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Kurzfassung

In dieser Dissertation betrachten wir die folgenden Multilevel-Aspekte bei elliptische Rand-
wertproblemen:

e Multilevel Darstellung von Besov-Normen und ihre Anwendung auf die Vorkonditio-
nierung des fractionalen Laplace.

e Verwendung hierarchischer Matrizen (d. h. H-Matrizen) fiir die Kopplung von Finite-
Element- und Randelementmethoden.

e H—Matrix-Approximation der Inversen der Steifigkeitsmatrizen, die bei FEM-Diskretisierung

der zeitharmonischen Maxwell-Gleichungen entstehen.

Wir zeigen, dass lokal L?(Q)-stabile Operatoren, welche in Raume von stetigen, stiickweise
polynomiellen Funktionen auf formreguliren Gittern abbilden und gewisse L?(£2) Appro-

ximationseigenschaften haben, stabile Abbildungen von H3/2(Q) — B2 (Q) sind (H*(Q2)

2,00
und Biq(Q) sind Sobolev- und Besov Ridume). Die klassischen Operatoren vom Typ Scott-

Zhang sind in dieser Klasse enthalten. Interpolation liefert Stabilitét Bg’?q/ 2(Q) — Bg’?q/ 2(Q),

6 € (0,1),q € [1,00]. Ein analoges Ergebnis gilt fiir stiickweise Polynome: lokal L2-
stabile Operatoren wie die elementweise L?-Projektion sind stabil Bgf(Q) — Bgf(ﬂ),
0 €(0,1),q €[1,00].

Fiir Raume stiickweiser Polynome auf adaptiv verfeinerten Netzen, die durch Newest
Vertex Bisection (NVB) erzeugt wurden, konstruieren wir eine Multilevel-Zerlegung mit
Norméquivalenz im Besov-Raum B;Z/Q(Q), 6 € (0,1), q€[l,00].

Als Anwendung préasentieren wir einen multilevel diagonalen Vorkonditionierer fiir den
integralen fractionalen Laplace (—A)?® fiir s € (0,1) auf lokal verfeinerten Gittern. Es wird
gezeigt, dass dieser Vorkonditionierer zu einer gleichméflig beschrinkten Konditionszahl
fiihrt.

Dariiber hinaus erzielt diese Arbeit Approximationsergebnisse fiir die Inverse Matrix der
Steifigkeitsmatrizen bei zwei Problem erlassen: FEM-BEM-Kopplungsprobleme und die
zeitharmonische Maxwell-Gleichung.

‘H-Matrizen sind eine Klasse von Matrizen, die aus blockweise Niedrigrang-Matrizen vom
Rang r bestehen. Hier sind die Blocke in einem Baum Tz so organisiert, dass der Speicherbe-
darf normalerweise O(Nrdepth(Tz)) ist (NN ist die Problemgrofie). Eine wesentliche Frage
im Zusammenhang mit H-Matrizen ist, ob Matrizen und ihre Inversen im gewéhlten Format
gut dargestellt werden koénnen.

Wir betrachten drei verschiedene Methoden zur Kopplung von FEM und BEM, nédmlich
die Bielak-MacCamy-Kopplung, die symmetrische Kopplung und die Johnson-Nédélec-
Kopplung jeweils fiir Galerkindiskretisierung niedrigster Ordnung. Wir beweisen die Exis-
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tenz von exponentiell im Blockrang konvergenten H-Matrix-Approximationen an die inver-
sen Matrizen.

Wir zeigen auch, dass die Inverse der Steifigkeitsmatrizen, die zu den zeitharmoni-
schen Maxwell-Gleichungen mit perfekt leitenden Randbedingungen gehoren, im H-Matrix-
Format mit exponentieller Genauigkeit im Blockrang approximiert werden kann.

Um diese H-Matrix-Approximationsresultate zu beweisen, nutzen wir Caccioppoli-Ungleichungen
fir die diskreten Probleme. Fiir die FEM-BEM-Kopplung ermoéglicht die Caccioppoli-
Ungleichung die Kontrolle von Funktionen und induzierten Potentialen in stérkeren Nor-
men durch schwichere Normen, wenn bestimmte Orthogonalitétsbedingungen erfiillt sind.
Fiir die Maxwell-Gleichungen hat die Caccioppoli-Schéiitzung die Form einer Kontrolle der
H(curl)-Norm durch die L2-norm.
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Abstract

In this thesis, we analyze the following multilevel aspects in elliptic boundary value prob-
lems:

e Multilevel representation of Besov norms and application to preconditioning of the
fractional Laplacian.

e Use of hierarchical matrices (H-matrices) for the coupling of Finite- and Boundary
Element Methods (FEM-BEM couplings).

e 7{-matrix approximability of inverses of matrices corresponding to the discretization
of the time-harmonic Maxwell equations using Finite Element Method (FEM).

We show that locally L?(£2)-stable operators mapping into spaces of continuous piecewise
polynomial set on shape regular meshes with certain approximation properties in L?()

are stable mappings H%/?(Q) — BS/OZO(Q), where H*((2) and B3 (£2) are Sobolev and Besov
spaces. The classical Scott-Zhang type operators are included in the setting. Interpolation
gives stability Bgf}/Q(Q) — B;’Z/2(Q), 6 € (0,1),q € [1,00]. An analogous result allows
for spaces of discontinuous piecewise polynomials: locally L?-stable operators such as the
elementwise L2-projection are stable Bg/;(Q) — Bg/;(ﬂ), 0 €(0,1),q € [1,00].

For spaces of piecewise polynomials on adaptivefy refined meshes generated by Newest
Vertex Bisection (NVB), we construct a multilevel decomposition with norm equivalence
in the Besov space BSZ/Q(Q), 0€(0,1), g€ [l,00].

As an application, we present a multilevel diagonal preconditioner for the integral frac-
tional Laplacian (—A)® for s € (0,1) on locally refined meshes. This preconditioner is
shown to lead to uniformly bounded condition numbers.

This work is also concerned with approximation results for the inverses of stiffness ma-
trices corresponding to the FEM and FEM-BEM discretizations in the H-matrix format
for the time-harmonic Maxwell equation and a scaler transmission problem.

‘H-matrices are a class of matrices that consists of blockwise low-rank matrices of rank
r where the blocks are organized in a tree Tz so that the memory requirement is typically
O(Nrdepth(Tz)), where N is the problem size. A basic question in connection with the
H-matrix arithmetic is whether matrices, and their inverses can be represented well in the
chosen format.

We consider three different methods for the coupling of the FEM and the BEM, namely,
the Bielak-MacCamy coupling, the symmetric coupling, and the Johnson-Nédélec coupling
for the lowest order Galerkin discretization of each of these coupling techniques, and we
prove the existence of root exponentially convergent H-matrix approximants to the inverse
matrices.
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We also show that the inverse of the stiffness matrices corresponding to the time-harmonic
Maxwell equations with perfectly conducting boundary conditions can be approximated in
the format of H-matrices, at a root exponential rate in the block rank.

In order to prove these H-matrix approximability results, we provide interior regularity
results known as Caccioppoli estimates for the discrete problems. For the FEM-BEM
coupling, the Caccioppoli inequality allows for control of functions and induced potentials
in stronger norms by weaker norms, if certain orthogonality conditions are satisfied. For
Maxwell equations, the Caccioppoli estimate takes the form of control of the H(curl)-norm
by the L?-norm.
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1 Introduction

Multilevel methods have proved to be among the most efficient techniques for numerically
solving partial differential equations (PDEs). The judicious use of multilevel structures
allows for complexity reduction from algebraic to log-linear. As well-known examples of
such techniques, we recall multilevel preconditioning (BPX [BPX91], MDS [Zha92]), H-
matrices, fast multipole method [GR97], matrix compression by wavelets [DPS93], panel-
clustering [HN&9].

In this thesis, we study the following aspects

e multilevel decompositions and their stability,
e multilevel preconditioning of the fractional Laplacian,

e 7H{-matrix approximation of the inverse of the stiffness matrix corresponding to the
coupling of Finite- and Boundary Element Methods (FEM-BEM couplings).

e TH-matrix approximation of the inverse of the stiffness matrix corresponding to the
time-harmonic Maxwell equations.

Multilevel decompositions and their stability

For a given Hilbert space (V,||-||;/), the standard multilevel algorithms for finite element
discretizations are based on a hierarchy of finite element spaces Vy C ---C Vp, C --- CV
associated with a sequence of nested meshes (7;)¢>0 such that for the functions uy, € Vg,
we have the following decomposition

L

uy, :IOUL+Z(IZ_IE—1)UL7 (1.0.1)
/=1

where Z; : V' — V; denotes a linear projector. Let (5¢)s>1 be a non-decreasing sequence
of positive real numbers. One of the crucial aspects of the multilevel algorithms is to find
equivalent norms for the following discrete norm

lull® == [ Zoully + > Be I(Ze = Te—a) ully,  VueV. (1.0.2)
>1

A characterization of Sobolev and Besov spaces in terms of such multilevel representa-
tions allows us to design preconditioners and estimate condition numbers of preconditioned
systems. For V := L?(Q), B := hEQ and the spaces of continuous piecewise linear poly-
nomials Vi C --- C Vg, the idea of replacing Z, by the L?-orthogonal projection onto V;,
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1 Introduction

¢ € {0,---,L} proposed in [BPX91, Xug9], was a break-through in the construction of
additive methods. The norm equivalence

L
lurlfn = I Zourlza@) + Y e 2 1@ = Ter) urlje) — Vur € Vi, (1.0.3)
=1

for uniformly refined meshes and a special class of non-uniform triangulations was proven in
[BPX01] with the constants of equivalence depending linearly on L~! (for the lower bound)
and L (for the upper bound). Zhang in [Zha92] improved their result with constants of
equivalence independence of the mesh size and the number of levels. Oswald in [Osw91]
proved a similar result using the fact that Sobolev space H! () coincides with a certain
Besov space. Multilevel representations of Sobolev spaces based on sequences of uniformly
refined meshes are available in the literature; see, e.g., [Osw94, Sch98, BPV00], and the
references therein. For fractional Sobolev spaces H*(2) and general meshes (with certain
restrictions on s), we mention [Ste93], where wavelet bases are employed.

In this thesis, for a given y-shape regular mesh 7, we consider operators from L?(£2) to
the space of piecewise polynomials on 7 satisfying the following properties: L?-stability,
quasi-locality, and certain approximation properties. Then, for such operators, we prove
the following stability results:

e For the space of continuous piecewise polynomials on 7, we prove that such operators
are stable mappings H%/2(Q) — B3/2 (Q).

2,00

e If the mesh T is additionally quasi-uniform, for the space of continuous piecewise
polynomials on 7, we prove a sharper stability estimate B2 Q) — B2 (Q).

2,00 2,00

e For the space of elementwise polynomials on 7', we prove that the mentioned operators
are stable mappings from H'/?(Q) into B;/;(Q)

o We also show that for the quasi-uniform meshes, we have the stability B;/OQO(Q) —

B;/OZO (€), for the space of elementwise polynomials on 7.

e By interpolation arguments, we derive the stability estimate ngq)e/ 2 Q) — B;Z;*l)e/ 2

where 6 € (0,1), ¢ € [1,00], and for the space of continuous piecewise polynomials
m = 2 and for the space of elementwise polynomials m = 1.

The Scott-Zhang operators are local, L?()-stable operators with certain approximation
properties in L?((2), therefore these operators admit the first two stability results.

For the spaces of continuous piecewise polynomials on adaptively refined meshes, we
develop a multilevel decomposition based on modified Scott-Zhang operators defined on
a hierarchy of meshes generated by the finest common coarsening (fcc) of two meshes.
Given a mesh 7 obtained by Newest Vertexr Bisection (NVB) refinement from a regular
triangulation ’7A6 and 7\2 as the sequence of uniformly refined NVB-generated meshes, we
denote Ty := fcc(T, ’7AZ) as the finest common coarsening of 7 and 7;. For the space of
continuous piecewise polynomials defined on the mesh hierarchy 7, the modified Scott-
Zhang operator [, EZ is constructed in such a way that for the functions belonging to the
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1 Introduction

space of continuous piecewise polynomials on T, it coincides with the Scott-Zhang operator
5% on 7.

Taking advantage of the mentioned stability results and the property of the modified
Scott-Zhang operators defined on the mesh hierarchy ’7~', we present multilevel norm equiv-
alences in the Besov spaces Bgz/ 2(Q), 0 € (0,1), g € [1, 0], for the standard discrete spaces

of globally continuous piecewise polynomials on 7T .

Multilevel preconditioning of the fractional Laplacian

An important application of multilevel decompositions is the design of multilevel additive
Schwarz preconditioners. We recall [BPX91] as one of the earliest works applying an
additive multilevel operator (BPX) to develop preconditioners for second order elliptic
boundary value problems and prove that it is nearly optimal. For the case of non-uniform
meshes, the optimal complexity of BPX is proved in [DIK92, BY93].

In this work, we propose a local multilevel diagonal preconditioner for the integral
fractional Laplacian (—A)* for s € (0,1) on adaptively refined meshes. Using the ad-
ditive Schwarz framework, we prove this multilevel diagonal scaling gives rise to uniformly
bounded condition number for the integral fractional Laplacian.

The need for a preconditioner arises from the observation that the condition number
of the stiffness matrix AY € RNe*Ne corresponding to a FEM discretization by piece-

. . . . . . ¢ 2s/d ( hf d=2s
wise linears of the integral fractional Laplacian grows like x(A") ~ N, Lo ,

h‘min
where hfnax, hfnin denote the maximal and minimal mesh width of 7y, respectively, see, e.g.,
[AMT99, AG17]. Since the fractional Laplacian on bounded domains features singularities

at the boundary, typical meshes are strongly refined towards the boundary so that the
quotient hf . /hl. is large (see, e.g., [AG17, BBNT18, FMP19] for adaptively generated
meshes). While the impact of the variation of the element size can be controlled by diago-

nal scaling (see, e.g., [BS89, AMT99]), the factor Nfs/d persists. A good preconditioner is
therefore required for an efficient iterative solution for large problem sizes ;.

Preconditioning for fractional differential operators has attracted attention recently. We
mention multigrid preconditioners [AG17], based on uniformly refined mesh hierarchies
and operator preconditioning, [Hip06, GSUT19, SvV19], which requires one to realize an
operator of the opposite order.

The framework of additive Schwarz preconditioners is analyzed in a BPX-setting with
Fourier techniques in [BLN19]. For a different definition of the fractional Laplacian via
spectral and PDE theory, [CS07], locally refined FEMs have been studied in [CNOS15]
and [CNOS16] provides an almost optimal multilevel method for this interpretation. We
also mention [BIXM19], where optimal additive Schwarz preconditioners on quasi-uniform
meshes for the spectral fractional Laplacian are proposed.

In this thesis, using the additive Schwarz framework, we provide an optimal local multi-
level diagonal preconditioner for two types of mesh hierarchies: ’72 and the meshes generated
by an adaptive algorithm.
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1 Introduction

H-matrices

The second part of this thesis is concerned with H-matrices introduced in [Hac99] and
analysed in [HIK00, GHO3a, Hacl5, Gra0l]. This class of matrices consists of blockwise
low-rank matrices of rank r where the blocks are organized in a multilevel structure, i.e.,
a tree Tz, so that the memory requirement is typically O(Nrdepth(Tz)), where N is the
problem size. This format comes with an (approximate) arithmetic that allows for addition,
multiplication, inversion, and LU-factorization in logarithmic-linear complexity. Therefore,
computing an (approximate) inverse in the H-format can be considered a serious alternative
to a direct solver or it can be used as a “black box” preconditioner in iterative solvers. A
basic question in connection with the H-matrix arithmetic is whether matrices and their
inverses or factors in an LU-factorization can be represented well in the chosen format.
While stiffness matrices arising from differential operators are sparse and are thus easily
represented exactly in the standard H-matrix formats, the situation is more involved for
the inverse.

The works [Bor10, BHO03, Beb07, EMP15, AFM20] prove that the inverse of the stiffness
matrix corresponding to the finite element discretization of the scalar elliptic operators can
be approximated in the H-matrix format and the error decays exponentially in the block
rank. The works [FMP 16, FMP17] show similar results for the boundary element method.
The underlying mechanism in these works is that ellipticity of the operator allows one
to prove a discrete Caccioppoli inequality where a higher order norm (e.g., the H'-norm,
the H(curl)-norm) is controlled by a lower order norm (e.g., the L*norm, the L?-norm)
on a slightly larger region. A consequence of Caccioppoli-type estimates is the existence
of blockwise low-rank approximants to inverses of FEM or BEM matrices [BHO03, Borlo,
FMP15, FMP16, FMP17].

‘H-matrix approximation of the inverse of the stiffness matrix corresponding to
FEM-BEM couplings

In this work, we consider three different FEM-BEM coupling techniques, namely, the
Bielak-MacCamy coupling [BM&4], Costabel’s symmetric coupling [Cosg8, CESIO], and
the Johnson-Nédélec coupling [JN&80], for the transmission problems posed on unbounded
domains. We present an approximation result for the inverses of stiffness matrices corre-
sponding to the lowest order FEM-BEM discretizations in the H-matrix format.

A crucial step in the proof of the existence of such H-matrix approximations is to provide
the discrete Caccioppoli-type inequalities. The Caccioppoli-type inequalities control the
stronger norm of the weak solutions of elliptic PDEs with locally zero right-hand sides by
a weaker norm on a (slightly) enlarged regions. To see examples of the Caccioppoli-type
estimates for the continuous solutions of elliptic PDEs, we refer to [Hacl5, Lem. 11.17]
and [BHO3, Lem. 2.4]. For the finite element solutions, the Caccioppoli estimate has the
following form

h 1
<
IVunllpe sy, < © (diS(aBRuaBRg) IVeurllzae,) + dis(0Brg,, 0Br,) s ““(BR?)) ’

where Br, C Bpg, are two subdomains of the domain {2 and h is the mesh size. The
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above estimate can be found in [FMP15]. Analogously, in a BEM context, we refer to
[FMP16, FMP17].

In this work, we provide the Caccioppoli-type estimates for the finite element solution of
the transmission problem on regions that are not supported by the right-hand side functions
as well as for the single- and double-layer potentials of the boundary element solution. i.e.,
we simultaneously control a stronger norm of the interior solution and both layer potentials
by a weaker norm on a larger domain.

As a consequence of such Caccioppoli-type estimates, we prove that root exponential
convergence can be achieved in the rank employed.

‘H-matrix approximation of the inverse of the stiffness matrix corresponding to
the time-harmonic Maxwell equations

The last part of the thesis deals with the H-matrix approximability of the inverse of the
stiffness matrix corresponding to the time-harmonic Maxwell equation with perfectly con-
ducting boundary conditions. We restrict ourself to the case that the domain is filled with
a homogeneous isotropic material.

We provide a Caccioppoli inequality that controls the H(curl)-norm of the discrete so-
lution by the L?*norm. However, since H(curl) is not compactly embedded in L2, this
Caccioppoli inequality is insufficient for approximation purposes. We therefore combine
this Caccioppoli inequality with a local discrete Helmholtz-type decomposition. The gra-
dient part can be treated with techniques established in [F'MP15] for Poisson problems,
whereas the remaining part can, up to a small perturbation, be controlled in H!. As a
result of the Caccioppoli inequalities, we prove the existence of H-matrix approximations to
the inverse of the stiffness matrices corresponding to the time-harmonic Maxwell equations
that converges root exponentially in the block-rank.

1.1 Outline and contributions

Chapter 2

In this chapter, we introduce Sobolev spaces on domains 2 C R? as well as on the corre-
sponding boundaries 952, the interpolation spaces and some vector-valued function spaces.
Also, we briefly mention the trace operators and their properties. Then, we present some
basic results on the discretization of the domain 2, the classical H'-conforming and low-
order H(curl)-conforming finite element methods and discretization of the boundary 9f2.
This is followed by a short introduction to the abstract additive Schwarz theory and the
hierarchical matrices.

Chapter 3

In this chapter, considering local L?(Q)-stable operators mapping into the spaces of contin-
uous piecewise polynomial on shape regular meshes with certain approximation properties
in L2(Q), we prove that such operators are stable mappings H%/2(Q) — BS/OQO(Q) Anal-
ogously, we show locally L?-stable operators such as the elementwise L?-projection are
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stable Bl/ 2 () — Bl/ 2 (£2). An interpolation argument, for the space of continuous piece-
wise polynomials, gives stability 33 / 2(Q) — Bg’i]/ 2(Q) and for the space of elementwise

polynomials, gives stability B /2(9) — BQ/Q(Q) where 6 € (0,1),q € [1, ).

We then go on to present some extensions such as inverse estimates in Besov norms
(Lemma 3.1.8) or an interpolation result for discrete spaces in Besov norms (Corollary 3.1.10).

The rest of this chapter is devoted to present a multilevel decomposition based on a mod-
ified Scott-Zhang operator on Ti=1 ce(T, 72) where 7; is generated by the finest common
coarsening of a fixed mesh 7 and the sequence of uniformly refined meshes 72 In order to
construct the multilevel decomposition, first we develop properties of the finest common
coarsening of two given meshes obtained by NVB refinement. Then, we introduce modi-
fied Scott-Zhang operators on the mesh hierarchy 7, such that for the space of continuous
piecewise polynomials on 7, these operators coincide with the Scott-Zhang operators on
the mesh hierarchy ﬁ . B

Finally, since the space of continuous piecewise polynomials on 7y is a subset of the space
of continuous piecewise polynomials on 7" and due to the fact that the modified Scott-
Zhang operators on the mesh hierarchy 7, coincide with the Scott-Zhang operators on the
mesh hierarchy 7}, we prove multilevel norm equivalences in the Besov space B36/ 2(9),
6 € (0,1), g € [1,00], with the aid of mentioned stability results.

Chapter 4

On a bounded Lipschitz domain Q C R¢, we consider the integral fractional Laplacian
(=A)® for s € (0,1) on adaptively refined meshes 7;. An optimal local multilevel diagonal
preconditioner for the fractional Laplacian for two types of mesh hierarchies are presented.
The first one is assumed to be generated by an adaptive algorithm and discussed in Theo-
rem 4.3.1. The second one is based on the sequence ’7} and analysed in Theorem 4.3.4.

As the main result of this chapter, using an abstract additive Schwarz framework, we
show that, in the presence of adaptively refined meshes, multilevel diagonal scaling leads
to uniformly bounded condition numbers for the integral fractional Laplacian. To prove
the main result, we apply the norm equivalence of the multilevel decomposition in Chapter
3 and combine it with an inverse estimate in fractional Sobolev norms.

For the space of piecewise linear polynomials, the inverse inequality for the Laplacian
operator (—A)?® is proven in [FMP19, Thm. 2.8]. In this chapter, for 0 < s < 1/2, we
generalize this inverse estimate to the space of piecewise constants.

Chapter 5

On a Lipschitz domain Q C R? d = 2,3 with polygonal (for d = 2) or polyhedral (for
d = 3) boundary I', we consider a transmission problem and study three different FEM-
BEM couplings, the Bielak-MacCamy coupling [BM&4], Costabel’s symmetric coupling
[Cosg8, CES90], and the Johnson-Nédélec coupling [JN80]. In this chapter, we prove the
existence of exponentially convergent H-matrix approximants to the inverses of the stiffness
matrices of the FEM-BEM couplings.

To prove the H-matrix approximability, we show that for the interior finite element solu-
tion and for the single-layer and double-layer potentials of the boundary element solution,



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1 Introduction

a Caccioppoli type estimate holds, i.e., the stronger H'-seminorm can be estimated by a
weaker h-weighted H'-norm on a larger domain.

Analyzing the procedure in [FMP15, FMP16, AFM20] shows structural similarities in
the derivation of H-matrix approximations based on low-dimensional spaces of functions: A
single-step approximation is obtained by using a Scott-Zhang operator on a coarse grid. It-
erating this argument is made possible by a Caccioppoli inequality, resulting in a multi-step
approximation. Finally, with the aid of the approximated solutions from low-dimensional
spaces, we prove the existence of the H-matrix approximants with the exponential conver-
gence in the block rank.

Chapter 6

On Q C R3, a simply connected open polyhedral domain with boundary I' := 9%, we
consider the time-harmonic Maxwell equations and their discretization with lowest order
Nédélec’s curl-conforming elements. We prove the existence of H-matrix approximations
to the inverse of corresponding stiffness matrix and we show exponential convergence of
the error in the H-matrix block-rank r.

In order to prove the H-matrix approximability result, we introduce a local discrete
Helmholtz decomposition and provide stability and approximation properties of this decom-
position. We also present a Caccioppoli-type inequality for discrete £-harmonic functions
with £ being the Maxwell operator. Then, we combine this Caccioppoli inequality with
the local discrete Helmholtz-type decomposition and treat gradient part with techniques
established in [F'MP15] for Poisson problems whereas the remaining part can, up to a small
perturbation, be controlled in H'. So that approximation becomes feasible and one may
proceed structurally similarly to the scalar case in the previous chapter.

In this thesis, Chapters 3 and 4 are the results of the paper [FNP21h] which will appear in
ESAIM Math. Model. Numer. Anal. (M2AN). Chapter 5 is contained in the paper[FNP20]
which is submitted to Numerische Mathematik. Finally, Chapter 5 is presented in the paper
[F'MP21a] which is submitted to Advances in Computational Mathematics.
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2 Background

This chapter is devoted to introduce some basic notations and definitions. In Subsection
2.1.1, we define Sobolev spaces on domain Q C R? as well as on the boundary 9. Sub-
section 2.1.2 deals with interpolation spaces. Subsection 2.1.3 recalls some vector-valued
function spaces. Subsection 2.1.4 is devoted to trace operators and their properties. In
Section 2.2, we briefly introduce triangulation of the domain €2 as well as the classical H'-
conforming and low-order H(curl)-conforming finite element methods. Section 2.3 recalls
triangulation of the boundary 0f). Section 2.4 is concerned with the definition of some
(quasi-) interpolation operators and their properties. A short introduction to the abstract
Schwarz theory is given in Section 2.5. The final Section 2.6 deals with the hierarchical
matrices.

Throughout this chapter, Q@ € R?, d > 1 denotes a Lipschitz domain with the boundary
[':= 09 and Q< := R?\ Q denotes the exterior of Q.

Additionally, the notation < abbreviates < up to a constant C' > 0. Moreover, we use
~ to indicate that both estimates < and 2 hold where C' is positive constant independent
of the mesh parameters except the vy-shape regularity.

2.1 Function spaces

2.1.1 Sobolev spaces

In this section, we define Sobolev spaces of integer and real orders for both positive and
negative cases; see, e.g [Ada7h, BS02, Mon03, SS11]. For p > 1, let LP(2) be the usual
Lebesgue spaces on 2 with corresponding norm ||-| Lr(9)- Analogously, Lebesgue spaces
on the boundary I' are denoted by LF(I') with the norm ||-[|;y). We denote ck(Q),

k € Ny, as the space of k times continuously differentiable functions on 2 and C’(I)“ (Q) as
the space of compactly supported functions belonging to C*(2). Let C°°(Q) denote the
space of infinitely differentiable functions on © and C§°(£2) denote the space of compactly
supported functions in C*°(£2).

Sobolev spaces on {2

Let L}OC(Q) denote the space of absolutely integrable functions on every compact subset
of Q. For a multi-index & = (ay, -+ ,aq) € Nd, we set |af := E'f:l a;, and the classical

derivative is denoted by

olely,

DY = —————.
0 -+ 0
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(€2), we call a function in L} (), which we denote D%u, the weak derivative

loc

For u € L1 oc
of order o if

/Daugod:c—( )C"'/uDagoda: Yo € C°(Q).
The Sobolev space W*P(Q), k € Ny and p € [1,00] is defined as
WkP(Q) .= {u € LP(Q) : D% e LP(Q),V|a] e N&, 0 < a < k},

with the corresponding norm

1/p
._ 2 aeNg | D= uHLp(Q forp € [1,00),
lllwrr ) = 0<|e|<k
maXqo|<k HDauHLOO(Q) forp = oo.

For p = 2 we use the standard notation H¥(Q) := W"2(Q). This space is a separable
Hilbert space with the scalar product

(u, v) i () = Z (D%u, D) 12y »
oeNd
0<|ax| <k
which induces the norm [|ul| g gy = 1/ (4, w) g (). We also define the following semi-norm

1/2
|U|Hk(Q) = <ZaeNg fQ(Dau)2> . For 0 < 8 < 1, we define the following Slobodeckij

semi-norm

’u‘Hﬂ(Q) // \x—y\‘“m da:dy

For s € RT\N, we define the Slobodeckij norm as

> (Du(x) - D*u(y))’
el gy += Nl Q)+|zEJ / / ‘x_ T oy,

where 3 := s — |s|. Then, the Sobolev spaces of fractional order s € RT\N are defined as
H3(Q) := {u € L*(Q) : l[wll grs () < o0}

In the above definitions of Sobolev spaces, we are allowed to replace Q with R%. In the
following, we define the space of functions in H*(€2) with zero boundary conditions. For
s > 0, we denote

H5(Q) = C5e () closure with respect to the H*(2)-norm,
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For s € R*, we also define the following Hilbert space

H(Q) :={ue H'RY) : u=00nQ%,  |v|}

[ HUHHS(Q)JFHdlSt 09)~ ”HL?(Q)

The Sobolev spaces with negative orders are defined as the topological dual of positive
order Sobolev spaces: According to [McL00, Thm. 3.30], we have H5(2) = (H*(Q))’ and
H=5(Q) = (H*(Q)), for s € R. In the following chapters, we need to extend the Sobolev
spaces from 2 to R? in a stable way. This can be done using the following lemma.

Lemma 2.1.1. [Ada75, Thm. 4.32] Let Q C RY be a bounded Lipschitz domain. Then,
there exists a bounded linear extension operator £ : H'(Q) — H'(R?) such that Eu = u on
Q and

el 1 sy < € el sy

where the constant C > 0 only depends on d and €.

Sobolev spaces on the boundary I’

In this subsection, we shall extend the definition of Sobolev spaces to the boundary I'. For
0 < s <1, we define

H D) =={ue L*T)  :  ullgsr) < oo},

where |[-[| 7« (py 18 the Aronstein-Slobodeckij (semi-)norm defined as

. (y))?
Il = Nl + oy Wit Julfy = [ [ 42 |l,_ e (i) W) 45 ) as(),

where ds is the surface measure on I'; see, e.g [SS11, Def. 2.4.1]. For 0 < s < 1, we denote
H=5(T) := (H*(T"))" as the negative order Hilbert space and we can equip the dual space
with the following norm

U, v
[wll gr—s(ry == sup {wvip

verr>(r) [0l gy’

where (u,v) denote the duality paring.

2.1.2 Interpolation spaces

In this subsection, we briefly introduce the interpolation spaces and overview some of the
key results regarding the interpolation with the K-method for Banach and Hilbert spaces.
We also note that the fractional order Sobolev spaces can equivalently be obtained by
interpolating between integer order spaces and it is useful since working with the norms of
integer order spaces are easier than the Slobodeckij norms. For more details, we refer to
[Tar07] and [McLOO, Apendix BJ.

10
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Let (Xo, |-l x,) and (X1, ||-||x,) be two normed spaces with continuous embedding X; C
Xp. The K-functional on Xy is defined by

K(t,u) = inf (lu—wueflo+tluellr).

weX
For 0 € (0,1) and ¢ € [1, 00|, we define the interpolation space Xy , as
Xogq:=(Xo,X1)oq :={ueXo : [ul,, <o}
equipped with the norm
o = {(ff%( K@) )" e L0)
esssupysq (t VK (t,u)) q= 00

In the following lemma, we mention two simple but important properties of the interpolation
spaces.

Lemma 2.1.2. [77195, Sec. 1.3.3] There exists a positive constant Cy, such that for
u € X1, we have the following estimation for the interpolation norm

—0 0
lullgy < Coqllully,” luly, — 6€(0,1) qel[l ol

Furthermore, for q, q € [1,00] and 0 < 6 < 0" < 1, it holds the following continuous
embedding

Xo,qg C Xor q-

There are two additional results regarding the interpolation spaces that we require later.
The first one is called the “reiteration theorem” and tells us about the possibility of inter-
polating between the interpolation spaces. The second one is concerned with interpolation
between finite dimensional spaces.

Lemma 2.1.3. (Reiteration Theorem, [Tar07, Thm. 26.3] ) For 0 < 6y < 6; <1, 1 <
Po,P1,q < 00 and 0 < A < 1, there holds

(X0, X000 I la0pn ) + (X0 X105 -0, ) )

with equivalent norms.

Ag = ((X07 Xl)(l—)\)eo-‘r)\@l,q? ||'”(1—)\)60+/\91,q> ’

Let L£(A, B) denotes the space of continuous linear operators from A to B. Then, we
have the following lemma.

Lemma 2.1.4. [AL09, Lem. 2.2] Let (Xon,|lx,) € (Xo,|lx,) and (Xun, |llx,) €

(X1, Ilx,) be two finite dimensional Hilbert spaces with N = dim Xon = Xy n. Also,
let there exists an operator mn € L(Xo, Xon) N L(X1, X1,n) such that Tnu = u for all
u € Xon. Then, it holds

(Ko I X1 1)) g = (Ko Xawdogs )

with equivalent norms for 6 € (0,1) and q € [1, 00].

11
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In the following, we consider the interpolation between two weighted L?-spaces.

Lemma 2.1.5. [Tur07, Lem. 23.1] Let w be a (measurable) positive function on Q and

1/2
E(w) = {v ]/ lo(z)|* w(z) de < oo} with  ||v]|, = (/ lo(z)]? w(x) dm) .
Q Q
If wg and wy are two such functions, then for 0 < 0 < 1, we have

(E(wo), E(w1))g o = E(wp),

with equivalent norms, where wy = wé_ewf.

Besov spaces are defined as suitable interpolation between Sobolev spaces, cf. [Tar(7,
Ch. 34. 23.1]. In particular, we have the following definition of Besov spaces.

Definition 2.1.6. For s > 0, s ¢ Ny, ¢ € [1,00], the Besov spaces B3 () are defined as

the interpolation spaces
B3 4(Q) == (H7 (), HTH(2))o g5

where 0 = [s] and § = s — o € (0,1).
It often is convenient to characterize fractional Sobolev spaces as interpolation spaces.

Lemma 2.1.7. [McL00, Thm. B.8] For s1, s2 € R and 6 € (0,1), the following equivalence
holds

H(179)31+032 (Q) _ (HS1 (9)7 HS2 (Q))0,2.

2.1.3 Vector-valued function spaces

In this section, we recall standard notations and definitions for vector-valued function
spaces. For a bounded Lipschitz domain 2 C R3 and an arbitrary function space, we apply
bold letter for the corresponding vector valued version, e.g., W := (W)3. In particular, we
use the following notations for vector-valued LP- and Sobolev spaces

LP(Q) = (LP(Q)}  HNQ) = (H*(Q))?, Vk e No.

For a scalar function u, the gradient operator is defined as

ou ou Ou\T
V= [ o0, 228 20
3%1 al’g 8%3

For a smooth vector field U = (Uy, Us, U3)?', we recall the curl and the divergence operators
as

. <8U3 Uz U1 U3 OUs 8U1>T V'U::§3<8Ui>‘
1=1

6.%'2 B 81’37 8$3 83}17 6.%'1 B 81’2 (9.1‘2

Next, using partial integration, we mention the definition of the derivatives in the weak
sense, see [Mon03, Sec. 3.5]

12
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Definition 2.1.8. (Generalized differential operators).

1. For U € L*(Q), we call F; € L] () the (generalized) curl of U, if there holds
/Fl-VdX:/U-VXVdX YV € C(Q),
Q Q

and we write V x U = Fy.

2. For u € L?(Q), we call Fy € LL _(Q) the (generalized) gradient of u, if there holds
/ Fy - Vdx = —/ uV-Vdx VYV eCT9Q),
Q Q

and we write Vu = Fs.

3. For U € L*(Q), we call F5 € L{_(Q) the (generalized) divergence of U, if there holds
/ngdx:—/U-Vvdx Yo e C§°(92),
Q Q

and we write V - U = F3.
This leads to the definition of the following H(curl, ) and H(div, ) spaces.
Definition 2.1.9. We define the following function spaces
H(curl, Q) := {U € L*(Q) : VxUeL*Q)},
H(div,Q):={UeL*Q) : V- -UelL*(Q)},
with the following scalar products
(U, Vigeale) = (U, Vigzq) + (VX U,V x V)2,
(U, Viawiv,o) = (U, Vi) + (V- U, V- V) .
Moreover, the induced norms are denoted by
101l Fxcun) = HUHiQ(Q) + [V x U”iQ(Q) ;
Ul Exaiv,e) = IUllE2() + IV - Ullg2q) -

Definition 2.1.10. The spaces Hy(curl,Q) C H(curl, Q) and Hy(div, Q) C H(div,Q) are
defined as

Hy(curl, Q) := C5°(2) closure with respect to the H(curl, Q2)-norm,

Hj(div, Q) := C°(2) closure with respect to the H(div,2)-norm.

13
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For a simply connected domain 2 with connected boundary I', the connection between
the function spaces H(curl, ), H(div,Q), H'(2) can be collected in the following so-called
de Rham diagram

R — H'(Q) 5 H(curl, Q) 25 H(div, Q) > L2(Q) -5 0,

see e.g. [Mon03, eq. (3.59)]. This sequence is exact which means that the image of
one operator coincides with the kernel of the following operator. Moreover, considering
boundary conditions we have the following exact sequence

R — HL(Q) —5 Ho(curl, Q) 5 Ho(div, Q) > L2(Q)/R -% 0,

where L2(Q)/R := {u € L*(Q) : [qudx =0}, see e.g. [Mon03, eq. (3.60)].
In the following, we mention the existence of a scalar potential for the curl-free vector
fields.

Theorem 2.1.11. [Mon03, Thm. 3.37] Let Q C R? be a bounded simply connected Lip-
schitz domain and uw € L*(). Then, V x w = 0 in Q if and only if there exists a scalar
potential 1 € H'(Q) such that w= V. Moreover, 1 is unique up to an additive constant.

2.1.4 Trace operators

In this subsection, we collect some standard notations and results regarding the interior and
exterior trace operators as well as the corresponding conormal derivatives. Furthermore,
we present the traces of functions in H(curl, 2) and H(div, ). Most of the results in this
section can be found in [SS11, Mon03].

Trace operators for the space H*((2)
We introduce the space of functions with distributional Laplacian in L? as
HA(Q):={ue H(Q) : VuecH(div,Q)},
with the corresponding norm
2 2 2
[ullzs ) = llullz o) + 1AullZ2 ) -

Lemma 2.1.12. [S511, Thm. 2.6.8, Thm. 2.7.7] Let 1/2 < s < 3/2. Then there ezists a
linear and continuous interior trace operator

At H(Q) — H V2T such that A™u = u|r  Yu € CP(Q).
Analogously, there exists a linear and continuous exterior trace operator
A&t HY(QY) = H V(D) such that A§% = ulp  Vu € C®(Qext),

Let v be the outward normal vector of ), then there exists a bounded linear exterior
conormal derivative operator

At HA(Q) — H™Y2(T)  such that ~™u =~+MVu-v Yue C®(Q).
Analogously, there exists a linear and continuous exterior conormal derivative

A HA QY — HTY2(D)  such that A9 =8V - v Yu e CF(Q).

14
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The traces and conormal derivatives are generally discontinuous across I'. Therefore, if
a function u has an interior and an exterior trace, then we define the following jump term

ext int

[You] := Yo U~ W

and if v has an interior and an exterior conormal derivative, then the corresponding jump
is defined as

ext int

['Ylu] =7 u—m

see, e.g., [SS11, Subsec. 2.7]. The trace operators are used to incorporate the boundary
conditions to the function spaces, therefore the following lemma helps us to have a more
explicit definition of Hj(€2), 0 < s < 1, using the trace operators.

Lemma 2.1.13. [McL00, Thm. 8.10] Let Q C R? be a bounded Lipschitz domain.
1. For 0 < s<1/2, it holds H3(2) = H*(Q).

2. For 1/2 < s <1, it holds H§(Q) :={u € H*(Q) : ~iu=0}.

Trace operators for the spaces H(curl, ©?) and H(div, )

Let © C R3 be a bounded Lipschitz domain. In this subsection, we introduce the trace of
functions in H(curl, Q) and H(div, ).

Lemma 2.1.14. [Mon03, Thm. 3.24, Thm. 3.29] Let n denotes the outward normal
vector on I". Then

1. There exists a linear, continuous operator try : H(curl, Q) — H~Y2(T) such that
trr(uw) = (u x n)|r Vu € C>(Q),

and
tre (W) g2y S el preurty -

2. There exists a linear, continuous operator try : H(div,Q) — H~Y/?(T) such that
trp(u) = (u-n)|p Vu € C>(Q),

and
ltrn(w)ll 1720y S Il geaiv,0) -

Theorem 2.1.15 (Integration by parts for H(curl, Q) and H(div, Q) ). [Mon03, Theorems
3.24, 3.29]

1. The following integration by parts formula holds for w € H(curl, Q) and v € H'(Q)

/Vxu-'vdw—/u-vadw—/tr,(u)-vdS.
Q Q r
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2. The following version of Green’s theorem holds for u € H(div,Q) and v € H'(Q)

/V-uv dm——/u-Vv da:—i—/trn(u)v ds.
Q Q r

Lemma 2.1.16. [Mon03, Thm. 3.25, Thm. 3.33] The spaces Hy(curl, Q) and Hy(div, )
can be defined equivalently as

Hy(curl, Q) :={Uec L*(Q) : Vx Ue€ L*(Q), tr,(U) =0 onT},
Hy(div,Q):={Ue L*(Q) : V-UelL*Q), tro(U=0 on T}.

2.2 Triangulation of (2

Let © € R%, d = 2,3 be a polygonal or polyhedral Lipschitz domain. In the following, we
present a definition of a triangulation 7 on €.

Definition 2.2.1. A set 7 is called a conforming triangulation of €2, if it satisfies the
following properties

1. Each element 7' € T is an open d-simplex.

2. T is regular in the Ciarlet sense, i.e., for two elements T, T" € T, the intersection of
T N T’ is either empty, a common vertex, a joint edge or a joint facet (d = 3).

3. The union of all elements covers (2, i.e., Q = UTGTT'
Definition 2.2.2. Let T be a triangulation of 2. Then,
1. T is called y-shape regular if

diam(T)/|T|V% < ~ <
I;lg;( fam(7)/ |T|"7) <~ < o0,

where diam(7') := sup, ,er [z —y| and |T| denotes the volume (d = 3) or the area
(d=2)of T.

2. A ~-shape regular triangulation 7T is called quasi-uniform, if there exists C' > 0 such
that

i T)) < i i T
max (diam(T")) < CIIIIGI%I_ (diam(T"))

3. h = maxper (diam(7)) is called the mesh size of T.

Let 7 denote a regular (in the sense of Ciarlet) and 7-shape regular triangulation of
Q c R?. In the following, we define the space of piecewise polynomials (d = 2,3) and we
consider the low-order finite element spaces and the lowest order local Nédélec spaces of
first kind (d = 3).
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Definition 2.2.3. Let P,(T") be the space of polynomials of (maximal) degree p > 0 on
the element T € T. The spaces of T-piecewise polynomials of degree p € Ny and regularity
m € Ny are defined by

SPM(T) :={ue€ H™(Q): u|lp € P,(T) YT €T},
SET(T) = SP™(T) N Hi* (Q) m=0,1.

Considering the fact that the results of the last two chapters of this thesis are mainly
formulated for matrices, we need to impose assumptions on the basis of S”'(7). To do
that it will be convenient to use Lagrange bases of the space SP'(T) defined on a mesh T

Definition 2.2.4. On the reference d-simplex 7' = conv{z1, ..., 2441}, let the dim P, nodes
N,(T) be the regularly spaced nodes as described in [Cia78, Sec. 2.2] (called “principal
lattice” there),

d+1 d+1

NP(T\) = {x:ZAjzj : Z)\jzl, Aj € {;,i:0,...,p}}.
J Jj=1

1

The nodes N,(T) C Q for the mesh 7 are the push-forward of the nodes of Np(’f ) under
the element maps. The Lagrange basis By, := {¢. 7|2 € Np(T)} of SP"1(T) (with respect
to the nodes N, (7)) is characterized by ¢, 7(2) = 8, for all z, 2/ € N,(T); here, 6, ./ is
the Kronecker Delta defined as 6, ,» = 1if z =2’ and 6, ,» = 0 for z # 2.

For p = 1, we abbreviate N(7) := Ni(T) and if the triangulation 7 is additionally
quasi-uniform with the mesh size h, then we abbreviate By, := B ;. For a quasi-uniform
triangulation 7 of  with the mesh size h, let N(T) = {z1,- -+, z,} be the set of the nodes
of T and & := ¢,, 7, j = 1, ,n. Then By, features the following norm equivalences:

e B2 |[x]|y < 1| @x]| 2 () < c2h? x|, Vx e R", (2.2.1a)

for the isomorphism ® : R” — SbH1(T), x > i1 %5&5

Definition 2.2.5. On T € T, the lowest order local Nédélec spaces of first kind is defined
as

NHT)={a+bxx: abeR3.

Let 7 be a unit vector parallel to the edge e, then the edge-based degrees of freedom are
given by

M.(U) := /U -Tde Vedgeseof T,

i.e., the line integrals of the tangential component over the edges of T, see e.g., [NMon03,
Sec. 5.5.1], [BBF13, Sec. 2.3.2].
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Definition 2.2.6. Let T" € T be an arbitrary tetrahedron and e be an edge of T with
endpoints Vi, Va. Then, the nodal basis of N7 (T) is defined based on the following edge-
based shape functions

q)e = )\V1 V)\v2 - )\Vg VAVU

where Ay, is the barycentric coordinate function associated with vertex V;, see, e.g., [Mon03,
Sec. 5.5.1].

We set
X (T,9Q) :={U, € H(curl, Q) : Uylr e N[(T) VT €T},
Xn,o(T,Q) == X(T,Q) NHo(curl, Q).

Since the standard degrees of freedom of X (7,€2) are the line integrals of the tangential
component of Uy, on the edges of T, the dimension of X (7,2) is the number of edges of
T. The standard basis of X,(7,€) consists of the so-called (lowest order) edge elements
Xy, := {U.}, where for each edge e, the function ¥, € X (7, Q) is defined on the tetrahedra
sharing e as an edge, as in Definition 2.2.6 and is supported by the union of the tetrahedra
sharing edge e.

A basis Xy = {U1,...,Un} of Xp,o(T,Q) with N := dim X, (7, ) is obtained by
taking the U, € &) whose edge e satisfies e C 2; that is, A} ¢ is obtained from A} by
removing the shape functions associated with edges lying on I'.

2.3 Triangulation of OS2

We additionally need to define triangulations of the boundary I'.
Definition 2.3.1. A set K is called a regular triangulation of I' if
1. Each K € K is an open line segment (d = 2) or an open triangle (d = 3) in R%.

2. K is regular in the Ciarlet sense, i.e., for two elements K, K " € K, the intersection of
K N K’ is either empty, a common vertex (d > 2) or a joint edge (d = 3).

3. The union of all elements cover I', i.e., I = Urex K.

Definition 2.3.2. Let K be a triangulation of I'. For d = 2, K is called ~-shape regular if

K|
max max
KeK K'ek |K'| — 7

and for d = 3, K is called 7-shape regular if
diam(K)?/ |K|) < 7.
ma(diam(K)?/ | ]) <
Furthermore, a y-shape regular triangulation K is called quasi-uniform, if there exists C' > 0
such that

. - o ‘
max (diam(K)) < C}(neulé (diam(K))
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Let K denote a regular (in the sense of Ciarlet) and 7-shape regular triangulation of T'.
Then, we have the following definition for the space of piecewise constant functions on /.

Definition 2.3.3. Let K denote a regular (in the sense of Ciarlet) and v-shape regular
triangulation of I'. Let P,(K’) be the space of polynomials of (maximal) degree p > 0 on
the element K € K. The space of piecewise constant functions on K is defined as

SOOK) :={u e LA ) : ulx € P(K) VK €K}

For a quasi-uniform triangulation K of I' with the mesh size h, since the results of Chapter
5 are devised for matrices, assumptions on the basis of S“°(K) are required to be imposed.
Therefore, we let W), := {x; : j = 1,...,m} be the basis of S®°(K) that consists of the
characteristic functions of the surface elements. This basis features the following norm
equivalences:

esh D2 ylly < [0ylay < D2 yll, VyeR™ (231a)

for the isomorphism W : R™ — S%9(K), y Z;n:l YiX;-

2.4 (quasi-) interpolation

Let V4, be a finite dimensional subspace of L?(2). Then the L?(Q)-orthogonal projection
15 L2(Q) — Vj, is defined by

<H£2u — u, S0h>L2(Q) =0 Yop € V.

Using ¢y, = HﬁZu as the test function and applying the Cauchy-Schwarz inequality give
rise to the following stability estimate

|

<
e = [ull L2

Analogously, the L?(T)-orthogonal projection It : L*(T') — Wj, for a finite dimensional
space W), C L2(T), is defined as

(Iv— v,¢h>L2(F) =0 Vi, € Wy (2.4.1)

Let K denote a v-shape regular quasi-uniform triangulation of I, u € L?(I') and u|x €
HY(K), for all K € K. The L?(T)-orthogonal projection I} : L*(I') — S%°(K) has the
following approximation property

|\u—]£uHL2(K) < Chlul g gy » (2.4.2)

where C' > 0 depends only on the shape-regularity of the triangulation K, see e.g. [SS11,
Eq. 4.51].

In the following, we mention a classical approximation result, so-called super-approximation,

see, e.g., [NS74, Wah9l].
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Lemma 2.4.1. Let K be a quasi-uniform triangulation of T and I} : L*(I') — S%(K)
be the L?(T')-orthogonal projection. Then, there is C > 0 depending only on the shape-
regularity of the triangulation and T' such that for any discrete function 1, € S%°(K) and
any n € Wh(T)

o = Iy (rom) || 12y < CI IVl ooy 1901 22 (0rsupp(n)) - (2.4.3)

Proof. The main observation is that, on each element K € K, we have Vi, | = 0. There-
fore, the standard approximation result (2.4.2) reduces to

o — 5 o) | o sy S BIV ) 2y S AUVl oy - (244)
Since 1 }: is the L?-projection, one can write
HSD*I};SDHLQ(F) ShH‘pHHl/?(F), (2.4.5)

see e.g. [5511, Eq. 4.58]. Combining the above equations, we obtain the following
approximation in the H~'/2(I")-norm

<7777[}h - Ill;(nwh)’ 90>L2 T
||T]1:Z)h _Ill;(nwh)HH—l/z(F) < sup @
©eH/2(T) ||80||H1/2(r)
Eq.(2.4.1) sup <77wh - I}l: (77¢h)7 2 I£S0>L2(F)
PEH/2(T) H‘PHH1/2(F)

le = el oy

< _ gl
S w1, (nn) sup
H " HL2(F) PEH/2(T) HWHHW(F)

Eq.(2.4.5) 1/ r
S WP e = Iy ton) || o
Eq.(244) 5
S h / Z HV(U?%)HL?(K),
KeKk
which gives us the desired result. O

Another main tool that we need in the following chapters is the nodal interpolation
operator Ij! : C(Q) — SYY(T). For v-shape regular quasi-uniform triangulation 7 of
Q C RY, we denote HZ (Q) := {u € L*(Q) : w|lp € H¥T) T € T}. Since d/2 < 2
for d € {1,2,3}, the nodal interpolation operator has the following local approximation
property [B502, Thm. 4.4.4]

2 _ —
| — I,?uHHk(T) <CR M [uffpy  YueCQNHL(Q), 0<k<2,  (246)

where C' > 0 depends only on the shape-regularity of the triangulation 7.
Another super-approximation result holds for the nodal interpolation operators.
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Lemma 2.4.2. Let T be a quasi-uniform triangulation of Q and I}’ : C(Q) — SVL(T) be
the nodal interpolation operator, then the following super-approximation result holds

anh - Il?(nvh)HHk(Q) S h2_k (||V77||L°°(Q) vahHL?(Qﬂsupp(n))

+ HDzHHLC’O(Q) thHLQ(Qﬂsupp(n))> ) (247)
for any discrete function vy, € SY(T), any n € W2(Q), and k = 0,1, where H°(Q2) :=
L2(9).

Proof. On each element T' € T, we have D?vj,|r = 0. Therefore, the standard approxima-
tion result (2.4.6) reduces to
\|mon — Ii?(ﬁvh)HHk(T) Sk nvnl g2y S 7k |D2(77Uh)}L2(T) ’

which concludes the proof. O

2.4.1 Scott-Zhang operators on (2

Let 7 be a regular (in the sense of Ciarlet) and 7-shape regular triangulation of Q. The
Scott-Zhang projection IS4 : H LQ) — SPL(T) is a quasi-interpolation operator that
preserves homogeneous boundary conditions naturally, i.e., u|lr = 0 implies I°Zulp = 0.
In this subsection, we recall the basic construction of the Scott-Zhang operator of [SZ904]
or [B502, Sec. 4.8]. It will be convenient to use Lagrange bases of the space SP1(T) from
Definition 2.2.4.

1. The basis functions ¢, 7 have the following support properties: a) if z € T' for some
T € T, then supp ¢, 7 C T; b) if z € f for some j-dimensional face (j < d) of T,
then supp ¢, 7 C wy, where wy = int | J{T': f is j-face of T' € T'}. In particular, if
z & T, then supp ., 7NT = 0.

2. For each element T' € T, one has a dual basis {¢] 7 : 2 € T} C P,(T) of Py(T), i.e.,
fT gozTgozf,T =0, for all nodes z, 2’ € T. In particular, this gives

/ ¢ rudr = u(z) VI'e T Yue Py(T). (2.4.8)
T

3. For each node z € N,(T), define the admissible set of averaging elements as A(z, T) :=
{T € T: 2z €T} A Scott-Zhang operator is then defined by selecting, for each z, a
T, € A(z,T) and setting

T,

2€NL(T)

For nodes z that are on the boundary of an element, the admissible set A(z,7) has more
than one element. However, from (2.4.8), we get that the values of the functionals coincide

on SPL(T):

/ orrudr =u(z) = / erpuds VT, T, € A(2,T) Yue SPHT).  (2.4.10)
T. ! -

z
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We also highlight that (2.4.8) implies that I°% is a projection onto SP*(7). In order to
state the properties of the Scott-Zhang projections, first we need to define the element
patches. For T' € T and k € N, we inductively define the element patches

W(T) =T, w*(T) := interior (U{? T € T, T Nwk—1(T) # @}) ,

and for the first order patch, we abbreviate w(T) := w!(T).

Lemma 2.4.3. [F('17, Lem. 1.130] The Scott-Zhang projection has the following proper-
ties:

1. The stability in L?-norm and H'-semi-norm

‘ISZ“|HZ(T) < On? (Ul g o)) - t€{0,1}.

2. The local approximation property
SZ, 112 —0) 1,12
[u = I5%ul[yeipy < OPP " ulfpmuiryy,  0<€<1, £<m<p+1 (24.11)

where the constant C' > 0 depends only on y-shape reqularity of the triangulation T .

2.4.2 Scott-Zhang operators on R?

Given Q, let Ry be a quasi-uniform (infinite) triangulation of R? (into open simplices
R € Rpy) with mesh width H that conforms to Q, i.e., every R € Ry satisfies either
R C Qor R C Q% and the restrictions Rul|o and Rp|gext are regular and 7-shape regular
triangulations of Q and Q' of mesh size H, respectively.

For s > 0, we define the space H*(RN\I') as

HY(RAD) := {u e L2RY) :  ulg € HY (), ulges € HS(QeXt)} .
Furthermore, the space L?(R\I') is defined as
L2RNT) = {u e LL(RY : wlg e L3(Q), ulges € LQ(QeXt)} .
With the Scott-Zhang projections IBt, I¥ for the grids Ry|o and Rplqe, we define

the operator I5y : HY(RAD) — Spn(Ri) == {v : v|g € S (Ryla) and v|ge €
SEL Ry |gext)} in a piecewise fashion by

int
| Iff'v on Q,

2y = { I8 on e (2.4.12)

We denote the patch of an element R € Ry by
w% := interior (U {ﬁ : R eRylg st. RNR # @}) ,
w%CXt := interior (U {F : R € Rylgexe st. RNR # @}) .
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2 Background

Lemma 2.4.4. The Scott-Zhang projection reproduces piecewise affine functions and has
the following local approximation property for piecewise H® functions:

_ JPw
H’U IH ZfR C Qext

)§CH2(H) t,se{0,1}, 0<t<s<1,

2
v 2
HHt(R |U|H5(wge’“)

(2.4.13)

with a constant C' depending only on the shape-reqularity of Ry and d.

2.5 Abstract Additive Schwarz Framework

The additive Schwarz technique creates an abstract framework to design preconditioners
based on stable decompositions of a finite dimensional Hilbert space V', using the subspaces
Ve, ¢=0,---, L. The main references for this section are [Osw94] and [TWO05].

Let a(-,-) : V x V — R be a symmetric positive definite bilinear form and (-, -),, denote
the inner product in V. We consider the problem of finding u € V' such that

a(u,v) = ¢(v) Yo eV, (2.5.1)

where ¢(v) := (f,v)y is a linear functional on V and f € V is given. This equation is
equivalent to the following linear operator equation

Au =,

where A : V — V is a symmetric positive definite operator defined by (Au,v), = a(u,v).
Let {Vp, £¢=0,---,L} be a family of finite dimensional spaces and Rg’ : Vp — V be the
natural inclusion which we call prolongation. We assume that V' can be decomposed as

L
V=R{Vo+ Y RV
/=1

Let ap(-,-) : Vi x V = R be a symmetric positive definite bilinear form defined as
ap(ug,ve) = (Apug, ve)y Vug,vp € Vg

where Ay : Vi — Vj is a linear symmetric positive definite operator. Moreover, we introduce
the linear operator P, : V. — V, given by

Eig(ﬁgu,vg) = a(u, R vy) vg € Vp.

Let Ry : V — V, be the corresponding adjoint of R;;F with respect to the inner product
(s )y i€,

<R£Tug,v>v = (ug, Ryv)y, Yup € Vo, v €V,

23



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

°
lio
nowledge

b

o
i
r

M YOU

2 Background

We should note that the symmetry and positive definiteness of a, ensure that the operator
Py, is well defined and can be written equivalently as

Pr=A;'RyA. (2.5.2)
Then, Schwarz operators are defined in terms of projection-like operators
Pir:=RIP:V 5 R[V,cV, (=0,---,L,

and the additive Schwarz operator is defined by Pﬁ g = Zf:o Py. Considering the definition
of Py from (2.5.2), Pkg can also be written in the following form

L
Plhs =Y R A 'RiA. (2.5.3)
=0
Definition 2.5.1. We define the condition number of Pﬁs as
)\max(PL )
K(Phg) = T A5
Amin(P5g)
where
a(Pksu,u) . a(Phgu,u)
Amax Ly — NTAS®E) Amin Ly— jpf 22AS™ 7
(Pis) 225 a(u,u) ’ (Pis) ajgv a(u,u)

In order to provide an upper bound for the condition number of the additive Schwarz
operator, first we need to mention the following assumptions.

Assumption 2.5.2. (Stable decomposition) There exists a constant Cy, such that each
u € V' has the decomposition

L
u:ZR:{ug uyeVy £=0,---,L,
=0

that satisfies

L

Zfig(uz, we) < Coalu,u).
=0

Assumption 2.5.3. (Strengthened Cauchy-Schwarz inequalities) There ezists con-
stants 0 < ¢g;; <1,1<4,5 < L such that

|a(RZTui,RJTuj)| < ema(RiTui,R?ui)l/Qa(R?uj,Rfuj)l/Q Yu; € Vi, wuj eV
Assumption 2.5.4. (Local stability) There exist ( > 0 such that
a(R}ug, RIug) < Caolug,ue) — ug € range(Py) €V 0< €< L.

Theorem 2.5.5. [T'W05, Theorem 2.7] Let Assumptions 2.5.2-2.5./ be satisfied. Then,
the condition number of the additive Schwarz operator is bounded by

k(Phs) < Ci¢lp(e) +1),

where p(e) is the spectral radius of € == {&; ;}.
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2 Background

2.6 Hierarchical Matrices

The main idea of H-matrices is to store certain far field blocks of the matrix efficiently as
low-rank matrices. This can be done by appropriate partitioning of the product index set
into a so-called block cluster tree such that the restriction of the matrix to the blocks of
this partitioning is either small or a low rank matrix. In order to choose blocks that are
suitable for compression, we need to introduce the concept of admissibility.

Let V}, be a finite dimensional Hilbert space and {(; : j =1,..., M} be a basis for V}.
Let a(-,-) : Vj, x V;, = C be a bilinear form and A € CM*M he the corresponding Galerkin
matrix with A;; = a((;,{;). Let |7| denote the cardinality of the finite set 7. Then, we
have the following definitions:

Definition 2.6.1 (Cluster, cluster tree). A cluster 7 is a subset of the index set Z =
{1,2,...,M}. A cluster tree with leaf size njear € N is a binary tree Tz with root Z such
that each cluster 7 € Tz is either a leaf of the tree and satisfies |7| < njear, or there exist
disjoint subsets 7,7 € Tz of 7, so-called sons, with 7 = 7 U7s. We denote the set of sons
of 7 by S(7) := {11, 72} .

Definition 2.6.2 (Level function, depth of a cluster tree and balanced tree). The level
function level : Tz — Ny is inductively defined by level(Z) = 0 and level(7’) := level(7) + 1
for 7/ a son of 7. The depth of a cluster tree is depth(Tz) := max ¢, level(r). We call a
tree balanced if the sons of each cluster possess the same number of indices.

Definition 2.6.3 (Bounding boxes and n-admissibility). For a cluster 7 C Z, the axis-
parallel Bp_ C R? is called a bounding box if Bg_ is a hypercube with side length R, and
Uier supp G; € Bg, .

For n > 0, a pair of clusters (7, 0) with 7,0 C Z is called n-admissible if there exist bounding
boxes Br, and Bpg, such that

max{diam(Bg, ),diam(Bg,)} < n dist(Bg,, Br, ), (2.6.1)
where dist(Bg,, Br, ) := inf {||z — y/|, : x € Br.,y € Bg,}.

Remark 2.6.4. If A is a symmetric matrix, then we are allowed to use a weaker admissibility
condition, i.e., min{diam(Bg, ), diam(Bg,)} < n dist(Bg,, Br, ). .

Definition 2.6.5 (block cluster tree, sparsity constant and partition). Let Tz be a cluster
tree with root Z and 7 > 0 be a fixed admissibility parameter. The block cluster tree Tzxz
is a tree constructed recursively from the root Z x Z such that for each block 7 x o € Tzx7
with 7, 0 € Tz, the set of sons of 7 x ¢ is defined as

0 if 7 x o is p-admissible or S(7) = () or S(o) = 0,
S(rx o) = { S(1) x §(o) else.

Replacing the largest possible matrix blocks by low-rank approximations allows us to
keep the computational complexity and memory requirements low. One possible way to
achieve this goal is to apply the admissibility condition and identify the admissible cluster
pairs, which gives rises to the following definitions of the far-field and near-field sets and
the sparsity constant.
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2 Background

Definition 2.6.6 (Far-field, near-field, and sparsity constant). The leaves of the block
cluster tree induce a partition P of the set Z x Z. For such a partition P and a fixed
admissibility parameter 1 > 0, we define the far-field and the near-field as

Py :={(1,0) € P : (1,0) is n-admissible}, Ppear := P\ Pfar- (2.6.2)

The sparsity constant Cs, of such a partition was introduced in [Gra0l, Def. 5.3] as

Cop = max{max\{a €Tz :7x0€Trur}|,max|{r €T : Tx0€ szz}]} . (2.6.3)
TETI UGTI

A partition P of Z xZ is said to be based on the cluster tree Tz if it satisfies the conditions
of Def. 2.6.5.

Definition 2.6.7. Let P be a partition of Z x Z based on the cluster tree Tz. Then, P is
called sparse if depth(Tz) < log(M) and Cyp S 1.

Now, we need to define the notion of the concentric boxes.

Definition 2.6.8. (Concentric boxes) Two (quadratic) boxes Br and By of side length
R and R’ are said to be concentric if they have the same barycenter and Bg can be obtained
by stretching of Brs by the factor R/R’ taking their common barycenter as the origin.

For clusters 7, ¢ C Z, we adopt the notation

CT={xeC:x;=0 ifigr},
(CTXJ;:{AE(CMXM:AU:O ifZ'gTOerO-}'

For x € CM and A € CM*M | the restrictions x|, and A,x, are understood as (x|, ); =
Xr(9)x; and (Alrxq)ij = Xx7(4)Xo(5)Asj, where x, and x, are the characteristic functions
of the sets 7, 0. For integers r € N, matrices C™*" are understood as matrices in CM*"
such that each column is in C7. In the following, we present the definition of H-matrices.

Definition 2.6.9 (H-matrices). Let P be a partition of Z xZ based on a cluster tree Tz and
n > 0. A matrix By, € CM*M is an H-matrix, if for every admissible block (7,0) € Prar,

we have a rank r factorization
H
B'H|T><a = XTO'YTa-a

where X, € C*" and Y ,, € C7*",

There are several ways to construct a cluster tree Tz. The cardinality balanced clustering
divides the index cluster into a specific number of sons with the same size with respect to
the number of indices, i.e., the bounding boxes are divided such that the new boxes contain
the same number of degrees of freedom.

In the geometric clustering, the bounding boxes are divided into two boxes by connecting
the midpoints of the largest side lengths and the new set of indices are stored as the sons.
For details on clustering techniques we refer to [GHLBO04], [Hac13, Appendix D] and [Hacl5,
Sec. 5.4.2]. The
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2 Background

The low-rank structure of the far-field blocks allows for efficient storage of H-matrices
as the memory requirement to store an H-matrix is O(Cy, depth(Tz)rM), ie, [GHO3Db,
Lem. 2.4]. For the quasi-uniform grids, the standard clustering methods, such as the
geometric clustering lead to balanced cluster trees, i.e., depth(Tz) ~ log(M) (see, e.g.,
[Hacl5, Remark 5.19]) and a uniformly (in the mesh size h) bounded sparsity constant.
In total this gives a storage complexity of O(rM log(M)) to construct the matrix By from
Definition 2.6.9.

One of the main advantages of H-matrices to other matrix compression techniques is the
ability to perform matrix operations such as addition, inversion, LU-factorization and mul-
tiplication with logarithmic-linear storage complexity. The mentioned matrix operations
exploit the properties of the low-rank blocks and apply a truncation strategy based on the
singular value decomposition (SVD) to achieve the storage complexity of O(M log®(M)).
For details, see [BGHO3] and [Hacl5, Chapter 7].

Finally, the question of approximating the whole block-wise arbitrary matrix M can be
reduced to the question of blockwise approximation.

Lemma 2.6.10. ([Hacl5, Lem. 6.32], [Bori0, Lem. 5] ) Let M € CM*M qnd P be a
sparse partition of T x I based on the cluster tree Tz. Moreover, let P be a level-conserving
partition, i.e., for all d := (1,0) € P, it holds level(d) = level(r) = level(c). Then, the
following inequalities hold:

o0

|M]|, < Cyp <Z max{||M|;x¢||y : (1,0) € P, level(r) = level(o) = £}> , (2.6.4)
=0

M|, < Cqp depth(Tz) max{||M|;x¢||5 : (1,0) € P, level(r) = level(o)}, (2.6.5)

where |||, denotes the spectral norm.

Throughout this thesis, we always assume P is a level-conserving partition.
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3 A multilevel decomposition based on mesh
hierarchies generated by NVB

The Scott-Zhang projection, originally introduced in [S7Z90a], is a very important tool in
numerical analysis and has been generalized in various ways, [BG98, GS02, Car99, CHO9,
Ape99b, Aco0l, Ranl2, Cial3, FW15, AFFT15, KM15, EG17]. In its classical form, it
is quasi-local, it is a projection onto the space of globally continuous, piecewise polyno-
mials, it is stable in both L? and H' (and thus, by interpolation also in H?®, s € (0,1)),
and has optimal approximation properties. Therefore, it is well-suited for the analysis of
classical finite element methods (FEMs), [B502], and plays a key role in the analyses of,
e.g., anisotropic finite elements, [Ape99a], adaptive finite element methods, [AFIK " 13], or
mixed methods, [Badl2].

As globally continuous piecewise linear functions are not only in the Sobolev space H'(2),
but also in (fractional) Sobolev spaces H3/27¢(Q) for any € > 0 — in fact, they are in the

Besov space B;’/OQO(Q) — a natural question is whether the operator is also stable in the
stronger norms imposed on these spaces.
In this chapter, we prove the stability of local, L?(Q2)-stable operators with certain ap-

proximation properties in L?(£2) on shape-regular meshes in the norm || - | B2 () including
2,00

the case of Scott-Zhang operator. We also provide an endpoint stability result for the op-
erators such as the elementwise L2-projection that map into spaces of piecewise constants,
where the corresponding endpoint space is B%’/;(Q)

In this chapter, we develop properties of the finest common coarsening of two given
meshes obtained by NVB refinement. We also introduce a modified Scott-Zhang operator
for the hierarchy Ti generated by the finest common coarsening of a fixed mesh 7 and the
sequence of uniformly refined meshes ’YAZ. Finally, based on these modified Scott-Zhang op-
erators and using the mentioned stability result for Scott-Zhang type operators we develop
multilevel norm equivalences in Besov spaces up to the endpoint case for standard discrete
spaces of globally continuous piecewise polynomials on 7.

3.1 Stability of (quasi-) interpolation operators in Besov spaces

Let Q € R? be a bounded Lipschitz domain and for the discretization, we assume that a
regular (in the sense of Ciarlet) triangulation 7 of {2 consisting of open simplices is given.
Additionally, T is assumed to be ~-shape regular. By h € L>(£2), we denote the piecewise
constant mesh size function satisfying h|r := hp = |T|1/ Y for T € T. In the following,
we study (quasi-) interpolation operators I} satisfying the following locality, stability and
approximation properties.
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

Assumption 3.1.1. Let m > 1 and I[" be an operator I'" : L*(Q) — SP™ (T that
satisfies:

(i) Quasi-locality: For every T € T the restriction (I}'u)|r depends solely on ul, ).

(ii) Stability in L?: For u € L*(Q), there holds
15" ull 2y < Cllullp2(wer))-
(i1i) Approximation properties of m-th order: For uw € H™(Q)), there holds

lu =I5 ul| L2y < Chy||ul| gm w(r))-

The constants in (ii) and (iii) depend only on , d, m, p, and the ~y-shape regularity of T .

We will need mollifiers with certain local approximation properties. Essentially, such
operators are given by those classical mollifiers that reproduce, or at least approximate
to high order, polynomials of degree p. The following proposition, which is taken from
[[KKM15], provides such operators. Our primary reason for working with this particular
class of approximation operators is that the technical complications associated with the
boundary of 9€) have been taken care of.

Proposition 3.1.2 ([[KM15, Thm. 2.3]). Let Q be a bounded Lipschitz domain and p € Ny
be fized. For open w C Q and € > 0 denote by w. := QN Uge,Be(z) the “c-neighbourhood”
of w. Then, there exists a constant C' > 0 such that for every € > 0 there is a linear
operator Ac : Lj, (Q) — C>(Q) with the following stability and approzimation properties
for arbitrary open w C

(i) Ifu € H*(w.) with k < p+1, then [ Acull ey < Cs_”kHuHHk(wE), C=Fk,....p+
1.

(i) Ifu € H*(w.) with k < p+1, then u—Aeul| ge(y < C’{—:k_ZHuHHk(wE), =0,...,k.

Proof. The proof for the much more technical case of a wariable length scale function
e = ¢g(x) is given in [KM15, Thm. 2.3]. We give the idea of the proof: in the interior of 2,
the operator A has the form A.u = ux* p., where the mollifier p. is such that it reproduces
polynomials of degree p (the “classical” mollifier reproduces merely constant functions).
Near the boundary, this standard averaging is modified such that A.u(z) is not obtained
by averaging u on B.(x) but by averaging u on the ball B.(x+¢b) and evaluating the Taylor
polynomial of degree p of this averaged function at the point = of interest; the vector b is
suitable of size O(1) and it ensures that the averaging is performed inside (. O

With the mollifiers from Proposition 3.1.2, we can prove stability and approximation
properties for operators satisfying Assumption 3.1.1 in stronger norms.
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

Lemma 3.1.3. Let m € {1,2} and p > m — 1. Assume that the linear operator Ij" :
H™(Q) — SP™=Y(T) satisfies Assumption 5.1.1. Then, there is a constant C > 0 depend-
ing solely on d, m, p, and the y-shape-regularity of T such that for all T € T the following
stability and approximation properties hold:
115 ull gr(ry < Cllullgr w2y r=0,...,m, (3.1.1)
lu — I "ull gr 7y < ChI%_THuHHk(wz(T)), r=0,...,min{k,m}, k=0,...,p+1.
(3.1.2)

Proof. Let T € T be arbitrary. We use the operator A, of Proposition 3.1.2 with w = w(T)
and € ~ hr, such that w. C w?(T"). We write using the triangle inequality

lu = I ull g1y < llu = Acull grory + [Aeu — I Acul ey + 113" (v — Acu) | e 1)
= Th+1T5+1T5.

By Proposition 3.1.2, we have T} < ha"||ul| H*(w2(T))- A polynomial inverse estimate, see,
e.g., [DFGT04], the stability property ii of Assumption 3.1.1, and Proposition 3.1.2 give

Ts < hy'llu — Acull 2oy S hr W lull ez oy -

In order to estimate Ty, we use a piecewise polynomial ¢ € SP~1(T") with approximation
properties in the H"-norm (e.g., a Clément or Scott-Zhang type interpolation) as given by
[B502, Thm. 4.8.12]. Then,

Ty < [|Acu — ullgr(ry + lu = gl vy + 15" Acu — qllgr () = Toq + To2 + T 3.

We have already estimated T5; = Ti. By [BS02, Thm. 4.8.12] (and inspection of the
procedure there), we obtain Too < b "||ul| mk(w2(ry)- Finally, for To3, we use an inverse
estimate

Ty S hy' I Acu—qllr2ery < hy" (15" Acu — Acull 27y + [Aeu — ull 2y + [lu = qll 2] -

The last two terms have the desired form due to Proposition 3.1.2 and [B502, Thm. 4.8.12].
For the remaining term, we write with Assumption 3.1.1 iii and Proposition 3.1.2

117" Acu — Acull 27y S DI Acull g uiry) S PERE™ [l i oz o)
Finally, (3.1.1) follows from (3.1.2) by selecting r = k. O

The generalization of Proposition 3.1.2 to the case of variable length scale functions from
[KKM15, Thm. 2.3] can also be used to derive a smooth operator with approximation and
stability properties for h-weighted and fractional norms.

Corollary 3.1.4. With the mesh size function h of T and t > 0, define the function
h := max{t,h}. Let m, n € Ny be fized and v € H™(Q). Then, for every t > 0 there

30



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3 A multilevel decomposition based on mesh hierarchies generated by NVB

exists a linear operator J; : L*(Q) — C°°(Q) with the following stability and approzimation
properties:

IRV Joul| 12y < Congn|ull g (e (3.1.3)
> IRT ™ (4 — Jeu) || 2y < Conllull (o (3.1.4)
7=0

In particular, interpolation arguments give

—1/2 ——1
I / VJtuHLQ(Q) + ||~ /2 (u— JtU)HL2 < CHuHHl/? Q)
(3.1.5)

—1/2 ——3/2 —1 2
IR Tl gy + 1522 (= Tl gy + 12 (= T2y < Clull gare -
(3.1.6)

The constants Cy, , and Cy, depend on m and n as indicated, as well as on 0 and the
~v-shape regqularity of T. The constant C depends only on € and the y-shape reqularity of
T.

Proof. 1. step: For t > diam §2, one may select J; = 0.

2. step: For t < diam (), one constructs a length scale function ¢ with € ~ h in the
following way: First, by mollification of the piecewise constant function h (see [[XM15,
Lemma 3.1] for details), one obtains a function h € C*(€2), whose Lipschitz constant £
depends solely on the -shape regularity of 7 and 2. Next, one defines the auxiliary length
scale function &(z) := h(z) +t. We note that the Lipschitz constant of & is still £. From
[KKM15, Lemma 5.7], there are parameters 0 < a <  (depending on £) and Ny € N
(depending only on the spatial dimension d) as well as closed balls B;; := Ea’s“(xij)(ﬂfij),
1=1,...,Ng, j € N such that the following holds:

(a) QC UZ]-V:dl UjeN Bij;

(b) There is a constant Chiz > 0, such that, for each ¢ € {1,..., Ny}, the stretched balls
Bij = Eﬁg(xij)(wij) satisfy an overlap condition: #{j’|B;j N B;; # 0} < Ch,e for all
jeN

(c) For pairs (i,7) and (¢, j/) with Eij ﬂﬁi/j, # (), there holds &(z;;) ~ &(x; ;) with implied
constant depending solely on £ and 3. This implies a fortiori that for pairs (i, ) and

(i',7") with BjjN By jr # 0 there holds &(x;;) ~ &(xy ;) with implied constant depending
solely on £ and  (which follows by inspection of the proof of [[K{M 15, Lemma 5.7]).

Denoting by x4 the characteristic function of the set A, we define the desired length scale
function ¢ as

Ng
€= Zzg(%‘ XBi; * P(B—a)e(wi))> (3.1.7)
i=1 jEN

where ps is a standard non-negative mollifier supported by Bs(0). Let z € . Due to (a)
there is (¢,j) with € B;;. The non-negativity of the mollifier p; gives e(x) 2 &(x;;).
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

Furthermore, (b), (c¢) imply that the sum (3.1.7) is locally finite (with at most NyChig
non-zero terms). In view of (c), we get e(z) < e(x;;). By studying derivatives of €, we
recognize that it is a length scale function in the sense of [[XM15, Def. 2.1].

3. step: The upshot of [KM15, Lemma 5.7] is that, once a length scale function ¢ is
available, then a covering argument can be employed. That is, the operator A, of [[XM15,
Thm. 2.3] yields

Z 1™V (u — Acu) || 200 S lullm gy, €™V Acul| 20y S llullgm ),
=0

which proves (3.1.3) and (3.1.4) since £ ~ h.
4. step: Using Eq. (3.1.4), for m = 0 and m = 1, the following estimates hold

lu = Jeullr2) < llullr2). (3.1.8)
1
[h(u = Jeu)llr2o) S llullmg)- (3.1.9)

Applying Lemma 2.1.5 to interpolate between the above inequalities with § = 1/2 gives us
1572w~ Jew) |2y < Clull gz (3.1.10)
Moreover, for m =1 and n = 0, Eq. (3.1.3) leads to
IVl 220y S llull o),
and for m =0 and n =1, we get
1RV Jyull r2) S llullp2)-
Interpolation between the above inequalities using Lemma 2.1.5 with § = 1/2, results in
B2V Jeul 2y S lullagey- (3.1.11)

Combining (3.1.10) and (3.1.11) gives us (3.1.5). Similarly, Eq. (3.1.4) with m = 1 and
m = 2 yields

1

[h (= Jew))ll @) S llullg o), (3.1.12)
=2

1h (v = Jeu)|z2@) S llullzz@)- (3.1.13)

Applying Lemma 2.1.5 with 6 = 1/2, leads to

+—3/2 <

[ (u = Jeu)lr2(0) S llull gs/2o)- (3.1.14)
Also, for m =1 and n =1, Eq. (3.1.3) leads to

1RV Jeul| 2) S llull o),
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and for m = 2 and n = 0, we obtain
IV2Jull 20 S lullgzg)-

Applying Lemma 2.1.5 with 0 = 1/2, we get

||El/2

V2 Jul 2y S llull o) (3.1.15)
Using Eq. (3.1.4) with m =1 and m = 2, one has
[V (u = S|z < lullare), (3.1.16)
-1
IR~ ) vy  ullco (3..17)

Interpolation between the above inequalities from Lemma 2.1.5 with 6§ = 1/2, then gives
us

—1/2
1BV (= Jiw)l2(0) < Cllullgaragey- (3.118)
Combination of (3.1.14), (3.1.15) and (3.1.18) concludes the bound (3.1.6) O

The following theorem states a stability result in the Besov space ng O_Ol/ 2 (Q) for operators
satisfying Assumption 3.1.1.

Theorem 3.1.5. Fiz m € {1,2} and p € Ny with p > m — 1. Let T be a ~y-shape regular
triangulation. Let an operator I} satisfying Assumption 3.1.1 be given. Then,

|1 ull g2y < Cllullgmozg) Ve H™12(Q), (3.1.19)

where the constant C > 0 depends solely on €, d, m, p, and the v-shape regularity of T .
If the mesh T is additionally quasi-uniform, then, the following sharper estimate holds:

—1/2
15l 12 gy < Cllull g2y Vu € B 2(Q). (3.1.20)

Proof. The function I;"u is piecewise smooth on a finite mesh. Hence, it is an element

of Bg? ;31/ 2(Q), so that only the stability estimate has to be proved. This is achieved by
constructing an element u; := Ag (I u) for an appropriate 6 > 0 such that the K-functional
can be estimated by the H™ Y/2-norm of u. We have

m _ —-1/2 m
117 u”B;L;l/2(Q) = iggt K(t, I;'u)

S iggt_m (HI}TU — Ast (" w) || g1y + ¢ ||A5t(I;TU)||Hm(Q)) - (3.1.21)

With the operator J; from Corollary 3.1.4, we further decompose v = (u — Jyu) + Jyu =:
up + vy into an element of H™ (Q) and one in H™(2). By the triangle inequality, we
have to control the right-hand side of (3.1.21) for both contributions separately.
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

1. step: For fixed t > 0, we split the mesh into elements of size smaller than ¢ and larger
than t:

T<t :={T € T: diamT < t}, Tor:={T € T: diamT >t}
and define the regions covered by these elements by
Q< := interior ( U T), s := interior ( U T). (3.1.22)
TGTSt TeT>t

There is a constant § > 0, depending solely on the y-shape regularity of T, such that the
“dt-neighborhood” Ty := Q N UyzerBsi(x) of each element in 7=, is contained in the patch
of the element, i.e., Ts; C w(7T) for all T € T<;. Moreover, for each T' € T~;, we define the
inside strip St at the boundary 0T of T' by

St :={x €T dist (x,0T) < dt}. (3.1.23)

For the set 7<;, the y-shape regularity of 7 implies the existence of n > ¢ and C' > 0 de-
pending only on the y-shape regularity such that the extended set §2,; := QﬂUer<t Bpi(x)
satisfies the conditions -

T € T<r = Wi(T) C Qp, (3.1.24)
T €T with T C Q = diam T < Ct, (3.1.25)
T €T with TNQy # 0= w(T) C eyt (3.1.26)

where ¢ > 0 is a constant depending solely on the -shape regularity of 7. The choice of 5
is dictated by the requirement (3.1.24). We note that the y-shape regularity of 7 ensures
that for all T € T<; the diameters of all elements 77 C w(7') are bounded by Ct for some
C>0 depending only on . This implies (3.1.24) if 5 is chosen sufficiently large.

To see (3.1.25), it suffices to consider elements T' € T with T C Q \ Q<;. Let myp
be the center of the largest inscribed sphere in 7" and note that the radius pr of that
sphere is comparable to the element diameter hp. Let mp € @ satisfy dist (mp, Q<) =
dist (mp, mr). By definition of Q,;, we have my € By (mr) and by T' C Q) \ Q<; that
BPT (mT) - Qnt \ Qgt. ThU.S,

hr ~ pr < dist (mT, Qgt) = dist (mrp, ﬁ”LT) <nt,

which proves (3.1.25).
With the sets from (3.1.22) and (3.1.23), we decompose for k € Ny and v € H*(Q)

2 2 2 2 2 2

[ollzn) S olEr@o, + 10l Er @ S 0lEr o) + Z [0l ek (7 50) + Z 10155 (57,50) -
TeT>t TeET>t

(3.1.27)

We employ this decomposition in (3.1.21) for k¥ = m — 1 and v = I}"u; — A5 (1] u;) as

well as for k = m and v = As(I]'u;) and i € {0,1}. In the following, we estimate all
these contributions separately by the desired H™'/2(Q)-norm of u. The main ideas are
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

that, a) on <4, we exploit that elements are small; and b) on T\ St 5, we may exploit
that a sufficiently small neighborhood of this set is still contained in 7'; ¢) we can use the
smoothness of I}"u; inside T'; d) for St 5, we exploit the thinness of the strip.

2. step: We estimate I} u; — As¢(I;"u;) on Q<¢, where 6 < 1 is given by step 1.

For ¢ = 0, we use the stability estimates of Proposition 3.1.2 and Lemma 3.1.3 and finally
Corollary 3.1.4 (using h ~ t due to (3.1.25)) to obtain

113" w0 — Ase (15 wo) | -1 (0-,) < 5 ol mm-1(0z,) + [[Mse (15 vwo) | 5m-10.,)

S R w0l =10z, + IR woll pm-1 (0,

(3.1.1)
S HUOHH’”*(QCM) = [lu— Jtu|’Hm*1(Qc,,t)
Cor. 3.1.4
<t l[wll grm—1720y) -

For i = 1, we use the approximation property of I;* (cf. (3.1.2) with 7 = m — 1 and
k = m) together with the fact that the element size of elements in {2<; is bounded by ¢ as
well as the local stability and approximation properties of A from Proposition 3.1.2 to
get

15 w1 — Ase(I5"wa) | gm-1 (02,

< MR'w = wl|gm-roo,) + v = Aseun [ gm-1 ) + Aot (ur = Iyt ua) [ m-1a.,)
h<t h<t
Sl gm e, + tlutllgm @, + vt = It wl[gm-19,) S Hlullam @
Cor.<3.1.4 t1/2 HUH
~ Hm=1/2(Q) -
3. step: We estimate Ags;(I)"u;) on Q<. For i = 0, using the stability properties of the
smoothing operator from Proposition 3.1.2, the stability of I;”*, and Corollary 3.1.4, we get

- - (3.1.1) Cor. 3.1.4 12
[ Ase (L5 wo)ll ey S M5 wollam—1(9,) S lwllam-1@.,) < 7 Nullgm-1/2)

Similarly, for u; € H™(€2), we obtain with Proposition 3.1.2

tl| Ase (15 w) lgmao,) S tHIAs (I w1 — w) || gmas,) + tHAstu | m oz,

(3.1.2),h<t
SR v —urllgm-1,) @, S tlullam@en
Cor. 3.1.4
S Pl gy

4. step: We derive estimates on T\Stgs for T € T5;. Since the “dt-neighborhood”
(T\Stst)5t of T\ St satisfies (T'\St,5¢)st C T, Proposition 3.1.2 and an inverse inequality
imply

115 10 — Ase (I wo) | -1 (77\8750) S IR w0l rmy S th 17 woll -1
(1)
S thy lluoll gm—1 w2 (1))
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

Summation over all elements 7' € 7> and Corollary 3.1.4, (3.1.5)—(3.1.6) (noting that
t < hp implies h = h on T<4) give the desired estimate

2 2 —2 2
Z 117 o — Adt(IﬁnUO)HHmfl(T\s”t) St Z hy HUOHHmfl(uﬂ(T))
TeT>t TeT>t

t<hp M1
Sty Hh Y273 (4 — Jtu)‘
=0

2
£2(9) St ||U||Hm71/2(9) :
(3.1.28)

Similarly, the approximation properties of As;, the stability of I7", and Corollary 3.1.4 give

(3.1.1)
S u = Ast () s sy S € S0 Ml S €S Tl

TeT>t TeET>¢ TET>t
t<hr Cor. 3.1.4
2 2
St Z hT||Jtu”Hm(w2(T)) S t||u||Hm—1/2(Q)-
TeET>t

(3.1.29)

Using the stability instead of the approximation properties of Ag; from Proposition 3.1.2,
the same arguments and an inverse estimate lead to

I Ase (I wo) | rm (m\87.50) S LR w0l rm(y S thi ol rm-1 w2 (1)),
tl| Ast (15" u) | mm(m\S7.50) S IR Wil gy S tHlwall gmewzcr))-

Summation and employing Corollary 3.1.4 gives the desired estimates as in (3.1.28) and
(3.1.29).

5. step: We derive approximation results for I;* on the strip St s for T € T;. For
v e H™(Q), we claim

lo = I 0l e ($p0) S VIRTIV] (2 1y)- (3.1.30)
On the reference element f, with the aid of [LMWZ10, Eq. 6] for arbitrary t> 0, it follows
o050 50 (F102agey + 10 r)) VO € HACE)
We select ¢ = ||6||H1(f)/“6||L2(f) and arrive at
19125, = 508l g2ty 81y < 08 (1912 + 1912 191 o) -

If ||9| 2y = 0, then we select £ =1 and the above estimate holds easily. Let ®p: 7 — T

be an afﬁne parametrization of T' and ¥ := v o ®p. Applying a scaling argument, one can
show for v € HY(T) and T € T~

101225, ) S P 1IB11 225, e ) S hi! (t||a|y§2@)+t|\a||L2(f)||va||L2@))

t
<?||U||L2 + tvll 2oy Vol L2er), (3.1.31)
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

for some ¢’ ~ §. For polynomials v € P,(T'), an inverse estimate and (3.1.31) furthermore
lead to

t

002 5 00 S 7Ny (3.1.32)
To see (3.1.30), we estimate
, (3.1.31) ,
IR A FETP RS EHU = I 720y + tllo = I 2 [V (0 = I30) [ 227
(3.1.2)

S hrtllolip ey

This show (3.1.30) for m = 1. For m = 2, we apply (3.1.31) to V(u — I}*u) and proceed
similarly.

6. step: We derive an estimate for I} u; — As; (1} u;) on the strip St 5 for T' € T~;. Here,
we need the “dt-neighborhood” (S7s:)s¢ of the strip S75. Our assumption on ¢ implies
that (S7.5¢)5t C w(T'). Moreover, we note that the strip (S75¢)s¢ is contained in the inside
strip St 2s¢ of T' and in parts of the inside strip of width 0t of the elements 77 € w(T').

Using the triangle inequality, Proposition 3.1.2 and (3.1.32) on each element of the patch
w(T') separately for v = I}"ug in the case m =1 or v = VI}"ug for m = 2, we get, since
hpr ~ hp for T" € w(T),

3.1.32

m m m —=1/2rm
17 w0 — Ast(T o)l rm—1 (535 < 10l 1 ((spsys) < 2P P\ uo|| frm—1 (1))
(3.1.33)

< 751/2@1/2||UOHJLIWH(WS(T))-

Summing over all elements 7' € T~ and employing the arguments from (3.1.28), we get the
desired bound by ¢!/2 [l grm—1/2(- For u1, we use the triangle inequality, Proposition 3.1.2,
and (3.1.30)

17 1 — Ase (I wa ) || =1 (5751

< MR — url| w1 (spg,) + 1 — Aseur|| gm—1(sy 5,0 + [MAst(ur — 1" w) |gm-1(5.5,)

Prop. 3.1.2
S MR w = wll gy 50 Tl — Astua || gm-1(sy )
(3.1.30),Prop. 3.1.2 t<hr
S Vithrl[ut || gmsry + il gmwary S Vel gmws @y)-

Summing over all elements T' € 7 and employing the arguments from (3.1.29), we get the
desired bound.

7. step: We estimate As;(I;"u;) on the strip St for T' € T~;. The inverse estimate for
As; of Proposition 3.1.2, (3.1.32) employed on the patch w(7T') as in the previous step, and
the stability (3.1.1) of I} imply

) Ase (T o) | 8550y S IR 0l rm— (87 50050) S /2Py P\ uoll 1oy (3.1.34)

< Y20 o | ppm1 3 -
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

Summing over all elements 7' € T~ and employing the arguments from (3.1.28), we get the
desired bound by ¢'/2 [ull gm-1/2()- For uy, Proposition 3.1.2 and (3.1.30) on the patch
w(T) give

| Ast (15" ui) | gm (57,50 < tAse(ur — Iy ua) [ gm (sp.5,) + tHAstwt | mm (515,
S Ny = I uallm=1((s,50)50) + Hluallzm (550050

(3.1.30 s
< (the) 2w || g sy + tllwa ] e ws ()

t<hr
S (the) Pl |l g sy

Summing over all elements T € 7~ and employing the argument from (3.1.29), we get the
desired bound.

Combining the estimates of steps 2-7, where all relevant terms are bounded by ¢/2 ||u|| 7m—1 /2(0)
gives the desired bound for (3.1.21), which proves (3.1.19).

Final step: We show (3.1.20) with similar arguments as in steps 2-7. Let u = ug + uy
be an arbitrary decomposition with ug € H™1(2) and u; € H™(2). We distinguish the
cases t < h and t > h, where h is the maximal mesh size of the quasi-uniform triangulation.
We note that in the decomposition (3.1.27) the sums ZTGT» are not present in the case
t > h and the terms involving || || gm-1(q_,) or ||-[[zmq.,) in the converse case. Inspection
of the above arguments therefore gives:

e For t > h: As in steps 2-3, we get
I a0 — Ase (15 o) [[Fpm 1.0 + tAst (17 w0) [[7m ) S T [0l 7m-1 (0,
I = Ase (I wn)[Fpm 10y + tAst(I7 w) [3m ) S e ll7m q)-
This implies t~V2K (¢, I"u) < t_1/2||uo||Hm—1(Q) + t1/2||u1||Hm(Q). Infimizing over
all possible decompositions u = ug + uy yields ¢t~ V2K (t, I"u) < t7V2K(t,u) <

||u||B;:Lo_ol/2(Q)'
e For t < h: As in steps 4-7, we get
I w0 — Ase (15 o) [ Fpm 1.0 + tlAst(I7w0) [I3m ) S 77 luoll Frm-1(q)s
I wn = Ase (5 wn)[Fpm -1 0 + tAst (I w1) [F3m ) S hllul|Fm o)
This implies ¢~ V2K (¢, ["u) < hil/QHU(]HHmfl(Q) + h1/2Hu1||Hm(Q). Infimizing over

all possible decompositions u = wug + u; yields t_l/QK(t,I}Lnu) < W Y2K(hyu) <
Hu|’Bg,Lo_ol/2(Q).
Combining the above two cases yields sup;~o K (¢, [;'u) S ”uHBm71/2(Q), as claimed. O
2,00
Remark 3.1.6. For m = 1, a possible choice for I;™ is the L?(Q)-orthogonal projection that
trivially satisfies Assumption 3.1.1. For m = 2, the Scott-Zhang projection, introduced in
[5790a] and defined below, is an example of an operator I} satisfying Assumption 3.1.1.
Therefore, Theorem 3.1.5 provides a novel stability estimates for these projection operators
in Besov spaces. "
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

While, for finite meshes, we have the continuous embeddings SP'(T) C BS/OQO(Q) and

SrO(T) C B 1/2 (), this is not necessarily the case for infinite meshes. As a consequence,

2,00
one cannot expect that on general K-meshes a stability I;" : B;/OQO(Q) — B;/OQO(Q) can hold.

The following example illustrates this.

Example 3.1.7. Let Q = (0,1). Set I; = (0,1/2) and Is = (1/2,1). Let ¢ € C*(R) be
a 1-periodic function, whose averages ¥, := 1/|11| fh o(z)dr and B, := 1/|I] fI2 o(z) dz
are different. Define the function u € C*°((0,00)) by

u(z) == p(lnz).
Define the (infinite) mesh 7 on 2, whose elements are given by the break points z; = e~ %/,
j € No. Let m =1 and let I : L*(Q) — S%9(T) be the L*-projection onto the piecewise
constant functions. By the periodicity of ¢, the piecewise constant function I;"u takes only
the values ©; and P,

. p; if jis even
I u €T X4 =
(In )’( 4+1,T5) {4,02 if jis odd .

The computation of Besov norms is conveniently done in terms of the modulus of smooth-
ness as defined in, e.g., [DL93, Chap. 2, Sec. 7]. For an interval [a,b] and a function v
defined on A := [a,b], and t > 0, we define the difference operator Ay, by (Apv)(z) =
v(z + h) —v(z) on Ay := [a,b— h]. the modulus of smoothness wy(v,t)s2 is then given by
w1(v,t)2 := supgcp<q [[AR(V, )l 22(4,)- Let t > 0. Consider all elements with diameter > ¢.
For the region covered by these elements, 2+, we can compute the modulus of smoothness
wi in view of the fact that I;"u is piecewise constant

willfu)30., 2 Y IRl ()P,

Tjiw; >t

where [I;"u](x;) denotes the jump of I;"u at the break point ;. We conclude

wi(I'u,t)5 > wi(Ifu, t)36., 2 Z LI ) ()] = Z 21 — Bol’t ~ |71 — Bt Int].

Tjiw; >t Tjiw; >t

Next, we claim that wy(u,t)3 < t. Since u is bounded, we compute for 0 < h < ¢
1-h 1—-h h
/ \Ahu\de—/ lu(z + ) —u(x)]Qda:—/ lua + h) — u()[? dx
0 0 0

/ e de

2
dx

1-h 1
[ ) = (@) de < ahlul gy +
h h

1 2
1
§4hHUH%w(m+WHiw(ﬂ)hQ/h (x) o

< bl ooy + 1617 ) -
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

This implies wy(u,t)s < Ct'/? and therefore u € By (Q), since, by [DL93, Chap. 6,

2,00
Thm. 2.4], w(u,t)2 ~ K(t,u) = inf,cgi(p |u — vllp2) + tl|vl| gi). However, the above
calculation shows that I7'u ¢ B;/;(Q), which implies that I7* cannot be a bounded linear
map By(9) = By (9). .

3.1.1 Some generalizations and applications

For quasi-uniform meshes, there also holds the following inverse estimate for the limiting
case.

Lemma 3.1.8. Let T be a quasi-uniform mesh on Q of mesh size h and m € {1,2}. Then,
form’ € (0,m — 1/2] and q € [1,00], there holds for a constant C > 0 depending only on
Q,d, the y-shape-reqularity of T, and p:

”“HB;?;(Q) < Ch_m/HuHLQ(Q) Yu € SPH(T). (3.1.35)

Proof. To fix ideas, we only prove the case m = 2 as the case m = 1 is handled with similar
arguments. By definition, we have

_ ~1/2

with the K-functional K (¢, u) = inf,c g2 (q) [[u—v| g1 (q) +t[|v]| g2(q)- Fort > h, we estimate

V2K (tu) = 12 st o 1o = vl ey + vl < P ey S BVl o),
(3.1.36)

by choosing v = 0 to estimate the K-functional.

For t < h, we estimate the K-functional more carefully. For a suitably small 6 > 0, we
set v := Asu with the smoothing operator Ag; of Proposition 3.1.2. As in the proof of
Theorem 3.1.5, we decompose an element into 7" = T'\ St 5:U St s, where St s; is the inside
strip defined in the first step of the proof of Theorem 3.1.5. Employing Proposition 3.1.2
and a classical polynomial inverse estimate, we obtain

Prop. 3.1.2

lvllaza\srsy S lullazay S Al gy, (3.1.37a)
Prop. 3.1.2

lu = vlgmsrsy S Hulgzay S g ). (3.1.37b)

As in steps 6-7 in the proof of Theorem 3.1.5, using Proposition 3.1.2 to obtain (3.1.34),
(3.1.33), we get

(3.1.34)
Wlizsnsy < )2l m ), (3.1.38a)
(3.1.33)
lu=vllmisnsy S 70l gy (3.1.38b)
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

Summation over all elements, using (3.1.37)—(3.1.38) leads to
t<h
V2R () < <t1/2h’1 +h*1/2> lullmg < B2l ). (3.1.39)

Combining (3.1.36) and (3.1.39) yields [[ul| ;5/2 @ S h_1/2||u||Hl(Q). A further polynomial
2,00

inverse estimate gives the desired result for m’ = 3/2.

Finally, (3.1.35) follows from interpolation between the case m’ = 3/2 and the trivial
inequality ||lul|z2(q) < [[u[|12(q) noting that by the reinterpolation theorem (see, e.g., [1ar07,
Chap. 26]), we have ngn_lﬂ)(Q) = (L2(Q),BZ;1/2(Q))97,] (with equivalent norms) for

6 (0,1). O
The operator I/ is stable in L?(2) (by Assumption 3.1.1) and is stable as an operator

H™Y2(Q) — By P

intermediate spaces.

(©) by Theorem 3.1.5. Interpolation therefore yields a stability for

Corollary 3.1.9. Let T be a finite shape-regular mesh, m € {1,2}, and let I : L*>(2) —
SPm=L(T) satisfy Assumption 3.1.1. Fiz q € [1,00] and § € (0,1). Then, there is a
constant C > 0 depending only on ), p, q, 0, and the y-shape reqularity of T such that

m
HIh uHBan_1/2)(Q) < CHUHBSZYL_UQ)(Q)' (3.1.40)

Proof. The assumed L?-stability and the stability proved in Theorem 3.1.5 imply the re-
sult using the reinterpolation theorem (see, e.g., [Tar07, Chap. 26]) as in the proof of
Lemma 3.1.8. 0

Furthermore, Corollary 3.1.9 allows one to assert that interpolating between the dis-
crete space SP™~1(T) equipped with the L?-norm and the H*-norm yields the same space
equipped with the H*’-norm.

Corollary 3.1.10. Let m € {1,2}, g € [1,00], and 6 € (0,1). Then, there holds

((sp’m—lm, I lzage), (P17, - ||B;7;/2<m>) = (7T gy )

0,q

with equivalent norms. The norm equivalence constants depend only on , p, q, 6, and
the y-shape regularity of T. More generally, for any B;ﬂq,_lﬂ(fl) with 1/2 < m' < m and

q € [1,00], there holds, with equivalent norms,

(57D Do) (27T ||B;/,1/z(m>)9q = (51T g )

'q ,

Proof. The proof follows from the existence of projection operators as presented in [AL.09].
One needs a (stable) projection onto SP™~1(T) satisfying Assumption 3.1.1, then Corol-
lary 3.1.9 also provides the needed stability in the Besov-spaces. For m = 1, one may simply
use the L?-projection, which trivially satisfies Assumption 3.1.1. For m = 2, one employs
the Scott-Zhang operator I°Z of [S790a] without treating the boundary in a special way
as it is done there. Then, I satisfies Assumption 3.1.1 by, e.g., [3502, Sec. 4.8]. Ol
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

3.2 The finest common coarsening

Let 7 and 7' be two regular triangulations obtained by NVB from the same triangulation
To. For a discussion of properties of NVB meshes, we refer to [[{PP13] for the case d = 2
and to [Ste08] for the case d > 3. We define the finest common coarsening as
fce(T,T) = {TeT I eT st. T"CTIU{T' €T : 3T €T st. TCTYU(TNT').
~ ~——
=T =T =T3
(3.2.1)

Figure 3.2.1 provides two examples for this concept. We refer to Lemma 3.2.1 for the
proofs that the three sets in the definition (3.2.1) are pairwise disjoint and that fcc(7,77)
is indeed a regular triangulation of €.

Let 7; be the (-th uniform refinement of Ty. We call level(T") := ¢ the level of an element
T € Ty. Given a regular triangulation 7 that is obtained by NVB from 7y we will consider

Ty = fec(T, 7AZ),

which is, in general, a coarser mesh than the uniform triangulation 7.

i

| : : | fee(T,T)

Figure 3.2.1: Example of the finest common coarsening of 7 and 7' and the sets Ty (coarser
elements of T, red), Ty (coarser elements of 7', green), T3 (common elements,
blue) in (3.2.1).

3.2.1 Properties of the finest common coarsening (fcc)

The following Lemma 3.2.1 shows that the finest common coarsening of two NVB meshes
obtained from the same coarse regular triangulation is indeed a regular triangulation.
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

Lemma 3.2.1. Let T, T’ be NVB refinements of the same common triangulation 7\6 of Q.
Then:

1. fee(T,T') = fee(T',T). The three sets T1, T2, T3 in the definition of fee(T,T")

are pairwise disjoint.
2. fee(T,T') consists of simplices that cover .

3. If T and T’ are regular triangulations, then fce(T,T') is a reqular triangulation of
Q.

Proof. Proof of 1: The symmetry of fcc is obvious. To see that the sets T;, Ty, T3 are
pairwise disjoint, let 7' € ;. Then T € T but not in 7’. Hence, T & Ty and T ¢ T3. By
symmetry, T' € Ty also implies T ¢ 1 and T ¢ T3. Finally, if T' € T3, then it cannot be in
T1 or %s.

Proof of 2: Let z € Q (but not on the skeleton of T or T”). Since T, T’ cover (, there
areT € T and T € T’ with x € T, x € T'. Since both T and T” are obtained by NVB and
TNT # 0, we must have T =T or T C T or T" C T. In the first case T =T’ € T3, in the
second one T" € Ty, and in the third one 7' € ¥;. Hence, z is in an element of fcc(7, 7).

Proof of 3: Let T, T' be two elements of fcc(7,7") with f := T NT’" # (). We have to
show that for some j, the intersection T NT" # () is a full j-face of both T' and T”. If both
T, T are in T (or both are in 77), then, by the regularity of 7 (or the regularity of 7),
their intersection is indeed a full j-face of either element. Assume therefore T € 7\ 7' and
T' € T’ (or, similarly, T € T and T" € T'\T). Since T', T" € fcc(T,T’), we obtain T' € T,
and T" € T5. Since both T and T” are created by NVB from the same initial triangulation,
the intersection f =T NT" is a full j-face of either T or T.

Let us assume that f is a full j-face of T', and, by contradiction, that f is not a full j-face
of T'. Then, f is a proper subset of a j-face f’ of T". Since T' € ¥, it contains elements of
T'. Hence, there is an element 7] € 7’ with 7] C T that has a j-face f] with f{ C f. Thus,
we have found elements 7", T € T’ with j-faces f; C f C f', contradicting the regularity
of T'. Hence, f is also a full j-face of 7. Thus, fcc(7,7’) is a regular triangulation.

]

A completion of an (NVB-generated) mesh is any NVB refinement of it that is regular.
We next show that the minimal completion is unique.

Lemma 3.2.2. Let T be a NVB refinement of’?[) and let Ty, T2 be two completions of T .
Then fce(T1,T2) is a completion of T. The completion of minimal cardinality is unique.

Proof. Let T3 := fcc(T1,T2). We claim that 73 is a completion of 7. Since T3 is regular by
Lemma 3.2.1, we have to assert that each element of 73 is contained in an element of 7.
Suppose not. Then there is T3 € T3 and a T € T with T' C T5. (We use that these meshes
are obtained by NVB from a common 7j.). By definition, T3 is either in 7; or 7T, which
are both completions of T, i.e., their elements are contained in elements of 7. This is a
contradiction.

To see the uniqueness of the minimal completion, let 73 # T2 be two completions of
minimal cardinality N. Note that 73 := fcc(71,7T2) is also a completion. However, in view
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

of 71 # Ta, at least one element of, say, 77 is a refinement of an element of 73 so that we have
by definition of fcc(71,72) that card 73 < N — 1, which contradicts the minimality. O

Lemma 3.2.3. Let ’7A', £=0,1,..., be a sequence of uniform refinements of a regular mesh

To and T; = fee(T, '7\2) Then:
(i) IfT € TeNT then T € Topm for all m > 0.
(ii) If T € T\T then T & Toia.
(i1i) Denote by ./\741 the set of nodes of T. Then ./\~/'€1_~_1 D /\~f£1 for all ¢.

(iv) Let //\\/l} = N'gl \/\7}_1 u{z e /\751 ﬂ/%l_l |we(2) € wr—1(2)}. Then, we have card /f\/lv% <
C card/\fe1 \J\fgl_1 for a C' > 0 depending only on the shape regularity of the triangu-
lations.

Proof. For statement i, we only show the case m = 1 as the general case follows by induc-
tion. We note that T € T, T implies T' & T 9, where T; 4, € {1,2,3} are the three sets
given in (3.2.1). If T' € T3, then T" € Ty L1 IfT €%y, then, T' € Ty y4;. For statement
ii, we note that 7' € T:\ T implies T € T \ 7 and hence T is neither in 7Z+1 nor in 7.
Hence T ¢ 72+1.

For statement iii, let z € /\7 Vand T € 7~2 be an element such that z is a node of T'. We
consider two cases. First, if T' € 7T N 72, then, by statement i, we have T' € Ter1 so that
z € M+l Second, let T' € T, \7. Then T € 7; and in fact in Tg¢. The node z is the
node of an element 1" € ’7}+1. This element T” is either in 7, which implies z € ./\Q Y1, OF
T’ € Ty 441, which also implies z € ./\~/'£1+1.

For statement iv, one observes that for a node z € {z € /%1 ﬁ./\N/:,v,lf1 |we(z) € we—1(2)},
there are elements T € 7~2_1 and T' € 7~Z with 77 C T and z is a node of T. Hence
T' € T;\ Ti—1, and it has a node 2’ € -/\721 \J%l_l. We conclude card{z € /%1 ﬁ./\N/'el_1 |we(z) C
we—1(2)} < ceu"d/\N/'g1 \J%lfl. O

Remark 3.2.4. If the shape-regular mesh 7 is obtained by repeated NVB from a coarse
grid 7o, then a simpler proof is possible for Corollary 3.1.4: one may take a quasi-uniform
mesh 7; of mesh size ~ t and consider T = cc(T,T;). Then, J; can be taken as a mollifier
of the standard Scott-Zhang operator associated with T. "

3.3 Adapted Scott-Zhang operators

The scott-Zhang operators defined in Section 2.4.1 satisfy the stability and approximation
properties of Assumption 3.1.1 with constants that solely depend on p, the specific polyno-
mial basis, the shape-regularity of the underlying triangulation, and €. In particular, the
constants are independent of the specific choice of averaging region T7,.

The freedom in the choice of the averaging element 7, can be exploited to ensure addi-
tional properties, see also [CNX12, Sec. 4], [DIXS16, Sec. 3|,[FFPS17a, Sec. 4.3]. For the
Scott-Zhang operator on general NVB meshes, the mesh decomposition of [CNX12] can
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

be employed to transfer information between the refinement levels. In the following, we
define a modified Scott-Zhang operator for the hierarchy (fcc(T,ﬁ)) ,» where a guiding
principle is that in the definition of I57 one selects the averaging element 7, from the mesh
T whenever possible:

Definition 3.3.1 (adapted Scott-Zhang operators) For given 7" that is obtained by NVB-

refinement from a regular triangulation 7o and T; = fcc(’T 7¢), the operators I; 52 .

L2(Q) — V, = SP1(T;) and Ifz . L2(Q) — Vp = SP1(T;) are Scott-Zhang operators as

defined in (2.4.9) with the following choice of averaging element 7, for TZSZ and ESZ :

(1) First, loop through all T' € TeNT, (in any fixed order) and select the averaging sets T,
for the nodes z € T as follows:

(a) If z € T, then select T, = T for both ESZ and ESZ.
(b) If z € 9T and the node z has not been assigned an averaging set T, yet, then:

(i) If A(z, 7;) contains an element 7" € 72 that is a proper subset of an element
T € T, then select this T” to define I; 57 and select T for the definition of I; 52

(ii) Else select T for both IKSZ and IZSZ.

(2) Next, loop through all T' € 7:\ 7; (in any fixed order). Select, for the construction of
1 292 , this T as the averaging element for all nodes z with z € T that have not already
been fixed in step (1) or in a previous step of the loop. This completes the definition
of [ 292 .

(3) Finally, loop through all T € 7;\ 7y (in any fixed order). Select, for the construction of
IC\ZSZ , this T as the averaging element for all nodes z with z € T that have not already
been fixed in step (1) or in a previous step of the loop. This completes the definition
of ESZ .

We note, that this definition of the adapted Scott-Zhang operators is exploited to show

Eszu = I;%u for all u € SP}(T), which is proven in Lemma 3.3.2 below.

The following lemma shows that the adapted Scott-Zhang operators for the meshes ’7~Z

and 7A2 coincide on piecewise polynomials on the mesh 7.

Lemma 3.3.2. Let T be generated by NVB from To. Let ESZ . L2(Q) — SPY(T,) and
TKSZ D L2(Q) — Sp’l(ﬁ) be the Scott-Zhang operators defined in Definition 3.3.1. Then,
there holds

IDPu=T1%u  Yue SPYT).
Proof. 1. step: Let T € T, N ’7} We claim that (TSZ ) = (TSZ )|T The nodes z € T
and the shape functions ¢, ~ 7 for the meshes 72: and fcc(T, 72) coincide on T'. For

the averaging element 7T, assomated with z € T, two cases can occur:

1. The two averaging sets for the two operators coincide. This happens in the following
three cases: a) if z € T (case la of Def. 3.3.1); b) if z € 0T and (case 1(b)ii of
Def. 3.3.1) arose for T' in the loop; c) (case 1(b)ii of Def. 3.3.1) arose for an element
T € 72 ﬂﬁ with z € T’ that appeared earlier in the loop than 7. Since the averaging
sets coincide, the value of the linear functionals are the same.
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

2. Case 1(b)i of Def. 3.3.1 arose. Then, both averaging sets are contained in an element
T € T. Since u|z € Py, we obtain from (2.4.8) that both linear functionals equal
Hence, in all cases the values of the linear functionals coincide so that indeed the Scott-

Zhang operators on the element 7' are equal.

2. step: In the region not covered by elements in ’73073; we show :TVKSZU =wu and fgszu =u
for u € SP1(T). For ESZ this is shown in step 3 and for TZSZ in step 4. This completes the
proof of the lemma.

3. step: We start by noting that the definition of the finest common coarsening implies

for any T" € T; \ T there exists T € T with 77 C 7. (3.3.1)

Consider now T' € ’72) \ 7;. By (3.3. .1) there exists T e T such that T c T. For u € SP1(T)
we have u|z € P, (T) Moreover, (ISZU)|T =D eN,(T) P 71z (u (u) with the linear functional

lz( sz @% pu. For the interior nodes z € T' we have T, = T and, since u|r € P,(T),
l(u) = u(z) by (2.4.8). For z € 9T, the following cases may occur:

(1) If T, = T, then again I, (u) = u(z) by (2.4.8).

)
(2) If T, is a neighbouring element of 7', then the following cases can occur:
(a) T, € 7} N ’7}: Then, z € 9T and hence also in d7T,. The construction of the
averaging sets in Def. 3.3.1 is such that the averaging set T, for node z is chosen
such that it is contained in an element T’ € 7T if possible. Since T C T € T is

possible by (3.3.1), we conclude that also T, C T” € T for some T” € T. Hence,
ulr, € P,(T;), and the value of the linear functional is u(z).

(b) T. € Ty \ To. Then, by (3.3.1) we get ulr, € P,(T.) so that again by (2.4.8)
L(u) = u(z).
In total, we have arrived at (I37u)|r = > 2eN,(T) QDZ@U(Z)j ulr, since ulr € Py(T).

4. step: Consider T € Ty \ 73 Then T € T. We have (I;%u)|r = > en, (1) o 7l (1)
with the linear functional 1, ( fT o U For the interior nodes z € T we have T, = T
and, since u|p € Py(T'), the property (2. 4, 8) gives [, (u) = u(z).

For z € OT, two cases may occur: If T, = T, then again [,(u) = u(z) by (2.4.8). If T,
is a neighboring element of 7', then either T, € T; N 7;, which means I.(u) = u(z) by the
same reasoning as in step 3, item 2a, or T, € Ty \ 7, C T so that ulr, € Py(T%) and thus
by (2.4.8) I.(u) = u(2). In total, we have arrived at (I7%u)|r = > ceN, (1) P u(2) = ulr,
since u|r € Py(T). O

3.4 Multilevel decomposition based on mesh hierarchies
generated by NVB

With the use of the adapted Scott-Zhang operators TKSZ and a mesh hierarchy based on
the finest common coarsening between NVB meshes and uniformly refined meshes, we

obtain a multilevel decomposition with norm equivalence in the Besov space B / (Q) as a
consequence of the stability estimate of Theorem 3.1.5
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

Theorem 3.4.1. Let T be a mesh obtained by NVB refinement of a triangulation '76 with
mesh size ho Let 72 be the sequence of uniformly refined meshes starting from 76 with
mesh size hy = ho2~¢. Set T; := fee(T,Ts). Let ISZ : L2(Q) — Spt (7}) be the adapted
Scott-Zhang operator defined in Definition 3.5.1. Then on the space SPL(T) the following
three morms are equivalent with equivalence constants depending only on %, p, 0 € (0,1),
and q € [1,00]:

el o2 g (3.4.1)
175 % ull 20y + 1252l — I %ul 2 () esolles, (3.4.2)
1%l r2g) + 11232 IAw — I % 126 esolles. (3.4.3)
Proof. We apply [Coh03, Thm. 3.5.3] for the spaces X = (Sp71(T),||-|\L2(Q)),

Y = (spvl(’r), Il 272 (Q)) noting that we have SP1(7;) € S”(T). Then, [Coh03, Thm. 3.5.3]
provides the equivaignce of the second and third norm to the norm on the interpolation
space (X,Y)g 4, which by Corollary 3.1.10 is the Bg/ 20 (©)-norm, provided a Jackson-type
and a Bernstein-type estimate holds.

1. step (Jackson-type inequality): Using Lemma 3.3.2, we compute for u € SP!(T) and
arbitrary w € SP1(7;)

inf _lu—vllp2(q) < llu— I %ullp2(9) = llu — I ?ul| 120
veSPL(Ty)

= Jlu—w— 7% (u—w)| 12(0) S lu—wl2)

Hence, standard approximation results from [Wid77, p. 332] on the quasi-uniform meshes
'T of mesh size hg h02 ¢ provide

inf_ [lu—olzo S inf u—wlle@ Sl e o S 272l vz o
vesPL(Ty) O pesna @y ‘ P () i)
(3.4.4)

We note that this estimate also implies the additional assumption [C0h03, Eqn.(3.5.29)] on
the projection operators [ EZ .
2. step (Bernstein-type inequality): Using the projection property of the Scott-Zhang

operators and Lemma 3.3.2, we get for arbitrary v € SPX(Ty)

Lem.318
TS 32
1ol g3z gy = M0l sz ) = 1T %0l g ) 5 g "I 0l 22y

7=3/2 T T-3/2
=y N0 gy = by 20l 2. (3.4.5)
As the family of operators ES Z . X — SPL(7,) is also uniformly bounded in the L2(Q)-norm,

all assumptions of [Coh03, Thm. 3.5.3] are valid and consequently the norm equivalences
are proven. n
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

3.5 Boundary conditions

Let the Hilbert space H*(2) be defined as

H*(Q) := {ue HR?Y : u=0on Q°Y}, mu%s = [[0l[Fs e + ||dist(:, 02) UHLZ(Q)
The previous results do not consider (homogeneous) Dirichlet boundary conditions. For
the application we have in mind (cf. (4.2.1)), an interpolation result similar to Corol-
lary 3.1.10 for the spaces L?(€2), H}(2) and H*(Q) for s € (0, 1) is of interest. Such results
are already available in the literature, see, e.g., [AF'F'"15], where the proof uses stability
properties of the Scott-Zhang projection and the abstract result from [AL09], similarly to
Corollary 3.1.10. For sake of completeness, we state the result in the following corollary.

Corollary 3.5.1. Let s € (0,1). Then, there holds

(BTN ) (S5 - ) = (BT ey )

)

with equivalent norms.

As done, for example, in [AFF15], the Scott-Zhang operators TESZ and fESZ can be
modified by simply dropping the contributions from the shape functions associated with
nodes on Jf2 and thus map into the spaces §g’1(72) and §§’1(’7AZ), respectively. We denote
these operators by Ige and I(‘)qez, and they are still stable in L2(Q2) and H{(€). Therefore,
Theorem 3.4.1 also provides a lower bound for the multilevel decomposition based on the
Scott-Zhang operator in the H*(€)-norm.

Corollary 3.5.2. Let T be a mesh obtained by NVB refinement of a triangulation ’76 Let
7} be_the sequence of uniformly refined meshes starting from ’76 with mesh size hg h02 ¢
Set Ty := fee(T,Ty). Let I(*?EZ H5(Q) — Sp’ (Ty) be the Scott-Zhang operator defined as
above. Then, we have

o0
>
=0

Proof. We note that Jackson-type and Bernstein-type estimates (3.4.4) and (3.4.5) in the

proof of Theorem 3.4.1 also hold for the variant of the Scott-Zhang projection that preserves
homogeneous boundary conditions, if we replace hiﬁ”“”BS{;(Q) with hﬁ”“”H&(Q) in (3.4.4),

~ 2
U — I&Zu‘
Y2 (0))

< Clulfg — VueSPHT), 0<s<L (3.5.1)

and if we replace in (3.4.5) the norms ||| ya/2 o, with [|- || 1(q) and correspondingly h3/2

2 oo(Q)
with A~!. Therefore, the norm equivalences of Theorem 3.4.1 are still valid if one replace
By’ / 2(Q) with H§(), I;Z with I5Z, and 23%¢/2 with 2%°. 0
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4 An optimal multilevel preconditioner for
the fractional Laplacian

In this chapter, we present a multilevel diagonal preconditioner with uniformly bounded
condition number on locally refined triangulations for the fractional Laplacian. We also
adopt the additive Schwarz framework and show that, also in the presence of adaptively
refined meshes, multilevel diagonal scaling leads to uniformly bounded condition numbers
for the integral fractional Laplacian. The norm equivalence of the multilevel decomposi-
tion in Chapter 3 provides the lower bound for the eigenvalues and an inverse estimate in
fractional Sobolev norms, similar to [FMP19], gives the upper bound for the eigenvalues.
We mention that very closely related to preconditioning of discretizations of the fractional
differential operators is earlier work on preconditioning for the hypersingular integral equa-
tion (e.g., the operators coincide for the case s = 1/2 for screen problems) in boundary
element methods (BEMs), [1596, TSM97, TSZ98, AMO3, Mai09, FEPS17a].

4.1 Fractional Laplacian

4.1.1 Singular integral representation

We denote the principal value of the integral as

u(z) —uly) , u(z) — uly)
P.V. — L P dy =1 — 2
v /R o — g7 YT 20 Jeu . To — g Y

where B is a ball of radius . One representation for the fractional Laplacian is a pointwise
characterization based on the principal value integral, i.e.,

(s +d/2)

(=A)su(z) := C(d,s) P.V. /R Mdy C(d, s) == QQSSm

€ (0,1),
p ‘x_y‘d-ﬁ-Zs S ( )

where I'(-) denotes the Gamma function, see [[<wal7].

4.1.2 The Caffarelli-Silvestre extension

One of the main difficulties in the study of fractional differential equations is the non-
locality nature of theses derivatives. To overcome this, Caffarelli-Silvestre [C'S07] proved
that the fractional Laplacian in R¢ can be written as an operator mapping a Dirichlet
boundary condition to a Neumann-type condition using an extension problem on the half-
space R‘fl = {(x,y) |x € RY, y > 0}.
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4 An optimal multilevel preconditioner for the fractional Laplacian

Definition 4.1.1. Let a:=1—2s € (—1,1) and S € RZ™ be a measurable set, then we
define the following weighted L?-norm

ull72 ) = [ ¥ lu(x,y)|* dxdy.
“ S
Also, we introduce
L2(8) = {u € LX(S) | Jullfy(s) < oo

Let D’ (R‘fl) denote the space of all distributions. Then, the Beppo-Levi space is defined
as

R = {u e D'RET) | Vu e LRI

The fractional Laplacian can be written as the Neumann data of the extension problem,
ie.,

(~Au(e) = ~d, lim S (L)) xE RS

where dy := 200729 |I(s)| /T(1 — s) and (Lsu) € Hs(Riﬂ) is a solution to the following
extension problem by Caffarelli-Silvestre

—div (y' VL) =0 in R
trLgu=u in RYx {y=0}.

4.2 Model problem

Let © € R? be a bounded Lipschitz domain. In this section, we consider the equation
(=A)Yu=f in Q,
u=20 in Q°, (4.2.1)

for a given right-hand side f € H~%(Q). N
The weak formulation of (4.2.1) is given by finding v € H*(Q2) such that

o, v) = C(C;,S)//Rdxw (u(z) —‘U(y))(v(l‘) —v(y)) du dyy — /vada: o € B5(9).

T — y’d—i—Zs

(4.2.2)

Existence and uniqueness of u € H (92) follow from the Lax-Milgram lemma.
With a given regular triangulation 7o, we consider two hierarchical sequence of meshes

To, 7o, €=0,....L
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4 An optimal multilevel preconditioner for the fractional Laplacian

1. (sequence (T¢)¢): The meshes T, are generated by an adaptive algorithm (see, e.g.,
[Di,')l',()(i]) of the form SOLVE — ESTIMATE — MARK — REFINE, where the step REFINE
is done by newest vertex bisection. In the following, both for the case of piecewise
linear and piecewise constant basis function, we always assume that the meshes 7
are regular in the sense of Ciarlet.

2. (sequence (7;)¢): From a given triangulation 77, obtained by NVB refinement of Tp,
which may, e.g., be obtained from an adaptive algorithm, the finest common coars-
ening of 7y, with the uniform refinements of 7y (denoted by 7;) provides a hierarchy

~

of meshes Ty = fcc(Tr, To).

4.3 Local multilevel diagonal preconditioners

4.3.1 A local multilevel diagonal preconditioner for adaptively refined meshes

We start with the case of the adaptively generated mesh hierarchy (7;),. On the mesh 7y,
we discretize with piecewise constants (for 0 < s < 1/2) as the space V) = S%9(T;) and
piecewise linears (for 0 < s < 1) as the space V;! = 53’1(72). If the distinction between V)
and Vel is not essential, we write V;, meaning V, € {VZO, Vgl}. The Galerkin discretization

(4.2.1) in V; of reads as: Find uy € V4, such that
a(ug,vg) = (f, vg)Lg(Q) Yy € V. (4.3.1)

Moreover, on the uniformly refined meshes 7A2,Ain the same way, we define the discrete
spaces V) = SO0(Ty), V! = 53’1(72), and V, € {VP, V/}!'}.

We define sets of “characteristic” points N7, i = 0, 1, representing the degrees of freedom
of V. For the piecewise constant case Vgo7 the set ./\/'ZO comprises all barycenters of elements
of the mesh 7;. For the piecewise linear case Vel, we denote the set of all interior vertices
of the mesh 7; by N}. If the distinction between N and A} is not essential, we will write
N meaning Ny € {NP,N}} is either NP if Vp = V2 or N} if V; = V. The points z € N,
are called nodes.

We choose a basis of V, = span{cpﬁj czj €Ny, j=1,..., Ny} for the piecewise constants

we take the characteristic functions goﬁj = x1; of the element satisfying z; € T; € 7Ty, and

for the piecewise linears we take hat functions corresponding to the interior nodes defined

by goﬁj(zi) = 0;; for all nodes z; € N;. With these bases, we can write uy = ;V:Zl x?goﬁj,

and (4.3.1) is equivalent to solving the linear system
A" =’ (4.3.2)
with the stiffness matrix A¢ and load vector b’

Again, we mention that the £?-condition number of the unpreconditioned Galerkin matrix

: 2s/d (Bl \42* . . .
grows like k(Af) ~ N, p s/ (%) , which stresses the need for a preconditioner in order

to use an iterative solver.
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4 An optimal multilevel preconditioner for the fractional Laplacian

For fixed L € Ny, we introduce a local multilevel diagonal preconditioner (BL)*1 of BPX-
type for the stiffness matrix A’ from (4.3.2) in the same way as in [FF'PS17a, AMO3]. That
is, following [F'F'PS17a], we define the patch of a node z € N as

wy(z) := interior U{T : T e€Tpz€T}.

The sets MY, i = 0, 1, defined in the following, describe the changes in the mesh hierarchy
between the levels £ and £ —1 and are crucial for the definition of the local diagonal scaling.
For the case of piecewise linears, we define the sets ./\/l} as the sets of new vertices and their
direct neighbours in the mesh T;: We set M} := N and

Mp = NN U {z e NFONL - welz) Cwei(2)}, £>1. (4.3.4)

For the case of a piecewise constant discretization, we define the set /\/lg simply as the
barycenters corresponding to the new elements, i.e., Mg = /\/go\./\fgo_1 for £ > 1. In the
same way as for the nodes Ny, we write M, to either be M? and M%, which should be
clear from context.

The local multilevel diagonal preconditioner is given by

L
(BH)~h =) I'Df, (197, (4.3.5)
=0

where, with N, := #N;, the appearing matrices are defined as

o I’ € RNe*Ne denotes the identity matrix correspond to the embedding Z¢ : V, — V7.
(Agj)_léjk Jj iz eM
0 otherwise

That is, the entries of the diagonal matrix are the reciprocals of the diagonal entries
of the matrix A’ corresponding to the degrees of freedom in M.

o D € RNVt js a diagonal matrix with entries (DY) 1, =

mv

Moreover, we define the additive Schwarz matrix PL¢ := (BL)flAL . Instead of solving
(4.3.2) for ¢ = L, we solve the following preconditioned linear systems

PLx" = (BL) 'bL. (4.3.6)

The following theorem is the main result of this section and provides optimal bounds to
the eigenvalues of the preconditioned matrix and the proof is given in Section 4.4.

Theorem 4.3.1. The minimal and mazimal eigenvalues of the additive Schwarz matriz
Pﬁs are bounded by

¢ < Amin (Phg)  and  Amax (Phs) <C, (4.3.7)
where the constants ¢, C' > 0 depend only on 2, d, s, and the initial triangulation To.

Remark 4.3.2. The preconditioner (BY)~! is a symmetric positive definite matrix and the
preconditioned matrix Pﬁs is symmetric and positive definite with respect to the inner

product induced by B%. Therefore, Theorem 4.3.1 leads to x(Pkg) < C/c. .

Remark 4.3.3. The cost to apply the preconditioner is proportional to Zﬁ:o card My =

O(Ny) by [FFPS17a, Sec. 3.1]. .
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4 An optimal multilevel preconditioner for the fractional Laplacian

4.3.2 A local multilevel diagonal preconditioner using a finest common
coarsening mesh hierarchy

In this subsection, we provide a result similar to Theorem 4.3.1 for the meshes ’72 =
tce(Tr, Ti), where £ = 0,...,L. With V2 = S%0(T;), V! = Sy (T¢), and V, € {V2,V,}'}
being either the piecewise constants or piecewise linears on ’ﬁ, the Galerkin discretization
of finding wy € \75 such that

a(lie,T) = (/W) o) VU EV (4.3.8)

is equivalent to solving the linear system
AR =1’ (4.3.9)
bjf choosing a nodal bagivs as in the previofuvs subsection. The set of nodes N, i i=0,1, and
N as well as the sets M, i = 0,1, and M, can be defined in exactly the same way as in

the previous subsection by just replacing the meshes 7, with 7~Z. Therefore, in exactly the
same way as in (4.3.5), we can define the local multilevel diagonal preconditioner

K T
Z I 1nv
The following theorem then gives optimal bounds for the smallest and largest eigenvalues

~ ~ 1~
of the preconditioned matrix Pﬁs := (BY) A’ and the proof is given in Section 4.4.

Theorem 4.3.4. The minimal and mazimal eigenvalues of the additive Schwarz matriz
Pﬁs are bounded by

¢ < Amin (ﬁf@ and  Amax (ﬁgs) <, (4.3.10)

where the constants ¢, C' > 0 depend only on 2, d, s, and the initial triangulation Ty.

Remark 4.3.5. By Lemma 3.2.3 the cost of the preconditioner are, up to a constant,
card Mo + Ze 1 card/\/lg < card Mg + Ze 0 card Ny — card NVy_1 < card/\/L =card7;. =

4.4 Optimal additive Schwarz preconditioning for the fractional
Laplacian on locally refined meshes

In this section, we prove the optimal bounds on the eigenvalues of the preconditioned ma-

trices Pﬁs of Theorem 4.3.1 and Pﬁs of Theorem 4.3.4. The key steps are done in Propo-

sition 4.4.2 or Proposition 4.4.1, which state a spectral equivalence of the corresponding
additive Schwarz operator and the identity in the energy scalar product.
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4 An optimal multilevel preconditioner for the fractional Laplacian

4.4.1 Abstract analysis of the additive Schwarz method: The mesh hierarchy
Te = fcc(Tr, Te)

The additive Schwarz method is based on a local subspace decomposition For the mesh
hierarchy 7; = fcc(Ty,7;), we recall that V; € {500(72) (72)} is either the space of
piecewise constants or piecewise linears on the mesh 72 We follow the abstract setting of
[TW05] and decompose Vj, = Zﬁ:o V, with

Vy := span {cﬁﬁ Pz € /\75} , (4.4.1)

where @¢ denotes the basis function associated with the node z € /\N/'g We recall that these
functions are either characteristic functions of elements (for the p1ecew1se constant case) or
nodal hat functions (for the case of piecewise linears). We note that Vg C Vg and, since ./\/lg
only contains new nodes and direct neighbors, this space effectively is a discrete space on
a uniform submesh (cf. Lemma 4.4.6). On the subspaces ]75, we introduce the symmetric,
positive definite bilinear form ay(-,-) : Vy x V; (also known as local solvers) with

Go(ug, ) =Y th (2 <Pz sy > h Jue(2)
zeM, zeM,

The following proposition, c.f., e.g., [£Zha92, I\INSDN], gives bounds on the minimal and
maximal eigenvalues of the preconditioned matrix Pﬁs based on the abstract additive
Schwarz theory.

Proposition 4.4.1. (i) Assume that every u € Vi, admits a decomposition u = Zf o Ue
with uy € Vg satzsfymg ZZ o ae(ug,ug) < Co alu,u) with a constant Co > 0. Then,
we have )\mm(PAS) > C’O_ .

(i) Assume that there exists a constant C1 > 0 such that for every decomposition u =
ZZ o Ue with ug € Vg, we have a(u,u) < Cq ZZ o Ge(ue, ug). Then, )\maX(PAS) < C'1

The first part of Proposition 4.4.1 is sometimes called Lions’ Lemma and follows from
the existence of a stable decomposition proven in Lemma 4.4.5 below. The assumption
of the second statement follows directly from our strengthened Cauchy-Schwarz inequality
(Lemma 4.4.7) and local stability (Lemma 4.4.9).

4.4.2 Abstract analysis of the additive Schwarz method: The mesh hierarchy
T, provided by an adaptive algorithm

For the case of a mesh hierarchy 7; generated by an adaptive algorithm, similar definitions
can be made and analyzed. However, here, we follow the notation of [FFPS17a], where
the additive Schwarz operator consisting of a sum of projections onto one dimensional
spaces is analyzed. With the spaces Vf = Span{g@ﬁ} one may define local projections
PL: H*(Q) — VY in the energy scalar product as

a(Plu,vt) = a(u,vl) for all v € V7,
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4 An optimal multilevel preconditioner for the fractional Laplacian

and define the additive Schwarz operator as

L
7{{{5 = Z Z Pf.

=0 ze M,

Np

: . N
Moreover, for u, v € Vi, and their expansions u = 3 ;4 xjgofj, v=>300 ngofj, we have

a(Pfl/Suv 1)) = <PﬁSX7 Y>AL ) (442)

where (-, ) sz = <AL . ->2. Therefore, the multilevel diagonal scaling is a multilevel ad-
ditive Schwarz method, and we may analyze the additive Schwarz operator instead of the
preconditioned matrix.

Proposition 4.4.2. The operator Pﬁs s linear, bounded and symmetric in the energy
scalar product. Moreover, for uw € Vi, we have the spectral equivalence

¢[[ullf ) < a(Pisu,u) < C llulFq) (4.4.3)

where the constants ¢, C' > 0 only depend on 2, d, s, and Ty.
As in [FFPS17a], Proposition 4.4.2 directly implies Theorem 4.3.1.
Proof of Theorem /.3.1. Combining the bounds of Proposition 4.4.2 with (4.4.2) gives
2 2
cllx|ar < <PﬁSX,X>AL < C x|z

for all x € RVE, and therefore the bounds for the minimal and maximal eigenvalues. O

4.4.3 Inverse estimates for the fractional Laplacian

For the proof of a strengthened Cauchy Schwarz inequality, we employ an inverse inequality
for the operator (—A)® of the form

11 (=AY vl 20y < 10l 72y - (4.4.4)

For the piecewise linear case v € Sé’l(’T), this inverse estimate is proven in [FMP19,
Thm. 2.8]. We stress that (4.4.4) only holds for s < 3/4, since in the converse case the
left-hand side is not well defined for v € S(l) (7). To obtain an estimate for s € [3/4,1), one
has to introduce a weight function w(x) := infrey dist(x,0T"). Then, [FMP19, Thm. 2.8]
provides the inverse estimate

th/2w5_1/2(—A)Sv (4.4.5)

< _
L2(Q) ™~ ”vHHS(Q)'
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4 An optimal multilevel preconditioner for the fractional Laplacian

For the case of piecewise constants, similar inverse estimates are stated in the lemma below.
Here, we additionally stress that for v € S“°(T) and x € T € T, the estimate

v\xr)—v
cli.s) [ o) = o) dy'
Rd\Bdist(z,BT)(‘r) ’x - y’

S ol oo ()

(=8 v()] =

d+2
Bdlst(z aT) ’.’1: - y’ e

dlam Q
— ||v|yLoo(Q)/ / =2 L drdy
vedB1(0) Jr=dist(z,0T)

S vl oo (@) dist(z, 8T) >, (4.4.6)
gives
wl(=A)ve L2(Q)  if B> 2s—1/2.

For s < 1/4, we may choose = 0 and for 1/4 < s < 1/2, we may choose, e.g., = s or
B =3/2s —1/4 (to additionally ensure § < s) to fulfill this requirement.

Lemma 4.4.3. Let T be a regular and ~y-shape reqular mesh generated by NVB refinement
of a mesh To. Let v € S%°(T), h be the piecewise constant mesh width function of the
triangulation T, and set w(zx) := infrer dist(x,0T). Let B > 2s — 1/2. Then, the inverse
estimates

1B (=A) 20y < Cllvll ey 0<s<1/4, (4.4.7)
172w (= A) 0] g2y < Clloll gy 1/4 <5 <1/2 (4.4.8)

hold, where the constant C > 0 depends only on €2, d, s, and the ~-shape regularity of T .

Proof. 1f we set § =0 for s < 1/4, we can prove both statements of the lemma at once by
estimating the L?-norms with the weight h*~#w?.

Considering the nonlocality of the fractional operator, we need to split it into two parts,
a localized near-field part and a smoother far-field part. For this purpose, we follow the
lines of [FMP19, Thm. 2.8], starting with a splitting into a near-field and a far-field part.
The estimates of the near-field and the far-field are rather similar to the case of piecewise
linears from [F'MP19, Lem. 4.1-4.5]. Therefore, we quote the identical parts of the proof
and outline the necessary modifications for the piecewise constant case.

For each T € T, we choose a cut-off function xr € C§°(R?) with the following properties:
1) supp x7NQ C w(T); 2) x7 = L on aset B satisfying T’ C B C w(T) and dist (B, 0w(T) N Q) ~
hr; 3) |Ixrllwieo@wry) < hT ;4)0 < xr < 1 Moreover, for each T' € T, we denote the
average of v on the patch w?(T) by cr € R,

{0 if T N Ow?(T) # 0
Cr ‘=

ﬁ fwg(T) vdr otherwise.

Since cr is a constant, we have (—A)®cpy = 0. Therefore, we can decompose v into
the near-field vl,,, := xr(v — cr) and the far-field vl := (1 — x7)(v — er), and obtain

near
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4 An optimal multilevel preconditioner for the fractional Laplacian

(_A)Sv = (_A)Svr?ear + (_A)Svfj‘;r'

We start with the near-field, where compared to the result for the case of piecewise
linears, we do not need to distinguish cases for s. The definition of the fractional Laplacian
leads to

2
1 s 2 vlxr) —c ) — (v —C
2
< /T w(x)* (v(x) — cr)? (P.V. /R dey) dx

2
+/Tw(x)25 (P,V. /]Rd XT(y)Wdy) dzx.

The first term on the right-hand side can be estimated using the Lipschitz continuity of xp
and a Poincaré inequality on the patch w(7') in the same way as in the proof of [FMP19,
Lem. 4.3]. Considering x € T and yp = 1, we get

2
/Tw(zv)%(v(x) —cr)? (P.V. /Rd Wdy) dx

|z — |

2
_ /T w(@)? (0(x) — er)? ( /B o Wdy> do.  (44.10)

|z —y|

(4.4.9)

Let B’ be an arbitrary set defined such that 7' C B’ and dist ((,7),0B’) ~ hy and it still
satisfies x7 = 1 on B’. Therefore, applying polar coordinates y = x + rv, v € 9dB1(0),
where 0By (0) is the (d — 1)-dimensional unit sphere, gives us

_ 1—
/ xr () ﬁ;(y) ay| = / XI;(Z/) dy
s +2s
Bdist(z,BT)(x)c |x - y| B'e ’x - y|

Substituting (4.4.11) into (4.4.10), using w|r < h7 and [FMP 19, Lem. 4.1], we can write

2
/Tw(x)w(v(m) —cr)? (P.V. /Rd Wdy) dz

|z — |

< > 1 —2s
S| oy = b (44.11)

chr

< /Tw(ac)w(v(x) —cr)?hpda < h?pﬂ_4s /T(v(x) —er)?dx
< 1 ol ey -

For the second term in (4.4.9), we split it into two parts, a smoother, integrable part and
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4 An optimal multilevel preconditioner for the fractional Laplacian

a principal value integral part:

2
g v —oi) '
/T (z) (P-V- /Rd xr(y) T dy) d
2
o -, \
s /T (=) <P‘V. /Bdisc(x,aT)(z) xr(y) |z — y|d+28 dy) !

2
+ / w(z)?8 (P.V. / m(y)W@) dx == S1 + Ss.
T Buyist(z,0m) ()¢ |z — |

We observe that the integrand in S vanishes for y € T, since v is piecewise constant and
for Se, we employ the same estimate as for (4.4.6) to obtain

2
v\r)—v —4s
[ (P.v. / XT<y>”df§{3dy> o S o = erlfm oy [ w0 d
T Rd — | T

|z

here, we added and subtracted the constant ¢y in the integrand and used the support
properties of x7 to obtain the L°°-norm on the patch.

As, by choice of 3, we always have 28 — 4s > —1, the last integral exists, and we can
further estimate using a classical inverse estimate and a Poincaré inequality

_4s —4s+d
lv = er 7o gy /TUJ(x)” Pde S g T o = er o ey

—4s —2s
S o = erllTaguery S e ol ey -

hzTS_Qﬂ and summing over all elements

Inserting everything into (4.4.9), multiplying with
T € T gives the desired estimate for the near-field.

The far-field can be estimated using the Caffarelli-Silvestre extension, cf. [C'S07], com-
bined with a Caccioppoli-type inverse estimate for the solution of the extension problem
with boundary data (1 — x7)(v — ¢r) as in [FNP19]. In fact, we observe that [FNP19,
Lem. 4.5] holds for arbitrary v € H 5(Q2) and weight functions w with non-negative expo-

nent. This directly gives

> I Pl (=AY vl 2y S Tol. .
TeT

and combining the estimates for near- and far-field proves the lemma. O

4.4.4 Proof of the assumptions of Proposition 4.4.1

In order to apply Proposition 4.4.1, we show the existence of a stable decomposition
(Lemma 4.4.5) and a strengthened Cauchy-Schwarz inequality (Lemma 4.4.7).

The following result relates the Scott-Zhang operators on two consecutive levels, similarly
to [CNX12], and is a key ingredient of the proof of Lemma 4.4.5.
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4 An optimal multilevel preconditioner for the fractional Laplacian

Lemma 4.4.4. Let p =1 and let /T/el, ./\7% be defined in Section /.3.2. The Scott-Zhang
operators 177 : L?(Q) — SY(T;) can be constructed such that, additionally, they satisfy
for all £ € N and all u € L*(Q2)

(IP% —T3%)u(z) =0 Vz e N} \ M. (4.4.12)

Also the Scott-Zhang operators TSZ : L2(Q) — 51’1(73) can be constructed such that (4.4.12)
holds with ISZ and If 1 Teplaced with I(‘)gé and I&Z_l, respectively.

Proof. We only consider the case of the operators TESZ . We also recall that for the present
case p = 1 the nodes coincide with the nodes of the triangulations.

1. step: z € /%1 \/K/l\} implies z € /%1 ﬂ/\N/}_l. To see z € /\7}_1, we note /\7}_1 C /%1 by
Lemma 3.2.3 and therefore that z € /\7@1 \//\\/l} C /\7(1 \ (/\N/'Z1 \/\7}_1) = /\N/‘gl_l
2. step: z € /\7@1\/?/(/} C j\~/'£1 ﬂj\nl_l implies that all elements of the patches wy(z) and wy_1(2)
are in 7. To see this, we note z € /\N/'é1 \/T/l} C jiv/'gl \{z € ./\N/'e1 01\7271 |we(z) € we—1(2)}. The
condition wy_1(z) = wy(z) implies that all elements of wy_1(z) = wy(z) must be elements of
T.
3. step: The basic idea for the choice of averaging sets T, in the construction of I f 1 and
1 @9 in Def. 3.3.1 is to select an element of 7 whenever possible. Our modified construction
of the operators 1:;5 Z is by induction on £ and carefully exploits the freedom left in the choice
of the averaging sets T, in Def. 3.3.1. We start with an fg*z as constructed in Def. 3.3.1.
Suppose the averaging sets T, for 7i—1 have been fixed. Effectively, Def. 3.3.1 performs a
loop over all nodes of 7~Z. When assigning an averaging set T, to a node z € /\N/'e1 \//\\/l}, we
select as T, the element that has already been selected on the preceding level £ — 1. This
is possible since z € N ! \M Ay implies z € /\/Zl , by Step 1, and by Step 2 we know that all
elements of both 72 1 and 72 having z as a vertex are elements of 7.

The same construction can also be applied to the operators 107 . O

The following lemma provides the existence of a stable decomposition for the mesh
hierarchy generated by the finest common coarsening. Rather than analyzing the L2-
orthogonal projection onto a space of piecewise polynomials on a uniform mesh, as in
[FEPS17a], we use the result of Corollary 3.5.2.

Lemma 4.4.5. (Stable decomposition for the mesh hierarchy (T2)e). For every u € Vi,
there is a decomposition u = Zt%:o ug with ug € Vy satisfying the stability estimate

Zag Ug,Ug Z Z Hh Ug

ZEM[

2
12(Q) < Cs2tab HuHﬁs(Q) )

with a constant Cgiar, > 0 depending only on 2, d, s, and the initial triangulation To.

Proof. We only show the case of piecewise linears, the piecewise constant case is even
simpler as the basis functions are L%-orthogonal. Let 157 : H*(Q) — 53’1(72) be the
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4 An optimal multilevel preconditioner for the fractional Laplacian

adapted Scott-Zhang projection from Definition 3.3.1 in the form given by Lemma 4.4.4.
Set I(‘igl = 0. Then, we define

w =) (57 = I 1)u(2)@.

ZG./\A/T[
Since (%?Z I(‘)S'ZZ u € Vs, we may decompose using a telescoping series and (4.4.12)
L L
TSZ SZ ~
U_IOLU_Z(IO,Z oz 1 U*Z Z oe 1) (2 )%:ZW- (4.4.13)
=0 =0 e 1, =0

We next prove the stability of the decomposition (4.4.13). The standard scaling of the
hat functions in L? provides HQOZHLQ(Q) ~ hy(z)?, with hy(z) denoting the maximal mesh

width on the patch corresponding to the node z. With (4.4.12) and an inverse estimate
— cf. [DF'G 04, Proposition 3.10], which provides an estimate for the nodal value of a
piecewise linear function on the mesh 7, by its L?-norm on the patch — this gives

ZZH@ (57 - B2 pu=)@

L (Q)
zGMz

L
Szﬁg_zs Z he(z)" |(IM _IS,erl)U(Z)‘Q
(=

0 zGNz
L
<N "2 H 157 _ 782 ‘
~ Z ) . ( 0,¢ 0,2—1)“ L2(1)
=0 TeT;
(4.4.14)
Finally, we can use Corollary 3.5.2 to obtain
L L )
) < ~2s < lull%
S e u) £ 300 B0 g S Ml (4.4.15)
(=0 =0
which proves the existence of a stable decomposition. O

The following lemma shows that the submesh consisting of the elements corresponding
to the points in Mg is indeed quasi-uniform in that all elements have size O(hg)

Lemma 4.4.6. Let Mvg be defined in Section 4.5.2 and let z € Mvg, then it holds hy(z) ~ ?Lg,
where hg( ) denotes the mazimal mesh width on the patch we(z). In particular, we have

Vg C Vg, meaning Vg C VZ Zf/\/lg /WO and Vg - Vg zf./\/lg Mz

Proof. We first note that if T' € 7} \ 72_1, then hp ~ hg IfT ¢ ‘Ilg for the first set in
the definition of the finest common coarsening (3.2.1), then T' € 7, and hr ~ hy follows
since the mesh 7; is quasi-uniform. Now, let T" € T, which implies T € 7, and that
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4 An optimal multilevel preconditioner for the fractional Laplacian

T is a proper superset of an element fg S ’7}, ie., hT > /ﬁg Since T and TA} 1 are NVB
reﬁnements of the same mesh, we either have T C Tg 1, T = T, -1 orT D Tg 1 for some
element Tg 1 € 7} 1. For the first two cases, we have hp < hg 1~ 2hg, which gives
hp ~ hg The third case T O T, -1 unphes that T' € 14— and therefore T' € 72 1, which
contradicts the assumption T € T \ Toq.

This immediately proves the case Mg = Mg, since new points in Mg (barycenters)
correspond to new elements in ’72 \ ’7},1.

For the case Mvg = ./K/lv}, let z € Mvg. By definition, this implies that there exists (at least)
one element T' = T'(z) with T'(z) C wy(z) and T(z) € T; \ Tr—1. The previous discussion
gives hp(;) =~ he. By shape-regularity this gives that hy(z) = maxpe,,(2) hr =~ he. O

With the inverse estimate of the previous subsection we now prove a strengthened
Cauchy-Schwarz inequality.
Lemma 4.4.7. (Strengthened Cauchy-Schwarz inequality for the mesh hierarchy ('72)) Let
up € Vy for £ =0,1,..., L. Then, we have

0<m<k<L,

a(Um,ug) < Ekm ||umHﬁs(Q) Hi\l;:suk‘

L2(Q)
e 0 0<s<1
with Epym = C’cs(hk/hm)s /B. Here, 8 is given as 8 = ¢ , L Jor L y ‘i for the
58 — 1 fO'I" 1 S s < b

piecewise constant case and B = max{s — 1/2,0} for the piecewise linear case. Moreover,
the appearing constant Ccs > 0 depends only on §,d, s and the initial mesh Ty.

Proof. We define a modified mesh size function Eﬁn as ?Lfn = hi Pwh, with the weight
function wy, defined such that the inverse estimates of (4.4.4), (4.4.5) or Lemma 4.4.3
(either for the piecewise linears or the piecewise constants) hold. Moreover, we note that
this choice of § fulfills the assumptions of Lemma 4.4.3 as well as § < s. Therefore, the
classical Cauchy-Schwarz inequality implies

@t ) = (=), k) ) = (=2 o, P )
<|
A scaling argument as in [FVP 19, Lem. 3.2.] yields

[ei?en| B2 Vurllery + 1P () sl e

Together with wg < w,,, since T is a refinement of ’7~'m7 and hy,(T) := hp|r > /f\l,m this
gives

[

ne,(— (4.4.16)

Q) H%’_"Suk‘ L2(Q)

L2(T)

—S

Sh

B B—s s—pB iy
" Loy = (1) (hk (T) gl g ¢y + Py, " (T) HukHLQ(T))

Aﬁf%?ﬁm leaell g +ﬁﬁ‘5h*5< 7) ||uk||L2 @
B

<h

ey & D) i

L2(T)

S )™ [

(1)
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4 An optimal multilevel preconditioner for the fractional Laplacian

Summation over all the elements of 7,, gives

< (/)" Hﬁ,;suk’ (4.4.17)

Hﬁ;fuk‘ Q) "~ L2(Q)

Combining (4.4.16) and (4.4.17) with the inverse estimate

) (= 12(9)

of (4.4.4), (4.4.5) or Lemma 4.4.3 proves the strengthened Cauchy-Schwarz inequality. [

N HumHﬁs(Q)

Remark 4.4.8. 1. Since (hy/hm)’ " = 2-¢6=m6=0) for 0 < m < k < L, we get —
following the notation of [T W05] — that the symmetric matrix £ with upper triangular
part given by &, = Ces (/f;k /?Lm)sﬁg satisfies p(€) < Cypr, with a constant depending
only on €, d, s, and the initial triangulation 7.

2. There is some freedom in the choice of the parameter 8 in Lemma 4.4.7: the proof
shows that the essential conditions are 2s — 1/2 < 8 < s. u

Lemma 4.4.9. (Local stability). For all uy € %, we have

HWHHS @) < Cloc au(ug, ug),

with a constant Cloe > 0 depending only on 2, d, s, and the initial triangulation To.
Proof. Since u, € 175, we have uy = Zzeﬂg ug(2)P.. With an inverse estimate, which can
be applied, since due to Lemma 4.4.6 uy only lives on a quasi-uniform submesh, we can

estimate using that the number of overlapping basis functions Gﬁ, is bounded by a constant
depending only on the y-shape regularity of the initial triangulation

2

2 T—s 2
HuZHﬁs(Q) N th Uﬁ)

T —2s ~0 -2
Loy = Z we(2)@, Shi? > Jug(z ’wz -
zEMy L2(Q) ZGMe
By definition of ay(-, ), this finishes the proof. Ol

For 0 < k < /¢ < L, let £ be a symmetric matrix with upper triangular part given by
Eo = Ocs(/ﬁg /ﬁk)s_ﬁ. Now, the assumptions of Proposition 4.4.1 follow directly from
Lemma 4.4.5 (lower bound) and Lemma 4.4.7 together with Lemma 4.4.9 (upper bound)
by writing u = ), uj and

Lemma 4.4.7

L ¢ L ¢
a(u,u) = Z a(ug, ug)< QZZG(Uk,W) 2zzggk\/a(uk,uk) ap(wg, up)

1 k=1 (=1 k=1

L
Lemma 4.4.9 1/2 2 .
< QClo/c Ean/ @ (up, ury) apug, ug) < 207 p(€) > (g, up),
=1 k=1 =0

and the appearing constants are independent of L.
The following remark discusses the proof of Theorem 4.3.1:
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4 An optimal multilevel preconditioner for the fractional Laplacian

Remark 4.4.10. (Stable decomposition and strengthened Cauchy-Schwarz inequality of
mesh hierarchy (7;), generated by an adaptive algorithm—Proof of Theorem 4.3.1): The
existence of a stable decomposition and consequently the lower bound in Proposition 4.4.2
follows essentially verbatim as in [FFPS17a, Sec. 4.5], where instead of Corollary 3.5.2 an
L?-orthogonal projection onto a uniform mesh is used.

Analysing the proof of Lemma 4.4.7, we observe that the choice of mesh hierarchy is
not crucial for the arguments, one only needs an inverse estimate and a Poincaré-type
inequality. Both hold for the case of the decomposition into one dimensional spaces Vf
instead of V¢ as well, and, therefore, we directly obtain a strengthened Cauchy-Schwarz
inequality for (77), as well. The algebraic arguments of [FF'PS17a, Sec. 4.6] then give the
upper bound for Proposition 4.4.2. "

Remark 4.4.11. In the same way as in [FFPS174], it is possible to define a global multilevel
diagonal preconditioner by taking the whole diagonal of the matrix A¢ instead of only the
diagonal corresponding to the nodes in M,. However, compared to the local multilevel
diagonal preconditioner, the preconditioner is not optimal in the sense that the condition
number of the preconditioned system grows (theoretically) by a logarithmic factor of Ny.
We refer to [FF'PS17a] for numerical observations of the sharpness of this bound for the
hyper-singular integral operator in the BEM, which essentially corresponds to the case
s = 1/2 here. .

4.4.5 Numerical example

1 APARI
Z7 P
AR
Za '

08 08 | =~

06 =

08

\ \
0.4 | 0.4 | VN

02 02+ =g

= KN
-0.2 -0.2 - %—_,,‘ /“ \

<04 f‘,

-0.4

08 - |

08 - AN
[\ I
\/ VAN

06 |

X

; é"\ﬂ?ﬁg‘“
Sedes
RRER

-0.8

=

Figure 4.4.1: Adaptively generated NVB mesh on L-shaped domain and square.

We consider two examples: the L-shaped domain Q = (—1,1)?\[0, 1] with f = 1 and the
square = (—1,1)? with discontinuous f = y,~o. We discretize (4.2.1) by piecewise linear
functions in 5(1)’1(72) on adaptively generated NVB meshes 7, that are generated by the
adaptive algorithm proposed in [F'MP19] and are depicted in Figure 4.4.1. This adaptive
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4 An optimal multilevel preconditioner for the fractional Laplacian

algorithm is steered by local error indicators given by

1/2
2 h; for 0 <s<1/2,

hPwi T for 1/2 < s < 1,

e = Z(

TeT,

RE(f = (~8)"u)|

with  hj = {
L2(T)
where wuy is the solution of (4.3.1). We note that by [F'MP19, Theorem 2.3] theses indicators
are reliable and for s < 1/2 efficient in some weak sense. Moreover, [F'M P19, Theorem 2.6]
proves optimal convergence rates for the adaptive algorithm based on these estimators.
Our implementation of the classical SOLVE-ESTIMATE-MARK-REFINE adaptive algorithm
uses the MATLAB code from [ABB17] for the module SOLVE and adapted the MATLAB code
for the local multilevel preconditioner from [FFPS17a] to our model problem. Figure 4.4.2
gives the estimated condition numbers for the Galerkin matrix A* and the preconditioned
matrix Pﬁs, where the condition number has been estimated using power iteration and
inverse power iteration (with random initial vectors) to compute approximations to the
smallest and largest eigenvalues.

g ——  x(AF) = ——  g(AL) O(N?) .-
) ) 2 -
2= —46— AS-prec. 2 10 —4— AS-prec. =
é 102 | —a— diag.-prec. é —aA— diag.-prec. O(l)
8 ____________ O(l) S 1 P By 1 i
=i A AAAAMADN =
=] A A A AAA—Adb B =1
g 100 ot e - TTTO(NY g G
e 1000 -~
10t 102 103 10% 10! 102 103
DOFs N DOFs N
& —— x(AL) & —— x(AL) PN e
= —6— AS-prec. 2 2 —6— AS-prec.
g 9 —A— diag.-prec. g 10°F | s diag.-prec.
2 = (1) g """"""" ;,;@z*go( 2
=] 5] 06-
&= o 04 = 101
g 10° e nlE O(N*) 8 /
101 102 10° 10* 10! 102 103 101
DOFs N DOFs N

Figure 4.4.2: Estimated condition numbers for A”, the preconditioned matrices Pﬁs, and
diag(A*)~'AL. Top: L-shaped domain, bottom: square; left: s = 0.25, right:
s =0.75.

We observe that, as expected, the condition number of the unpreconditioned system
grows with the problem size, whereas the preconditioner leads to uniformly bounded con-
dition numbers for the preconditioned system. Moreover, diagonal scaling eliminates the
dependence on the quotient of maximal and minimal mesh size, which is the dominant part
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4 An optimal multilevel preconditioner for the fractional Laplacian

in the case s = 0.25. While there is still dependence on the problem size, the growth with
respect to the number of degrees of freedom is very moderate, and for the problem sizes
considered here, diagonal scaling performs very well for the case s = 0.25, but not for the
case s = 0.75.

As the preconditioner is structurally similar to the one used in [FF'PS17a] for the hyper-
singular integral equation, we refer to the numerical results there for the confirmation that
the preconditioner can also be realized efficiently.
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5 7H-Matrix approximations to inverses for
FEM-BEM couplings

Transmission problems are usually posed on unbounded domains, where a (possibly nonlin-
ear) equation is given on some bounded domain, and another linear equation is posed on the
complement of the bounded domain. While the interior problem can be treated numerically
by the finite element method, the unbounded nature of the exterior problem makes this
problematic. A suitable method to treat unbounded problems is provided by the boundary
element method, where the differential equation in the unbounded domain is reformulated
via an integral equation posed just on the boundary. In order to combine both methods
for transmission problems, additional conditions on the interface have to be fulfilled, which
leads to different approaches for the coupling of the FEM and the BEM. We study three dif-
ferent FEM-BEM couplings, the Bielak-MacCamy coupling [B)M&4], Costabel’s symmetric
coupling [Cos88, CES90], and the Johnson-Nédélec coupling [JN80]. Well-posedness and
unique solvability of these formulations have been studied in, e.g., [Stell, Say13, AFFT13],
where a main observation is that the couplings are equivalent to an elliptic problem.

Elliptic problems typically feature interior regularity known as Caccioppoli estimates,
where stronger norms can be estimated by weaker norms on larger domains. In this chapter,
we provide Caccioppoli-type estimates for the discrete problem. Using the Caccioppoli-
type estimates, we prove the existence of low-rank approximants to the inverses of stiffness
matrices corresponding to the lowest order FEM-BEM discretizations and we show the
error converges exponentially in the rank employed.

5.1 Model problem

On a Lipschitz domain Q@ € R? d = 2,3 with polygonal (for d = 2) or polyhedral (for
d = 3) boundary I' := 09, we study the transmission problem

—div(C-Vu) = f in Q, (5.1.1a)
—Au®*t =0 in Q% (5.1.1b)
u — u™* = g on I, (5.1.1c)
(CVu— Vu™) v = ¢y on T, (5.1.1d)
ext _ {(9(|x|_1) Lo |z| = o0 if d =3 . (5.1.1¢)

blog|z| + O(Jz| ") forsomebeRas |z| > occifd=2

Here, Q.= R4 \ © denotes the exterior of €2, and v denotes the outward normal vector.
For the data, we assume f € L*(Q2), up € HY/*(I'), ¢ € H~Y*(I'), and C € L>®(Q;R?) to
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5 H-Matrix approximations to inverses for FEM-BEM couplings

be pointwise symmetric and positive definite, i.e., there is a constant Cq; > 0 such that
2
(Cx,x)y > Cap |5 - (5.1.2)

For d = 2, we assume diam 2 < 1 for the single-layer operator V' introduced below to be
elliptic.

Remark 5.1.1. The radiation condition (5.1.1e) is such that the representation form u®™* =

—V + Ku™ holds in Q% with ¢ = Vu®™' - v (see, e.g., [5511, Chap. 3.1]). For d = 2,
the compatibility condition (f,1)r2q) + (o, 1) z2(r) = 0 ensures b = 0 in (5.1.1e). See also
[McL00, Thm. 8.9] for more on the radiation condition. 0

5.2 Layer potential and boundary integral operators

In this section, we define the volume potential operators 17, K and the boundary integral
operators V, K, K', W and mention some of their properties . For details, we refer to [SS11,
Ch. 3] and [Ste07, Ch. 6].

Definition 5.2.1. With the Green’s function for the Laplacian G(z) = —5= log|x| for
d=2and G(z) = ﬁﬁ for d = 3, we introduce the single-layer boundary integral operator

V e L(H-/2(T), H'2(T)) by
Vo(r) = /FG(x —y)o(y)dsy, z€T.
The double-layer operator K € L(H'Y/?(I'), H'/?(T')) has the form

Ko(z) = / (B Cla — v)bly)ds,, €T,

where 9,(,) denotes the normal derivative at the point y. The adjoint of K is denoted by
K'. The hyper-singular operator W € L(HY?(T), H='/(T")) is given by

Wo(x) == =0y () /F(au(y)G(ﬂj —y))¢(y)dsy, z€T.

In addition to the boundary integral operators, we introduce the volume potentials V and
K by

Vo(r) = / Gl — )o(y)dsy, € RAT,
Rola) = [ 0, Gla =)o), 7€ RO

Remark 5.2.2. The single-layer operator V is elliptic for d = 3 and for d = 2 provided
diam(€2) < 1. The hyper-singular operator W is semi-elliptic with a kernel of dimension
being the number of components of connectedness of T'.
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5 H-Matrix approximations to inverses for FEM-BEM couplings

For D C R? and s > 0, we introduce the space H; (Q) as
Hipo(D) :=={u € (C5°(D)) :  pueH'(D) YoeC(D)}.
We also denote
Hiyo®ND) i= {u € LAY : ulg € Hiye(Q), ulgos € Hipo (2.

In the following, we state some well-known facts about these operators.

e With the interior trace operator v{"* (for 2) and exterior trace operator &t (for

RAN\Q), we have

MtV o = Vi = 18,
WKu=(-1/2+Kju and  §'Ku=(1/2+K)u,  (52.1)

which implies the jump conditions across I'

oVl =18V -2V =0,  [yKu] =u. (5.2.2)

e Similarly, with the interior vi"u := 4®'Vy . v and exterior conormal derivative
VP = 4§V - v (v is the outward normal vector of ), we have

WVe=(1/2+K)p and  A7Ve=(-1/2+ K,
YRy = —Wu = 49 Ku, (5.2.3)

and consequently the jump conditions

MVl =17V — 1"V =—p,  [mKu]=0. (5.2.4)

e The potentials Vi and Ku are harmonic in RA\TI' and are bounded operators (see
(5511, Ch. 3.1.2))

V:HTY2E(D) 5 HEPBRY), K HY?PS(D) = HEPRAD),  Js] < 1/2.
(5.2.5)

Consequently, we have the boundedness for the boundary integral operators as

Vo HVPS(D) - HY?H(D), K HYPS(D) — HY?43(D), (5.2.6)
W HY?+5(T) — H=V/2+s(T) (5.2.7)

for s € R with |s| < 1/2.
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5.3 FEM-BEM coupling techniques

In the following, we consider three different variational formulations, namely, the symmetric
coupling, the Bielak-MacCamy coupling, and the Johnson-Nédélec coupling for our model
problem. All three are well-posed without compatibility assumptions on the data. The
compatibility condition (f, 1) ;2 @t (o, 1) r2r) =0 for d = 2 ensures the radiation condi-
tion (5.1.1e); lifting the compatibility condition yields a solution that satisfies a different
radiation condition, namely, u®™* = blog |z| + O(|z|™") as |z| — oo for some b € R for
the three coupling strategies considered. Our analysis requires only the unique solvability
of the variational formulations. In this section, we study discretizations of weak solutions
of the model problem reformulated via three different FEM-BEM couplings: the Bielak-
MacCamy coupling, Costabel’s symmetric coupling, and the Johnson-Nédélec coupling. All
these couplings lead to a variational formulation of finding (u, @) € H'(Q)x H=/2(I') =: X
such that

alu, ;9,¢) = g(¥,¢) V(¥ () € X, (5.3.1)

where a : X x X — R is a bilinear form and ¢ : X — R is continuous linear functional.

For the discretization, we assume that € is triangulated by a quasi-uniform mesh 7 =
{T1,...,T;} of mesh width h := maxr,c7 diam(7}). The elements T; € T are open triangles
(d = 2) or tetrahedra (d = 3). Additionally, we assume that the mesh 7 is regular in the
sense of Ciarlet and y-shape regular in the sense that we have diam(7}) <~ |T;|'/? for all
T; € T, where |T}j| denotes the Lebesgue measure of T;. By K := {Kj, ..., Kz}, we denote
the restriction of T to the boundary I', which is a regular and shape-regular triangulation
of the boundary.

In this Chapter, we consider lowest order Galerkin discretizations in S (7) x S%0(K).
We let By, := {&; : j = 1,...,n} be the basis of SL(T) consisting of the standard hat
functions, and we let Wy, := {x; : j = 1,...,m} be the basis of S“°(K) that consists of
the characteristic functions of the surface elements.

5.3.1 The Bielak—-MacCamy coupling

The Bielak-MacCamy coupling is derived by making a single-layer ansatz for the exterior
solution, i.e., u®™* = Vi in Q¢ with an unknown density ¢ € H~2(I"). For more details,
we refer to [BN&4]. This approach leads to the bilinear form

abmc(u’ 2 d}a C) = <Cvu’ vd}>L2(Q) + <(1/2 - K/)QO’ /llz)>L2(1—‘) - <’LL, C>L2(F) + <V907 C>L2(F) )
(5.3.2a)

gbmc(wa C) = <f7 ¢>L2(Q) + <3007 7/}>L2(F) - <U0, C>L2(F) . (532b)

Replacing H'(Q) x H~'/2(') by the finite dimensional subspace SV (7) x S%0(K), we
arrive at the Galerkin discretization of (5.3.2) of finding (up, ¢p) € SHH(T) x S%°(K) such
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5 H-Matrix approximations to inverses for FEM-BEM couplings

that
(CVun, Von) 2y + ((1/2 = K )on, ¥n) oy = (F,¥n) 12() + (90, Yn) rary Yoon € SUH(T),
(5.3.32)
<Uh, Ch>L2(F) - <V(,0h, Ch>L2(F) — <U0, Ch>L2(F) VCh € SO’O(IC>. (533b)

If the ellipticity constant of C satisfies Cg; > 1/4, then [AFF 13, Thm. 9] shows that the
Bielak-MacCamy coupling is equivalent to an elliptic problem with the use of a (theoretical)
implicit stabilization. Therefore, (5.3.3) is uniquely solvable.

With the bases By, of S1(T) and W, of S%°(K), the Galerkin discretization (5.3.3) leads
to a block matrix Ay, € R®+m)x(nt+m)

A IMT KT
Abme = <M v > : (5.3.4)

[\

where A € R™" is given by A;; = (CVQ,V&)LQ(Q), M € R™" by M;; = (fian>L2(r),
K e R™" by K;; = (K¢, Xj>L2(F)7 and V.€ R™* by V;; = <VXj7Xi>L2(F)' As mentioned
in the introduction, we omitted the trace operators, i.e., in M and K, &; is understood as
SN

5.3.2 Costabel’s symmetric coupling

The coupling is based on the representation formula u®™' = —17g0 + Ku®t in Q¢ with

o = Vu™'. v (see, e.g., [SS11, Chap. 3.1]). . Coupling the interior and exterior solution in
a symmetric way (which uses all four boundary integral operators), this leads to Costabel’s
symmetric coupling, introduced in [Cos88] and [[Han90]. Here, the bilinear form and right-
hand side are given by

asym(u7 s Q]Z), C) = <CVU, VQZ)>L2(Q) + <(K/ - 1/2)()07 w>L2(F) + <WU, 7/)>L2(F)

+((1/2 = K)u, Q) p2ry + (V, O 2y » (5.3.5a)
Gsym (¥, €) = (f, V) 210y + (00 + Wuio, ¥) p2(py + ((1/2 = K)uo, Q) 2y
= {9 p2() + (V0, ) Loy + (w0, §) po(ry - (5.3.5b)

The Galerkin discretization leads to the problem of finding (up, @) € SH(T) x S%0(K)
such that

(CVun, Vibn) 12 () + (K= 1/2)@n, ¥n) 2y + (W un, ) 20y = (F, ¥n) L2y +(v0, ¥n) Ly
(5.3.6a)

<(1/2 - K)Uh, Ch>L2(F) + <Vg0h, Ch)LQ(F) = <UJO, Ch>L2(F) (536b)
for all (1n,Ca) € SV (T) x S%0(K).

With similar arguments as for the Bielak-MacCamy coupling, [AFF " 13] prove unique
solvability for the symmetric coupling for any Cy > 0.
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With the bases By, of S1(T) and W, of S%°(K), the Galerkin discretization (5.3.6) leads
to a block matrix Agym € R (nt+m)x(n+m)

T _ 1w\jpT
A om (Y 3P

(5.3.7)
IM-K A%

where A, M, K are defined in (5.3.4), and W € R™™" is given by W;; = (Wﬁj,fi)LQ(F).
As mentioned in the introduction, we omitted the trace operators. Thus, the matrix W is
assembled with respect to the traces of basis functions in the volume €.

5.3.3 The Johnson-Nédélec coupling

The Johnson-Nédélec coupling, introduced in [JN&0] again uses the representation formula
for the exterior solution, but differs from the symmetric coupling in the way how the interior
and exterior solutions are coupled on the boundary. Instead of all four boundary integral
operators, only the single-layer and the double-layer operator are needed. The bilinear
form for the Johnson-Nédélec coupling is given by

ajn(u, 939, ¢) := (CVu, v¢>L2(Q) —(p, ¢>L2(F) +((1/2 = K)u, C)L?(r) + Ve, C>L2(F) )
(5.3.8a)

gjn(w7 C) = <f7 w>L2(Q) + <9007 ¢>L2(I‘) + ((1/2 - K)U‘Ov C>L2(I‘)
=: (/L) 120y + (00, V) 2y + (W0, ) r2ry - (5.3.8b)

The Galerkin discretization in S%1(7) x S®9(K) leads to the problem of finding (uy, ¢p,) €
ST x SO9(K) such that

<Cvuhyv¢h>L2(Q) - <80ha7/1h>L2(r) = ([, ¢h>L2(Q) + (‘POy¢h>L2(p) Viby € 51’1(7-)’
(5.3.9a)

((1/2 = K)un, C) oy + (Veons G ey = (1/2 = K)uo, G oy ¥en € SPO(K).
(5.3.9b)

As in the case of the Bielak-MacCamy coupling, the Johnson-Nédélec coupling has an
unique solution provided Cgy > 1/4, see [AFT13].

With the bases By, of S*1(T) and W, of S%°(K), the Galerkin discretization (5.3.9) leads
to a matrix Aj, € R(m)x(n+m)

A —Mm7T
mm (e 3 310)
4

where A, M, K, V are defined in (5.3.4).

5.4 Main results

Due to the low-rank structure on far-field blocks, the memory requirement to store an H
matrix is given by ~ Cy, depth(Tz)r(n+m). Provided Cy, is bounded and the cluster tree is

71



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thek,

°
lio
nowledge

b

o
i
r

M YOU

5 H-Matrix approximations to inverses for FEM-BEM couplings

balanced, i.e., depth(Tz) ~ log(n+m), which can be ensured by suitable clustering methods
(e.g. geometric clustering, [[Tac09]), we get a storage complexity of O(r(n+m)log(n+m)).

The following theorem shows that the inverse matrices Al;ilc, As_y%n, and Aj_m1 correspond-

ing to the three mentioned FEM-BEM couplings can be approximated in the H-matrix
format, and the error converges exponentially in the maximal block rank employed.

Theorem 5.4.1. For a fized admissibility parameter n > 0, let a partition P of T x T that
18 based on the cluster tree Tz be given. Then, there exists an H-matric By with maximal
blockwise rank r such that

_prl/(2d+1)

|ALL. — Byl|, < CapxCsp depth(Tz)h~ e

bme

for the Bielak-MacCamy coupling. In the same way, there exists a blockwise rank-r H-
matriz By such that

_pypl/(3d+1)

[Agm — B, < CapxCp depth(T)h* e

sym

for the symmetric coupling and
| A5 = Bu|, < CupCip depth (T)p~ 2+ Detr

for the Johnson-Nédélec coupling. Here, ||-||, denotes the spectral norm and the constants
Capx > 0 and b > 0 depend only on 2, d, n, and the y-shape reqularity of the quasi-uniform
triangulations T and K.

Remark 5.4.2. The previous approximation result can also be formulated in norms other
than the spectral norm, e.g., the Frobenius norm that is commonly used in the H-matrix
literature. Using the norm equivalence ||A|, < [|A]|p < VN ||A||, for arbitrary A € RV*N
shows that this simply produces a different (algebraic) prefactor to the exponentials in

Theorem 5.4.1. -
Remark 5.4.3. Definition 2.6.3 clusters the degrees of freedom associated with triangulation
T of  and the triangulation K of I" simultaneously. u

5.5 The Caccioppoli-type inequalities

Before we can state the interior regularity estimates, we specify the norm we are working
with, an h-weighted H!'-equivalent norm. For a box Bg with side length R, an open set
w C R? and v € H'(Bg Nw), we introduce

2 2 2
”|v”|h,R,w = h? ||VUHL2(BRQLU) + HUHL?(BRﬁw) : (551)
For the case w = R? we abbreviate Il rre =: Il g and for the case w = RAT we
write |||, g avr =t II'll5, g,re and understood the norms over Br\I' as a sum over integrals

BrNQ and BRNQ™t. Moreover, for triples (u,v,w) € H'(BrNQ) x HY(Bgr) x H'(Bg\T),
we set

2 2 2 2
(e, v, W)l g = Nulliro + W0l & + lwllh, 7 e - (5.5.2)
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We note that u will be the interior solution, v be chosen as a single-layer potential and w as
a double-layer potential (which jumps across I'), which explains the different requirements
for the set w

In the proof of the Caccioppoli type inequality, we need the following inverse-type in-
equalities from [F'MP16, Lem. 3.8] and [FMP17, Lem. 3.6].

Lemma 5.5.1 ( [FMP16, Lem. 3.8], [FMP17, Lem. 3.6]). Let B C Bpg be concentric
bozes with dist(Br,0Bg/) > 4h. Then, for every vy, € S®(K), we have

1l 2y S 072V V04

12(Bgr)
Moreover, for every v, € SH1(T), we have

T (5.5.3)
L2(By) | dist(Bg,0Bg) I Mlesg))

Combining Lemma 2.4.1 with Lemma 5.5.1 (assuming suppn C Bpr), we obtain estimates
of the form

< pl2 (HVth

K
H’Yl v L2(BrnT) ™

[ = Iy ron) || 120y < BV o ) HVVM (5.5.4)

L2(Bp)

Remark 5.5.2. An inspection of the proof of (5.5.3) ([F'MP17, Lem. 3.6]) shows that the
main observation is that K vy, is harmonic. The remaining arguments therein only use
mapping properties and jump conditions for the potential K and can directly be modified
such that the same result holds for the single-layer potential as well, i.e., for every 1}, €
S09(T), we have

1

< 1/2 - -
h (vad}h’ L2(Bgs) + dist(Bgr, 0Bg/)

|7

LQ(BR/)> . (5.5.5)

H%V?ﬁh’

L2(BpT) ™

5.5.1 The Bielak-MacCamy coupling

The following theorem is one of the main results of this section. It states that for the interior
finite element solution and the single-layer potential of the boundary element solution, a
Caccioppoli type estimate holds, i.e., the stronger H'-seminorm can be estimated by a
weaker h-weighted H'-norm on a larger domain.

Theorem 5.5.3. Assume that Cop > 1/4 in (5.1.2). Let € € (0,1) and R € (0,2 diam(f2))
be such that % < {5, and let Bg and By . g be two concentric boves. Assume that the data
is localized away from B 1R, i.¢., (Supp fUsupp poUsupp ug) N B(14)r = (). Then, there
exists a constant C' depending only on §2, d, and the y-shape regularity of the quasi-uniform
triangulation T, such that for the solution (up,pp) of (5.3.3) we have

< —
o = o (Tl sama + 7ol o)

where the norms on the right-hand side are defined in (5.5.1).

IVl 200 + |V V)
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5 H-Matrix approximations to inverses for FEM-BEM couplings

Proof. In order to reduce unnecessary notation, we write (u, ) for the Galerkin solution
(up, ¢p). The assumption on the support of the data implies the local orthogonality

Abme (U, 93, Cn) =0 V(ihy, ) € SVH(T) x SYO(K)  with  supp ¥y, supp ¢ C B(i4e)r-
(5.5.6)

Let n € C5°(R?) be a cut-off function with suppn C Bys/ayrs m=1on Bg, 0 <n <1,

j 1 . . h 9
and HDJUHLOO(B(H(;)R) < Ry for j = 1,2. Here, 0 < ¢ < ¢ is such that < g. We note

that this choice of 0 implies that (J{K € K : suppn N K # 0} C B(145/2)r- In the final
step of the proof, we will choose two different values for § (< ¢) depending on ¢ - one of
them, § = 5, explains the assumption made on ¢ in the theorem.

Step 1: We provide a “localized” ellipticity estimate, i.e., we prove an inequality of the
form
2

L2(Rd) < apme(u, o;n*u,n*@) 4+ terms in weaker norms.

IV () 2y + [V 7)]

(See (5.5.17) for the precise form.) Since the ellipticity constant Cey of C satisfies Cepp > 1/4,
we may choose a p > 0 such that 1/4 < p/2 < Cg. This implies C), := min{1 — ﬁ, Conl —
£} > 0, and we start with

2

< Cen HV(TIU)H%?(Q) * HV(U‘N/SD)’

(Ccu - g) IV () 1720 + <1 - 21p> HV(n‘N/go)’ ;(Rd)

L gmiy|
—%H (n 90)‘

12(9)
(5.5.7)
Young’s inequality implies
1 e 2 p 2 e
_ R < _
5 [Y070)|. 0~ 51900y < = V@V, ) IV O] 200y
<~ (VaTe). V), o - (558

Inserting (5.5.8) into (5.5.7) leads to

2 2

2 = = 2
Co IV )z + O [YOVR)| , o < VOV, ) + Con 190 G
(V@) Vi), (5.5.9)
An elementary calculation shows
<V(n‘7<p)7 V(mt)> = <V‘7<p, V(TIZU)>
L2(9) L2(Q)

+ <(V77)‘~/cp, V(nu)>L2(Q) - <V‘~/<p, n(Vn)u>L2(Q) . (5.5.10)
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5 H-Matrix approximations to inverses for FEM-BEM couplings

Since the single-layer potential is harmonic in 2, integration by parts (in ) and *ymtV =
1/2 4+ K’ lead to

(Yo, Vtw) = (Ve u>L2(F) = ((1/2+ K)p.iPu) oy (5511)

L2(Q)

Similarly, with integration by parts (in Q and Q%) and the jump condition of the single-
layer potential we obtain

HV(W@)( ; oy = <V‘7<P, V(772‘7<P)> vy <Vn‘7<p, Vn‘7s0> -
B <[71‘780] ’n2VSD>L2(I‘) + <vn‘7% Vn‘N/SD>L2(1Rd)
= (Vey, 77290>L2(1“) + <V17‘~/<,0, Vn\~/g0>L2(Rd) . (5.5.12)

Moreover, the symmetry and positive definiteness of C implies

Cat [V () 220y < (CV (1u), ¥ (50)) 2 = (CVet, V(1720)) 12 ) + (CV i, Vi) gy
(5.5.13)

Plugging (5.5.10)—(5.5.13) into (5.5.9), we infer

Cy IV ()l 72y + C |

2
a) < <CVU, V(n u)>L2(Q)
+(CViu, Vipu) 2g) + Vo, 1°9) 121y
@) - <(1/2 + K/)(Pa n2u>L2(F)

+ <V‘7g0, (Vn)nu> — <V77‘~/90, V(WU)>

L2(Q) L2(Q)
=apme (u, ©; 77w, 7 @) + (CVnu, Vinu) r2(q)
+ ‘ VW@D’ LA®Y) <VV¢, (Vn)mL> @)
~(ViVe, V(nu)>L2(Q) . (5.5.14)
Young’s inequality and ||[V|| e (ga) < = imply
~ _ - ~
‘<VV¢7 (Vn)nu>L2(Q)‘ < ‘<V(ano), Vnu>L2(Q)‘ + ’<V?7V90,V77u>L2(Q)
<|[vare)|,, o 19720
+ % ||u||L2(B<1+5>RmQ H 4,0‘ L2(B(145)r)
(1+5)
< C
= (6R)? Hu||L2(B(1+5>R”Q + H w‘ L2(B(146)r)
c, 2
zr 0.1
[ veva|,, b (5:5.15)

75



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5 H-Matrix approximations to inverses for FEM-BEM couplings

as well as

‘<VHV¢,V(UU)>L2(Q)‘ < [wavyl sy IV 00 220
20 |1~ |12
57 |7 o

C
< + LV gy (5:5.16)

Absorbing the gradient terms in (5.5.15)-(5.5.16) into the left-hand side of (5.5.14), we
arrive at

< bme (1, 93 17U, %)

~ 2
IVomliza + [VOVe) [,

7yl

’ 2
L2(B(114)R) + W HUHLQ(B(H@RQQ) .
(5.5.17)

1
+ 5w |

Step 2: We apply the local orthogonality of (u,y) to piecewise polynomials and use

approximation properties.
Let I}' : C(Q) — SY(T) be the nodal interpolation operator and I the L?(T')-
orthogonal projection mapping onto S%°(K). Then, the orthogonality (5.5.6) leads to

Abme (U, @ 170, 1°9) = Abme (u, 03770 — L (), %0 — 1), ()
= (CVu, V(iPu — I} (0*))) 12 ) + ((1/2 = K)o, I} (u) = 1°u) 1o gy
+ (Vo0 = 1, (09)) 1oy — (s Iy (0°0) = 1°0) 121y
=T +To+T5+Ty. (5.5.18)

We mention that the volume term 77 and the boundary term 73 involving V' were already
treated in the works ['MP15] and [FMP16]. However, for sake of completeness, we also
provide the estimates in the following. For 77 in (5.5.18), the assumptions on the cut-off
function 7, the super-approximation properties of 1 ,? from Lemma 2.4.2, Young’s inequality,
and % <1 lead to

)<CVU, v(n2u - II?(UQU)»L%Q)’ < ”CVUHLQ(B(H(;)RHQ) Hv(nzu - I}?(UQU))HL2(Q)

h h
S e M T Y P

< h 1

2 2
S 57 IVullzes mne) + OR)? ullz2(By 5 pn0) - (5.5.19)

For the term T3, we mention that the assumption 8k < §R implies that supp I,l; (n%p) C
B(145/2)r- In the following, we employ a second cut-off function 7 with 0 <7 <1,7=1on

B(iys/2)r 2 supp(®e — I, (1°9)), supp 7] € Big)r and [Vl ooy, 5 ) S 57 The trace
inequality together with the super-approximation properties of [ ,1; , expressed in (5.5.4),
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5 H-Matrix approximations to inverses for FEM-BEM couplings

lead to
‘(Vso, n’p — Iﬁ(n%)m(r)( = )(ﬁVw, URCES 15(77290)>L2(F)‘ <NV ell gy [P0 = I PO 1y

h ~
< —vv‘
[l 57 77

L%(B(145)R)
.\ ) s 77
<5R H H 2(B1+s)R) 4 L2(Bis)r)) OR 4 L2(B(146)R)
e 74l
— 5.5.20
S OR H ‘ L%(B(114)R) ((5R)2 4 L2(B(146)R) ( )
With the same arguments, we obtain an estimate for Ty:
[, I 6P0) 700 1|  lln oy Hv%\
’ L2~ H©) §R L2(3(1+6)R)
h v 2
7R || UHLZ B(1+5)Rﬂﬂ) + 1+6)R) + (5R)2 ||uHL2(B(1+5)RﬂQ) .

(5.5.21)

It remains to treat the coupling term 75 involving the adjoint double-layer operator in
(5.5.18). With the support property supp(Ii}(n*u) — n?u) C B(145/2)r, Which follows from
8h < R, and (1/2 — K')p = —y*V, we obtain

ext
SC) ‘

(/2= KN, 1R (0P0) = ) o | < |08 112 r%0) = 0] oy -

(5.5.22)

L2(B(145/2)rNT)

The multiplicative trace inequality for 2, see, e.g., [3502], the super-approximation prop-
erty of I;’ from (2.4.7), and % < g lead to (see also [FMP15, Eq. (25), (26)] for more
details)

1/2

HII?(UQU) - UQUHLQ(F) 5 HL?("?QU) - UQUHLQ(Q) + HII?(UQU) - UQUHLQ(Q) HV(I;?(??Q’U,) 77 u H1/2

h? h2
S (((5R)2 HUHL2 (Bassyrn@) T SR ||Vu||L2(B<1+5>RﬂQ))
1/2 h 1/2
(5R || HL2 B(1+5)ROQ) t (5R)1/2 Hv ||L2 B(1+5)R0Q)>

h 1/2 h1/2 1/2
" < OR [l HL2 (B(14+5)rNY) + (5R)1/2 IVu H B(146)rNY)

h3/2 h3/2

57 Vulles, gm0 T 5702 R ull 2B,y 45y ) (5.5.23)

r\J
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5 H-Matrix approximations to inverses for FEM-BEM couplings

We use estimate (5.5.5) and (5.5.23) in (5.5.22), which implies

‘<(1/2 _ )907[’1 (n*u) —n U>L2 I‘)‘ < p1/2 (HVVSOH B(1+6)R H H B(1+6)R)> .

R3/2 h3/2
(5R ”V HL2 B(1+5)ROQ) + o (5R)2 || ||L (B(1+6)Rmﬂ)

h 2
<o, P A Barsya® )
1
(0R)? ( HUHLQ(B(”‘S)ROQ) H SOHL 2(B1+6)R) ) }

(5.5.24)

Finally, inserting (5.5.20), (5.5.21), (5.5.19), and (5.5.24) into (5.5.18) and further into
(5.5.17), and absorbing the term % ||nVu||iQ(B(l+6)R) on the left-hand side implies

2

IVull3 2 zann) + || V74| ;(BR) IV 0) 320y + [V (0 79) I

h
< v
~ SR <||vu||L2(B(1+5)RmQ + HV SO’ L2 B(1+6)R)>

@(”“H%%B(HW“Q) H go‘

_l’_

L*(B 1+6)R)) '
(5.5.25)

Step 3: We iterate (5.5.25) to improve the powers of h for the gradient terms to finally
obtain the result of Theorem 5.5.3.
We set 0 = £, and use (5.5.25) agaln for the gradlent terms on the right-hand side with

the boxes B and By 55 Where 6= =5 and R = (1 +¢/2)R. We note that 16k < ¢R
implies 8h < 5~]§, so we may apply (5.5.25). Considering (1 + 5~)(1 +5)=1+4¢, we get

h2
<
12(Bp) ~ (eR)? (HWHLQ(BGMR”Q)JFHV 90’

L? B(1+E)R)>

h 1 9
(e * ) (10 [P0l o)
(5.5.26)
and with h < 1, we conclude the proof. ]

5.5.2 Costabel’s symmetric coupling

The following theorem is similar to Theorem 5.5.3 and provides a simultaneous Caccioppoli-
type estimate for the interior solution as well as for the single-layer potential of the boundary
solution and the double-layer potential of the trace of the interior solution. Here, the
double-layer potential additionally appears since all boundary integral operators, especially
the hyper-singular operator appear in the coupling.
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5 H-Matrix approximations to inverses for FEM-BEM couplings

Theorem 5.5.4. Let € € (0,1) and R € (0,2diam(Q2)) be such that % < 35, and let Bg
and B(14¢)r be two concentric boxes. Assume that the data is localized away from B(i )R,
i.e., (supp f Usupp vg Usupp wg) N Biyer = (). Then, there exists a constant C depending
only on , d, and the ~y-shape reqularity of the quasi-uniform triangulation T, such that
for the solution (up,¢n) of (5.3.6) we have

pman % M(“’“ Vo K “h)”‘hﬂ(}g’%’?)

IVunll2(Brn0) + HVT/%HL?(BR) * HVIN{U}“

where the norm on the right-hand side is defined in (5.5.2).

Proof. Again, we write (u, ) for the Galerkin solution (up,¢p). The assumption on the
support of the data implies the local orthogonality

sy (U, 03 0n, Cn) = 0 Vb, Gu) € SVHT) x SY(K)  with  supp ¢, supp Cn C B(1e)s-
(5.5.28)

As in the proof of Theorem 5.5.3 let n € C$°(R?) be a cut-off function with suppn C
_ j 1 o
Baiys/ayrs m = 1 on Br, 0 < n < 1, and HDJnHLOO(B<1+6)R) S g for j = 1,2. Here,
0 < 6 < e is given such that % < 1% and will be chosen in the last step of the proof.

Step 1: We start with a local ellipticity estimate. More precisely, we show

2 2

asym (U, 0377w, 1)

19 () a0 + [V V9

+ HV(UIN(U)’

<
L2(R?) LA(RAT)

+ terms in weaker norms.
(See (5.5.33) for the precise statement.) From (5.5.13) and the Cauchy-Schwarz inequality
we get

2 2

1 ~
Car V()20 + 5 ||V 70)]

L2(Rd) + % HV(nf{u)‘ L2(R\I)
2

< (CVU, V(17u)) 1 + (CVu, Viu) 12 + HV(nf/«p)‘

L2(R9)

(5.5.29)

2

+ HV(nf{u)‘ <V(m7¢), V(nf(u)>

L2(RAT) L2(RI\T)

A direct calculation reveals that

IV K02z = IV Kl gy + <vf(u, V(nZI?u)>L2(Rd\F) .
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5 H-Matrix approximations to inverses for FEM-BEM couplings

Inserting this and (5.5.12) in (5.5.29) yields
1 ~ 2 1 ~ 17
Cont |V (17) | 720y + 5 HV(”VW)‘ L@y T2 HVMK“)‘ L2(RI\T)
< <CVU, V(n2u)>L2(Q) + (CVnu, Vnu>L2(Q)
2

+ (Vo) pary + H(W)‘N/SO‘ L2(R7)

+ H(Vn)f(u‘

—<vm?¢yvmﬁmemwa (5.5.30)

+ <VI?U,V(U2[?U)> ’

L2(RAI) L2(RAI)

Integration by parts together with the jump conditions (5.2.2), (5.2.4) for the double-layer
potential gives

<V[?u,V(n2I?u)> <Wu,772u>L2(F). (5.5.31)

[2®RAD)

With a calculation analogous to (5.5.10) (in fact, replace u there with Ku), we get

= <V(1~/g0),V(772[~(u)> +lo.t.,

<V(n‘7<p)7 V(nK U)> L2(RA\T)

L2(RAT)
where the omitted terms (cf. (5.5.10))
Lo.t. = <(V"7)‘790, V("?[?U»L?(Rd\r) - <V‘790’77(V77)[?U>L2(Rd\r)

can be estimated in weaker norms (i.e., ||‘790||L2(B(1+5/2)R)7 HIN(UHLQ(B(HM)R\F)) or lead to

terms that are absorbed in the left-hand side as in the proof of Theorem 5.5.3 (see (5.5.15),
(5.5.16)). With integration by parts on © and Q. we get

int int

_ )~
N Ve, (n Ku)>L2(F)
_ ext1; ext (21>
<71 Ve, (n Ku)>L2(F)
= <(K/ + 1/2)30a 772(K - 1/2)U>L2(I‘)
— ((K' = 1/2)p,n*(K + 1/2)u) 2
= (02, (K = 1/2)u) jo ) — (K = 1/2)0,0%u) o 1y - (5.5.32)

<v‘7¢’v(n2ku)>L2(Rd\r) - <

Putting everything together and using ||V7|[ ﬁ, we obtain

<
B(1+5)R) ~

~ 2 ~ 2
IVomlizacy + [TV, o + [TORW] |, o S sl 70)
1 ) 1 g~ |2
+ e 1m0+ G5 1V g
1 ~ 12
o HKu‘ . 5.5.33
(0R)? L2(B(145)r\T) ( )
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5 H-Matrix approximations to inverses for FEM-BEM couplings

Step 2: Applying the local orthogonality as well as approximation results.
With the L?(T')-orthogonal projection I} and the nodal interpolation operator I ,?, the
orthogonality (5.5.28) implies

asym(uu 2 ’172’LL, 77290) = asym(uu 2 772’LL - I}?(UQU% 77290 - 15(77290))
= <CVu, V(nQu — I,?(T]2u))>L2(Q) + <Wu, n2u — I;}(UQU))LQ(F)

+ (K" = 1/2),0*u = LX*w)) oy + (Vo i’ = I (079)) 1o
+{(1/2 = K)u,*o = I (19)) 12 1y
=T +To+T5+T4,+T5. (5.5.34)

The terms 77, T3, Ty can be estimated with (5.5.19), (5.5.24) and (5.5.20) respectively as in
the case for the Bielak-MacCamy coupling. We also mention that the term 75 involving the
hyper-singular integral operator W was treated in [F\N[P17]. For our purpose, a simplified
version of the proof is sufficient, which is presented in the following.

For the term 715, we mention that the assumption 16h < d R implies that supp I};(nQQO) -
B(145/2)r- We employ equation (5.5.3) from Lemma 5.5.1 for Ku and the boxes Bysor
and B(114)r satisfying dist(B(1+5/2)R,aB(1+5)R) = g > 4h due to the assumptions on §.
Together with Wu = —vi" Ku, (cf. (5.5.23)), and the Young inequality this implies

’<WU n’u — I (n*u) L2(F ‘ = ’<’thKu,n2u — Iﬁ(n2u)>

‘ 2(B(14s/2)rNT)

< B2 (HVKU

L2(1)

thUH HHZU - I;?("?%)HL?(F)

L2(Bays)rMD)  OR L2(B(145)r\I)

R3/2 B3/2
X SR HVUHH (B(1+5)R) + (5R)2 I HLQ(B(1+§)R)

h 1
<N 2
~ SR (HVUHLQ(B(H&)R " HV UH (B(1+5)R\F)> " (6R)? <” HL2 (Batsym) T H ‘

L2(3(1+5)R\F)> '

We finish the proof by estimating T5. To that end, we need another cut-off function
neSHHT) with0 <7 <1,7 =1 on Bpis/2)r 2 Supp (NI;I;(’U%) — 1), supp7 € Biio)r
and HVﬁHLOO(B(IH)R) < 55. Since (1/2 — K)u = =" Ku, we get with a trace inequality
and the approximation properties expressed in (5.5.4) that

75| = ‘<mé KuiPe— 15 0%)) o )‘ ‘vént(nI?U)HHl/g(F) 170 = T ) 12
S T IE e 197l
~ 2 ~ 2
S iR (HV UH L2(B(145)r\D) + va@ ’L2(B(1+5)R)> * (5;{)2 H UHL2(B<1+5)R\F)'
(5.5.35)
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5 H-Matrix approximations to inverses for FEM-BEM couplings

Putting everything together in (5.5.34) and further in (5.5.33), and absorbing the terms
i 7Vl 2, : HV(T}IN(U)HLQ(W) in the left-hand side, finally yields

2 2

+ | vEul

IVl Z2(pan) + HV‘N/SD‘

h 2 K
S OR (HV“HLQ(B(H(S)R”Q) + HVKu’

L%(BR) L2(BRr\I')

2

L2(B(145)r\TI")

~ 2
+ HVV(p’ >
L2(B(145)R)
2

L*(B(1ys)r

1 9 ~
+ OR? <||u||L2(B(H5)RmQ) HV@‘

+ HVf(uH: > .
) L2(B(145)r\I)
(5.5.36)

£

Step 3: By reapplying (5.5.36) to the gradient terms with § = § and suitable boxes, we
get the desired result exactly as in step 3 of the proof of Theorem 5.5.3. O

5.5.3 The Johnson-Nédélec coupling

In this section, we prove the Caccioppoli-type inequality from Theorem 5.5.6 for the
Johnson-Nédélec coupling. Most of the appearing terms have already been treated in the
previous sections. The main difference is that the double-layer potential appears naturally
due to the boundary coupling terms, but the local orthogonality is not suited to provide
an approximation for it, since the hyper-singular operator does not appear in the bilinear
form. A remedy for this problem is to localize the double-layer potential by splitting it into
a local near-field and a non-local, but smooth far-field. This techniques follows [FM18],
where a similar localization using commutators is employed.

Lemma 5.5.5. Let § € (0,1) and R € (0,2diam(f2)) and let Br and B(i;5r be two
concentric boves. Let n € C*(R?) be a cut-off function with suppn C Bats/r, n=1 on
Batsimr, 0 <n <1, and ||D]77HL°°(B(1+5)R) < ﬁ for j = 1,2. Then, for u € HY(Q),
we have

HVIN(U‘

Proof. We start with a localized splitting for the double-layer potential. More precisely,

1 L%
SV1+1/6 HUUHHl(Q) + SR HUHL2(B(1+5/4>RQQ) + SR HKU‘

L2(Bg\I) L2(B(145/4)r\I) '

(5.5.37)

with a second cut-off function 7 satisfying 7/ = 1 on Bg and supp 1) € B(145/4)r; HvﬁHL‘X’(B(H@R) <

ﬁ, we write
ﬁl?u = ﬁf?(??ll/) + ?]k(l - n)u =! Unear + Vfar-

First, we estimate the near-field vpear 1= ﬁf( (nu). The mapping properties of the double-
layer potential, (5.2.5), together with the fact that supp Vi) C B(115/4)r \ Br and the trace
inequality provide

1 ~
HVUneaer(BR\r) S HUUHH1/2(F) + EHK(UU)HL2(B(1+5/4)R\BR) S HWHHI(Q)

1 ~
+ ﬁ HK(nu) ||L2(B(1+5/4)R\BR) °
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5 H-Matrix approximations to inverses for FEM-BEM couplings

Since 7)(1—n) = 0, the far field vf,, is smooth. Integration by parts using AI?((I —nu) =0
as well as [y Ku] = 0 and 7(1 — 1) = 0 (therefore no boundary terms appear) leads to

2

(NP \<vf<<<1 — ), VR (1= n)w)) + |[(VE (1 = nw)

L2(RAT) L2(RY)
< o || R (=)
—nu
~ (6R)? 7 L2(B(145/4)r\BR)
s o
~ (0R)? L2(B(145/4)r\BR) dR)? 7 L2(B(1+6/4)R\BR).

Here, we used that supp(V7) C B(ii5/4yr\Br. For the last term, we apply [F'MP16,
Lem. 3.7,(ii)], which states that

el

1 _
<VoR|— |’
N iaarsrmmizn ( d+o)R H (nu)‘

[FMP16, Lem. 3.7,(i)] provides the estimate

S VER|

L2 B(1+5/4)R\F)>

+ \/WHVK nu)

L2(B(145/4yr\D)

| B

WR) o+ R [VE )

L%(B(14s/4)R) L2(B(14s/4)r\D) '

The combination of these two estimates and the fact that ’yth u=(—1/24 K)u gives us

| K S VOR||(1/2 = K)(mu) | 2y + VIRV (T+ D) R||VE (yu)|

L2(B(145/4)r\BR) L2(B(145/4)r\I")

With the mapping properties of K, K from (5.2.5), (5.2.6) and the multiplicative trace
inequality this implies

s |||

U +/1+1/6]|nu
et S m Il 2oy + T+ 178 gl
1 1/2 1/2
< I
S \/ﬁ Inull L2 () + ik Inull 72 gy IVl 2 gy + V1 +1/6 [lnull g1
1

S5 Imull 2y + IV ()l 20y + V1 + 1/0 [[null g1 (q) -

Putting the estimates for the near-field and the far-field together, we obtain

HVKU‘ L BAD) < [[Vonearll 2 (\ry + IVUtarll L2 8,\1)
1 1 |1~
< ./ _ I
S VI lnulme + 55 lule@a,, e + 55 HK“‘ L2(B(14s/a)r\)
which finishes the proof. O O

Theorem 5.5.6. Assume that Copy > 1/4 in (5.1.2). Let € € (0,1) and R € (0,2 diam(f2))
be such that % < 55, and let Bg and By, g be two concentric boves. Assume that the data
is localized away from B4 g, i.¢., (supp f Usupp ¢o Usupp(1/2 — K)ug) N Baioyr = 0.
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5 H-Matrix approximations to inverses for FEM-BEM couplings

Then, there exists a constant C' depending only on ), d, and the ~-shape regqularity of the
quasi-uniform triangulation T, such that for the solution (uh, wn) of (5.3.6) we have

)H s Vipns Kun) ||

IV unl ooy + [F7n BB (149

(5 5. 38)

where the norm on the right-hand side is defined in (5.5.2).

Proof of Theorem 5.5.6. Once again, we write (u,¢) for the Galerkin solution (up, ¢p).
The assumption on the support of the data implies the local orthogonality

ajn (U, 9395, C) =0 V(b ) € ST x SYO(K)  with  supp ¢y, supp ¢ C B(i4e)r-
(5.5.39)

Let n € C°(RY) be a cut-off function with suppn C Buis/2yr, 1 = 1 on Biis/4)R;
J < =
0<n<1, and HD 77HL°°(B<1+,;)R) < ((SR) for j = 1,2. Here, 0 < § < ¢ is given such that

S 5 . We note that the condition n =1 on B(115/4)r is additionally imposed in order
to satlsfy estimate (5.5.37), as the localization of the double-layer operator is additionally
needed in comparison with the other couplings.

Step 1: We provide a localized ellipticity estimate, i.e., we prove

2
< aju(u, @3 n°u, n*p) + terms in weaker norms.

L2(BR\TI') ™
2
L2(Rd)>

IV ey + | V070, o + 7K

(See (5.5.44) for the precise form). We start with (5.5.37) to obtain

< (1+1/0) (Il + [V70)
(1+1/6)
+ TGR? HUHL2(B(1+5)R09)
2

L2(B(146)r\TI') .
(5.5.40)

~ 2
n HVKU‘
L2(Bgr\T)

IV ey + [T076)] .,

_|_

i

The last two terms are already in weaker norms, and for the first two terms, we apply
(5.5.9). Since we assumed Ce > 1/4 for unique solvability, we choose a p > 0 such that

1/4 < p/2 < Cq and set C), := min{l — 2p, Cen — 5§} > 0. Then, (5.5.9) implies

2 2 = 1
C, ||V(17u)||L2(Q) +C, ’ ) 12 (k) < Cen ||V(77u)||L2(Q) + HV(TIVQD)’ L2(RY)
- - .
(V). Vo), o~ (Ve VOPRY) L
+(VVe, V(n2ku)>L2(Rd\F) . (5.5.41)
The first three terms can be expanded as in Theorem 5.5.3, where (5.5.10) leads to
V =(VV 2 Lo.t. 5.42
(VOwve), Vim)) = (Ve Vo), Lo, (5.5.42)
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5 H-Matrix approximations to inverses for FEM-BEM couplings

where the omitted terms (cf. (5.5.10))
Lot. = (V)Ve, V(i) 20y — (VVe, n(V)u) r2(q)

can be estimated in weaker norms (i.e., |H~/<p||L2(B<1+5/2)RmQ), Hu||L2(B(l+6/2)RmQ)) or lead to
terms that are absorbed in the left-hand side as in the proof of Theorem 5.5.3 (see (5.5.15),
(5.5.16)). Equations (5.5.32) and (5.5.11) give

+ <V‘7<,0, V(UQIN(U)> = <(1/2 + K)u,n2go>L2(F) . (5.5.43)

<V17<,0, V(ngu)> L2RIT)

L2()
Therefore, we only have to estimate the last term in (5.5.41). We write in the same way

as in (5.5.42)

_ - e g o
<Vch,V(n Ku)>L2(Rd\F) - <V(77 Vgo),VKu>L2(Rd\F) +lodt,,

where, again, the omitted terms
Lo.t. = 2<(V(77‘7<P), (VU)I?WB(W\F) - 2<(V77)‘7<Pa V(nI?U»L?(Rd\F)

can be estimated in weaker norms (i.e., by ||I~(U”L2(B<1+5/2)R\F) and ||‘7@||L2(B(1+6/2)R) or

absorbed in the left-hand side. Integration by parts on RAN\Q and Q together with AKu =0
and [y1 Ku] = 0 = [’V ¢] implies

277 % 277 7=
VEu) = (1*Vy, ARu) =
<V(77 Vi), VEu e@ary NP %) 2 ravr) 0
Putting everything together into (5.5.41) and in turn into (5.5.40), we obtain

2 2

) B N
IV )@y + [FOV |, o + VR,
1+1/6) |~ 12
< (14 1/6) as, e 2 2 (7 K
N( + /)aJ (U,SO,U u,n 90)+ (5R)2 H UHL2(3(1+5)R\F)
(14+1/8) , (L4+1/6) |15 |17
+ W ““||L2(B(1+6)R”Q) + W HV@HLQ(B(IwLé)R) - (5:544)

Step 2: We apply the local orthogonality of (u,¢) to piecewise polynomials and use
approximation properties.

Let I}’ : C(Q) — SYY(T) be the nodal interpolation operator and It the L?(T')-
orthogonal projection mapping onto S%°(K). Then, the orthogonality (5.5.39) leads to

ajn(u, @ n*u, n0) = ajn(u, o;n*u — I n*u),n?e — IF (%))
=(Vu.V 2, IQ 2 v 20— V(2
= < u, V(n“u n (N u))>L2(Q) +< e, n e n(n 90)>L2(F)
— e Pu— L)) oy + ((1/2 = K)u, 0o = I (1°9)) oy
=T+ T+ T35+ Ty. (5545)
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5 H-Matrix approximations to inverses for FEM-BEM couplings

The terms 717, Ts have already been estimated in the proof of Theorem 5.5.3, inequalities
(5.5.19), (5.5.20), and Ty was treated in (5.5.35) in the proof of Theorem 5.5.4.

It remains to estimate T5. With supp (n2u — I}?(nzu)) C Bi45/2)r due to 16h < JR, we
get

Q Q
|T3| - ‘<907 772u - Ih (n2u)>L2(F)‘ < ||90HL2(B(1+5/2>RQF) H?]Z’LL - Ih (772u)||L2(F)

Lemma 5.5.1 provides

< B2 H ‘
H‘PHLQ (Bays/2)r) ~ h™ VV('O L2( B(1+6)R)

Therefore, with (5.5.23), we obtain

‘<90th n’u) = n u>L2(F)‘ 1/2HV w’
<5z (974,

Putting the estimates of Ty, Ts, T3, Ty together and using 6 < 1 leads to

h3/2 B3/2
L2( B(1+§)R) ||vu||L2(B 1+5)Rﬂﬂ) + (5R)2 ||U’HL2(B(1+5)RHQ)

1

2 2

L2%(B(145)R) - HVUHLQ(B“*‘”RQQO " (0R)? HUHLQ(BuH)R) '
(5.5.46)

~ 2 ~ 2
ot 555, 175

L2(Br\I')

oRey )

) . (5.5.47)

<
~ 62R <HVUHL2(B(1+5>RQQ * HVVSO‘ L2(B(145)R)

2

L2(B(145)r\I')

+63R2 (H HL2 B+5)rNS) +H <’0‘L2(B<1+5>R)+H u‘

Step 3. Reapplying (5.5.47) to the gradient terms with § = § and suitable boxes, we get
the desired result exactly as in step 3 of the proof of Theorem 5.5.3. O O

5.6 Abstract setting - low dimensional approximation

In this section, we prove the existence of exponentially convergent H-matrix approximants
to the inverses of the stiffness matrices of the FEM-BEM couplings, as stated in Theo-
rem 5.4.1.

Analysing the procedure in [FMP 15, FNP 16, AFM20] shows structural similarities in
the derivation of H-matrix approximations based on low-dimensional spaces of functions:
A single-step approximation is obtained by using a Scott-Zhang operator on a coarse grid.
Iterating this argument is made possible by a Caccioppoli-inequality, resulting in a multi-
step approximation. The key ingredients of the argument are collected in properties (A1)—
(A3) below. We mainly follow [AFN20].
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5 H-Matrix approximations to inverses for FEM-BEM couplings

5.6.1 From matrices to functions

We start by reformulating the matrix approximation problem as a question of approximat-
ing certain functions from low dimensional spaces.

Let X be a Hilbert space of functions. We consider variational problems of the form:
find u € X such that

a(w, ) = (f.¢p) VpeX
for given a(-,-) : X x X = R, f € X’. Here, the bold symbols may denote vectors, e.g.,
u = (u, ) in (5.3.1) for X = H'(Q) x H~Y2(I'), and (-,-) denotes the appropriate duality
bracket.

For fixed k, £ € N (given by the formulation of the problem), we define L? := L2(Q)* x
L*(T)*.

Definition 5.6.1. Let Xy C X be a finite dimensional subspace of dimension N that is
also a subspace X C L2. Then the linear mapping Sy : X’ — Xy is called the discrete
solution operator if for every f € X', there exists a unique function Sy f € Xy satisfying

a(Snf. ) = (f, ) Vi€ Xy. (5.6.1)

Let {¢1,...,¢6n} € Xn be a basis of X. We denote the Galerkin matrix A € RNXN
by

A = (a(, )y - (5.6.2)

The translation of the problem of approximating matrix blocks of A~! to the problem of
approximating certain functions from low dimensional spaces essentially depends on the
following crucial property (A1), the existence of a local dual basis.

(A1) There exist dual functions {\1,..., Ay} C L? satisfying
N
(i As) =0y, and | Yo < Can(N) |l
j=1

for all i,5 € {1,...,N} and x € RY. Moreover, we require the A; to have local
support, in the sense that #{j : supp(XA;)Nsupp(A;) # 0} S1forallie {1,...,N}.

We denote the coordinate mappings corresponding to the basis and the dual basis by

o { RV — Xy A { RV — L2
: N ) : N
X Yl X0; X = Dl XGA

The Hilbert space transpose of A is denoted by A”. Moreover, for 7 C {1,..., N}, we
define the sets D;(7) := Ujer supp A; j, where A, ; is the j-th component of X;, and write
ke
L(r) = [Tj2) L2(D;(7)).
In the following lemma, we derive a representation formula for A~! based on three linear
operators AT, Sy and A.
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5 H-Matrix approximations to inverses for FEM-BEM couplings

Lemma 5.6.2. ([AF'M20, Lem. 3.10], [AFM20, Lem. 3.11]) The restriction of AT to Xy
is the inverse mapping ®~. More precisely, for all x,y € RN and v € Xy, we have

(Ax, Py) = (x,¥)5, A dx = x, dATv =v.
The mappings A and AT preserve locality, i.e, for 7 C {l1,...,N} and x € RN with
{i:x; # 0} C 7, we have supp(Ax) C I[; D;(7). Forv € L?, we have
HATVHZQ(T) < HAH HVHL2(T) :
Moreover, there holds the representation formula

A lz=ATSyAzx VzeRV.

Proof. For sake of completeness, we provide the derivation of the representation formula
from [AFM20, Lem. 3.11]. Using that AT = ®7!|x, and the definition of the discrete
solution operator, we compute

<AATSNAx,y>2 = a(®ATSyAx, By) = a(SnAx, Dy) = (Ax, Dy) = (X,y),
for arbitrary y € R, O

This lemma is the crucial step in the proof of the following lemma.

Lemma 5.6.3. Let A be the Galerkin matriz, A be the coordinate mapping for the dual
basis, and Sy be the discrete solution operator. Let T x o C {1,...,N} x {1,...,N} be an
admissible block and W, C L? be a finite dimensional space. Then, there exist matrices
X,o e RITXT Y e R of rank r < dim W, satisfying

infwew, [|SNF — WLz,
|A o = XYL [, < A2 sup ew. 9w = oot
To |2
feL?: 12
supp(f)CI1; D;(o)

Proof. We use the representation formula from Lemma 5.6.2 to prove the asserted estimate.
With the given space W,., we define X,, € RI"*" columnwise as vectors from an orthonor-
mal basis of the space W := (ATW,)|;. Then, the product X,,XZ is the orthogonal
projection onto W. Defining Yo := (A7Y,xs)"X,4, we can compute for all x € RY with
{i : x; # 0} C o that

A ko = X YL 3y = 1= X XE A0l ) = 8L (A0l =

Lem. 5.6. .
= g TS = )l

<A ing (IS A = Wlga(r)

Dividing both sides by ||x||,, substituting f := Ax and using that the mapping A preserves
supports, we get the desired result. ]
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5 H-Matrix approximations to inverses for FEM-BEM couplings

5.6.2 Low dimensional approximation

We present a general framework that only uses a Caccioppoli type estimate for the con-
struction of exponentially convergent low dimensional approximations.

Let M € N be fixed. For R > 0 let Bg := {B;}M, be a collection of boxes, i.e.,
B; € {BrRNQ,Bgr,Br\I'} for all i = 1,..., M, where Br denotes a box of side length
R. The choice, which of the three sets is taken for each index i, is determined by the
application and fixed.

We write B C B := { B/}, meaning that B; C B for alli = 1,..., M. For a parameter
5 >0, we call B := {B}M, a collection of d-enlarged boxes of Bg, if it satisfies

B € {Bpry2s N Q, Brios, Bryos\I'} Vi=1,..., M, and  B% D Bg,

where Br and Bprigs are concentric boxes. Defining diam(Bg) := max{diam(DB;),i =
1,...,M}, we get

diam(B%) < diam(Bg) + 2V/d0. (5.6.3)

In order to simplify notation, we drop the subscript R and write B := B in the following
abstract setting.

We use the notation H!(B) to abbreviate the product space H'(B) = [[X, H'(B;), and
write HVH%U(B) =M ||ViH%11(Bi) for the product norm.
Remark 5.6.4. For the application of the present section, we chose boxes (or suitable subsets
of those) for the sets B;. We also mention that different constructions can be employed
as demonstrated in [AFMN20], where a construction for non-uniform grids is presented and
where the metric is not the Euclidean one but one that is based on the underlying finite
element mesh. "

In the following, we fix some assumptions on the collections B of interest and the norm
II-llzg on B we derive our approximation result in. In essence, we want a norm weaker than
than the classical H'-norm that has the correct scaling (e.g., an L2-type norm).

(A2) Assumptions on the approximation norm ||-|| 5: For each B, the Hilbertian norm ||-|| 5 is
anorm on H'(B) and such that for any § > 0 and enlarged boxes B° and H > 0 there
is a discrete space Vs C H'(B%) of dimension dim Vi gs = C(diam(B°)/ H)M4
and a linear operator Qg : H'(B?) — V p gs such that

Iv = Quvlls < CaupH (V¥ Lass) + 07" IVllgs)
with a constant Cqap > 0 that does not depend on B, B%.6, and N.

Finally, we require a Caccioppoli type estimate with respect to the norm from (A2).

(A3) Caccioppoli type estimate: For each B, 6 > 0 and collection B% of §-enlarged boxes
with § > Cget(N) with a fixed constant Cget(N) > 0 that may depend on N, there is
a subspace Hy,(B%) ¢ HY(B?) such that for all v € H;(B%) the inequality

diam(B)>~!
9l 28) < Cone B (5.6.4)
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holds. Here, the constants Ccae > 0 and « > 1 do not depend on B,B°, §, and N.

We additionally assume the spaces Hy, (35) to be finite dimensional and nested, i.e.,
Hp(B') C Hp(B) for BC B'.

By II;, 5, we denote the orthogonal projection II; 5 : HY(B) — Hp,(B) onto that space
with respect to the norm ||| 5, which is well-defined since, by assumption, #H(B) is closed.

Lemma 5.6.5 (single-step approximation). Let 2diam(£2) > § > 2Cset(N) with the con-
stant Cset(N) from (A3), B be a given collections of boxes and B C B%/? C B be enlarged
bozes of B. Let ||||gs be a norm on HY(B%) such that (A2) holds for the sets B C B%/2. Let
v € Hp,(B%) meaning that (A3) holds for the sets B/2,B%. Then, there exists a space W

. . . diam(B9) aMd
of dimension dim W1 < Cgsa 5 such that

1
inf — < - .
nt o wlg < 2 llolls
Proof. We set W1 := II;, sQuHn(B°) C Vs Since v € Hp,(B?), we obtain from (A2)
and (A3) that

Iv = T 5Quvls = [T s(v — Qurv)l (5.6.5)
< |Iv—Qnuvlls < CaupH(IVVIl 12552 + 26" IVllgs2)
diam(B0/2)e—1

< Cl CQapCCac Ja

H||[vllgs (5.6.6)
with a constant C7 depending only on € since @« > 1 and ¢ < 2diam(f2). With the choice
H = 2010Qapcciadiam(85)a—1’ we get the asserted error bound. Since Wi C Vi s and by
choice of H, we have

. 5 Md . Sya\ Md . s\ \ aMd
dimW, < C (dlam(B )> <C <2C10QapCCac diam(B?) > . Cu (dlam(B )> 7

H 0 0
which concludes the proof. O

Iterating the single-step approximation on concentric boxes leads to exponential conver-
gence.

Lemma 5.6.6 (multi-step approximation). Let L € N and § > 2Cset(N) with the constant
Cset(N) from (A3). Let B be a collection of boxes and B°Y > B a collection of § L-enlarged
bowes. Then, there exists a space W1, C Hy(BF) such that for all v € Hy(BF) we have

inf — <2t
Wt o= wls <27 flollgae.

and

diam(B) >aMd+1

dim Wy, < Cgim (L + 3
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Proof. The assumptions on B and B allow for the construction of a sequence of nested
enlarged boxes B C B® C B¥ C ... C B satisfying diam(B&s) < diam(B) + C4.

We iterate the approximation result of Lemma 5.6.5 on the sets B, ¢ = L, ..., 1. For ¢ =
L, Lemma 5.6.5 applied with the sets B(E=1% ¢ BL provides a subspace Vi € Hy (BF)

. Md
with dim V1 < C(%)a such that

Cinf v — S5 <27 Vg (5.6.7)
Vi€V

For v; € Vi, we have (v — ¥1) € Hy(BE™9) so we can use Lemma 5.6.5 again
with the sets BL=20 « BEL=1d and get a subspace Vy of HN(B(LJ)‘S) with dim V4 <
O (LB ) aMd  ppig implies

inf inf [[(v—V{)—V s <270 inf v—¥ s <272 |v . 5.6.8
oinf inf IlC 1) = Vallgr-2s < oinf Il lpe-vs <277 ||[vllgse - (5.6.8)

L
Continuing this process L — 2 times leads to the subspace W := @ V, of Hx(BF) with

/=1
dimension
Lo di S\ aMd Lodi aMd
dim W, < CZ (dlam(S(B )) < CZ (dlar(r;(B) +£)
(=1 =1
di aMd+1
< C1dim (L + m:;(b))> )
which finishes the proof. O

5.7 Application of the abstract framework for the FEM-BEM
couplings

In this section, we specify the assumptions (A1)—(A3) for the FEM-BEM couplings.

The local dual basis

In the setting of Section 5.6.1, we have X = H'(Q) x H-Y2(T"). In order to suitably
represent the data f,ug, ¢o in (5.1.1), we understand the discrete space S1(T) ~ Sé’l(T) X
SLL(K) € L2(Q)x L3(T), where Sy’ (T) := SV(T)NHL (). Having identified S (7) with
Sé’l(T) x SHL(K), we view the full FEM-BEM coupling problem as one as approximating
in Sé’l(T) x SHL(KC) x S%0(KC). That is, we set k = 1 and ¢ = 2, and consider L? =
L?(Q) x L*(I') x L*(T") for all three FEM-BEM couplings. The discrete space Xy =
Sy (T) x SUL(K) x $%0(K) € L2 has dimension N' = n; 4+ng+m, where n; = dim(S' (7)),
ng = dim(SH1(K)) (n1 4+ n2 = n) and m = dim(S°°(K)), and it remains to show (A1l).

The dual functions A; are constructed by use of L2-dual bases for S1:1(7) and S%°(K).
[AT'N20, Sec. 3.3] gives an explicit construction of a suitable dual basis {\! : i =1,...,n;}
for Sé’l(T). This is done elementwise in a discontinuous fashion, i.e., \* € S1YO(T) c L?(Q),
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5 H-Matrix approximations to inverses for FEM-BEM couplings

where each )\? is non-zero only on one element of 7 (in the patch of the hat function &;),
and the function on this element is given by the push-forward of a dual shape function on
the reference element. Moreover, the local stability estimate

n

Q

H ij)‘j‘
=

holds for all x € R", and we have supp )\? C suppé&;. We note that the zero boundary
condition is irrelevant for the construction. The same can be done for the boundary degrees
of freedom, i.e., there exists a dual basis {/\f :i=1,...,n2} with the analogous stability
and support properties.

For the boundary degrees of freedom in S%9(K), the dual mappings are given by ,u{ =
Xi/ HXZ'H%Q(Q), i.e., the dual basis coincides — up to scaling — with the given basis {x; : i =
1,...,m} of S%O(K). With (2.3.1a), this gives

m
|2y
=1

h42 x|, (5.7.1)

<
L2(Q) ~

sy ST I, (5.7.2)

for all y € R™.

Now, the dual basis is defined as \; := (/\,LQ,O, 0) fori=1,...,n1, Aitn, := (0,A,0) for
i=1,...,n9 and Aj1p, = (0,0,u}) fori =1,...,m, and (5.7.1), (5.7.2) together with the
analogous one for the A" show (A1).

Low dimensional approximation

The sets B, B’ and the norm ||| 4
We take M = 3 and choose collections B = Bg := {Br N Q, Br, Bg\I'}, where Bp is a
box of side length R. For £ € N the enlarged sets B then have the form

B = B := {Bpryase N Q, Bryase, Brios\I'} (5.7.3)

with the concentric boxes Briase of side length R + 24¢.
For v = (u,v,w), we use the norm from (5.5.2)

Ivlls = ll(u, v, w)ll,

in (A2). For the Bielak-MacCamy coupling, taking M = 2 and choosing collections Br :=
{BrNQ, Br} would suffice, however, in order to keep the notation short, we can use M = 3
for this coupling as well by setting the third component to zero, i.e., v = (u,v,0).

The operator @y and (A2)

For the operator Q 7, we use a combination of localization and Scott-Zhang interpolation,
introduced in [SZ90b], on a coarse grid. Since the double-layer potential is discontinuous
across I', we need to employ a piecewise Scott-Zhang operator. Let Ry be a quasi-uniform
(infinite) triangulation of R? (into open simplices R € Rp) with mesh width H that
conforms to €, i.e., every R € Ry satisfies either R C Q or R C Q%" and the restrictions
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5 H-Matrix approximations to inverses for FEM-BEM couplings

Rula and Ry|qext are y-shape regular, regular triangulations of  and Q°* of mesh size
H, respectively.

With the Scott-Zhang projections I}?t, IS for the grids Rylo and Rylge, we define
the operator Ih" : HY(R?\T) — Spw(Rp) == {v : vlg € SV Rula) and v|ge €
SEL(R |gext )} in a piecewise fashion as Eq. (2.4.12).

Let n € C§°(Bgr+as) be a cut-off function satisfying supp n C Brys, 7 = 1 on Bg and
IV poo (may S 5. We define the operator

Quv = (I (nv1), I (nva), Iy (11v3)), (5.7.4)
where I denotes the classical Scott-Zhang operator for the mesh Ry. We have

2 int 2 2 2
Iv = Quvia = [vi = I8 v g + V2 = T (rvo)ll2 g + [[vs = I3 (va) |2 e -
Each term on the right-hand side can be estimated with the same arguments. We only
work out the details for the second component. Assuming h < H, and using approximation

properties and stability of the Scott-Zhang projection, we get

Iva = I (pva)ly g = v — T (nva)

S (WP 4+ H?) [V v2)ll g2 gay S H? <||VV2||%2(BR+25) +67! ||V2||%2(BR+26)) ;

which shows (A2) for the discrete space Vi gs = S (Ru)|Brissn X SUHRE)|Briss X
St (Ri1)| Bp.s Of dimension dim Vigp <C <%)
The Caccioppoli inequalities and (A3)

Theorem 5.5.3-Theorem 5.5.6 provide the Caccioppoli type estimates asserted in (A3)
with § = eR/2. For the Bielak-MacCamy coupling we have o« = 1 and Cse; = 8h, for the
symmetric coupling @ = 1 and Cget = 16h. For the Johnson-Nédélec we have to take a = 2
and Csey = 16h. For Bp = {Br N, Br, Br\I'}, the spaces H;(Bgr) can be characterized
by
H,(Br) :={(v,Vé, Kv) € H'(BRr N Q) x H(Bg) x HY(BR\I') : 3o € SYN(T), ¢ € S*°(K) :

B|Bpra = VB, Volr = Volsg, kﬁ!BR\F = I?U|BR\F7 a(v, ¢;vn,Cr) =0
V(n, ¢n) € STH(T) x S™(K), supp ¢n, ¢ C Br},

where the bilinear form a(-,-) is either agym or aj,. For the Bielak-MacCamy coupling, it
suffices to require

Hp(Br) :=={(v,V$,0) € H(BrNQ) x H(Br) x HY(Br\I') : I € SH(T), ¢ € S*0(K) :

%J|BRQQ = U’BRﬂﬂa ‘7$|BR = ‘7¢|BR7 abmc(va ¢a T/Jh, Ch) =0
V(¢n, Cn) € SUH(T) x S*(K), supp ¢n, (n C Br}

With these definitions, the closedness and nestedness of the spaces Hp,(Bg) clearly holds.
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5 H-Matrix approximations to inverses for FEM-BEM couplings

5.7.1 Proof of Theorem 5.4.1

As a consequence of the above discussions, the abstract framework of the previous sections
can be applied and it remains to put everything together.

The following theorem constructs the finite dimensional space required from Lemma 5.6.3,
from which the Galerkin solution can be approximated exponentially well. We should note
that the symmetry of the matrix Agyy, of the symmetric coupling also allows to use the
weaker admissibility condition from Remark 2.6.4.

Theorem 5.7.1 (low dimensional approximation for the symmetric coupling). Let (,0)
be a cluster pair with bounding bores Br, and Br, that satisfy for given n >0

ndist(BRT, BRJ) > diam(BRT).

Then, for each L € N, there exists a space W, C SEHT) x SY9(K) with dimension
dim WL < Clow L3 such that for arbitrary right-hand sides f € L*(Q), vg € L*(T), and
wo € L*(T) with (supp f Usuppvg Usupp wo) C Bpg,, the corresponding Galerkin solution
(up, on) of (5.3.6) satisfies

min_ (llun = @l 2,00 + 190 = Blli2(za,rr)) < Cooch =227 (11l 2y + Ivoll 2y + ol o) -

(67()5)€WL

The constants Clow, Chox depend only on Q, d, n, and the ~y-shape regularity of the quasi-
uniform triangulation T and K.

Proof. For given L € N, we choose § := QIEITL . Then, we have

diSt(BRT_;,_Q(;L, BRJ) > diSt(BRT, BRU) L(Sf > \/>R (* - %> > 0.
With Br, = {BRT NQ, Br,, BRT\F} and B(SL = {BRT+2§L NQ, Br, t251, BRT+26L\F} from
(5.7.3), the assumption on the support of the data therefore 1mphes the local orthogonality
imposed in the space Hh(B5L ). In order to define the space W L, we distinguish two cases.
Case § > 2Cget: Then, Lemma 5.6.6 applied with the sets B%T and B% provides a space
W, of dimension

diam(B%T))3d+1 - (L N \/&RTan>3d+1 < g3
6 ~Y

dim Wy, < Cgim <L -1+ 7 S

with the approximation properties for v = (up, T~/cph, I?uh)

Wb v = wig;, <27 |||VWB5L : (5.7.5)

Therefore, it remains to estimate the norm |||z from above and below.
With A < 1, the mapping properties of V' and K from (5.2.5), and the trace inequality
we can estimate

un, Vipn, Kuy, ‘ S llun +HV hH +HI~(uhH
H‘( ' ) B&L || ||H1 ¥ Hl B(1+1/(2n))Rr) HI(B(1+1/(217))R7—\F)
S lunll gy + lenll =12y - (5.7.6)
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5 H-Matrix approximations to inverses for FEM-BEM couplings

The stabilized form

~ 1 1

asym(u7@;¢7<) = asym(u7 ¢a¢;C) + <17V90+(2 —K)’LL> <11VC+(2 _K)¢> )
L2(T) L2(T)

is elliptic, cf. [AFF " 13]. Moreover, [AFF 713, Thm. 18] prove that the Galerkin solution also

solves Gsym (Uns ©h; ¥, C) = Gsym (¥, €) + (1, w0) 2y (1, G -Kyy+ VC>L2 . Therefore, we
have

lnll- 2y + ||UhHH1(Q) S Gsym (Uns Phi uns pr) = (fy un) 200y + (vo, tn) 2(ry + (Wos o) 2y

+ (1, (1/2 = K)un + Veon) p2(ry (1, wo) r2(ry -
(5.7.7)

The stabilization term can be estimated with the mapping properties of V and K from
(5.2.6) and the trace inequality by

(1,(1/2 = K)up + V‘Ph>L2(F) <17w0>L2(I‘)‘ S (“(1/2 - K)UhHLZ’(F) + HV(PhHLQ(F)> HwOHL2(F)
S lwoll ey (lunlizs oy + Ionlli-12qry ) -

Inserting this in (5.7.7), using the trace inequality and an inverse estimate we further
estimate

lon 2oy + lanlragy S (1 ey + ool a-vvzqey ) Tanll ey
o lwoll ey (lenllzaqey + lunll ey + Ionllg-s/o
< (1122 + 1ol =172y ) Hn 3y
+ B2 Jlwoll ey (lunll gy + ol i-1ra) ) -
With Young’s inequality, we get
lionlZ 1oy + el oy < (11l zagey + Ioll gy + 072 ol pagey )+ g lualn e
2 fuolZagey + 5 (sl oy + lonlrvrory)
< (IflLzsc@y + ol sr-rroqey + B2 ol o))
5 (lonl vy + lunlngey)
which results in
lenllz-1/2ey + Nunllizs ey S 11z + ool g2y + B2 ol oy

Inserting this in (5.7.6), we obtain the upper bound

. Vi R, S (172 + Noollagey + 577 sl ) (5.7.8)
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5 H-Matrix approximations to inverses for FEM-BEM couplings

The jump conditions of the single-layer potential and Eq. (5.5.5) provide for arbitrary
¢ € 820(K)

lin = ez, o = || Verl = Ve, S0V - TR,
ShT )HV% B h,Rr+25
(5.7.9)
For arbitrary @ € SU(T), with h < 1, we can write
[[un — U||L2 (Br,NQ) ~ ShT i llun — a”|h,R+26' (5.7.10)

Combination of (5.7.9) and (5.7.10) gives us

(un, Vion, Kup) —

inf (Huh — |2 + |lon — @l 72 ) < B2 inf
(1775)6\/)\\711 L BRTﬂQ) L BR QF) WEW

Finally, we define W, = {(u, [v17]) : (w,v,w) € Wr}. Then, the dimension of W is
bounded by W, < CL34+1 and the error estimate follows from (5.7.5) since

(un, Veon, Kup) —

inf_ (fJun — @l 2 + len = Bl zz(mq,rry ) S 72 int
(67(5)€WL L BRTﬂQ) L BR QF) WEW

S h3/2k H (un, Veon, fﬂth)H

SL
BRT

Applying estimate (5.7.8) finishes the proof for the case § > 2Cse.
Case § < 2Cse; = 32h: Here, we use the space W, := ST (T)|p,, x S%(K)|p,_. Since
(un, on)|Br, € W the error estimate holds trivially. For the dimension of W, we obtain

i 2d 2 2d
dimW,, < C <‘mm}(lBRf)> <C <32\§de> <C (2039t\/82nL) <,

which finishes the proof. O

Theorem 5.7.2 (low dimensional approximation for the Bielak-MacCamy coupling). Let
(1,0) be a cluster pair with bounding boxes Br. and Bpr, that satisfy for given n >0

ndist(Bgr,, Br,) > diam(Bg,).

Then, for each L € N, there exists a space WL C SHYT) x SO9(K) with dimension
dim WL < Clow L2 such that for arbitrary right-hand sides f € L*(Q), o € L*(T'), and
ug € L*(T') with (suppf U supp ¢o U supp uo) C Bg,, the corresponding Galerkin solution
(un, on) of (5.3.3) satisfies

min_ (Jlun =l 25y, n) + 108 = Bllzzeg, ry) < Cooxh 2275 (£l 2 + Ioll ey + ol 2y ) -

(@p)EW

The constants Clow, Chox depend only on Q, d, n, and the ~-shape regularity of the quasi-
uniform triangulation T and K.
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5 H-Matrix approximations to inverses for FEM-BEM couplings

Proof. The proof is essentially identical to the proof of Theorem 5.7.1. We stress that the
bound of the dimension dim WL < Clow L2 is better, since no approximation for the
double-layer potential is needed, i.e., we can choose M = 2 in the abstract setting. ]

Theorem 5.7.3 (low dimensional approximation for the Johnson-Nédélec coupling). Let
(1,0) be a cluster pair with bounding boxes Br_ and Bpr, that satisfy for given n >0

ndist(Bgr,, Br,) > diam(Bg,).

Then, for each L € N, there exists a space W, C SEL(T) x SO9(K) with dimension
dim WL < Clow LY, such that for arbitrary right-hand sides f € L?(2), v € L*(T), and
wo € L*(T) with (supp f Usupp o U supp wo) C Bg,,, the corresponding Galerkin solution
(un, on) of (5.3.9) satisfies

min_ (llun = @l 2,00 + 190 = Blli2(za,nr)) < Coosh 227 (Ifll 2y + Ieoll 2y + ool ary)

(67()5)€WL

The constants Clow, Chox depend only on Q, d, n, and the ~v-shape regularity of the quasi-
uniform triangulation T and K.

Proof. The proof is essentially identical to the proof of Theorem 5.7.1. We stress that the
bound of the dimension dim W, < Ciow L5%H! is worse than for the other couplings, since
in the abstract setting, we have to choose M = 3 and o = 2, and the bound follows from
Lemma 5.6.6. 0

Finally, we can prove the existence of H-Matrix approximants to the inverse FEM-BEM
stiffness matrix.

Proof of Theorem 5./.1. We start with the symmetric coupling. As H matrices are low

rank only on admissible blocks, we set By|,xo = Asfyin\TXg for non-admissible cluster pairs

and consider an arbitrary admissible cluster pair (7,0) in the following.

With a given rank bound r, we take L := | (/Clow )/ 34tV |. With this choice, we apply
Theorem 5.7.1, which provides a space WL C SEYT) x SPO(K) and use this space in
Lemma 5.6.3, which produces matrices X,,, Y;, of maximal rank dim V/VL, which is by
choice of L bounded by

dim W, = Cloy L3 < 1,

Theorem 5.7.1 can be rewritten in terms of the discrete solution operator of the framework
of Section 5.6.1. Let f = (f,vo,wo) € L? be arbitrary with supp(f) C [I; Dj(o). Then,
the locality of the dual functions implies (supp fUsupp vgUsupp wo) C Bpg,, and we obtain

inf ||Snf—w < inf up — U + |lon — @
| sy < i (ln = Bl e+ on = Bl )
Sheh (”f”L2(Q) + [lvoll L2 (ry + ||w0||L2(F)) <h7227L | f]lpe -
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5 H-Matrix approximations to inverses for FEM-BEM couplings

Defining By |, xo = X.o Y2, the estimates (2.6.5) and ||A|| < h~%? together with Lemma 5.6.3

TO?
then give the error bound

|A5m — B[, < Csp depth(Tz) max{[|A™" — By|rxol|, : (1,0) € P}

inf &, IS8vF —wlper

< Oy, depth(Tz) || A2
< Cup depth(Tz) A" max e, 112
supp(f)CI1; Dj(o)

< Cyp depth(Tz)h~ @22~k
< CapxCip depth(T7)h (442 exp(—bpl/Gd+1)),

This finishes the proof for the symmetric coupling.
The approximations to Al;ic and Aj_n1 are constructed in exactly the same fashion. The
different exponentials appear due to the different dimensions of the low-dimensional space

W, in Theorem 5.7.2 and Theorem 5.7.3. ]

5.8 Numerical results

In this section, we provide a numerical example that supports the theoretical results from
Theorem 5.4.1, i.e, we compute an exponentially convergent H-matrix approximant to an
inverse FEM-BEM coupling matrix.

If one is only interested in solving a linear system with one (or few) different right-hand
sides, rather than computing the inverse — and maybe even its low-rank approximation — it
is more beneficial to use an iterative solver. The H-matrix approximability of the inverse
naturally allows for black-box preconditioning of the linear system. [Beb07] constructed
LU-decompositions in the H-matrix format for FEM matrices by approximating certain
Schur-complements under the assumption that the inverse can be approximated with arbi-
trary accuracy. Theorem 5.4.1 provides such an approximation result and the techniques
of [Beb07, FNP 15, FMP16, FMP17] can also be employed to prove the existence of H-LU-
decompositions for the whole FEM-BEM matrices for each couplings.

Here, we additionally present a different, computationally more efficient approach by
introducing a black-box block diagonal preconditioner for the FEM-BEM coupling matrices.

We choose the 3d-unit cube Q = (0,1)? as our geometry, and we set C = I. In the fol-
lowing, we only consider the Johnson-Nédélec coupling, the other couplings can be treated
in exactly the same way.

In order to guarantee positive definiteness, we study the stabilized system (see [AFF 13,
Thm. 15] for the assertion of positive definiteness)

(e V) =) ()= ) o)

where the stabilization s € RV*M is given by s; = (1,(1/2 — K)&) 2y fori e {1,...,N}
and s; = (1, Vixi) oy for i e {N +1,..., M}.
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5 H-Matrix approximations to inverses for FEM-BEM couplings

We stress that [AFF 7 13] show that solving the stabilized (elliptic) system is equivalent
to solving the non stabilized system (with a modified right-hand side). By AS® := A +bb”,
we denote the stabilization of A, where b contains the degrees of freedom of s correspond-
ing to the FEM part.

All computations are made using the C-library HLiB, [BG99], where we employed a ge-
ometric clustering algorithm with admissibility parameter n = 2 and a leaf-size of 25.

5.8.1 Approximation to the inverse matrix

The H-matrices are computed by using a very accurate blockwise low-rank approximation
to

A -MT T
B:= (;M—K vV >+ss . (5.8.2)

Then, using H-matrix arithmetics and blockwise projection to rank r, the H-matrix inverse
is computed with a blockwise algorithm using H-arithmetics from [Gra0l]. In order to not
compute the full inverse, we use the upper bound

1B =Byl < B[], T - BBl

for the error.

We also compute a second approximate inverse by use of the H-LU decomposition,
which can be computed using a blockwise algorithm from [Lin04, Beb05]. Hereby, we
use HI —B(LyUy) ! H2 to measure the error without computing the inverse of B.

Figure 5.8.1 shows convergence of the upper bounds of the error and the growth of the
storage requirements with respect to the block-rank r for two different problem sizes. We
observe exponential convergence and linear growth in storage for the approximate inverse
using H-arithmetics and the approximate inverse using the H-LU decomposition, where the
‘H-LU decomposition performs significantly better. The observed exponential convergence
is even better than the asserted bound from Theorem 5.4.1.

5.8.2 Block diagonal preconditioning

Instead of building an H-LU-decomposition of the whole FEM-BEM matrix, it is signifi-
cantly cheaper to use a block-diagonal preconditioner consisting of H-LU-decompositions
for the FEM and the BEM part. The efficiency of block-diagonal preconditioners for the
FEM-BEM couplings has been observed in [MS98, FEPS17h].

In the following, we consider block diagonal preconditioners of the form

_(Py O
P= < 0 PV> ’
where P 4 is a good preconditioner for the FEM-block AS' and Py is a good preconditioner
of the BEM-block V.
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Figure 5.8.1: H-matrix approximation to inverse FEM-BEM matrix; left: error vs. block
rank r; right: memory requirement vs. block rank r; top: N = 6959 (FEM-
dofs), M = 3888 (BEM-dofs); bottom: N = 10648, M = 5292.

The main result of [FFPS17b] is that, provided the preconditioners P4 and Py fulfill
the spectral equivalences

eaxIPax < xTA%x < Oux'Pax (5.8.3

cvx Pyx < x'Vx < Cyx!'Pyx,

then, P is a good preconditioner for the full FEM-BEM system. More precisely, the condi-
tion number P~'B (with B from of (5.8.2)) in the spectral norm can be uniformly bounded
by
max{Cy,Cy}
min{ca,cy}
where the constant C' only depends on the coefficient in the transmission problem. As
a consequence, one expects that the number of GMRES iterations needed to reduce the
residual by a factor remains bounded independent of the matrix size.

Therefore, we need to provide the preconditioners P 4, Py and prove the spectral equiv-
alences (5.8.3). In the following, we choose hierarchical LU-decompositions as black-box
preconditioners, i.e.,

ke (P7IB) < C

P4 :=LyU4%, Py :=LLUY,
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where AS' ~ L;‘_‘LU% and V ~ LZUZ[. [EMP 15, FMP16] prove that such LU-decompositions
of arbitrary accuracy exist for the FEM and the BEM part and the errors, denoted by €4
and ey, converge exponentially in the block-rank of the H-matrices.

With HPA - AS‘tH2 <eap HASt‘ 5 We estimate

xTPax — xTASx| < [[x]]5[[Pa— A%, < ealx]3]|A%, < Creah™x"A%x, (5.8.5)

where the last step follows from the scaling of the basis of the FEM part and the positive
definiteness of ASt. In the same way, for Py it follows that

x"Pyx —xT Vx| < ||x[5 [Py — V|, < ev [x[5 [ V], < Coevh™xTVx.  (5.8.6)

N[ —

Choosing the rank of the H-LU-decomposition large enough, such that, e.g., C1eq4h~% =
as well as Coeyh~ 4! = %, then Cy =Cy =2and cy =cy = % and the condition numbe
of the preconditioned system is bounded by x2(P~1B) < 3C.

—

Finally, we present a numerical simulation that underlines the usefulness of block-diagonal
‘H- LU-preconditioners.

Here, the H-LU decompositions are computed with a recursive algorithm proposed in
[Beb05].

The following table provides iteration numbers and computation times for the iterative
solution of the system without and with H-LU-block diagonal preconditioner using GM-
RES. Here, for the stopping criterion a bound of 10™3 for the relative residual is chosen,
and the maximal rank of the H-LU decomposition is taken to be r = 1.

h FEM | BEM Iterations Iterations | Time solve | Time solve Time
DOF | DOF | (without P) | (with P) | (without P) | (with P) | assembly P
273 [ 729 768 679 3 3.7 0.03 2.6
271 4913 | 3072 3565 4 315 0.9 12.2
27° | 35937 | 12288 11979 5 35254 30 51.9

Table 5.8.1: Iteration numbers and computation times (in seconds) for the solution with
and without preconditioner with block rank r» = 1.

As expected, the iteration numbers of the preconditioned system is much lower than
those of the unpreconditioned system and grow very slowly. The computational cost for
the preconditioner is theoretically of order O(r®Nlog® N). With the choice r = 1, we
obtain a cheap but efficient preconditioner for the FEM-BEM coupling system.

Table 2 provides the same computations for the case r = 10.

h FEM | BEM Iterations Iterations | Time solve | Time solve Time
DOF | DOF | (without P) | (with P) | (without P) | (with P) | assembly P
23 729 768 679 2 3.7 0.02 5.8
2= 1 4913 | 3072 3565 2 315 0.48 24.6
27° | 35937 | 12288 11979 2 35254 15.7 243.7
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5 H-Matrix approximations to inverses for FEM-BEM couplings

Table 5.8.2: Tteration numbers and computation times (in seconds) for the solution with
and without preconditioner with block rank r = 10.

A higher choice of rank obviously increases the computational time for the assembly of
the preconditioner, but leads to lower iteration numbers and faster solution times.
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6 7-matrix approximability of inverses of
FEM matrices for the time-harmonic
Maxwell equations

The Maxwell system consists of four equations describing the behaviour of the electro-
magnetic fields and was first formulated completely by James Clark Mazwell (1831-1879).
In this chapter, we start with formulating Maxwell’s equations in integral and differential
forms. Then, assuming periodicity of the behavior of the electric and magnetic fields with
respect to time, we transform the system of first order partial differential equations into a
second order partial differential equation to make it easier to solve.

Since the discovery of Nédélec’s edge elements (and their higher-order generalizations)
finite element methods have become an important discretization technique for these equa-
tions with an established convergence theory, [Mon03, Hip02]. While the resulting linear
system is sparse, a direct solver cannot achieve linear complexity as one has to expect al-
ready for the case of quasi-uniform meshes with problem size N a complexity O(N*/3) for
the memory requirement and O(N?) for the solution time of a multifrontal solver, [.in92].
Iterative solvers such as multigrid or preconditioned Schwarz methods can lead to opti-
mal (or near optimal) complexity for the time-harmonic Maxwell equations, at least in the
low-frequency regime, [Hip99, AFWO00, GP03].

In this chapter, we investigate whether the inverse of the stiffness matrices arising from
the FEM discretization of the time-harmonic Maxwell equations can be represented in
the H-matrix format. For its proof, we present a local discrete Helmholtz decomposi-
tion and prove the stability and approximation properties of this decomposition. More-
over, we present two types of Caccioppoli inequalities. The first Caccioppoli inequality
(Lemma 6.3.16) controls the H(curl)-norm by the L?norm. Since this Caccioppoli in-
equality is insufficient for approximation purposes, applying a local discrete Helmholtz-type
decomposition to the discrete solution allows us to control the gradient part, up to a small
perturbation, in H'.

6.1 Model problem

Maxwell’s equations are a system of first-order partial differential equations that connect
the temporal and spatial rates of change of the electric and magnetic fields possibly in the
presence of additional source terms. Also, these equations describe how these fields are
related to charge and current. Let © C R3 be a simply connected polyhedral domain with
boundary I' := 02 and S be a connected smooth surface with boundary 0.5 in the interior
of Q2 where the electromagnetic waves propagate.
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6 H-matrix approximability of inverses of FEM matrices for the time-harmonic Maxwell equations

6.1.1 The fundamental equations

Let £ [V/m] denote the electric field intensity, H [A/m] the magnetic field intensity,
D [As/m?] the electric displacement field (electric flux) and B [V's/m?] = Tesla magnetic
flux density (magnetic flux). Also, we denote the current density function by G [A/m?] and
the charge density by p [As/m?3]. We define n as the unit outward normal vector on I' and
T as the unit tangential vector on 0S.

In Maxwell’s equations, two kinds of electric fields can be observed: the electrostatic
field produced by an electric charge and the induced electric field generated by a magnetic
field. The first one is described by Gauss law and the other one by Faraday’s law.

Gauss law for electric fields

This equation describes how electric charges produce an electric field and the electric flux
created by this field passing through €2 is proportional to the electric charges inside 2. The
integral form is generally written as:

/D-nd:s:/pdx. (6.1.1)
r Q

Faraday’s induction law

This equation is the first one that connects electric and magnetic fields. It describes that
a changing magnetic flux through the surface S induces a voltage in the boundary of this
surface and this voltage produces an electric field. This equation has following the form

/aB-nds—F E-Tdl=0. (6.1.2)
s Ot a5

This equation implies that the electric field is conservative in the absence of a magnetic
field or when the magnetic field is constant with respect to time.

Gauss law for magnetic fields

This equation describes the total magnetic flux passing through €2 is zero, i.e.,
/B-nds:O. (6.1.3)
r

Ampeére-Maxwell law

In the original form, this law tells us the integral of the magnetic field along a closed path
is proportional to the total current thorough the enclosed surface. i.e.,

’H-Tdﬁz/g-nds. (6.1.4)
aS S
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6 H-matrix approximability of inverses of FEM matrices for the time-harmonic Maxwell equations

Then, Maxwell generalized this result by adding another source term, i.e., a changing
electric displacement. Presence of this term allowed Maxwell to develop the theory of
electromagnetism. The integral form of this equation is written as

D
H-Tdﬁz/a'nds—l—/g-nds. (6.1.5)
o3 s Ot s

Applying Gauss’ and Stokes’ theorems to equations (6.1.1)-(6.1.3) and (6.1.5) gives us
the Mazwell’s equations in the following differential form

V-B=0,

VD:_p)
IBivxe=0 (6.1.8)
ot - o
0
5D =V xH=-G. (6.1.9)

Taking derivatives of Eq. (6.1.7) w.r.t. ¢ and the divergence of (6.1.9) give rise to the
following equation of continuity

op

. — =0. 1.1
Vg4 o=0 (6.1.10)

Material properties

The electric and magnetic field intensities and their fluxes are connected thorough the
following laws

D =¢€, (6.1.11)
B=uH, (6.1.12)

where the tensor € [As/V'm] is called the electric permittivity and the tensor pu [V's/Am)] is
the magnetic permeability. The above equations are experimentally derived and called the
material laws. Also, they depend on the properties of the material filling the domain.

The electric field in conducting media induces a current which is described by Ohm’s
Law

G =G +0€, (6.1.13)

where G, is the external current density, o [As] is the electric conductivity, and G is the total
current density. Generally, ¢, u and o depend on space, time or even the electromagnetic
field. Homogeneous isotropic materials can be characterized by a positive dielectric constant
€ > 0, a positive permeability constant p > 0, and a non-negative electric conductivity
constant ¢ > 0. We will only consider homogeneous isotropic materials in this thesis.
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6 H-matrix approximability of inverses of FEM matrices for the time-harmonic Maxwell equations

6.1.2 Boundary conditions

A perfect electric conductor is a region with ¢ — 0o. Then according to Ohm’s law in this
region we have & — 0. If Q is surrounded by such a perfectly conducting region, we have
the following perfectly conducting boundary condition for £

nx&=0 on I (6.1.14)

For a perfect magnetic conductor, i.e., a region with high permeability, we have H — 0
and if this conductor is situated around €2, we get the following boundary condition

nxH=0 on T. (6.1.15)

6.1.3 Time-Harmonic Fields

Substituting the constitutive equations (6.1.11), (6.1.12) and (6.1.13) into (6.1.6)—(6.1.9)
we get

V- (uH)=0 in Q, (6.1.16a)

V-(E€)=p in Q, (6.1.16b)

— (sgt + O‘) E+VXH=G in Q, (6.1.16¢)
O 4vxe=0 in Q, (6.1.16d)

Hot
where G, is a known function denoting the applied current. Also, we should notice (6.1.16a)
and (6.1.16b) are automatically fulfilled by taking divergence of (6.1.16d)and (6.1.16¢) and
applying (6.1.10).

We assume the behavior of the electric and magnetic fields are periodic with respect to
time, i.e.,
E(x,t) = e “E(x), (6.1.17a)
H(x,t) = e “'H(z). (6.1.17b)

Substituting (6.1.17a) and (6.1.17b) into (6.1.16¢) and (6.1.16d), we conclude

-V x H —iwnE = J(x) in Q, (6.1.18a)

VXE—iwpgH =0 in €, (6.1.18b)

where ) := ¢ + io/w and G.(x,t) = e “!J(z). In this chapter, we consider the perfect
conducting boundary condition for £, i.e, we assume the domain is surrounded by a perfectly

bounded material. Finally, the first order system (6.1.18) can be reduced to a second order
equation

LE:=Vx(p'VxE)—kE=F inQ, (6.1.19)

where x := w?n and F := —iwJ. For the sake of simplicity, we assume g = 1 in the
following. However, our arguments can directly be extended for u > 0 as well.
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6 H-matrix approximability of inverses of FEM matrices for the time-harmonic Maxwell equations

6.1.4 Discretization by edge elements

Multiplying both sides of (6.1.19) with ¥ € Hy(curl, 2) and integrating by parts, we obtain
the weak formulation: Find E € Hy(curl, Q) such that

CL(E, \I/) = <V X E,V X \I/>L2(Q) — K <E, \I}>L2(Q) == <F,\II>L2(Q) MAURS HO(Curl, Q)
(6.1.20)

We assume that x is not an eigenvalue of the operator V x Vx| see, e.g., [Mon03, Sec. 4].
This implies in particular that x # 0 since VH{ () is contained in the kernel of the operator
V x Vx. Then, the Fredholm alternative provides the existence of a unique solution to the
variational problem, and we have the a priori estimate

||E||H curl,Q < Cstab ||FHL2 Q) (6121)
( ) (€)

for a constant Cy,p that depends on €2 and k.

Let T = {T1,...,Tn,} be a quasi-uniform triangulation of © with the mesh width
h := maxt,e7 diam(7}), where the elements 7; € T are open tetrahedra. The mesh T
is assumed to be regular in the sense of Ciarlet, i.e., there are no hanging nodes. The
assumption of quasi-uniformity includes the assumption of ~-shape regularity, i.e., there
is v > 0 such that diam(7};) < ~|T;|*/? for all T; € T. For the Galerkin discretization
of (6.1.20), we use Nédélec’s H(curl, 2)-conforming elements of the first kind defined in
Section 2.2. Let A, := {V1,...,¥n} be a basis of X}, o(7,Q) with N := dim X}, o(7, ).
Using Xp0(7,92) € Hg(curl,Q) as ansatz and test space in (6.1.20), we arrive at the
Galerkin discretization of finding Ej, € X}, o(7,€2) such that

a(Ep, ¥y) = (F, \I/h>L2(Q) YU, € th(T, Q). (6.1.22)

Using the basis A}, o, the Galerkin discretization (6.1.22) can be formulated as a linear
system of equations where the system matrix A € CV*¥ is given by

Aij = a(\IIZ-, \I/j), \I/j, v, € Xh,(]- (6.1.23)

For unique solvability of the discrete problem (6.1.22) or, equivalently, the invertibility
of A, we recall the following Lemma 6.1.1. In that result and throughout the chapter, we

denote by oy
IT;, : L°(Q) — Xi(T,9Q), (6.1.24)

the L?(Q)-orthogonal projection onto X, (7, ).

Lemma 6.1.1. [Hip02, Thm. 5.7] There exists hg > 0 depending on the parameters of
the continuous problem and the ~y-shape regularity of T such that for h < hg, the discrete
problem (6.1.22) has a unique solution and there holds the stability estimate

|| E;, H H(curl,Q) < Cstab

i

2(Q)

Here, Cgap, > 0 is a constant depending solely on the ~-shape reqularity of T and the
parameters of the continuous problems.
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6.2 The Main Result

The following theorem is the main result of this chapter. It states that the inverse of the
Galerkin matrix A of (6.1.23) can be approximated at an exponential rate in the block
rank by an H-matrix. The proof is given in Section 6.5.

Theorem 6.2.1. Let A be the stiffness matriz given by (6.1.23) and n > 0 be a fized
admissibility parameter. Let P be a partition of T X I based on the cluster tree Tz and
the admissibility parameter n (due to the symmetry of the matriz A, the admissible cluster
pairs are allowed to be identified using the weaker admissibility condition from Remark
2.6.4). Let h < hg with hy defined in Lemma 6.1.1. Then, there exists an H-matriz By
with blockwise rank r such that

HA_l - BHHz < CapxCsp depth(TI)h_le_b(rlﬂ/lnr)-

The constants Capx, b > 0 depend only on k, Q, n, the y-shape reqularity of the quasi-
uniform triangulation T. The constant Cs, (defined in (2.6.3)) depends only on the parti-
tion P.

Remark 6.2.2. The low-rank structure of the far-field blocks allow for efficient storage
of H-matrices as the memory requirement to store an H-matrix is O(Csp depth(Tz)rN).
Standard clustering methods such as the geometric clustering (see, e.g., [HHacl5, Sec. 5.4.2])
lead to balanced cluster trees, i.e., depth(Tz) ~ log(/N) and a uniformly (in the mesh size
h) bounded sparsity constant. In total this gives a storage complexity of O(rN log(N)) for
the matrix By rather than O(N?) for the fully populated inverse A~ .

6.3 Decompositions: continuous and discrete local

The Helmholtz as well as the regular decompositions play a key role in the analysis of
H(curl)-problems. In this section, we introduce four different decompositions, the classical,
continuous Helmholtz decomposition (see, e.g., [Hip02, Lem. 2.4] and [Hip15, Thm. 11] ), its
discrete counterpart (see, e.g., [GR86, Corollary 5.1] and [Mon03, Sec. 7.2.1]), the regular
decomposition (see, e.g., [Hip02, Lem. 2.4] and [Hipl5, Thm. 11] ) and a localized discrete
version (Definition 6.3.10).

6.3.1 Helmholtz decomposition

The Helmholtz decomposition states that every vector field E € L?(Q2) can be decomposed
into a gradiant and a divergence-free part, see e.g. [Mon03, Sec. 3.7, Sec. 4.4].

Lemma 6.3.1. (Helmholtz decomposition) For every vector field E € L*(Q), there exists
the following (unique) orthogonal decomposition

E=Vxz+Vyp z € H(curl,Q), ¢ € HY(Q).
Particularly, for E € Hy(curl, Q) we have the following orthogonal decomposition
E=Vx2z+Vy  z€ Hy(curl,Q), ¢ € H(Q),

such that z is a divergence free vector field.
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6.3.2 Regular decompositions

The following lemma follows from the seminal paper [CM10]. The notation follows [CN10]
in that H%(R3), s € R, denotes the spaces of distributions in H*(R3) that supported by

Q and that C%O(R?’) is the space of C*(R?)-functions supported by Q. We introduce the
space

HE (curl) := {E € H5(R?) : V x E € H5(R?)}
equipped Wlth the norm HEHH?—Z(CUI“I) = HEHH%(R?’) + Hv X EHH%(R3)
Remark 6.3.2. From [CM10, p. 301], for any s € R, the space H%(]R‘g) is naturally iso-
morphic to the dual space of H™*(Q2). Hence, for s > 0, we have the alternative norm
equivalence ||V||HS§(1R3) ~ HVHﬁs(Q) = ||v*|lezs(rs), where v* is the zero extension of a func-
tion v defined on €. n

Lemma 6.3.3. Let Q) be a bounded Lipschitz domain. There exist pseudodifferential opera-
tors Ty and Ty, of order —1 and a pseudodifferential operator L of order —oo on R? with the

following properties: For each s € Z they have the mapping properties Ty : H%(]R?’) — Hg‘l (R3),

Ty : H%(R?’) — HsﬁJrl (R®), and L : H%(R?’) — Cg (R?) and for any u € HZ (curl) there
holds the representation

u=VT(u—Ty(V xu))+ T2 (V xu)+Lu. (6.3.1)

Proof. In [CN 10, Theorem 4.6], operators T, To, T3, Lj, Lo with the mapping properties
Ty : HE(R?) — HEM (R?),
T, : H3(R?) — HY™ (R?),
Ts : H3(R?) — HE (RY),

Q
. 3 3 _
L,: HS (R) = C¥ (R%), (=12,
are defined, and it is shown that
VTiv+ Ty (Vxv)=v—Lv, (6.3.2a)
V xTov+Ts(V-v)=v—Lyv. (6.3.2b)

Taking v =u— T2 (V x u) in (6.3.2a), we obtain
VTi(u—Ty(Vxu))+Te(Vx(u—Ty(V xu)))
=u—Ty(Vxu)—L;(u-—Ts(V xu)). (6.3.3)
Since V X u is divergence free, we obtain from (6.3.2b) with the choice v =V x u

Tg(Vx(u—Tg(V><u))):Tg(qu)—Tg(Vxu—LQqu)
:TQ (LQ (V X U_)) =: Lgu7

where, again, L3 is a smoothing operator of order —oo mapping into CF (R3). Inserting
this into (6.3.3) leads to

VIi(u—Ty(Vxu)+Te(Vxu =u—L; (u-Ts(V xu)) — Lsu.
Choosing Lu := (L; (u — T2V x u)) + Lzu, we arrive at the representation (6.3.1). O
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Corollary 6.3.4. Let Q C R? be a bounded Lipschitz domain. Then, for every s > 0
there is a constant C (depending only on 2 and s) such that every w € Hj(curl, ) can be
decomposed as w= z+ Vp with z € H%H(R?)) and p € H%H(R:s) together with
HZHH%H(Rs) < Ol s eur HVPHH%(R3) < CHUHH%(n@p (6.3.4)
Proof. From Lemma 6.3.3 we can write u = z + Vp with
z:= Ty (V x u) + Lu, p:=T1(u—T2(V xu)).

The stability estimate for z follows from the mapping properties of the operators T9 and
L. The mapping properties of T yield

VPl ) S lla = Ta(V x w)llgs rs) < [[ullag sy + IV % uHHsﬁfl(Rs)
< s
~ HUHHﬁ(RBy
where the last step follows from the mapping property Vx : Hsﬁ(R?’) — Hsﬁ_l(R?’). Ol
In the following, we present the regular decomposition. The regular decomposition states

that every vector field in Hp(curl,2) can be decomposed into two vector fields such that
one of them belongs to Hj(2) and the other one is divergence of a function in H{ ().

Lemma 6.3.5 (Regular decomposition). Let Q C R? be a bounded Lipschitz domain. Then
there is a constant C' > 0 depending only on Q such that any E € Hy(curl, Q) can be written
as E= z+ Vp with z € Hy(Q) and p € H}(Q) and

12l z1 0y < ClIEN Hy(eurr,)s 12l 2 () + IVPl 22(0) < CllEl 20

Proof. Regular decompositions are available in the literature, see, e.g., [Hip02, Lem. 2.4]
and [Hipl5, Thm. 11]. The statement that [z[lp2q) and |[Vp|[yz2(q) are controlled by
|E[|g2(q) is a variation of these estimates. For a proof, see [C1'V20, Thm. B.1] or corol-
lary 6.3.4. O

The function z of the regular decomposition provided by Lemma 6.3.5 is not necessarily
divergence-free. This can be corrected by subtracting a gradient. To that end, we introduce,
for a given open set D C Q and a chosen 7 n € L>®(Q) with 7 = 1 on D the mapping
L%(Q) — H{(Q): z — ¢, by

(Vor, V) 2y = (72, Vo) 12y Vv € Hy(9). (6.3.5)
Lemma 6.3.6. The mapping L*(Q) > z+ ¢, € HY(Q) has the following properties:
(i) llezllmqy < Cllill Lo @) 12l g2 (supps)» where the constant depends only on €.
(ii) (z— Vg, VU)LQ(E) =0 for all v € H}(R).

Proof. By construction, we have |[V:||p2q) < [72[ly2(q). The constant C' in statement
(i) reflects the Poincaré constant of 2. The property (11) follows by construction. O

Remark 6.3.7 (classical Helmholtz decomposition). Selecting D = Q and correspondingly
n = 1 yields the decomposition E = (z — V¢,) + V(p + ) with the orthogonality (z —
Vo, V(p+¢z)) 12 = 0 and [ 2= Vezllaeulo) S |ElaEuo), 2=Vealliz ) S [EllLz )
V(P + wa)llzz) S I1EllLzo)- .
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6.3.3 Discrete and local discrete Helmholtz decompositions

We introduce the space of discrete divergence-free functions by
Zo(T) = {zn € Xno(T,Q) : (2n, V)20 =0 G € Sy (T)}

Lemma 6.3.8. (Discrete Helmholtz decomposition) ( [ RS0, Corollary 5.1] and [Mon03,
Sec. 7.2.1]) For the space X} o(T,2), we have the following discrete Helmholtz decomposi-
tion

Xp0(T,Q) = Zo(T) & V Sy (T).
Moreover, for E, € Xpo(T,), the decomposition Ep = z, + Vpy with z, € Zy(T),
Dh € Sé’l(T) is stable, i.e.,
120l fo (eurt,0) T VPRI 2(0) < CUER gy (cur0) -

Regular decompositions as in Lemma 6.3.5 can also be done locally for discrete functions.
To that end, we introduce the localized spaces of piecewise polynomials:

Definition 6.3.9 (Mesh-conforming region, localized spaces). For D C R3, a simply con-
nected domain, set

T(D):={TeT: |TNnD|>0},

D= int< U T).

TeT (D)

We call D the mesh-conforming region for D. The spaces localized to D are given by

SYYT, D) = {pnl5 : pn € S5 (T)}, (6.3.6)
Xin(T,D) == {En|5 : Ep € Xpo(T,Q)}. (6.3.7)

Definition 6.3.10. (Local discrete regular decomposition) Let D C €2 be a simply con-
nected domain and D be the corresponding mesh-conforming region. We denote by H% :

L?(D) — VSY(T, D) the L?(D)-projection onto VS (T, D) given by

(p—IIEp, Vo) o5y =0 Yon € ST, D). (6.3.8)

Let n € C*°() be a cut-off function with 0 <7 < 1 and n = 1 on D. Let E;, be such
that nEj, € Ho(curl,Q) as well as Ey|5 € Xp(T, D). Decompose nE;, € Hy(curl, Q) as
nEy, = z + Vp, where z € H{(Q) and p € H}(Q) are given by Lemma 6.3.5.

Then, the local discrete reqular decomposition is given by Ep = z, + Hng on D with

zy, = Ejp — Hng. We write Vpp, = Hng for some pj, € SHH(T, l~))

For future reference, we note that

v
el

L2(D) < HPHL2([))- (6-3'9)
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6 H-matrix approximability of inverses of FEM matrices for the time-harmonic Maxwell equations

Remark 6.3.11. 1. The function p; € 5’1’1(7',15) that satisfies Vp, = H[Y)p, is not
unique. However, its gradient Vpy, is unique.

2. Due to the cut-off function 7, the decomposition depends on Ej, on supp n only, which
is quanitified in the stability assertions of Lemma 6.3.15.

3. The local regular decomposition provides for a function Ej, that is a discrete function
on D two representations in view of n = 1 on D, namely, Ej, = (z + Vp) |5 = 2z, +Vpy,.

4. For Ej, € X3, (T, Q) the decomposition Ej, = (z— V,) + V(p+ ¢5) of Remark 6.3.7
yields, upon setting Vpy, = II§ V(p, + p) € VS&’I(T, Q) C Xpo(7T,9Q) and zp, =
E;, — Vpy, € X3, 0(T,Q) the decomposition E;, = zp, + Vp;, with

<Zh7vPh>L2(Q) =0, th”L2(Q) + HVPhHL2(Q) S HEhHL2(Q)a
HZhHH(curl,Q) 5 ”EhHH(curl,Q)v

which is a discrete Helmholtz decomposition as described in Lemma 6.3.8. =

The following lemma formulates a local exact sequence property.

Lemma 6.3.12. Let D C R3 be an open set such that DN is a simply connected Lipschitz
domain and D and T (D) be defined according to Definition 0.5.9. Assume furthermore that

D NT is simply connected for all T € T (D) and that ]_N)D 00 is connected. (In particular,
the empty set is connectgd.) Then, for all vy, € Xp(T,D) with V x vy, =0 on DN, we
can find a @, € SYY(T, D) such that v, = Vy,.

Proof. We recall from, e.g., [Mon03, Thm. 3.37] the following commuting diagram property:
for a simply connected Lipschitz domain w the condition V x v = 0 implies tv = V4 for
some ¢ € H'(w); furthermore, 1 is unique up to a constant. The discrete commuting
diagram property for a tetrahedron T is: if to € N7(T) satisfies V x o = 0, then there is
Yy, € P1(T) with to = V.

Introduce SY0(T,D) := {4 € L2(D): ¢plr € PUT)VT € T(D)}. The condition
V x v, = 0on DN implies v, = Vi, for some ¢, € H' (DN Q). The function ¢y, is
unique up to a constant, which we fix, for example, by the condition [ pra Ph = 0. For
each T € T(D) the condition V x v, = 0 on T implies the existence of ¢y € Pi(T)
with v, = Vg7 on T. The polynomial ¢, 7 is unique up to a constant, which we fix by
requiring [, @n1r = [prr ¥h- By the uniqueness assertion we have ¢p|pnr = @nr|prr-

Define @, € SYO(T, ﬁ) elementwise by ¢p|r = @n 7. We note @p|p = ¢p. Since @y, is
piecewise polynomial (hence smooth), ¢,€ H'(D N Q) is continuous on D N Q. We next

show that @y, is continuous on D. Let 9;1 and gh be the sets of vertices and edges of T (D).
Since @y, is a piecewise polynomial of degree 1, it suffices to assert continuity at the vertices
v € Vp. As @y, is continuous at vertices v € D, we have~t0 show the continuity at vertices
v € D\ D. Given such a vertex v/, select an edge e € &, emanating from v such that its
other endpoint v satisfies v € D. Let T, T" € T (D) share this edge e. By the continuity
of @ on D we conclude (¢p|7)|lenp = (@rl|17)|enn. Since @p|r and @yl are linear, we
conclude that (¢n|7)le = (Pn|77)|e- This implies that ¢y is continuous at v. In total, we
have obtained that @, € S0(T, D) is continuous at the vertices of 7(D) and thus is in
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HY(D). By fixing nodal values to be zero for nodes of T that are not nodes of 7(D), we
obtain an element of SLL(T) that coincides with @, on D. If DN Q = 0, then &y is in
fact in Séi(T). If DN OQ # 0, then the fact that vy, satisfies boundary conditions and the

fact that DN A€ is connected implies that ¢y, is constant on DN O, This constant can be
fixed to be zero and then all other nodal values of T can be set to zero to obtain a function
$n € Sg(T) with V@), = v, on D. O

In order to prove the following lemmas, we need to introduce some projections and their
properties. Let D C R? be a simply connected Lipschitz domain and D and 7(D) be
defined according to Definition 6.3.9. We define the space

H(div, D) := {U eL?(D): V-Uc L2(15)} .

To define discrete subspace, let RT1(T) := {p(x) + ¢(x)x : p € (P1(T))3, ¢ € P1(T)} be
the classical lowest-order Raviart-Thomas element defined on T and introduce

Vu(T,D) :={U, € H(div,D) : Up|lr € RT{(T) VT € T(D)}.

On D the Raviart-Thomas interpolation operator tv X H' (D) — Vu(T,D) is defined
element-wise by 1 5U|7 := o7 U, where the elemental interpolation operator tor: HYT) —
RT,(T) is characterized by the vanishing of certain moments of U — topU, viz.,

/(U—mTU)-quAzo Vg € P1(f), Vf facesof T € T,
f

where v is the unit normal to f and dA denotes the surface measure on f. Define the space
D,(T,D):={UecHYD): VxUeHYT) VI eT(D)},

and the Nédélec interpolation operator t7 : Dp(7, l~?) — Xn(T, l~)) elementwise by t5U|7 :=
trU, where the elemental interpolant tv7U € N7 (T) is characterized by the vanishing of
certain moments of U — v U, viz.,

/(U—‘cTU)-Tde:() Vedgeseof T € T;

e

here 7 is a unit vector parallel to the edge e. A key property of the operators v and toj
is that they commute, i.e., (see, e.g., [Mon03, (5.59)])

wsVxU=VxtzU VUEeDy(T,D). (6.3.10)

Lemma 6.3.13. [Mon03, Thm. 5.41] Let T € T. Then, for U € H'(T) with V x U €
HY(T) we have

|U= 0 Ulgay S b (100 + 19 % Ulligry)
IV X (U=trU)llg2ry S IV X Ul gy -
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6 H-matrix approximability of inverses of FEM matrices for the time-harmonic Maxwell equations

In the following, we show local stability and approximation properties for the local dis-
crete regular decomposition of Definition 6.3.10. This will be based on Lemma 6.3.12 with
D = Bpg, where Bp is a box with side length R. It is an important geometric observation
that, due to the assumption that €2 is a Lipschitz polyhedron, the intersection B N2 is a
Lipschitz domain and the intersection BrMN€2¢ is connected provided R is sufficiently small.
Then, the additional assumptions on D = 2 N Br in Lemma 6.3.12 can be satisfied. We
formulate this as an assumption on R in terms of a number Ry .« that depends on §2:

Definition 6.3.14. R, > 0 is such that for any R € (0, Rpax] and any box Bgr with
|Br N 2| > 0, the intersection Br N Q is a Lipschitz domain and Br N Q¢ is connected.

Lemma 6.3.15 (stability of local discrete regular decomposition). Let ¢ € (0,1), R €
(0, Rimax] be such that % < §, and let Br and B1.)g be two concentric bozes. Define
T(Bgr) and Bpr according to Definition 6.5.9. Let n € Whee(Q) be a cut-off function
with suppn C BiopN§, n =1 on Br, 0 < n < 1, and ||VT7||L<><>(Q) < Cni. Let
E;, € H(curl, B(14.r N Q) be such that nEy, € Hoy(curl,(2) as well as E, € Xp(T, Bg).
Let nEp, = z+ Vp be the regular decomposition of nEy given by Lemma 6.3.5 and let z,
and Vpy, be the contributions of the local discrete reqular decomposition of Definition 6.5.10
with D = B and D= ER there. Then, Ey = z, + Vpn, on BRN 2, and the following local
stability and approrimation results hold:

1
VPRl g2 (Brno) + 120l Bcun, Brro) < C <”V X Enllp2B,, o pn0) + ) HEh||L2(B(1+E>RﬂQ)) ;
|z — Zh||L2(BRmQ) <Ch HzHHl(B(HS)RmQ)

1
<Ch (HV X Epll 23, pne) + 7 HEhHL2(B(1+E)RﬂQ)>

where the constant C > 0 depends only on ), the vy-shape reqularity of the quasi-uniform
triangulation T, and C,,.

Proof. The proof is done in two steps. We note that the condition on the parameter e
ensures that Bp C Bi4e)r-

Step 1: In this step we provide a proof for the stability estimate. Recalling the stability
estimate Lemma 6.3.5 and using the product rule for the curl operator, it follows that

12l ez () + VPl L20) S 17l (cur )
S IV X Enllez s, wne) IVl e84 mne) IBrllL2 s, pno) + 1Eallz s, wne)
eR<1 1
S IV X Enllz s, pne) + o5 IEall2 s, ane) - (6.3.11)
Since Vpy, satisfies (6.3.8), we get with the aid of (6.3.11)
1

VPRl 2Bane) < IVPIL2(Bane) S IVPIL2@) S IV X Enlliz s, pee) + 5 IBbll2,, . poe) -

The definition of zj, gives us

1
HZhHH(curLBRmQ) SV X Eh”L2(B(HE>RmQ) + R ”EhHL?(B(HE)RmQ) ‘
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The combination of above inequalities gives us the desired local stability result.

Step 2: To prove the approximation property, we first need to ascertain the existence of
on € SYY(T, Br) such that zj, — t5,%2 = Vep. To that end, we note that z;, € D(T, Br),
use the commuting diagram property (6.3.10) of ¢ Br and to B and the fact that . is a

projection operator to compute on B R:

V x (Zh —tERZ) =V Xz, —mERV xz=V X (Eh‘ER) —mERV X (Eh|§R)
=V x (EhIER) -V X th(EhIER) =0.

Lemma 6.3.12 then provides the existence of ¢, € SH(T, ER) such that z, —tz 2z = Vo,

Since py, satisfies (6.3.8), we get from z+Vp = E;, = z+Vpp on Bp, and the approximation
property of 5, given in Lemma 6.3.13

) o B o _
||Z _ ZhHLQ(ER) — <Z tBRZ, Z Zh>L2(§R) + <tBRZ Zp,Z Zh>L2(§R)
- <Z T 5% % Zh>L2<'B“R> = (Veon Vipn = Pllraay

= —tx — < — =
<z U5, % 2 Zh>L2(§R)NHZ t. %

L2 12~ 2l
Sh HZHHl(B(H_E)RﬁQ) |z — Zh||L2(§R) .

The combination of the above inequality and (6.3.11) implies
|z — ZhHL2(BRﬂQ) <z - ZhHL2(’B'R) Sh HZHHl(B(H_E)RmQ)
1 (IV % Bullans e + 2 Bz, ey )
which finishes the proof. O

6.3.4 The Caccioppoli-type inequalities

Caccioppoli inequalities usually estimate higher order derivatives by lower order derivatives
on (slightly) enlarged regions. The following discrete Caccioppoli-type inequalities are
formulated with an h-weighted H(curl)-norm and an h-weighted H'-norm. For a box Br
of side length R > 0, we define the norms ||-[[.,  and [[|-[l, , r (we note that the subscripts
¢ and g abbreviate ‘curl’ and ‘gradient’) as follows:

h? 1
IO, 5 = 2z IV x Uli2mpna) + 72 Ul 2spn0) YU € H(curl, BN Q),
(6.3.12)
2 h2 2 1 2 1
lellg . = Fa 1Vullz(sane) + 52 [ullz2(8ane) Vu € H (BrRNQ). (6.3.13)

We say that E, € X,(T, 15) is discrete L-harmonic on D if a(Ep,vy) = 0 for all
vy, € Xp,0(7T,Q) with suppvy, C D; such a space will be formally introduced as Hc,h(f))
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below. For any bounded open set B C R?, we define

’Hc’h(B N Q) = {Uh S H(curl, BN Q) : Hﬁh S Xh70(7-, Q) s.t. Uh‘BmQ = ﬁh‘BmQ,
a(Up, ¥p) =0 V¥, € Xp0(T,Q), supp ¥, C BNQY,

and

Hgﬁ(B N Q) = {ph € Hl(B N Q) : Hﬁh S Sé’l(T) s.t. ph‘BmQ = ﬁh‘BmQ, (Vph,v¢h>L2(BﬂQ) =0,
Vib € Sy (T), suppy, € B OIS,

The following lemma provides a discrete Caccioppoli-type estimate for functions in H. 5, (B(1+a) rN
0):

Lemma 6.3.16. Let € € (0,1) and R € (0,2diam(Q2)) be such that % < §. Let Bg and
B14¢)r be two concentric boxes and Ep, € th(B(Hg)RﬂQ). Then, there exists a constant
C depending only on k, 1, and the y-shape reqularity of the quasi-uniform triangulation T
such that

1+e¢
€

||V X EhHLQ(BRﬂQ) <C “|EhH|c,h,(1+s)R‘

Proof. For brevity of notation, we write v, instead of vy (). Let n € C°°(Q) be a cut-off
function with suppn C B(14c/9)r, 0 <n < 1,n=1o0n BpNQ, and [|[V/n|pe(q) S (eR)™?
for j € {0,1,2}. We notice supp(n’E;) C B14e/2)r N2 and since 4h < eR we have
supp v, (n?Eyp,) C B(116)r N §2. The proof is done in two steps.

Step 1: Using the vector identity

(V< Ep) - (VxE) =V xEy- (V x (°Ey) — Vn? x Ey)
= (VX Ey) -V x (PEp) — 29(V x Ey) - (V) x Ep),

we get

IV % Eh”%,Q(BRmQ) < 7V x Eh”il’(g)
= a(En, n°Ep) + £(1En, 1ER) 12 500y — 201V % En, Vi X En)12(p,00)
< Rea(By, Bn) + |8l [EnlZagn, . noo)
+ 210V X Epll2gn0) IV X Enllyz g ,00) -
Young’s inequality allows us to have
[V x Eh”iz(BRmQ) < [InV x EhHiQ(Q)

2
< Re a(Eh7772Eh) =+ ||""||Loo ||EhHL2(B(1+€)RmQ)

1
+5 IV % Enllf2sun0) + 21V X Brllf2p,00) - (6.3.14)
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Kicking back the term |7V x Ep|[|2(5,nq) to the left-hand side, we arrive at

2 2
IV x EhHL2(BRmQ) < [[nV x Eh”L2(Q)

2 2
< 2Rea(Bn, 1°En) + 2(||6]l o + 21Vnll70) 1Ballt2 5, proy -
(6.3.15)

Since ||k ;o + V7|30 < (eR)2 with implied constant depending on &, we are left with
estimating Re a(nEp, nEp).

Step 2: Using the orthogonality relation in the definition of the space H n(B(14c)r M),
we get

Rea(En, 1°En — tn(1°En)) SIV X Enllees,,, pnoy IV X (PEn = th(nEp)) HLQ(B(HE)RQQ)
(6.3.16)

2 2
+ ||EhHL2(B<1+6)RﬂQ) H77 Ep —tn(n Eh)HLQ(B(H_E)RﬁQ) ’

For each element T', Lemma 6.3.13 yields

Hn2Eh — th(n2Eh)Hiz(T) + HV X (7]2Eh - th(TIQEh))HiQ(T) < h? (|T72Eh|%{1(T) + [V x (anh)‘%Il(T)) .

(6.3.17)

To proceed further, we observe that E|r € N1(T) has the form E, = a+ b X x so that
curl Ej |7 = 2b and hence E?:l |02, En| < |V x Ep| pointwise on T" so that we get with an
implied constant independent of the function 7

> [0 L S 19V Ballgery - (6.3.18)
= L2(7)
Using (6.3.18) we obtain
1
0 Enler () S R 1Enllpzery + 17V X Epllgzr).- (6.3.19)

Computing V x (n?Ep,) = Vn? x Ej, +1?V x Ey, using the product rule and the fact that
DYV x Ej) = 0 since V x Ej, is constant gives again in view of (6.3.18)

1 1
|V x (772Eh)’H1(T) < @ ||EhHL2(T) + R 7V x EhHLQ(T) : (6.3.20)

Summing the squares of (6.3.19), (6.3.20) over all elements T with TN suppn # @), which
is ensured if we sum over all T' with T' C B(j4)r N €2, and inserting the result in (6.3.17)
yields

Rea(Ep, 7°Ey — th(n°En)) S (HV X Enll2(p . pn0) + ||Eh||L2(B<1+E)RﬁQ)) X

h 1
N7 <€R 1EnllL2 (s, pne) T 17(V X Eh)HL?(B(HE)RﬂQ)) :
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Using the definition of the norm [[-[| ., r and Young’s inequality, we obtain
Rea(Ep, n°E 2B)) < e 2 (= Bl WV X B2
ca(Bp,n"En — o (n"En)) S 77 | 3 IBrlltz(p, o pne) + 52 IV < Brllias, o pro)

h
-1
te <R IV x Eh”L2(B(1+E)RﬂQ) [ZARS EhHLZ(B(Hg)ROQ))
_ 2 _
S e NBAllch 10 + e IBLlle a0y r 1NV X BrllLzs,, . ane) -
Inserting this in (6.3.15) produces

2 2
|V x Eh||L2(BRmQ < IV x EhHL2

S e IR h4epr +e”

c,h,(14¢)R an X EhHLz(B 14+e)RND) *

Using again Young’s inequality to kick the term ||[nV x Eh||L2( Basoyr9) of the right-hand
side back to the left-hand side produces the desired estimate. O

For functions in H,, h(B(1+s) rNQ), a discrete Caccioppoli-type estimate has already been
established in [FMP 15, Lem. 2], which we, for sake of completeness, state and prove in the
following.:

Lemma 6.3.17. Let ¢ € (0,1) and R € (0,2diam(2)) be such that % < $. Let Br and
B(14¢)r be two concentric bozes and py, € Hgpn(B4er N Q). Then, there exists a constant
C > 0 depending only on Q and the ~y-shape regularity of the quasi-uniform triangulation
T such that

_l’_
||Vph||L2(BRnQ) <C— |||ph”|gh (1+e)R

Proof. The proof follows from [FNP 15, Lem. 2] and we only mention the key parts.

Let I5%: HY(Q) — Sé’l(’T) be the Scott-Zhang projection given in [SZ90a]. Let n €
SLL(T) be a piecewise linear cut-off function with supp 7 C B(14c/2)r N2, 0 < p < 1,
n=1on BpNQ, and ||V77”Loo( Blisor) < sR First, we notice supp(n?pn) C BayeoyrNQ

and since 4h < R, then we conclude supp Isz(n pr) C B14e)r N 2. Then, in view of
Ph € Hgn(B4e)r NSY), we can estimate
2 2
IVPnliLzsone) S IV 0PR)lL2s . pro) (6.3.21)
2 SZ, 2 2
S <vPha V(n“pn — I°*(n ph))>L2(B(1+E)RnQ) + ||(V77)thL2(B(H_E)RmQ)

1

2 SZ( 2 2

SVl e [V 020 = PP, o e 19I5y e
(6.3.22)

The first term on the right-hand side can be estimated in the same way as in [FMP15,

Eq. (25)], i.e

2 S 2 _ K 2 h? 2
HV(U pn—17%(n ph))HL2(Q) ~ W ||nvph||L2(B(1+E)RnQ) + W ||ph||L2(B(1+€)RmQ) :

(6.3.23)
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Therefore, applying Young’s inequality we have

h h
2
IVl z2(B, s w0y SIVPRlIL2 (8, pe) <(5R)2 lPnllez s, o) + 25 anPhHLQ(B(HS)ROQ)>

h? 5 1 )
SC ((ER)Q ||Vph||L2(B(1+E)RmQ) + <6R)2 ||ph||L2(B(1+E)RﬂQ)>
1 2
+ ) ||77vPh||L2(B(1+E)RmQ) . (6.3.24)

Moving the last term in the right hand side of (6.3.24) to the left-hand side and inserting
this estimate into (6.3.21), we get the desired result. O

6.4 Low-dimensional approximation of discrete £-harmonic
functions

In this subsection, we apply the Caccioppoli-type estimates from Lemmas 6.3.16 and 6.3.17

to find approximations of the Galerkin solutions from low-dimensional spaces. As an im-

portant tool in this section, we first start with the Poincaré inequality as given in [G'T77,
(7.45)]. Let D be an open subset of Q. Then, for u € H!(Q2) we have

),
U — — udr
D Jp

In the following, we consider low-dimensional approximation of discrete harmonic functions
in Lemma 6.4.1 that generalizes [FMP 15, Lem. 4].

< |D|7*3 (diam(D))?* ||Vl 12 (g (6.4.1)
L2()

Lemma 6.4.1. Let e € (0,1), ¢ € (0,1), R € (0,2diam(Q?)), and m € N satisfy

h qe
— < 6.4.2
R ~ 8mmax {1, Capp}’ ( )

where the constant Cypyp is given in [FN P15, Lem. 3, Lem. 4] and depends only on €, and
the ~y-shape regularity of the quasi-uniform triangulation T. Let Br, B(14¢)r, B(142:)r be
concentric boves. Then, there exists a subspace Wy, of Hgpn(Br N ) of dimension

14+ 1\?
dim Wy, < Chim <+€> m*,
q

with the following approximation properties:

(i) If up € Hgn(Bayeyr N Q) and B(iqeyr N Q=0 then

_min ||up — Up|
ew,

Um m

-1
g < Cappd™'e IVunll 2By, g -

(i) If up € Hon(Bayaeyr NQ) and Biyeyp N Q° # D then

. ~ ! m_—3
~H£I}Il/ llun — ummg,h,R < Cappd'e HvuhHL2(B(1+2s)RmQ) )

Um m
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Here, C4. . C’gpp depend only on ) and the vy-shape reqularity of the quasi-uniform trian-

gulation T .

Proof. We distinguish two cases.

Case 1: Let B(1r NQ° # (). For the Lipschitz domain  in [Ste70, Chap. VI, Sec. 3,
Thm. 5] asserts the existence of a bounded linear extension operator Eqe : H'(Q°) —
H'(R3) such that Egcv|qe = v for each v € HY(2). Then, the fact that Q° is Lipschitz
(see [HIK'TO8, Thm. 2| for details) implies the existence of a constant ¢ > 0 depending only
on Q such that for all x € Q¢ and all r € (0,1) we have |B,.(x) N Q¢| > er?, where B,.(x)
denotes the ball of radius r centered at z. Selecting an z € B(14)r N Q¢ and noting that
B.gy2(7) C B(142:)r, We conclude

|B(142e)r N Q| > |Beg(x) NQ°| > c(eR)3.
Due to (6.4.2), [FMP15, Lem. 4] provides a subspace W, of H, ,(Br N 2) such that

_minlup =l g m < 6" lunllyp e v (6.4.3)

m m

with dimension

14+ 1)’
dim Wi, < Cdim ( re > m47
q

where Cyin, depends only on 2, and the ~v-shape regularity of the quasi-uniform triangula-
tion 7. We denote by uj, the extension by zero of uy to Q°. It follows from the Poincaré
inequality as given in [GT77, (7.45)] and |B(142:r N Q| > c(eR)? that

1 1 T
E ||uh||L2(B(1+s)RﬁQ) < E ||uh||L2(B<1+25>RmQ) = E ”uh||L2(B(1+25>R)
B(1420)r]
< | (1+26)R V]
~ LB
eR|Bya5r N 90‘2/3 (Bt )
(14+2e)3R3 _ e
S T GRP IVahlLB g S €0 IVERlIL2 (B, 5 - (6:44)
Combining (6.4.4) and (6.4.3) leads to
v Héll?/ een, = Um”|97haR S ||vuh||L2(B(1+2e)RﬂQ) : (6.4.5)

Case 2: Let B(1,op N2 = (). We note that constant functions are in Hy,(Br N Q).
Hence, by [FMP15, Lem. 4] there is a subspace Wy, C H, n(BrN§Y) such that 1 € W, and

. e _ . e o B
;in llun = @mllyp r L Jnin ear, =t + €l g, < ¢ minfllun = cllgpq4e)r
(6.4.6)

with dimension

1+ 1\? T+ 1\?
dimeSCdim( te > m4+1§< te > m.
q q
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A standard Poincaré inequality (i.e., (6.4.1) with D = B(;;.)g) implies

1

up — ———
" |B(1+€)R’ Bite)r

Up,

min s = ell 142 <
g,h,(1+e)R

< ‘B(1+5)R|

S IVunlly2s o) T hIVunllgz s Q
€R|B(1+5)R‘2/3 (B(14e)rNY) (B(14e)rN)

Set ||vuh||L2(B(1+E)RmQ) : (6.4.7)
Combining (6.4.7) and (6.4.6) completes the proof. O

Remark 6.4.2. The factor 2 instead of e~! for boxes By near the boundary is due to us
not assuming a relation between the orientation of the boxes and the boundary. Aligning
boxes with the boundary allows one to better exploit boundary conditions and improve the

3

factor e°. "

In the following, we will need a simplified version of Lemma 6.4.1:

Corollary 6.4.3. Let R € (0,2diam(Q2)), € € (0,1), ¢ € (0,1). There are constants C,

dim
and C;’pp depending only on Q) and the vy-shape reqularity of the quasiuniform triangulation
T such that for any concentric boxes Br, B112:)r and any m € N there exists a subspace

Wy C Hgn(BrN Q) of dimension
dim W,,, < C%..(eq) 3m?
such that for any up € Hgpn(B1oe)r N Q) there holds

: ~ -3
it N = Tl < g™ V0 25, ) (6.4.8)
Proof. The case that the parameters satisfy (6.4.2) is covered by Lemma 6.4.1. For the
converse case h/R > qe/(8mmax{l, Capp}) we take W, := Hy,(Br N Q) so that the
minimum in (6.4.8) is zero and observe in view of the quasi-uniformity of 7

m

s -3..3 —-3..4
) = et < (et

R 3
dim’Hg’h(BRﬂ Q) S <h> SJ <
OJ

If Ej, is locally discrete divergence-free, then the function V(p+ ) in the decomposition
E;, =2z— Vo, + V(p+ ¢z) given by Definition 6.3.10 is also locally discrete divergence-free

since z — Vi, is divergence-free. The following lemma shows that also H% V(p+ ¢z)
(142¢)R

is discrete divergence-free:

Lemma 6.4.4. Let ¢ € (0,1), R € (0,2diam(?)), and let Byjor, j € {0,1,2}, be
concentric bozes. Introduce T (B(i49:)r N§Y) and E(H_QE)R according to Definition 6.3.9.

Let n € C*(Q) be a cut-off function with n =1 on B(i19.)r- Let Ey be such that nEy, €
Hy(curl, Q) and Ej, € Hepn(B(i42:)r N §2). Decompose nEy, € Hy(curl,{2) as nEp = z+ Vp
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with z € HY(Q) and p € H}(Q) according to Lemma 6.3.5. Let the mapping ¢, : Hy(Q) —
HE(Q) be defined according to (6.3.5) taking 7 = n there. Then, Hg V(p + ¢2) is

" (14+2¢)R
discrete divergence-free on B(119:)R, i-€.,

(I

B(1126)r

=0 VY, €SVY(T, §(1+28)R)7 supp v, C §(1+25)R-
(6.4.9)

V(p+¢z), Vup) L*(B(142¢)R)

Proof. To see (6.4.9), we use E; € Hen(Bgor N Q) and (6.3.8) so that for v, €
ST, E(HQE)R) with supp vy, C §(1+25)R we have
0= a(Eh, Vvh) = <V X Eh, V X vvh>L2(§(1+2E)R)
= —H<Eh, Vvh>L2

= —k(nEy, Vo)
= —k(z — Vs + Vo, + Vp, Vo)

— K <Eh7 vvh>L2(§(1+2€)R)

) = —k{z + Vp, vUh>L2(

(B(142:)R) L2(B(1420)R B(i42¢)R)

L2(B(142¢)Rr)

_ _ v B
= —r((z = V) + HB(1+26)R(VSOZ +Vp), vvh>L2(B<1+2s)R)

Lemma 6.3.6 . v
B H<HB(1+2E)R(V¢Z +Vp), vvh>L2(

§(1+25)R)’
which finishes the proof. O

We will make use of the orthogonal projection
Ty, : (H(curl, B 0 Q). [l p) = (Hen(Br Q). [l p)- (6.4.10)

Lemma 6.4.5 (Single-step approximation). Lete € (0,1) , R > 0 be such that (1+4¢)R €
(0, Rmax], and q € (0,1). Let Buyjeyr, § = 0,...,4, be concentric boxes. Then there
exists a family of linear spaces Vi m C Hepn(Br N Q) (parameterized by H > 0, m € N)
with the following approzimation properties: For each Ejp € Hepn(B(iyayr N Q) there is a
El,h S VH,m C Hc,h(BR N Q) with

(i) (En — Evp)|Bpna € Hen(BrNQ),

(ii) |Bn — Bl n<Cllop (e + g || By

e,h,(14+4€) R>
3
(iii) dim Vi, < CY [(g) + (eq) _3m4],

where the constants Cgpp and CY. . depend only on k, Q, and the y-shape regularity of the

quasi-uniform triangulation T. Furthermore,

() if h > H or h/R > /4 one may actually take Vi, = Hen(BrNQY) and Eyp may
be taken as E j, = Ep|Byna-

Proof. Step 1: (reduction to h < H) As a preliminary step, we show (iv) so that afterwards
we may restrict our attention to the case h < H together with h/R < ¢/4. If h > H or

122



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

6 H-matrix approximability of inverses of FEM matrices for the time-harmonic Maxwell equations

h/R > €/4, we take Vg, := Hcp(Br N §Y), which implies that the choice Eq , = Ep|pyno
is admissible so that Ej;, — E; , = 0. Since either h > H or h/R > ¢/4, we have

' _(R 3 _ (R 3 _(R 3 _3
dimHen(BrRNQ) S <h> S <H> +e°3 (H) + (eq)7, (6.4.11)
which shows that the complexity bound in (iii) is satisfied. We have thus shown (iv) and
will assume h < H and h/R < ¢/4 for the remainder of the proof.

Step 2: (reduction to H/R > ¢/4) We assume in the remainder that % < . For
% > %, we may take the space constructed below with the choice % = ¢ since then, the
approximation property (ii) and the complexity estimate (iii) are still satisfied.

Step 3: (Scott-Zhang approximation on R?) Let My be a quasi-uniform infinite trian-
gulation of R? with mesh width H. Define further SY*(Mp) := {py € H'(R?) : pylu €
(PL(M))® ¥YM € My}. We will use the Scott-Zhang projection operator I37 : H!(R3) —
SUH (M) introduced in [SZ90a]. Denoting wy; the element patch of M € My, this oper-
ator has the local approximation property

2
U - I?}UHLQ(M) <CH*||[Ul3p,, YUeH (wnm) (6.4.12)

with a constant C' depending only on €2 and the ~-shape regularity of the quasi-uniform
triangulation Mpy. Let £: HY(Q) — H'(R?) be an H'-stable extension operator such as
the one from [Ste70, Chap. VI, Sec. 3, Thm. 5].

Step 4: Let T(B(112:r N 2) and §(1+2€)R be given according to Definition 6.3.9. Let

n € C*(Q) be a cut-off function with suppn C Bi43er N2, n=1o0n E(HQS)R, 0<n<1

and HvZnHLOO(Q) < ﬁ for £ € {0,1,2}. Note that nEj, € Hy(curl, ). Decompose nEj, €

Hy(curl,Q) as nEj, = z + Vp with z € H{(Q) and p € H}(Q2) according to Lemma 6.3.5.
Let ¢, be given by (6.3.5) taking 7 = 7 there. Select representers py, @, € S’é’l(T)
such that Vp, = Hg (Vp) and Vg, ), = Hg Vi, on B(i49:r- By Lemma 6.4.4

(142¢)R (142¢)R

we have that V(py, + ¢, 4) is discrete divergence-free on E(st)g so that (pn + @zhn) €
Hyn(B(i42:)r N €2). We apply Corollary 6.4.3 with the pair (R, ¢) replaced with (R,8) =
(R(1+¢), ﬁ) to get a subspace Wy, C Hy n(Bi1e)r N §Y) for the box B, r N2 and
an w.,, € W,, such that

llpn + ¢an — wll, p 1eoyr < €IV @+ Can)li2is, 00 (6.4.13)

Step 5: Define zy := (I%ZSZ)’B(I_HLE)RQQ. Using Definition 6.3.10 and with the function
¢z, given by (6.3.5) (again, with 7 = n there) we have the representation

o = Y = — — Y Y
Eh|B(1+2E>R Zh+ HB(1+25)R (VP) (Zh Z) Tz HB(I“’QE)RVSDZ * HB(1+25)RV(¢Z * p)
= — - -1y _
=(zn—2)+ (z—2zg) HB<1+26>R(V</JZ Vou,)
v v
B(1+2a)RV(pZH tant HB(1+2E)RV(SDZ +p),

Of these 6 terms, the first three terms will be seen to be small, the next two terms are
from a low-dimensional space, and the last term is exponentially close to Vw,, by (6.4.13),
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which is also from a low-dimensional space, namely, VW,,. As the approximation of Ep,
we thus take

§(1+25)R

Ei ) =g, (—HV Vouy + 21 + Vwm> , (6.4.14)

with the [[-[|.; p-orthogonal projection Ilp, of (6.4.10). Property (i) is then satisfied by
construction. In order to prove (ii), we compute using the definition of the norm ||-||.,, »

IIEs, — El:hmc,h,R — ‘HHBR <Eh Iy Vg, — 2y — Vwm>

B(1t20)R ChR
< H’Eh + Hg(u%)RVgozH — 2z — Vuwn, "
<|lzn — 2zll p.z + Iz — 2l .5 + H ngam(v% V) N
* H‘Hgm—zsmv(p +¢a) = Vi R (6.4.15)

Step 6: The stability estimate (6.3.9) for pp, in the local discrete regular decomposition
implies together with Lemma 6.3.5

(6.3.9)
VPRl By T 12l200) HIVPIL2@) S ll2liez @) + [VPllLz@) S 7Bk L2 ()
(6.4.16)

By Lemma 6.3.15 and the fact that % < 1 the Caccioppoli-type estimate of Lemma 6.3.16
(replacing the pairs (R, ) there with suitably adjusted (R, ) as needed), we have

1

HZhHH(CurLE(H%)R) + ||Z||H(1)(Q) SV Eh||L2(B(1+35)RﬂQ) + R HEh||L2(B(1+3€)RmQ) )
(6.4.17)
Lemma 6.3.16 1
S e BRIl b, (1440 R (6.4.18)
Finally, combining Lemmas 6.3.5, 6.3.6, and (6.3.9) leads to
HVCPzHLZ(Q) + IVean ‘L2(§(1+25)R) S ||Z||L2(B(1+35)ROQ) S ||7]EhHL2(Q)a (6.4.19)
IV(pz = a2 ) < 12 = 2o llL2(B, 0y mre) - (6.4.20)
Step 7: (controlling z — z) By Lemma 6.3.15 and (6.4.18) we have
1 < h 4
R Iz — ZhHLQ(BRmQ) ~ EE H|EhH|c,h,(1+4€)R' (6.4.21)
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Noting V xz = V x (nEj,) together with the definition of |||,  and the estimate (6.4.21),
we obtain

h 1
|z — Zh“|c,h,R < R (HZhHH(CurLg(HQs)R) + ||V x ZHL2(BRnQ)) + R |z — ZhHL2(BRmQ)
h 1
S E <th||H(curl7§(1+26)R) + E ||EhHL2(B(1+€)RﬂQ) + ”nv X Eh|’L2(B(1+E)RﬂQ)>
h _
+ 5 IEullop1sa0m (6.4.22)

Combining this with Lemma 6.3.16 and the stability estimate (6.4.18) gives rise to

h _
2 = Zall e S F& NEAll e 1405 (6.4.23)

Step 8: (controlling z — zy and V(g — ¢,,)) For zyy = (I3 gZ)|B(1+48)RmQ we have by

the approximation result (6.4.12), the assumption H/R < e, and the stability properties of
;7

1 H .
%) HZ ZHHL (B(l_,_]E)RﬂQ E H‘SZHH B(l+(]+l)€)R) ? J - 07 e 737 (6'4'24)
h < h )
F5) HZ_ZHHH B(1+]E)RmQ) HSZ”H B(1+(j+1)s)R) ) J = 0a"'737 (6425)
so that, using H8z|]H(1+4E>R S 12l g1 (), we obtain for j =0,...,3

b (6418) 7/ p N\
e znllosen = (5 + 5 ) Voeliim o = (7% 7)<

¢,h,(1+4e)R*

(6.4.26)

By the stability properties of the operator H% given in (6.3.9) and (6.4.20) we infer

(142e)R
Y < 1 (6.4<20) 1
B(1+2e)RV((pz ~ Pan) bR R IV (pz = (‘OZH)HL2(§(1+2E)R) - R Iz — ZHHLQ(B<1+35>RWQ)
6426) 7 H\
< (5+7) MBllon i (6.4.27)
Step 9: (Estimate Hg V(p + ¢z) — Vwy,) By Step 1, we have py + @z — wp €
(14+2¢)R
Hgn(BaeyrN2). Noting H%<1+2 )RV(p +¢z) — Vg = V(ph + o n — wWm) on ByrNQ
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we get

1
'HHV V(p + ¢z) — Vwn, = R IV0n + @an = wm)ll2gy00)

§(1+26)R C,h,R
Lemma 6.3.17 1 + ¢
S ?W(Ph + Pan) — wm|Hg,h,(1+a)R
(6.4.13) m_—3
e (1 +¢)
< 1= A= =)
~ °R IV (P + #2,n) ||L2(B(1+25)Rﬂ§2)
(6.4.16),(6.4.19) gme3
S 1 ImEnlL2 @
qm873
S R ||EhHL2(B(1+3E)RﬁQ)
S qm5_4”|EhH|a,h,(1+3a)R' (6.4.28)

Substituting (6.4.23), (6.4.26), (6.4.27) and (6.4.28) into (6.4.15) concludes the proof of
(ii).

Step 10: By construction, the approximation E; j, of (6.4.14) is from the space
Vim = {HBR(HV Vo, +za+Vwn,) : zg € (I%ZHl(RS))IB(IHS)RﬂQ, W € VWi }.

§(1+25)R
By the linearity of the maps Ilp,,, Hg , and z — @, the space Vg ,, is a linear space.
(1+2e)R
In view of dim W,, < (gq)3m* from Corollary 6.4.3 and dimI%ZS(Hl(Q))|B(1+4E)RnQ S
(1+42)R 3
) we get (iii). O

Lemma 6.4.6 (multi-step approximation). Let ¢ € (0,1), ¢’ € (0,1), R € (0, Rmax). Then,
for each k € N there exists a subspace Vi of Hen(Br N Q) of dimension

k\? k
dim V, < CY! K (C) <q’—3 + In* C) , (6.4.29)
such that for E.p € Hp(Bic)r NQ2)
. T k
min |||E;, — Ekm <J"|E, . 6.4.30
Juin || o S WE o (6:4:30)
Here, C!I! = depends only on k, Q, and the y-shape reqularity of the quasi-uniform triangu-
lation T .

Proof. The proof relies on iterating the approximation result of Lemma 6.4.5 on boxes
B(11e,)r, where g = ((1 — 1) for j = 0,...,k. We note that ( =e9 >¢e1 > -+ > ¢ =0.
Define

- - ¢ 1
e 1 . - -
Ri=ROte) &= a1
and note the relationship B(1+4€j)1§j = Bﬁj,1 = BR(1+ej_1) as well as Bﬁk = Bpgr and
BR'O = BR(1+¢)- Also note
¢ ¢ ~ _ ¢ = :
- < — < < = < R; <(1 =0,...,k.
Sz -GSy AsEsOUEOR =0,
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Select ¢ € (0,1). With the constant C? of Lemma 6.4.5 choose

app
o 1 ¢dRrR¢ _ [4In(¢/(4F)) — Inmax{l, Cip } +In(q'/2) |
8 kmax{1,Cl }’ Ing
These constants are chosen such that
H 1 1
Cgpp ~ — 7q/ and CgppN é 7q (6431)
&; Rj 2 J 2

Moreover, the assumption R < Ryp.x implies that (1 + 4€j)§j = R(1+¢j-1) < Rmax-
Therefore, Lemma 6.4.5 provides a space V}{’m - ”HCJL(BRI N Q) and an approximation
Eip € Vi, with

H N (6.4.31)
IEn = Bl 5, < Cor ( = +e-:14qm> Bl < dIEll, 5  (64.32)
1

dimVh,, 5 (’Z) ot | <o () @ e nte).

where the constant C' > 0 is independent of j € {0,...,k}, ¢, k, and ¢'. Since Ej, —Eq 5, €
Hen(Bg, N, we may apply Lemma 6.4.5 again to find a space V%Lm C Hen(Bg, NQ)
and an approximation E;, € V%I,m with dim V%I,m < Ck/C)? (3 + ln4(k:/C)) such that

2
"l

IEr —Erp —Eopll,p z, < ¢ IBr = Bipll, 7, < a7 Il 7 -

Repeatlng this process k — 2 times leads to the approximation Ek = Z E; j, in the space
Vi = ZZ 1 ., of dimension

dim Vi, < Ck(k/C)? (¢~ + In*(k/C))

which concludes the proof. ]

6.5 Proof of the main results

The results of the preceding Section 6.4 allow us to show that the Galerkin approximation
Ej, of (6.1.22) can be approximated from low-dimensional spaces in regions Br_ away from
the support of the right-hand side F.

Theorem 6.5.1. Let hg > 0 be given by Lemma 6.1.1 and let T be a quasi-uniform mesh
with mesh size h < hy. Fiz q € (0,1) andn > 0. Set ( =1/(1+n). For every cluster pair
(1,0) with bounding boxes Br_ and Bgr, with ndist(Bg,,Br,) 2 diam(Bgr.) and every
each k € N there exists a space Vi, C L*(Bgr, NQ) with

dim Vi < Caimk(k/C)? (¢~ +In*(k/C)) (6.5.1)
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such that for arbitrary right-hand side F € LQ(Q) with supp F C Br,NQ, the corresponding
Galerkin solution Ey, of (6.1.22) can be approzimated from Vy, such that

< Choxd" Hl‘[ﬁQF’

Eh—Ek‘

_min

< Choxq" || F|| 12 :
eV, LQ(Q) 00X L (BRo-mQ)

L*(Br,NQ)
Here, HﬁQ is the L?*-orthogonal projection onto Xn(T,9) and Cpox, 5dim are constants
depending only on k, 2, and the shape-reqularity of T .

Proof. From Lemma 6.1.1 we have the a priori estimate

2
IEn |t ewe) < CITE Flli2q) < ClFl2 ) = CllFll2(p,n0)

From dist(Bg,, Bg,) > 1~ diam Bg_ the choice ( = 1/(1 + ) implies

1

> 0.
n(n+1)

dist(B(1+¢)r,» Br,) > dist(Br,, Br,) — (R:V3 > V3R, (n~' = () = V3R

Hence, the Galerkin solution Ey, satisfies Eh‘B<1+<)RT nQ € Hen(Bayoyr, NQ). Since R% <1,
it is immediate that

1 1 2
IERllnar0r S |1+ 5 ) IBallgeano S (1+ 5= Hl'lﬁ F‘
R, R:

In the following, we employ Lemma 6.4.6. In order to do so, boxes have to have smaller
side-length than Ryax/2, which may not hold for general bounding boxes Br,. However, as
bounding boxes can always be chosen to satisfy R, < 2diam({2), there exists a constant L €
N independent of R., such that R;/L < Rpax with Rpax given in Def. 6.3.14. Consequently,

. 5.2
L@ (6.5.2)

we can decompose a box Br_ = int (Uf:Ll B RW) into C'r, € N subboxes {B Rr, }EL of side-
length R,, such that R;, < Rpax, where C, does only depend on L. Thenj for each
B Ryys Lemma 6.4.6 provides a space V¢ C Hep(B Ry, N ), whose dimension is bounded
by (6.4.29) such that

~ ~ 2
min  ||E, — EM‘ <R, min |[E,-E, < C¢*(R., + 1) HHL F’
Ek,levk,e LQ(BRTZ ns) ‘ Ek,eevk,g ¢,h,Rr, ‘ 4 LQ(Q)
< diam(Q)¢" HLQF‘ .
< diam(Q)q h L2(Q)

Now, we define the space Vi as a subspace of L?(Bg. N Q) by simply combining all
the spaces V¢ of the subboxes, i.e., we extend functions in Vj, by zero to the larger

box Bpr. and write VW for this space. Then, we can define V := EZC:LI VM and set
Ek’BRTZ = Ek’g € Vk’g for E; € V. This gives

min Eh — Ek‘ S min Eh — Ehg‘
ELEVy L?(Br,N%) ;::1 Err€Vie L*(Bg,,Nn9)
< O ‘ HL2F‘ .
S i
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The dimension of Vy is bounded by

3
dimVy, < Cp CY k <’§ > (q’—3 + In* ?) :

which concludes the proof. ]

The following result allows us to transfer the approximation result Theorem 6.5.1 to the
matrix level. We recall that the system matrix A is given by (6.1.23).

Lemma 6.5.2. Let h < ho with ho gwen by Lemma 6.1.1. Then there are constants
Cdlm, Capp that depend on only on k, Q, and the y-shape reqularity of the quasi-uniform
triangulation T such that for n > 0, ¢ € (0,1), k € N, and n-admissible cluster pairs
(1,0) there exist, for each k € N, matrices X, € C™*", Y., € C°*" of rank r <
Caim (1 +10)* k* (g% + In*(k(1 4 1))) such that

1A o = Xro Y75 ||, < Capph™'d".

Proof. As a preliminary step, we show that we can reduce the consideration to the case
diam B, < ndist(Bgr,,Br,). Indeed, as A is symmetric also A~ is symmetric so that
A7, o = A7Y,x, and one may approximate either A~!|, x, or A7, x, by a low-rank
matrix. In view of the definition of the admissibility condition (2.6.1), we may therefore
assume diam Br_ < ndist(Bg., Br,).

The matrices X,, and Y, will be constructeci with the aid of Theorem 6.5.1. In par-

ticular, we require in the following the constant Cgi,, from Theorem 6.5.1. We distinguish
between the cases of “small” blocks and “large” blocks.
Case 1. If C’dlm( +1)3k* (72 + In*(k(1 +n))) > min(|7|,|o]), we use the exact matrix
block X,5 = A71|,«, and we put Ym = I|yxo with T € CVX¥ being the identity matrix.
Case 2. If Cgim(1 + m3k* (g% + In*(k(1 +7))) < min(|7],|o]), let Vi be the space
constructed in Theorem 6.5.1. From Vj we construct X,, and Y, in the following two
steps.

Step 1. Let functions \; € L?(Q), i =1,..., N, satisfy

supp A; C supp ¥, 1=1,...,N, (6.5.3a)

(N\i, W ‘>L2( Q) = i, ,j=1,...,N, (6.5.3b)

Aillpz) < CRTY2, i=1,...,N. (6.5.3¢)

Such a dual basis of Aj g := {¥;: ¢ = 1,..., N} can be constructed as (discontinuous)
piecewise polynomials of degree 1 as described in, e.g., [B502, Sec. 4.8] for classical Lagrange
elements. Let & := {eq,--- ,en} be the set of edges corresponding to Ay, . Fore; € &, i =
1,---, N, we define K; as the union of tetrahedra in supp ¥; sharing e; as an edge and set

supp \; = K. Then,

/~ W (x)i(x) dx = 65 i,j=1,...,N.
K;
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The constant C' depends solely on the ~-shape reguarity of 7. We emphasize that our

choice of scaling of the functions ¥; is reponsible for the factor h1/2.
Define for clusters 7/ the mappings
Ay LX) 5 C7, vis (XT,(¢)<AZ.,V>L2(Q))A ,
€T

where Y, is the characteristic function of 7/. For v € L*(Q) and cluster 7/ with bounding

box Bp_, we observe for the ¢?-norm || - ||z on C™ that
2 2 2 2 6239 1o
[Arvz = E |</\iaV>L2(Q)‘ < § H>‘i”L2(Q)HVHL2(Supp)\i) S h HVHL?(BR )’
iet! iet’ T

(6.5.4)

We observe that for Ej € X3 0(7,Q) expanded as Ep = . 7 ¥;, we have p; =
(Az(Ep));. In particular, we have for the coefficients u; with ¢ € 7/

Step 2: Let Vj be the space given by Theorem 6.5.1 for the boxes Bgr., Br,. For
arbitrary b € C?, define the function fy, := > .. b;\; and observe:

1€0
(6.5.3a)
supp fb C  Bg,, (6.5.6a)
(654
Ifolliz@ < h72Iblla, (6.5.6b)
o U)oy = by =1, N (6.5.6¢)

Let Ej, € X3, 0(7,Q) be the Galerkin solution corresponding to the right-hand side fy, and
E; € V. be the approximation to Ej asserted in Theorem 6.5.1. Then,

)

_y (654 N
HATEh—ATEkH S, hil/ZHEh—Eh‘ )
2 L?(Bg.NQ)
Thm. 6.5.1 (6.5.6b)
S P el S R IbIL

We define the low-rank factor X, as an orthogonal basis of the space V; := {A (Ek) : Ek €
Vi} and set Y., = A-1H X_ . Then, the rank of X,, is bounded by dimV, <

TXO

Caim (1 + )3k (7% +In*(k(1 +n))). Since XXX is the orthogonal projection from CV

(e}

onto V,, we conclude that z := X,, X2 (A, E},) is the || - [|lo-best approximation of the
Galerkin solution in V., which results in

|A-En — 2lly S ||ArEn — ABn | S B D]l
By (6.5.5) and b € C?, we have

beC”
=

AER 27 (AzE)], = (A~ D)), A0
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Since z = XTUYﬁ,b, we conclude
H(A_l‘TXU - XTUng)bHQ = [[A-Ep —zlly S h_lqk bl -
As b was arbitrary, we obtain the stated norm bound. O

Proof of Theorem 6.2.1. For each admissible cluster pair (7,0), let the matrices X5, Yo
be given by Lemma 6.5.2. Define the H-matrix approximation By by the conditions

B'H|T><a = XTO'qu'{a' if (T,O') S Pfara B'H|T><o' = A-_1|T><0' if (Ta U) € Phear-

The blockwise estimate of Lemma 6.5.2 for ¢ € (0,1) and Lemma 2.6.10 yield
|A™" = Byl|, < Cy (Z max{||(A™" = By)lrxol|, : (T,0) € P,level(r) = z})
(=0

< CappCsp depth(Tz)h ' g".

We next relate k to the blockwise rank r. For y > 0 the unique (positive) solution k of
kInk = y has the form

k= lozyu +o(l)  asy— oo (6.5.7)
by, e.g., [O1v97, Ex. 5.7, Chap. 1]. In passing, we mention that even higher order asymp-
totics can directly be inferred from the asymptotics of Lambert’s W-function as described
in [AB61, p. 25-27]. The asymptotics (6.5.7) implies that the solution k of k*In*k = y
satisfies k = y'/4/In(y"/*)(1 + o(1)) as y — oc.

From Lemma 6.5.2 we have the rank bound r < Cgim (1 + 1)*k* (¢7° + In*(k(1 + 1))
Caim ((1+ n)q_1)3 E*In* k, so that for suitable b, C' > 0 independent of r we get ¢"
Cexp(—br'/4/Inr). Consequently, we have

<
<

HAil - B'H”2 < CapxCsp depth(TI)hile_b(rl/‘l/lnr)a

which concludes the proof. O

6.6 Numerical results

In this section, in order to validate the theoretical results obtained in this chapter, we study
three examples defined on two different geometries.

In order to construct the block partitioning, we use the geometrically balanced cluster
tree given in [GHILB04] based on the following modified bounding boxes.

For a basis Xh,O = {\Ifl, .. .,\I/N} of X}ho(T, Q) with N := dithyo(T, Q), let 5@ =
{e1,...,en} be the set of corresponding edges and Y, := {y1,...,yn} be the set of mid-
points corresponding to each edge. For hs > 0, we define By, (y;) C R*i=1,....,N, as
a ball of radius hg centred at y;. In the following examples, instead of the definition of
bounding boxes from Definition 2.6.3 based on support of the basis functions, we use a
slightly modified version:
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For a cluster 7 C Z := {1, ..., N}, a bounding box Bp, is an axis-parallel hypercube with
side length R; such that U;e; By, (yi) € Bg, .

In the following examples, we select = 2 as the admissibility parameter and nje.;s = 25
as the leaf size. For the rank bound, we consider the range r € {1,...,50}. In the curl-curl
problem (6.1.19), we choose the coefficients to be p =1 and x = 1.

The H-matrix approximation By to the inverse of A is computed by applying a truncated
singular valued decomposition of the exact inverse. More precisely, for an admissible block
(1,0) € Ppy, we consider the singular value decomposition A7}y, = USVT ¢ R,
where U € R™7, V € R7*7 are orthogonal and S = diag(oy, -+ ,0m) € R™*7, m :=
min(|7], |o|), includes the corresponding singular values o1,---,0,, > 0. Then, we set
Bylrxo = UTSTV? where U, € R™" S, € R™" and V, € R*" are the first r columns
of U, S and V, respectively. For (7,0) € Ppear, we set By|rxs := A7 o

The numerical results are implemented in Netgen [Net] and MATLAB, i.e., the stiffness
matrix A is obtained from Netgen and By is computed in MATLAB.

Example 6.6.1. In this example, we choose Q := {(z,y,2) e R* : 22 +y*+ 22 <1}
as the geometry and take hy = h. The geometry and its mesh configuration are shown
in Figure 6.6.1. The block partition including 20 734 admissible, and 52770 small blocks,
is depicted in Figure 6.6.1. In Figure 6.6.2, for a fixed number N = 16971 of degrees
of freedom, we show that ||I — ABy||, decreases as the block-rank increases. Figure 6.6.2
shows the exponential decay of the approximated error. We plot two straight lines obtained
by fitting the data (in a least-squares sense) for the computed error values for 1 <r < 20
and r > 20 (shown by dashed blue and black lines), respectively. For 1 < r < 20, the slope
of the line is —0.16 and for r > 20 is —0.09. The allocated memory is shown in Figure 6.6.2
for different ranks.

Example 6.6.2. We consider the domain Q := (—1,1) x (—1,1) x [-1,—-2) U (—2,2) X
[1,2)x(=1,1)U(=2,2) x [-1,1] x [-1,1JU(=1,1) x (=1,1) x [1,2)U(—=2,2) x [-1,2) x (=1, 1).
The geometry is shown in Figure 6.6.3. In Figure 6.6.3, for hs = h, the block partitioning
indicates 21 290 admissible blocks and 42 944 small blocks. In Figure 6.6.4, for hy = h, we
illustrate the exponential convergence of ||[I — ABy/||2 with respect to the increase of the
block-rank for N = 14491 degrees of freedom and as it is shown in this figure, the decay
of the obtained values is exponential. Two straight lines are plotted by fitting the data
(in a least-squares sense) for the computed error values for 1 < r < 20 and r > 20 (shown
by dashed blue and black lines), respectively. The slope of the lines are mentioned in the
figure as well. For hy = h, we also show the allocated memory [MBytes| in Figure 6.6.4.

Example 6.6.3. For the same geometry as in Example 6.6.2 and a fixed number N =
15491 of degrees of freedom, Figure 6.6.7 shows that increasing hs improves convergence of
the upper bounds of the error and simultaneously reduces the number of admissible blocks
(Figures 6.6.5-6.6.6).
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Figure 6.6.1: The mesh 7 (left). The block partition for N = 16971 degrees of freedom
and hg = h (right).
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