟨𝐶⟩+ ⟨𝐶�̂�⟩ ⟨𝐴⟩ ⟨�̂�⟩
)︁

+ 6 ⟨𝐴⟩ ⟨�̂�⟩ ⟨𝐶⟩ ⟨�̂�⟩ ,
where we used Eq. (3.2d) and ⟨𝐴�̂�𝐶�̂�⟩𝑐 = 0. Note that third-order expectation
values containing only spin operators are not included and are truncated on the
level of Eq. (3.3), which is justiőed since correlations among three spins play only
a minor role as compared to correlations between spins and the collective cavity
mode.

In principle, also higher orders of the cumulant expansion can be easily imple-
mented with the help of program packages as presented in refs. [132ś134]. In this
work, however, we restrict ourselves to the second and third order presented above.
Note that for inhomogeneous broadening, the number of real-valued equations for
these orders of the cumulant expansion is already 4𝑁2 + 𝑁(𝑁 − 1)/2 + 5𝑁 + 5
and 13𝑁2 + 𝑁(𝑁 − 1)/2 + 5𝑁 + 9, respectively. For a systematic study of the
importance of different terms considered in the cumulant expansion see ref. [112].

3.2. The variational renormalization group3

So far we have considered methods based on equations of motion for expectation
values. While the cumulant expansion allows us to compute corrections to semi-

3 The major credit for the development of this method goes to Himadri S. Dhar, who worked
in our group as a Marie Skłodowska-Curie fellow and is now at the Indian Institute of Tech-
nology Bombay (ITT Bombay). A detailed description of the method can be found also in
the supplementary material of our joint publication [85], from where also parts of the text are
taken.
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classical expectation values, it does not provide access to the full quantum state
of the spin-cavity system. In this section, we introduce a time-adaptive variational
renormalization group method [85] that allows us to calculate the full quantum
dynamics of the driven and dissipative spin-cavity system containing as many as
one hundred spins.

Over the past few decades variational renormalization group methods based on
a tensor-network formalism [135ś137] have been very successful in describing the
ground state and unitary dynamics of one-dimensional many-body quantum sys-
tems. Meanwhile, these methods have been extended to higher-dimensional systems
[135, 137] as well as to őnite temperature states [138, 139] in quantum spin lat-
tices. In contrast to quantum spin models with short-range spin-spin interactions,
which are typically the target of conventional tensor network methods [135ś139],
the interactions among spins in our spin-cavity system are mediated only via the
common cavity mode. This allows us to treat the spin ensemble coupled to the
cavity as a central spin problem [140]. In our approach, however, the cavity plays
the role of the central quantum system interacting with the spin ensemble that acts
like a fermionic bath. Hence, the spin ensemble is renormalized and truncated at
each step in a time-adaptive manner, similar to a time-evolving block decimation
(TEBD) [141, 142] or a time-dependent density matrix renormalization group (t-
DMRG) method [143, 144], while the cavity state is always stored exactly. The
novelty of our approach is that the time-adaptive renormalization is done directly
in the superoperator space of the Lindblad master equation (1.7), instead of the
more widely implemented approach where the renormalization is applied at the
level of the unitary time evolution in the much larger system-environment Hilbert
space [145ś147].

The starting point for our method is the Lindblad master equation (1.7), which
acts on the larger space of operators rather than the Hilbert space of the quantum
system itself [148]. It is therefore convenient to map the spin-cavity system to
a higher-dimensional complex vector space, such that a 𝑑×𝑑śdimensional density
matrix, 𝜌, is vectorized to a 𝑑2×1śdimensional superket, |𝜌⟩ = vec(𝜌). Also, a
𝑑× 𝑑 operator, �̂�, which acts on 𝜌, is given by the higher-dimensional, 𝑑2×𝑑2

superoperator, Ô, which now acts on |𝜌⟩. In particular, we can make the following
replacements: 𝜌 → |𝜌⟩, �̂�𝜌 → (�̂� ⊗ 1𝑑) |𝜌⟩ = Ô |𝜌⟩, and 𝜌 �̂� → (1𝑑 ⊗ �̂�𝑇 ) |𝜌⟩ =
Ô′ |𝜌⟩, where 1𝑑 is the 𝑑śdimensional identity matrix. The time evolution of the
spin-cavity system can then be written by the matrix equation

𝑑

𝑑t
|𝜌⟩ = ℒ̃ |𝜌⟩ , (3.5)

where

ℒ̃ = −i(𝐻 ⊗ 1𝑑 − 1𝑑 ⊗𝐻𝑇 ) + 2𝜅ℒ̃�̂�𝑐 +
𝑁∑︁
k=1

2𝛾ℎℒ̃𝜎−
k
+

𝑁∑︁
k=1

𝛾pℒ̃𝜎z
k
, (3.6)
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with
ℒ̃x̂ = x̂⊗ x̂* − 1

2
x̂†x̂⊗ 1𝑑 − 1

2
1𝑑 ⊗ x̂𝑇 x̂*. (3.7)

Since the spins interact only with the single cavity mode, we can map the spin-
cavity system to a central body problem [140] and rewrite the terms in 𝐻 and ℒ̃x̂

as a sum of individual spin-cavity terms

ℒ̃ =
𝑁∑︁
k=1

ℒ̃k =
𝑁∑︁
k=1

[︂
−i(𝐻k ⊗ 1𝑑 − 1𝑑 ⊗𝐻𝑇

k ) + 2𝛾ℎℒ̃𝜎−
k
+ 𝛾pℒ̃𝜎z

k
+

2𝜅

𝑁
ℒ̃�̂�𝑐

]︂
. (3.8)

The time evolution of the system is then performed using the second-order Suzuki-
Trotter decomposition [149]

V(Δt) = 𝑒
∑︀

k ℒ̃kΔt ≈ 𝑒ℒ̃𝑁
Δt
2 𝑒ℒ̃𝑁−1

Δt
2 · · · 𝑒ℒ̃2

Δt
2 𝑒ℒ̃1Δt𝑒ℒ̃2

Δt
2 · · · 𝑒ℒ̃𝑁−1

Δt
2 𝑒ℒ̃𝑁

Δt
2 , (3.9)

by sequentially applying the time evolution on the k-th spin and the cavity while
the remaining spins are kept in the renormalized subspace. A full time step Δt,
therefore, consists of a double sweep through the spin ensemble, starting from the
𝑁 -th spin to the 1-st spin and then back to the 𝑁 -th spin, similar to a conventional
TEBD or t-DMRG method [141ś144].

The key step in typical renormalization group methods is the truncation of the
reduced density matrix space to make the exponentially large Hilbert space of the
many-body system numerically tractable [136]. In our case, this translates to the
renormalization of the reduced superoperator space of the open spin-cavity system.
We use the Schmidt decomposition [136] dividing the system into two blocks, 𝐴
and 𝐵, such that 𝐴 contains 𝑁1 spins, and 𝐵 contains the remaining 𝑁 −𝑁1 spins
and the cavity:

|𝜌⟩ =
K∑︁

k̃=1

𝛼k̃|k̃𝐴⟩|k̃𝐵⟩. (3.10)

Here, {𝛼k̃} are the Schmidt coefficients in descending order, and |k̃𝐴⟩ and |k̃𝐵⟩
are the eigenvectors of the reduced superoperators, ℛ𝐴 = Tr𝐵(|𝜌⟩⟨𝜌|) and ℛ𝐵 =
Tr𝐴(|𝜌⟩⟨𝜌|), respectively. For pure states, the Schmidt rank K determines the entan-
glement between the bipartitions 𝐴 and 𝐵. However, since |𝜌⟩ is a vectorized density
matrix, K in this case can be interpreted as a measure of total correlations [150].
Theoretically, K is bounded by 1 ≤ K ≤ r, where r = min[rank(ℛ𝐴), rank(ℛ𝐵)].
While r can grow exponentially with the number of spins in the ensemble, for most
physical situations K is small and the Schmidt coefficients 𝛼k̃ decay rapidly with k̃
[139]. This corresponds to the case of a weakly correlated system that, in a sense,
does not occupy the entire exponentially growing Hilbert space. Thus, by retaining
only the D highest Schmidt coefficients 𝛼k̃, we can effectively describe the system
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in a renormalized space of signiőcantly reduced dimension, i.e.,

|𝜌⟩ ≈
D∑︁

k̃=1

𝛼k̃|k̃𝐴⟩|k̃𝐵⟩, (3.11)

with D ≪ r.
The accuracy of the renormalization depends on the choice of D and is exact for

weakly or uncorrelated systems. Note that, starting from an uncorrelated ensemble,
where all spins are in their ground state, correlations among spins typically build up
only slowly via their interaction with the common cavity mode. For the calculations
in this work, we chose D � 200, and often even a value much lower than this was
already sufficient to get an accurate account for the dynamics of mesoscopic spin
ensembles. A more detailed description of the numerical implementation of our
method and a benchmark against exact solutions for few spins is provided in the
supplemental material of ref. [85].



Part II.

Applications and results





Chapter 4.

Optical bistability and critical
phenomena

Nonlinear phenomena are ubiquitous in nature and range from galaxy formation
and ŕuid dynamics to neuronal signaling and the spread of infectious diseases [151ś
154]. What all nonlinear systems have in common is that their output is not directly
proportional to their input. A paradigm example in this regard is optical bistability
Ð the phenomenon of two distinct stable stationary states that coexist for the
same parameter values. Here, the transmission through a cavity does not solely
depend on the system parameters but also on the initial condition from which the
system approaches the stationary state giving rise to a hysteresis cycle. Besides this
stationary effect, bistability is also associated with an interesting transient effect
known as critical slowing down, which is characterized by extremely long relaxation
times that can exceed the system’s intrinsic time scales by orders of magnitude.
Both phenomena are hallmark effects in nonlinear optics and have been extensively
studied since the early days of quantum optics up until now [39, 82, 83, 102, 120,
121, 155ś166]. A good overview can be found, for example, in the classic review
article by Lugiato [123] or in the textbook by Lugiato, Prati, and Brambilla [167].

In this chapter, we őrst theoretically examine optical bistability on the example
of amplitude bistability in a driven spin-cavity system. We investigate the onset
of this effect for different shapes of the spectral spin distribution [82] and present
a speciőc realization in a solid-state spin ensemble based on negatively charged
nitrogen-vacancy centers in diamond strongly coupled to a single-mode microwave
cavity [39]. For this setup, a critical slowing down of the cavity photon number
on the order of 11 hours was demonstratedÐa time scale much longer than ever
observed for this effect. We provide a detailed theoretical study of this critical
slowing down using the Maxwell-Bloch equations presented in Section 2.2. Thereby,
we analyze the transient times of the cavity őeld amplitude őnding a universal
power-law divergence.

While a semiclassical description based on the Maxwell-Bloch equations is well
justiőed for large spin ensembles, it may lose this validity as the number of spins
in the ensemble becomes smaller. The actual system size at which this happens
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depends strongly on the experimental realization and the system parameters at
hand. At the end of this chapter, we introduce a universal procedure to determine
the validity of the Maxwell-Bloch equations setting up a semiclassical-to-quantum
boundary. We show that in the vicinity of the bistable regime even apparently large
spin ensembles consisting of up to tens of thousands of spins can defy a semiclassical
description [83].

4.1. Optical bistability4

Optical bistability arises from the interplay between a nonlinear medium and the
feedback provided by cavity mirrors, which enables the co-existence of two stable
stationary states of different transmission for the same parameter values. Over
the past decades, this phenomenon has been realized in various systems including
saturable absorbers [155, 165], atomic ensembles [160ś162], superconducting qubits
[166], and integrated semiconductor devices [163]. In addition to its relevance for
technological applications in all-optical switches or logic gates [169, 170], optical
bistability is also a paradigm example of a driven dissipative phase transition far
from thermal equilibrium [156ś159].

In the following, we consider a macroscopic ensemble of two-level systems strongly
coupled to a single cavity mode. To observe bistability, we study the stationary
transmission through the cavity under constant driving 𝜂. Using the standard
input-output theory [171, 172], the transmission is proportional to the cavity prob-
ability amplitude |⟨𝑎⟩|2, whose stationary value |⟨𝑎st⟩|2 can be calculated from the
Maxwell-Bloch equations (2.20a)-(2.20c) by setting all time derivatives to zero. As-
suming resonant driving (𝜔p = 𝜔𝑐 = 𝜔s) as well as a symmetric spin distribution,
the steady-state equation for the cavity amplitude ⟨𝑎st⟩ is given by (see Appendix
D)

⟨𝑎st⟩
(︃
1 +

∑︁
k

𝐶k

1 + |⟨𝑎st⟩|2/nk

)︃
=

𝜂

𝜅
. (4.1)

Here, 𝐶k and nk are the cooperativity parameter and the photon saturation number
of the k-th spin, respectively, deőned as

𝐶k ≡ 𝑔2k
𝛾⊥𝜅(1 + Δ2

k/𝛾
2
⊥)

(4.2)

4 The results presented in this section are based on two joint publications [39, 82] from which
also parts of the text and őgures are taken. The theoretical results were obtained by Dmitry
O. Krimer and myself, whereas the experiment was conducted by Andreas Angerer, Stefan
Putz, Thomas Astner, Ralph Glattauer, and Kirill Streltsov under the supervision of Jörg
Schmiedmayer and Johannes Majer from the Vienna Center for Quantum Science and Tech-
nology, Atominstitute, TU Wien. The experimental results of ref. [39] are also presented in
the PhD theses of Andreas Angerer [168] and Stefan Putz [51].
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and
nk ≡ 𝛾⊥𝛾‖

4𝑔2k
(1 + Δ2

k/𝛾
2
⊥). (4.3)

The cooperativity 𝐶k [Eq. (4.2)] is a dimensionless parameter and gives the ratio of
the coupling strength of the spins to the decay rates of the system. Similarly, the
saturation parameter nk [Eq. (4.3)] provides a measure for the number of photons
initiating a nonlinear response from the spins.

Optical bistability of homogeneous spin ensembles

Before we examine the onset of bistability for inhomogeneously broadened spin
ensembles, let us revisit the simpler case of a homogeneous ensemble, where Δk = 0
and 𝑔k = 𝑔 for all spins. The steady-state equation (4.1) then simpliőes to

⟨𝑎st⟩
(︂
1 +

𝐶

1 + |⟨𝑎st⟩|2/n0

)︂
=

𝜂

𝜅
, (4.4)

where
𝐶 ≡

∑︁
k

𝐶k =
𝑔2𝑁

𝛾⊥𝜅
(4.5)

is the collective cooperativity5 for a homogeneous spin ensemble of 𝑁 spins and

n0 ≡ 𝛾⊥𝛾‖
4𝑔2

(4.6)

is the homogeneous photon saturation parameter.
Figure 4.1.1(a) presents the solutions of Eq. (4.4) for the stationary cavity proba-

bility amplitude |⟨𝑎st⟩|2 versus the driving amplitude 𝜂 for three different collective
cooperativity values 𝐶 = 4, 8, and 16. In our simulations we change the coop-
erativity by adjusting the coupling strengths 𝑔 while leaving all other parameters
unchanged (𝜅/2𝜋 = 0.8 MHz, 𝛾⊥/2𝜋 = 250 kHz, 𝛾‖/2𝜋 = 100 Hz). For large
driving amplitudes, the spin ensemble saturates such that the stationary spin ex-
pectation values vanish and the ensemble effectively decouples from the cavity. At
the same time, the cavity probability amplitude approaches the transmission of
an empty cavity (∝ 𝜂2/𝜅2), as the second term on the left-hand side of Eq. (4.4)
(also known as reaction őeld) vanishes due to |⟨𝑎st⟩|2 ≫ n0. In the literature, this
high transmission branch is also known as the independent-atom branch since it
does not depend on the cooperativity parameter [78]. For small driving amplitudes,
the transmission is suppressed as compared to the empty cavity case due to the
reaction őeld induced cooperatively by the spin ensemble given in the second term
on the left-hand side of Eq. (4.4) [121, 123]. As the solutions at low transmission

5 Note that in the literature, one also őnds other deőnitions of collective cooperativity, which
differ from the one above by a factor of 1/2 [102, 123].
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Figure 4.1.1.: Input-output relations for a homogeneous spin ensemble. (a) Stationary
probability amplitude |⟨𝑎st⟩|2 as a function of the driving amplitude 𝜂 calculated from
Eq. (4.4) for 𝐶 = 4, 8, and 16 (𝜅/2𝜋 = 0.8 MHz, 𝛾⊥/2𝜋 = 250 kHz, 𝛾‖/2𝜋 = 100
Hz). The stationary solutions display two distinct branches, one of high transmission and
one of low transmission. The high transmission branches are almost independent of the
cooperativity value 𝐶 and approach the empty cavity case ∝ 𝜂2/𝜅2 (upper dashed black
line) for large driving amplitudes. The low transmission branches, located in the domain of
small driving amplitudes, converge to the value 𝜂2/𝜅2(1+𝐶)2 (lower dashed black line for
𝐶 = 16). Optical bistability occurs for 𝐶 > 8, where two stable solutions (solid lines) and
one unstable solution (dashed blue line) coexist within a certain parameter range. The
bistable behavior is associated with a őrst-order phase transition at the critical points
𝜂±crit (red half őlled circles) characterized by a discontinuous jump from one transmission
branch to another (indicated by the blue arrows). (b) Stationary probability amplitude
|⟨𝑎st⟩|2 versus the derivative of the inverse input-output curve 𝑑𝜂/𝑑|⟨𝑎st⟩|. The critical
points 𝜂±crit are deőned by 𝑑𝜂/𝑑|⟨𝑎st⟩| = 0 (vertical red line), which corresponds to an
inőnite slope in the input-output relation presented in (a). For 𝐶 > 8, the derivative
𝑑𝜂/𝑑|⟨𝑎st⟩| becomes negative within the bistable interval corresponding to an unstable
stationary state (dashed blue line).

strongly depend on the cooperativity parameter 𝐶, this low transmission branch is
sometimes called the cooperative branch [78]. In the weak driving limit, where the
cavity probability amplitude is much smaller than the photon saturation number
|⟨𝑎st⟩|2 ≪ n0, the suppressed transmission follows the linear relation

⟨𝑎st⟩ (1 + 𝐶) = 𝜂/𝜅. (4.7)

However, if the cavity probability amplitude approaches the photon saturation
number, the system’s response to the external driving őeld becomes strongly non-
linear and even bistable for sufficiently large cooperativities. The threshold cooper-
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ativity of bistability for homogeneous spin ensembles driven on resonance is 𝐶 = 8
[121]. Above this value, there is always a őnite interval of 𝜂 where three solutions
(two stable and one unstable) exist simultaneously, as can be seen in Fig. 4.1.1(a)
for 𝐶 = 16. Starting at weak driving, here, the steady-state solutions for increas-
ing 𝜂 follow the low transmission branch up to some critical driving strength 𝜂+crit
at which the system undergoes a őrst-order phase transition jumping to the high
transmission branch [158]. Along the other direction, the steady states follow the
high transmission branch before they jump back to the low transmission branch at
𝜂−crit, resulting in a hysteresis cycle.

The bistable region is located between the two critical points 𝜂 = 𝜂−crit and 𝜂 =
𝜂+crit, which are determined from the condition that the derivative of the inverse
input-output relation 𝑑𝜂/𝑑|⟨𝑎st⟩| vanishes (i.e., 𝑑|⟨𝑎st⟩|/𝑑𝜂 is inőniteÐ a signature of
a őrst-order transition),

𝑑𝜂/𝑑|⟨𝑎st⟩| = 𝜅

(︂
1 + 𝐶

1− |⟨𝑎st⟩|2/n0

(1 + |⟨𝑎st⟩|2/n0)2

)︂
= 0. (4.8)

Note, that Eq. (4.8) has a solution only when the cooperativity parameter 𝐶 is
above the threshold value 𝐶tℎ = 8. The solution is given by the simple analytic
form

|⟨𝑎st⟩|2crit =
𝐶 − 2

2
± 1

2

√
𝐶2 − 8𝐶, (4.9)

from which the critical driving amplitudes 𝜂±crit can be found by substituting |⟨𝑎st⟩|2crit
back into the steady-state equation (4.4). We present the cavity probability am-
plitude |⟨𝑎st⟩|2 versus the derivative 𝑑𝜂/𝑑|⟨𝑎st⟩| in Fig. 4.1.1(b). In the limit of large
photon numbers (|⟨𝑎st⟩|2 ≫ n0), the derivative 𝑑𝜂/𝑑|⟨𝑎st⟩| tends towards the cavity
decay rate 𝜅 for any 𝐶. In the opposite limit (|⟨𝑎st⟩|2 ≪ n0), the derivative is
given by 𝑑𝜂/𝑑|⟨𝑎st⟩| = 𝜅(1 + 𝐶). Notably, 𝑑𝜂/𝑑|⟨𝑎st⟩| is always positive for cooper-
ativities 𝐶 < 8. Only above this threshold value Eq. (4.8) can be fulőlled, which
gives rise to the critical points 𝜂±crit and a bistable region. The negative derivative
𝑑𝜂/𝑑|⟨𝑎st⟩| < 0 within the bistable interval for 𝐶 = 16 can be associated with the
unstable steady-state solution depicted in Fig. 4.1.1(a).

Optical bistability and inhomogeneous broadening

The assumption of a homogeneous spin ensemble leads to comparatively simple
analytic solutions and a őrst understanding of the phenomenon of bistability. How-
ever, to provide a realistic description for an actual experimental realization, we
must include inhomogeneous broadening in the form of a spectral spin density 𝜌(𝜔),
which allows for a distribution of spin frequencies Δk ̸= 0 and coupling strengths 𝑔k
(Appendix C). Naturally, the bistability curves given by the steady-state equation
(4.1) depend not only on the width of the inhomogeneous broadening but also on
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its exact shape [122, 173, 174]. In the following, we explore the onset of bistabil-
ity for different shapes of the spectral spin distribution 𝜌(𝜔). The critical points
delimiting the bistable regime can be obtained from the condition

𝑑𝜂/𝑑|⟨𝑎st⟩| = 𝜅

(︃
1 +

∑︁
k

𝐶k

1 + |⟨𝑎st⟩|2/nk)

(︂
1− 2|⟨𝑎st⟩|2/nk

1 + |⟨𝑎st⟩|2/nk

)︂)︃
= 0, (4.10)

which we solve numerically for a Lorentzian, a Gaussian, and a q-Gaussian spin
density. The latter is a generalized Gaussian given by Eq. (4.12), which depends on
the shape parameter q, restoring a Gaussian in the limit q → 1 and a Lorentzian
for q = 2. Here we take q = 1.39 to model an ensemble of nitrogen-vacancy centers
in diamond [36]Ðthe physical platform for which we present a realization of optical
bistability at the end of this section.

Figure 4.1.2.: Comparison of the onset of bistability for homogeneous (left panels) and
inhomogeneous spin ensembles (right panels). Pairs of the critical values of the driving
amplitude 𝜂±crit and the corresponding cavity probability amplitude |⟨𝑎st⟩|2crit (deőned by
the condition 𝑑𝜂/𝑑|⟨𝑎st⟩| = 0) as a function of the collective cooperativity 𝐶 for homoge-
neous spin ensembles (a,b) and for inhomogeneous spin ensembles (c,d). For the latter,
we show results for Gaussian, q-Gaussian (q = 1.39), and Lorentzian spin distributions of
the same widths 𝛾inℎ/2𝜋 = 9.4 MHz (FWHM). All other parameters are the same as in
Fig. 4.1.1 (𝜅/2𝜋 = 0.8 MHz, 𝛾⊥/2𝜋 = 250 kHz, 𝛾‖/2𝜋 = 100 Hz). The bistable region
2○ lies within the critical values, while outside this area there is only a single stationary
state 1○.

The results of the numerical calculations are displayed in Fig. 4.1.2 along with
the analytic results of a homogeneous spin ensemble [Eq. (4.9)]. In particular, we
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compare the critical values of the driving amplitude 𝜂±crit and the corresponding
cavity probability amplitude |⟨𝑎st⟩|2crit as a function of the collective cooperativity
parameter

𝐶 ≡
∑︁
k

𝐶k =
∑︁
k

𝑔2k
𝛾⊥𝜅(1 + Δ2

k/𝛾
2
⊥)

. (4.11)

Note that we increase 𝐶 by increasing the individual coupling strengths 𝑔k, while
we leave all other parameters constant. Figure 4.1.2 demonstrates that the bistable
area bounded by the critical values reduces dramatically due to the inhomogeneous
broadening. Furthermore, the bistability threshold, being 𝐶tℎ = 8 for the homoge-
neous spin ensemble, becomes 40.8 for the Gaussian, 42.2 for the q-Gaussian (with
q = 1.39), and 45.2 for the Lorentzian spin distribution, respectively. This shift
of the bistability onset towards higher threshold values results from the tails of
the spin distribution, which are broader for the Lorentzian than for the q-Gaussian
and the Gaussian distribution. Spectrally more distant spins are effectively less and
less coupled to the cavity and, therefore, larger cooperativity values are required to
observe bistability.

Experimental realization of optical bistability with nitrogen-vacancy
centers in diamond

Finally, in collaboration with an experiment performed in the group of Jörg Schmied-
mayer [39], we present a realization of optical bistability in a cavity QED system
composed of a superconducting microwave resonator coupled to a long-lived elec-
tronic spin ensemble formed by negatively charged nitrogen-vacancy (NV) centers
in diamond.

NV centers are point defects in diamond with a C3v symmetry consisting of a
substitutional nitrogen atom with an adjacent lattice vacancy [175, 176]. Due to
their excellent properties such as stability, long coherence times, or the possibility
for optical preparation and read-out, NV centers are exciting for numerous tasks in
quantum information processing [177ś182] and nanoscale sensing [183ś191]. The
property that is most relevant for us, in the following, is its paramagnetic ground
state with electron spin angular momentum 𝑆 = 1, where the states ms = ±1
and ms = 0 are separated by ∼ 2.88 GHz in zero magnetic őeld [see Fig. 4.1.3(a)].
Applying a homogeneous magnetic őeld allows to selectively Zeeman tune the ms =
0 → ms = ±1 transition into resonance with a microwave cavity. The combined
spin-cavity system is then well described by the Tavis-Cummings Hamiltonian (1.1)
[36].

Figure 4.1.3(b) shows the experimental setup, which consists of a neutron-
irradiated diamond sample containing a large ensemble of ∼ 1012 NV centers placed
on top of a superconducting 𝜆/2 transmission line resonator. The experiment is
performed in a 3He/4He dilution refrigerator at temperatures below 25 mK to ther-
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Figure 4.1.3.: (a) Energy level scheme of the NV center’s optical ground state (𝑆 = 1)
with a zero-őeld splitting of ∼ 2.88 GHz [176]. Using the Zeeman shift of the ms = ±1
states under a magnetic őeld, the NV center forms a tunable two-level system that can
be made resonant with a microwave cavity. (b) Photograph (taken from ref. [39]) of
the experimental setup consisting of a superconducting transmission line cavity with an
enhanced neutron-irradiated diamond on top of it (black), containing a large ensemble of
NV centers (𝑁 ≈ 1012). (c) The ensemble of NV centers is inhomogeneously broadened
with a q-Gaussian spectral spin distribution (q = 1.39) of width 𝛾inℎ/2𝜋 = 9.4MHz
(FWHM) centered at the cavity frequency 𝜔𝑐/2𝜋 = 2.691 GHz. For comparison we show
a Gaussian (dashed line) and a Lorentzian distribution (dotted line) of the same width.

mally polarize the spins in their ground state (99% ődelity). For details on the
experimental setup see references [39, 51, 168]. The transition frequencies of the
individual spins of the NV ensemble deviate slightly from each other due to their
different local environments. The main reasons for this inhomogeneous broaden-
ing are excess nitrogen P1 impurities, uncharged NV centers, and lattice stress in
the host material [192, 193]. We model the inhomogeneous broadening of the spin
ensemble by a q-Gaussian spectral spin density [194, 195],

𝜌(𝜔) = 𝐷
[︀
1− (1− q)(𝜔 − 𝜔s)

2/Δ2
]︀1/(1−q)

, (4.12)

depicted in Fig. 4.1.3(c), where q is a dimensionless shape parameter, 𝛾inℎ =
2Δ

√︀
(2q − 2)/(2q − 2) is the full-width-at-half-maximum (FWHM), and 𝐷 is a

normalization constant. For the ensemble of NV centers, the shape parameter of
the spectral spin density is given by q = 1.39 [36]. The spin’s transverse relax-
ation rate is estimated as 𝛾⊥/2𝜋 = 33 kHz and the longitudinal relaxation rate as
𝛾‖/2𝜋 = 3.6 mHz [39, 192].

Previous experiments studied this system in the weak driving regime, where the
number of spin excitations is negligible compared to the total number of spins
[34ś38, 196]. Here, we go beyond this linear regime and examine the transmission
through the cavity under strong driving, which depends nonlinearly on the driving
amplitude and can show bistable behavior for large enough cooperativities. The
cooperativity in the experiment is changed either by modifying the cavity decay rate
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or by changing the number of spins in the cavity. The latter is achieved by bringing
a different number of subensembles into resonance with the resonator. Note that,
due to the crystallographic diamond structure, four different NV subensembles exist
(pointing in the [1, 1, 1] direction). By applying a magnetic őeld (𝐵 ≈ 30 mT)
with either 0∘ or 45∘ relative to the [1, 0, 0] direction in the NV resonator plane,
four or two NV subensembles can be tuned into resonance with the cavity mode.

Figure 4.1.4.: Measurement of the normalized stationary transmission through the cavity
as a function of increasing (blue) and decreasing (red) input power 𝑃in. From (a) to (c)
the collective cooperativity value 𝐶 in the experiment is increased either by increasing
the number of spins in resonance with the cavity or by decreasing the cavity decay rate
𝜅, respectively. In (a), 𝐶 = 18 and 𝜅/2𝜋 = 1.2 MHz with only two subensembles being
in resonance with the cavity. For (b), 𝐶 = 49 as the cavity decay rate is decreased
to 𝜅/2𝜋 = 0.44 MHz. A small bistability area is visible where the system evolves to a
different steady-state either on the high (red) or low transmission branch (blue) depending
on the history of the system. The third, unstable steady-state is never reached (green).
(c) The collective cooperativity is further increased to 𝐶 = 78 by using four subensembles
in resonance with the cavity and 𝜅/2𝜋 = 0.44 MHz. For all three cases, the steady-
state behavior is well reproduced by a full numerical calculation taking inhomogeneous
broadening into account (dashed black lines). Figure adapted from ref. [39].

Figure 4.1.4 presents the transmitted intensities through the cavity under reso-
nant driving for three cooperativity values 𝐶 = 18, 49, and 78. The transmission is
deőned by |𝑇 |2 = 𝑃out/𝑃in as a function of the input drive intensity 𝑃in ≈ 𝜂2/𝜅 and
outgoing intensity 𝑃out ≈ |⟨𝑎⟩|2𝜅. The drive power is raised in a stepwise manner,
which is slow enough to allow the system to reach a steady state for each input
intensity 𝑃in. For small input intensities, the cavity őeld is not sufficient to saturate
the spin ensemble (⟨𝜎z

k⟩ = −1) and the transmission is given by |𝑇 |2 ≈ 1/(1 +𝐶)2.
As the input power increases, the spins start to saturate, and the transmission
increases nonlinearly following Eq. (4.1). At a collective cooperativity of 𝐶 = 18
there is no bistability and the transmission is a continuous function of the input
intensity 𝑃in [Fig. 4.1.4(a)]. Increasing the cooperativity to 𝐶 = 49, which is above
the threshold value of bistability (𝐶tℎ = 42.2), allows us to observe the onset of
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bistable behavior [Fig. 4.1.4(b)]. For increasing driving intensities, the system’s
response undergoes a őrst-order phase transition at 𝑃in = 𝑃+

crit jumping from low
to high transmission. If the driving intensities are reduced again, the system jumps
back to low transmission values at 𝑃in = 𝑃−

crit < 𝑃+
crit, which gives rise to a hys-

teresis cycle. At a cooperativity of 𝐶 = 78, we observe optical bistability within a
2-dB range of the driving intensity [Fig. 4.1.4(c)]. Note that, within the bistable
range, the transmission on the low and high transmission branches differs by three
orders of magnitude for the same parameter value. Here, the system’s response
solely depends on its history, i.e., the direction from which this parameter point
was approached.

4.2. Critical slowing down6

So far, we have only dealt with the steady-states of the driven spin-cavity system. In
the following, we examine the transient dynamics towards these stationary states.
The time scale needed to reach a steady-state is typically given by the inverse loss
rates of the system. However, close to the critical points 𝜂±crit of bistability, these
transient times become much longer than all intrinsic time scales [121]. In what
follows, we focus on the dynamics of spin ensembles for which nonradiative processes
constitute the dominant dephasing mechanism, i.e., 𝛾ℎ ≪ 𝛾p, and therefore 𝛾‖ ≪
𝛾⊥. Furthermore, we assume that the cavity decay rate 𝜅 is orders of magnitude
larger than the longitudinal relaxation rate so that 𝛾‖ ≪ 𝜅. Both inequalities
are very well satisőed for impurity spins in solids, such as nitrogen vacancy (NV)
centers in diamond.

To obtain the temporal evolution of the system, we solve the Maxwell-Bloch
Eqs. (2.20a)-(2.20c) in time. If not speciőed otherwise, our numerical calculations
are performed with a set of parameters typical for the experiments with NV cen-
ters presented in the previous section. In particular, we consider a q-Gaussian
(q = 1.39) spin distribution of width 𝛾inℎ/2𝜋 = 9.4 MHz (FWHM). The collective
cooperativity value is set to 𝐶 = 78, with 𝜅/2𝜋 = 0.8 MHz and 𝛾⊥/2𝜋 = 250
kHz. The longitudinal relaxation rate 𝛾‖/2𝜋 = 100 Hz is chosen to be orders of
magnitude smaller than that measured in real experiments with NV centers. This
is done to artiőcially reduce the integration time in our numerical calculations and,
thus, to considerably diminish computational efforts. This, however, causes no
qualitative changes for our results. Figure 4.2.1(a) and (b) show typical results for

6 The results presented in this section are based on two joint publications [39, 82] from which
also parts of the text and őgures are taken. The theoretical results were obtained by Dmitry
O. Krimer and myself, whereas the experiment was conducted by Andreas Angerer, Stefan
Putz, Thomas Astner, Ralph Glattauer, and Kirill Streltsov under the supervision of Jörg
Schmiedmayer and Johannes Majer from the Vienna Center for Quantum Science and Tech-
nology, Atominstitute, TU Wien. The experimental results of ref. [39] are also presented in
the PhD theses of Andreas Angerer [168] and Stefan Putz [51].
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Figure 4.2.1.: (a,b) Transient dynamics of the cavity amplitude ⟨𝑎(t)⟩ towards the
steady-states [depicted in (c)] under the action of an external drive with constant am-
plitude 𝜂/𝜅 = 0.054, 0.11, 0.19, 0.24 (light to dark green). The driving amplitude is
switched on at t = 0, and time is given in units of 1/𝛾‖. Our numerical results are pre-
sented on (a) a linear time scale and (b) a logarithmic time scale to cover a much longer
time interval. (c) Stationary solutions for the cavity probability amplitude |⟨𝑎st⟩|2 as a
function of the driving amplitude 𝜂 (log-log scale). Solid and dashed curves are stable
and unstable solutions, respectively. The two critical points 𝜂±crit at which they meet are
saddle-node bifurcations. Under smooth sweeping of the amplitude 𝜂 through the bistable
region, the system shows a hysteresis behavior indicated by arrows. Green symbols are
the stationary solutions to which the system eventually settles for the values of 𝜂 from
(a) and (b).

the case when a constant external driving őeld 𝜂 is suddenly switched on at time
t = 0 with the spins being initially in their ground state and no photons inside
the cavity. The dynamics show two well-separated time scales: A fast time scale
(∼ 1/𝜅, 1/𝛾⊥) on which Rabi oscillations are clearly resolved [Fig.4.2.1(a)] and a
much slower time scale (∼ 1/𝛾‖) on which the system őnally settles at its stationary
state [Fig.4.2.1(b)]. The Rabi oscillations indicate that the system is in the strong-
coupling regime due to the strong collective coupling of the ensemble to the cavity
[35, 37]. The decoherence caused mainly by inhomogeneous broadening of the spin
ensemble őnally lets the oscillations disappear giving rise to a transient steady-state
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regime at rather long times. Interestingly, this initial dynamics is purely linear as
the ratio of the cavity amplitude to the amplitude of the driving signal, ⟨𝑎(t)⟩/𝜂,
remains practically unaltered even for moderate values of 𝜂 [all curves for different
values of 𝜂 lie on top of each other in Fig.4.2.1(a)]. As shown in Fig.4.2.1(b), only
at much later times (∼ 1/𝛾‖) the value of the cavity amplitude deviates from its
linear steady-state value, starting to approach its ultimate stationary state with a
strong dependence on 𝜂.

Figure 4.2.1(c) depicts the system’s stationary states which we discussed already
in the previous section. Recall that within the bistable interval, which is delimited
by the critical points 𝜂±crit, three solutions to the steady-state Eq. (4.1) (two stable
and one unstable) exist. In the classiőcation of dynamical systems, 𝜂±crit represent
saddle-node bifurcations [197]. Here, two steady-state solutions merge and mutually
annihilate such that outside the bistable interval, only a single solution remains.
As demonstrated in Fig. 4.2.1(b), the stationary states are typically approached on
a time scale given by the slowest inverse decay rate of the system, which in our
case is 1/𝛾‖. Close to the saddle-node bifurcation points 𝜂±crit, however, this process
can slow down dramatically so that the system settles at its steady-state on a time
scale much larger than 1/𝛾‖. Before addressing this critical slowdown, we must
introduce the concept of adiabatic elimination (see Appendix E) [198, 199]. This
becomes necessary to solve the dynamics at extremely long time scales.

Adiabatic elimination

Taking into account that 𝛾‖ ≪ 𝜅, 𝛾⊥,Ω, we expect that all long-lived processes occur
on time scales of the order of 𝛾‖. This allows us to eliminate the cavity amplitude
⟨𝑎⟩ and the spin lowering expectation value ⟨𝜎−

k ⟩ from Eqs. (2.20a)-(2.20c), as these
expectation values adiabatically follow the evolution of the z component of the spin
operator expectation value ⟨𝜎z

k⟩ at large times when t ≫ 1/𝜅, 1/𝛾⊥, 1/Ω.
We őrst introduce the dimensionless time 𝜏 = 𝛾‖t and rewrite Eqs. (2.20a)-

(2.20c) as

𝛾‖
𝜅

𝑑

𝑑𝜏
⟨𝑎⟩ = −(1 + i

Δ𝑐

𝜅
) ⟨𝑎⟩ − i

𝜅

𝑁∑︁
k=1

𝑔k ⟨𝜎−
k ⟩+

𝜂

𝜅
(4.13)

𝛾‖
𝛾⊥

𝑑

𝑑𝜏
⟨𝜎−

k ⟩ = −(1 + i
Δk

𝛾⊥
) ⟨𝜎−

k ⟩+ i
𝑔k
𝛾⊥

⟨𝜎z
k⟩ ⟨𝑎⟩ (4.14)

𝑑

𝑑𝜏
⟨𝜎z

k⟩ = −(⟨𝜎z
k⟩+ 1)− 4

𝑔k
𝛾‖

Im(⟨𝜎−
k ⟩ ⟨𝑎†⟩). (4.15)

Next, from the inequalities 𝛾‖/𝜅 ≪ 1 and 𝛾‖/𝛾⊥ ≪ 1, we infer that the time deriva-
tives 𝑑 ⟨𝑎⟩ /𝑑𝜏 and 𝑑 ⟨𝜎−

k ⟩ /𝑑𝜏 give only vanishing contributions at large times com-
pared to the right-hand side of Eqs. (4.13)-(4.14). Straightforward calculations (see
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Appendix E) then yield a single equation for ⟨𝜎z
k⟩, which determines the dynamics

of the whole coupled spin-cavity system at large time scales ∼ 1/𝛾‖:

𝑑

𝑑𝜏
⟨𝜎z

k⟩ = −(1 + ⟨𝜎z
k⟩)−

𝜂2

𝜅2

⟨𝜎z
k⟩

nk(1−
∑︀

l 𝐶l ⟨𝜎z
l ⟩)2

, (4.16)

where the cooperativity parameter 𝐶k and the photon saturation number nk for
the k-th spin are given by Eqs. (4.2) and (4.3), respectively. Furthermore, we used
that the cavity is on resonance with the driving őeld 𝜔𝑐 = 𝜔p and assumed that the
spin distribution is always symmetric with respect to its central frequency 𝜔s = 𝜔𝑐.
The cavity amplitude is then given by

⟨𝑎⟩ = 𝜂

𝜅(1−∑︀
k 𝐶k ⟨𝜎z

k⟩)
. (4.17)

From the derivation of the adiabatic elimination, it is clear that the above equa-
tions can not capture the fast initial dynamics showing a coherent energy exchange
(Rabi oscillations) between the spin ensemble and the cavity. For large times, how-
ever, the fast variables ⟨𝑎⟩ and ⟨𝜎−

k ⟩ adiabatically follow the evolution of ⟨𝜎z
k⟩ and

Eqs. (4.16) accurately account for the evolution of the entire system. At every in-
stant of the slow time 𝜏 , the value of the cavity amplitude ⟨𝑎⟩ and the spin operator
⟨𝜎−

k ⟩ are then determined by the spin components ⟨𝜎z
k⟩.

Figure 4.2.2.: (a) Expectation value of the central spin operator ⟨𝜎z
𝑐 (t)⟩ (𝜔k = 𝜔𝑐), and

(b) the cavity amplitude ⟨𝑎(t)⟩ versus time t (in units of 1/𝛾‖) under the action of an
external drive with constant amplitude. The values of 𝜂 are chosen to be the same as
those in Fig. 4.2.1(b). Here, we compare the numerical solutions of the full Maxwell-Bloch
equations (solid lines) with the numerical solutions of Eqs. (4.16) and (4.17) obtained
under adiabatic elimination (red dashed lines).

In Fig. 4.2.2, the results of the calculations under adiabatic elimination are com-
pared with those obtained in the framework of the full Maxwell-Bloch equations
(2.20a)-(2.20c). In the former case, Eqs. (4.16) are numerically solved with initial
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conditions ⟨𝜎z
k⟩ = −1 (spin ensemble is in the ground state) and ⟨𝑎⟩ is correspond-

ingly found from Eq. (4.17). As can be seen from the őgure above, the adiabatic
elimination indeed is a good approximation for the system’s evolution at large times
after the transient oscillatory behavior disappears.

Besides the fact that calculations for long times become numerically less demand-
ing, adiabatic elimination also provides additional insight into the dynamics of the
bistable system. Although the derivative 𝑑 ⟨𝑎⟩/𝑑𝜏 was omitted in Eq. (4.13) owing
to the vanishing prefactor as mentioned above, the slow variation of ⟨𝑎⟩ can still be
captured by differentiating the reduced Eq. (4.17) with respect to 𝜏 yielding

𝑑

𝑑𝜏
⟨𝑎⟩ = 𝜅

𝜂
⟨𝑎⟩2

∑︁
k

𝐶k
𝑑 ⟨𝜎z

k⟩
𝑑𝜏

, (4.18)

where 𝑑 ⟨𝜎z
k⟩/𝑑𝜏 is determined by Eq. (4.16). If we now assume that all spins are

in resonance, Δk = 0 and ⟨𝜎z
k⟩ = ⟨𝜎z⟩, Eq. (4.18) can be further simpliőed so that

we obtain a single ordinary differential equation for the cavity amplitude [39],

𝑑

𝑑𝜏
⟨𝑎⟩ = ⟨𝑎⟩ − 𝜅

𝜂
(1 + 𝐶) ⟨𝑎⟩2 + 4𝜅𝐶

𝑁𝛾‖
⟨𝑎⟩3 − 4𝜅2𝐶

𝑁𝛾‖𝜂
⟨𝑎⟩4 , (4.19)

where 𝐶 is the collective cooperativity of a homogeneous spin ensemble given by
Eq. (4.5). Note that exactly at the critical points 𝜂±crit, two steady states (one
stable and one unstable őxed point) coalesce with each other, being solutions of the
nonlinear algebraic equation ẋ = 𝑓(x) = 0 (the dot stands for the time derivative).
When the control parameters are slightly detuned from this point, the system passes
the corresponding region in phase space (x, ẋ) very slowly due to the proximity of
the critical point. In the literature, this phenomenon is often referred to as a saddle-
node “ghostž [197] since the phase trajectories are considerably delayed in their ŕow
towards their actual stationary state.

In the presence of inhomogeneous broadening, we cannot set up a single dif-
ferential equation for the cavity amplitude like Eq. (4.19) but have to resort to
the full Maxwell-Bloch equations or their reduced form after adiabatic elimina-
tion [Eqs. (4.16) and (4.17)], respectively. Despite the more complicated form of
the dynamic equations, we expect a similar critical slowing down in the case with
inhomogeneous broadening.

Critical slowing down

In the following, we present the quench dynamicsÐi.e., the dynamics after a sudden
parameter changeÐin the vicinity of the critical points 𝜂±crit from Fig. 4.2.1(c).
Speciőcally, in Fig. 4.2.3(a) and (b) we take as initial conditions for ⟨𝑎⟩ and ⟨𝜎z

k⟩ a
stationary solution located at the low transmission branch, e.g.: ⟨𝑎⟩ = 𝜂/𝜅(1 + 𝐶)
and ⟨𝜎z

k⟩ = −1, and then suddenly change 𝜂 to a value above 𝜂+crit corresponding to
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a solution on the high transmission branch. We repeat this procedure for driving
amplitudes that are closer and closer to the critical point 𝜂+crit. A similar test is
performed for the lower critical point 𝜂−crit [see Fig. 4.2.3(c) and (d)]. Here, we
start from a stationary state located on the high transmission branch (⟨𝑎⟩ ∼ 𝜂/𝜅,
⟨𝜎z

k⟩ = 0) and abruptly change 𝜂 to values slightly below 𝜂−crit. In both cases,
the transient times increase dramatically as the driving amplitude approaches the
critical points 𝜂±crit, and the evolution of the system becomes much slower than the
largest intrinsic time scale 1/𝛾‖. This behavior is indicative for the phenomenon
of critical slowing down in systems exhibiting a saddle-node bifurcation [124, 200,
201].

To further characterize the critical slowing down dynamics, we present several
phase trajectories in Fig. 4.2.4(a) and (c). The closer the driving amplitude 𝜂 is to
the critical value at which the upper or lower saddle-node bifurcation occurs, the
more and more time the system spends near a narrow slowing down region in phase
space [gray areas in Fig. 4.2.4(a) and (c)]. Here, the value of 𝑑 ⟨𝑎⟩2/𝑑t drops to
very small values indicated by a dip in the phase trajectories. Right at the critical
points 𝜂±crit, the time 𝑇 the system spends in the slowing down region diverges as
presented in Fig. 4.2.4(b) and (d). Such a singular behavior is explained by the
vanishing velocity 𝑑 ⟨𝑎⟩2/𝑑t at the critical points. Notably, this divergence shows a
power law scaling

𝑇 = 𝑇0 + 𝛽|𝜂 − 𝜂±crit|−𝛼, (4.20)

where the critical exponent is extracted to be 𝛼 = 0.52 for 𝜂+crit and 𝛼 = 0.53
for 𝜂−crit, respectively. Both values, therefore, only slightly exceed the well-known
square-root scaling law, 𝛼 = 0.5, for the simplest normal form of a nondegenerate
saddle-node bifurcation 𝑑x/𝑑t = r + x2, where x ∈ R and r ≤ 0 is the bifurcation
parameter [201].

Such scaling similarities can be traced back to very generic features of continuous
phase transitions at which a system becomes scale invariant and is characterized
by an inőnite correlation length and time. Speciőcally, both correlation length and
time demonstrate power-law divergence upon changing the external parameter in
the vicinity of the phase transition [202]. Moreover, a set of critical exponents can
be the same for a certain class of phase transitions, which share the same symmetries
and dimensionality. This phenomenon, referred to as “universalityž [202], can be
understood by divergent correlations at the phase transition giving rise to smearing
out of the system’s complexity nearby it. Therefore, a very complex system can
respond similarly as a very simple one provided that both are sufficiently close to
the phase transitionÐa scenario which is realized in our case as well.

Finally, we demonstrate the phenomenon of critical slowing down for the same
physical setup based on a superconducting microwave resonator and a large en-
semble of NV centers in diamond [39, 51, 168], which was presented already in the
previous section. Figure 4.2.5(a) depicts the quench dynamics of the transmission
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Figure 4.2.3.: Critical slowing down of the transient quench dynamics in the vicinity of
the critical points 𝜂+crit and 𝜂−crit. (a,c) Cavity probability amplitude squared |⟨𝑎(t)⟩|2 and
(b,d) expectation value of the central spin operator ⟨𝜎z

𝑐 (t)⟩ (𝜔k = 𝜔𝑐) as a function of time
t (in units of 1/𝛾‖). (a,b) As initial condition a stationary state on the low transmission
branch is chosen, which lies far from the bistable regime. The driving strength is then
increased abruptly to values slightly above 𝜂+crit so that the system approaches the high
transmission branch. (c,d) same as (a,b) but with reversed directions such that the system
starts out at the high transmission branch and ends up at the low transmission branch
after a sudden decrease of 𝜂 below 𝜂−crit. The closer the driving amplitude is to the critical
values 𝜂+crit and 𝜂−crit, respectively, the longer the transient times become (light to dark
curves). The red shaded regions designate a gap in values of |⟨𝑎st⟩|2, where no stable
stationary solution exists [see Fig. 4.2.1(c)].

through the cavity for a spin ensemble with a collective cooperativity of 𝐶 ≈ 78
(𝜅/2𝜋 = 0.44 MHz, 𝛾⊥/2𝜋 = 33 kHz). In the experiment, which is performed in
the group of Jörg Schmiedmayer, the system is prepared in an initial state lying
on the high transmission branch [see Fig. 4.1.4(c)]. This is achieved by setting
the cavity input power to 𝑃in ≫ 𝑃+

in for several minutes. The input power is then
nonadiabatically switched to a smaller value. This measurement is repeated several
times, with the system always prepared in the same initial state but switching to a
different target driving power. Note that, when the system is driven with powers
slightly below 𝑃−

in , the time scales needed to settle in a stationary state become as
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Figure 4.2.4.: Phase portraits and scaling for the quench dynamics presented in Fig. 4.2.3
showing a critical slowing down near the critical points 𝜂±crit. (a) Phase trajectories in the
[𝑑|⟨𝑎(t)⟩|2/𝑑t, |⟨𝑎(t)⟩|2] plane for the dynamics in the vicinity of 𝜂+crit. (b) The time duration
𝑇 − 𝑇0 (measured in units of 1/𝛾‖) needed to pass the slowing-down region [gray area
in (a)] versus log10(|𝜂 − 𝜂crit|) is displayed by colored circles. The dashed line represents
the algebraic őt 𝑇 − 𝑇0 = 𝛽|𝜂 − 𝜂+crit|−𝛼, with the exponent 𝛼 = 0.52, 𝑇0 = −74.7, and
𝛽 = 2.54. (c,d) Corresponding plots for the dynamics near 𝜂−crit. Here, the őt parameters
are given by 𝛼 = 0.53, 𝑇0 = −6.25, and 𝛽 = 1.16. Arrows in (a) and (c) indicate the
system’s evolution in time.

long as 4 × 104 s, which is much longer than ever observed for this effect. In Fig.
4.2.5(c) we present the transient switching time tswitch characterizing the time scale
the system needs to reach its stationary state. We deőne this time as the inverse
of the smallest rate 𝑑|𝑇 |2/𝑑t. The measurements suggest a power law divergence
of the switching time tswitch ≈ |𝑃in − 𝑃−

crit|−2𝛼 with 2𝛼 = 1.20 ± 0.04, which is
in reasonable agreement with our theoretical results presented in Fig. 4.2.4(d).
Note that in comparison with Eq. (4.20) the additional factor of two in the critical
exponent arises from the use of the power 𝑃in ≈ 𝜂2/𝜅2 instead of the amplitude 𝜂.
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Figure 4.2.5.: Measurement of the quench dynamics of an ensemble of NV centers with
high cooperativity 𝐶 ≈ 78 coupled to a superconducting microwave resonator [39]. The
cavity is strongly driven so that the system’s initial state is on the high transmission
branch. At t = 0 the driving power is suddenly switched to a different target value.
(a) Normalized cavity transmission versus time for different target drive powers 𝑃in. For
powers slightly below the critical point 𝑃−

crit, the time it takes the system to settle at
its stationary state is extremely prolonged and approaches 4 × 104 s. The dashed lines
correspond to numerical calculations using Eq. (4.18). (b) Switching time between the
high and low transmission branch in the vicinity of the critical driving power 𝑃−

crit. We
deőne the switching time tswitch as the inverse of the smallest gradient for a given curve
[green dot in (a)]. Close to 𝑃−

crit, the switching time diverges. The solid red line is a őt
to the algebraic function tswitch = |𝑃in − 𝑃−

crit|−𝛼 (with 𝛼 = 1.20 ± 0.4). Figure adapted
from ref. [39].

4.3. Semiclassical-to-quantum boundary7

In the previous sections, we have described optical bistability on a semiclassical ba-
sis using Maxwell-Bloch equations and completely ignored all quantum ŕuctuations.
This mean-őeld description becomes exact in the thermodynamic limit 𝑁 → ∞
[114] and is well justiőed for the presented ensemble of nitrogen-vacancy centers,
which contains about 𝑁 ≈ 1012 spins [39]. However, as the number of spins within
the ensemble decreases, ŕuctuations become more signiőcant and must be included
in the theoretical model. While in the semiclassical description two stable station-
ary statesÐone with low transmission and one with high transmissionÐcan coexist,
a quantum mechanical model of bistability predicts only a single transmission value
for the same parameters. This difference is caused by quantum ŕuctuations which
destabilize the semiclassical solutions and trigger a switching of the system between

7 The őgures and parts of the text in this section are taken from our published work in ref. [83].
All őgures and numerical results were produced by myself.
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low and high transmission [156]. The switching smears out the two semiclassical
expectation values and is characterized by a bimodal quantum mechanical proba-
bility distribution [102, 166, 203]. In the limit of large spin ensembles, the switching
times of the system diverge and the two stable semiclassical solutions are restored
[166, 203]. The natural question that arises is how many spins are required to enter
this semiclassical regime.

To answer this question, we use the second- (CE2) and third-order cumulant
expansion (CE3) introduced in Section 3.1 to calculate quantum corrections to the
semiclassical Maxwell-Bloch equations. In particular, we focus on deviations from
the semiclassical solution in the stationary transmission through the cavity under
constant driving 𝜂. The stationary transmission, which is proportional to the sta-
tionary cavity probability amplitude | ⟨𝑎st⟩ |2 can be obtained either by directly
solving the corresponding steady-state equations as in Section 4.1 or by a tempo-
ral evolution of the system for sufficiently long time. For simplicity, we assume
homogeneous coupling (𝑔k = 𝑔) and radiative decay only (𝛾p = 0).

The semiclassical-to-quantum boundary for homogeneous spin
ensembles

We start with the simple case of homogeneous broadening, where all spins are on
resonance with the cavity and the driving frequency (Δk = 0, Δ𝑐 = 0). Recall that
the semiclassical Maxwell-Bloch equations (2.20a)-(2.20c) are invariant to changes
in the number of spins 𝑁 under the transformation

𝑔j → 𝑔j/
√
𝑁, ⟨𝑎⟩ → ⟨𝑎⟩

√
𝑁, 𝜂 → 𝜂

√
𝑁. (4.21)

Note that such a re-scaling is impossible for the equations of motion that involve
higher-order expectation values. Hence, the stationary states obtained from the
CE2 and CE3 will explicitly depend on the number of spins 𝑁 . Figure 4.3.1 de-
picts the quantum corrections to the semiclassical steady-state cavity probability
amplitude |⟨𝑎st⟩|2 for a collective cooperativity parameter of 𝐶 = 14 (with the
tendency described below being similar for all 𝐶). We present typical numerical
results from the CE2 and CE3 for ten different driving strengths, chosen to allow
us to study the stationary states on both the lower transmission branch within the
bistable region and the upper transmission branch above the critical point 𝜂+crit.

The results in Fig. 4.3.1 show that, for small ensembles, the stationary transmis-
sion calculated using the CE2 and CE3 deviate signiőcantly from the semiclassical
solution. Notably, this deviation occurs not only within the bistable region but also
for driving strengths above the critical point 𝜂+crit. As expected, increasing the num-
ber of spins restores the semiclassical results as the quantum ŕuctuations decrease
with 1/𝑁 [102]. However, the actual number of spins needed for the CE to agree
well with the semiclassical solution substantially increases for driving strengths
close to the critical point 𝜂+crit. While the results obtained from the CE3 for spin
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Figure 4.3.1.: Deviations from the semiclassical cavity probability amplitude for a co-
operativity parameter 𝐶 = 14 (with 𝜅 = 2𝛾ℎ = 2𝜋 × 1 MHz) and different numbers of
spins inside the ensemble. (a,b) Stationary solutions for the cavity probability amplitude
|⟨𝑎st⟩|2 as a function of the driving amplitude 𝜂. For comparison, the semiclassical re-
sult is shown as black solid line. Amplitude bistability is marked by two critical points
𝜂±crit (red dots) with a bistable region in between (gray area). At well deőned driving
amplitudes, corrections to the semiclassical solutions are calculated using (a) the second-
and (b) third-order cumulant expansion (CE) for different numbers of spins 𝑁 = 10, 50,
250, and 2500. For reasons of clarity, results for the latter are presented only for driving
strengths close to the critical point of the lower transmission branch 𝜂+crit. The colored
arrows indicate the deviations from the corresponding semiclassical transmission curve.
(c) Temporal evolution of the cavity probability amplitude |⟨𝑎(t)⟩|2(CE3) using the third-
order cumulant expansion (CE) and for the driving strength 𝜂 = 1.05 · 𝜂+crit. The initial
conditions are chosen such that at t = 0 the spin ensemble is unexcited and the cavity is
empty. Results are shown for increasing numbers of spins, 𝑁 = 10, 50, 86, 87, and 250.
The semiclassical solution is shown as black dashed line. The colored symbols indicate
the stationary states shown in (b).

ensembles of moderate size (𝑁 = 250) agree reasonably well with the semiclassi-
cal solution for most driving strengths, this is not the case for driving strengths
close to the critical point of the low transmission branch 0.97 · 𝜂+crit and 0.99 · 𝜂+crit,
respectively. Here much larger numbers of spins (𝑁 = 2500) are needed for the
CE3 to approach the semiclassical solution lying on the low transmission branch.
The stationary states shown in Fig. 4.3.1(a) and (b) are extracted from a temporal
evolution of the system for sufficiently long time starting initially from an unexcited
spin ensemble (⟨𝜎z

k⟩ = −1, ⟨𝜎−
k ⟩ = 0) and an empty cavity (⟨𝑎⟩ = 0), subjected

to constant driving. For this initial state the semiclassical dynamics converges to-
wards the lower transmission branch of the bistable region and reaches the upper
transmission branch only for 𝜂 > 𝜂+crit as discussed in Section 4.1.

The transient dynamics of the cavity probability amplitude |⟨𝑎(t)⟩|2
(CE3)

calculated
using the CE3 for 𝐶 = 14 and driving strength 𝜂 = 1.05 · 𝜂+crit is presented in
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Figure 4.3.2.: Comparison of the second- and third-order cumulant expansion (CE)
with the semiclassical cavity transmission for the driving strength 𝜂 = 1.05 · 𝜂+crit. The
normalized stationary state solutions for the cavity probability amplitude |⟨̃︁𝑎st⟩|2(CE2,3)

=

|⟨𝑎st⟩|2(CE2,3)

⧸︀ |⟨𝑎st⟩|2(CE1)
is shown as a function of the number of spins 𝑁 using (a) the

second- (CE2) and (b) the third-order cumulant expansion (CE3), respectively. Results
are shown for cooperativity parameters 𝐶 = 2 (dark blue) to 20 (dark red). |⟨̃︁𝑎st⟩|2(CE2,3)

=

1 (dashed black line) corresponds to the semiclassical result.

Fig. 4.3.1(c). As indicated already in Fig. 4.3.1(b) for 𝑁 = 250 the results obtained
from the CE3 agree well with the semiclassical solution, whereas for small spin
ensembles (𝑁 = 10 or 50) the CE3 tends towards a stationary state of much lower
transmission than that predicted by the semiclassical equations. Interestingly, our
calculations show an abrupt transition from spin ensembles with large deviations
from the semiclassical limit to spin ensembles where such deviations are small.
Whereas for 𝑁 ≤ 86 the CE3 tends towards a stationary state of relatively low
transmission, ensembles of 𝑁 ≥ 87 spins approach a state of high transmission,
following the semiclassical solution.

To compare the validity of the semiclassical approximation for different driving
strengths 𝜂 and cooperativity parameters 𝐶, we normalize the stationary state
obtained in the framework of the CE2 and CE3 by the corresponding semiclassical
result (CE1),

|⟨̃︁𝑎st⟩|2(CE2,3)
≡

|⟨𝑎st⟩|2(CE2,3)

|⟨𝑎st⟩|2(CE1)

, (4.22)

such that a value close to unity indicates being close to the semiclassical regime. In
Fig. 4.3.2 we present the normalized cavity probability amplitude |⟨̃︁𝑎st⟩|2(CE2,3)

for the
driving strength 1.05 · 𝜂+crit and cooperativity parameters ranging from 𝐶 = 2 to 20.
Focusing at őrst on the CE2 solutions, we see that the normalized cavity probability
amplitude approaches the semiclassical result |⟨̃︁𝑎st⟩|2(CE2)

= 1 for increasing numbers
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of spins. As indicated above, the transition towards the semiclassical solution
becomes more abrupt for increasing 𝐶 and for 𝐶 > 8 even resembles a őrst-order
phase transition at 𝑁 ≈ 45.

If we turn now to the CE3 solutions, a similar tendency is observed with the
only difference that the transition is shifted to larger values of 𝑁 for increasing
cooperativities 𝐶. While these őndings suggest that the transition from systems of
large ŕuctuations towards systems of small ŕuctuations has a discontinuous nature,
caution should be taken since in the cross-over region the cumulant expansion has
not yet converged, i.e., the CE2 and CE3 give quite different values for |⟨𝑎st⟩|2.
Including higher orders of cumulants or a full quantum mechanical treatment of
the problem is therefore required to validate results in this parameter regime.

Furthermore, it turns out that at values of 𝜂 slightly smaller than 𝜂+crit (at which
the őrst-order transition obtained in the framework of the semiclassical approach
occurs), other time-dependent solutions can simultaneously exist for certain num-
bers of spins 𝑁Ða common scenario for systems governed by nonlinear differential
equations. Speciőcally, starting from the simple initial conditions mentioned above
(empty cavity with unexcited spin ensemble) can result in periodic long-time solu-
tions or even numerically unstable trajectories with unphysical values of |⟨𝜎z

k⟩| > 1.
To overcome such problems we vary the initial conditions for ⟨𝜎z

k⟩ between −1 and
−0.5 to őnally őnd those which lie in the so-called basin of attraction for the sta-
tionary state. Originating from these initial conditions, the system őnally settles
to the stationary state under study as time increases.

We avoid the difficulties in the cross-over region of Fig. 4.3.2 by focusing on
the results of the cumulant expansion close to the semiclassical stationary states.
Thereby, we establish a criterion for the validity of the semiclassical Maxwell-Bloch
equations based on the convergence of the cumulant expansion. For this purpose,
we deőne the relative deviations

ΔCE
n−m ≡

⃒⃒⃒
|⟨𝑎st⟩|2(n)

− |⟨𝑎st⟩|2(m)

⃒⃒⃒
|⟨𝑎st⟩|2(m)

, (4.23)

where n and m stand for the different orders of the cumulant expansion, CE1, CE2,
and CE3. Recall that the őrst-order cumulant expansion (CE1) corresponds to the
Maxwell-Bloch equations. In Fig. 4.3.3 we presents the relative deviations between
the őrst three orders of the cumulant expansion, ΔCE

1−2, ΔCE
2−3, and ΔCE

1−3, for 𝐶 = 14
and driving strengths 𝜂 = 1.05 · 𝜂+crit and 0.95 · 𝜂+crit, respectively. The discontinuous
nature of the transition region is also found in the relative deviations, leading to a
intricate dependence on the number of spins 𝑁 . However, for large 𝑁 the relative
deviations start to decrease linearly with 1

⧸︀
𝑁 as expected from a linearized theory

of quantum ŕuctuations in the small noise limit [78]. Note that the size of the
relative deviations does not only strongly depend on the cooperativity 𝐶 and the
number of spins 𝑁 but also on the driving strength 𝜂. Our results reveal that,
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Figure 4.3.3.: Relative deviations in the cavity probability amplitude |⟨𝑎st⟩|2 calculated
using the semiclassical Maxwell-Bloch equations (CE1), the second- (CE2), and the third-
order cumulant expansion (CE3). Results are shown for cooperativity 𝐶 = 14 and driving
strengths (a) 𝜂 = 1.05 · 𝜂+crit and (b) 𝜂 = 0.95 · 𝜂+crit. The relative deviations are deőned
as ΔCE

n−m ≡ ⃒⃒|⟨𝑎st⟩|2(n)
− |⟨𝑎st⟩|2(m)

⃒⃒⧸︀|⟨𝑎st⟩|2(m)
, where n and m stand for the CE1, CE2, and

CE3, respectively. The horizontal black dashed line indicates the threshold of convergence,
which we set to be 𝛿𝜖 = 10−2. Only if all three relative deviations, ΔCE

1−2 (blue dashed-
dotted line), ΔCE

2−3 (green double-dashed-dotted line), and ΔCE
1−3 (orange solid line) are

smaller than 𝛿𝜖, the semiclassical solution for the cavity probability amplitude |⟨𝑎st⟩|2 is
reliable. The minimal ensemble size that fulőlls this criterion is denoted as 𝑁sc (vertical
black dashed line).

even for the same 𝐶 and the same 𝑁 , the relative deviations ΔCE
n−m are signiőcantly

larger for driving strengths below the critical point (𝜂 = 0.95 ·𝜂+crit) than for driving
strengths above this point (𝜂 = 1.05 · 𝜂+crit). This asymmetry will be explored in
more detail below.

Using the relative deviations ΔCE
n−m, we are now őnally able to fulőll our primary

goal: őnding a minimum value for the number of spins 𝑁 that allows a semiclassical
description based on the Maxwell-Bloch equations. Therefore, we deőne a small
threshold value 𝛿𝜖 = 10−2, which serves as criterion for the convergence of the
cumulant expansion. In the following, we estimate the minimal number of spins,
𝑁sc, for which all relative deviations drop below this threshold, i.e.

ΔCE
1−2, Δ

CE
2−3, Δ

CE
1−3 < 𝛿𝜖 , (4.24)

and call this the semiclassical-to-quantum boundary. Hence, for spin ensembles
with 𝑁 > 𝑁sc the semiclasscial Maxwell-Bloch equations provide trustful results
for the cavity probability amplitude |⟨𝑎st⟩|2 and all higher correlations like ⟨𝜎z

j𝑎⟩𝑐,
⟨𝜎−

j 𝑎
†⟩𝑐, etc., give only negligible relative contributions (lower than 1%).

The vanishing of these quantum correlations, characterized by Eq.(4.24), captures
a subtle but important point of open quantum systems. While the stationary state
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of the master equation (1.7) is unique, the bistability of the semiclassical regime
translates into a bimodality of the corresponding quasi-probability function. Trig-
gered by quantum ŕuctuations, the system switches between the two local maxima
of the bimodal quasi-probability function. This gives a unique time averaged ex-
pectation value that can be quite different from the semiclassical solution [102,
166]. However, as the quantum ŕuctuations vanish with increasing system size 𝑁 ,
the switching time diverges [166] and the dynamics stabilize along one of the two
semiclassical transmission branches. Hence, the convergence criterion established
in Eq. (4.24) implies that for 𝑁 > 𝑁sc, the cavity probability amplitude |⟨𝑎st⟩|2
calculated from a full quantum mechanical evolution of the intitial state can not be
distinguished from the solutions of the semiclassical Maxwell-Bloch equations on
relevant time scales.

Figure 4.3.4.: Semiclassical-to-quantum boundary: Minimal number of spins 𝑁sc for
which the cumulant expansion converges towards the semiclassical results, i.e., for which
condition (4.24) is fulőlled. (a) 𝑁sc as a function of the driving strength 𝜂 and the coop-
erativity parameter 𝐶. Note that 𝑁sc drastically increases in the vicinity of the critical
point 𝜂+crit for 𝐶 ≥ 8 and no data is available in this region (gray bar). The horizontal
dashed lines correspond to cooperativity parameters, which are shown separately in (b)
and (c), respectively. (b) 𝑁sc as a function of the driving strength 𝜂 for 𝐶 = 5.0, 6.5, and
7.8 (dark to light blue). (c) 𝑁sc as a function of the the driving strength 𝜂 for 𝐶 = 10,
14, and 18 (light to dark orange).

Figure 4.3.4 depicts this semiclassical-to-quantum boundary value as a function
of both the cooperativity parameters 𝐶 and the driving strength 𝜂. In the vicinity of
the critical point 𝜂+crit, the value of 𝑁sc increases dramatically. Exactly at 𝜂 = 𝜂+crit
the time the systems needs to reach its stationary state for 𝐶 ≥ 8 diverges as
discussed in the previous previous, and data points are therefore omitted for these
parameters. Below the bistability threshold, 𝐶 < 8, where there is no bistability
and also no critical point (see Eq.(4.10)), we take the driving strength where the
slope of the input-output relation 𝑑|⟨𝑎st⟩|2/𝑑𝜂 is maximal as our reference point 𝜂+crit.
Here the value of the semiclassical-to-quantum boundary 𝑁sc has its maximum at
driving strengths slightly above the driving strength 𝜂+crit. 𝑁sc starts to peak at
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𝜂 = 𝜂+crit as 𝐶 approaches the threshold value of bistability. As can be seen in
Fig. 4.3.4(b) for the cooperativity parameter 𝐶 = 5 the value of 𝑁sc above 𝜂+crit is
signiőcantly larger than below that driving strength. This asymmetry with respect
to 𝜂+crit becomes less pronounced but is still present for increasing cooperativities
up to 𝐶 ≤ 8. The peak in 𝑁sc for 𝐶 = 7.8 at the critical driving is the precursor to
the emergence of a őrst-order phase transition and the effect of bistability, which
emerges for cooperativity values above 𝐶 = 8.

It is worth noting that for 𝐶 > 8 the semiclassical-to-quantum boundary as de-
őned in Eq. (4.24) behaves qualitatively different for the lower transmission branch
as compared to the upper transmission branch. This asymmetry can be under-
stood from our choice to probe the upper critical point 𝜂+crit. Below this point,
we have bistability, so even though we are probing the low transmission branch, a
high transmission branch is also present for these parameters. As we approach the
critical point 𝜂+crit from below, the value 𝑁sc progressively increases and eventually
diverges exactly at 𝜂+crit, where a saddle-node bifurcation occurs [curves from the
left with respect to the gray bar of Fig. 4.3.4(c)]. In contrast, above the critical
point 𝜂+crit the is only one stable solution in form of the upper transmission branch.
In the system’s phase space these solutions are far from the saddle-node bifurcation
at 𝜂+crit. Therefore, as we approach 𝜂+crit from above, the value of 𝑁sc exhibits no
divergence and is signiőcantly smaller than below 𝜂+crit.

Another interesting observation from Fig. 4.3.4(c) is that for the lower transmis-
sion branch (𝜂 < 𝜂+crit), 𝑁sc increases for increasing cooperativity parameters 𝐶. In
contrast, for the upper transmission branch (𝜂 > 𝜂+crit), 𝑁sc decreases for increasing
𝐶. The cooperativity of the spin ensemble therefore seems to play a dual role:
Within the bistable region, a high cooperativity ampliőes ŕuctuations that cause a
deviation from the semiclassical solution, whereas, outside the bistable domain, a
high cooperativity suppresses them and facilitates a rapid convergence to the single
stationary state.

Our őndings suggest that close to the critical point at the lower transmission
branch even very large ensembles of up to ∼ 104 spins can not be accurately de-
scribed by the semiclassical Maxwell-Bloch equations. Note that for large cooper-
ativities the differences in 𝑁sc for driving strengths within and outside the bistable
region become very large. Whereas for 𝐶 = 18 and 𝜂 = 1.01 · 𝜂+crit the semiclassical
result agrees well (1% deviation) with the CE2 and CE3 already for ensembles of
𝑁sc ≈ 500 spins, the corresponding value grows to 𝑁sc ≈ 3 · 104 for 𝜂 = 0.99 · 𝜂+crit.
This can be explained by very large quantum ŕuctuations near the critical point,
which destabilize one of the two semiclassical basins of attraction.
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Figure 4.3.5.: Semiclassical-to-quantum boundary including inhomogeneous broadening:
(a) Semiclassical stationary states for the cavity probability amplitude |⟨𝑎st⟩|2 as a func-
tion of the driving amplitude 𝜂. Results are shown for Gaussian spin distributions with a
width (FWHM) of Γ = 0.1, 0.5, and 1.0 MHz, corresponding to a collective cooperativity
of 𝐶 ≈ 17.9, 15.8, and 12.7, respectively (light to dark green). Results without inho-
mogeneous broadening, corresponding to 𝐶 = 18, are presented for comparison purposes
(dotted orange line). (b) Semiclassical-to-quantum boundary 𝑁sc as a function of the the
driving strength 𝜂 for Γ = 0.1, 0.5, 1.0 MHz (light to dark green), and no inhomogeneous
broadening (orange).

The semiclassical-to-quantum boundary for inhomogeneously
broadened spin ensembles

In the following, we examine how inhomogeneous broadening affects the previously
deőned semiclassical-to-quantum boundary. For this purpose, we assume that the
individual spin frequencies Δk follow a Gaussian distribution. This scenario be-
comes computationally much more demanding, since now the coupled equations
of motion have to be solved for each spin frequency individually. Following the
procedure described in the Appendix C, we split the spin ensemble into 𝐿 = 51
equidistantly spaced frequency clusters to make our problem numerically tractable.

In Fig. 4.3.5(a) we present the semiclassical stationary states of the cavity prob-
ability amplitude |⟨𝑎st⟩|2 for Gaussian spin distributions of three different widths
(FWHM), Γ = 0.1, 0.5, and 1.0 MHz. For comparison we also show the bistability
curve of a homogeneous spin ensemble with a collective cooperativity of 𝐶 = 18.
Note that an increase of the width Γ leads to a decrease of the collective cooperativ-
ity, given by Eq. (4.2). Here, Γ = 0.1, 0.5, and 1.0 MHz correspond to cooperativity
values of 𝐶 ≈ 17.9, 15.8, and 12.7, respectively.

The minimal number of spins, 𝑁sc, for which the cumulant expansion converges
towards the semiclassical results is depicted in Fig. 4.3.5(b). A comparison with
Fig. 4.3.4(c) indicates that the change in the semiclassical-to-quantum boundary
due to the inhomogeneous broadening can be explained by the change in the collec-
tive cooperativity parameter 𝐶. Our results demonstrate that also inhomogeneously
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broadened spin ensembles containing about 104 spins can show non-semiclassical
behavior close to the critical point of bistability.





Chapter 5.

Atomic frequency combs and
spectral engineering

So far, we have dealt with spin ensembles whose spectral distribution naturally
follows a single Gaussian or q-Gaussian function due to the inhomogeneous broad-
ening by different local environments within the host material. In this chapter, we
proceed with spin ensembles with artiőcially designed spectral spin distributions.
In particular, we focus on comb-shaped spin ensembles, known as atomic frequency
combs [61, 62], which are promising candidates for future quantum memories by of-
fering long storage times [63, 64], on-demand readout [63ś66], and high multimode
capacity [62, 67, 68].

The distinctive feature of an atomic frequency comb is the comb-shaped frequency
distribution of the spin ensemble leading to a periodic absorption and subsequent
emission of photons at well-deőned times. Notably, this enables the storage of
pulses containing both single and entangled photons [204ś207]. While it has been
shown that such quantum protocols achieve very high efficiencies by coupling the
atomic frequency comb to an impedance-matched cavity [65, 206, 208ś211], the
strong coupling regime is widely unexplored. This chapter aims to őll this gap by
providing a rigorous treatment of strongly coupled spin-cavity systems featuring a
comb-shaped spectral spin distribution.

We start with macroscopic spin ensembles using the Volterra integral formalism
presented in Section 2.1 introducing the concept of multimode strong coupling [212],
which lays the foundation for understanding the operating principle of atomic fre-
quency combs in cavities. Here we also show how one major limitation, i.e., the
dephasing due to inhomogeneous broadening, can be overcome by spectral hole
burning [84]. Then we switch to mesoscopic spin ensembles, which we treat at a
fully quantum mechanical level using the variational renormalization group method
introduced in Section 3.2. While most previous studies on atomic frequency combs
have focused on the information stored in the amplitude and the relative phase
of incoming pulses [213], we focus on the quantum mechanical phase space of the
cavity, which has not received much attention. Our results reveal that arbitrary
multi-photon states in the cavity are almost perfectly absorbed by the spin ensem-
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ble and re-emitted as parity-ŕipped states at periodic time intervals [86]. Finally,
we demonstrate how the collective interactions in a mesoscopic atomic frequency
comb strongly coupled to a cavity can be used to generate a periodic pulse train of
nonclassical light from a short coherent input pulse [85].

5.1. Multimode strong coupling and sustained
photon pulse revivals8

In the following, we consider a single-mode cavity containing a strongly coupled spin
ensemble with a comb-shaped spectral spin distribution. A well-known method to
engineer such atomic frequency combs is the spectral hole burning of an inhomoge-
neously broadened ensemble [214, 215]. Recently, the possibilities of using coherent
spectral hole burning by the stimulated Raman adiabatic passage [57] or the piece-
wise adiabatic passage technique [58] have also been discussed. Furthermore, a
proposal of using intrinsic atomic levels to construct a frequency comb exists [216].

Here, we assume an arrangement of several inhomogeneously broadened spin
ensembles with mean frequencies 𝜔(𝜇)

s that are equidistantly spaced at intervals Δ𝜔,
such that 𝜔(𝜇)

s = 𝜔s + 𝜇Δ𝜔 for 𝜇 = {−(m− 1)/2, . . . , (m+1)/2} with m being the
number of subensembles constituting the frequency comb as depicted in Fig. 5.1.1.
While our approach is general, we will be referring in the following to one particular
experimental realization based on the magnetic coupling of NV-ensembles residing
in several diamonds coupled to a superconducting microwave resonator [39]. Note
that by an appropriate alignment of the diamonds with respect to an external
magnetic őeld and by exploiting the Zeeman effect, the mean frequencies of the
spin ensembles, 𝜔(𝜇)

s , can be efficiently tuned in a rather wide spectral interval [35,
36].

We model the individual teeth of the atomic frequency comb by a q-Gaussian
spectral spin distribution 𝜌𝜇(𝜔) [see Eq. (4.12)] with q = 1.39 and width 𝛾inℎ/2𝜋 =
9.4 MHz satisfying

∫︀
𝑑𝜔𝜌𝜇(𝜔) = 1. The collective coupling strength of each subensem-

ble is given by Ω𝜇 = (
∑︀𝑁𝜇

k=1 𝑔
(𝜇)2
k )1/2, where 𝑔

(𝜇)
k is the coupling strength of the k-th

spin and 𝑁𝜇 is the number of spins. Note that the coupling strengths Ω𝜇 are not
equal in general, but follow a Gaussian distribution Ω2

𝜇/Ω
2 = exp[−(𝜔𝑐 − 𝜔

(𝜇)
s )2/2𝜎2

𝐺],
with 𝜎𝐺/2𝜋 = 150 MHz; then, Ω denotes the collective coupling strength of the
central spin ensemble, and the total spectral spin distribution acquires the form

8 The concept of multimode strong coupling was őrst introduced by Dmitry Krimer, et al. [212]
for a single two-level system coupled to a multimode cavity and is adopted here for the inverse
case of a single-mode cavity coupled to multiple spin modes. The text and őgures in this section
are partly taken from the joint publication [84]. The numerical calculations were performed
by Dmitry Krimer and myself, whereas the theoretical analysis was mainly done by Dmitry
Krimer and Stefan Rotter in collaboration with Stefan Putz, who helped to propose a realistic
experimental realization.
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𝜌(𝜔) =
∑︀

𝜇 𝜌𝜇(𝜔)Ω
2
𝜇/Ω

2 depicted in Fig. 5.1.1. The spacing of the individual
subensembles is given by Δ𝜔/2𝜋 = 40 MHz, which is much larger than the cavity
linewidth 𝜅/2𝜋 = 0.4MHz and the spin decay rate 𝛾/2𝜋 = 0.01MHz.

Figure 5.1.1.: Spectral spin distribution, 𝜌(𝜔) =
∑︀

𝜇Ω
2
𝜇/Ω

2𝜌𝜇(𝜔) for
𝜇 = {−(m− 1)/2, . . . , (m+ 1)/2}, of an atomic frequency comb consisting of m = 7
equally spaced q-Gaussians of equal widths 𝛾inℎ/2𝜋 = 9.4 MHz. The spin distribution
has peaks at frequencies 𝜔

(𝜇)
s = 𝜔s + 𝜇Δ𝜔 with the spacing Δ𝜔/2𝜋 = 40 MHz. The

cavity frequency 𝜔𝑐 coincides with the mean frequency of the central q-Gaussian,
𝜔s = 𝜔𝑐 = 2𝜋 × 2.6915 GHz. The collective coupling strengths of the individual
subensembles are distributed as Ω2

𝜇/Ω
2 = exp[−(𝜔𝑐 − 𝜔

(𝜇)
s )2/2𝜎2

𝐺], with 𝜎𝐺/2𝜋 = 150
MHz.

In the following, we consider a macroscopic spin ensemble in the weak excitation
limit such that we are allowed to use the Volterra equation (2.13). Before examining
the temporal evolution of the system in detail, however, we introduce the concept
of multimode strong coupling [212], which gives us an insight into the transition
from the dynamics of a single spin ensemble as encountered in the previous chapter
to that of a more complicated atomic frequency comb.

The multimode strong coupling regime

The notion of multimode strong coupling originates from the situation where a
single spin is coupled to a multimode cavity [212]. Here we translate this concept
to the inverse case where multiple spins with very different frequencies are coupled
to a single cavity mode. Hence, the term multimodeÐin the followingÐrefers to
the multiple spin ensembles with different transition frequencies 𝜔

(𝜇)
s .

As mentioned in Section 2.1, the Volterra equation is the governing equation not
only for the semiclassical case but also for the quantum case, when at t = 0 the
system is in the state |1, ↓⟩ with a single photon in the cavity and all spins in their
ground state. Using a Laplace transformation (see Appendix F), we can write down
a formal solution to the Volterra equation (2.13) for the above initial state given
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by

𝐴(t) = Ω2

∫︁ ∞

0

𝑒−i(𝜔−𝜔𝑐−i𝛾)t 𝑈(𝜔) 𝑑𝜔, (5.1)

where

𝑈(𝜔) = lim
𝜎→0+

{︂
𝜌(𝜔)

(𝜔−𝜔𝑐−Ω2𝛿(𝜔) +i(𝜅− 𝛾))2+(𝜋Ω2𝜌(𝜔)+𝜎)2

}︂
(5.2)

is the kernel function and |𝐴(t)|2 = ⟨1, ↓ |𝑎†𝑎(t)|1, ↓⟩ is the cavity occupation in the
single-excitation regime. Furthermore,

𝛿(𝜔) = P
∫︁ ∞

0

𝑑�̃�𝜌(�̃�)

𝜔−�̃�
(5.3)

denotes the nonlinear Lamb shift of the cavity frequency 𝜔𝑐 with P being the Cauchy
principal value. The dominant frequency components that enter the dynamics of
𝐴(t) are the resonances 𝜔r of the kernel function 𝑈(𝜔). A necessary condition for
such a resonance is that the őrst term in the denominator of 𝑈(𝜔) vanishes [212]

(𝜔r − 𝜔𝑐)/Ω
2 = 𝛿(𝜔r). (5.4)

This resonance condition allows us to identify different dynamic regimes depending
on the collective coupling strength Ω.

Figure 5.1.2(a-d) depicts the kernel function 𝑈(𝜔) and the nonlinear Lamb shift
𝛿(𝜔) for two different coupling strengths Ω/2𝜋 = 8MHz and 26MHz, respectively.
The resonance condition (5.4) is fulőlled for the intersections of the nonlinear Lamb
shift 𝛿(𝜔) with the straight line (𝜔− 𝜔𝑐)/Ω

2 [dashed line in Fig. 5.1.2(c,d)]. As the
slope of (𝜔 − 𝜔𝑐)/Ω

2 changes, so does the number of intersections, which gives rise
to very different resonance structures in 𝑈(𝜔) and, hence, very different dynam-
ical regimes. For Ω/2𝜋 = 8MHz, we observe two pronounced resonances in the
kernel function 𝑈(𝜔) corresponding to the well-known single-mode strong coupling
regime with two polaritonic peaks. When the coupling strength is increased to
Ω/2𝜋 = 26MHz, the slope of (𝜔 − 𝜔𝑐)/Ω

2 decreases, resulting in more intersection
points with the nonlinear Lamb shift 𝛿(𝜔). As a consequence, we observe multiple
resonances in 𝑈(𝜔), which leads to a new dynamic regime as detailed below.

In Fig. 5.1.2(e,f) we present the corresponding temporal evolution of the cavity
photon number ⟨𝑎†𝑎(t)⟩ for the initial state |1, ↓⟩ with a single photon inside the cav-
ity and all spins in their ground state. For the single-mode strong coupling regime
(Ω/2𝜋 = 8MHz) the cavity photon number displays damped Rabi oscillations at a
frequency given by the spacing of the two polaritonic peaks 𝑈(𝜔). Here, effectively
only the central spin ensemble couples strongly to the cavity, while the presence
of the off-resonant ensembles leads merely to minor distortions of the oscillations.
Note that the detuning Δ𝜔/2𝜋 = 40MHz of these ensembles is much larger than
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Figure 5.1.2.: Route from single-mode strong coupling to multimode strong coupling
for the atomic frequency comb depicted in Fig. 5.1.1 strongly coupled to a single cavity
mode. The left columns show results for a collective coupling strengths Ω/2𝜋 = 8MHz
where effectively only the central spin ensemble couples to the cavity. The right columns
show the same calculations for an increased coupling strength Ω/2𝜋 = 26MHz realizing
multimode strong coupling. (a,b) Kernel function 𝑈(𝜔) of the formal solution for the
cavity amplitude Eq. (5.1) showing (a) two polaritonic peaks in the single-mode strong
coupling regime and (b) multiple such peaks in the multimode strong coupling regime.
(c,d) Nonlinear Lamb shift 𝛿(𝜔) versus frequency 𝜔. The red dots indicate the resonances
of the kernel function 𝑈(𝜔) given by the intersections between 𝛿(𝜔) and the dashed line
(𝜔−𝜔𝑐)/Ω

2 [see Eq. (5.2)]. Note that not all intersections lead to a resonance in 𝑈(𝜔), since
the second term of the denominator in Eq.(5.2) can suppress such a contribution. (e,f)
Dynamics of the cavity photon number ⟨𝑎†𝑎(t)⟩ when at t = 0 the cavity is in the single
photon state |1, ↓⟩, with all spins unexcited. The dynamics is governed by the frequencies
of the Kernel function 𝑈(𝜔) featuring (e) damped Rabi-oscillations in the single-mode
strong coupling regime and (f) pulsed revivals of the initial excitation in the multimode
strong coupling regime. (g,h) Semiclassical evolution of the cavity probability amplitude
|⟨𝑎(t)⟩|2 after a short coherent input pulse of rectangular shape and 6ns duration showing
the same characteristic behavior as (e,f).
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the cavity linewidth 𝜅/2𝜋 = 0.4MHz and the coupling strength Ω/2𝜋 = 8MHz.
However, with the increased coupling strength Ω/2𝜋 = 26MHz all subensembles
start to couple to the cavity as outlined above, with the system entering the multi-
mode strong coupling regime. Instead of Rabi oscillations, here, we observe pulsed
revivals of the initial excitation, which can be attributed to a constructive rephas-
ing of the spins at time intervals that are approximately equal to the inverse of the
spectral distance 2𝜋/Δ𝜔 between adjacent subensembles.

We őnd very similar dynamics in the semiclassical case presented in Fig. 5.1.2(g,h)
when we directly solve the Volterra equation (2.13) for a short rectangular input
pulse on resonance with the cavity 𝜔p = 𝜔𝑐. The duration of the driving pulse
is chosen to be 6 ns, which is much smaller than the intrinsic dephasing time in
our system such that the inhomogeneous broadening has only negligible inŕuence
during the excitation pulse and the dynamics resembles the evolution in the single-
excitation regime. As before, the cavity amplitude |⟨𝑎(t)⟩|2 shows distorted Rabi
oscillations for Ω/2𝜋 = 8MHz and periodic pulses of excitation for Ω/2𝜋 = 26MHz.
While these results already demonstrate that one can enter a new dynamic regime
of pulsed emission from collectively coupled and inhomogeneously broadened spin
ensembles for realistic parameter values, the number of pulses that we observe in
Fig. 5.1.2 is rather limited. As we show below, one can resolve this limitation in
the system by the method of spectral hole burning [55].

Eigenvalue analysis

To arrive at these results, we őrst need to investigate the eigenvalues and the corre-
sponding eigenstates of the strongly coupled cavity-spin system. For this purpose
we start from the discrete set of linear differential equations for the cavity and spin
expectation values [Eqs. (2.3a) and (2.3b)] and substitute ⟨𝑎(t)⟩ = A · exp (−𝜆t)
as well as ⟨𝜎k(t)⟩ = Bk · exp (−𝜆t). This allows us to derive the non-Hermitian
eigenvalue problem

ℒ𝜓l = 𝜆l𝜓l, (5.5)

with

ℒ =

⎛⎜⎜⎜⎜⎝
𝜅 −𝑔1 −𝑔2 ... −𝑔𝑁
𝑔1 𝛾 + i(𝜔1 − 𝜔𝑐) 0 ... 0
𝑔2 0 𝛾 + i(𝜔2 − 𝜔𝑐) ... 0
... ... ... ... ...
𝑔𝑁 0 0 ... 𝛾 + i(𝜔𝑁 − 𝜔𝑐)

⎞⎟⎟⎟⎟⎠ , (5.6)

and 𝜓l = (Al,B
k
l )

𝑇 , which we solve numerically for different values of the mean
spin frequency 𝜔s. Note that Im(𝜆l) plays the role of the collective eigenfrequency
and Re(𝜆l) > 0 is the decay rate of 𝜓l. When solving this eigenvalue problem, we
always keep the same shape for the spectral function 𝜌(𝜔) depicted in Fig. 5.1.1
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Figure 5.1.3.: (a-c) Single-mode strong coupling regime. Solution of the eigenvalue
problem [Eq. (5.5)] for Ω/2𝜋 = 8 MHz as a function of the mean spin frequency 𝜔s of
the spectral function 𝜌(𝜔) shown in Fig. 5.1.1. (a) Cavity content |Al|2 of the normalised
eigenvector 𝜓l = (Al,B

k
l ) versus eigenfrequencies Im(𝜆l) and 𝜔s (logarithmic color scale):

two prominent polariton modes are clearly distinguishable from a bath of dark states
with low cavity content at őxed values of 𝜔s. (b) The cavity content |Al|2 versus Im(𝜆l)
for the resonant case 𝜔s = 𝜔𝑐 along the vertical cut shown in (a) (dashed blue line).
(c) |Al|2 versus decay rates Re(𝜆l) and 𝜔s with the same coloring as in (a). The cyan
dashed line indicates the minimal decay rate of the cavity amplitude reachable by the
cavity protection effect given by 𝜅/2, with 𝜅 = 2𝜋 × 0.4 MHz (HWHM of the cavity
decay) and 𝛾 = 2𝜋 × 0.01 MHz ≪ 𝜅 (HWHM of the spin decay). The white dashed
line indicates the decay rate of the bare cavity mode 𝜅. (d-f) Multimode strong coupling
regime. Solution to the same eigenvalue problem as above but for an increased coupling
strength Ω/2𝜋 = 26 MHz (same color-coding and notations as above). Eight polariton
modes are clearly visible with an almost equidistant spacing, see (e) for the resonant case
𝜔s = 𝜔𝑐. In all calculations 𝑁 = 1200 spins were used.
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but shift the whole structure in the frequency domain by detuning the mean spin
frequency 𝜔s of the central ensemble with respect to the cavity frequency 𝜔𝑐.

The results of these calculations are presented in Fig. 5.1.3 for Ω/2𝜋 = 8MHz
and Ω/2𝜋 = 26MHz, where we plot the cavity content |Al|2 of the normalized
eigenvector 𝜓l as a function of 𝜔s and Im(𝜆l) (a,d) or Re(𝜆l) (c,f), respectively.
For Ω/2𝜋 = 8MHz each subensemble separately is in the strong coupling regime
and we observe an avoided crossing in Fig. 5.1.3(a) whenever the resonance condi-
tion 𝜔

(𝜇)
s = 𝜔𝑐 is satisőed. The off-resonant spin ensembles, however, provide only

a negligible cavity content [see Fig. 5.1.3(b)]. It can be seen from Fig. 5.1.3(c)
that a large fraction of eigenstates, 𝜓l , decays with some intermediate decay
rate which lies within the interval 𝛾 < Re(𝜆l) < 𝜅. With a further increase of
the coupling strengths to Ω/2𝜋 = 26MHz the avoided crossings are replaced by
a comb-shaped structure with parallel stripes of large cavity content |Al|2 [yel-
low lines in Fig. 5.1.3(d)] indicating the multimode strong coupling between all
subensembles and the cavity. It is worth noting that the peaks become substantially
sharper as compared to the case of the single-mode strong coupling regime [compare
Fig. 5.1.3(e) and (b)], which can be attributed to the so called “cavity protection
effectž [37, 38, 53, 54]. This phenomenon can also be observed in Fig. 5.1.3(f) where
the decay rates are shifted towards smaller values compared those in Fig. 5.1.3(c).

Sustained photon pulse revivals

In the following, we want to apply these őndings to suppress the decay of the ob-
served revivals in the multimode strong coupling regime. For this purpose, we make
use of the recent insight [55] that the decoherence induced by the spin broadening
can be strongly suppressed by burning two narrow spectral holes in the spin spec-
tral density close to the maxima of the two polaritonic peaks. This effect is based
on the creation of long-lived collective dark states [53, 54, 56, 211] in the spin en-
semble that have only very little cavity content. Here, we generalize this theoretical
concept, which meanwhile has also been successfully implemented experimentally
[56], to the multimode strong coupling regime.

The most natural extension of this hole-burning approach to the multimode
regime would demand that the positions of the burned spectral holes remain close
to the polaritonic peaks of which we observe altogether eight in Fig. 5.1.3(e). As
illustrated in Fig.5.1.4, we therefore burn eight narrow spectral holes into the spin
distribution 𝜌(𝜔) at frequencies which correspond to the maxima of the cavity
content, |Al|2, shown in Fig. 5.1.3(e). The hole burning can be straightforwardly
implemented in an experiment by exposing the cavity to very high intensity pulses
that feature frequency components exactly at the position of the desired holes. The
spins at these frequencies will then saturate and no longer couple to the cavity such
that they are effectively removed from the spin distribution. While the hole burning
itself is a nonlinear process which can not be modeled by the Volterra equation,
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Figure 5.1.4.: Spectral spin distribution from Fig. 5.1.1 with eight spectral holes (red)
at the maxima of the cavity content |Al|2 shown in Fig. 5.1.3(e) for Ω/2𝜋 = 26 MHz. All
holes are of equal width, Δℎ/2𝜋 = 0.47 MHz, and are modeled by a Gaussian lineshape.

the subsequent dynamics can be well described using the same formalism as above.
We therefore assume that the holes are burned at t = 0 and numerically integrate
the Volterra equation for the spin distribution depicted in Fig.5.1.4 after a short
rectangular input pulse.

Figure 5.1.5 shows that the pulsed revivals of the cavity probability amplitude
|⟨𝑎(t)⟩|2 persist over a drastically increased time interval as compared to the cor-
responding case without hole burning presented in Fig.5.1.2(h). Notably, the sup-
pression of decoherence surpasses also the limit imposed by the cavity protection
effect as illustrated in Fig.5.1.5(b). Note that while the decay of the bare cavity

Figure 5.1.5.: Cavity probability amplitude |⟨𝑎(t)⟩|2 as a function of time t under the
action of a short (6 ns) rectangular input pulse for a comb-shaped spin distribution with
eight spectral holes as presented in Fig. 5.1.4. All other parameters are the same as for
the case without hole burning presented in Fig. 5.1.2(d). (b) Same as (a) but with the
ordinate plotted on a logarithmic scale. The decay process with the minimal decay rate
reachable by the cavity protection effect, 𝑒−𝜅t, with 𝜅/2𝜋 = 0.4 MHz is depicted by the
red dashed line. Note that the rate of |⟨𝑎(t)⟩|2 for a bare cavity without spin ensemble is
given by 𝑒−2𝜅t (not shown).
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probability is given by 𝑒−2𝜅t, the cavity protection effect in the limit of 𝛾 ≪ 𝜅
predicts a decay following 𝑒−𝜅t [38]. We őnd that the photon pulse revivals sig-
niőcantly exceed this barrier such that, e.g., at t = 3𝜇s after the driving pulse,
the values of |⟨𝑎(t)⟩|2 are two orders of magnitude above those achievable through
the cavity protection effect. To check if the holes we burned in the ensemble are,
indeed, located at the optimal positions, we also performed additional calculations
(not shown) in which we varied the hole positions by only a few percent away from
the maxima of |Al|2. This leads to a substantial decrease in the revival amplitudes
as compared to those in Fig.5.1.5 conőrming our initial choice of positioning the
holes right at the frequencies of the polaritonic peaks to obtain long-lived photon
pulse revivals.

5.2. Cavity state revivals9

As we have shown in the previous section, the strong coupling of a cavity to multiple
spin ensembles, which form an atomic frequency comb, leads to pulsed revivals of
the initial cavity occupation probability. While the Volterra integral formalism used
in this context is also valid in the single-photon regime, it does not provide access
to the quantum mechanical phase space of the spin-cavity system. In this section,
we use a time-dependent variational renormalization group method (Section 3.2)
to shed light on the quantum mechanical wavefunction of the cavity őeld during
the periodic absorption and re-emission process of the atomic frequency comb.
This is particularly interesting since the inőnite Hilbert space of the cavity can
encode quantum information in various forms ranging from simple Fock states [217]
to error-correcting Schrödinger cat codes [218ś221], binomial codes [222, 223], or
Gottesman-Kitaev-Preskill codes [224, 225], which promise fault-tolerant bosonic
quantum computing.

Unlike in the previous section, we study here a mesoscopic spin ensemble of
𝑁 = 70 spins without inhomogeneous broadening. The frequency comb is given by
m = 7 frequency clusters 𝜔𝜇 = 𝜔𝑐 + 𝜇Δ𝜔 with 𝜇 = {−(m − 1)/2, ..., (m − 1)/2},
where each subensemble is őlled with 𝑁 ′ = 𝑁/m spins. As before, the collective
coupling strength of the 𝜇-th sub-ensemble is then given by Ω𝜇 =

∑︀𝑁 ′
k 𝑔2𝜇,k = 𝑁 ′𝑔2𝜇.

While our treatment is very general, we use in our calculations parameters in the
microwave regime that are realistic in experiments with nitrogen-vacancy centers in
diamond assuming 𝜔𝑐/2𝜋 = 3 GHz and Δ𝜔/2𝜋 = 40 MHz. If not stated otherwise
we use the parameters 𝜅/2𝜋 = 0.2 MHz, 𝛾ℎ/2𝜋 = 1 kHz, and 𝛾p/2𝜋 = 33 kHz.

9 The results presented in this section are based on the publication [86], from which also őgures
and parts of the text are taken. All calculations were performed by myself under the supervision
of Dmitry Krimer and Stefan Rotter. Himadri Dhar helped with the theoretical interpretation
of our results and developed the time-dependent variational renormalization group method
used in this section.
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Figure 5.2.1.: (a) Comb-shaped distribution of the collective coupling strengths Ω𝜇

(without inhomogeneous broadening). Here we compare a uniform comb structure,
where each frequency cluster (indicated by a delta-like peak) couples to the cavity
with the same coupling strength Ω𝜇/2𝜋 = 30 MHz (purple), with a spectrally engi-
neered comb structure (light green), where Ω𝜇 follows a Gaussian envelope (dashed line)
Ω𝜇 = Ω0 exp

[︀−(𝜔𝑐 − 𝜔𝜇)
2/2𝜆2

]︀
, with Ω0/2𝜋 = 30 MHz and 𝜆/2𝜋 = 0.19 GHz. (b)

Cavity photon number ⟨𝑎†𝑎⟩ as a function of time for the modiőed (bottom) and uniform
(top) comb structure. The spin ensemble in both cases is initially unexcited and the cavity
is prepared in a coherent state |𝛼⟩ of amplitude 𝛼 = 1. The red dashed line corresponds
to the bare cavity decay proportional to exp(−2𝜅t), with 2𝜅 = 2𝜋 × 0.4 MHz.

In the following, we assume that the spin ensemble is initially unexcited and the
cavity is prepared in some initial state |𝜓in

cav⟩. Before we examine the quantum
evolution of the cavity wave function for speciőc multi-photon states, we revisit the
revival dynamics of the cavity photon number ⟨𝑎†𝑎(t)⟩ with the cavity being initially
in the coherent state |𝜓in

cav⟩ = |𝛼⟩ with amplitude 𝛼 = 1. For the simplest case
of a uniform coupling distribution, where each subensemble couples with the same
strength Ω𝜇/2𝜋 = 30 MHz [depicted in Fig. 5.2.1(a)], we observe in Fig. 5.2.1(b) that
the cavity excitation is őrst transferred into the frequency comb and then re-emitted
back into the cavity at a well-deőned later time 𝑇rev. As we have encountered in
the previous section, this process repeats periodically, leading to a series of revivals
in the cavity photon number. We note that for the uniform coupling distribution,
however, the photon numbers drop already signiőcantly during the őrst őve revivals
depicted in Fig. 5.2.1(b) (top panel). Interestingly, this drastic decrease is not a
result of losses in the cavity or the spin ensemble but rather a consequence of the
normal-mode splitting in the strong coupling regime, which distorts the comb’s
equidistant frequency spectrum. As detailed below, this frequency detuning can be
compensated through a customized engineering of the spectral coupling distribution
Ω𝜇. Using a Gaussian distribution of standard deviation 𝜆/2𝜋 = 0.19 GHz for the
coupling strengths Ω𝜇, we obtain a long-lived train of revivals in the cavity photon
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number as presented in Fig. 5.2.1(b) (bottom panel). A comparison with the bare
cavity decay ∝ exp(−2𝜅t) shows that the excitation transfer to the long-lived spin
ensemble protects the initial excitation from the cavity losses.

Revivals of multi-photon cavity states

The important open question we now address is, which quantum states are written
into the cavity by the frequency comb during the revivals and how these states
are related to the initial cavity wave function. To answer this question com-
prehensively, we examine the quantum mechanical evolution of the cavity wave
function during the periodic absorption and re-emission process for three differ-
ent initial states |𝜓in

cav⟩: (i) |𝛼⟩ is a coherent state of amplitude 𝛼 =
√
2, which

closely resembles the situation of a short coherent pulse injected into the cavity.
(ii) |𝜓sup⟩ = 1

Nsup

∑︀4
n=1 𝑐n|n⟩ is a superposition of the four lowest Fock states |n⟩

with the coefficients 𝑐1−4 chosen arbitrarily as 5, −i
√
15, −(

√
10 − i

√
15), and

(5− i
√
10) such that no apparent phase relation can be established between neigh-

boring Fock states. (iii) |𝜓⟩cat = 1
Ncat

(|𝛽⟩+ |−𝛽⟩) with 𝛽 = 2 denotes a Schrödinger
cat state as used in many quantum information processing tasks, including quan-
tum computation [226], quantum teleportation [227], and precision measurements
[228].

Figure 5.2.2.: (a) Cavity photon number ⟨𝑎†𝑎⟩ as a function of time for three different
initial states |𝜓in

cav⟩ of the cavity: (i) |𝛼⟩, (ii) |𝜓sup⟩, and (iii) |𝜓cat⟩ (top to bottom) as
speciőed in the main text. (b) Fidelity of the time evolved cavity state 𝜌cav(t) with its
initial state from (a) |𝜓in

cav⟩ (ℱin, solid line) and with the parity transformed state Π̂|𝜓in
cav⟩

(ℱPT, dashed line). Here, the coupling distribution Ω𝜇 for all three cases follows the same
Gaussian envelope with 𝜆/2𝜋 = 0.19 GHz.
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Figure 5.2.3.: Wigner functions corresponding to the dynamics presented in Fig. 5.2.2
(timestamps are given in the bottom row). The cavity state is transferred to the spin
ensemble within a few nanoseconds. Then the cavity remains empty until the stored
photons are re-emitted at 𝑇rev = 27.5ns. Note that after one absorption and re-emission
period, the Wigner function is point-reŕected through the origin, which amounts to a
parity transformation Π̂ = exp(i𝜋�̂�†�̂�) of the initial state. Initial states which are not
eigenstates of the parity operator Π̂, such as |𝛼⟩ or |𝜓sup⟩, are therefore restored only
after 2𝑇rev = 55ns.

First of all, we see in Fig. 5.2.2(a) that for all three initial states the cavity photon
number ⟨�̂�†�̂�⟩ shows the characteristic periodic revival structure: The initial cavity
photons are absorbed by the spin ensemble within a few nanoseconds, irrespective of
the quantum state in which the cavity is initialized. After that, the cavity remains
empty until the number of photons is restored at t = 𝑇rev ≈ 27.5 ns and the process
starts all over again. Since we have direct access to the full density matrix of the
cavity őeld, we are now in the position to calculate the ődelity

ℱin = ℱ{𝜌cav(t), 𝜌in} =

(︂
Tr

[︂√︁√︀
𝜌cav(t)𝜌in

√︀
𝜌cav(t)

]︂)︂2

(5.7)

of the cavity state 𝜌cav(t) with the initial state 𝜌in = |𝜓in
cav⟩⟨𝜓in

cav| during the ab-
sorption and revival process. Figure 5.2.2(b) shows that ℱin has a maximum peak
of almost one for the Schrödinger cat state (iii) at the őrst revival but at the same
time is minimal for the coherent (i) and the chosen superposition state (ii). As we
show below, the reason for this peculiar behavior is that the absorption and re-
emission by the frequency comb act as a parity transformation Π̂ = exp(i𝜋�̂�†�̂�) on
the initial state. We therefore calculate the ődelity ℱPT = ℱ{𝜌cav(t), 𝜌PT} of 𝜌cav(t)
with the parity-transformed initial state 𝜌PT = Π̂𝜌inΠ̂

† and present the results in
Fig. 5.2.2(b) as well. Our calculations conőrm that the state that is restored in
the cavity at the őrst revival is indeed the parity-transformed initial state. Note
that the Schrödinger cat state is an eigenstate of the parity operator such that
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ℱPT = ℱin.
Using the access to the full density matrix of the cavity, we plot in Fig. 5.2.3(b)

the Wigner function

𝑊 (𝛼, 𝛼*, t) =
1

𝜋2

∫︁
𝑑2𝛽𝑒𝛼𝛽

*−𝛼*𝛽 Tr{𝑒𝛽�̂�†−𝛽*�̂�𝜌cav(t)} (5.8)

of the cavity őeld during the periodic revivals. As expected, the cavity state is
absorbed by the spin ensemble within a few nanoseconds regardless of the initial
state. The cavity remains in the vacuum state |0⟩ for times t = 5ns to 22.5 ns before
the multi-photon state is őnally re-emitted from the spin ensemble. We see that at
the peak of the őrst revival at 𝑇rev = 27.5 ns the Wigner function is point-reŕected
through the origin as compared to the initial Wigner function, which corresponds
to a parity transformation as discussed above. Then the process starts all over
again such that the initial cavity state is restored at 2𝑇rev.

The energy spectrum in the few-excitation limit

As demonstrated in Fig. 5.2.1, a uniform coupling distribution leads to a rapid
decrease in the photon number of the revivals, which can be attributed to an im-
perfect rephasing of the atomic frequency comb. To examine this in more detail,
we calculate the eigenenergies of the compound spin-cavity system in the one- and
two-excitation subspace. Introducing collective spin operators for each subensemble
of the frequency comb 𝐽z

𝜇 = 1
2

∑︀𝑁 ′
k=1 𝜎

z
k and 𝐽±

𝜇 =
∑︀𝑁 ′

k=1 𝜎
±
k , the Tavis-Hamiltonian

can be rewritten as

𝐻 = 𝜔𝑐𝑎
†𝑎+

∑︁
𝜇

𝜔𝜇𝐽
z
𝜇 + 𝑔𝜇

∑︁
𝜇

(𝐽+
𝜇 𝑎+ 𝐽−

𝜇 𝑎
†). (5.9)

With the use of a collective spin basis [98]

𝐽z
𝜇 |𝐽𝜇,m𝜇⟩ = m𝜇 |𝐽𝜇,m𝜇⟩ = (−𝑁 ′/2 + q𝜇) |q𝜇⟩ , (5.10)

and

𝐽±
𝜇 |𝐽𝜇,m𝜇⟩ =

√︁
𝐽𝜇(𝐽𝜇 + 1)−m𝜇(m𝜇 ± 1) |𝐽𝜇,m𝜇⟩

=
√︁

𝑁 ′/2 +𝑁 ′q𝜇 − q2𝜇 ± (𝑁 ′/2− q𝜇) |q𝜇⟩ , (5.11)

we can set up the one- and two-excitation subspace for the coupled spin-cavity
system. Note that we have introduced the shorthand notation |𝐽𝜇,m𝜇⟩ = |q𝜇⟩ for
the spin states, where q𝜇 denotes the number of excitations in the 𝜇-th subensemble.
We write the 1 + m basis states of the one-excitation subspace of the combined
spin-cavity system as |1𝑐⟩ |0𝜇⟩ and |0𝑐⟩ |1𝜇⟩. Here, |1𝑐⟩ |0𝜇⟩ denotes a state with a
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single excitation in the cavity part and no excitation in the spin ensemble, whereas
|0𝑐⟩ |1𝜇⟩ denotes m states where the single excitation is in the 𝜇-th subensemble
(with all other subensembles unexcited) and no excitation in the cavity. The action
of the Hamiltonian (5.9) on this one-excitation basis is then given by

𝐻 |1𝑐⟩ |0𝜇⟩ =
(︂
𝜔𝑐 − 𝑁 ′

2
𝜔Σ

)︂
|1𝑐⟩ |0𝜇⟩+

∑︁
𝜇

Ω𝜇 |0𝑐⟩ |1𝜇⟩ , (5.12)

𝐻 |0𝑐⟩ |1𝜇⟩ =
(︂
𝜔𝜇 − 𝑁 ′

2
𝜔Σ

)︂
|0𝑐⟩ |1𝜇⟩+ Ω𝜇 |1𝑐⟩ |0𝜇⟩ , (5.13)

with 𝜔Σ =
∑︀

𝜇 𝜔𝜇.
Using the same notation as above, the basis states of the two-excitation subspace

can be written as |2𝑐⟩ |0𝜇⟩, |1𝑐⟩ |1𝜇⟩, |0𝑐⟩ |1𝜇⟩ |1𝜈⟩, |0𝑐⟩ |2𝜇⟩ (in total 1+m+m (m−
1)/2 +m basis states). The Hamiltonian (5.9) acting on these states gives

𝐻 |2𝑐⟩ |0𝜇⟩ =
(︂
2𝜔𝑐 − 𝑁 ′

2
𝜔Σ

)︂
|2𝑐⟩ |0𝜇⟩+

√
2
∑︁
𝜇

Ω𝜇 |1𝑐⟩ |1𝜇⟩ , (5.14)

𝐻 |1𝑐⟩ |1𝜇⟩ =
(︂
𝜔𝑐 + 𝜔𝜇 − 𝑁 ′

2
𝜔Σ

)︂
|1𝑐⟩ |1𝜇⟩+ Ω𝜇

√
2 |2𝑐⟩ |0𝜇⟩+

∑︁
𝜈 ̸=𝜇

Ω𝜈 |0𝑐⟩ |1𝜇⟩ |1𝜈⟩

+ Ω𝜇

√︀
2− 2/𝑁 ′ |0𝑐⟩ |2𝜇⟩ , (5.15)

𝐻 |0𝑐⟩ |1𝜇⟩ |1𝜈⟩ =
(︂
𝜔𝜇 + 𝜔𝜈 − 𝑁 ′

2
𝜔Σ

)︂
|0𝑐⟩ |1𝜇⟩ |1𝜈⟩+ Ω𝜇 |1𝑐⟩ |1𝜈⟩+ Ω𝜈 |1𝑐⟩ |1𝜇⟩ ,

(5.16)
and

𝐻 |0𝑐⟩ |2𝜇⟩ =
(︂
2𝜔𝜇 − 𝑁 ′

2
𝜔Σ

)︂
|0𝑐⟩ |2𝜇⟩+ Ω𝜇

√︀
2− 2/𝑁 ′ |1𝑐⟩ |1𝜇⟩ . (5.17)

With the above equations one can set up the Tavis-Cummings Hamiltonian in
the single- and two-excitation basis and obtain its eigenvalues numerically. The
resulting energy spectrum is presented in Fig. 5.2.4 as a function of the coupling
strength Ω𝜇 for the simple case of an equidistant frequency comb with Δ𝜔/2𝜋 = 40
MHz and uniform coupling. The strong coupling leads to a normal-mode splitting,
which lifts the degeneracy of the cavity mode and the central (resonant) spins.
Consequently, the őrst rung of the energy ladder in the strong coupling regime
consists of m+1 levels instead of m in the uncoupled case. The coupling between the
cavity and spin ensemble thereby shifts the energy levels of the spin-cavity system
such that they are no longer equidistant. This deviation from an equidistant energy
spectrum leads to an imperfect rephasing of the spin ensemble and thereby to a
deterioration of the observed revivals. In the following we show how a modiőcation
of the distribution of collective coupling strengths Ω𝜇 can compensate the coupling
induced energy shifts and restore revivals of high ődelity.
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Figure 5.2.4.: (a,b) Energy spectrum of the one- and two-excitation subspace of the
Tavis-Cummings Hamiltonian (5.9) as a function of the collective coupling strength Ω𝜇.
Here we consider the simplest case of an equidistant atomic frequency comb structure
with Δ𝜔/2𝜋 = 40 MHz uniformly coupled to a single cavity mode. (c,d) Corresponding
spacings Δ𝐸

(1/2)
i of neighboring energy levels. The spin-cavity coupling lifts the equidis-

tant energy spectrum of the atomic frequency comb yielding a non-equidistant spectrum
for the compound spin-cavity system.

Spectral engineering

To compensate for the energy distortions in the strong coupling regime, we modify
the distribution of coupling strengths as indicated in Fig. 5.2.1 by a Gaussian enve-
lope Ω𝜇 = Ω0 exp [−(𝜔𝑐 − 𝜔𝜇)

2/2𝜆2]. In principle, we could optimize each coupling
strength individually to őnd the distribution that optimally restores an equidistant
energy spectrum. However, the choice of a őxed distribution function has the ap-
pealing advantage that we can monitor the ődelity of the revivals and the energy
spacings as a function of a single parameter, i.e., the standard deviation 𝜆 of the
Gaussian envelope.

Subsequently, we tune the standard deviation of the coupling distribution be-
tween the values 𝜆/2𝜋 = 1 GHz and 𝜆/2𝜋 = 0.1 GHz as depicted in Fig. 5.2.5(a)
for speciőc values of 𝜆. We calculate the corresponding dynamics for the simple
initial state |𝜓in

cav⟩ = 1√
2
(|1⟩ + |2⟩) and evaluate the ődelity ℱin/PT at the őrst four

revivals. Hereafter we will drop the subscripts in ℱin/PT implying that we use the
former at even revivals and the latter at odd revivals of the cavity state. To exclude
effects stemming from the openness of the system, all loss parameters are set to
zero such that deviations from ℱ = 1 can be attributed exclusively to an imperfect
rephasing of the frequency comb. Figure 5.2.5(b) shows the ődelity ℱ at the őrst
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four revivals for the same selection of coupling distributions as presented in (a).
For 𝜆/2𝜋 = 1 GHz, which corresponds to an almost uniform coupling, the ődelity
stays noticeably below one with ℱ = 98.1% at the őrst revival and continues to
deteriorate rapidly reaching values ranging from 92.6% to 71.7% for the following
three revivals. The ődelity of the revivals drastically increases for decreasing values
of 𝜆 reaching a maximum for 𝜆/2𝜋 ≈ 0.19 GHz; here the ődelity with the initial
state is 98.6% even for the fourth revival. For 𝜆 decreasing even further, the ődelity
of the revivals deteriorates again.

Figure 5.2.5.: (a) Distribution of collective coupling strengths Ω𝜇 of each frequency
cluster of the atomic frequency comb with 𝜔𝜇 = 𝜔𝑐 + 𝜇Δ𝜔 for 𝜇 = {−3,−2, ..., 3} and
with Δ𝜔/2𝜋 = 40 MHz. The couplings follow Gaussian distributions with standard
deviations 𝜆/2𝜋 ranging from 1 GHz to 0.16 GHz. (b) Fidelity at the őrst four cavity
state revivals for the coupling distributions presented above. At even revivals the ődelity
is calculated for the cavity state function and the initial state |𝜓in

cav⟩ = 1√
2
(|1⟩+|2⟩); at odd

revivals we calculate the ődelity of the cavity state function and the parity transformed
initial state. (c,d) Energy spacings Δ𝐸

(1/2)
i of the one- and two-excitation subspace

of the Tavis-Cummings Hamiltonian as a function of the distribution parameter 𝜆. In
the vicinity of 𝜆/2𝜋 = 0.19 GHz (red shaded areas) the energy levels become almost
equidistant resulting in an enhanced performance of the atomic frequency comb. (e)
Standard deviation of Δ𝐸

(1/2)
i (purple/yellow) as a function of 𝜆. (f) Fidelity at the őrst

four cavity state revivals as a function of 𝜆 showing distinct maxima around 𝜆/2𝜋 = 0.19
GHz.

Next, we present in Fig. 5.2.5(c,d) the energy level spacings Δ𝐸
(1)
i , Δ𝐸

(2)
i of the

one- and two-excitation subspace of the Tavis-Cummings Hamiltonian, Eq. (5.9),
as a function of the width 𝜆 of the Gaussian coupling distribution. The energy
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shifts induced by the normal-mode splitting are larger for the energy levels close
to resonance with the cavity than for off-resonant levels. The energy levels of a
uniformly coupled spin-cavity system are therefore no longer equidistant, which in-
hibits a perfect rephasing of the initial cavity state as discussed above. Conversely,
the Gaussian modiőcation of the coupling distribution acts as a compensation for
the induced energy shifts, as evidenced in Fig. 5.2.5(e). Here, we present the stan-
dard deviation 𝜎(Δ𝐸

(1/2)
i ) of the energy spacings Δ𝐸

(1/2)
i showing a minimum at

𝜆 = 0.19 GHz, which is the same parameter value for which the ődelity depicted
in Fig. 5.2.5(f) shows a maximum. Our őndings thus conőrm that in the regime
of strong coupling, the spectral engineering of the spin ensemble is a viable tool to
efficiently preserve the quantum information in the system.

Note further that the mean energy spacing of the energy levels in the few-
excitation subspace is given by Δ𝐸

(1)

i ≈ 36.36 MHz (at 𝜆/2𝜋 = 0.19 GHz). This
leads to a revival time of 𝑇rev = 1/Δ𝐸

(1)

i = 27.5 ns, which is in excellent agreement
with the value observed our calculations.

5.3. Periodic pulses of nonclassical light10

Whereas in the previous section, we showed how a mesoscopic atomic frequency
comb preserves an initial multiphoton state over several revivals, we will now ex-
amine how such a frequency comb can also be used to generate pulses of nonclassical
light. In particular, we show that a short coherent input pulse is converted to pe-
riodic single photon pulses with sub-Poissonian statistics.

We again consider an atomic frequency comb, as presented in Fig. 5.2.1(a), where
the individual spin frequencies are given by 𝜔𝜇 = 𝜔𝑐 + 𝜇Δ𝜔 with 𝜇 = {−(m −
1)/2, ..., (m−1)/2} for m = 7 frequency clusters. The collective coupling strength of
the 𝜇-th sub-ensemble follows a Gaussian envelope Ω𝜇 = Ω0 exp [−(𝜔𝑐 − 𝜔𝜇)

2/2𝜆2]
with 𝜆/2𝜋 = 150MHz and Ω0/2𝜋 = 30 MHz. The radiative cavity and spin loss
terms are taken as 𝜅/2𝜋 = 0.2 MHz, and 𝛾ℎ = 𝜅/40, respectively, while non-radiative
dephasing is neglected in the following (𝛾p = 0).

We drive this spin-cavity system resonantly with a short coherent pulse of inten-
sity, 𝜂(t) = 40𝜅, for 0 ≤ t ≤ t′, and 𝜂(t) = 0, otherwise. The pulse duration t′ is
chosen to be 1/5 of the characteristic time scale 2𝜋/Δ𝜔. Before the pulse arrives,
the initial spin-cavity system is unexcited and the cavity is in the vacuum state.
Figure 5.3.1 depicts the resulting dynamics of the cavity photon number ⟨𝑎†𝑎⟩ and
the spin expectation value ⟨𝜎+

i 𝜎
−
i ⟩𝜔i=𝜔𝑐 of the central frequency cluster for ensem-

bles containing from 𝑁 = 7 to 𝑁 = 105 spins. As in the preceding sections, we

10 This section is based on the publication [85], from which also őgures and parts of the text
are taken. The numerical calculations presented here were performed by Himadri Dhar who
also implemented the time dependent variational renormalization group method used in this
section. I was involved in the theoretical interpretation and analysis of the results.
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Figure 5.3.1.: Temporal evolution of the mesoscopic spin-cavity system after a short
coherent input pulse. The őgures show the cavity photon number ⟨𝑎†𝑎⟩ in (a) linear and
(b) log scale, and (c) the spin excitation at resonance ⟨𝜎+

i 𝜎
−
i ⟩𝜔i=𝜔𝑐 , varying with time, and

for ensembles containing 𝑁 = 7, 21, 35, 49, 70, and 105 spins, shown with color varying
from blue to red. The shaded region at times 0 ≤ t ≤ t′ indicates the short rectangular
driving pulse and Δ𝜏 is the interval between the periodic revivals.

observe a periodic pulse train of light, exhibited by sharp revivals of the average
cavity photon number. The peaks correspond to the collective transfer of excita-
tions from the spin ensemble to the cavity, as evident from the sharp decrease in
the spin excitation at the revivals. The time interval between subsequent peaks is
given by 𝑇rev ≈ 2.2𝜋/Δ𝜔 = 27.5 ns. We note that during the transfer of energy
from the cavity to the ensemble, larger ensembles, i.e., larger 𝑁 , not only lead
to enhanced coupling, but also produce more stable and sharper photon pulses as
excitations are distributed over more spins. In contrast, for few spins, signiőcant
photon excitations may also exist between the peaks as observed in Fig. 5.3.1(b).

In the following, we are interested in the photon statistic of the periodic light
pulses emerging after the coherent input pulse. For that purpose, we calculate the
equal-time second order correlation function at time t, deőned as [229]

𝑔2(t, 0) =
⟨𝑎†(t)𝑎†(t)𝑎(t)𝑎(t)⟩

⟨𝑎†(t)𝑎(t)⟩2 , (5.18)

which serves as a signature for nonclassical light with 𝑔2(t, 0) ≥ 1 for all classical
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Figure 5.3.2.: Photon statistics of the transient cavity őeld (all parameters and color
codings are the same as in Fig. 5.3.1). (a) Equal-time second-order correlation function
𝑔2(t, 0) in comparison with the cavity photon number ⟨𝑎†𝑎⟩, for 𝑁 = 7. (b) Temporal
evolution of 𝑔2(t, 0) for 𝑁 = 7 and 105. (c) Minimum value of 𝑔2(t, 0) during a pulse
revival, 𝑔min

2 , for 𝑁 = 7, 21, 35, 49, 70, and 105. The horizontal black-dashed line in (a)
and (b) corresponds to 𝑔2(t, 0) = 1 for coherent light.

light sources (unity for coherent light) and 𝑔2(t, 0) < 1 for nonclassical light. While
the coherent light pulse injected into the cavity is characterized by 𝑔2(t, 0) = 1
(not shown), we observe in Fig. 5.3.2(a) that at times when the subsequent photon
pulses arrive for 𝑁 = 7 the őeld is distinctly sub-Poissonian, i.e., 𝑔2(t, 0) < 1. In
contrast to our őndings in the previous section, the statistic of the light pulses thus
changes signiőcantly from classical to nonclassical during the őrst few revivals. This
behavior can be explained by the őnite size of the spin ensemble as detailed below.
Note that a similar phenomenon occurs for 𝑁 = 105 spins, however, on a much
slower time scale [see Fig. 5.3.2(b)]. Here, the Poissonian statistics, 𝑔2(t, 0) = 1, of
the initial pulse is conserved during several revivals before 𝑔2(t, 0) starts to drop
signiőcantly below unity reaching the unambiguous single-photon regime, 𝑔2(t, 0) ≪
1, at later times. Figure 5.3.2(c) demonstrates that the larger the spin ensemble,
the slower this conversion to a non-classical light pulse is. For an efficient single-
photon source all higher order correlation functions 𝑔n(t, 0) = ⟨𝑎†n𝑎n⟩/⟨𝑎†𝑎⟩n must
also satisfy the relation 𝑔n(t, 0) < 1, which we explicitly checked in Fig. 5.3.3 up to
order n = 4.
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Figure 5.3.3.: Equal-time higher order correlation functions, 𝑔n(t, 0) [with n = 2, 3, 4],
for the nonclassical periodic pulse train presented in Fig. 5.3.1(a,b) for a spin ensemble
containing 𝑁 = 105 spins. (d) The minimum of 𝑔n(t, 0) during each pulse. As can be
seen, the higher order correlation functions all drop considerably below unity.

To understand the process of the conversion from a coherent light pulse to single-
photon pulses, we revisit the energy spectrum of the Tavis-Cummings Hamiltonian
(5.9) in the one- and two-excitation subspace. As discussed in the previous section,
the requirement for the formation of pulsed revivals is an equidistant comb-shaped

Figure 5.3.4.: Standard deviation of the energy spacings Δ𝐸
(1,2)
i in the one- and two-

excitation subspace of the Tavis-Cummings Hamiltonian (5.9) as a function of the number
of spins in the atomic frequency comb. Notably, only the one-excitation subspace features
an equidistant energy spectrum for all system sizes, whereas the two-excitation subspace
deviates strongly from an equidistant spectrum for small spin ensembles.
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energy spectrum. In Fig. 5.3.4, we, therefore, present the standard deviation of the
energy spacings Δ𝐸

(1)
i and Δ𝐸

(2)
i in the two subspaces. We observe that only the

one-excitation subspace features an equidistant energy spectrum for all system sizes.
The two-excitation subspace shows equidistant energy levels for large ensembles but
deviates strongly from such a spectrum for smaller spin ensembles. Consequently,
only the single-photon components show revivals at multiples of the time 𝑇rev for
small spin ensembles, while higher multiphoton contributions are őltered from the
periodic pulses.



Chapter 6.

Spin echoes in the strong coupling
regime

The interaction between electromagnetic őelds and ensembles of spins is also the
basis for magnetic resonance, which in the form of nuclear magnetic resonance
(NMR) and electron spin resonance (ESR) is an invaluable diagnostic tool in a
variety of scientiőc őelds such as in medicine [70], biophysics [230], and chemistry
[231]. As we already encountered, inhomogeneous broadening leads to the dephas-
ing of an initial excitation in a spin ensemble. To extract information from such
a sample, a vast repertoire of sophisticated pulse sequences exists [73]. The ma-
jority of these sequences is based on the Hahn echo [76], which is illustrated in
Fig. 6.0.1. The Hahn echo sequence consists of a 𝜋/2 excitation pulse followed by
a refocusing 𝜋 pulse after some time interval 𝜏 . The latter leads to a rephasing of
the spin ensemble, creating a detectable spin echo after another time interval 𝜏 . In

Figure 6.0.1.: Visualization of the Hahn echo sequence. First, a 𝜋/2 pulse is applied
to excite the spins to the equator of the Bloch sphere 1○. After some time 𝜏 during
which the spins dephase 2○, a refocusing 𝜋 pulse is appliedÐreversing the relative phase
of the individual spins 3○. Consequently, the spins rephase, producing a spin echo 4○
after another time interval 𝜏 .
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this chapter, we present a novel phenomenon in ESR, which occurs when the Hahn
echo is transferred to the context of a strongly coupled spin-cavity system [41, 232].
Here, the strong coupling combined with an imperfect refocusing pulse results in a
self-sustained train of periodic echoes. We provide a theoretical explanation of this
effect using a simple geometric model based on spins rotating on the Bloch sphere,
backed up by numerical calculations using the Maxwell-Bloch equations.

6.1. Self-sustained spin echoes in pulsed electron
spin resonance11

Electron spin resonance (ESR), which started with the early experiments by Za-
voisky [234] in the 1940s, has become an indispensable spectroscopy technique used,
e.g., for the analysis of the structure and dynamics of molecules [235, 236], material
science [237], or quantum sensing and information processing [238ś240]. Develop-
ments in the latter area have beneőted greatly from the progress in the fabrica-
tion of superconducting microwave cavities, for which recently the strong coupling
regime has been demonstrated [33ś35, 37, 40, 42]. Here, the coherent exchange of
information between the microwave cavity and the spin ensemble exceeds the in-
dividual decay rates of the two subsystems, which is a requirement for an efficient
transfer of quantum information [34, 43, 241, 242]. Apart from its importance for
quantum technology, a strong coupling rate also enhances the sensitivity in ESR
applications [74, 75] going beyond classical ESR models [72, 73].

In the following, we transfer the conventional Hahn echo to the strong coupling
regime using a superconducting microwave cavity strongly coupled to a paramag-
netic spin ensemble. Speciőcally, we compare continuous and pulsed ESR measure-
ments of a strongly coupled spin ensemble based on isolated phosphorus donors in
a 28Si host matrix with a weakly coupled ensemble of P2 dimers also present in the
sample.

The experimental scheme is sketched in Fig. 6.1.1(a-c). The cavity is a planar
superconducting lumped element resonator patterned into a 150 nm thin Nb őlm on
an intrinsic natSi substrate and located next to a microwave feedline, which allows
us to probe the microwave transmission through the device. The sample is a 20 µm
thin slab of [100] oriented 28Si:P mounted onto the cavity [see Fig. 6.1.1 (c)] and
kept at a temperature of 𝑇 = 50mK. A static magnetic őeld 𝐵0 is applied in-
plane of the superconducting resonator. For details of the experimental setup see

11 This section is based on the joint publication [41] from which also parts of the text and
őgures are taken. The experiment was performed by Stefan Weichselbaumer and Christoph
W. Zollitsch at the Walther-Meiûner-Institute of the the Bavarian Academy of Sciences under
the supervision of Martin S. Brandt, Rudolf Gross, and Hans Hübl. The theoretical modeling
and interpretation was performed by myself under the supervision of Stefan Rotter. A detailed
description of the experimental setup is given in the PhD thesis of Stefan Weichselbaumer [233].
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Figure 6.1.1.: (a) Circuit diagram of the ESR setup consisting of phosphorus donors
in silicon coupled collectively with strength 𝑔eff to a lumped element resonator. The
intrinsic and external losses of the resonator are denoted by 𝜅in and 𝜅ext, respectively,
and 𝛾s denotes the spin losses. (b) Microscope image of the lumped element resonator
next to a microwave feedline. (c) Schematic of the 20 𝜇m thin 28Si :P sample mounted on
top the resonator. In purple the input and output of the microwave feedline is indicated
and the red arrow shows the in-plane magnetic őeld 𝐵0. Figure adapted from ref. [41].

refs. [41, 233].

Continuous-wave ESR spectroscopy

First, the sample containing phosphorus donors as well as P2 dimers was character-
ized by continuous-wave ESR spectroscopy. Figure 6.1.2 (a) depicts the normalized
microwave transmission |𝑆21|2 as a function of the applied magnetic őeld 𝐵0 and
the frequency of the input őeld 𝜔p. At 𝐵0 = 168.5mT, a bare cavity frequency of
𝜔𝑐/2𝜋 = 4.8116GHz was observed. The half-width-at-half-maximum (HWHM) line
width was determined using a robust circle-őtting algorithm [243], giving 𝜅𝑐/2𝜋 =
534.85 kHz, which corresponds to a total quality factor of 𝑄 = 𝜔𝑐/2𝜅𝑐 = 4498. The
coupling rate of the cavity to the feedline is 𝜅ext/2𝜋 = 304.15 kHz. Similarly, the
spin relaxation rate is extracted using a Lorentzian őt along the őeld axis far de-
tuned from the cavity yielding 𝛾s/2𝜋 = 279.03 kHz. Two distinct avoided crossings
were observed at 𝐵0 = 170.1mT and 𝐵0 = 174.3mT, corresponding to the two
hyperőne-split lines of phosphorus donors in silicon. The avoided crossings indicate
that the ensemble of phosphorus spins couples strongly to the cavity. The effec-
tive collective coupling strength 𝑔eff/2𝜋 = 1.54MHz extracted at the vacuum Rabi
splitting at 𝐵0 = 170.19mT, hence, exceeds the intrinsic loss rates 𝜅𝑐 and 𝛾s.

To obtain further information about the spin species present in the sample, the
transmission linewidth 𝜅𝑇 outside the avoided crossings is analyzed as a function of
the magnetic őeld. Figure 6.1.2(b) shows the linewidth 𝜅𝑇 extracted from the data
in Fig. 6.1.2(a). Note that far from the avoided crossings the linewidth is given by
the bare cavity linewidth 𝜅𝑇 ∼ 𝜅𝑐. At 𝐵0 = 171.5mT we őnd a broad resonance
structure, which is assigned to dangling bond defects at the (100)Si/SiO2 interface,
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Figure 6.1.2.: (a) Measured normalized transmission |𝑆21|2 as a function of the probe
frequency 𝜔p and the applied magnetic őeld 𝐵0. Two avoided crossings are visible, indi-
cating strong coupling between the hyperőne-split transitions of the phosphorus donors
and the cavity. (b) Linewidth 𝜅𝑇 /2𝜋 (HWHM) extracted from the transmission spectrum
in (a) as a function of the magnetic őeld 𝐵0. Two additional spectroscopic features are
observed, which are attributed to dangling bond defects Pb0/Pb1 and P2 dimers, respec-
tively. Figure adapted from ref. [41].

also known as Pb0/Pb1 defects [244, 245]. Furthermore, a sharp signature emerges
at 𝐵0 = 172.2mT corresponding to statistically formed exchange-coupled donor
pairs, called P2 dimers, with a concentration [P2] ≪ [P] [246ś249]. The analysis
of this P2 dimer peak yields a spin relaxation rate 𝛾s,P2/2𝜋 = 1.74MHz and an
effective coupling rate 𝑔eff,P2/2𝜋 = 0.35MHz [41]. This sets the P2 dimers in the
weak coupling regime and enables a direct comparison of the dynamics in the weak
and strong coupling regime under the same experimental conditions.

Pulsed ESR spectroscopy

In a next step, a Hahn echo sequence is applied using two Gaussian-shaped pulses
with a width of 1 µs and 2 µs and a pulse spacing of 𝜏 = 80𝜇s. Figure 6.1.3 (a)
shows the Hahn echoes detected over time for a sweep of the magnetic őeld 𝐵0. Note
that the origin of the time axis is set to the maximum of the őrst echo signal. The
experimental results demonstrate that the őrst conventional Hahn echo (at t = 0)
is present for both, the weakly and the strongly coupled spin ensembles. However,
a fundamental difference between weak and strong coupling arises on longer time
scales. Particular attention deserve subpanels 1○ and 3○, corresponding to the
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Figure 6.1.3.: (a) Detected microwave intensity |𝑆21|2 as a function of time and applied
magnetic őeld 𝐵0 after a conventional Hahn-pulse sequence (not shown). The strongly
coupled hyperőne transitions ( 1○ and 3○) display several echo signals, while only a single
(conventional) Hahn echo is visible for the weakly coupled P2 dimers ( 2○). (b) Microwave
intensity |𝑆21|2 as a function of time for őxed magnetic őeld [dashed lines in (a)] for the
strongly coupled hyperőne transitions (green) and the weakly coupled P2 dimers (blue).
Figure adapted from ref. [41].

strong coupling case. Here, the őrst Hahn echo is followed by a periodic sequence
of echo signatures, which are timed with a delay equal to the pulse delay 𝜏 . In
contrast, only the őrst conventional Hahn echo is present for the weakly coupled
P2 dimers shown in subpanel 2○.

This marked difference is even more apparent in Fig. 6.1.3 (b), where we show
time traces recorded at the őxed magnetic őelds of 𝐵0 = 172.20mT and 170.18mT
[dashed lines in Fig. 6.1.3 (a)] corresponding to the weak and strong coupling regime.
While only the őrst conventional Hahn echo appears for the P2 dimers (𝑇2,𝑃2 =
4.67(13)ms; see supplementary material of ref. [41]), 12 echoes separated by 𝜏 are
observed for the strongly coupled hyperőne transitions (𝑇2,P = 2.37(8)ms; see
supplementary material of ref. [41]).

The relevant mechanism leading to this unique dynamical evolution can be best
understood when revisiting the conventional Hahn echo sequence shown in Fig. 6.1.4.
For simplicity, we assume here that all spins end up in the xy-plane after the őrst
𝜋/2-pulse (see panels 1-3), although the spatial variation of the excitation őeld
𝐵1 and the frequency distribution of the spin ensemble inevitably lead to rota-
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tion errors. Realistically, the net dipole moment generated in the xy-plane during
this őrst pulse leads to strong collective coupling with the resonator and, hence,
rapid deexcitation of the spin system (not depicted). However, dephasing quickly
reduces this dipole moment and thereby effectively suppresses this spin decay chan-
nel. After an evolution time 𝜏 , the second pulse is injected to start the refocusing

Figure 6.1.4.: Schematic of the Hahn echo sequence and the associated states in the
Bloch sphere (exterior black arrows indicate the ensuing spin dynamics). A 𝜋/2 pulse is
applied between (1) and (2) and an imperfect 𝜋 pulse between (3) and (4), leading to
the őrst (conventional) Hahn echo between (5) and (6). For the subsequent dynamics we
highlight only spins lying in opposite 𝑆y directions when the refocusing 𝜋 pulse arrives at
(3) (blue and red arrows), since these spins are crucial for the additional echoes at later
times. The strong coupling leads to a spin rotation during the őrst echo (5)-(6), which
results in an asymmetry in the 𝑆y projection of the highlighted spins. In (7), this causes
a net dipole moment and a second (unconventional) echo. Figure adapted from ref. [41].

process. A perfect 𝜋 pulse would lead to the complete refocusing of all spins after
another period 𝜏 , creating the őrst (conventional) Hahn echo without any subse-
quent echoes. With the rotation angle realistically deviating from 𝜋, however, the
refocusing is imperfect, such that the spins end up at different latitudes on the
Bloch sphere, depending on their detuning 𝛿𝜔 from the average Larmor frequency
(see panels 3-5). This mechanism can also be understood as a frequency encoding
of spin packets depending on their orientation on the Bloch sphere at the arrival
time of this imperfect 𝜋-pulse. Speciőcally, we identify spin packets that point in
opposite directions on the 𝑆y-axis when the imperfect 𝜋-pulse arrives using red and
blue arrows in the panels in Fig. 6.1.4. These will be particularly relevant for the
generation of the subsequent pulses. Their frequency detunings are determined by
those multiples of 𝜋-rotations that the spins already undertook at the arrival of the
refocusing pulse: 𝛿𝜔 = 2n𝜋/𝜏 (red spins) and 𝛿𝜔 = (2n + 1)𝜋/𝜏 (blue spins) with
n ∈ Z. In this way, spins with signiőcantly different individual detuning values 𝛿𝜔
are now encoded in the same packet. At a time 𝜏 after the imperfect 𝜋-pulse, when
spins (partially) refocus, they emit the őrst (conventional) Hahn echo through the
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coupling to the resonator. Notably, the net dipole moment in the xy-plane created
in this refocusing process, together with the strong coupling to the microwave őeld
also leads to a signiőcant spin decay. Importantly, this decay is realized on the
Bloch sphere as a spin rotation during this őrst Hahn echo that affects the pro-
jection of the dipole moment on the xy-plane differently for the blue and red spin
packets (see panels 5 & 6). This rotation becomes signiőcant at a time 𝜏 after the
őrst Hahn echo, where these spin packets again point in opposite 𝑆y-directions (red
and blue arrows in panel 7): with the xy projection of these two spin vectors now
having different lengths, they give rise to another net dipole moment that produces
the (unconventional) second Hahn echo. Here, the process starts all over again,
producing the third echo and so on.

Note that without the spin rotation during the őrst Hahn echo, the red and blue
spins would maintain the same xy projection, such that there is no net dipole and
therefore no subsequent echo at t = t2 (panel 7). In this way, one understands not
only how one echo causes the next but also why strong coupling is important. In
addition, the imperfect rotation angle is a necessary condition to observe multiple
echoes, as no frequency encoding of spin packets would occur otherwise (panel 5)
[see also Fig. 6.1.6].

To underpin this heuristic explanation, we calculate the dynamics of the spin-
cavity system by numerically solving the Maxwell-Bloch equations (2.20a)-(2.20c)
for two rectangular driving pulses with a width of 1𝜇s and 2𝜇s, a pulse delay of
𝜏 = 80𝜇s, and a pulse amplitude of 𝜂/𝜅𝑐 = 1.08 × 105. We set 𝜔𝑐 = 𝜔p, while
the mean frequency of the spin ensemble is slightly detuned from the resonator
frequency by (𝜔s − 𝜔𝑐)/2𝜋 = 0.14MHz to match the experimental conditions in
the strong-coupling regime (at 𝐵0=170.18 mT). We account for the dephasing of
the spin ensemble by introducing the phenomenological Lorentzian spin spectral
density, 𝜌(𝜔) = {𝜋𝛾s[1 + (𝜔 − 𝜔s)

2/𝛾2
s ]}−1, with width 𝛾s and mean frequency 𝜔s,

characterizing the frequency distribution of the spin ensemble. For simplicity, we
assume that all spins couple with the mean coupling strength 𝑔k = 𝑔0 = 𝑔eff/

√
𝑁 .

The calculated average resonator photon number |⟨𝑎(t)⟩|2/𝑁 following an ordi-
nary Hahn-echo sequence is presented in Fig. 6.1.5 (a). Most importantly, we őnd
that these numerical results nicely reproduce the multiple echo signatures found
experimentally [see Fig. 6.1.3 (b)], using only minimalistic assumptions. Addi-
tionally, these simulations provide the average spin expectation values 𝑆x,y,z

av :=∑︀
k⟨𝜎x,y,z

k ⟩/𝑁 , which are not directly accessible in the experiment. From these
quantities we can directly evaluate the macroscopic dipole moment

∑︀
k⟨𝜎−

k ⟩ =
𝑁(𝑆x

av+i𝑆y
av), which couples the spin dynamics to the resonator őeld via Eq. (2.20a).

Figure 6.1.5 (b,c) shows that the arrival of the őrst conventional Hahn echo, at t = 0,
is accompanied by peaks in the average dipole moments 𝑆x

av and 𝑆y
av, which leads

to a resonator-enhanced decay of the spin excitation 𝑆z
av [see also gray inset of

Fig. 6.1.5(d)]. Conőrming our heuristic model from above, the same coincidence
between peaks in the dipole moments (𝑆x

av, 𝑆y
av), the steps in the decay of 𝑆z

av, and
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Figure 6.1.5.: Temporal evolution of (a) the average resonator photon number |⟨𝑎⟩|2/𝑁 ,
(b,c) the average spin expectation values 𝑆x,y

av =
∑︀

k⟨𝜎x,y
k ⟩/𝑁 , and (d) 𝑆z

av =
∑︀

k⟨𝜎z
k⟩/𝑁

calculated from the semiclassical Maxwell-Bloch equations (2.20a)-(2.20c) for two rectan-
gular input pulses with widths of 1 and 2𝜇s, respectively. The delay of the refocusing
pulse is given by 𝜏 = 80𝜇s and the initial time is set to −2𝜏 such that the őrst echo
arrives at t ≈ 0. The inset in (d) shows a zoom of the gray shaded area. Figure adapted
from ref. [41].

the emission of a photon pulse into the resonator is observed for all subsequent
(unconventional) Hahn echoes. This reduced model thus already reproduces all
salient features of the experiment.

Pulse imperfections and coupling strength

To further identify the role of pulse imperfections and strong coupling in the for-
mation of the multiple echoes, we present here additional calculations, where the
action of the two microwave pulses of the Hahn echo sequence is included in the
initial conditions of our theoretical model. The purpose of this procedure is to un-
ravel the complicated strong-coupling dynamics during the 𝜋/2 and 𝜋 pulses from
the subsequent dynamics. Speciőcally, we solve the Maxwell-Bloch equations for
the initial conditions ⟨𝑎⟩ = 0, ⟨𝜎x

k⟩ = − cos(Δk𝜏) cos(𝛼), ⟨𝜎y
k⟩ = − sin(Δk𝜏), and

⟨𝜎z
k⟩ = cos(Δk𝜏) sin(𝛼) at t = 0, where Δk = 𝜔k − 𝜔p is the detuning between the

spin frequency and the reference rotating frame, 𝜏 = 20𝜇s is imposed inter-pulse
delay, and 𝛼 is the rotation angle of the emulated refocusing pulse. These par-
ticular initial conditions correspond to the following situation: First, all spins are
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collectively brought into the xy-plane by a perfect 𝜋/2 rotation along the y-axis.
Then, after a free evolution time 𝜏 , the spins are rotated by an angle 𝛼 along the y-
axis. Note that this procedure allows us to study the impact of the spin-resonator
coupling and rotation errors independently of the imperfections imposed by the
microwave pulses.

Figure 6.1.6.: Average spin expectation values 𝑆x,z
av =

∑︀
k⟨𝜎x,z

k ⟩/𝑁 versus time for a spin
ensemble starting from an initial condition that imitates a Hahn echo sequence of a perfect
𝜋/2-rotation followed by an 𝛼-rotation right before t = 0. Comparison of 𝑆x,z

av for (i) a
strongly coupled spin ensemble, 𝑔eff/2𝜋 = 1.56MHz, after a perfect rotation 𝛼 = 𝜋 (blue
dashed line) and (ii) an imperfect rotation 𝛼 = 0.95×𝜋 (red line) as well as (iii) a weakly
coupled spin ensemble, 𝑔eff/2𝜋 = 1.56 kHz, after an imperfect rotation 𝛼 = 0.95×𝜋 (yellow
line). Notably, the conventional Hahn echo at t = 20𝜇s (green shaded area) is present in
all three cases, while additional echoes at t = 40𝜇s and t = 60𝜇s (red shaded area) are
visible only for the combination of imperfect rotations and strong coupling (insets).

Figure 6.1.6 depicts the average spin expectation values 𝑆x,z
av =

∑︀
k⟨𝜎x,z

k ⟩/𝑁 for
three different conőgurations: (i) a strongly coupled spin ensemble (𝑔eff/2𝜋 =
1.56MHz) and a perfect (𝛼 = 𝜋) refocusing pulse, (ii) a strongly coupled spin
ensemble (𝑔eff/2𝜋 = 1.56MHz) and an imperfect (𝛼 = 0.95 × 𝜋) refocusing pulse,
and (iii) a weakly coupled spin ensemble (𝑔eff/2𝜋 = 1.56 kHz) and an imperfect
(𝛼 = 0.95 × 𝜋) refocusing pulse. We őrst note that the conventional Hahn echo
at t = 20𝜇s is observed in all three cases in 𝑆x

av, independent of both coupling
strength and rotation error. However, multi-echo signatures are visible only for im-
perfect refocusing pulses and strong coupling. While at strong coupling the results
for the perfect and the imperfect rotation angle almost overlap during the conven-
tional Hahn echo, the additional echoes at t = 40𝜇s and t = 60𝜇s arise only for
𝛼 = 0.95 × 𝜋. This can be intuitively understood from Fig. 6.1.4 (panel 5) as the
imperfection of the spin rotation introduces the frequency encoding enabling the
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unconventional echoes at later times. As also anticipated from Fig. 6.1.4 (panel 6),
the spin rotation due to the strong spin cavity coupling is another necessary condi-
tion to observe signiőcant multi-echo signatures. Although for 𝑔eff/2𝜋 = 1.56 kHz
the spins build up a large dipole moment 𝑆x

av during the conventional Hahn echo,
the coupling is too weak to cause a noticeable rotation of the spins on the Bloch
sphere and therefore no echoes are visible at later times. Thus, our results conőrm
that the cavity-enhanced rotation of the spins in combination with the imperfect
refocusing pulse are the crucial building blocks for the formation of multiple echoes.



Summary and outlook

Hybrid quantum systems, which consist of ensembles of spins coupled to a cavity,
play a pivotal role in many experiments on the foundations of quantum optics
and technological applications for future quantum information processing. In this
thesis, we have provided a broad repertoire of theoretical methods to study and
understand spin ensembles in cavities in very different domains.

For macroscopic ensembles, we have used the semiclassical Maxwell-Bloch equa-
tions as well as a Volterra integral equation approach. While the latter method
is valid only in the linear regime of few excitations, the Maxwell-Bloch equations
describe also the transition into the nonlinear regime, which produces a variety of
interesting effects. Here, we focused on two fundamental nonlinear phenomenaÐ
optical bistability and critical slowing down. On the one hand, we demonstrated
that the onset of bistability depends not only on the width but also on the exact
shape of the spectral spin distribution. On the other hand, we found a univer-
sal power-law scaling for the critical slowing down of the cavity őeld amplitude.
Here, the system’s complexity is smeared out, such that inhomogeneously broad-
ened ensembles behave similarly as very simple systems without inhomogeneous
broadening. Both phenomena, the optical bistability and the critical slowing down,
were realized in an experiment with nitrogen vacancy centers in diamond.

Furthermore, we used a cumulant expansion method to calculate quantum cor-
rections to the semiclassical Maxwell-Bloch equations setting up a semiclassial-to-
quantum boundary. Interestingly, we demonstrated that even very large ensembles
of about 104 spins can show deviations from a semiclassical description in the vicin-
ity of the bistable regime. We expect that the criterion we have established for the
semiclassical-to-quantum limit will be useful to check the validity of Maxwell-Bloch
equations in a variety of different setups and contexts.

Inhomogeneous broadening is often a dominant source of decoherence in ensemble-
based quantum devices. In this thesis, we have demonstrated that one can overcome
this limitation for atomic frequency combs by burning narrow spectral holes at judi-
ciously chosen positions of the spin distribution. This procedure leads to a dramatic
prolongation of the observed revival dynamics.
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In addition, we have introduced a variational renormalization group method that
allows studying mesoscopic spin ensembles of up to one hundred spins coupled to a
cavity on a fully quantum mechanical basis. We used this novel technique to provide
a rigorous treatment of atomic frequency combs in the strong-coupling regime of
cavity QED. In particular, we demonstrated that arbitrary multiphoton states are
absorbed by the comb-shaped spin ensemble and re-emitted with high ődelity at
well-deőned later times. The absorption and re-emission process thereby acts as a
parity transformation on the initial cavity state. Using the same method, we have
shown that a mesoscopic atomic frequency comb can generate periodic pulses of
nonclassical light from a short coherent input pulse. An experimental realization of
this concept using superconducting qubits is currently being implemented by Elena
Redchenko in the group of Johannes Fink at IST Austria.

Finally, we reported on a novel phenomenon in electron spin resonance, where the
strong coupling between an inhomogeneously broadened spin ensemble and a cavity
leads to self-sustained echoes after a conventional Hahn echo sequence. We have
provided a theoretical interpretation of this effect based on the Maxwell-Bloch equa-
tions and a simple geometric model of spins rotating on the Bloch sphere. While
our results show a good qualitative agreement with the experiments, additional
calculations and a detailed comparison with further measurements are necessary
to provide a quantitative description of the measured echo signature. Open topics
that could be the scope of future studies are quantum signatures in the periodic
echo train as well as the modeling of the decay of the subsequent echoes over time.

We hope that with the results presented in this thesis we have demonstrated that
spin ensembles in cavity QED provide an exciting stage for new physics. In partic-
ular, we aim to illustrate with our work that inhomogeneous broadening is not just
a detrimental effect that blurs ideal homogeneous setups. Instead, the additional
frequencies in a spin ensemble allow new dynamical regimes and additional control
over the light-matter interaction in hybrid quantum devices.



Appendix

A. Transformation to the rotating frame
In the following, we transform the Tavis-Cummings Hamiltonian (1.1) into the
frame rotating with 𝜔p to remove the explicit time dependence of the external
driving őeld. For this purpose, we perform the unitary transformation

�̃� = 𝑈 𝐻 𝑈 † + i
∂𝑈

∂t
𝑈 †, (A.1)

where
𝑈 = 𝑒i𝜔pt(𝑎†𝑎+

∑︀
k

1
2
𝜎z
k), (A.2)

yielding

�̃� = 𝑈 𝐻 𝑈 † − 𝜔p𝑎
†𝑎−

𝑁∑︁
k=1

1

2
𝜔p𝜎

z
k

= (𝜔𝑐 − 𝜔p) 𝑎
†𝑎+

1

2

𝑁∑︁
k=1

(𝜔k − 𝜔p)𝜎
z
k (A.3)

+
𝑁∑︁
k=1

𝑔k[�̃�
−
k �̃�

† + �̃�+
k �̃�] + i[𝜂(t)�̃�†𝑒−i𝜔pt − 𝜂*(t)�̃�𝑒i𝜔pt].

Here, �̃�−
k ≡ 𝑒i𝜔pt

1
2
𝜎z
k 𝜎−

k 𝑒−i𝜔pt
1
2
𝜎z
k , �̃�+

k ≡ 𝑒i𝜔pt
1
2
𝜎z
k 𝜎+

k 𝑒−i𝜔pt
1
2
𝜎z
k , �̃� ≡ 𝑒i𝜔pt𝑎†𝑎 𝑎 𝑒−i𝜔pt𝑎†𝑎,

and �̃�† ≡ 𝑒i𝜔pt𝑎†𝑎 𝑎† 𝑒−i𝜔pt𝑎†𝑎, respectively, which can be evaluated with the following
useful combinatorial lemma [250, page 64]

𝑒𝐴𝐵𝑒−𝐴 = 𝐵 + [𝐴,𝐵] +
1

2!
[𝐴, [𝐴,𝐵]] +

1

3!
[𝐴, [𝐴, [𝐴,𝐵]]] + . . . . (A.4)

Equation (A.4), together with the commutation relations (1.2) and (1.3), gives
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𝑒i𝜔pt𝑎†𝑎 𝑎 𝑒−i𝜔pt𝑎†𝑎 = 𝑎+ i𝜔pt[𝑎
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and
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Using Eqs.(A.5)-(A.8), the Tavis-Cummings Hamiltonian in the rotating frame
őnally reads

�̃� = Δ𝑐 𝑎
†𝑎+

1

2

𝑁∑︁
k=1

Δk𝜎
z
k +

𝑁∑︁
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𝑔k[𝜎
−
k 𝑎

† + 𝜎+
k 𝑎] + i𝜂(t)[𝑎† − 𝑎]. (A.9)

B. Equations of motion for expectation values12

Following the procedure outlined in Section 1.2, it is straightforward to derive the
hierarchic set of equations of motion for expectation values. For completeness, we
show the equations of motion up to the third order explicitly.

First-order expectation values:

𝑑

𝑑t
⟨𝑎⟩ = −(𝜅+ iΔ𝑐) ⟨𝑎⟩ − i

𝑁∑︁
k=1

𝑔k ⟨𝜎−
k ⟩+ 𝜂 (B.1)

𝑑

𝑑t
⟨𝜎−

k ⟩ = −(𝛾ℎ + 2𝛾p + iΔk) ⟨𝜎−
k ⟩+ i 𝑔k ⟨𝜎z

k𝑎⟩ (B.2)

𝑑

𝑑t
⟨𝜎z

k⟩ = −2𝛾ℎ(⟨𝜎z
k⟩+ 1) + 2i 𝑔k( ⟨𝜎−

k 𝑎
†⟩ − ⟨𝜎−

k 𝑎
†⟩* ) (B.3)

12 The complete set of equations of motion for expectation values up to third order have already
been presented in my diploma thesis [130] and are shown here for the sake of completeness.
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Second-order expectation values:
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Third-order expectation values:
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†⟩*) + i 𝑔k(⟨𝜎−
k 𝑎

†⟩ − ⟨𝜎−
k 𝑎

†⟩*)

+ 2i 𝑔k(⟨𝜎−
k 𝑎

†𝑎†𝑎⟩ − ⟨𝜎−
k 𝑎

†𝑎†𝑎⟩*) (B.13)
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𝑑

𝑑t
⟨𝜎−

k 𝑎
†𝑎⟩ =− (2(𝜅+ 𝛾p) + 𝛾ℎ + iΔk) ⟨𝜎−

k 𝑎
†𝑎⟩+ 𝜂(⟨𝜎−

k 𝑎
†⟩+ ⟨𝜎−

k 𝑎⟩) + i 𝑔k ⟨𝜎z
k𝑎

†𝑎𝑎⟩

+ i

𝑁∑︁
j=1
j ̸=k

𝑔j(⟨𝜎+
j 𝜎

−
k 𝑎⟩ − ⟨𝜎−

k 𝜎
−
j 𝑎

†⟩) + i
𝑔k
2
(⟨𝜎z

k𝑎⟩+ ⟨𝑎⟩) (B.14)

𝑑

𝑑t
⟨𝜎−

k 𝑎
†𝑎†⟩ =− (2(𝜅+ 𝛾p) + 𝛾ℎ+i(Δk−2Δ𝑐)) ⟨𝜎−

k 𝑎
†𝑎†⟩+ 2𝜂 ⟨𝜎−

k 𝑎
†⟩+ 2i

𝑁∑︁
j=1
j ̸=k

𝑔j ⟨𝜎+
j 𝜎

−
k 𝑎

†⟩

+ i 𝑔k(⟨𝜎z
k𝑎⟩* + ⟨𝑎⟩*) + i 𝑔k ⟨𝜎z

k𝑎
†𝑎†𝑎⟩ (B.15)

𝑑

𝑑t
⟨𝜎z

k𝑎𝑎⟩ =− 2(𝜅+ 𝛾ℎ + iΔ𝑐) ⟨𝜎z
k𝑎𝑎⟩ − 2𝛾ℎ ⟨𝑎†𝑎†⟩* + 2𝜂 ⟨𝜎z

k𝑎⟩+ 2i 𝑔k ⟨𝜎−
k 𝑎⟩ − 2i

𝑁∑︁
j=1
j ̸=k

𝑔j⟨𝜎z
k𝜎

−
j 𝑎⟩

+ 2i 𝑔k(⟨𝜎−
k 𝑎

†𝑎𝑎⟩ − ⟨𝜎+
k 𝑎𝑎𝑎⟩) (B.16)

𝑑

𝑑t
⟨𝜎−

k 𝑎𝑎⟩ =− (2(𝜅+ 𝛾p) + 𝛾ℎ + i(Δk + 2Δ𝑐)) ⟨𝜎−
k 𝑎𝑎⟩+ 2𝜂 ⟨𝜎−

k 𝑎⟩ − 2i

𝑁∑︁
j=1
j ̸=k

𝑔j ⟨𝜎−
k 𝜎

−
j 𝑎⟩

+ i 𝑔k ⟨𝜎z
k𝑎𝑎𝑎⟩ (B.17)

𝑑

𝑑t
⟨𝑎†𝑎𝑎⟩ =− (3𝜅+ iΔ𝑐) ⟨𝑎†𝑎𝑎⟩ − 2i

𝑁∑︁
k=1

𝑔k ⟨𝜎−
k 𝑎

†𝑎⟩+ i

𝑁∑︁
k=1

𝑔k ⟨𝜎−
k 𝑎

†𝑎†⟩* + 2𝜂 ⟨𝑎†𝑎⟩+ 𝜂 ⟨𝑎†𝑎†⟩*

(B.18)

𝑑

𝑑t
⟨𝑎𝑎𝑎⟩ =− 3(𝜅+ iΔ𝑐) ⟨𝑎𝑎𝑎⟩ − 3i

𝑁∑︁
k=1

𝑔k ⟨𝜎−
k 𝑎𝑎⟩+ 3𝜂 ⟨𝑎†𝑎†⟩* (B.19)

𝑑

𝑑t
⟨𝜎z

k𝜎
z
j 𝑎⟩ =

j ̸=k
− (𝜅+iΔ𝑐) ⟨𝜎z

k𝜎
z
j 𝑎⟩− 2𝛾ℎ(⟨𝜎z

k𝑎⟩+⟨𝜎z
k𝜎

z
j 𝑎⟩+ ⟨𝜎z

j 𝑎⟩+ ⟨𝜎z
j𝜎

z
k𝑎⟩) + 2i(𝑔k ⟨𝜎z

j𝜎
−
k 𝑎

†𝑎⟩

+ 𝑔j ⟨𝜎z
k𝜎

−
j 𝑎

†𝑎⟩ − 𝑔k ⟨𝜎z
j𝜎

+
k 𝑎𝑎⟩ − 𝑔j ⟨𝜎z

k𝜎
+
j 𝑎𝑎⟩)− i

𝑁∑︁
m=1
m ̸=k,j

𝑔m ⟨𝜎z
k𝜎

z
j𝜎

−
m⟩

+ i 𝑔k ⟨𝜎z
j𝜎

−
k ⟩+ i 𝑔j ⟨𝜎z

k𝜎
−
j ⟩ (B.20)

𝑑

𝑑t
⟨𝜎−

k 𝜎
−
j 𝑎

†⟩ =
j ̸=k

− (𝜅+ 2𝛾ℎ + 4𝛾p + i(Δk +Δj −Δ𝑐)) ⟨𝜎−
k 𝜎

−
j 𝑎

†⟩+ 𝜂 ⟨𝜎−
k 𝜎

−
j ⟩

+ i
𝑁∑︁

m=1
m ̸=k,j

𝑔m ⟨𝜎+
m𝜎−

k 𝜎
−
j ⟩+ i

𝑔k
2
(⟨𝜎−

j ⟩+ ⟨𝜎z
k𝜎

−
j ⟩) + i

𝑔j
2
(⟨𝜎−

k ⟩+ ⟨𝜎z
j𝜎

−
k ⟩)

+ i 𝑔k ⟨𝜎z
k𝜎

−
j 𝑎

†𝑎⟩+ i 𝑔j ⟨𝜎z
j𝜎

−
k 𝑎

†𝑎⟩ (B.21)

𝑑

𝑑t
⟨𝜎+

k 𝜎
−
j 𝑎⟩ =

j ̸=k
− (𝜅+ 2𝛾ℎ + 4𝛾p + i(Δj−Δk+Δ𝑐)) ⟨𝜎+

k 𝜎
−
j 𝑎⟩+ 𝜂 ⟨𝜎+

k 𝜎
−
j ⟩

− i
𝑁∑︁

m=1
m ̸=k,j

𝑔m ⟨𝜎+
k 𝜎

−
j 𝜎

−
m⟩ − i

𝑔k
2
(⟨𝜎−

j ⟩+ ⟨𝜎z
k𝜎

−
j ⟩)− i 𝑔k ⟨𝜎z

k𝜎
−
j 𝑎

†𝑎⟩+ i 𝑔j ⟨𝜎+
k 𝜎

z
j 𝑎𝑎⟩

(B.22)
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𝑑

𝑑t
⟨𝜎z

k𝜎
−
j 𝑎

†⟩ =
j ̸=k

− (𝜅+ 3𝛾ℎ + 2𝛾p + i(Δj−Δ𝑐)) ⟨𝜎z
k𝜎

−
j 𝑎

†⟩ − 2𝛾ℎ ⟨𝜎−
j 𝑎

†⟩+ 𝜂 ⟨𝜎z
k𝜎

−
j ⟩

+ i

𝑁∑︁
m=1
m ̸=k,j

𝑔m ⟨𝜎+
m𝜎z

k𝜎
−
j ⟩ − i 𝑔k ⟨𝜎+

k 𝜎
−
j ⟩+ i

𝑔j
2
(⟨𝜎z

k⟩+ ⟨𝜎z
k𝜎

z
j ⟩) + i 𝑔j ⟨𝜎z

k𝜎
z
j 𝑎

†𝑎⟩

+ 2i 𝑔k(⟨𝜎−
k 𝜎

−
j 𝑎

†𝑎†⟩ − ⟨𝜎+
k 𝜎

−
j 𝑎

†𝑎⟩) (B.23)

𝑑

𝑑t
⟨𝜎z

k𝜎
−
j 𝑎⟩ =

j ̸=k
− (𝜅+ 3𝛾ℎ + 2𝛾p + i(Δj +Δ𝑐)) ⟨𝜎z

k𝜎
−
j 𝑎⟩ − 2𝛾ℎ ⟨𝜎−

j 𝑎⟩+ 𝜂 ⟨𝜎z
k𝜎

−
j ⟩

− i

𝑁∑︁
m=1
m ̸=k,j

𝑔m ⟨𝜎z
k𝜎

−
j 𝜎

−
m⟩+ i 𝑔k ⟨𝜎−

k 𝜎
−
j ⟩+ i 𝑔j ⟨𝜎z

k𝜎
z
j 𝑎𝑎⟩

+ 2i 𝑔k(⟨𝜎−
k 𝜎

−
j 𝑎

†𝑎⟩ − ⟨𝜎+
k 𝜎

−
j 𝑎𝑎⟩) (B.24)

𝑑

𝑑t
⟨𝜎−

k 𝜎
−
j 𝑎⟩ =

j ̸=k
− (𝜅+ 2𝛾ℎ + 4𝛾p + i(Δk +Δj +Δ𝑐)) ⟨𝜎−

k 𝜎
−
j 𝑎⟩+ 𝜂 ⟨𝜎−

k 𝜎
−
j ⟩

− i

𝑁∑︁
m=1
m ̸=k,j

𝑔m ⟨𝜎−
k 𝜎

−
j 𝜎

−
m⟩+ i 𝑔k ⟨𝜎z

k𝜎
−
j 𝑎𝑎⟩+ i 𝑔j ⟨𝜎z

j𝜎
−
k 𝑎𝑎⟩ (B.25)

C. Inhomogeneous broadening
The assumption of a homogeneous spin ensemble has the advantage of allowing sim-
ple analytical solutions, which often enable valuable insights into the phenomenon
at hand, but the disadvantage of being utterly unrealistic for most experimental
realizations. In this appendix, we demonstrate how the inhomogeneous broaden-
ing can be implemented in the Maxwell-Bloch equations of Section 2.2 and the
cumulant expansion method of Section 3.1.

In Section 2.1, we introduced the continuous spectral spin distribution 𝜌(𝜔) ≡∑︀𝑁
k=1 𝑔

2
k𝛿(𝜔 − 𝜔k)/Ω

2, where Ω is the collective coupling strength of the spin en-
semble. This spectral spin distribution, which is determined from transmission
measurements in the weak excitation regime [36], is a combined distribution of
both, the coupling strengths 𝑔k and the spin frequencies 𝜔k. While in the linear
regime, the knowledge of this combined spin spectral density is sufficient to precisely
describe the dynamics of the spin-cavity system [38], the situation becomes more
complicated in the nonlinear regime. Here, the individual distributions of coupling
strengths and spins become relevant, and, in case these are unknown, additional
assumptions have to be made.

First, we divide the spin ensemble into 𝐿 equally sized frequency intervals 𝛿𝜔
with 𝐿 ≪ 𝑁 to make the problem numerically tractable. We assume that the
frequency clusters, which we label with the greek index 𝜇, consist of 𝑀𝜇 spins
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with similar transition frequencies 𝜔𝜇 and coupling strengths 𝑔𝜇. This dramatically
reduces the number of equations that need to be solved in the Maxwell-Bloch
equations [Section 2.2] and the cumulant expansion method [Section 3.1]. Notably,
the number of clusters has to be chosen such that the spectral spin distribution can
be properly represented, and the reciprocal frequency spacing of adjacent clusters
1/|𝜔𝜇 − 𝜔𝜇+1| is larger than the covered time of the system’s evolution. The latter
condition ensures that there are no artifacts in the simulation due to the frequency
discretization. In this thesis, for practical purposes, we consider two simpliőed
scenarios: (i) inhomogeneous coupling 𝑔𝜇 and (ii) inhomogeneous cluster sizes 𝑀𝜇.

Inhomogeneous coupling. We assume that 𝑔𝜇 effectively respresents the cou-
pling strength of a “largež spin residing in the 𝜇-th spin cluster with frequency
𝜔𝜇+ 𝛿𝜔 rather than an individual coupling strength. The coupling strengths 𝑔𝜇 are
then determined from the spectral spin density 𝜌(𝜔) by the inverse transformation,
𝑔𝜇 = Ω[𝜌(𝜔𝜇)/

∑︀𝐿
𝜈=1 𝜌(𝜔𝜈)]

1/2.

Inhomogeneous cluster size. Instead of an inhomogeneous coupling distribu-
tion, we assume here, that each frequency cluster is occupied by a different num-
ber of spins 𝑀𝜇. Here, the distribution of spins follows the spectral spin density
𝑀𝜇 = 𝜌(𝜔𝜇)/

∑︀𝐿
𝜈=1 𝜌(𝜔𝜈), while we assume that the individual spins all couple with

the same coupling strength 𝑔k = 𝑔0 = Ω/
√
𝑁 .

D. Calculation of the stationary states

In order to solve for the stationary states of a macroscopic spin ensemble, we start
from the semiclassical Maxwell-Bloch equations (2.20a)-(2.20c) and set all time
derivatives to zero. Equation (2.20b) then results in

⟨𝜎−
k,st⟩ = i 𝑔k

⟨𝜎z
k,st⟩ ⟨𝑎st⟩

𝛾⊥ + iΔk

, (D.1)

which inserted into Eq. (2.20c) gives

⟨𝜎z
k,st⟩ = − 1

1 + |⟨𝑎st⟩|2 4𝑔2k
𝛾⊥𝛾‖(1+Δ2

k/𝛾
2
⊥)

= − 1

1 + |⟨𝑎st⟩|2/nk

. (D.2)

Substituting the equations (D.1) and (D.2) into Eq.(2.20a) yields

𝜂 = ⟨𝑎st⟩
(︃
𝜅+ iΔ𝑐 +

∑︁
k

𝑔2k
1 + |⟨𝑎st⟩|2/nk

𝛾⊥ − iΔk

𝛾2
⊥ +Δ2

k

)︃
. (D.3)
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Since we only deal with resonant driving, we can set Δ𝑐 = 0. Furthermore, we focus
on spin distributions which are symmetric with respect to their central frequency
𝜔s and resonant with the cavity frequency 𝜔s = 𝜔𝑐. As a result, the imaginary part
in Eq. (D.3) vanishes after summation, and we arrive at

𝜂 = ⟨𝑎st⟩
(︃
𝜅+

∑︁
k

𝑔2k
1 + |⟨𝑎st⟩|2/nk

𝛾⊥
𝛾2
⊥ +Δ2

k

)︃
. (D.4)

Finally, dividing Eq. (D.4) by 𝜅 and using the deőnition of the cooperativity param-
eter 𝐶k ≡ 𝑔2k(𝛾⊥𝜅(1 + Δ2

k/𝛾
2
⊥))

−1 [Eq. (4.2)] gives the steady-state equation (4.1) for
the cavity amplitude

𝜂

𝜅
= ⟨𝑎st⟩

(︃
1 +

∑︁
k

𝐶k

1 + |⟨𝑎st⟩|2/nk

)︃
. (D.5)

E. Adiabatic elimination
Adiabatic elimination is a universal concept of fundamental importance in the study
of complex and nonlinear dynamical systems [251]. It allows one to reduce the
number of equations that govern the system’s evolution by identifying fast variables
with large relaxation rates and slow variables, which display small relaxation rates.
The temporal evolution is thereby divided into two distinct stages: a őrst fast time
scale, in which the fast variables relax to a state determined by the instant values
of the slow variables, and a second stage governed solely by the evolution of the
slow variables, which are adiabatically followed by the fast variables.

We observe such a separation of time scales in Section 4.2, where we study the
time evolution of an inhomogeneously broadened solid-state spin ensemble strongly
coupled to a microwave cavity. Here, the longitudinal relaxation rate of the spins,
𝛾‖, is much smaller than all other relaxation rates within the system 𝛾‖ ≪ 𝜅, 𝛾⊥.
In Section 4.2, we use this property to eliminate the fast variables ⟨𝑎⟩ and ⟨𝜎−

k ⟩
obtaining a single equations for ⟨𝜎z

k⟩, which determines the evolution of the whole
spin-cavity system at large time scales.

Introducing the dimensionless time 𝜏 = 𝛾‖t, the Maxwell-Bloch equations can be
rewritten as

𝛾‖
𝜅

𝑑

𝑑𝜏
⟨𝑎⟩ = −(1 + i

Δ𝑐

𝜅
) ⟨𝑎⟩ − i

𝜅

𝑁∑︁
k=1

𝑔k ⟨𝜎−
k ⟩+

𝜂

𝜅
(E.1)

𝛾‖
𝛾⊥

𝑑

𝑑𝜏
⟨𝜎−

k ⟩ = −(1 + i
Δk

𝛾⊥
) ⟨𝜎−

k ⟩+ i
𝑔k
𝛾⊥

⟨𝜎z
k⟩ ⟨𝑎⟩ (E.2)

𝑑

𝑑𝜏
⟨𝜎z

k⟩ = −(⟨𝜎z
k⟩+ 1)− 4

𝑔k
𝛾‖

Im(⟨𝜎−
k ⟩ ⟨𝑎†⟩). (E.3)
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From 𝛾‖/𝜅 ≪ 1 and 𝛾‖/𝛾⊥ ≪ 1, we infer that the time derivatives 𝑑 ⟨𝑎⟩ /𝑑𝜏 and
𝑑 ⟨𝜎−

k ⟩ /𝑑𝜏 give only vanishing contributions at large times compared to the right-
hand side of Eqs. (E.1)-(E.2). Setting these time derivatives to zero, we obtain an
algebraic set of equations determining a functional dependence of the fast variables
⟨𝑎⟩ and ⟨𝜎−

k ⟩ on the slow variables ⟨𝜎z
k⟩ given by

⟨𝜎−
k ⟩ = i𝑔k

⟨𝑎⟩ ⟨𝜎z
k⟩

𝛾⊥(1 + iΔk/𝛾⊥)
(E.4)

and
⟨𝑎⟩ = 𝜂

𝜅(1−∑︀𝑁
k=1 𝐶k ⟨𝜎z

k⟩)
. (E.5)

Similarly to Appendix D, here we have assumed a symmetric spin distribution
(
∑︀𝑁

k=1 Δk = 0), resonant driving (Δ𝑐 = 0), and used the deőnition of the coopera-
tivity parameter 𝐶k ≡ 𝑔2k(𝛾⊥𝜅(1 + Δ2

k/𝛾
2
⊥))

−1 [Eq. (4.2)].
Inserting Eqs. (E.4) and (E.5) into the dynamic equation for the variables ⟨𝜎z

k⟩,
Eq. (E.3) yields

𝑑

𝑑𝜏
⟨𝜎z

k⟩ = −(1 + ⟨𝜎z
k⟩)−

𝜂2

𝜅2

4𝑔2k
𝛾‖𝛾⊥(1 + Δ2

k/𝛾
2
⊥)

⟨𝜎z
k⟩

(1−∑︀𝑁
l=1 𝐶l ⟨𝜎z

l ⟩)2

= −(1 + ⟨𝜎z
k⟩)−

𝜂2

𝜅2

⟨𝜎z
k⟩

nk(1−
∑︀

l 𝐶l ⟨𝜎z
l ⟩)2

, (E.6)

with nk ≡ 𝛾⊥𝛾‖
4𝑔2k

(1 + Δ2
k/𝛾

2
⊥) being the photon saturation number [Eq. (4.3)]. As a

result of the adiabatic elimination, the single Eq. (E.6) for the slow variables ⟨𝜎z
k⟩

fully determines the evolution of the spin-cavity system on long time scales.

F. Laplace transformation

In this Appendix, we present a formal solution to the Volterra equation (2.13) using
the standard Laplace transform method [252] closely following refs. [38, 212] and the
Supplementary Note 3 of ref. [84]. Here we assume initial conditions with a single
photon inside the cavity (𝐴(0) = 1) and all spins in their ground state (𝐵k(0) = 0).
Furthermore, we assume that the cavity is on resonance (Δ𝑐 = 0) and that there is
no external driving (𝜂 = 0).

Starting from Eq. (2.7), we perform the transformation 𝐴(t) ≡ 𝑒𝛾⊥t𝐴(t) giving
the following integro-differential equation

𝑑

𝑑t
𝐴(t) = −𝜉𝐴(t)− Ω2

∫︁ ∞

0

𝑑𝜔𝜌(𝜔)

∫︁ t

0

𝑑𝜏𝑒−i(𝜔−𝜔𝑐)(t−𝜏)𝐴(𝜏), (F.1)
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where we introduced the shorthand notation 𝜉 ≡ 𝜅− 𝛾⊥. The Laplace transforma-
tion of 𝐴(t) is given by

𝒜(s) ≡
∫︁ ∞

0

𝑒−st𝐴(t), (F.2)

with s ≡ 𝜎 + i �̄� being a complex variable. Multiplying Eq. (F.1) by 𝑒−st and
integrating both sides with respect to time gives∫︁ ∞

0

𝑑t𝑒−st 𝑑

𝑑t
𝐴(t) = −𝜉

∫︁ ∞

0

𝑑t𝑒−st𝐴(t)−Ω2

∫︁ ∞

0

𝑑𝜔𝜌(𝜔)

∫︁ ∞

0

𝑑t𝑒−st

∫︁ t

0

𝑑𝜏𝑒−i(𝜔−𝜔𝑐)(t−𝜏)𝐴(𝜏),

(F.3)
which can be simpliőed to

− 𝐴(0) + s𝒜(s) = −𝜉𝒜(s)− Ω2

∫︁ ∞

0

𝑑𝜔𝜌(𝜔)

∫︁ ∞

0

𝑑t𝑒−st

∫︁ t

0

𝑑𝜏𝑒−i(𝜔−𝜔𝑐)(t−𝜏)𝐴(𝜏). (F.4)

The time integral in the second term of the right side of Eq. (F.4) can be solved
through integration by parts,∫︁ ∞

0

𝑑t𝑒−st

∫︁ t

0

𝑑𝜏𝑒−i𝛼(t−𝜏)𝐴(𝜏) =

∫︁ ∞

0

𝑑t𝑒−(s+i𝛼)t

∫︁ t

0

𝑑𝜏𝑒i𝛼𝜏𝐴(𝜏)

= − 1

s+ i𝛼

[︂
𝑒−(s+i𝛼)t

∫︁ t

0

𝑑𝜏𝑒−i𝛼𝜏𝐴(𝜏)⏟  ⏞  
=0

⃒⃒⃒∞
0
−

∫︁ ∞

0

𝑑t𝑒−(s+i𝛼)t𝑒−i𝛼t𝐴(t)

]︂

=
1

s+ i𝛼

∫︁ ∞

0

𝑑t 𝑒−st𝐴(t) =
𝒜(s)

s+ i𝛼
, (F.5)

where the boundary term vanishes for Re(s) > 0. Using Eq. (F.5) and the initial
condition 𝐴(0) = 1, we arrive at an algebraic equation for the Laplace transform
giving

𝒜(s) =
1

s+ 𝜉 + Ω2
∫︀∞
0
𝑑𝜔𝜌(𝜔) 1

s+i(𝜔−𝜔𝑐)

. (F.6)

By performing the inverse Laplace transformation

𝐴(t) =
1

2𝜋i

∫︁ 𝜎+i∞

𝜎−i∞
𝑑s 𝑒st𝒜(s), (F.7)

we obtain a formal solution for the amplitude 𝐴(t) given by

𝐴(t) =
1

2𝜋i
𝑒(−𝛾⊥+i 𝜔𝑐)t

∫︁ 𝜎+i∞

𝜎−i∞
𝑑s̃

𝑒s̃t

s̃+ i 𝜔𝑐 + 𝜉 + Ω2
∫︀∞
0
𝑑𝜔𝜌(𝜔) 1

s̃+i 𝜔

, (F.8)

where we have substituted s̃ ≡ s − i 𝜔𝑐. Furthermore, 𝜎 > 0 is chosen such that
the real parts of all singularities of 𝒜(s) are smaller than 𝜎. It can be shown that
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Figure F.1.: Contour completion in the complex plane s = 𝜎+ i �̄� for the calculation of
the inverse Laplace transform [Eq. (F.8)]. Those paths which give nonzero contribution are
designated by numbers. The zig-zag line corresponds to the branch cut along the negative
part of the imaginary axis. Figure adapted from Supplementary Note 3 of ref. [84].

the integrand in Eq. (F.8) exhibits a jump along the negative part of the imaginary
axis [212], which is a branch cut. By equating the denominator of the integrand in
Eq. (F.8) to zero, one can derive equations for the simple poles, s̃j = 𝜎j + i �̄�j.

To evaluate the integral Eq. (F.8), we apply Cauchy’s theorem to the closed
contour depicted in Fig. F.1. Taking into account that only a few paths contribute,
we őnally end up with the following expression for the cavity amplitude

𝐴(t) = Ω2

∫︁ ∞

0

𝑒−i(𝜔−𝜔𝑐−i𝛾⊥)t 𝑈(𝜔) 𝑑𝜔, (F.9)

where

𝑈(𝜔) = lim
𝜎→0+

{︂
𝜌(𝜔)

(𝜔−𝜔𝑐−Ω2𝛿(𝜔) +i(𝜅− 𝛾⊥))
2+(𝜋Ω2𝜌(𝜔)+𝜎)2

}︂
(F.10)

is the kernel function and
𝛿(𝜔) = P

∫︁ ∞

0

𝑑�̃�𝜌(�̃�)

𝜔−�̃�
(F.11)

denotes the nonlinear Lamb shift of the cavity frequency 𝜔𝑐.
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