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Kurzfassung

In dieser Dissertation betrachten wir die folgenden Multilevel-Aspekte bei elliptische Rand-
wertproblemen:

• Multilevel Darstellung von Besov-Normen und ihre Anwendung auf die Vorkonditio-
nierung des fractionalen Laplace.

• Verwendung hierarchischer Matrizen (d. h. H-Matrizen) für die Kopplung von Finite-
Element- und Randelementmethoden.

• H−Matrix-Approximation der Inversen der Steifigkeitsmatrizen, die bei FEM-Diskretisierung
der zeitharmonischen Maxwell-Gleichungen entstehen.

Wir zeigen, dass lokal L2(Ω)-stabile Operatoren, welche in Räume von stetigen, stückweise
polynomiellen Funktionen auf formregulären Gittern abbilden und gewisse L2(Ω) Appro-

ximationseigenschaften haben, stabile Abbildungen von H3/2(Ω) → B
3/2
2,∞(Ω) sind (Hs(Ω)

und Bs
2,q(Ω) sind Sobolev- und Besov Räume). Die klassischen Operatoren vom Typ Scott-

Zhang sind in dieser Klasse enthalten. Interpolation liefert Stabilität B
3θ/2
2,q (Ω) → B

3θ/2
2,q (Ω),

θ ∈ (0, 1), q ∈ [1,∞]. Ein analoges Ergebnis gilt für stückweise Polynome: lokal L2-

stabile Operatoren wie die elementweise L2-Projektion sind stabil B
θ/2
2,q (Ω) → B

θ/2
2,q (Ω),

θ ∈ (0, 1), q ∈ [1,∞].
Für Räume stückweiser Polynome auf adaptiv verfeinerten Netzen, die durch Newest

Vertex Bisection (NVB) erzeugt wurden, konstruieren wir eine Multilevel-Zerlegung mit

Normäquivalenz im Besov-Raum B
3θ/2
2,q (Ω), θ ∈ (0, 1), q ∈ [1,∞].

Als Anwendung präsentieren wir einen multilevel diagonalen Vorkonditionierer für den
integralen fractionalen Laplace (−Δ)s für s ∈ (0, 1) auf lokal verfeinerten Gittern. Es wird
gezeigt, dass dieser Vorkonditionierer zu einer gleichmäßig beschränkten Konditionszahl
führt.
Darüber hinaus erzielt diese Arbeit Approximationsergebnisse für die Inverse Matrix der

Steifigkeitsmatrizen bei zwei Problem erlassen: FEM-BEM-Kopplungsprobleme und die
zeitharmonische Maxwell-Gleichung.

H-Matrizen sind eine Klasse von Matrizen, die aus blockweise Niedrigrang-Matrizen vom
Rang r bestehen. Hier sind die Blöcke in einem Baum TI so organisiert, dass der Speicherbe-
darf normalerweise O(Nr depth(TI)) ist (N ist die Problemgröße). Eine wesentliche Frage
im Zusammenhang mitH-Matrizen ist, ob Matrizen und ihre Inversen im gewählten Format
gut dargestellt werden können.
Wir betrachten drei verschiedene Methoden zur Kopplung von FEM und BEM, nämlich

die Bielak-MacCamy-Kopplung, die symmetrische Kopplung und die Johnson-Nédélec-
Kopplung jeweils für Galerkindiskretisierung niedrigster Ordnung. Wir beweisen die Exis-



tenz von exponentiell im Blockrang konvergenten H-Matrix-Approximationen an die inver-
sen Matrizen.

Wir zeigen auch, dass die Inverse der Steifigkeitsmatrizen, die zu den zeitharmoni-
schen Maxwell-Gleichungen mit perfekt leitenden Randbedingungen gehören, imH-Matrix-
Format mit exponentieller Genauigkeit im Blockrang approximiert werden kann.

Um dieseH-Matrix-Approximationsresultate zu beweisen, nutzen wir Caccioppoli-Ungleichungen
für die diskreten Probleme. Für die FEM-BEM-Kopplung ermöglicht die Caccioppoli-
Ungleichung die Kontrolle von Funktionen und induzierten Potentialen in stärkeren Nor-
men durch schwächere Normen, wenn bestimmte Orthogonalitätsbedingungen erfüllt sind.
Für die Maxwell-Gleichungen hat die Caccioppoli-Schätzung die Form einer Kontrolle der
H(curl)-Norm durch die L2-norm.
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Abstract

In this thesis, we analyze the following multilevel aspects in elliptic boundary value prob-
lems:

• Multilevel representation of Besov norms and application to preconditioning of the
fractional Laplacian.

• Use of hierarchical matrices (H-matrices) for the coupling of Finite- and Boundary
Element Methods (FEM-BEM couplings).

• H-matrix approximability of inverses of matrices corresponding to the discretization
of the time-harmonic Maxwell equations using Finite Element Method (FEM).

We show that locally L2(Ω)-stable operators mapping into spaces of continuous piecewise
polynomial set on shape regular meshes with certain approximation properties in L2(Ω)

are stable mappings H3/2(Ω) → B
3/2
2,∞(Ω), where Hs(Ω) and Bs

2,q(Ω) are Sobolev and Besov
spaces. The classical Scott-Zhang type operators are included in the setting. Interpolation

gives stability B
3θ/2
2,q (Ω) → B

3θ/2
2,q (Ω), θ ∈ (0, 1), q ∈ [1,∞]. An analogous result allows

for spaces of discontinuous piecewise polynomials: locally L2-stable operators such as the

elementwise L2-projection are stable B
θ/2
2,q (Ω) → B

θ/2
2,q (Ω), θ ∈ (0, 1), q ∈ [1,∞].

For spaces of piecewise polynomials on adaptively refined meshes generated by Newest
Vertex Bisection (NVB), we construct a multilevel decomposition with norm equivalence

in the Besov space B
3θ/2
2,q (Ω), θ ∈ (0, 1), q ∈ [1,∞].

As an application, we present a multilevel diagonal preconditioner for the integral frac-
tional Laplacian (−Δ)s for s ∈ (0, 1) on locally refined meshes. This preconditioner is
shown to lead to uniformly bounded condition numbers.

This work is also concerned with approximation results for the inverses of stiffness ma-
trices corresponding to the FEM and FEM-BEM discretizations in the H-matrix format
for the time-harmonic Maxwell equation and a scaler transmission problem.
H-matrices are a class of matrices that consists of blockwise low-rank matrices of rank

r where the blocks are organized in a tree TI so that the memory requirement is typically
O(Nr depth(TI)), where N is the problem size. A basic question in connection with the
H-matrix arithmetic is whether matrices, and their inverses can be represented well in the
chosen format.
We consider three different methods for the coupling of the FEM and the BEM, namely,

the Bielak-MacCamy coupling, the symmetric coupling, and the Johnson-Nédélec coupling
for the lowest order Galerkin discretization of each of these coupling techniques, and we
prove the existence of root exponentially convergent H-matrix approximants to the inverse
matrices.



We also show that the inverse of the stiffness matrices corresponding to the time-harmonic
Maxwell equations with perfectly conducting boundary conditions can be approximated in
the format of H-matrices, at a root exponential rate in the block rank.

In order to prove these H-matrix approximability results, we provide interior regularity
results known as Caccioppoli estimates for the discrete problems. For the FEM-BEM
coupling, the Caccioppoli inequality allows for control of functions and induced potentials
in stronger norms by weaker norms, if certain orthogonality conditions are satisfied. For
Maxwell equations, the Caccioppoli estimate takes the form of control of the H(curl)-norm
by the L2-norm.
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1 Introduction

Multilevel methods have proved to be among the most efficient techniques for numerically
solving partial differential equations (PDEs). The judicious use of multilevel structures
allows for complexity reduction from algebraic to log-linear. As well-known examples of
such techniques, we recall multilevel preconditioning (BPX [BPX91], MDS [Zha92]), H-
matrices, fast multipole method [GR97], matrix compression by wavelets [DPS93], panel-
clustering [HN89].
In this thesis, we study the following aspects

• multilevel decompositions and their stability,

• multilevel preconditioning of the fractional Laplacian,

• H-matrix approximation of the inverse of the stiffness matrix corresponding to the
coupling of Finite- and Boundary Element Methods (FEM-BEM couplings).

• H-matrix approximation of the inverse of the stiffness matrix corresponding to the
time-harmonic Maxwell equations.

Multilevel decompositions and their stability

For a given Hilbert space (V, · V ), the standard multilevel algorithms for finite element
discretizations are based on a hierarchy of finite element spaces V0 ⊂ · · · ⊂ VL ⊂ · · · ⊂ V
associated with a sequence of nested meshes (T ) ≥0 such that for the functions uL ∈ VL,
we have the following decomposition

uL = I0uL +

L

=1

(I − I −1)uL, (1.0.1)

where I : V → V denotes a linear projector. Let (β ) ≥1 be a non-decreasing sequence
of positive real numbers. One of the crucial aspects of the multilevel algorithms is to find
equivalent norms for the following discrete norm

|||u|||2 := I0u 2
V +

≥1

β (I − I −1)u
2
V ∀u ∈ V. (1.0.2)

A characterization of Sobolev and Besov spaces in terms of such multilevel representa-
tions allows us to design preconditioners and estimate condition numbers of preconditioned
systems. For V := L2(Ω), β := h−2 and the spaces of continuous piecewise linear poly-
nomials V1 ⊂ · · · ⊂ VL, the idea of replacing I by the L2-orthogonal projection onto V ,

1



1 Introduction

∈ {0, · · · , L} proposed in [BPX91, Xu89], was a break-through in the construction of
additive methods. The norm equivalence

uL
2
H1(Ω) I0uL 2

L2(Ω) +
L

=1

h−2 (I − I −1)uL
2
L2(Ω) ∀uL ∈ VL, (1.0.3)

for uniformly refined meshes and a special class of non-uniform triangulations was proven in
[BPX91] with the constants of equivalence depending linearly on L−1 (for the lower bound)
and L (for the upper bound). Zhang in [Zha92] improved their result with constants of
equivalence independence of the mesh size and the number of levels. Oswald in [Osw91]
proved a similar result using the fact that Sobolev space H1(Ω) coincides with a certain
Besov space. Multilevel representations of Sobolev spaces based on sequences of uniformly
refined meshes are available in the literature; see, e.g., [Osw94, Sch98, BPV00], and the
references therein. For fractional Sobolev spaces Hs(Ω) and general meshes (with certain
restrictions on s), we mention [Ste98], where wavelet bases are employed.

In this thesis, for a given γ-shape regular mesh T , we consider operators from L2(Ω) to
the space of piecewise polynomials on T satisfying the following properties: L2-stability,
quasi-locality, and certain approximation properties. Then, for such operators, we prove
the following stability results:

• For the space of continuous piecewise polynomials on T , we prove that such operators

are stable mappings H3/2(Ω) → B
3/2
2,∞(Ω).

• If the mesh T is additionally quasi-uniform, for the space of continuous piecewise

polynomials on T , we prove a sharper stability estimate B
3/2
2,∞(Ω) → B

3/2
2,∞(Ω).

• For the space of elementwise polynomials on T , we prove that the mentioned operators

are stable mappings from H1/2(Ω) into B
1/2
2,∞(Ω).

• We also show that for the quasi–uniform meshes, we have the stability B
1/2
2,∞(Ω) →

B
1/2
2,∞(Ω), for the space of elementwise polynomials on T .

• By interpolation arguments, we derive the stability estimateB
(m−1)θ/2
2,q (Ω) → B

(m−1)θ/2
2,q (Ω)

where θ ∈ (0, 1), q ∈ [1,∞], and for the space of continuous piecewise polynomials
m = 2 and for the space of elementwise polynomials m = 1.

The Scott-Zhang operators are local, L2(Ω)-stable operators with certain approximation
properties in L2(Ω), therefore these operators admit the first two stability results.
For the spaces of continuous piecewise polynomials on adaptively refined meshes, we

develop a multilevel decomposition based on modified Scott-Zhang operators defined on
a hierarchy of meshes generated by the finest common coarsening (fcc) of two meshes.
Given a mesh T obtained by Newest Vertex Bisection (NVB) refinement from a regular
triangulation T0 and T as the sequence of uniformly refined NVB-generated meshes, we
denote T := fcc(T , T ) as the finest common coarsening of T and T . For the space of
continuous piecewise polynomials defined on the mesh hierarchy T , the modified Scott-
Zhang operator ISZ is constructed in such a way that for the functions belonging to the

2
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space of continuous piecewise polynomials on T , it coincides with the Scott-Zhang operator
ISZ on T .
Taking advantage of the mentioned stability results and the property of the modified

Scott-Zhang operators defined on the mesh hierarchy T , we present multilevel norm equiv-

alences in the Besov spaces B
3θ/2
2,q (Ω), θ ∈ (0, 1), q ∈ [1,∞], for the standard discrete spaces

of globally continuous piecewise polynomials on T .

Multilevel preconditioning of the fractional Laplacian

An important application of multilevel decompositions is the design of multilevel additive
Schwarz preconditioners. We recall [BPX91] as one of the earliest works applying an
additive multilevel operator (BPX) to develop preconditioners for second order elliptic
boundary value problems and prove that it is nearly optimal. For the case of non-uniform
meshes, the optimal complexity of BPX is proved in [DK92, BY93].
In this work, we propose a local multilevel diagonal preconditioner for the integral

fractional Laplacian (−Δ)s for s ∈ (0, 1) on adaptively refined meshes. Using the ad-
ditive Schwarz framework, we prove this multilevel diagonal scaling gives rise to uniformly
bounded condition number for the integral fractional Laplacian.

The need for a preconditioner arises from the observation that the condition number
of the stiffness matrix A ∈ RN ×N corresponding to a FEM discretization by piece-

wise linears of the integral fractional Laplacian grows like κ(A ) ∼ N
2s/d hmax

hmin

d−2s
,

where hmax, hmin denote the maximal and minimal mesh width of T , respectively, see, e.g.,
[AMT99, AG17]. Since the fractional Laplacian on bounded domains features singularities
at the boundary, typical meshes are strongly refined towards the boundary so that the
quotient hmax/hmin is large (see, e.g., [AG17, BBN+18, FMP19] for adaptively generated
meshes). While the impact of the variation of the element size can be controlled by diago-

nal scaling (see, e.g., [BS89, AMT99]), the factor N
2s/d

persists. A good preconditioner is
therefore required for an efficient iterative solution for large problem sizes N .

Preconditioning for fractional differential operators has attracted attention recently. We
mention multigrid preconditioners [AG17], based on uniformly refined mesh hierarchies
and operator preconditioning, [Hip06, GSUT19, SvV19], which requires one to realize an
operator of the opposite order.
The framework of additive Schwarz preconditioners is analyzed in a BPX-setting with

Fourier techniques in [BLN19]. For a different definition of the fractional Laplacian via
spectral and PDE theory, [CS07], locally refined FEMs have been studied in [CNOS15]
and [CNOS16] provides an almost optimal multilevel method for this interpretation. We
also mention [BKM19], where optimal additive Schwarz preconditioners on quasi-uniform
meshes for the spectral fractional Laplacian are proposed.
In this thesis, using the additive Schwarz framework, we provide an optimal local multi-

level diagonal preconditioner for two types of mesh hierarchies: T and the meshes generated
by an adaptive algorithm.

3



1 Introduction

H-matrices

The second part of this thesis is concerned with H-matrices introduced in [Hac99] and
analysed in [HK00, GH03a, Hac15, Gra01]. This class of matrices consists of blockwise
low-rank matrices of rank r where the blocks are organized in a multilevel structure, i.e.,
a tree TI , so that the memory requirement is typically O(Nr depth(TI)), where N is the
problem size. This format comes with an (approximate) arithmetic that allows for addition,
multiplication, inversion, and LU -factorization in logarithmic-linear complexity. Therefore,
computing an (approximate) inverse in theH-format can be considered a serious alternative
to a direct solver or it can be used as a “black box” preconditioner in iterative solvers. A
basic question in connection with the H-matrix arithmetic is whether matrices and their
inverses or factors in an LU -factorization can be represented well in the chosen format.
While stiffness matrices arising from differential operators are sparse and are thus easily
represented exactly in the standard H-matrix formats, the situation is more involved for
the inverse.

The works [Bör10, BH03, Beb07, FMP15, AFM20] prove that the inverse of the stiffness
matrix corresponding to the finite element discretization of the scalar elliptic operators can
be approximated in the H-matrix format and the error decays exponentially in the block
rank. The works [FMP16, FMP17] show similar results for the boundary element method.
The underlying mechanism in these works is that ellipticity of the operator allows one
to prove a discrete Caccioppoli inequality where a higher order norm (e.g., the H1-norm,
the H(curl)-norm) is controlled by a lower order norm (e.g., the L2-norm, the L2-norm)
on a slightly larger region. A consequence of Caccioppoli-type estimates is the existence
of blockwise low-rank approximants to inverses of FEM or BEM matrices [BH03, Bör10,
FMP15, FMP16, FMP17].

H-matrix approximation of the inverse of the stiffness matrix corresponding to
FEM-BEM couplings

In this work, we consider three different FEM-BEM coupling techniques, namely, the
Bielak-MacCamy coupling [BM84], Costabel’s symmetric coupling [Cos88, CES90], and
the Johnson-Nédélec coupling [JN80], for the transmission problems posed on unbounded
domains. We present an approximation result for the inverses of stiffness matrices corre-
sponding to the lowest order FEM-BEM discretizations in the H-matrix format.

A crucial step in the proof of the existence of such H-matrix approximations is to provide
the discrete Caccioppoli-type inequalities. The Caccioppoli-type inequalities control the
stronger norm of the weak solutions of elliptic PDEs with locally zero right-hand sides by
a weaker norm on a (slightly) enlarged regions. To see examples of the Caccioppoli-type
estimates for the continuous solutions of elliptic PDEs, we refer to [Hac15, Lem. 11.17]
and [BH03, Lem. 2.4]. For the finite element solutions, the Caccioppoli estimate has the
following form

∇uh L2(BR1
) ≤ C

h

dis(∂BR1 , ∂BR2)
∇uh L2(BR2

) +
1

dis(∂BR1 , ∂BR2)
uh L2(BR2

) ,

where BR1 ⊂ BR2 are two subdomains of the domain Ω and h is the mesh size. The
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above estimate can be found in [FMP15]. Analogously, in a BEM context, we refer to
[FMP16, FMP17].
In this work, we provide the Caccioppoli-type estimates for the finite element solution of

the transmission problem on regions that are not supported by the right-hand side functions
as well as for the single- and double-layer potentials of the boundary element solution. i.e.,
we simultaneously control a stronger norm of the interior solution and both layer potentials
by a weaker norm on a larger domain.

As a consequence of such Caccioppoli-type estimates, we prove that root exponential
convergence can be achieved in the rank employed.

H-matrix approximation of the inverse of the stiffness matrix corresponding to
the time-harmonic Maxwell equations

The last part of the thesis deals with the H-matrix approximability of the inverse of the
stiffness matrix corresponding to the time-harmonic Maxwell equation with perfectly con-
ducting boundary conditions. We restrict ourself to the case that the domain is filled with
a homogeneous isotropic material.

We provide a Caccioppoli inequality that controls the H(curl)-norm of the discrete so-
lution by the L2-norm. However, since H(curl) is not compactly embedded in L2, this
Caccioppoli inequality is insufficient for approximation purposes. We therefore combine
this Caccioppoli inequality with a local discrete Helmholtz-type decomposition. The gra-
dient part can be treated with techniques established in [FMP15] for Poisson problems,
whereas the remaining part can, up to a small perturbation, be controlled in H1. As a
result of the Caccioppoli inequalities, we prove the existence of H-matrix approximations to
the inverse of the stiffness matrices corresponding to the time-harmonic Maxwell equations
that converges root exponentially in the block-rank.

1.1 Outline and contributions

Chapter 2

In this chapter, we introduce Sobolev spaces on domains Ω ⊂ Rd as well as on the corre-
sponding boundaries ∂Ω, the interpolation spaces and some vector-valued function spaces.
Also, we briefly mention the trace operators and their properties. Then, we present some
basic results on the discretization of the domain Ω, the classical H1-conforming and low-
order H(curl)-conforming finite element methods and discretization of the boundary ∂Ω.
This is followed by a short introduction to the abstract additive Schwarz theory and the
hierarchical matrices.

Chapter 3

In this chapter, considering local L2(Ω)-stable operators mapping into the spaces of contin-
uous piecewise polynomial on shape regular meshes with certain approximation properties

in L2(Ω), we prove that such operators are stable mappings H3/2(Ω) → B
3/2
2,∞(Ω). Anal-

ogously, we show locally L2-stable operators such as the elementwise L2-projection are

5
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stable B
1/2
2,∞(Ω) → B

1/2
2,∞(Ω). An interpolation argument, for the space of continuous piece-

wise polynomials, gives stability B
3θ/2
2,q (Ω) → B

3θ/2
2,q (Ω) and for the space of elementwise

polynomials, gives stability B
θ/2
2,q (Ω) → B

θ/2
2,q (Ω) where θ ∈ (0, 1), q ∈ [1,∞].

We then go on to present some extensions such as inverse estimates in Besov norms
(Lemma 3.1.8) or an interpolation result for discrete spaces in Besov norms (Corollary 3.1.10).

The rest of this chapter is devoted to present a multilevel decomposition based on a mod-
ified Scott-Zhang operator on T := fcc(T , T ) where T is generated by the finest common
coarsening of a fixed mesh T and the sequence of uniformly refined meshes T . In order to
construct the multilevel decomposition, first we develop properties of the finest common
coarsening of two given meshes obtained by NVB refinement. Then, we introduce modi-
fied Scott-Zhang operators on the mesh hierarchy T such that for the space of continuous
piecewise polynomials on T , these operators coincide with the Scott-Zhang operators on
the mesh hierarchy T .
Finally, since the space of continuous piecewise polynomials on T is a subset of the space

of continuous piecewise polynomials on T and due to the fact that the modified Scott-
Zhang operators on the mesh hierarchy T coincide with the Scott-Zhang operators on the

mesh hierarchy T , we prove multilevel norm equivalences in the Besov space B
3θ/2
2,q (Ω),

θ ∈ (0, 1), q ∈ [1,∞], with the aid of mentioned stability results.

Chapter 4

On a bounded Lipschitz domain Ω ⊂ Rd, we consider the integral fractional Laplacian
(−Δ)s for s ∈ (0, 1) on adaptively refined meshes T . An optimal local multilevel diagonal
preconditioner for the fractional Laplacian for two types of mesh hierarchies are presented.
The first one is assumed to be generated by an adaptive algorithm and discussed in Theo-
rem 4.3.1. The second one is based on the sequence T and analysed in Theorem 4.3.4.
As the main result of this chapter, using an abstract additive Schwarz framework, we

show that, in the presence of adaptively refined meshes, multilevel diagonal scaling leads
to uniformly bounded condition numbers for the integral fractional Laplacian. To prove
the main result, we apply the norm equivalence of the multilevel decomposition in Chapter
3 and combine it with an inverse estimate in fractional Sobolev norms.

For the space of piecewise linear polynomials, the inverse inequality for the Laplacian
operator (−Δ)s is proven in [FMP19, Thm. 2.8]. In this chapter, for 0 < s < 1/2, we
generalize this inverse estimate to the space of piecewise constants.

Chapter 5

On a Lipschitz domain Ω ⊂ Rd, d = 2, 3 with polygonal (for d = 2) or polyhedral (for
d = 3) boundary Γ, we consider a transmission problem and study three different FEM-
BEM couplings, the Bielak-MacCamy coupling [BM84], Costabel’s symmetric coupling
[Cos88, CES90], and the Johnson-Nédélec coupling [JN80]. In this chapter, we prove the
existence of exponentially convergent H-matrix approximants to the inverses of the stiffness
matrices of the FEM-BEM couplings.

To prove the H-matrix approximability, we show that for the interior finite element solu-
tion and for the single-layer and double-layer potentials of the boundary element solution,

6
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a Caccioppoli type estimate holds, i.e., the stronger H1-seminorm can be estimated by a
weaker h-weighted H1-norm on a larger domain.

Analyzing the procedure in [FMP15, FMP16, AFM20] shows structural similarities in
the derivation of H-matrix approximations based on low-dimensional spaces of functions: A
single-step approximation is obtained by using a Scott-Zhang operator on a coarse grid. It-
erating this argument is made possible by a Caccioppoli inequality, resulting in a multi-step
approximation. Finally, with the aid of the approximated solutions from low-dimensional
spaces, we prove the existence of the H-matrix approximants with the exponential conver-
gence in the block rank.

Chapter 6

On Ω ⊂ R3, a simply connected open polyhedral domain with boundary Γ := ∂Ω, we
consider the time-harmonic Maxwell equations and their discretization with lowest order
Nédélec’s curl-conforming elements. We prove the existence of H-matrix approximations
to the inverse of corresponding stiffness matrix and we show exponential convergence of
the error in the H-matrix block-rank r.

In order to prove the H-matrix approximability result, we introduce a local discrete
Helmholtz decomposition and provide stability and approximation properties of this decom-
position. We also present a Caccioppoli-type inequality for discrete L-harmonic functions
with L being the Maxwell operator. Then, we combine this Caccioppoli inequality with
the local discrete Helmholtz-type decomposition and treat gradient part with techniques
established in [FMP15] for Poisson problems whereas the remaining part can, up to a small
perturbation, be controlled in H1. So that approximation becomes feasible and one may
proceed structurally similarly to the scalar case in the previous chapter.

In this thesis, Chapters 3 and 4 are the results of the paper [FMP21b] which will appear in
ESAIMMath. Model. Numer. Anal. (M2AN). Chapter 5 is contained in the paper[FMP20]
which is submitted to Numerische Mathematik. Finally, Chapter 5 is presented in the paper
[FMP21a] which is submitted to Advances in Computational Mathematics.
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2 Background

This chapter is devoted to introduce some basic notations and definitions. In Subsection
2.1.1, we define Sobolev spaces on domain Ω ⊂ Rd as well as on the boundary ∂Ω. Sub-
section 2.1.2 deals with interpolation spaces. Subsection 2.1.3 recalls some vector-valued
function spaces. Subsection 2.1.4 is devoted to trace operators and their properties. In
Section 2.2, we briefly introduce triangulation of the domain Ω as well as the classical H1-
conforming and low-order H(curl)-conforming finite element methods. Section 2.3 recalls
triangulation of the boundary ∂Ω. Section 2.4 is concerned with the definition of some
(quasi-) interpolation operators and their properties. A short introduction to the abstract
Schwarz theory is given in Section 2.5. The final Section 2.6 deals with the hierarchical
matrices.
Throughout this chapter, Ω ⊂ Rd, d ≥ 1 denotes a Lipschitz domain with the boundary

Γ := ∂Ω and Ωext := Rd \ Ω denotes the exterior of Ω.
Additionally, the notation abbreviates ≤ up to a constant C > 0. Moreover, we use
to indicate that both estimates and hold where C is positive constant independent

of the mesh parameters except the γ-shape regularity.

2.1 Function spaces

2.1.1 Sobolev spaces

In this section, we define Sobolev spaces of integer and real orders for both positive and
negative cases; see, e.g [Ada75, BS02, Mon03, SS11]. For p ≥ 1, let Lp(Ω) be the usual
Lebesgue spaces on Ω with corresponding norm · Lp(Ω). Analogously, Lebesgue spaces

on the boundary Γ are denoted by Lp(Γ) with the norm · Lp(Γ). We denote Ck(Ω),

k ∈ N0, as the space of k times continuously differentiable functions on Ω and Ck
0 (Ω) as

the space of compactly supported functions belonging to Ck(Ω). Let C∞(Ω) denote the
space of infinitely differentiable functions on Ω and C∞

0 (Ω) denote the space of compactly
supported functions in C∞(Ω).

Sobolev spaces on Ω

Let L1
loc(Ω) denote the space of absolutely integrable functions on every compact subset

of Ω. For a multi-index α = (α1, · · · , αd) ∈ Nd
0, we set |α| := d

i=1 αi, and the classical
derivative is denoted by

Dαu :=
∂|α|u

∂xα1
1 · · · ∂xαd

d

.
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2 Background

For u ∈ L1
loc(Ω), we call a function in L1

loc(Ω), which we denote Dαu, the weak derivative
of order α if

Ω
Dαuϕdx = (−1)|α|

Ω
uDαϕdx ∀ϕ ∈ C∞

0 (Ω).

The Sobolev space W k,p(Ω), k ∈ N0 and p ∈ [1,∞] is defined as

W k,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), ∀ |α| ∈ Nd
0, 0 ≤ α ≤ k},

with the corresponding norm

u W k,p(Ω) :=


 α∈Nd

0
0≤|α|≤k

Dαu p
Lp(Ω)

1/p

for p ∈ [1,∞),

max|α|≤k Dαu L∞(Ω) for p = ∞.

For p = 2 we use the standard notation Hk(Ω) := W k,2(Ω). This space is a separable
Hilbert space with the scalar product

u, v Hk(Ω) :=

α∈Nd
0

0≤|α|≤k

Dαu,Dαv L2(Ω) ,

which induces the norm u Hk(Ω) = u, u Hk(Ω). We also define the following semi-norm

|u|Hk(Ω) := α∈Nd
0

|α|=k
Ω(D

αu)2
1/2

. For 0 < β < 1, we define the following Slobodeckij

semi-norm

|u|2Hβ(Ω) :=
Ω Ω

(u(x)− u(y))2

|x− y|d+2β
dxdy.

For s ∈ R+\N, we define the Slobodeckij norm as

u 2
Hs(Ω) := u 2

H s (Ω) +

|α|= s Ω Ω

(Dαu(x)−Dαu(y))2

|x− y|d+2β
dxdy,

where β := s− s . Then, the Sobolev spaces of fractional order s ∈ R+\N are defined as

Hs(Ω) := {u ∈ L2(Ω) : u Hs(Ω) < ∞}.

In the above definitions of Sobolev spaces, we are allowed to replace Ω with Rd. In the
following, we define the space of functions in Hs(Ω) with zero boundary conditions. For
s > 0, we denote

Hs
0(Ω) := C∞

0 (Ω) closure with respect to the Hs(Ω)-norm,

9



2 Background

For s ∈ R+, we also define the following Hilbert space

Hs(Ω) := {u ∈ Hs(Rd) : u ≡ 0 on Ωc}, v 2
Hs(Ω)

:= v 2
Hs(Ω) + dist(·, ∂Ω)−sv

2

L2(Ω)
.

The Sobolev spaces with negative orders are defined as the topological dual of positive
order Sobolev spaces: According to [McL00, Thm. 3.30], we have H−s(Ω) = (Hs(Ω)) and
H−s(Ω) = (Hs(Ω)) , for s ∈ R. In the following chapters, we need to extend the Sobolev
spaces from Ω to Rd in a stable way. This can be done using the following lemma.

Lemma 2.1.1. [Ada75, Thm. 4.32] Let Ω ⊂ Rd be a bounded Lipschitz domain. Then,
there exists a bounded linear extension operator E : H1(Ω) → H1(Rd) such that Eu = u on
Ω and

u H1(Rd) ≤ C u H1(Ω) ,

where the constant C > 0 only depends on d and Ω.

Sobolev spaces on the boundary Γ

In this subsection, we shall extend the definition of Sobolev spaces to the boundary Γ. For
0 < s < 1, we define

Hs(Γ) := {u ∈ L2(Γ) : u Hs(Γ) < ∞},

where · Hs(Γ) is the Aronstein-Slobodeckij (semi-)norm defined as

u 2
Hs(Γ) := u 2

L2(Γ) + |u|2Hs(Γ) with |u|2Hs(Γ) :=
Γ Γ

(u(x)− u(y))2

|x− y|d−1+2s
ds(x)ds(y),

where ds is the surface measure on Γ; see, e.g [SS11, Def. 2.4.1]. For 0 < s < 1, we denote
H−s(Γ) := (Hs(Γ)) as the negative order Hilbert space and we can equip the dual space
with the following norm

u H−s(Γ) := sup
v∈Hs(Γ)

u, v Γ

v Hs(Γ)

,

where u, v Γ denote the duality paring.

2.1.2 Interpolation spaces

In this subsection, we briefly introduce the interpolation spaces and overview some of the
key results regarding the interpolation with the K-method for Banach and Hilbert spaces.
We also note that the fractional order Sobolev spaces can equivalently be obtained by
interpolating between integer order spaces and it is useful since working with the norms of
integer order spaces are easier than the Slobodeckij norms. For more details, we refer to
[Tar07] and [McL00, Apendix B].
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Let (X0, · X0
) and (X1, · X1

) be two normed spaces with continuous embedding X1 ⊆
X0. The K-functional on X0 is defined by

K(t, u) := inf
ut∈X1

( u− ut 0 + t ut 1) .

For θ ∈ (0, 1) and q ∈ [1,∞], we define the interpolation space Xθ,q as

Xθ,q := (X0, X1)θ,q := {u ∈ X0 : u θ,q < ∞},
equipped with the norm

u θ,q :=
∞
t=0 t−θK(t, u)

q dt
t

1/q
q ∈ [1,∞),

esssupt>0 t−θK(t, u) q = ∞.

In the following lemma, we mention two simple but important properties of the interpolation
spaces.

Lemma 2.1.2. [Tri95, Sec. 1.3.3] There exists a positive constant Cθ,q such that for
u ∈ X1, we have the following estimation for the interpolation norm

u θ,q ≤ Cθ,q u 1−θ
X0

u θ
X1

θ ∈ (0, 1) q ∈ [1,∞].

Furthermore, for q, q ∈ [1,∞] and 0 < θ < θ < 1, it holds the following continuous
embedding

Xθ,q ⊂ Xθ ,q .

There are two additional results regarding the interpolation spaces that we require later.
The first one is called the “reiteration theorem” and tells us about the possibility of inter-
polating between the interpolation spaces. The second one is concerned with interpolation
between finite dimensional spaces.

Lemma 2.1.3. (Reiteration Theorem, [Tar07, Thm. 26.3] ) For 0 < θ0 < θ1 < 1, 1 ≤
p0, p1, q ≤ ∞ and 0 < λ < 1, there holds

(X0, X1)θ0,p0 , · θ0,p0
, (X0, X1)θ1,p1 , · θ1,p1 λ,q

= (X0, X1)(1−λ)θ0+λθ1,q, · (1−λ)θ0+λθ1,q
,

with equivalent norms.

Let L(A,B) denotes the space of continuous linear operators from A to B. Then, we
have the following lemma.

Lemma 2.1.4. [AL09, Lem. 2.2] Let (X0,N , · X0
) ⊆ (X0, · X0

) and (X1,N , · X1
) ⊆

(X1, · X1
) be two finite dimensional Hilbert spaces with N = dimX0,N = X1,N . Also,

let there exists an operator πN ∈ L(X0, X0,N ) ∩ L(X1, X1,N ) such that πNu = u for all
u ∈ X0,N . Then, it holds

(X0,N , · X0
), (X1,N , · X1

)
θ,q

= (X0,N , X1,N )θ,q, · θ,q ,

with equivalent norms for θ ∈ (0, 1) and q ∈ [1,∞].
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In the following, we consider the interpolation between two weighted L2-spaces.

Lemma 2.1.5. [Tar07, Lem. 23.1] Let ω be a (measurable) positive function on Ω and

E(ω) = v |
Ω
|v(x)|2 ω(x) dx < ∞ with v ω =

Ω
|v(x)|2 ω(x) dx

1/2

.

If ω0 and ω1 are two such functions, then for 0 < θ < 1, we have

(E(ω0), E(ω1))θ,2 = E(ωθ),

with equivalent norms, where ωθ = ω1−θ
0 ωθ

1.

Besov spaces are defined as suitable interpolation between Sobolev spaces, cf. [Tar07,
Ch. 34. 23.1]. In particular, we have the following definition of Besov spaces.

Definition 2.1.6. For s > 0, s /∈ N0, q ∈ [1,∞], the Besov spaces Bs
2,q(Ω) are defined as

the interpolation spaces
Bs

2,q(Ω) := (Hσ(Ω), Hσ+1(Ω))θ,q,

where σ = s and θ = s− σ ∈ (0, 1).

It often is convenient to characterize fractional Sobolev spaces as interpolation spaces.

Lemma 2.1.7. [McL00, Thm. B.8] For s1, s2 ∈ R and θ ∈ (0, 1), the following equivalence
holds

H(1−θ)s1+θs2(Ω) = (Hs1(Ω), Hs2(Ω))θ,2.

2.1.3 Vector-valued function spaces

In this section, we recall standard notations and definitions for vector-valued function
spaces. For a bounded Lipschitz domain Ω ⊂ R3 and an arbitrary function space, we apply
bold letter for the corresponding vector valued version, e.g., W := (W )3. In particular, we
use the following notations for vector-valued Lp- and Sobolev spaces

Lp(Ω) := (Lp(Ω))3 Hk(Ω) := (Hk(Ω))3, ∀k ∈ N0.

For a scalar function u, the gradient operator is defined as

∇u :=
∂u

∂x1
,
∂u

∂x2
,
∂u

∂x3

T

.

For a smooth vector field U = (U1, U2, U3)
T , we recall the curl and the divergence operators

as

∇×U :=
∂U3

∂x2
− ∂U2

∂x3
,
∂U1

∂x3
− ∂U3

∂x1
,
∂U2

∂x1
− ∂U1

∂x2

T

∇ ·U :=

3

i=1

∂Ui

∂xi
.

Next, using partial integration, we mention the definition of the derivatives in the weak
sense, see [Mon03, Sec. 3.5]
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Definition 2.1.8. (Generalized differential operators).

1. For U ∈ L2(Ω), we call F1 ∈ L1
loc(Ω) the (generalized) curl of U, if there holds

Ω
F1 ·V dx =

Ω
U · ∇ ×V dx ∀V ∈ C∞

0 (Ω),

and we write ∇×U = F1.

2. For u ∈ L2(Ω), we call F2 ∈ L1
loc(Ω) the (generalized) gradient of u, if there holds

Ω
F2 ·V dx = −

Ω
u∇ ·V dx ∀V ∈ C∞

0 (Ω),

and we write ∇u = F2.

3. For U ∈ L2(Ω), we call F3 ∈ L1
loc(Ω) the (generalized) divergence of U, if there holds

Ω
F3 v dx = −

Ω
U · ∇v dx ∀v ∈ C∞

0 (Ω),

and we write ∇ ·U = F3.

This leads to the definition of the following H(curl,Ω) and H(div,Ω) spaces.

Definition 2.1.9. We define the following function spaces

H(curl,Ω) := U ∈ L2(Ω) : ∇×U ∈ L2(Ω) ,

H(div,Ω) := U ∈ L2(Ω) : ∇ ·U ∈ L2(Ω) ,

with the following scalar products

U,V H(curl,Ω) := U,V L2(Ω) + ∇×U,∇×V L2(Ω) ,

U,V H(div,Ω) := U,V L2(Ω) + ∇ ·U,∇ ·V L2(Ω) .

Moreover, the induced norms are denoted by

U 2
H(curl,Ω) := U 2

L2(Ω) + ∇×U 2
L2(Ω) ,

U 2
H(div,Ω) := U 2

L2(Ω) + ∇ ·U 2
L2(Ω) .

Definition 2.1.10. The spaces H0(curl,Ω) ⊂ H(curl,Ω) and H0(div,Ω) ⊂ H(div,Ω) are
defined as

H0(curl,Ω) := C∞
0 (Ω) closure with respect to the H(curl,Ω)-norm,

H0(div,Ω) := C∞
0 (Ω) closure with respect to the H(div,Ω)-norm.
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For a simply connected domain Ω with connected boundary Γ, the connection between
the function spaces H(curl,Ω), H(div,Ω), H1(Ω) can be collected in the following so-called
de Rham diagram

R → H1(Ω)
∇−→ H(curl,Ω)

∇×−→ H(div,Ω)
∇·−→ L2(Ω)

0−→ 0,

see e.g. [Mon03, eq. (3.59)]. This sequence is exact which means that the image of
one operator coincides with the kernel of the following operator. Moreover, considering
boundary conditions we have the following exact sequence

R → H1
0 (Ω)

∇−→ H0(curl,Ω)
∇×−→ H0(div,Ω)

∇·−→ L2(Ω)/R 0−→ 0,

where L2(Ω)/R := u ∈ L2(Ω) : Ω u dx = 0 , see e.g. [Mon03, eq. (3.60)].
In the following, we mention the existence of a scalar potential for the curl-free vector

fields.

Theorem 2.1.11. [Mon03, Thm. 3.37] Let Ω ⊂ R3 be a bounded simply connected Lip-
schitz domain and u ∈ L2(Ω). Then, ∇ × u = 0 in Ω if and only if there exists a scalar
potential ψ ∈ H1(Ω) such that u = ∇ψ. Moreover, ψ is unique up to an additive constant.

2.1.4 Trace operators

In this subsection, we collect some standard notations and results regarding the interior and
exterior trace operators as well as the corresponding conormal derivatives. Furthermore,
we present the traces of functions in H(curl,Ω) and H(div,Ω). Most of the results in this
section can be found in [SS11, Mon03].

Trace operators for the space Hs(Ω)

We introduce the space of functions with distributional Laplacian in L2 as

H1
Δ(Ω) := {u ∈ H1(Ω) : ∇u ∈ H(div,Ω)},

with the corresponding norm

u 2
H1

Δ(Ω) := u 2
H1(Ω) + Δu 2

L2(Ω) .

Lemma 2.1.12. [SS11, Thm. 2.6.8, Thm. 2.7.7] Let 1/2 < s < 3/2. Then there exists a
linear and continuous interior trace operator

γint0 : Hs(Ω) → Hs−1/2(Γ) such that γint0 u = u|Γ ∀u ∈ C∞(Ω).

Analogously, there exists a linear and continuous exterior trace operator

γext0 : Hs(Ωext) → Hs−1/2(Γ) such that γext0 u = u|Γ ∀u ∈ C∞(Ωext),

Let ν be the outward normal vector of Ω, then there exists a bounded linear exterior
conormal derivative operator

γint1 : H1
Δ(Ω) → H−1/2(Γ) such that γint1 u = γint0 ∇u · ν ∀u ∈ C∞(Ω).

Analogously, there exists a linear and continuous exterior conormal derivative

γext1 : H1
Δ(Ω

ext) → H−1/2(Γ) such that γext1 u = γext0 ∇u · ν ∀u ∈ C∞(Ω).
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The traces and conormal derivatives are generally discontinuous across Γ. Therefore, if
a function u has an interior and an exterior trace, then we define the following jump term

[γ0u] := γext0 u− γint0 u,

and if u has an interior and an exterior conormal derivative, then the corresponding jump
is defined as

[γ1u] := γext1 u− γint1 u,

see, e.g., [SS11, Subsec. 2.7]. The trace operators are used to incorporate the boundary
conditions to the function spaces, therefore the following lemma helps us to have a more
explicit definition of Hs

0(Ω), 0 ≤ s ≤ 1, using the trace operators.

Lemma 2.1.13. [McL00, Thm. 3.10] Let Ω ⊂ Rd be a bounded Lipschitz domain.

1. For 0 ≤ s ≤ 1/2, it holds Hs
0(Ω) = Hs(Ω).

2. For 1/2 < s ≤ 1, it holds Hs
0(Ω) := u ∈ Hs(Ω) : γint0 u = 0 .

Trace operators for the spaces H(curl,Ω) and H(div,Ω)

Let Ω ⊂ R3 be a bounded Lipschitz domain. In this subsection, we introduce the trace of
functions in H(curl,Ω) and H(div,Ω).

Lemma 2.1.14. [Mon03, Thm. 3.24, Thm. 3.29] Let n denotes the outward normal
vector on Γ. Then

1. There exists a linear, continuous operator trτ : H(curl,Ω) → H−1/2(Γ) such that

trτ (u) = (u× n)|Γ ∀u ∈ C∞(Ω),

and
trτ (u) H−1/2(Γ) u H(curl,Ω) .

2. There exists a linear, continuous operator trn : H(div,Ω) → H−1/2(Γ) such that

trn(u) = (u · n)|Γ ∀u ∈ C∞(Ω),

and
trn(u) H−1/2(Γ) u H(div,Ω) .

Theorem 2.1.15 (Integration by parts for H(curl,Ω) and H(div,Ω) ). [Mon03, Theorems
3.24, 3.29]

1. The following integration by parts formula holds for u ∈ H(curl,Ω) and v ∈ H1(Ω)

Ω
∇× u · v dx =

Ω
u · ∇ × v dx−

Γ
trτ (u) · v ds.
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2 Background

2. The following version of Green’s theorem holds for u ∈ H(div,Ω) and v ∈ H1(Ω)

Ω
∇ · u v dx = −

Ω
u · ∇v dx+

Γ
trn(u) v ds.

Lemma 2.1.16. [Mon03, Thm. 3.25, Thm. 3.33] The spaces H0(curl,Ω) and H0(div,Ω)
can be defined equivalently as

H0(curl,Ω) := {U ∈ L2(Ω) : ∇×U ∈ L2(Ω), trτ (U) = 0 on Γ},
H0(div,Ω) := {U ∈ L2(Ω) : ∇ ·U ∈ L2(Ω), trn(U) = 0 on Γ}.

2.2 Triangulation of Ω

Let Ω ⊂ Rd, d = 2, 3 be a polygonal or polyhedral Lipschitz domain. In the following, we
present a definition of a triangulation T on Ω.

Definition 2.2.1. A set T is called a conforming triangulation of Ω, if it satisfies the
following properties

1. Each element T ∈ T is an open d-simplex.

2. T is regular in the Ciarlet sense, i.e., for two elements T, T ∈ T , the intersection of
T ∩ T is either empty, a common vertex, a joint edge or a joint facet (d = 3).

3. The union of all elements covers Ω, i.e., Ω = T∈T T .

Definition 2.2.2. Let T be a triangulation of Ω. Then,

1. T is called γ-shape regular if

max
T∈T

(diam(T )/ |T |1/d) ≤ γ < ∞,

where diam(T ) := supx,y∈T |x− y| and |T | denotes the volume (d = 3) or the area
(d = 2) of T .

2. A γ-shape regular triangulation T is called quasi-uniform, if there exists C > 0 such
that

max
T∈T

(diam(T )) ≤ C min
T∈T

(diam(T ))

3. h = maxT∈T (diam(T )) is called the mesh size of T .

Let T denote a regular (in the sense of Ciarlet) and γ-shape regular triangulation of
Ω ⊂ Rd. In the following, we define the space of piecewise polynomials (d = 2, 3) and we
consider the low-order finite element spaces and the lowest order local Nédélec spaces of
first kind (d = 3).
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2 Background

Definition 2.2.3. Let Pp(T ) be the space of polynomials of (maximal) degree p ≥ 0 on
the element T ∈ T . The spaces of T -piecewise polynomials of degree p ∈ N0 and regularity
m ∈ N0 are defined by

Sp,m(T ) := {u ∈ Hm(Ω): u|T ∈ Pp(T ) ∀T ∈ T } ,
Sp,m
0 (T ) := Sp,m(T ) ∩Hm

0 (Ω) m = 0, 1.

Considering the fact that the results of the last two chapters of this thesis are mainly
formulated for matrices, we need to impose assumptions on the basis of Sp,1(T ). To do
that it will be convenient to use Lagrange bases of the space Sp,1(T ) defined on a mesh T .

Definition 2.2.4. On the reference d-simplex T = conv{z1, . . . , zd+1}, let the dimPp nodes

Np(T ) be the regularly spaced nodes as described in [Cia78, Sec. 2.2] (called “principal
lattice” there),

Np(T ) := x =

d+1

j=1

λjzj :

d+1

j=1

λj = 1, λj ∈ i

p
, i = 0, . . . , p .

The nodes Np(T ) ⊂ Ω for the mesh T are the push-forward of the nodes of Np(T ) under
the element maps. The Lagrange basis BT ,p := {ϕz,T | z ∈ Np(T )} of Sp,1(T ) (with respect
to the nodes Np(T )) is characterized by ϕz,T (z ) = δz,z for all z, z ∈ Np(T ); here, δz,z is
the Kronecker Delta defined as δz,z = 1 if z = z and δz,z = 0 for z = z .

For p = 1, we abbreviate N (T ) := N1(T ) and if the triangulation T is additionally
quasi-uniform with the mesh size h, then we abbreviate Bh := BT ,1. For a quasi-uniform
triangulation T of Ω with the mesh size h, let N (T ) = {z1, · · · , zn} be the set of the nodes
of T and ξj := ϕzj ,T , j = 1, · · · , n. Then Bh features the following norm equivalences:

c1h
d/2 x 2 ≤ Φx L2(Ω) ≤ c2h

d/2 x 2 ∀x ∈ Rn, (2.2.1a)

for the isomorphism Φ : Rn → S1,1(T ), x → n
j=1 xjξj .

Definition 2.2.5. On T ∈ T , the lowest order local Nédélec spaces of first kind is defined
as

N I
1 (T ) = {a+ b× x : a,b ∈ R3}.

Let τ be a unit vector parallel to the edge e, then the edge-based degrees of freedom are
given by

Me(U) :=
e
U · τ de ∀ edges e of T,

i.e., the line integrals of the tangential component over the edges of T , see e.g., [Mon03,
Sec. 5.5.1], [BBF13, Sec. 2.3.2].
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2 Background

Definition 2.2.6. Let T ∈ T be an arbitrary tetrahedron and e be an edge of T with
endpoints V1, V2. Then, the nodal basis of N I

1 (T ) is defined based on the following edge-
based shape functions

Φe = λV1∇λV2 − λV2∇λV1 ,

where λVi is the barycentric coordinate function associated with vertex Vi, see, e.g., [Mon03,
Sec. 5.5.1].

We set

Xh(T ,Ω) := {Uh ∈ H(curl,Ω) : Uh|T ∈ N I
1 (T ) ∀T ∈ T },

Xh,0(T ,Ω) := Xh(T ,Ω) ∩H0(curl,Ω).

Since the standard degrees of freedom of Xh(T ,Ω) are the line integrals of the tangential
component of Uh on the edges of T , the dimension of Xh(T ,Ω) is the number of edges of
T . The standard basis of Xh(T ,Ω) consists of the so-called (lowest order) edge elements
Xh := {Ψe}, where for each edge e, the function Ψe ∈ Xh(T ,Ω) is defined on the tetrahedra
sharing e as an edge, as in Definition 2.2.6 and is supported by the union of the tetrahedra
sharing edge e.

A basis Xh,0 := {Ψ1, . . . ,ΨN} of Xh,0(T ,Ω) with N := dimXh,0(T ,Ω) is obtained by
taking the Ψe ∈ Xh whose edge e satisfies e ⊂ Ω; that is, Xh,0 is obtained from Xh by
removing the shape functions associated with edges lying on Γ.

2.3 Triangulation of ∂Ω

We additionally need to define triangulations of the boundary Γ.

Definition 2.3.1. A set K is called a regular triangulation of Γ if

1. Each K ∈ K is an open line segment (d = 2) or an open triangle (d = 3) in Rd.

2. K is regular in the Ciarlet sense, i.e., for two elements K, K ∈ K, the intersection of
K ∩K is either empty, a common vertex (d ≥ 2) or a joint edge (d = 3).

3. The union of all elements cover Γ, i.e., Γ = K∈K K.

Definition 2.3.2. Let K be a triangulation of Γ. For d = 2, K is called γ-shape regular if

max
K∈K

max
K ∈K

|K|
|K | ≤ γ,

and for d = 3, K is called γ-shape regular if

max
K∈K

(diam(K)2/ |K|) ≤ γ.

Furthermore, a γ-shape regular triangulation K is called quasi-uniform, if there exists C > 0
such that

max
K∈K

(diam(K)) ≤ C min
K∈K

(diam(K)).
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2 Background

Let K denote a regular (in the sense of Ciarlet) and γ-shape regular triangulation of Γ.
Then, we have the following definition for the space of piecewise constant functions on K.

Definition 2.3.3. Let K denote a regular (in the sense of Ciarlet) and γ-shape regular
triangulation of Γ. Let Pp(K) be the space of polynomials of (maximal) degree p ≥ 0 on
the element K ∈ K. The space of piecewise constant functions on K is defined as

S0,0(K) := {u ∈ L2(Γ) : u|K ∈ P0(K) ∀K ∈ K}.

For a quasi-uniform triangulation K of Γ with the mesh size h, since the results of Chapter
5 are devised for matrices, assumptions on the basis of S0,0(K) are required to be imposed.
Therefore, we let Wh := {χj : j = 1, . . . ,m} be the basis of S0,0(K) that consists of the
characteristic functions of the surface elements. This basis features the following norm
equivalences:

c3h
(d−1)/2 y 2 ≤ Ψy L2(Γ) ≤ c4h

(d−1)/2 y 2 ∀y ∈ Rm, (2.3.1a)

for the isomorphism Ψ : Rm → S0,0(K), y → m
j=1 yjχj .

2.4 (quasi-) interpolation

Let Vh be a finite dimensional subspace of L2(Ω). Then the L2(Ω)-orthogonal projection
ΠL2

h : L2(Ω) → Vh is defined by

ΠL2

h u− u, ϕh
L2(Ω)

= 0 ∀ϕh ∈ Vh.

Using ϕh = ΠL2

h u as the test function and applying the Cauchy-Schwarz inequality give
rise to the following stability estimate

ΠL2

h u
L2(Ω)

≤ u L2(Ω) .

Analogously, the L2(Γ)-orthogonal projection IΓh : L2(Γ) → Wh, for a finite dimensional
space Wh ⊂ L2(Γ), is defined as

IΓh v − v, ψh L2(Γ)
= 0 ∀ψh ∈ Wh. (2.4.1)

Let K denote a γ-shape regular quasi-uniform triangulation of Γ, u ∈ L2(Γ) and u|K ∈
H1(K), for all K ∈ K. The L2(Γ)-orthogonal projection IΓh : L2(Γ) → S0,0(K) has the
following approximation property

u− IΓhu L2(K)
≤ Ch |u|H1(K) , (2.4.2)

where C > 0 depends only on the shape-regularity of the triangulation K, see e.g. [SS11,
Eq. 4.51].
In the following, we mention a classical approximation result, so-called super-approximation,

see, e.g., [NS74, Wah91].
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2 Background

Lemma 2.4.1. Let K be a quasi-uniform triangulation of Γ and IΓh : L2(Γ) → S0,0(K)
be the L2(Γ)-orthogonal projection. Then, there is C > 0 depending only on the shape-
regularity of the triangulation and Γ such that for any discrete function ψh ∈ S0,0(K) and
any η ∈ W 1,∞(Γ)

ηψh − IΓh (ηψh) H−1/2(Γ)
≤ Ch3/2 ∇η L∞(Γ) ψh L2(Γ∩supp(η)) . (2.4.3)

Proof. The main observation is that, on each element K ∈ K, we have ∇ψh|K ≡ 0. There-
fore, the standard approximation result (2.4.2) reduces to

ηψh − IΓh (ηψh) L2(K)
h ∇(ηψh) L2(K) h ∇(η)ψh L2(K) . (2.4.4)

Since IΓh is the L2-projection, one can write

ϕ− IΓhϕ L2(Γ)
h ϕ H1/2(Γ) , (2.4.5)

see e.g. [SS11, Eq. 4.58]. Combining the above equations, we obtain the following
approximation in the H−1/2(Γ)-norm

ηψh − IΓh (ηψh) H−1/2(Γ)
≤ sup

ϕ∈H1/2(Γ)

ηψh − IΓh (ηψh), ϕ L2(Γ)

ϕ H1/2(Γ)

Eq. (2.4.1)
= sup

ϕ∈H1/2(Γ)

ηψh − IΓh (ηψh), ϕ− IΓhϕ L2(Γ)

ϕ H1/2(Γ)

ηψh − IΓh (ηψh) L2(Γ)
sup

ϕ∈H1/2(Γ)

ϕ− IΓhϕ L2(Γ)

ϕ H1/2(Γ)

Eq. (2.4.5)

h1/2 ηψh − IΓh (ηψh) L2(Γ)

Eq. (2.4.4)

h3/2

K∈K
∇(ηψh)

2
L2(K),

which gives us the desired result.

Another main tool that we need in the following chapters is the nodal interpolation
operator IΩh : C(Ω) → S1,1(T ). For γ-shape regular quasi-uniform triangulation T of
Ω ⊂ Rd, we denote H2

pw(Ω) := {u ∈ L2(Ω) : u|T ∈ H2(T ) T ∈ T }. Since d/2 < 2
for d ∈ {1, 2, 3}, the nodal interpolation operator has the following local approximation
property [BS02, Thm. 4.4.4]

u− IΩh u
2

Hk(T )
≤ Ch2(2−k) |u|2H2(T ) ∀u ∈ C(Ω) ∩H2

pw(Ω), 0 ≤ k ≤ 2, (2.4.6)

where C > 0 depends only on the shape-regularity of the triangulation T .
Another super-approximation result holds for the nodal interpolation operators.
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2 Background

Lemma 2.4.2. Let T be a quasi-uniform triangulation of Ω and IΩh : C(Ω) → S1,1(T ) be
the nodal interpolation operator, then the following super-approximation result holds

ηvh − IΩh (ηvh) Hk(Ω)
h2−k ∇η L∞(Ω) ∇vh L2(Ω∩supp(η))

+ D2η
L∞(Ω)

vh L2(Ω∩supp(η)) , (2.4.7)

for any discrete function vh ∈ S1,1(T ), any η ∈ W 2,∞(Ω), and k = 0, 1, where H0(Ω) :=
L2(Ω).

Proof. On each element T ∈ T , we have D2vh|T ≡ 0. Therefore, the standard approxima-
tion result (2.4.6) reduces to

ηvh − IΩh (ηvh) Hk(T )
h2−k |ηvh|H2(T ) h2−k D2(ηvh) L2(T )

,

which concludes the proof.

2.4.1 Scott-Zhang operators on Ω

Let T be a regular (in the sense of Ciarlet) and γ-shape regular triangulation of Ω. The
Scott-Zhang projection ISZ : H1(Ω) → Sp,1(T ) is a quasi-interpolation operator that
preserves homogeneous boundary conditions naturally, i.e., u|Γ = 0 implies ISZu|Γ = 0.
In this subsection, we recall the basic construction of the Scott-Zhang operator of [SZ90a]
or [BS02, Sec. 4.8]. It will be convenient to use Lagrange bases of the space Sp,1(T ) from
Definition 2.2.4.

1. The basis functions ϕz,T have the following support properties: a) if z ∈ T for some
T ∈ T , then suppϕz,T ⊂ T ; b) if z ∈ f for some j-dimensional face (j < d) of T ,
then suppϕz,T ⊂ ωf , where ωf = int {T : f is j-face of T ∈ T }. In particular, if
z ∈ T , then suppϕz,T ∩ T = ∅.

2. For each element T ∈ T , one has a dual basis {ϕ∗
z,T : z ∈ T} ⊂ Pp(T ) of Pp(T ), i.e.,

T ϕ∗
z,Tϕz ,T = δz,z for all nodes z, z ∈ T . In particular, this gives

T
ϕ∗
z,Tu dx = u(z) ∀T ∈ T ∀u ∈ Pp(T ). (2.4.8)

3. For each node z ∈ Np(T ), define the admissible set of averaging elements asA(z, T ) :=
{T ∈ T : z ∈ T}. A Scott-Zhang operator is then defined by selecting, for each z, a
Tz ∈ A(z, T ) and setting

ISZu :=

z∈Np(T )

ϕz,T
Tz

ϕ∗
z,Tz

u dx . (2.4.9)

For nodes z that are on the boundary of an element, the admissible set A(z, T ) has more
than one element. However, from (2.4.8), we get that the values of the functionals coincide
on Sp,1(T ):

Tz

ϕ∗
z,Tz

u dx = u(z) =
Tz

ϕ∗
z,Tz

u dx ∀Tz, Tz ∈ A(z, T ) ∀u ∈ Sp,1(T ). (2.4.10)
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2 Background

We also highlight that (2.4.8) implies that ISZ is a projection onto Sp,1(T ). In order to
state the properties of the Scott-Zhang projections, first we need to define the element
patches. For T ∈ T and k ∈ N, we inductively define the element patches

ω0(T ) := T, ωk(T ) := interior {T : T ∈ T , T ∩ ωk−1(T ) = ∅} ,

and for the first order patch, we abbreviate ω(T ) := ω1(T ).

Lemma 2.4.3. [EG17, Lem. 1.130] The Scott–Zhang projection has the following proper-
ties:

1. The stability in L2-norm and H1-semi-norm

ISZu
H (T )

≤ Ch2 |u|H (ω(T )) , ∈ {0, 1}.

2. The local approximation property

u− ISZu
2

H (T )
≤ Ch2(m− ) |u|2Hm(ω(T )) , 0 ≤ ≤ 1, ≤ m ≤ p+ 1. (2.4.11)

where the constant C > 0 depends only on γ-shape regularity of the triangulation T .

2.4.2 Scott-Zhang operators on Rd

Given Ω, let RH be a quasi-uniform (infinite) triangulation of Rd (into open simplices
R ∈ RH) with mesh width H that conforms to Ω, i.e., every R ∈ RH satisfies either
R ⊂ Ω or R ⊂ Ωext and the restrictions RH |Ω and RH |Ωext are regular and γ-shape regular
triangulations of Ω and Ωext of mesh size H, respectively.

For s > 0, we define the space Hs(Rd\Γ) as

Hs(Rd\Γ) := u ∈ L2(Rd) : u|Ω ∈ Hs(Ω), u|Ωext ∈ Hs(Ωext) .

Furthermore, the space L2(Rd\Γ) is defined as

L2(Rd\Γ) := u ∈ L1
loc(Rd) : u|Ω ∈ L2(Ω), u|Ωext ∈ L2(Ωext) .

With the Scott-Zhang projections I intH , IextH for the grids RH |Ω and RH |Ωc , we define

the operator IpwH : H1(Rd\Γ) → S1,1
pw (RH) := {v : v|Ω ∈ S1,1(RH |Ω) and v|Ωext ∈

S1,1(RH |Ωext)} in a piecewise fashion by

IpwH v =
I intH v on Ω,
IextH v on Ωext.

(2.4.12)

We denote the patch of an element R ∈ RH by

ωΩ
R := interior R : R ∈ RH |Ω s.t. R ∩R = ∅ ,

ωΩext

R := interior R : R ∈ RH |Ωext s.t. R ∩R = ∅ .
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2 Background

Lemma 2.4.4. The Scott-Zhang projection reproduces piecewise affine functions and has
the following local approximation property for piecewise Hs functions:

v − IpwH v
2

Ht(R)
≤ CH2(s−t)

|v|2Hs(ωΩ
R) if R ⊂ Ω

|v|2
Hs(ωΩext

R )
if R ⊂ Ωext

t, s ∈ {0, 1}, 0 ≤ t ≤ s ≤ 1,

(2.4.13)

with a constant C depending only on the shape-regularity of RH and d.

2.5 Abstract Additive Schwarz Framework

The additive Schwarz technique creates an abstract framework to design preconditioners
based on stable decompositions of a finite dimensional Hilbert space V , using the subspaces
V , = 0, · · · , L. The main references for this section are [Osw94] and [TW05].

Let a(·, ·) : V × V → R be a symmetric positive definite bilinear form and ·, · V denote
the inner product in V . We consider the problem of finding u ∈ V such that

a(u, v) = φ(v) ∀v ∈ V, (2.5.1)

where φ(v) := (f, v)V is a linear functional on V and f ∈ V is given. This equation is
equivalent to the following linear operator equation

Au = f,

where A : V −→ V is a symmetric positive definite operator defined by Au, v V = a(u, v).
Let {V , = 0, · · · , L} be a family of finite dimensional spaces and RT : V → V be the
natural inclusion which we call prolongation. We assume that V can be decomposed as

V = RT
0 V0 +

L

=1

RTV .

Let a (·, ·) : V × V → R be a symmetric positive definite bilinear form defined as

a (u , v ) = A u , v V ∀u , v ∈ V

where A : V → V is a linear symmetric positive definite operator. Moreover, we introduce
the linear operator P : V → V given by

a (P u, v ) = a(u,RT v ) v ∈ V .

Let R : V → V be the corresponding adjoint of RT with respect to the inner product
·, · V , i.e.,

RTu , v
V
= u ,R v V ∀u ∈ V , v ∈ V.
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2 Background

We should note that the symmetry and positive definiteness of a ensure that the operator
P is well defined and can be written equivalently as

P = A−1R A. (2.5.2)

Then, Schwarz operators are defined in terms of projection-like operators

P := RTP : V → RTV ⊂ V, = 0, · · · , L,
and the additive Schwarz operator is defined by PL

AS := L
=0 P . Considering the definition

of P from (2.5.2), PL
AS can also be written in the following form

PL
AS =

L

=0

RTA−1R A. (2.5.3)

Definition 2.5.1. We define the condition number of PL
AS as

κ(PL
AS) =

λmax(PL
AS)

λmin(PL
AS)

,

where

λmax(PL
AS) = sup

u∈V
a(PL

ASu, u)

a(u, u)
, λmin(PL

AS) = inf
u∈V

a(PL
ASu, u)

a(u, u)
.

In order to provide an upper bound for the condition number of the additive Schwarz
operator, first we need to mention the following assumptions.

Assumption 2.5.2. (Stable decomposition) There exists a constant C0, such that each
u ∈ V has the decomposition

u =
L

=0

RTu u ∈ V = 0, · · · , L,

that satisfies

L

=0

a (u , u ) ≤ C2
0a(u, u).

Assumption 2.5.3. (Strengthened Cauchy-Schwarz inequalities) There exists con-
stants 0 ≤ εi,j ≤ 1, 1 ≤ i, j ≤ L such that

a(RT
i ui, R

T
j uj) ≤ εi,ja(R

T
i ui, R

T
i ui)

1/2a(RT
j uj , R

T
j uj)

1/2 ∀ui ∈ Vi, uj ∈ Vj .

Assumption 2.5.4. (Local stability) There exist ζ > 0 such that

a(RTu ,RTu ) ≤ ζa (u , u ) u ∈ range(P ) ⊂ V 0 ≤ ≤ L.

Theorem 2.5.5. [TW05, Theorem 2.7] Let Assumptions 2.5.2-2.5.4 be satisfied. Then,
the condition number of the additive Schwarz operator is bounded by

κ(PL
AS) ≤ C2

0ζ(ρ(ε) + 1),

where ρ(ε) is the spectral radius of ε := {εi,j}.
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2 Background

2.6 Hierarchical Matrices

The main idea of H-matrices is to store certain far field blocks of the matrix efficiently as
low-rank matrices. This can be done by appropriate partitioning of the product index set
into a so-called block cluster tree such that the restriction of the matrix to the blocks of
this partitioning is either small or a low rank matrix. In order to choose blocks that are
suitable for compression, we need to introduce the concept of admissibility.

Let Vh be a finite dimensional Hilbert space and {ζj : j = 1, . . . ,M} be a basis for Vh.
Let a(·, ·) : Vh ×Vh → C be a bilinear form and A ∈ CM×M be the corresponding Galerkin
matrix with Ai,j = a(ζj , ζi). Let |τ | denote the cardinality of the finite set τ . Then, we
have the following definitions:

Definition 2.6.1 (Cluster, cluster tree). A cluster τ is a subset of the index set I =
{1, 2, ...,M}. A cluster tree with leaf size nleaf ∈ N is a binary tree TI with root I such
that each cluster τ ∈ TI is either a leaf of the tree and satisfies |τ | ≤ nleaf , or there exist
disjoint subsets τ1, τ2 ∈ TI of τ , so-called sons, with τ = τ1 ∪ τ2. We denote the set of sons
of τ by S(τ) := {τ1, τ2} .
Definition 2.6.2 (Level function, depth of a cluster tree and balanced tree). The level
function level : TI → N0 is inductively defined by level(I) = 0 and level(τ ) := level(τ) + 1
for τ a son of τ . The depth of a cluster tree is depth(TI) := maxτ∈TI level(τ). We call a
tree balanced if the sons of each cluster possess the same number of indices.

Definition 2.6.3 (Bounding boxes and η-admissibility). For a cluster τ ⊂ I, the axis-
parallel BRτ ⊆ Rd is called a bounding box if BRτ is a hypercube with side length Rτ and
∪i∈τ supp ζi ⊆ BRτ .
For η > 0, a pair of clusters (τ, σ) with τ, σ ⊂ I is called η-admissible if there exist bounding
boxes BRτ and BRσ such that

max{diam(BRτ ), diam(BRσ)} ≤ η dist(BRτ , BRσ), (2.6.1)

where dist(BRτ , BRσ) := inf { x− y 2 : x ∈ BRτ , y ∈ BRσ}.
Remark 2.6.4. If A is a symmetric matrix, then we are allowed to use a weaker admissibility
condition, i.e., min{diam(BRτ ), diam(BRσ)} ≤ η dist(BRτ , BRσ).

Definition 2.6.5 (block cluster tree, sparsity constant and partition). Let TI be a cluster
tree with root I and η > 0 be a fixed admissibility parameter. The block cluster tree TI×I
is a tree constructed recursively from the root I ×I such that for each block τ ×σ ∈ TI×I
with τ, σ ∈ TI , the set of sons of τ × σ is defined as

S(τ × σ) :=
∅ if τ × σ is η-admissible or S(τ) = ∅ or S(σ) = ∅,
S(τ)× S(σ) else.

Replacing the largest possible matrix blocks by low-rank approximations allows us to
keep the computational complexity and memory requirements low. One possible way to
achieve this goal is to apply the admissibility condition and identify the admissible cluster
pairs, which gives rises to the following definitions of the far-field and near-field sets and
the sparsity constant.

25



2 Background

Definition 2.6.6 (Far-field, near-field, and sparsity constant). The leaves of the block
cluster tree induce a partition P of the set I × I. For such a partition P and a fixed
admissibility parameter η > 0, we define the far-field and the near-field as

Pfar := {(τ, σ) ∈ P : (τ, σ) is η-admissible}, Pnear := P \ Pfar. (2.6.2)

The sparsity constant Csp of such a partition was introduced in [Gra01, Def. 5.3] as

Csp := max max
τ∈TI

|{σ ∈ TI : τ × σ ∈ TI×I}| ,max
σ∈TI

|{τ ∈ TI : τ × σ ∈ TI×I}| . (2.6.3)

A partition P of I×I is said to be based on the cluster tree TI if it satisfies the conditions
of Def. 2.6.5.

Definition 2.6.7. Let P be a partition of I × I based on the cluster tree TI . Then, P is
called sparse if depth(TI) log(M) and Csp 1.

Now, we need to define the notion of the concentric boxes.

Definition 2.6.8. (Concentric boxes) Two (quadratic) boxes BR and BR of side length
R and R are said to be concentric if they have the same barycenter and BR can be obtained
by stretching of BR by the factor R/R taking their common barycenter as the origin.

For clusters τ , σ ⊂ I, we adopt the notation

Cτ := {x ∈ CM : xi = 0 if i ∈ τ},
Cτ×σ := {A ∈ CM×M : Aij = 0 if i ∈ τ or j ∈ σ}.

For x ∈ CM and A ∈ CM×M , the restrictions x|τ and Aτ×σ are understood as (x|τ )i =
χτ (i)xi and (A|τ×σ)ij = χτ (i)χσ(j)Aij , where χτ and χσ are the characteristic functions
of the sets τ , σ. For integers r ∈ N, matrices Cτ×r are understood as matrices in CM×r

such that each column is in Cτ . In the following, we present the definition of H-matrices.

Definition 2.6.9 (H-matrices). Let P be a partition of I×I based on a cluster tree TI and
η > 0. A matrix BH ∈ CM×M is an H-matrix, if for every admissible block (τ, σ) ∈ Pfar,
we have a rank r factorization

BH|τ×σ = XτσY
H
τσ,

where Xτσ ∈ Cτ×r and Yτσ ∈ Cσ×r.

There are several ways to construct a cluster tree TI . The cardinality balanced clustering
divides the index cluster into a specific number of sons with the same size with respect to
the number of indices, i.e., the bounding boxes are divided such that the new boxes contain
the same number of degrees of freedom.

In the geometric clustering, the bounding boxes are divided into two boxes by connecting
the midpoints of the largest side lengths and the new set of indices are stored as the sons.
For details on clustering techniques we refer to [GHLB04], [Hac13, Appendix D] and [Hac15,
Sec. 5.4.2]. The
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2 Background

The low-rank structure of the far-field blocks allows for efficient storage of H-matrices
as the memory requirement to store an H-matrix is O(Csp depth(TI)rM), i.e, [GH03b,
Lem. 2.4]. For the quasi-uniform grids, the standard clustering methods, such as the
geometric clustering lead to balanced cluster trees, i.e., depth(TI) ∼ log(M) (see, e.g.,
[Hac15, Remark 5.19]) and a uniformly (in the mesh size h) bounded sparsity constant.
In total this gives a storage complexity of O(rM log(M)) to construct the matrix BH from
Definition 2.6.9.
One of the main advantages of H-matrices to other matrix compression techniques is the

ability to perform matrix operations such as addition, inversion, LU -factorization and mul-
tiplication with logarithmic-linear storage complexity. The mentioned matrix operations
exploit the properties of the low-rank blocks and apply a truncation strategy based on the
singular value decomposition (SVD) to achieve the storage complexity of O(M logα(M)).
For details, see [BGH03] and [Hac15, Chapter 7].
Finally, the question of approximating the whole block-wise arbitrary matrix M can be

reduced to the question of blockwise approximation.

Lemma 2.6.10. ([Hac15, Lem. 6.32], [Bör10, Lem. 5] ) Let M ∈ CM×M and P be a
sparse partition of I ×I based on the cluster tree TI . Moreover, let P be a level-conserving
partition, i.e., for all d := (τ, σ) ∈ P , it holds level(d) = level(τ) = level(σ). Then, the
following inequalities hold:

M 2 ≤ Csp

∞

=0

max{ M|τ×σ 2 : (τ, σ) ∈ P, level(τ) = level(σ) = } , (2.6.4)

M 2 ≤ Csp depth(TI)max{ M|τ×σ 2 : (τ, σ) ∈ P, level(τ) = level(σ)}, (2.6.5)

where · 2 denotes the spectral norm.

Throughout this thesis, we always assume P is a level-conserving partition.
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3 A multilevel decomposition based on mesh
hierarchies generated by NVB

The Scott-Zhang projection, originally introduced in [SZ90a], is a very important tool in
numerical analysis and has been generalized in various ways, [BG98, GS02, Car99, CH09,
Ape99b, Aco01, Ran12, Cia13, FW15, AFF+15, KM15, EG17]. In its classical form, it
is quasi-local, it is a projection onto the space of globally continuous, piecewise polyno-
mials, it is stable in both L2 and H1 (and thus, by interpolation also in Hs, s ∈ (0, 1)),
and has optimal approximation properties. Therefore, it is well-suited for the analysis of
classical finite element methods (FEMs), [BS02], and plays a key role in the analyses of,
e.g., anisotropic finite elements, [Ape99a], adaptive finite element methods, [AFK+13], or
mixed methods, [Bad12].

As globally continuous piecewise linear functions are not only in the Sobolev spaceH1(Ω),
but also in (fractional) Sobolev spaces H3/2−ε(Ω) for any ε > 0 — in fact, they are in the

Besov space B
3/2
2,∞(Ω) — a natural question is whether the operator is also stable in the

stronger norms imposed on these spaces.
In this chapter, we prove the stability of local, L2(Ω)-stable operators with certain ap-

proximation properties in L2(Ω) on shape-regular meshes in the norm ·
B

3/2
2,∞(Ω)

including

the case of Scott-Zhang operator. We also provide an endpoint stability result for the op-
erators such as the elementwise L2-projection that map into spaces of piecewise constants,

where the corresponding endpoint space is B
1/2
2,∞(Ω).

In this chapter, we develop properties of the finest common coarsening of two given
meshes obtained by NVB refinement. We also introduce a modified Scott-Zhang operator
for the hierarchy T generated by the finest common coarsening of a fixed mesh T and the
sequence of uniformly refined meshes T . Finally, based on these modified Scott-Zhang op-
erators and using the mentioned stability result for Scott-Zhang type operators we develop
multilevel norm equivalences in Besov spaces up to the endpoint case for standard discrete
spaces of globally continuous piecewise polynomials on T .

3.1 Stability of (quasi-) interpolation operators in Besov spaces

Let Ω ⊂ Rd be a bounded Lipschitz domain and for the discretization, we assume that a
regular (in the sense of Ciarlet) triangulation T of Ω consisting of open simplices is given.
Additionally, T is assumed to be γ-shape regular. By h ∈ L∞(Ω), we denote the piecewise

constant mesh size function satisfying h|T := hT := |T |1/d for T ∈ T . In the following,
we study (quasi-) interpolation operators Imh satisfying the following locality, stability and
approximation properties.
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

Assumption 3.1.1. Let m ≥ 1 and Imh be an operator Imh : L2(Ω) → Sp,m−1(T ) that
satisfies:

(i) Quasi-locality: For every T ∈ T the restriction (Imh u)|T depends solely on u|ω(T ).

(ii) Stability in L2: For u ∈ L2(Ω), there holds

Imh u L2(T ) ≤ C u L2(ω(T )).

(iii) Approximation properties of m-th order: For u ∈ Hm(Ω), there holds

u− Imh u L2(T ) ≤ ChmT u Hm(ω(T )).

The constants in (ii) and (iii) depend only on Ω, d, m, p, and the γ-shape regularity of T .

We will need mollifiers with certain local approximation properties. Essentially, such
operators are given by those classical mollifiers that reproduce, or at least approximate
to high order, polynomials of degree p. The following proposition, which is taken from
[KM15], provides such operators. Our primary reason for working with this particular
class of approximation operators is that the technical complications associated with the
boundary of ∂Ω have been taken care of.

Proposition 3.1.2 ([KM15, Thm. 2.3]). Let Ω be a bounded Lipschitz domain and p ∈ N0

be fixed. For open ω ⊂ Ω and ε > 0 denote by ωε := Ω ∩ ∪x∈ωBε(x) the “ε-neighbourhood”
of ω. Then, there exists a constant C > 0 such that for every ε > 0 there is a linear
operator Aε : L1

loc(Ω) → C∞(Ω) with the following stability and approximation properties
for arbitrary open ω ⊂ Ω:

(i) If u ∈ Hk(ωε) with k ≤ p+1, then Aεu H (ω) ≤ Cε− +k u Hk(ωε), = k, . . . , p+
1.

(ii) If u ∈ Hk(ωε) with k ≤ p+1, then u−Aεu H (ω) ≤ Cεk− u Hk(ωε), = 0, . . . , k.

Proof. The proof for the much more technical case of a variable length scale function
ε = ε(x) is given in [KM15, Thm. 2.3]. We give the idea of the proof: in the interior of Ω,
the operator Aε has the form Aεu = u∗ρε, where the mollifier ρε is such that it reproduces
polynomials of degree p (the “classical” mollifier reproduces merely constant functions).
Near the boundary, this standard averaging is modified such that Aεu(x) is not obtained
by averaging u on Bε(x) but by averaging u on the ball Bε(x+εb) and evaluating the Taylor
polynomial of degree p of this averaged function at the point x of interest; the vector b is
suitable of size O(1) and it ensures that the averaging is performed inside Ω.

With the mollifiers from Proposition 3.1.2, we can prove stability and approximation
properties for operators satisfying Assumption 3.1.1 in stronger norms.
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

Lemma 3.1.3. Let m ∈ {1, 2} and p ≥ m − 1. Assume that the linear operator Imh :
Hm(Ω) → Sp,m−1(T ) satisfies Assumption 3.1.1. Then, there is a constant C > 0 depend-
ing solely on d, m, p, and the γ-shape-regularity of T such that for all T ∈ T the following
stability and approximation properties hold:

Imh u Hr(T ) ≤ C u Hr(ω2(T )), r = 0, . . . ,m, (3.1.1)

u− Imh u Hr(T ) ≤ Chk−r
T u Hk(ω2(T )), r = 0, . . . ,min{k,m}, k = 0, . . . , p+ 1.

(3.1.2)

Proof. Let T ∈ T be arbitrary. We use the operator Aε of Proposition 3.1.2 with ω = ω(T )
and ε ∼ hT , such that ωε ⊂ ω2(T ). We write using the triangle inequality

u− Imh u Hr(T ) ≤ u−Aεu Hr(T ) + Aεu− Imh Aεu Hr(T ) + Imh (u−Aεu) Hr(T )

=: T1 + T2 + T3.

By Proposition 3.1.2, we have T1 hk−r
T u Hk(ω2(T )). A polynomial inverse estimate, see,

e.g., [DFG+04], the stability property ii of Assumption 3.1.1, and Proposition 3.1.2 give

T3 h−r
T u−Aεu L2(ω(T )) h−r

T hkT u Hk(ω2(T )).

In order to estimate T2, we use a piecewise polynomial q ∈ Sp,m−1(T ) with approximation
properties in the Hr-norm (e.g., a Clément or Scott-Zhang type interpolation) as given by
[BS02, Thm. 4.8.12]. Then,

T2 ≤ Aεu− u Hr(T ) + u− q Hr(T ) + Imh Aεu− q Hr(T ) =: T2,1 + T2,2 + T2,3.

We have already estimated T2,1 = T1. By [BS02, Thm. 4.8.12] (and inspection of the
procedure there), we obtain T2,2 hk−r

T u Hk(ω2(T )). Finally, for T2,3, we use an inverse
estimate

T2,3 h−r
T Imh Aεu−q L2(T ) h−r

T Imh Aεu−Aεu L2(T ) + Aεu− u L2(T ) + u− q L2(T ) .

The last two terms have the desired form due to Proposition 3.1.2 and [BS02, Thm. 4.8.12].
For the remaining term, we write with Assumption 3.1.1 iii and Proposition 3.1.2

Imh Aεu−Aεu L2(T ) hmT Aεu Hm(ω(T )) hmT hk−m
T u Hk(ω2(T )).

Finally, (3.1.1) follows from (3.1.2) by selecting r = k.

The generalization of Proposition 3.1.2 to the case of variable length scale functions from
[KM15, Thm. 2.3] can also be used to derive a smooth operator with approximation and
stability properties for h-weighted and fractional norms.

Corollary 3.1.4. With the mesh size function h of T and t > 0, define the function
h := max{t, h}. Let m, n ∈ N0 be fixed and u ∈ Hm(Ω). Then, for every t > 0 there
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

exists a linear operator Jt : L
2(Ω) → C∞(Ω) with the following stability and approximation

properties:

h
n∇m+nJtu L2(Ω) ≤ Cm,n u Hm(Ω), (3.1.3)

m

j=0

h
−(j−m)∇j(u− Jtu) L2(Ω) ≤ Cm u Hm(Ω). (3.1.4)

In particular, interpolation arguments give

h
1/2∇Jtu L2(Ω) + h

−1/2
(u− Jtu) L2(Ω) ≤ C u H1/2(Ω),

(3.1.5)

h
1/2∇2Jtu L2(Ω) + h

−3/2
(u− Jtu) L2(Ω) + h

−1/2∇(u− Jtu) L2(Ω) ≤ C u H3/2(Ω).

(3.1.6)

The constants Cm,n and Cm depend on m and n as indicated, as well as on Ω and the
γ-shape regularity of T . The constant C depends only on Ω and the γ-shape regularity of
T .

Proof. 1. step: For t ≥ diamΩ, one may select Jt = 0.
2. step: For t ≤ diamΩ, one constructs a length scale function ε with ε ∼ h in the

following way: First, by mollification of the piecewise constant function h (see [KM15,
Lemma 3.1] for details), one obtains a function h ∈ C∞(Ω), whose Lipschitz constant L
depends solely on the γ-shape regularity of T and Ω. Next, one defines the auxiliary length
scale function ε(x) := h(x) + t. We note that the Lipschitz constant of ε is still L. From
[KM15, Lemma 5.7], there are parameters 0 < α < β (depending on L) and Nd ∈ N
(depending only on the spatial dimension d) as well as closed balls Bij := Bαε(xij)(xij),
i = 1, . . . , Nd, j ∈ N such that the following holds:

(a) Ω ⊂ ∪Nd
i=1 ∪j∈N Bij ;

(b) There is a constant Cbig > 0, such that, for each i ∈ {1, . . . , Nd}, the stretched balls

Bij := Bβε(xij)(xij) satisfy an overlap condition: #{j |Bij ∩ Bij = ∅} ≤ Cbig for all
j ∈ N.

(c) For pairs (i, j) and (i , j ) with Bij∩Bi j = ∅, there holds ε(xij) ∼ ε(xi j ) with implied
constant depending solely on L and β. This implies a fortiori that for pairs (i, j) and
(i , j ) with Bij∩Bi j = ∅ there holds ε(xij) ∼ ε(xi j ) with implied constant depending
solely on L and β (which follows by inspection of the proof of [KM15, Lemma 5.7]).

Denoting by χA the characteristic function of the set A, we define the desired length scale
function ε as

ε :=

Nd

i=1 j∈N
ε(xij)(χBij ∗ ρ(β−α)ε(xij)), (3.1.7)

where ρδ is a standard non-negative mollifier supported by Bδ(0). Let x ∈ Ω. Due to (a)
there is (i, j) with x ∈ Bij . The non-negativity of the mollifier ρδ gives ε(x) ε(xij).
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

Furthermore, (b), (c) imply that the sum (3.1.7) is locally finite (with at most NdCbig

non-zero terms). In view of (c), we get ε(x) ε(xij). By studying derivatives of ε, we
recognize that it is a length scale function in the sense of [KM15, Def. 2.1].

3. step: The upshot of [KM15, Lemma 5.7] is that, once a length scale function ε is
available, then a covering argument can be employed. That is, the operator Aε of [KM15,
Thm. 2.3] yields

m

j=0

εm−j∇j(u−Aεu) L2(Ω) u Hm(Ω), εn∇m+nAεu L2(Ω) u Hm(Ω),

which proves (3.1.3) and (3.1.4) since ε ∼ h.
4. step: Using Eq. (3.1.4), for m = 0 and m = 1, the following estimates hold

u− Jtu L2(Ω) u L2(Ω), (3.1.8)

h
−1

(u− Jtu) L2(Ω) u H1(Ω). (3.1.9)

Applying Lemma 2.1.5 to interpolate between the above inequalities with θ = 1/2 gives us

h
−1/2

(u− Jtu) L2(Ω) ≤ C u H1/2(Ω). (3.1.10)

Moreover, for m = 1 and n = 0, Eq. (3.1.3) leads to

∇Jtu L2(Ω) u H1(Ω),

and for m = 0 and n = 1, we get

h∇Jtu L2(Ω) u L2(Ω).

Interpolation between the above inequalities using Lemma 2.1.5 with θ = 1/2, results in

h
1/2∇Jtu L2(Ω) u H1/2(Ω). (3.1.11)

Combining (3.1.10) and (3.1.11) gives us (3.1.5). Similarly, Eq. (3.1.4) with m = 1 and
m = 2 yields

h
−1

(u− Jtu)) L2(Ω) u H1(Ω), (3.1.12)

h
−2

(u− Jtu) L2(Ω) u H2(Ω). (3.1.13)

Applying Lemma 2.1.5 with θ = 1/2, leads to

h
−3/2

(u− Jtu) L2(Ω) u H3/2(Ω). (3.1.14)

Also, for m = 1 and n = 1, Eq. (3.1.3) leads to

h∇2Jtu L2(Ω) u H1(Ω),
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

and for m = 2 and n = 0, we obtain

∇2Jtu L2(Ω) u H2(Ω).

Applying Lemma 2.1.5 with θ = 1/2, we get

h
1/2∇2Jtu L2(Ω) u H3/2(Ω). (3.1.15)

Using Eq. (3.1.4) with m = 1 and m = 2, one has

∇(u− Jtu) L2(Ω) u H1(Ω), (3.1.16)

h
−1∇(u− Jtu) H1(Ω) u H2(Ω). (3.1.17)

Interpolation between the above inequalities from Lemma 2.1.5 with θ = 1/2, then gives
us

h
−1/2∇(u− Jtu) L2(Ω) ≤ C u H3/2(Ω). (3.1.18)

Combination of (3.1.14), (3.1.15) and (3.1.18) concludes the bound (3.1.6)

The following theorem states a stability result in the Besov space B
m−1/2
2,∞ (Ω) for operators

satisfying Assumption 3.1.1.

Theorem 3.1.5. Fix m ∈ {1, 2} and p ∈ N0 with p ≥ m − 1. Let T be a γ-shape regular
triangulation. Let an operator Imh satisfying Assumption 3.1.1 be given. Then,

Imh u
B

m−1/2
2,∞ (Ω)

≤ C u Hm−1/2(Ω) ∀u ∈ Hm−1/2(Ω), (3.1.19)

where the constant C > 0 depends solely on Ω, d, m, p, and the γ-shape regularity of T .
If the mesh T is additionally quasi-uniform, then, the following sharper estimate holds:

Imh u
B

m−1/2
2,∞ (Ω)

≤ C u
B

m−1/2
2,∞ (Ω)

∀u ∈ B
m−1/2
2,∞ (Ω). (3.1.20)

Proof. The function Imh u is piecewise smooth on a finite mesh. Hence, it is an element

of B
m−1/2
2,∞ (Ω), so that only the stability estimate has to be proved. This is achieved by

constructing an element ut := Aδt(I
m
h u) for an appropriate δ > 0 such that theK-functional

can be estimated by the Hm−1/2-norm of u. We have

Imh u
B

m−1/2
2,∞ (Ω)

= sup
t>0

t−1/2K(t, Imh u)

sup
t>0

t−1/2 Imh u−Aδt(I
m
h u) Hm−1(Ω) + t Aδt(I

m
h u) Hm(Ω) . (3.1.21)

With the operator Jt from Corollary 3.1.4, we further decompose u = (u − Jtu) + Jtu =:
u0 + u1 into an element of Hm−1(Ω) and one in Hm(Ω). By the triangle inequality, we
have to control the right-hand side of (3.1.21) for both contributions separately.
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

1. step: For fixed t > 0, we split the mesh into elements of size smaller than t and larger
than t:

T≤t := {T ∈ T : diamT ≤ t}, T>t := {T ∈ T : diamT > t}
and define the regions covered by these elements by

Ω≤t := interior
T∈T≤t

T , Ω>t := interior
T∈T>t

T . (3.1.22)

There is a constant δ > 0, depending solely on the γ-shape regularity of T , such that the
“δt-neighborhood” Tδt := Ω ∩ ∪x∈TBδt(x) of each element in T>t is contained in the patch
of the element, i.e., Tδt ⊂ ω(T ) for all T ∈ T>t. Moreover, for each T ∈ T>t, we define the
inside strip ST,δt at the boundary ∂T of T by

ST,δt := {x ∈ T : dist (x, ∂T ) < δt}. (3.1.23)

For the set T≤t, the γ-shape regularity of T implies the existence of η ≥ δ and C > 0 de-
pending only on the γ-shape regularity such that the extended set Ωηt := Ω∩ x∈Ω≤t

Bηt(x)
satisfies the conditions

T ∈ T≤t =⇒ ω2(T ) ⊂ Ωηt, (3.1.24)

T ∈ T with T ⊂ Ωηt =⇒ diamT ≤ Ct, (3.1.25)

T ∈ T with T ∩ Ωηt = ∅ =⇒ ω(T ) ⊂ Ωcηt. (3.1.26)

where c > 0 is a constant depending solely on the γ-shape regularity of T . The choice of η
is dictated by the requirement (3.1.24). We note that the γ-shape regularity of T ensures
that for all T ∈ T≤t the diameters of all elements T ⊂ ω(T ) are bounded by Ct for some

C > 0 depending only on γ. This implies (3.1.24) if η is chosen sufficiently large.
To see (3.1.25), it suffices to consider elements T ∈ T with T ⊂ Ωηt \ Ω≤t. Let mT

be the center of the largest inscribed sphere in T and note that the radius ρT of that
sphere is comparable to the element diameter hT . Let mT ∈ Ω≤t satisfy dist (mT ,Ω≤t) =
dist (mT ,mT ). By definition of Ωηt, we have mT ∈ Bηt(mT ) and by T ⊂ Ωηt \ Ω≤t that
BρT (mT ) ⊂ Ωηt \ Ω≤t. Thus,

hT ∼ ρT ≤ dist (mT ,Ω≤t) = dist (mT ,mT ) ≤ ηt,

which proves (3.1.25).
With the sets from (3.1.22) and (3.1.23), we decompose for k ∈ N0 and v ∈ Hk(Ω)

v 2
Hk(Ω) v 2

Hk(Ω≤t)
+ v 2

Hk(Ω>t)
v 2

Hk(Ω≤t)
+

T∈T>t

v 2
Hk(T\ST,δt)

+
T∈T>t

v 2
Hk(ST,δt)

.

(3.1.27)

We employ this decomposition in (3.1.21) for k = m − 1 and v = Imh ui − Aδt(I
m
h ui) as

well as for k = m and v = Aδt(I
m
h ui) and i ∈ {0, 1}. In the following, we estimate all

these contributions separately by the desired Hm−1/2(Ω)-norm of u. The main ideas are
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

that, a) on Ω≤t, we exploit that elements are small; and b) on T\ST,δt, we may exploit
that a sufficiently small neighborhood of this set is still contained in T ; c) we can use the
smoothness of Imh ui inside T ; d) for ST,δt, we exploit the thinness of the strip.

2. step: We estimate Imh ui −Aδt(I
m
h ui) on Ω≤t, where δ ≤ η is given by step 1.

For i = 0, we use the stability estimates of Proposition 3.1.2 and Lemma 3.1.3 and finally
Corollary 3.1.4 (using h ∼ t due to (3.1.25)) to obtain

Imh u0 −Aδt(I
m
h u0) Hm−1(Ω≤t) ≤ Imh u0 Hm−1(Ω≤t) + Aδt(I

m
h u0) Hm−1(Ω≤t)

Imh u0 Hm−1(Ω≤t) + Imh u0 Hm−1(Ωηt)

(3.1.1)

u0 Hm−1(Ωcηt) = u− Jtu Hm−1(Ωcηt)

Cor. 3.1.4

t1/2 u Hm−1/2(Ω) .

For i = 1, we use the approximation property of Imh (cf. (3.1.2) with r = m − 1 and
k = m) together with the fact that the element size of elements in Ω≤t is bounded by t as
well as the local stability and approximation properties of Aδt from Proposition 3.1.2 to
get

Imh u1 −Aδt(I
m
h u1) Hm−1(Ω≤t)

≤ Imh u1 − u1 Hm−1(Ω≤t) + u1 −Aδtu1 Hm−1(Ω≤t) + Aδt(u1 − Imh u1) Hm−1(Ω≤t)

h t

t u1 Hm(Ωηt) + t u1 Hm(Ωηt) + u1 − Imh u1 Hm−1(Ωηt)

h t

t u1 Hm(Ωcηt)

Cor. 3.1.4

t1/2 u Hm−1/2(Ω) .

3. step: We estimate Aδt(I
m
h ui) on Ω≤t. For i = 0, using the stability properties of the

smoothing operator from Proposition 3.1.2, the stability of Imh , and Corollary 3.1.4, we get

t Aδt(I
m
h u0) Hm(Ω≤t) Imh u0 Hm−1(Ωηt)

(3.1.1)

u0 Hm−1(Ωcηt)

Cor. 3.1.4

t1/2 u Hm−1/2(Ω).

Similarly, for u1 ∈ Hm(Ω), we obtain with Proposition 3.1.2

t Aδt(I
m
h u1) Hm(Ω≤t) t Aδt(I

m
h u1 − u1) Hm(Ω≤t) + t Aδtu1 Hm(Ω≤t)

Imh u1 − u1 Hm−1(Ωηt) + t u1 Hm(Ωηt)

(3.1.2),h≤t

t u1 Hm(Ωcηt)

Cor. 3.1.4

t1/2 u Hm−1/2(Ω).

4. step: We derive estimates on T\ST,δt for T ∈ T>t. Since the “δt-neighborhood”
(T\ST,δt)δt of T\ST,δt satisfies (T\ST,δt)δt ⊆ T , Proposition 3.1.2 and an inverse inequality
imply

Imh u0 −Aδt(I
m
h u0) Hm−1(T\ST,δt) t Imh u0 Hm(T ) th−1

T Imh u0 Hm−1(T )

(3.1.1)

th−1
T u0 Hm−1(ω2(T )).
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

Summation over all elements T ∈ T>t and Corollary 3.1.4, (3.1.5)–(3.1.6) (noting that
t < hT implies h = h on T>t) give the desired estimate

T∈T>t

Imh u0 −Aδt(I
m
h u0)

2
Hm−1(T\ST,δt)

t2

T∈T>t

h−2
T u0

2
Hm−1(ω2(T ))

t<hT

t
m−1

j=0

h
−1/2∇j(u− Jtu)

2

L2(Ω)
t u 2

Hm−1/2(Ω) .

(3.1.28)

Similarly, the approximation properties of Aδt, the stability of Imh , and Corollary 3.1.4 give

T∈T>t

Imh u1 −Aδt(I
m
h u1)

2
Hm−1(T\ST,δt)

t2

T∈T>t

Imh u1
2
Hm(T )

(3.1.1)

t2

T∈T>t

u1
2
Hm(ω2(T ))

t<hT

t
T∈T>t

hT Jtu
2
Hm(ω2(T ))

Cor. 3.1.4

t u 2
Hm−1/2(Ω) .

(3.1.29)

Using the stability instead of the approximation properties of Aδt from Proposition 3.1.2,
the same arguments and an inverse estimate lead to

t Aδt(I
m
h u0) Hm(T\ST,δt) t Imh u0 Hm(T ) th−1

T u0 Hm−1(ω2(T )),

t Aδt(I
m
h u1) Hm(T\ST,δt) t Imh u1 Hm(T ) t u1 Hm(ω2(T )).

Summation and employing Corollary 3.1.4 gives the desired estimates as in (3.1.28) and
(3.1.29).

5. step: We derive approximation results for Imh on the strip ST,δt for T ∈ T>t. For
v ∈ Hm(Ω), we claim

v − Imh v Hm−1(ST,δt) thT v Hm(ω2(T )). (3.1.30)

On the reference element T , with the aid of [LMWZ10, Eq. 6] for arbitrary t > 0, it follows

v 2
L2(S

T,δt
) δt t v 2

L2(T )
+

1

t
v 2

H1(T )
∀ v ∈ H1(T ).

We select t = v
H1(T )

/ v
L2(T )

and arrive at

v 2
L2(S

T,δt
) δt v

L2(T )
v

H1(T )
≤ δt v 2

L2(T )
+ v

L2(T )
∇v

L2(T )
.

If v
L2(T )

= 0, then we select t = 1 and the above estimate holds easily. Let ΦT : T → T

be an affine parametrization of T and v := v ◦ ΦT . Applying a scaling argument, one can
show for v ∈ H1(T ) and T ∈ T>t

v 2
L2(ST,δt)

hdT v 2
L2(S

T,δ t/hT
) hd−1

T t v 2
L2(T )

+ t v
L2(T )

∇v
L2(T )

t

hT
v 2

L2(T ) + t v L2(T ) ∇v L2(T ), (3.1.31)
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

for some δ ∼ δ. For polynomials v ∈ Pp(T ), an inverse estimate and (3.1.31) furthermore
lead to

v 2
L2(ST,δt)

t

hT
v 2

L2(T ). (3.1.32)

To see (3.1.30), we estimate

v − Imh v 2
L2(ST,δt)

(3.1.31) t

hT
v − Imh v 2

L2(T ) + t v − Imh v L2(T ) ∇(v − Imh v) L2(T )

(3.1.2)

hT t v 2
H1(ω2(T )).

This show (3.1.30) for m = 1. For m = 2, we apply (3.1.31) to ∇(u − Imh u) and proceed
similarly.

6. step: We derive an estimate for Imh ui−Aδt(I
m
h ui) on the strip ST,δt for T ∈ T>t. Here,

we need the “δt-neighborhood” (ST,δt)δt of the strip ST,δt. Our assumption on δ implies
that (ST,δt)δt ⊂ ω(T ). Moreover, we note that the strip (ST,δt)δt is contained in the inside
strip ST,2δt of T and in parts of the inside strip of width δt of the elements T ∈ ω(T ).

Using the triangle inequality, Proposition 3.1.2 and (3.1.32) on each element of the patch
ω(T ) separately for v = Imh u0 in the case m = 1 or v = ∇Imh u0 for m = 2, we get, since
hT ∼ hT for T ∈ ω(T ),

Imh u0 −Aδt(I
m
h u0) Hm−1(ST,δt) ≤ Imh u0 Hm−1((ST,δt)δt)

(3.1.32)

t1/2h
−1/2
T Imh u0 Hm−1(ω(T ))

(3.1.33)

t1/2h
−1/2
T u0 Hm−1(ω3(T )).

Summing over all elements T ∈ T>t and employing the arguments from (3.1.28), we get the
desired bound by t1/2 u Hm−1/2(Ω). For u1, we use the triangle inequality, Proposition 3.1.2,
and (3.1.30)

Imh u1 −Aδt(I
m
h u1) Hm−1(ST,δt)

≤ Imh u1 − u1 Hm−1(ST,δt) + u1 −Aδtu1 Hm−1(ST,δt) + Aδt(u1 − Imh u1) Hm−1(ST,δt)

Prop. 3.1.2

Imh u1 − u1 Hm−1((ST,δt)δt) + u1 −Aδtu1 Hm−1(ST,δt)

(3.1.30),Prop. 3.1.2

thT u1 Hm(ω3(T )) + t u1 Hm(ω(T ))

t≤hT

thT u1 Hm(ω3(T )).

Summing over all elements T ∈ T>t and employing the arguments from (3.1.29), we get the
desired bound.

7. step: We estimate Aδt(I
m
h ui) on the strip ST,δt for T ∈ T>t. The inverse estimate for

Aδt of Proposition 3.1.2, (3.1.32) employed on the patch ω(T ) as in the previous step, and
the stability (3.1.1) of Imh imply

t Aδt(I
m
h u0) Hm(ST,δt) Imh u0 Hm−1((ST,δt)δt) t1/2h

−1/2
T Imh u0 Hm−1(ω(T )) (3.1.34)

t1/2h
−1/2
T u0 Hm−1(ω3(T )).
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Summing over all elements T ∈ T>t and employing the arguments from (3.1.28), we get the
desired bound by t1/2 u Hm−1/2(Ω). For u1, Proposition 3.1.2 and (3.1.30) on the patch
ω(T ) give

t Aδt(I
m
h u1) Hm(ST,δt) ≤ t Aδt(u1 − Imh u1) Hm(ST,δt) + t Aδtu1 Hm(ST,δt)

u1 − Imh u1 Hm−1((ST,δt)δt) + t u1 Hm((ST,δt)δt)

(3.1.30)

(thT )
1/2 u1 Hm(ω3(T )) + t u1 Hm(ω3(T ))

t<hT

(thT )
1/2 u1 Hm(ω3(T )).

Summing over all elements T ∈ T>t and employing the argument from (3.1.29), we get the
desired bound.
Combining the estimates of steps 2–7, where all relevant terms are bounded by t1/2 u Hm−1/2(Ω),

gives the desired bound for (3.1.21), which proves (3.1.19).

Final step: We show (3.1.20) with similar arguments as in steps 2–7. Let u = u0 + u1
be an arbitrary decomposition with u0 ∈ Hm−1(Ω) and u1 ∈ Hm(Ω). We distinguish the
cases t ≤ h and t > h, where h is the maximal mesh size of the quasi-uniform triangulation.
We note that in the decomposition (3.1.27) the sums T∈T>t

are not present in the case
t > h and the terms involving · Hm−1(Ω≤t) or · Hm(Ω≤t) in the converse case. Inspection
of the above arguments therefore gives:

• For t > h: As in steps 2–3, we get

t−1 Imh u0 −Aδt(I
m
h u0)

2
Hm−1(Ω) + t Aδt(I

m
h u0)

2
Hm(Ω) t−1 u0

2
Hm−1(Ω),

t−1 Imh u1 −Aδt(I
m
h u1)

2
Hm−1(Ω) + t Aδt(I

m
h u1)

2
Hm(Ω) t u1

2
Hm(Ω).

This implies t−1/2K(t, Imh u) t−1/2 u0 Hm−1(Ω) + t1/2 u1 Hm(Ω). Infimizing over

all possible decompositions u = u0 + u1 yields t−1/2K(t, Imh u) t−1/2K(t, u)
u

B
m−1/2
2,∞ (Ω)

.

• For t ≤ h: As in steps 4–7, we get

t−1 Imh u0 −Aδt(I
m
h u0)

2
Hm−1(Ω) + t Aδt(I

m
h u0)

2
Hm(Ω) h−1 u0

2
Hm−1(Ω),

t−1 Imh u1 −Aδt(I
m
h u1)

2
Hm−1(Ω) + t Aδt(I

m
h u1)

2
Hm(Ω) h u1

2
Hm(Ω).

This implies t−1/2K(t, Imh u) h−1/2 u0 Hm−1(Ω) + h1/2 u1 Hm(Ω). Infimizing over

all possible decompositions u = u0 + u1 yields t−1/2K(t, Imh u) h−1/2K(h, u)
u

B
m−1/2
2,∞ (Ω)

.

Combining the above two cases yields supt>0K(t, Imh u) u
B

m−1/2
2,∞ (Ω)

, as claimed.

Remark 3.1.6. For m = 1, a possible choice for Imh is the L2(Ω)-orthogonal projection that
trivially satisfies Assumption 3.1.1. For m = 2, the Scott-Zhang projection, introduced in
[SZ90a] and defined below, is an example of an operator Imh satisfying Assumption 3.1.1.
Therefore, Theorem 3.1.5 provides a novel stability estimates for these projection operators
in Besov spaces.
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

While, for finite meshes, we have the continuous embeddings Sp,1(T ) ⊂ B
3/2
2,∞(Ω) and

Sp,0(T ) ⊂ B
1/2
2,∞(Ω), this is not necessarily the case for infinite meshes. As a consequence,

one cannot expect that on general K-meshes a stability Imh : B
1/2
2,∞(Ω) → B

1/2
2,∞(Ω) can hold.

The following example illustrates this.

Example 3.1.7. Let Ω = (0, 1). Set I1 = (0, 1/2) and I2 = (1/2, 1). Let ϕ ∈ C∞(R) be
a 1-periodic function, whose averages ϕ1 := 1/|I1| I1

ϕ(x) dx and ϕ2 := 1/|I2| I2
ϕ(x) dx

are different. Define the function u ∈ C∞((0,∞)) by

u(x) := ϕ(lnx).

Define the (infinite) mesh T on Ω, whose elements are given by the break points xj = e−2j ,
j ∈ N0. Let m = 1 and let Imh : L2(Ω) → S0,0(T ) be the L2-projection onto the piecewise
constant functions. By the periodicity of ϕ, the piecewise constant function Imh u takes only
the values ϕ1 and ϕ2

(Imh u)|(xj+1,xj) =
ϕ1 if j is even

ϕ2 if j is odd .

The computation of Besov norms is conveniently done in terms of the modulus of smooth-
ness as defined in, e.g., [DL93, Chap. 2, Sec. 7]. For an interval [a, b] and a function v
defined on A := [a, b], and t > 0, we define the difference operator Δh by (Δhv)(x) :=
v(x + h) − v(x) on Ah := [a, b − h]. the modulus of smoothness ω1(v, t)2 is then given by
ω1(v, t)2 := sup0<h≤t Δh(v, ·) L2(Ah). Let t > 0. Consider all elements with diameter > t.
For the region covered by these elements, Ω>t, we can compute the modulus of smoothness
ω1 in view of the fact that Imh u is piecewise constant

ω1(I
m
h u, t)22,Ω>t

xj :xj>t

t|[Imh u](xj)|2,

where [Imh u](xj) denotes the jump of Imh u at the break point xj . We conclude

ω1(I
m
h u, t)22 ≥ ω1(I

m
h u, t)22,Ω>t

xj :xj>t

t|[Imh u](xj)|2 =
xj :xj>t

|ϕ1 − ϕ2|2t ∼ |ϕ1 − ϕ2|2t| ln t|.

Next, we claim that ω1(u, t)
2
2 t. Since u is bounded, we compute for 0 < h ≤ t

1−h

0
|Δhu|2 dx =

1−h

0
|u(x+ h)− u(x)|2 dx =

h

0
|u(x+ h)− u(x)|2 dx

+
1−h

h
|u(x+ h)− u(x)|2 dx ≤ 4h u 2

L∞(Ω) +
1

h

x+h

x
u (ξ) dξ

2

dx

≤ 4h u 2
L∞(Ω) + ϕ 2

L∞(Ω)h
2

1

h

1

x

2

dx

≤ 4h u 2
L∞(Ω) + ϕ 2

L∞(Ω)h.
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This implies ω1(u, t)2 ≤ Ct1/2 and therefore u ∈ B
1/2
2,∞(Ω), since, by [DL93, Chap. 6,

Thm. 2.4], ω(u, t)2 ∼ K(t, u) = infv∈H1(I) u − v L2(Ω) + t v H1(Ω). However, the above

calculation shows that Imh u ∈ B
1/2
2,∞(Ω), which implies that Imh cannot be a bounded linear

map B
1/2
2,∞(Ω) → B

1/2
2,∞(Ω).

3.1.1 Some generalizations and applications

For quasi-uniform meshes, there also holds the following inverse estimate for the limiting
case.

Lemma 3.1.8. Let T be a quasi-uniform mesh on Ω of mesh size h and m ∈ {1, 2}. Then,
for m ∈ (0,m − 1/2] and q ∈ [1,∞], there holds for a constant C > 0 depending only on
Ω, d, the γ-shape-regularity of T , and p:

u
Bm

2,q(Ω)
≤ Ch−m u L2(Ω) ∀u ∈ Sp,1(T ). (3.1.35)

Proof. To fix ideas, we only prove the case m = 2 as the case m = 1 is handled with similar
arguments. By definition, we have

u
B

3/2
2,∞(Ω)

= sup
t>0

t−1/2K(t, u)

with the K-functional K(t, u) = infv∈H2(Ω) u−v H1(Ω)+t v H2(Ω). For t > h, we estimate

t−1/2K(t, u) = t−1/2 inf
v∈H2(Ω)

u− v H1(Ω) + t v H2(Ω) ≤ t−1/2 u H1(Ω) h−1/2 u H1(Ω),

(3.1.36)

by choosing v ≡ 0 to estimate the K-functional.
For t ≤ h, we estimate the K-functional more carefully. For a suitably small δ > 0, we

set v := Aδtu with the smoothing operator Aδt of Proposition 3.1.2. As in the proof of
Theorem 3.1.5, we decompose an element into T = T \ST,δt∪ST,δt, where ST,δt is the inside
strip defined in the first step of the proof of Theorem 3.1.5. Employing Proposition 3.1.2
and a classical polynomial inverse estimate, we obtain

v H2(T\ST,δt)

Prop. 3.1.2

u H2(T ) h−1 u H1(T ), (3.1.37a)

u− v H1(T\ST,δt)

Prop. 3.1.2

t u H2(T ) th−1 u H1(T ). (3.1.37b)

As in steps 6–7 in the proof of Theorem 3.1.5, using Proposition 3.1.2 to obtain (3.1.34),
(3.1.33), we get

v H2(ST,δt)

(3.1.34)

(th)−1/2 u H1(ω(T )), (3.1.38a)

u− v H1(ST,δt)

(3.1.33)

t1/2h−1/2 u H1(ω(T )). (3.1.38b)
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Summation over all elements, using (3.1.37)–(3.1.38) leads to

t−1/2K(t, u) t1/2h−1 + h−1/2 u H1(Ω)

t≤h

h−1/2 u H1(Ω). (3.1.39)

Combining (3.1.36) and (3.1.39) yields u
B

3/2
2,∞(Ω)

h−1/2 u H1(Ω). A further polynomial

inverse estimate gives the desired result for m = 3/2.
Finally, (3.1.35) follows from interpolation between the case m = 3/2 and the trivial

inequality u L2(Ω) ≤ u L2(Ω) noting that by the reinterpolation theorem (see, e.g., [Tar07,

Chap. 26]), we have B
θ(m−1/2)
2,q (Ω) = (L2(Ω), B

m−1/2
2,∞ (Ω))θ,q (with equivalent norms) for

θ ∈ (0, 1).

The operator Imh is stable in L2(Ω) (by Assumption 3.1.1) and is stable as an operator

Hm−1/2(Ω) → B
m−1/2
2,∞ (Ω) by Theorem 3.1.5. Interpolation therefore yields a stability for

intermediate spaces.

Corollary 3.1.9. Let T be a finite shape-regular mesh, m ∈ {1, 2}, and let Imh : L2(Ω) →
Sp,m−1(T ) satisfy Assumption 3.1.1. Fix q ∈ [1,∞] and θ ∈ (0, 1). Then, there is a
constant C > 0 depending only on Ω, p, q, θ, and the γ-shape regularity of T such that

Imh u
B

θ(m−1/2)
2,q (Ω)

≤ C u
B

θ(m−1/2)
2,q (Ω)

. (3.1.40)

Proof. The assumed L2-stability and the stability proved in Theorem 3.1.5 imply the re-
sult using the reinterpolation theorem (see, e.g., [Tar07, Chap. 26]) as in the proof of
Lemma 3.1.8.

Furthermore, Corollary 3.1.9 allows one to assert that interpolating between the dis-
crete space Sp,m−1(T ) equipped with the L2-norm and the Hs-norm yields the same space
equipped with the Hsθ-norm.

Corollary 3.1.10. Let m ∈ {1, 2}, q ∈ [1,∞], and θ ∈ (0, 1). Then, there holds

(Sp,m−1(T ), · L2(Ω)), (S
p,m−1(T ), ·

B
m−1/2
2,∞ (Ω)

)
θ,q

= Sp,m−1(T ), ·
B

θ(m−1/2)
2,q (Ω)

,

with equivalent norms. The norm equivalence constants depend only on Ω, p, q, θ, and

the γ-shape regularity of T . More generally, for any B
m −1/2
2,q (Ω) with 1/2 < m < m and

q ∈ [1,∞], there holds, with equivalent norms,

(Sp,m−1(T ), · L2(Ω)), (S
p,m−1(T ), ·

B
m −1/2

2,q
(Ω)

)
θ,q

= Sp,m−1(T ), ·
B

θ(m −1/2)
2,q (Ω)

.

Proof. The proof follows from the existence of projection operators as presented in [AL09].
One needs a (stable) projection onto Sp,m−1(T ) satisfying Assumption 3.1.1, then Corol-
lary 3.1.9 also provides the needed stability in the Besov-spaces. Form = 1, one may simply
use the L2-projection, which trivially satisfies Assumption 3.1.1. For m = 2, one employs
the Scott-Zhang operator ISZ of [SZ90a] without treating the boundary in a special way
as it is done there. Then, ISZ satisfies Assumption 3.1.1 by, e.g., [BS02, Sec. 4.8].
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3.2 The finest common coarsening

Let T and T be two regular triangulations obtained by NVB from the same triangulation
T0. For a discussion of properties of NVB meshes, we refer to [KPP13] for the case d = 2
and to [Ste08] for the case d ≥ 3. We define the finest common coarsening as

fcc(T , T ) := {T ∈ T : ∃T ∈ T s.t. T T}
=:T1

∪{T ∈ T : ∃T ∈ T s.t. T T }
=:T2

∪ (T ∩ T )

=:T3

.

(3.2.1)

Figure 3.2.1 provides two examples for this concept. We refer to Lemma 3.2.1 for the
proofs that the three sets in the definition (3.2.1) are pairwise disjoint and that fcc(T , T )
is indeed a regular triangulation of Ω.

Let T be the -th uniform refinement of T0. We call level(T ) := the level of an element
T ∈ T . Given a regular triangulation T that is obtained by NVB from T0 we will consider

T := fcc(T , T ),

which is, in general, a coarser mesh than the uniform triangulation T .

Figure 3.2.1: Example of the finest common coarsening of T and T and the sets T1 (coarser
elements of T , red), T2 (coarser elements of T , green), T3 (common elements,
blue) in (3.2.1).

3.2.1 Properties of the finest common coarsening (fcc)

The following Lemma 3.2.1 shows that the finest common coarsening of two NVB meshes
obtained from the same coarse regular triangulation is indeed a regular triangulation.
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

Lemma 3.2.1. Let T , T be NVB refinements of the same common triangulation T0 of Ω.
Then:

1. fcc(T , T ) = fcc(T , T ). The three sets T1, T2, T3 in the definition of fcc(T , T )
are pairwise disjoint.

2. fcc(T , T ) consists of simplices that cover Ω.

3. If T and T are regular triangulations, then fcc(T , T ) is a regular triangulation of
Ω.

Proof. Proof of 1: The symmetry of fcc is obvious. To see that the sets T1, T2, T3 are
pairwise disjoint, let T ∈ T1. Then T ∈ T but not in T . Hence, T ∈ T2 and T ∈ T3. By
symmetry, T ∈ T2 also implies T ∈ T1 and T ∈ T3. Finally, if T ∈ T3, then it cannot be in
T1 or T2.
Proof of 2: Let x ∈ Ω (but not on the skeleton of T or T ). Since T , T cover Ω, there

are T ∈ T and T ∈ T with x ∈ T , x ∈ T . Since both T and T are obtained by NVB and
T ∩T = ∅, we must have T = T or T T or T T . In the first case T = T ∈ T3, in the
second one T ∈ T2, and in the third one T ∈ T1. Hence, x is in an element of fcc(T , T ).

Proof of 3: Let T , T be two elements of fcc(T , T ) with f := T ∩ T = ∅. We have to
show that for some j, the intersection T ∩ T = ∅ is a full j-face of both T and T . If both
T , T are in T (or both are in T ), then, by the regularity of T (or the regularity of T ),
their intersection is indeed a full j-face of either element. Assume therefore T ∈ T \T and
T ∈ T (or, similarly, T ∈ T and T ∈ T \T ). Since T , T ∈ fcc(T , T ), we obtain T ∈ T1

and T ∈ T2. Since both T and T are created by NVB from the same initial triangulation,
the intersection f = T ∩ T is a full j-face of either T or T .
Let us assume that f is a full j-face of T , and, by contradiction, that f is not a full j-face

of T . Then, f is a proper subset of a j-face f of T . Since T ∈ T1, it contains elements of
T . Hence, there is an element T1 ∈ T with T1 ⊂ T that has a j-face f1 with f1 ⊂ f . Thus,
we have found elements T , T1 ∈ T with j-faces f1 ⊂ f f , contradicting the regularity
of T . Hence, f is also a full j-face of T . Thus, fcc(T , T ) is a regular triangulation.

A completion of an (NVB-generated) mesh is any NVB refinement of it that is regular.
We next show that the minimal completion is unique.

Lemma 3.2.2. Let T be a NVB refinement of T0 and let T1, T2 be two completions of T .
Then fcc(T1, T2) is a completion of T . The completion of minimal cardinality is unique.

Proof. Let T3 := fcc(T1, T2). We claim that T3 is a completion of T . Since T3 is regular by
Lemma 3.2.1, we have to assert that each element of T3 is contained in an element of T .
Suppose not. Then there is T3 ∈ T3 and a T ∈ T with T T3. (We use that these meshes
are obtained by NVB from a common T0.). By definition, T3 is either in T1 or T2, which
are both completions of T , i.e., their elements are contained in elements of T . This is a
contradiction.
To see the uniqueness of the minimal completion, let T1 = T2 be two completions of

minimal cardinality N . Note that T3 := fcc(T1, T2) is also a completion. However, in view
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

of T1 = T2, at least one element of, say, T1 is a refinement of an element of T2 so that we have
by definition of fcc(T1, T2) that card T3 ≤ N − 1, which contradicts the minimality.

Lemma 3.2.3. Let T , = 0, 1, . . . , be a sequence of uniform refinements of a regular mesh
T0 and T = fcc(T , T ). Then:

(i) If T ∈ T ∩ T then T ∈ T +m for all m ≥ 0.

(ii) If T ∈ T \ T then T ∈ T +1.

(iii) Denote by N 1 the set of nodes of T . Then N 1
+1 ⊃ N 1 for all .

(iv) Let M1 = N 1 \N 1
−1 ∪{z ∈ N 1 ∩N 1

−1 |ω (z) ω −1(z)}. Then, we have cardM1 ≤
C cardN 1 \ N 1

−1 for a C > 0 depending only on the shape regularity of the triangu-
lations.

Proof. For statement i, we only show the case m = 1 as the general case follows by induc-
tion. We note that T ∈ T ∩ T implies T ∈ T2, , where Ti, , ∈ {1, 2, 3} are the three sets
given in (3.2.1). If T ∈ T3, , then T ∈ T1, +1. If T ∈ T1, , then, T ∈ T1, +1. For statement

ii, we note that T ∈ T \ T implies T ∈ T \ T and hence T is neither in T +1 nor in T .
Hence T ∈ T +1.
For statement iii, let z ∈ N 1 and T ∈ T be an element such that z is a node of T . We

consider two cases. First, if T ∈ T ∩ T , then, by statement i, we have T ∈ T +1 so that
z ∈ N 1

+1. Second, let T ∈ T \ T . Then T ∈ T and in fact in T2, . The node z is the

node of an element T ∈ T +1. This element T is either in T , which implies z ∈ N 1
+1, or

T ∈ T2, +1, which also implies z ∈ N 1
+1.

For statement iv, one observes that for a node z ∈ {z ∈ N 1 ∩ N 1
−1 |ω (z) ω −1(z)},

there are elements T ∈ T −1 and T ∈ T with T T and z is a node of T . Hence
T ∈ T \T −1, and it has a node z ∈ N 1 \N 1

−1. We conclude card{z ∈ N 1∩N 1
−1 |ω (z)

ω −1(z)} ≤ cardN 1 \ N 1
−1.

Remark 3.2.4. If the shape-regular mesh T is obtained by repeated NVB from a coarse
grid T0, then a simpler proof is possible for Corollary 3.1.4: one may take a quasi-uniform
mesh Tt of mesh size ∼ t and consider T := fcc(T , Tt). Then, Jt can be taken as a mollifier
of the standard Scott-Zhang operator associated with T .

3.3 Adapted Scott-Zhang operators

The scott-Zhang operators defined in Section 2.4.1 satisfy the stability and approximation
properties of Assumption 3.1.1 with constants that solely depend on p, the specific polyno-
mial basis, the shape-regularity of the underlying triangulation, and Ω. In particular, the
constants are independent of the specific choice of averaging region Tz.

The freedom in the choice of the averaging element Tz can be exploited to ensure addi-
tional properties, see also [CNX12, Sec. 4], [DKS16, Sec. 3],[FFPS17a, Sec. 4.3]. For the
Scott-Zhang operator on general NVB meshes, the mesh decomposition of [CNX12] can
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

be employed to transfer information between the refinement levels. In the following, we
define a modified Scott-Zhang operator for the hierarchy fcc(T , T ) , where a guiding

principle is that in the definition of ISZ one selects the averaging element Tz from the mesh
T whenever possible:

Definition 3.3.1 (adapted Scott-Zhang operators). For given T that is obtained by NVB-
refinement from a regular triangulation T0 and T = fcc(T , T ), the operators ISZ :

L2(Ω) → V = Sp,1(T ) and ISZ : L2(Ω) → V = Sp,1(T ) are Scott-Zhang operators as

defined in (2.4.9) with the following choice of averaging element Tz for ISZ and ISZ :

(1) First, loop through all T ∈ T ∩ T (in any fixed order) and select the averaging sets Tz

for the nodes z ∈ T as follows:

(a) If z ∈ T , then select Tz = T for both ISZ and ISZ .

(b) If z ∈ ∂T and the node z has not been assigned an averaging set Tz yet, then:

(i) If A(z, T ) contains an element T ∈ T that is a proper subset of an element
T ∈ T , then select this T to define ISZ and select T for the definition of ISZ .

(ii) Else select T for both ISZ and ISZ .

(2) Next, loop through all T ∈ T \ T (in any fixed order). Select, for the construction of
ISZ , this T as the averaging element for all nodes z with z ∈ T that have not already
been fixed in step (1) or in a previous step of the loop. This completes the definition
of ISZ .

(3) Finally, loop through all T ∈ T \T (in any fixed order). Select, for the construction of
ISZ , this T as the averaging element for all nodes z with z ∈ T that have not already
been fixed in step (1) or in a previous step of the loop. This completes the definition
of ISZ .

We note, that this definition of the adapted Scott-Zhang operators is exploited to show
ISZu = ISZu for all u ∈ Sp,1(T ), which is proven in Lemma 3.3.2 below.

The following lemma shows that the adapted Scott-Zhang operators for the meshes T
and T coincide on piecewise polynomials on the mesh T .

Lemma 3.3.2. Let T be generated by NVB from T0. Let ISZ : L2(Ω) → Sp,1(T ) and

ISZ : L2(Ω) → Sp,1(T ) be the Scott-Zhang operators defined in Definition 3.3.1. Then,
there holds

ISZu = ISZu ∀u ∈ Sp,1(T ).

Proof. 1. step: Let T ∈ T ∩ T . We claim that (ISZu)|T = (ISZu)|T . The nodes z ∈ T

and the shape functions ϕ
z,T , ϕ

z,T for the meshes T and fcc(T , T ) coincide on T . For

the averaging element Tz associated with z ∈ T , two cases can occur:

1. The two averaging sets for the two operators coincide. This happens in the following
three cases: a) if z ∈ T (case 1a of Def. 3.3.1); b) if z ∈ ∂T and (case 1(b)ii of
Def. 3.3.1) arose for T in the loop; c) (case 1(b)ii of Def. 3.3.1) arose for an element
T ∈ T ∩T with z ∈ T that appeared earlier in the loop than T . Since the averaging
sets coincide, the value of the linear functionals are the same.
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3 A multilevel decomposition based on mesh hierarchies generated by NVB

2. Case 1(b)i of Def. 3.3.1 arose. Then, both averaging sets are contained in an element
T ∈ T . Since u|

T
∈ Pp, we obtain from (2.4.8) that both linear functionals equal

u(z).

Hence, in all cases the values of the linear functionals coincide so that indeed the Scott-
Zhang operators on the element T are equal.
2. step: In the region not covered by elements in T ∩T we show ISZu = u and ISZu = u

for u ∈ Sp,1(T ). For ISZ this is shown in step 3 and for ISZ in step 4. This completes the
proof of the lemma.

3. step: We start by noting that the definition of the finest common coarsening implies

for any T ∈ T \ T there exists T ∈ T with T ⊂ T . (3.3.1)

Consider now T ∈ T \ T . By (3.3.1) there exists T ∈ T such that T ⊂ T . For u ∈ Sp,1(T )
we have u|

T
∈ Pp(T ). Moreover, (ISZu)|T = z∈Np(T ) ϕz,T lz(u) with the linear functional

lz(u) = Tz
ϕ∗
z,Tu. For the interior nodes z ∈ T we have Tz = T and, since u|T ∈ Pp(T ),

lz(u) = u(z) by (2.4.8). For z ∈ ∂T , the following cases may occur:

(1) If Tz = T , then again lz(u) = u(z) by (2.4.8).

(2) If Tz is a neighbouring element of T , then the following cases can occur:

(a) Tz ∈ T ∩ T : Then, z ∈ ∂T and hence also in ∂Tz. The construction of the
averaging sets in Def. 3.3.1 is such that the averaging set Tz for node z is chosen
such that it is contained in an element T ∈ T if possible. Since T ⊂ T ∈ T is
possible by (3.3.1), we conclude that also Tz ⊂ T ∈ T for some T ∈ T . Hence,
u|Tz ∈ Pp(Tz), and the value of the linear functional is u(z).

(b) Tz ∈ T \ T . Then, by (3.3.1) we get u|Tz ∈ Pp(Tz) so that again by (2.4.8)
lz(u) = u(z).

In total, we have arrived at (ISZu)|T = z∈Np(T ) ϕz,T u(z) = u|T , since u|T ∈ Pp(T ).

4. step: Consider T ∈ T \ T . Then T ∈ T . We have (ISZu)|T = z∈Np(T ) ϕz,T lz(u)

with the linear functional lz(u) = Tz
ϕ∗
z,Tu. For the interior nodes z ∈ T we have Tz = T

and, since u|T ∈ Pp(T ), the property (2.4.8) gives lz(u) = u(z).
For z ∈ ∂T , two cases may occur: If Tz = T , then again lz(u) = u(z) by (2.4.8). If Tz

is a neighboring element of T , then either Tz ∈ T ∩ T , which means lz(u) = u(z) by the
same reasoning as in step 3, item 2a, or Tz ∈ T \ T ⊂ T so that u|Tz ∈ Pp(Tz) and thus

by (2.4.8) lz(u) = u(z). In total, we have arrived at (ISZu)|T = z∈Np(T ) ϕz,T u(z) = u|T ,
since u|T ∈ Pp(T ).

3.4 Multilevel decomposition based on mesh hierarchies
generated by NVB

With the use of the adapted Scott-Zhang operators ISZ and a mesh hierarchy based on
the finest common coarsening between NVB meshes and uniformly refined meshes, we

obtain a multilevel decomposition with norm equivalence in the Besov space B
3θ/2
2,q (Ω) as a

consequence of the stability estimate of Theorem 3.1.5.
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Theorem 3.4.1. Let T be a mesh obtained by NVB refinement of a triangulation T0 with
mesh size h0. Let T be the sequence of uniformly refined meshes starting from T0 with
mesh size h = h02

− . Set T := fcc(T , T ). Let ISZ : L2(Ω) → Sp,1(T ) be the adapted
Scott-Zhang operator defined in Definition 3.3.1. Then, on the space Sp,1(T ) the following
three norms are equivalent with equivalence constants depending only on T0, p, θ ∈ (0, 1),
and q ∈ [1,∞]:

u
B

3θ/2
2,q (Ω)

, (3.4.1)

ISZ0 u L2(Ω) + (23θ /2 u− ISZu L2(Ω)) ≥0 q , (3.4.2)

ISZ0 u L2(Ω) + (23θ /2 ISZ+1u− ISZu L2(Ω)) ≥0 q . (3.4.3)

Proof. We apply [Coh03, Thm. 3.5.3] for the spaces X = Sp,1(T ), · L2(Ω) ,

Y = Sp,1(T ), ·
B

3/2
2,∞(Ω)

noting that we have Sp,1(T ) ⊂ Sp,1(T ). Then, [Coh03, Thm. 3.5.3]

provides the equivalence of the second and third norm to the norm on the interpolation

space (X,Y )θ,q, which by Corollary 3.1.10 is the B
3/2θ
2,q (Ω)-norm, provided a Jackson-type

and a Bernstein-type estimate holds.
1. step (Jackson-type inequality): Using Lemma 3.3.2, we compute for u ∈ Sp,1(T ) and

arbitrary w ∈ Sp,1(T )

inf
v∈Sp,1(T )

u− v L2(Ω) ≤ u− ISZu L2(Ω) = u− ISZu L2(Ω)

= u− w − ISZ(u− w) L2(Ω) u− w L2(Ω).

Hence, standard approximation results from [Wid77, p. 332] on the quasi-uniform meshes
T of mesh size h = h02

− provide

inf
v∈Sp,1(T )

u− v L2(Ω) inf
w∈Sp,1(T )

u− w L2(Ω) h
3/2

u
B

3/2
2,∞(Ω)

2−3 /2 u
B

3/2
2,∞(Ω)

.

(3.4.4)

We note that this estimate also implies the additional assumption [Coh03, Eqn.(3.5.29)] on
the projection operators ISZ .
2. step (Bernstein-type inequality): Using the projection property of the Scott-Zhang

operators and Lemma 3.3.2, we get for arbitrary v ∈ Sp,1(T )

v
B

3/2
2,∞(Ω)

= ISZv
B

3/2
2,∞(Ω)

= ISZv
B

3/2
2,∞(Ω)

Lem. 3.1.8

h
−3/2

ISZv L2(Ω)

= h
−3/2

ISZv L2(Ω) = h
−3/2

v L2(Ω). (3.4.5)

As the family of operators ISZ : X → Sp,1(T ) is also uniformly bounded in the L2(Ω)-norm,
all assumptions of [Coh03, Thm. 3.5.3] are valid and consequently the norm equivalences
are proven.
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3.5 Boundary conditions

Let the Hilbert space Hs(Ω) be defined as

Hs(Ω) := {u ∈ Hs(Rd) : u ≡ 0 on Ωc}, v 2
Hs(Ω)

:= v 2
Hs(Ω) + dist(·, ∂Ω)−sv

2

L2(Ω)
.

The previous results do not consider (homogeneous) Dirichlet boundary conditions. For
the application we have in mind (cf. (4.2.1)), an interpolation result similar to Corol-
lary 3.1.10 for the spaces L2(Ω), H1

0 (Ω) and Hs(Ω) for s ∈ (0, 1) is of interest. Such results
are already available in the literature, see, e.g., [AFF+15], where the proof uses stability
properties of the Scott-Zhang projection and the abstract result from [AL09], similarly to
Corollary 3.1.10. For sake of completeness, we state the result in the following corollary.

Corollary 3.5.1. Let s ∈ (0, 1). Then, there holds

(Sp,1
0 (T ), · L2(Ω)), (S

p,1
0 (T ), · H1(Ω))

s,2
= Sp,1

0 (T ), ·
Hs(Ω)

,

with equivalent norms.

As done, for example, in [AFF+15], the Scott-Zhang operators ISZ and ISZ can be
modified by simply dropping the contributions from the shape functions associated with
nodes on ∂Ω and thus map into the spaces Sp,1

0 (T ) and Sp,1
0 (T ), respectively. We denote

these operators by ISZ0, and ISZ0, , and they are still stable in L2(Ω) and H1
0 (Ω). Therefore,

Theorem 3.4.1 also provides a lower bound for the multilevel decomposition based on the
Scott-Zhang operator in the Hs(Ω)-norm.

Corollary 3.5.2. Let T be a mesh obtained by NVB refinement of a triangulation T0. Let
T be the sequence of uniformly refined meshes starting from T0 with mesh size h = h02

− .
Set T := fcc(T , T ). Let ISZ0, : Hs(Ω) → Sp,1

0 (T ) be the Scott-Zhang operator defined as
above. Then, we have

∞

=0

h−2s u− ISZ0, u
2

L2(Ω)
≤ Cs u 2

Hs(Ω)
∀u ∈ Sp,1

0 (T ), 0 < s < 1. (3.5.1)

Proof. We note that Jackson-type and Bernstein-type estimates (3.4.4) and (3.4.5) in the
proof of Theorem 3.4.1 also hold for the variant of the Scott-Zhang projection that preserves

homogeneous boundary conditions, if we replace h
3/2

u
B

3/2
2,∞(Ω)

with h u H1
0 (Ω) in (3.4.4),

and if we replace in (3.4.5) the norms ·
B

3/2
2,∞(Ω)

with · H1(Ω) and correspondingly h−3/2

with h−1. Therefore, the norm equivalences of Theorem 3.4.1 are still valid if one replace

B
3θ/2
2,∞ (Ω) with Hθ

0 (Ω), I
SZ with ISZ0, , and 23θ /2 with 2θ .
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4 An optimal multilevel preconditioner for
the fractional Laplacian

In this chapter, we present a multilevel diagonal preconditioner with uniformly bounded
condition number on locally refined triangulations for the fractional Laplacian. We also
adopt the additive Schwarz framework and show that, also in the presence of adaptively
refined meshes, multilevel diagonal scaling leads to uniformly bounded condition numbers
for the integral fractional Laplacian. The norm equivalence of the multilevel decomposi-
tion in Chapter 3 provides the lower bound for the eigenvalues and an inverse estimate in
fractional Sobolev norms, similar to [FMP19], gives the upper bound for the eigenvalues.
We mention that very closely related to preconditioning of discretizations of the fractional
differential operators is earlier work on preconditioning for the hypersingular integral equa-
tion (e.g., the operators coincide for the case s = 1/2 for screen problems) in boundary
element methods (BEMs), [TS96, TSM97, TSZ98, AM03, Mai09, FFPS17a].

4.1 Fractional Laplacian

4.1.1 Singular integral representation

We denote the principal value of the integral as

P.V.
Rd

u(x)− u(y)

|x− y|d+2s
dy = lim

ε→0 Rd\Bε

u(x)− u(y)

|x− y|d+2s
dy,

where Bε is a ball of radius ε. One representation for the fractional Laplacian is a pointwise
characterization based on the principal value integral, i.e.,

(−Δ)su(x) := C(d, s) P.V.
Rd

u(x)− u(y)

|x− y|d+2s
dy C(d, s) := 22ss

Γ(s+ d/2)

πd/2Γ(1− s)
s ∈ (0, 1),

where Γ( · ) denotes the Gamma function, see [Kwa17].

4.1.2 The Caffarelli-Silvestre extension

One of the main difficulties in the study of fractional differential equations is the non-
locality nature of theses derivatives. To overcome this, Caffarelli-Silvestre [CS07] proved
that the fractional Laplacian in Rd can be written as an operator mapping a Dirichlet
boundary condition to a Neumann-type condition using an extension problem on the half-
space Rd+1

+ := (x, y) |x ∈ Rd, y > 0 .
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4 An optimal multilevel preconditioner for the fractional Laplacian

Definition 4.1.1. Let α := 1 − 2s ∈ (−1, 1) and S ⊂ Rd+1
+ be a measurable set, then we

define the following weighted L2-norm

u 2
L2
α(S) := S

yα |u(x, y)|2 dxdy.

Also, we introduce

L2
α(S) := u ∈ L2(S) | u 2

L2
α(S) < ∞ .

Let D (Rd+1
+ ) denote the space of all distributions. Then, the Beppo-Levi space is defined

as

Ḣs(Rd+1
+ ) := u ∈ D (Rd+1

+ ) | ∇u ∈ L2
α(Rd+1

+ ) .

The fractional Laplacian can be written as the Neumann data of the extension problem,
i.e.,

(−Δ)su(x) = −ds lim
y→0+

y1−2s ∂

∂y
(Lsu)(x, y) x ∈ Rd,

where ds := 2(1−2s) |Γ(s)| /Γ(1 − s) and (Lsu) ∈ Ḣs(Rd+1
+ ) is a solution to the following

extension problem by Caffarelli-Silvestre

− div y1−2s∇Lsu = 0 in Rd+1
+ ,

trLsu = u in Rd × {y = 0} .

4.2 Model problem

Let Ω ⊂ Rd be a bounded Lipschitz domain. In this section, we consider the equation

(−Δ)su = f in Ω,

u = 0 in Ωc, (4.2.1)

for a given right-hand side f ∈ H−s(Ω).
The weak formulation of (4.2.1) is given by finding u ∈ Hs(Ω) such that

a(u, v) :=
C(d, s)

2 Rd×Rd

(u(x)− u(y))(v(x)− v(y))

|x− y|d+2s
dx dy =

Ω
fv dx ∀v ∈ Hs(Ω).

(4.2.2)

Existence and uniqueness of u ∈ Hs(Ω) follow from the Lax–Milgram lemma.
With a given regular triangulation T0, we consider two hierarchical sequence of meshes

T , T , = 0, . . . , L:
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4 An optimal multilevel preconditioner for the fractional Laplacian

1. (sequence (T ) ): The meshes T are generated by an adaptive algorithm (see, e.g.,
[Dör96]) of the form SOLVE – ESTIMATE – MARK – REFINE, where the step REFINE

is done by newest vertex bisection. In the following, both for the case of piecewise
linear and piecewise constant basis function, we always assume that the meshes T
are regular in the sense of Ciarlet.

2. (sequence (T ) ): From a given triangulation TL obtained by NVB refinement of T0,
which may, e.g., be obtained from an adaptive algorithm, the finest common coars-
ening of TL with the uniform refinements of T0 (denoted by T ) provides a hierarchy
of meshes T = fcc(TL, T ).

4.3 Local multilevel diagonal preconditioners

4.3.1 A local multilevel diagonal preconditioner for adaptively refined meshes

We start with the case of the adaptively generated mesh hierarchy (T ) . On the mesh T ,
we discretize with piecewise constants (for 0 < s < 1/2) as the space V 0 = S0,0(T ) and

piecewise linears (for 0 < s < 1) as the space V 1 = S1,1
0 (T ). If the distinction between V 0

and V 1 is not essential, we write V meaning V ∈ {V 0, V 1}. The Galerkin discretization
(4.2.1) in V of reads as: Find u ∈ V , such that

a(u , v ) = f, v L2(Ω) ∀v ∈ V . (4.3.1)

Moreover, on the uniformly refined meshes T , in the same way, we define the discrete
spaces V 0 = S0,0(T ), V 1 = S1,1

0 (T ), and V ∈ {V 0, V 1}.
We define sets of “characteristic” points N i, i = 0, 1, representing the degrees of freedom

of V . For the piecewise constant case V 0, the set N 0 comprises all barycenters of elements
of the mesh T . For the piecewise linear case V 1, we denote the set of all interior vertices
of the mesh T by N 1. If the distinction between N 0 and N 1 is not essential, we will write
N meaning N ∈ {N 0,N 1} is either N 0 if V = V 0 or N 1 if V = V 1. The points z ∈ N
are called nodes.

We choose a basis of V = span{ϕzj : zj ∈ N , j = 1, . . . , N }: for the piecewise constants
we take the characteristic functions ϕzj = χTj of the element satisfying zj ∈ Tj ∈ T , and
for the piecewise linears we take hat functions corresponding to the interior nodes defined
by ϕzj (zi) = δj,i for all nodes zi ∈ N . With these bases, we can write u = N

j=1 xjϕzj ,
and (4.3.1) is equivalent to solving the linear system

A x = b (4.3.2)

with the stiffness matrix A and load vector b

Akj := a(ϕzj , ϕzk
), bk := f, ϕzk L2(Ω)

. (4.3.3)

Again, we mention that the 2-condition number of the unpreconditioned Galerkin matrix

grows like κ(A ) ∼ N
2s/d hmax

hmin

d−2s
, which stresses the need for a preconditioner in order

to use an iterative solver.
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4 An optimal multilevel preconditioner for the fractional Laplacian

For fixed L ∈ N0, we introduce a local multilevel diagonal preconditioner (BL)−1 of BPX-
type for the stiffness matrix AL from (4.3.2) in the same way as in [FFPS17a, AM03]. That
is, following [FFPS17a], we define the patch of a node z ∈ N as

ω (z) := interior {T : T ∈ T , z ∈ T}.
The setsMi , i = 0, 1, defined in the following, describe the changes in the mesh hierarchy

between the levels and −1 and are crucial for the definition of the local diagonal scaling.
For the case of piecewise linears, we define the sets M1 as the sets of new vertices and their
direct neighbours in the mesh T : We set M1

0 := N 1
0 and

M1 := N 1\N 1
−1 ∪ {z ∈ N 1 ∩N 1

−1 : ω (z) ω −1(z)}, ≥ 1. (4.3.4)

For the case of a piecewise constant discretization, we define the set M0 simply as the
barycenters corresponding to the new elements, i.e., M0 := N 0\N 0

−1 for ≥ 1. In the
same way as for the nodes N , we write M to either be M0 and M1, which should be
clear from context.
The local multilevel diagonal preconditioner is given by

(BL)−1 :=

L

=0

I Dinv(I )T , (4.3.5)

where, with N := #N , the appearing matrices are defined as

• I ∈ RNL×N denotes the identity matrix correspond to the embedding I : V → VL.

• Dinv ∈ RN ×N is a diagonal matrix with entries (Dinv)jk =
(Ajj)

−1δjk j : zj ∈ M
0 otherwise

.

That is, the entries of the diagonal matrix are the reciprocals of the diagonal entries
of the matrix A corresponding to the degrees of freedom in M .

Moreover, we define the additive Schwarz matrix PL
AS := (BL)

−1
AL. Instead of solving

(4.3.2) for = L, we solve the following preconditioned linear systems

PL
ASx

L = (BL)
−1

bL. (4.3.6)

The following theorem is the main result of this section and provides optimal bounds to
the eigenvalues of the preconditioned matrix and the proof is given in Section 4.4.

Theorem 4.3.1. The minimal and maximal eigenvalues of the additive Schwarz matrix
PL

AS are bounded by

c ≤ λmin PL
AS and λmax PL

AS ≤ C, (4.3.7)

where the constants c, C > 0 depend only on Ω, d, s, and the initial triangulation T0.
Remark 4.3.2. The preconditioner (BL)−1 is a symmetric positive definite matrix and the
preconditioned matrix PL

AS is symmetric and positive definite with respect to the inner
product induced by BL. Therefore, Theorem 4.3.1 leads to κ(PL

AS) ≤ C/c.

Remark 4.3.3. The cost to apply the preconditioner is proportional to L
=0 cardM =

O(NL) by [FFPS17a, Sec. 3.1].
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4.3.2 A local multilevel diagonal preconditioner using a finest common
coarsening mesh hierarchy

In this subsection, we provide a result similar to Theorem 4.3.1 for the meshes T =
fcc(TL, T ), where = 0, . . . , L. With V 0 = S0,0(T ), V 1 = S1,1

0 (T ), and V ∈ {V 0, V 1}
being either the piecewise constants or piecewise linears on T , the Galerkin discretization
of finding u ∈ V such that

a(u , v ) = f, v L2(Ω) ∀ v ∈ V (4.3.8)

is equivalent to solving the linear system

A x = b (4.3.9)

by choosing a nodal basis as in the previous subsection. The set of nodes N i, i = 0, 1, and

N as well as the sets Mi , i = 0, 1, and M can be defined in exactly the same way as in

the previous subsection by just replacing the meshes T with T . Therefore, in exactly the
same way as in (4.3.5), we can define the local multilevel diagonal preconditioner

(BL)−1 :=

L

=0

I Dinv(I )T .

The following theorem then gives optimal bounds for the smallest and largest eigenvalues

of the preconditioned matrix PL
AS := (BL)

−1
AL and the proof is given in Section 4.4.

Theorem 4.3.4. The minimal and maximal eigenvalues of the additive Schwarz matrix
PL

AS are bounded by

c ≤ λmin PL
AS and λmax PL

AS ≤ C, (4.3.10)

where the constants c, C > 0 depend only on Ω, d, s, and the initial triangulation T0.
Remark 4.3.5. By Lemma 3.2.3 the cost of the preconditioner are, up to a constant,
cardM0 +

L
=1 cardM cardM0 +

L
=0 cardN − cardN −1 cardNL = card TL.

4.4 Optimal additive Schwarz preconditioning for the fractional
Laplacian on locally refined meshes

In this section, we prove the optimal bounds on the eigenvalues of the preconditioned ma-
trices PL

AS of Theorem 4.3.1 and PL
AS of Theorem 4.3.4. The key steps are done in Propo-

sition 4.4.2 or Proposition 4.4.1, which state a spectral equivalence of the corresponding
additive Schwarz operator and the identity in the energy scalar product.
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4 An optimal multilevel preconditioner for the fractional Laplacian

4.4.1 Abstract analysis of the additive Schwarz method: The mesh hierarchy
T = fcc(TL, T )

The additive Schwarz method is based on a local subspace decomposition. For the mesh
hierarchy T = fcc(TL, T ), we recall that V ∈ {S0,0(T ), S1,1

0 (T )} is either the space of

piecewise constants or piecewise linears on the mesh T . We follow the abstract setting of
[TW05] and decompose VL = L

=0 V with

V := span ϕz : z ∈ M , (4.4.1)

where ϕz denotes the basis function associated with the node z ∈ N . We recall that these
functions are either characteristic functions of elements (for the piecewise constant case) or

nodal hat functions (for the case of piecewise linears). We note that V ⊂ V and, since M
only contains new nodes and direct neighbors, this space effectively is a discrete space on
a uniform submesh (cf. Lemma 4.4.6). On the subspaces V , we introduce the symmetric,
positive definite bilinear form a (·, ·) : V × V (also known as local solvers) with

a (u , u ) :=

z∈M
h−su (z)ϕz

2

L2(Ω)
z∈M

hd−2s |u (z)|2 .

The following proposition, c.f., e.g., [Zha92, MN85], gives bounds on the minimal and
maximal eigenvalues of the preconditioned matrix PL

AS based on the abstract additive
Schwarz theory.

Proposition 4.4.1. (i) Assume that every u ∈ VL admits a decomposition u = L
=0 u

with u ∈ V satisfying L
=0 a (u , u ) ≤ C0 a(u, u) with a constant C0 > 0. Then,

we have λmin(P
L
AS) ≥ C−1

0 .

(ii) Assume that there exists a constant C1 > 0 such that for every decomposition u =
L
=0 u with u ∈ V , we have a(u, u) ≤ C1

L
=0 a (u , u ). Then, λmax(P

L
AS) ≤ C1.

The first part of Proposition 4.4.1 is sometimes called Lions’ Lemma and follows from
the existence of a stable decomposition proven in Lemma 4.4.5 below. The assumption
of the second statement follows directly from our strengthened Cauchy-Schwarz inequality
(Lemma 4.4.7) and local stability (Lemma 4.4.9).

4.4.2 Abstract analysis of the additive Schwarz method: The mesh hierarchy
T provided by an adaptive algorithm

For the case of a mesh hierarchy T generated by an adaptive algorithm, similar definitions
can be made and analyzed. However, here, we follow the notation of [FFPS17a], where
the additive Schwarz operator consisting of a sum of projections onto one dimensional
spaces is analyzed. With the spaces Vz := span{ϕz} one may define local projections
Pz : Hs(Ω) → Vz in the energy scalar product as

a(Pzu, vz) = a(u, vz) for all vz ∈ Vz ,
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4 An optimal multilevel preconditioner for the fractional Laplacian

and define the additive Schwarz operator as

PL
AS :=

L

=0 z∈M
Pz .

Moreover, for u, v ∈ VL and their expansions u = NL
j=1 xjϕ

L
zj , v = NL

j=1 yjϕ
L
zj , we have

a(PL
ASu, v) = PL

ASx,y AL , (4.4.2)

where ·, · AL := AL·, ·
2
. Therefore, the multilevel diagonal scaling is a multilevel ad-

ditive Schwarz method, and we may analyze the additive Schwarz operator instead of the
preconditioned matrix.

Proposition 4.4.2. The operator PL
AS is linear, bounded and symmetric in the energy

scalar product. Moreover, for u ∈ VL, we have the spectral equivalence

c u 2
Hs(Ω)

≤ a(PL
ASu, u) ≤ C u 2

Hs(Ω)
, (4.4.3)

where the constants c, C > 0 only depend on Ω, d, s, and T0.
As in [FFPS17a], Proposition 4.4.2 directly implies Theorem 4.3.1.

Proof of Theorem 4.3.1. Combining the bounds of Proposition 4.4.2 with (4.4.2) gives

c x 2
AL ≤ PL

ASx,x AL ≤ C x 2
AL

for all x ∈ RNL , and therefore the bounds for the minimal and maximal eigenvalues.

4.4.3 Inverse estimates for the fractional Laplacian

For the proof of a strengthened Cauchy Schwarz inequality, we employ an inverse inequality
for the operator (−Δ)s of the form

hs(−Δ)sv L2(Ω) v
Hs(Ω)

. (4.4.4)

For the piecewise linear case v ∈ S1,1
0 (T ), this inverse estimate is proven in [FMP19,

Thm. 2.8]. We stress that (4.4.4) only holds for s < 3/4, since in the converse case the
left-hand side is not well defined for v ∈ S1,1

0 (T ). To obtain an estimate for s ∈ [3/4, 1), one
has to introduce a weight function w(x) := infT∈T dist(x, ∂T ). Then, [FMP19, Thm. 2.8]
provides the inverse estimate

h1/2ws−1/2(−Δ)sv
L2(Ω)

v
Hs(Ω)

. (4.4.5)
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For the case of piecewise constants, similar inverse estimates are stated in the lemma below.
Here, we additionally stress that for v ∈ S0,0(T ) and x ∈ T ∈ T , the estimate

|(−Δ)sv(x)| = C(d, s)
Rd\Bdist(x,∂T )(x)

v(x)− v(y)

|x− y|d+2s
dy

v L∞(Ω)
Bdist(x,∂T )(x)

c

1

|x− y|d+2s
dy

= v L∞(Ω)
ν∈∂B1(0)

diamΩ

r=dist(x,∂T )
r−2s−1drdν

v L∞(Ω) dist(x, ∂T )
−2s, (4.4.6)

gives

wβ(−Δ)sv ∈ L2(Ω) if β > 2s− 1/2.

For s < 1/4, we may choose β = 0 and for 1/4 ≤ s < 1/2, we may choose, e.g., β = s or
β = 3/2s− 1/4 (to additionally ensure β < s) to fulfill this requirement.

Lemma 4.4.3. Let T be a regular and γ-shape regular mesh generated by NVB refinement
of a mesh T0. Let v ∈ S0,0(T ), h be the piecewise constant mesh width function of the
triangulation T , and set w(x) := infT∈T dist(x, ∂T ). Let β > 2s − 1/2. Then, the inverse
estimates

hs(−Δ)sv L2(Ω) ≤ C v
Hs(Ω)

0 < s < 1/4, (4.4.7)

hs−βwβ(−Δ)sv L2(Ω) ≤ C v
Hs(Ω)

1/4 ≤ s < 1/2 (4.4.8)

hold, where the constant C > 0 depends only on Ω, d, s, and the γ-shape regularity of T .

Proof. If we set β = 0 for s < 1/4, we can prove both statements of the lemma at once by
estimating the L2-norms with the weight hs−βwβ .
Considering the nonlocality of the fractional operator, we need to split it into two parts,

a localized near-field part and a smoother far-field part. For this purpose, we follow the
lines of [FMP19, Thm. 2.8], starting with a splitting into a near-field and a far-field part.
The estimates of the near-field and the far-field are rather similar to the case of piecewise
linears from [FMP19, Lem. 4.1–4.5]. Therefore, we quote the identical parts of the proof
and outline the necessary modifications for the piecewise constant case.

For each T ∈ T , we choose a cut-off function χT ∈ C∞
0 (Rd) with the following properties:

1) suppχT∩Ω ⊂ ω(T ); 2) χT ≡ 1 on a setB satisfying T ⊂ B ⊂ ω(T ) and dist (B, ∂ω(T ) ∩ Ω) ∼
hT ; 3) χT W 1,∞(ω(T )) h−1

T ; 4) 0 ≤ χT ≤ 1. Moreover, for each T ∈ T , we denote the
average of v on the patch ω2(T ) by cT ∈ R , i.e.,

cT :=
0 if T ∩ ∂ω2(T ) = 0

1
|ω2(T )| ω2(T ) v dx otherwise.

Since cT is a constant, we have (−Δ)scT ≡ 0. Therefore, we can decompose v into
the near-field vTnear := χT (v − cT ) and the far-field vTfar := (1 − χT )(v − cT ), and obtain
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(−Δ)sv = (−Δ)svTnear + (−Δ)svTfar.

We start with the near-field, where compared to the result for the case of piecewise
linears, we do not need to distinguish cases for s. The definition of the fractional Laplacian
leads to

1

C(d, s)2
wβ(−Δ)svTnear

2

L2(T )
=

T
w(x)2β P.V.

Rd

(v(x)− cT )χT (x)− (v(y)− cT )χT (y)

|x− y|d+2s
dy

2

dx

T
w(x)2β(v(x)− cT )

2 P.V.
Rd

χT (x)− χT (y)

|x− y|d+2s
dy

2

dx

+
T
w(x)2β P.V.

Rd

χT (y)
v(x)− v(y)

|x− y|d+2s
dy

2

dx.

(4.4.9)

The first term on the right-hand side can be estimated using the Lipschitz continuity of χT

and a Poincaré inequality on the patch ω(T ) in the same way as in the proof of [FMP19,
Lem. 4.3]. Considering x ∈ T and χT ≡ 1, we get

T
w(x)2β(v(x)− cT )

2 P.V.
Rd

χT (x)− χT (y)

|x− y|d+2s
dy

2

dx

=
T
w(x)2β(v(x)− cT )

2

Bdist(x,∂T )(x)
c

χT (x)− χT (y)

|x− y|d+2s
dy

2

dx. (4.4.10)

Let B be an arbitrary set defined such that T ⊂ B and dist ((, T ) , ∂B ) ∼ hT and it still
satisfies χT ≡ 1 on B . Therefore, applying polar coordinates y = x + rν, ν ∈ ∂B1(0),
where ∂B1(0) is the (d− 1)-dimensional unit sphere, gives us

Bdist(x,∂T )(x)
c

χT (x)− χT (y)

|x− y|d+2s
dy =

B c

1− χT (y)

|x− y|d+2s
dy

∞

chT

1

r1+2s
dy h−2s

T . (4.4.11)

Substituting (4.4.11) into (4.4.10), using ω|T ≤ hT and [FMP19, Lem. 4.1], we can write

T
w(x)2β(v(x)− cT )

2 P.V.
Rd

χT (x)− χT (y)

|x− y|d+2s
dy

2

dx

T
w(x)2β(v(x)− cT )

2h−4s
T dx h2β−4s

T
T
(v(x)− cT )

2dx

h2β−2s
T v 2

Hs(ω2(T )) .

For the second term in (4.4.9), we split it into two parts, a smoother, integrable part and
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a principal value integral part:

T
w(x)2β P.V.

Rd

χT (y)
v(x)− v(y)

|x− y|d+2s
dy

2

dx

T
w(x)2β P.V.

Bdist(x,∂T )(x)
χT (y)

v(x)− v(y)

|x− y|d+2s
dy

2

dx

+
T
w(x)2β P.V.

Bdist(x,∂T )(x)
c

χT (y)
v(x)− v(y)

|x− y|d+2s
dy

2

dx := S1 + S2.

We observe that the integrand in S1 vanishes for y ∈ T , since v is piecewise constant and
for S2, we employ the same estimate as for (4.4.6) to obtain

T
w(x)2β P.V.

Rd

χT (y)
v(x)− v(y)

|x− y|d+2s
dy

2

dx v − cT
2
L∞(ω(T ))

T
w(x)2β−4sdx;

here, we added and subtracted the constant cT in the integrand and used the support
properties of χT to obtain the L∞-norm on the patch.
As, by choice of β, we always have 2β − 4s > −1, the last integral exists, and we can

further estimate using a classical inverse estimate and a Poincaré inequality

v − cT
2
L∞(ω(T ))

T
w(x)2β−4sdx h2β−4s+d

T v − cT
2
L∞(ω(T ))

h2β−4s
T v − cT

2
L2(ω(T )) h2β−2s

T v 2
Hs(ω2(T )) .

Inserting everything into (4.4.9), multiplying with h2s−2β
T and summing over all elements

T ∈ T gives the desired estimate for the near-field.
The far-field can be estimated using the Caffarelli-Silvestre extension, cf. [CS07], com-

bined with a Caccioppoli-type inverse estimate for the solution of the extension problem
with boundary data (1 − χT )(v − cT ) as in [FMP19]. In fact, we observe that [FMP19,
Lem. 4.5] holds for arbitrary v ∈ Hs(Ω) and weight functions w with non-negative expo-
nent. This directly gives

T∈T
hs−βwβ(−Δ)svTfar

2
L2(T ) v 2

Hs(Ω)
,

and combining the estimates for near- and far-field proves the lemma.

4.4.4 Proof of the assumptions of Proposition 4.4.1

In order to apply Proposition 4.4.1, we show the existence of a stable decomposition
(Lemma 4.4.5) and a strengthened Cauchy-Schwarz inequality (Lemma 4.4.7).

The following result relates the Scott-Zhang operators on two consecutive levels, similarly
to [CNX12], and is a key ingredient of the proof of Lemma 4.4.5.
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Lemma 4.4.4. Let p = 1 and let N 1, M1 be defined in Section 4.3.2. The Scott-Zhang

operators ISZ : L2(Ω) → S1,1(T ) can be constructed such that, additionally, they satisfy
for all ∈ N and all u ∈ L2(Ω)

(ISZ − ISZ−1)u(z) = 0 ∀z ∈ N 1 \M1. (4.4.12)

Also the Scott-Zhang operators ISZ0, : L2(Ω) → S1,1
0 (T ) can be constructed such that (4.4.12)

holds with ISZ and ISZ−1 replaced with ISZ0, and ISZ0, −1, respectively.

Proof. We only consider the case of the operators ISZ . We also recall that for the present
case p = 1 the nodes coincide with the nodes of the triangulations.

1. step: z ∈ N 1 \M1 implies z ∈ N 1 ∩ N 1
−1. To see z ∈ N 1

−1, we note N 1
−1 ⊂ N 1 by

Lemma 3.2.3 and therefore that z ∈ N 1 \M1 ⊂ N 1 \ (N 1 \ N 1
−1) = N 1

−1.

2. step: z ∈ N 1\M1 ⊂ N 1∩N 1
−1 implies that all elements of the patches ω (z) and ω −1(z)

are in T . To see this, we note z ∈ N 1 \M1 ⊂ N 1 \{z ∈ N 1∩N 1
−1 |ω (z) ω −1(z)}. The

condition ω −1(z) = ω (z) implies that all elements of ω −1(z) = ω (z) must be elements of
T .
3. step: The basic idea for the choice of averaging sets Tz in the construction of ISZ−1 and

ISZ in Def. 3.3.1 is to select an element of T whenever possible. Our modified construction

of the operators ISZ is by induction on and carefully exploits the freedom left in the choice

of the averaging sets Tz in Def. 3.3.1. We start with an ISZ0 as constructed in Def. 3.3.1.

Suppose the averaging sets Tz for T −1 have been fixed. Effectively, Def. 3.3.1 performs a
loop over all nodes of T . When assigning an averaging set Tz to a node z ∈ N 1 \M1, we
select as Tz the element that has already been selected on the preceding level − 1. This
is possible since z ∈ N 1 \M1 implies z ∈ N 1

−1 by Step 1, and by Step 2 we know that all

elements of both T −1 and T having z as a vertex are elements of T .
The same construction can also be applied to the operators ISZ0, .

The following lemma provides the existence of a stable decomposition for the mesh
hierarchy generated by the finest common coarsening. Rather than analyzing the L2-
orthogonal projection onto a space of piecewise polynomials on a uniform mesh, as in
[FFPS17a], we use the result of Corollary 3.5.2.

Lemma 4.4.5. (Stable decomposition for the mesh hierarchy (T ) ). For every u ∈ VL,
there is a decomposition u = L

=0 u with u ∈ V satisfying the stability estimate

L

=0

a (u , u ) =
L

=0 z∈M
h−su (z)ϕz

2

L2(Ω)
≤ C2

stab u 2
Hs(Ω)

,

with a constant Cstab > 0 depending only on Ω, d, s, and the initial triangulation T0.
Proof. We only show the case of piecewise linears, the piecewise constant case is even
simpler as the basis functions are L2-orthogonal. Let ISZ0, : Hs(Ω) → S1,1

0 (T ) be the
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adapted Scott-Zhang projection from Definition 3.3.1 in the form given by Lemma 4.4.4.
Set ISZ0,−1 = 0. Then, we define

u :=

z∈M
(ISZ0, − ISZ0, −1)u(z)ϕz.

Since (ISZ0, − ISZ0, −1)u ∈ V , we may decompose using a telescoping series and (4.4.12)

u = ISZ0,Lu =

L

=0

(ISZ0, − ISZ0, −1)u =

L

=0 z∈M
(ISZ0, − ISZ0, −1)u(z)ϕz =

L

=0

u . (4.4.13)

We next prove the stability of the decomposition (4.4.13). The standard scaling of the

hat functions in L2 provides ϕz
2

L2(Ω)
h (z)d, with h (z) denoting the maximal mesh

width on the patch corresponding to the node z. With (4.4.12) and an inverse estimate
– cf. [DFG+04, Proposition 3.10], which provides an estimate for the nodal value of a
piecewise linear function on the mesh T by its L2-norm on the patch – this gives

L

=0 z∈M
h−s(ISZ0, − ISZ0, −1)u(z)ϕz

2

L2(Ω)

L

=0

h−2s

z∈M
h (z)d|(ISZ0, − ISZ0, −1)u(z)|2

L

=0

h−2s

z∈N
(ISZ0, − ISZ0, −1)u

2

L2(ω (z))

L

=0

h−2s

T∈T
(ISZ0, − ISZ0, −1)u

2

L2(T )
.

(4.4.14)

Finally, we can use Corollary 3.5.2 to obtain

L

=0

a (u , u )

L

=0

h−2s (ISZ0, − ISZ0, −1)u
2

L2(Ω)
u 2

Hs(Ω)
, (4.4.15)

which proves the existence of a stable decomposition.

The following lemma shows that the submesh consisting of the elements corresponding
to the points in M is indeed quasi-uniform in that all elements have size O(h ).

Lemma 4.4.6. Let M be defined in Section 4.3.2 and let z ∈ M , then it holds h (z) h ,
where h (z) denotes the maximal mesh width on the patch ω (z). In particular, we have

V ⊂ V , meaning V ⊂ V 0 if M = M0 and V ⊂ V 1 if M = M1.

Proof. We first note that if T ∈ T \ T −1, then hT h . If T /∈ T1, for the first set in

the definition of the finest common coarsening (3.2.1), then T ∈ T and hT h follows
since the mesh T is quasi-uniform. Now, let T ∈ T1, , which implies T ∈ T , and that
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T is a proper superset of an element T ∈ T , i.e., hT ≥ h . Since T and T −1 are NVB
refinements of the same mesh, we either have T ⊂ T −1, T = T −1 or T ⊃ T −1 for some
element T −1 ∈ T −1. For the first two cases, we have hT h −1 2h , which gives
hT h . The third case T ⊃ T −1 implies that T ∈ T1, −1 and therefore T ∈ T −1, which

contradicts the assumption T ∈ T \ T −1.

This immediately proves the case M = M0, since new points in M0 (barycenters)

correspond to new elements in T \ T −1.

For the case M = M1, let z ∈ M . By definition, this implies that there exists (at least)

one element T = T (z) with T (z) ⊂ ω (z) and T (z) ∈ T \ T −1. The previous discussion
gives hT (z) h . By shape-regularity this gives that h (z) = maxT∈ω (z) hT h .

With the inverse estimate of the previous subsection we now prove a strengthened
Cauchy-Schwarz inequality.

Lemma 4.4.7. (Strengthened Cauchy-Schwarz inequality for the mesh hierarchy (T ):) Let
u ∈ V for = 0, 1, ..., L. Then, we have

a(um, uk) ≤ Ekm um Hs(Ω)
h−s
k uk

L2(Ω)
0 ≤ m ≤ k ≤ L,

with Ekm = CCS(hk/hm)
s−β

. Here, β is given as β =
0 for 0 < s < 1

4
3
2s− 1

4 for 1
4 ≤ s < 1

2

for the

piecewise constant case and β = max{s − 1/2, 0} for the piecewise linear case. Moreover,
the appearing constant CCS > 0 depends only on Ω, d, s and the initial mesh T0.
Proof. We define a modified mesh size function hsm as hsm := hs−β

m wβ
m with the weight

function wm defined such that the inverse estimates of (4.4.4), (4.4.5) or Lemma 4.4.3
(either for the piecewise linears or the piecewise constants) hold. Moreover, we note that
this choice of β fulfills the assumptions of Lemma 4.4.3 as well as β < s. Therefore, the
classical Cauchy-Schwarz inequality implies

a(um, uk) = (−Δ)sum, uk L2(Ω) = hsm(−Δ)sum, h−s
m uk

L2(Ω)

≤ hsm(−Δ)sum
L2(Ω)

h−s
m uk

L2(Ω)
. (4.4.16)

A scaling argument as in [FMP19, Lem. 3.2.] yields

w−β
k uk

L2(T )
hs−β
k (T ) uk Hs(T ) + h−β

k (T ) uk L2(T ) .

Together with wk ≤ wm, since Tk is a refinement of Tm, and hm(T ) := hm|T ≥ hm this
gives

h−s
m uk

L2(T )
hβ−s
m (T ) w−β

k uk
L2(T )

hβ−s
m (T ) hs−β

k (T ) uk Hs(T ) + h−β
k (T ) uk L2(T )

hβ−s
m hs−β

k (T ) uk Hs(T ) + hβ−s
m h−β

k (T ) uk L2(T )

hβ−s
m h−β

k (T ) uk L2(T ) + (hk/hm)
s−β

h−s
k uk

L2(T )

(hk/hm)
s−β

h−s
k uk

L2(T )
.
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Summation over all the elements of Tm gives

h−s
m uk

L2(Ω)
(hk/hm)

s−β
h−s
k uk

L2(Ω)
. (4.4.17)

Combining (4.4.16) and (4.4.17) with the inverse estimate

hsm(−Δ)sum
L2(Ω)

um Hs(Ω)

of (4.4.4), (4.4.5) or Lemma 4.4.3 proves the strengthened Cauchy-Schwarz inequality.

Remark 4.4.8. 1. Since (hk/hm)
s−β

= 2−(k−m)(s−β) for 0 ≤ m ≤ k ≤ L, we get –
following the notation of [TW05] – that the symmetric matrix E with upper triangular

part given by Ekm = CCS(hk/hm)
s−β

satisfies ρ(E) < Cspr, with a constant depending
only on Ω, d, s, and the initial triangulation T0.

2. There is some freedom in the choice of the parameter β in Lemma 4.4.7: the proof
shows that the essential conditions are 2s− 1/2 < β < s.

Lemma 4.4.9. (Local stability). For all u ∈ V , we have

u 2
Hs(Ω)

≤ Cloc a (u , u ),

with a constant Cloc > 0 depending only on Ω, d, s, and the initial triangulation T0.
Proof. Since u ∈ V , we have u =

z∈M u (z)ϕz. With an inverse estimate, which can
be applied, since due to Lemma 4.4.6 u only lives on a quasi-uniform submesh, we can
estimate using that the number of overlapping basis functions ϕz is bounded by a constant
depending only on the γ-shape regularity of the initial triangulation

u 2
Hs(Ω)

h−su
2

L2(Ω)
= h−2s

z∈M
u (z)ϕz

2

L2(Ω)

h−2s

z∈M
|u (z)|2 ϕz

2

L2(Ω)
.

By definition of a (·, ·), this finishes the proof.

For 0 ≤ k ≤ ≤ L, let E be a symmetric matrix with upper triangular part given by

E k = CCS(h /hk)
s−β

. Now, the assumptions of Proposition 4.4.1 follow directly from
Lemma 4.4.5 (lower bound) and Lemma 4.4.7 together with Lemma 4.4.9 (upper bound)
by writing u = k uk and

a(u, u) =
L

k, =1

a(uk, u )≤ 2
L

=1 k=1

a(uk, u )
Lemma 4.4.7≤ 2

L

=1 k=1

E k a(uk, uk) a (u , u )

Lemma 4.4.9≤ 2C
1/2
loc

L

=1 k=1

E k ak(uk, uk) a (u , u ) ≤ 2C
1/2
loc ρ(E)

L

=0

a (u , u ),

and the appearing constants are independent of L.
The following remark discusses the proof of Theorem 4.3.1:
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Remark 4.4.10. (Stable decomposition and strengthened Cauchy-Schwarz inequality of
mesh hierarchy (T ) generated by an adaptive algorithm—Proof of Theorem 4.3.1): The
existence of a stable decomposition and consequently the lower bound in Proposition 4.4.2
follows essentially verbatim as in [FFPS17a, Sec. 4.5], where instead of Corollary 3.5.2 an
L2-orthogonal projection onto a uniform mesh is used.

Analysing the proof of Lemma 4.4.7, we observe that the choice of mesh hierarchy is
not crucial for the arguments, one only needs an inverse estimate and a Poincaré-type
inequality. Both hold for the case of the decomposition into one dimensional spaces Vz

instead of V as well, and, therefore, we directly obtain a strengthened Cauchy-Schwarz
inequality for (T ) as well. The algebraic arguments of [FFPS17a, Sec. 4.6] then give the
upper bound for Proposition 4.4.2.

Remark 4.4.11. In the same way as in [FFPS17a], it is possible to define a global multilevel
diagonal preconditioner by taking the whole diagonal of the matrix A instead of only the
diagonal corresponding to the nodes in M . However, compared to the local multilevel
diagonal preconditioner, the preconditioner is not optimal in the sense that the condition
number of the preconditioned system grows (theoretically) by a logarithmic factor of NL.
We refer to [FFPS17a] for numerical observations of the sharpness of this bound for the
hyper-singular integral operator in the BEM, which essentially corresponds to the case
s = 1/2 here.

4.4.5 Numerical example

Figure 4.4.1: Adaptively generated NVB mesh on L-shaped domain and square.

We consider two examples: the L-shaped domain Ω = (−1, 1)2\[0, 1]2 with f ≡ 1 and the
square Ω = (−1, 1)2 with discontinuous f = χx>0. We discretize (4.2.1) by piecewise linear
functions in S1,1

0 (T ) on adaptively generated NVB meshes T that are generated by the
adaptive algorithm proposed in [FMP19] and are depicted in Figure 4.4.1. This adaptive
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algorithm is steered by local error indicators given by

η =


T∈T

hs f − (−Δ)su
2

L2(T )

1/2

with hs :=
hs for 0 < s ≤ 1/2,

h
1/2

w
s−1/2

for 1/2 < s < 1,

where u is the solution of (4.3.1). We note that by [FMP19, Theorem 2.3] theses indicators
are reliable and for s < 1/2 efficient in some weak sense. Moreover, [FMP19, Theorem 2.6]
proves optimal convergence rates for the adaptive algorithm based on these estimators.
Our implementation of the classical SOLVE-ESTIMATE-MARK-REFINE adaptive algorithm
uses the MATLAB code from [ABB17] for the module SOLVE and adapted the MATLAB code
for the local multilevel preconditioner from [FFPS17a] to our model problem. Figure 4.4.2
gives the estimated condition numbers for the Galerkin matrix AL and the preconditioned
matrix PL

AS , where the condition number has been estimated using power iteration and
inverse power iteration (with random initial vectors) to compute approximations to the
smallest and largest eigenvalues.

Figure 4.4.2: Estimated condition numbers for AL, the preconditioned matrices PL
AS , and

diag(AL)−1AL. Top: L-shaped domain, bottom: square; left: s = 0.25, right:
s = 0.75.

We observe that, as expected, the condition number of the unpreconditioned system
grows with the problem size, whereas the preconditioner leads to uniformly bounded con-
dition numbers for the preconditioned system. Moreover, diagonal scaling eliminates the
dependence on the quotient of maximal and minimal mesh size, which is the dominant part
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4 An optimal multilevel preconditioner for the fractional Laplacian

in the case s = 0.25. While there is still dependence on the problem size, the growth with
respect to the number of degrees of freedom is very moderate, and for the problem sizes
considered here, diagonal scaling performs very well for the case s = 0.25, but not for the
case s = 0.75.
As the preconditioner is structurally similar to the one used in [FFPS17a] for the hyper-

singular integral equation, we refer to the numerical results there for the confirmation that
the preconditioner can also be realized efficiently.
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5 H-Matrix approximations to inverses for
FEM-BEM couplings

Transmission problems are usually posed on unbounded domains, where a (possibly nonlin-
ear) equation is given on some bounded domain, and another linear equation is posed on the
complement of the bounded domain. While the interior problem can be treated numerically
by the finite element method, the unbounded nature of the exterior problem makes this
problematic. A suitable method to treat unbounded problems is provided by the boundary
element method, where the differential equation in the unbounded domain is reformulated
via an integral equation posed just on the boundary. In order to combine both methods
for transmission problems, additional conditions on the interface have to be fulfilled, which
leads to different approaches for the coupling of the FEM and the BEM. We study three dif-
ferent FEM-BEM couplings, the Bielak-MacCamy coupling [BM84], Costabel’s symmetric
coupling [Cos88, CES90], and the Johnson-Nédélec coupling [JN80]. Well-posedness and
unique solvability of these formulations have been studied in, e.g., [Ste11, Say13, AFF+13],
where a main observation is that the couplings are equivalent to an elliptic problem.

Elliptic problems typically feature interior regularity known as Caccioppoli estimates,
where stronger norms can be estimated by weaker norms on larger domains. In this chapter,
we provide Caccioppoli-type estimates for the discrete problem. Using the Caccioppoli-
type estimates, we prove the existence of low-rank approximants to the inverses of stiffness
matrices corresponding to the lowest order FEM-BEM discretizations and we show the
error converges exponentially in the rank employed.

5.1 Model problem

On a Lipschitz domain Ω ⊂ Rd, d = 2, 3 with polygonal (for d = 2) or polyhedral (for
d = 3) boundary Γ := ∂Ω, we study the transmission problem

− div(C · ∇u) = f in Ω, (5.1.1a)

−Δuext = 0 in Ωext, (5.1.1b)

u− uext = u0 on Γ, (5.1.1c)

C∇u−∇uext · ν = ϕ0 on Γ, (5.1.1d)

uext =
O(|x|−1

) as |x| → ∞ if d = 3

b log |x|+O(|x|−1
) for some b ∈ R as |x| → ∞ if d = 2

(5.1.1e)

Here, Ωext := Rd \ Ω denotes the exterior of Ω, and ν denotes the outward normal vector.
For the data, we assume f ∈ L2(Ω), u0 ∈ H1/2(Γ), ϕ0 ∈ H−1/2(Γ), and C ∈ L∞(Ω;Rd) to
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5 H-Matrix approximations to inverses for FEM-BEM couplings

be pointwise symmetric and positive definite, i.e., there is a constant Cell > 0 such that

Cx, x 2 ≥ Cell x 2
2 . (5.1.2)

For d = 2, we assume diamΩ < 1 for the single-layer operator V introduced below to be
elliptic.

Remark 5.1.1. The radiation condition (5.1.1e) is such that the representation form uext =
−V ϕ + Kuext holds in Ωext with ϕ = ∇uext · ν (see, e.g., [SS11, Chap. 3.1]). For d = 2,
the compatibility condition f, 1 L2(Ω) + ϕ0, 1 L2(Γ) = 0 ensures b = 0 in (5.1.1e). See also
[McL00, Thm. 8.9] for more on the radiation condition.

5.2 Layer potential and boundary integral operators

In this section, we define the volume potential operators V , K and the boundary integral
operators V,K,K ,W and mention some of their properties . For details, we refer to [SS11,
Ch. 3] and [Ste07, Ch. 6].

Definition 5.2.1. With the Green’s function for the Laplacian G(x) = − 1
2π log |x| for

d = 2 and G(x) = 1
4π

1
|x| for d = 3, we introduce the single-layer boundary integral operator

V ∈ L(H−1/2(Γ), H1/2(Γ)) by

V φ(x) :=
Γ
G(x− y)φ(y)dsy, x ∈ Γ.

The double-layer operator K ∈ L(H1/2(Γ), H1/2(Γ)) has the form

Kφ(x) :=
Γ
(∂ν(y)G(x− y))φ(y)dsy, x ∈ Γ,

where ∂ν(y) denotes the normal derivative at the point y. The adjoint of K is denoted by

K . The hyper-singular operator W ∈ L(H1/2(Γ), H−1/2(Γ)) is given by

Wφ(x) := −∂ν(x)
Γ
(∂ν(y)G(x− y))φ(y)dsy, x ∈ Γ.

In addition to the boundary integral operators, we introduce the volume potentials V and
K by

V φ(x) :=
Γ
G(x− y)φ(y)dsy, x ∈ Rd\Γ,

Kφ(x) :=
Γ
∂ν(y)G(x− y)φ(y)dsy, x ∈ Rd\Γ.

Remark 5.2.2. The single-layer operator V is elliptic for d = 3 and for d = 2 provided
diam(Ω) < 1. The hyper-singular operator W is semi-elliptic with a kernel of dimension
being the number of components of connectedness of Γ.
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For D ⊆ Rd and s > 0, we introduce the space Hs
loc(Ω) as

Hs
loc(D) := u ∈ (C∞

0 (D)) : ϕu ∈ Hs(D) ∀ϕ ∈ C∞
0 (D) .

We also denote

Hs
loc(Rd\Γ) := u ∈ L2(Rd) : u|Ω ∈ Hs

loc(Ω), u|Ωext ∈ Hs
loc(Ω

ext) .

In the following, we state some well-known facts about these operators.

• With the interior trace operator γint0 (for Ω) and exterior trace operator γext0 (for
Rd\Ω), we have

γint0 V ϕ = V ϕ = γext0 V ϕ,

γint0 Ku = (−1/2 +K)u and γext0 Ku = (1/2 +K)u, (5.2.1)

which implies the jump conditions across Γ

[γ0V ϕ] := γext0 V ϕ− γint0 V ϕ = 0, [γ0Ku] = u. (5.2.2)

• Similarly, with the interior γint1 u := γint0 ∇u · ν and exterior conormal derivative
γext1 u := γext0 ∇u · ν (ν is the outward normal vector of Ω), we have

γint1 V ϕ = (1/2 +K )ϕ and γext1 V ϕ = (−1/2 +K )ϕ,

γint1 Ku = −Wu = γext1 Ku, (5.2.3)

and consequently the jump conditions

[γ1V ϕ] := γext1 V ϕ− γint1 V ϕ = −ϕ, [γ1Ku] = 0. (5.2.4)

• The potentials V ϕ and Ku are harmonic in Rd\Γ and are bounded operators (see
[SS11, Ch. 3.1.2])

V : H−1/2+s(Γ) → H1+s
loc (Rd), K : H1/2+s(Γ) → H1+s

loc (Rd\Γ), |s| ≤ 1/2.
(5.2.5)

Consequently, we have the boundedness for the boundary integral operators as

V : H−1/2+s(Γ) → H1/2+s(Γ), K : H1/2+s(Γ) → H1/2+s(Γ), (5.2.6)

W : H1/2+s(Γ) → H−1/2+s(Γ) (5.2.7)

for s ∈ R with |s| ≤ 1/2.
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5.3 FEM-BEM coupling techniques

In the following, we consider three different variational formulations, namely, the symmetric
coupling, the Bielak-MacCamy coupling, and the Johnson-Nédélec coupling for our model
problem. All three are well-posed without compatibility assumptions on the data. The
compatibility condition f, 1 L2(Ω) + ϕ0, 1 L2(Γ) = 0 for d = 2 ensures the radiation condi-
tion (5.1.1e); lifting the compatibility condition yields a solution that satisfies a different
radiation condition, namely, uext = b log |x| + O(|x|−1) as |x| → ∞ for some b ∈ R for
the three coupling strategies considered. Our analysis requires only the unique solvability
of the variational formulations. In this section, we study discretizations of weak solutions
of the model problem reformulated via three different FEM-BEM couplings: the Bielak-
MacCamy coupling, Costabel’s symmetric coupling, and the Johnson-Nédélec coupling. All
these couplings lead to a variational formulation of finding (u, ϕ) ∈ H1(Ω)×H−1/2(Γ) =: X
such that

a(u, ϕ;ψ, ζ) = g(ψ, ζ) ∀(ψ, ζ) ∈ X, (5.3.1)

where a : X×X → R is a bilinear form and g : X → R is continuous linear functional.

For the discretization, we assume that Ω is triangulated by a quasi-uniform mesh T =
{T1, . . . , Tn} of mesh width h := maxTj∈T diam(Tj). The elements Tj ∈ T are open triangles
(d = 2) or tetrahedra (d = 3). Additionally, we assume that the mesh T is regular in the
sense of Ciarlet and γ-shape regular in the sense that we have diam(Tj) ≤ γ |Tj |1/2 for all
Tj ∈ T , where |Tj | denotes the Lebesgue measure of Tj . By K := {K1, . . . ,Km}, we denote
the restriction of T to the boundary Γ, which is a regular and shape-regular triangulation
of the boundary.

In this Chapter, we consider lowest order Galerkin discretizations in S1,1(T )× S0,0(K).
We let Bh := {ξj : j = 1, . . . , n} be the basis of S1,1(T ) consisting of the standard hat
functions, and we let Wh := {χj : j = 1, . . . ,m} be the basis of S0,0(K) that consists of
the characteristic functions of the surface elements.

5.3.1 The Bielak–MacCamy coupling

The Bielak–MacCamy coupling is derived by making a single-layer ansatz for the exterior
solution, i.e., uext = V ϕ in Ωext with an unknown density ϕ ∈ H−1/2(Γ). For more details,
we refer to [BM84]. This approach leads to the bilinear form

abmc(u, ϕ;ψ, ζ) := C∇u,∇ψ L2(Ω) + (1/2−K )ϕ, ψ
L2(Γ)

− u, ζ L2(Γ) + V ϕ, ζ L2(Γ) ,

(5.3.2a)

gbmc(ψ, ζ) := f, ψ L2(Ω) + ϕ0, ψ L2(Γ) − u0, ζ L2(Γ) . (5.3.2b)

Replacing H1(Ω) × H−1/2(Γ) by the finite dimensional subspace S1,1(T ) × S0,0(K), we
arrive at the Galerkin discretization of (5.3.2) of finding (uh, ϕh) ∈ S1,1(T )× S0,0(K) such
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that

C∇uh,∇ψh L2(Ω) + (1/2−K )ϕh, ψh L2(Γ)
= f, ψh L2(Ω) + ϕ0, ψh L2(Γ) ∀ψh ∈ S1,1(T ),

(5.3.3a)

uh, ζh L2(Γ) − V ϕh, ζh L2(Γ) = u0, ζh L2(Γ) ∀ζh ∈ S0,0(K). (5.3.3b)

If the ellipticity constant of C satisfies Cell > 1/4, then [AFF+13, Thm. 9] shows that the
Bielak-MacCamy coupling is equivalent to an elliptic problem with the use of a (theoretical)
implicit stabilization. Therefore, (5.3.3) is uniquely solvable.
With the bases Bh of S1,1(T ) and Wh of S0,0(K), the Galerkin discretization (5.3.3) leads

to a block matrix Abmc ∈ R(n+m)×(n+m)

Abmc :=
A 1

2M
T −KT

M −V
, (5.3.4)

where A ∈ Rn×n is given by Aij = C∇ξj ,∇ξi L2(Ω), M ∈ Rm×n by Mij = ξi, χj L2(Γ),

K ∈ Rm×n byKij = Kξi, χj L2(Γ), andV ∈ Rm×m byVij = V χj , χi L2(Γ). As mentioned
in the introduction, we omitted the trace operators, i.e., in M and K, ξi is understood as
γint0 ξi.

5.3.2 Costabel’s symmetric coupling

The coupling is based on the representation formula uext = −V ϕ + Kuext in Ωext with
ϕ = ∇uext · ν (see, e.g., [SS11, Chap. 3.1]). . Coupling the interior and exterior solution in
a symmetric way (which uses all four boundary integral operators), this leads to Costabel’s
symmetric coupling, introduced in [Cos88] and [Han90]. Here, the bilinear form and right-
hand side are given by

asym(u, ϕ;ψ, ζ) := C∇u,∇ψ L2(Ω) + (K − 1/2)ϕ, ψ
L2(Γ)

+ Wu,ψ L2(Γ)

+ (1/2−K)u, ζ L2(Γ) + V ϕ, ζ L2(Γ) , (5.3.5a)

gsym(ψ, ζ) := f, ψ L2(Ω) + ϕ0 +Wu0, ψ L2(Γ) + (1/2−K)u0, ζ L2(Γ)

=: f, ψ L2(Ω) + v0, ψ L2(Γ) + w0, ζ L2(Γ) . (5.3.5b)

The Galerkin discretization leads to the problem of finding (uh, ϕh) ∈ S1,1(T ) × S0,0(K)
such that

C∇uh,∇ψh L2(Ω)+ (K −1/2)ϕh, ψh L2(Γ)
+ Wuh, ψh L2(Γ)= f, ψh L2(Ω)+ v0, ψh L2(Γ)

(5.3.6a)

(1/2−K)uh, ζh L2(Γ) + V ϕh, ζh L2(Γ)= w0, ζh L2(Γ) (5.3.6b)

for all (ψh, ζh) ∈ S1,1(T )× S0,0(K).

With similar arguments as for the Bielak-MacCamy coupling, [AFF+13] prove unique
solvability for the symmetric coupling for any Cell > 0.
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With the bases Bh of S1,1(T ) and Wh of S0,0(K), the Galerkin discretization (5.3.6) leads
to a block matrix Asym ∈ R(n+m)×(n+m)

Asym :=
A+W KT − 1

2M
T

1
2M−K V

, (5.3.7)

where A, M, K are defined in (5.3.4), and W ∈ Rn×n is given by Wij = Wξj , ξi L2(Γ).
As mentioned in the introduction, we omitted the trace operators. Thus, the matrix W is
assembled with respect to the traces of basis functions in the volume Ω.

5.3.3 The Johnson-Nédélec coupling

The Johnson-Nédélec coupling, introduced in [JN80] again uses the representation formula
for the exterior solution, but differs from the symmetric coupling in the way how the interior
and exterior solutions are coupled on the boundary. Instead of all four boundary integral
operators, only the single-layer and the double-layer operator are needed. The bilinear
form for the Johnson-Nédélec coupling is given by

ajn(u, ϕ;ψ, ζ) := C∇u,∇ψ L2(Ω) − ϕ, ψ L2(Γ) + (1/2−K)u, ζ L2(Γ) + V ϕ, ζ L2(Γ) ,

(5.3.8a)

gjn(ψ, ζ) := f, ψ L2(Ω) + ϕ0, ψ L2(Γ) + (1/2−K)u0, ζ L2(Γ)

=: f, ψ L2(Ω) + ϕ0, ψ L2(Γ) + w0, ζ L2(Γ) . (5.3.8b)

The Galerkin discretization in S1,1(T )×S0,0(K) leads to the problem of finding (uh, ϕh) ∈
S1,1(T )× S0,0(K) such that

C∇uh,∇ψh L2(Ω) − ϕh, ψh L2(Γ) = f, ψh L2(Ω) + ϕ0, ψh L2(Γ) ∀ψh ∈ S1,1(T ),

(5.3.9a)

(1/2−K)uh, ζh L2(Γ) + V ϕh, ζh L2(Γ) = (1/2−K)u0, ζh L2(Γ) ∀ζh ∈ S0,0(K).

(5.3.9b)

As in the case of the Bielak-MacCamy coupling, the Johnson-Nédélec coupling has an
unique solution provided Cell > 1/4, see [AFF+13].

With the bases Bh of S1,1(T ) and Wh of S0,0(K), the Galerkin discretization (5.3.9) leads
to a matrix Ajn ∈ R(n+m)×(n+m)

Ajn :=
A −MT

1
2M−K V

, (5.3.10)

where A, M, K, V are defined in (5.3.4).

5.4 Main results

Due to the low-rank structure on far-field blocks, the memory requirement to store an H
matrix is given by ∼ Csp depth(TI)r(n+m). Provided Csp is bounded and the cluster tree is
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balanced, i.e., depth(TI) ∼ log(n+m), which can be ensured by suitable clustering methods
(e.g. geometric clustering, [Hac09]), we get a storage complexity of O(r(n+m) log(n+m)).

The following theorem shows that the inverse matricesA−1
bmc, A

−1
sym, andA−1

jn correspond-
ing to the three mentioned FEM-BEM couplings can be approximated in the H-matrix
format, and the error converges exponentially in the maximal block rank employed.

Theorem 5.4.1. For a fixed admissibility parameter η > 0, let a partition P of I ×I that
is based on the cluster tree TI be given. Then, there exists an H-matrix BH with maximal
blockwise rank r such that

A−1
bmc −BH 2

≤ CapxCsp depth(TI)h−(2+d)e−br1/(2d+1)

for the Bielak-MacCamy coupling. In the same way, there exists a blockwise rank-r H-
matrix BH such that

A−1
sym −BH 2

≤ CapxCsp depth(TI)h−(2+d)e−br1/(3d+1)

for the symmetric coupling and

A−1
jn −BH

2
≤ CapxCsp depth(TI)h−(2+d)e−br1/(6d+1)

for the Johnson-Nédélec coupling. Here, · 2 denotes the spectral norm and the constants
Capx > 0 and b > 0 depend only on Ω, d, η, and the γ-shape regularity of the quasi-uniform
triangulations T and K.

Remark 5.4.2. The previous approximation result can also be formulated in norms other
than the spectral norm, e.g., the Frobenius norm that is commonly used in the H-matrix
literature. Using the norm equivalence A 2 ≤ A F ≤ √

N A 2 for arbitrary A ∈ RN×N

shows that this simply produces a different (algebraic) prefactor to the exponentials in
Theorem 5.4.1.

Remark 5.4.3. Definition 2.6.3 clusters the degrees of freedom associated with triangulation
T of Ω and the triangulation K of Γ simultaneously.

5.5 The Caccioppoli-type inequalities

Before we can state the interior regularity estimates, we specify the norm we are working
with, an h-weighted H1-equivalent norm. For a box BR with side length R, an open set
ω ⊂ Rd, and v ∈ H1(BR ∩ ω), we introduce

|||v|||2h,R,ω := h2 ∇v 2
L2(BR∩ω) + v 2

L2(BR∩ω) . (5.5.1)

For the case ω = Rd, we abbreviate |||·|||h,R,Rd =: |||·|||h,R and for the case ω = Rd\Γ we
write |||·|||h,R,Rd\Γ =: |||·|||h,R,Γc and understood the norms over BR\Γ as a sum over integrals

BR∩Ω and BR∩Ωext. Moreover, for triples (u, v, w) ∈ H1(BR∩Ω)×H1(BR)×H1(BR\Γ),
we set

|||(u, v, w)|||2h,R := |||u|||2h,R,Ω + |||v|||2h,R + |||w|||2h,R,Γc . (5.5.2)
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We note that u will be the interior solution, v be chosen as a single-layer potential and w as
a double-layer potential (which jumps across Γ), which explains the different requirements
for the set ω.
In the proof of the Caccioppoli type inequality, we need the following inverse-type in-

equalities from [FMP16, Lem. 3.8] and [FMP17, Lem. 3.6].

Lemma 5.5.1 ( [FMP16, Lem. 3.8], [FMP17, Lem. 3.6]). Let BR ⊂ BR be concentric
boxes with dist(BR, ∂BR ) ≥ 4h. Then, for every ψh ∈ S0,0(K), we have

ψh L2(BR∩Γ) h−1/2 ∇V ψh
L2(BR )

.

Moreover, for every vh ∈ S1,1(T ), we have

γ1Kvh
L2(BR∩Γ)

h−1/2 ∇Kvh
L2(BR )

+
1

dist(BR, ∂BR )
Kvh

L2(BR )
. (5.5.3)

Combining Lemma 2.4.1 with Lemma 5.5.1 (assuming supp η ⊂ BR), we obtain estimates
of the form

ηψh − IΓh (ηψh) H−1/2(Γ)
h ∇η L∞(Γ) ∇V ψh

L2(BR )
. (5.5.4)

Remark 5.5.2. An inspection of the proof of (5.5.3) ([FMP17, Lem. 3.6]) shows that the
main observation is that Kvh is harmonic. The remaining arguments therein only use
mapping properties and jump conditions for the potential K and can directly be modified
such that the same result holds for the single-layer potential as well, i.e., for every ψh ∈
S0,0(T ), we have

γ1V ψh
L2(BR∩Γ)

h−1/2 ∇V ψh
L2(BR )

+
1

dist(BR, ∂BR )
V ψh

L2(BR )
. (5.5.5)

5.5.1 The Bielak-MacCamy coupling

The following theorem is one of the main results of this section. It states that for the interior
finite element solution and the single-layer potential of the boundary element solution, a
Caccioppoli type estimate holds, i.e., the stronger H1-seminorm can be estimated by a
weaker h-weighted H1-norm on a larger domain.

Theorem 5.5.3. Assume that Cell > 1/4 in (5.1.2). Let ε ∈ (0, 1) and R ∈ (0, 2 diam(Ω))
be such that h

R < ε
16 , and let BR and B(1+ε)R be two concentric boxes. Assume that the data

is localized away from B(1+ε)R, i.e., (supp f ∪suppϕ0∪suppu0)∩B(1+ε)R = ∅. Then, there
exists a constant C depending only on Ω, d, and the γ-shape regularity of the quasi-uniform
triangulation T , such that for the solution (uh, ϕh) of (5.3.3) we have

∇uh L2(BR∩Ω) + ∇V ϕh
L2(BR)

≤ C

εR
|||uh|||h,(1+ε)R,Ω + V ϕh

h,(1+ε)R
,

where the norms on the right-hand side are defined in (5.5.1).
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Proof. In order to reduce unnecessary notation, we write (u, ϕ) for the Galerkin solution
(uh, ϕh). The assumption on the support of the data implies the local orthogonality

abmc(u, ϕ;ψh, ζh) = 0 ∀(ψh, ζh) ∈ S1,1(T )× S0,0(K) with suppψh, supp ζh ⊂ B(1+ε)R.

(5.5.6)

Let η ∈ C∞
0 (Rd) be a cut-off function with supp η ⊆ B(1+δ/4)R, η ≡ 1 on BR, 0 ≤ η ≤ 1,

and Djη
L∞(B(1+δ)R)

1
(δR)j

for j = 1, 2. Here, 0 < δ ≤ ε is such that h
R ≤ δ

8 . We note

that this choice of δ implies that {K ∈ K : supp η ∩ K = ∅} ⊂ B(1+δ/2)R. In the final
step of the proof, we will choose two different values for δ (≤ ε) depending on ε - one of
them, δ = ε

2 , explains the assumption made on ε in the theorem.

Step 1: We provide a “localized” ellipticity estimate, i.e., we prove an inequality of the
form

∇(ηu) 2
L2(Ω) + ∇(ηV ϕ)

2

L2(Rd)
abmc(u, ϕ; η

2u, η2ϕ) + terms in weaker norms.

(See (5.5.17) for the precise form.) Since the ellipticity constant Cell ofC satisfies Cell > 1/4,
we may choose a ρ > 0 such that 1/4 < ρ/2 < Cell. This implies Cρ := min{1− 1

2ρ , Cell −
ρ
2} > 0, and we start with

Cell − ρ

2
∇(ηu) 2

L2(Ω) + 1− 1

2ρ
∇(ηV ϕ)

2

L2(Rd)
≤ Cell ∇(ηu) 2

L2(Ω) + ∇(ηV ϕ)
2

L2(Rd)

− 1

2ρ
∇(ηV ϕ)

2

L2(Ω)
− ρ

2
∇(ηu) 2

L2(Ω) .

(5.5.7)

Young’s inequality implies

− 1

2ρ
∇(ηV ϕ)

2

L2(Ω)
− ρ

2
∇(ηu) 2

L2(Ω) ≤ − ∇(ηV ϕ)
L2(Ω)

∇(ηu) L2(Ω)

≤ − ∇(ηV ϕ),∇(ηu)
L2(Ω)

. (5.5.8)

Inserting (5.5.8) into (5.5.7) leads to

Cρ ∇(ηu) 2
L2(Ω) + Cρ ∇(ηV ϕ)

2

L2(Rd)
≤ ∇(ηV ϕ)

2

L2(Rd)
+ Cell ∇(ηu) 2

L2(Ω)

− ∇(ηV ϕ),∇(ηu)
L2(Ω)

. (5.5.9)

An elementary calculation shows

∇(ηV ϕ),∇(ηu)
L2(Ω)

= ∇V ϕ,∇(η2u)
L2(Ω)

+ (∇η)V ϕ,∇(ηu)
L2(Ω)

− ∇V ϕ, η(∇η)u
L2(Ω)

. (5.5.10)
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Since the single-layer potential is harmonic in Ω, integration by parts (in Ω) and γint1 V =
1/2 +K lead to

∇V ϕ,∇(η2u)
L2(Ω)

= γint1 V ϕ, η2u
L2(Γ)

= (1/2 +K )ϕ, η2u
L2(Γ)

. (5.5.11)

Similarly, with integration by parts (in Ω and Ωext) and the jump condition of the single-
layer potential we obtain

∇(ηV ϕ)
2

L2(Rd)
= ∇V ϕ,∇(η2V ϕ)

L2(Rd)
+ ∇ηV ϕ,∇ηV ϕ

L2(Rd)

= − γ1V ϕ , η2V ϕ
L2(Γ)

+ ∇ηV ϕ,∇ηV ϕ
L2(Rd)

= V ϕ, η2ϕ
L2(Γ)

+ ∇ηV ϕ,∇ηV ϕ
L2(Rd)

. (5.5.12)

Moreover, the symmetry and positive definiteness of C implies

Cell ∇(ηu) 2
L2(Ω) ≤ C∇(ηu),∇(ηu) L2(Ω) = C∇u,∇(η2u)

L2(Ω)
+ C∇ηu,∇ηu L2(Ω) .

(5.5.13)

Plugging (5.5.10)–(5.5.13) into (5.5.9), we infer

Cρ ∇(ηu) 2
L2(Ω) + Cρ ∇(ηV ϕ)

2

L2(Rd)
≤ C∇u,∇(η2u)

L2(Ω)

+ C∇ηu,∇ηu L2(Ω) + V ϕ, η2ϕ
L2(Γ)

+ ∇ηV ϕ
2

L2(Rd)
− (1/2 +K )ϕ, η2u

L2(Γ)

+ ∇V ϕ, (∇η)ηu
L2(Ω)

− ∇ηV ϕ,∇(ηu)
L2(Ω)

=abmc(u, ϕ; η
2u, η2ϕ) + C∇ηu,∇ηu L2(Ω)

+ ∇ηV ϕ
2

L2(Rd)
+ ∇V ϕ, (∇η)ηu

L2(Ω)

− ∇ηV ϕ,∇(ηu)
L2(Ω)

. (5.5.14)

Young’s inequality and ∇η L∞(Rd)
1
δR imply

∇V ϕ, (∇η)ηu
L2(Ω)

≤ ∇(ηV ϕ),∇ηu
L2(Ω)

+ ∇ηV ϕ,∇ηu
L2(Ω)

≤ ∇(ηV ϕ)
L2(Ω)

∇ηu L2(Ω)

+
C

(δR)2
u L2(B(1+δ)R∩Ω) V ϕ

L2(B(1+δ)R)

≤ C

(δR)2
u 2

L2(B(1+δ)R∩Ω) + V ϕ
2

L2(B(1+δ)R)

+
Cρ

4
∇(ηV ϕ)

2

L2(Rd)
, (5.5.15)
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as well as

∇ηV ϕ,∇(ηu)
L2(Ω)

≤ ∇ηV ϕ
L2(Ω)

∇(ηu) L2(Ω)

≤ 2C

(δR)2
V ϕ

2

L2(B(1+δ)R)
+

Cρ

4
∇(ηu) 2

L2(Ω) . (5.5.16)

Absorbing the gradient terms in (5.5.15)-(5.5.16) into the left-hand side of (5.5.14), we
arrive at

∇(ηu) 2
L2(Ω) + ∇(ηV ϕ)

2

L2(Rd)
abmc(u, ϕ; η

2u, η2ϕ)

+
1

(δR)2
V ϕ

2

L2(B(1+δ)R)
+

1

(δR)2
u 2

L2(B(1+δ)R∩Ω) .

(5.5.17)

Step 2: We apply the local orthogonality of (u, ϕ) to piecewise polynomials and use
approximation properties.
Let IΩh : C(Ω) → S1,1(T ) be the nodal interpolation operator and IΓh the L2(Γ)-

orthogonal projection mapping onto S0,0(K). Then, the orthogonality (5.5.6) leads to

abmc(u, ϕ; η
2u, η2ϕ) = abmc(u, ϕ; η

2u− IΩh (η
2u), η2ϕ− IΓh (η

2ϕ))

= C∇u,∇(η2u− IΩh (η
2u))

L2(Ω)
+ (1/2−K )ϕ, IΩh (η

2u)− η2u
L2(Γ)

+ V ϕ, η2ϕ− IΓh (η
2ϕ)

L2(Γ)
− u, IΓh (η

2ϕ)− η2ϕ
L2(Γ)

=: T1 + T2 + T3 + T4. (5.5.18)

We mention that the volume term T1 and the boundary term T3 involving V were already
treated in the works [FMP15] and [FMP16]. However, for sake of completeness, we also
provide the estimates in the following. For T1 in (5.5.18), the assumptions on the cut-off
function η, the super-approximation properties of IΩh from Lemma 2.4.2, Young’s inequality,
and h

δR ≤ 1 lead to

C∇u,∇(η2u− IΩh (η
2u))

L2(Ω)
≤ C∇u L2(B(1+δ)R∩Ω) ∇(η2u− IΩh (η

2u))
L2(Ω)

∇u L2(B(1+δ)R∩Ω)

h

(δR)2
u L2(B(1+δ)R∩Ω) +

h

δR
∇u L2(B(1+δ)R∩Ω)

h

δR
∇u 2

L2(B(1+δ)R∩Ω) +
1

(δR)2
u 2

L2(B(1+δ)R∩Ω) . (5.5.19)

For the term T3, we mention that the assumption 8h ≤ δR implies that supp IΓh (η
2ϕ) ⊆

B(1+δ/2)R. In the following, we employ a second cut-off function η with 0 ≤ η ≤ 1, η ≡ 1 on

B(1+δ/2)R ⊇ supp(η2ϕ− IΓh (η
2ϕ)), supp η ⊆ B(1+δ)R and ∇η L∞(B(1+δ)R)

1
δR . The trace

inequality together with the super-approximation properties of IΓh , expressed in (5.5.4),
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lead to

V ϕ, η2ϕ− IΓh (η
2ϕ)

L2(Γ)
= ηV ϕ, η2ϕ− IΓh (η

2ϕ)
L2(Γ)

≤ ηV ϕ H1/2(Γ) η2ϕ− IΓh (η
2ϕ)

H−1/2(Γ)

ηV ϕ
H1(Ω)

h

δR
∇V ϕ

L2(B(1+δ)R)

1

δR
V ϕ

L2(B(1+δ)R)
+ ∇V ϕ

L2(B(1+δ)R)

h

δR
∇V ϕ

L2(B(1+δ)R)

h

δR
∇V ϕ

2

L2(B(1+δ)R)
+

1

(δR)2
V ϕ

2

L2(B(1+δ)R)
. (5.5.20)

With the same arguments, we obtain an estimate for T4:

u, IΓh (η
2ϕ)−η2ϕ

L2(Γ)
ηu H1(Ω)

h

δR
∇V ϕ

L2(B(1+δ)R)

h

δR
∇u 2

L2(B(1+δ)R∩Ω) +
h

δR
∇V ϕ

2

L2(B(1+δ)R)
+

1

(δR)2
u 2

L2(B(1+δ)R∩Ω) .

(5.5.21)

It remains to treat the coupling term T2 involving the adjoint double-layer operator in
(5.5.18). With the support property supp(IΩh (η

2u)− η2u) ⊂ B(1+δ/2)R, which follows from

8h ≤ δR, and (1/2−K )ϕ = −γext1 V ϕ, we obtain

(1/2−K )ϕ, IΩh (η
2u)− η2u

L2(Γ)
≤ γext1 V ϕ

L2(B(1+δ/2)R∩Γ)
IΩh (η

2u)− η2u
L2(Γ)

.

(5.5.22)

The multiplicative trace inequality for Ω, see, e.g., [BS02], the super-approximation prop-
erty of IΩh from (2.4.7), and h

R ≤ δ
8 lead to (see also [FMP15, Eq. (25), (26)] for more

details)

IΩh (η
2u)− η2u

L2(Γ)
IΩh (η

2u)− η2u
L2(Ω)

+ IΩh (η
2u)− η2u

1/2

L2(Ω)
∇(IΩh (η

2u)− η2u)
1/2

L2(Ω)

h2

(δR)2
u L2(B(1+δ)R∩Ω) +

h2

δR
∇u L2(B(1+δ)R∩Ω)

+
h

δR
u

1/2
L2(B(1+δ)R∩Ω)

+
h

(δR)1/2
∇u

1/2
L2(B(1+δ)R∩Ω)

× h1/2

δR
u

1/2
L2(B(1+δ)R∩Ω)

+
h1/2

(δR)1/2
∇u

1/2
L2(B(1+δ)R∩Ω)

h3/2

δR
∇u L2(B(1+δ)R∩Ω) +

h3/2

(δR)2
u L2(B(1+δ)R∩Ω) . (5.5.23)
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We use estimate (5.5.5) and (5.5.23) in (5.5.22), which implies

(1/2−K )ϕ, IΩh (η
2u)− η2u

L2(Γ)
h−1/2 ∇V ϕ

L2(B(1+δ)R)
+

1

δR
V ϕ

L2(B(1+δ)R)
·

h3/2

δR
∇u L2(B(1+δ)R∩Ω) +

h3/2

(δR)2
u L2(B(1+δ)R∩Ω)

h

δR
∇V ϕ

2

L2(B(1+δ)R)
+ ∇u 2

L2(B(1+δ)R∩Ω)

+
1

(δR)2
u 2

L2(B(1+δ)R∩Ω) + V ϕ
2

L2(B(1+δ)R)
.

(5.5.24)

Finally, inserting (5.5.20), (5.5.21), (5.5.19), and (5.5.24) into (5.5.18) and further into
(5.5.17), and absorbing the term 1

4 η∇u 2
L2(B(1+δ)R) on the left-hand side implies

∇u 2
L2(BR∩Ω) + ∇V ϕ

2

L2(BR)
≤ ∇(ηu) 2

L2(Ω) + ∇(ηV ϕ)
2

L2(Rd)

h

δR
∇u 2

L2(B(1+δ)R∩Ω) + ∇V ϕ
2

L2(B(1+δ)R)

+
1

(δR)2
u 2

L2(B(1+δ)R∩Ω) + V ϕ
2

L2(B(1+δ)R)
.

(5.5.25)

Step 3: We iterate (5.5.25) to improve the powers of h for the gradient terms to finally
obtain the result of Theorem 5.5.3.

We set δ = ε
2 , and use (5.5.25) again for the gradient terms on the right-hand side with

the boxes B
R

and B
(1+δ)R

, where δ = ε
ε+2 and R = (1 + ε/2)R. We note that 16h ≤ εR

implies 8h ≤ δR, so we may apply (5.5.25). Considering (1 + δ)(1 + ε
2) = 1 + ε, we get

∇u 2
L2(BR∩Ω) + ∇V ϕ

2

L2(BR)

h2

(εR)2
∇u 2

L2(B(1+ε)R∩Ω) + ∇V ϕ
2

L2(B(1+ε)R)

+
h

(εR)3
+

1

(εR)2
u 2

L2(B(1+ε)R∩Ω) + V ϕ
2

L2(B(1+ε)R)
,

(5.5.26)

and with h
εR < 1, we conclude the proof.

5.5.2 Costabel’s symmetric coupling

The following theorem is similar to Theorem 5.5.3 and provides a simultaneous Caccioppoli-
type estimate for the interior solution as well as for the single-layer potential of the boundary
solution and the double-layer potential of the trace of the interior solution. Here, the
double-layer potential additionally appears since all boundary integral operators, especially
the hyper-singular operator appear in the coupling.
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Theorem 5.5.4. Let ε ∈ (0, 1) and R ∈ (0, 2 diam(Ω)) be such that h
R < ε

32 , and let BR

and B(1+ε)R be two concentric boxes. Assume that the data is localized away from B(1+ε)R,
i.e., (supp f ∪ supp v0 ∪ suppw0)∩B(1+ε)R = ∅. Then, there exists a constant C depending
only on Ω, d, and the γ-shape regularity of the quasi-uniform triangulation T , such that
for the solution (uh, ϕh) of (5.3.6) we have

∇uh L2(BR∩Ω) + ∇V ϕh
L2(BR)

+ ∇Kuh
L2(BR\Γ)

≤ C

εR
(uh, V φh,Kuh)

h,(1+ε)R
,

(5.5.27)

where the norm on the right-hand side is defined in (5.5.2).

Proof. Again, we write (u, ϕ) for the Galerkin solution (uh, ϕh). The assumption on the
support of the data implies the local orthogonality

asym(u, ϕ;ψh, ζh) = 0 ∀(ψh, ζh) ∈ S1,1(T )× S0,0(K) with suppψh, supp ζh ⊂ B(1+ε)R.

(5.5.28)

As in the proof of Theorem 5.5.3 let η ∈ C∞
0 (Rd) be a cut-off function with supp η ⊆

B(1+δ/4)R, η ≡ 1 on BR, 0 ≤ η ≤ 1, and Djη
L∞(B(1+δ)R)

1
δR for j = 1, 2. Here,

0 < δ ≤ ε is given such that h
R ≤ δ

16 and will be chosen in the last step of the proof.
Step 1: We start with a local ellipticity estimate. More precisely, we show

∇(ηu) 2
L2(Ω) + ∇(ηV ϕ)

2

L2(Rd)
+ ∇(ηKu)

2

L2(Rd\Γ)
≤ asym(u, ϕ; η

2u, η2ϕ)

+ terms inweaker norms.

(See (5.5.33) for the precise statement.) From (5.5.13) and the Cauchy-Schwarz inequality
we get

Cell ∇(ηu) 2
L2(Ω) +

1

2
∇(ηV ϕ)

2

L2(Rd)
+

1

2
∇(ηKu)

2

L2(Rd\Γ)

≤ C∇u,∇(η2u)
L2(Ω)

+ C∇ηu,∇ηu L2(Ω) + ∇(ηV ϕ)
2

L2(Rd)

+ ∇(ηKu)
2

L2(Rd\Γ)
− ∇(ηV ϕ),∇(ηKu)

L2(Rd\Γ)
. (5.5.29)

A direct calculation reveals that

∇(ηKu) 2
L2(Rd\Γ) = (∇η)Ku 2

L2(Rd\Γ) + ∇Ku,∇(η2Ku)
L2(Rd\Γ)

.
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Inserting this and (5.5.12) in (5.5.29) yields

Cell ∇(ηu) 2
L2(Ω) +

1

2
∇(ηV ϕ)

2

L2(Rd)
+

1

2
∇(ηKu)

2

L2(Rd\Γ)
≤ C∇u,∇(η2u)

L2(Ω)
+ C∇ηu,∇ηu L2(Ω)

+ V ϕ, η2ϕ
L2(Γ)

+ (∇η)V ϕ
2

L2(Rd)

+ ∇Ku,∇(η2Ku)
L2(Rd\Γ)

+ (∇η)Ku
2

L2(Rd\Γ)

− ∇(ηV ϕ),∇(ηKu)
L2(Rd\Γ)

. (5.5.30)

Integration by parts together with the jump conditions (5.2.2), (5.2.4) for the double-layer
potential gives

∇Ku,∇(η2Ku)
L2(Rd\Γ)

= Wu, η2u
L2(Γ)

. (5.5.31)

With a calculation analogous to (5.5.10) (in fact, replace u there with Ku), we get

∇(ηV ϕ),∇(ηKu)
L2(Rd\Γ)

= ∇(V ϕ),∇(η2Ku)
L2(Rd\Γ)

+ l.o.t.,

where the omitted terms (cf. (5.5.10))

l.o.t. = (∇η)V ϕ,∇(ηKu) L2(Rd\Γ) − ∇V ϕ, η(∇η)Ku L2(Rd\Γ)

can be estimated in weaker norms (i.e., V ϕ L2(B(1+δ/2)R), Ku L2(B(1+δ/2)R\Γ)) or lead to

terms that are absorbed in the left-hand side as in the proof of Theorem 5.5.3 (see (5.5.15),
(5.5.16)). With integration by parts on Ω and Ωext, we get

∇V ϕ,∇(η2Ku)
L2(Rd\Γ)

= γint1 V ϕ, γint0 (η2Ku)
L2(Γ)

− γext1 V ϕ, γext0 (η2Ku)
L2(Γ)

= (K + 1/2)ϕ, η2(K − 1/2)u
L2(Γ)

− (K − 1/2)ϕ, η2(K + 1/2)u
L2(Γ)

= η2ϕ, (K − 1/2)u
L2(Γ)

− (K − 1/2)ϕ, η2u
L2(Γ)

. (5.5.32)

Putting everything together and using ∇η L∞(B(1+δ)R)
1
δR , we obtain

∇(ηu) 2
L2(Ω) + ∇(ηV ϕ)

2

L2(Rd)
+ ∇(ηKu)

2

L2(Rd\Γ)
asym(u, ϕ, η

2u, η2ϕ)

+
1

(δR)2
u 2

L2(B(1+δ)R∩Ω) +
1

(δR)2
V ϕ

2

L2(B(1+δ)R)

+
1

(δR)2
Ku

2

L2(B(1+δ)R\Γ)
. (5.5.33)
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Step 2: Applying the local orthogonality as well as approximation results.
With the L2(Γ)-orthogonal projection IΓh and the nodal interpolation operator IΩh , the

orthogonality (5.5.28) implies

asym(u, ϕ; η
2u, η2ϕ) = asym(u, ϕ; η

2u− IΩh (η
2u), η2ϕ− IΓh (η

2ϕ))

= C∇u,∇(η2u− IΩh (η
2u))

L2(Ω)
+ Wu, η2u− IΩh (η

2u)
L2(Γ)

+ (K − 1/2)ϕ, η2u− IΩh (η
2u)

L2(Γ)
+ V ϕ, η2ϕ− IΓh (η

2ϕ)
L2(Γ)

+ (1/2−K)u, η2ϕ− IΓh (η
2ϕ)

L2(Γ)

=: T1 + T2 + T3 + T4 + T5. (5.5.34)

The terms T1, T3, T4 can be estimated with (5.5.19), (5.5.24) and (5.5.20) respectively as in
the case for the Bielak-MacCamy coupling. We also mention that the term T2 involving the
hyper-singular integral operator W was treated in [FMP17]. For our purpose, a simplified
version of the proof is sufficient, which is presented in the following.

For the term T2, we mention that the assumption 16h ≤ δR implies that supp IΓh (η
2ϕ) ⊆

B(1+δ/2)R. We employ equation (5.5.3) from Lemma 5.5.1 for Ku and the boxes B(1+δ/2)R

and B(1+δ)R satisfying dist(B(1+δ/2)R, ∂B(1+δ)R) = δ
4 ≥ 4h due to the assumptions on δ.

Together with Wu = −γint1 Ku, (cf. (5.5.23)), and the Young inequality this implies

Wu, η2u− IΩh (η
2u)

L2(Γ)
= γint1 Ku, η2u− IΩh (η

2u)
L2(Γ)

≤ γint1 Ku
L2(B(1+δ/2)R∩Γ)

η2u− IΩh (η
2u)

L2(Γ)

h−1/2 ∇Ku
L2(B(1+δ)R∩Γ)

+
1

δR
Ku

L2(B(1+δ)R\Γ)

× h3/2

δR
∇u L2(B(1+δ)R) +

h3/2

(δR)2
u L2(B(1+δ)R)

h

δR
∇u 2

L2(B(1+δ)R) + ∇Ku
2

L2(B(1+δ)R\Γ)
+

1

(δR)2
u 2

L2(B(1+δ)R) + Ku
2

L2(B(1+δ)R\Γ)
.

We finish the proof by estimating T5. To that end, we need another cut-off function
η ∈ S1,1(T ) with 0 ≤ η ≤ 1, η ≡ 1 on B(1+δ/2)R ⊇ supp IΓh (η

2ϕ)− η2ϕ , supp η ⊆ B(1+δ)R

and ∇η L∞(B(1+δ)R)
1
δR . Since (1/2 −K)u = −γint0 Ku, we get with a trace inequality

and the approximation properties expressed in (5.5.4) that

|T5| = ηγint0 Ku, η2ϕ− IΓh (η
2ϕ)

L2(Γ)
γint0 (ηKu)

H1/2(Γ)
η2ϕ− IΓh (η

2ϕ)
H−1/2(Γ)

h

δR
ηKu

H1(Ω\Γ)
∇V ϕ

L2(B(1+δ)R)

h

δR
∇Ku

2

L2(B(1+δ)R\Γ)
+ ∇V ϕ

2

L2(B(1+δ)R)
+

1

(δR)2
Ku

2

L2(B(1+δ)R\Γ)
.

(5.5.35)
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Putting everything together in (5.5.34) and further in (5.5.33), and absorbing the terms
1
4 η∇u L2(Ω),

1
4 ∇(ηKu)

L2(Rd)
in the left-hand side, finally yields

∇u 2
L2(BR∩Ω) + ∇V ϕ

2

L2(BR)
+ ∇Ku

2

L2(BR\Γ)
h

δR
∇u 2

L2(B(1+δ)R∩Ω) + ∇Ku
2

L2(B(1+δ)R\Γ)
+ ∇V ϕ

2

L2(B(1+δ)R)

+
1

(δR)2
u 2

L2(B(1+δ)R∩Ω) V ϕ
2

L2(B(1+δ)R)
+ ∇Ku

2

L2(B(1+δ)R\Γ)
.

(5.5.36)

Step 3: By reapplying (5.5.36) to the gradient terms with δ = ε
2 and suitable boxes, we

get the desired result exactly as in step 3 of the proof of Theorem 5.5.3.

5.5.3 The Johnson-Nédélec coupling

In this section, we prove the Caccioppoli-type inequality from Theorem 5.5.6 for the
Johnson-Nédélec coupling. Most of the appearing terms have already been treated in the
previous sections. The main difference is that the double-layer potential appears naturally
due to the boundary coupling terms, but the local orthogonality is not suited to provide
an approximation for it, since the hyper-singular operator does not appear in the bilinear
form. A remedy for this problem is to localize the double-layer potential by splitting it into
a local near-field and a non-local, but smooth far-field. This techniques follows [FM18],
where a similar localization using commutators is employed.

Lemma 5.5.5. Let δ ∈ (0, 1) and R ∈ (0, 2 diam(Ω)) and let BR and B(1+δ)R be two

concentric boxes. Let η ∈ C∞
0 (Rd) be a cut-off function with supp η ⊆ B(1+δ/2)R, η ≡ 1 on

B(1+δ/4)R, 0 ≤ η ≤ 1, and Djη
L∞(B(1+δ)R)

1
(δR)j

for j = 1, 2. Then, for u ∈ H1(Ω),

we have

∇Ku
L2(BR\Γ)

1 + 1/δ ηu H1(Ω) +
1

δR
u L2(B(1+δ/4)R∩Ω) +

1

δR
Ku

L2(B(1+δ/4)R\Γ)
.

(5.5.37)

Proof. We start with a localized splitting for the double-layer potential. More precisely,
with a second cut-off function η satisfying η ≡ 1 onBR and supp η ⊆ B(1+δ/4)R, ∇η L∞(B(1+δ)R)
1
δR , we write

ηKu = ηK(ηu) + ηK(1− η)u =: vnear + vfar.

First, we estimate the near-field vnear := ηK(ηu). The mapping properties of the double-
layer potential, (5.2.5), together with the fact that supp∇η ⊂ B(1+δ/4)R \BR and the trace
inequality provide

∇vnear L2(BR\Γ) ηu H1/2(Γ) +
1

δR
K(ηu) L2(B(1+δ/4)R\BR) ηu H1(Ω)

+
1

δR
K(ηu) L2(B(1+δ/4)R\BR).
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Since η(1−η) ≡ 0, the far field vfar is smooth. Integration by parts using ΔK((1−η)u) = 0
as well as [γ1Ku] = 0 and η(1− η) ≡ 0 (therefore no boundary terms appear) leads to

∇vfar
2
L2(BR\Γ) = ∇K((1− η)u),∇(η2K((1− η)u))

L2(Rd\Γ)
+ (∇η)K((1− η)u)

2

L2(Rd)

1

(δR)2
K((1− η)u)

2

L2(B(1+δ/4)R\BR)

1

(δR)2
Ku

2

L2(B(1+δ/4)R\BR)
+

1

(δR)2
K(ηu)

2

L2(B(1+δ/4)R\BR)
.

Here, we used that supp(∇η) ⊂ B(1+δ/4)R\BR. For the last term, we apply [FMP16,
Lem. 3.7,(ii)], which states that

K(ηu)
L2(B(1+δ/4)R\BR)

√
δR

1

(1 + δ)R
K(ηu)

L2(B(1+δ/4)R\Γ)
+ (1 + δ)R ∇K(ηu)

L2(B(1+δ/4)R\Γ)
.

[FMP16, Lem. 3.7,(i)] provides the estimate

K(ηu)
L2(B(1+δ/4)R)

√
R γint0 K(ηu)

L2(Γ)
+R ∇K(ηu)

L2(B(1+δ/4)R\Γ)
.

The combination of these two estimates and the fact that γint0 Ku = (−1/2 +K)u gives us

K(ηu)
L2(B(1+δ/4)R\BR)

√
δR (1/2−K)(ηu) L2(Γ) +

√
δR (1 + δ)R ∇K(ηu)

L2(B(1+δ/4)R\Γ)
.

With the mapping properties of K, K from (5.2.5), (5.2.6) and the multiplicative trace
inequality this implies

1

δR
K(ηu)

L2(B(1+δ/4)R\BR)

1√
δR

ηu L2(Γ) + 1 + 1/δ ηu H1(Ω)

1√
δR

ηu L2(Ω) +
1√
δR

ηu
1/2
L2(Ω)

∇(ηu)
1/2
L2(Ω)

+ 1 + 1/δ ηu H1(Ω)

1

δR
ηu L2(Ω) + ∇(ηu) L2(Ω) + 1 + 1/δ ηu H1(Ω) .

Putting the estimates for the near-field and the far-field together, we obtain

∇Ku
L2(BR\Γ)

≤ ∇vnear L2(BR\Γ) + ∇vfar L2(BR\Γ)

1 + 1/δ ηu H1(Ω) +
1

δR
u L2(B(1+δ/4)R∩Ω) +

1

δR
Ku

L2(B(1+δ/4)R\Γ)
,

which finishes the proof.

Theorem 5.5.6. Assume that Cell > 1/4 in (5.1.2). Let ε ∈ (0, 1) and R ∈ (0, 2 diam(Ω))
be such that h

R < ε
32 , and let BR and B(1+ε)R be two concentric boxes. Assume that the data

is localized away from B(1+ε)R, i.e., (supp f ∪ suppϕ0 ∪ supp(1/2−K)u0) ∩ B(1+ε)R = ∅.
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Then, there exists a constant C depending only on Ω, d, and the γ-shape regularity of the
quasi-uniform triangulation T , such that for the solution (uh, ϕh) of (5.3.6) we have

∇uh L2(BR∩Ω) + ∇V ϕh
L2(BR)

+ ∇Kuh
L2(BR\Γ)

≤ C
R

(εR)2
(uh, V ϕh,Kuh)

h,(1+ε)R
,

(5.5.38)

where the norm on the right-hand side is defined in (5.5.2).

Proof of Theorem 5.5.6. Once again, we write (u, ϕ) for the Galerkin solution (uh, ϕh).
The assumption on the support of the data implies the local orthogonality

ajn(u, ϕ;ψh, ζh) = 0 ∀(ψh, ζh) ∈ S1,1(T )× S0,0(K) with suppψh, supp ζh ⊂ B(1+ε)R.

(5.5.39)

Let η ∈ C∞
0 (Rd) be a cut-off function with supp η ⊆ B(1+δ/2)R, η ≡ 1 on B(1+δ/4)R,

0 ≤ η ≤ 1, and Djη
L∞(B(1+δ)R)

1
(δR)j

for j = 1, 2. Here, 0 < δ ≤ ε is given such that

h
R ≤ δ

16 . We note that the condition η ≡ 1 on B(1+δ/4)R is additionally imposed in order
to satisfy estimate (5.5.37), as the localization of the double-layer operator is additionally
needed in comparison with the other couplings.
Step 1: We provide a localized ellipticity estimate, i.e., we prove

∇(ηu) 2
L2(Ω) + ∇(ηV ϕ)

2

L2(Rd)
+ ∇Ku

2

L2(BR\Γ)
ajn(u, ϕ; η

2u, η2ϕ) + terms in weaker norms.

(See (5.5.44) for the precise form). We start with (5.5.37) to obtain

∇(ηu) 2
L2(Ω) + ∇(ηV ϕ)

2

L2(Rd)
+ ∇Ku

2

L2(BR\Γ)
(1 + 1/δ) ∇(ηu) 2

L2(Ω) + ∇(ηV ϕ)
2

L2(Rd)

+
(1 + 1/δ)

(δR)2
u 2

L2(B(1+δ)R∩Ω)

+
1

(δR)2
Ku

2

L2(B(1+δ)R\Γ)
.

(5.5.40)

The last two terms are already in weaker norms, and for the first two terms, we apply
(5.5.9). Since we assumed Cell > 1/4 for unique solvability, we choose a ρ > 0 such that
1/4 < ρ/2 < Cell and set Cρ := min{1− 1

2ρ , Cell − ρ
2} > 0. Then, (5.5.9) implies

Cρ ∇(ηu) 2
L2(Ω) + Cρ ∇(ηV ϕ)

2

L2(Rd)
≤ Cell ∇(ηu) 2

L2(Ω) + ∇(ηV ϕ)
2

L2(Rd)

− ∇(ηV ϕ),∇(ηu)
L2(Ω)

− ∇V ϕ,∇(η2Ku)
L2(Rd\Γ)

+ ∇V ϕ,∇(η2Ku)
L2(Rd\Γ)

. (5.5.41)

The first three terms can be expanded as in Theorem 5.5.3, where (5.5.10) leads to

∇(ηV ϕ),∇(ηu)
L2(Ω)

= ∇V ϕ,∇(η2u)
L2(Ω)

+ l.o.t., (5.5.42)
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where the omitted terms (cf. (5.5.10))

l.o.t. = (∇η)V ϕ,∇(ηu) L2(Ω) − ∇V ϕ, η(∇η)u L2(Ω)

can be estimated in weaker norms (i.e., V ϕ L2(B(1+δ/2)R∩Ω), u L2(B(1+δ/2)R∩Ω)) or lead to

terms that are absorbed in the left-hand side as in the proof of Theorem 5.5.3 (see (5.5.15),
(5.5.16)). Equations (5.5.32) and (5.5.11) give

∇V ϕ,∇(η2u)
L2(Ω)

+ ∇V ϕ,∇(η2Ku)
L2(Rd\Γ)

= (1/2 +K)u, η2ϕ
L2(Γ)

. (5.5.43)

Therefore, we only have to estimate the last term in (5.5.41). We write in the same way
as in (5.5.42)

∇V ϕ,∇(η2Ku)
L2(Rd\Γ)

= ∇(η2V ϕ),∇Ku
L2(Rd\Γ)

+ l.o.t.,

where, again, the omitted terms

l.o.t. = 2 (∇(ηV ϕ), (∇η)Ku L2(Rd\Γ) − 2 (∇η)V ϕ,∇(ηKu) L2(Rd\Γ)

can be estimated in weaker norms (i.e., by Ku L2(B(1+δ/2)R\Γ) and V ϕ L2(B(1+δ/2)R
) or

absorbed in the left-hand side. Integration by parts on Rd\Ω and Ω together with ΔKu = 0
and [γ1Ku] = 0 = [η2V ϕ] implies

∇(η2V ϕ),∇Ku
L2(Rd\Γ)

= η2V ϕ,ΔKu
L2(Rd\Γ)

= 0.

Putting everything together into (5.5.41) and in turn into (5.5.40), we obtain

∇(ηu) 2
L2(Ω) + ∇(ηV ϕ)

2

L2(Rd)
+ ∇(ηKu)

2

L2(Rd\Γ)

(1 + 1/δ) ajn(u, ϕ; η
2u, η2ϕ) +

(1 + 1/δ)

(δR)2
Ku

2

L2(B(1+δ)R\Γ)

+
(1 + 1/δ)

(δR)2
u 2

L2(B(1+δ)R∩Ω) +
(1 + 1/δ)

(δR)2
V ϕ

2

L2(B(1+δ)R)
. (5.5.44)

Step 2: We apply the local orthogonality of (u, ϕ) to piecewise polynomials and use
approximation properties.
Let IΩh : C(Ω) → S1,1(T ) be the nodal interpolation operator and IΓh the L2(Γ)-

orthogonal projection mapping onto S0,0(K). Then, the orthogonality (5.5.39) leads to

ajn(u, ϕ; η
2u, η2ϕ) = ajn(u, ϕ; η

2u− IΩh (η
2u), η2ϕ− IΓh (η

2ϕ))

= ∇u,∇(η2u− IΩh (η
2u))

L2(Ω)
+ V ϕ, η2ϕ− IΓh (η

2ϕ)
L2(Γ)

− ϕ, η2u− IΩh (η
2u)

L2(Γ)
+ (1/2−K)u, η2ϕ− IΓh (η

2ϕ)
L2(Γ)

=: T1 + T2 + T3 + T4. (5.5.45)
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The terms T1, T2 have already been estimated in the proof of Theorem 5.5.3, inequalities
(5.5.19), (5.5.20), and T4 was treated in (5.5.35) in the proof of Theorem 5.5.4.

It remains to estimate T3. With supp η2u− IΩh (η
2u) ⊂ B(1+δ/2)R due to 16h ≤ δR, we

get

|T3| = ϕ, η2u− IΩh (η
2u)

L2(Γ)
≤ ϕ L2(B(1+δ/2)R∩Γ) η2u− IΩh (η

2u)
L2(Γ)

.

Lemma 5.5.1 provides

ϕ L2(B(1+δ/2)R) h−1/2 ∇V ϕ
L2(B(1+δ)R)

.

Therefore, with (5.5.23), we obtain

ϕ, IΩh (η
2u)− η2u

L2(Γ)
h−1/2 ∇V ϕ

L2(B(1+δ)R)

h3/2

δR
∇u L2(B(1+δ)R∩Ω) +

h3/2

(δR)2
u L2(B(1+δ)R∩Ω)

h

δR
∇V ϕ

2

L2(B(1+δ)R)
+ ∇u 2

L2(B(1+δ)R∩Ω) +
1

(δR)2
u 2

L2(B(1+δ)R) .

(5.5.46)

Putting the estimates of T1, T2, T3, T4 together and using δ 1 leads to

∇u 2
L2(BR∩Ω) + ∇V ϕ

2

L2(BR)
+ ∇Ku

2

L2(BR\Γ)
h

δ2R
∇u 2

L2(B(1+δ)R∩Ω) + ∇V ϕ
2

L2(B(1+δ)R)
+ ∇Ku

2

L2(B(1+δ)R\Γ)

+
1

δ3R2
u 2

L2(B(1+δ)R∩Ω) + V ϕ
2

L2(B(1+δ)R)
+ Ku

2

L2(B(1+δ)R\Γ)
. (5.5.47)

Step 3. Reapplying (5.5.47) to the gradient terms with δ = ε
2 and suitable boxes, we get

the desired result exactly as in step 3 of the proof of Theorem 5.5.3.

5.6 Abstract setting - low dimensional approximation

In this section, we prove the existence of exponentially convergent H-matrix approximants
to the inverses of the stiffness matrices of the FEM-BEM couplings, as stated in Theo-
rem 5.4.1.

Analysing the procedure in [FMP15, FMP16, AFM20] shows structural similarities in
the derivation of H-matrix approximations based on low-dimensional spaces of functions:
A single-step approximation is obtained by using a Scott-Zhang operator on a coarse grid.
Iterating this argument is made possible by a Caccioppoli-inequality, resulting in a multi-
step approximation. The key ingredients of the argument are collected in properties (A1)–
(A3) below. We mainly follow [AFM20].
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5.6.1 From matrices to functions

We start by reformulating the matrix approximation problem as a question of approximat-
ing certain functions from low dimensional spaces.

Let X be a Hilbert space of functions. We consider variational problems of the form:
find u ∈ X such that

a(u,ψ) = f ,ψ ∀ψ ∈ X

for given a(·, ·) : X × X → R, f ∈ X . Here, the bold symbols may denote vectors, e.g.,
u = (u, ϕ) in (5.3.1) for X = H1(Ω)×H−1/2(Γ), and ·, · denotes the appropriate duality
bracket.

For fixed k, ∈ N (given by the formulation of the problem), we define L2 := L2(Ω)k ×
L2(Γ) .

Definition 5.6.1. Let XN ⊂ X be a finite dimensional subspace of dimension N that is
also a subspace XN ⊂ L2. Then the linear mapping SN : X → XN is called the discrete
solution operator if for every f ∈ X , there exists a unique function SNf ∈ XN satisfying

a(SNf ,ψ) = f ,ψ ∀ψ ∈ XN . (5.6.1)

Let {φ1, . . . ,φN} ⊆ XN be a basis of XN . We denote the Galerkin matrix A ∈ RN×N

by

A = (a(φj ,φi))
N
i,j=1 . (5.6.2)

The translation of the problem of approximating matrix blocks of A−1 to the problem of
approximating certain functions from low dimensional spaces essentially depends on the
following crucial property (A1), the existence of a local dual basis.

(A1) There exist dual functions {λ1, . . . ,λN} ⊂ L2 satisfying

φi,λj = δij , and

N

j=1

xjλj
L2

≤ Cdb(N) x 2

for all i, j ∈ {1, . . . , N} and x ∈ RN . Moreover, we require the λi to have local
support, in the sense that #{j : supp(λi)∩supp(λj) = ∅} 1 for all i ∈ {1, . . . , N}.

We denote the coordinate mappings corresponding to the basis and the dual basis by

Φ :
RN −→ XN

x −→ N
j=1 xjφj

, Λ :
RN −→ L2

x −→ N
j=1 xjλj

.

The Hilbert space transpose of Λ is denoted by ΛT . Moreover, for τ ⊂ {1, . . . , N}, we
define the sets Dj(τ) := ∪i∈τ suppλi,j , where λi,j is the j-th component of λi, and write

L2(τ) := k+
j=1 L

2(Dj(τ)).

In the following lemma, we derive a representation formula for A−1 based on three linear
operators ΛT , SN and Λ.
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Lemma 5.6.2. ([AFM20, Lem. 3.10], [AFM20, Lem. 3.11]) The restriction of ΛT to XN

is the inverse mapping Φ−1. More precisely, for all x,y ∈ RN and v ∈ XN , we have

Λx,Φy = x,y 2 , ΛTΦx = x, ΦΛTv = v.

The mappings Λ and ΛT preserve locality, i.e, for τ ⊂ {1, . . . , N} and x ∈ RN with
{i : xi = 0} ⊂ τ , we have supp(Λx) ⊂ j Dj(τ). For v ∈ L2, we have

ΛTv 2(τ)
≤ Λ v L2(τ) .

Moreover, there holds the representation formula

A−1x = ΛTSNΛx ∀x ∈ RN .

Proof. For sake of completeness, we provide the derivation of the representation formula
from [AFM20, Lem. 3.11]. Using that ΛT = Φ−1|XN

and the definition of the discrete
solution operator, we compute

AΛTSNΛx,y
2
= a(ΦΛTSNΛx,Φy) = a(SNΛx,Φy) = Λx,Φy = x,y 2

for arbitrary y ∈ RN .

This lemma is the crucial step in the proof of the following lemma.

Lemma 5.6.3. Let A be the Galerkin matrix, Λ be the coordinate mapping for the dual
basis, and SN be the discrete solution operator. Let τ × σ ⊂ {1, . . . , N} × {1, . . . , N} be an
admissible block and Wr ⊆ L2 be a finite dimensional space. Then, there exist matrices
Xτσ ∈ R|τ |×r,Yτσ ∈ R|σ|×r of rank r ≤ dimWr satisfying

A−1|τ×σ −XτσY
T
τσ 2

≤ Λ 2 sup
f∈L2:

supp(f)⊂ j Dj(σ)

infw∈Wr SNf −w L2(τ)

f L2

.

Proof. We use the representation formula from Lemma 5.6.2 to prove the asserted estimate.
With the given space Wr, we define Xτσ ∈ R|τ |×r columnwise as vectors from an orthonor-
mal basis of the space W := (ΛTWr)|τ . Then, the product XτσX

T
τσ is the orthogonal

projection onto W. Defining Yτσ := (A−1|τ×σ)
TXτσ, we can compute for all x ∈ RN with

{i : xi = 0} ⊂ σ that

(A−1|τ×σ −XτσY
T
τσ)x|σ 2(τ)

= (I−XτσX
T
τσ)(A

−1x)|σ 2(τ)
= inf

w∈W
(A−1x)|σ −w 2(τ)

Lem. 5.6.2
= inf

w∈Wr

ΛT (SNΛx−w) 2(τ)

≤ Λ inf
w∈Wr

SNΛx−w L2(τ) .

Dividing both sides by x 2, substituting f := Λx and using that the mapping Λ preserves
supports, we get the desired result.
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5.6.2 Low dimensional approximation

We present a general framework that only uses a Caccioppoli type estimate for the con-
struction of exponentially convergent low dimensional approximations.
Let M ∈ N be fixed. For R > 0 let BR := {Bi}Mi=1 be a collection of boxes, i.e.,

Bi ∈ {BR ∩ Ω, BR, BR\Γ} for all i = 1, . . . ,M , where BR denotes a box of side length
R. The choice, which of the three sets is taken for each index i, is determined by the
application and fixed.

We write B ⊂ B := {Bi}Mi=1 meaning that Bi ⊂ Bi for all i = 1, . . . ,M . For a parameter
δ > 0, we call Bδ

R := {Bδ
i }Mi=1 a collection of δ-enlarged boxes of BR, if it satisfies

Bδ
i ∈ {BR+2δ ∩ Ω, BR+2δ, BR+2δ\Γ} ∀i = 1, . . . ,M, and Bδ

R ⊃ BR,

where BR and BR+2δ are concentric boxes. Defining diam(BR) := max{diam(Bi), i =
1, . . . ,M}, we get

diam(Bδ
R) ≤ diam(BR) + 2

√
dδ. (5.6.3)

In order to simplify notation, we drop the subscript R and write B := BR in the following
abstract setting.
We use the notation H1(B) to abbreviate the product space H1(B) = M

i=1H
1(Bi), and

write v 2
H1(B) :=

M
i=1 vi

2
H1(Bi)

for the product norm.

Remark 5.6.4. For the application of the present section, we chose boxes (or suitable subsets
of those) for the sets Bi. We also mention that different constructions can be employed
as demonstrated in [AFM20], where a construction for non-uniform grids is presented and
where the metric is not the Euclidean one but one that is based on the underlying finite
element mesh.

In the following, we fix some assumptions on the collections B of interest and the norm
|||·|||B on B we derive our approximation result in. In essence, we want a norm weaker than
than the classical H1-norm that has the correct scaling (e.g., an L2-type norm).

(A2) Assumptions on the approximation norm |||·|||B: For each B, the Hilbertian norm |||·|||B is
a norm on H1(B) and such that for any δ > 0 and enlarged boxes Bδ and H > 0 there
is a discrete space VH,Bδ ⊂ H1(Bδ) of dimension dimVH,Bδ = C(diam(Bδ)/H)Md

and a linear operator QH : H1(Bδ) → VH,Bδ such that

|||v−QHv|||B ≤ CQapH( ∇v L2(Bδ) + δ−1 |||v|||Bδ)

with a constant CQap > 0 that does not depend on B,Bδ, δ, and N .

Finally, we require a Caccioppoli type estimate with respect to the norm from (A2).

(A3) Caccioppoli type estimate: For each B, δ > 0 and collection Bδ of δ-enlarged boxes
with δ ≥ CSet(N) with a fixed constant CSet(N) > 0 that may depend on N , there is
a subspace Hh(Bδ) ⊂ H1(Bδ) such that for all v ∈ Hh(Bδ) the inequality

∇v L2(B) ≤ CCac
diam(B)α−1

δα
|||v|||Bδ (5.6.4)
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holds. Here, the constants CCac > 0 and α ≥ 1 do not depend on B,Bδ, δ, and N .

We additionally assume the spaces Hh(Bδ) to be finite dimensional and nested, i.e.,
Hh(B ) ⊂ Hh(B) for B ⊂ B .

By Πh,B, we denote the orthogonal projection Πh,B : H1(B) → Hh(B) onto that space
with respect to the norm |||·|||B, which is well-defined since, by assumption, Hh(B) is closed.
Lemma 5.6.5 (single-step approximation). Let 2 diam(Ω) ≥ δ ≥ 2CSet(N) with the con-
stant CSet(N) from (A3), B be a given collections of boxes and B ⊂ Bδ/2 ⊂ Bδ be enlarged
boxes of B. Let |||·|||Bδ be a norm on H1(Bδ) such that (A2) holds for the sets B ⊂ Bδ/2. Let
v ∈ Hh(Bδ) meaning that (A3) holds for the sets Bδ/2,Bδ. Then, there exists a space W1

of dimension dimW1 ≤ Cssa
diam(Bδ)

δ

αMd
such that

inf
w∈W1

|||v−w|||B ≤ 1

2
|||v|||Bδ .

Proof. We set W1 := Πh,BQHHh(Bδ) ⊂ VH,Bδ . Since v ∈ Hh(Bδ), we obtain from (A2)
and (A3) that

|||v−Πh,BQHv|||B = |||Πh,B(v−QHv)|||B (5.6.5)

≤ |||v−QHv|||B ≤ CQapH( ∇v L2(Bδ/2) + 2δ−1 |||v|||Bδ/2)

≤ C1CQapCCac
diam(Bδ/2)α−1

δα
H |||v|||Bδ (5.6.6)

with a constant C1 depending only on Ω since α ≥ 1 and δ ≤ 2 diam(Ω). With the choice
H = δα

2C1CQapCCac diam(Bδ)α−1 , we get the asserted error bound. Since W1 ⊂ VH,Bδ and by

choice of H, we have

dimW1 ≤ C
diam(Bδ)

H

Md

≤ C 2C1CQapCCac
diam(Bδ)α

δα

Md

=: Cssa
diam(Bδ)

δ

αMd

,

which concludes the proof.

Iterating the single-step approximation on concentric boxes leads to exponential conver-
gence.

Lemma 5.6.6 (multi-step approximation). Let L ∈ N and δ ≥ 2CSet(N) with the constant
CSet(N) from (A3). Let B be a collection of boxes and BδL ⊃ B a collection of δL-enlarged
boxes. Then, there exists a space WL ⊆ Hh(BδL) such that for all v ∈ Hh(BδL) we have

inf
w∈WL

|||v−w|||B ≤ 2−L |||v|||BδL ,

and

dimWL ≤ Cdim L+
diam(B)

δ

αMd+1
.
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Proof. The assumptions on B and BδL allow for the construction of a sequence of nested
enlarged boxes B ⊆ Bδ ⊆ B2δ ⊆ . . . ⊆ BδL satisfying diam(B δ) ≤ diam(B) + C δ.

We iterate the approximation result of Lemma 5.6.5 on the sets Bδ , = L, . . . , 1. For =
L, Lemma 5.6.5 applied with the sets B(L−1)δ ⊂ BδL provides a subspace V1 ⊂ HN (BδL)

with dimV1 ≤ C diam(BδL)
δ

αMd
such that

inf
v1∈V1

|||v− v1|||B(L−1)δ ≤ 2−1 |||v|||BδL . (5.6.7)

For v1 ∈ V1, we have (v − v1) ∈ HN (B(L−1)δ), so we can use Lemma 5.6.5 again
with the sets B(L−2)δ ⊂ B(L−1)δ, and get a subspace V2 of HN (B(L−2)δ) with dimV2 ≤
C diam(B(L−1)δ)

δ
αMd

. This implies

inf
v2∈V2

inf
v1∈V1

|||(v− v1)− v2|||B(L−2)δ ≤ 2−1 inf
v1∈V1

|||v− v1|||B(L−1)δ ≤ 2−2 |||v|||BδL . (5.6.8)

Continuing this process L− 2 times leads to the subspace WL :=
L

=1

V of HN (BδL) with

dimension

dimWL ≤ C

L

=1

diam(Bδ )

δ

αMd ≤ C

L

=1

diam(B)
δ

+
αMd

≤ Cdim L+
diam(B)

δ

αMd+1
,

which finishes the proof.

5.7 Application of the abstract framework for the FEM-BEM
couplings

In this section, we specify the assumptions (A1)–(A3) for the FEM-BEM couplings.

The local dual basis

In the setting of Section 5.6.1, we have X = H1(Ω) × H−1/2(Γ). In order to suitably
represent the data f, u0, ϕ0 in (5.1.1), we understand the discrete space S1,1(T ) S1,1

0 (T )×
S1,1(K) ⊂ L2(Ω)×L2(Γ), where S1,1

0 (T ) := S1,1(T )∩H1
0 (Ω). Having identified S1,1(T ) with

S1,1
0 (T )× S1,1(K), we view the full FEM-BEM coupling problem as one as approximating

in S1,1
0 (T ) × S1,1(K) × S0,0(K). That is, we set k = 1 and = 2, and consider L2 =

L2(Ω) × L2(Γ) × L2(Γ) for all three FEM-BEM couplings. The discrete space XN =
S1,1
0 (T )×S1,1(K)×S0,0(K) ⊂ L2 has dimension N = n1+n2+m, where n1 = dim(S1,1

0 (T )),
n2 = dim(S1,1(K)) (n1 + n2 = n) and m = dim(S0,0(K)), and it remains to show (A1).

The dual functions λi are constructed by use of L2-dual bases for S1,1(T ) and S0,0(K).
[AFM20, Sec. 3.3] gives an explicit construction of a suitable dual basis {λΩ

i : i = 1, . . . , n1}
for S1,1

0 (T ). This is done elementwise in a discontinuous fashion, i.e., λΩ
i ∈ S1,0(T ) ⊂ L2(Ω),
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where each λΩ
i is non-zero only on one element of T (in the patch of the hat function ξi),

and the function on this element is given by the push-forward of a dual shape function on
the reference element. Moreover, the local stability estimate

n

j=1

xjλ
Ω
j

L2(Ω)
≤ h−d/2 x 2 (5.7.1)

holds for all x ∈ Rn, and we have suppλΩ
i ⊂ supp ξi. We note that the zero boundary

condition is irrelevant for the construction. The same can be done for the boundary degrees
of freedom, i.e., there exists a dual basis {λΓ

i : i = 1, . . . , n2} with the analogous stability
and support properties.
For the boundary degrees of freedom in S0,0(K), the dual mappings are given by µΓ

i :=
χi/ χi

2
L2(Ω), i.e., the dual basis coincides – up to scaling – with the given basis {χi : i =

1, . . . ,m} of S0,0(K). With (2.3.1a), this gives

m

j=1

yjµ
Γ
j

L2(Ω)
≤ h−(d−1)/2 y 2 (5.7.2)

for all y ∈ Rm.

Now, the dual basis is defined as λi := (λΩ
i , 0, 0) for i = 1, . . . , n1, λi+n1 := (0, λΓ

i , 0) for
i = 1, . . . , n2 and λi+n := (0, 0, µΓ

i ) for i = 1, . . . ,m, and (5.7.1), (5.7.2) together with the
analogous one for the λΓ

i show (A1).

Low dimensional approximation

The sets B, Bδ and the norm |||·|||B
We take M = 3 and choose collections B = BR := {BR ∩ Ω, BR, BR\Γ}, where BR is a

box of side length R. For ∈ N the enlarged sets Bδ then have the form

Bδ = Bδ
R := {BR+2δ ∩ Ω, BR+2δ , BR+2δ \Γ} (5.7.3)

with the concentric boxes BR+2δ of side length R+ 2δ .
For v = (u, v, w), we use the norm from (5.5.2)

|||v|||B := |||(u, v, w)|||h,R
in (A2). For the Bielak-MacCamy coupling, taking M = 2 and choosing collections BR :=
{BR∩Ω, BR} would suffice, however, in order to keep the notation short, we can use M = 3
for this coupling as well by setting the third component to zero, i.e., v = (u, v, 0).

The operator QH and (A2)
For the operator QH , we use a combination of localization and Scott-Zhang interpolation,

introduced in [SZ90b], on a coarse grid. Since the double-layer potential is discontinuous
across Γ, we need to employ a piecewise Scott-Zhang operator. Let RH be a quasi-uniform
(infinite) triangulation of Rd (into open simplices R ∈ RH) with mesh width H that
conforms to Ω, i.e., every R ∈ RH satisfies either R ⊂ Ω or R ⊂ Ωext and the restrictions
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RH |Ω and RH |Ωext are γ-shape regular, regular triangulations of Ω and Ωext of mesh size
H, respectively.
With the Scott-Zhang projections I intH , IextH for the grids RH |Ω and RH |Ωc , we define

the operator IpwH : H1(Rd \ Γ) → S1,1
pw (RH) := {v : v|Ω ∈ S1,1(RH |Ω) and v|Ωext ∈

S1,1(RH |Ωext)} in a piecewise fashion as Eq. (2.4.12).
Let η ∈ C∞

0 (BR+2δ) be a cut-off function satisfying supp η ⊂ BR+δ, η ≡ 1 on BR and
∇η L∞(Rd)

1
δ . We define the operator

QHv := (I intH (ηv1), IH(ηv2), I
pw
H (ηv3)), (5.7.4)

where IH denotes the classical Scott-Zhang operator for the mesh RH . We have

|||v −QHv|||2B = v1 − I intH (ηv1)
2

h,R,Ω
+ v2 − IH(ηv2)

2
h,R + v3 − IpwH (ηv3)

2

h,R,Γc .

Each term on the right-hand side can be estimated with the same arguments. We only
work out the details for the second component. Assuming h ≤ H, and using approximation
properties and stability of the Scott-Zhang projection, we get

v2 − IH(ηv2)
2
h,R = ηv2 − IH(ηv2)

2
h,R = h2 ∇(ηv2 − IH(ηv2))

2
L2(BR) + ηv2 − IH(ηv2)

2
L2(BR)

(h2 +H2) ∇(ηv2) L2(Rd) H2 ∇v2
2
L2(BR+2δ)

+ δ−1 v2
2
L2(BR+2δ)

,

which shows (A2) for the discrete space VH,Bδ = S1,1(RH)|BR+2δ∩Ω × S1,1(RH)|BR+2δ
×

S1,1
pw (RH)|BR+2δ

of dimension dimVH,Bδ ≤ C
diam(BR+2δ)

H

Md
.

The Caccioppoli inequalities and (A3)
Theorem 5.5.3–Theorem 5.5.6 provide the Caccioppoli type estimates asserted in (A3)

with δ = εR/2. For the Bielak-MacCamy coupling we have α = 1 and CSet = 8h, for the
symmetric coupling α = 1 and CSet = 16h. For the Johnson-Nédélec we have to take α = 2
and CSet = 16h. For BR = {BR ∩ Ω, BR, BR\Γ}, the spaces Hh(BR) can be characterized
by

Hh(BR) :={(v, V φ,Kv) ∈ H1(BR ∩ Ω)×H1(BR)×H1(BR\Γ) : ∃v ∈ S1,1(T ), φ ∈ S0,0(K) :

v|BR∩Ω = v|BR∩Ω, V φ|BR
= V φ|BR

, Kv|BR\Γ = Kv|BR\Γ, a(v, φ;ψh, ζh) = 0

∀(ψh, ζh) ∈ S1,1(T )× S0,0(K), suppψh, ζh ⊂ BR},

where the bilinear form a(·, ·) is either asym or ajn. For the Bielak-MacCamy coupling, it
suffices to require

Hh(BR) :={(v, V φ, 0) ∈ H1(BR ∩ Ω)×H1(BR)×H1(BR\Γ) : ∃v ∈ S1,1(T ), φ ∈ S0,0(K) :

v|BR∩Ω = v|BR∩Ω, V φ|BR
= V φ|BR

, abmc(v, φ;ψh, ζh) = 0

∀(ψh, ζh) ∈ S1,1(T )× S0,0(K), suppψh, ζh ⊂ BR}.

With these definitions, the closedness and nestedness of the spaces Hh(BR) clearly holds.
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5.7.1 Proof of Theorem 5.4.1

As a consequence of the above discussions, the abstract framework of the previous sections
can be applied and it remains to put everything together.
The following theorem constructs the finite dimensional space required from Lemma 5.6.3,

from which the Galerkin solution can be approximated exponentially well. We should note
that the symmetry of the matrix Asym of the symmetric coupling also allows to use the
weaker admissibility condition from Remark 2.6.4.

Theorem 5.7.1 (low dimensional approximation for the symmetric coupling). Let (τ, σ)
be a cluster pair with bounding boxes BRτ and BRσ that satisfy for given η > 0

η dist(BRτ , BRσ) ≥ diam(BRτ ).

Then, for each L ∈ N, there exists a space WL ⊂ S1,1(T ) × S0,0(K) with dimension

dimWL ≤ ClowL
3d+1 such that for arbitrary right-hand sides f ∈ L2(Ω), v0 ∈ L2(Γ), and

w0 ∈ L2(Γ) with supp f ∪ supp v0 ∪ suppw0 ⊂ BRσ , the corresponding Galerkin solution
(uh, ϕh) of (5.3.6) satisfies

min
(u,ϕ)∈WL

uh − u L2(BRτ∩Ω) + ϕh − ϕ L2(BRτ∩Γ) ≤ Cboxh
−22−L f L2(Ω) + v0 L2(Γ) + w0 L2(Γ) .

The constants Clow, Cbox depend only on Ω, d, η, and the γ-shape regularity of the quasi-
uniform triangulation T and K.

Proof. For given L ∈ N, we choose δ := Rτ
2ηL . Then, we have

dist(BRτ+2δL, BRσ) ≥ dist(BRτ , BRσ)− Lδ
√
d ≥

√
dRτ

1

η
− 1

2η
> 0.

With BRτ = {BRτ ∩Ω, BRτ , BRτ \Γ} and BδL
Rτ

= {BRτ+2δL ∩Ω, BRτ+2δL, BRτ+2δL\Γ} from
(5.7.3), the assumption on the support of the data therefore implies the local orthogonality

imposed in the space Hh(BδL
Rτ

). In order to define the space WL, we distinguish two cases.

Case δ > 2CSet: Then, Lemma 5.6.6 applied with the sets Bδ
Rτ

and BδL
Rτ

provides a space
WL of dimension

dimWL ≤ Cdim L− 1 +
diam(Bδ

Rτ
)

δ

3d+1
L+

√
dRτ2ηL

Rτ

3d+1
L3d+1

with the approximation properties for v = (uh, V ϕh,Kuh)

inf
w∈WL

|||v−w|||Bδ
Rτ

≤ 2−(L−1) |||v|||BδL
Rτ

. (5.7.5)

Therefore, it remains to estimate the norm |||·|||B from above and below.

With h 1, the mapping properties of V and K from (5.2.5), and the trace inequality
we can estimate

(uh, V ϕh,Kuh) BδL
Rτ

uh H1(Ω) + V ϕh
H1(B(1+1/(2η))Rτ )

+ Kuh
H1(B(1+1/(2η))Rτ \Γ)

uh H1(Ω) + ϕh H−1/2(Γ) . (5.7.6)
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The stabilized form

asym(u, ϕ;ψ, ζ) := asym(u, ϕ;ψ, ζ) + 1, V ϕ+ (
1

2
−K)u

L2(Γ)

1, V ζ + (
1

2
−K)ψ

L2(Γ)

,

is elliptic, cf. [AFF+13]. Moreover, [AFF+13, Thm. 18] prove that the Galerkin solution also
solves asym(uh, ϕh;ψ, ζ) = gsym(ψ, ζ)+ 1, w0 L2(Γ) 1, (12 −K)ψ + V ζ

L2(Γ)
. Therefore, we

have

ϕh
2
H−1/2(Γ) + uh

2
H1(Ω) asym(uh, ϕh;uh, ϕh) = f, uh L2(Ω) + v0, uh L2(Γ) + w0, ϕh L2(Γ)

+ 1, (1/2−K)uh + V ϕh L2(Γ) 1, w0 L2(Γ) .

(5.7.7)

The stabilization term can be estimated with the mapping properties of V and K from
(5.2.6) and the trace inequality by

1, (1/2−K)uh + V ϕh L2(Γ) 1, w0 L2(Γ) (1/2−K)uh L2(Γ) + V ϕh L2(Γ) w0 L2(Γ)

w0 L2(Γ) uh H1(Ω) + ϕh H−1/2(Γ) .

Inserting this in (5.7.7), using the trace inequality and an inverse estimate we further
estimate

ϕh
2
H−1/2(Γ) + uh

2
H1(Ω) f L2(Ω) + v0 H−1/2(Γ) uh H1(Ω)

+ w0 L2(Γ) ϕh L2(Γ) + uh H1(Ω) + ϕh H−1/2(Γ)

≤ f L2(Ω) + v0 H−1/2(Γ) uh H1(Ω)

+ h−1/2 w0 L2(Γ) uh H1(Ω) + ϕh H−1/2(Γ) .

With Young’s inequality, we get

ϕh
2
H−1/2(Γ) + uh

2
H1(Ω) ≤ f L2(Ω) + v0 H−1/2(Γ) + h−1/2 w0 L2(Γ)

2
+

1

4
uh

2
H1(Ω)

+ 2h−1 w0
2
L2(Γ) +

1

8
uh H1(Ω) + ϕh H−1/2(Γ)

2

≤ f L2(Ω) + v0 H−1/2(Γ) + h−1/2 w0 L2(Γ)

2

+
1

2
ϕh

2
H−1/2(Γ) + uh

2
H1(Ω) ,

which results in

ϕh H−1/2(Γ) + uh H1(Ω) f L2(Ω) + v0 L2(Γ) + h−1/2 w0 L2(Γ) .

Inserting this in (5.7.6), we obtain the upper bound

(uh, V ϕh,Kuh) BδL
Rτ

f L2(Ω) + v0 L2(Γ) + h−1/2 w0 L2(Γ) . (5.7.8)
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5 H-Matrix approximations to inverses for FEM-BEM couplings

The jump conditions of the single-layer potential and Eq. (5.5.5) provide for arbitrary
ϕ ∈ S0,0(K)

ϕh − ϕ L2(BRτ∩Γ) = [γ1V ϕh]− [γ1V ϕ]
L2(BRτ∩Γ)

h−1/2 ∇(V ϕh − V ϕ)
L2(BRτ+δ)

h−3/2 V ϕh − V ϕ
h,Rτ+2δ

.

(5.7.9)

For arbitrary u ∈ S1,1(T ), with h 1, we can write

uh − u L2(BRτ∩Ω) h−3/2 |||uh − u|||h,R+2δ . (5.7.10)

Combination of (5.7.9) and (5.7.10) gives us

inf
(u,ϕ)∈WL

uh − u L2(BRτ∩Ω) + ϕh − ϕ L2(BRτ∩Γ) h−3/2 inf
w∈WL

(uh, V ϕh,Kuh)−w
Bδ
Rτ

Finally, we define WL := {(u, [γ1v]) : (u, v, w) ∈ WL}. Then, the dimension of WL is

bounded by WL ≤ CL3d+1, and the error estimate follows from (5.7.5) since

inf
(u,ϕ)∈WL

uh − u L2(BRτ∩Ω) + ϕh − ϕ L2(BRτ∩Γ) h−3/2 inf
w∈WL

(uh, V ϕh,Kuh)−w
Bδ
Rτ

h−3/22−L (uh, V ϕh,Kuh) BδL
Rτ

.

Applying estimate (5.7.8) finishes the proof for the case δ ≥ 2Cset.

Case δ ≤ 2Cset = 32h: Here, we use the space WL := S1,1(T )|BRτ
×S0,0(K)|BRτ

. Since

(uh, ϕh)|BRτ
∈ WL the error estimate holds trivially. For the dimension of WL, we obtain

dimWL ≤ C
diam(BRτ )

h

2d

≤ C
32

√
dRτ

δ

2d

≤ C 2Cset

√
d2ηL

2d
L2d,

which finishes the proof.

Theorem 5.7.2 (low dimensional approximation for the Bielak-MacCamy coupling). Let
(τ, σ) be a cluster pair with bounding boxes BRτ and BRσ that satisfy for given η > 0

η dist(BRτ , BRσ) ≥ diam(BRτ ).

Then, for each L ∈ N, there exists a space WL ⊂ S1,1(T ) × S0,0(K) with dimension

dimWL ≤ ClowL
2d+1 such that for arbitrary right-hand sides f ∈ L2(Ω), ϕ0 ∈ L2(Γ), and

u0 ∈ L2(Γ) with supp f ∪ suppϕ0 ∪ suppu0 ⊂ BRσ , the corresponding Galerkin solution
(uh, ϕh) of (5.3.3) satisfies

min
(u,ϕ)∈WL

uh − u L2(BRτ∩Ω) + ϕh − ϕ L2(BRτ∩Γ) ≤ Cboxh
−22−L f L2(Ω) + ϕ0 L2(Γ) + u0 L2(Γ) .

The constants Clow, Cbox depend only on Ω, d, η, and the γ-shape regularity of the quasi-
uniform triangulation T and K.
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5 H-Matrix approximations to inverses for FEM-BEM couplings

Proof. The proof is essentially identical to the proof of Theorem 5.7.1. We stress that the
bound of the dimension dimWL ≤ ClowL

2d+1 is better, since no approximation for the
double-layer potential is needed, i.e., we can choose M = 2 in the abstract setting.

Theorem 5.7.3 (low dimensional approximation for the Johnson-Nédélec coupling). Let
(τ, σ) be a cluster pair with bounding boxes BRτ and BRσ that satisfy for given η > 0

η dist(BRτ , BRσ) ≥ diam(BRτ ).

Then, for each L ∈ N, there exists a space WL ⊂ S1,1(T ) × S0,0(K) with dimension

dimWL ≤ ClowL
6d+1, such that for arbitrary right-hand sides f ∈ L2(Ω), ϕ0 ∈ L2(Γ), and

w0 ∈ L2(Γ) with supp f ∪ suppϕ0 ∪ suppw0 ⊂ BRσ , the corresponding Galerkin solution
(uh, ϕh) of (5.3.9) satisfies

min
(u,ϕ)∈WL

uh − u L2(BRτ∩Ω) + ϕh − ϕ L2(BRτ∩Γ) ≤ Cboxh
−22−L f L2(Ω) + ϕ0 L2(Γ) + w0 L2(Γ) .

The constants Clow, Cbox depend only on Ω, d, η, and the γ-shape regularity of the quasi-
uniform triangulation T and K.

Proof. The proof is essentially identical to the proof of Theorem 5.7.1. We stress that the
bound of the dimension dimWL ≤ ClowL

6d+1 is worse than for the other couplings, since
in the abstract setting, we have to choose M = 3 and α = 2, and the bound follows from
Lemma 5.6.6.

Finally, we can prove the existence of H-Matrix approximants to the inverse FEM-BEM
stiffness matrix.

Proof of Theorem 5.4.1. We start with the symmetric coupling. As H matrices are low
rank only on admissible blocks, we set BH|τ×σ = A−1

sym|τ×σ for non-admissible cluster pairs
and consider an arbitrary admissible cluster pair (τ, σ) in the following.

With a given rank bound r, we take L := (r/Clow)
1/(3d+1) . With this choice, we apply

Theorem 5.7.1, which provides a space WL ⊂ S1,1(T ) × S0,0(K) and use this space in

Lemma 5.6.3, which produces matrices Xτσ,Yτσ of maximal rank dimWL, which is by
choice of L bounded by

dimWL = ClowL
3d+1 ≤ r.

Theorem 5.7.1 can be rewritten in terms of the discrete solution operator of the framework
of Section 5.6.1. Let f = (f, v0, w0) ∈ L2 be arbitrary with supp(f) ⊂ j Dj(σ). Then,

the locality of the dual functions implies supp f∪supp v0∪suppw0 ⊂ BRσ , and we obtain

inf
w∈WL

SNf −w L2(τ) ≤ inf
(u,ϕ)∈WL

uh − u L2(BRτ∩Ω) + ϕh − ϕ L2(BRτ∩Γ)

h−22−L f L2(Ω) + v0 L2(Γ) + w0 L2(Γ) h−22−L f L2 .
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5 H-Matrix approximations to inverses for FEM-BEM couplings

DefiningBH|τ×σ := XτσY
T
τσ, the estimates (2.6.5) and Λ h−d/2 together with Lemma 5.6.3

then give the error bound

A−1
sym −BH 2

≤ Csp depth(TI)max{ A−1 −BH|τ×σ 2
: (τ, σ) ∈ P}

≤ Csp depth(TI) Λ 2 max
(τ,σ)∈Pfar

sup
f∈L2:

supp(f)⊂ j Dj(σ)

inf
w∈WL

SNf −w L2(τ)

f L2

Csp depth(TI)h−(d+2)2−L

≤ CapxCsp depth(TI)h−(d+2) exp(−br1/(3d+1)).

This finishes the proof for the symmetric coupling.
The approximations to A−1

bmc and A−1
jn are constructed in exactly the same fashion. The

different exponentials appear due to the different dimensions of the low-dimensional space
WL in Theorem 5.7.2 and Theorem 5.7.3.

5.8 Numerical results

In this section, we provide a numerical example that supports the theoretical results from
Theorem 5.4.1, i.e, we compute an exponentially convergent H-matrix approximant to an
inverse FEM-BEM coupling matrix.
If one is only interested in solving a linear system with one (or few) different right-hand

sides, rather than computing the inverse – and maybe even its low-rank approximation – it
is more beneficial to use an iterative solver. The H-matrix approximability of the inverse
naturally allows for black-box preconditioning of the linear system. [Beb07] constructed
LU -decompositions in the H-matrix format for FEM matrices by approximating certain
Schur-complements under the assumption that the inverse can be approximated with arbi-
trary accuracy. Theorem 5.4.1 provides such an approximation result and the techniques
of [Beb07, FMP15, FMP16, FMP17] can also be employed to prove the existence of H-LU-
decompositions for the whole FEM-BEM matrices for each couplings.
Here, we additionally present a different, computationally more efficient approach by

introducing a black-box block diagonal preconditioner for the FEM-BEM coupling matrices.
We choose the 3d-unit cube Ω = (0, 1)3 as our geometry, and we set C = I. In the fol-

lowing, we only consider the Johnson-Nédélec coupling, the other couplings can be treated
in exactly the same way.

In order to guarantee positive definiteness, we study the stabilized system (see [AFF+13,
Thm. 15] for the assertion of positive definiteness)

A −MT

1
2M−K V

+ ssT
x
φ

=
f
g

, (5.8.1)

where the stabilization s ∈ RN+M is given by si = 1, (1/2−K)ξi L2(Γ) for i ∈ {1, . . . , N}
and si = 1, V χi L2(Γ) for i ∈ {N + 1, . . . ,M}.

98



5 H-Matrix approximations to inverses for FEM-BEM couplings

We stress that [AFF+13] show that solving the stabilized (elliptic) system is equivalent
to solving the non stabilized system (with a modified right-hand side). By Ast := A+bbT ,
we denote the stabilization of A, where b contains the degrees of freedom of s correspond-
ing to the FEM part.

All computations are made using the C-library HLiB, [BG99], where we employed a ge-
ometric clustering algorithm with admissibility parameter η = 2 and a leaf-size of 25.

5.8.1 Approximation to the inverse matrix

The H-matrices are computed by using a very accurate blockwise low-rank approximation
to

B :=
A −MT

1
2M−K V

+ ssT . (5.8.2)

Then, using H-matrix arithmetics and blockwise projection to rank r, the H-matrix inverse
is computed with a blockwise algorithm using H-arithmetics from [Gra01]. In order to not
compute the full inverse, we use the upper bound

B−1 −BH 2
≤ B−1

2
I−BBH 2

for the error.
We also compute a second approximate inverse by use of the H-LU decomposition,

which can be computed using a blockwise algorithm from [Lin04, Beb05]. Hereby, we
use I−B(LHUH)−1

2
to measure the error without computing the inverse of B.

Figure 5.8.1 shows convergence of the upper bounds of the error and the growth of the
storage requirements with respect to the block-rank r for two different problem sizes. We
observe exponential convergence and linear growth in storage for the approximate inverse
using H-arithmetics and the approximate inverse using the H-LU decomposition, where the
H-LU decomposition performs significantly better. The observed exponential convergence
is even better than the asserted bound from Theorem 5.4.1.

5.8.2 Block diagonal preconditioning

Instead of building an H-LU-decomposition of the whole FEM-BEM matrix, it is signifi-
cantly cheaper to use a block-diagonal preconditioner consisting of H-LU-decompositions
for the FEM and the BEM part. The efficiency of block-diagonal preconditioners for the
FEM-BEM couplings has been observed in [MS98, FFPS17b].

In the following, we consider block diagonal preconditioners of the form

P =
PA 0
0 PV

,

where PA is a good preconditioner for the FEM-block Ast and PV is a good preconditioner
of the BEM-block V.
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5 H-Matrix approximations to inverses for FEM-BEM couplings

Figure 5.8.1: H-matrix approximation to inverse FEM-BEM matrix; left: error vs. block
rank r; right: memory requirement vs. block rank r; top: N = 6959 (FEM-
dofs), M = 3888 (BEM-dofs); bottom: N = 10648, M = 5292.

The main result of [FFPS17b] is that, provided the preconditioners PA and PV fulfill
the spectral equivalences

cAx
TPAx ≤ xTAstx ≤ CAx

TPAx (5.8.3)

cV x
TPV x ≤ xTVx ≤ CV x

TPV x, (5.8.4)

then, P is a good preconditioner for the full FEM-BEM system. More precisely, the condi-
tion number P−1B (with B from of (5.8.2)) in the spectral norm can be uniformly bounded
by

κ2(P
−1B) ≤ C

max{CA, CV }
min{cA, cV } ,

where the constant C only depends on the coefficient in the transmission problem. As
a consequence, one expects that the number of GMRES iterations needed to reduce the
residual by a factor remains bounded independent of the matrix size.
Therefore, we need to provide the preconditioners PA,PV and prove the spectral equiv-

alences (5.8.3). In the following, we choose hierarchical LU -decompositions as black-box
preconditioners, i.e.,

PA := LA
HU

A
H, PV := LV

HU
V
H,
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whereAst ≈ LA
HU

A
H andV ≈ LV

HU
V
H. [FMP15, FMP16] prove that such LU -decompositions

of arbitrary accuracy exist for the FEM and the BEM part and the errors, denoted by εA
and εV , converge exponentially in the block-rank of the H-matrices.

With PA −Ast
2
≤ εA Ast

2
, we estimate

xTPAx− xTAstx ≤ x 2
2 PA −Ast

2
≤ εA x 2

2 Ast
2
≤ C1εAh

−dxTAstx, (5.8.5)

where the last step follows from the scaling of the basis of the FEM part and the positive
definiteness of Ast. In the same way, for PV it follows that

xTPV x− xTVx ≤ x 2
2 PV −V 2 ≤ εV x 2

2 V 2 ≤ C2εV h
−d+1xTVx. (5.8.6)

Choosing the rank of the H-LU -decomposition large enough, such that, e.g., C1εAh
−d = 1

2
as well as C2εV h

−d+1 = 1
2 , then CA = CV = 2 and cA = cV = 2

3 and the condition number
of the preconditioned system is bounded by κ2(P

−1B) ≤ 3C.

Finally, we present a numerical simulation that underlines the usefulness of block-diagonal
H-LU -preconditioners.

Here, the H-LU decompositions are computed with a recursive algorithm proposed in
[Beb05].
The following table provides iteration numbers and computation times for the iterative

solution of the system without and with H-LU -block diagonal preconditioner using GM-
RES. Here, for the stopping criterion a bound of 10−3 for the relative residual is chosen,
and the maximal rank of the H-LU decomposition is taken to be r = 1.

h FEM BEM Iterations Iterations Time solve Time solve Time
DOF DOF (without P) (with P) (without P) (with P) assembly P

2−3 729 768 679 3 3.7 0.03 2.6

2−4 4913 3072 3565 4 315 0.9 12.2

2−5 35937 12288 11979 5 35254 30 51.9

Table 5.8.1: Iteration numbers and computation times (in seconds) for the solution with
and without preconditioner with block rank r = 1.

As expected, the iteration numbers of the preconditioned system is much lower than
those of the unpreconditioned system and grow very slowly. The computational cost for
the preconditioner is theoretically of order O(r3N log3N). With the choice r = 1, we
obtain a cheap but efficient preconditioner for the FEM-BEM coupling system.
Table 2 provides the same computations for the case r = 10.

h FEM BEM Iterations Iterations Time solve Time solve Time
DOF DOF (without P) (with P) (without P) (with P) assembly P

2−3 729 768 679 2 3.7 0.02 5.8

2−4 4913 3072 3565 2 315 0.48 24.6

2−5 35937 12288 11979 2 35254 15.7 243.7
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Table 5.8.2: Iteration numbers and computation times (in seconds) for the solution with
and without preconditioner with block rank r = 10.

A higher choice of rank obviously increases the computational time for the assembly of
the preconditioner, but leads to lower iteration numbers and faster solution times.
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6 H-matrix approximability of inverses of
FEM matrices for the time-harmonic
Maxwell equations

The Maxwell system consists of four equations describing the behaviour of the electro-
magnetic fields and was first formulated completely by James Clark Maxwell (1831–1879).
In this chapter, we start with formulating Maxwell’s equations in integral and differential
forms. Then, assuming periodicity of the behavior of the electric and magnetic fields with
respect to time, we transform the system of first order partial differential equations into a
second order partial differential equation to make it easier to solve.

Since the discovery of Nédélec’s edge elements (and their higher-order generalizations)
finite element methods have become an important discretization technique for these equa-
tions with an established convergence theory, [Mon03, Hip02]. While the resulting linear
system is sparse, a direct solver cannot achieve linear complexity as one has to expect al-
ready for the case of quasi-uniform meshes with problem size N a complexity O(N4/3) for
the memory requirement and O(N2) for the solution time of a multifrontal solver, [Liu92].
Iterative solvers such as multigrid or preconditioned Schwarz methods can lead to opti-
mal (or near optimal) complexity for the time-harmonic Maxwell equations, at least in the
low-frequency regime, [Hip99, AFW00, GP03].
In this chapter, we investigate whether the inverse of the stiffness matrices arising from

the FEM discretization of the time-harmonic Maxwell equations can be represented in
the H-matrix format. For its proof, we present a local discrete Helmholtz decomposi-
tion and prove the stability and approximation properties of this decomposition. More-
over, we present two types of Caccioppoli inequalities. The first Caccioppoli inequality
(Lemma 6.3.16) controls the H(curl)-norm by the L2-norm. Since this Caccioppoli in-
equality is insufficient for approximation purposes, applying a local discrete Helmholtz-type
decomposition to the discrete solution allows us to control the gradient part, up to a small
perturbation, in H1.

6.1 Model problem

Maxwell’s equations are a system of first-order partial differential equations that connect
the temporal and spatial rates of change of the electric and magnetic fields possibly in the
presence of additional source terms. Also, these equations describe how these fields are
related to charge and current. Let Ω ⊂ R3 be a simply connected polyhedral domain with
boundary Γ := ∂Ω and S be a connected smooth surface with boundary ∂S in the interior
of Ω where the electromagnetic waves propagate.
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6.1.1 The fundamental equations

Let E [V/m] denote the electric field intensity, H [A/m] the magnetic field intensity,
D [As/m2] the electric displacement field (electric flux) and B [V s/m2] = Tesla magnetic
flux density (magnetic flux). Also, we denote the current density function by G [A/m2] and
the charge density by ρ [As/m3]. We define n as the unit outward normal vector on Γ and
τ as the unit tangential vector on ∂S.

In Maxwell’s equations, two kinds of electric fields can be observed: the electrostatic
field produced by an electric charge and the induced electric field generated by a magnetic
field. The first one is described by Gauss law and the other one by Faraday’s law.

Gauss law for electric fields

This equation describes how electric charges produce an electric field and the electric flux
created by this field passing through Ω is proportional to the electric charges inside Ω. The
integral form is generally written as:

Γ
D · nds =

Ω
ρ dx. (6.1.1)

Faraday’s induction law

This equation is the first one that connects electric and magnetic fields. It describes that
a changing magnetic flux through the surface S induces a voltage in the boundary of this
surface and this voltage produces an electric field. This equation has following the form

S

∂B
∂t

· n ds+
∂S

E · τ d = 0. (6.1.2)

This equation implies that the electric field is conservative in the absence of a magnetic
field or when the magnetic field is constant with respect to time.

Gauss law for magnetic fields

This equation describes the total magnetic flux passing through Ω is zero, i.e.,

Γ
B · n ds = 0. (6.1.3)

Ampère-Maxwell law

In the original form, this law tells us the integral of the magnetic field along a closed path
is proportional to the total current thorough the enclosed surface. i.e.,

∂S
H · τ d =

S
G · n ds. (6.1.4)
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Then, Maxwell generalized this result by adding another source term, i.e., a changing
electric displacement. Presence of this term allowed Maxwell to develop the theory of
electromagnetism. The integral form of this equation is written as

∂S
H · τ d =

S

∂D
∂t

· n ds+
S
G · nds. (6.1.5)

Applying Gauss’ and Stokes’ theorems to equations (6.1.1)-(6.1.3) and (6.1.5) gives us
the Maxwell’s equations in the following differential form

∇ · B = 0, (6.1.6)

∇ · D = −ρ, (6.1.7)

∂

∂t
B +∇× E = 0, (6.1.8)

∂

∂t
D −∇×H = −G. (6.1.9)

Taking derivatives of Eq. (6.1.7) w.r.t. t and the divergence of (6.1.9) give rise to the
following equation of continuity

∇ · G +
∂ρ

∂t
= 0. (6.1.10)

Material properties

The electric and magnetic field intensities and their fluxes are connected thorough the
following laws

D = εE , (6.1.11)

B = µH, (6.1.12)

where the tensor ε [As/V m] is called the electric permittivity and the tensor µ [V s/Am] is
the magnetic permeability. The above equations are experimentally derived and called the
material laws. Also, they depend on the properties of the material filling the domain.

The electric field in conducting media induces a current which is described by Ohm’s
Law

G = Ge + σE , (6.1.13)

where Ge is the external current density, σ [As] is the electric conductivity, and G is the total
current density. Generally, ε, µ and σ depend on space, time or even the electromagnetic
field. Homogeneous isotropic materials can be characterized by a positive dielectric constant
ε > 0, a positive permeability constant µ > 0, and a non-negative electric conductivity
constant σ ≥ 0. We will only consider homogeneous isotropic materials in this thesis.
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6.1.2 Boundary conditions

A perfect electric conductor is a region with σ → ∞. Then according to Ohm’s law in this
region we have E → 0. If Ω is surrounded by such a perfectly conducting region, we have
the following perfectly conducting boundary condition for E

n× E = 0 on Γ. (6.1.14)

For a perfect magnetic conductor, i.e., a region with high permeability, we have H → 0
and if this conductor is situated around Ω, we get the following boundary condition

n×H = 0 on Γ. (6.1.15)

6.1.3 Time-Harmonic Fields

Substituting the constitutive equations (6.1.11), (6.1.12) and (6.1.13) into (6.1.6)–(6.1.9)
we get

∇ · (µH) = 0 in Ω, (6.1.16a)

∇ · (εE) = ρ in Ω, (6.1.16b)

− ε
∂

∂t
+ σ E +∇×H = Ge in Ω, (6.1.16c)

µ
∂

∂t
H+∇× E = 0 in Ω, (6.1.16d)

where Ge is a known function denoting the applied current. Also, we should notice (6.1.16a)
and (6.1.16b) are automatically fulfilled by taking divergence of (6.1.16d)and (6.1.16c) and
applying (6.1.10).
We assume the behavior of the electric and magnetic fields are periodic with respect to
time, i.e.,

E(x, t) = e−iωtE(x), (6.1.17a)

H(x, t) = e−iωtH(x). (6.1.17b)

Substituting (6.1.17a) and (6.1.17b) into (6.1.16c) and (6.1.16d), we conclude

−∇×H− iωηE = J(x) in Ω, (6.1.18a)

∇×E− iωµH = 0 in Ω, (6.1.18b)

where η := ε + iσ/ω and Gc(x, t) = e−iωtJ(x). In this chapter, we consider the perfect
conducting boundary condition for E , i.e, we assume the domain is surrounded by a perfectly
bounded material. Finally, the first order system (6.1.18) can be reduced to a second order
equation

LE := ∇× (µ−1∇×E)− κE = F in Ω, (6.1.19)

where κ := ω2η and F := −iωJ . For the sake of simplicity, we assume µ = 1 in the
following. However, our arguments can directly be extended for µ > 0 as well.
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6.1.4 Discretization by edge elements

Multiplying both sides of (6.1.19) with Ψ ∈ H0(curl,Ω) and integrating by parts, we obtain
the weak formulation: Find E ∈ H0(curl,Ω) such that

a(E,Ψ) := ∇×E,∇×Ψ L2(Ω) − κ E,Ψ L2(Ω) = F,Ψ L2(Ω) ∀Ψ ∈ H0(curl,Ω).

(6.1.20)

We assume that κ is not an eigenvalue of the operator ∇×∇×, see, e.g., [Mon03, Sec. 4].
This implies in particular that κ = 0 since∇H1

0 (Ω) is contained in the kernel of the operator
∇×∇×. Then, the Fredholm alternative provides the existence of a unique solution to the
variational problem, and we have the a priori estimate

E H(curl,Ω) ≤ Cstab F L2(Ω) , (6.1.21)

for a constant Cstab that depends on Ω and κ.
Let T = {T1, . . . , TNT } be a quasi-uniform triangulation of Ω with the mesh width

h := maxTj∈T diam(Tj), where the elements Tj ∈ T are open tetrahedra. The mesh T
is assumed to be regular in the sense of Ciarlet, i.e., there are no hanging nodes. The
assumption of quasi-uniformity includes the assumption of γ-shape regularity, i.e., there
is γ > 0 such that diam(Tj) ≤ γ |Tj |1/3 for all Tj ∈ T . For the Galerkin discretization
of (6.1.20), we use Nédélec’s H(curl,Ω)-conforming elements of the first kind defined in
Section 2.2. Let Xh,0 := {Ψ1, . . . ,ΨN} be a basis of Xh,0(T ,Ω) with N := dimXh,0(T ,Ω).
Using Xh,0(T ,Ω) ⊆ H0(curl,Ω) as ansatz and test space in (6.1.20), we arrive at the
Galerkin discretization of finding Eh ∈ Xh,0(T ,Ω) such that

a(Eh,Ψh) = F,Ψh L2(Ω) ∀Ψh ∈ Xh,0(T ,Ω). (6.1.22)

Using the basis Xh,0, the Galerkin discretization (6.1.22) can be formulated as a linear
system of equations where the system matrix A ∈ CN×N is given by

Aij := a(Ψi,Ψj), Ψj , Ψi ∈ Xh,0. (6.1.23)

For unique solvability of the discrete problem (6.1.22) or, equivalently, the invertibility
of A, we recall the following Lemma 6.1.1. In that result and throughout the chapter, we
denote by

ΠL2

h : L2(Ω) → Xh(T ,Ω), (6.1.24)

the L2(Ω)-orthogonal projection onto Xh(T ,Ω).

Lemma 6.1.1. [Hip02, Thm. 5.7] There exists h0 > 0 depending on the parameters of
the continuous problem and the γ-shape regularity of T such that for h < h0, the discrete
problem (6.1.22) has a unique solution and there holds the stability estimate

Eh H(curl,Ω) ≤ Cstab ΠL2

h F
L2(Ω)

.

Here, Cstab > 0 is a constant depending solely on the γ-shape regularity of T and the
parameters of the continuous problems.
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6.2 The Main Result

The following theorem is the main result of this chapter. It states that the inverse of the
Galerkin matrix A of (6.1.23) can be approximated at an exponential rate in the block
rank by an H-matrix. The proof is given in Section 6.5.

Theorem 6.2.1. Let A be the stiffness matrix given by (6.1.23) and η > 0 be a fixed
admissibility parameter. Let P be a partition of I × I based on the cluster tree TI and
the admissibility parameter η (due to the symmetry of the matrix A, the admissible cluster
pairs are allowed to be identified using the weaker admissibility condition from Remark
2.6.4). Let h < h0 with h0 defined in Lemma 6.1.1. Then, there exists an H-matrix BH
with blockwise rank r such that

A−1 −BH 2
≤ CapxCsp depth(TI)h−1e−b(r1/4/ ln r).

The constants Capx, b > 0 depend only on κ, Ω, η, the γ-shape regularity of the quasi-
uniform triangulation T . The constant Csp (defined in (2.6.3)) depends only on the parti-
tion P .

Remark 6.2.2. The low-rank structure of the far-field blocks allow for efficient storage
of H-matrices as the memory requirement to store an H-matrix is O(Csp depth(TI)rN).
Standard clustering methods such as the geometric clustering (see, e.g., [Hac15, Sec. 5.4.2])
lead to balanced cluster trees, i.e., depth(TI) ∼ log(N) and a uniformly (in the mesh size
h) bounded sparsity constant. In total this gives a storage complexity of O(rN log(N)) for
the matrix BH rather than O(N2) for the fully populated inverse A−1.

6.3 Decompositions: continuous and discrete local

The Helmholtz as well as the regular decompositions play a key role in the analysis of
H(curl)-problems. In this section, we introduce four different decompositions, the classical,
continuous Helmholtz decomposition (see, e.g., [Hip02, Lem. 2.4] and [Hip15, Thm. 11] ), its
discrete counterpart (see, e.g., [GR86, Corollary 5.1] and [Mon03, Sec. 7.2.1]), the regular
decomposition (see, e.g., [Hip02, Lem. 2.4] and [Hip15, Thm. 11] ) and a localized discrete
version (Definition 6.3.10).

6.3.1 Helmholtz decomposition

The Helmholtz decomposition states that every vector field E ∈ L2(Ω) can be decomposed
into a gradiant and a divergence-free part, see e.g. [Mon03, Sec. 3.7, Sec. 4.4].

Lemma 6.3.1. (Helmholtz decomposition) For every vector field E ∈ L2(Ω), there exists
the following (unique) orthogonal decomposition

E = ∇× z+∇ϕ z ∈ H(curl,Ω), ϕ ∈ H1(Ω).

Particularly, for E ∈ H0(curl,Ω) we have the following orthogonal decomposition

E = ∇× z+∇ϕ z ∈ H0(curl,Ω), ϕ ∈ H1
0 (Ω),

such that z is a divergence free vector field.
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6.3.2 Regular decompositions

The following lemma follows from the seminal paper [CM10]. The notation follows [CM10]
in that Hs

Ω
(R3), s ∈ R, denotes the spaces of distributions in Hs(R3) that supported by

Ω and that C∞
Ω
(R3) is the space of C∞(R3)-functions supported by Ω. We introduce the

space
Hs

Ω
(curl) := {E ∈ Hs

Ω
(R3) : ∇×E ∈ Hs

Ω
(R3)}

equipped with the norm E Hs
Ω
(curl) := E Hs

Ω
(R3) + ∇×E Hs

Ω
(R3)

Remark 6.3.2. From [CM10, p. 301], for any s ∈ R, the space Hs
Ω
(R3) is naturally iso-

morphic to the dual space of H−s(Ω). Hence, for s ≥ 0, we have the alternative norm
equivalence v Hs

Ω
(R3) ∼ v

H
s
(Ω)

= v Hs(R3), where v is the zero extension of a func-

tion v defined on Ω.

Lemma 6.3.3. Let Ω be a bounded Lipschitz domain. There exist pseudodifferential opera-
tors T1 and T2, of order −1 and a pseudodifferential operator L of order −∞ on R3 with the
following properties: For each s ∈ Z they have the mapping properties T1 : H

s
Ω
(R3) → Hs+1

Ω
R3 ,

T2 : Hs
Ω
(R3) → Hs+1

Ω
R3 , and L : Hs

Ω
(R3) → C∞

Ω
R3 and for any u ∈ Hs

Ω
(curl) there

holds the representation

u = ∇T1 (u−T2 (∇× u)) +T2 (∇× u) + Lu. (6.3.1)

Proof. In [CM10, Theorem 4.6], operators T1, T2, T3, L1, L2 with the mapping properties

T1 : H
s
Ω
(R3) → Hs+1

Ω
R3 ,

T2 : H
s
Ω
(R3) → Hs+1

Ω
R3 ,

T3 : H
s
Ω
(R3) → Hs+1

Ω
R3 ,

L : Hs
Ω

R3 → C∞
Ω

R3 , = 1, 2,

are defined, and it is shown that

∇T1v +T2 (∇× v) = v − L1v, (6.3.2a)

∇×T2v +T3 (∇ · v) = v − L2v. (6.3.2b)

Taking v = u−T2 (∇× u) in (6.3.2a), we obtain

∇T1 (u−T2 (∇× u)) +T2 (∇× (u−T2 (∇× u)))

= u−T2 (∇× u)− L1 (u−T2 (∇× u)) . (6.3.3)

Since ∇× u is divergence free, we obtain from (6.3.2b) with the choice v = ∇× u

T2 (∇× (u−T2 (∇× u))) = T2 (∇× u)−T2 (∇× u− L2∇× u)

= T2 (L2 (∇× u)) =: L3u,

where, again, L3 is a smoothing operator of order −∞ mapping into C∞
Ω
(R3). Inserting

this into (6.3.3) leads to

∇T1 (u−T2 (∇× u)) +T2 (∇× u) = u− L1 (u−T2 (∇× u))− L3u.

Choosing Lu := (L1 (u−T2∇× u)) + L3u, we arrive at the representation (6.3.1).
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Corollary 6.3.4. Let Ω ⊂ R3 be a bounded Lipschitz domain. Then, for every s ≥ 0
there is a constant C (depending only on Ω and s) such that every u ∈ Hs

0(curl,Ω) can be
decomposed as u = z+∇p with z ∈ Hs+1

Ω
(R3) and p ∈ Hs+1

Ω
(R3) together with

z Hs+1

Ω
(R3) ≤ C u Hs

Ω
(curl), ∇p Hs

Ω
(R3) ≤ C u Hs

Ω
(R3), (6.3.4)

Proof. From Lemma 6.3.3 we can write u = z+∇p with

z := T2 (∇× u) + Lu, p := T1 (u−T2 (∇× u)) .

The stability estimate for z follows from the mapping properties of the operators T2 and
L. The mapping properties of T1 yield

∇p Hs(Ω) u−T2(∇× u) Hs
Ω
(R3) u Hs

Ω
(R3) + ∇× u Hs−1

Ω
(R3)

u Hs
Ω
(R3),

where the last step follows from the mapping property ∇× : Hs
Ω
(R3) → Hs−1

Ω
(R3).

In the following, we present the regular decomposition. The regular decomposition states
that every vector field in H0(curl,Ω) can be decomposed into two vector fields such that
one of them belongs to H1

0(Ω) and the other one is divergence of a function in H1
0 (Ω).

Lemma 6.3.5 (Regular decomposition). Let Ω ⊂ R3 be a bounded Lipschitz domain. Then
there is a constant C > 0 depending only on Ω such that any E ∈ H0(curl,Ω) can be written
as E = z+∇p with z ∈ H1

0(Ω) and p ∈ H1
0 (Ω) and

z H1
0(Ω) ≤ C E H0(curl,Ω), z L2(Ω) + ∇p L2(Ω) ≤ C E L2(Ω).

Proof. Regular decompositions are available in the literature, see, e.g., [Hip02, Lem. 2.4]
and [Hip15, Thm. 11]. The statement that z L2(Ω) and ∇p L2(Ω) are controlled by
E L2(Ω) is a variation of these estimates. For a proof, see [CFV20, Thm. B.1] or corol-

lary 6.3.4.

The function z of the regular decomposition provided by Lemma 6.3.5 is not necessarily
divergence-free. This can be corrected by subtracting a gradient. To that end, we introduce,
for a given open set D ⊆ Ω and a chosen η ∈ L∞(Ω) with η ≡ 1 on D the mapping
L2(Ω) → H1

0 (Ω): z → ϕz by

∇ϕz,∇v L2(Ω) = ηz,∇v L2(Ω) ∀v ∈ H1
0 (Ω). (6.3.5)

Lemma 6.3.6. The mapping L2(Ω) z → ϕz ∈ H1
0 (Ω) has the following properties:

(i) ϕz H1(Ω) ≤ C η L∞(Ω) z L2(supp η), where the constant depends only on Ω.

(ii) (z−∇ϕz,∇v)
L2(D)

= 0 for all v ∈ H1
0 (Ω).

Proof. By construction, we have ∇ϕz L2(Ω) ≤ ηz L2(Ω). The constant C in statement
(i) reflects the Poincaré constant of Ω. The property (ii) follows by construction.

Remark 6.3.7 (classical Helmholtz decomposition). Selecting D = Ω and correspondingly
η ≡ 1 yields the decomposition E = (z − ∇ϕz) + ∇(p + ϕz) with the orthogonality z −
∇ϕz,∇(p+ϕz) L2(Ω) = 0 and z−∇ϕz H(curl,Ω) E H(curl,Ω), z−∇ϕz L2(Ω) E L2(Ω),
∇(p+ ϕz) L2(Ω) E L2(Ω).
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6.3.3 Discrete and local discrete Helmholtz decompositions

We introduce the space of discrete divergence-free functions by

Z0(T ) := {zh ∈ Xh,0(T ,Ω) : zh,∇ζh L2(Ω) = 0 ∀ζh ∈ S1,1
0 (T )}.

Lemma 6.3.8. (Discrete Helmholtz decomposition) ( [GR86, Corollary 5.1] and [Mon03,
Sec. 7.2.1]) For the space Xh,0(T ,Ω), we have the following discrete Helmholtz decomposi-
tion

Xh,0(T ,Ω) = Z0(T )⊕∇S1,1
0 (T ).

Moreover, for Eh ∈ Xh,0(T ,Ω), the decomposition Eh = zh + ∇ph with zh ∈ Z0(T ),

ph ∈ S1,1
0 (T ) is stable, i.e.,

zh H0(curl,Ω) + ∇ph L2(Ω) ≤ C Eh H0(curl,Ω) .

Regular decompositions as in Lemma 6.3.5 can also be done locally for discrete functions.
To that end, we introduce the localized spaces of piecewise polynomials:

Definition 6.3.9 (Mesh-conforming region, localized spaces). For D ⊂ R3, a simply con-
nected domain, set

T (D) := {T ∈ T : |T ∩D| > 0},
D := int

T∈T (D)

T .

We call D the mesh-conforming region for D. The spaces localized to D are given by

S1,1(T , D) := {ph|D : ph ∈ S1,1
0 (T )}, (6.3.6)

Xh(T , D) := {Eh|D : Eh ∈ Xh.0(T ,Ω)}. (6.3.7)

Definition 6.3.10. (Local discrete regular decomposition) Let D ⊂ Ω be a simply con-
nected domain and D be the corresponding mesh-conforming region. We denote by Π∇

D
:

L2(D) → ∇S1,1(T , D) the L2(D)-projection onto ∇S1,1(T , D) given by

p−Π∇
D
p,∇vh L2(D)

= 0 ∀vh ∈ S1,1(T , D). (6.3.8)

Let η ∈ C∞(Ω) be a cut-off function with 0 ≤ η ≤ 1 and η ≡ 1 on D. Let Eh be such
that ηEh ∈ H0(curl,Ω) as well as Eh|D ∈ Xh(T , D). Decompose ηEh ∈ H0(curl,Ω) as
ηEh = z+∇p, where z ∈ H1

0(Ω) and p ∈ H1
0 (Ω) are given by Lemma 6.3.5.

Then, the local discrete regular decomposition is given by Eh = zh + Π∇
D
∇p on D with

zh := Eh −Π∇
D
∇p. We write ∇ph = Π∇

D
∇p for some ph ∈ S1,1(T , D).

For future reference, we note that

Π∇
D
p

L2(D)
≤ p

L2(D)
. (6.3.9)
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Remark 6.3.11. 1. The function ph ∈ S1,1(T , D) that satisfies ∇ph = Π∇
D
p, is not

unique. However, its gradient ∇ph is unique.

2. Due to the cut-off function η, the decomposition depends on Eh on supp η only, which
is quanitified in the stability assertions of Lemma 6.3.15.

3. The local regular decomposition provides for a function Eh that is a discrete function
onD two representations in view of η ≡ 1 onD, namely, Eh = (z+∇p) |

D
= zh+∇ph.

4. For Eh ∈ Xh,0(T ,Ω) the decomposition Eh = (z−∇ϕz)+∇(p+ϕz) of Remark 6.3.7

yields, upon setting ∇ph := Π∇
Ω∇(ϕz + p) ∈ ∇S1,1

0 (T ,Ω) ⊂ Xh,0(T ,Ω) and zh :=
Eh −∇ph ∈ Xh,0(T ,Ω) the decomposition Eh = zh +∇ph with

zh,∇ph L2(Ω) = 0, zh L2(Ω) + ∇ph L2(Ω) Eh L2(Ω),

zh H(curl,Ω) Eh H(curl,Ω),

which is a discrete Helmholtz decomposition as described in Lemma 6.3.8.

The following lemma formulates a local exact sequence property.

Lemma 6.3.12. Let D ⊂ R3 be an open set such that D∩Ω is a simply connected Lipschitz
domain and D and T (D) be defined according to Definition 6.3.9. Assume furthermore that

D ∩ T is simply connected for all T ∈ T (D) and that D ∩ ∂Ω is connected. (In particular,
the empty set is connected.) Then, for all vh ∈ Xh(T , D) with ∇× vh = 0 on D ∩ Ω, we
can find a ϕh ∈ S1,1(T , D) such that vh = ∇ϕh.

Proof. We recall from, e.g., [Mon03, Thm. 3.37] the following commuting diagram property:
for a simply connected Lipschitz domain ω the condition ∇ × w = 0 implies w = ∇ψ for
some ψ ∈ H1(ω); furthermore, ψ is unique up to a constant. The discrete commuting
diagram property for a tetrahedron T is: if w ∈ N1(T ) satisfies ∇ × w = 0, then there is
ψh ∈ P1(T ) with w = ∇ψh.
Introduce S1,0(T , D) := {ψh ∈ L2(D) : ψh|T ∈ P1(T ) ∀T ∈ T (D)}. The condition

∇ × vh = 0 on D ∩ Ω implies vh = ∇ϕh for some ϕh ∈ H1(D ∩ Ω). The function ϕh is
unique up to a constant, which we fix, for example, by the condition D∩Ω ϕh = 0. For
each T ∈ T (D) the condition ∇ × vh = 0 on T implies the existence of ϕh,T ∈ P1(T )
with vh = ∇ϕh,T on T . The polynomial ϕh,T is unique up to a constant, which we fix by
requiring D∩T ϕh,T = D∩T ϕh. By the uniqueness assertion we have ϕh|D∩T = ϕh,T |D∩T .
Define ϕh ∈ S1,0(T , D) elementwise by ϕh|T = ϕh,T . We note ϕh|D = ϕh. Since ϕh is

piecewise polynomial (hence smooth), ϕh∈ H1(D ∩ Ω) is continuous on D ∩ Ω. We next

show that ϕh is continuous on D. Let Vh and Eh be the sets of vertices and edges of T (D).
Since ϕh is a piecewise polynomial of degree 1, it suffices to assert continuity at the vertices
v ∈ Vh. As ϕh is continuous at vertices v ∈ D, we have to show the continuity at vertices
v ∈ D \D. Given such a vertex v , select an edge e ∈ Eh emanating from v such that its
other endpoint v satisfies v ∈ D. Let T , T ∈ T (D) share this edge e. By the continuity
of ϕh on D we conclude (ϕh|T )|e∩D = (ϕh|T )|e∩D. Since ϕh|T and ϕh|T are linear, we
conclude that (ϕh|T )|e = (ϕh|T )|e. This implies that ϕh is continuous at v. In total, we
have obtained that ϕh ∈ S1,0(T , D) is continuous at the vertices of T (D) and thus is in
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H1(D). By fixing nodal values to be zero for nodes of T that are not nodes of T (D), we

obtain an element of S1,1(T ) that coincides with ϕh on D. If D ∩ ∂Ω = ∅, then ϕh is in

fact in S1,1
0 (T ). If D ∩ ∂Ω = ∅, then the fact that vh satisfies boundary conditions and the

fact that D∩ ∂Ω is connected implies that ϕh is constant on D∩ ∂Ω. This constant can be
fixed to be zero and then all other nodal values of T can be set to zero to obtain a function
ϕh ∈ S1,1

0 (T ) with ∇ϕh = vh on D.

In order to prove the following lemmas, we need to introduce some projections and their
properties. Let D ⊂ R3 be a simply connected Lipschitz domain and D and T (D) be
defined according to Definition 6.3.9. We define the space

H(div, D) := U ∈ L2(D) : ∇ ·U ∈ L2(D) .

To define discrete subspace, let RT1(T ) := {p(x) + q(x)x : p ∈ (P1(T ))
3, q ∈ P1(T )} be

the classical lowest-order Raviart-Thomas element defined on T and introduce

Vh(T , D) := {Uh ∈ H(div, D) : Uh|T ∈ RT1(T ) ∀T ∈ T (D)}.

On D the Raviart-Thomas interpolation operator w
D
: H1(D) → Vh(T , D) is defined

element-wise byw
D
U|T := wTU, where the elemental interpolation operatorwT : H1(T ) →

RT1(T ) is characterized by the vanishing of certain moments of U−wTU, viz.,

f
(U−wTU) · νq dA = 0 ∀q ∈ P1(f), ∀f faces of T ∈ T ,

where ν is the unit normal to f and dA denotes the surface measure on f . Define the space

Dh(T , D) := {U ∈ H1(D) : ∇×U ∈ H1(T ) ∀T ∈ T (D)},

and the Nédélec interpolation operator r
D
: Dh(T , D) → Xh(T , D) elementwise by r

D
U|T :=

rTU, where the elemental interpolant rTU ∈ N1(T ) is characterized by the vanishing of
certain moments of U− rTU, viz.,

e
(U− rTU) · τ de = 0 ∀ edges e of T ∈ T ;

here τ is a unit vector parallel to the edge e. A key property of the operators r
D

and w
D

is that they commute, i.e., (see, e.g., [Mon03, (5.59)])

w
D
∇×U = ∇× r

D
U ∀ U ∈ Dh(T , D). (6.3.10)

Lemma 6.3.13. [Mon03, Thm. 5.41] Let T ∈ T . Then, for U ∈ H1(T ) with ∇ × U ∈
H1(T ) we have

U− rTU L2(T ) h |U|H1(T ) + ∇×U H1(T ) ,

∇× (U− rTU) L2(T ) h ∇×U H1(T ) .
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In the following, we show local stability and approximation properties for the local dis-
crete regular decomposition of Definition 6.3.10. This will be based on Lemma 6.3.12 with
D = BR, where BR is a box with side length R. It is an important geometric observation
that, due to the assumption that Ω is a Lipschitz polyhedron, the intersection BR ∩Ω is a
Lipschitz domain and the intersection BR∩Ωc is connected provided R is sufficiently small.
Then, the additional assumptions on D = Ω ∩ BR in Lemma 6.3.12 can be satisfied. We
formulate this as an assumption on R in terms of a number Rmax that depends on Ω:

Definition 6.3.14. Rmax > 0 is such that for any R ∈ (0, Rmax] and any box BR with
|BR ∩ Ω| > 0, the intersection BR ∩ Ω is a Lipschitz domain and BR ∩ Ωc is connected.

Lemma 6.3.15 (stability of local discrete regular decomposition). Let ε ∈ (0, 1), R ∈
(0, Rmax] be such that h

R < ε
2 , and let BR and B(1+ε)R be two concentric boxes. Define

T (BR) and BR according to Definition 6.3.9. Let η ∈ W 1,∞(Ω) be a cut-off function
with supp η ⊆ B(1+ε)R ∩ Ω, η ≡ 1 on BR, 0 ≤ η ≤ 1, and ∇η L∞(Ω) ≤ Cη

1
εR . Let

Eh ∈ H(curl, B(1+ε)R ∩ Ω) be such that ηEh ∈ H0(curl,Ω) as well as Eh ∈ Xh(T , BR).
Let ηEh = z + ∇p be the regular decomposition of ηEh given by Lemma 6.3.5 and let zh
and ∇ph be the contributions of the local discrete regular decomposition of Definition 6.3.10
with D = BR and D = BR there. Then, Eh = zh+∇ph on BR ∩Ω, and the following local
stability and approximation results hold:

∇ph L2(BR∩Ω) + zh H(curl,BR∩Ω) ≤ C ∇×Eh L2(B(1+ε)R∩Ω) +
1

εR
Eh L2(B(1+ε)R∩Ω) ,

z− zh L2(BR∩Ω) ≤ Ch z H1(B(1+ε)R∩Ω)

≤ Ch ∇×Eh L2(B(1+ε)R∩Ω) +
1

εR
Eh L2(B(1+ε)R∩Ω) ,

where the constant C > 0 depends only on Ω, the γ-shape regularity of the quasi-uniform
triangulation T , and Cη.

Proof. The proof is done in two steps. We note that the condition on the parameter ε
ensures that BR ⊆ B(1+ε)R.
Step 1: In this step we provide a proof for the stability estimate. Recalling the stability

estimate Lemma 6.3.5 and using the product rule for the curl operator, it follows that

z H1
0(Ω) + ∇p L2(Ω) ηEh H(curl,Ω)

∇×Eh L2(B(1+ε)R∩Ω) + ∇η L∞(B(1+ε)R∩Ω) Eh L2(B(1+ε)R∩Ω) + Eh L2(B(1+ε)R∩Ω)

εR 1

∇×Eh L2(B(1+ε)R∩Ω) +
1

εR
Eh L2(B(1+ε)R∩Ω) . (6.3.11)

Since ∇ph satisfies (6.3.8), we get with the aid of (6.3.11)

∇ph L2(BR∩Ω) ≤ ∇p L2(BR∩Ω) ≤ ∇p L2(Ω) ∇×Eh L2(B(1+ε)R∩Ω) +
1

εR
Eh L2(B(1+ε)R∩Ω) .

The definition of zh gives us

zh H(curl,BR∩Ω) ∇×Eh L2(B(1+ε)R∩Ω) +
1

εR
Eh L2(B(1+ε)R∩Ω) .
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The combination of above inequalities gives us the desired local stability result.
Step 2: To prove the approximation property, we first need to ascertain the existence of

ϕh ∈ S1,1(T , BR) such that zh − r
BR

z = ∇ϕh. To that end, we note that zh ∈ D(T , BR),
use the commuting diagram property (6.3.10) of r

BR
and w

BR
, and the fact that r

BR
is a

projection operator to compute on BR:

∇× (zh − r
BR

z) = ∇× zh −w
BR

∇× z = ∇× (Eh|BR
)−w

BR
∇× (Eh|BR

)

= ∇× (Eh|BR
)−∇× r

BR
(Eh|BR

) = 0.

Lemma 6.3.12 then provides the existence of ϕh ∈ S1,1(T , BR) such that zh− r
BR

z = ∇ϕh.

Since ph satisfies (6.3.8), we get from z+∇p = Eh = zh+∇ph on BR and the approximation
property of r

BR
given in Lemma 6.3.13

z− zh
2
L2(BR)

= z− r
BR

z, z− zh
L2(BR)

+ r
BR

z− zh, z− zh
L2(BR)

= z− r
BR

z, z− zh
L2(BR)

− ∇ϕh,∇(ph − p)
L2(BR)

= z− r
BR

z, z− zh
L2(BR)

z− r
BR

z
L2(BR)

z− zh L2(BR)

h z H1(B(1+ε)R∩Ω) z− zh L2(BR)
.

The combination of the above inequality and (6.3.11) implies

z− zh L2(BR∩Ω) ≤ z− zh L2(BR)
h z H1(B(1+ε)R∩Ω)

h ∇×Eh L2(B(1+ε)R∩Ω) +
1

εR
Eh L2(B(1+ε)R∩Ω) ,

which finishes the proof.

6.3.4 The Caccioppoli-type inequalities

Caccioppoli inequalities usually estimate higher order derivatives by lower order derivatives
on (slightly) enlarged regions. The following discrete Caccioppoli-type inequalities are
formulated with an h-weighted H(curl)-norm and an h-weighted H1-norm. For a box BR

of side length R > 0, we define the norms |||·|||c,h,R and |||·|||g,h,R (we note that the subscripts
c and g abbreviate ‘curl’ and ‘gradient’) as follows:

|||U|||2c,h,R :=
h2

R2
∇×U 2

L2(BR∩Ω) +
1

R2
U 2

L2(BR∩Ω) ∀U ∈ H(curl, BR ∩ Ω),

(6.3.12)

|||u|||2g,h,R :=
h2

R2
∇u 2

L2(BR∩Ω) +
1

R2
u 2

L2(BR∩Ω) ∀u ∈ H1(BR ∩ Ω). (6.3.13)

We say that Eh ∈ Xh(T , D) is discrete L-harmonic on D if a(Eh,vh) = 0 for all

vh ∈ Xh,0(T ,Ω) with suppvh ⊂ D; such a space will be formally introduced as Hc,h(D)

115



6 H-matrix approximability of inverses of FEMmatrices for the time-harmonic Maxwell equations

below. For any bounded open set B ⊂ R3, we define

Hc,h(B ∩ Ω) := {Uh ∈ H(curl, B ∩ Ω) : ∃Uh ∈ Xh,0(T ,Ω) s.t. Uh|B∩Ω = Uh|B∩Ω,

a(Uh,Ψh) = 0 ∀Ψh ∈ Xh,0(T ,Ω), suppΨh ⊂ B ∩ Ω},

and

Hg,h(B ∩ Ω) := {ph ∈ H1(B ∩ Ω) : ∃ph ∈ S1,1
0 (T ) s.t. ph|B∩Ω = ph|B∩Ω, ∇ph,∇ψh L2(B∩Ω) = 0,

∀ψh ∈ S1,1
0 (T ), suppψh ⊂ B ∩ Ω}.

The following lemma provides a discrete Caccioppoli-type estimate for functions inHc,h(B(1+ε)R∩
Ω):

Lemma 6.3.16. Let ε ∈ (0, 1) and R ∈ (0, 2 diam(Ω)) be such that h
R < ε

4 . Let BR and
B(1+ε)R be two concentric boxes and Eh ∈ Hc,h(B(1+ε)R∩Ω). Then, there exists a constant
C depending only on κ, Ω, and the γ-shape regularity of the quasi-uniform triangulation T
such that

∇×Eh L2(BR∩Ω) ≤ C
1 + ε

ε
|||Eh|||c,h,(1+ε)R.

Proof. For brevity of notation, we write rh instead of rT (Ω). Let η ∈ C∞(Ω) be a cut-off
function with supp η ⊆ B(1+ε/2)R, 0 ≤ η ≤ 1, η ≡ 1 on BR ∩ Ω, and ∇jη L∞(Ω) (εR)−j

for j ∈ {0, 1, 2}. We notice supp(η2Eh) ⊆ B(1+ε/2)R ∩ Ω and since 4h ≤ εR we have

supp rh(η
2Eh) ⊆ B(1+ε)R ∩ Ω. The proof is done in two steps.

Step 1: Using the vector identity

η2(∇×Eh) · (∇×Eh) = ∇×Eh · ∇ × (η2Eh)−∇η2 ×Eh

= (∇×Eh) · ∇ × (η2Eh)− 2η(∇×Eh) · (∇η ×Eh),

we get

∇×Eh
2
L2(BR∩Ω) ≤ η∇×Eh

2
L2(Ω)

= a(Eh, η
2Eh) + κ(ηEh, ηEh)L2(BR∩Ω) − 2(η∇×Eh,∇η ×Eh)L2(BR∩Ω)

≤ Re a(Eh, η
2Eh) + κ L∞ Eh

2
L2(B(1+ε)R∩Ω)

+ 2 η∇×Eh L2(BR∩Ω) ∇η ×Eh L2(BR∩Ω) .

Young’s inequality allows us to have

∇×Eh
2
L2(BR∩Ω) ≤ η∇×Eh

2
L2(Ω)

≤ Re a(Eh, η
2Eh) + κ L∞ Eh

2
L2(B(1+ε)R∩Ω)

+
1

2
η∇×Eh

2
L2(BR∩Ω) + 2 ∇η ×Eh

2
L2(BR∩Ω) . (6.3.14)
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Kicking back the term η∇×Eh L2(BR∩Ω) to the left-hand side, we arrive at

∇×Eh
2
L2(BR∩Ω) ≤ η∇×Eh

2
L2(Ω)

≤ 2Re a(Eh, η
2Eh) + 2( κ L∞ + 2 ∇η 2

L∞) Eh
2
L2(B(1+ε)R∩Ω) .

(6.3.15)

Since κ L∞ + ∇η 2
L∞ (εR)−2 with implied constant depending on κ, we are left with

estimating Re a(ηEh, ηEh).
Step 2: Using the orthogonality relation in the definition of the space Hc,h(B(1+ε)R∩Ω),

we get

Re a(Eh, η
2Eh − rh(η

2Eh)) ∇×Eh L2(B(1+ε)R∩Ω) ∇× η2Eh − rh(η
2Eh) L2(B(1+ε)R∩Ω)

(6.3.16)

+ Eh L2(B(1+ε)R∩Ω) η2Eh − rh(η
2Eh) L2(B(1+ε)R∩Ω)

.

For each element T , Lemma 6.3.13 yields

η2Eh − rh(η
2Eh)

2

L2(T )
+ ∇× η2Eh − rh(η

2Eh)
2

L2(T )
h2 |η2Eh|2H1(T )

+ |∇ × (η2Eh)|2H1(T )
.

(6.3.17)

To proceed further, we observe that Eh|T ∈ N1(T ) has the form Eh = a + b × x so that
curlEh|T = 2b and hence 3

j=1 |∂xjEh| |∇ ×Eh| pointwise on T so that we get with an
implied constant independent of the function η

|l|=1

ηDlEh
L2(T )

η∇×Eh L2(T ) . (6.3.18)

Using (6.3.18) we obtain

|η2Eh|H1(T )

1

εR
Eh L2(T ) + η∇×Eh L2(T ). (6.3.19)

Computing ∇× (η2Eh) = ∇η2 ×Eh + η2∇×Eh, using the product rule and the fact that
Dl(∇×Eh) = 0 since ∇×Eh is constant gives again in view of (6.3.18)

|∇ × (η2Eh)|H1(T )

1

(εR)2
Eh L2(T ) +

1

εR
η∇×Eh L2(T ) . (6.3.20)

Summing the squares of (6.3.19), (6.3.20) over all elements T with T ∩ supp η = ∅, which
is ensured if we sum over all T with T ⊂ B(1+ε)R ∩ Ω, and inserting the result in (6.3.17)
yields

Re a(Eh, η
2Eh − rh(η

2Eh)) ∇×Eh L2(B(1+ε)R∩Ω) + Eh L2(B(1+ε)R∩Ω) ×
h

εR

1

εR
Eh L2(B(1+ε)R∩Ω) + η(∇×Eh) L2(B(1+ε)R∩Ω) .
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Using the definition of the norm |||·|||c,h,R and Young’s inequality, we obtain

Re a(Eh, η
2Eh − rh(η

2Eh)) ε−2 1

R2
Eh

2
L2(B(1+ε)R∩Ω) +

h2

R2
∇×Eh

2
L2(B(1+ε)R∩Ω)

+ ε−1 h

R
∇×Eh L2(B(1+ε)R∩Ω) η∇×Eh L2(B(1+ε)R∩Ω)

ε−2|||Eh|||2c,h,(1+ε)R + ε−1|||Eh|||c,h,(1+ε)R η∇×Eh L2(B(1+ε)R∩Ω) .

Inserting this in (6.3.15) produces

∇×Eh
2
L2(BR∩Ω) ≤ η∇×Eh

2
L2(Ω)

ε−2|||Eh|||2c,h,(1+ε)R + ε−1|||Eh|||c,h,(1+ε)R η∇×Eh L2(B(1+ε)R∩Ω) .

Using again Young’s inequality to kick the term η∇×Eh L2(B(1+ε)R∩Ω) of the right-hand

side back to the left-hand side produces the desired estimate.

For functions in Hg,h(B(1+ε)R∩Ω), a discrete Caccioppoli-type estimate has already been
established in [FMP15, Lem. 2], which we, for sake of completeness, state and prove in the
following.:

Lemma 6.3.17. Let ε ∈ (0, 1) and R ∈ (0, 2 diam(Ω)) be such that h
R < ε

4 . Let BR and
B(1+ε)R be two concentric boxes and ph ∈ Hg,h(B(1+ε)R ∩Ω). Then, there exists a constant
C > 0 depending only on Ω and the γ-shape regularity of the quasi-uniform triangulation
T such that

∇ph L2(BR∩Ω) ≤ C
1 + ε

ε
|||ph|||g,h,(1+ε)R.

Proof. The proof follows from [FMP15, Lem. 2] and we only mention the key parts.
Let ISZ : H1

0 (Ω) → S1,1
0 (T ) be the Scott-Zhang projection given in [SZ90a]. Let η ∈

S1,1(T ) be a piecewise linear cut-off function with supp η ⊆ B(1+ε/2)R ∩ Ω, 0 ≤ η ≤ 1,

η ≡ 1 on BR ∩Ω, and ∇η L∞(B(1+ε)R∩Ω)
1
εR . First, we notice supp(η

2ph) ⊆ B(1+ε)R ∩ Ω

and since 4h ≤ εR, then we conclude supp ISZ(η2ph) ⊆ B(1+ε)R ∩ Ω. Then, in view of
ph ∈ Hg,h(B(1+ε)R ∩ Ω), we can estimate

∇ph
2
L2(BR∩Ω) ∇(ηph)

2
L2(B(1+ε)R∩Ω) (6.3.21)

∇ph,∇(η2ph − ISZ(η2ph)) L2(B(1+ε)R∩Ω)
+ (∇η)ph

2
L2(B(1+ε)R∩Ω)

∇ph L2(B(1+ε)R∩Ω) ∇(η2ph − ISZ(η2ph)) L2(B(1+ε)R∩Ω)
+

1

(εR)2
ph

2
L2(B(1+ε)R∩Ω).

(6.3.22)

The first term on the right-hand side can be estimated in the same way as in [FMP15,
Eq. (25)], i.e.,

∇(η2ph − ISZ(η2ph))
2

L2(Ω)

h2

(εR)2
η∇ph

2
L2(B(1+ε)R∩Ω) +

h2

(εR)4
ph

2
L2(B(1+ε)R∩Ω) .

(6.3.23)
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Therefore, applying Young’s inequality we have

∇(ηph)
2
L2(B(1+ε)R∩Ω) ∇ph L2(B(1+ε)R∩Ω)

h

(εR)2
ph L2(B(1+ε)R∩Ω) +

h

εR
η∇ph L2(B(1+ε)R∩Ω)

≤C
h2

(εR)2
∇ph

2
L2(B(1+ε)R∩Ω) +

1

(εR)2
ph

2
L2(B(1+ε)R∩Ω)

+
1

2
η∇ph

2
L2(B(1+ε)R∩Ω) . (6.3.24)

Moving the last term in the right hand side of (6.3.24) to the left-hand side and inserting
this estimate into (6.3.21), we get the desired result.

6.4 Low-dimensional approximation of discrete L-harmonic
functions

In this subsection, we apply the Caccioppoli-type estimates from Lemmas 6.3.16 and 6.3.17
to find approximations of the Galerkin solutions from low-dimensional spaces. As an im-
portant tool in this section, we first start with the Poincaré inequality as given in [GT77,
(7.45)]. Let D be an open subset of Ω. Then, for u ∈ H1(Ω) we have

u− 1

|D| D
u dx

L2(Ω)

|D|−2/3(diam(D))3 ∇u L2(Ω) (6.4.1)

In the following, we consider low-dimensional approximation of discrete harmonic functions
in Lemma 6.4.1 that generalizes [FMP15, Lem. 4].

Lemma 6.4.1. Let ε ∈ (0, 1), q ∈ (0, 1), R ∈ (0, 2 diam(Ω)), and m ∈ N satisfy

h

R
≤ qε

8mmax {1, Capp} , (6.4.2)

where the constant Capp is given in [FMP15, Lem. 3, Lem. 4] and depends only on Ω, and
the γ-shape regularity of the quasi-uniform triangulation T . Let BR, B(1+ε)R, B(1+2ε)R be
concentric boxes. Then, there exists a subspace Wm of Hg,h(BR ∩ Ω) of dimension

dimWm ≤ Cdim

1 + ε−1

q

3

m4,

with the following approximation properties:

(i) If uh ∈ Hg,h(B(1+ε)R ∩ Ω) and B(1+ε)R ∩ Ωc = ∅ then

min
um∈Wm

|||uh − um|||g,h,R ≤ Cappq
mε−1 ∇uh L2(B(1+ε)R∩Ω) .

(ii) If uh ∈ Hg,h(B(1+2ε)R ∩ Ω) and B(1+ε)R ∩ Ωc = ∅ then

min
um∈Wm

|||uh − um|||g,h,R ≤ Cappq
mε−3 ∇uh L2(B(1+2ε)R∩Ω) .
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Here, Cdim, Capp depend only on Ω and the γ-shape regularity of the quasi-uniform trian-
gulation T .

Proof. We distinguish two cases.
Case 1: Let B(1+ε)R ∩ Ωc = ∅. For the Lipschitz domain Ω in [Ste70, Chap. VI, Sec. 3,
Thm. 5’] asserts the existence of a bounded linear extension operator EΩc : H1(Ωc) →
H1(R3) such that EΩcv|Ωc = v for each v ∈ H1(Ωc). Then, the fact that Ωc is Lipschitz
(see [HKT08, Thm. 2] for details) implies the existence of a constant c > 0 depending only
on Ω such that for all x ∈ Ωc and all r ∈ (0, 1) we have |Br(x) ∩ Ωc| ≥ cr3, where Br(x)
denotes the ball of radius r centered at x. Selecting an x ∈ B(1+ε)R ∩ Ωc and noting that
BεR/2(x) ⊂ B(1+2ε)R, we conclude

|B(1+2ε)R ∩ Ωc| ≥ |BεR(x) ∩ Ωc| ≥ c(εR)3.

Due to (6.4.2), [FMP15, Lem. 4] provides a subspace Wm of Hg,h(BR ∩ Ω) such that

min
um∈Wm

|||uh − um|||g,h,R ≤ qm|||uh|||g,h,(1+ε)R, (6.4.3)

with dimension

dimWm ≤ Cdim
1 + ε−1

q

3

m4,

where Cdim depends only on Ω, and the γ-shape regularity of the quasi-uniform triangula-
tion T . We denote by uh the extension by zero of uh to Ωc. It follows from the Poincaré
inequality as given in [GT77, (7.45)] and B(1+2ε)R ∩ Ωc ≥ c(εR)3 that

1

εR
uh L2(B(1+ε)R∩Ω) ≤

1

εR
uh L2(B(1+2ε)R∩Ω) =

1

εR
uh L2(B(1+2ε)R)

B(1+2ε)R

εR B(1+2ε)R ∩ Ωc 2/3
∇uh L2(B(1+2ε)R)

(1 + 2ε)3R3

(εR)3
∇uh L2(B(1+2ε)R) ε−3 ∇uh L2(B(1+2ε)R) . (6.4.4)

Combining (6.4.4) and (6.4.3) leads to

min
vm∈Wm

|||uh − vm|||g,h,R ε−3qm ∇uh L2(B(1+2ε)R∩Ω) . (6.4.5)

Case 2: Let B(1+ε)R ∩ Ωc = ∅. We note that constant functions are in Hg,h(BR ∩ Ω).
Hence, by [FMP15, Lem. 4] there is a subspace Wm ⊂ Hg,h(BR∩Ω) such that 1 ∈ Wm and

min
um∈Wm

|||uh − um|||g,h,R = min
um∈Wm, c∈R

|||uh − um + c|||g,h,R ≤ qmmin
c∈R

|||uh − c|||g,h,(1+ε)R

(6.4.6)

with dimension

dimWm ≤ Cdim
1 + ε−1

q

3

m4 + 1
1 + ε−1

q

3

m4.
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A standard Poincaré inequality (i.e., (6.4.1) with D = B(1+ε)R) implies

min
c∈R

|||uh − c|||g,h,(1+ε)R ≤ uh − 1

B(1+ε)R B(1+ε)R

uh
g,h,(1+ε)R

B(1+ε)R

εR B(1+ε)R
2/3

∇uh L2(B(1+ε)R∩Ω) + h ∇uh L2(B(1+ε)R∩Ω)

ε−1 ∇uh L2(B(1+ε)R∩Ω) . (6.4.7)

Combining (6.4.7) and (6.4.6) completes the proof.

Remark 6.4.2. The factor ε−3 instead of ε−1 for boxes BR near the boundary is due to us
not assuming a relation between the orientation of the boxes and the boundary. Aligning
boxes with the boundary allows one to better exploit boundary conditions and improve the
factor ε−3.

In the following, we will need a simplified version of Lemma 6.4.1:

Corollary 6.4.3. Let R ∈ (0, 2 diam(Ω)), ε ∈ (0, 1), q ∈ (0, 1). There are constants Cdim

and Capp depending only on Ω and the γ-shape regularity of the quasiuniform triangulation
T such that for any concentric boxes BR, B(1+2ε)R and any m ∈ N there exists a subspace
Wm ⊂ Hg,h(BR ∩ Ω) of dimension

dimWm ≤ Cdim(εq)
−3m4

such that for any uh ∈ Hg,h(B(1+2ε)R ∩ Ω) there holds

min
um∈Wm

|||uh − um|||g,h,R ≤ Cappq
mε−3 ∇uh L2(B(1+2ε)R∩Ω) . (6.4.8)

Proof. The case that the parameters satisfy (6.4.2) is covered by Lemma 6.4.1. For the
converse case h/R > qε/(8mmax{1, Capp}) we take Wm := Hg,h(BR ∩ Ω) so that the
minimum in (6.4.8) is zero and observe in view of the quasi-uniformity of T

dimHg,h(BR ∩ Ω)
R

h

3 m

εq

3

= (εq)−3m3 ≤ (εq)−3m4.

If Eh is locally discrete divergence-free, then the function ∇(p+ϕz) in the decomposition
Eh = z−∇ϕz+∇(p+ϕz) given by Definition 6.3.10 is also locally discrete divergence-free
since z−∇ϕz is divergence-free. The following lemma shows that also Π∇

B(1+2ε)R
∇(p+ϕz)

is discrete divergence-free:

Lemma 6.4.4. Let ε ∈ (0, 1), R ∈ (0, 2 diam(Ω)), and let B(1+jε)R, j ∈ {0, 1, 2}, be

concentric boxes. Introduce T (B(1+2ε)R ∩ Ω) and B(1+2ε)R according to Definition 6.3.9.

Let η ∈ C∞(Ω) be a cut-off function with η ≡ 1 on B(1+2ε)R. Let Eh be such that ηEh ∈
H0(curl,Ω) and Eh ∈ Hc,h(B(1+2ε)R ∩Ω). Decompose ηEh ∈ H0(curl,Ω) as ηEh = z+∇p
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with z ∈ H1
0(Ω) and p ∈ H1

0 (Ω) according to Lemma 6.3.5. Let the mapping ϕz : H
1
0(Ω) →

H1
0 (Ω) be defined according to (6.3.5) taking η ≡ η there. Then, Π∇

B(1+2ε)R
∇(p + ϕz) is

discrete divergence-free on B(1+2ε)R, i.e.,

Π∇
B(1+2ε)R

∇(p+ϕz),∇vh L2(B(1+2ε)R)
= 0 ∀vh ∈ S1,1(T , B(1+2ε)R), supp vh ⊂ B(1+2ε)R.

(6.4.9)

Proof. To see (6.4.9), we use Eh ∈ Hc,h(B(1+2ε)R ∩ Ω) and (6.3.8) so that for vh ∈
S1,1(T , B(1+2ε)R) with supp vh ⊂ B(1+2ε)R we have

0 = a(Eh,∇vh) = ∇×Eh,∇×∇vh L2(B(1+2ε)R)
− κ Eh,∇vh L2(B(1+2ε)R)

= −κ Eh,∇vh L2(B(1+2ε)R)
= −κ ηEh,∇vh L2(B(1+2ε)R)

= −κ z+∇p,∇vh L2(B(1+2ε)R)

= −κ z−∇ϕz +∇ϕz +∇p,∇vh L2(B(1+2ε)R)

= −κ (z−∇ϕz) + Π∇
B(1+2ε)R

(∇ϕz +∇p),∇vh L2(B(1+2ε)R)

Lemma 6.3.6
= −κ Π∇

B(1+2ε)R
(∇ϕz +∇p),∇vh L2(B(1+2ε)R)

,

which finishes the proof.

We will make use of the orthogonal projection

ΠBR
: (H(curl, BR ∩ Ω), |||·|||c,h,R) → (Hc,h(BR ∩ Ω), |||·|||c,h,R). (6.4.10)

Lemma 6.4.5 (Single-step approximation). Let ε ∈ (0, 1) , R > 0 be such that (1+4ε)R ∈
(0, Rmax], and q ∈ (0, 1). Let B(1+jε)R, j = 0, . . . , 4, be concentric boxes. Then there
exists a family of linear spaces VH,m ⊂ Hc,h(BR ∩ Ω) (parameterized by H > 0, m ∈ N)
with the following approximation properties: For each Eh ∈ Hc,h(B(1+4ε)R ∩ Ω) there is a
E1,h ∈ VH,m ⊂ Hc,h(BR ∩ Ω) with

(i) (Eh −E1,h)|BR∩Ω ∈ Hc,h(BR ∩ Ω),

(ii) |||Eh −E1,h|||c,h,R≤Capp
H
R ε−1 + qmε−4 |||Eh|||c,h,(1+4ε)R,

(iii) dimVH,m ≤ Cdim
R
H

3
+ εq

−3
m4 ,

where the constants Capp and Cdim depend only on κ, Ω, and the γ-shape regularity of the
quasi-uniform triangulation T . Furthermore,

(iv) if h ≥ H or h/R ≥ ε/4 one may actually take VH,m = Hc,h(BR ∩ Ω) and E1,h may
be taken as E1,h = Eh|BR∩Ω.

Proof. Step 1: (reduction to h < H) As a preliminary step, we show (iv) so that afterwards
we may restrict our attention to the case h < H together with h/R < ε/4. If h ≥ H or
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h/R ≥ ε/4, we take VH,m := Hc,h(BR ∩Ω), which implies that the choice E1,h = Eh|BR∩Ω
is admissible so that Eh −E1,h = 0. Since either h ≥ H or h/R ≥ ε/4, we have

dimHc,h(BR ∩ Ω)
R

h

3 R

H

3

+ ε−3 R

H

3

+ (εq)−3, (6.4.11)

which shows that the complexity bound in (iii) is satisfied. We have thus shown (iv) and
will assume h < H and h/R < ε/4 for the remainder of the proof.
Step 2: (reduction to H/R ≥ ε/4) We assume in the remainder that H

R ≤ ε
4 . For

H
R > ε

4 , we may take the space constructed below with the choice H
R = ε

4 since then, the
approximation property (ii) and the complexity estimate (iii) are still satisfied.
Step 3: (Scott-Zhang approximation on R3) Let MH be a quasi-uniform infinite trian-

gulation of R3 with mesh width H. Define further S1,1(MH) := {pH ∈ H1(R3) : pH |M ∈
(P1(M))3 ∀M ∈ MH}. We will use the Scott–Zhang projection operator ISZH : H1(R3) →
S1,1(MH) introduced in [SZ90a]. Denoting ωM the element patch of M ∈ MH , this oper-
ator has the local approximation property

U− ISZH U
2

L2(M)
≤ CH2 U 2

H1(ωM ) ∀U ∈ H1(ωM ) (6.4.12)

with a constant C depending only on Ω and the γ-shape regularity of the quasi-uniform
triangulation MH . Let E : H1(Ω) → H1(R3) be an H1-stable extension operator such as
the one from [Ste70, Chap. VI, Sec. 3, Thm. 5’].

Step 4: Let T (B(1+2ε)R ∩ Ω) and B(1+2ε)R be given according to Definition 6.3.9. Let

η ∈ C∞(Ω) be a cut-off function with supp η ⊆ B(1+3ε)R ∩ Ω, η ≡ 1 on B(1+2ε)R, 0 ≤ η ≤ 1

and ∇ η
L∞(Ω)

1
(εR)

for ∈ {0, 1, 2}. Note that ηEh ∈ H0(curl,Ω). Decompose ηEh ∈
H0(curl,Ω) as ηEh = z +∇p with z ∈ H1

0(Ω) and p ∈ H1
0 (Ω) according to Lemma 6.3.5.

Let ϕz be given by (6.3.5) taking η = η there. Select representers ph, ϕz,h ∈ S1,1
0 (T )

such that ∇ph = Π∇
B(1+2ε)R

(∇p) and ∇ϕz,h = Π∇
B(1+2ε)R

∇ϕz on B(1+2ε)R. By Lemma 6.4.4

we have that ∇(ph + ϕz,h) is discrete divergence-free on B(1+2ε)R so that (ph + ϕz,h) ∈
Hg,h(B(1+2ε)R ∩ Ω). We apply Corollary 6.4.3 with the pair (R, ε) replaced with (R, ε) =
(R(1 + ε), ε

2(1+ε)) to get a subspace Wm ⊂ Hg,h(B(1+ε)R ∩ Ω) for the box B(1+ε)R ∩ Ω and
an wm ∈ Wm such that

|||ph + ϕz,h − wm|||g,h,(1+ε)R qmε−3 ∇(ph + ϕz,h) L2(B(1+2ε)R∩Ω). (6.4.13)

Step 5: Define zH := (ISZH Ez)|B(1+4ε)R∩Ω. Using Definition 6.3.10 and with the function
ϕzH given by (6.3.5) (again, with η = η there) we have the representation

Eh|B(1+2ε)R
= zh +Π∇

B(1+2ε)R
(∇p) = (zh − z) + z−Π∇

B(1+2ε)R
∇ϕz +Π∇

B(1+2ε)R
∇(ϕz + p)

= (zh − z) + (z− zH)−Π∇
B(1+2ε)R

(∇ϕz −∇ϕzH )

−Π∇
B(1+2ε)R

∇ϕzH + zH +Π∇
B(1+2ε)R

∇(ϕz + p),

Of these 6 terms, the first three terms will be seen to be small, the next two terms are
from a low-dimensional space, and the last term is exponentially close to ∇wm by (6.4.13),
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which is also from a low-dimensional space, namely, ∇Wm. As the approximation of Eh,
we thus take

E1,h := ΠBR
−Π∇

B(1+2ε)R
∇ϕzH + zH +∇wm , (6.4.14)

with the |||·|||c,h,R-orthogonal projection ΠBR
of (6.4.10). Property (i) is then satisfied by

construction. In order to prove (ii), we compute using the definition of the norm |||·|||c,h,R

|||Eh −E1,h|||c,h,R = ΠBR
Eh +Π∇

B(1+2ε)R
∇ϕzH − zH −∇wm

c,h,R

≤ Eh +Π∇
B(1+2ε)R

∇ϕzH − zH −∇wm
c,h,R

≤ |||zh − z|||c,h,R + |||z− zH |||c,h,R + Π∇
B(1+2ε)R

(∇ϕz −∇ϕzH )
c,h,R

+ Π∇
B(1+2ε)R

∇(p+ ϕz)−∇wm
c,h,R

. (6.4.15)

Step 6: The stability estimate (6.3.9) for ph in the local discrete regular decomposition
implies together with Lemma 6.3.5

∇ph L2(B(1+2ε)R)
+ z L2(Ω) + ∇p L2(Ω)

(6.3.9)

z L2(Ω) + ∇p L2(Ω) ηEh L2(Ω),

(6.4.16)

By Lemma 6.3.15 and the fact that 1
εR 1 the Caccioppoli-type estimate of Lemma 6.3.16

(replacing the pairs (R, ε) there with suitably adjusted (R, ε) as needed), we have

zh H(curl,B(1+2ε)R)
+ z H1

0(Ω) ∇×Eh L2(B(1+3ε)R∩Ω) +
1

εR
Eh L2(B(1+3ε)R∩Ω) ,

(6.4.17)

Lemma 6.3.16

ε−1|||Eh|||c,h,(1+4ε)R, (6.4.18)

Finally, combining Lemmas 6.3.5, 6.3.6, and (6.3.9) leads to

∇ϕz L2(Ω) + ∇ϕz,h L2(B(1+2ε)R)
z L2(B(1+3ε)R∩Ω) ηEh L2(Ω), (6.4.19)

∇(ϕz − ϕzH ) L2(Ω) ≤ z− zH L2(B(1+3ε)R∩Ω) . (6.4.20)

Step 7: (controlling z− zh) By Lemma 6.3.15 and (6.4.18) we have

1

R
z− zh L2(BR∩Ω)

h

R
ε−1|||Eh|||c,h,(1+4ε)R. (6.4.21)
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Noting ∇×z = ∇×(ηEh) together with the definition of |||·|||c,h,R and the estimate (6.4.21),
we obtain

|||z− zh|||c,h,R ≤ h

R
zh H(curl,B(1+2ε)R)

+ ∇× z L2(BR∩Ω) +
1

R
z− zh L2(BR∩Ω)

≤ h

R
zh H(curl,B(1+2ε)R)

+
1

εR
Eh L2(B(1+ε)R∩Ω) + η∇×Eh L2(B(1+ε)R∩Ω)

+
h

R
ε−1|||Eh|||c,h,(1+4ε)R (6.4.22)

Combining this with Lemma 6.3.16 and the stability estimate (6.4.18) gives rise to

|||z− zh|||c,h,R
h

R
ε−1|||Eh|||c,h,(1+4ε)R. (6.4.23)

Step 8: (controlling z − zH and ∇(ϕz − ϕzH )) For zH = (ISZH Ez)|B(1+4ε)R∩Ω we have by
the approximation result (6.4.12), the assumption H/R ≤ ε, and the stability properties of
ISZH

1

R
z− zH L2(B(1+jε)R∩Ω)

H

R
Ez H1(B(1+(j+1)ε)R) , j = 0, . . . , 3, (6.4.24)

h

R
z− zH H1((B(1+jε)R∩Ω))

h

R
Ez H1(B(1+(j+1)ε)R) , j = 0, . . . , 3, (6.4.25)

so that, using Ez H(1+4ε)R
z H1(Ω), we obtain for j = 0, . . . , 3

|||z− zH |||c,h,(1+jε)R

h

R
+

H

R
Ez H1(B(1+(j+1)ε)R)

(6.4.18) h

R
+

H

R
ε−1|||Eh|||c,h,(1+4ε)R.

(6.4.26)
By the stability properties of the operator Π∇

B(1+2ε)R
given in (6.3.9) and (6.4.20) we infer

Π∇
B(1+2ε)R

∇(ϕz − ϕzH )
c,h,R

≤ 1

R
∇(ϕz − ϕzH ) L2(B(1+2ε)R)

(6.4.20)

≤ 1

R
z− zH L2(B(1+3ε)R∩Ω)

(6.4.26) h

R
+

H

R
ε−1|||Eh|||c,h,(1+4ε)R. (6.4.27)

Step 9: (Estimate Π∇
B(1+2ε)R

∇(p + ϕz) − ∇wm) By Step 1, we have ph + ϕz,h − wm ∈
Hg,h(B(1+ε)R ∩Ω). Noting Π∇

B(1+2ε)R
∇(p+ϕz)−∇wm = ∇(ph+ϕz,h−wm) on B(1+ε)R ∩Ω
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we get

Π∇
B(1+2ε)R

∇(p+ ϕz)−∇wm
c,h,R

=
1

R
∇(ph + ϕz,h − wm) L2(BR∩Ω)

Lemma 6.3.17 1 + ε

εR
|||(ph + ϕz,h)− wm|||g,h,(1+ε)R

(6.4.13) qmε−3(1 + ε)

εR
∇(ph + ϕz,h) L2(B(1+2ε)R∩Ω)

(6.4.16),(6.4.19) qmε−3

εR
ηEh L2(Ω)

qmε−3

εR
Eh L2(B(1+3ε)R∩Ω)

qmε−4|||Eh|||c,h,(1+3ε)R. (6.4.28)

Substituting (6.4.23), (6.4.26), (6.4.27) and (6.4.28) into (6.4.15) concludes the proof of
(ii).
Step 10: By construction, the approximation E1,h of (6.4.14) is from the space

VH,m := {ΠBR
(Π∇

B(1+2ε)R
∇ϕzH+zH+∇wm) : zH ∈ (ISZH H1(R3))|B(1+4ε)R∩Ω, wm ∈ ∇Wm}.

By the linearity of the maps ΠBR
, Π∇

B(1+2ε)R
, and z → ϕz, the space VH,m is a linear space.

In view of dimWm (εq)−3m4 from Corollary 6.4.3 and dim ISZH E(H1(Ω))|B(1+4ε)R∩Ω
(1+4ε)R

H

3
we get (iii).

Lemma 6.4.6 (multi-step approximation). Let ζ ∈ (0, 1), q ∈ (0, 1), R ∈ (0, Rmax]. Then,
for each k ∈ N there exists a subspace Vk of Hc,h(BR ∩ Ω) of dimension

dimVk ≤ Cdimk
k

ζ

3

q −3 + ln4
k

ζ
, (6.4.29)

such that for Ec,h ∈ Hh(B(1+ζ)R ∩ Ω)

min
Ek∈Vk

Eh −Ek
c,h,R

≤ q
k|||Eh|||h,(1+ζ)R. (6.4.30)

Here, Cdim depends only on κ, Ω, and the γ-shape regularity of the quasi-uniform triangu-
lation T .

Proof. The proof relies on iterating the approximation result of Lemma 6.4.5 on boxes
B(1+εj)R, where εj = ζ(1 − j

k ) for j = 0, . . . , k. We note that ζ = ε0 > ε1 > · · · > εk = 0.
Define

Rj := R(1 + εj), εj :=
ζ

4k(1 + εj)
<

1

4

and note the relationship B
(1+4εj)Rj

= B
Rj−1

= BR(1+εj−1) as well as B
Rk

= BR and

B
R0

= BR(1+ζ). Also note

ζ

8k
≤ ζ

4k(1 + ζ)
≤ εj ≤ ζ

4k
, R ≤ Rj ≤ (1 + ζ)R, j = 0, . . . , k.
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Select q ∈ (0, 1). With the constant Capp of Lemma 6.4.5 choose

H :=
1

8

q Rζ

kmax{1, Capp}
, m :=

4 ln(ζ/(4k))− lnmax{1, Capp}+ ln(q /2)

ln q
.

These constants are chosen such that

Capp

H

εjRj

≤ 1

2
q and Cappε

−4
j qm ≤ 1

2
q . (6.4.31)

Moreover, the assumption R ≤ Rmax implies that (1 + 4εj)Rj = R(1 + εj−1) ≤ Rmax.
Therefore, Lemma 6.4.5 provides a space V1

H,m ⊂ Hc,h(BR1
∩ Ω) and an approximation

E1,h ∈ V1
H,m with

|||Eh −E1,h|||c,h,R1
≤ Capp

H

ε1R1

+ ε−4
1 qm |||Eh|||c,h,R0

(6.4.31)

≤ q |||Eh|||c,h,R0
, (6.4.32)

dimV1
H,m

 R1

H

3

+ (ε1q)
−3m4

 ≤ C
k

ζ

3

q −3 + ln4(k/ζ) ,

where the constant C > 0 is independent of j ∈ {0, . . . , k}, ζ, k, and q . Since Eh −E1,h ∈
Hc,h(BR1

∩ Ω), we may apply Lemma 6.4.5 again to find a space V2
H,m ⊂ Hc,h(BR2

∩ Ω)

and an approximation Eh ∈ V2
H,m with dimV2

H,m ≤ C(k/ζ)3 q −3 + ln4(k/ζ) such that

|||Eh −E1,h −E2,h|||c,h,R2
≤ q |||Eh −E1,h|||c,h,R1

≤ q
2 |||Eh|||c,h,R0

.

Repeating this process k−2 times leads to the approximation Ek = k
i=1Ei,h in the space

Vk := k
i=1V

i
H,m of dimension

dimVk ≤ Ck(k/ζ)3 q −3 + ln4(k/ζ) ,

which concludes the proof.

6.5 Proof of the main results

The results of the preceding Section 6.4 allow us to show that the Galerkin approximation
Eh of (6.1.22) can be approximated from low-dimensional spaces in regions BRτ away from
the support of the right-hand side F.

Theorem 6.5.1. Let h0 > 0 be given by Lemma 6.1.1 and let T be a quasi-uniform mesh
with mesh size h ≤ h0. Fix q ∈ (0, 1) and η > 0. Set ζ = 1/(1 + η). For every cluster pair
(τ, σ) with bounding boxes BRτ and BRσ with η dist(BRτ , BRσ) ≥ diam(BRτ ) and every
each k ∈ N there exists a space Vk ⊂ L2(BRτ ∩ Ω) with

dimVk ≤ Cdimk(k/ζ)
3 q−3 + ln4(k/ζ) (6.5.1)
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such that for arbitrary right-hand side F ∈ L2(Ω) with suppF ⊂ BRσ∩Ω, the corresponding
Galerkin solution Eh of (6.1.22) can be approximated from Vk such that

min
Ek∈Vk

Eh −Ek
L2(BRτ∩Ω)

≤ Cboxq
k ΠL2

h F
L2(Ω)

≤ Cboxq
k F L2(BRσ∩Ω) .

Here, ΠL2

h is the L2-orthogonal projection onto Xh(T ,Ω) and Cbox, Cdim are constants
depending only on κ, Ω, and the shape-regularity of T .

Proof. From Lemma 6.1.1 we have the a priori estimate

Eh H(curl,Ω) ≤ C ΠL2

h F L2(Ω) ≤ C F L2(Ω) = C F L2(Bσ∩Ω).

From dist(BRτ , BRσ) ≥ η−1 diamBRτ the choice ζ = 1/(1 + η) implies

dist(B(1+ζ)Rτ
, BRσ) ≥ dist(BRτ , BRσ)− ζRτ

√
3 ≥

√
3Rτ (η

−1 − ζ) =
√
3Rτ

1

η(η + 1)
> 0.

Hence, the Galerkin solution Eh satisfies Eh|B(1+ζ)Rτ∩Ω ∈ Hc,h(B(1+ζ)Rτ
∩Ω). Since h

Rτ
1,

it is immediate that

|||Eh|||h,(1+ζ)R 1 +
1

Rτ
Eh H(curl,Ω) 1 +

1

Rτ
ΠL2

h F
L2(Ω)

. (6.5.2)

In the following, we employ Lemma 6.4.6. In order to do so, boxes have to have smaller
side-length than Rmax/2, which may not hold for general bounding boxes BRτ . However, as
bounding boxes can always be chosen to satisfy Rτ < 2 diam(Ω), there exists a constant L ∈
N independent of Rτ , such that Rτ/L ≤ Rmax with Rmax given in Def. 6.3.14. Consequently,

we can decompose a box BRτ = int CL
=1BRτ into CL ∈ N subboxes BRτ

CL

=1
of side-

length Rτ such that Rτ ≤ Rmax, where CL does only depend on L. Then, for each
BRτ , Lemma 6.4.6 provides a space Vk, ⊂ Hc,h(BRτ ∩ Ω), whose dimension is bounded
by (6.4.29) such that

min
Ek, ∈Vk,

Eh −Ek,
L2(BRτ ∩Ω)

≤ Rτ min
Ek, ∈Vk,

Eh −Ek,
c,h,Rτ

≤ Cqk(Rτ + 1) ΠL2

h F
L2(Ω)

diam(Ω)qk ΠL2

h F
L2(Ω)

.

Now, we define the space Vk as a subspace of L2(BRτ ∩ Ω) by simply combining all
the spaces Vk, of the subboxes, i.e., we extend functions in Vk, by zero to the larger

box BRτ and write Vk, for this space. Then, we can define Vk := CL
=1Vk, and set

Ek|BRτ
:= Ek, ∈ Vk, for Ek ∈ Vk. This gives

min
Ek∈Vk

Eh −Ek
L2(BRτ∩Ω)

≤
CL

=1

min
Ek, ∈Vk,

Eh −Ek,
L2(BRτ ∩Ω)

CLq
k ΠL2

h F
L2(Ω)

.
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The dimension of Vk is bounded by

dimVk ≤ CLCdimk
k

ζ

3

q −3 + ln4
k

ζ
,

which concludes the proof.

The following result allows us to transfer the approximation result Theorem 6.5.1 to the
matrix level. We recall that the system matrix A is given by (6.1.23).

Lemma 6.5.2. Let h ≤ h0 with h0 given by Lemma 6.1.1. Then there are constants
Cdim, Capp that depend on only on κ, Ω, and the γ-shape regularity of the quasi-uniform
triangulation T such that for η > 0, q ∈ (0, 1), k ∈ N, and η-admissible cluster pairs
(τ, σ) there exist, for each k ∈ N, matrices Xτσ ∈ Cτ×r, Yτσ ∈ Cσ×r of rank r ≤
Cdim (1 + η)3 k4 q−3 + ln4(k(1 + η)) such that

A−1|τ×σ −XτσY
H
τσ 2

≤ Capph
−1qk.

Proof. As a preliminary step, we show that we can reduce the consideration to the case
diamBRτ ≤ η dist(BRτ , BRσ). Indeed, as A is symmetric also A−1 is symmetric so that
A−1|τ×σ = A−1|σ×τ and one may approximate either A−1|τ×σ or A−1|σ×τ by a low-rank
matrix. In view of the definition of the admissibility condition (2.6.1), we may therefore
assume diamBRτ ≤ η dist(BRτ , BRσ).

The matrices Xτσ and Yτσ will be constructed with the aid of Theorem 6.5.1. In par-
ticular, we require in the following the constant Cdim from Theorem 6.5.1. We distinguish
between the cases of “small” blocks and “large” blocks.
Case 1. If Cdim(1 + η)3k4 q−3 + ln4(k(1 + η)) ≥ min(|τ |, |σ|), we use the exact matrix
block Xτσ = A−1|τ×σ and we put Yτσ = I|σ×σ with I ∈ CN×N being the identity matrix.
Case 2. If Cdim(1 + η)3k4 q−3 + ln4(k(1 + η)) < min(|τ |, |σ|), let Vk be the space
constructed in Theorem 6.5.1. From Vk we construct Xτσ and Yτσ in the following two
steps.

Step 1. Let functions λi ∈ L2(Ω), i = 1, . . . , N , satisfy

suppλi ⊂ suppΨi, i = 1, . . . , N, (6.5.3a)

λi,Ψj L2(Ω) = δij , i, j = 1, . . . , N, (6.5.3b)

λi L2(Ω) ≤ Ch−1/2, i = 1, . . . , N. (6.5.3c)

Such a dual basis of Xh,0 := {Ψi : i = 1, . . . , N} can be constructed as (discontinuous)
piecewise polynomials of degree 1 as described in, e.g., [BS02, Sec. 4.8] for classical Lagrange
elements. Let Ee := {e1, · · · , eN} be the set of edges corresponding to Xh,0. For ei ∈ Ee, i =
1, · · · , N , we define Ki as the union of tetrahedra in suppΨi sharing ei as an edge and set
suppλi := Ki. Then,

Ki

Ψj(x)λi(x) dx = δij i, j = 1, . . . , N.
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The constant C depends solely on the γ-shape reguarity of T . We emphasize that our
choice of scaling of the functions Ψi is reponsible for the factor h−1/2.
Define for clusters τ the mappings

Λτ : L2(Ω) → Cτ , v → χτ (i) λi,v L2(Ω)
i∈I

,

where χτ is the characteristic function of τ . For v ∈ L2(Ω) and cluster τ with bounding
box BRτ

we observe for the 2-norm · 2 on Cτ that

Λτ v 2
2 =

i∈τ
| λi,v L2(Ω)|2 ≤

i∈τ
λi

2
L2(Ω)

v 2
L2(suppλi)

(6.5.3c)

h−1 v 2
L2(BRτ ∩Ω)

.

(6.5.4)

We observe that for Eh ∈ Xh,0(T ,Ω) expanded as Eh = i∈I µiΨi, we have µi =
(ΛI(Eh))i. In particular, we have for the coefficients µi with i ∈ τ

µi = (Λτ (Eh))i. (6.5.5)

Step 2: Let Vk be the space given by Theorem 6.5.1 for the boxes BRτ , BRσ . For
arbitrary b ∈ Cσ, define the function fb := i∈σ biλi and observe:

supp fb
(6.5.3a)⊂ BRσ , (6.5.6a)

fb L2(Ω)

(6.5.4)

h−1/2 b 2, (6.5.6b)

fb,Ψi L2(Ω)

(6.5.3b)
= bi, i = 1, . . . , N. (6.5.6c)

Let Eh ∈ Xh,0(T ,Ω) be the Galerkin solution corresponding to the right-hand side fb and

Eh ∈ Vk be the approximation to Eh asserted in Theorem 6.5.1. Then,

ΛτEh − ΛτEk
2

(6.5.4)

h−1/2 Eh −Eh
L2(BRτ∩Ω)

Thm. 6.5.1

h−1/2qk fb L2(Ω)

(6.5.6b)

h−1qk b 2 .

We define the low-rank factorXτσ as an orthogonal basis of the space Vτ := {Λτ (Ek) : Ek ∈
Vk} and set Yτσ := A−1|Hτ×σXτσ. Then, the rank of Xτσ is bounded by dimVk ≤
Cdim(1 + η)3k4 q−3 + ln4(k(1 + η)) . Since XτσX

H
τσ is the orthogonal projection from CN

onto Vτ , we conclude that z := XτσX
H
τσ(ΛτEh) is the · 2-best approximation of the

Galerkin solution in Vτ , which results in

ΛτEh − z 2 ΛτEh − ΛτEh
2

h−1qk b 2 .

By (6.5.5) and b ∈ Cσ, we have

ΛτEh
(6.5.5)
= (ΛIEh)|τ = (A−1b)|τ b∈Cσ

= (A−1|τ×σ)b.
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Since z = XτσY
H
τσb, we conclude

(A−1|τ×σ −XτσY
H
τσ)b 2

= ΛτEh − z 2 h−1qk b 2 .

As b was arbitrary, we obtain the stated norm bound.

Proof of Theorem 6.2.1. For each admissible cluster pair (τ, σ), let the matrices Xτσ, Yτσ

be given by Lemma 6.5.2. Define the H-matrix approximation BH by the conditions

BH|τ×σ = XτσY
H
τσ if (τ, σ) ∈ Pfar, BH|τ×σ = A−1|τ×σ if (τ, σ) ∈ Pnear.

The blockwise estimate of Lemma 6.5.2 for q ∈ (0, 1) and Lemma 2.6.10 yield

A−1 −BH 2
≤ Csp

∞

=0

max{ (A−1 −BH)|τ×σ 2
: (τ, σ) ∈ P, level(τ) = }

≤ CappCsp depth(TI)h−1qk.

We next relate k to the blockwise rank r. For y ≥ 0 the unique (positive) solution k of
k ln k = y has the form

k =
y

log y
(1 + o(1)) as y → ∞ (6.5.7)

by, e.g., [Olv97, Ex. 5.7, Chap. 1]. In passing, we mention that even higher order asymp-
totics can directly be inferred from the asymptotics of Lambert’s W -function as described
in [dB61, p. 25–27]. The asymptotics (6.5.7) implies that the solution k of k4 ln4 k = y
satisfies k = y1/4/ ln(y1/4)(1 + o(1)) as y → ∞.

From Lemma 6.5.2 we have the rank bound r ≤ Cdim(1 + η)3k4 q−3 + ln4(k(1 + η)) ≤
Cdim (1 + η)q−1 3

k4 ln4 k, so that for suitable b, C > 0 independent of r we get qk ≤
C exp(−br1/4/ ln r). Consequently, we have

A−1 −BH 2
≤ CapxCsp depth(TI)h−1e−b(r1/4/ ln r),

which concludes the proof.

6.6 Numerical results

In this section, in order to validate the theoretical results obtained in this chapter, we study
three examples defined on two different geometries.
In order to construct the block partitioning, we use the geometrically balanced cluster

tree given in [GHLB04] based on the following modified bounding boxes.
For a basis Xh,0 := {Ψ1, . . . ,ΨN} of Xh,0(T ,Ω) with N := dimXh,0(T ,Ω), let Ee :=

{e1, . . . , eN} be the set of corresponding edges and Ye := {y1, . . . ,yN} be the set of mid-
points corresponding to each edge. For hs > 0, we define Bhs(yi) ⊂ Rd i = 1, . . . , N , as
a ball of radius hs centred at yi. In the following examples, instead of the definition of
bounding boxes from Definition 2.6.3 based on support of the basis functions, we use a
slightly modified version:
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For a cluster τ ⊂ I := {1, ..., N}, a bounding box BRτ is an axis-parallel hypercube with
side length Rτ such that ∪i∈τBhs(yi) ⊆ BRτ .
In the following examples, we select η = 2 as the admissibility parameter and nleaf = 25

as the leaf size. For the rank bound, we consider the range r ∈ {1, . . . , 50}. In the curl-curl
problem (6.1.19), we choose the coefficients to be µ = 1 and κ = 1.
TheH-matrix approximationBH to the inverse ofA is computed by applying a truncated

singular valued decomposition of the exact inverse. More precisely, for an admissible block
(τ, σ) ∈ Pfar, we consider the singular value decomposition A−1|τ×σ = USVT ∈ Rτ×σ,
where U ∈ Rτ×τ , V ∈ Rσ×σ are orthogonal and S = diag(σ1, · · · , σm) ∈ Rτ×σ, m :=
min(|τ | , |σ|), includes the corresponding singular values σ1, · · · , σm ≥ 0. Then, we set
BH|τ×σ := UrSrV

T
r where Ur ∈ Rτ×r, Sr ∈ Rr×r and Vr ∈ Rσ×r are the first r columns

of U, S and V, respectively. For (τ, σ) ∈ Pnear, we set BH|τ×σ := A−1|τ×σ.
The numerical results are implemented in Netgen [Net] and MATLAB, i.e., the stiffness

matrix A is obtained from Netgen and BH is computed in MATLAB.

Example 6.6.1. In this example, we choose Ω := (x, y, z) ∈ R3 : x2 + y2 + z2 < 1
as the geometry and take hs = h. The geometry and its mesh configuration are shown
in Figure 6.6.1. The block partition including 20 734 admissible, and 52 770 small blocks,
is depicted in Figure 6.6.1. In Figure 6.6.2, for a fixed number N = 16 971 of degrees
of freedom, we show that I−ABH 2 decreases as the block-rank increases. Figure 6.6.2
shows the exponential decay of the approximated error. We plot two straight lines obtained
by fitting the data (in a least-squares sense) for the computed error values for 1 ≤ r ≤ 20
and r > 20 (shown by dashed blue and black lines), respectively. For 1 ≤ r ≤ 20, the slope
of the line is −0.16 and for r > 20 is −0.09. The allocated memory is shown in Figure 6.6.2
for different ranks.

Example 6.6.2. We consider the domain Ω := (−1, 1) × (−1, 1) × [−1,−2) ∪ (−2, 2) ×
[1, 2)×(−1, 1)∪(−2, 2)×[−1, 1]×[−1, 1]∪(−1, 1)×(−1, 1)×[1, 2)∪(−2, 2)×[−1, 2)×(−1, 1).
The geometry is shown in Figure 6.6.3. In Figure 6.6.3, for hs = h, the block partitioning
indicates 21 290 admissible blocks and 42 944 small blocks. In Figure 6.6.4, for hs = h, we
illustrate the exponential convergence of I − ABH 2 with respect to the increase of the
block-rank for N = 14 491 degrees of freedom and as it is shown in this figure, the decay
of the obtained values is exponential. Two straight lines are plotted by fitting the data
(in a least-squares sense) for the computed error values for 1 ≤ r ≤ 20 and r > 20 (shown
by dashed blue and black lines), respectively. The slope of the lines are mentioned in the
figure as well. For hs = h, we also show the allocated memory [MBytes] in Figure 6.6.4.

Example 6.6.3. For the same geometry as in Example 6.6.2 and a fixed number N =
15 491 of degrees of freedom, Figure 6.6.7 shows that increasing hs improves convergence of
the upper bounds of the error and simultaneously reduces the number of admissible blocks
(Figures 6.6.5-6.6.6).
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Figure 6.6.1: The mesh T (left). The block partition for N = 16 971 degrees of freedom
and hs = h (right).

Figure 6.6.2: Approximation error for N = 16 971 degrees of freedom and hs = h (left).
The allocated memory for N = 16 971 degrees of freedom and hs = h (right).
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Figure 6.6.3: The mesh T (left). The block partition for N = 14 491 degrees of freedom
and hs = h (right).

Figure 6.6.4: Approximation error for N = 14 491 degrees of freedom and hs = h (left) .
The allocated memory for N = 14 491 degrees of freedom and hs = h (right).

134



6 H-matrix approximability of inverses of FEMmatrices for the time-harmonic Maxwell equations

Figure 6.6.5: The block partition forN = 15 491 degrees of freedom, h = 0.202 and hs = 2h.

Figure 6.6.6: The block partition for N = 15 491 degrees of freedom; left: h = 0.202 and
hs = 3h; right: h = 0.202 and hs = 4h.
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6 H-matrix approximability of inverses of FEMmatrices for the time-harmonic Maxwell equations

Figure 6.6.7: H-matrix approximation to inverse FEM matrix; error vs. block rank, for
N = 15 491 degrees of freedom and hs = 2h, hs = 3h and hs = 4h.
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[SvV19] R. Stevenson and R. van Venetië. Uniform preconditioners for problems of
positive order. arXiv preprint arXiv:1906.09164, 2019.

[SZ90a] L.R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions
satisfying boundary conditions. Math. Comp., 54(190):483–493, 1990.

144

https://ngsolve.org/


Bibliography

[SZ90b] L.R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions
satisfying boundary conditions. Math. Comp., 54(190):483–493, 1990.

[Tar07] Luc Tartar. An introduction to Sobolev spaces and interpolation spaces, vol-
ume 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin;
UMI, Bologna, 2007.

[Tri95] Hans Triebel. Interpolation theory, function spaces, differential operators. Jo-
hann Ambrosius Barth, Heidelberg, second edition, 1995.

[TS96] T. Tran and E.P. Stephan. Additive Schwarz methods for the h-version bound-
ary element method. Appl. Anal., 60(1-2):63–84, 1996.

[TSM97] T. Tran, E.P. Stephan, and P. Mund. Hierarchical basis preconditioners for
first kind integral equations. Appl. Anal., 65(3-4):353–372, 1997.

[TSZ98] T. Tran, E.P. Stephan, and S. Zaprianov. Wavelet-based preconditioners for
boundary integral equations. Adv. Comput. Math., 9(1-2):233–249, 1998.

[TW05] A. Toselli and O. Widlund. Domain decomposition methods–algorithms and
theory, volume 34 of Springer Series in Computational Mathematics. Springer-
Verlag, Berlin, 2005.

[Wah91] L. Wahlbin. Local behavior in finite element methods. In P.G. Ciarlet and
J.L. Lions, editors, Handbook of numerical analysis. Volume II: Finite element
methods (Part 1), pages 353–522. North Holland, 1991.

[Wid77] Olof Widlund. On best error bounds for approximation by piecewise polynomial
functions. Numer. Math., 27(3):327–338, 1976/77.

[Xu89] Jinchao Xu. Theory of multilevel methods, volume 8924558. Cornell University
Ithaca, NY, 1989.

[Zha92] X. Zhang. Multilevel Schwarz methods. Numer. Math., 63:521–539, 1992.

145



Curriculum Vitae

Personal data

Name: Maryam Parvizi, MSc
Date of birth: 04.06.1988
Place of birth: Tehran / Iran

Nationality: Iranian
Email parvizi@ifam.uni-hannover.de

Education

Since 07/2019 PhD-studies (Dr. techn.), TU Wien

07/2017-11/2020 Research assistant (FWF), TU Wien

01/2017-06/2017 Visiting Research, TU Wien

02/2013–12/2016 Research Assistant, Applied Mathematics, Tarbiat Modares
University, Tehran, Iran

10/2009–02/2013 M.Sc., Applied Mathematics, Tarbiat Modares University,
Tehran, Iran

10/2005–07/2009 B.Sc., Pure Mathematics, Shahid Beheshti University,
Tehran, Iran

06/2005 High School Diploma, Tehran, Iran

Selected Aacademic Publications

1. Amirreza Khodadadian, Maryam Parvizi, Mostafa Abbaszadeh, Mehdi Dehghan and
Clemens Heitzinger, A direct meshless local collocation method for solving stochastic
Cahn-Hilliard and Swift-Hohenberg equations. Eng. Anal. Bound. Elem., 98:253–
264, 2019.

2. Amirreza Khodadadian, Maryam Parvizi, Mostafa Abbaszadeh, Mehdi Dehghan and
Clemens Heitzinger, A multilevel Monte Carlo finite element method for Cahn-Hilliard-
Cook equation. Comput. Mech., 64(4):937–949, 2019.



Bibliography

3. Maryam Parvizi, Amirreza Khodadadian, Mohammadreza Eslahchi, Analysis of Ciarlet-
Raviart mixed finite element methods for solving damped Boussinesq equation. J.
Comput. Appl. Math., 379:112818, 2020

4. Amirreza Khodadadian, Maryam Parvizi and Clemens Heitzinger, An adaptive mul-
tilevel quasi-Monte Carlo method for the stochastic drift-diffusion-Poisson system.
Comput. Methods Appl. Mech. Engrg., 368:113163/1–23, 2020.

5. Amirreza Khodadadiana, Nima Noii, Maryam Parvizi, Mostafa Abbaszadeh, Thomas
Wick, and Clemens Heitzinger. A Bayesian estimation method for variational phase-
field fracture problems. Comput. Mech., 66(4) :827–849 2020.

6. Markus Faustmann, Jens Markus Melenk and Maryam Parvizi, On the stability of
Scott-Zhang type operators and application to multilevel preconditioning in fractional
diffusion. ESAIM Math. Model. Numer. Anal., 55(2):595–625, 2021.

7. Markus Faustmann, Jens Markus Melenk and Maryam Parvizi , Caccioppoli-type es-
timates andH-Matrix approximations to inverses for FEM-BEM couplings. submitted
to Numer. Math., 2020.

8. Markus Faustmann, Jens Markus Melenk and Maryam Parvizi, H-matrix approx-
imability of inverses of FEM matrices for the time-harmonic Maxwell equations.,
submitted to Adv. Comput. Math., 2021.

147


	Introduction
	Outline and contributions

	Background
	Function spaces
	Sobolev spaces
	Interpolation spaces
	Vector-valued function spaces
	Trace operators

	Triangulation of 
	Triangulation of 
	(quasi-) interpolation
	Scott-Zhang operators on 
	Scott-Zhang operators on Rd

	Abstract Additive Schwarz Framework
	Hierarchical Matrices

	A multilevel decomposition based on mesh hierarchies generated by NVB
	Stability of (quasi-) interpolation operators in Besov spaces
	Some generalizations and applications

	The finest common coarsening
	Properties of the finest common coarsening (fcc)

	Adapted Scott-Zhang operators
	Multilevel decomposition based on mesh hierarchies generated by NVB
	Boundary conditions

	An optimal multilevel preconditioner for the fractional Laplacian
	Fractional Laplacian
	Singular integral representation
	The Caffarelli-Silvestre extension

	Model problem
	Local multilevel diagonal preconditioners
	A local multilevel diagonal preconditioner for adaptively refined meshes
	A local multilevel diagonal preconditioner using a finest common coarsening mesh hierarchy

	Optimal additive Schwarz preconditioning for the fractional Laplacian on locally refined meshes
	Abstract analysis of the additive Schwarz method: The mesh hierarchy  T"0365 T= fcc( TL, T"0362 T)
	Abstract analysis of the additive Schwarz method: The mesh hierarchy  T provided by an adaptive algorithm
	Inverse estimates for the fractional Laplacian
	Proof of the assumptions of Proposition 4.4.1
	Numerical example


	H-Matrix approximations to inverses for FEM-BEM couplings
	Model problem
	Layer potential and boundary integral operators
	FEM-BEM coupling techniques
	The Bielak–MacCamy coupling
	Costabel's symmetric coupling
	The Johnson-Nédélec coupling

	Main results
	The Caccioppoli-type inequalities
	The Bielak-MacCamy coupling
	Costabel's symmetric coupling
	The Johnson-Nédélec coupling

	Abstract setting - low dimensional approximation
	From matrices to functions
	Low dimensional approximation

	Application of the abstract framework for the FEM-BEM couplings
	Proof of Theorem 5.4.1

	Numerical results
	Approximation to the inverse matrix
	Block diagonal preconditioning


	H-matrix approximability of inverses of FEM matrices for the time-harmonic Maxwell equations
	Model problem
	The fundamental equations
	Boundary conditions
	Time-Harmonic Fields
	Discretization by edge elements

	The Main Result
	Decompositions: continuous and discrete local
	Helmholtz decomposition
	Regular decompositions
	Discrete and local discrete Helmholtz decompositions
	The Caccioppoli-type inequalities

	Low-dimensional approximation of discrete L-harmonic functions
	Proof of the main results
	Numerical results

	Bibliography



