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Abstract 
Atrial fibrillation (AF) is highly prevalent among patients suffering from renal failure and linked to a 
doubled one-year mortality rate in this group. Implementing a reliable algorithm that can detect AF on 
Electrocardiograms (ECGs) recorded during patients’ regular dialysis treatments, would allow for routine 
monitoring, without further increasing patients’ hospital time. Unfortunately, ECGs recorded during 
dialysis are harder to interpret via automated algorithms, because the ECG waveform is altered by fluid 
and electrolyte shifts. Symmetric projection attractor reconstruction (SPAR) is a new method of analyzing 
cardiovascular waveform data, that may be able to overcome these challenges. SPAR uses delay 
coordinates to convert a short time series signal into a so-called attractor, bound in three- or higher-
dimensional phase space. Its rotationally symmetric, two-dimensional projections emphasize different 
aspects of the original signal. This can be used to better understand the underlying waveform.  

This thesis combines SPAR with stacked k-nearest neighbor classifiers to automatically detect AF from a 
single lead ECG. The methodology was first established on ECGs from the open access database PhysioNet 
and then applied to ECGs recorded during dialysis. 30s ECG samples were taken from three different 
PhysioNet databases and extracted from 24h ECGs recorded during a study on end stage renal disease, at 
six different timepoints during and after dialysis. Models were trained on six different training and test 
compositions, each containing an approximately equal number of AF and control records. Controls for the 
dialysis records were matched based on age, gender and dialysis vintage in months. SPAR was used to 
generate 20 attractor projections from every ECG sample. These were quantified by calculating their 
angular density distribution, radial density distribution and attractor outline. By training one k-nearest 
neighbor classifier on each of the density curves, stacked models of 60 classifiers were trained for each 
training set. Test records were classified based on the mean posterior probability predictions of all 
classifiers in the model, that have a cross-validated accuracy of 70% or more based on 10-fold cross 
validation. All algorithms and data processing steps were implemented in MATLAB®.  

The highest performing PhysioNet model achieved classification accuracies of 89.3% and 93.8% on the 
two PhysioNet test sets. The model trained on samples at the beginning, middle and end of dialysis 
classified samples from the start of dialysis test set with and average accuracy of 85.7%. Including both 
PhysioNet and dialysis samples in the training set showed no improvements for the classification of either 
category. The visual comparison of PhysioNet and dialysis three-point attractors and their densities also 
showed that the differences between the two groups exceed the differences between AF and no AF 
records of either group. This confirms that changes in the ECG caused by the dialysis are also visible in the 
ECG attractors.  

These classification accuracies achieved by the models in this thesis compare well to other attempts at 
automated AF detection in the literature. Most of these approaches rely on convolutional neural networks 
or meticulously selected features. Compared to these attempts, the methodology presented in this thesis 
has the advantage of a simpler, less computationally expensive methodology, good stability towards 
outliers and noise and no necessity for feature selection. Its ability to classify very short ECG samples in a 
short time qualify it for real time monitoring applications. Experimenting with even less preprocessing and 
investigating methods of feature selection may be ways to further improve AF detection using SPAR.  
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Kurzfassung  
Vorhofflimmern (VHF) ist eine häufige Nebenerkrankung bei Menschen mit chronischem Nierenversagen, 
die statistisch mit einer Verdopplung der Ein-Jahres-Mortalität einher geht. Routineüberwachung der 
kardialen Gesundheit, mit automatischer Detektion von VHF im Elektrokardiogramm (EKG) wäre ein 
wichtiger Schritt, um eine rechtzeitige Diagnose zu gewährleisten. Um zusätzliche Spitalszeiten zu 
vermeiden, sollten diese Messungen während der Dialyse durchgeführt werden. Diese EKGs sind 
allerdings schwerer auszuwerten, da die dabei auftretenden Elektrolyt- und Flüssigkeitsschwankungen, 
die EKG-Kurve verzerren.  

„Symmetric projection attractor reconstruction“ (SPAR) ist eine neuartige Methode der EKG-Auswertung, 
die diesen Herausforderungen gewachsen sein könnte. Mithilfe von Verzögerungskoordinaten werden 
dabei aus einem kurzen Zeitsignal Attraktoren im drei- oder höherdimensionalen Phasenraum errechnet. 
Die kreissymmetrischen, zweidimensionalen Projektionen dieser Attraktoren heben verschiedene 
Eigenschaften des Ursprungssignals hervor und können so zu einem besseren Verständnis der 
ursprünglichen Wellenform beitragen.  

In dieser Arbeit wird SPAR mit Nächste-Nachbarn-Klassifikation (k-nearest neighbor) kombiniert, um 
automatisch VHF im Einkanal-EKG zu detektieren. Die Methodik wurde dabei zuerst an EKGs aus der frei 
zugänglichen Datenbank PhyioNet getestet und dann auf EKGs während der Dialyse angewandt. Zweitere 
wurden aus 24h EKGs entnommen, welche während einer Studie zu Nierenversagen und Dialyse 
aufgezeichnet wurden. Für die Analyse wurden 30s Ausschnitte zu sechs verschiedenen Zeitpunkten 
extrahiert. Zusammen mit 30s EKGs aus den PhysioNet Datenbanken wurden sechs verschiedene 
Trainings- und Testdatensätze zusammengestellt, wobei auf ein ausgeglichenes Verhältnis zwischen VHF 
und Kontrollgruppendaten geachtet wurde. Die Kontrollgruppe der Dialysedaten wurde dabei nach Alter, 
Geschlecht und Dialysemonaten gematcht. Mittels SPAR wurden aus jedem EKG Sample 20 
rotationssymmetrische Attraktorprojektionen generiert, die anschließend über drei Dichteverteilungen 
quantifiziert wurden. Für jede dieser 60 Kurven wurde dann ein Nächste-Nachbarn-Klassifikator trainiert. 
Diese bilden zusammen ein Modell. Ob ein Test-Sample als VHF oder kein VHF klassifiziert wird, errechnet 
sich als Mittelwert der für das Sample ermittelten Zuordnungswahrscheinlichkeiten aller Klassifikatoren 
im Modell, welche mehr als 70% Klassifizierungsgenauigkeit bei einer fünffachen Kreuzvalidierung 
während des Trainingsprozesses erreichten. Die Implementierung dieser Schritte erfolgte in MATLAB®.  

Das bessere der beiden Modelle, die nur an PhysioNet Daten trainiert wurden, erreichte eine mittlere 
Klassifizierungsgenauigkeit von 89.3% und 93.8% für die beiden PhysioNet Testdatensätze. Das beste 
Klassifikationsergebnis für am Anfang der Dialyse aufgezeichnete EKGs, zeigte ein Modell welches an EKGs 
von Anfang, Mitte und Ende der Dialyse trainiert wurde, mit einer mittleren Klassifikationsgenauigkeit von 
85.7%. Das Kombinieren von PhysioNet und Dialyse Samples in den Trainingsdatensätzen verbesserte für 
keine der beiden Gruppen die Klassifizierung. Ein visueller Vergleich der Attraktorprojektionen und 
Dichtekurven für Beispiele der PhysioNet- und Dialysedaten, zeigte dass die Unterschiede zwischen den 
beiden Gruppen weitaus deutlicher sind als die Unterschiede zwischen VHF und kein VHF innerhalb der 
Dialysedaten. Dies bestätigt, dass die durch die Dialyse hervorgerufenen Veränderungen der EKG-
Wellenform auch in den Attraktoren sichtbar sind.  



6 
 

Die Klassifikationsgenauigkeiten der in dieser Arbeit präsentierten Modelle sind mit den Ergebnissen 
weitaus komplexerer und rechenaufwändigerer Ansätze aus der Literatur, welche großteils auf 
Neuronalen Netzen basieren, vergleichbar. Ein weiterer Vorteil der SPAR Methode ist ihre Stabilität 
gegenüber Ausreißern oder Rauschen im Eingangssignal, wodurch weniger Vorverarbeitung des 
Rohsignals vonnöten ist. Da SPAR auch auf sehr kurze EKG Aufzeichnungen angewandt werden kann, 
eignet sich diese Methode auch für Echtzeitanwendungen. Mögliche weitere Schritte zur Verbesserung 
der hier präsentierten Methodik wären eine weitere Reduktion der Vorverarbeitung und Qualitätsprüfung 
des rohen EKG Signals und eine Vorauswahl der Inputfeatures für die einzelnen Klassifikatoren.   
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Abbreviations and Symbols 
2D Two dimensional 
3D Three dimensional 
AF Atrial Fibrillation 
bpm Beats per minute 
ECG Electrocardiogram 
FN False negative  
FP  False positive  
LA  Left atrium 
LV  Left ventricle  
RA Right atrium  
RV Right ventricle  
SD Standard deviation 
SPAR Symmetric Projection Attractor Reconstruction 
TN True negative 
TP True positive 
WFDB Waveform database 
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1. Introduction 

1.1 Motivation  

According to a 2018 report by the world health organization, an estimated 5 to 10 million annual deaths 
are attributable to kidney disease [1]. Even under regular hemodialysis, patients with renal failure suffer 
from increased cardiovascular morbidity and mortality [2]. Thus, frequent monitoring of dialysis patient’s 
cardiac health is highly important to recognize risk factors and early signs of various cardiac conditions. 
One of the most important tools in cardiac diagnostics and risk stratification is electrocardiography (ECG), 
which uses skin electrodes to measure the heart’s electrical excitation. Because dialysis patients already 
spend a significant amount of time in the hospital for their triweekly dialysis sessions, ECG measurements 
should be performed during these times, to avoid additional hospital time. Unfortunately, ECG data 
collected during the hemodialysis treatment are difficult to interpret, because amplitudes and intervals 
are altered by fluid and electrolyte shifts caused by the dialysis [2]. This is especially detrimental to 
automated ECG analysis algorithms, which traditionally rely on the automatic detection of specific points 
on the ECG and the subsequent calculation of amplitudes and time intervals based on these markers (e.g., 
detection of QRS-complex and T-wave, calculation of the QT-interval) [2]. Symmetric Projection Attractor 
Reconstruction (SPAR) is a novel approach of analyzing cardiovascular waveform data, which may be able 
to overcome these issues, since it does not require the detection of specific points in the ECG signal other 
than the easily identifiable R-peak. Additionally, attractor reconstruction has the advantage of analyzing 
the underlying waveform morphology which is discarded in conventional ECG analyses, even though it 
may hold more in-depth information about the patient’s cardiovascular system [3–5]. 

There is a variety of cardiovascular morbidities that are prevalent in dialysis patients and diagnoseable 
through the ECG. This thesis focusses on atrial fibrillation (AF), the most common clinically significant 
cardiac arrythmia [6]. With a prevalence of approximately 10% [7], AF is a frequent diagnosis in patients 
suffering from renal failure. A 2011 study on the prevalence of AF among hemodialysis patients showed 
that one-year mortality rates were more than double in patients with AF compared with those without it 
[7]. Establishing an algorithm for automatic AF detection in ECGs recorded during dialysis would allow 
early diagnosis of this serious condition, without causing additional hospital time to the patient or 
straining hospital’s limited resources of qualified diagnosticians.  

 

1.2 Aim of the thesis  

The aim of this thesis is to combine the SPAR methodology with machine learning techniques to develop 
an automated AF detection algorithm that is also successful in ECG data collected during hemodialysis. 
For this purpose, data from different sources are combined into six datasets that contain varying 
combinations of ECGs collected at 6 time points during or after a hemodialysis session, as well as short 
recordings from patients without renal failure, with or without AF. Each dataset is split into a training and 
test set with a 30% hold out approach and even distribution of AF characteristics. A MATLAB® algorithm 
is implemented, that automatically calculates and quantifies attractors from each ECG signal, following 
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the SPAR methodology. The resulting attractor parameters are then used as feature inputs to multiple k-
nearest neighbor classifiers that are combined into one model for each of the six training sets. Each model 
is then tested on multiple test sets to evaluate its performance in different applications. The highest 
performing models are compared to other AF detection models documented in the literature to see how 
the methodology performs in comparison to other approaches.  

  

1.3 Thesis outline  

This thesis is divided into 7 chapters, starting with an introduction that includes motivation, aim and thesis 
outline. This is followed by a background section that provides medical and technical information 
concerning the topics of this thesis. Section 3, methods and implementation, notes the workflow behind 
establishing the AF detection models, from data sourcing, sample preparation, feature extraction to 
model training and testing. The following section, statistics and visualization, contains the statistical tests 
and data visualization techniques used to generate the results. These are documented in section 5. The 
6th section, the discussion, interprets, connects and contextualizes the results. The last chapter of this 
thesis, the conclusion, summarizes the most notable observations from the discussion and provides an 
outlook into further improvements and possible applications of the methodology for AF detection 
presented in this thesis.   
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2. Background 
This chapter provides medical background information on the human heart, its anatomy, physiology and 
particularly its electrical excitation. It introduces the ECG as a biosignal, explains what atrial fibrillation 
(AF) is and how it is diagnosed. This section also provides an introduction to symmetric attractor 
reconstruction (SPAR), including an overview on origins and underlying concepts as well as the practical 
methodology necessary to apply SPAR to an ECG signal. The last subsection of this chapter introduces k-
nearest neighbor classification, the classification algorithm that was used to build the AF detection models 
presented in this thesis.    

 

2.1 Physiological Background 

This section provides background information on the heart, the cardiac cycle and the ECG.  If not otherwise 
specified, information presented in this section is based on textbooks of Faller and Schünke [8], Kaniusas 
[9], Betts et.al [10] and Rawshani [11]. 

 

2.1.1 Heart anatomy and blood flow  

The human heart is a muscular hollow organ that uses rhythmic contractions to pump blood through the 
circulatory system. Located medially between the lungs in the thoracic cavity, a space also referred to as 
the mediastinum, it is surrounded by the pericardium, a fibroelastic sac, that separates the heart from 
other mediastinal structures. The great veins, superior and inferior vena cava, the pulmonary vein, and 
the great arteries, aorta and pulmonary artery, enter the heart at its superior surface, called the base, see 
figure 1. Through these vessels, blood enters and exits the heart. The cardiac septum separates the heart 
into its left and right side. Each side has one atrium that acts as a receiving chamber, and one ventricle, 
that propels the blood into the respective artery. Unidirectional flow in and around the heart is ensured 
by one-way valves opening and closing in response to pressure differences. The first set of valves, tricuspid 
and mitral valve, are located between the atrium and ventricle of each side and prevent backflow into the 
respective atrium as the ventricle contracts. The second set of valves, the semilunar valves, are located at 
the entrance of the pulmonary artery and aorta and prevent backflow while the ventricle refills.  
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Figure 1 – Heart anatomy and blood flow. Blue color indicates deoxygenated blood, red oxygenated blood, 
arrows represent the directions of blood flow between the 4 ventricles, right atrium (RA), right ventricle 
(RV), left atrium (LA) and left ventricle (LV) and the two major arteries pulmonary artery (PA) and aorta 
(AO).  [12] 

 

Functionally, the heart acts as a double pump, supplying both the systemic and pulmonary loop of the 
circulatory system. Deoxygenated blood enters the heart at the right atrium through superior and inferior 
vena cava (see figure 1). Contraction of the atrium pushes the blood into the right ventricle, from where 
it is ejected into the pulmonary artery. The pulmonary artery transports the deoxygenated blood to the 
lungs, for gas exchange. Oxygenated blood from the lungs is transported back to the left atrium through 
the pulmonary vein. Contraction of the left atrium pushes the blood into the left ventricle, from where it 
is ejected into the systemic circuit through the aorta. From there, large vessels branch off towards all 
areas of the human body, splitting into ever-smaller vessels. The smallest arteries branch off into tiny, 
thin-walled capillaries. These allow oxygen and nutrients to diffuse into the surrounding tissue, while 
carbon dioxide and other metabolic waste products are removed from the tissue. Vessels carrying this 
now deoxygenated blood combine to larger and larger veins, transporting the blood back to the heart.  

 

2.1.2 The Cardiac Conduction System 

Cardiac muscle is a highly specialized tissue found only in the heart. Like skeletal muscle, it is striated and 
organized in sarcomeres, but with shorter fibers, usually containing only one nucleus. What is especially 
unique about heart muscle, is its mechanism of excitation. While in other types of muscle each contraction 
is triggered by an impulse from a nerve fiber, the heart has its own pacemaking structures and conductive 
pathways made up of specialized cardiac muscle cells, see figure 2. These structures control and 
coordinate the contractions of the different chambers, to allow them to work together to efficiently pump 
blood through the two circulation loops. Located at the right atrium, the sinoatrial node is the heart’s 
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main pacemaker (see figure 2). It consists of self-excitable cells, that periodically depolarize at a frequency 
of approx. 60-70 beats per minute (bpm), although the exact frequency is modified by the autonomic 
nervous system via the vagus nerve, to adapt to varying demands. The atrioventricular node can act as a 
secondary pacemaker if needed, with a lower heart rate of 50 bpm. At an even lower frequency of 30 
bmp, the Bundle of His and Purkinje fibers can act as tertiary pacemakers. In a healthy state, contractions 
are only initiated by the sinoatrial node.  

The heart consists of two separate muscles, one for the two atria, one for the two ventricles. Atria and 
ventricles are electrically isolated from each other; the atrioventricular node is their only point of 
conduction. The conduction speed in the atrioventricular node is lower, which induces a necessary time 
delay in the conduction. This compensates for the faster electrical propagation compared to the 
mechanical pumping action of the atria, thus allowing the relaxed ventricles to fully fill before action 
potentials traveling down the Bundle of His and Purkinje Fibers cause the ventricles to contract.  

 

 

Figure 2 – Cardiac conduction system. The coordinated contraction of cardiac muscle fibers is controlled 
by a system of specialized cardiac muscle cells that form conductive pathways through the heart.  [9] 

 

 

2.1.3 The Cardiac Cycle 

Because the left and the right side of the heart contract simultaneously, the cardiac cycle can be separated 
into two main phases, systole and diastole. Systole is the ventricular contraction phase, during which the 
atria are relaxed and passively refill. Diastole is the ventricular relaxation phase, during which the atria 
contract to assist with ventricular filling. Each heartbeat is triggered by an action potential from the 
sinoatrial node, that causes the two atria to depolarize. They contract, forcing the blood to fill the relaxed 
ventricle. The atrioventricular valves are open to allow the blood to enter the relaxed ventricle, the 
semilunar valves are still closed. As the excitation passes the AV node and propagates down the Bundle 
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of His and Purkinje fibers, the ventricle starts to contract, the ventricular pressure exceeds the atrial 
pressure, causing the atrioventricular valves to close (time instance A in figure 3A). The ventricular 
pressure continues to increase, but as both sets of valves are closed, the volume remains constant. This 
first phase of systole is called isovolumetric contraction phase. As soon as the ventricular pressure exceeds 
the pressure inside the respective artery (approx. 10 mmHg for the pulmonary artery, 80 mmHg for the 
aorta) the semilunar valves open. The ventricular ejection phase starts, during which about two thirds of 
the blood contained in each ventricle is ejected. As the ventricle begins to relax, the intraventricular 
pressure decreases, falling below the arterial pressure. The semilunar valves close soon after, once the 
flow reaches zero as they are mechanically closed by a slight backflow in blood that fills their cusps. This 
causes a temporary drop in aortic pressure known as the dicrotic notch (see time instance C in figure 3A) 
and marks the end of systole. The ventricular pressure continues to drop until the ventricular pressure 
falls below the atrial pressure, the atrioventricular valves open and ventricular filling starts again (time 
instant D in figure 3A).  

 

 

Figure 3 – Mechanical and electric activity of the heart during the cardiac cycle. A) Left and right 
ventricular pressures and aortic pressure, results of the mechanical pumping activity of the heart. B) 
Einthoven I ECG signal, showing the depolarization and repolarization atria and ventricles that result in 
muscle contractions and relaxations causing the pressure changes shown in A. Adapted from [9] 
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2.1.4 Generation of the ECG  

Each mechanical pumping action performed by the heart during the cardiac cycle, corresponds to an 
electrical depolarization of the myocardial tissue in the respective area that triggers the necessary muscle 
contraction. This depolarization spreads through the muscle gradually, resulting an electrical potential 
difference of about 170 mV between the depolarized regions and regions that are still at their resting 
potential. This potential difference creates an electric field, that can be measured at the body’s surface 
using skin electrodes. Because the mechanical and electric activity of the heart are so closely related, this 
electrocardiogram (ECG), contains a lot of information about the heart’s function, making it an 
indispensable tool in clinical diagnostics.  

A   B 

Figure 4 – ECG electrode placements and viewing angles of the 12 lead ECG. A) Standard positions for 
the 10 skin electrodes used in a clinical 12 lead ECG. Right arm (RA), left arm (LA), right leg (RL) and left 
leg (LL) electrodes may also be placed on the respective extremity [13]. B) ECG leads and their respective 
viewing angles in the frontal (blue) and horizontal plane (red) [14].  

For a simple ECG tracing, three electrodes, one on each hand and a ground electrode on the right leg, are 
sufficient. The potential difference between left and right hand is measured over time, resulting in a 
characteristic waveform with an amplitude in the millivolt range, see figure 3B. This configuration is 
known as Einthoven I lead. The waves and peaks of the ECG signal correspond to specific phases in the 
cardiac cycle. After a heartbeat is triggered by the sinus node, the excitation spreads through the atria, 
which is visible in the ECG as the P wave. Once the atria are fully excited, the signal returns to its zero 
baseline until the excitation passes the atrioventricular node. Measuring this PQ interval can be used to 
determine the time delay induced by the atrioventricular node. Once the excitation passes the 
atrioventricular node, it quickly spreads through the ventricles resulting in the most prominent peak in 
the ECG, the QRS complex. Once the ventricles are fully excited, the signal returns to zero. Ventricular 
repolarization then causes another upward flexion in the ECG, the T wave. Atrial repolarization is not 
visible in the ECG as it occurs while the ventricular excitation spreads and is thus obscured by the more 
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prominent QRS complex. The sign of waves and peaks and the exact shape of the waveform depends on 
the direction the excitation spreads in, in relation to the axis between the active electrodes.  

Using several electrodes in different configurations makes it possible to view the electrical activity of the 
heart from multiple angles. These configurations are called ECG leads. A 12 lead ECG uses 10 skin 
electrodes in standardized positions on the human body to record cardiac excitation patterns from 12 
different angles, see figure 4. The first six leads, or limb leads, use only three active electrodes, the right 
arm (RA), left arm (LA) and the left leg (LL) electrodes, which may either be placed on the respective 
extremity or in the locations shown in figure 4A. The right leg is used as a ground electrode in all 12 leads. 
Einthoven I, II and III are the potential differences between RA and LA, LL and RA and LL and LA electrodes, 
respectively. Goldberger’s leads aVR, aVL and aVF measure the potential differences between one active 
electrode, RA, LA and LL, respectively, and the average of the other two. Einthoven and Goldberger’s leads 
view the electric activity of the heart in the frontal plane. To also get information in the horizontal plane, 
a theoretical reference point, Wilson’s central terminal, is used. Located in the center of the triangle 
formed by Einthoven’s leads, which should approximately be in the center of the thorax, its potential is 
calculated by averaging the potentials of the three limb electrodes RA, LA and LL. The six chest leads V1 
to V6 are the potential differences between each of the chest electrodes and Wilson’s central terminal.  

 

2.2 Atrial Fibrillation  

Atrial fibrillation (AF) is cardiac arrythmia, during which the regular physiologic excitation patterns in the 
atria are replaced by diffuse and chaotic ones. This results in an irregularity of the heart rate, as well as 
symptoms such as chest pain, palpitations, shortness of breath and fatigue. AF can also be asymptomatic 
in some cases, or just accompanied by a general feeling of illness, which can be overlooked or attributed 
to other, known conditions [6]. Early diagnosis and treatment of AF is important since AF can be an 
indicator of other cardiac morbidities such as heart failure, as well as aggravate existing conditions of 
heart failure and increase the risk of thromboembolism such as stroke [6, 7].  

AF is a common diagnosis in dialysis patients [7]. Although the exact reason is unknown, patients 
undergoing dialysis may be particularly prone to AF, because the periodical shifts in fluid and electrolyte 
levels, which build up in between dialysis sessions and are then rapidly removed during the treatment, 
strain the heart [7]. Recent evidence suggests that the treatment itself may also be a trigger for 
paroxysmal AF [2]. A 2011 study [7] showed age as the predominant risk factor for AF in dialysis patient. 
Compared with otherwise similar patients below 45 years of age, patients 85 or older had an almost 7-
fold higher prevalence of AF. The same study showed that AF is more prevalent in men than women and 
dialysis vintage is related to a 2% increase in AF risk per year [7].  

AF can be diagnosed from a single-lead ECG, by the absence of p-waves and the presence of an irregular 
ventricular rhythm without recurring pattern [6]. These changes can either be detected manually by a 
qualified physician, or using automated algorithms, that detect the peaks and waves of the ECG. Diagnosis 
by a physician’s examination of ECG has the obvious disadvantage of straining the hospitals limited 
resources of qualified personnel. Especially in the case of paroxysmal (intermittent) AF, where longer 
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recordings are needed, to include a period where AF is present, manual examination is not feasible. 
Automatically detecting and quantifying peaks and intervals is a good alternative, however the reliability 
of such algorithms is severely impaired when the signal quality is low, or the ECG is distorted by 
medications or other interventions such as hemodialysis [2]. Machine learning approaches to AF 
detection, that analyze the ECG waveform as a whole, have been investigated as well [15–20].  

 

2.3 Symmetric Projection Attractor Reconstruction  

Symmetric projection attractor reconstruction (SPAR) is a new method of analyzing an approximately 
periodic signal. It is well suited for analyzing noisy and strongly nonstationary data, qualifying it for ECG 
analysis [21]. Because SPAR does not require the detection of specific points on the ECG other than to 
determine the average heart rate, it may be the solution to overcoming the challenges of ECG monitoring 
during hemodialysis. Combined with machine learning techniques it may also be the key to learning more 
about ECG waveform morphology in general and especially when it comes to hemodialysis, since it has 
the advantage of analyzing the ECG waveform as a whole.  

While the use of SPAR in biosignal analysis is in its early stages, attractor reconstruction itself is a well-
established methodology in mathematics for dynamic systems, dating back to the works of Edward Lorenz 
in 1963 [22]. Studying atmospheric dynamics, Lorenz demonstrated, that recognizing patterns or 
behaviors in seemingly chaotic time series data, can be facilitated by visualizing the data in three-
dimensional (3D) phase space. In his case, this meant plotting each of his three convection variables on 
one coordinate axis instead of visualizing them separately as time series. This allowed him to analyze 
changes in weather patterns. In 1981, Floris Takens [23] expanded the attractor to cases where a dynamic 
system is only described by one variable. His solution was the use of delay coordinates, 𝑁 equally spaced 
points along every cycle of an approximately periodic signal, to form an attractor in 𝑁-dimensional phase 
space. SPAR uses this delay coordinated method to generate attractors and then adds an additional step 
of projecting the resulting attractor to a rotationally symmetric, two-dimensional (2D) image [24].   

2.3.1 Generation and Projection of the Attractor  

The simplest ECG attractor can be generated using 𝑁 = 3 points. These are spaced at a distance of 𝜏, 
which is calculated from the period 𝑇 of the original signal, see formula 1. This period is determined as 
the mean r-interval (interval between adjacent r-peaks of the ECG) in each window. The time series of the 
three attractor coordinates, 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) can be computed using equations 2 and 3 below. Plotting 𝑥 over 𝑦 over 𝑧 results in a 3D image of multiple overlapping loops, one for each cycle in the signal, see 
figure 5A. In this attractor, the information contained in the (possibly lengthy) time series of the original 
signal is bound in 3D phase space and variation between the cycles and other aspects of the waveform 
are highlighted. The interpretability of this attractor can however be improved further by removing 
baseline variation in the signal, caused by e.g., respiration or motion. In the original signal, baseline 
variation can be understood as a vertical translation of all three points. In the bounded phase space of the 
attractor, this corresponds to variation in the direction of the vector (1,1,1). Projecting the attractor onto 
a plane orthogonal to this vector, removes baseline variation from the attractor and reduces the 
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attractor’s dimensionality to 2, which simplifies visualization, see figure 5B. Because the attractor is made 
up of multiple, partially overlapping lines, deriving a density and visualizing it using a color scale, can add 
additional detail to the attractor image by highlighting areas of the attractor that are frequented more 
often, see figure 5C.  [21, 24, 25]   𝜏 = 𝑇/3 (1) 𝑦 (𝑡) =  𝑥(𝑡 − 𝜏) (2) 𝑧 (𝑡) =  𝑥(𝑡 − 2𝜏) (3) 

 

 

Figure 5 – Example of a three-point ECG attractor and its 2D projection with and without density. A) 3D 
attractor generated using delay coordinates, evenly spaced along the signals period, B) 2D projection of 
the attractor onto a plane orthogonal to vector (1,1,1), C) 2D attractor with added density. 

 

2.3.2 Extension to Higher Dimensions 

Attractor generation can be extended to more points and higher dimensions [24–26]. For higher 
dimensional attractors however, projection to a 2D image becomes a bit more complex. A continuous 
signal of period 𝑇 can be embedded into 𝑁 ≥ 3 dimensions using a time delay 𝜏 = 𝑇/𝑁 using the 
coordinates 𝑥𝑁,𝑗 , see formula 4 [25]. It can be shown that this 𝑁-dimensional attractor has (𝑁 − 1)/2 2D 
projections that are rotationally symmetric about the origin. The new coordinates of these projections 𝑎𝑁,𝑘  and 𝑏𝑁,𝑘  can be computed using formula 5, 𝑘 = 1, … , (𝑁 − 1)/2 [25]. Embeddings using odd 
numbers of points 𝑁 have proven most useful, because they lead to less overlap of ECG features [24]. 
Figure 6 shows the 20 symmetric attractor projections of one ECG lead (Einthoven I) embedded with all 
odd numbers of points 𝑁 = 3, 5, 7, … ,13.  

 

 𝑥N,j(𝑡) = 𝑥(𝑡 − 𝑗𝜏), 𝑗 = 0, … , 𝑁 − 1 (4) [25] 
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𝑎N,k =  1√𝑁 ∑ cos (2𝜋𝑗𝑘𝑁 ) 𝑥N,j(𝑡)𝑁−1
𝑗=0 , 𝑏N,k =  − 1√𝑁 ∑ 𝑠𝑖𝑛 (2𝜋𝑗𝑘𝑁 ) 𝑥N,j(𝑡)𝑁−1

𝑗=0  
 

(5) [25] 
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Figure 6 – Higher dimensional ECG attractors. 20 symmetric attractor projections generated from a single 
ECG lead (Einthoven I), using all odd numbers of points 𝑁 =  3, 5, …  13, to embed the signal in 𝑁 -
dimensional phase space. Each 𝑁-dimensional attractor has (𝑁 − 1)/2 rotationally symmetric 2D 
projections, numbered  𝑘 = 1, … , (𝑁 − 1)/2. The attractor generated using  𝑁 =  9, 𝑘 =  3 is excluded 
due to its similarity with the 𝑁 =  3, 𝑘 =  1 case and overlap of features.  
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2.4 K-Nearest Neighbor Classification  

Classification is a common machine learning application, where an algorithm is trained on a set of labeled 
training data to automatically allocate unknown samples into one of two or more groups. Decisions are 
made based on a set of predictors also referred to as features. There is a variety of different algorithms 
available, that each have their own strengths and drawbacks and may be more or less successful 
depending on the dataset and application in question. k-nearest neighbor is one of the oldest and simplest 
classification algorithms yet continues to be widely used because of its easy implementation and powerful 
performance. It is a non-parametric classifier which means it is suitable for applications where there is 
little to no prior knowledge about the data distribution. An unknown sample is classified based on its n 
features, by mapping it into the n-dimensional feature space. Its distance to each of the labeled training 
samples is determined using a predetermined distance metric. The class of the unknown sample is 
predicted as the most frequent class among the k samples with the lowest distance from it, its so called k 
nearest neighbors [27]. The effect of choosing a different number of neighbors k is shown in figure 7 [27], 
using a simplified example with n = 2 features, two different classes and Euclidean distance measure. 
Selecting the optimal number of nearest neighbors and an appropriate distance function is the main 
challenge in this classification technique. [27] 

Classifiers with a higher number of features require more training samples to maintain a sufficient density 
of samples in the feature space, because the distance between points increases exponentially with the 
dimensionality of the feature space, making it harder to find nearest neighbors. This problem is known as 
the “curse of dimensionality” or Hughes effect [28].   

 

 

Figure 7 - Example of k-nearest neighbor classification. Each sample is characterized by two features, its 
x and y coordinates in the two-dimensional feature space. The central circle represents the unknown 
sample. Depending on the number of neighbors k = 3 (solid line circle) or k = 5 (dashed line circle), the 
unknown sample will either be classified as a triangle or a square. A Euclidean distance measure is used in 
this example. [27] 
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3.  Methods and Implementation 
To establish a reliable automated AF detection algorithm that is successful in ECG data collected during 
hemodialysis, ECGs with and without AF were sourced from a study on end-stage renal disease (ISAR 
study) [29] and PhysioNet, an open source archive of physiologic signals [30]. Appropriate records were 
selected, and 30s ECG samples extracted. Using SPAR, 20 attractors were generated from each sample. 
After experimentation with different quantification approaches, attractor projections were quantified by 
computing three density distributions for each of them. These attractor densities were then directly used 
as feature inputs into 60 k-nearest neighbor classifiers per model. Models were trained on six different 
training set compositions, containing ECGs recorded from six timepoints during or after dialysis and/or 
ECGs unrelated to dialysis. They were then tested on different test sets to analyze their accuracy when 
classifying unseen test records. The main steps of this workflow are summarized in Figure 8 and explained 
in more detail in the following chapters. Signal processing, feature extraction, model training and model 
testing was done in MATLAB® (R2018b, The MathWorks, Inc., Natick, Massachusetts, USA).  

 

Figure 8 – Workflow summary. Main steps of selecting and preparing the training and test data using 
ECGs from different sources and using them to train and test AF detection models. 

 

3.1 Data sources  

ECGs from multiple sources were used in this thesis. ECG samples during or after dialysis were taken from 
24h 12-channel ECG recordings, collected during an observational cohort study on risk stratification in 
end-stage renal disease (ISAR study) [29]. ECGs unrelated to hemodialysis or renal failure were taken from 
the open source archive PhysioNet [30]. Three different PhysioNet databases were used. For an overview 
of the data sources, see figure 9.  

In cooperation with the computing in cardiology conference, PhysioNet issues annual challenges, where 
participants are encouraged to “tackle clinically interesting questions that are either unsolved or not well-
solved” [31]. In these challenges, researchers are asked to establish working, open-source algorithms, 
using training sets, provided by PhysioNet. The submitted algorithms are scored based on their 
performance on a hidden test set. The 2017 PhysioNet/Computing in Cardiology Challenge [32] was titled 
“AF Classification from a Short Single Lead ECG Recording” and challenged the participants do develop 
algorithms that automatically sort 10-60 s long ECGs into one of four groups, normal sinus rhythm, AF, 
arrythmia other than AF or too noisy to be classified. The training set provided for this challenge contains 
8,528 single lead ECG recordings from those four groups, sampled at 300 Hz and between 9 s to just over 
60 s in length. For a more detailed data profile, see table 1. The “normal” and “AF” groups of this data set 
were used in this thesis.  
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Figure 9 – Data sources for training and testing the AF detection models. Samples during or after dialysis 
were taken from 24h ECG recordings, collected during a study on risk stratification in end-stage renal 
disease (ISAR study). ECG samples unrelated to dialysis were taken from three different databases freely 
available via PhysioNet.  

 

Type Number of 
Records 

Time length (s) 

Mean SD Max Median Min 

Normal 5154 31.9 10.0 61.0 30 9.0 

AF 771 31.6 12.5 60 30 10.0 

Other rhythm 2557 34.1 11.8 60.9 30 9.1 

Noisy 46 27.1 9.0 60 30 10.2 

Total 8528 32.5 10.9 61.0 30 9.0 
Table 1 – Data profile of the PhysioNet Challenge 2017 training set. Number of available ECG signals with 
normal sinus rhythm, AF, arrhythmias other than AF and records that are too noisy to be classified in the 
training set provided for the 2017 PhysioNet/ Computing in Cardiology Challenge titled “AF Classification 
from a Short Single Lead ECG Recording” [33] 

 

The second PhysioNet database used was the Atrial Fibrillation Termination (AFT) database [34]. This 
database provides a total of 80 one-minute-long ECG samples with AF sampled at 128 Hz, that were also 
used in a challenge, the PhysioNet and Computers in Cardiology 2004 Challenge “Spontaneous 
Termination of Atrial Fibrillation”. The goal of this challenge was to establish an algorithm that can predict 
if or when an episode of AF is going to terminate, by automatically sorting the samples into one of three 
groups, non-terminating AF, AF that will terminate within one minute after the end of the record and AF 
that will terminate within one second after the end of the record [34]. Because AF is present throughout 
each record, all 80 samples can be used as AF samples when training or testing an AF detection algorithm.  

Additional control records, i.e. ECGs without AF, were taken from the PTB (Physikalisch-Technische 
Bundesanstalt) Diagnostic ECG Database [35], which is also available on PhysioNet. This database contains 
549 records from 290 subjects. Most records include a detailed clinical summary about the subject’s 
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diagnosis and treatment plans, along with a 15 channel ECG (12 normal leads, see section 2.1.4, plus the 
3 Frank lead ECGs, vx, vy, vz), sampled at 1 kHz. All records are multiple minutes in length. Included in this 
database are 80 ECGs from 52 healthy controls. These were used as healthy controls for the AF samples 
taken from the AFT database.  

In total, 381 24h ECGs from subjects with end-stage renal disease were available from the ISAR study. This 
included ECG recordings of various quality, from subjects with or without pacemakers and different AF 
diagnoses. Additionally, a variety of other clinical information on each subject was collected during the 
study. The number of available records from subjects with and without a pacemaker and their AF 
diagnoses are summarized in Table 2. The ECGs were sampled at 128 Hz.  

 

 Pacemaker No Pacemaker Total 

Permanent AF 6 46 52 

Paroxysmal/intermittent AF 4 35 39 

No AF 17 268 285 

Unknown AF Diagnosis - 5 5 

Total 27 354 381 
Table 2 – Data profile ISAR study ECGs. Number of available records from patients with or without a 
pacemaker and their AF diagnoses.  

 

 

3.2 Record Selection, Preprocessing and Sample Extraction 

To generate training and test samples from the ECGs in the ISAR study and the three PhysioNet databases, 
they first had to be imported into MATLAB®. There, records with sufficient quality and length were 
selected from each data source. The raw signals were filtered if necessary and 30s samples extracted from 
them. The main steps of record selection, preprocessing and sample extraction for the different datasets 
is summarized in figure 10.  
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Figure 10 – Preprocessing, record selection and sample extraction. Overview of the different steps in 
preparing the ECGs from the different sources for feature generation and subsequent training and testing 
of different AF detection models. 

 

3.2.1 PhysioNet ECGs 

The ECG data in the PhysioNet Computing in Cardiology Challenge 2017 training set are conveniently 
provided in .mat format, allowing them to be directly loaded into MATLAB®. As they were already 
bandpass filtered and of good quality, no preprocessing was necessary. Records shorter than 30s were 
excluded. With fewer available AF than normal records, all AF records and an equal number of records 
from the “Normal” category were selected. The first 30s of each record were used as one sample.  

The ECGs in the AFT database are only available in PhysioNet’s .dat format. Using the WaveForm DataBase 
(WFDB) Toolbox for MATLAB® [36] the first 30s of each samples can however be automatically 
downloaded from PhysioNet’s servers and loaded into MATLAB® for further analysis. There the signals 
were filtered using three infinite impulse response, digital filters, designed via the MATLAB® filter designer 
add-in. High frequency noise was removed using a 6th order Butterworth lowpass filter, with a stopband 
frequency of 60 Hz and 80 dB stopband attenuation. Baseline wander was removed using a 5th order 
Butterworth highpass filter with a cutoff frequency of 1 Hz. 50 Hz powerline interference was removed 
using a 12th order Butterworth bandstop filter, with a lower stopband frequency of 49 Hz and an upper 
stopband frequency of 51 Hz. Magnitude response estimates for all three filters are depicted in figure 11.  
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Figure 11 – Filter characteristics for fs = 128 Hz. Magnitude responses of the three infinite impulse 
response filters used to filter the ISAR study ECG data and PhysioNet AFT database ECGs A) 5th order 
Butterworth highpass B) 6th order Butterworth lowpass C) 12th order Butterworth bandstop 

 

The control ECGs from the PTB database were also downloaded using the WFDB Toolbox and filtered using 
three infinite impulse response filters, adapted to the much higher sampling frequency of 1 kHz. High 
frequency noise was removed using a 9th order Butterworth lowpass filter with a passband frequency of 
40 Hz and a stopband frequency of 120 Hz. The stopband attenuation was set to 80 dB. Baseline wander 
was removed using a 5th order highpass with a cutoff frequency of 1 Hz. A 12th order bandstop with a 
lower stopband frequency of 49 Hz, upper stopband frequency of 51 Hz and 60 dB stopband attenuation 
was used to remove 50 Hz powerline interference. These filters’ estimated magnitude responses are 
shown in figure 12. The first 30s of each filtered record was used as one sample.  
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Figure 12 – Filter Characteristics for fs = 1 kHz. Magnitude responses of the three infinite impulse response 
filters used to filter the PhysioNet PTB database ECGs A) 5th order Butterworth highpass B) 9th order 
Butterworth lowpass C) 12th order Butterworth bandstop 

 

3.2.2 ISAR Study ECGs 

The ISAR study ECGs included subjects with a pacemaker, which depending on the exact type and setting, 
can affect the ECG in various ways. Accounting for these effects would exceed the span of this thesis, so 
records from subjects with a pacemaker were excluded from further analysis. The remaining records were 
filtered using the same infinite impulse response filters as used on the PhysioNet AFT database ECGs, as 
both are sampled at 128 Hz. The magnitude response estimates of these filters are shown in figure 11. On 
the filtered ECGs, an initial quality check was performed. Because samples are taken from six different 
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timepoints within each ECG, signal quality was analyzed within the search windows around these 
timepoints, see figure 13. The quality check was performed by detecting R-peaks in sliding 30s windows 
within the first 30min of each search window, using a validated r-peak detection algorithm [37]. If no 30s 
window with more than 20 detected and valid R-peaks is found at any of the six timepoints, the record 
was excluded.  

 

 

Figure 13 - Search windows for sample extraction from the ISAR study ECGs. 30s ECG samples were taken 
from the ISAR study ECGs at six different timepoints that are defined with respect to the beginning and 
end times of the dialysis session. Because the ECG quality may not be high enough in any arbitrarily set 
30s window, a one-hour search window was placed around each timepoint (blue box) and a sample of 
sufficient quality was manually selected within that interval.  

 

To ensure that AF is present in every sample taken, only records from patients with permanent AF were 
used as AF samples, subjects with paroxysmal/intermittent AF were excluded. These were again fewer 
than the available controls (without AF). Because a variety of information is available on every subject in 
the ISAR study, it was possible to compare sample characteristics from both groups, that may be 
confounding factors in the analysis. The three characteristics considered in the match were gender, age 
and dialysis vintage, i.e., for how many months the patient has been undergoing regular dialysis for. Based 
on these factors, an equal number of matching controls were selected from the available records without 
AF. Controls were selected by going through one AF record after another, finding control subjects of the 
same gender and within ±10 years in age. From this group, the subject closest in dialysis vintage was 
selected as a matched control.  

From the AF records and their matched controls, 30s samples had to be extracted at appropriate 
timepoints. Every recording is approx. 25h in length, with the start of the dialytic treatment occurring at 
some point during the first 30 min of the recording. As the ECG waveform is known to change during 
dialysis, samples were extracted at six different timepoints during and after dialysis. The duration of the 
dialysis treatment, i.e., the dialysis time, was noted for most subjects in the study, for the others it was 
estimated as the mean dialysis time of all other subjects. To ensure every sample is of sufficient quality to 
be classified, a one-hour search window was placed around each of the six timepoints, i.e. the beginning, 
middle and end of dialysis, as well as two, five and ten hours after the treatment, see Figure 13. Samples 
were then selected by manually sliding a 30s sampling window through the search window, until a sample 
of sufficient quality was found.  
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3.3 Attractor Reconstruction and Quantification  

Attractor reconstruction was used to generate features from the prepared ECG samples. The workflow of 
transforming each 30s ECG sample into a 20-by-3-by-64 matrix of attractor features, is summarized in 
figure 14, and follows the methodology used by in [24]. The amplitude of an ECG signal depends on the 
electrical impedance between heart and electrode [9]. This impedance in turn is affected by parameters 
such as skin impedance and body fat. Because these factors are not relevant for this analysis, all samples 
were normalized to a range of zero to one before computing the attractors. The same R-peak detection 
algorithm as used previously [37], was used to determine the mean heart rate. Attractors were then 
generated using all odd numbers of points 𝑁 = 3, 5, … ,13 following the SPAR methodology described in 
[24] and [25]. For more details, see section 2.3. For each attractor, the 𝑘 = 1, … , (𝑁 − 1)/2 two-
dimensional projections were calculated using formula 6 in section 2.3.2. The 𝑁 = 9, 𝑘 = 3 case was 
excluded from further evaluation, due to its similarity to the 𝑁 = 3, 𝑘 = 1 projection and overlap of 
features. This resulted in a total of 20 attractor projections per sample.  

 

Figure 14 – Feature generation using attractor reconstruction and quantification. 20 attractor 
projections are generated from each 30s long ECG sample and quantified by computing its three density 
distributions. These attractor features can then be used as inputs to an AF detection model.  

 

3.3.1 Density Distributions  

The projections were then quantified by transforming into polar coordinates and computing three 
summary measures of the attractor shape and density, namely angular density, radial density and 
attractor outline, see figure 15. These were calculated as follows:  

1) To get the angular density, the angular range of 0 to 2π is split into 64 bins, see figure 15A. The 
number of data points in each bin is calculated and divided by the total number of datapoints in 
the sample to get a density measure.  

2) The radial density is computed by splitting the range between the center of the attractor and its 
outline into 64 bins, counting the number of datapoints per bin and dividing by the total number 
of datapoints in the sample, see figure 15B.  
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3) To compute the attractor outline, the maximal radius in each angular bin is determined, see figure 
15C.  

Overall, this transforms every ECG sample into 60 (20x3) curves of 64 datapoints each, that describe its 
waveform morphology and characteristics.  

 

Figure 15 – Attractor quantification via density distributions. The attractor shown is an N=3 k=1 attractor 
from a control sample in the PhysioNet dataset. The attractor is quantified by transforming its points into 
radial coordinates and deriving three density distributions from those. A) the angular density of the 
attractor is computed by dividing the angular range of the attractor from 0 to 2π into 64 bins and 
determining the relative number of datapoints per bin. B) the radial density of the attractor is computed 
by dividing the range between attractor center and outline into 64 bins and then counting the number of 
datapoints in each bin, divided by the total number of datapoints in the attractor. C) the attractor outline 
is defined as the maximal radius in each angular bin. Based on [24] 
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3.3.2 Different Quantification Approaches  

To be able to train an AF detection model, features had to be extracted from the generated attractor 
projections and/or their densities. Starting with the 𝑁 = 3, 𝑘 = 1 projections of healthy samples, several 
quantification approaches were tested. In a first attempt, the attractors were sorted into nine main types, 
based on a visual inspection of their shape, see figure 16. Using its three density distributions, the attractor 
type of an unknown attractor projection was to be determined automatically and features extracted 
accordingly. Unfortunately, this proved to be impossible, since assigning the attractors to types was often 
ambiguous, since many of them combined characteristics of multiple types. Once the attractor generation 
was extended to higher dimensions which increased the number of attractors from one to 20 per sample, 
this quantification approach was definitively out of the question.   

 

Type 1A Type 1B Type 1C 

Type 2A Type 2B Type 2C 

Type 3A Type 3B Type 3C 
Figure 16 – Attractor types. Examples of the nine typical shapes of N = 3, k = 1, attractor projections shapes 
generated from healthy ECG samples.      

A second quantification attempt was to train a shape model on the attractors. For this approach, a mean 
attractor shape was calculated from a set of healthy 𝑁 = 3, 𝑘 = 1 attractor samples. Principal component 
analysis was then used to analyze the variation in shape between them and describe it in terms of 
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eigenvectors and eigenvalues of the covariance matrix. The shape of an unknown attractor could then be 
characterized by fitting the shape model, i.e., placing the mean attractor shape on top and varying it in 
the direction of the determined eigenvectors, until the distance between the fitted model and the 
attractor points reaches a minimum. The scaling values of the fitted shape for the first few principal 
components could then be used as features that describe the attractor’s shape. Unfortunately, because 
the lines of the attractor overlap so frequently, the shape model was impossible to fit and the idea had to 
be given up.  

A third attempt at quantification consisted of quantifying the attractor by calculating features that 
describe its three density distributions. A total of 18 features was selected that summarize the shape and 
symmetry of an 𝑁 = 3, 𝑘 = 1 attractor projections’ density distributions, see table 3. These features 
showed some differences between samples with and without AF based on visual inspection using boxplots 
and when training a support vector machine for binary classification on them. Despite standardizing the 
input features, decision making in the classifier was however most heavily based on features eight and 
15, the two features that count peaks in the angular density and attractor outline. Since these two depend 
on the peak prominence threshold set empirically, based on the visual inspection of a small number of 
examples, these features are rather unreliable and to a certain degree subjective.  
 

Feature Density distribution  Characteristic 
1 radial density maximum  
2 radial density location of the maximum  
3 radial density width of the highest peak at half prominence 
4 angular density maximum  
5 angular density location of the maximum  
6 angular density width of the highest peak  
7 angular density width of the widest peak 
8 angular density number of peaks with peak prominence > 0.02 
9 angular density Standard deviation (SD) of the three highest peaks' heights 
10 angular density SD of the three highest peaks' width at half prominence  
11 attractor outline maximum  
12 attractor outline location of the maximum  
13 attractor outline width of the highest peak  
14 attractor outline width of the widest peak 
15 attractor outline number of peaks with peak prominence > 0.2 
16 attractor outline SD of the three highest peaks' heights 
17 attractor outline SD of the three highest peaks' width at half prominence 
18 mean absolute difference between angular density and outline  

Table 3 – Features selected for quantifying the attractor via its density distributions. 18 features 
calculated form the three density distributions, radial density, angular density and attractor outline of an 
attractor.  
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Finally, the decision was made to follow the methodology used in [24] and directly use the density curves 
as feature inputs for the AF detection model. This approach outperformed the feature extraction from 
the density curves in classifying 𝑁 = 3, 𝑘 = 1 attractor projections as AF or control (no AF) using support 
a vector machine and k-nearest neighbor classification and was easier to extend to higher dimensions, 
making it a clear favorite.  

 

3.4 Dataset Preparation and Training Set Compositions 

To compile datasets with different characteristics for training and testing the models, the available 
samples were split into eight groups, the challenge group, AFT/PTB group and the six dialysis timepoints. 
Each contained an approximately equal number of AF and control records, with slight deviations caused 
by the dialysis timepoints where no sample of sufficient quality was found. Every group was then randomly 
split into a training and test portion using a 30% holdout, while maintaining the even ratio of AF and 
control samples. This was done using the built-in MATLAB® function cvpartition. The training and test 
subsets were then combined into six different training sets and six test sets, respectively. Which groups 
are included in which set is illustrated in figure 17. The sample sizes of each dataset and the size of its 
training and test portion were documented, along with the percentages of AF versus control records for 
each of them.  

By using the same methodology on these six different training set compositions, six different AF detection 
models were trained:  

1) The challenge set contained only the samples taken from the PhysioNet Challenge 2017 training 
set and could be used to train a first AF detection model that is unrelated to dialysis. This model 
served as a benchmark, to on the one hand see how well the SPAR method performs compared 
to previously published AF detection models working with the raw ECG samples, and on the other 
hand get an idea of how much more difficult ECGs collected during or after dialysis are to classify.  

2) The second training set contained only the training subset of samples taken at the start of dialysis, 
so thirty minutes after the beginning of the measurement or up to 1h30min into the 
measurement, depending on the local signal quality. The model trained on this set was intended 
to investigate, if AF detection using ECGs recorded during dialysis is easier, if all samples are 
collected at approx. the same timepoint during the treatment. The start of dialysis was chosen as 
a timepoint because of its practical advantages in future applications, i.e., the ECG measurement 
can be started when starting the dialysis and deliver quick results. Because the exact timepoint 
each ECG sample was taken at, with respect to the dialysis, is however unknown, including a wider 
range of timepoints in the training set may produce a more successful model. This was tested 
using the third and fourth training sets.  

3) The third set contains the training subset of all samples taken during dialysis, so start, middle and 
end of dialysis.  

4) The fourth set contains the training subsets of all six dialysis timepoints.  
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5) The effect of including samples unrelated to dialysis in the training set was investigated using a 
fifth, combined training set, including the training subsets of all six timepoints plus the challenge 
data.  

6) Finally, the AFT/PTB training set was used to see how a model performs if the AF and control 
samples it is trained on, originate from two different databases. Additionally, the AFT/PTB test set 
was used to test the challenge models accuracy on samples from a different database, to see if 
the model is overfitted to the challenge data or actually detecting AF.  

 

Figure 17 – Compositions of the six datasets. Each data group (white boxes) is first split into a training 
and test portion with a 30% holdout. These are then combined into six training sets and six test sets, 
respectively, as indicated by the colored boxes.  

 

3.5 Model Training and Testing 

Since the decision was made to directly use the density distributions as model inputs, each training set 
consisted of 64 datapoints times 3 densities times 20 attractor projections per sample. To limit the number 
of input features, a separate classifier had to be trained for each density distribution. Therefore, 60 
individual classifiers were trained on the 64 density features of each attractor density. This was repeated 
for each of the training sets. The workflow of training and testing the AF detection models is summarized 
in figure 18. 

K-nearest neighbor was used as the classification algorithm. For more information on this classifier, see 
section 2.4. The classifiers were trained using the built-in MATLAB® function fitcknn [38], with the 64 
datapoints of one density distribution from all samples in the dataset as feature inputs. The sample labels 
(AF or control) were used as label inputs. Using the automatic hyperparameter optimization included in 
this function, optimal distance measure and number of neighbors were determined for each classifier by 
minimizing five-fold cross validation loss [38]. The classification error of each classifier was determined 
via ten-fold cross validation and stored along with the trained classifiers in another 20x3x2 cell array for 
easy access.  

The trained models were tested using the unknown samples in the prepared test sets and comparing the 
labels predicted by the model to the actual labels. Unknown samples were labeled based on the combined 
outputs of the highest performing classifiers in the model. Using the function predict, each trained 
classifier in the model was used to compute a posterior probability score for every test sample, based on 
its corresponding density features. The sample is labeled based on the mean posterior probability of all 
classifiers in the model that have a cross-validated accuracy of 70% or more. Model performance was 
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assessed using two different metrics, namely classification accuracy and F1 statistic, see section 4.4. To 
get an overview of the performance of the different models for different datasets, the challenge model 
and dialysis models, were each tested on all five test set compositions, resulting in a five-by-five table of 
classification accuracies. The AFT/PTB and challenge model were also tested on both their test sets, results 
were summarized in a two-by-two table. 

 

 

Figure 18 – Workflow for training and testing the AF detection models. Using six different training set 
compositions, six different models were trained. Each model was tested on its corresponding test set as 
well as other test sets, to understand more about each model’s performance on different datasets.  
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3.6 Practical Implementation  

The practical implementation of the steps described in the previous subsections, was repeated three 
times, due to an error when setting the filter characteristics and some uncertainties during sample 
selection, i.e., manual quality check of the dialysis samples. In a first implementation, the dialysis ECGs 
were mistakenly filtered using a band stop filter set at 60 Hz, instead of the 50 Hz power line frequency 
used in Germany, where the ISAR study data was collected. After the filter was corrected and set to what 
is documented in section 3.2.1, the ECG quality in a large subset of records was outstanding. A small 
portion of records clearly had to be excluded due to low quality. The rest of the ECGs however fit into 
neither of those categories. Because ECG sample selection was done manually, the decision of which of 
these ECGs where good enough to keep, and which would have to be discarded, was difficult and 
subjective.  

To understand how sensitive the method is to lower quality samples in the training or test sets, two rounds 
of sample selection were performed on these correctly filtered data. In a first round, samples were only 
excluded if artefacts made up more than a third of the 30s sampling window, or noise completely 
obscured the ECG waveform. In a second round, an effort was made to find the best possible quality in 
every search window and samples with visible noise and artefacts were excluded. Examples of which 
records were kept or discarded in each case are documented in the results, see section 5.1.  

Because the effects of sample selection and ECG filtering on the success of the resulting AF detection 
model may be of interest to the reader, the process of training and testing the models was performed on 
all three iterations, i.e., filtering error, moderate quality check and strict quality check. The results of all 
three are documented and discussed in the following chapters. The challenge dataset remained 
unchained but was newly split into a training and test portion for each round. The variance in the challenge 
model’s classification accuracy between the iterations, was used to get an estimate of how much results 
vary simply based on the division into training and test portions, despite working with the same dataset. 
The AFT/PTB model was trained only once.  
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4.  Statistics and Visualization  
Various statistical tests and visualization techniques were used to document, emphasize or confirm the 
results, including boxplots, a bar chart and two-sample student’s t-tests. Model performance was 
assessed using two different performance metrics, namely classification accuracy and F1 score.  

 

4.1 Control Matching  

Control matching results were documented by summarizing the number of male and female records as 
well as mean and standard deviation of age and dialysis vintage before and after matching in a table. To 
determine if control matching was necessary, two sample Student’s t-tests were used to test if age and 
dialysis vintage of the AF records significantly differed from all available controls [39]. Characteristics were 
considered significantly different if the null hypothesis, that both samples have equal means was rejected 
at a level of significance α = 0.05. Because variances between the groups were unequal, Satterthwaite’s 
approximation was used to estimate the effective degrees of freedom [40]. Two sample t-tests were used 
to confirm that matching was successful, by testing the equality of mean age and dialysis vintage between 
the AF records and matched controls. If these tests fail to reject the null hypothesis of both distributions 
having equal means, matching was successful.  

Similarity in age and dialysis vintage between the AF group and the matched controls was documented 
graphically using boxplots. Boxplots can be used to visualize a distribution through its minimum, 
maximum, median, and 75th and 25th percentile. These values are determined by sorting all values from 
smallest to largest. Minimum and maximum are the values at either end of the list, the median is the value 
in the middle of the sorted list, or arithmetic mean of the two central values in case of an even number of 
samples. 75th and 25th percentile, are also referred to as upper and lower quartile. They are calculated as 
the median of the upper and lower half of your sorted list, i.e., the values that are larger than 75% and 
25% of the values in your list, respectively [39]. In a boxplot, the upper and lower quartiles plotted as 
horizontal lines that form the upper and lower edges of a box. The median is indicated with a red 
horizontal line inside the box. Minimum and maximum values are also plotted as vertical lines, and 
connected to the box through a dashed vertical line, forming the so-called whiskers [39].  

 

4.2 Visual Comparison 

To visualize the difference in attractor shape and density between the PhysioNet Challenge samples with 
and without AF and ECGs collected during dialysis with and without AF, the 𝑁 = 3, 𝑘 = 1 attractor 
projection (three-point attractor) and its three density distributions were plotted for each group. To 
reduce the influence of individual differences, 40 samples from each group were selected. Their attractors 
were overlayed and plotted with density. The resulting image shows how frequently a certain area is 
visited across the 40 attractor examples, making it possible to compare the attractor characteristics of the 
different groups. A logarithmic color scale was used to increase the visibility of the attractor’s outer areas, 



38 
 

which have a much lower density than the center. The three density distributions’ mean across each group 
were plotted as well and color coded for the four groups.  

 

4.3 Classifier Characteristics 

To compare the different models in terms of the numbers of neighbors used in their individual classifiers, 
boxplots were used to summarize these values. Three individual boxes grouped together were used for 
the models that were trained multiple times. To understand which density distributions of which attractor 
projection achieved the best classification results, the cross-validated accuracies were visualized in three 
sets of bar charts, one per density distribution, with the 20 attractor projections on the x-axis and the 
classifiers cross-validated accuracy on the y-axis. The models were color coded and visualized as one bar 
per attractor. For models that were trained multiple times, the mean across the three iterations is plotted.  

 

4.4 Performance Metrics 

The quality of a model can be assessed using different performance metrics. The parameters they are 
calculated from can be summarized in a so-called confusion matrix. The confusion matrix for binary 
classification as AF or control is shown in table 4.   

 

 Predicted Classification 
 AF Control Total 

AF TP FN ∑AF 
Control FP TN ∑CT 

Total ∑P ∑N  

Table 4 – Confusion matrix for binary classification of AF or control. Samples can be categorized into one 
of four categories, true positive (TP), samples that are correctly labeled as AF, false negatives (FN), samples 
that are labeled as control by the model despite showing AF, false positive (FP), control samples labeled as 
AF, and true negatives (TN), correctly identified by the model. The total number of AF and control samples 
and the number of samples labeled as positive or negative are needed to calculate accuracy and F1 
performance metrics for a model based on the number of samples in particular categories.  

 

The simplest metric to assess a model’s classification performance, is calculating the percentage of 
correctly labeled samples, i.e., its accuracy, see formula 7.  This metric works well as long as the classes 
are balanced, i.e., the number of samples in both classes is equal or approximately equal [41]. Since equal 
numbers of AF and control records were used to train the AF detection models, accuracy was used as the 
main quality score in this thesis.  
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To be able to compare the results to previous studies, another performance statistic was computed for 
the challenge model and the highest performing dialysis model, namely the F1 score. This score was used 
in the original PhysioNet challenge [32], and is used in most of the publication since then, that worked 
with the same dataset. The score can be computed using formula 7 and 8 [32]. For the models trained in 
this thesis, equal or approximately equal numbers of AF and control records were used, resulting in very 
similar accuracy and F1 scores (compare formulas 7 and 9 for ∑AF ≈  ∑CT ≈  ∑P ≈ ∑𝑁).  

  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁∑𝐴𝐹 + ∑𝐶𝑇  × 100% (6) [41] 

𝐹1𝐶𝑇 = 2 ∙ 𝑇𝑁∑CT + ∑N , 𝐹1𝐴𝐹 = 2 ∙ 𝑇𝑃∑AF + ∑P  (7) [32] 

𝐹1 = 𝐹1𝐶𝑇 + 𝐹1𝐴𝐹2  =  𝑇𝑁∑CT + ∑N + 𝑇𝑃∑AF +  ∑P   (8) [32] 
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5. Results 
This chapter starts with the results of sample selection and control matching, as well as record selection 
during the manual quality check. Three-point attractors with and without AF, from the start of dialysis and 
the challenge dataset, i.e., unrelated to dialysis, are visualized for comparison (i.e., sensitivity analysis), 
along with their three density distributions. The results of the three iterations of training the AF detection 
models and testing them on unseen test samples are also included in this section. Furthermore, this 
chapter explores the effects of using unmatched training data, by comparing the two models trained on 
PhysioNet data.  Classification accuracies and number of neighbors for the individual classifiers of each 
model are also included in this section.   

 

5.1 Sample Size and Dataset Characteristics 

The PhysioNet Challenge 2017 training set included 648 records with AF that were over 30s in length. 648 
samples from the normal rhythm group that were also 30s or longer, were selected as controls. The 80 
records available from PhysioNet’s AFT database were used as AF records for the second PhysioNet 
dataset. The 80 healthy controls available from the PTB database were used as controls. The resulting 
sample sizes for these two datasets are shown in table 5, along with the sample sizes and AF percentages 
after splitting them into a training and test portion using a 30% hold out.  

 

 Available Training Test 

 total AF total AF total AF 

Challenge dataset 1 296 648 (50%) 908 454 (50%) 388 194 (50%) 

AFT/PTB dataset 160 80 (50%) 112 56 (50%) 48 24 (50%) 
Table 5 – Sample Sizes for the two PhysioNet datasets. The challenge dataset uses AF and control samples 
from the PhysioNet Challenge 2017 training set. AF samples for the AFT/PTB set were taken from the AFT 
database, controls from the PTB diagnostic database. Datasets were randomly split into a training and 
test portion using a 30% hold out and even distribution of AF and control records.  

 

The available ECGs from the ISAR study that passed the basic quality check included 46 records from 
subjects with permanent AF and no pacemaker. 222 records with sufficient quality, no pacemaker and no 
AF were available as controls. From these, 46 matching controls were selected based on their age, gender 
and dialysis vintage. The subject characteristics of these three groups are summarized in table 6. Paired t-
tests showed significant differences in age and dialysis vintage between the AF samples and all available 
controls but not to the matched controls (α = 0.05). Graphically, the similarity in age and dialysis vintage 
after matching is shown in the boxplots in figure 19.  
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 AF samples Control samples Matched controls 

Number of records 46 222 46 

Age, years 76.9 (8.3) 58.0 (14.7) 75.9 (8.8) 

Gender, m/f 33/13 149/73 33/13 

Dialysis vintage, months 32.1 (26.7) 71.3 (63.9) 34.8 (24.1) 
Table 6 - Subject characteristics of the ISAR study ECGs before and after matching. Number of records, 
age, gender and dialysis vintage in months of the remaining AF and control samples after the initial quality 
check compared to the matched the controls. Age and dialysis months are given as mean (standard 
deviation), gender as number of male subjects/number of female subjects in the sample.  

 

 

 

Figure 19 – Control matching results. Comparison of A) age in years and B) dialysis vintage in months 
between the subjects with AF and their matched controls. The red line indicates the median, upper and 
lower edge of the blue box mark 75th and 25th percentile, respectively. The most extreme points not 
considered outliers (inside of ±2.7 standard deviations assuming normally distributed data) are marked as 
the black horizontal bars, outliers are plotted individually in red.  

 

Three iterations of the manual quality check were performed on the ECG samples during and after dialysis, 
see section 3.6. Examples of the different ECG quality levels are shown in figure 20. Perfect quality ECG 
samples such as the one in figure 20A were included in every iteration. Samples with some noise or 
artefacts in part of the sampling window, see figure 20B, were included as is during the moderate quality 
check. During the strict quality check, the sampling window was moved within the search window to find 
a better sample, i.e., one comparable to figure 20A. Figure 20C shows an example of the ECG quality that 
would be included during moderate quality check but excluded during the strict check. Samples with 
quality levels comparable to figure 20D were excluded during every iteration. Since a sample of sufficient 
ECG quality could not be found in every search window of every record, the number of samples per search 

A           B 
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window per phase differed slightly from the number of selected records in table 6. Because the exclusion 
criteria also differed between the iterations, the training and test set sample sizes differed slightly 
between the iterations and the ratio between AF and control samples is only approximately 50%. The 
sample sizes for the four dialysis datasets, start of dialysis, during dialysis, dialysis 24h and combined set, 
their partition into training and test portion for each of the three iterations and the corresponding AF 
percentages are summarized in table 7.  

 

Figure 20 – ECG samples of different signal quality. All samples were taken from ISAR records without AF. 
A) Example of an ECG with excellent quality that is included in all iterations of the manual quality check. 
B) Example of an ECG with some irregularity in part of the signal. During the strict quality check, the 
sampling window was moved to find a better-quality sample within the search window. In the moderate 
quality check dataset, samples like this were included as-is. C) Example of a signal quality that was included 
in the moderate quality check dataset but removed during the strict quality check. D) Example of the signal 
quality that was considered too low to include in either iteration of the quality check.  

 

A 
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During the visual inspection of samples for the manual quality check, several records with rhythm 
disorders other than AF were found, see figure 21 C for an example. To increase generalization in the 
model, these samples were not excluded, but treated as regular control samples, because they did not 
show AF.  

 

A 
 

B 
 

C 
 

Figure 21 - ECG examples with different rhythms. A) Control record from the challenge dataset showing 
normal sinus rhythm B) ECG with AF from the challenge dataset C) ISAR study ECG that shows an arrythmia 
other than AF. This record was included in the controls of this dataset, since AF is not present, even though 
it did not show sinus rhythm upon visual inspection.  
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Iteration I – Filtering Error 
 Available Training Test 
 total AF total AF total AF 

Start of 
dialysis 90 44 (48.9%) 63 31 (49.2%) 27 13 (48.1%) 

During dialysis 260 129 (49.6%) 183 91 (49.7%) 77 38 (49.4%) 

Dialysis 24h 513 254 (49.5%) 362 178 (49.2%) 151 76 (50.3%) 

Combined 1 809 902 (49.9%) 1 270 632 (49.8%) 539 270 (50.1%) 

Iteration II – Moderate Quality Check 
 Available Training Test 
 total AF total AF total AF 

Start of 
dialysis 87 43 (49.4%) 61 31 (50.8%) 26 12 (46.2%) 

During dialysis 262 131 (50.0%) 184 92 (50.0%) 78 39 (50.0%) 

Dialysis 24h 520 259 (49.8%) 366 183 (50.0%) 154 76 (49.4%) 

Combined 1 816 907 (49.9%) 1 274 637 (50.0%) 542 270 (49.8%) 

Iteration III – Strict Quality Check 
 Available Training Test 
 total AF total AF total AF 

Start of 
dialysis 83 40 (48.2%) 59 28 (47.5%) 24 12 (50.0%) 

During dialysis 253 125 (49.4%) 179 89 (49.7%) 74 36 (48.6%) 

Dialysis 24h 497 245 (49.3%) 351 174 (49.6%) 146 71 (48.6%) 

Combined 1 793 893 (49.8%) 1 259 628 (49.9%) 534 265 (49.6%) 
Table 7 – Sample sizes of the four datasets containing dialysis samples and their partition into training 
and test sets for each iteration. Number of AF and N (control, i.e., no AF) samples in the four datasets for 
each iteration. Sets were randomly split into training and test portions using a 30% hold out and even 
distribution of AF and control records.   
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5.2 Visual Comparison 

Figure 22 shows examples of three-point attractors (𝑁 = 3, 𝑘 = 1 attractor projections) from PhysioNet 
(challenge set) and start of dialysis samples with and without AF. Each figure contains the overlayed 
attractors of 40 samples from the respective group to reduce the influence of individual differences and 
highlight the differences between the groups. The attractors are plotted with density, to show which areas 
are visited most frequently. Angular density, radial density and attractor outline for the three-point 
attractors in figure 22 are shown in figure 23.  

As seen in figure 22, there is an obvious difference in attractor shape between the PhysioNet attractors 
with and without AF. While the attractor without AF is more of a rounded star shape, the AF attractor is 
almost triangular. This is also visible in the mean attractor outlines in figure 23C. There, the attractor 
outline of the PhysioNet samples with AF has three clearly detectable peaks, while the one without AF 
has six smaller peaks and is generally flatter.  

  

Figure 22 – Three-point attractors of PhysioNet and dialysis ECGs with and without AF. A) PhysioNet 
samples without AF, taken from the “normal” group of the challenge 2017 training set, B) PhysioNet 
samples with AF, from the AF group of the challenge 2017 training set C) start of dialysis samples without 
AF and D) start of dialysis samples with AF. The attractors of 40 samples from each group are overlayed 
and plotted with density to create the equivalent of a mean attractor that highlights the differences 
between the groups by reducing individual differences.  
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Figure 23 – Comparison of the three-point attractor density distributions of the PhysioNet and dialysis 
data with and without AF.  Mean A) angular density, B) radial density and C) attractor outline of the three-
pint attractors of 40 samples from each of four groups, the PhysioNet control group, i.e., normal records 
from the PhysioNet Challenge 2017 training set, PhysioNet samples with AF, i.e., AF samples from the 2017 
challenge dataset, samples from the start of dialysis without AF and start of the dialysis with AF. Dialysis 
samples were extracted from 24h ECGs collected during the ISAR study. The corresponding attractors are 
shown in figure 22. The legend in subplot B is valid for all three plots.   

 

The attractors of ECGs taken at the start of dialysis are very sharp and defined star shapes, both for the 
samples with and without AF, see figure 22C and D. This is also visible in their attractor outlines, which 
have six peaks like the PhysioNet control group, but deeper valleys between them, see figure 23C. The 
radial density of the start of dialysis examples is also consistent with this sharper and more defined 
attractor than the PhysioNet examples, which are more spread out across the radial range. The mean 
angular density distributions of all four groups are very similar, although the differences between 
PhysioNet and dialysis still exceed those between AF and control. Differences between the AF and no AF 
attractor examples from the start of dialysis are hard to find in both the attractor images as well as the 
three density distributions. Because the ECG signals were scaled to a range of zero to one, all four 
attractors are the same size. 
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5.3 Model Results  

This section contains the results of testing the three iterations of the challenge model, the three dialysis 
models and the combined model on unseen test samples from their corresponding test set, as well as the 
other four sets. The AFT/PTB and challenge models are compared in terms of classification accuracy on 
their own test sets, and each other’s test set. More details on the individual k-nearest neighbor classifiers 
the models are comprised of, namely the number of neighbors used and their cross-validated accuracies, 
is summarized and visualized in the last part of this section. The approximate training time per model, i.e., 
total time of fitting each set of 60 classifiers, was around 45 to 50 minutes. 

 

5.3.1 Classification Performance 

The classification accuracies of the challenge model, the three dialysis models and the combined model 
for the five test sets are noted in table 8. These data show that the challenge model performed very well 
when classifying samples in the challenge test set, with an average classification accuracy of 89.3% across 
the three iterations. That is higher than any of the dialysis models or the combined model, when tested 
on their corresponding test sets. Its performance on the three dialysis test sets is however lower than that 
of the during dialysis, dialysis 24h and combined models. The challenge model’s performance on the 
combined test set is good, with almost 85% classification accuracy for all three iterations.  

The during dialysis model was the highest performing model for the start of dialysis and during dialysis 
test sets, with cross validated accuracies higher or equal to those of all other models when tested on these 
sets. Its mean classification accuracy for the start of dialysis test set was 85.7%. This model was trained 
on all samples extracted from the three timepoints during the dialysis but no PhysioNet or after dialysis 
samples. The dialysis 24h model classified start of dialysis test samples with an average accuracy of 81.6% 
across the three iterations. The combined model’s performance on the challenge test set never 
significantly exceeds that of the challenge model, which was only trained on the challenge training 
samples. Its average classification accuracy for the start of dialysis samples was 81.7 %. The model trained 
on just the samples from the beginning of dialysis (30min into the measurement) showed the lowest 
classification accuracies across all iterations and test sets. 

The AFT/PTB model achieved a perfect accuracy of 100% on the training portion of the same set, but only 
60% accuracy when tested on the challenge test set, see table 9. The challenge model on the other hand, 
also performed excellently when tested on PhysioNet data from a different database. All three iterations 
achieved over 90% classification accuracies (mean classification accuracy of 93.8%) when tested on the 
AFT/PTB test data, an even better result than the accuracy on the test portion of the same dataset.  

Computing the F1 score for the three iterations of the challenge model, resulted in an average score of 
0.892 for the challenge test set and 0.937 for the AFT/PTB test set. Each individual score was within the 
range of ± 0.001 of the corresponding accuracy score when expressed as a ratio. The during dialysis model 
scored an average F1 of 0.855 on the start of dialysis test set.    
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Iteration I – Filtering error 

Training  
Test set  

Challenge 
model 

Start of dialysis During dialysis Dialysis 24h 
Combined 

model 

Challenge set 91.0 % 61.3 % 67.0 % 72.2 % 88.1 % 

Start of dialysis 66.7 % 63.0 % 85.2 % 85.2 % 85.2 % 

During dialysis 71.4 % 75.3 % 84.4 % 83.1 % 84.4 % 

Dialysis 24h 71.5 % 76.8 % 84.8 % 83.4 % 82.1 % 

Combined set 85.5 % 65.7 % 72.0 % 75.3 % 86.5 % 

Iteration II – Moderate quality check 

Training  
Test set 

Challenge 
model 

Start of dialysis During dialysis Dialysis 24h 
Combined 

model 

Challenge set 89.4 % 60.1 % 72.4 % 69.1 % 86.6 % 

Start of dialysis 76.9 % 73.1 % 88.5 % 84.6 % 80.8 % 

During dialysis 71.8 % 69.2 % 78.2 % 76.9 % 73.1 % 

Dialysis 24h 70.8 % 70.1 % 77.3 % 78.6 % 76.6 % 

Combined set 84.1 % 62.9 % 73.8 % 71.8 % 83.8 % 

Iteration III – Strict quality check 

Training  
Test set 

Challenge 
model 

Start of dialysis During dialysis Dialysis 24h 
Combined 

model 

Challenge set 87.4 % 58.5 % 69.3 % 72.2 % 88.9 % 

Start of dialysis 75.0 % 75.0 % 83.3 % 75.0 % 79.2 % 

During dialysis 74.3 % 74.3 % 81.1 % 79.7 % 79.7 % 

Dialysis 24h 76.7 % 76.0 % 82.9 % 82.9 % 80.1 % 

Combined set 84.5 % 63.3 % 73.0 % 75.1 % 86.5 % 

 Table 8 – Classification accuracies of the challenge model and the four dialysis models when tested on 
unseen test samples. Each row corresponds to a test set, each cells contains the percentage of samples 
from this set that was correctly labeled by the model of the respective column. Models with 80% 
classification accuracy or more are highlighted in green. Each iteration corresponds to a slightly different 
sample size and quality level for the dialysis related ECGs and a new random split into training and test 
portions for the challenge samples in the challenge and combined datasets (see explanation section 3.6).  
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 AFT/PTB Model Challenge Model 

AFT/PTB test set 100.0 % 91.7 % / 93.8 % / 95.8 % 

Challenge test set 60.3 % 91.0 % / 89.4 % / 87.4 % 

Table 9 – Classification accuracies of the two PhysioNet models when tested on unseen test samples. 
The AF and control samples used to train the AFT/PTB model come from two different databases. The 
challenge model was trained on samples from one database specifically intended for training an AF 
detection algorithm. Three different accuracies were noted for the challenge model because it was trained 
and tested three times with the same underlying dataset but different random split into training and test 
portion.  

 

5.3.2 Classifier Characteristics and Details 

Each model is made up of 60 k-nearest neighbor classifiers, one per density distribution per attractor 
projection. The number of neighbors k is determined for each of them via an automated optimization 
process that minimizes five-fold cross-validation loss [38]. The resulting numbers of neighbors for the 
different models are visualized as boxplots, see figure 24. This figure shows, that the AFT/PTB model is 
comprised of classifiers with a very low number of neighbors. Since the median number of neighbors is 
one, the lowest possible number of neighbors, more than half of the classifiers in this model use only one 
nearest neighbor. The challenge model’s classifiers use a similar number of neighbors for all three 
iterations, with a median of 11.5 for the first iteration and 11 for the latter two. Results for the combined 
model are in the same range, the first iteration being slightly higher, with a median of 15. The classifiers 
in the during dialysis and dialysis 24h models use lower numbers of neighbors than the challenge and 
combined model, with medians ranging between 3.5 and seven. Numbers of neighbors in the start of 
dialysis model differ among the iterations, with medians between four and fourteen.  

The performance of each individual classifier is assessed by calculating its accuracy based on ten-fold 
cross-validation. These values are visualized in figure 25, with the full values included in tables 12-15 in 
the appendix. For the models that were trained multiple times, the mean across the three iterations is 
plotted. The challenge model’s classifiers perform well, with particular success on the angular densities. 
26, 28 and 24 out of the 60 classifiers exceed the 70% threshold for being used in the classification process 
of an unseen test sample, for the three iterations respectively.  

The classifiers in the start of dialysis model show low accuracies for most of the density distributions and 
attractor projections. Only few of them achieve the 70% accuracy required to be used in the classification 
of a test sample. The classifier trained on the 𝑁 = 3, 𝑘 = 1 attractor projection’s radial density performs 
particularly poorly, with an accuracy that barely exceeds the 50% statistically anticipated value for a binary 
classification. The classifiers in the during dialysis and dialysis 24h models achieve accuracies around 65% 
to slightly more than 70%, with no obvious preferences for a certain density or attractor. The combined 
models’ classifier accuracies are in a similar range for the radial density and attractor outline, but slightly 
higher for the angular densities.  
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The classifiers of the AFT/PTB model all show very high cross-validated accuracies, with every single one 
exceeding the 70% accuracy requirement for their predictions to be considered during the classification 
process. Most of them exceeded 80 or even 90% cross validated accuracy, with the radial density 
distributions performing particularly well.  

 

 

Figure 24 – Number of nearest neighbors used in the individual k-nearest neighbor classifiers of each 
model. Models other than the AFT/PTB model were trained three times on slightly different training data 
due to uncertainties in the manual quality check and an error when filtering the raw data. The red line 
indicates the median, upper and lower edge of the blue box mark 75th and 25th percentile, respectively. The 
most extreme points not considered outliers (inside of ±2.7 standard deviations assuming normally 
distributed data) are marked as the black horizontal bars, outliers are plotted individually in red. Some 
extreme points marked as outliers are out of range, and thus not visible in the figure.   

 
 

  



51 
 

 

  

Figure 25 – Cross-validated accuracies of the individual classifiers the six AF detection models are 
comprised of. One k-nearest neighbor classifier is trained per density curve (angular density, radial density 
and attractor outline) for each of the twenty attractor projections. Accuracies are based on 10-fold cross 
validation. For the challenge model, the combined model and the three dialysis models, the mean across 
the three iterations is shown. Classifiers of more than 70% accuracy are used in the classification of an 
unseen test record.  
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6.  Discussion  
This section interprets, connects and contextualizes the results from the previous section. It discusses the 
results of control matching the ISAR study records, and the effects of not matching the AF and control 
groups of a training set. The effectiveness of combining SPAR with k-nearest neighbor classification for AF 
detection is analyzed by comparing the challenge model to entries from the original challenge and other 
AF detection algorithms in terms of performance, stability and complexity of the algorithm. The final 
subsection of this chapter uses the three iterations of the dialysis models and the combined model to 
analyze how well the proposed methodology performs on ECGs during or after dialysis. Furthermore, the 
effects of different levels of pre-processing and training set compositions are discussed.   

 

6.1 Control Matching and Overfitting 

The paired t-tests comparing mean age and dialysis vintage between the dialysis subjects with and without 
AF, show that without control matching, there are significant differences in both parameters between the 
two groups. This confirms that control matching should be performed to avoid confounding factors in the 
classification [42]. The paired t-tests performed after matching and the boxplots shown in figure 19, show 
that the control matching approach of selecting subjects of the same gender, that are ±10 years in age 
and picking the closest match in dialysis vintage, was successful in matching those parameters. Influences 
of other differences between the two groups that were not considered in the match are however still 
possible.  

The AFT/PTB model demonstrates the effects of not matching the AF and control group data. Because the 
AF and control samples in this training set are from two different databases, there is a variety of 
differences between them, that may influence the model. Aside from the differences in cardiac rhythm, 
factors such as subject age and cardiac health may cause visible changes in the attractors and their 
densities. Additionally, the control samples taken from the PTB database were sampled at a much higher 
frequency of 1 kHz than the samples in the AFT database, which were sampled at 128 Hz. This affected 
the filters used to remove noise from the ECG signals, particularly with regards to the lowpass filter. 
Despite increasing the filter order from six to nine, the lowpass applied to the PTB data only achieved an 
attenuation of - 23 dB at a frequency of 60 Hz instead of -80 dB. These different frequency characteristics 
in the filtered ECG samples may also be visible in the attractors.  

The AFT/PTB model performs extremely well when tested on unseen samples from the same source 
(perfect accuracy of 100%), but poorly when tested on a different dataset (60% accuracy on the challenge 
test set). This is a problem known as overfitting, where a model focusses too strongly on the particular 
training data at hand and then lacks the generalization needed to be successful in classifying records from 
other datasets [28]. In this case, the different subject and frequency characteristics of the two groups are 
more notable in the attractor densities than the difference between AF and sinus rhythm that the model 
is intended to detect. The model is perfect at identifying if a sample is from the AFT or the PTB database, 
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but not if AF is present. This is also reflected in the high number of classifiers in the model that use only 
one nearest neighbor, which can often lead to overfitting [28].  

While the AFT/PTB set proved unsuitable for training a functioning AF detection model, it can still be used 
to test the challenge model. Unlike the AF/PTB model the challenge model showed excellent results when 
tested on samples from a different source, i.e., the AFT/PTB test set, which supports that this model is not 
overfitted to training set. The AF and sinus rhythm data in the PhysioNet 2017 Challenge training set were 
all recorded on the same device and underwent the same preprocessing steps [32].  

 

6.2 AF Detection During Dialysis  

The visual comparison of the three-point attractors from the start of dialysis showed little visual 
distinction between the AF and control (no AF) samples. This is consistent with the low cross validated 
accuracies of the classifiers trained on the 𝑁 = 3, 𝑘 = 1 attractor projections during the three iterations 
of the start of dialysis model. While the classifiers trained on some of the higher dimensional attractors 
have slightly higher cross validated accuracies, the overall performance of the model is still low. This may 
also be due to the small sample size of this training set, which is only around 60 samples (63, 61 and 59 
for iterations I, II and III respectively), which is very small for a classifier with 64 features. Higher 
dimensional classifiers require a larger training sample to maintain the necessary density of datapoints in 
the feature space to find nearest neighbors [28], see section 2.4.  

Dialysis is known to distort the ECG waveform due to fluid and electrolyte shifts [2]. The visible differences 
in attractor shape and density between the PhysioNet and start of dialysis samples, show that these 
changes are also reflected in the three-point ECG attractors and its densities. Presuming this is also true 
for the higher dimensional attractors, this explains why the challenge model has a low cross validated 
accuracy for the start of dialysis test set, as the differences between the two datasets exceeds the 
difference between AF and control that is to be detected by the model. The challenge model’s good 
performance on the combined test set is due to PhysioNet samples making up 70% of this test set, which 
compensates for the worse results of the model in the dialysis portion of the combined test set.   

The fact that the dialysis 24h and combined models never markedly outperform the during dialysis model 
when classifying dialysis test samples shows that adding post-dialytic ECG samples or samples unrelated 
to dialysis to the training set, brings no benefit for AF detection during dialysis. The combined model’s 
performance on the challenge test set is also never better than the challenge model’ performance. These 
results show that adding dialysis samples to the training set when aiming to classify records unrelated to 
dialysis, also does not improve the model. Since the attractors and densities of PhysioNet and dialysis 
samples appeared so different upon visual inspection of the N = 3, k = 1 case, it is possible that the 
features of PhysioNet and dialysis samples are so different that their training samples are located in 
separate regions of the feature space. This would mean that for a dialysis test sample, few if any PhysioNet 
sample will be amongst its nearest neighbors and thus affecting its classification, even if they are included 
in the training set, or vice versa.  
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Overall, the dialysis models show slightly lower classification accuracies than the challenge model. This is 
consistent with the expectation that samples collected during dialysis are more difficult to classify because 
of the aforementioned distortion of the ECG waveform. Additionally, samples with other arrhythmias than 
AF are included as controls in the dialysis data sets but excluded from the challenge set. Another 
advantage the challenge model has over the dialysis models, is the fact that its training set is considerably 
larger than any of the dialysis training sets. Since the performance of the dialysis 24h model is however 
approximately equal to the during dialysis model, which is trained on only around half the number of 
samples, this effect may be negligible, as 180 training samples may simply be sufficient for this application.  
Despite all these challenges, the during dialysis model still performed well, with an 85.7% accuracy for the 
start of dialysis test samples.  

The small variance between the iterations of the dialysis and combined models suggests that the 
differences in filtering and sample selection have little to no effect on the models’ accuracy. This is 
consistent with previous studies working with SPAR that have highlighted the method’s robustness 
towards outliers and noise [21, 25, 26]. Experimenting with even less preprocessing and/or filtering and 
may be a topic for further research, as it would further reduce the effort of generating training samples 
and extracting features.    

 

6.3 Classification Performance   

Since the results from the original challenge are published [32], the results of the challenge model can be 
used to compare the proposed methodology to other entries in the challenge. In the challenge, models 
were scored using mean F1 scores. For comparability, this metric was also computed. In this case F1 scores 
are almost identical to the accuracy scores, as the models were trained on an equal number of AF and 
control records resulting in very balanced classes, see section 4.4 for more information on the two metrics.   

The F1 scores of the challenge winners are summarized in table 10 [32]. Winners were chosen based on 
the algorithm’s performance on a hidden test set. The model’s scores on the training set and a 300-sample 
subset of the training set referred to as validation set, are also reported, to indicate if a model has been 
over-trained on the training data [32]. Three of the winning algorithms were based on complex machine 
learning techniques, namely combining features from deep neural networks with extreme gradient 
boosting [43], a multi-layer cascaded binary classification approach [44] or recurrent neural networks [45], 
while the fourth used a random forest with manually selected features [46]. 

A direct comparison of those algorithms to the challenge model is unfortunately impossible, since the 
training set continues to be unavailable to the public. Additionally, the participants of the challenge were 
also scored on their algorithms ability to distinguish between three categories (AF, normal and arrythmia 
other than AF) [32]. With F1 scores of 0.892 on the challenge test set and 0.937 on the AFT/PTB set, the 
challenge model’s performance is however in a similar range as the challenge winners, which is an 
excellent result considering how computationally inexpensive the combination of SPAR and k-nearest 
neighbor is.  
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Additionally, in the years following the challenge, several articles were published that propose automated 
AF detection algorithms, that work with the same publicly available training portion of the challenge 
dataset, as was used in this thesis. Their F1 scores (mean of F1n and F1a, see section 4.4) and if available 
classification accuracies are summarized in table 11.  These results show that the combination of SPAR 
and multilayer k-nearest neighbor classification used in this thesis, can absolutely match the results of 
state-of-the-art approaches to AF detection. Compared to these approaches, the algorithm presented in 
this thesis has the advantage of requiring less preprocessing, due to SPAR being very robust to noise and 
outliers [21, 25, 26] and requiring no feature selection. Furthermore, the computational cost and 
complexity of the model is far below than that of a neural network or the approach of [15], where both 
traditional ECG features are detected and deep learning features extracted by two different networks, 
before using  discriminant canonical correlation analysis feature fusion.  

Despite the additional challenges involved in processing ECGs recorded during dialysis, the during dialysis 
model’s performance on the samples from the start of dialysis is in a similar performance range as other 
AF detection models published in the last years, see table 11. This is a good result, that highlights what a 
powerful feature extraction tool SPAR is, when it comes to AF detection.  

  

 

Entry Test Validation Training 

Teijeiro et al. [45] 0.831 0.912 0.893 

Datta et al. [44] 0.829 0.990 0.970 

Zabihi et al. [46] 0.826 0.968 0.951 

Hong et al. [43] 0.826 0.968 0.951 

Table 10 – F1 scores of the 2017 challenge winners. The scores in the test column mark the model’s 
performance on the hidden test set. Validation is the model’s performance on a 300-sample subset of the 
training set. [32]   
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Method F1 score Accuracy 

Convolutional recurrent neural network [16] 0.869 87.5% 

Decision tree ensemble [19] 0.84 – 

16-layer 1D residual convolutional network [17] 0.86 80.2% 

Convolutional neural network containing residual blocks and 
recurrent layers [20] 0.889 – 

Discriminant canonical correlation analysis feature fusion [15] 0.907 91.7% 

Challenge Model  0.892 89.3% 

During Dialysis Model  0.855 85.7% 
Table 11 – Performance of other AF detection algorithms working with the same data set. F1 and 
accuracy scores (if available) of AF detection algorithms working with the publicly available 2017 
PhysioNet/Computing in Cardiology Challenge training set. F1 scores were calculated as the mean between 
F1n and F1a to summarize the model’s performance for the binary classification task of AF or control. For 
the challenge model the mean scores across the three iterations, when tested on the challenge test set are 
given here.  

 

6.4 Limitations  

The main limitations of the dialysis related models presented in this thesis are the unknown dialysis time 
for some records and the uncertain start time of the measurement with regards to the dialysis treatment. 
Also, the time of day each recording was started at was unknown. Changes in the ECG during dialysis also 
depend on the patient’s pre-dialytic electrolyte levels and the composition of the dialysate [2]. Both 
factors were not considered in the analysis.  

The comparability between the challenge model, and the during dialysis model is limited by the tenfold 
difference in training sample size. The challenge model and the classification algorithms published in the 
literature were also trained on different sample sizes with regards of the control portion of the training 
set. The challenge model was trained on an equal number of AF and control samples, while the others 
used the full training set available. Whether this affects the model’s performance was not investigated in 
this thesis.   
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7.  Conclusion 
The high classification accuracies of the challenge model for the two PhysioNet test sets, show that SPAR 
is a valid and useful tool for extracting features from an ECG time series for the purpose of detecting AF.  
While none of the models trained in this thesis significantly outperform previously published AF detection 
algorithms [15–18, 20], the combination of SPAR and k-nearest neighbor is far less complex and 
computationally expensive than most if not all of these algorithms. Additionally, little effort was made to 
fine tune or optimize the models in this thesis. Despite the high number of features for each classifier, no 
attempts at feature selection were made. Both distance measure and number of neighbors for each 
classifier were chosen by MATLAB®’s built-in optimization algorithm. The fact that the models still 
performed so well speaks to the immense potential this method has and warrants future research into 
further improvements to the algorithm. Since the SPAR methodology has again proven to be very stable 
towards outliers and signal noise, experimenting with even less preprocessing and quality selection may 
also be a topic for future research.  

Even though the differences in ECG waveform between samples recorded during dialysis and other ECG 
recordings are also notable in the attractor shape and densities, the results of this thesis show that 
automatic AF detection with reasonable accuracy is also possible during dialysis, when using the 
methodology presented in this thesis. Since SPAR can be used to extract features from very short 
recordings, 30s ECGs in this case but also 10s samples in [24], it qualifies for real time monitoring 
approaches.  
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Appendix 

Challenge Model Start of Dialysis During Dialysis Dialysis 24h Combined Model 

AD RD AO AD RD AO AD RD AO AD RD AO AD RD AO 

65.0 61.0 59.3 61.3 61.3 67.7 72.8 61.1 70.6 76.0 62.7 71.9 66.7 57.5 61.4 

70.6 58.3 64.8 58.1 79.0 87.1 70.6 68.3 80.0 66.9 64.3 77.4 68.2 59.8 68.7 

75.7 64.0 66.0 69.4 58.1 58.1 76.7 66.7 72.2 71.0 60.4 70.5 73.7 62.3 65.6 

64.5 60.2 67.3 66.1 64.5 74.2 70.0 66.1 68.9 73.5 63.2 74.4 66.4 59.7 68.4 

76.0 69.7 70.4 59.7 67.7 69.4 64.4 66.7 70.6 73.0 63.8 72.7 76.4 67.2 69.4 

79.0 65.9 70.5 61.3 74.2 77.4 66.7 67.2 68.3 68.8 66.0 72.1 74.5 64.1 72.1 

68.9 60.2 64.0 58.1 59.7 71.0 71.1 66.1 76.7 68.2 59.9 74.9 66.4 61.0 65.9 

71.5 65.9 65.8 66.1 59.7 67.7 73.9 60.6 68.9 71.3 68.2 71.0 71.8 64.8 65.1 

75.0 68.4 69.9 54.8 71.0 69.4 67.2 68.9 68.3 64.6 74.4 69.9 74.0 67.9 70.5 

68.6 59.1 59.2 64.5 53.2 71.0 70.0 64.4 67.8 67.4 65.2 73.3 65.0 59.6 63.7 

71.8 63.7 64.9 54.8 59.7 53.2 63.9 62.2 61.1 64.9 68.2 62.4 71.9 61.6 63.0 

75.1 68.1 66.5 61.3 66.1 64.5 71.7 63.0 71.7 69.4 64.1 72.1 74.0 67.4 68.2 

77.8 70.0 71.0 64.5 69.4 72.6 71.1 71.1 70.0 70.2 67.1 70.2 76.1 65.8 70.3 

77.4 72.0 74.1 51.6 71.0 54.8 66.7 69.4 70.6 66.0 72.4 74.1 73.2 69.7 73.6 

71.1 57.9 59.6 58.1 62.9 67.7 64.4 65.6 68.3 67.7 67.1 71.9 69.0 60.6 63.2 

68.8 63.4 61.8 54.8 71.0 50.0 64.4 70.6 66.1 68.0 64.3 64.1 69.8 61.6 61.5 

70.8 69.8 63.3 62.9 71.0 64.5 63.3 68.9 68.3 66.0 68.0 69.4 68.2 66.3 62.9 

74.4 70.4 68.5 64.5 66.1 58.1 72.2 66.7 70.0 69.6 66.0 71.3 70.4 69.8 68.5 

74.8 73.1 70.4 62.9 69.4 61.3 66.1 65.6 73.3 71.9 64.1 71.9 72.8 65.2 65.9 

75.8 74.0 75.8 54.8 74.2 74.2 63.3 73.9 71.7 66.0 72.1 74.4 74.9 66.4 74.7 

Table 12 – Cross-validated accuracies of the individual k-nearest neighbors classifiers trained during the 
first iteration (filtering error), %. Each model is made up of one k-nearest neighbor classifier per density 
distribution per attractor projection.  Each row corresponds to one attractor projection, with its angular 
density (AD) in column one, radial density (RD) in column two and attractor outline (AO) in column three. 
Classification accuracies were determined via 10-fold cross validation. Classifiers with 70% or more 
accuracy are used in the prediction of an unknown sample and highlighted in green.  
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Challenge Model Start of Dialysis During Dialysis Dialysis 24h Combined Model 

AD RD AO AD RD AO AD RD AO AD RD AO AD RD AO 

68.2 62.5 58.9 55.7 34.4 59.0 74.5 57.6 66.3 69.9 60.7 70.2 68.2 61.4 63.0 

70.5 63.8 69.0 73.8 68.9 65.6 70.1 71.2 72.8 73.8 67.2 73.8 69.2 62.8 70.8 

76.5 63.6 64.8 72.1 59.0 70.5 76.1 58.7 69.0 74.9 62.0 69.7 76.0 64.1 67.1 

66.6 64.3 68.7 52.5 67.2 62.3 66.8 65.8 74.5 69.7 64.8 76.0 68.0 63.0 70.0 

77.0 66.8 69.0 50.8 54.1 65.6 75.0 62.5 76.6 71.3 62.0 73.8 76.0 63.8 71.2 

79.0 62.7 71.9 65.6 68.9 60.7 70.1 65.2 71.2 73.5 61.7 68.3 75.3 62.9 70.4 

68.8 63.2 63.7 57.4 67.2 65.6 66.3 65.8 72.8 68.6 65.8 75.7 67.5 63.8 68.7 

71.1 65.0 69.4 63.9 67.2 59.0 69.0 69.0 69.6 73.0 67.8 69.1 71.1 65.6 67.5 

75.5 71.4 73.6 50.8 65.6 52.5 67.9 75.0 71.7 70.5 66.4 67.2 74.9 70.0 72.7 

67.7 60.7 62.0 50.8 73.8 65.6 65.8 65.2 76.1 69.1 63.1 73.2 66.4 60.3 63.6 

72.1 65.4 67.6 68.9 67.2 59.0 67.9 65.2 66.8 66.9 63.9 68.6 72.7 61.5 66.6 

75.7 65.7 70.4 55.7 57.4 52.5 67.4 64.7 69.6 68.6 59.6 68.3 73.5 63.4 70.3 

79.8 68.1 72.2 65.6 63.9 67.2 71.2 64.1 70.7 69.1 54.9 65.6 76.4 66.0 71.9 

75.3 71.7 73.9 57.4 70.5 67.2 65.2 72.3 70.7 65.6 71.6 72.1 74.6 68.3 74.4 

73.0 67.2 62.6 65.6 59.0 52.5 64.7 66.8 73.9 68.6 62.6 74.0 69.2 61.5 64.9 

70.0 65.2 64.9 62.3 68.9 62.3 64.1 64.7 66.3 68.6 63.4 67.5 69.3 64.1 63.2 

70.0 70.1 65.7 62.3 63.9 60.7 66.8 57.6 63.6 65.0 63.9 65.6 68.9 66.2 64.2 

76.7 70.4 72.8 62.3 68.9 67.2 63.6 69.0 64.1 66.7 64.5 67.5 73.4 69.4 71.5 

75.4 70.4 72.2 57.4 70.5 68.9 67.9 62.0 72.8 71.0 67.8 73.0 71.4 66.4 70.8 

76.5 72.6 77.4 63.9 70.5 60.7 59.2 65.8 66.3 65.6 68.6 73.2 74.9 71.2 76.0 

Table 13 – Cross-validated accuracies of the individual k-nearest neighbors classifiers trained during the 
second iteration (moderate quality check), %. Each model is made up of one k-nearest neighbor classifier 
per density distribution per attractor projection.  Each row corresponds to one attractor projection, with 
its angular density (AD) in column one, radial density (RD) in column two and attractor outline (AO) in 
column three. Classification accuracies were determined via 10-fold cross validation. Classifiers with 70% 
or more accuracy are used in the prediction of an unknown sample and are highlighted in green.  
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Challenge Model Start of Dialysis During Dialysis Dialysis 24h Combined Model 

AD RD AO AD RD AO AD RD AO AD RD AO AD RD AO 

65.5 58.6 57.6 61.0 55.9 55.9 64.2 62.6 76.5 72.4 66.7 70.7 64.7 59.0 62.2 

68.6 59.3 67.4 69.5 61.0 59.3 64.8 70.4 78.2 77.2 70.9 80.1 69.0 62.3 69.6 

75.9 64.6 67.0 71.2 59.3 62.7 74.9 62.0 71.5 76.1 64.1 78.6 76.5 64.5 69.3 

66.5 62.4 65.2 64.4 71.2 76.3 70.4 72.6 69.8 70.9 75.2 80.1 68.2 64.1 69.9 

76.6 68.5 68.6 71.2 74.6 64.4 70.4 70.9 71.5 73.2 66.1 79.5 76.0 68.8 70.7 

76.7 62.4 70.4 54.2 71.2 62.7 74.3 74.9 77.7 67.8 70.1 75.2 75.7 64.6 69.9 

66.4 64.9 62.4 59.3 78.0 59.3 61.5 72.6 66.5 65.0 73.2 74.6 65.4 62.4 68.0 

71.2 65.3 66.7 64.4 69.5 67.8 65.9 70.4 69.8 68.4 67.5 75.2 71.1 66.1 68.7 

75.1 70.3 71.7 64.4 74.6 72.9 66.5 71.5 69.3 70.4 70.7 73.8 77.0 69.9 72.5 

69.6 62.0 59.2 54.2 67.8 62.7 63.1 65.9 71.5 65.0 69.2 75.2 67.5 61.2 65.9 

73.5 63.2 64.4 67.8 78.0 67.8 69.8 71.5 72.1 65.2 69.5 76.9 70.5 63.1 67.6 

76.5 64.3 66.7 54.2 69.5 62.7 63.7 72.1 65.9 71.5 70.1 71.8 73.2 65.7 70.1 

79.6 68.6 70.8 59.3 71.2 66.1 70.9 70.4 73.7 73.5 65.8 72.4 75.7 67.2 70.3 

77.2 68.6 73.3 52.5 74.6 67.8 62.0 74.3 74.3 67.8 73.2 75.2 72.1 69.7 74.6 

69.9 62.3 57.1 59.3 61.0 59.3 59.8 64.2 73.7 65.0 66.7 78.1 69.4 61.1 65.1 

70.2 64.3 62.4 59.3 62.7 64.4 64.2 64.8 68.7 64.4 68.9 69.5 68.7 63.5 63.1 

70.6 66.0 64.3 57.6 69.5 71.2 62.0 64.8 66.5 60.4 66.1 70.1 69.3 67.5 67.7 

73.8 70.5 72.9 64.4 67.8 74.6 60.3 71.5 67.0 66.4 71.8 68.9 72.6 70.2 72.2 

75.9 68.8 71.8 66.1 67.8 71.2 63.7 71.5 72.1 71.8 68.4 78.1 74.3 66.1 71.8 

75.7 75.1 75.8 57.6 72.9 59.3 61.5 68.2 72.6 65.5 73.8 70.9 72.7 75.1 75.5 

Table 14 – Cross-validated accuracies of the individual k-nearest neighbors classifiers trained during the 
third iteration (strict quality check), %. Each model is made up of one k-nearest neighbor classifier per 
density distribution per attractor projection.  Each row corresponds to one attractor projection, with its 
angular density (AD) in column one, radial density (RD) in column two and attractor outline (AO) in column 
three. Classification accuracies were determined via 10-fold cross validation. Classifiers with 70% or more 
accuracy are used in the prediction of an unknown sample and are highlighted in green. 
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Angular Density Radial Density Attractor Outline 

88.4 % 92.9 % 84.8 % 

90.2 % 94.6 % 84.8 % 

84.8 % 91.1 % 84.8 % 

82.1 % 90.2 % 86.6 % 

84.8 % 94.6 % 80.4 % 

87.5 % 90.2 % 86.6 % 

81.3 % 89.3 % 76.8 % 

82.1 % 86.6 % 79.5 % 

85.7 % 92.9 % 86.6 % 

80.4 % 80.4 % 81.3 % 

77.7 % 89.3 % 82.1 % 

86.6 % 87.5 % 92.0 % 

84.8 % 92.0 % 92.9 % 

80.4 % 85.7 % 89.3 % 

79.5 % 84.8 % 83.9 % 

79.5 % 92.0 % 82.1 % 

79.5 % 92.9 % 88.4 % 

78.6 % 91.1 % 88.4 % 

77.7 % 85.7 % 86.6 % 

76.8 % 89.3 % 90.2 % 

Table 15 - Cross-validated accuracies of the individual k-nearest neighbors classifiers trained for the 
AFT/PTB model. Each row corresponds to one attractor projection, with its angular density in column one, 
radial density in column two and attractor outline in column three. Classification accuracies were 
determined via 10-fold cross validation. Classifiers with 70% or more accuracy are used in the prediction 
of an unknown sample and are highlighted in green. 

 

 

 


