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Kurzfassung

Answer Set Programming (ASP) ist ein deklarativer Problemlösungsansatz aus dem
Bereich der Wissensrepräsentations und -verarbeitung. Hierbei werden logische Regeln
verwendet, um Wissensverarbeitung zu ermöglichen. Typische moderne Implementie-
rungen von Problemlösern für ASP durchlaufen, bevor sie mit dem eigentlichen Lösen
einer Probleminstanz beginnen, eine Grundierungsphase, welche zu einem exponentiellen
Blowup des erforderlichen Speichers führen kann. Dieser Effekt wird Grounding Bott-
leneck genannt. Der sogenannte Lazy-Grounding Ansatz verschränkt die Grundierungs-
und Lösungsphasen, um den Grounding Bottleneck zu vermeiden. Bei Lazy-Grouding
werden Regeln inkrementell grundiert, sobald sie für den Lösungsprozess von Interesse
sind. Derzeit arbeitet der Lazy-Grounding ASP Problemlöser Alpha mit einer monoton
wachsenden Menge von Regeln, die aus dem Grundierungsprozess resultieren. Das führt
potentiell dazu, dass nicht mehr benötigte grundierte Regeln die Performance des Pro-
blemlösers negativ beeinträchtigen, nachdem diese weiterhin gespeichert und verarbeitet
werden. Diese Arbeit präsentiert eine Technik mit dem Namen Reboots, die es erlaubt,
grundierte Regeln wieder zu entfernen. Reboots werden definiert und ihre Korrektheit
wird formal bewiesen. Weiters werden mehrere Strategien für die Anwendung von Reboots
vorgeschlagen. Reboots und zugehörige Strategien werden für den Alpha Problemlöser
definiert und implementiert. Experimentelle Ergebnisse zeigen, dass mittels Reboots für
bestimmte Probleme größere Instanzen gelöst und Performance-Verbesserungen erzielt
werden können.
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Abstract

Answer set programming (ASP) is a declarative problem solving approach from the
area of knowledge representation and reasoning. It uses logical rules for the purpose
of knowledge processing. The state-of-the-art solvers for answer set programs initially,
before starting the solving process, perform a grounding phase that potentially leads
to an exponential blowup in memory. This effect is called the grounding bottleneck.
The lazy-grounding approach interleaves the grounding and solving phases to avoid this
grounding bottleneck. In lazy-grounding, rules are grounded incrementally as soon as
they are relevant to the solving process. So far the lazy-grounding ASP solver Alpha
considers a monotonically growing set of rules obtained from grounding. This potentially
leads to ground rules becoming detrimental to the search performance as they are stored
and processed for longer than they remain of interest to the search. This thesis proposes
a technique, called reboots, that allows the removal of ground rules obtained during the
search. Reboots are defined and their correctness is proven formally. Several strategies for
the decision when to perform reboots are proposed. Furthermore, reboots and proposed
strategies are implemented for the Alpha solver. Experimental results show that, using
this technique, larger instances can be solved and performance improvements can be
achieved for some problems.
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CHAPTER 1
Introduction

Answer set programming [EIK09, Lif19, GKKS12, GL88], or ASP for short, is a declarative
problem solving approach based on formal logic. It provides a rich specification language
and is used in academia as well as in industry, where examples of its application include
diagnosis, configuration, design and planning [FFS+18]. Encodings in ASP use logical
facts and rules. Similarly, encodings can be split up into an instance-specific and a
problem-specific part respectively. Rules in ASP describe a form of logical implication
and possibly contain variables. A rule containing variables represents a set of rules and
the step of translating rules with variables to rules without is called grounding. An
example of a rule with variables would be the following:

option(A, M, T ) ← task(A), machine(M), time(T ).

This rule could be used to formalize the options for some assignment problem, where tasks
are assigned to machines at certain time slots. It represents rules for all combinations of
tasks, machines and time slots defined in the remaining program, resulting in a number
of rules equal to the number of these combinations.

This demonstrates that the result of grounding is potentially quite large. In the worst
case the grounding step can lead to an exponential blowup of the encoding. Most state-
of-the-art solvers for ASP compute the whole grounding upfront, resulting in a grounding
and a solving phase. These systems are further referred to as ground-and-solve systems.
Results of the grounding step, that are too large to fit into memory, lead to the so-called
grounding bottleneck of ASP [GLM+18].

One approach to tackle the grounding bottleneck involves grounding rules incrementally
only when necessary, i.e., interleaving the grounding and solving phases. This approach
is called lazy-grounding and was implemented in multiple ASP solvers (cf. GASP
[PDPR09], ASPeRiX [LN09a] and [DEF+12]). These early lazy-grounding solvers, while
allowing to solve problems that could not be solved before, exhibited significantly worse
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1. Introduction

solving performance than ground-and-solve systems. The lazy-grounding solver Alpha
[Wei17, LW17, WTF20] incorporates several techniques that are used in ground-and-
solve systems and originate from the related field of satisfiability solving, to improve
performance. The Alpha solver combines lazy-grounding with conflict-driven learning, a
technique originating from satisfiability solving [SS96].

While lazy-grounding typically works with less necessary memory than ground-and-solve
systems, there is still room for improvement in this regard. Once a rule is grounded in
Alpha, the result is stored until the end of the search. In case this result is only relevant
for part of the search, it could negatively impact performance after it becomes obsolete.
This leads to the question, whether it is possible to avoid monotonic growth of the set of
grounding results, and thus solve more problems by reducing memory consumption.

In this thesis a novel technique is proposed to remove grounding results in lazy-grounding
and we call it reboots. This is possible since lazy-grounding does not make the assumption
that all grounding results are known upfront [LW17]. A challenge for the definition and
implementation of reboots is to find a balance between removing potentially obsolete
information and retaining still relevant information. Implementing this technique in
the Alpha solver provides another challenge. Since removing grounding results could
potentially undo progress made, it is necessary to make sure that this does not lead the
solver to explore the same part of the search space indefinitely. Furthermore, it leads to
the question of when to use the reboot technique during the search process.

Our contributions include a definition of reboots as well as a modified algorithm of Alpha
that incorporates reboots. Furthermore, a formal soundness and completeness proof is
presented based on the proposed notion of a computation tree, which is used to formally
describe a run of the modified algorithm using a tree. Since the modified algorithm is a
generalization of the original, the proofs in this thesis are also applicable to the original
Alpha algorithm. Specifically the provided completeness proof goes into more detail than
previously existing proofs for Alpha [Wei17]. Furthermore, several reboot strategies,
for when to execute a reboot within the modified solving algorithm, are proposed and
an implementation of reboots in Alpha [LLTW] combined with the proposed reboot
strategies is provided. Three hypotheses regarding reboots are investigated:

H1: The decision when to reboot can have significant impact on performance.

H2: Reboots can significantly improve solving performance.

H3: Reboots are detrimental for problems where nogoods from grounding do not become
obsolete.

Finally, evidence towards the hypotheses is presented in the form of experimental analysis.

The remainder of this thesis is structured as follows. Section 2 contains definitions from
the literature, that are used throughout the thesis. In Section 3 reboots are defined and
a modification of the algorithm employed by Alpha is presented. Section 3 also contains
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formal soundness and completeness proofs for the presented algorithm. Furthermore,
multiple possible strategies for the decision, when to perform a reboot, are proposed.
Finally, arguments for termination of the presented algorithm, using specific types of
ASP programs and reboot strategies, are given. Section 4 contains a description of
reboots within the Alpha system, the three examined hypotheses and experimental
results. Section 5 gives an overview over important related work and Section 6 concludes
the thesis.
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CHAPTER 2
Preliminaries

2.1 Logical Basics
Consider a language L = ⟨Const, Func, Pred, V ars⟩ as a quadruple of pairwise disjoint
sets, containing a set Const of all constant symbols of the language, a set Func of all
function symbols of the language together with their arity (e.g. f/3 ∈ Func for some
ternary function symbol f), a set Pred of all predicate symbols of the language together
with their arity (e.g. p/2 ∈ Pred for some binary predicate symbol p) and a set V ars
contains all variables of the language.

The set of terms TERMSL over some language L = ⟨Const, Func, Pred, V ars⟩ is induc-
tively defined as the smallest set such that:

• Every constant symbol is a term, i.e., ∀c ∈ Const : c ∈ TERMSL.

• Every variable is a term, i.e., ∀v ∈ V ars : v ∈ TERMSL.

• Let t1, . . . , tn ∈ TERMSL be terms and let f/n ∈ Func be an n-ary function
symbol, then f(t1, . . . , tn) is also a term, i.e., f(t1, . . . , tn) ∈ TERMSL.

The set of ground terms is defined analogously but without the second case. Thus a
ground term is a term that contains no variables.

An atom is defined as an expression p(t1, . . . , tn) constructed from an n-ary predicate
symbol p/n ∈ Pred and n terms t1, . . . , tn. More formally the set of atoms ATOMSL
over some language L = ⟨Const, Func, Pred, V ars⟩ is defined as follows:

ATOMSL = {p(t1, . . . , tn) | p/n ∈ Pred, {t1, . . . , tn} ⊆ TERMSL}.

An atom defined this way is called ground if all its terms t1, . . . , tn are ground.
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2. Preliminaries

A binary literal can be an atom or its negation and the set of literals LITL over a
language L is defined as:

LITL = {Ta | a ∈ ATOMSL} ∪ {Fa | a ∈ ATOMSL}.

A binary literal is called ground if its corresponding atom is ground. Let l ∈ LITL denote
the negation of a binary literal l ∈ LITL. More formally:

l =
{

Fa if l = Ta;
Ta if l = Fa.

A nogood δ is defined as a conjunction of n ≥ 0 binary literals δ = l1∧. . .∧ln. Nogoods are
called ground if they contain only ground literals. From here on, nogoods are represented
as sets of binary literals. The set of all atoms occurring in a nogood δ is denoted with
atoms(δ) and defined as follows:

atoms({Ta1, . . . , Tak, Fak+1, . . . , Fam}) = {a1, . . . , am}.

Furthermore, the Herbrand universe HU(L) and the Herbrand base HB(L) of a language L
are defined as follows:

HU(L) = {t ∈ TERMSL | t is ground} and
HB(L) = {a ∈ ATOMSL | a is ground}.

A Herbrand interpretation I ⊆ HB(L), sometimes referred to just as an interpretation,
over a language L is then defined as a subset of the Herbrand base of L. An interpretation
sequence is defined as an infinite sequence (X0, . . . , X∞) of Herbrand interpretations.
In the remainder of this thesis, if not specified otherwise, a finite sequence (X0 . . . , Xn)
is used to represent an infinite interpretation sequence where the last element Xn is
repeated. This means that a sequence (X0 . . . , Xn) represents the interpretation sequence
(X0 . . . , Xn, Xn, Xn, . . .).

2.2 ASP Syntax and Semantics
2.2.1 ASP Syntax
An ASP program consists of rules. Let h, b1, . . . bn be atoms. Then a rule r over some
language L is defined as a logical expression of the form:

h ← b1, . . . , bm, not bm+1, . . . , not bn. (2.1)

The left side of the implication arrow "←" is called the head of the rule r. It is defined
by H(r) for the rule r as follows:

H(r) =
{

{h} if r contains a head atom h;
∅ if r contains no head atom.
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The right side is called the body of the rule r and can be divided into the positive body
B+(r) = {b1, . . . , bm} and the negative body B−(r) = {bm+1, . . . , bn}. Either head or
body (but not both) of a rule can be empty. A rule rc with H(rc) = ∅ is a syntactic
shorthand, called a constraint. Let a ∈ ATOMSL be a new atom, that does not occur
in P otherwise. Then consider a constraint of the form:

← b1, . . . , bm, not bm+1, . . . , not bn.

It represents the following rule:

a ← b1, . . . , bm, not bm+1, . . . , not bn, not a.

Conversely a rule rf with B+(rf ) ∪ B−(rf ) = ∅ is called a fact. The set atoms(r) of
atoms of a rule r is defined as atoms(r) = H(r) ∪ B+(r) ∪ B−(r).

A rule r is called ground if all atoms a ∈ atoms(r) are ground. Furthermore, a rule r is
called safe if every variable that occurs in r occurs in B+(r). For the remainder of this
thesis, every considered program is assumed to be safe.

An ASP program P is defined as a set of rules over some language L. The set of atoms
atoms(P) of a program P is defined as:

atoms(P) =
U

r∈P
atoms(r).

If all rules of a program P are ground, then P is also called ground. If it holds for every
rule r of a program P that B−(r) = ∅, then P is called positive. Whenever a program P
is considered in the remainder of this thesis without the mention of a language, it is
assumed that the program is defined over some suitable language L.

2.2.2 Substitutions and Grounding
Given some language L = ⟨Const, Func, Pred, V ars⟩, a substitution σ is defined as a
function σ : TERMSL → TERMSL, written in postfix notation, such that:

• σ is homomorphous, i.e., f(t1, . . . , tn)σ = f(t1σ, . . . tnσ) for function terms and
cσ = c for constants.

• σ is identical almost everywhere, i.e., {x | x is a variable and xσ ̸= x} is finite.

A substitution σ is represented by the finite set {x1 ⱶ→ x1σ, . . . , xk ⱶ→ xkσ} where
{x1, . . . , xk} is its domain and {x1σ, . . . , xkσ} is its codomain. Given some predicate
p/n ∈ Pred, in slight abuse of notation, define the application of a substitution to an
atom p(t1, . . . , tn) ∈ ATOMSL as follows:

p(t1, . . . , tn)σ = p(t1σ, . . . , tnσ).

7



2. Preliminaries

Then let some rule r be of the form shown in Equation 2.1 and define the result rσ of
applying the substitution σ to the rule r as:

hσ ← b1σ, . . . , bmσ, not bm+1σ, . . . , not bnσ.

The grounding grd(r) of a rule r is defined based on substitutions as follows:

grd(r) = {rσ | σ is a substitution s.t. rσ is ground}.

Further the grounding grd(P) of a program P is defined as:

grd(P) =
U

r∈P
grd(r).

2.2.3 ASP Semantics
Given a program P over a language L, a Herbrand interpretation I ⊆ HB(L) is called a
Herbrand model, sometimes referred to just as a model, of P if the following holds:

∀r ∈ grd(P) : (B+(r) ⊆ I ∧ B−(r) ∩ I = ∅) ⇒ H(r) ⊆ I.

A Herbrand model M of a program P is minimal, if there does not exist another Herbrand
model M ′ of P s.t. M ′ ⊂ M .

Given a partially ordered set (S, ≤), an operator is a mapping f : S → S. An operator f
is called monotone if f(x) ≤ f(y) whenever x ≤ y. A fixpoint of an operator f : S → S
is an element x ∈ S s.t. f(x) = x. Furthermore, a fixpoint x∗ of f : S → S is called
the least fixpoint lfp(f) if for every fixpoint x ∈ S of f it holds that x∗ ≤ x. It can
be computed by fixpoint iteration as follows: lfp(f) = f ↑ ω, where f ↑ 0(I) = I,
f ↑ (n + 1)(I) = f(f ↑ n(I)) and f ↑ ω(I) = U

n∈N f ↑ n(I). If not specified otherwise,
the initial set I is assumed to be the empty set.

A complete lattice is a partially ordered set (S, ≤) such that each subset S′ ⊆ S has
a least upper bound sup(S′) and a greatest lower bound inf(S′). The Knaster-Tarski
theorem states the following:

Theorem 1 (Knaster-Tarski [Tar55]). Let (S, ≤) be a complete lattice, let f : S → S
be a monotonic operator (w.r.t. ≤) and let P be the set of fixpoints of f . Then P is
non-empty and (P, ≤) is a complete lattice.

The direct consequence operator TP : 2HB(L) → 2HB(L) for some program P , defined over
language L, is defined as follows:

TP(X) = {a | ∃rσ ∈ grd(P), a ∈ H(rσ), B+(rσ) ⊆ X, B−(rσ) ∩ X = ∅}.

The partially ordered set (2HB(L), ⊆) is a complete lattice where for every subset S′ ⊆
2HB(L) it holds:

sup(S′) =
U

I∈S′
I and inf(S′) =

∩
I∈S′

I.
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2.3. Fundamentals of Alpha

Note that for a positive ground program P the TP operator is monotone. By the Knaster-
Tarski theorem, it follows for a positive ground program P that there exists a least
fixpoint lfp(TP) that is the unique minimal Herbrand model of P.

The semantics of ASP programs was originally defined based on the stable model semantics
proposed by Gelfond and Lifschitz in 1988 [GL88]. They described the Gelfond-Lifschitz-
reduct (GL-reduct) to obtain solutions, called answer sets, of an ASP program. Let
P be a ground ASP program and let I ⊆ HB(L) be a interpretation. Then the GL-
reduct GLI(P) is defined as a function that takes an ASP program P and returns a new
set of rules obtained by:

• removing every rule r from P where B−(r) ∩ I ̸= ∅, and

• setting B−(r) = ∅ for each remaining rule r.

Note that GLI(P) is a positive program. Then an interpretation I ⊆ HB(L) is an answer
set (originally called stable model) of a ground program P, if I is the unique minimal
Herbrand model of GLI(P). Further an interpretation I ⊆ HB(L) is an answer set of a
non-ground program P , if I is an answer set of the grounding grd(P ). Finally, AS(P) is
defined as the set of all answer sets of a program P.

2.3 Fundamentals of Alpha
2.3.1 Ternary Assignments
Assignments in the algorithm of the Alpha solver [Wei17] are ternary, meaning that they
involve three possible truth values: the classical boolean values true (represented by T)
and false (represented by F) as well as a third value must-be-true (represented by
M). Intuitively Ma ∈ A for some atom a represents, that a needs to be true (according
to some nogood), but there is no justification for its truth, i.e., a rule that fired, under
assignment A.

The set of ternary literals LIT3
L over some language L is defined as:

LIT3
L = {Ta | a ∈ ATOMSL} ∪ {Fa | a ∈ ATOMSL} ∪ {Ma | a ∈ ATOMSL}.

The boolean projection lB of a ternary literal l maps a ternary to a binary literal and is
defined as:

lB =

(��{��(
Ta if l = Ta;
Ta if l = Ma;
Fa if l = Fa.

A ternary assignment A over language L is a subset of all ternary literals over L. Formally,
the set of ternary assignments ASSIGN3

L is defined as:

ASSIGN3
L = 2LIT3

L .

9



2. Preliminaries

A ternary assignment A is considered to be consistent if there does not exist an atom a ∈
ATOMSL s.t. both Ta ∈ A ∨ Ma ∈ A and Fa ∈ A hold. In the remainder of this thesis
only consistent ternary assignment are considered.

Further the boolean projection AB of a ternary assignment A is defined as:

AB = {lB | l ∈ A}.

The set of all atoms occurring in a ternary assignment A ∈ ASSIGN3
L is denoted with

atoms(A) and defined as follows:

atoms({Ta1, . . . , Taj , Faj+1, . . . , Fak, Mak+1, . . . , Mam}) = {a1, . . . am}.

2.3.2 Nogood Representation
In the solving process of Alpha there exist special nogoods with a designated head literal.
Nogoods with head allow making justified inferences and result in propagation to truth
value T. Intuitively this corresponds to some rule firing under the current assignment.
Other propagation steps only propagate to truth value M or F. For nogoods with head,
the head literal is underlined. For example the nogood {Ta, Tb, Tc} has the head literal
Ta. For a nogood δ with head let hd(δ) denote the head literal of δ.

Based on nogoods without and with head, there are two possible types of propagation
of a nogood in the Alpha solver: weak and strong propagation. They occur when a
nogood δ is weakly- or strongly-unit respectively.

• A nogood δ is weakly-unit under assignment A for literal l if δ \ AB = {l} and
l /∈ AB.

• A nogood δ is strongly-unit under assignment A for literal l if δ is a nogood with
head, δ \ A = {l}, hd(δ) = l and l /∈ A.

A nogood δ is considered to be violated under some ternary assignment A if δ ⊆ A.

For some ground rule rσ obtained from rule r ∈ P and substitution σ, let the rule
atom β(r, σ) be defined as a fresh atom with β(r, σ) /∈ ATOMSL where L is the language
of the program P. Intuitively β(r, σ) represents whether the rule rσ fires under some
assignment.

Ground rules can be represented by a set of nogoods as defined by Weinzierl [Wei17]
as follows: Given a ground rule rσ of the form shown in Equation 2.1, the set of
representation nogoods ngre(rσ) is defined as:

ngre(rσ) = {{Fβ(r, σ), Tb1, . . . , Tbk, Fbk+1, . . . , Fbn}, {Fh, Tβ(r, σ)},

{Tβ(r, σ), Fb1}, . . . , {Tβ(r, σ), Fbk},

{Tβ(r, σ), Tbk+1}, . . . , {Tβ(r, σ), Tbn}}.

10



2.3. Fundamentals of Alpha

Furthermore, for each such ground rule rσ with B−(rσ) ̸= ∅ the choice atoms cOn(r, σ)
and cOff(r, σ) are also defined as fresh atoms with cOn(r, σ) /∈ ATOMSL and cOff(r, σ) /∈
ATOMSL. A rule rσ is considered applicable under some set of atoms At ⊆ ATOMSL if
it holds:

B+(rσ) ⊆ At and B−(rσ) ∩ At = ∅.

Further rσ is considered applicable under some assignment A ∈ ASSIGN3
L if it is applicable

under the set {a | Ta ∈ A}. The set of choice nogoods ngch(rσ) encodes the applicability
of rules and is defined as:

ngch(rσ) = {{FcOn(r, σ), Tb1, . . . , Tbk},

{FcOff(r, σ), Tbk+1}, . . . , {FcOff(r, σ), Tbn}}.

The full nogood representation ng(rσ) of a rule rσ is then defined as ng(rσ) = ngre(rσ)∪
ngch(rσ). More details on this encoding can be found in the original definition by
Weinzierl [Wei17].

The set of nogoods ngREPP resulting from the whole nogood representation of a pro-
gram P is defined as:

ngREPP =
U

rσ∈grd(P)
ng(rσ).

The set of auxiliary atoms ATOMSaux
P for a program P is defined as:

ATOMSaux
P = atoms(ngREPP) \ ATOMSL.

The atoms contained in a program P , i.e. a ∈ atoms(P), are referred to as non-auxiliary
atoms.

2.3.3 Lazy Grounding
The lazy-grounding in Alpha is based on the notion of a grounder memory and a
lazy-grounding strategy [TWF19]. A grounder memory is defined as a subset G ⊆ HB(L)
of the Herbrand base. The set GM = 2HB(L) denotes all possible grounder memories. To
allow different degrees of permissiveness in grounding, a lazy-grounding strategy defines
which rules are grounded depending on the current assignment and grounder memory.

Consider an ASP program P and let R ⊆ P be the set of non-ground rules in P. Then
a lazy-grounding strategy gs : ASSIGN3

L × GM × R → GM × 2grd(P) maps a ternary
assignment A ∈ ASSIGN3

L, a grounder memory G ∈ GM and a non-ground rule r ∈ R
to a new grounder memory G′ and a set of new ground rules R′ ⊆ grd(P).

Taupe et al. [TWF19] presented multiple lazy-grounding strategies with the default
grounding strategy being the most conservative one, i.e., grounding the smallest set of
rules. This strategy is based on two notions, namely inactive rules and rules of interest.
A ground rule rσ ∈ grd(P) is inactive if (at least) one of the following holds:
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2. Preliminaries

• B+(rσ) contains an atom over a predicate p s.t. there does not exist a rule r′σ′

where the atom a ∈ H(r′σ′) is over p.

• B−(rσ) contains an atom a s.t. there exists a fact rf ∈ P in the program with
a ∈ H(rf ).

A ground rule rσ ∈ grd(P) is of interest w.r.t. the assignment A ∈ ASSIGN3
L if it holds:

{Ta | a ∈ B+(rσ)} ⊆ AB.

Then the default grounding strategy for a program P is defined as a lazy-grounding
strategy gsdef where gsdef (A, G, r) = (G′, R′) s.t. G′ = {a | Ta ∈ A} and:

R′ = {rσ ∈ grd(P) | rσ is of interest w.r.t. A and not inactive}.

Taupe et al. showed that a lazy-grounding ASP solver, that is sound and complete for
the default grounding strategy gsdef , is also sound and complete for their other proposed
(more permissive) grounding strategies. This thesis considers gsdef as the grounding
strategy used in the solving algorithm.

2.3.4 The Alpha Algorithm
The algorithm employed by the Alpha solver [Wei17], further called AlphaASP, is based
on the concept of a computation sequence originally defined by Liu et al. [LPST10].
Let a computation sequence be defined over some program P as an interpretation
sequence (X0, . . . , X∞) with X0 = ∅ that satisfies the following properties:

(1) Persistence of beliefs:
∀i ≥ 1 : Xi−1 ⊆ Xi

(2) Revision:
∀i ≥ 1 : Xi ⊆ TP(Xi−1)

(3) Convergence:

X∞ =
∞U

i=0
Xi = TP(X∞)

(4) Persistence of reasons:

∀i ≥ 1 ∀a ∈ Xi \ Xi−1 ∃ra ∈ grd(P) :

a ∈ H(ra) ∧ ∀j ≥ i − 1 :
(
B+(ra) ⊆ Xj ∧ B−(ra) ∩ Xj = ∅

)
Since an interpretation sequence is defined as a sequence of Herbrand interpretations, this
definition is equivalent to what Liu et al. [LPST10] refer to as a persistent computation.
Furthermore, the following Lemma was proven by them.
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Lemma 1 (Proposition 3 in [LPST10]). Let P be an ASP program. A set X is an
answer set of P if and only if there exists a computation sequence (X0, . . . , X∞) where
X∞ = X.

The AlphaASP algorithm was originally defined by Weinzierl [Wei17]. Note that the
version presented in Algorithm 2.1 splits up the set of nogoods ∆ into static nogoods ∆S

and learned nogoods ∆L. Static nogoods are those obtained from grounding and represent
the static problem description. Learned nogoods are those learned from conflicts based
on resolution. The technique of learning nogoods from conflicts in this way was originally
developed in the field of satisfiability solving [SS96].

For some run of the AlphaASP algorithm, let the decision level dl(l) of a ternary
literal l ∈ A be defined as the value of variable dlev at the point where l was added to A.

The algorithm begins with an initial request to the grounding component, i.e., lazyGroundP(A, G)
for A and G both being empty. Here the grounding strategy is applied to the input
program to obtain a set of new nogoods that represents the newly grounded rules. This
step depends on the current assignment and grounder memory since a lazy-grounding
strategy also takes both of these as inputs.

The main solving loop depends on the condition defined by function wasExhausted.
Intuitively the function returns whether the search space was fully explored. Formally, it
returns 1 if:

• the empty nogood was learned or obtained from grounding, i.e., ∅ ∈ ∆S ∪ ∆L, or

• the current decision level is negative, i.e. dlev < 0 holds.

The function wasExhausted returns 0 otherwise, indicating that further search is needed.
The two cases where wasExhausted returns 1 are further referred to as termination
conditions.

The loop begins with exhaustive unit-propagation in the propagate function. The
semantics of propagate is defined based on immediate unit-propagation. Immediate
unit-propagation in AlphaASP is defined as:

Pr∆(A) = A ∪ {Ta | ∃δ ∈ ∆, δ is strongly-unit under A for s = Fa}
∪ {Ma | ∃δ ∈ ∆, δ is weakly-unit under A for s = Fa}
∪ {Fa | ∃δ ∈ ∆, δ is weakly-unit under A for s = Ta}.

Performing n ≥ 1 steps of immediate unit-propagation Prn
∆(A) is defined inductively as:

Prn
∆(A) =

{
A if n = 0;
Pr∆(Prn−1

∆ (A)) otherwise.
(2.2)
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Let lfpA(f) denote the least fixpoint of f where A is used as the initial set instead of ∅.
The function propagate consists of exhaustive application of immediate unit-propagation.
More formally it is defined as the least fixpoint using the initial set A:

propagate(∆, A) = lfpA(Pr∆).

Next the loop splits into multiple different cases with the following meaning:

• In case (conflict), a conflict occurred, meaning a nogood δ was violated. Then
the function analyze is used to analyze the conflict and learn a new nogood δl

by resolution. Furthermore, a new decision level dlevbj is computed at which no
nogood is violated. Before adding the new nogood, the function backjump leads to
an unassignment of all assignments in A with decision levels above dlevbj . More
formally, the backjump function is defined as follows:

backjump(A, dlevbj) = {l ∈ A | dl(l) ≤ dlevbj}.

• In case (ground), the function wasExtended is used to check whether the as-
signment was extended in the previous iteration. The function wasExtended
takes an assignment and returns 1 if a new literal was added since the last call to
wasExtended, and 0 otherwise. The first time the function is called, it returns 1.
In case the assignment was extended, a request to the grounding component is
performed to potentially obtain new nogoods representing ground rules. The default
grounding strategy gsdef is assumed to be used.

• In case (choice), a choice is made. This means that an atom from the active
choice points is chosen and assigned to true. The active choice points acp depend
on the current set of nogoods ∆ and the current assignment A. They represent the
options for firing rules and are defined formally as:

acp(∆, A) =
{

β(r, σ) ∈ atoms(∆)
│││ TcOn(r, σ) ∈ A

∧ TcOff(r, σ) /∈ A ∧ McOff(r, σ) /∈ A

∧ Tβ(r, σ) /∈ A ∧ Fβ(r, σ) /∈ A
}

.

How an atom is selected from the active choice points does not influence the
correctness of the solving process, but can have practical impact on performance.

• In case (close), the algorithm has reached a point where no propagation, ground-
ing or guessing needs to be performed. Here all unassigned atoms are assigned
false since other atoms do not have any justification to be in the potential answer
set. This is done to ensure that every atom is assigned some ternary truth-value.
There is still the possibility that some atom is assigned to must-be-true.
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• In case (answer), an answer set is found since no unjustified atoms, i.e., atoms
assigned must-be-true, remain. The answer set is added to the set AS. Let A
be the current assignment. Then a new nogood δenum is computed by the function
enumNG as follows:

δenum = {Tβ(r, σ) ∈ A}.

Nogoods of this type are called enumeration nogoods and ensure that the algorithm
does not reach the same answer set multiple times. Afterwards the function
backtrack is used to backtrack to, and flip, the most recent decision. Given some
assignment l ∈ A, let the function decision indicate whether a literal was assigned
by a decision as follows:

decision(l) =
{

1 if l was assigned in case (choice) of the algorithm;
0 otherwise.

The set of decisions DA is defined as:

DA = {a ∈ atoms(A) | Ta ∈ A, decision(Ta) = 1} .

If DA ̸= ∅ holds for some assignment A, then the decision atom aA to flip is defined
such that:

{aA} = argmax
a∈DA

dl(Ta).

The new assignment Â after backtracking is defined as:

Â =
{

{l ∈ A | dl(l) < dl(TaA)} ∪ {FaA} if DA ̸= ∅;
∅ otherwise.

Then the backtrack function is defined as:

backtrack(A) =
{

(dl(TaA), Â) if DA ̸= ∅;
(−1, Â) otherwise.

• In case (backtrack), a backtrack is performed since there are unjustified atoms
remaining in the assignment.

When the loop terminates, all answer sets have been found and the set AS of all answer
sets is returned.
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Algorithm 2.1: The AlphaASP algorithm
Input: A (non-ground) normal logic program P
Output: The set AS(P) of all answer sets of P

AS ← ∅
A ← ∅
∆S ← ∅
∆L ← ∅
G ← ∅
dlev ← 0
wasExtended(A)
(∆S , G) ← lazyGroundP(A, G)
while wasExhausted() = 0 do

A ← propagate(∆S ∪ ∆L, A) (propagate)
if ∃δ ∈ ∆S ∪ ∆L : δ ⊆ A then (conflict)

(δl, dlevbj) ← analyze(δ, ∆S ∪ ∆L, A)
A ← backjump(A, dlevbj)
dlev ← dlevbj

∆L ← ∆L ∪ {δl}
else if wasExtended(A) = 1 then (ground)

(∆′
S , G) ← lazyGroundP(A, G)

∆S ← ∆S ∪ ∆′
S

else if acp(∆S ∪ ∆L, A) ̸= ∅ then (choice)
dlev ← dlev + 1
s ← select(acp(∆S ∪ ∆L, A))
A ← A ∪ {Ts}

else if atoms(∆S ∪ ∆L) \ atoms(A) ̸= ∅ then (close)
A ← A ∪ {Fa | a ∈ atoms(∆S ∪ ∆L) \ atoms(A)}

else if {a | Ma ∈ A, Ta /∈ A} = ∅ then (answer)
AS ← AS ∪ {{a ∈ ATOMSL | Ta ∈ A}}
δenum ← enumNg(A)
∆L ← ∆L ∪ {δenum}
(dlev, A) ← backtrack(A)

else (backtrack)
(dlev, A) ← backtrack(A)

end
end
return AS
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CHAPTER 3
Reboots in Lazy-Grounding

The set of static nogoods maintained by lazy-grounding ASP solving in Alpha grows
monotonically. This means that after a nogood has been obtained from grounding, it
will be stored and processed until the search finishes. The proposed concept of a reboot
eliminates this property and allows removal of stored static nogoods.
Lazy-grounding ASP solving is divided conceptually into the solving and grounding
component, which need to have synchronized information about which ground rules have
been instantiated, i.e., which nogoods the grounder has already passed to the solver. The
grounder also indirectly stores this information to avoid passing the same nogoods to the
solver repeatedly. If the solver removes parts of the grounding, this information needs to
be propagated between the two components.

3.1 Reboots
The proposed definition of reboots uses a restricted set of nogoods, which is referred to
as the learnable nogoods of a program. The learnable nogoods ∆P of a program P are
defined as:

∆P = {δ | δ is a nogood with atoms(δ) ⊆ ATOMSL ∪ ATOMSaux
P }.

The learnable nogoods represent all nogoods that the solver could theoretically obtain
based on the non-auxiliary as well as auxiliary atoms of the input program P. The
current set of learned nogoods in the solver is thus a subset of the learnable nogoods.
To retain learned nogoods containing some rule atom β(r, σ), a reboot takes the set of
learned nogoods as one of its inputs and adds rσ to the rules in its output. The intuitive
goal of this is to preserve learned information.
A reboot incorporates the chosen grounding strategy and a subset of the learnable
nogoods ∆L ⊆ ∆P to obtain a set of ground rules by applying the grounding strategy to
all rules of the program and adding additional rules based on ∆L. More formally:
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Definition 1. Let P = {r1, ..., rn} be an ASP program with n (non-ground) rules, A the
set of partial assignments, Stratgr the set of possible grounding strategies, GM the set of
possible grounder memories, ∆L ⊆ ∆P a subset of the learnable nogoods and grd(P) the
grounding of program program P. A reboot rbt : A × Stratgr × 2∆P → GM × 2grd(P) is
then defined as:

rbt(A, stratgr, ∆L) =

((gn,

(( U
0≤i≤n

Ri

)) ∪ R∆L

)) .

based on the sequence ((g0, R0), (g1, R1), . . . , (gn, Rn)), which is inductively defined as:

g0 = ∅, R0 = ∅,

∀i ∈ {1, . . . , n} : (gi, Ri) = stratgr(A, gi−1, ri)
and the set R∆L

, which is defined as:

R∆L
= {rσ | β(r, σ) ∈ atoms(∆L)}.

For a reboot rbt, the resulting grounder memory rbtgm : A × Stratgr × 2∆P → GM and
ground rules rbtgr : A × Stratgr × 2∆P → 2grd(P) are defined as:

rbtgm(A, stratgr, ∆L) = gn and rbtgr(A, stratgr, ∆L) = R′

where rbt(A, stratgr, ∆L) = (gn, R′).
To obtain the nogood representation instead of the ground rules themselves, the function
rbtng : A × Stratgr × 2∆P → GM × 2∆P maps the resulting rules to their respective
nogoods as follows:

rbtng(A, stratgr, ∆L) =

((rbtgm(A, stratgr, ∆L),
U

rσ∈rbtgr(A,stratgr,∆L)
ng(rσ)

)) .

Performing a reboot at some point during the solving process, where A ∈ A is the current
partial assignment, stratgr ∈ Stratgr is the chosen grounding strategy and ∆′

L is the
current set of learned nogoods, amounts to setting the grounder memory to g′ ∈ GM and
setting the static nogoods to ∆′

S ⊆ ∆P , where rbtng(A, stratgr, ∆′
L) = (g′, ∆′

S).
Algorithm 3.1, further referred to as AlphaRebootASP, incorporates reboots into the
solving algorithm employed by Alpha [Wei17], which was presented in Section 2.3.4. All
parts of the algorithm not mentioned explicitly behave the same way as in the AlphaASP
algorithm. The function rebootAdvised represents a heuristic that decides when reboots
are performed. This decision and corresponding heuristics are covered in Section 3.5.
Note that each nogood in ∆S is obtained from some ground rule of the program. Further
note that when a ground rule rσ is instantiated by the grounder, all nogoods δ ∈ ng(rσ)
in its representation are passed to the solver. The set of synchronized ground rules at
some point in the algorithm is defined as the set of all ground rules rσ ∈ grd(P) s.t. it
holds ng(rσ) ⊆ ∆S .
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Algorithm 3.1: The AlphaRebootASP algorithm
Input: A (non-ground) normal logic program P and a grounding strategy stratgr
Output: The set AS(P) of all answer sets of P

AS ← ∅
A ← ∅
∆S ← ∅
∆L ← ∅
G ← ∅
dlev ← 0
wasExtended(A)
(∆S , G) ← lazyGroundP(A, G)
while wasExhausted() = 0 do

A ← propagate(∆S ∪ ∆L, A) (propagate)
if ∃δ ∈ ∆S ∪ ∆L : δ ⊆ A then (conflict)

(δl, dlevbj) ← analyze(δ, ∆S ∪ ∆L, A)
A ← backjump(A, dlevbj)
dlev ← dlevbj

∆L ← ∆L ∪ {δl}
else if wasExtended(A) = 1 then (ground)

(∆′
S , G) ← lazyGroundP(A, G)

∆S ← ∆S ∪ ∆′
S

else if rebootAdvised() then (reboot)
(G, ∆S) ← rbtng(A, stratgr, ∆L)

else if acp(∆S ∪ ∆L, A) ̸= ∅ then (choice)
dlev ← dlev + 1
s ← select(acp(∆S ∪ ∆L, A))
A ← A ∪ {Ts}

else if atoms(∆S ∪ ∆L) \ atoms(A) ̸= ∅ then (close)
A ← A ∪ {Fa | a ∈ atoms(∆S ∪ ∆L) \ atoms(A)}

else if {a | Ma ∈ A, Ta /∈ A} = ∅ then (answer)
AS ← AS ∪ {{a ∈ ATOMSL | Ta ∈ A}}
δenum ← enumNg(A)
∆L ← ∆L ∪ {δenum}
(dlev, A) ← backtrack(A)

else (backtrack)
(dlev, A) ← backtrack(A)

end
end
return AS
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3.2 The Computation Tree
To show soundness and completeness of the presented algorithm, we introduce the notion
of a computation tree. Such a computation tree represents the parts of the search space,
i.e., the potential answer sets, explored by the algorithm. The root of the tree corresponds
to the empty set and atoms are added along paths from the root.

For some run of the AlphaRebootASP algorithm (as previously for AlphaASP ), let the
decision level dl(l) of a ternary literal l ∈ A be defined as the value of the variable dlev at
the point where l was added to A. This happens within AlphaRebootASP for example in
these cases: propagation in (propagate), making a choice in (choice) and closing
the assignment in (close). In the third case only negative literals are added. Note that
in AlphaRebootASP literals are only removed from A in cases (conflict), (answer)
and (backtrack).

In the remainder of this thesis, the term computation point is used to refer to the state,
including the current variable values, at one of the following points during the execution
of the AlphaRebootASP algorithm:

• the point at the end of an iteration

• the point after any step of immediate unit-propagation performed in (propagate)
(as defined in Equation 2.2 of Section 2.3.4)

• the point after (propagate)

In the following, nodes in the constructed tree will represent computation points. Note
that cases (conflict), (ground), (reboot), (choice), (close), (answer),
(backtrack) are disjoint and exhaustive for a single iteration. Thus each iteration has
a unique case that is chosen during the algorithm run.

The first n solving loop iterations of a AlphaRebootASP run on some program P over
language L can be viewed as the traversal of a rooted computation tree of ternary
assignments, where leafs correspond to either successes, failures or the point after the
n-th iteration in the search for answer sets. Recall that Prs

∆(A) is defined as the result
of s steps of immediate unit-propagation (see Section 2.3.4).

Example 3.2.1. Figure 3.1 provides an example for such a computation tree. The tree
contains nodes representing propagation steps and iteration cases, which are denoted with
P and I respectively in the figure. Intuitively the tree represents the possibilities to extend
the assignment based on currently applicable rules.

Definition 2. The computation tree T n = (V n, En) of some n-iteration run of the
AlphaRebootASP algorithm is defined as a rooted tree where edges point away from the root.
Each node v ∈ V n is labeled with a ternary assignment assn(v), a decision level dl(v),
an iteration number iterNum(v) and an iteration case iterCase(v). The tree is defined
inductively (over the number i of iterations) as follows:
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P

I

P

I

P

P

I

P

I

P

I

P

Figure 3.1: Example of a computation tree

• Base case i = 0: In this case the tree only consists of the root node v0 representing
the beginning of the algorithm run.

V 0 = {v0}, E0 = ∅, assn(v0) = ∅, dl(v0) = 0.

• Inductive case: Let T i−1 = (V i−1, Ei−1), with V i−1 = {v0, . . . , vk−1}, be the
computation tree after i − 1 iterations. Further let (casei) be the iteration case in
iteration i and let Ai be the value of variable A at the computation point at the end
of iteration i. Then let:

m =
{

k if no steps of unit-propagation are performed in iteration i;
k + p − 1 if p ≥ 1 is the number of steps of unit-propagation in iteration i;
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V ′ = V i−1 ∪ {vk, . . . , vm},

E′ = Ei−1 ∪ {(vj−1, vj) | k ≤ j ≤ m},

∀j ∈ {k, . . . , m} : assn(vj) = Pr(1+j−k)
∆ (assn(vk−1)), dl(vj) = dl(vk−1),

iterNum(vj) = i and iterCase(vj) = (casei),
as well as:

assn(vm+1) = Ai, iterNum(vm+1) = i, iterCase(vm+1) = (casei).

Recall that a termination condition holds if the current decision level is negative or
the empty nogood was learned or obtained from grounding, i.e., if wasExhausted()
returns 1. There are several possible cases:

– If a termination condition holds after iteration i, then T i = (V i, Ei) is defined
as:

V i = V ′, Ei = E′.

– If no termination condition holds and (casei) is (choice), then T i = (V i, Ei)
is defined as:

V i = V ′ ∪ {vm+1}, Ei = E′ ∪ {(vm, vm+1)}, dl(vm+1) = dl(vk−1) + 1.

– If no termination condition holds and (casei) is (ground), (reboot) or
(close), then T i = (V i, Ei) is defined as:

V i = V ′ ∪ {vm+1}, Ei = E′ ∪ {(vm, vm+1)}, dl(vm+1) = dl(vk−1).

– If no termination condition holds and (casei) is (conflict), let v′ be the
last node on the path from the root v0 to vk−1 in T i−1 where dl(v′) = dlev
after iteration i. Then T i = (V i, Ei) is defined as:

V i = V ′ ∪ {vm+1}, Ei = E′ ∪ {(v′, vm+1)}, dl(vm+1) = dl(v′).

– If no termination condition holds and (casei) is (answer) or (backtrack),
let v′ be the last node on the path from the root v0 to vk−1 in T i−1 where
dl(v′) = dlev − 1 holds after iteration i. Then T i = (V i, Ei) is defined as:

V i = V ′ ∪ {vm+1}, Ei = E′ ∪ {(v′, vm+1)}, dl(vm+1) = dl(v′) + 1.

For all cases where a node vm+1 is added, this node vm+1 is called an iteration
node. All other nodes are called propagation nodes.

Example 3.2.2. Figure 3.2 illustrates the two options for the position of the iteration
node. The left side is an example of an iteration node added as the child of the last
propagation node in the same iteration. In this case the assignment is simply extended
or left unchanged. The right side is an example of an iteration node added as the child
of some node further up the tree. This node is determined by the decision level that
backjumping or backtracking ends up at. For a backjump, unassignment of literals above
the backtrack level is performed. For a backtrack, additionally the previous decision is
flipped and added as a new decision.
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Figure 3.2: Options for the position of the iteration node vm+1

Example 3.2.3. Figure 3.3 illustrates the computation tree, with all defined node labels,
after 6 iterations of AlphaRebootASP on the program Pex, where Pex is defined as follows:

a ← not b.

b ← not a.

c ← a.

d ← b.

e ← d.

The rules r1, . . . , r5 refer to the rules of Pex in the same order. The labels for some
node v in the example represent assn(v), dl(v), iterNum(v) and iterCase(v) respectively.
The left subtree represents the algorithm exploring potential answer sets where r1 fires
and the right subtree where it does not fire.

In the following we consider an inductively defined computation tree T n. Note that
the constructed tree T n has k ≥ n nodes. Each node represents a specific computation
point. An iteration node vt ∈ V n represents the computation point at the end of
iteration iterNum(vt). A propagation node vs ∈ V n represents the computation point
after a specific amount of immediate unit-propagation steps during its respective iteration
iterNum(vs). If vs = vm for some inductive case, then vs represents the computation
point after (propagate). Otherwise it represents the computation point after 1 + s − k
steps of unit propagation during (propagate). In the remainder of this thesis, a node
is also used to refer to the respective computation point it represents.
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assn {}
dl 0

P

assn {}
dl 0

num 1
case (choice)

I

assn {Tβ(r1)}
dl 1

num 1
case (choice)

P

assn {Tβ(r1), Ta}
dl 1

num 2
case (ground)

I

assn {Tβ(r1), Ta}
dl 1

num 2
case (ground)

P

assn {Tβ(r1), Ta,
Tβ(r3)}

dl 1
num 3
case (answer)

P

assn {Tβ(r1), Ta,
Tβ(r3), Tc}

dl 1
num 3
case (answer)

I

assn {Fβ(r1)}
dl 0

num 3
case (answer)

P

assn {Fβ(r1)}
dl 0

num 4
case (choice)

I

assn {Fβ(r1), Tβ(r2)}
dl 1

num 4
case (choice)

P

assn {Fβ(r1), Tβ(r2), Tb}
dl 1

num 5
case (ground)

I

assn {Fβ(r1), Tβ(r2), Tb}
dl 1

num 5
case (ground)

P

assn {Fβ(r1), Tβ(r2), Tb,
Tβ(r4)}

dl 1
num 6
case (ground)

P

assn {Fβ(r1), Tβ(r2), Tb,
Tβ(r4), Td}

dl 1
num 6
case (ground)

I

assn {Fβ(r1), Tβ(r2), Tb,
Tβ(r4), Td}

dl 1
num 6
case (ground)

Figure 3.3: Computation tree after 6 iterations of AlphaRebootASP on Pex
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A propagation node vs ∈ V n is called a failed node if iterCase(vs) = (conflict). An
iteration node vt ∈ V n is called failed if some nogood δ ∈ ∆S ∪ ∆L is violated at vt. All
other nodes in V n are called non-failed. Intuitively a failed node represents an assignment
that leads to a conflict after exhaustive propagation. Note that at some non-failed
propagation node there also cannot be a violated nogood as otherwise the respective
iteration would lead to a conflict. Further note that no non-failed node can be reached
by a directed path from a failed node. Failed propagation nodes lead to backjumps from
conflicts and failed iteration nodes lead to the end of the search.

The interpretation inter(vj) is defined for all nodes vj ∈ V n as:

inter(vj) = {a ∈ ATOMSL | Ta ∈ assn(vj)}.

Furthermore, an interpretation sequence seq(vj) is associated with each node vj ∈ V n of
the tree, where d is its distance from the root node, as follows. Consider the (unique)
path u0, . . . , ud from the root node v0 to the node vj in T n (i.e. ud = vj). Then seq(vj)
is defined as:

seq(vj) = (inter(u0), . . . , inter(ud)).

Parent, child and descendant relations are defined based on the directed edges of T n.
The parent par(vj) of a node vj ∈ V n is defined as follows:

par(vj) =
{

vpar if (vpar, vj) ∈ Ei;
undefined otherwise.

Note that v0 is the only node that does not have a defined parent while for all other
nodes there is exactly a single incoming edge by construction of T n.

The children chl(vj) of a node vj ∈ V n are defined as follows:

chl(vj) = {v′
j | (vj , v′

j) ∈ En}.

The descendant relation intuitively represents the reflexive and transitive closure of
the child relation or alternatively, which nodes are reachable from some starting node.
Formally, the set of descendants dsc(vj) of a node vj ∈ V n is defined as:

dsc(vj) = {v′ | there exists a directed path from vj to v′}.

Note that every node is reachable from itself by the empty path. The set of non-failed
descendants dscnf(vj) of a node vj ∈ V n is simply defined as the set of non-failed nodes
in dsc(vj).

Note that for some iteration node vit ∈ V n the parent par(vit) must be a propagation
node. The node par(vit) represents the computation point after (propagate). This
holds since for each iteration node vit ∈ V n there exists a following propagation node as
child of vit with the same decision level.
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3. Reboots in Lazy-Grounding

3.3 Soundness
The proof of soundness as well as the used lemmas assume that AlphaRebootASP runs
on some program P over language L for n iterations.

Looking at the computation tree, the nodes of a subtree are all consecutive in the
enumeration resulting from the tree construction. Lemma 2 describes this property.

Lemma 2. Given a computation tree T n = (V n, En) and nodes vi, vj , vk ∈ V n where
i < j < k, if vk ∈ dsc(vi) then it follows vj ∈ dsc(vi).

Proof. Towards a contradiction assume that vj /∈ dsc(vi). Then, to show by induction
that for j′ ≥ j it holds vj′ /∈ dsc(vi), consider that the base case vj /∈ dsc(vi) holds by
assumption. In the induction step consider vµ+1, where µ ≥ j, and use the induction
hypothesis that vµ /∈ dsc(vi).

• If par(vµ+1) = vµ, then vµ+1 /∈ dsc(vi) follows from the induction hypothesis.

• If par(vµ+1) ̸= vµ, then by definition par(vµ+1) is a node on the path from the
root v0 to vµ. Thus it follows vµ ∈ dsc(par(vµ+1)). Then since vµ /∈ dsc(vi) it
follows par(vµ+1) /∈ dsc(vi). Further it follows vµ+1 /∈ dsc(vi).

From the inductive argument it follows that vk /∈ dsc(vi) since k ≥ j. This leads to a
contradiction.

When considering the computation tree nodes along a path from the root to some leaf,
the current assignment only grows. Lemma 3 shows this property formally.

Lemma 3. Given a computation tree T n = (V n, En) and a (non-root) computation tree
node vi ∈ V n \ {v0}, it holds:

assn(par(vi)) ⊆ assn(vi).

Proof. Unassignments only happen during backjump and backtrack, i.e. in cases
(conflict), (answer) and (backtrack). There are four possible cases:

• If vi is a propagation node, it follows assn(par(vi)) ⊆ assn(vi) since no unassign-
ments are performed during propagation.

• If vi is an iteration node corresponding to case (ground), (choice) or (close),
then consider the changes made to the assignment in these cases. No unassignment
is performed in any of these cases. It thus follows assn(par(vi)) ⊆ assn(vi).

• If vi is an iteration node corresponding to case (reboot), then recall that a reboot
does not modify the current assignment. It thus follows assn(par(vi)) ⊆ assn(vi).
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• If vi is an iteration node corresponding to case (conflict), (answer) or
(backtrack), then by definition of the computation tree, no unassignment
happened at decision levels up to dl(par(vi)). Furthermore, all assignments in
assn(par(vi)) were done at decision levels up to dl(par(vi)). Thus no literals were
unassigned compared to the parent node and it follows assn(par(vi)) ⊆ assn(vi).

In the remainder of this thesis, a node vi is considered to represent a computation point
after exhaustive propagation if vi is a propagation node and has no child, that is also a
propagation node.

At any non-failed computation tree node vi during a run of the AlphaRebootASP algorithm
the nogood representation ensures, that if a rule atom is assigned true, then no atom in
the negative body of the corresponding rule will be assigned true. Lemma 4 captures
this.

Lemma 4. Given a computation tree T n = (V n, En) and a non-failed computation tree
node vi ∈ V n, if it holds Tβ(r, σ) ∈ assn(vi) and ng(rσ) ⊆ ∆S at vi, then it follows for
all non-failed descendants vd ∈ dscnf(vi) that {Tb | b ∈ B−(rσ)} ∩ assn(vd) = ∅.

Proof. There are three possible cases for the node vi:

• If vi is a propagation node and ∀b ∈ B−(rσ) : Fb ∈ assn(vi) holds, then by
Lemma 3 it follows for all non-failed descendants vd ∈ dscnf(vi):

∀b ∈ B−(rσ) : Fb ∈ assn(vd).

It further follows for these non-failed descendants:

{Tb | b ∈ B−(rσ)} ∩ assn(vd) = ∅.

• If vi is a propagation node and ∃b′ ∈ B−(rσ) : Fb′ /∈ assn(vi), then a nogood δ ∈
ng(rσ) of the form δ = {Tβ(r, σ), Tb′} is weakly-unit under A = assn(vi). Thus
unit-propagation was not performed exhaustively yet at node vi. Note that nodes
representing intermediate unit-propagation steps (i.e. all but the final step) have
exactly a single child node. Starting from vi and repeatedly traversing the tree
towards the single child node then eventually leads to some node ve, representing
the computation point after exhaustive propagation. Further note that since vi is a
non-failed node, there is no conflict at ve. It then follows for node ve and further,
by Lemma 3, for all non-failed descendants vd ∈ dscnf(ve):

∀b ∈ B−(rσ) : Fb ∈ assn(vd).
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3. Reboots in Lazy-Grounding

It further follows for these non-failed descendants:

{Tb | b ∈ B−(rσ)} ∩ assn(vd) = ∅.

Note that ve ∈ dsc(v′
d) holds for each node v′

d on the path from vi to ve. Thus it
follows for v′

d, by Lemma 3, and further for all non-failed descendants vd ∈ dsc(vi)
of node vi:

{Tb | b ∈ B−(rσ)} ∩ assn(vd) = ∅.

• If vi is an iteration node, then by construction of the computation tree, vi has at
most one child v′

i. Further if such a child exists, then it is a propagation node.
Since propagation does not modify the set of nogoods, one of the previous two
cases applies for v′

i, if v′
i is non-failed. Furthermore, vi is non-failed and thus no

nogood δ of the form δ = {Tβ(r, σ), Tb} for some b ∈ B−(rσ) is violated. Thus it
holds for all non-failed descendants vd ∈ dscnf(vi):

{Tb | b ∈ B−(rσ)} ∩ assn(vd) = ∅.

At any non-failed computation tree node vi during a run of the AlphaRebootASP algorithm
the nogood representation ensures, that if a rule atom is assigned true in the assignment
of vi, then the positive body of the respective rule is assigned true and no negative
body atom is assigned true at any descendant of vi. This is captured by Lemma 5.

Lemma 5. Given a computation tree T n = (V n, En), a non-failed computation tree
node vi ∈ V n and an arbitrary rule atom β(r, σ), if Tβ(r, σ) ∈ assn(vi) \ assn(par(vi))
holds, then it follows for all non-failed descendants vd ∈ dscnf(vi):

∀b ∈ B+(rσ) : Tb ∈ assn(vd) and ∀b′ ∈ B−(rσ) : Tb′ /∈ assn(vd).

Proof. There are two possible cases for how Tβ(r, σ), for ground rule rσ of the form in
Equation 2.1, could have been added to assn(par(vi)):

• If Tβ(r, σ) was added by strong propagation on some nogood δ ∈ ng(rσ) where
ng(rσ) ⊆ ∆S holds at both par(vi) and vi (since a propagation step does not modify
the set of nogoods), then this nogood must have been of the form:

δ = {Fβ(r, σ), Tb1, . . . , Tbk, Fbk+1, . . . Fbm}.

Then since δ was strongly-unit under assn(par(vi)), it follows:

∀b ∈ B+(rσ) : Tb ∈ assn(par(vi)) and ∀b′ ∈ B−(rσ) : Tb′ /∈ assn(par(vi)).
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Since this means that vi is a propagation node where Tβ(r, σ) was added through
unit-propagation, it follows:

assn(vi) = assn(par(vi)) ∪ {Tβ(r, σ)}.

Then it further follows:

∀b ∈ B+(rσ) : Tb ∈ assn(vi) and ∀b′ ∈ B−(rσ) : Tb′ /∈ assn(vi).

Thus since ng(rσ) ⊆ ∆S at vi, by Lemma 4 it follows for all non-failed descendants
vd ∈ dscnf(vi):

{Tb | b ∈ B−(rσ)} ∩ assn(vd) = ∅.

• If Tβ(r, σ) was added during a choice in case (choice), then at the point it was
added β(r, σ) ∈ acp(∆S ∪ ∆L, A) did hold, where A = assn(par(vi)).
Thus by definition of acp, it follows that TcOn(r, σ) ∈ A. The choice atom cOn(r, σ)
can only be assigned true through strong propagation on a nogood δ of the form:

δ = {FcOn(r, σ), Tb1, . . . , Tbk}.

Then there exists some node va on the path from the root v0 to vi s.t. TcOn(r, σ) ∈
assn(va) \ assn(par(va)). This means that TcOn(r, σ) was assigned at this prop-
agation node va. Note that this means that ng(rσ) ⊆ ∆S at va. It follows
{Tb1, . . . , Tbk} ⊆ assn(va) and since vi ∈ dsc(va), by Lemma 3, further:

∀b ∈ B+(rσ) : Tb ∈ assn(vi).

Next, to show that ng(rσ) ⊆ ∆S holds at vi, consider when ng(rσ) could be
removed from ∆S before node vi. This could only happen through a reboot
performed earlier at some iteration node vr where a < r < i. By Lemma 2 it follows
that vr ∈ dsc(va). Thus by Lemma 3 it follows {Tb1, . . . , Tbk} ⊆ assn(vr). Then
rule rσ is of interest w.r.t. assn(vr). Further rσ is not inactive since it has already
been a result of grounding. Thus for the reboot rbt(A, stratG, ∆L) at vr it holds
rσ ∈ rbtgr(A, stratG, ∆L). Thus ng(rσ) ⊆ ∆S holds after an arbitrary such reboot
and it follows that ng(rσ) ⊆ ∆S holds at vi.
Since it holds ng(rσ) ⊆ ∆S at vi and Tβ(r, σ) ∈ assn(vi), by Lemma 4 it follows
for all non-failed descendants vd ∈ dscnf(vi):

{Tb | b ∈ B−(rσ)} ∩ assn(vd) = ∅.

Then in both cases it holds for all non-failed descendants vd ∈ dscnf(vi):

∀b′ ∈ B−(rσ) : Tb′ /∈ assn(vd).

In both cases it also holds ∀b ∈ B+(rσ) : Tb ∈ assn(vi). By Lemma 3 it follows for all
non-failed descendants vd ∈ dscnf(vi):

∀b ∈ B+(rσ) : Tb ∈ assn(vd).
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3. Reboots in Lazy-Grounding

In the AlphaRebootASP algorithm, as in the AlphaASP algorithm, every non-auxiliary
atom is supported. This means that whenever a non-auxiliary atom a is assigned true,
there exists a rule rσ that is considered to have fired. For a non-failed propagation
node vi, that represents the assignment of Ta, let this be formally described by Lemma 6.

Lemma 6. Given a computation tree T n = (V n, En) for a program P and the current
assignment assn(vi) at an arbitrary non-failed node vi ∈ V n, let a ∈ ATOMSL be an
arbitrary non-auxiliary atom s.t. Ta ∈ assn(vi) \ assn(par(vi)). Then it follows for every
non-failed descendant vd ∈ dsc(par(vi)):

∃rσ ∈ grd(P) :
(
a ∈ H(rσ) ∧ ∀b ∈ B+(rσ) : Tb ∈ assn(vd)

∧ ∀b′ ∈ B−(rσ) : Tb′ /∈ assn(vd)
)
.

Proof. A non-auxiliary atom is only added to the assignment through strong propagation.
By construction of the nogood representation, the only nogoods with a non-auxiliary
atom a in the head literal are of the form δ = {Fa, Tβ(r, σ)}. By construction of these
nogoods (see Section 2.3.2) it follows that a ∈ H(rσ). By definition of strongly-unit
nogoods, it then follows that, for a positive literal Ta assigned through propagation of
nogood δ under assignment assn(par(vi)), there exists a rule rσ such that Tβ(r, σ) ∈
assn(par(vi)). Then there exists some non-failed node va on the path from the root v0
to par(vi) s.t. Tβ(r, σ) ∈ assn(va) \ assn(par(va)). Since it holds par(vi) ∈ dsc(va) and
thus dsc(par(vi)) ⊆ dsc(va), by Lemma 5 it follows for all non-failed descendants vd ∈
dscnf(par(vi)):

∀b ∈ B+(rσ) : Tb ∈ assn(vd) and ∀b′ ∈ B−(rσ) : Tb′ /∈ assn(vd).

When an answer set is found during a run of AlphaRebootASP, then the solver knows
about all applicable rules, i.e. all such rules are part of the synchronized ground rules.
Lemma 7 describes this property.

Lemma 7. Given a computation tree T n = (V n, En) for a program P, a propagation
node vi ∈ V n after exhaustive propagation with iterCase(vi) = (answer) after which
an answer set A′ = {Ta | a ∈ assn(vi)} is found and a ground rule rσ ∈ grd(P) s.t.
{Tb | b ∈ B+(rσ)} ⊆ assn(vi) and {Tb | b ∈ B−(rσ)} ∩ assn(vi) = ∅, then ng(rσ) ⊆ ∆S

holds at vi.

Proof. Assume, towards a contradiction, that ng(rσ) ̸⊆ ∆S holds at vi. This means that
rσ is not part of the synchronized ground rules at vi. Consider that rσ is of interest
w.r.t. assn(vi). To show that rσ is not inactive, assume towards a contradiction that it
is inactive. Then there are two (not necessarily disjoint, but exhaustive) cases:
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• If there exists an atom p(t1, . . . , tz) ∈ B+(rσ) over a predicate p s.t. there does
not exist a rule r′σ′ where the atom a ∈ H(r′σ′) is over p, then consider that {Tb |
b ∈ B+(rσ)} ⊆ assn(vi). Thus Tp(t1, . . . , tz) ∈ assn(vi) holds. Further it follows
by Lemma 6 that there exists some rule r′σ′ ∈ grd(P) with p(t1, . . . , tz) ∈ H(r′σ′),
which is a contradiction to the definition of an inactive rule.

• If B−(rσ) contains an atom a s.t. there exists a fact rf ∈ P with a ∈ H(rf ) in
the program, then consider the fact rf . Since grounding was applied exhaustively
before the answer set was added in case (answer), it follows that rf was already
returned by grounding. Also rf would have been returned by a reboot at any point
since it is always of interest and never inactive. Thus ng(rf ) ⊆ ∆S holds. Consider
that it holds {Tb | b ∈ B−(rσ)} ∩ assn(vi) = ∅ as well as a ∈ atoms(∆S ∪ ∆L)
and cases (close) and (backtrack) do not apply after vi. From this it follows
Fa ∈ assn(vi). Then nogood δ = {Fa} ∈ ng(rf ) is violated under assn(vi).
Thus case (conflict) would be applied after vi, which is a contradiction since
case (answer) was applied.

Thus rσ is not inactive.

Further, the assignment did not change since the most recent grounding step as otherwise
it would hold iterCase(vi) = (ground). Thus rσ was a result of the most recent
grounding step. A reboot at any point since then would have also returned rσ since rσ
would have still been of interest and not inactive. Then rσ is still part of the synchronized
ground rules at vi, which is a contradiction and therefore ng(rσ) ⊆ ∆S holds at vi.

Theorem 2 (Soundness). The algorithm AlphaRebootASP is sound, i.e., for every
program P over some language L, it holds AlphaRebootASP(P) ⊆ AS(P).

Proof. By construction, the AlphaRebootASP algorithm only adds answer sets to the
set AS at leaf nodes of the tree T n in case (answer), since a backtrack happens after
adding an answer set to AS. Each leaf node vl of the tree has an associated interpretation
sequence seq(vl). More specifically, some leaf nodes have an associated computation
sequence seq(vl). In the following it will be shown that each leaf node v of the tree,
where AlphaRebootASP adds the positive atoms of the corresponding assignment assn(v)
to AS, contains a computation sequence seq(v).

Assume that vm is an arbitrary leaf node, after which AlphaRebootASP adds {a | Ta ∈
assn(vm)} to AS. Note that this means that vm is a propagation node after exhaustive
propagation. Let (X0, . . . , Xk) be the sequence resulting from seq(vm). Then (X0, . . . , Xk)
is a computation sequence which can be verified by checking the four properties as follows:

(1) By Lemma 3 it holds ∀i ∈ {1, . . . , n} : assn(par(vi)) ⊆ assn(vi). Thus by definition
of seq(vi), it follows ∀j ∈ {1, . . . , k} : Xj−1 ⊆ Xj .
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(2) Consider an arbitrary interpretation Xj , with j ≥ 1, in the sequence seq(vm). Then
by definition of seq(vm), there exists some (non-failed) node vi with Xj = {a |
Ta ∈ assn(vi)}. Further consider an arbitrary atom a ∈ Xj in this interpretation.
Then consider the node va along the path from the root v0 to vi where Ta ∈
assn(va) \ assn(par(va)). Since a is non-auxiliary and par(vi) ∈ dscnf(par(va)), it
follows by Lemma 6 that:

∃rσ ∈ grd(P) :
(
a ∈ H(rσ) ∧ ∀b ∈ B+(rσ) : Tb ∈ assn(par(vi))

∧ ∀b′ ∈ B−(rσ) : Tb′ /∈ assn(par(vi))
)
.

Thus by definition of seq(vm) and TP , it follows Xj ⊆ TP(Xj−1). Further by the
choice of Xj it follows ∀j ∈ {1, . . . , k} : Xj ⊆ TP(Xj−1).

(3) By the choice of vm it follows that an answer set is added in case (answer) after
propagation node vm. Thus wasExtended(A) = 0 holds at vm since otherwise
case (ground) would apply instead. Towards a contradiction, assume that Xk ̸=
TP(Xk). Then there are two possible (not necessarily disjoint, but exhaustive)
cases:

• If it holds ∃a ∈ Xk \ TP(Xk), then consider that Xk = {a | Ta ∈ assn(vm)}.
Further consider the node va along the path from the root v0 to vm where
Ta ∈ assn(va) \ assn(par(va)). Since a is non-auxiliary and vm ∈ dsc(par(va)),
it follows by Lemma 6 that:

∃rσ ∈ grd(P) :
(
a ∈ H(rσ) ∧ ∀b ∈ B+(rσ) : Tb ∈ assn(vm)

∧ ∀b′ ∈ B−(rσ) : Tb′ /∈ assn(vm)
)
.

Then by definition of seq(vm) and TP , it follows a ∈ TP(Xk), resulting in a
contradiction.

• If it holds ∃a ∈ TP(Xk) \ Xk, then there exists some rule rσ ∈ grd(P) such
that:

a ∈ H(rσ), B+(rσ) ⊆ Xk, B−(rσ) ∩ Xk = ∅.

It follows by Lemma 7 that ng(rσ) ⊆ ∆S holds at vm. Then there exists a
nogood δ ∈ ng(rσ) of the form δ = {Fβ(r, σ), Tb1, . . . , Tbl′ , Fbl′+1, . . . Fbl}.
Since propagation was performed exhaustively at vm, it follows Tβ(r, σ) ∈
assn(vm). Because of a nogood of the form δ′ = {Fa, Tβ(r, σ)} ∈ ng(rσ) it
then also follows Ta ∈ assn(vm). Since a /∈ Xk, it follows Ta /∈ assn(vm).
This is a contradiction.

It thus follows Xk = TP(Xk). Further by condition (1) it follows Xk = U
0≤i≤k Xi.

Then the sequence converges and it holds Xk = U
0≤i≤k Xi = TP(Xk).
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(4) Consider an arbitrary interpretation Xj , with j ≥ 1, in the sequence seq(vm).
Then by definition of seq(vm), there exists some (non-failed) node vi with Xj =
{a | Ta ∈ assn(vi)}. Further consider an arbitrary non-auxiliary atom a ∈
Xj \ Xj−1 that was newly added in this interpretation. Note that it then holds
a ∈ assn(vi) \ assn(par(vi)). Since a is non-auxiliary, by Lemma 6 it follows for
every vd ∈ dsc(par(vi)) that:

∃rσ ∈ grd(P) :
(
a ∈ H(rσ) ∧ ∀b ∈ B+(rσ) : Tb ∈ assn(vd)

∧ ∀b′ ∈ B−(rσ) : Tb′ /∈ assn(vd)
)
.

Notably this includes all nodes corresponding to interpretations Xj−1, . . . Xk of the
sequence. Thus by definition of seq(x) and the choice of Xj , it follows:

∀1 ≤ j ≤ k ∀a ∈ Xj \ Xj−1 ∃ra ∈ grd(P) :

a ∈ H(ra) ∧ ∀j′ ∈ {j − 1, . . . , k} :
(
B+(ra) ⊆ Xj′ ∧ B−(ra) ∩ Xj′ = ∅

)
.

Thus since for every answer set A added to AS by AlphaRebootASP , there exists a
computation sequence (X0, . . . , Xk) where Xk = A. It follows from Lemma 1 that
AlphaRebootASP (P) ⊆ AS(P).

3.4 Completeness
The theoretical proof of completeness and its auxiliary lemmas use the assumption that
the AlphaRebootASP algorithm terminates when run on some input program P, i.e.,
AlphaRebootASP terminates after some n ≥ 0 steps. The computation tree T n is defined
as the resulting computation tree for the whole n-iteration run of AlphaRebootASP on P .

To prove completeness of the algorithm, an invariant is used. It intuitively states, that at
no inner node of the computation tree an arbitrary answer set is prevented from being
found. To show this invariant, the possible complete assignments that correspond to an
answer set are considered. More formally, for some program P over language L the set
of complete assignments allASSIGN3

P,L is defined as:

allASSIGN3
P,L = {X ∈ ASSIGN3

L | atoms(X) = ATOMSL ∪ ATOMSaux
P }.

This set is then restricted to only assignments that assign exactly the non-auxiliary
atoms from some answer set to true and other non-auxiliary atoms to false, while
not violating any nogoods in ngREPP . Formally, for some answer set A of program P
the set of A-compatible assignments is defined as:

compatASSIGN3
A,P,L =

{
X ∈ allASSIGN3

P,L
│││ {a ∈ ATOMSL | Ta ∈ X} = A,

{a | Ma ∈ X, Ta /∈ X} = ∅,

{δ ∈ ngREPP | δ ⊆ X} = ∅
}

.
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Lemma 8. Given an answer set A for program P, there exists some A-compatible
assignment X ∈ compatASSIGN3

A,P,L.

Proof. An A-compatible assignment X can be constructed as follows (consider rules to
be of the form in Equation 2.1):

X = {Ta | a ∈ A} ∪ {Ma | a ∈ A} ∪ {Fa | a ∈ ATOMSL \ A}
∪ {Tβ(r, σ) | rσ ∈ grd(P), B+(rσ) ⊆ A, B−(rσ) ∩ A = ∅}
∪ {Fβ(r, σ) | rσ ∈ grd(P), B+(rσ) ̸⊆ A or B−(rσ) ∩ A ̸= ∅}
∪ {TcOn(r, σ) | rσ ∈ grd(P), B+(rσ) ⊆ A}
∪ {FcOn(r, σ) | rσ ∈ grd(P), B+(rσ) ̸⊆ A}
∪ {TcOff(r, σ) | rσ ∈ grd(P), B−(rσ) ∩ A ̸= ∅}
∪ {FcOff(r, σ) | rσ ∈ grd(P), B−(rσ) ∩ A = ∅}.

Note that for each auxiliary atom a′ either Ta′ ∈ X or Fa′ ∈ X (but not both)
holds. Furthermore, note that for each non-auxiliary atom a either {Ta, Ma} ⊆ X
or Fa ∈ X (but not both) holds. Thus X ∈ allASSIGN3

P,L holds. To show that
X ∈ compatASSIGN3

A,P,L holds, consider the conditions for an A-compatible assignment:

• Consider that only the first line in the definition of X adds non-auxiliary atoms
to X. It then holds:

{a ∈ ATOMSL | Ta ∈ X} = A and {a | Ma ∈ X, Ta /∈ X} = ∅.

• To show that {δ ∈ ngREPP | δ ⊆ X} = ∅ holds, further consider that for each
ground rule rσ ∈ grd(P) it holds ng(rσ) = ngre(rσ) ∪ ngch(rσ). Then consider
these two sets separately:

– For δ ∈ ngre(rσ) recall:

ngre(rσ) = {{Fβ(r, σ), Tb1, . . . , Tbk, Fbk+1, . . . , Fbn}, {Fh, Tβ(r, σ)},

{Tβ(r, σ), Fb1}, . . . , {Tβ(r, σ), Fbk},

{Tβ(r, σ), Tbk+1}, . . . , {Tβ(r, σ), Tbn}}.

Then check that δ ̸⊆ X for each nogood separately:
∗ For a nogood of the form δ = {Fβ(r, σ), Tb1, . . . , Tbk, Fbk+1, . . . , Fbn}, if

Fβ(r, σ) ∈ X, then by definition of X it holds B+(rσ) ̸⊆ A or B−(rσ) ∩
A ̸= ∅. Thus either Tbi /∈ X holds for some i with 1 ≤ i ≤ k or Fbj /∈ X
holds for some j with k + 1 ≤ j ≤ n and it follows δ ̸⊆ X.

∗ For a nogood of the form δ = {Fh, Tβ(r, σ)}, if Tβ(r, σ) ∈ X, then by
definition of X it holds B+(rσ) ⊆ A and B−(rσ) ∩ A = ∅. Thus further
by definition of an answer set it follows that H(rσ) ̸= ∅ and H(rσ) ⊆ A.
Then it follows Fh /∈ X by definition of X and further δ ̸⊆ X.
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∗ For a nogood of the form {Tβ(r, σ), Fbi} with 1 ≤ i ≤ k, if Tβ(r, σ) ∈ X,
then by definition of X it holds B+(rσ) ⊆ A. Thus Fbi /∈ X holds and it
follows δ ̸⊆ X.

∗ For a nogood of the form {Tβ(r, σ), Tbi} with k +1 ≤ i ≤ n, if Tβ(r, σ) ∈
X, then by definition of X it holds B−(rσ) ∩ A = ∅. Thus Tbi /∈ X holds
and it follows δ ̸⊆ X.

– For δ ∈ ngch(rσ) recall:

ngch(rσ) = {{FcOn(r, σ), Tb1, . . . , Tbk},

{FcOff(r, σ), Tbk+1}, . . . , {FcOff(r, σ), Tbn}}.

Then check that δ ̸⊆ X for each nogood separately:
∗ For a nogood of the form δ = {FcOn(r, σ), Tb1, . . . , Tbk}, if FcOn(r, σ) ∈

X, then by definition of X it holds B+(rσ) ̸⊆ A. Thus Tbi /∈ X holds for
some 1 ≤ i ≤ k and it follows δ ̸⊆ X.

∗ For a nogood of the form δ = {FcOff(r, σ), Tbi} with k + 1 ≤ i ≤ n, if
FcOff(r, σ) ∈ X, then by definition of X it holds B−(rσ) ∩ A = ∅. Thus
Tbi /∈ X holds and it follows δ ̸⊆ X.

Note that the definition of A-compatible assignments is based only on the nogood
representation of the program. The algorithm works with static nogoods in ngREPP
as well as with nogoods learned by resolution from ngREPP . Learned nogoods are not
violated under an A-compatible assignment. This property is described formally by
Lemma 9.

Lemma 9. Given an answer set A for program P and an A-compatible assignment X ∈
compatASSIGN3

A,P,L, then it holds for every nogood δ learned by resolution from the
set ngREPP that δ ̸⊆ X.

Proof. To show that δ /∈ X by induction, consider n as the minimum number of resolution
steps needed to derive a nogood δ from ngREPP . For the base case n = 0 consider a
nogood δ ∈ ngREPP . By definition of an A-compatible assignment it holds δ ̸⊆ X. As
the induction hypothesis consider the property that δ ̸⊆ X holds for all nogoods δ that
can be derived by resolution from ngREPP in n − 1 steps.

In the induction step assume, towards a contradiction, that δ ⊆ X holds for some
nogood δ that can be derived in n steps by resolution from ngREPP . Then there exist
two nogoods δ1 and δ2 and some atom a s.t. δ = (δ1 \ {Ta}) ∪ (δ2 \ {Fa}) and Ta ∈ δ1
as well as Fa ∈ δ2. Note that the nogoods δ1, δ2 can be derived by resolution from
ngREPP in at most n − 1 steps. Then since X ∈ compatASSIGN3

A,P,L, it follows that
either Ta ∈ X or Fa ∈ X by definition of an A-compatible assignment. There are two
possible cases:
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• If Ta ∈ X, then δ1 ⊆ X follows. By induction hypothesis δ1 ̸⊆ X holds, since δ1
can be derived by resolution from ngREPP in n − 1 steps. This is a contradiction.

• If Fa ∈ X, then δ2 ⊆ X follows. By induction hypothesis δ2 ̸⊆ X holds, since δ2
can be derived by resolution from ngREPP in n − 1 steps. This is a contradiction.

Thus δ ̸⊆ X holds.

Consider any nogood δ obtained during the AlphaRebootASP algorithm and an A-
compatible assignment X for some answer set A of a program P . Then δ is not violated
under X or A is found by AlphaRebootASP (or both). This is captured by Lemma 10.

Lemma 10. Given a computation tree T n = (V n, En) for a program P and an answer
set A for P, an A-compatible assignment X ∈ compatASSIGN3

A,P,L and a nogood δ where
δ ∈ ∆S ∪ ∆L holds at some v ∈ V n, then at least one of the following holds: there exists
a propagation node vz ∈ V n after exhaustive propagation with iterCase(vz) = (answer)
after which A is found, or δ ̸⊆ X holds.

Proof. The AlphaRebootASP algorithm stores only the following types of nogoods: static
nogoods from the nogoods representation ngREPP , nogoods learned by resolution from
ngREPP and enumeration nogoods obtained when an answer set is found. Consider these
two possible cases for some nogood δ ∈ ∆S ∪ ∆L:

• If δ ∈ ngREPP is a static nogood or a nogood learned by resolution from ngREPP ,
then by Lemma 9 it follows δ ̸⊆ X and the lemma holds.

• If δ is an enumeration nogood obtained when finding an answer set after some
propagation node vi with iterCase(vi) = (answer), then consider which answer
set is found after vi. If A is the answer set found after vi, then the lemma holds.
Thus consider the case where some other A′ ≠ A is the answer set found after vi,
where A′ = {a ∈ ATOMSL | Ta ∈ assn(vi)}. The constructed enumeration
nogood δ (see Section 2.3.4) is of the form δ = {Tβ(r, σ) ∈ assn(vi)}.
Assume, towards a contradiction, that δ ⊆ X. Next, a set A∗, with the heads of
all rules considered to have fired at vi, is constructed from the positively assigned
rule atoms at vi. The set A∗ is then used to arrive at a contradiction by showing
A′ = A∗ and further A′ ⊂ A.
Consider an arbitrary literal Tβ(r′, σ′) ∈ assn(vi) with h ∈ H(r′σ′). By Lemma 3
there exists a unique node v′ on the path from the root v0 to vi where Tβ(r′, σ′) ∈
assn(v′) \ assn(par(v′)). Since vi ∈ dscnf(v′) it follows by Lemma 5:

∀b ∈ B+(r′σ′) : Tb ∈ assn(vi) and ∀b′ ∈ B−(r′σ′) : Tb′ /∈ assn(vi).

Then it follows by Lemma 7 that ng(r′σ′) ⊆ ∆S holds at vi. This means that r′σ′

is part of the synchronized ground rules at vi. Consider the nogood δ′ ∈ ng(r′σ′)
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of the form δ′ = {Fh, Tβ(r′, σ′)}. Since vi is a propagation node after exhaustive
propagation and Tβ(r′, σ′) ∈ assn(vi), it follows that Th ∈ assn(vi).
By the choice of Tβ(r′, σ′), it follows:

{Th | h ∈ H(rσ), Tβ(r, σ) ∈ assn(vi)} ⊆ assn(vi).

Further let A∗ = {h | h ∈ H(rσ), Tβ(r, σ) ∈ δ}. Then, since δ is the enumeration
nogood for the answer set A′ found at vi, it holds:

A∗ = {h | h ∈ H(rσ), Tβ(r, σ) ∈ assn(vi)} ⊆ A′.

To show that A′ ⊆ A∗, consider an arbitrary atom a ∈ A′ and recall that A′ is
an answer set. Let (Y0, Y1, . . . , Y∞) be a computation sequence with Y∞ = A′.
Then by property (4) of a computation sequence, there exists some ground rule
raσ ∈ grd(P) such that:

a ∈ H(raσ), B+(raσ) ⊆ A′, B−(raσ) ∩ A′ = ∅.

It follows by Lemma 7 that ng(raσ) ⊆ ∆S holds at vi. Consider that there exists
some nogood δ∗ ∈ ngREPP where raσ is of the form shown in Equation 2.1 and δ∗

is of the form:

δ∗ = {Fβ(ra, σ), Tb1, . . . , Tbk, Fbk+1, . . . , Fbn}.

Then since propagation was performed exhaustively at vi, it follows Tβ(ra, σ) ∈
assn(vi). Then by definition of A∗ it holds a ∈ A∗. By the choice of a it follows
A′ ⊆ A∗. Further since A∗ ⊆ A′, it follows A′ = A∗.
Recall that δ ⊆ X holds by assumption and no nogood of the form {Fh, Tβ(r, σ)} ∈
ngREPP with Tβ(r, σ) ∈ δ is violated under X. Then since X is A-compatible
and A∗ ⊆ ATOMSL, it follows A′ = A∗ ⊆ {a | Ta ∈ X} = A. Since A′ ≠ A it
thus holds A′ ⊂ A. This is a contradiction to A being a subset minimal model
of GLA(P). It follows δ ̸⊆ X and the lemma holds.

Furthermore, a partial computation sequence is defined as a finite sequence (as opposed to
an infinite computation sequence) with the persistence of beliefs and revision properties
of a computation sequence. More formally, a partial computation sequence is defined as
a finite sequence (X0, . . . , Xk) of Herbrand interpretations over some program P with
X0 = ∅ and satisfying the following properties:

(1) Persistence of beliefs:
∀i ∈ {1, . . . , k} : Xi−1 ⊆ Xi
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3. Reboots in Lazy-Grounding

(2) Revision:
∀1 ∈ {1, . . . , k} : Xi ⊆ TP(Xi−1)

The notion of an A-compatible node intuitively describes that an answer set A of
program P can still be found from that node. Formally a node vi is an A-compatible
node if it satisfies the following properties:

(I) There exists a partial computation sequence nodeSeq(vi) = (X0, . . . , Xk) where
X0 = ∅ and Xk = inter(vi).

(II) The assignment assn(vi) is a subset of some A-compatible assignment, i.e.:

∃X∗
A ∈ compatASSIGN3

A,P,L : assn(vi) ⊆ X∗
A.

(III) For every atom a added to a set in the partial computation sequence nodeSeq(vi),
there exists some rule that has a in its head. Formally, it holds:

∀j ∈ {1, . . . , k} :
(
Xj−1 ⊂ Xj ⇒ ∃rσ ∈ grd(P) : (Xj \ Xj−1 = H(rσ)

∧ Tβ(r, σ) ∈ assn(vi))
)
.

Given an an A-compatible propagation node for some answer set A, then the node is
non-failed or A is found by AlphaRebootASP (or both). This is described by Lemma 11.

Lemma 11. Given a computation tree T n = (V n, En) for a program P, an answer
set A for P and an A-compatible propagation node vi ∈ V n, then at least one of the
following holds: there exists a propagation node vz ∈ V n after exhaustive propagation
with iterCase(vz) = (answer) after which A is found, or vi is a non-failed node.

Proof. Consider the unique node ve ∈ dsc(vi) that represents the first computation point
after exhaustive propagation starting from vi and traversing T n away from the root. Note
that there is a unique (possibly empty) path from vi to ve in T n. Since vi is A-compatible,
there exists some A-compatible assignment X∗

A s.t. assn(vi) ⊆ X∗
A.

Consider the literal l added by the first propagation step from vi up to ve. Let δ ∈ ∆S ∪∆L

be the nogood that triggered the propagation of l. Then by Lemma 10 one of the
following holds: there exists a propagation node vz after exhaustive propagation with
iterCase(vz) = (answer) after which A is found, or δ ̸⊆ X∗

A holds. In the first case the
lemma holds. Thus consider the case where δ ̸⊆ X∗

A holds. Thus, by definition of an
A-compatible assignment, it follows l ∈ X∗

A.

This argument can be applied for all literals added by propagation steps from vi up to ve

(in order of propagation) and it follows that assn(ve) ⊆ X∗
A. Then, again by Lemma 10,

it follows for arbitrary δ′ ∈ ∆S ∪ ∆L at ve that either A is found after some propagation
node vz or δ′ ̸⊆ assn(ve) holds. If the first case holds for any such nogood, then the
lemma holds. If it holds for none of the nogoods, then iterCase(vi), which is the same as
iterCase(ve), is not (conflict) and the lemma also holds.
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At any point in the algorithm immediately before iteration case (close) or (backtrack)
it holds that there cannot be an applicable rule left under the currently considered set of
atoms. This is captured by Lemma 12.

Lemma 12. Given a computation tree T n = (V n, En) for a program P, an answer set A
for P and a propagation node vi ∈ V n with X = inter(vi), where vi represents a computa-
tion point after exhaustive propagation, and iterCase(vi) ∈ {(close),(backtrack)},
then it holds:

∄rσ ∈ grd(P) : ∃a ∈ ATOMSL \ X :
(
a ∈ H(rσ) ∧ B+(rσ) ⊆ X

∧ B−(rσ) ∩ X = ∅
)
.

Proof. Assume, towards a contradiction, that there exists some ground rule rσ ∈ grd(P)
of the form in Equation 2.1 and some atom a ∈ ATOMSL \ X s.t.:

a ∈ H(rσ) ∧ B+(rσ) ⊆ X ∧ B−(rσ) ∩ X = ∅.

Note that rσ is of interest w.r.t. assn(vi). Consider an arbitrary atom p(t1, . . . , tz) ∈
B+(rσ). Note that B+(rσ) ⊆ X holds and thus Tp(t1, . . . , tz) ∈ assn(vi) follows.
Note that vi is non-failed since iterCase(vi) ̸= (conflict). Then by Lemma 3 there
exists a unique node v′ on the path from the root v0 to vi where Tp(t1, . . . , tz) ∈
assn(v′) \ assn(par(v′)). It follows by Lemma 6, that there exists some rule r′σ′ ∈ grd(P)
with p(t1, . . . , tz) ∈ H(r′σ′). By the choice of p(t1, . . . , tz), this follows for every atom
a ∈ B+(rσ). Thus rσ does not satisfy the first case in the definition of an inactive rule.

Consider an arbitrary fact rf ∈ P in the program P. Since grounding was applied
exhaustively, it follows that rf was already returned by grounding. Also rf would have
been returned by a reboot at any point since it is always of interest and never inactive.
Thus ng(rf ) ∈ ∆S holds at vi. Since iterCase(vi) ̸= (conflict), no nogood of the
form δ = {Fa}, with a ∈ H(rf ), is violated under assn(vi). By the choice of rf , it follows
that B−(rσ) does not contain an atom a s.t. there exists a fact rf with a ∈ H(rf ). Thus
rσ is not inactive.

The assignment did not change since the most recent grounding step since iterCase(vi) ̸=
(ground). Thus rσ was part of the synchronized ground rules after the most recent
grounding step. A reboot at any point since then would have also returned rσ, since rσ
would have still been of interest and not inactive. Thus rσ is still part of the synchronized
ground rules at vi.

Then consider that propagation was applied exhaustively at vi. Because there exists a
nogood δ1 ∈ ng(rσ) of the form δ1 = {FcOn(r, σ), Tb1, . . . , Tbk} and vi is non-failed, it
follows that TcOn(r, σ) ∈ assn(vi).

Next, note that the assignment TcOff(r, σ) can only be added by strong propagation
on some nogood δ2 ∈ ng(rσ) of the form δ2 = {FcOff(r, σ), Tbj}, where bj ∈ B−(rσ).
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Then consider an arbitrary atom bj ∈ B−(rσ). Further consider an arbitrary node v̂
on the path from the root v0 to vi. Since Tbj /∈ assn(vi) it follows by Lemma 3 that
Tbj /∈ assn(v̂). Thus TcOff(r, σ) cannot be added at node v̂ since Tbj /∈ assn(vi). By
the choice of v̂, it follows that TcOff(r, σ) /∈ assn(vi).

Then β(r, σ) is an element of the active choice points at vi. Further vi does not represent
a computation point before iteration case (close) or (backtrack) since the active
choice points are not empty. This is a contradiction.

Based on the notion of A-compatible nodes, Lemma 13 states that the intermediate steps
up to some A-compatible node can be continued up to the answer set A, resulting in a
computation sequence for A.

Lemma 13. Given an answer set A for program P and an A-compatible computation
tree node vi ∈ V n with partial computation sequence nodeSeq(vi) = (X0, . . . , Xk), then
there exists a computation sequence (X0, . . . , Xk, Xk+1, . . . , Xn) s.t. Xn = A.

Proof. Since A is an answer set, it follows by Lemma 1, that there exists some computation
sequence S = (Y0, . . . , Ym) where Ym = A and Y0 = ∅. A computation sequence Ŝ =
(X0, . . . , Xk, Xk+1, . . . , Xn), where nodeSeq(vi) = (X0, . . . , Xk) and n = k + m, can be
constructed inductively as follows:

∀j ∈ {1, . . . , m} : Xk+j = Xk+j−1 ∪ Yj .

Note that Xk = inter(vi) holds. Since vi is A-compatible, it follows:

∃X∗
A ∈ compatASSIGN3

A,P,L : assn(vi) ⊆ X∗
A.

Thus it follows Xk ⊆ A by definition of compatASSIGN3
A,P,L. Further it holds:

∀j ∈ {0, . . . , m} : Yj ⊆ Ym and
∀j ∈ {0, . . . , k} : Xj ⊆ Xk.

Thus it follows Xn ⊆ Ym by construction of Ŝ since Ym = A. It also holds Ym ⊆ Xn by
construction of Ŝ and thus it follows Xn = Ym = A.

Then Ŝ is a computation sequence, which can be verified by checking the four properties
as follows (note that property (2) is intentionally listed last):

(1) Since persistence of beliefs holds for the partial computation sequence nodeSeq(vi),
persistence of beliefs follows for Ŝ by the inductive definition of Ŝ.

(3) Since convergence holds for (Y0, . . . , Ym) and Ym = Xn, convergence follows for Ŝ.

(4) Consider Xt as an arbitrary interpretation with 1 ≤ t ≤ n in the sequence Ŝ.
Further consider an arbitrary non-auxiliary a ∈ Xt \ Xt−1 that was newly added in
this interpretation. There are two possible cases:
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• If 1 ≤ t ≤ k, then by property (III) of the A-compatible node vi it holds:

∃rσ ∈ grd(P) :
(
Xt \ Xt−1 = H(rσ) ∧ Tβ(r, σ) ∈ assn(vi)

)
.

By property (II) of the A-compatible node vi it holds:

∃X∗
A ∈ compatASSIGN3

A,P,L : assn(vi) ⊆ X∗
A.

It follows that Tβ(r, σ) ∈ X∗
A. Further by definition of compatASSIGN3

A,P,L
it follows B−(rσ) ∩ A = ∅. Thus by revision for nodeSeq(vi) and persistence
of beliefs for Ŝ, it follows:

a ∈ H(rσ) ∧ ∀j ≥ t − 1 :
(
B+(rσ) ⊆ Xj ∧ B−(rσ) ∩ Xj = ∅

)
.

• If k + 1 ≤ t ≤ n, then by persistence of reasons for S, there exists some
rule rσ ∈ grd(P) s.t.:

a ∈ H(rσ) ∧ B+(rσ) ⊆ Xt−1 ∧ B−(rσ) ∩ A = ∅.

By persistence of beliefs for Ŝ, it then follows:

a ∈ H(rσ) ∧ ∀j ≥ t − 1 :
(
B+(rσ) ⊆ Xj ∧ B−(rσ) ∩ Xj = ∅

)
.

By the choice of Xt and a, persistence of reasons follows for Ŝ.

(2) The revision property for Ŝ follows from persistence of beliefs for Ŝ by the following
argument. An arbitrary atom a ∈ Xj in some arbitrary element Xj of the sequence Ŝ
with j ≥ 1 has some earliest Xa where a ∈ Xa \ Xa−1. Then by persistence of
beliefs for Ŝ it holds a ∈ TP(Xj−1). Thus by the choice of a and Xj the revision
property for Ŝ follows.

Given some answer set A of a program P , when traversing the computation tree downwards
from the root, an A-compatible node, that is not a leaf, has a child node that is also
A-compatible. Lemma 14 describes this property formally.

Lemma 14. Given an answer set A for program P and an A-compatible computation
tree node vi ∈ V n with chl(vi) ̸= ∅, then at least one of the following holds: there exists a
propagation node vz ∈ V n after exhaustive propagation with iterCase(vz) = (answer)
after which A is found, or there exists an A-compatible child node vc ∈ chl(vi).

Proof. Consider an arbitrary A-compatible node vi ∈ V n with chl(vi) ̸= ∅. Then consider
the child node vc ∈ chl(vi) where the index c from the computation tree construction (see
Section 3.2) is minimal. This represents the first child node reached by the algorithm.
There are five possible cases for the node vc:
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• If vc is a propagation node, then consider the assignment assn(vi) and the literal l ∈
assn(vc) \ assn(vi) added by the propagation step. By definition of propagation
(see Sections 2.3.2 and 2.3.4) there exists some nogood δ ∈ ∆S ∪ ∆L at vi, that
caused the propagation step at vi.
Consider that there exists some A-compatible assignment X∗

A ∈ compatASSIGN3
A,P,L

with assn(vi) ⊆ X∗
A since vi is an A-compatible node. Then by Lemma 10 at least

one of the following holds: there exists a propagation node vz after exhaustive
propagation with iterCase(vz) = (answer) after which A is found, or δ ̸⊆ X
holds. In the first case the lemma holds. Thus assume that δ ̸⊆ X holds. Then
since δ \ {l} ⊆ assn(vi) ⊆ X∗

A, it follows that l ∈ X∗
A. Thus it further follows

assn(vc) = assn(vi) ∪ {l} ⊆ X∗
A. Then property (II) of an A-compatible node holds

for vc.
Further there are three possible cases for the literal l ∈ assn(vc) \ assn(vi) added
by the propagation step:

– If the atom in l is auxiliary, then inter(vi) = inter(vc) holds and thus there
exists a partial computation sequence nodeSeq(vc) = nodeSeq(vi).

– If l = Fa or l = Ma and a is non-auxiliary, then again inter(vi) = inter(vc)
holds and thus there exists a partial computation sequence nodeSeq(vc) =
nodeSeq(vi).

– If l = Ta, and a is non-auxiliary, then consider that there exists a partial com-
putation sequence nodeSeq(vc) = (X0, . . . , Xk, Xk+1) where (X0, . . . , Xk) =
nodeSeq(vi) and Xk+1 = Xk ∪ {a}. Consider the properties of a partial
computation sequence. Note that property (1) holds for nodeSeq(vi). Thus
property (1) immediately follows for nodeSeq(vc).
To show that property (2) also holds for nodeSeq(vc), consider an arbitrary
atom a′ ∈ Xk+1. Note that Ta′ ∈ assn(vc) holds, since Xk = inter(vi) and
assn(vc) = assn(vi) ∪ {Ta}. Consider the node va′ along the path from the
root v0 to vc where a′ ∈ assn(va′)\assn(par(va′)). By Lemma 3 the assignment
only grows along this path and it follows that va′ is unique.
By Lemma 11, one of the following two options holds: there exists a propagation
node vz after exhaustive propagation with iterCase(vz) = (answer) after
which A is found, or vi is non-failed. In the first case the lemma holds. Thus
consider the case where vi is non-failed. Since it holds vi ∈ dscnf(va′) and a′

is non-auxiliary, it follows by Lemma 6 that there exists some ground rule
rσ ∈ grd(P) such that:

a′ ∈ H(rσ) ∧ ∀b ∈ B+(rσ) : Tb ∈ assn(vi)
∧ ∀b′ ∈ B−(rσ) : Tb′ /∈ assn(vi).

It follows B+(rσ) ⊆ inter(vi) and B−(rσ) ∩ inter(vi) = ∅. Thus since Xk =
inter(vi), it holds a′ ∈ TP(Xk).
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Then, by the choice of a′, it follows Xk+1 ⊆ TP(Xk). It follows that property (2)
of a partial computation sequence also holds for nodeSeq(vc). Then property (I)
of an A-compatible node holds for vc since Xk+1 = inter(vc).
Next consider that Ta was added by strong propagation on some nogood
δ = {Fa, Tβ(r′, σ′)} for some rule r′σ′ with a ∈ H(r′σ′). Thus it also holds
Tβ(r′, σ′) ∈ assn(vi) and, by Lemma 3, further Tβ(r′, σ′) ∈ assn(vc). Then
consider that Xk+1 \ Xk = {a}. Thus it holds:

Xk+1 \ Xk = H(r′σ′) ∧ Tβ(r′, σ′) ∈ assn(vc).

Since property (III) of an A-compatible node holds for vi, it follows that
property (III) also holds for vc and thus vc is A-compatible.

• If vc is an iteration node for case (ground), then the current assignment is
not modified. This means that assn(vi) = assn(vc). Since property (II) of an
A-compatible node holds for vi, it also holds for vc. Further there exists a partial
computation sequence nodeSeq(vc) = nodeSeq(vi) and property (I) holds for vc since
it holds for vi. Then since property (III) holds for vi and assn(vi) = assn(vc) as
well as nodeSeq(vi) = nodeSeq(vc) hold, it follows that property (III) holds for vc

and thus vc is an A-compatible node.

• If vc is an iteration node for case (reboot), then the current assignment is not
modified. Thus, by the same argument as for the previous case, it follows that vc is
an A-compatible node.

• If vc is an iteration node for case (choice), then assn(vc) = assn(vi) ∪ {Tβ(r, σ)}
for some rule rσ ∈ grd(P) where β(r, σ) ∈ acp(∆, assn(vi)). Consider the A-
compatible assignment X∗

A ∈ compatASSIGN3
A,P,L where assn(vi) ⊆ X∗

A. There
are two possible cases:

– If Tβ(r, σ) ∈ X∗
A, then assn(vc) ⊆ X∗

A and thus property (II) of an A-
compatible node holds for vc. Since inter(vi) = inter(vc) holds, there ex-
ists the partial computation sequence nodeSeq(vc) = nodeSeq(vi) and thus
properties (I) and (III) also hold for vc. Then vc is A-compatible.

– If Tβ(r, σ) /∈ X∗
A, then note that by Lemma 2 all nodes in the subtree rooted

at vc have consecutive indices in the computation tree construction and describe
a consecutive sequence of iterations during the execution of the algorithm.
Then consider the highest iteration number iterNum(vm) of a node vm in this
subtree. There are four possible cases for the end of the subtree, i.e., the
iteration case iterCase(vm):

∗ If the subtree ends with a backtrack, then another child node v′
c ∈ chl(vi)

exists with assn(v′
c) = assn(vi) ∪ {Fβ(r, σ)}. Note that since Tβ(r, σ) /∈

X∗
A it follows Fβ(r, σ) ∈ X∗

A from the definition of compatASSIGN3
A,P,L

since β(r, σ) ∈ ATOMSaux
P . Thus it holds assn(v′

c) ⊆ X∗
A. Then by the

same argument as for the case where Tβ(r, σ) ∈ X∗
A, it follows that v′

c is
A-compatible.
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3. Reboots in Lazy-Grounding

∗ If the subtree ends with a backjump to decision level dl(vi), then another
child node v′

c ∈ chl(vi) exists with assn(v′
c) = assn(vi). Then by the same

argument as for the case where vc is an iteration node for case (ground),
it follows that v′

c is A-compatible.
∗ If the subtree ends with a backjump to some decision level lower than

dl(vi), then there exists some nogood δ where δ ⊆ assn(vi). Thus it holds:

δ ⊆ assn(vi) ⊆ X∗
A.

By Lemma 10 at least one of the following two options holds: there exists
a propagation node vz after exhaustive propagation with iterCase(vz) =
(answer) after which A is found, or δ ̸⊆ X∗

A holds. Since δ ⊆ X∗
A holds,

the first option follows and thus the lemma holds.
∗ If the subtree ends with the empty nogood δ = ∅ being learned or returned

from grounding, then δ ⊆ X∗
A holds. This is a contradiction since, by

Lemma 9, no nogood resulting from ngREPP by resolution is violated
under X∗

A.

• If vc is an iteration node for case (close), then consider the A-compatible
assignment X∗

A ∈ compatASSIGN3
A,P,L where assn(vi) ⊆ X∗

A. There are two
possible cases for the set Xcls = {Fa | a ∈ atoms(∆S ∪ ∆L) \ atoms(A)}:

– If Xcls ⊆ X∗
A, then it holds:

assn(vc) = assn(vi) ∪ Xcls ⊆ X∗
A.

Thus property (II) of an A-compatible node holds for vc. Further consider
that inter(vi) = inter(vc) holds. Thus there exists the partial computation
sequence nodeSeq(vc) = nodeSeq(vi) and properties (I) and (III) also hold
for vc. Then vc is A-compatible.

– If Xcls ̸⊆ X∗
A, then there exists some atom a s.t. Ta ∈ X∗

A and Ta /∈ assn(vi).
Further it then holds inter(vi) ⊂ A. By Lemma 13 there exists a compu-
tation sequence (X0, . . . , Xk, Xk+1, . . . , Xn) s.t. Xn = A and nodeSeq(vi) =
(X0, . . . , Xk) where Xk = inter(vi). Then it follows that there exists some
smallest j where k + 1 ≤ j ≤ n and Xj−1 ⊂ Xj . Note that by the choice
of j and the persistence of beliefs property of a computation sequence, it
follows that Xj−1 = Xk. By the revision property of a computation sequence
Xj ⊆ TP(Xj−1) holds. Thus there exist some rule r′σ′ ∈ grd(P) and some
atom a ∈ Xj \ Xj−1 with:

a ∈ H(r′σ′) ∧ B+(r′σ′) ⊆ Xk ∧ B−(r′σ′) ∩ Xk = ∅.

By Lemma 12 it holds that:

∄rσ ∈ grd(P) : ∃a ∈ ATOMSL \ Xk :
(
a ∈ H(rσ) ∧ B+(rσ) ⊆ Xk

∧ B−(rσ) ∩ Xk = ∅
)
.
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3.4. Completeness

This is a contradiction.

Recall that an iteration node represents the computation point at the end of an iteration,
specifically after backtracking and backjumping in the respective cases. An iteration node
for case (conflict), (answer) or (backtrack) cannot be the first child node since
there needs to be another child node with a lower index for a backtrack or backjump to
this decision level to be possible.

Theorem 3 (Completeness). The algorithm AlphaRebootASP is complete, i.e., for
every program P over some language L, it holds AlphaRebootASP (P) ⊇ AS(P).

Proof. Consider an arbitrary answer set A ∈ AS(P). By Lemma 8 there exists some
A-compatible assignment X∗

A ∈ compatASSIGN3
A,P,L. Then consider the root node v0 ∈

V n. There exists the partial computation sequence nodeSeq(v0) = (X0) with X0 = ∅.
Furthermore, it holds assn(v0) = ∅ ⊆ X∗

A. Thus v0 is A-compatible.

Since the computation tree is finite, by assumption that the algorithm terminates on
program P , it follows by repeated use of Lemma 14, that at least one of the following holds:
there exists a propagation node vz after exhaustive propagation with iterCase(vz) =
(answer) after which A is found, or there exists an A-compatible leaf node vl. If the
first option holds, it follows A ∈ AlphaRebootASP (P). Thus consider the case where
the second option holds. The possible iteration cases for this (propagation) leaf node,
representing the computation point after exhaustive propagation, are: (conflict),
(answer), (backtrack). Consider these three cases:

• If iterCase(vl) = (conflict) holds, then there exists some violated nogood δ with
δ ⊆ assn(vl). Since vl is A-compatible, there exists some A-compatible assignment
X∗

A ∈ compatASSIGN3
A,P,L s.t. assn(vl) ⊆ X∗

A. Thus it holds δ ⊆ assn(vl) ⊆ X∗
A.

By Lemma 10 at least one of the following holds: there exists a propagation node vz

after exhaustive propagation with iterCase(vz) = (answer) after which A is found,
or δ ̸⊆ X∗

A. Since δ ⊆ X∗
A holds, it follows A ∈ AlphaRebootASP (P).

• If iterCase(vl) = (backtrack) holds, then there exists some atom a s.t. Ma ∈
assn(vl) and Ta /∈ assn(vl). Since assn(vl) ⊆ X∗

A it also holds Ta ∈ X∗
A by definition

of an A-compatible assignment. Further it then holds inter(vl) ⊂ A. By Lemma 13
there exists a computation sequence (X0, . . . , Xk, Xk+1, . . . , Xn) s.t. Xn = A and
nodeSeq(vl) = (X0, . . . , Xk) where Xk = inter(vl). Then it follows that there exists
some smallest j where k+1 ≤ j ≤ n and Xj ⊃ Xj−1. Note that Xj−1 = Xk holds by
the choice of j. By the revision property of a computation sequence Xj ⊆ TP(Xj−1)
holds. Thus there exist some rule r′σ′ ∈ grd(P) and some atom a ∈ Xj \ Xj−1
with:

a ∈ H(r′σ′) ∧ B+(r′σ′) ⊆ Xk ∧ B−(r′σ′) ∩ Xk = ∅.
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3. Reboots in Lazy-Grounding

By Lemma 12 it holds that:

∄rσ ∈ grd(P) : ∃a ∈ ATOMSL \ Xk :
(
a ∈ H(rσ) ∧ B+(rσ) ⊆ Xk

∧ B−(rσ) ∩ Xk = ∅
)
.

This is a contradiction.

• If iterCase(vl) = (answer) holds, then it follows by Theorem 2 that inter(vl) is an
answer set of P. Furthermore, A = {a | Ta ∈ X∗

A} and assn(vl) ⊆ X∗
A hold. Thus

it follows that inter(vl) ⊆ A. Assume, towards a contradiction, that inter(vl) ⊂ A.
Then A is not a subset minimal model of GLA(P), resulting in a contradiction.
Thus it follows that inter(vl) = A. This means that the algorithm finds the answer
set A, i.e., A ∈ AlphaRebootASP (P).

By the choice of A it follows AlphaRebootASP (P) ⊇ AS(P).

Since this thesis considers gsdef as the grounding strategy used in the solving algorithm,
the soundness and completeness results presented in this chapter hold for all the grounding
strategies presented by Taupe et al. [TWF19].

3.5 Reboot Strategies
Since the presented proof of completeness assumes termination of AlphaRebootASP,
reboots should not prevent termination for input programs where AlphaASP would
terminate. This is especially relevant, if more than one reboot is performed during a
solving run. A reboot strategy is defined as a decision procedure that decides, based on
information gathered during the solving process, whether to perform a reboot. The most
simple examples of reboot strategies would be to always decide for a reboot or always
decide against it. The second strategy would result in the AlphaASP algorithm. The
first is an example of a strategy that prevents termination for all input programs. Two
possible ways to address the issue of termination in regard to reboots are using some
kind of progress measure and increasing intervals between reboots.

Using a progress measure is a way of trying to ensure that in each interval between two
reboots at least some progress is made towards termination. As one possible progress
measure the number of learned clauses can be used. Note that it is important for reboots
to not remove parts of this progress.

An alternative, for trying to ensure termination, is continually increasing the interval size
between reboots. The idea here is that if AlphaASP terminates for some input program,
then it only explores a finite part of the (potentially infinite) search space. Then by
increasing the interval size between reboots continually, it will at some point be large
enough to explore the whole of this finite part.

Based on these approaches, several reboot strategies are proposed in the following.
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3.5. Reboot Strategies

3.5.1 FIXED

Using the idea of a progress measure, an option is to simply choose a fixed value for this
measure and reboot after the specified amount of progress was achieved. Using learned
clauses as the progress measure, this strategy is called FIXED and implemented in Alpha.
It counts the number of enumeration nogoods and nogoods learned from conflicts. Both
of these nogood types represent, that part of the search space was explored and thus
constitute a form of progress. The single parameter of this strategy is the fixed number
of nogoods after which to decide for a reboot.

3.5.2 ANSWER and ASSIGN

Reboot strategies can also be based on when answer sets are found or complete assignments
are encountered. The ANSWER strategy decides for a reboot if an answer set was found,
i.e., loop case (answer) of AlphaRebootASP was executed, but no reboot was performed
since then. The ASSIGN strategy behaves the same except it considers both loop cases
(answer) and (backtrack) instead of only case (answer). This corresponds to
finding a complete assignment, that can be an answer set or no answer set, before deciding
for the next reboot.

3.5.3 GEOM and LUBY

In satisfiability (SAT) solving, infinite sequences have been used to obtain interval sizes
[Hua07] for a technique called restarts (see Section 5). These sequences contain arbitrarily
large values and can thus be used to allow intervals of arbitrary size between reboots.
Two such types of sequences are geometric and Luby sequences. The latter were originally
proposed by Luby et al. in the context of Las Vegas algorithms [LSZ93]. For these
sequences, reboot strategies with the names GEOM and LUBY are defined respectively and
implemented in Alpha.

A geometric sequence is defined as an infinite sequence ⟨ti⟩ = t1, t2, t3, . . ., parametrized
by initial value a and scale factor r, where ti = a ·ri−1. The strategy GEOM is then defined
with the same two parameters a and r. Assuming n reboots have been performed so far,
strategy GEOM decides for a reboot if at least tn+1 nogoods have been learned in total
(including enumeration nogoods), where ⟨ti⟩ is a geometric sequence with parameters a
and r.

A Luby sequence [LSZ93] is defined as an infinite sequence ⟨ti⟩ = t1, t2, t3, . . . where:

ti =
{

2k−1 if i = 2k − 1;
ti−2k−1+1 if 2k−1 ≤ i < 2k − 1.

The strategy LUBY is then defined with the single parameter s. The scaling factor s
represents the length of the smallest interval. Assuming n reboots have been performed
so far, strategy LUBY decides for a reboot if at least s · tn+1 nogoods have been learned
in total (including enumeration nogoods), where ⟨ti⟩ is a Luby sequence.
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3. Reboots in Lazy-Grounding

3.6 Termination
When considering the general case for an ASP program, the solving algorithms AlphaASP
and AlphaRebootASP do not necessarily terminate. This can be observed with a simple
example. The following program P has exactly one infinite answer set:

p(a).
p(f(X)) ← p(X).

Thus the algorithms cannot terminate for P within a finite amount of steps since in each
step only a finite part of the answer set is potentially computed. Termination can thus
only be ensured under additional assumptions.

To theoretically argue about termination of AlphaRebootASP with a wider range of reboot
strategies, LIMITEDn is defined as the class of strategies that perform at most n reboots
before a new answer set is found. This restriction ensures that reboots and other cases
of the algorithm cannot alternate indefinitely. Note that the only strategy proposed in
Section 3.5 that belongs to the category LIMITEDn is the ANSWER strategy, but other
strategies could easily be adapted by adding the limit for n reboots per answer set as
an additional parameter. In the following, it is assumed that a reboot strategy in the
category LIMITEDn is used by the AlphaRebootASP algorithm.

Consider the assumption that for input program P over language L, the Herbrand base
HB(L), and thus also the grounding grd(P), are finite. From this assumption it follows
that ∆P is also finite. Then the number of possible conflict cases, i.e. iteration case
(conflict), is finite since every conflict results in a new learned nogood discovered by
the solver. Furthermore, the number of possible answer sets of P is finite since HB(L) is
finite.

Note that an atom only becomes eligible for a choice again after the backjump during
conflict handling. The number of possible atoms for a choice in iteration case (choice)
until the next conflict is then finite. A backtrack in iteration case (backtrack) can
happen at most once for each choice made. Thus the number of backtracks until the next
conflict is also finite.

Consider that the number of atoms that can be assigned through propagation until the
next conflict is finite. Thus the number of times grounding, i.e. iteration case (ground),
can be performed before the next conflict or reboot is finite as well. Note that the number
of reboots until the next answer set is at most n by assumption of a reboot strategy in
the class LIMITEDn.

Closing the assignment in iteration case (close) is then limited to a finite number of
times since it cannot be performed multiple times in immediate succession and all other
cases are limited to a finite number. It follows that the AlphaRebootASP algorithm over
the given input program P terminates within a finite number of iterations.
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CHAPTER 4
Practical Evaluation

4.1 Implementation
Intuitively the solver performs the search and the grounder provides ground rules in the
form of nogoods to the solver along the way. Reboots modify the set of rules that is
considered already grounded. This set is shared conceptually between the solving and
grounding component. Thus both grounder and solver are affected by the implementation
of reboots.

Figure 4.1 shows the resulting interactions of a reboot within the architecture of the
Alpha system presented by Leutgeb and Weinzierl [LW17].

Nogoods

Parser

partial Assignment

SolverGrounder

Choice AtomsLazy-Grounding Decision
Heuristic

Answer Set

Assignment

Conflict
Resolution

Nogood
Storage

Program

Reboot

Figure 4.1: Reboots within the Alpha system
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Propagation and choices constitute changes to the assignment. Reboots can be triggered
based on such changes and the decision of the reboot strategy. The reboot strategy is
part of the reboot component and decides based on information gathered so far, whether
a reboot should be performed. Possible strategies for this decision are described in
Section 3.5.

When a reboot is performed, the nogood store component is modified such that parts
of the static nogoods are removed. Furthermore, the grounder memory, located in the
lazy-grounding component of the grounder, is modified according to Definition 1. This is
accomplished by the following steps within the reboot component:

• First a backup of all learned nogoods (including enumeration nogoods) in the nogood
store component, as well as a backup of the choices in the current assignment, i.e.,
the choice stack, is created.

• Then decision heuristic and lazy-grounding components are reset to their initial
state, followed by the nogood store and assignment being cleared.

• In the next step the nogood backup is added to the nogood store and each rule rσ
is grounded where β(rσ) is contained in some stored nogood.

• In the last step the old assignment is reconstructed based on the choice stack backup
by making choices and performing propagation and grounding after each choice.
These steps correspond to a modification of the set of static nogoods according to
the function rbtng as described in Section 3.1.

In theory a reboot could be performed at any point during the search, including after a
choice step but before the following propagation and grounding steps. This would allow
reboots before exhaustive grounding was applied, which leads to the possibility that a
reboot actually increases the set of synchronized ground rules. To avoid this possibility,
reboots are restricted to points in the Alpha algorithm where a choice could be made.
This restriction also simplifies the application of reboots in the algorithm of Alpha.

The implementation of the Alpha solver uses a translation between logical rules and
their internal representation. Nogoods are stored in their internal representation within
the nogood store while a separate component, the atom store, stores the translation. We
decided to implement reboots in the presented way to fully reset the atom store and
ensure that logical atoms are not stored multiple times.

The current implementation of reboots does not preserve information learned by the
branching heuristic. Branching decisions have been observed to have a high impact on
performance of conflict-driven learning SAT solvers [KSS11]. Since Alpha is also based
on conflict-driven learning and uses similar heuristics to those of modern SAT solvers,
preventing a complete reset of the branching heuristic might be beneficial. Thus in some
way reconstructing the old heuristic state after a reboot could improve performance,
especially if reboots are performed frequently. This idea of reconstruction is the challenge,
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that it is specific to each decision heuristic and provides an open issue resulting from
this thesis.

4.2 Experiments
Our practical examination involves the study of three hypotheses:

H1: The decision when to reboot can have significant impact on performance.

H2: Reboots can significantly improve solving performance.

H3: Reboots are detrimental for problems where nogoods from grounding do not become
obsolete.

The first important question in regard to reboots is whether they can actually improve
performance of the solver. This is captured by hypothesis H2 and includes the amount of
memory necessary to solve problem instances as well as the runtime. An improvement
in at least one aspect of performance is a prerequisite for any practical relevance of the
technique.

On the other hand there are some problems for which reboots are expected to result in
performance losses. This intuitively should be the case for problems where the encoding
contains no potential for rules and their nogood representation to become obsolete during
the search. More specifically, it should include problems where the vast majority of rules
in the encoding are relevant for finding a single answer set. Hypothesis H3 is the result
of this consideration.

The decision when to perform a reboot is made by a heuristic that needs to balance
computational effort with the performance improvement achieved by a better heuristic
choice. To better inform the design of such heuristics it is helpful to know how much
of an impact the heuristic decision has on overall performance. In case the impact is
insignificant, a naive heuristic with minimal computational overhead might be sufficient.
According to hypothesis H1 this is not the case.

Benchmark Instances. To examine the performance of reboots in the Alpha solver,
we use the benchmark sets from the original evaluation of Alpha by Leutgeb and
Weinzierl [LW17, Wei17]. Among them are the Ground Explosion, Graph 5-Colorability,
Cutedge and Reachability benchmark sets. Additionally we use a modified version of
the Ground Explosion encoding to obtain a separate instance, further referred to as the
Selection instance, and the Selection Explosion benchmark set where the domain size
of the Selection instance is scaled up further in increments of 100 up to 2000, resulting
in 20 instances. This benchmark set can be viewed as a harder version of the Ground
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Explosion benchmark set. The Selection instance is constructed as follows:

dom(X) ← X = 1..100.

sel(X) ← dom(X), not nsel(X).
nsel(X) ← dom(X), not sel(X).

← sel(X), sel(Y ), X ̸= Y, dom(X), dom(Y ).
p(X1, X2, X3, X4, X5, X6) ← sel(X1), sel(X2), sel(X3), sel(X4), sel(X5), sel(X6).

The syntax 1..100 is a common shorthand for 100 instances of the same rule with one
of the values x ∈ {1, . . . , 100} at this position in the rule. The remaining syntax can be
found in the ASP-Core-2 language format definition [CFG+20].

Intuitively the Selection instance involves a selection of up to 100 values and derives atoms
over a predicate p for combinations of selected values. A constraint prevents multiple
values from being selected. Note that adding nsel(X) in the head of the constraint
would not change the semantics of the program but might lead to different computational
behavior. The last rule leads to a large grounding size since it involves a predicate with
high arity. There exists a constraint instantiation for every combination of values in
the domain, but after an answer set for some selected value x is discovered, the solver
should be able to learn to not select x anymore, leading to the constraint combinations
with x becoming redundant. From this arises the expectation that reboots lead to
improved performance, especially in necessary memory, for the Selection instance since
large numbers of obsolete nogoods might be removed.

Benchmark Setup. We compared Alpha with reboots to Alpha without reboots
and Clingo [GKKS19], one of the most efficient ground-and-solve systems. For these
comparisons Alpha was built from source using Git commit 3dfad44 and Clingo
version 5.4.0 was used. Benchmarks were run on a machine cluster with each machine
featuring two Intel® Xeon® E5-2650 v4 CPUs, 252 GB of memory and Ubuntu 16.04.1 LTS
Linux. Benchmarks were scheduled on the cluster using HTCondorTM. For measurements
of time and memory consumption as well as enforcing time and memory limits, version
3.4.0 of the runsolver tool [Rou11] was used. Timeout was set to 300 seconds and
memory limit to 12000 MiB. Each benchmark configuration was run five times and
median performance was used for the evaluations.

4.2.1 Benchmark – Single Reboot
For the first experiment, the impact of a single reboot is examined. The Selection instance
is used in combination with the FIXED reboot strategy, where values 0, 10, 20, 30, . . . ,
200 were used for the strategy parameter to obtain 21 total configurations. Recall that
the parameter of strategy FIXED controls the number of nogoods learned before a reboot
is performed. The results of this experiment are depicted in Figure 4.2. In the run
with parameter value 200, no reboot was performed while for all other runs exactly one
reboot was performed. The results show a speedup by about a factor of two for the best
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Figure 4.2: Single Reboot benchmark results

case of the parameter value compared to when no reboot was performed. The speedup
decreases the more the parameter deviates from the best case. The memory results are
less significant compared to runtime improvements as only about 10% of the memory
consumption is avoided with the best choice of the parameter.

4.2.2 Benchmark – Multiple Reboots

In the second experiment, the impact of multiple reboots is examined, again using the
Selection instance and the FIXED reboot strategy. The values {1, 10, 20, 30, . . . , 200} are
used to parametrize the strategy. Note that the parameter value 0 for strategy FIXED
with repeated reboots would necessarily lead to non-termination. The results of this
experiment are visualized in Figure 4.3. Numerical median results, including the number
of reboots performed for each parameter value, are shown in Table 4.1. The results
show improvements in runtime performance by up to a factor of five and in memory
performance by up to a factor of two. Furthermore, rebooting more frequently tends to
lead to better runtime and memory performance for this instance except for parameter
value 1, where runtime does not decrease further, but instead increases. We assume that
this is the effect of the high amount of reboots that results in a significant overhead for
executing the reboots. Additionally, frequently resetting the branching heuristic might
lead to significantly worse branching decisions in this case.

The experiments investigating a single as well as multiple reboots provide evidence
for hypotheses H1 and H2. Furthermore, these experiments show more significant
improvement for runtime than for memory consumption. Our initial expectation was that
the main upside of reboots would be lower memory consumption. This is investigated
further in the following benchmarks.
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4. Practical Evaluation

Figure 4.3: Multiple Reboots benchmark results

parameter runtime (s) memory (MiB) rebootsvalue
1 72.4169 4328.57 640

10 20.0693 4385.04 33
20 22.6616 4434.99 13
30 25.9946 4747.97 8
40 29.9122 4679.23 5
50 31.8925 5044.55 4
60 34.7577 6311.42 3
70 50.1080 9035.75 3
80 48.5278 9125.72 2
90 52.0672 8870.92 2

100 61.3979 9735.97 2
110 68.3188 9792.46 1
120 64.3945 9754.82 1
130 60.2662 9306.02 1
140 57.8219 9257.57 1
150 59.9178 9195.67 1
160 64.3954 9621.98 1
170 67.9484 9488.44 1
180 74.3969 9597.52 1
190 92.2684 10772.70 1
200 99.1725 10979.70 0

Table 4.1: Multiple Reboots benchmark results
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Figure 4.4: Ground Explosion benchmark results

4.2.3 Further Benchmarks
The benchmarks presented in the following use Alpha without reboots (NO_REBOOT),
Alpha with the ANSWER reboot strategy (ANSWER) and Clingo (CLINGO). For every
instance 20 answer sets were requested from the solver. The specific benchmark sets
were chosen to exercise different parts of an ASP system [LW17]. Both Reachability
and Graph 5-Colorability encodings contain information, that is intuitively relevant for
all answer sets, and don’t present any obvious candidates for rules that might become
obsolete. Since the encoding in the Reachability benchmark set is a positive program,
these instances have exactly one answer set and the ANSWER reboot strategy is not
expected to lead to any performance improvements.

Benchmark results are presented in Figures 4.4–4.8.

Ground Explosion. Both configurations of Alpha solve all 17 instances of the Ground
Explosion benchmark set and show very similar runtime and memory performance.
Clingo only solves 6 instances and shows significantly worse performance. Since this
benchmark set is grounding intensive, this result is not unexpected.

Selection Explosion. For the Selection Explosion benchmark set, Alpha without
reboots solves 7 instances while Alpha with reboots solves all 20 instances. Furthermore,
the performance with reboots starts out similar or slightly worse and significantly improves
with larger instances. Clingo does not solve any instances of this benchmark set.

Reachability. Both Alpha configurations and Clingo solve all 50 instances of the
Reachability benchmark set. The Alpha configurations perform very similar but notice-
ably worse than Clingo. Considering that the use of reboots is not expected to improve
performance for this problem, it also does not show significantly worse performance.
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Figure 4.5: Selection Explosion benchmark results

Figure 4.6: Reachability benchmark results

This might be a product of small instance sizes, considering that all instances are solved
within less than five seconds.

Graph 5-Colorability. Both Alpha configurations and Clingo solve all 180 instances
of the Graph 5-Colorability benchmark set and Clingo shows significantly better perfor-
mance. Furthermore, while Alpha with reboots solves all instances, it exhibits worse
time and memory performance for a large part of the instances. This is expected since the
Graph 5-Colorability encoding intuitively does not provide potential for rules becoming
obsolete, meaning reboots would remove only relevant rules.

Cutedge. For the Cutedge benchmark set, Clingo solves 40 instances, Alpha without
reboots solves 80 instances and Alpha with reboots solves 100 of the 130 total instances.
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Figure 4.7: Graph 5-Colorability benchmark results

Figure 4.8: Cutedge benchmark results

Furthermore, using reboots shows better runtime and memory performance than not
using them for most of the instances. While Clingo performs worse in regard to runtime
overall, it performs similar in regard to memory consumption for the instances it solves.
The Cutedge encoding contains potential for rules to become obsolete for specific parts of
the search. Thus reboots are expected to have a positive impact for this benchmark set.

4.2.4 Summary
The experiments using the Selection instance and FIXED reboot strategy show significant
performance improvements that depend on when and how frequent reboots are performed,
providing evidence for hypotheses H1 and H2. Further investigations using the ANSWER
strategy on the Ground Explosion, Selection Explosion, Graph 5-Colorability, Cutedge
and Reachability benchmark sets provide more evidence in the following ways. For
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the Selection Explosion and Cutedge benchmark sets, Alpha with reboots solves more
instances and leads to better performance than without reboots or using Clingo. This
constitutes evidence towards hypothesis H2. Since the 5-colorability encoding does not
provide potential for obsolete nogoods, the exhibited worse performance is evidence
towards hypothesis H3. Experiments on the remaining benchmark sets show very similar
performance of Alpha with and without reboots.

Compared to the alternatives proposed in Section 3.5, the ANSWER and ASSIGN strategies
avoid the need for parametrization. The ANSWER strategy takes the most conservative
approach and cannot lead to excessive reboots like the FIXED strategy in particular.
Obtaining parameter values that provide reasonable results on instances of varying size
for the proposed parametrized strategies is an open issue.
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CHAPTER 5
Related Work

Related Techniques. The development of ASP solvers was influenced significantly by
the related field of satisfiability (SAT) solving. Numerous techniques, originally developed
for SAT solvers, have been adopted for ground-and-solve ASP solvers [GKK+11, ADF+13,
LPF+02]. Some of these techniques have also been adapted for lazy grounding and im-
plemented in Alpha [Wei17, LW17, WTF20]. Examples include conflict-driven learning,
restarts, phase-saving and propagation based on watched-literals. Some techniques used
in ASP solvers work under the assumption that the whole problem representation is
known. This assumption holds for SAT solving and upfront grounding in ASP solving.
It does not hold in general for lazy grounding ASP systems, since there the problem
representation is constructed incrementally during the search.

Learned Nogood Deletion. Another technique implemented in Alpha that originates
from SAT solving is learned nogood deletion [WTF20]. This technique, similarly to the
proposed reboots, deletes nogoods. It differs from reboots in the type of nogoods that
are deleted. While learned nogood deletion removes nogoods learned by resolution from
the solvers memory, reboots remove static nogoods obtained from grounding.

Restarts. Gomes et al. [GSK98, GSCK00] observed specific combinations of problem
instances and deterministic search algorithms resulting in significantly higher runtime.
This so-called heavy-tailed behavior was observed for SAT and constraint satisfaction
problems (CSP). The researchers proposed the introduction of a controlled degree
of randomness into the otherwise deterministic SAT and CSP solvers; the resulting
technique was called a restart. When performing a restart the solver backjumps to
decision level 0, but retains all learned information. This includes learned clauses (in
case of SAT) or nogoods (in case of ASP) as well as information gathered by the decision
heuristic. Different strategies for when to perform restarts have been developed. Some of
them use an infinite increasing sequence to define the size of intervals between restarts.
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Geometric and Luby [LSZ93] sequences (described in Section 3.5) have been used for
this purpose [Hua07]. Modern SAT solvers perform rapid restarts [AS12] combined with
phase-saving [PD07], which reuses the most recent polarity of variables for decisions.

The main factor that distinguishes both of these techniques from reboots is that they
don’t remove parts of the static problem encoding. Reboots accomplish this by deleting
nogoods obtained from grounding. Since SAT solving and upfront grounding in ASP
solving assume the static problem representation to be fully known at any point of the
search, no part of it can be removed without violating this assumption. In lazy-grounding
it is possible to delete static nogoods since they can be obtained again from the grounder
when needed.

Lazy-Grounding. The first lazy-grounding ASP solvers were GASP [PDPR09] and
ASPeRiX [LN09b, LN09a, LBSG17]. They are both based on the notion of a computation
sequence as described in Section 2.3.4, but were developed independently. GASP was
implemented in Prolog while ASPeRiX was implemented in C++. Another lazy-grounding
system is the OMiGA [DEF+12] solver that was built to improve grounding performance.
It was developed in Java and features a Rete network [For82], that stores partial matches
to speed up grounding.

GASP, ASPeRiX and OMiGA address the problem of the grounding bottleneck, but are
not based on conflict-driven learning. Thus they do not profit from many of the techniques
developed for conflict-driven clause learning (CDCL) solvers in the SAT solving field.

Alternatives to Lazy-Grounding. Other approaches to avoid the grounding bottle-
neck have also been investigated. The intelligent grounding in I-DLV [CFPZ17] prevents
grounding unnecessary parts of the program and is based on semi-naive database tech-
niques. Incremental ASP [GKK+08] reuses grounding results from smaller sizes for larger
ones in bounded problems.

Eiter et al. [EFM10] proposed methods for evaluating ASP programs, that contain
predicates of bounded arity, in polynomial space. Two of their methods also require
programs to be head-cycle-free. A program P is considered head-cycle-free if the positive
dependency graph does not contain any cycle with at least two atoms in rule heads of P .
The positive dependency graph contains the predicates occuring in P as nodes and the
following set of edges: E = {(p1, p2) | ∃r ∈ P : p1 occurs in H(r) and p2 in B+(r)}.

Another approach is the rewriting of rules during a preprocessing step. Bichler et al.
[BMW20] presented the preprocessing algorithm lpopt. The lpopt algorithm splits
up rules based on tree decompositions over the variables in a rule. This splitting is done
in a static fashion, meaning that a rule is always decomposed according to the obtained
tree decomposition if possible. This is a disadvantage in cases where keeping the original
rule instead would be preferable. Calimeri et al. [CPZ19] proposed a dynamic rewriting
algorithm that estimates the cost of grounding for possible rule decompositions and
chooses the best decomposition (or the original rule) based on these estimates.
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An approach proposed by Besin et al. [BHW22], called body-decoupled grounding,
rewrites normal programs into disjunctive programs with grounding size bounded by
predicate arities instead of the number of variables in a rule. This technique results in a
set of rules for each rewritten rule and transfers part of the effort, otherwise contained in
grounding, to the solving part instead.

Cuteri et al. [CDRS20] investigated the case where the grounding bottleneck is caused by
constraints. They proposed and implemented a technique (on top of the ground-and-solve
system wasp [ADLR15]) that converts these constraints into propagators within the
conflict-driven learning algorithm. This way problem instances can be solved without
problematic constraints being grounded explicitly.

Most of these approaches are restricted in their applicability or only have limited impact
on the grounding bottleneck. Lazy grounding with reboots can be applied to arbitrary
ASP programs and the frequency of reboots can be heuristically controlled to significantly
reduce memory consumption for instances exhibiting the grounding bottleneck.
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CHAPTER 6
Conclusion

Reboots in lazy-grounding ASP solving were defined and a modification of the algorithm
in Alpha, that incorporates reboots, was presented. The formal notion of a computation
tree was defined to formalize the search process of the modified Alpha algorithm.
Detailed formal proofs of soundness and completeness, based on the notion of the
computation tree, were provided for the modified algorithm. Several reboot strategies,
using different approaches to the decision of when to reboot, were proposed. Furthermore,
arguments for termination of the modified algorithm under restricted sets of programs
and reboot strategies were given. Reboots, as well as the proposed reboot strategies, were
implemented in Alpha and their interactions within the Alpha system were illustrated.
Finally, three hypotheses about the impact of reboots on performance were presented and
examined. Experimental results reinforce the presented hypotheses. More specifically,
reboots show potential for performance improvements on grounding intensive benchmarks.
Not only is memory consumption reduced, leading to more instances being solved, but
reboots also result in lower runtime for these benchmarks.

Open Issues. One of the hypotheses that was reinforced by performed benchmarks
suggests that reboots are detrimental for specific problems, where they remove mostly
or exclusively promising nogoods. Dynamic strategies could prevent reboots from being
performed repeatedly for such problems. The presented reboot strategies provide a
possible starting point for a more fine-grained examination of the decision when to reboot.
A quality measurement for static nogoods, similar to the literals blocks distance in SAT
solving [AS09], could allow for a dynamic approach to reboot strategies. Another possible
approach would be allowing users to provide problem-specific information to the reboot
strategy by developing a specification language, similar to declarative specifications of
domain-specific decision heuristics [GKR+13, CFSW23].

The provided implementation of reboots in Alpha resets the state of the decision heuristic.
As heuristic decisions are an important part of the conflict-driven learning solver Alpha,
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retaining as much information learned by the heuristic might be beneficial. Development
of heuristic-specific ways to accomplish this provides potential for future improvement of
reboots.

The proposed definition of reboots aims at removing as many obsolete nogoods as possible.
Using a measurement for the quality of static nogoods could allow an informed decision
about which nogoods appear to be more promising. Based on this a more fine-grained
technique than reboots could be developed, that removes less nogoods but keeps promising
ones. Furthermore, since reboots have the goal of removing unnecessary information,
the question arises whether it is possible to transform programs accordingly. Decreasing
dependence between subproblems of a program during a preprocessing step could allow
better exploitation of reboots.

64



List of Figures

3.1 Example of a computation tree . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Options for the position of the iteration node vm+1 . . . . . . . . . . . . . 23
3.3 Computation tree after 6 iterations of AlphaRebootASP on Pex . . . . . . 24

4.1 Reboots within the Alpha system . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Single Reboot benchmark results . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Multiple Reboots benchmark results . . . . . . . . . . . . . . . . . . . . . 54
4.4 Ground Explosion benchmark results . . . . . . . . . . . . . . . . . . . . . 55
4.5 Selection Explosion benchmark results . . . . . . . . . . . . . . . . . . . . 56
4.6 Reachability benchmark results . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7 Graph 5-Colorability benchmark results . . . . . . . . . . . . . . . . . . . 57
4.8 Cutedge benchmark results . . . . . . . . . . . . . . . . . . . . . . . . . . 57

65





List of Tables

4.1 Multiple Reboots benchmark results . . . . . . . . . . . . . . . . . . . . . 54

67





List of Algorithms

2.1 The AlphaASP algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 The AlphaRebootASP algorithm . . . . . . . . . . . . . . . . . . . . . . 19

69





Bibliography

[ADF+13] Mario Alviano, Carmine Dodaro, Wolfgang Faber, Nicola Leone, and
Francesco Ricca. WASP: A native ASP solver based on constraint learning.
In Proceedings of the 12th International Conference on Logic Programming
and Nonmonotonic Reasoning, LPNMR 2013, volume 8148 of Lecture Notes
in Computer Science, pages 54–66. Springer, 2013.

[ADLR15] Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco Ricca. Ad-
vances in WASP. In Proceedings of the 13th International Conference on
Logic Programming and Nonmonotonic Reasoning, LPNMR 2015, volume
9345 of Lecture Notes in Computer Science, pages 40–54. Springer, 2015.

[AS09] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in
modern SAT solvers. In Proceedings of the 21st International Joint Conference
on Artificial Intelligence, IJCAI 2009, pages 399–404, 2009.

[AS12] Gilles Audemard and Laurent Simon. Refining restarts strategies for SAT and
UNSAT. In Proceedings of the 18th International Conference on Principles
and Practice of Constraint Programming, CP 2012, volume 7514 of Lecture
Notes in Computer Science, pages 118–126. Springer, 2012.

[BHW22] Viktor Besin, Markus Hecher, and Stefan Woltran. Body-decoupled grounding
via solving: A novel approach on the ASP bottleneck. In Proceedings of the
31st International Joint Conference on Artificial Intelligence, IJCAI 2022,
pages 2546–2552. ijcai.org, 2022.

[BMW20] Manuel Bichler, Michael Morak, and Stefan Woltran. lpopt: A rule op-
timization tool for answer set programming. Fundamenta Informaticae,
177(3-4):275–296, 2020.

[CDRS20] Bernardo Cuteri, Carmine Dodaro, Francesco Ricca, and Peter Schüller.
Overcoming the grounding bottleneck due to constraints in ASP solving:
Constraints become propagators. In Proceedings of the 29th International
Joint Conference on Artificial Intelligence, IJCAI 2020, pages 1688–1694.
ijcai.org, 2020.

71



[CFG+20] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni,
Roland Kaminski, Thomas Krennwallner, Nicola Leone, Marco Maratea,
Francesco Ricca, and Torsten Schaub. Asp-core-2 input language format.
Theory and Practice of Logic Programming, 20(2):294–309, 2020.

[CFPZ17] Francesco Calimeri, Davide Fuscà, Simona Perri, and Jessica Zangari. I-DLV:
the new intelligent grounder of DLV. Intelligenza Artificiale, 11(1):5–20, 2017.

[CFSW23] Richard Comploi-Taupe, Gerhard Friedrich, Konstantin Schekotihin, and
Antonius Weinzierl. Domain-specific heuristics in answer set programming:
A declarative non-monotonic approach. Journal of Artificial Intelligence
Research, 76:59–114, 2023.

[CPZ19] Francesco Calimeri, Simona Perri, and Jessica Zangari. Optimizing answer
set computation via heuristic-based decomposition. Theory and Practice of
Logic Programming, 19(4):603–628, 2019.

[DEF+12] Minh Dao-Tran, Thomas Eiter, Michael Fink, Gerald Weidinger, and An-
tonius Weinzierl. Omiga: An open minded grounding on-the-fly answer set
solver. In Proceedings of the 13th European Conference on Logics in Artificial
Intelligence, JELIA 2012, volume 7519 of Lecture Notes in Computer Science,
pages 480–483. Springer, 2012.

[EFM10] Thomas Eiter, Wolfgang Faber, and Mushthofa Mushthofa. Space efficient
evaluation of ASP programs with bounded predicate arities. In Proceedings
of the 24th Conference on Artificial Intelligence, AAAI 2010. AAAI Press,
2010.

[EIK09] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer
set programming: A primer. In Reasoning Web. Semantic Technologies for
Information Systems, 5th International Summer School 2009, volume 5689 of
Lecture Notes in Computer Science, pages 40–110. Springer, 2009.

[FFS+18] Andreas A. Falkner, Gerhard Friedrich, Konstantin Schekotihin, Richard
Taupe, and Erich Christian Teppan. Industrial applications of answer set
programming. Künstliche Intelligenz, 32(2-3):165–176, 2018.

[For82] Charles Forgy. Rete: A fast algorithm for the many patterns/many objects
match problem. Artificial Intelligence, 19(1):17–37, 1982.

[GKK+08] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski,
Torsten Schaub, and Sven Thiele. Engineering an incremental ASP solver.
In Proceedings of the 24th International Conference on Logic Programming,
ICLP 2008, volume 5366 of Lecture Notes in Computer Science, pages 190–205.
Springer, 2008.

72



[GKK+11] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski,
Torsten Schaub, and Marius Schneider. Potassco: The potsdam answer set
solving collection. AI Communications, 24(2):107–124, 2011.

[GKKS12] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, 2012.

[GKKS19] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
Multi-shot ASP solving with clingo. Theory and Practice of Logic Program-
ming, 19(1):27–82, 2019.

[GKR+13] Martin Gebser, Benjamin Kaufmann, Javier Romero, Ramón Otero, Torsten
Schaub, and Philipp Wanko. Domain-specific heuristics in answer set pro-
gramming. In Marie desJardins and Michael L. Littman, editors, Proceedings
of the 27th Conference on Artificial Intelligence, AAAI 2013. AAAI Press,
2013.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Proceedings of the Fifth International Conference and
Symposium on Logic Programming, pages 1070–1080. MIT Press, 1988.

[GLM+18] Martin Gebser, Nicola Leone, Marco Maratea, Simona Perri, Francesco
Ricca, and Torsten Schaub. Evaluation techniques and systems for answer
set programming: a survey. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, IJCAI 2018, pages 5450–5456. ijcai.org,
2018.

[GSCK00] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry A. Kautz. Heavy-tailed
phenomena in satisfiability and constraint satisfaction problems. Journal of
Automated Reasoning, JAR, 24(1/2):67–100, 2000.

[GSK98] Carla P. Gomes, Bart Selman, and Henry A. Kautz. Boosting combinatorial
search through randomization. In Proceedings of the 15th National Conference
on Artificial Intelligence and Tenth Innovative Applications of Artificial
Intelligence Conference, AAAI 98, IAAI 98, pages 431–437. AAAI Press /
The MIT Press, 1998.

[Hua07] Jinbo Huang. The effect of restarts on the efficiency of clause learning.
In Manuela M. Veloso, editor, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, IJCAI 2007, pages 2318–2323, 2007.

[KSS11] Hadi Katebi, Karem A. Sakallah, and João P. Marques Silva. Empirical
study of the anatomy of modern sat solvers. In Theory and Applications of
Satisfiability Testing, SAT 2011, volume 6695 of Lecture Notes in Computer
Science, pages 343–356. Springer, 2011.

73



[LBSG17] Claire Lefèvre, Christopher Béatrix, Igor Stéphan, and Laurent Garcia. As-
perix, a first-order forward chaining approach for answer set computing.
Theory and Practice of Logic Programming, 17(3):266–310, 2017.

[Lif19] Vladimir Lifschitz. Answer Set Programming. Springer, 2019.

[LLTW] Michael Langowski, Lorenz Leutgeb, Richard Taupe, and Antonius Weinzierl.
Alpha. https://github.com/alpha-asp/alpha. Accessed: 2023-06-
26.

[LN09a] Claire Lefèvre and Pascal Nicolas. A first order forward chaining approach for
answer set computing. In Proceedings of the 10th International Conference
on Logic Programming and Nonmonotonic Reasoning, LPNMR 2009, volume
5753 of Lecture Notes in Computer Science, pages 196–208. Springer, 2009.

[LN09b] Claire Lefèvre and Pascal Nicolas. The first version of a new ASP solver:
Asperix. In Proceedings of the 10th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning, LPNMR 2009, volume 5753 of
Lecture Notes in Computer Science, pages 522–527. Springer, 2009.

[LPF+02] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gott-
lob, Simona Perri, and Francesco Scarcello. The dlv system for knowledge
representation and reasoning. ACM Transactions on Computational Logic,
7:499–562, 2002.

[LPST10] Lengning Liu, Enrico Pontelli, Tran Cao Son, and Miroslaw Truszczyński.
Logic programs with abstract constraint atoms: The role of computations.
Artificial Intelligence, 174(3):295–315, 2010.

[LSZ93] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup
of las vegas algorithms. In Proceedings of the Second Israel Symposium on
Theory of Computing Systems, ISTCS 1993, pages 128–133. IEEE Computer
Society, 1993.

[LW17] Lorenz Leutgeb and Antonius Weinzierl. Techniques for efficient lazy-
grounding ASP solving. In Declarative Programming and Knowledge Manage-
ment - Conference on Declarative Programming, DECLARE 2017, volume
10997 of Lecture Notes in Computer Science, pages 132–148. Springer, 2017.

[PD07] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching
scheme for satisfiability solvers. In João Marques-Silva and Karem A. Sakallah,
editors, Theory and Applications of Satisfiability Testing, SAT 2007, volume
4501 of Lecture Notes in Computer Science, pages 294–299. Springer, 2007.

[PDPR09] Alessandro Dal Palù, Agostino Dovier, Enrico Pontelli, and Gianfranco
Rossi. GASP: answer set programming with lazy grounding. Fundamenta
Informaticae, 96(3):297–322, 2009.

74

https://github.com/alpha-asp/alpha


[Rou11] Olivier Roussel. Controlling a solver execution with the runsolver tool. Journal
on Satisfiability, Boolean Modeling and Computation, JSAT, 7(4):139–144,
2011.

[SS96] João P. Marques Silva and Karem A. Sakallah. GRASP - a new search algo-
rithm for satisfiability. In Proceedings of the 1996 IEEE/ACM International
Conference on Computer-Aided Design, ICCAD 1996, pages 220–227. IEEE
Computer Society / ACM, 1996.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5(2):285 – 309, 1955.

[TWF19] Richard Taupe, Antonius Weinzierl, and Gerhard Friedrich. Degrees of
laziness in grounding - effects of lazy-grounding strategies on ASP solving.
In Proceedings of the 15th International Conference on Logic Programming
and Nonmonotonic Reasoning, LPNMR 2019, volume 11481 of Lecture Notes
in Computer Science, pages 298–311. Springer, 2019.

[Wei17] Antonius Weinzierl. Blending lazy-grounding and CDNL search for answer-
set solving. In Proceedings of the 14th International Conference on Logic
Programming and Nonmonotonic Reasoning, LPNMR 2017, volume 10377 of
Lecture Notes in Computer Science, pages 191–204. Springer, 2017.

[WTF20] Antonius Weinzierl, Richard Taupe, and Gerhard Friedrich. Advancing lazy-
grounding ASP solving techniques - restarts, phase saving, heuristics, and
more. Theory and Practice of Logic Programming, 20(5):609–624, 2020.

75


	Kurzfassung
	Abstract
	Contents
	Introduction
	Preliminaries
	Logical Basics
	ASP Syntax and Semantics
	Fundamentals of Alpha

	Reboots in Lazy-Grounding
	Reboots
	The Computation Tree
	Soundness
	Completeness
	Reboot Strategies
	Termination

	Practical Evaluation
	Implementation
	Experiments

	Related Work
	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

