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1 Abstract

This work employs Machine Learning (ML) tools to generate phonon spectra
from ab initio Molecular Dynamics (MD) simulations. For this end, an ML
algorithm is trained using two-body and Smooth Overlap of Atomic positions
(SOAP) descriptors on the MD trajectory of 54 carbon atoms in a solid cubic
diamond structure calculated employing Density Functional Theory (DFT)
in a canonical ensemble, with energies and forces as targets.

The accuracy of the ML force field is studied using the following two ap-
proaches. Firstly, MD simulations using ML methods starting from the same
geometry as the original DFT trajectory are computed and compared to the
original runs, together with simulations where the ML algorithm was trained
with smaller DFT datasets to inspect robustness against data reduction.

Secondly, the trained ML algorithm is also used to calculate forces for
new systems, specifically finite displacements from equilibrium to compute
the second derivatives of the energy surface from which phonon spectra can
be generated. 250 datapoints were sufficient to obtain accurate phonon dis-
persions.

2



2 Kurzfassung

Diese Arbeit verwendet Machine Learning (ML) Werkzeuge um aus ab initio-
Molekulardynamiksimulationen Phononenspektren zu generieren. Zu diesem
Zweck wird ein ML-Algorithmus mithilfe von Zweikörper- und SOAP- (Smooth
Overlap of Atomic Positions) Deskriptoren auf einer MD-Trajektorie von 54
Kohlenstoffatomen in einem kubisch flächenzentrierten Kristallgitter, die mit
Dichtefunktionaltheorie (DFT) im kanonischen Ensemble berechnet wurde,
trainiert, mit den Energien und Kräften als "targets".

Die Genauigkeit des ML Kraftfeldes wird mittels zweier Ansätze überprüft.
Einerseits werden ML-basierte MD Simulationen gleicher Ausgangsgeome-
trie wie die der DFT Trajektorien berechnet und mit der DFT Simula-
tion verglichen. Dabei werden auch ML Algorithmen mit kleiner werdenden
Trainingssets mitverglichen, um die ML Methoden auf Robustheit gegenüber
Datensetreduktion zu untersuchen.

Im zweiten Ansatz wird der bereits trainierte und optimierte ML Algorith-
mus benutzt um die Kräfte für neue Systeme mit endlichen Verschiebungen
gegenüber dem Gleichgewicht zu berechnen, um aus der zweiten Ableitung
der Potentialenergiefläche Phononenspektren zu generieren. 250 Datenpunkte
reichten als Trainingsset aus, um genaue Phononendispersionen zu erhalten.
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3 Introduction

Ab initio computational materials science aims at the analysis of large sys-
tems, where the scaling of the applied method to ever larger numbers of
atoms or particles is of great relevance. The computational cost of Density
Functional Theory (DFT) calculations using approximate exchange and cor-
relation energy functionals, for example DFT-PBE, scales withO(N3), where
N is the number of atoms, limiting the method to about a few thousand
atoms even on modern supercomputers. [1] Moreover, the computational
cost involved also severely limits the time scale accessible in MD simulations
at the DFT level.

However, systems beyond this size and complexity are of great interest,
for example diffusion processes of defects in solids, which are crucial to un-
derstanding material properties. Machine Learning (ML) methods strive to
be more computational cost effective by training surrogate models on al-
ready produced data. In the methods applied in this work, expensively pro-
duced DFT-PBE data created with the Vienna Ab Initio Simulation Package
(VASP) is used to train an ML model. This can then be used to run sub-
sequent MD simulations for different atomic displacements as demanded by
phonopy [2] so it can then compute the corresponding phonon dispersion.
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4 Theory

The Hamiltonian for an arbitrary system of electrons can be written as fol-
lows:

Ĥ = T̂ + Ûee + V̂ext (1)

The first term describes the kinetic energy, the second term describes the
Coulomb interaction between the electrons, and the third term represents an
arbitrary external potential. Writing out the known terms

Ĥ =
N∑
i=1

- h2

2me

Δ2
i +

1

8πε0

∑
i /=j

e2

│ri - rj│ + V̂ext (2)

where N is the number of electrons, h is Planck,s constant, me is the
electron mass, ε0 the electric constant, e the electron charge, and r the
electron positions, one can see that the first two terms depend only on the
number of electrons, while V̂ext is different for each investigated system.

Examining only the known terms T̂ and Ûee, it is clear that the interaction
term provides much difficulty for solving the equation as it makes any system
with more than one electron non-separable. To deal with this, we turn to
the Hartree-Fock method.

4.1 The Hartree-Fock Method

The Hartree product

ψH(r1, r2, ..., rN) = φ1(r1)φ2(r2)...φN(rN) (3)

where ψ represents the full wave function and φi the separated single-
electron wave functions, is a very basic approximation that presumes no
interaction between electrons. In this way, it ignores fundamental properties
of electrons:

• Anti-symmetry - the wave function ψ should change sign upon an elec-
tron switching positions with another:

ψ(xi,xj) = -ψ(xj,xi) (4)
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Here xi is a compound index {ri, σi}, where ri is a spatial coordinate
and σi is the spin coordinate. For brevity we will assume a symmet-
ric wave function with regards to the spin coordinate and focus the
following discussion on the spatial coordinate only.

However, for the Hartree product this is not necessarily the case:

φi(ri)φj(rj) /= -φi(rj)φj(ri) (5)

• Pauli exclusion principle - two electrons may not have the same state
in the same orbital:

ψ(ri, ri) = 0 (6)

• Coulomb repulsion - as negatively charged particles, electrons repulse
each other as described by the interaction term in the Hamiltonian (2):

Ûee =
1

8πε0

∑
i /=j

e2

│ri - rj│ (7)

The first and second point, present due to the Fermionic nature of elec-
trons, can be solved by introducing the Slater-Determinant:

ψSD(r1, r2, ..., rN) =
1√
N !

│││││││││
φ1(r1) φ1(r2) . . . φ1(rN)
φ2(r1) φ2(r2) . . . φ2(rN)

...
...

. . .
...

φN(r1) φN(r2) . . . φN(rN)

│││││││││ (8)

As is the nature of determinants, all expressions with switched positions
have opposite signs, and there are no terms where two electrons share the
same state and orbital.

The last point - the Coulomb repulsion Ûee - can partly be accounted for
in the mean-field approximation. Instead of considering all Coulomb terms
for all electron pairs individually, the electrons are imagined to interact with
a mean field of all electrons, which can be written as such:

V̂H =
e2

4πε0

∑
j

∫
d3r,

│φj(r
,)│2

│r - r,│ (9)
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which has to be applied to all single particle states φi(r).V̂H is also called
the Hartree potential.

4.2 Observables

The central aspect to any theory or approximation in quantum mechanics
is how it affects observables, the parts of the system that can feasibly be
evaluated. Starting from the Schrödinger equation

Ĥ │ψ> = E │ψ> (10)

the observable of the system energy E can be found with

E = <ψ│ Ĥ │ψ> (11)

To find the ground state energy of the system, the variational principle
can be applied

E0 = min <ψ│ Ĥ │ψ> (12)

In the above equation minimization is performed over the single-particle
states φi, yielding the orbitals used to construct ψSD.

Moving back to our previous considerations and the Hartree-Fock method,
one can write

E0 = min <ψSD│ T̂ + Ûee + V̂ext │ψSD> (13)

where the interaction contribution <ψSD│ Ûee │ψSD> can be split into a
Coulomb repulsion term (similar to the mean field approximation seen in
(9))

Jij =
e2

4πε0

∫
d3r

∫
d3r,

│φj(r
,)│2│φi(r)│2
│r - r,│ (14)

and an exchange term representing the electrons, Fermionic anti-symmetry

Kij =
e2

4πε0

∫
d3r

∫
d3r,

φ*
j(r

,)φ*
i (r)φj(r)φi(r

,)

│r - r,│ (15)

Together with the kinetic and external potential terms, one can write the
system energy as
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E = <ψSD│ T̂ + V̂ext │ψSD>+
∑
i>j

(Jij -Kij)

= T + Eext + EH + EHF
X, ,, ,

<ψSD│Ûee│ψSD>=Eee

(16)

by summing over all electron pair combinations i, j.

4.3 Density Functional Theory

The basic principle of Density Functional Theory (DFT) revolves around
modelling systems not as many-body problems with many-body solutions
for the inquired wave function, but instead taking advantage of the fact that
wave functions can be written as functionals of the electron density n(r):

ψ(r1, r2, r3, ..., rN) → ψ[n(r)] (17)

whereby N is the number of electrons in the system.

For normalized ψ, n(r) is defined as

n(r) = N

∫
d3r2...

∫
d3rNψ

*(r, r2, r3, ..., rN)ψ(r, r2, r3, ..., rN) (18)

The core of Density Functional Theory (DFT) is that the electron density
n(r) is sufficient to determine the expectation values of all observables Ô of
a system in the ground state: <ψ[n]│ Ô │ψ[n]>. With this in mind, DFT
attempts to make complex many-particle problems solvable.

4.3.1 The Kohn-Sham Scheme

To determine the ground state energy in the DFT framework, the first
Hohenberg-Kohn Theorem [3] proves practical:

Hohenberg-Kohn 1. For any systel of interacting partickes in an externak
potentiak V̂ext(r), the potentiak is deterlined uniqueky, except for a constant,
by the ground state particke density n0(r).
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Aside from electron number N , the system is defined by V̂ext, which in
turn is uniquely defined by n0(r).

To get to the ground state energy as searched for in (13), the second
Hohenberg-Kohn Theorem can be employed:

Hohenberg-Kohn 2. A universak functionak for the energy F [n] = <ψ│ T̂ +
Ûee │ψ> in terls of the density can be defined, vakid for any V̂ext. A variationak
principke exists such that the gkobak linilul vakue of this functionak is the
exact ground state energy:

E0 ≤ <ψ[n]│ Ĥ │ψ[n]> = F [n] +

∫
d3rn(r)V̂ext = E[n] (19)

The density that linilizes this functionak is n0(r).

The second Hohenberg-Kohn theorem implies that the ground state en-
ergy E0 (and density n0(r)) can be found by systematic variation.

At this stage, the remaining trouble is the definition of E[n]. For this
purpose, the Kohn-Sham scheme can be implemented, which asserts that for
any interacting system there exists a single particle potential V̂KS so that
this auxiliary system is solved by the same n0(r) as the original one. [4] To
this end, the interaction term Ûee and the external potential V̂ext are replaced
by a single particle Kohn-Sham potential V̂KS

V̂KS = V̂ext + V̂H + V̂XC (20)

with the appropriate functionals

E[n] = F [n] + Eext[n]

= TKS[n] + EH [n] + EXC [n] + Eext[n]
(21)

This is similar to the considerations with the Hartree-Fock method. As
such, EH [n] can be written out as

EH [n] =
1

2

e2

4πε0

∫ ∫
d3rd3r,

n(r)n(r,)
│r - r,│ (22)

However, despite similar purpose, the exchange-correlation functional
EXC [n] differs from the structure listed in (15) and (16); Kij does not depend
on n(r). Additionally, the transformation from the interacting system to the
non-interacting one changed the kinetic component T to TKS, yielding

9



EXC [n] = T [n]- TKS[n] + Eee[n]- EH [n] (23)

for the exchange correlation functional EXC [n].
V̂XC and the corresponding EXC [n] are both unknown; there are several

options of choice for this exchange correlation term. This work uses the
Perdew-Burke-Ernzerhof (PBE) functional (see also Section 4.3.2).

The final system of equations that need solving are structured as follows:

[
- h2

2me

Δ2
i +

e2

4πε0

∑
i /=j

∫
d3r,

│φj(r
,)│2

│r - r,│ + V̂XC + V̂ext,i

]
φi(r) = Eiφi(r)

(24)
with

V̂XC =
δEXC [n]

δn(r)
(25)

4.3.2 Exchange Correlation Functionals

The methods devised by Hohenberg, Kohn, and Sham reduce the biggest dif-
ficulty in solving complex systems to finding the exchange correlation density
functional for all systems; were the exchange correlation functional exact, it
would also yield exact solutions.

As it stands, none of the currently used functionals are exact, and different
ones yield differently accurate results depending on the system they are used
on. One way of evaluating the different functionals is by comparing exchange
correlation holes.

Exchange Correlation Holes. The exchange correlation hole represents
a region around an electron where the likelihood of finding a second electron
approaches zero due to exchange (antisymmetry) and correlation (Coulomb
repulsion) effects.

The pair density or likelihood, of an electron at point r1 and another
electron at point r2, irrespective of all other N - 2 electrons, positions, can
be written as

ρ(r1, r2) = N(N - 1)

∫
d3r3. . .

∫
d3rN │ψ(r1r2...rN)│2 (26)

10



From this one can construct the conditional probability that an electron
is at position r2 if a different electron is at position r1:

Ω(r1, r2) =
ρ(r1, r2)

n(r1)
(27)

The difference between Ω(r1, r2) and the uncorrelated n(r2) is the ex-
change correlation hole:

hXC(r1, r2) = Ω(r1, r2)- n(r2) (28)

Since n(r2) integrates toN and Ω(r1, r2) integrates toN-1, the exchange
correlation hole integrates to∫

d3r2hXC(r1, r2) = -1 (29)

We note that the Hartree-Fock method satisfies (29).
It is also of note that hXC can be split into an exchange part hX represent-

ing the electrons, Fermionic nature, and a correlation part hC representing
the Coulomb repulsion, that can be summed together directly to make hXC

hXC = hC + hX (30)

hX(r1, r2) is non-positive at all points and integrates to -1, representing
the single negative charge, while hC(r1, r2) can be positive or negative and
integrates to 0.

The most fundamental exchange correlation density functional is the Lo-
cal Density Approximation (LDA). It assumes that the system can be ap-
proximated at any point by a homogenous electron gas of the density the
real system has at this particular point; additionally, it also assumes that
the functional EXC [n] depends only on the electron density n itself, not its
derivatives. In this case, EXC [n] can be written as

ELDA
XC [n(r)] =

∫
d3rn(r)εXC [n(r)] (31)

where εXC [n(r)] represents the exchange correlation energy of singular
electrons in the homogenous electron gas. LDA also satisfies equation (29),
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making it useful despite the gross approximation of homogenous electron
density.

The Generalized Gradient Approximation (GGA) provides a more ad-
vanced exchange correlation functional. Here, the first derivatives (gradi-
ents) Δn(r) are included in the functional, representing the locally different,
non-constant environments:

EGGA
XC [n(r)] =

∫
d3rn(r)εXC [n(r),Δn(r)] (32)

Unfortunately, GGA does not satisfy (29); this can be brute-forced away
by for example setting all the positive entries of hGGA

X to zero, and truncating
the functional to ensure (29) is upheld. [5]

The exchange correlation functional used in this work, PBE, is a GGA
functional.

4.3.3 Bloch,s Theorem and the Plane-Wave Basis Sets

Bloch,s theorem states that the solution for the Schrödinger equation in a
periodic lattice can be written as a plane wave modulated by a periodic
function:

ψn,k(r) = exp-ikr un,k(r) (33)

where un,k(r) represents the periodic function. To solve the system of
equations set up in the previous sections, the periodic functions un need to
be expanded in a basis set ϕα with weights cn,α

un =
∑
α

cn,αϕα (34)

While there are different options for this, this work focuses on the plane-
wave ansatz. For this purpose, the system is represented by an arrangement
of periodic unit cells, with basis vectors [a1,a2,a3] and reciprocal basis vec-
tors [b1, b2, b3]. The plane waves are structured as such

ϕα(r) =
1√
V

expiGα.r (35)

where V is the volume of the chosen unit cell and Gα is the wave vector.
Gα is a superposition of the reciprocal lattice defined by the unit cell

12



Gα = aαb1 + bαb2 + cαb3 (36)

Only Gα that satisfy the periodic boundary conditions are included for
the basis set. Additionally, only the plane waves up to an energetic cutoff
point are considered:

1

2
G2 ≤ Ecut (37)

4.4 Phonon Dispersion

4.4.1 The Monoatomic Chain

To understand the genesis of phonon spectra, it is instructive to first examine
a simple, one-dimensional monoatomic chain with N atoms, inter-particle
distance a and particle mass m. The displacement of the nth atom from its
resting position na can be given as

un(t) = na- xn(t) (38)

For small displacements, the force acting on the atoms can be approxi-
mated by a harmonic oscillator

H =
N∑

n=1

p2n
2m

+
λ

2

N∑
n=1

(un - un-1)
2 (39)

with pn = m .u and λ as the spring constant. This leads to the classical
equation of motion:

mün = -λ(2un - un-1 - un+1) (40)

which leads to the solution

un = A exp-iωt+ikna (41)

Where A represents the amplitude. Defining the open parameters requires
boundary conditions; just like in 4.3.3, the choice falls on periodic boundary
conditions

un+N = un (42)
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so that valid k fulfill the condition

k =
2π

Na
m (43)

where m is a natural number.
To get to the phonon spectrum, one now looks to the dispersion relation

between ω and k, which can be found by simple insertion in (40)

-mω2
/////////
A exp-iωt expikna = -λ(2/////////

A exp-iωt expikna

-/////////
A exp-iωt expikna exp+ika

-/////////
A exp-iωt expikna exp-ika

ω2 =
2λ

m
(1- cos ka)

(44)

→ ω = 2

√
λ

m

│││sin(ka

2

)│││ (45)

This very simple phonon spectrum is plotted in Figure 1.

4.4.2 The Diatomic Chain

The diamond structure examined in this work only contains one type of atom,
carbon. Therefore, instead of examining the diatomic chain of two atom types
with distinct masses, a pseudo-monoatomic chain with alternating forces λ1

and λ2 shall serve to illuminate the concept of the optical modes.
The equations of motion for the pseudo-diatomic chain with masses m

and force constants λ1 and λ2 and resting length a can be written as follows

mün = -λ1(vn - un)- λ2(un - vn-1)

mv̈n = -λ1(vn - un)- λ2(vn - un+1)
(46)

From this, one obtains solutions

un(t) = A1 exp
-iωt+ikna

vn(t) = A2 exp
-iωt+ikna

(47)
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Figure 1: Phonon spectrum of a one.dimensional monoatomic chain within the first Bril.
louin zone.

where A1 and A2 describe both amplitude and phase. Insertion into (46)
leads to

(mω2 - λ1 + λ2)A1 + (λ1 - λ2 exp
ika)A2 = 0

(-λ1 - λ2 exp
-ika)A1 + (mω2 + λ1 + λ2)A2 = 0

(48)

Solving this linear system of equations gives the dispersion relation:

ω2 =
λ1 + λ2

m
± 1

m

√
λ2
1 + λ2

2 + 2λ1λ2 cos(ka) (49)

This dispersion relation contains two branches; an acoustic branch (+)
similar to the monoatomic chain, where atoms move in phase, and an optical
branch (-) where atoms move out of phase, creating optically active dipoles.
The two branches can be seen in Figure 2.
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Figure 2: Phonon spectrum of a one.dimensional diatomic chain (different force constants
λ, not masses) within the first Brillouin zone. Optical branch in orange and acoustic
branch in blue.

4.4.3 Three-Dimensional Crystals

The basic concepts from the atomic chains can also be applied to three-
dimensional crystals. The harmonic Hamiltonian can then be written as

H =
N∑

n=0

p2n
2m

+
1

2

N∑
K=1

N∑
K,=1

3∑
ξ=1

3∑
η=1

Φξη
KK,u

ξ
Ku

η
K, (50)

where K and K , refer to the investigated lattice point, and ξ and η to
the cartesian coordinates. Φ replaces λ from before as the force constant;
the forces between atoms are potentially different in all directions.

The equations of motions are then

müξ
K = -

N∑
K,

3∑
η

Φξη
KK,u

η
K, (51)

with solutions
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uK = A(k, w) exp-iωt+ik.aK (52)

Vectors are now denoted using bold fonts instead of the upper index for
better readability. na from the one-dimensional solutions (41) and (47) has
been replaced with the lattice vector aK .

For a three-dimensional system with N atoms in the unit cell, there are
a total of 3N modes, 3 of them acoustic and the remaining 3N - 3 optical.
The acoustic modes consist always of two transversal and one longitudinal
mode; transversal if the displacement of the atoms is perpendicular to the
propagation of the wave, and longitudinal if displacement and propagation
travel in the same direction.

Putting this to practice for the primitive fcc diamond structure investi-
gated in this work, one should expect up to three acoustic branches and up
to three optical branches, degenerate along high symmetry directions.

4.5 Machine Learning

This section consists mostly of summaries and adaptations of the excellent
and comprehensive guide in Reference [1] and was written this way in Ref.
[6].

4.5.1 Representation and Machine Learning

When using ML methods, a model is trained on value pairs of descriptors
and target values; in this case, the descriptors are the atomic positions, and
the target values the atomic energies and forces. Once the ML model has
been trained, it can be used to predict new target values (forces and energies)
based on new descriptors (positions). [7] With these forces and energies, one
can make new MD simulations at a fraction of the computational cost of the
original DFT calculations.

Descriptors. The most intuitive way to describe atomic positions is to
simply use the cartesian coordinates of each present particle. But other
representations are often more convenient, since they can be built to share
certain properties with the observed system, like rotational or translational
symmetry and permutational symmetry between atoms of the same species.
[1]
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This work uses two-body and Smooth Overlap of Atomic Positions (SOAP)
descriptors. Two-body descriptors classically refer to the distances between
all pairs of present particles

x = │r - r,│ (53)

up to a certain cutoff point; x is the descriptor in question, and r and r,

are the positions of two particles of the system. [1]
The SOAP descriptor bases itself on the spherical harmonic expansion of

atomic coordinates. [8] This neighborhood density ρ can be written as

ρ(r) =
∑
n,l,m

cnlmgn(r)Ylm(r) (54)

where r is the position, c are the expansion coefficients, and g and Y are
the radial and angular spherical harmonics basis functions, respectively. A
visual explanation of the SOAP descriptor can be seen in Figure 3.

Figure 3: Visualization of the SOAP descriptor. Taken from Ref. [8].

For a more comprehensive explanation of the SOAP descriptor, please see
Ref. [9].

4.5.2 Gaussian Process Regression

When trying to infer new values from existing data, there are generally two
approaches: parametric fitting when there is a plausible model, and interpo-
lation or regression based purely on data when this is not the case. [1]
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Gaussian Process Regression (GPR) falls into the latter category, but
unlike more common techniques, it is non-linear and can be used for high-
dimensional problems like atomic environments. Inherently, GPR has no
preconceived analytical notion about what physical processes may underly
the investigated system, relying instead only on the fed training data. [1]

GPR can be understood from a weight-space and a function-space per-
spective. In the following, the weight space view is described.

Deriving GPR in Weight-Space View. In both weight- and function-
space view, the idea is to approximate an unknown function, y(x), with a
linear combination ~y(x) of weights cm and similarity functions k(x,xm):

y(x) ~ ~y(x) =
M∑

m=1

cmk(x,xm) (55)

The x here represent the input space where the data lives; the xm are
a subset of the input space, the so-called sparse set: Representative points
within the input space deemed sufficient to solve the problem (see also Section
4.5.2).

The similarity function k(x,xm), also called kernel function, determines
the similarity between two points x and xm. There are several options to
define the kernel; Ref. [1] cites the Gaussian

k(x,xm) = exp

(
-│x- xm│2

2σ2

)
(56)

and the linear

k(x,xm) = x . xm (57)

kernels as standards, and both are applied in this work.

Here, σ (not to be confused with σn, which appears in equation (58)
onwards) represents the hyperparameter. One can imagine k as the "overlap"
between two Gaussian curves centered around x and xm. Then, σ as the
standard deviation of the Gaussian curves plays an obvious and important
role: when chosen too small, there will be overfitting, as two points x and xm

will only have notable levels of overlap if they are right next to each other,
and when chosen too large, the fit will become inaccurate since even very
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far apart - and therefore presumably unrelated - x and xm will have large
overlap.

In general, kernel choice is arbitrary, but nonetheless highly relevant to
the effectiveness of the model. [1]

To fit the GPR model to the data, the weights or coefficients cm are
chosen according to which minimize the loss function L

L =
N∑

n=1

[yn - ~y(xn)]
2

σ2
n

+
M∑

m,m,
cmk(xm,xm,)cm, (58)

where N is the number of data points and M is the number of represen-
tative (sparse) points; this will be relevant for sparse GPR in Section 4.5.2.
Note that the cm also appear within the structure of ~y(xn) in equation (55).
The second sum is the regularization term, in this case the Tikhonov regular-
ization in particular; it is necessary to prevent overfitting from just the first
term alone. σn appears here as a parameter that defines how strongly each
available data point yn and its difference to the approximated value ~y(xn)
are weighed in the fit.

We can rewrite this loss function in index form to more easily isolate the
cm

L = (yn - knmcm)
Tσ-1

nn,(yn, - kn,m,cm,) + cTmkmm,cm, (59)

where σ-1
nn, is a diagonal matrix of the inverse of all the values of σn from

before. Indices differentiated only by an apostrophe imply the same number
of entries: N for n and n, and M for m and m,.

Deriving the loss function by the transposed weights cTm gives

ΔcTm
L = -kmnσ

-1
nn,yn, + kmnσ

-1
nn,kn,m,cm, + kmm,cm, (60)

Note that the kmn were transposed in one step.
To minimize the loss function, we let the derivative be equal to zero

0 = -kmnσ
-1
nn,yn, + kmnσ

-1
nn,kn,m,cm, + kmm,cm, (61)

→ cm, = (kmnσ
-1
nn,kn,m, + kmm,)-1kmnσ

-1
nn,yn, (62)

Now our cm are defined only by our data yn, our kernel values k(xn,xm)
and our parameters σn.
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Sparse GPR. Using straightforward linear algebra to solve equation (62)
still scales with O(N3) in terms of computational cost. [1] To avoid this,
sparse GPR can be employed.

In full GPR, the indices m and n in (62) have the same number of entries,
so M = N , reducing the equation to

cn = (knn, + σnn,)-1yn, (63)

A visualization of GPR using (62) and (63) can be seen in Figure 4. In
full GPR, the number of coefficients cm necessary to predict a new location
~y is N , the number of data points. In sparse GPR, this reduces to M , the
number of representative points, which is by in large independent of N .

Figure 4: Visualization of full and sparse GPR in the matrix view. N and M are the
number of entries each for n and m as used in this work. (a) Representation of full GPR
with M = N . (b) Representation of sparse GPR with M < N . Taken from [1].
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5 Results

5.1 Computational Workflow

A schematic depiction of how this project was handled can be found in Figure
5.

First, a calculation of a 54 atom cubic diamond structure was created
using DFT with a PBE exchange correlation functional. This was used to
train the gap-fit [10] ML model (optimized parameters used here can be
found in Section 7). gap-fit outputs GAP.xml and associated files; these are
used by turbogap [11] to run MD simulations that can be seen in Section
5.3.

Once the parameters are optimized, phonopy [2] is used to create a
Supercell (see Section 4.4); this produces the file phonopy-disp.yaml and
several POSCAR files to represent the examined displacements in the su-
percell (this is the Phonopy pre-process in Figure 5; the POSCAR files are
the Displacements). These are then transformed into .xyz files to be used
as starting points for turbogap, calculating the Force constants (see again
Section 4.4) from Figure 5.

Depending on the displacements demanded by phonopy, there will then
be one or more single-step MD simulations in .xyz format. To move on to
Phonopy post-process, they have to be transformed into appropriate .xml
files for phonopy to parse.

Once this is done, phonopy can create FORCE-SETS, which it can use in
combination with a band.conf file describing the band path it should take
to plot the desired phonon dispersion.

5.2 Creating an MD Trajectory with DFT

The results in this work are based on an initial MD simulation calculated
using DFT methods with a PBE exchange correlation term. For this purpose,
a geometry of 54 carbon atoms in a cubic diamond structure was fed into
VASP to solve the Newtonian equations of motion for 1000 1-picosecond (ps)
time steps. The main output file, vasprun.xml, containing all points of the
MD trajectory (fed into descriptors) and forces (targets), was used to train
the ML model.
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Figure 5: The phonopy workflow. This work starts at Unit cell and Supercell size, going
through Phonopy pre.process to Displacements and Supercell. ML methods are applied
to calculate Force constants. These are fed into Phonopy post.process to obtain Band
structure. Taken from [12].
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5.3 Training an ML Kernel

In order to expedite the process of getting to the Force constants as de-
manded by phonopy (see again, Figure 5), an ML kernel is trained on the
data obtained in Section 5.2 using gap-fit. Descriptors used for training
(see also 4.5.1) were a two-body descriptor using a Gaussian kernel (56) and
a SOAP descriptor using a linear kernel (57). Exact values optimized for this
data can be found in Section 7.

The results of this training are found in Figures 6, 7a and 7b. The
simulations were conducted thrice, once using the full dataset to train the
model, once using every second step (half set), and once using every fourth
(quarter set) to see how dataset reduction would affect the fit. For each of
them, only the first 500 of the 1000 simulated 1-ps steps are shown for better
clarity.

Figure 6: Comparison of different dataset MD runs with the original DFT simulation (blue
line). Comparison included the full dataset (red line), half the original (magenta line),
and quarter of the original set (pink line).
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(a) Energies (b) Norms of forces

Figure 7: Correlation plot comparing results from DFT versus GPR calculations for en.
ergies (a) and norm of forces (b) using the full set (red x), half the set (magenta x), and
a quarter of the set (pink x).

Figure 6 shows the time evolution of the system energy for runs trained
on different datasets, with the original DFT run in blue for comparison. At
first, the runs are all almost identical, but they begin to diverge at around
200 steps.

Figure 7a and 7b show the correlation between the energy- and norm-of-
force values generated by the DFT and GPR simulations, once again only for
the first 500 steps. The root mean square errors for the energies and forces
can be found in Table 1. Note that the errors in the energies are for the total
system containing 54 atoms.

Energies [eV] Forces [eV/°A]
Full set 0.16± 0.1 0.029± 0.001
Half set 0.19± 0.05 0.029± 0.002
Quarter set 0.24± 0.1 0.037± 0.003

Table 1: Root mean square errors for energies and forces for each dataset.

It can be seen that the simulation proved robust against reductions of
the dataset. Since we aim at accuracies on the scale of several meV/atom

25



in the energies, we find that also using only the half dataset suffices. In
general, reproducibility of the original system as calculated by DFT-PBE
was mostly dependent on the chosen parameters, not least on the average
temperature fed into turbogap. No matter the optimization, the system
would still eventually diverge from the original DFT trajectory at about
200-300 ps.

5.4 Phonon Dispersion

In order to produce phonon spectra for the diamond system, this work makes
use of the Python tool phonopy [2]. phonopy employs a supercell approach
to calculate phonon spectra from a set of pre-calculated forces, see Figure 8.

Figure 8: Visual representation of the supercell approach. First, the view is expanded from
a unit cell to a supercell containing many unit cells, then, one or more atoms are displaced
from their resting position in the lattice. Force constants Φ on the remaining atoms can
then be calculated (in this work via Gaussian Process Regression (GPR)). Image taken
from Ref. [13].

The force constants Φ, generated as seen in Figure 8, are used in the
harmonic expansion of the potential energy

V ≈ Φ0 +
N∑

K=1

3∑
ξ=1

Φξ
Ku

ξ
K +

1

2

N∑
K=1

N∑
K,=1

3∑
ξ=1

3∑
η=1

Φξη
KK,u

ξ
Ku

η
K, +O(u3) (64)
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where the u refer to the displacements, K and K , refer to the investigated
lattice site, and ξ and η to the cartesian component. The linear term van-
ishes at equilibrium. Solving this harmonic oscillator provides the dispersion
relation for the phonon spectrum.

This work examined an fcc diamond, with two carbon atoms (oriented in
the < 111 > direction) as its base. In the first Brillouin zone, this results in
three acoustic modes (one longitudinal and two transversal), and 3 .2-3 = 3
optical modes. That should be the maximum amount seen in the results.

Four different supercell sizes (see Figure 8) were chosen; the supercell of
dimension 1 (Figure 10) proved too small to accommodate all modes, showing
only one acoustic and one optical mode regardless of path. At a supercell of
dimension 4 (Figure 13) the values had converged. Phonon spectra for each
dimension can be found in Figure 10, 11, 12 and 13, each with comparisons of
the different datasets used. Figure 9 shows a comparison plot for a spectrum
of the same system calculated with DFT-PBE (blue line), the method on
which gap-fit was trained.

Figure 9: Phonon dispersion for cubic diamond as calculated by DFT.PBE (blue line),
DFT.HSE (yellow line) and experimental values (black dots). Taken from [14].

Both in the ML and DFT calculations of the spectra, the transversal
acoustic modes were degenerate along the Γ → X and the Γ → L paths, as
well as one of the optical modes. Along the lower symmetry paths X → K
and K → Γ, the degeneracy is undone, showing the full set of six modes at
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Figure 10: Phonon dispersion for cubic diamond as calculated using ML methods for a
supercell with dimensions 1 1 1. Calculations were done for the full dataset (red line), half
set (yellow dashed line), and the quarter set (green dotted line). This supercell proved too
small to accommodate all relevant modes.

Figure 11: Phonon dispersion for cubic diamond as calculated using ML methods for a
supercell with dimensions 2 2 2. Calculations were done for the full dataset (red line), half
set (yellow dashed line), and the quarter set (green dotted line).
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Figure 12: Phonon dispersion for cubic diamond as calculated using ML methods for a
supercell with dimensions 3 3 3. Calculations were done for the full dataset (red line), half
set (yellow dashed line), and the quarter set (green dotted line).

Figure 13: Phonon dispersion for cubic diamond as calculated using ML methods for a
supercell with dimensions 4 4 4. Calculations were done for the full dataset (red line), half
set (yellow dashed line), and the quarter set (green dotted line).
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the K-point in both the DFT-PBE and the ML calculations.
None of the sets diverged strongly from each other; the largest divergence

from the path can be seen in the half set (yellow dashed line) in the supercell
of dimension 4 (Figure 13). The maximum frequencies of the optical modes
from the ML methods were slightly higher than those of the DFT-PBE cal-
culation, at about 185 meV compared to 170 meV for DFT-PBE.
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6 Conclusion

Using ML methods to generate MD simulations and phonon spectra proved
incredibly time efficient compared to conventional methods like DFT at sim-
ilarly accurate results. One simulation for the full dataset including training
took around 50 seconds (30 seconds training gap-fit + 20 seconds simula-
tion with turbogap) compared to approximately 2100 seconds for the DFT
run. Only fractions of seconds were added for the generation of force sets for
phonopy once the training was already complete.

Reproduction of the original trajectory was possible up to about 200 ps,
and did not change when the dataset was reduced to half, and only mildly
when it was reduced to quarter the original set; reduction of the datasets also
reduced training time, see Table 2. Simulation via turbogap took approxi-
mately equally long for each set, while training time scaled almost linearly
with the set size of the training data.

The used GPR method also proved to be robust against this dataset
reduction; there were no significant changes to neither the MD simulation
nor the phonon spectra based on the dataset reduction. The most important
factor in determining how well the MD simulation and in turn the use for
phonon spectra would go, were always the parameters and descriptors chosen
during the training process. They can be found in Section 7.

Overall, GPR has proven to be sufficient in terms of data pro- and re-
production of DFT examples at several orders of magnitude less of computa-
tional cost and time of DFT. Training parameter choice remains the central
deciding factor for the success of the method.

Training Simulation (1000 steps)
Full set 33.8 sec 20.87 sec
Half set 18.08 sec 20.78 sec
Quarter set 9.58 sec 20.93 sec

Table 2: Duration of each part of the data creation using ML methods.
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7 Appendix

The parameters for the two-body descriptor were chosen as follows:

distance-2b

cutoff =4.0

covariance-type=ard-se

delta =0.5

theta-uniform =1.0

sparse-method=uniform

add-species=T

n-sparse =20

cutoff describes to which distance apart atom pairs were considered,
covariance-type=ard-se denotes that a Gaussian kernel (56) was used,
theta-uniform is the hyperparamter σ as seen in (56). delta describes
what relative portion is determined by the descriptor. 20 sparse points (see
4.5.2) were chosen at uniform distance from each other.

The parameters for the SOAP descriptor were chosen as:

soap-turbo

rcut-hard =4.0

rcut-soft =3.0

covariance-type=dot-product

delta =0.2

atom-sigma-r ={{0.5}}

atom-sigma-t ={{0.5}}

atom-sigma-r-scaling ={{0.}}

atom-sigma-t-scaling ={{0.}}

l-max =6

alpha-max ={{6}}

amplitude-scaling ={{1.}}

central-weight ={{1.}}

n-species =1

species-Z ={{6}}

add-species=F

n-sparse =20

scaling-mode=polynomial

basis=poly3

radial-enhancement =0

zeta =15

sparse-method=cur-points

rcut-hard and rcut-soft denote to what point neighbors were consid-
ered and with what transition width (see Figure 3, the gray dotted circle),
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covariance-type=dot-propduct denotes that a linear kernel (57) was used.
The various atom-sigma describe the weights the radial (r) and angular (t)
functions were given, as well as their scaling. l-max and alpha-max describe
to which point the spherical harmonic expansion was continued (l and n re-
spectively in (54)). central-weight describes how much weight is given to
the central atom for the SOAP descriptor. zeta describes the power of the
kernel (effectively turning a linear kernel into a polynomial one). The 20
sparse points were determined using CUR decomposition, see [15] for further
reference.

The loss function parameter σn (see equation (58)) for the gap-fit pro-
gram was chosen like so:

default-sigma ={0.0001 0.0003 0.0003 0}

for energies, forces, stresses, and Hessians, respectively.

35


	Abstract
	Kurzfassung
	Introduction
	Theory
	The Hartree-Fock Method
	Observables
	Density Functional Theory
	The Kohn-Sham Scheme
	Exchange Correlation Functionals
	Bloch's Theorem and the Plane-Wave Basis Sets

	Phonon Dispersion
	The Monoatomic Chain
	The Diatomic Chain
	Three-Dimensional Crystals

	Machine Learning
	Representation and Machine Learning
	Gaussian Process Regression


	Results
	Computational Workflow
	Creating an MD Trajectory with DFT
	Training an ML Kernel
	Phonon Dispersion

	Conclusion
	Appendix

