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Abstract

The thesis investigates the influence of spatial and temporal parameters on a
conducted simulation of a Francis runner, that operates in off design condition.
The timestep size in seconds, which correlates to one degree of a single runner
revolution (dt), is refined in two stages. The first stage corresponds to 0.5◦ (0.5dt),
and the second, finest timestep size equals the time in seconds, the runner requires
to rotate 0.1◦ (0.1dt) of a full revolution.

In the same manner, additional simulations with three different mesh sizes are
performed. Due to the considerable computational effort, each spatially refined
setup invokes the most coarse timestep size dt. With the results, obtained for each
different mesh size, the procedure of a grid independency study is performed and
documented.

The influence of the total simulation time, is another topic considered in the
scope of this thesis. Simulation time is conveniently expressed in terms of runner
rotations. The simulation duration has been prolonged until approximately 70 full
runner revolutions, in case of all simulations that invoke the coarse timestep size
(dt). Almost 21 full rotations are simulated in case of the two temporally refined
simulations (0.1dt and 0.5dt). The medium mesh size is considered in every setup,
for each different timestep size.

The signal of each monitored global parameter (hydraulic efficiency ηh, head H,
and mechanical power Pmech) along the simulation, is plotted against the simulation
duration Tsim. On the basis of these global parameters, the different refinements
(spatial and temporal) are compared against each other. The global parameters
are also used in the evaluation of the grid independency study. Additional signals,
that are tracked by monitor points, which are located at the draft tube wall, are
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presented as well.

Lastly, the occuring, large scale turbulence flow phenomenon, namely the rotating
draft tube vortex rope, is visualised by the Q-criterion and compared between each
spatially and temporally refined simulation.
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Kurzfassung

Die Arbeit befasst sich mit dem Einfluss unterschiedlicher Zeitschrittweiten, sowie
der unterschiedlichen Anzahl an Elementen, auf die Simulationsergebnisse einer
Francis Turbine, die im Teillastgebiet arbeitet. Simulationen, mit drei verschiedenen
Zeitschrittweiten (in Sekunden), welche geschickterweise in Grad einer vollen Lauf-
radumdrehung ausgedrückt werden, sind simuliert worden. Der gröbste Zeitschritt
entspricht einer Laufradrotation von 1◦ (dt) einer ganzen Umdrehung. Dieser wurde
im ersten Schritt halbiert (0.5dt) und die Zeitschrittweite von 0.1◦ (0.1dt) stellt
die feinste zeitliche Auflösung dar.

Sinngemäß der Verfeinerung des Zeitschritts, wurden auch verschiedene Netz-
größen, simuliert. Angesichts der steigenden Elementanzahl sind diese mit grob,
mittel und fein (coarse - medium - fine) betitelt. Da die Ergebnisse der Simulationen
mit verschiedenen Netzgrößen den Ausgangspunkt einer Netzunabhängigkeitsstudie
darstellen, wurde diese im Zuge der Arbeit ebenfalls durchgeführt.

Ein weiterer Aspekt, mit welchem sich die Arbeit beschäftigt, ist der Einfluss
der Simulationsdauer. Um die Simulationsdauer greifbarer darzustellen, wird sie in
Laufradrotationen dargestellt. Somit wurden nahezu 70 ganze Laufradrotationen,
aller Simulationen, welche den groben Zeitschritt aufweisen, simuliert. Aufgrund
der erheblichen Berechnungsdauer sind die Simulationen mit den verfeinerten Zeit-
schrittweiten (0.1dt und 0.5dt) nur ganze 21 Laufradrotationen simuliert worden.
Die räumliche Grundlage, jede zeitlichen Verfeinerung, ist das Netz, welches die
mittlere Zellenanzahl aufweist.

Während jeder Simulation sind diverse Größen, an definierten Punkten im Se-
tup, aufgezeichnet worden. Alle Simulationsergebnisse und damit der Einfluss
der zeitlichen und räumlichen Verfeinerung, werden anhand der definierten globa-
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len Größen (Hydraulischer Wirkungsgrad ηh, Höhe H und mechanische Leistung
Pmech) verglichen. Die selben globalen Größen werden im Zuge der Auswertung der
Netzunabhängigkeitsstudie herangezogen. Das Signal weiterer, sogenannter Moni-
torpunkte an diversen Stellen der Saugrohrwand und der Einfluss der Verfeinerung
(zetiliche, räumliche) auf dieses, wird ebenfalls dokumentiert.

Zu guter Letzt wird die großskalige Turbulenzerscheinung, der rotierende Wir-
belzopf, für die verschiedenen zeitlich und räumlich verfeinerten Simulationen
verglichen.
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Chapter 1

Introduction

When it comes to electricity storage on a large scale there are several options
available e.g. CAES (Compressed-air energy storage), PtG (Power-to-gas) ap-
proaches, chemical storage as well as battery solutions. While the above mentioned
technologies are expected to become more advanced in the near future, PHES
(Pumped-hydro energy storage) systems represent the most competitive and only
mature solution in terms of large-scale electricity storage (10-600GWh) at present.
In addition, PHES’s offer a wide range of grid managemement services which play
an important role in maintaining the electrical grid resilience. Grid fluctuations
due to feeding our power grid with volatile energy sources such as wind-, or solar
power are conveniently counteracted by means of PHES. [1]
Summing up advantages such as large storage efficiency, low operation and main-
tenance costs, fast response-time i.e. operation-mode switch from pumping to
generating within minutes to seconds, high global roundtrip efficiencies (75-82%),
long lifetime (50-100 years) and gaining more concern as of late: ’black-start’ capa-
bility (restarting the electric grid after a blackout) substantiates PHES’s important
position considering electricity supply. [1, 2]

The main side effect of compensating the unstable output of such volatile en-
ergy sources to the electrical grid on one hand, while also providing for peak power
production to ancillary services on the other, is the requirement of these hydraulic
turbines to operate at off-design conditions more frequently. Part-load, low-load,
and full-load as well as numerous start-stop cycles are accompanied by certain
flow phenomena causing strong vibrations induced by high pressure pulsations
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Introduction

on Francis runners. Resulting high dynamic stresses decrease the design lifetime.
Therefore a hydro power plant owner feels the need to increase operating costs.
The importance of quantifing such costs by the virtue of damaging factors over
a whole operating range, especially in off-design conditions including start-stop
procedures, needs no further explaination. [3]

CFD (Computational fluid dynamics) in combination with site measurements
to verify numerical solutions proves as valuable tool along the way, prior to fatigue
analysis and further lifetime assessment. Extracted pressure fields from a numerical
(CFD) solutions serve as input for the FEM (Finite element method) analysis
of a Francis runner that is investigated. Visualisation of other field quantities
can support insights on operating behaviour and the occuring flow phenomena
to a greater extent. Needless to say the necessity for accurate CFD results is crucial.

1.1 Thesis Outline

On the basis of contributions made by predecessors, the thesis aims to investigate
the influence of spatial as well as temporal parameters in a numerical simulation of
a Francis runner. Efforts made by J. Unterluggauer [4] during the course of GSG
(Green storage grid) and it’s follow-up project MDREST (Development of method
for the life time prediction of hydraulic turbines by means of machine diagnostics)
as well as the supplementing work by A. Schmelz [5] among others, with sole focus
on their underlying CFD approach are revisited. In comparison to their conducted
simulations, the numerical setup was remained the same with the only difference of
changing spatial (number of elements) and temporal (refined timestep size) parame-
ters. Additionally, the dependency of the solution on the total simulation time and
results of a GIS (Grid independecy study) in part-load operating conditions are
adressed in the scope of this thesis. The author is thankful for the given possibility
and hopes to contribute to the project DIGI-Hydro (Digitalisation and visualisation
forming a basis for predictive maintenance in hydropower) under guidance of his
mentor and project leader Ass.Prof. Dipl.-Ing. Dr.techn. Eduard Doujak.
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Chapter 2

Fundamentals

After briefly discussing a Francis runner’s main characteristics, the dynamic fluid
flow phenomena experienced at different operating conditions will be summarized.
Furthermore, a short history of CFD applied to Francis runner set-ups will be the
main emphasis of this chapter.

2.1 Francis Turbine

Classification of hydraulic turbomachines is most common by means of specific
speed nq defined as:

nq = n

√
Q

H0.75 (2.1)

Dependent on discharge Q, heads H in the range between 50m up to 700m and
rotational speed n, Francis runners are located at specific speeds ranging from
20rpm ≤ nq ≤ 120rpm. Along with highest hydraulic efficiencies (> 96% [7]) and
power output of more than 800MW among water turbines, Francis runner’s ability

Figure 2.1: Types of Francis runners depending on specific speed nq [6]
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Fundamentals

to work in pumping mode substantiates it’s numerous deployment when considering
PHES. Several concepts and their functionality are provided in [8].

Figure 2.1 displays different runner geometries based on nq. Smaller specific
speeds (high head runners) yield more radially shaped, narrow blade channels
where as on the other end, a more axial shape with larger blade channels is imple-
mented for medium and low head runners (large specific speeds). Several blades are
connected to the hub on the top side and to the shroud on the bottom of a runner.
Waterways through a turbine are conveniently decomposed into five domains as
depicted in figure 2.2. Headwater is distributed by means of a spiral case 1 via
stay vanes 2 and adjustable guide vanes 3 . While those three components are
required to convert headwater pressure into angular momentum, stay vanes are
additionally responsible for mechanically strengthening the spiral case as well for
providing an equal distribution of water flow. Guide vanes are in control of the flow
rate. After radially entering the runner 4 at it’s inlet, water flow exits in axial
direction at the so-called suction side of the runner followed by a draft tube 5 .
It’s purpose is to decelerate the flow in order to increase turbine efficiency. The
generated torque is converted into electricity by means of a generator connected to
the runner hub via a shaft ( 6 ).

Figure 2.2: Meridional plane of Francis runner [4]
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2.1.1 Energy Conversion

Bernoulli’s theorem for an incompressible (Dtρ = 0), homogeneous (ρ = const.)
fluid flow states constant specific energy along a streamline. Loss-free specific
energy Y ∗ of a fluid particle flowing along a streamline from the inlet 1 to the
outlet 2 (fig. 2.3) through a runner blade channel can be expressed in terms of
total pressure difference ∆pt [9]:

ρY ∗ = p1 − p2 + ρ
c2

1 − c2
2

2 + ρg(z1 − z2)

∆pt = ∆p + ρ
∆c2

2 + ρg∆z

(2.2)

The total pressure difference ∆pt is calculated with static pressures p1/p2, mass
averaged quadratic flow velocities c1/c2, geodetic heights z1/z2 and constants
namely water density ρ and local gravitational acceleration g.

Figure 2.3: Flow along streamline through radial runner and velocity triangles [10]

With net water head H and the correlation Y ∗ = gH, the total pressure difference
between sections 1-1 and 2-2 (fig. 2.4) can be expressed as [9]:

H = ∆pt

ρg
(2.3)
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Figure 2.4: Conceptual water levels and measuring planes [9]

The net water head can be obtained by taking the difference zHW L −zT W L, between
head and tail water level and accounting for losses at the inlet (HWL→1-1) and
outlet (2-2→TWL) circuits. Sections 1-1 and 2-2 schematically represent turbine
measuring planes which are invoked at the same location in the numerical setup.
Averaged field values are monitored at these planes during a simulation.

While the available hydraulic power can be derived from the infamous Euler
turbine equation given in [7], it can also be defined using the loss-free specific
energy Y ∗ and discharge Q [2]:

Ph = ρQY ∗ = ρQgH (2.4)

Available specific energy Y results in Y ∗ subtracted by losses (hydraulic loss Yh)
due to friction an turbulence. The hydraulic efficiency is then expressed as:

ηh = Y

Y ∗ = Y ∗ − Yh

Y ∗ (2.5)

and can be equivalently given in terms of available mechanical turbine power at
the shaft Pm or turbine torque Tm (and angular velocity ω), divided by available
hydraulic power Ph:

ηh = Pm

Ph

= Tmω

ρQgH
(2.6)
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2.1.2 Velocity Triangles

Figure 2.5: Guide vane movement [6]

Taking equation (2.4) into consider-
ation and assuming a constant net
head H, power output regulation can
only be realized by varying discharge
Q. In a Francis runner application
this is implemented by means of ad-
justable guide vane openings. As a
result of guide vane movement (i.e.
variation of guide vane angle ϕ), dis-
charge is set to achieve desired power output and different operating points are
obtained. Figure 2.6 shows resulting runner velocity triangles influenced by certain
guide vane positions. Three main operating points can be distinguished namely
BEP (Best efficiency point), PL (Part-load), and FL (Full-load). It is important
to notice the changing circumferential amount cu2 at the outlet. For example this
reaches from vanishing (BEP), to c′

u2 ̸= 0 (PL), to c′′
u2 pointing in the opposite

direction of rotating velocity u2.

Figure 2.6: Francis runner velocity triangles obtained at different operating
points [2]
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2.2 Operating Region & Unsteady Flow Effects

Prior the installment of a prototype runner, it is common to test it’s operating
behaviour by means of a geometrically similar model runner. Characteristics
gathered from model testing are described using a hill chart. The model hill chart
can be transposed to a prototype runner hill chart utilizing equations for unit speed
n11 and unit discharge Q11:

Q11 = Q

D2
√

H
n11 = nD√

H
(2.7)

Unit entities correspond to a geometrically similar turbine with runner diameter
of D = 1m and net water head H = 1m. Typical hill charts include iso-curves
of efficiency levels as well as constant guide vane opening (angle) iso-lines (see
fig. 2.7 left). While operating points on the basis of velocity triangles have already
been discussed, figure 2.7 (right) schematically splits the hill chart into regions
named after their most prominent unsteady flow effects that occure within those
regions. These dynamic flow phenomena lead to pressure oscillations, that not only

Figure 2.7: Hill chart, operation region and regions of unsteady flow effects [2, 9]

influence the operating mode, but also may cause damage to structual components.
A typical hydraulic energy producers requirement is that the pressure pulsation
amplitude remains below predefined limits. The pressure pulsation amplitude is
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commonly associated with the hydraulic stability of Francis turbines. [11]

Figure 2.8: Visualized unsteady flow phenomena [2]

Following explaination of unsteady flow effects tries to summarize their describtion
found in Phd Thesis’ of Eichhorn [2], Unterluggauer [4] and Magnoli [9].

Best efficiency point
The region closely located around the optimum, BEP, is considered as "rope free
zone". Hardly any swirling appearance as well as a homogeneous velocity profile are
the reason for relatively low dynamic pressure oscillations. Furthermore, draft tube
cone pressure is high enough to prevent the flow from cavitating. Most present
dynamic phenomenon (omnipresent over the whole operating range) occuring
in the rope free region is the RSI (Rotor-Stator Interaction) as a result of the
rotating runner passing stationary guide vanes. The source of this effect is the
inhomogeneous pressure distribution along the spiral case as well as guide vane
wakes entering the rotating runner. Excitation of the runner through spiral case
pressure distribution happens at runner’s rotating frequency fn while guide vane
wakes excite the runner at the blade passing frequency zBP (zGV equals number of
guide vanes):

fBP = zGV fn = zGV
n

60 (2.8)

In conclusion, this phenomenon mostly effects the runner inlet section.
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Part-load
Observation of a rotating vortex rope appearing in the draft tube cone directly
corresponds to an operating point in part-load region (see fig. 2.7 and 2.8). Already
subject to many research projects, it’s pressure oscillation frequency is below runner
frequency in the range of 0.2fn ÷ 0.4fn. The vortex rope’s shape and it’s rotating
character is influenced by volume flow rate and runner outlet swirl. Due to lower
flow rates in the region below BEP (rope free region), a high residual swirl exits the
runner outlet and enters the draft tube. Surplus kinetic energy is transformed into
static pressure. The decelerated swirl, unsteady itself, causes a highly unsteady
pressure field and as a result a helix shaped vortex rope forms and rotates in runner
direction. [12]

Figure 2.9: Vortex rope, graphics adapted from [13]

While pressure oscillations due to this phenomenon are often experienced at the
whole machine set, the part-load vortex rope may be accompanied by cavitation.
The self rotation angular velocity of the vortex rope (ω∗ in fig. 2.9) can lead to a
significant pressure drop in the core region of the vortex and vaporization at low
temperatures becomes possible.

Deep part-load
Just narrated behaviour becomes even more pronounced when further decreasing
discharge Q. Runner outlet swirl becomes more intense, again resulting in a draft
tube vortex. The set-in of channel vorticies (fig. 2.8) marks the beginning of this
often called low-load zone. Inter-blade vorticies are originated by flow seperations
in the runner, mostly taking place at the leading edge.
While the shape of this inter-blade flow phenomenon closely reflects a hairpin
vortex, (see [14]) both, the helix shaped vortex rope and hairpin vorticies along
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runner blades, form a core with high rotating velocities around it leading to low
pressure zones in the vortex core. A pressure drop below vapor pressure results in
liquid’s evaporation, origin to all cavitating circumstances. [15]

Full-load
Changing direction of circumferential amount (c′′

u2 in fig. 2.6) due to increased
discharge results in a counter-rotating swirl. In cases of high local flow acceleration
- going hand in hand with a static pressure drop - pressure might drop below fluids
vapor pressure resulting in a cavitating torch light shaped vortex (see fig. 2.8).
Resulting pressure fluctuation of this phenomenon is usually small by reason of a
relative stable flow condition, making the RSI the highest remaining effect exciting
the runner in full-load operation.

Additional experienced flow phenomena such as KVS (Kármán vortex shedding)
and subdivision of part-load region into higher part-load and part-load zone, as
well as the small region of full-load instability occurance is thoroughly given in [4]
and [11]. Numerical investigation of No-load operating conditions and important
findings regarding it’s CFD approach are given in [16].

2.3 Historical View and Influencing Parameters
in a Francis Runner CFD Simulation

Although rising computational power and the progress made in numerical methods
in the early 1970s were promising, the bigger challenge at that time seemed to be
the introduction of this new method. With CFD already being found in literature
and key modifications to the most famous two-equation turbulence model (k-ϵ)
accomplished by 1978, acceptance, or even familiarity by engineers in the field of
hydraulic turbine design was lacking. It was the capability of the FEM to model
complex geometries with good accuracy that brought first true success to CFD
modeling turbine flow. The evolution from the "quasi-3D" approach (splitting flow
region into meridional and blade-to-blade flow) initially invoking "Laplace Equation"
(potential flow solver) to a fully 3D-Euler analysis, and it’s ability leading to the
first numerically modeled vorticity driven secondary flow often observed in test rigs
at off-design conditions (fig. 2.10), is well documented in [17].
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Figure 2.10: 3D Euler code modeled leading edge vortex in 1989 [17]

After successfully modeling flow through stationary and rotating sections in one
simulation, the first numerical hill chart of a Francis runner was published in 1996.
The deviation to measured absolute efficiency and the well reflected shape of proto-
typ hill chart showed both the enormous potential but also limitations of this new
method. Neglecting not only viscous effects, but also turbulence (Euler approach),
the CFD tool was continuously solidified by the introduction of RANS (Reynolds-
averaged Navier-Stokes) equations and became state-of-the-art by 2000. This new
approach, taking both into account (viscosity and turbulence), allowed for a far
more realistic flow simulation as well as loss analysis and prediction of flow seper-
ation. Being inherently conservative with respect to mass and momentum, most
development with commercial software developer (ASC, CFX and now ANSYS)
was made using the FVM (Finite volume method) approach to model fluid flow. [17]

Trying to numerically predict the draft tube vortex’s complex and unsteady flow
behaviour by means of CFD started in 2001. Accurate simulation of such a flow
phenomenon determined by both large and small scale vorticity dynamics are par-
ticularly dependent on the applied turbulence model. An important finding at that
time resorted to the finding, that the standard k-ϵ model overpredicts turbulence in-
tensity, since the effect of streamline curvature on turbulence production is wrongly
taken into account. To remedy this poor approximation RSM (Reynolds-stress
model) and other two-equation models with streamline curvature correction were
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able to deliver more reliable results. In addition, grid resolution was found to be
another important numerical parameter crucial for an accurate prediction of the
helical vortex tube. This circumstance came even more pronounced not only for
two-phase flow analysis of a cavitating draft tube vortex but also for simulations
of the increasing non-symmetrical flow patterns, dominant in part-load condition.
Quite remarkable on the other hand at that time (2006) was the fact that not
only major excitation frequencies of omnipresent RSI, but even amplitudes of
resulting pressure pulsations, could already be predicted quite accuratly by means
of CFD. [18]

Being a notoriously difficult application when put into practice explains certain
dicta for CFD such as "Cheats, Frauds and Deceivers" or "Colors For Directors".
Trying to counteract this notion, several workshops on validation of method and
results have been organized by the European Research Community on Flow, Tur-
bulence and Combustion (ERCOFTAC). A review of the well-known "Francis-99"
test case is given in [19]. The main author also published a paper documenting the
state of the art in numerical simulation of Francis turbines in 2016 [20]. Outcomes
of contributions cited up to this point shall narrow down further upcoming investi-
gation of Francis runner CFD simulation’s influencing parameters.

As already stated and turbulence being one of the classical, yet in many basic
questions to an unsatisfactory level understood scientific subject, applied turbulence
model has a major influence on outcoming results. Independet of the chosen model,
the fact that turbulence is naturally irregular and showes anything but periodic
behaviour, allows for simple argumentation which substantiates the requirement
for complete model simulations. Component (e.g. only runner and draft tube
domain) as well as passage (sector model of spiral case, guide vanes and one runner
channel) modeling for the sake of computational effort imposes assumed and/or
periodic BC (Boundary condition) at interfaces which improperly mimics the actual
circumstance and forces periodicity on simulated turbulence carried by the fluid flow.

A properly chosen turbulence model needs to go hand in hand with specific mesh
criteria. While mesh quality on it’s own influences solution convergence, numerical
stability and outcoming results, mesh size (the number of cells), is the overall key
parameter regarding the computational domain. Cell counts for a complete turbine
simulation are range from 4.3 million to 20 million (48 mio. with modeled labyrinth
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seals [21]) in the course of Francis-99. According to the authors knowledge, simula-
tions reaching up to 250 and even 300 million cells ([22], [23] and [24]) represent
the highest cell counts achieved in this field so far.

GIS or "mesh scaling tests" are often carried out by performing simulations with
identical numerical setup but using different cell counts (e.g. coarse - medium -
fine). While a steady state simulation on it’s own is only reasonable to acquire
an initial solution for upcoming unsteady calculations, GIS are, on top of their
steady state character, commonly carried out at BEP operating condition. Under
guidance of the author’s mentor, the decision towards performing a GIS for un-
steady calculations in part-load operating condition was made and is hoped to yield
insights on how the mesh size influences this highly dynamic part-load flow beaviour.

Lastly, the influence of different timestep sizes corresponding to the degree (frac-
tions of the degree) of a runner revolution, as well as the number of fully simulated
runner rotations will be investigated.
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Chapter 3

Francis Runner CFD

Understanding (computational) fluid dynamics underlying mathematics on it’s
own is not simple. Putting this knowledge into practice using any current CFD
software available can become a daunting task. While commercial providers (Ansys
Fluent, Ansys CFX, Simcenter STAR-CCM+) are already trying to ease up its
toolbox’ usage by introducing a neat GUI (graphical user interface), the open-source
software in the field of CFD - OpenFOAM - requires additional skill such as code
based input. Regardless of the software put into practice, profound knowledge
of underlying equations and their discretisation, different schemes approximating
derivatives, numerical algorithms and solvers, turbulence modeling and applied
BC is indispensable. Coming to terms with this enables application of basically
every CFD software available and softens their overwhelming character significantly.

3.1 Governing Equations

Although governing equations have been known for centuries, an analytical solution
to fluid flows underlying system of PDEs (partial differential equations) can only
be achieved, by invoking substantial simplifying assumptions. In general, analytical
solutions to PDEs only exist for rather trivial ones. Their ubiquitous nature
in scientific fields that obey mathematical laws have led to numerous numerical
approximating methods. The purpose of such methods is to transform PDEs into
a corresponding system of much simpler algebraic equations. This process will be
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concerned in more detail in the upcoming chapter.

As Leonardo da Vinici’s famous sketches of his "Studies of Water passing Ob-
stacles and falling" ([25]) depict, the approach to define fluid flows motion strictly
resorts to the framework of continuums mechanic. This is also true for turbulent
flow behaviour - even the smallest scales occuring in a turbulent flow are ordinarily
far larger than any molecular length scale. This allowes for the describtion of
(macroscopic) physical properties as continuous functions in macroscopic coordi-
nates (time and space). The motion of (incompressible) fluid flow can fully be
described by flow velocity components u and pressure value p at every spatial
coordinate x of a control volume, at every instant of time t. [26, 27]

Prior the formulation of fluid flows conservation laws (i.e. mass, momentum
and energy conservation) the total derivative operator1

Dt = ∂

∂t
+ u · ∇ (3.1)

is invoked. Aside it’s purpose to reformulate, and in doing so make equations look
more appealing, the very important case of an incompressible fluid is defined as
Dtρ = 0.

Conservation of mass, commonly named continuity equation reads as:

∂ρ

∂t
+ ∇ · (ρu) = 0 (3.2)

Single-phase water flow is approximated to be incompressible hence suffering a
solenoidal’s field restriction leading to continuity equation in it’s reduced from:

∂ρ

∂t
+ ∇ · (ρu) → ∂ρ

∂t
+ u · ∇ρ� �� �
Dtρ=0

+ρ∇ · u ⇒ ∇ · u = 0 (3.3)

Several approaches that treat two-phase fluid flow are well documented in [29].

Conservation of linear and angular momentum i.e. Cauchy’s first and second
law of motion (1827), state symmetry of Cauchy’s stress tensor (σ = σt). Strict
1Basic tensor algebra and as well as explaination of used notation is thoroughly given in [28]

16



Francis Runner CFD

LTE (local thermodynamic equilibrium) simplifies the decomposition of σ in it’s
deviatoric (Shear-rate tensor τ ) and spherical component (negativ pressure −p)
and leads to momentum equation (conservation of momentum) that, for the sake
of brevity, neglects any external field forces (e.g. gravitational force):

ρDtu = −∇p + ∇ · τ (3.4)

In addition to water’s incompressibility, flow through a Francis runner is approx-
imated to be isothermal (∆T = 0) qhich allowes to omit further derivation of
energy conservation equation in the scope of this thesis. The energy conservation
equation when dealing with compressible, and/or non-isothermal flow as well as
required equations of state and second constitutive relationship in order to close this
undetermined system of equations, are provided in basically all referenced textbooks.

The first constitutive relationship required to proceed further termed Newtonian
fluid has it’s orgin in 1687 (Philosophiae Naturalis Principia Mathematica [30]).
Isaac Newton (1642-1727) was the first to relate momentum transport on a molecu-
lar base, namely shear stress or drag, to the velocity gradient or rate of shear strain
by a scalar constant of proportionality (viscosity µ). While several restrictions on
viscous stresses are made when deriving the Newtonian fluid approximation, the
most essential two properties are: [30, 31]

• static dependency of τ on ∇u: neglecting viscoelastic effects hence neither
time derivatives nor time integration takes place in expression

• isotropic fluid: fluid has no preferred direction (typical fluid property)

These are very well alligned with Bird et al.’s [32] more profound description
of all restrictions made when deriving the Newtonian fluid constitutive relation.
Even though the outcoming equation approximating τ reads rather trivial, it
took mathematicians more than a century to generalize Newton’s one dimensional
procedure and extend it to three dimensions. Since an incompressible, Newtonian
fluid flow is considered, the often encountered familiar Stokes hypothesis is superflous
and shall remain mentioned. Incompressible fluid flow’s solenoidal u-field reduces
the symmetric, linear combination of velocity gradients (see Bird et al. [32]) right
away to:

τ = 2µs , s = sym(∇u) = 1
2



∇u + ∇ut


(3.5)

Small lettering of s (Strain-rate or Deformation-rate tensor) will become obvious
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when deriving RANS equations.
On the verge of jumping into turbulence, a common starting point (Scheichl [31],
Wilcox [33], Davidson [14],.. all use the exact same starting point) for it’s investi-
gation, in fact the underlying set of equations for a:

• homogeneous (ρ = const. throughout domain),
• incompressible (Dtρ = 0),
• Newtonian fluid (τ = 2µs)

fluid, often considered as the Navier-Stokes Equations, reads as:

∇ · u = 0

ρ
∂u
∂t

+ ρ∇ · (uu) = −∇p + ∇ · 2µs
(3.6)

Going from left to right (bottom eq. 3.6), the terms are titled temporal-, convective-,
pressure gradient- and diffusion-term.

3.2 Turbulence and it’s Modeling

Osborne Reynolds’ (1832-1912) famous pipe and channel flow experiments led to
the familiar demarcation of turbulent from laminar flow. The appearance of "slugs"
and "puffs" depicted in figure 3.1 at a critical threshold of Reynolds number Re,
represents one of the first visualisations of a turbulent flow. Already observed in one

Figure 3.1: Reynolds’ experimental set-up and visualisations (originally by dye
injected into water) [31]
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of THE classical literature on turbulence ([26]), most flows occuring in nature and
engineering applications are turbulent. Laminar flow is the exception (e.g. journal
bearing). Resorting to the classical "definition" rendering a flow turbulent, neces-
sary ingredients are I unsteadiness, II three-dimensionality, III the presence
of vortices, i.e. non-vanishing vorticity (traced back to non-vanishing viscosity).
A fourth requirement, IV randomness, states temporal non-reproducibility of a
viscous flow. The most often encountered property, necessary for the occurance of
turbulence is a sufficiently large Reynolds number V Re ≫ 1. The presence of
a rigid surface VI , and consequently it’s no-slip condition leading to high shear
rates, is the last prerequisite. [31]

Adimensionalisation of momentum equation (see e.g. [34]) yields dimensionless
conservation of momentum2 and Reynolds number Re (ν = µ/ρ):

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u , Re = UL

ν
(3.7)

Rigorous description of turbulent flow is difficult since it is accompanied by an
abundance of different time and length scales. More precisely, it is due to the
non-linear (quadratic in u) term on the LHS (Left-hand side) of momentum equa-
tion and the associated dynamics of smaller scales, resulting from subtle interplay
with non-vanishing (contrasting Euler-limit: Re → ∞) viscous term at the RHS
(Right-hand side). Numerical simulation resolving scales all the way down to the
smallest scales of turbulence (Kolmogorov scales) is known as DNS (Direct numer-
ical simulation). Extremely fine temporal and spatial discretisation is required,
hence fluid flow through most simple geometries could have been accomplished as
of yet. [31]

In order to remedy just narrated difficulty, scientists have resorted to statistical
methods. Instead of discussing several averaging methods pertinent in turbulence
model research, the basic idea behind each method is explained by means the
following experiment. Formulation of time-, spatial- and ensemble- averaging pro-
posed by Reynolds, as well as the idea behind Favre averaging (density-weighted)
for compressible flow considerations, is given for example in [29].

Figure 3.2 sketches the turbulent wake behind an initially stationary cylinder
2∇ · (uu) = u · ∇u + u✘✘✘∇ · u = u · ∇u
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Figure 3.2: Realizations of an experiment [14]

towed through a quiescent fluid at constant speed. Despite identical inital condi-
tions, the repetition of this experiment while measuring velocity ux as a function
of time at the fixed position x0 each occasion, shows different realizations. In case
of the depicted experiment, time-averaging each realization yields the exact same
mean value (horizontal line along realizations). Each aformentioned statistical
approach is concerned with expressing flow field quantities as the sum of it’s mean
and fluctuating part. E.g. the instantaneous velocity u(x, t) is decomposed into
the sum of mean velocity U(x) and it’s fluctuating part u′(x, t). Same procdure for
the decomposition of p and s, followed by averaging eq. (3.6) with some knowledge
of correlations finally yields famous RANS equations:

∇ · U = 0

ρ
∂U
∂t

+ ρ∇ ·


UU + u′u′


= −∇P + ∇ · 2µS

(3.8)

The fundamental problem of turbulence, also known as Closure Problem, lies within
the prescription of the Reynolds-stress tensor σR = ρu′u′ (reordering the above
momentum equation yields more common notation of specific Reynolds-stress tensor
τ R = −u′u′). Being symmetric, τ R’s six independent unknown components on top
of four unknown mean-flow properties (P, U), yield a total of ten unknowns. With
a grand total of four equations (one scalar, one vector equation), the system (3.8)
remains undetermined. Tackling the circumstance of this undetermined system, i.e.
finding approximations for unknown correlations in terms of known flow properties,
can be understood as turbulence modeling. [33]
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In quest of sufficient equations, the concept of the Reynolds-stress equation is
inevitable. Not only does it represent it’s own class of tubulence models (2nd-
Order) their derivation (taking moments of NS equation (u′

iN (uj) + u′
jN (ui) = 03),

showcases important turbulence quantities. As seen in [33], this derivation illustrates
the closure problem of turbluence (by gaining six new equations, 22 new unknown
correlations are generated). Trace operation of the Reynolds-stress equation (i.e.
tr



u′

iN (uj) + u′
jN (ui) = 0


) yields the important k-equation, here expressed in

terms of physical processes:

ρ
∂k

∂t
+ ρU · ∇k = P − ϵ + Dµ + DP + ”t.t.” (3.9)

LHS reads as a momentum equation i.e. temporal/unsteady term followed by
convective transport of property k. Further description of the terms on the LHS
(P .. production, ϵ.. dissipation, Dµ.. viscous diffusion, DP .. pressure diffusion and
t.t... turbulent transport) as well as the exact term-by-term eq. (3.9) is given in [33].

Explaination of the two most important turbulence quantities (k and ϵ) is most
apparent in Lewis Fry Richardson’s (1881-1953) energy cascade and his notori-
ous little poem (fig. 3.3). As already stated, turbulence contains an abundance
of different time and length scales. With the convention to talk of mechanical
energy transferring, different-sized and -shaped structures as eddies, Richard-
son’s energy cascade - present in all turbulent flows - describes a multi-stage

Figure 3.3: Schematic representation of the en-
ergy cascade [14]

"Big whorls have little whorls,
Which feed on their velocity,
And little whorls have lesser whorls,
And so on to viscosity."

3Navier-Stokes operator, invoking Einstein summation convention (Einstein notation) instead of
tensor notation, defined as: N (ui) = ρ ∂ui

∂t + ρuk
∂ui

∂xk
+ ∂p

∂xi
− µ ∂2ui

∂xk∂xk
= 0
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process of large-scale eddies which transfer turbulence kinetic energy k (not to
be confused with wavenumber k in figure 3.3) all the way down to the smallest-scale
vorticies. Turbulence kinetic energy carried by the smallest-scale eddies has to
be dissipated to heat through the action of viscosity. It is quantified in terms of
the normal specific Reynolds-stress components and represents a measure for the
intensity of turbulent fluctuations:

k ≡ 1
2(u′2

x + u′2
y + u′2

z ) = 1
2u′u′ (3.10)

Andrei Nikolaevich Kolmogorov’s (1903-1987) "K41" universal equilibrium theory
(1941) introduced the dissipation rate as ϵ = −dk

dt
. The rate of smaller eddies

receiving energy from larger ones is somewhat equal to the rate at which the
smallest eddies dissipate energy into heat. As previously stated, dissipation into
heat happens through action of viscosity making ϵ and kinematic viscosity ν the
sole influencing dimensional quantities of motion at the smallest scale. Simple
dimensional analysis yields the Kolmogorov scales of length lK41, time tK41 and
velocity uK41 representing the smallest scales of turbulence: [14, 33]

lK41 ≡
�

ν3

ϵ

� 1
4

, tK41 ≡


ν

ϵ

 1
2

, uK41 ≡ (νϵ)
1
4 (3.11)

Still in need of closure, the first attempt in a mathematical describtion of said
turbulent stresses was introduced by Joseph Valentin Boussinesq (1842-1929) in
1877 (prior to RANS’s origin in 1895). His famous concept approximates the
Reynolds-stress tensor by embracing a so-called eddy-viscosity. This titles the
whole class of 1st-Order turbulence models as EVM (Eddy-viscosity models).

τ R = 2νtS − 2k

3 I (3.12)

This newly introduced unknown eddy-viscosity (νt = µt/ρ) enabled modeling of
k-equation which is used in virtually all turbulence energy equation models:

∂k

∂t
+ U · ∇k = τ R : S − ϵ + ∇ ·


(ν + νt

σk

)∇k


(3.13)

However, an additional equation expressing νt (or other turbulence quantities
commonly referred to as the turbulent length- or time- scale) is necessary to finally
close the system of equations which culminates in 1st-Order two-equation models.
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3.2.1 Classification of Turbulence Model

Figure 3.4: Hierachy of turbulence
models [35]

Among the many turbulence models that
already exist, five principle classes can be
distinguished (fig. 3.4). Not only the level
of complexity, but also computational effort
decrease from top to bottom. The idea be-
hind LES (Large-eddy simulation) models,
found in between aformentioned DNS and
RANS approach, resorts to the observation
of small scale turbulent structure’s universal
character. Large energy carrying eddies are
computed and instead of numerically resolv-
ing, the effects of small scale sturctures (ho-
mogeneous, isotropic turbulence i.e. statis-
tically uniform in all directions) are modeled.
Although they are computationally consid-
erably cheaper compared to DNS, LES still
require such a high grid resolution for engineering problems of large Re number, a
solution consequencing massive computational costs cannot be adopted. Notwith-
standing the fact that modeling all scales of turbulence is a brutal simplification
and loses much of the information contained in the NS equation, Francis runner
CFD falls back to the RANS turbulence model approach. [33, 35]

Befor proceeding, the difference between 1st- and 2nd-Order RANS turbulence
models needs to be summarized briefly. The description of the Reynolds-stress ten-
sor invoking Boussinesq approximation (3.12) was found to have certain drawbacks.
In assuming an analogy to Newton’s law of viscosity (3.5), it must be emphasized
that viscosity ν is a fluid property whereas eddy-viscosity νt depends upon many
details of the flow under consideration. Flow-history effects and their persistence
over long distances in a turbulent flow impose the most significant influence on
τ R, giving reason to doubt this simple linear relationship between τ R and S. In
addition, turbulence model’s inability to take the effects of streamline curvature,
secondary motions and sudden changes in strain rate into account, can be traced
back to the eddy-viscosity approximation. To omit the introduction of additional
differential equations, the idea of a nonlinear constitutive relation, to approximate
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τ R more appropriately, was introduced. Turbulence models deducing this nonlinear
relation for τ R form the full Reynolds-stress equation (hence 2nd-Order), followed
by suitable closure approximations are termed ASM (Algebraic stress model, in
fig 3.4: ARS.. Algebraic Reynolds-stress). The other type of 2nd-Order models
neglect a constitutive relation and solve the equations (governed by the momentum
of the NS equation) for each single Reynolds-stress tensor entry. Therefore they
naturally take care of the aforementioned effects and Boussinesq approximation’s
shortcomings. They are termed RST (Reynolds-stress transport) models. [32, 33]

Despite RST (or RSM) model’s convenient properties that automatically account
for flow history, streamline curvature and independent treatment of τ R’s normal
stresses, the majority of simulated flows through Francis runners is performed
using 1-st Order turbulence models. In the course of Francis-99 a total of two
participants performed calculations on the basis of RSM. Mössinger et al.’s [36]
results showed no significant advantage over RANS models for simulations at BEP
operating condition. In fact, RSM simulations did not converge for part load
operating condition, leading to Mössinger’s favored overall turbulence model in
terms of numerical robustness, stability and accuracy, namely the SST k-ω model.
This two-equation model undeniably enjoys the most popularity in the field of
Francis runnner CFD applications with it’s origin in 1992. [37]

3.2.2 SST k-ω Model

Depending on the flow region, the SST k-ω model switches between the more
appropriate turbulence model (k-ω and (transformed) k-ϵ model). Although proven
success for a large variety of flow simulations, the k-ϵ model is notorious for
it’s lack of sensitivity to adverse pressure gradients which results in unnaturally
high shear-stress levels and therefore delayed or even prevented flow seperation.
The most prominent development to overcome k-ϵ’s shortcomings with respect
to accuracy and robustness on top of it’s simple formulation hence advantageous
numerical stability is the k-ω model. Somewhat ironic, it’s origin dates back to
the first two-equation turbulence model proposed by Kolmogorov in 1942. In
the spirit of him being deemed as the great believer in dimensional analysis, he
formed a transport equation for a second parameter, namely dissipation per unit
turbulence kinetic energy ω. Reasoning behind his formulation resorts to simple
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dimensional analysis between νt [(length)2/(time)], k [(length)2/(time)2] and ϵ

[(length)2/(time)3]. Additional physical reasoning led to modeling of transport
equation for ω [1/(time)]. The k-ω’s drawback, however, is it’s strong dependence
on freestream values of ω, leading to unphysically large changes in magnitude of
eddy-viscosity (see upcoming equation). [33, 37]

Full derivation of the SST model and it’s fundamental BSL (Menter baseline)
model is given in [37]. The essential supplementing definition for eddy-viscosity
reads as:

νt = k

ω
(3.14)

In order to profit from the best of both, the BSL model switches between the
k-ω model in near wall region (boundary-layer) and retains k-ϵ’s advantage of the
freestream independency in the wake region. Weighting the transport equations
of each model seperatly (multiplication by blending function F1 and (1 − F1)),
before correspondingly adding them together, reduces the four scalar equations
to the BSL model’s transport equations for k and ω. The same blending function
accounts for the transformation of any constant ϕ from the k-ω (index 1) and the
transformed k-ϵ (index 2) to the BSL model:

ϕ = F1ϕ1 + (1 − F1)ϕ2 (3.15)

With the introduction of a second blending function F2, which is solely responsible
for modification of the eddy-viscosity νt, the BSL model was advanced to the
SST (Shear-stress transport) k-ω model. Rational behind the "2nd switch" is
based on the assumption that the turbulent shear-stress in a boundary-layer is
proportional to turbulence kinetic energy k. For conventional two-equation models,
this proportionality can be rewritten in terms of production and dissipation ratio
of turbulence kinetic energy. Overprediction of shear-stress for adverse pressure
gradients (production/dissipation ≫ 1) is avoided by means of second blending
function, hence considered as a shear stress limiter.

Summing up, blending function F1 takes the value one in the viscous sublayer and
the logarithmic region of the boundary-layer (k-ω model) and gradually switch to
zero in the wake region (transformed k-ϵ model). The aformentioned proportionality
of shear-stress is implemented through modification of eddy-viscosity by means
of blending function F2. A value of one is realized for boundary-layer flow region
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prohibiting the overprediction of shear-stress (by decreasing νt) whereas a value of
zero yields the original formulation (eq. 3.14) for the rest of the flow field. The
price to pay for this advanced model is the necessary computation of blending
functions, including their involved distance from the surface. [37, 38]

Despite the applied URANS (Unsteady RANS) approach (refrain from neglect-
ing temporal terms) invoking the SST k-ω model (SST-URANS), discrepancies
compared to measurements in Francis runner CFD simulations have been put in ev-
idence, especially for the simulation of part load operating points. To avoid meshes,
modeling the complete hydraulic machinery meeting LES requirements, hybrid
RANS-LES models titeled SRS (Scale-resolving simulation) show improvements of
results in part load operating condition. [39]

3.2.3 SST-SAS

Reason for the application of SRS models is not only related to superior accuracy,
but first and foremost for their ability to resolve unsteady turbulent structures
which RANS models are unable to obtain. The groundlaying idea of any SRS
model is to harness RANS models strength in wall boundary-layer region and
switch to a more appropriate formulation for free shear flows. As an example,
DES (Detached-eddy simulation) models run in RANS mode for attached flow
regions and switch to LES mode in detached regions away from the wall. This
necessitates an LES grid (and time step) resolution in the majority of the computa-
tional domains (especially when considering Francis runner fluid flow), hence does
not offer notable computational savings over standard LES. In addition, the LES’
turbulent length scale, initiating the model switch, is strongly mesh dependent.
As argued in [40], LES’ future to become the main element in industrial CFD
simulation of entire turbomachinery is considered unrealistic. The more recent
approach, namely SAS (Scale-adaptive simulation), does not switch turbulence
formulation but still enables the formation of a broadband turbulence spectrum. It
is the applied turbulence modeling approach in the scope of this thesis that will be
investigated further.

RANS models suffer from lack of an exact transport equation. On the basis
of k-equation (eq. 3.13), representing the large scale of turbulence energy, this
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circumstance spreads on top of purely heuristic argumentation, to the second
modeled transport equation. Deemed to account for closure, one reason for RANS’
deficiencies lies in the observation that the transported turbulence quantities of the
second transport equation (for example ϵ or ω), relate to the dissipative (smallest)
scale of turbulence. Each transport equation defines an independent scale, one for
large (k-eq.), the other for small scale turbulence (ω- or ϵ-eq.). In recent years,
Rotta’s approach from the early 1970s ([41]), which formulates a more consistent
scaling equation that represents a large scale of turbulence for the second (closing)
transport equation as well, has been modernized. These adaptions form a more
solid base for the continuing term-by-term modeling approach. While derivation of
Rotta’s original k-kL model invoking the integral length scale L and it’s transfor-
mation to the SST k-ω model is summarized in [42, 43], key is that the turbulent
length scale L, estimated for standard two-equation models, will always approach
turbulent shear layer thickness (L ∼ δ). Turbulence models based on Rotta’s theory
behave differently due to the inherent turbulent length scale of the second transport
equation, not only allowing a more subtle reaction to resolved flow features but
also determining both turbulent scales from model’s source terms4. The turbulent
length scale of Rotta’s modeling approach estimates L ∼ LvK . [42]

While classical URANS methods show some improvement relative to steady state
(RANS) simulations, they are bounded to unphysical single mode unsteady be-
haviour. This circumstance cannot be counteracted by either time step or mesh
refinement. Adding the term QSAS to the SST’s ω-equation, enables the model
to operate in SAS mode. QSAS is zero for steady flow situation and the SST k-ω
model is realized. Dependent on the ratio of integral length scale (L ∼ √

k/ω)
to the aformentioned von Kármán length scale (LvK ∼ κ|U′/U′′|), source term
QSAS dominates the other terms in the ω-equation and SAS mode is fully activated.
An unsteady velocity profile yields a smaller von Kármán length scale, which is
detected by QSAS and consequentially increases the production of ω. To summarize,
LvK adjusts to the smallest scales and in doing so increases ω which produces an
eddy-viscosity (eq. 3.14) small enough to allow the formation of even smaller eddies
until the grid limit is reached. [42]

4All other two-equation models determine one turbulence scale on the basis of source terms
(strain-rate S) while the second scale is not defined solely from source terms
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3.2.4 Law of the Wall

Participating in the course of Francis-99, Nicolle et al. [44], have already investi-
gated the effect of near wall mesh refinement. In other terms speaking, they tried
to evaluate the dependency of numerical solutions on the y+-value. The results
were that a completely different behaviour became evident for their two applied
turbulence models (k-ϵ & SST k-ω). While simulations invoking the k-ϵ model were
more or less insensitive when lowering the first cell height, the computed power
output, for simulations with an SST k-ω model approach, decreased rapidly along
with the wall distance and stabilzed for y+-values < 5. This gives reason for a brief
discussion on the pertinency of wall functions.

Boundary-layers are most demanding in terms of appropriate mesh resolution.
High gradients, not only for primary solution variables (velocity, pressure) but
even more so for turbulence quantities, are experienced in boundary-layers to
meet the wall’s no-slip condition. As stated in [45], the main quality criterion for
boundary-layer meshes most CFD users are fixated on is not an achieved y+-value
sub predefined threshold, but rather the number of cells inside the boundary-layer.
In addition, it is crucial that the Re-number dependent boundary-layer thickness δ

(historically δ99) is fully covered by so-called inflation or prism layers. To support
following explaination, figure 3.5 depicts the classical case of a flow over a flat plate
in two dimensions.

Figure 3.5: Flow over a flat plate, graphics adopted from [46]

Appropriate resolution of steep gradients in the direction normal to the wall (∂U/∂y)
requires a certain cell height of the closest cell to the wall, inflation layer growth
rate, typically in the range of 1.05 ÷ 1.3 and enough inflation layers to include δ99

(see dashed red line in fig. 3.5). The smoothness of the last prism layer (farthest
away from the wall) merging into the non boundary-layer mesh is another grid
quality measurement. Small volume transitions are favorable.

The premise behind wall functions is to circumvent the aforementioned mesh
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Figure 3.6: Law of the wall, graphics adopted from [48]

refinement when approaching the wall by means of empirically gathered func-
tions which approximate the boundary-layer profiles. It’s concept or rather the
existence of boundary-layers is traced back to the findings of Ludwig Prandtl in
1904 [47]. Based on his theory it was shown that the near-wall region can be
subdivided into two layers, i.e. the innermost so-called viscous sublayer followed
by the logarithmic or log-law layer. The region inbetween is often considered as
buffer layer (see fig. 3.6). As indicated by it’s name, molecular viscosity plays
the dominant role in the innermost sublayer (laminar-like flow) while turbulence
dominates the mixing process further away from the wall. Viscous and turbulent
effects are of compareable magnitude in the buffer layer. Wall functions employ
empirical formulation on the basis of dimensionless near-wall mesh node distance
y+. Underlying mathematics accounting for the appropriate profiles of mean-flow
as well as turbulence quantities in the near-wall region, can be looked up in most
CFD toolboxes userguides (e.g. [49], [50]).

Modern CFD codes provide automatic near-wall treatment, i.e. the switch be-
tween wall-function and the so-called low-Re-number method. If boundary-layer
resolution meets a y+-value sub certain threshold, low-Re-number method (in this
case the Reynolds number refers to turbulent Re-number which is of the order
of O(1) for the viscous sublayer) is applied. A more economic mesh in terms of
numerical effort resorts to the wall-function method. From figure 3.6 it is clear
that y+-values in the buffer layer region (5 < y+ < 30) inaccuratly predict the
flow property (in this case tangential velocity along wall), and should be avoided.
The implementation of inflation layers with a first cell height that yields y+ < 5
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(which is recommended to be even lower y+ < 2 by [50]), and therefore refrains
from modeling the flow in it‘s laminar region, is however cumbersome and takes
great effort in the meshing process.

3.3 Finite Volume Method

The already introduced governing equations in the previous chapter as well as
transport equations of each turbulence model (current version in usage is provided
in every CFD toolbox userguide), are PDE’s. A solution to such typs of equations
is acquired by using approximation methods. Most development of numerical ap-
proximating methods in the field of CFD is achieved for the finite volume method.
As of today, every relevant software provider’s toolbox (certainly mentioned ones)
is based on the FVM. This is also the case for the used toolbox in the scope of
this thesis namely Ansys CFX. Crudely speaking, FVM can be thought of as
modeling the volume of interest, flow passes through, by means of a finite number
of elements (tiny volumes) "in" which PDE’s are solved. Flow field values governed
by PDE’s are calculated at predefined locations determined by certain nodes of
each element. Following, a brief overview of groundlaying discretisation procedure
and the naturally inhabitant discretisation error must be summarized.

Figure 3.7: Solution domain discretisation for a pipe flow [30]
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For better organisation of one’s mind, there are two executed discretisation pro-
cesses namely solution domain and equation discretisation. While the first is
considered to numerically describe the computational domain dividing space into a
finite number of discrete regions as well as splitting time into a finite number of
time steps (transient simulation), the later copes with appropriate transformation
of each term present in governing equations. In the sense of tangibility, solution
domain discretisation is nicely illustrated in figure 3.7. [27]

A more profound description of solution domain discretisation i.e. the meshing
process is provided in [51].

3.3.1 Equation Discretisation

Figure 3.8: "tanks and tubes" [30]

It is the preceived wisdom of FVM’s first in-
troduction in the early 1970’s. Indeed, the
concept of a finite number of control vol-
umes modeling the physical system of interest
has its origin in 1967. Crediting the idea
to his PhD supervisor, Brian Spalding, the
original figure illustrating Spaldings’s "tanks
and tubes" was initially described in Run-
chal’s PhD thesis (1969). Discrete grid points
are surrounded by a single "tank" or control
volume. "Tubes" or in modern terminology,
fluxes, are referred to as each link between
control volumes. In comparison to this ancient 2D-example (fig. 3.8), discrete
points in a three dimensional domain (i.e. pipe flow in figure 3.7) are placed at
each centre of every control volume or cell. Cells can have an irregular polyhedral
shape consisting of an unlimited number of faces (≥ 4) and each face can have an

Figure 3.9: Cells in a FVM mesh [30]
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unlimited number of edges (≥ 3). With the exception of the domains boundary,
cells are contiguous in respect to their faces making each face common to two
cells, one known as owner (P ), the other one as neighbour (N) cell. In a colocated
variable arrangement, all field quantities to solve for are stored at the cell centroid
(P ,N) of each control volume. [30]

Achieving good accuracy when dealing with 2nd-Order equations, the order of
discretisation is required to be equal or higher than the order of the equation to be
discretised. Proof of the FVM’s discretisation being 2nd-Order accurate in time
and space, requires field values to vary linearly across each control volume and is
shown in Jasak’s thesis [27].

To arrive at the corresponding system of simpler algebraic equations, the integral
form of governing equations over each cell is discretised. Governing equation’s
integral form as well as several identities of the Gauss- or divergence theorem,
relating volume integrals (e.g.

�
V (∇ · a)dV ) to it’s flux through the volume’s closed

surfaces, are adressed in [27] as well. Assumption of linear variation across each
single cell’s bounding surfaces finally yields the expression for the summation of
face integrals5:

�
VP

(∇ · a)dV
Gauss=



∂VP

dS.a −→ �
f

��
f

dS.a

� =
�

f

S.af (3.16)

Due to the necessity for face values as seen in eq. 3.16 at each face centre (fig. 3.9),
discretisation schemes are often considered as face interpolation schemes. Face
values are expressed (interpolated) in terms of cell centroid values of the owner
(P ) and neighbour (N) cell. Regardless of the applied face interpolation scheme,
numerical errors naturally inhabit the discretisation procedure and cannot be
avoided. While this first group of errors (equation discretisation error) is commonly
considered as numerical diffusion, the other error (solution domain discretisation)
comes down to insufficient mesh resolution, mesh skewness, and non-orthogonality.
Put simply, they lack mesh quality. Numerical diffusion is a direct consequence
of discretisation practice that is lower than 2nd-Order accurate. This drop in
the order of discretisation is required to preserve boundedness of the solution.
5a.. represents an arbitrary variable, S.. outward-pointing face area vector and af .. face centre
value of a
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Jasak [27] shows in great detail the numerical diffusion that can be related to the
discretisation of the temporal and convective terms for several different schemes.

Only the basic concept of the FVM discretisation process up to this point shall
be explained. Profound describtion of term-by-term discretisation using different
schemes and the optional explicit versus implicit treatment of temporal terms is
well documented in referenced literature. [27, 30, 29].

Discretisation process ultimately leads to matrix and source term construction.
The system of algebraic equations in the end required to solve for, is conveniently
described as a matrix equation. Figure 3.10 schematically displays the contribution
of each term’s discretised form to the matrix equation, shown for a transport
equation of a random field value Ψ with a source term SΨ.

Figure 3.10: Examplary matrix construction [30]

At this point, the implementation of BC corresponds to adjustment of certain
entries in the coefficient matrix [A] and source term [b].

3.3.2 Pressure-Velocity Coupling

Incompressible fluid flow’s solution algorithm requires certain care. Since momen-
tum equation (3.4,3.6) strongly couples both fields (p, u) and the incompressible
continuity equation (∇ · u = 0) only imposes a restriction on the velocity field, the
system of three equations solving for four unknows is undetermined. Difficulties
associated with this pressure-velocity coupling accompanied by the discretisation
of the pressure gradient led to a variety of segregated and coupled algorithms.
The mother of segregated algorithms, SIMPLE (Semi-implicit method for pressure-
linked equations), and it’s improved spin-offs, initally solve the momentum equation
in a sequential manner. Continuity equation’s restriction is then "projected" onto
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the solution field in a seperate step. This "guess-and-correct" nature requires a
large number of iterations. Coupled solvers, as the name states, solve both, the
continuity and the momentum equation as a single, hence much larger system. A
detail analysis between the two different approaches is given in [52].

Although a staggered variable arrangement (velocity evaluated at cell-face centres,
other variables stored at the cell centre) not only proved efficient and accurate
but also avoided prominent chequerboard oscillations, this method was bounded
to structured meshes. Eagerness to solve fluid flow for complex geometries (un-
structured meshes) has led to development for colocated arrangements. The most
notable contribution enabling robust computation of meshes, storing all variables
at the the same node, is credited to Rhie and Chow (early 1980s). It’s numerical
framework is very well documented by Bartholomew et al. [53].

The CFX toolbox uses a coupled solver algorithm based on the Rhie and Chow
derivations. This allows for a fully implicit discretisation of each equation at any
given time step. Solving implicitly discretised equations is generally more demand-
ing in terms of computational effort yet proves superior in regards to numerical
stability and the final number of iterations required until convergence. Due to the
stronger coupling compared to the explicit approach, the system remains stable
even if famous Courant-Friedrichs-Lewy (1967) limit is violated. Explicit system’s
stability is bounded to CFL number [34]:

CFL = U∆t

∆x
< 1 (3.17)

sub unity. Physical velocity U cannot propagate a distance exceeding ∆x in time
equal to ∆t. For conducted SRS, CFX’ solver theory guide, however, recommends
meeting the condition CFL = 1 in the main SRS region for the accurate simulation
of the physical process. [50]

3.3.3 Residual

Because of the governing equation’s non-linearity, the system of algebraic equations
is required to be linearized and solved iterativly. Only the general concept of this
procedure is briefly explained. A profound overview of iterative solvers is given
in [54].
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For the remainder of this chapter the matrix notation [A][Ψ] = [b] (fig. 3.10) is
replaced by A · Ψ = b, equivalent to vector notation. Coefficient matrix A is an
N × N tensor. Solution vector Ψ is a single column vector with N rows. Linear
iteration schemes resort to matrix decomposition (A = M − N). The applied
decomposition technique mainly influences the convergence speed and is not further
considered. Showcasing the concept of a residual is of more importance, hence
carried out. The absolute solution error is defined as the difference between the
exact and approximate solution (ϵ(n) = Ψex − Ψ(n)). Since the exact solution is
unknown, ϵ(n) cannot be determined. The residual provides a measure for the error
of the solution rather than the absolute error. After n-iterations the residual is
expressed as:

ρ(n) = A · Ψex� �� �
b

−A · Ψ(n) = b − A · Ψ(n) (3.18)

Prevailing linear relation between absolut solution error and residual is displayed
by subtracting eq. (3.18) from the exact system of algebraic equations:

A · Ψex − b −


ρ(n) + A · Ψ(n) − b


= 0

−→ A ·


Ψex − Ψ(n)


= A · ϵ(n) = ρ(n)

(3.19)

Qualitative convergence is indicated by a decrease of the residual by three orders
of magnitude during the iteration process. Primary field variables are considered
to be sufficiently established. In case of turbulence field variables, a decrease to a
convergence tolerance of at least 10−6 is recommended. [55]

Figure 3.11: Typical residual control graph [30]

Figure 3.11 schematically displays the convergence history for an arbitrary field
value.
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Chapter 4

Prototype and Numerical Setup

Main characteristics of the prototype Francis turbine under investigation, al-
ready subject to several studies by predecessors (Unterluggauer [4, 56, 57, 58, 59],
Schmelz [5] and Stadler [60]) shall be briefly recapitulated. Summarized numerical
setups of performed simulations in the scope of this thesis are presented in the
second section.

4.1 Prototype Francis Turbine

The hydropower plant under investigation is schematically depicted in figure 4.1.
Intensive site measurements have been performed by Unterluggauer et al. [56], not
only to gain insight on the experienced stress levels the runner is suffering under
different operating conditions, but also to provide a solid basis for the validation of

Figure 4.1: Hydropower plant [56]
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numerical simulations. Only one of the two identical Francis runners was prepared
for the conducted measuring programm while the other runner was maintained
at stationary condition near the rated point (RP). Profound description of the
measuring programm as well as sensor positioning is provided in Mühlbachler’s
thesis [61].

With a net water head of 160m, the turbine is considered a medium-head Francis
runner defined by specific speeds of nq ≈ 56rpm at the RP. The runners main
geometrical property is given in table 4.1. Dependent on the operating point,
discharge varies from ≈ 5m3/s to 37m3/s.

Runner diameter D1,a [m] 2
Number of stay vanes zSV [-] 23
Number of guide vanes zGV [-] 24
Number of runner blades zRB [-] 13

Table 4.1: Runner facts

4.2 Numerical Setup

4.2.1 Spacial Discretisation

While numerous simulations have been performed by predecessors, gathering of
available meshes and their comparsion was the initial task. The full scale computa-

Figure 4.2: Computational domain [59]
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tional domain (fig. 4.2) is decomposed into 5 subdomains, the SC (Spiral case), SV
(Stay vane), GV (Guide vane), RN (Runner) and DT (Draft tube) domain, respec-
tively. Each domain is meshed seperatly after they are glued together by means of
CFX’s interface connection option GGI (General grid interface). Monitoring planes
(see fig. 2.4) as well as monitoring points, according to sensor positioning in the
conducted measuring programm, have been included in the numerical setup.

Since an investigation of a single operating point in part-load region was con-
ducted, only one GV-mesh, corresponding to the guide vane opening (see fig. 2.5)
of certain operating point is available. The turbines power output at this part-load
operating point is estimated at around 37% · PRP .

Each particular domain was (with the expception of the runner: NUMECA AU-
TOGRID5 [57]) meshed using the current version of ANSYS ICEM. Multiblock,
sole hexahedral elemental grids were realized. At this point, after simulations were
finished, the editor focused on the meshing procedure for another prototype Francis
turbine.

Domain Cells [mio.] Min. angle [°] Min. determinant [-] Min. aspect ratio [-] Min. skew [-]
SC_coarse 1.620 6.181 0.175 0.261e-3 0.0653
SC_medium 1.698 7.137 0.199 0.214e-3 0.0472
SC_fine 3.693 6.254 0.0811 0.399e-3 0.0595
SV_coarse 0.400 24.822 0.212 0.414e-3 0.299
SV_medium 1.231 24.808 0.237 0.672e-3 0.290
SV_fine 4.080 24.821 0.282 1.008e-2 0.277
GV 2.597 30.144 0.626 0.663e-3 0.336
RN_coarse 3.143 15.855 0.169 0.252e-3 0.226
RN_medium 4.641 15.383 0.168 0.486e-3 0.229
RN_fine 7.284 18.228 0.251 0.682e-3 0.232
DT_coarse 0.986 31.356 0.429 0.375e-3 0.432
DT_medium 1.401 31.264 0.612 0.462e-3 0.395
DT_fine 3.069 30.379 0.607 0.606e-3 0.392
194 elements <0.2

Table 4.2: Single domain cell count and quality metrics

In order to perform a conclusive GIS, Celik et al. [62] suggest a grid refinement
factor of r > 1.3. The procedure will be elaborated in more detail, but for now it
is only required to state, that the refinement factor necessitates specific different
cell counts of performed simulations. With an increasing cell count, meshes are
notoriously titled "coarse - medium - fine". Due to a total of three available meshes
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for the SC- and SV-domain (already generated to conduct a GIS) and the necessary
single GV-domain mesh corresponding to the appropriate opening, adaption of
different meshes for the GIS in part-load operating condition was limited to the
exchange of meshes only for the RN- and DT-domain. A total of seven different
runner and eleven draft tube meshes were optional. Narrowed down and with
computational effort as well as suggested refinement factor in mind, table 4.2 grants
an overview of utilised mesh sizes and their quality metrics.

Following the study of Unterluggauer [57], same three global parameters, namely
head H, mechanical power Pm and hydraulic efficiency ηh, are chosen to be evalu-
ated in the course of conducted grid convergence study. Although grid refinement
is recommended to be done systematically, it is appropriate to use an averaged
"global" cell size when observing global variables. Achieving the desired refinement
factor for a three dimensional domai0,n which tracks global variables, corresponds
to a cell count factor cr of:

cr = Ncells_fine
Ncells_medium

�
= Ncells_medium

Ncells_coarse

�
= 1.33 ∼ 2.2 (4.1)

When comparing each domains cell counts seperatly (coarse - medium - fine) in
table 4.2 to the outcome of equation (4.1), not only unsystematic mesh refinements
but also seldom achieved cell count factors will become evident. This corresponds
to a refinement factor sub suggested threshold of 1.3 as seen in table 4.3.

Refinement factor r [-] Total mesh Cells [mio.]

r32 = 1.1341 Coarse - 3 8.746

Medium - 2 11.568
r21 = 1.2641

Fine - 1 20.723

Table 4.3: Refinement factor and total domain cell count

The procedure of a GIS according to Celik et al. [62], is the specific guideline for the
calculation and the reporting of discretisation error estimates in a CFD simulation.
To the authors knowledge, conducted GIS’ in the field of Francis runner CFD. have
been evaluated for stationary simulations, around BEP operating condition, only.
Given this fact alone, as well as the pronounced inhomogeneous velocity profiles,
and the awarness of complex flow phenomena occuring at off design conditions,
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supported the decision towards a conducted mesh scaling test in part-load operating
region.

4.2.2 Temporal Discretisation

Influence of temporal parameters is another topic considered in the scope of this
thesis. The timestep size dt in a Francis runner CFD simulations, is most commonly
expressed in terms time, the runner is required to rotate a certain amount of degrees.
To allow for a comparison, predecessors contributions shall be briefly summarized
in regards to total simulation duration as well as timestep size.

A total of 15 runner rotations with a timestep value corresponding to 1◦ of a
single runner revolution have been performed by Unterlugauer et al. [57]. The same
timestep size but less total runner rotations (8.5), due to larger total cell counts
(25 mio. for RN domain, 37 mio. for RN VS domain, see [58]) were simulated in a
follow up effort, investigating the impact of air admission in low-load operating
conditions. The thesis of Schmelz [5] reports an approximate total of 30 runner
rotations with a timestep size corresponding to 5◦ of a runner revolution. Finally,
Stadler [60] simulated a total of seven runner rotations and a time step size of 1◦

without injection of air in the GV region.

Setup Cells [mio.] dt [◦] Tsim [rev.] dt [s]
Steady [57] 5.9911 58.628 1000 iterations 2.228-2
Unsteady [57] ≈ 13 1 15 3.8889e-4
Unsteady [58]2 25/37 1 8.5 3.8889e-4
Unsteady [5]2 13.584 5 ≈ 30 1.9445e-3
Unsteady [60] ≈ 6 1 7 3.9e-4
1no spiral case, one runner sector
2air admission

Table 4.4: Timestep size and simulation time summary

While aformentioned parameters relate to unsteady calculations, a steady state sim-
ulation with a physical timestep size of 1/ω = 30/nπ −→ 0.022282s was conducted
in order to acquire an initial solution, unsteady simulations utilize as input. The
initial simulation is reported to omit the SC domain in it’s spatial discretisation
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and uses a correspondig mass-flow distribution with an incident angle defined at
SV inlet. Its influencial aspect on follow up simulations due to this truncated
initial simulation for the sake of computational savings, might be questionable and
a source of uncertainty. Table 4.4 summarizes predecessors conducted simulations.

The performed simulations in the scope of this thesis with respect to the ap-
plied temporal parameters are given in table 4.5. Three different time step sizes
have been chosen to compare and evaluate it’s influence on the numerical solution.
Spacial discretisation in each case corresponds to the medium mesh (11.568 mio.
cells) size.

Setup Cells [mio.] dt [◦] Tsim [rev.] dt [s]
Unsteady 11.568 1 ≈ 70 3.8889e-4
Unsteady 11.568 0.5 ≈ 21 1.9444e-4
Unsteady 11.568 0.1 ≈ 21 3.8889e-5

Table 4.5: Current timestep size and simulation time

All simulations were performed on the fastest supercomputer in Austria, namely
VSC-4 (Vienna Scientific Cluster). In case of the dt-timestep size, an approximate
wall clock time of ∼2.5-3 days was required to simulate 7 full runner rotations.
For 0.5dt, half the runner revolutions could be simulated in the same amount of
days. This relation trivially extends to a tenth of the timestep size. In the end
a total of 70 runner revolutions with a timestep size of dt, and 21 full rotations
with 0.5dt as well as 0.1dt were simulated. Resulting total wall clock time can be
estimated to ∼30 days for dt-calculations, ∼18 days for 0.5dt- and ∼90 days of
0.1dt-calculations.

4.2.3 Solver Settings

The analysis type for each simulation is set to transient and the applied turbu-
lence model is the scale resolving SST-SAS model with automatic wall function
treatment. CFX’s "High Resolution" scheme is chosen for the discretisation of the
advection terms. "Second Order Backward Euler" is selected for temporal terms.
While treamtent of temporal terms is in agreement with the suggestion of "Best
Practice: Scale-Resolving Simulations in Ansys CFD" ([40]), the advection term is
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recommended to be treated by the BCD (bounded central differencing scheme). A
qualitative comparsion between these two schemes might be interesting, although
occuring differences are expected more in terms of required convergence time, rather
than, if at all, in distinctive deviation between numerical solution values. The main
difference between the two schemes is the evaluation of the specific blending factor
which first and foremost influences the convergence rate.

Turbulence numerics is treated, as suggested in [40] by CFX’s "First Order" scheme.
Convergence criteria is set to a RMS (root mean square) value of 1e−8 and the
maximum number of coefficient loops is set to eight. The applied boundary con-
dition configuration is very well in agreement with the most robust configuration
according to CFX ’solver modeling guide ([49]) i.e. velocity/massflow as inlet and
static pressure as outlet condition. Turbulence intensity is estimated medium at
the inlet and outlet boundaries. Each wall is considered to be smooth and the "No
Slip Wall" condition is applied. As already stated, GGI connection is selected for
each linkage of the interfaces between computational domains. Due to is rotating
motion, the "Transient Rotor Stator" setting is selected at the runners inlet and
outlet interface.
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Chapter 5

Results

5.1 Turbulent Structures

Following the guideline of the "Best Practice: Scale-Resolving Simulations in
Ansys CFD" ([40]), first topic on the agenda when post processing a finalized
simulation, is the visual inspection of the turbulence structures. This makes sense
from the standpoint, that the main reason for the application of an SRS model is,
as aformentioned (see chapter 3.2.3), to obtain turbulent flow behaviour in greater
detail. Common approaches, often encountered when visualizing turbulence are the
λ2- and the Q-criterion. The original definition of a vortex in an incompressible
flow was proposed in terms of the eigenvalues of the tensor S2 + Ω2 (see [63]). Ω1

represents the skew- or anti-symmetric counterpart of already introduced strain-rate
tensor S (averaged eq. 3.5). With the more general definition of Q according to [40]:

Q = CQ(Ω2 − S2) (5.1)

an iso-surface, that corresponds to the selected value of the Q-criterion, can be
visualized. Small values of Q are related to weak turbulent structures. The essential,
large scale turbulence is obtained by large values of Q (for high Re-numer flows up
to Q ≈ 108). A value of zero calculates the iso-surface for a perfect balance between
the deformation- and spin- tensor, whereas higher values shift the iso-surface to
regions, where the rate of rotation (vorticity), is dominating the rate of deformation
(shear).
1Ω = skw(∇U) = 1

2 (∇U − ∇Ut)
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Most prominent occuring unsteady flow phenomenon in part-load operating region
is the draft tube vortex rope (DTVR). Post-processing the Q-criterion of conducted
simulations yields the iso-surface, which displays the DTVR’s size and shape. In
figure 5.1, the top view of the obtained DTVR for the simulation with a timestep
size dt (left), is compared to the one which invokes the finest timestep size (0.1dt,
right). The iso-surface is colored with the turbulent or eddy-viscosity ratio (TVR
= µt/µ).

Figure 5.1: DTVR for different timestep sizes: left - dt, right - 0.1dt

It is recognized, that, in case of the 0.1dt simulation (right), the vortex rope extends
much further downstream into the draft tube. The length between each final blob
of vorticity (end of the DTVR) is approximately 1.5 meter.

The same change in behaviour of the DTVR, along refined simulations, is ob-
tained for increasing cell counts (spatial refinement). Figure 5.2 compares the
DTVR for different mesh sizes. Going from left to right, the mesh size increases
from the most coarse mesh (left), to the one with the highest cell count (right).
While the Q-criterion in case of the coarse and medium mesh, obtains more or less
random blobs of vorticity close to the region of the suspected DTVR, the fine mesh
not only shows an extended DTVR, but also a more compact shape of the large
scale vorticity. That indicates the persistence of turbulent structures over a longer
distance when refining spatial parameters. If the medium mesh (fig. 5.2 mid), is
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Figure 5.2: DTVR for different mesh sizes: left - coarse, mid - medium, right -
fine

compared to the fine mesh DTVR (fig. 5.2 right), it is seen that the location of the
impact point at the RHS of the draft tube wall2, varies. The Q-criterion obtains
an early impact of the medium mesh DTVR, with respect to the fine one. As a
result of the impact at the right wall, the vortex rope changes it’s direction and
heads towards the left side (final blob fig. 5.2 mid). A delayed reflection of the
DTVR is evident in case of the fine mesh.

One reason of this varying DTVR’s size and shape, dependent on temporal and/or
spatial parameters, can be related to the different prediction of the swirling magni-
tude at the interface section from runner to draft tube. More precisely, it is due to
the circumferentially located swirling strength of the velocity vector around the
draft tube nose. Comparison of the swirling vector between conducted simulations
is displayed in figures 5.3 and 5.4. Again, computational effort increases from left
to right in both figures.

The value of the swirling vector changes quite drastically and almost doubles
it’s magnitude between the dt and 0.1dt simulation (fig. 5.3). Same increase in
magnitude is evident between the coarse and medium mesh, whereas it remains of
2The flow direction vector towards the draft tube outlet is the reference to determine right and
left
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Figure 5.3: Swirling magnitude for different timestep sizes: left - dt, right - 0.1dt

the same order of magnitude for further refinement (fig. 5.4). The circumferential
locations of displayed swirling vectors indicate the detachment of turbulent struc-
tures. While only the magnitude of swirl changes between refined timestep sizes
(fig. 5.3), the detachment region, not only tends to increase from the coarse to the
medium mesh, but even splits into two regions in case of the fine mesh (fig. 5.4).

Figure 5.4: Swirling magnitude for different mesh sizes: left - coarse, mid -
medium, right - fine

The reason for this split is probably an insufficient timestep size in the conducted
simulation with the finest mesh. High local CFL number values in the region
around the draft tube nose indicate and instable solution, and the predicted detach-
ment region of turbulent structures, which are at the origin of the DTVR, must
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be considered with caution. Without a doubt, the interface where the rotating
runner mesh meets the stationary draft tube mesh, forms one of the main sources
of uncertainty in the conducted Francis runner CFD simulations.

It is readily seen, that an increase in computational effort, due to a refined timestep
size or larger cell counts, leads to greater swirling magnitudes. This is the reason
for the longer persistence of a vortex rope in refined simulations. The decay of
turbulence starts at higher initial values, hence the breakdown from large to small,
and smallest scale turbulence requires a greater amount of time.

5.2 Influence of Temporal Parameters

Aside the residual graph (compare fig. 3.11), that indicates convergence of field
variables, the monitoring of global parameters is another tool that enables to
estimate the validity of the numerical solution. Since each simulation, conducted
in the scope of this thesis, is initiated with a converged solution that was achieved
by a predecessor, the residual plots indicate qualitative convergence for all field
values. However, the recommended decrease to a convergence tolerance of at least
10−6 in case of turbulence field quantities, is not achieved. The RMS (Root-mean
square) value for turbulence kinetic energy and frequency (k and ω) varies between
10−4 and 10−5. RMS values for the primary field variables have decreased by three
orders of magnitude at least, and vary around 10−5 for every simulation. Following,
the influence of simulation time, and different timestep sizes, on the monitored
global parameters, is presented.

5.2.1 Simulation Time Tsim

The simualted duration Tsim is conveniently correlated to runner revolutions. To
get rid of starting oscillations, the first five full runner rotations are not considered
in the following evaluation. Due to considerabe long wall clock times, already
mentioned in chapter 4.2.2, only the simulations which invoke the coarse timestep
size (dt) are calculated for a total of ≈ 70 runner revolutions.

Figure 5.5 shows the behaviour of global variables ηh (top graph), H (middle
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Figure 5.5: Monitored global parameters over Tsim

graph) and Pmech (bottom graph), that have been monitored during the simulation
of the medium mesh size in solid blue. The blue dahsed line displays the mean
value of each variable over the whole range of runner rotations (five to 69). In
comparison, the red and green dashed lines showcase the mean values for the first
ten, and the last 54 runner rotations respectively. It is readily seen, that the mean
values of the first ten runner rotations, deviate by a larger magnitude, than the
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mean values, evaluated for the last 54 rotations, with respect to each mean value
over the whole runner rotation range (blue dashed line). This circumstance is most
pronounced in case of the monitored mechanical power Pmech. In addition, it is
recognized, that the value band from peak to valley (dotted black lines), reduces
almost instantly for each global parameter at a threshold of 25 runner revolutions.
If the highest peak and the lowest valley in the follow up rotations are not taken
into account, the value band reduces it’s range by 27.6% for the hydraulic efficiency,
28.6% for the head and 30% for the mechanical power. The narrowed variation
band, persistent over 44 runner rotations, indicates more accurate solution values
from 25 runner revolutions onwards. This outcome is in good agreement with
the claim made by Krappel et al. [24]. In their research paper it is stated, that
meaningful statistical data requires the neglection of the first 20 rotations of their
totally simulated 80 runner revolutions.

However, a serious change in mean values is not obtained. Hydraulic efficiency
increases by 0.082%, when comparing the mean value of the first ten, to the mean
of the follow up 54 runner rotations. An increase is also evident for the mechanical
power and the head. The change in head is close to a quarter of a meter and
the mean mechanical power is predicted ≈ 5.6 × 104W higher. Percentage wise
expression of these changes is superflous and far from the aformentioned, significant
value band changes close to 30%.

This outcome allows for the argumentation, that the mean values of the mon-
itored global parameters do not change significantly along a prolonged duration
of the simulation time. They deviate by less than 0.2% if the first ten and follow
up 54 runner rotations are compared. When considering the computational effort
that leads to this outcome, the necessity for such long simulation times becomes
questionable. However, due to the significant drop of the value band’s range from
25 runner rotations onwards, the computational result after said threshold must
definitely be considered as the more accurate solution.

5.2.2 Timestep Size dt

To quantify the influence of different timestep sizes, same monitored global pa-
rameters, as in the previous chapter, are compared against each other. Due
to aformentioned computational effort, only 21 runner rotations, with a refined
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timestep size of 0.5dt and 0.1dt, have been simulated.

Figure 5.6 showcases the monitored data from two to 21 full runner rotations
(solid lines) as well as each mean value, evaluated in the range from five to 21

Figure 5.6: Monitored global variables for varying timestep sizes
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runner rotations (dashed lines). Almost identical mean values are evident only in
case of the hydraulic efficiency ηh (top graph), for both refined timestep sizes. The
green dashed line (0.5dt) is almost in perfect alignment with the red dashed line
(0.1dt). Their drop in hydraulic efficiency is ≈ 0.25% with respect to the mean
value of the coarse timestep size simulation (dt, blue dashed line).

Decreasing mean values are also obtained for the mechanical power (bottom graph).
While the drop in mean power between the dt (blue dashed line) and the 0.5dt
(green dashed line) simulation is ≈ 1.5 × 104W, this rate almost quadruples in case
of the 0.1dt (red dashed line) results. The mean value of the mechanical power
drops by ≈ 5.6 × 104W in case of the simulation which invokes the finest timestep
size (0.1dt), when referenced to the mean of the coarse timestep size (dt).

Conversely, the monitored head H (middle graph) showcases an increase for the
refined timestep sizes. When comparing the mean values of the 0.5dt simulation
(green dashed line) to the coarse one (dt, blued dashed line) the head increases by
≈ 0.26m. Interestingly, a much smaller increase (by ≈ 0.05m) becomes evident,
when comparing the coarse result to the one, which invokes the finest timestep size
(0.1dt, red dashed line). This pattern is in contrast to the change towards lower
mean values, which is true in case of the hydraulic efficiency and the mechanical
power. A smaller timestep size yields smaller mean values of the power and effi-
ciency, but slightly increases the head.

Both, longer simulation duration and spatial/temporal refinement translates to
an increased computational effort. As showcased in the previous chapter, each
mean value of the monitored global parameters, experiences a slight increase with
a prolonged simulation duration. Hence, increased computational effort, as a result
of more simulated runner revolutions, increases all monitored global parameters
(see fig. 5.5, all graphs). Apart from the monitored head, the opposite is true
when increasing the computational effort, due to a refined timestep size. Smaller
timestep sizes lead to a decrease in hydraulic efficiency, as well as mechanical power
(top and bottom graph in fig. 5.6), while the mean head value increases.

A reason why the monitored head breaks this pattern is unclear. More simu-
lated runner revolutions with both refined timestep sizes are likely to reveal a
corresponding pattern for the head as well. In addition, no significant value band
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drop can be identified for the refined timestep size simulations up to 21 runner
rotations. Again, more simulated runner rotations with the two finer timesteps are
likely to expose the same behaviour of such a value band drop, along prolonged
simulation duration (see chapter 5.2.1). In general, a deviation of less than 0.27%,
with respect to the mean value of the simulation which invokes the coarse timestep
size dt, is evident for all global parameters. Comparing the monitored signal of the
0.5dt (green), to the 0.1dt (red) simulation, a similar but shifted behaviour, for
all global parameters, is recognized. This circumstance again suggests, that the
simulations with a refined timestep size represent the more accurate solution.

Figure 5.7 further substantiates the different DTVR behaviour (see fig. 5.1),
for the refined timestep sizes. Both graphs display the monitored pressure signal at
a location further downstream at the draft tube wall. The upper graph showcases
the monitored pressure at the right side of the DT wall and the monitor point, that
tracks the bottom signal, is located at the opposite, left side of the draft tube.

Again, a quite similar, but shifted behaviour when comparing the monitored
signal for both temporally refined simulations (green, 0.5dt and red, 0.1dt), is
evident. In case of the upper graph, which showcases the pressure signal at the right
side of the draft tube, the mean values for the refined simulations are almost in
perfect alignment. The large pressure fluctuations, evident in each monitored signal,
clearly indicate the impact of the vortex rope at the draft tube wall. Although
the pressure amplitudes are of comparable size, regardless of the timestep size, the
vortex rope’s impacts at the wall, are predicted at different instances. While the
first and the second impact (at around six and 15 runner rotations respectively),
are predicted at similar times for the refined timestep sizes, the prediction of first
impact, in case of the dt simulation (blue), happens delayed at around 13 runner
rotations. A second impact of the blue signal is not obtained, in the simulated
duration of 21 runner rotations. This is another indication for a more accurate
solution in favor of the refined timestep sizes. The occurance of the vortex rope is
in better agreement between the refined simulations.
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Figure 5.7: Draft tube wall pressure: top - right, bottom - left
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Additional monitor points are located at the wall in the draft tube cone region.
The FFT analysis of this signal, that is monitored in the time domain, yields
a more conclusive representation in it’s frequency domain. Figure 5.8 compares
the FFT analysis of each conducted simulation with different timestep sizes. It
displays the absolute value of the pressure amplitude over it’s frequency, normalized
by the runner rotational frequency fn. In addition, the signal of the conducted
measurement is superpositioned in black.
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Figure 5.8: FFT signal of draft tube cone pressure for varying timestep sizes

Independent of the timestep size, the three distinctive peaks revealed by the mea-
sured signal, are also obtained in each performed simulation. Colored squares
(orange - first peak, purple - second peak, and teal - third peak) mark the region of
corresponding amplitudes of each peak.
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It is readily seen, that the coarse timestep size dt (blue), is not only off in regards
to the occuring frequency, but also underpredicts the main pressure amplitude in
the purple square by almost half, when compared to the measured signal (black).
The simulated occuring frequencies for the refined simulations (0.5dt - green, 0.1dt
- red) on the other hand, are well in alignement with the measured ones. With
the exception of the aforementioned underpredicted pressure amplitude, all other
amplitudes are overpredicted. Interestingly, the 0.5dt peaks (green) show the
largest deviation, when compared to all three occuring measured peaks. Overall,
the 0.1dt result showcases the closest resemble to the measurement in regards to
both, the occuring frequency and the magnitude of the pressure amplitude. The
first red peak of the less distinctive looking shape in the teal square, which shows
a slightly lower amplitude than the marked one (red asterisk), almost perfectly
matches the measured amplitude (dark asterisk).

Figure 5.8 undeniably supports the necessity for smaller timestep sizes. It showcases
the potential to obtain pressure amplitudes as well as occuring frequencies, that
resemble the measurement more accurately, in comparison to the results of the
coarse timestep size simulation. Although evaluted in the draft tube cone region, it
can be fairly assumed, that this potential is also true for the pressure field that acts
on the runner surface. The follow up fatigue analysis and the lifetime assessment of
the Francis runner is strongly dependent on this pressure field, hence the prediction
of the correct frequencies as well as amplitudes, is key to obtain a realistic runner’s
lifetime prediction.

5.3 Influence of Spacial Parameters

In the course of the conducted GIS in part-load operating condition, a total of 70
runner revolutions, all invoking the same timestep size, but with different total mesh
sizes (see table 4.3), have been simulated. A detailed description of the procedure
is provided by Celik et al. [62]. It is the recommended method to estimate the
discretisation error. The procedure with it’s equations, are groundlaying for the
MATLAB code (appendix A.1), which has been tested to yield the same results for
the sample calculations, that are provided in the research paper.
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The key variables, that are evaluated in the course of the grid convergence method,
are the three global parameters, namely head H, mechanical power Pmech and
the hydraulic efficiency ηh. As already mentioned, and owed to the fact, that
only available meshes are considered for the conducted simulations, the desirable
refinement factor, and a systematic mesh refinement, as suggested by to the research
paper, is not achieved.

Before proceeding to the results of the performed GIS, the signal of the three
monitored global parameters, along the simulated runner revolutions is displayed
in figure 5.9. It showcases the behaviour of different mesh sizes on the global
parameters. A significant value band drop, as already explained in chapter 5.2.1,
is evident at the same threshold of 25 runner rotations for all simulated mesh
sizes. The amount of available monitoring data for each spatially refined simulation,
allows to compare the parameters in the range from 25 to 70 runner rotations.
Hence, the change of the mean values, when comparing the signal’s mean for the
first 20 (five to 25), to the mean value of the following 45 rotations, is not displayed.
It is only stated, that in case of every global parameter, the variation of each mean
value, evaluated after the threshold of 25 rotations, with respect to the mean of
the initial (20) runner revolutions, is within 0.12%.

Comparing the signals of the hydraulic efficiency and the head (top and mid-
dle graph in figure 5.9), a similar behaviour, with one noticeable exception at
around 55 runner rotations, for all mesh sizes (fine - red, medium - green, and
coarse - blue) is evident. In reference to the coarse (blue) mesh simulation, both
refined meshes slightly increase the hydraulic efficiency by ≈ 0.004%, in case of the
medium mesh (green), and by ≈ 0.02%, in case of the fine mesh (red). The medium
mesh (green) predicts a slighlty higher mean head value (by ≈ 0.004m), while
the solution of simulation which invokes the finest mesh size (red), yields a lower
mean value (by ≈ 0.02m) for the monitored head, all in reference to the coarse mesh.

Same behaviour is also evident for the mechanical power (bottom graph). The
medium mesh (green) increases the mean value of the mechanical power, while the
fine mesh (red) decreases it. The difference between the solutions of the medium
and coarse mesh simulations, in terms of mean value are ≈ 4.2 × 103W between the
coarse and medium, and ≈ 1.3×104W between the coarse and fine mesh simulation.
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Figure 5.9: Monitored global variables for different mesh sizes

The change of the mean values in the opposite direction, in case of the monitored
head and the mechanical power, is unexpected. So far, the mean values of the
refined simulations have always shifted in the same direction (compare figures 5.6,
and 5.7), with respect to the evaluated coarse mean value (blue). A reason for
this inconsistent behaviour along spatial refinement, is probably an insuffienciently
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small timestep size. Simulations invoking simultaneous, spatial and temporal re-
finement, are likely to reveal a consistent pattern regarding the increase or decrease
of the evaluated mean values of the global parameters. Due to the mentioned,
considerable long wall clock times, such computations have not been conducted.

Figure 5.10 displays the pressure amplitude over the normalized frequency range,
of the pressure signal that is tracked by the second monitor point in the draft tube
cone region. This monitor point is located at the draft tube wall, approximately one
meter below the first monitor point (pCON1, fig. 5.8). It is again superpositioned
by the transformed signal of the measurement (black).
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Figure 5.10: FFT signal of draft tube cone pressure for varying mesh sizes
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Again, the occuring frequencies of the two distinct pressure peaks are very well in
alignment with the measured ones. However, the coarse mesh (blue) overpredicts
the magnitude of this first peak by almost a double of the measured amplitude.
Quite the overprediction is also true for the medium as well as the fine mesh size.
While the first pressure amplitude consistently decreases along spatial refinement,
the second one (purple square) shows an opposite behaviour. With increasing
cell counts, the amplitude of the second peak shifts towards higher magnitudes.
Simultanious spatial and temporal refinement is likely to reveal a more conclusive
pattern as well as a closer resemblance off the measured signal.

5.3.1 Grid Independency Study

The procedure, for the estimation of the discretisation error, follows the exact same
steps as provided by Celik et al. [62]. Table 5.1 summarized the results in the same
manner according to the research paper. In addition, the representative cell size

ηh H Pmech

N1, N2, N3
1 20.723, 11.568, 8.746

h1, h2, h3 0.0038, 0.0048, 0.0055
r21 1.2641
r32 1.1341
ϕ1 90.9402 144.3947 2.3166e+07
ϕ2 90.9257 144.5254 2.3183e+07
ϕ3 90.9219 144.5064 2.3179e+07
p 2.4404 6.1009 4.5594
ϕ21

ext 90.9591 144.3536 2.3157e+07
ϕ32

ext 90.9363 144.5419 2.3189e+07
e21

a 0.0160% 0.0905% 0.0746%
e32

a 0.0042% 0.0132% 0.0182%
e21

ext 0.0207% 0.0285% 0.0390%
e32

ext 0.0117% 0.0114% 0.0234%
GCI21 0.0259% 0.0356% 0.0488%
GCI32 0.0146% 0.0143% 0.0293%
1in [mio.]

Table 5.1: Calculations of the discretisation error
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h, of each mesh is documented as well. The subscripts 1, 2, and 3 stand for the
fine, medium, and coarse mesh, respectively. An estimation of the grid convergence
behaviour can be made, based on the discriminating ratio R:

R = ϕ1 − ϕ2

ϕ2 − ϕ3
(5.2)

Although it is argumented by Eça and Hoekstra [64], that the equation (5.2), to
determine the convergence behaviour, is only good for constant grid refinement
ratios (h2/h1 = h3/h2), the outcome of the equation is in good agreement with the
upcoming graphical representation. Based on this equation, a monotonic divergence
in case of the monitored hydraulic efficiency, and an oscillatory divergence for both,
the head, and the mechanical power has to be reported.

This behaviour is readily seen in figures 5.11 and 5.12. Both display the global
parameters, normalized by the the extrapolated parameter, which is calculated
from the results of two mesh sizes and the convergence order p. The extrapolated
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Figure 5.11: Grid convergence, normalized by ϕ21
ext
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values represent the mesh independent solution (h −→ 0), based on either the
coarse-medium (ϕ32

ext), or medium-fine results (ϕ21
ext). The horizontal axis represents

the normalized cell size hn, and the vertical black dashed lines help to visualize the
convergence rate between the mesh sizes.

Figure 5.11 showcases the convergence behaviour for each global parameter, nor-
malized by ϕ21

ext. An oscillatory divergence, in case of the mechanical power (blue)
and the head (green), and a monotonic divergence in case of the hydraulic efficiency
(red), is obtained. The same behaviour is showcased, when the global parameters
are normalized by ϕ32

ext (fig. 5.12).
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Figure 5.12: Grid convergence, normalized by ϕ32
ext

Reasons for the divergence of each global parameter can be related to the inconsis-
tent refinement ratios. They directly have an influence on the apparent order of
the grid convergence p (see table 5.1), and values, greater than the formal order of
the scheme (2nd-Order), are obtained.
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Another reason, that adds up to the outcoming divergence, is a direct consequence of
the differences between the results of two mesh sizes, ε32 = ϕ3 − ϕ2 or ε21 = ϕ2 − ϕ1.
In the research paper of Celik et al. ([62]), it is reported, that the method does
not work for ε-values "close to zero", which is likely the case between the coarse
and medium mesh results.

In any case, the grid convergence index (GCI) is below one percentage point
(see table 5.1), which, according to Roache ([65]) indicates a satisfactory discreti-
sation error. More interestingly, the grid convergence index is almost half the
index between the medium and fine mesh (GCI21), when performing the procedure
between to coarse and medium mesh (GCI32). This is readily seen in figure 5.12.
The solution values of all global parameters are located closely to the normalized
solution value 1 in case of the medium mesh results. This is an indication, that
the combination of the medium mesh and the coarse timestep dt, is satisfactory,
especially when considering the computational effort, refined simulations require.

Although the reported oscillating behaviour of the global parameters, it must
be realized, that even the largest deviation (in case of fig. 5.11 the head for the
medium mesh, and in case of fig. 5.12 the head for the fine mesh), of the normalized
global parameters, is off by 0.0012 and 0.00102 respectively, when compared to
mesh independent solution (h −→ 0). The normalized global parameters, oscillate
very close around this mesh independent solution (ϕn = 1).

To end chapter five, upcoming figure (fig. 5.13) showcases the deviation of the
evaluated mean values of said global parameters, when compared to the conducted
measurements. According to the equation, which describes the relative deviation
in percentage points for any variable:

|δ| = |measurement − simulation

measurement
| ∗ 100% (5.3)

the deviation of each global parameter, is conveniently displayed by means of a
bar plot. In figure 5.13 it is readily seen, that regardless of the applied refinement
(temporal or spatial), the influence on the evaluated means is close to negligible.
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Figure 5.13: Comparison to measurement

As already mentioned, the temporal refinement has a higher potential to shift
the mean values of the global parameters, while the spatial refinement hints a
noticeable difference between the bars, only in case of the head (purple square)
and the mechanical power (teal square).

Nevertheless, the relative deviation for all global parameters, independet of the
applied refinement is very well below 10%. In case of the head, the deviation to
the measurement is even below 4%. Considering the temporal refinement, the most
increased computational effort (the 0.1dt simulation) has a positive effect only on
the result of the evaluated mechanical power. Interestingly, the simulation which
invokes the coarse timestep size, dt, obtains the smallest relative deviation to the
measured hydraulic efficiency (orange square).
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To get a better feeling for the required computational effort, the effective wall clock
time off each temporally refined simulation is summarized in table 5.2. Spatial
refinement does not change the wall clock time significantly. Regardless of the cell
count, seven full runner rotations could be simulated within ∼2.5-3 days (timestep-
size dt). Taking the queuing time into consideration, a delay every submitted
job has to suffer, on top of occasional shutdowns of the HPC (High performance
cluster) during a running computation, it is safe to say that at least 3 days are
required to simulate seven full runner rotations.

Timestep [◦] dt [s] Tsim [rev.] Wall clock time [d]
dt 1 3.8889e-4 7 ≈ 3
0.5dt 0.5 1.9444e-4 3.5 ≈ 3
0.1dt 0.1 3.8889e-5 0.7 ≈ 3

Table 5.2: Summary of computational wall clock time
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Chapter 6

Conclusion

The object of this thesis was to investigate the influence of spatial (grid refinement)
and temporal (simulation duration Tsim and varying timestep sizes) parameters on,
the conducted CFD simulations of a Francis runner, which operates in part-load
region. Three different total mesh sizes (fine - medium - coarse), based on their
cell count, and three different timestep sizes (0.1dt - 0.5dt - dt), that correlate to
time in seconds, the investigated runner requires to rotate by 0.1◦, 0.5◦, and 1◦,
respectively, are chosen to be evaluated.

The correlation between the timestep size, and one (fraction of one) degree of a
single runner rotation, allows for the convenient documentation of the monitored
parameters, over the amount of simulated runner revolutions. So far, the longest
simulation duration, which has been performed by predecessor Schmelz ([5]), marks
a total of 30 runner revolutions with a timestep size, corresponding to 5◦ of a single
runner rotation. To further investigate the influence of the simulation duration,
the computations for each different mesh size, have been prolonged, until a total of
approximately 70 runner revolutions are simulated.

Although all simulations have been performed, harnessing the computational
nodes provided by the VSC-4 (fastest supercomputer in Austria), considerable
long wall clock times only allowed to prolong the simulations until the threshold
of 70 full runner rotations. All prolonged simulations up to this threshold invoke
the coarsest timestep size dt, which corresponds to a single degree of a runner
revolution. In summary, a total of 70 runner revolutions have been simulated in
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the course of the conducted GIS, for the three different mesh sizes. The drastic
increase (see table 5.2) of computational effort in case of the simulations with a
refined timestep size, 0.1dt and 0.5dt respectively, allowed for the simulation of
approximately 21 total runner rotations only. All temporally refined simulations
have been conducted with the medium mesh size.

A quite significant change of the value band (fg. 5.5), in case of the prolonged
simulations, could be obtained. The range from peak to valley, for all monitored
global parameters, almost instantaneously drops by approximately 30%, at the
threshold of 25 runner rotations. The monitored signal of each global parameter
sustains in the decreased value band range for the remaining 44 simulated runner
revolutions. This is a strong indication, that the solution in the range between 25
and 69 must be considered as the more accurate one.

The evaluated mean values of the global parameters, compared between the first 10
and the follow up 54 runner rotations, do not vary as significantly, such as the value
band. For every global parameter, the computational effort necessary to calculate
until 69 runner rotations, increases the mean value, with respect to the evaluated
mean of the first ten revolutions. Expressed in total values, the hydraulic efficiency
rises by 0.082% and the head is predicted 0.225m higher. The most visible increase
between the mean value of the first ten, compared to the mean value, evaluated
for the follow up 54 rotations, is evident in case of the mechanical power. In total
numbers, the mechanical power increases by 55.3kW.

A different pattern is obtained in case of the temporally refined simulations (fig.
5.6). While the mean hydraulic efficiency in case of the refined timestep sizes,
decreases by 0.25% (0.1dt), and 0.23% (0.5dt), when compared to the mean value
of the coarse results (dt), an increase becomes evident for the mean head value. A
decrease is also obtained in case of the mechanical power. So far, computational
effort led to a shift of all global paramters in the same direction. The mean value
of the monitored head breaks this consistent behaviour. Only a slight increase of
0.044m is evident between the 0.1dt and the coarse timestep size dt, while a larger
increase of 0.26m results between the coarse and the 0.5dt simulation.

No such pattern is evident for spatially refined simulations (fig. 5.9). Larger
cell counts yield an increase in the hydraulic efficiency by 0.0038%, in case of the
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medium mesh, and by 0.018% for the fine mesh, all in reference to the mesh with the
smallest cell count. A change in the opposite direction, with respect to the coarse
mean values, is obtained for the mechanical power and the head. While the medium
mesh predicts a slightly higher mean value (0.019m/4.2kW), the fine mesh shows a
decreasing mean value (0.11m/13kW) in case of the two parameters (H and Pmech).
This inconsistency, especially the change in the opposite direction of the mean val-
ues of the global parameters head an mechanical power, is likely to be related to an
insufficiently small timestep size in case of the simualtion with the largest cell count.

Another inconsistent pattern is obtained for the pressure signal in the draft tube
cone (fig. 5.8), in case of the temporally refined simulations. While both refined
timesteps increase the pressure amplitude, the 0.5dt simulation predicts a higher
magnitude than the 0.1dt results. However, the pressure peaks for the refined
simulations are of the same order of magnitude and quite significantly double
the pressure peak, that is obtained by the simulation, which invokes the coarse
timestep size. The occuring frequency on the other hand, consistently moves to
later instances, along the refined timestep sizes.

The pressure amplitudes in the draft tube cone (fig. 5.10) show a consistent
behaviour along the spatial refinement. More cell counts decrease the first pressure
peak, while the second pressure peak increases. The occuring frequencies remain
at the same point in time.

In conclusion, the refined simulations in both cases (temporal and spatial re-
finement), do not obtain a significant change in mean values of the monitored
global parameters. In reference to each coarse simulation (coarse timestep size dt
or coarse mesh size), the mean values of the refined simulations, deviate by less
than 0.27% in case of the temporal, and by less by than 0.07% in case of the spatial
refinement. This allows for the argumentation, that a refined timestep size has a
greater potential to shift the mean values of the monitored global parameters.

A consistent pattern, in regards to the direction of the shift (increase or decrease),
is not obtained. Simulations with simultaneous temporal and spatial refinement
are likely to reveal a conclusive behaviour. A quite small percentagewise change in
mean values (0.2%) is also evident, when comparing the initial ten, to follow up
runner rotations. However, the sudden value band drop, after a threshold of 25
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runner rotations is significant. Comparing the peak to valley value band, between
the two regions befor and after 25 runner rotations, obtains a drop of 30%.

When comparing all monitored signals for the temporal refinement, the simi-
lar behaviour between the 0.5dt and the 0.1dt results is undeniable. Hence, and
with computational effort in mind, the 0.5dt timestep size can be considered the
sweet spot, in terms of necessary temporal refinement. A more or less shifted
behaviour of each signal, compared to the finest timestep size, is recognized.

However, the computational wall clock time increases considerably in case of
the 0.5dt simulation. This circumstance is even more pronounced in case of the
0.1dt simulation. Computational hours can be estimated to increase by a factor
of two between the dt and 0.5dt, and by a factor of five between the 0.5dt and
0.1dt simulation. If for example the hydraulic efficiency (fig. 5.6) is taken into
consideration, it can be argumented, that ten times the computational effort (in
terms of required calculation hours), obtains a decrease in efficiency by a quarter
of a percentage point. Such small shifts of the mean values are evident for all mon-
itored parameters (see fig. 5.13) and a priorly determined focus on the outcoming
results, must decide wether temporal refinement is necessary or not. Without a
doubt, smaller timestep sizes correlate to a more trustworthy visualization of the
turbulent structures and furthermore the pressure peaks as well as the occuring
frequency are predicted much closer to measurement.

The results of the conducted grid independency study are somewhat unsatisfactory.
All monitored global parameters show a divergent behaviour in the range from
25 to 70 runner rotations. A small consolation is obtained, when evaluating the
GIS in a different runner rotation range. Since the MATLAB code easily allows to
adjust the calculation range in terms of runner rotations, a monotonic convergence
for the hydraulic efficiency and an oscillatory convergence for the monitored head,
is obtained in the range between 40 to 50 runner rotations. The mechanical power
still reports an oscillatory divergence.

A probable reason for the somewhat inconclusive results of the conducted GIS,
might be the influence of the inital condition. Only one initial (steady state)
solution, with a guide vane angle, that corresponds to the best efficiency operating
point, has been simulated. Every follow up simulation is based on this initial
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simulation. The combination of a changing guide vane angle in part-load region,
and the varying discharge Q (inlet BC), are likely to yield different initial values,
the unsteady simulation in part-load operating region should be based on. Lastly,
the influence of insufficiently refined wall regions across the whole computational
domain, needs to be quantified as well, to allow further argumentation and to
effectively estimate each influence (time step, simulation time, mesh size, intial
conditon, wall refinement), on the conducted simulation, seperatly.
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Appendix A

Matlab Code

A.1 GIS.m

1 %% Grid Independecy Study - VIW_16MW
2 clc; clear
3 addpath ('plotdata ','myfunctions ')
4 preamble
5
6 % calculations for plotting
7 coarse = readmatrix ('coarse .csv ');
8 medium = readmatrix ('medium .csv ');
9 fine = readmatrix ('fine.csv ');

10 Ustart = 40; Uend = 50;% maxU = 70
11 % 40 - 50
12 [phi ,names] = GIS_plot (coarse ,medium ,fine ,Ustart ,Uend , screen );
13 iend = length (phi (: ,1));
14
15 % datainput for GIS
16 SC = [3693240 1698788 1620846];
17 SV = [4080104 1231466 400574];
18 RN = [7284160 4641728 3143296];
19 DT = [3069164 1401375 986271];
20
21 % calculations for GIS
22 N = SC + SV + RN + DT;
23 h = (1./N) .^(1/3) ;
24 r21 = h(2)/h(1); r32 = h(3)/h(2);
25 C = cell (15, iend);

80



Matlab Code

26
27 for i = 1: iend
28 Phi = phi(i ,:);
29 eps21 = Phi (2) -Phi (1);
30 eps32 = Phi (3) -Phi (2);
31 s = 1* sign(eps32/eps21);
32 R = (Phi (1) -Phi (2))/( Phi (2) -Phi (3)); % Eca_Hoekstra
33 % convergence
34 if 0 < R && R < 1
35 disp ([ 'Phi_ ',num2str (i),' --> monotonic convergence '])
36 elseif R > 1
37 disp ([ 'Phi_ ',num2str (i),' --> monotonic divergence '])
38 elseif R < 0 && abs(R) < 1
39 disp ([ 'Phi_ ',num2str (i),' --> oscillatory convergence '])
40 elseif R < 0 && abs(R) > 1
41 disp ([ 'Phi_ ',num2str (i),' --> oscillatory divergence '])
42 end
43 % fixed -point iteration
44 pinit = (1/ log(r21))*abs(log(abs(eps32/eps21)));
45 piter = @(p) order_of_method (p,r21 ,r32 ,s,eps32 ,eps21);
46 p = fixed_point_iteration (piter ,pinit);
47 % extrapolated values
48 Phiext21 = (( r21^p)*Phi (1) - Phi (2))/( r21^p - 1);
49 Phiext32 = (( r32^p)*Phi (2) - Phi (3))/( r32^p - 1);
50 % approximate relative error
51 ea21 = abs (( Phi (1) -Phi (2))/Phi (1));
52 ea32 = abs (( Phi (2) -Phi (3))/Phi (2));
53 % extrapolated relative error
54 eext21 = abs (( Phiext21 -Phi (1))/ Phiext21 );
55 eext32 = abs (( Phiext32 -Phi (2))/ Phiext32 );
56 % grid convergence index
57 GCI21 = ((1.25* ea21)/( r21^p - 1));
58 GCI32 = ((1.25* ea32)/( r32^p - 1));
59 % cellfilling
60 C{1,i} = N;
61 C{2,i} = r21;C{3,i} = r32;
62 C{4,i} = Phi (1);C{5,i} = Phi (2);C{6,i} = Phi (3);
63 C{7,i} = p;
64 C{8,i} = Phiext21 ;C{9,i} = Phiext32 ;
65 C{10 ,i} = ea21 *100; C{11,i} = ea32 *100;
66 C{12 ,i} = eext21 *100;C{13,i} = eext32 *100;
67 C{14 ,i} = GCI21 *100;C{15,i} = GCI32 *100;
68 end
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69
70 fileID = fopen ('GIS.txt ');
71 c = textscan (fileID ,'%s');
72 C = [c{1 ,1} C]; disp(C);
73
74 hn = NaN (1 ,4);hn (1) = 0;
75 Phin_21 = NaN( length (phi (: ,1)) ,4); Phin_21 (: ,1) = 1;
76 Phin_32 = NaN( length (phi (: ,1)) ,4); Phin_32 (: ,1) = 1;
77
78 for j = 1: length ( Phin_21 (: ,1))
79 for i = 2: length (hn)
80 hn(i) = h(i -1)/h(1);
81 Phin_21 (j,i) = phi(j,i -1)/C{8,j+1};
82 Phin_32 (j,i) = phi(j,i -1)/C{9,j+1};
83 end
84 end
85
86 tit = ["$ GIS_ {21}: medium -fine $" "$ GIS_ {32}: coarse - medium $"];
87 for k = 1:2
88 f = figure (k+1);
89 if k == 1
90 f. Position = [ screen (3) /2+21 screen (4) /2 -15 ( screen (3) /2)

*0.5 screen (4) /2 -85];
91 plot(hn , Phin_21 (1 ,:) ,'r-^','MarkerFaceColor ','r');hold on
92 plot(hn , Phin_21 (2 ,:) ,'g-s','MarkerFaceColor ','g')
93 plot(hn , Phin_21 (3 ,:) ,'b-o','MarkerFaceColor ','b')
94 else
95 f. Position = [ screen (3) /2+21 50 ( screen (3) /2)

*0.5 screen (4) /2 -150];
96 plot(hn , Phin_32 (1 ,:) ,'r-^','MarkerFaceColor ','r');hold on
97 plot(hn , Phin_32 (2 ,:) ,'g-s','MarkerFaceColor ','g')
98 plot(hn , Phin_32 (3 ,:) ,'b-o','MarkerFaceColor ','b')
99 end

100 xticks ( linspace (0 ,1.5 ,7))
101 xlabel ('Normalized cell size $h_n$ [-]')
102 ylabel ('Normalized values $\ Phi_n$ [-]')
103 legend (names ,'Location ','northwest ')
104 title(tit(k))
105 grid on
106 end
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A.2 dt_compare.m

1 % preamble & datainput
2 clc; clear;
3 addpath ('plotdata ','myfunctions ')
4 preamble
5 A = readmatrix ('16 MW_M_output_dt .csv ');
6 B = readmatrix ('16 MW_M_output_0 .5dt.csv ');
7 C = readmatrix ('16 MW_M_output_0 .1dt.csv ');
8
9 % calculations

10 n = 428.6; % [U/min]
11 n = n/60; % [U/s]
12 dtA = 3.8889e -04; % [s]
13 dtB = 0.5* dtA; % [s]
14 dtC = 0.1* dtA; % [s]
15 A = [A(: ,1) dtA*A(: ,1) n*dtA*A(: ,1) A(: ,2: end)];% dt
16 B = [B(: ,1) dtB*B(: ,1) n*dtB*B(: ,1) B(: ,2: end)];% 0.5 dt
17 C = [C(: ,1) dtC*C(: ,1) n*dtC*C(: ,1) C(: ,2: end)];% 0.1 dt
18
19 % indices
20 U = 1; Uend = 70;
21 iA = find(A(: ,3) >=U);iA = iA (1); iAend = find(A(: ,3) <=Uend);iAend

= iAend(end);
22 iB = find(B(: ,3) >=U);iB = iB (1); iBend = find(B(: ,3) <=Uend);iBend

= iBend(end);
23 iC = find(C(: ,3) >=U);iC = iC (1); iCend = find(C(: ,3) <=Uend);iCend

= iCend(end);
24
25 % for plotting
26 xA = A(iA:iAend ,3); xAdummy = ones( length (xA) ,1);
27 xB = B(iB:iBend ,3); xBdummy = ones( length (xB) ,1);
28 xC = C(iC:iCend ,3); xCdummy = ones( length (xC) ,1);
29
30 interest = [4 5 6 7 8 9 10 11 12];% ETA HEAD pDTs_R pDTs_L pDyn1

pDyn2 pD2 pR1 pS2
31 units = {'[\%] ' '[m]' '( Pressure ) [Pa]' '( Pressure ) [Pa]' '(

Absolute Pressure ) [Pa]',...
32 '( Absolute Pressure ) [Pa]' '( pSTATCORR ) [$\ frac{kg}{ms

^{2}}$] ',...
33 '( pSTATCORR ) [$\ frac{kg}{ms ^{2}}$] ' '( pSTATCORR ) [$\ frac{

kg}{ ms ^{2}}$] '};
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34 names = {'Efficiency ' 'Head ' 'pDTs$_{R}$ ' 'pDTs$_{L}$ ' 'pDyn1 ' '
pDyn2 ' 'pD2 ' 'pR1 ' 'pS2 '};

35
36 % plotting
37 for i = 1: length ( interest )
38 j = interest (i);
39 meanA = xAdummy *mean(A(iA:iAend ,j));
40 meanB = xBdummy *mean(B(iB:iBend ,j));
41 meanC = xCdummy *mean(C(iC:iCend ,j));
42
43 f = figure ;
44 f. Position = [50 screen (4) /2 -50 screen (3) /2 -50 ( screen (4)

/2 -100) *0.6];
45 plot(xA ,A(iA:iAend ,j),'Color ' ,[0 0.4470 0.7410]) ;hold on
46 plot(xA , meanA ,'Color ' ,[0 0.4470 0.7410] , '

LineStyle ','--')
47 plot(xB ,B(iB:iBend ,j),'Color ' ,[0.9290 0.6940 0.1250])
48 plot(xB ,meanB , 'Color ' ,[0.9290 0.6940 0.1250] , '

LineStyle ','--')
49 plot(xC ,C(iC:iCend ,j),'Color ' ,[0.6350 0.0780 0.1840])
50 plot(xC ,meanC , 'Color ' ,[0.6350 0.0780 0.1840] , '

LineStyle ','--')
51 axis padded
52 xticks ([U 5:5: Uend ])
53 grid on
54 xlabel ('$T_{sim }$ [ Runner Rev .]')
55 ylabel ( horzcat (names{i},' ',units{i}))
56 legend ('dt ','mean ','0.5 dt ','mean ','0.1 dt ','mean ','Location ','

southeast ')
57 title ('dt - Comparison in Part Load Condition ','FontSize ' ,14)
58 exportgraphics (gcf ,[ '16 MW_M_plot_ ', num2str (i),'.pdf '],'

Resolution ' ,300)
59 end

A.3 Subroutines

preamble.m

1 % preamble
2 set (0,'defaultTextInterpreter ','latex ')
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3 set (0,'defaultLegendInterpreter ','latex ')
4 set (0,'defaultAxesFontSize ' ,12)
5 set (0,'defaultTextFontSize ' ,12)
6 % set(0,' defaultFigureWindowStyle ','docked ')
7 clear
8 close all
9 clc

10 clear vars
11 rng('default ')
12 rng (0)
13 warning ('off ')
14 set (0,'units ','pixels ')
15 assignin ('caller ','screen ',get (0,'ScreenSize '))

GIS_plot.m

1 function [phi , names] = GIS_plot (coarse ,medium ,fine ,Ustart ,Uend ,
screen )

2 n = 428.57; % [U/min]
3 n = n/60; % [U/s]
4 dt = 3.8889e -04; % [s]
5 Q = 18.02; % [m3/s]
6 rho = 998; % [kg/m3]
7 g = 9.81; % [m/s2]
8 const = (g*rho*Q)/100;
9

10 A = fine; B = medium ; C = coarse ;
11 A = [A(: ,1) dt*A(: ,1) n*dt*A(: ,1) A(: ,2: end)];A = [A(: ,:) A(: ,4) .*

A(: ,5)*const ];
12 B = [B(: ,1) dt*B(: ,1) n*dt*B(: ,1) B(: ,2: end)];B = [B(: ,:) B(: ,4) .*

B(: ,5)*const ];
13 C = [C(: ,1) dt*C(: ,1) n*dt*C(: ,1) C(: ,2: end)];C = [C(: ,:) C(: ,4) .*

C(: ,5)*const ];
14
15 % indices
16 iA = find(A(: ,3) >= Ustart );iA = iA (1); iAend = find(A(: ,3) <=Uend);

iAend = iAend(end);
17 iB = find(B(: ,3) >= Ustart );iB = iB (1); iBend = find(B(: ,3) <=Uend);

iBend = iBend(end);
18 iC = find(C(: ,3) >= Ustart );iC = iC (1); iCend = find(C(: ,3) <=Uend);

iCend = iCend(end);
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19
20 % for plotting
21 xA = A(iA:iAend ,3);xB = B(iB:iBend ,3);xC = C(iC:iCend ,3);
22
23 interest = [4 5 13];
24 names = {'$\ eta$' '$H$' '$P_{out }$'};
25 units = {'[\%] ' '[m]' '[W]'};
26
27 f = figure (1);
28 f. Position = [20 50 screen (3) /2 screen (4) -150];
29 t = tiledlayout ( length ( interest ) ,1);t. TileSpacing = 'compact ';t.

Padding = 'compact ';
30 phi = NaN( length ( interest ) ,3);
31
32 for i = 1: length ( interest )
33 j = interest (i);
34 nexttile (i)
35 plot(xA ,A(iA:iAend ,j),'Color ' ,[0 0.4470 0.7410] , '

DisplayName ','fine ');hold on
36 plot(xB ,B(iB:iBend ,j),'Color ' ,[0.9290 0.6940 0.1250] , '

DisplayName ','medium ')
37 plot(xC ,C(iC:iCend ,j),'Color ' ,[0.6350 0.0780 0.1840] , '

DisplayName ','coarse ');hold off
38 xticks ( Ustart :5: Uend)
39 grid on
40 xlabel ('$T_{sim }$ [ Runner Rev .]')
41 ylabel ( horzcat (names{i},' ',units{i}))
42 legend
43 phi(i ,:) = [mean(A(iA:iAend ,j)) mean(B(iB:iBend ,j)) mean(C(iC:

iCend ,j))];
44 end
45 return
46 end

order_of_method.m

1 function p = order_of_method (p,r21 ,r32 ,s,eps32 , eps21)
2 q = log (( r21^p - s)/( r32^p - s));
3 p = (1/ log(r21))*abs(log(abs(eps32/eps21)) + q);
4 end
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