
Diplomarbeit

Leveraging Semantic Technologies for the application
in Multi-Domain Digital Twins

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Diplom-Ingenieurs (Dipl.-Ing. oder DI) unter der Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Manfred Grafinger
(Institut für Konstruktionswissenschaften und Produktentwicklung)

sowie unter der Betreuung von
Projektass. Dipl.-Ing. Stefan Dumss BSc

(Institut für Konstruktionswissenschaften und Produktentwicklung)

eingereicht an der Technischen Universität Wien
Fakultät für Maschinenwesen und Betriebswissenschaften

David Kern BSc
01226528
(066 482)

Ich nehme zur Kenntnis, dass ich zur Drucklegung meiner Arbeit unter der
Bezeichnung

Diplomarbeit
nur mit Bewilligung der Prüfungskommission berechtigt bin.

Eidesstattliche Erklärung
Ich erkläre an Eides statt, dass die vorliegende Arbeit nach den anerkannten Grund-
sätzen für wissenschaftliche Abhandlungen von mir selbstständig erstellt wurde. Alle
verwendeten Hilfsmittel, insbesondere die zugrunde gelegte Literatur, sind in dieser Ar-
beit genannt und aufgelistet. Die aus den Quellen wörtlich entnommenen Stellen, sind
als solche kenntlich gemacht.

Ich nehme zur Kenntnis, dass die vorgelegte Arbeit mit geeigneten und dem derzeitigen
Stand der Technik entsprechenden Mitteln (Plagiat-Erkennungssoftware) elektronisch-
technisch überprüft wird. Dies stellt einerseits sicher, dass bei der Erstellung der
vorgelegten Arbeit die hohen Qualitätsvorgaben im Rahmen der geltenden Regeln zur
Sicherung guter wissenschaftlicher Praxis „Code of Conduct“ an der TU Wien einge-
halten wurden. Zum anderen werden durch einen Abgleich mit anderen studentischen
Abschlussarbeiten Verletzungen meines persönlichen Urheberrechts vermieden.

Wien, August 2023 David Kern BSc

Danksagung

Ich möchte hier die Gelegenheit nützen allen zu danken die mich während der Erstel-
lung dieser Arbeit und während meines gesamten Studiums fachlich sowie persönlich
unterstützt haben.

Zuerst bedanke ich mich bei meinem Diplomarbeitsbetreuer Ao.Univ.Prof. Dipl.-Ing.
Dr.techn. Manfred Grafinger für die Möglichkeit mich mit diesem spannenden Thema
zu beschäftigen. Desweitern bedanke ich mich bei Dipl.-Ing. Stefan Dumss, für die
hervorragende fachliche Betreuung und die spannenden Diskussionen.

Bedanken möchte ich mich ebenfalls bei meinen Studienkollegen:innen die mich auf dem
Weg durchs Studium begleitet haben. Ohne euch wäre dieser Weg nur halb so lustig
gewesen. Besonders möchte ich Matteas Jelović und Phillip Rückeshäuser die mich in
der finalen Phase dieser Arbeit unterstützt haben.

Anschließend möchte ich mich bei meiner Freundin Michaela bedanke, dass sie diese
doch nicht immer leichte Zeit mit mir durchgestanden hat und mir stehts den Rückhalt
gegeben hat den ich brauchte.

Abschließend möchte ich meiner Familie danken, ohne euch wäre das Ganze nicht möglich
gewesen. Im Besonderen möchte ich meinen Eltern danken. Ihr standet mir nicht nur
währende des Studiums stets mit Rat und Tat beiseite. Danke Mama, Danke Papa!

Abstract
The concept of a Digital Twin (DT) has gained traction recently. A DT is the virtual
representation of a physical asset and allows for data exchange. A vital part of such
DTs are simulation models. To facilitate large-scale digital twins, multiple simulation
models can be used. This enables modeling subsystems separately rather than within
a large model. An example of such a large-scale domain is the railway domain. As
it consists of multiple different heterogeneous domains and subsystems, data exchange
between the various domains poses a problem as they use different standards and tools.
Semantic data model offers a technique to integrate data from different domains in a
machine-interpretative form. In order to achieve that, semantic technologies can be used
to develop an ontology.

This thesis sets out to create an ontology for the application in the Rail4Future (R4F)
project to describe components of a simulation model as well as provide additional in-
formation about such models. It follows a state-of-the-art methodology for ontology
engineering. Finally it proposes a workflow to integrate the ontology in creating simu-
lation topologies. It provides a tool that enables non-ontology experts to integrate their
data into the Knowledge Graph (KG).

Kurzfassung
Das Konzept des Digitaler Zwilling (Digital Twin, DT) hat in letzter Zeit an Zugkraft
gewonnen. Ein DT ist die virtuelle Darstellung einer physischen Anlage und ermöglicht
den Datenaustausch. Ein wesentlicher Bestandteil solcher DTs sind Simulationsmodelle.
Um groß angelegte digitale Zwillinge zu ermöglichen, können mehrere Simulationsmod-
elle verwendet werden. Dies ermöglicht es, Teilsysteme separat zu modellieren, anstatt
sie in einem großen Modell zusammenzufassen. Ein Beispiel für einen solchen groß
angelegten Bereich ist der Eisenbahnbereich. Da dieser aus mehreren verschiedenen het-
erogenen Domänen und Teilsystemen besteht, stellt der Datenaustausch zwischen den
verschiedenen Domänen ein Problem dar, da unterschiedliche Standards und Werkzeuge
verwendet werden. Semantische Datenmodell bietet eine Technik zur Integration von
Daten aus verschiedenen Bereichen in einer maschineninterpretierbaren Form. Um dies
zu erreichen, können semantische Technologien zur Entwicklung einer Ontologie verwen-
det werden.

Ziel dieser Arbeit ist es, eine Ontologie für die Anwendung im Projekt Rail4Future (R4F)
zu erstellen, um Komponenten eines Simulationsmodells zu beschreiben und zusätzliche
Informationen über solche Modelle bereitzustellen. Dabei wird eine dem Stand der Tech-
nik entsprechende Methodologie für das Ontologie-Engineering verwendet. Schließlich
wird ein Arbeitsablauf vorgeschlagen, um die Ontologie in die Erstellung von Sim-
ulationstopologien zu integrieren. Die Arbeit bietet ein Werkzeug, mit dem Nicht-
Ontologie-Experten ihre Daten in den Knowledge Graph (KG) integrieren können.

Contents

Acronyms 7

1. Introduction 9
1.1. Motivation and problem statement . 9
1.2. Aim of the work . 10

2. Theoretical foundations and related work 11
2.1. Semantic Interoperability . 11
2.2. Ontology . 12

2.2.1. Ontology Types . 14
2.2.2. Methodologies for Ontology Development 15

2.3. Semantic Web Stack . 16
2.3.1. Resource Description Framework 18
2.3.2. RDF-Schema . 22
2.3.3. Web Ontology Language . 23

2.4. Digital Twins and Modular Simulation 25
2.5. Related work . 28

2.5.1. Railway Domain . 28
2.5.2. Multi Domain Simulation and (distributed) Digital Twins 29

3. Implementation 34
3.1. Ontology Development . 34

3.1.1. Initiation Phase . 35
3.1.2. Reuse and Re-engineering Phase 37
3.1.3. Design Phase . 44
3.1.4. Implementation Phase . 47

3.2. Discussion . 50
3.2.1. Semantics for Modular FMI assembly 53
3.2.2. Ontology Annotation . 57

4. Conclusion and Future Work 60

List of Figures 62

List of Listings 62

List of Tables 63

Bibliography 64

5

A. List of code and Ontologies hosted online 70

B. Ontology Development Documents 71
B.1. Ontology Requirements Specification Document 71
B.2. Glossary of terms . 73

B.2.1. English Version . 73
B.2.2. German Version . 76

B.3. Concept Classification Tree . 79
B.4. Concept Dictionary . 80
B.5. Binary Relation Tables . 82
B.6. Instance Attribute Tables . 83

Acronyms

API Application Programming Interface
AQL ArangoDB Query Language
ASCII American Standard Code for Information Interchange
CSV Comma-separated values
CWA Closed-World Assumption
DC Dublin Core
DCAT Data Catalog Vocabulary
DT Digital Twin
ERA European Union Agency for Railways
FOAF Friend of a Friend
FMI Functional Mockup Interface
FMU Functional Mockup Unit
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IANA Internet Assigned Numbers Authority
IRI Internationalized Resource Identifier
JSON JavaScript Object Notation
JSON-LD JSON for Linking Data
KG Knowledge Graph
OM Ontology of units of Measure
ORSD Ontology Requirements Specification Document
ODP Ontology Design Pattern
OWA Open-Word Assumption
OWL Web Ontology Language
QUDT Quantity, Unit, Dimension and Type
QUDV Quantities, Units, Dimensions, Values
RDF Resource Description Framework
RDFS RDF Schema
RIF Rule Interchange Format
R4F Rail4Future
Shacl Shapes Constraint Language
SoSa Sensor, Observation, Sample, and Actuator
SPARQL SPARQL Protocol And RDF Query Language
SPDX Software Package Data Exchange
SSP System Structure and Parameterization
SWRL Semantic Web Rule Language
TCP/IP Transmission Control Protocol/Internet Protocol
UI User Interface

7

UIC International Union of Railways
UML Unified Modeling Language
UNA Unique Name Assumption
UO Units Ontology
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
W3C World Wide Web Consortium
XML Extensible Markup Language
XSD XML Schema Definition

8

1. Introduction

1.1. Motivation and problem statement

The railroad industry is considered one of the key instruments to achieve climate targets.
In response to growing demand, the railway industry has made significant investments
in both infrastructure and rolling stock. These endeavors aim to address the need for
increased capacity while maintaining the railways’ reliability and safety as a preferred
mode of transportation. However, building new infrastructure is not only cost-intensive
but also not a viable long-term solution. Instead, stakeholders focused on optimizing
the utilization of their current infrastructure. This approach includes extending the life-
time of different infrastructure systems, such as tracks, turnouts, tunnels, and bridges,
by leveraging information and communication technology to a greater extent. Among
those technologies, the Digital Twin (DT) is widely regarded as one of the most promising
technologies. The DT continually monitors the state of the replicated entity throughout
its life cycle, offering a comprehensive understanding of its functionality and operational
status and providing a way of predicting its future behavior. Currently, most DT are be-
ing developed for specific domains with closed architectures, often relying on proprietary
solutions, which hinders their interoperability. This interoperability is particularly im-
portant for railway infrastructure systems, given that they consist of a large quantity of
subsystems that function collaboratively and interactively. To meet these requirements,
it is often beneficial to integrate models from various domains in order to configure a
simulation. Multiple domains also mean different organizations and experts who develop
the models using different simulation tools. This is one reason that integrating and con-
necting simulations presents a challenging task since the person configuring the simulator
is typically different from the person constructing the models. With this, configuring
a simulation topology includes analyzing the available information to infer if and how
different models can be connected. Besides, gaining knowledge of available information
and domain knowledge connecting these simulation models represents a time-consuming
task. Another challenge is the distribution of data across different organizations and sys-
tems without common semantics. This fact further complicates the interoperability of
different data sources. A jointly agreed data semantic and data model is needed to assist
in interconnecting these heterogeneous resources. Semantic data models can be used to
store context alongside the data itself in a machine-readable form. The representation
of knowledge is accomplished by defining entities and their relations, where each entity
and connection has an understood meaning. The exact interpretation of relationships
and entities can be defined by an ontology. An ontology provides a way of formalizing
a particular domain and representing it in a machine-readable form.

9

1.2. Aim of the work

In order to facilitate the aforementioned interoperability this work sets out to develop
a semantic data model for the usage in the Rail4Future (R4F) project. The work pre-
sented in this thesis builds upon the current state-of-the-art methodologies for ontology
engineering. Besides providing an overview of the existing literature for applying se-
mantic technologies in the railway domain and multi-domain simulation and distributed
digital twins, the thesis presents the development and application of the ontology. To
assist with the mentioned task, the work aims to answer the following question:

RQ1 How are semantic technologies currently used to describe the railway domain?

RQ2 Are there applications of semantic technologies in multi-domain simulations?

RQ3 How can semantic technologies be used for metadata sharing of distributed het-
erogeneous data sources?

RQ4 How can domain experts with limited knowledge of ontologies utilize these semantic
technologies?

In order to answer these questions, the thesis is structured in the following way:

• Chapter 2 lays the theoretical foundation for the ontology development process.

• Chapter 2.5 presents the current state-of-the-art for ontologies in the railway do-
main and multi-domain simulations.

• Chapter 3 documents the development of the ontology based on the NeOn method-
ology.

• Chapter 3.2 discusses the application of the ontology in the Rail4Future project.

10

2. Theoretical foundations and related
work

This chapter provides an overview of the theoretical foundation needed for this thesis. It
sets out the need for semantic interoperability and introduces the concept of ontologies.
Further, it explains the foundation of the semantic web stack and summarizes the core
technologies for creating and using computer ontologies, and outlines technical notation
used throughout the rest of the thesis. The concept of a Digital Twin (DT) and the
Functional Mockup Unit (FMU) Standard are introduced as a way of building modular
multi-domain digital twins.

2.1. Semantic Interoperability

Interoperability plays a crucial role in information management as most of our current
information needs to involve drawing data from multiple sources. Multiple sources often
also mean numerous different interfaces and data models. Figure 2.1a shows the problem
if each source has its data model. This leads to a significant number of interfaces and
mapping between these standards. These mappings are no longer necessary with a
common data model, as seen in Figure 2.1b, this would be an ideal case. However, a
more common approach is shown in Figure 2.1c. Here multiple sources use the same
model, and a mapping between the different models can be achieved.

A B

C D

(a) Without Standard Data
Model

A B

C D

Model

(b) With Standard Data
Model

A B

C D

Model 1
Model 2

(c) With multiple Standard
Data Models

Figure 2.1.: Interfaces in Complex Systems. Source: Adapted from [1]

11

Sheth [2] discusses four different levels of interoperability — system, syntax, structure,
and semantic.

• System interoperability refers to the ability of different systems to connect
and communicate with each other physically. This level of interoperability has
been addressed through common communication standards such as Transmission
Control Protocol/Internet Protocol (TCP/IP) and standardized data encoding
formats.

• Syntactic interoperability refers to the capability of different systems to share
and understand specific document syntaxes, such as Extensible Markup Language
(XML) or Hypertext Markup Language (HTML). This allows the software to
extract pieces of data using concepts in these syntaxes.

• Structural or Schema interoperability is achieved when systems follow the
same data model or schema, allowing data to be categorized and its meaning to
be inferred through context. This is commonly achieved through adherence to
modern computing standards.

• Semantic interoperability enables systems to understand the meaning of data
without a predefined schema by defining all necessary knowledge within the data,
allowing systems to interpret and integrate it.

According to Tutcher [1], achieving complete semantic interoperability is unrealistic as
each concept must be defined by a multitude of other concepts, creating an infinite
number of necessary axioms. Another problem with semantic interoperability is the so-
called semantic clash, where two or more concepts or terms used in a specific context or
system have different meanings or interpretations, leading to confusion or misinterpreta-
tion. For example, in one context, the term "load" might refer to the weight or force that
a structure or component is designed to bear. In contrast, in another context, "load"
might refer to the amount of energy a machine or system uses. One possible solution
to overcome this problem is the usage of ontologies, which will be discussed in Section
2.2.

2.2. Ontology

The term ontology originates in philosophy and is a branch of metaphysics concerned
with the nature of existence, including the relationships between entities and categories.
This also includes the question of which entities exist and how they can be grouped or
subdivided according to their similarities and differences.

In computer science, the term refers to the representation of knowledge as a set of
concepts within a specific domain and the relationship between these concepts. One
of the most prevalent and most cited definitions of an ontology is that of Gruber [3, p.
199], who defines an Ontology as an ’explicit specification of a conceptualization’. Studer

12

et al. [4, p. 184] extended that definition stating that ’An ontology is a formal, explicit
specification of a shared conceptualization’ also including Borst [5] definition who added
that the conceptualization should be expressed formally, i.e., machine-readable, as well as
it should be a shared view rather than an individual view. Figure 2.2 shows an example
of a simple ontology and some sample instances. It offers some conceptualization in the
Pop Music domain and the respective relationships.

Thing

Guitar

subClassOf

Drummer

Guitarist

Musician

contains

(max 1)

Solo Artist

Act

Band

Rock Band

subClassOf

subClassOf

subClassOf
subClassOf

memberOf

a

Ringo Starr

a

The Beatles

a

Roger Waters Pink Floyd
a

memberOf

Figure 2.2.: Example of an Ontology. Source: [1, p. 24]

Although ontologies sometimes include individuals or instances, as seen in Figure 2.2, use
the same languages (RDF, RDFS, etc.) and tools they are distinct to knowledge bases
[6]. Knowledge bases build upon ontologies. Ontologies provide the building blocks, i.e.,
the vocabulary and the formal specification of that vocabulary, to create a knowledge
base. This distinction is not always apparent, as individuals can belong to an ontology.
As an example, Vienna, as an instance of the class City, can be part of a tourist ontology,
whereas a specific train connection to that city is not [6].

Ontologies are usually expressed in an ontology language, which offer pre-set rules and
constructs for expressing knowledge semantically. Figure 2.3 illustrates this spectrum.
Ranging from simple lists and glossaries that provide a way of sharing knowledge in
natural language to aid information exchange, but the semantics are not captured [1],
[7]. Taxonomies enable the hierarchical structuring of the data. Thesauri extend that
structure by allowing other statements about the concept to be made. For more semantic
richness, conceptual models and logic theory can be utilized. Ontologies expressed as
a conceptual model introduce a distinction between classes and individuals as well as
generalize relations. Ontologies as conceptual models are the basis for machines to infer

13

information based on concepts and relations. Logical theory ontologies can be viewed as
conceptual model elements focusing on real-world semantics and extending these models
with axioms and rules.

Glossary
List

Relational

model

ER

Schema

Data Dictionary

Extended ER

UML

RDFS

OWL

Description Logic

First Order Logic

Taxonomy

Thesaurus

Conceptual Model

Logic Theory

Ex
pr

es
si

ve
ne

ss
 (A

bi
lit

y
to

 R
ep

re
se

nt
 S

em
an

tic
s)

Formality (Reasoning Capability)

Figure 2.3.: Ontology Spectrum. Source: Adapted from [7]

2.2.1. Ontology Types

Ontologies can be classified according to their level of dependence on a specific task or
viewpoint [8]. Figure 2.4 shows this classification.

• Top-Level ontology or Upper Level Ontologies are used to describe general
concepts common to all domains, i.e., time or events. These ontologies offer the
highest level of re-usability as they are independent of a particular problem or
domain.

• Domain ontology and task ontology represents knowledge about a generic
domain, such as medicine or biology, or a task, such as selling.

• Application ontology are developed with a specific domain or task in mind.
These often combine specializations of both the corresponding domain and task
ontologies.

14

top-level ontology

domain ontology task ontology

application ontology

Figure 2.4.: Classification of different types of ontology. Source: [8, p. 145]

2.2.2. Methodologies for Ontology Development

Ontology development methodologies guide the process of the construction of an ontol-
ogy. Ontologies can either be built from scratch or by reusing other available ontologies.
Several specific methodologies for ontology development exist. The following gives a
compact overview of some of the most popular methodologies.

METHONTOLOGY [9] is one of the first methodologies that was influenced by soft-
ware engineering methodologies [10]. It presents a prototyping life cycle by defining
a set of activities to build ontologies from scratch. These activities include require-
ment specification, knowledge acquisition, domain conceptualization, integration,
implementation, evaluation, and documentation. METHONTOLOGY includes a
list of activities to reuse ontologies. However, it does not provide a detailed guide-
line for such a process. In general, METHONTOLOGY is a versatile approach
for creating ontologies that simplifies the process of modifying and expanding the
ontology for developers.

Ontology Development 101 [11] is an iterative method using seven steps to develop
an ontology. After an initial development phase, the guideline highlights revising
and refining the developed ontology. The proposed steps include the definition
of domain and scope, reuse of existing ontologies, enumeration of essential terms,
define classes and hierarchies, the definition of class properties, the definition of
facets to the classes, and the creation of instances. The methodology uses a simple
example to emphasize each step. Furthermore, the authors use Protégé-2000 [12]
as an ontology development tool.

The NeON Methodology [13] is a scenario-driven ontology engineering framework. It
uses the so-called divide and conquer strategy by breaking the general problem
into smaller sub-problems. The methodology describes nine scenarios composed of
processes and activities such as the potential for ontology reuse, resources available,
and intended application [1]. The NeON methodology promotes the development

15

of "ontology networks," which are collections of focused ontologies interconnected
to accomplish a specific task. Besides the scenarios, the NeOn methodology defines
two +ontology life cycle models. A waterfall model where concrete stages must be
completed before the next stage. This model assumes that the requirements are
completely known since backtracking is not allowed until the maintenance phase.
The iterative-incremental model comprises several iterations, where each iteration
uses a waterfall model.

2.3. Semantic Web Stack

According to the World Wide Web Consortium (W3C), the Semantic Web ’provides a
framework that allows data to be shared and reused across application, enterprise, and
community boundaries’ [14]. It is an extension to the World Wide Web and aims to make
Internet data machine-readable, thus creating a web of data rather than documents. The
intended meaning, i.e., the semantics, is explicitly specified in a machine-processable
form to achieve this. This formal semantics enables the system to conclude from the
information based on its context [15]. The so-called Semantic Web Stack, as depicted in
Figure 2.5, illustrates the technologies and principal languages enabled in the semantic
web. Each layer exploits the features of the levels beneath it.

In this section, a brief overview of the lower layers, i.e., Identifiers, Characters and
Syntax is given, as well as a short overview over the top and side of the stack. The core
technologies are covered in more detail in the following sections.

Identifiers (URI/IRI) Characters (Unicode)

Syntax (XML/Turtle/XHTML/JSON)

Data Model (RDF)

Querying & Rules

(SPARQL & RIF)

Schema & Ontology:

(RDFS & OWL)

Proof

Unifying Logic

Trust

C
ryptography

Figure 2.5.: The Semantic Web Stack. Source: Adapted from [16, p. 7]

16

Characters: Unicode builds the basis for the Word Wide Web and thus the Semantic
Web as it is the default encoding of HTML and XML. It provides a standard for
representing text by assigning a unique number to every character. It allows the
exchange of text data internationally without corruption and is implemented in all
modern operating systems and computer languages [17].

Identifiers: A Uniform Resource Identifier (URI) is a string of characters used to identify
an abstract or physical resource [18]. The most common URI is a Uniform Resource
Locator (URL). It is used to identify a location on the internet and specifies how
it can be accessed [19]. The other type of identifier is a Uniform Resource Name
(URN). URN are used to independently and persistently identify the same resource
over time, unlike a URL [20]. A valid URI can only consist of ASCII characters.
To overcome this problem, the Internationalized Resource Identifier (IRI) has been
defined as a complement to URI. An IRI can contain any sequence of Unicode
characters [21]. Figure 2.6 shows the relation among IRI, URI, URL and URN.

URL URN

IRI
URI

Figure 2.6.: Relation among IRI, URI, URL and URN. Adapted from [22]

Syntax: The syntax of a language defines the set of rules for the structure of that
language. This allows a computer to parse content automatically. Generic syntaxes
such as XML and JavaScript Object Notation (JSON) are widely used in modern
systems and the current web. Although these syntaxes allow for legacy tools and
can be utilized in the semantic web, custom syntaxes, i.e., Turtle, have been created
[16]. Section 2.3.1 will discuss some of these syntaxes.

Querying and Rules : Like data stored in a relational database, data encoded in RDF
needs to be queried and processed according to some rules. The current stan-
dard to query Resource Description Framework (RDF) data is SPARQL Protocol
And RDF Query Language (SPARQL). SPARQL provides a way to write queries
ranging from simple graph pattern matching to complex queries [16], [23]. Rule
Interchange Format (RIF) is the current standard format for interchanging rules
over the Web and was developed to facilitate rule set integration and synthesis.
[16], [24].

17

Unifying Logic: The role of the unifying logic layer is to act as an interoperability layer
and to enable the lower-level technologies to be used as a whole [16].

Proof: One idea of the semantic web is to enable software agents to combine data from
different, decentralized sources and apply reasoning and querying to accomplish a
goal. With the proof layer, the agent should also be able to answer how it concluded
the decision. This proof could be used by a client to validate the procedure or
information used [16],[25].

Trust: This layer refers to the trust in the information source, not the trust in the
decision itself, as it is with all automated decision-making. This layer is strongly
linked with the proof layer beneath it since it defines which data sources can be
trusted in a proof [16],[26].

Cryptography: Cryptography covers all layers of the semantic web, indicating that it
is somewhat relevant for all technologies. In terms of enabled technology, these
can be borrowed from the standard web, such as digital signatures, public-key
encryption/decryption algorithms, or secure protocols [16].

2.3.1. Resource Description Framework

The Resource Description Framework (RDF) is one of the core technologies of the se-
mantic web. It enables systems to share data over the internet while still preserving their
original meaning. In contrast to XML, RDF is a data model rather than a serialization
format. XML represents data in a tree structure, therefore presenting data in an ordered
hierarchical structure. RDF, on the other hand, represents data as a set of triples. A
triple models two entities or concepts, called a Resource, and their relationship in the
form of Subject, Predicate, and Object [1] as shown in Figure 2.7.

Predicate
Subject Object

Figure 2.7.: Basic RDF triple.

Consider the statement ’Isaac Newton is a physicist’, Listing 2.1 and 2.2 show two
valid ways of modeling that statement in XML. Listing 2.3 shows the same statement
encoded in RDF. The triples in Listing 2.3 are informally expressed in pseudo-code.
The examples show that there are multiple ways to encode data with XML, whereas,
with RDF, there is only one possible way suggesting that the former is more syntactic
and the latter more semantic [15].

18

Listing 2.1: Example-1 XML Markup
<person >
<name >Isaac Newton </name >
<job >physicist </job >
</ person >

Listing 2.2: Example-2 XML Markup
<person name="Isaac Newton ">
<job >physicist </job >
</ person >

Listing 2.3: Example-3 RDF Markup (Pseudocode)
<person1 > <is a> <Person >.
<person1 > <name > <" Iscaac Newton ">.
<person1 > <job > <" physicist ">.

As mentioned above, RDF is a data model used to make statements about resources.
A set of triples is called an RDF Graph, which can be visualized as a directed labeled
graph where subjects and objects are drawn as labeled vertices and predicates as directed,
labeled edges [16]. Vertices or nodes are either IRIs, literals, or blank nodes [27]. Edges
are denoted as IRI. Literals are basic values that are not IRIs and can only appear in
the object position of a triple. Literals can be associated with a data type. [27] provides
a non-exhaustive list of datatypes which, in addition to defining its own, re-uses the
XML schema build-in datatypes such as boolean, integer and date. + RDF is limited to
only represent binary relationships, i.e., one subject, one object. This makes modeling
some real-world phenomenon difficult. There are two mechanisms to help model n-ary
relations. RDF Reification decomposes RDF triple into separate RDF entities. In that
way, it is possible to make statements about statements. Another solution is using blank
nodes as an intermediate resource.

Figure 2.8 shows an RDF-Graph with all three node types.

19

http://example.org/person1

England London Jermyn Street

http://example.org/terms/streethttp://example.org/terms/country

http://example.org/terms/adress

Isaac Newton

http://example.org/Class/Person

http://example.org/terms/name

http://example.org/terms/is_a

http://example.org/terms/city

Figure 2.8.: RDF-Graph.

RDF Serialization

RDF is defined as an abstract syntax, i.e., it is independent of a particular concrete
syntax. There are a number of different serialization formats [28]. Serializations of the
same graph results in the same triples, therefor these different syntaxes are logically
equivalent [28]. In this section, a short overview of the following formats is given. All
examples use the same example as in Listing 2.1 to 2.3

1. The Turtle family of RDF languages (N-Triples, Turtle, TriG, and N-Quads)

2. JSON for Linking Data (JSON-LD)

3. RDF/XML

Turtle family of RDF languages: These formats are closely related. N-Triples pro-
vides a basic plain-text syntax to represent triples [28]. Each line represents a
triple statement, whereby each IRI is enclosed by angle brackets (< >), and liter-
als are set in quotes ("") and separated by whitespace [28]. Each line is terminated
by a dot (.). Listing 2.4 shows an N-Triples example.

Based on the N-Triples syntax Turtle extends it with several shortcuts such as the
definition of prefixes to shorten IRIs and a shorter way of expressing triples with
the same subject [28]. The most common abbreviation besides the use of prefixes
is the shortcut for the definition of rdf:type, which can be written as a. Listing 2.5
shows a Turtle example.

Turtle only allows specifying a single graph without naming it. TriG extends the
turtle syntax with that feature to specify multiple graphs in the form of an RDF
dataset [28].

N-Quads is the last concrete syntax of that family. It extends N-Triple to enable
the exchange of RDF datasets by adding a fourth element to the triple, which
defines the graph to which the statement belongs.

20

JSON-LD: JSON-LD, as the name suggest, is based on the JSON standard and allows
systems which already utilize JSON to handle RDF data with minimal changes
[29]. Just like other concrete syntaxes, JSON-LD offers universal identifiers to
identify JSON objects as well as data typing, language referencing, and named
graph support [28]. Listing 2.6 illustrates a JSON-LD serialization.

RDF/XML: RDF/XML was the first syntax developed for RDF. Although it uses two
fundamentally different concepts, i.e., XML like tree structure and triple-based
graphs, it is still widely used. Triples are specified within a XML element as
shown in Listing 2.7.

Listing 2.4: N-Triples
<http :// example .org/person1 > <http :// www.w3.org /1999/02/22 - rdf -

�→ syntax -ns#type > <http :// xmlns.com/foaf /0.1/ Person > .
<http :// example .org/person1 > <http :// xmlns.com/foaf /0.1/ name > "

�→ Isaac Newton " .
<http :// example .org/person1 > <http :// schema .org/jobTitle > "

�→ Physicist " .

Listing 2.5: Turtle
@prefix foaf: <http: // xmlns.com/foaf /0.1/ > .
@prefix schema: <http: // schema .org/> .

<http: // example .org/ person1 >
a foaf: Person ;
foaf: name "Isaac Newton ";
schema: jobTitle " Physicist ".

Listing 2.6: JSON-LD
"@context" : {
"schema" : " http: // schema .org/",
"foaf" : "http: // xmlns.com/foaf /0.1/ name"},

"@id": "http: // example .org/ person1 ",
"@type" : "http: // schema .org/ Person ",
"foaf:name" : "Isaac Newton ",
"schema:jobTitle" : " Physicist "
}

21

Listing 2.7: RDF/XML
<?xml version ="1.0" encoding ="utf -8" ?>
<rdf: RDF xmlns:rdf ="http: // www.w3.org /1999/02/22 - rdf -syntax -ns#"

xmlns:foaf =" http: // xmlns .com/foaf /0.1/ "
xmlns:schema ="http: // schema .org/">

<foaf:Person rdf: about="http: // example .org/ person1 ">
<foaf:name >Isaac Newton </ foaf:name >
<schema:jobTitle >Physicist </ schema:jobTitle >

</ foaf:Person >
</rdf: RDF >

To illustrate any RDF example and idea in this thesis, Turtle notation is used.

2.3.2. RDF-Schema

RDF Schema (RDFS) is a semantic extension of RDF that enables grouping related
resources in classes and describing the nature of their relationships [30]. It is the most
basic schema language in the semantic web and can be expressed in every concrete RDF
syntax. It also provides the basics to infer additional information from instance data
[1]. The following is a brief overview of the most notable characteristics. Note that the
prefixes rdf: and rdfs: denote the corresponding namespace.

rdf:type states that a resource is an instance of a class [30]. Although defined in the
RDF vocabulary, the semantics of rdf:type are only specified within the RDFS
specification.

rdfs:Class refers to the class of all classes and is used to classify resources [30]. Explicit
stating that a resource is a class is optional, since the statement that a resource is
of rdf:type makes that type a class [15].

rdf:Property is the class of all properties [30]. It is used to link resources to one another,
i.e., the predicate in an RDF triple [27]. Just like rdfs:Class, it doesn’t have to be
explicitly stated [1].

rdfs:subClassOf offers the ability to create a hierarchical structure of classes. Even
though not explicitly stated in the W3C recommendation, the definition of a sub-
class enables the inheritance of properties with its domain and range from its
superclass.

rdfs:domain and rdfs:range are both instances of the property class [30]. rdfs:domain
denotes that a resource with a given property is an instance of a specific class.
rdfs:range, on the other hand, states that the value of a property is an instance of
a class.

22

Listings 2.8 to 2.9 show examples of RDFS-statements and the knowledge that can be
inferred. Note that the prefixes have been omitted for better readability.

Listing 2.8: RDFS example
ex: Textbook rdf: type rdfs: Class ;

rdfs: subClassOf ex: Book.
ex: Book1 ex: title " Principia Mathematica ";

a ex: Textbook .

infers

ex: Book rdf: type rdfs: Class.
ex: Book1 rdf: type Book.

Listing 2.9: Demonstration of Inference based on rdfs:domain:and rdfs:range
ex: writtenBy rdfs: domain ex: Author ;

ex: range ex: Book.
ex: Book1 ex: writtenBy ex: IsaacNewton .

infers

ex: IsaacNewton a ex: Author .
ex: Book1 a ex: Book.

2.3.3. Web Ontology Language

RDFS allows to define simple ontologies and permits to infer new knowledge from that
statements. However, it is impossible to model more complex statements [15]. For that
purpose, the W3C introduced Web Ontology Language (OWL), and it became the de
facto standard for modeling ontologies, and the current recommendation refers to its
version 2 (OWL 2). OWL 2 is usually noted as RDF but there are other syntaxes, e.g.
Manchester Syntax [31]. With this standard, there are two alternative ways of assigning
meaning to ontologies. The direct model-theoretic semantics, called OWL 2 DL and
RDF-based semantics, called OWL 2 Full. OWL2 DL assigns meaning based on the
SROIQ description logic. OWL 2 Full is an extension of RDFS semantics and views on-
tologies as RDF graphs. In addition, OWL 2 DL defines three sublanguages, or profiles,
(OWL 2 EL, OWL 2 QL, and OWL 2 RL) in order to suffice for a variety of applications.
Each profile is more restrictive than OWL 2 DL and provides different expressive power
to benefit the efficiency of reasoning [32]. Figure 2.9 compares these profiles with other
ontology languages. In this thesis, the focus lays on the full expressiveness OWL2 Full.
A small subset of the features provided by OWL 2 are summarized in the following.

owl:ObjectProperty is a subclass of rdf:Property. It is a so-called abstract role con-
necting individuals with individuals.

23

owl:DataProperty is a subclass of rdf:Property. It is a substantial role that connects
individuals with data values.

owl:inverseOf states that a property is the inverse of another property. The inverse
property connects the same two individuals but in the other direction.

owl:FunctionalProperty states that a resource can, at most, be one connection to an-
other resource of a specific type. If two resources are named, this implies that
these two resources refer to the same resource.

owl:TransitivProperty states that an object property is transitive, i.e., that each ele-
ment in such a relationship is connected to elements further down that relation.

owl:sameAs notes that two resources refer to the same thing. This property can be
used if different IRIs are used for the same thing.

owl:SymmetricProperty is a class where all its members are used to specify bidirec-
tional relations.

Computational Complexity

Entity Relationship
Relational

XML
RDF

Semantic Expressivness

Syntactic Flexibility

RDFS
OWL QL

OWL EL

OWL RL
OWL DL

OWL FULL

Simple Intractable

Figure 2.9.: Expressivity Characteristics of OWL Profiles. Source: [1, p. 14]

OWL is designed to support the Open-Word Assumption (OWA), allowing incomplete or
uncertain information to be handled. The OWA means that the absence of information
about an individual or a relationship does not necessarily imply that it does not exist.
In contrast, relational databases operate under the Closed-World Assumption (CWA),
where a missing value indicates falsehood [1]. For example, if we wanted to model the
relationships between people in an OWA system, one can state that’John and Mary are
married’. For all other individuals in our ontology, this information is unknown. In an
CWA system, this information would lead to the conclusion that all other individuals
are not married.

Another key characteristic of OWL is the No Unique Name Assumption (UNA). The
assumption is that two entities with different IRIs are not to be unique. Generally, two
entities are not two separate resources unless it is explicitly stated that the two resources

24

are different. As an example, if we wanted to model the relationships between people,
one could say ’Bob has friend Mary’ and ’Bob has friend John’. If we ask the question
’How many friends does Bob have’, the system can only say at least one since we did
not explicitly state that Mary and John are different individuals.

2.4. Digital Twins and Modular Simulation

Since the first mention of the Digital Twin (DT) by Michael Grieves in 2002, [33] the DT
gained traction. In its initial definition, the DT was such that it only mirrored a product.
At the same time, the current state of the art also allows processes to be represented
in the virtual space to gain the same benefits [34]. The DT is considered a key enabler
for Industry 4.0 since it provides the means to connect the physical and virtual spaces.
In the literature, there are a couple of different concepts and solutions of a DT, due to
this Kritzinger et al. [34] categorized different concepts into three categories based on
their level of integration. Each category builds upon the previous and can be viewed as
part of the development process of a DT. Besides creating a virtual representation, the
definitions of interfaces for data exchange and other services are also part of developing
a DT.

Digital Model has no automated data exchange between virtual and physical space, as
seen in Figure 2.10. It is, therefore, a virtual copy of a planned or existing entity.
This could be a simulation or mathematical model of a planned entity or any other
physical object without automated data exchange.

Physical
Model

Digital

Object

Manual Data Flow

Automatic Data Flow

Figure 2.10.: Digital Model. Source: [34, p. 1017]

25

Digital Shadow is a virtual representation of a physical entity with an automated way
to exchange data. However, this data flow is limited to one way, i.e., a state
change in the physical world leads to a change in the virtual world but not vice
versa. Figure 2.11 shows this one-way data flow.

Physical
Model

Digital

Object

Manual Data Flow

Automatic Data Flow

Figure 2.11.: Digital Shadow. Source: [34, p. 1017]

Digital Twin extends the connection of the Digital Shadow further. Here the automated
data exchange can be both ways. A change in state in either entity can change
the state of the other and therefore affect each other. This automated exchange
of data can be seen in Figure 2.12.

Physical
Model

Digital

Object

Manual Data Flow

Automatic Data Flow

Figure 2.12.: Digital Twin. Source: [34, p. 1017]

Modern systems are often composed of individual components. As each component can
be modified individually, the simulation model can be complex [35]. Moreover, such
systems seldom cover only one domain. These problems make it impossible to cover a
full-system model and require individual models from different modeling tools. Thus
resulting in a modular multi-domain DT. The Functional Mockup Interface (FMI)
standard provides a standardized interface for such modular models to develop complex
systems. Full system models can be assembled from individual Functional Mockup
Units (FMUs). This FMU is a ZIP archive containing binaries and/or the source code
as a set of C-functions implementing the Application Programming Interface (API)
functions, an XML file containing the definition of the variables, model structure as well
as additional data such as documentation, maps, and tables used by the model [36], [37].
FMI defines three interface types:

Model Exchange is intended to share a simulation model to be utilized by other mod-
eling and simulation environments. With this method, the importer has to handle
advancing time, setting states, handling events, etc.

26

Co-Simulation is used to link two or more simulation tools as well as the coupling of sub-
system models. This method includes the export of the solvers themselves. Master
algorithms ensure the data exchange between subsystems, but this exchange is lim-
ited to discrete communication points. During those discrete intervals, the models
are solved independently from each other by their respective solvers.

Scheduled Execution allows for concurring computation of model partitions on a single
computational resource. The scheduler has to be provided by the importer and is
responsible for advancing the overall simulation time, activating time-based and
triggered clocks for all exposed model partitions.

User
p w

FMU

t 	time
p 	parameter

u 	input
y	 output
w 	 local variables
z 	 event indicators
xC 	 continuous states

Solver

u y

t xC ẋc, z

(a) Model Exchange

User
p w

FMU

Model Partition
t 	time
p 	parameter

u 	input
y	 output
w 	 local variables
z 	 event indicators
x 	 states

Scheduler

u y

t

Model Partition
t 	time
p 	parameter

u 	input
y	 output
w 	 local variables
z 	 event indicators
x 	 states

t ...

...

(b) Scheduled Execution

User
p w

FMU
t	 	time
h	 communication step size
p 	 	parameter
u 	 	input
y 	 	output
w 	 	local variables
z 	 	event indicators
xC 	 continous states

Co-Simulation Algorithm

u y

t, h

t
Solver/Scheduler

xC
ẋc

,Z

(c) Co-Simulation.

Figure 2.13.: Schematic view of data flow for each interface.
Source: Adapted [38, p. 17-18]

27

2.5. Related work

This section outlines the current state of the art of different (semantic) data models to
describe the railway domain, focusing on different aspects of the domain and motivated
by different use cases and the application of semantic web technologies for multi-domain
systems and (distributed) Digital Twins.

2.5.1. Railway Domain

Data interoperability in the railway domain presents some difficulties as it typically in-
volves many subsystems. To overcome these interoperability problems, both company-
specific and industrial consortium multi-domain data models were proposed. Such mod-
els include the Unified Modeling Language (UML) based RailTopoModel1. A data model
developed by the industrial consortium and standardized as IRS30100 by the Interna-
tional Union of Railways (UIC). The model provides a way of describing the topological
aspects of the railway domain and is currently implemented in RailML2 and EULYNX 3.
However, according to Rojas et al. [39], most of these models lack semantic definitions
and therefore hinder the data exchange across organizations.

The usage of semantic technologies in the railway domain was already established in
the past. InteGRail was one of the first European Union (EU) project utilizing an
ontology to integrate railway subsystems. The resulting Railway Domain Ontology was
used to build a Proof-of-Concept platform to augment the data with context so that
a structured and meaningful exchange of information between railway stakeholders is
supported [40]. Another EU project that utilized semantic technologies is Smart Rail4,
a lighthouse project for the EU Shift2Rail5 initiative to seek focused research in the
railway domain. Smart Rail focused on modeling stakeholders and physical resources of
the railway infrastructure. For this purpose, an ontology6 was developed.

Semantic Transformations for Rail Transportation (ST4RT)7 is another project under
the Shift2Rail initiative. The project aimed to provide an ontology-based demonstrator
tool that can enable the transformation between different standards and protocols, re-
sulting in enhanced semantic interoperability between disparate, heterogeneous legacy
systems. The Rail Core Ontology (RaCoOn) was initially developed for the representa-
tion of signaling and rail infrastructure, and the ontology transformed into a more general
model covering more generic railway concepts [41]. Rail Core Ontology (RaCoOn) has a
layered approach extending the core model with subdomains, i.e., timetabling or rolling

1https://www.railtopomodel.org/homepage.html
2https://www.railml.org/en
3https://eulynx.eu/
4https://smartrail-project.eu
5https://rail-research.europa.eu
6https://ontology.tno.nl/smart-rail
7http://www.st4rt.eu

28

https://www.railtopomodel.org/homepage.html
https://www.railml.org/en
https://eulynx.eu/
https://smartrail-project.eu
https://rail-research.europa.eu
https://ontology.tno.nl/smart-rail
http://www.st4rt.eu

stock, as well as an upper-level model to define concepts more broadly than just the
railway domain, e.g., transport. Bischof and Schenner [42] highlight the need for an
open standard ontology for railway topologies based on existing standards such as the
aforementioned RailTopoModel. The authors propose the Rail Topology Ontology8 as a
way of integrating disconnected data sources for railway topologies [43]. One of the most
recent projects applying semantic technology was carried out by Rojas et al. [39] in coop-
eration with European Union Agency for Railways (ERA). ERA is a European authority
assigned to provide the legal and technical framework to integrate European railway sys-
tems by making trains safer and able to cross national borders without stopping. Rojas
et al. [39] presented an ontology9 for the railway infrastructure and authorized vehi-
cle types, a reusable Knowledge Graph describing the European railway infrastructure.
This cost-efficient system architecture enables high flexibility for use case development
and an RDF Web application to support route compatibility checks10.

All of these approaches remained academic exercises, with the exception of the ERA
project. The ontologies that were created have become unmaintained or are no longer
available.

2.5.2. Multi Domain Simulation and (distributed) Digital Twins

As mentioned in Section 2.4, a DT can be composed of multiple different DT and,
therefore, multiple simulations. This can often result in distributed and heterogeneous
data sources and different stakeholders. According to Moshrefzadeh et al. [44], such
systems can be called distributed DT. The authors developed a concept focused on the
data integration process by providing a data catalog as a registry for resources of all types
and their stakeholders. This concept is based on the Data Catalog Vocabulary (DCAT)
version 2 standard. An InformationResource is defined as a general class for all types
of resources and holds information about that resource. The Distribution class is used
to control the accessibility of a resource and specific representation of a dataset. Links
between different Resources are realized with the class Relationship, which specifies
InternalLink and ExternalLink depending on whether the resource is registered in the
catalog or not. Stakeholders are managed with the User and the Organization classes.

Kasper et al. [45] proposed a DT platform for the industrial energy system domain. A
five-dimensional DT modeling approach is used for the platform. For each dimension,
physical space, virtual entity, service dimension, data dimension, and connection, the
implementation issues are addressed, and a universal solution is proposed. Focusing on
the virtual entity dimension, the authors defined the FMI standard as an interface for
accessing the metadata of model instances. Including a metadata file, which contains

8https://w3id.org/rail/topo
9https://data-interop.era.europa.eu/era-vocabulary

10https://data-interop.era.europa.eu/route-compatibility

29

https://w3id.org/rail/topo
https://data-interop.era.europa.eu/era-vocabulary
https://data-interop.era.europa.eu/route-compatibility

descriptions of the connection types, alongside the FMU data, provide enough informa-
tion to describe the virtual entity. In the data dimension, the added semantic data is
used to build a so-called Knowledge Graph (KG), a knowledge-based system consisting
of an ontology and a built-in reasoner capable of acquiring and integrating external in-
formation sources. The KG holds several ontologies that describe different parts of the
DT platform, i.e., plant equipment, topology, and instrumentation. A mapping between
the relational database structure allows for ontology-based data access, where the data
can be stored in the original local database while utilizing the ontology’s capability to
make the implicit knowledge explicit. Rather than develop a new ontology, existing
ontologies are integrated into the platform, including the Sensor, Observation, Sample,
and Actuator (SoSa)11 ontology or the Ontology for Computer-aided Process Engineer-
ing (OntoCAPE)12. To store the semantic data, i.e., the instances created with the
ontologies, the RDF framework RDF4J13 is used. The Java framework provides an easy
way of storing, querying, and reasoning with RDF data.

Nordahl et al. [46] presented a method to automatically connect variables of different
simulation models using an ontology-based approach. The used marine systems model
interface (MSMI) ontology14, a part of the Open Simulation Platform (OSP) Interface
Specification, captures all necessary information surrounding connections between simu-
lation models as can be seen in Figure 2.14. This information can be used to infer valid
connections between simulation models.

unit_type

force_unit

velocity_unit

variable

causality

output_causality

inputcausality

variable_group

port

linear_mechanical_port

force_group

velocity_group

has_unit

has_causality

has_mate
has_variable_member

has_variable_group_member

has_mate

SI_base_unit

Figure 2.14.: Central concept of the MSMI ontology. Source: [46]

11https://www.w3.org/TR/vocab-ssn/
12https://www.avt.rwth-aachen.de/cms/AVT/Forschung/Sonstiges/Software/~ipts/OntoCape/
13https://rdf4j.org/
14https://data.dnv.com/osp/

30

https://www.w3.org/TR/vocab-ssn/
https://www.avt.rwth-aachen.de/cms/AVT/Forschung/Sonstiges/Software/~ipts/OntoCape/
https://rdf4j.org/
https://data.dnv.com/osp/

The ontology defines a variable concept, which contains a unit, causality, and data
type. This variable can be linked together by the property has_mate. This connec-
tion is only valid if the two variables have opposite causality, identical data types, and
compatible units. Multiple variables logically belonging together can be grouped in a
variable_group, whereas a variable group can also contain other variable groups. These
groups have a type that denote their semantic meaning. Ports, a specific type of a
variable_group, are used to model two variable_groups with opposing causality. This
concept enables the authors to model bonds from bond graph theory. An important
part of the ontology is the unit definition since it allows for validation and restrictions
of connection of two different variables. Nordahl et al. [46] used the Units of Measure
ontology15 and the concepts from the FMI standard to detect if the units match or can
be converted to the same base unit. With the explained ontology and a suitable reason-
ing system, the authors were able to obtain answers to different types of queries, such as
Given variable group A and B, are they compatible? or List all variable groups of type
C. In addition, they showed the potential of a graphical modeling tool to automate the
validation process of an already configured simulation or identify valid connections.

Mitterhofer et al. [47], [48] describes the structure and usage of the FMUont an ontology
for annotating FMUs and automatically infer the simulation topology of an arbitrary
number of contributing simulation modules. Figure 2.15 shows the structure of the
FMUont.

:Parameter

:AnnotatedElement

:FMU

:InputVariable :OutputVariable

:Simulation

:TopologyElement

:Medium
:Quantity :Unit

:SemanticType

:isConnectedWith
:isComposedOf

:hasInputVariable :hasOutputVariable

:hasAffiliationTo

:hasMedium :hasUnit:hasQuantity

:hasSemanticType

:hasParameter

Nomenclature:

rdfs:subClassOf
owl:ObjectProperty

owl:Class

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX : <http://www.ibp.fraunhofer.de/ns/FMUont#>

Figure 2.15.: Structure of FMUont. Source: [48]

The ontology’s core concept is the FMU class, representing a single FMU simulation
15http://www.ontology-of-units-of-measure.org/

31

http://www.ontology-of-units-of-measure.org/

environment. Multiple FMUs are combined to a Simulation. InputVariable, OutputVari-
able and Parameter are related to their associated FMU instance via the corresponding
object property. InputVariable and OutputVariable are further connected to each other
via the isConnectedWith property and are subclasses of the AnnotatedElement class.
To provide more detailed information about the variables and parameters, the Medium,
Unit, and SemanticType classes are added. For the Unit and Quantity description, the
authors reuse the ontology of units of measure16. SemanticType are required to give a
precise meaning to input and output data points and include WeatherData, Heating, or
Ventilation. In addition to that description, a hasAffiliationTo property links variables
to their corresponding object in a system-level ontology. In the discussed work, the au-
thors are building performance simulation-specific ontology. Furthermore, a Graphical
User Interface (GUI) is presented to provide information about the input and output
variables and guides the planner through the annotation process. The resulting anno-
tation file is stored as an .owl file alongside the original FMU files. To build a modular
simulation environment, the .owl file is extracted and merged to infer matches based on
the required in- and output variables.

Wiens et al. [35] discussed the strategy of building digital twins from individual FMUs
with predefined model interfaces based on an ontology for renewable energy systems.
The authors put forward a framework to enable the automation of the model assembly
process. The ontology, as a core part of that framework, defines adapters that map
the in- and outputs of the simulation model to a predefined connector structure where
the connectors specify which models or components are compatible with each other. A
controller contains a list of signals including measurements and directions. Compatible
connectors must have matching units and opposing directions. An example of the system
ontology and interaction of components can be seen in Figure 2.16, and an example of
a connector instance can be seen in Figure 2.17.

Simulation_1

Wind_Turbine_1 Controller_1

UseCase

Wind_Turbine Controller

Component

Connector_B Connector_A

Connector

rdf:type

rdf:type rdf:type

:simulates :simulates

:isConnected
:isConnected

rdfs:subClassOf
rdfs:subClassOf

:hasConnector
:hasConnector

rdfs:subClassOf rdfs:subClassOf
:compatibleWith

:compatibleWith

Figure 2.16.: Example for the system ontology and interaction of components.

16http://www.ontology-of-units-of-measure.org/

32

http://www.ontology-of-units-of-measure.org/

Connector_A Connector

pitchAngle_Out rotorSpeed_In

pitchAngle
out

inrotorSpeed_In

Measurment
Direction

Signal

rdfs:subClassOf

:hasSignal :hasSignal rdf:type

rdf:type

rdf:type
rdf:type

rdf:type

rdf:type

:isMeasurmentOf
:isMeasurmentOf

:hasDirection :hasDirection

Figure 2.17.: Example Connector Instance

The connections between individual models are specified by the user on the top level
and details are handled by the framework. A general description of the process for
the development of model-based digital twins is given. This includes creating a new
simulation model, defining required adapter connection models in the specific modeling
tool based on an ontology, connecting the model to the corresponding adapter and
exporting the model to a FMU, and adding it to the database. To build complex
systems, the necessary components are collected and connected. The communication
adapters are exported to an System Structure and Parameterization (SSP) package.
This package can be handled by an orchestrator to run the simulation.

33

3. Implementation

3.1. Ontology Development

This section presents the methodology used in designing and implementing the ontol-
ogy. None of the earlier work, given in section 2.5 satisfied the requirements, or the
presented ontology is not publicly available. However, ideas were taken from the men-
tioned literature. The design approach adopted in the Rail4Future (R4F) methodology
draws heavily upon some of the modular ontology engineering tasks described in the
NeOn methodology [13]. Figure 3.1 gives an overview of the different scenarios and
included steps in the NeOn methodology. The used approach utilized methods from sce-
nario 1 (From specification to implementation), scenario 2 (Reusing and re-engineering
non-ontological resources), and scenario 3 (Reusing ontological resources). The following
subsections provide a detailed description of the steps taken. Note that all phases include
an evaluation process. This activity is not discussed during the individual phases.

Figure 3.1.: Ontology development processes in the NeOn methodology. Source: [13]

34

3.1.1. Initiation Phase

The first step in the ontology development process is to identify its requirements. The
so-called Ontology Requirements Specification Document (ORSD) supports the devel-
opment of ontology in various ways, including:

1. Help define the knowledge that should be represented in the ontology

2. Assist in reusing knowledge resources by directing the search toward the specific
knowledge resources needed for the ontology

3. Enabling verification of the ontology to ensure it meets the necessary requirements

Figure 3.2 shows the task defined by the NeOn methodology for the ontology require-
ments specification process. The functional requirements are formulated as competency
questions. Competency questions define and limit the scope of knowledge captured in
the ontology and are phrased in natural language. From these questions and their respec-
tive answers, the main concepts and the relation between those concepts, i.e., properties,
can be extracted. They also play a role in the evaluation of the ontology as they form a
requirement specification against which the ontology can be evaluated. Tasks 1 to task
4 are described below. The resulting ORSD can be found in full in Appendix B.1.

Grouping requirements Extracting terminology
and its frequency

Input

Output

Identifying purpose, scope
and

implementation language

Identifying intended end-
users Identifying intended uses

ORSD
Identifying requirements

(functional and non-
functional)

Set of

ontological

needs

Figure 3.2.: Ontology Requirements Specification Process. Source: Adapted from[49]

Identifying the purpose, scope, and implementation language: The purpose of the
R4F Ontology is to provide a consensual knowledge model of the R4F domain to
be used by the operators of the R4F digital twin platform. The ontology not only
has to focus on describing simulation models and their respective input and output
variables but also provide additional information about relevant metadata about
those variables and simulation model for easier data exchange and data integration.
The ontology must be implemented using the OWL language to utilize the first-
order logic based reasoning capability.

35

Identifying the intended end-users: The users of the ontology and the applications
based on it are the following:

User 1. Developer of the digital twin platform with limited knowledge about ontolo-
gies

User 2. Ontology engineers for maintenance and enhancement of the ontology network

User 3. Domain experts who submit simulations to the digital twin platform with
limited knowledge about ontologies

User 4. User of digital twin platform with no ontological knowledge

Identifying the intended uses:

Use 1. Publish information about a specific asset or asset group

Use 2. Searching for information about a specific asset or asset group

Use 3. Assist the automated generation of the simulation topology

Use 4. Automatically verify a given simulation setup

Identifying non-functional requirements: Non-functional requirements are general re-
quirements or aspects the ontology should fulfill. The following non-functional
requirements are defined for the R4F ontology.

NFR 1. The ontology must support a multilingual scenario in the following languages:
English, German

NFR 2. The ontology must be based on standards used in the R4F project

Identifying requirements: Most of the competency questions defined in the R4F are
related to the simulation model and the respective input and output variables
which are the most relevant concept in the presented work. The complete list of
the competency questions is included in Appendix B.1. Some examples are:

QC1. What is the name of the simulation model?

QC3. What versions exist of the simulation model?

QC7. What aspect of the R4F domain does the simulation model?

QC8. To which model does a variable belong?

QC9. What is the causality of a variable?

QC11. Do variable A and variable B have the same base unit?

From the competency question, the terminology is extracted. This is represented by the
ontology by means of concepts, attributes, and relations. A list of identified terms can
be found at the bottom of the ORSD in Appendix B.1.

36

3.1.2. Reuse and Re-engineering Phase

The process of reusing and re-engineering phase can benefit the ontology development
process. Mainly because it can increase the quality of new ontologies by using already
tested components. Mapping between two ontologies that use the same concepts be-
comes easier. This phase can be split into two parts, the reusing phase and the re-
engineering phase. Figure 3.3 shows the reuse phase in detail. When reusing existing
components, one can divide those into three main categories: General ontologies, domain
ontologies, and non ontological resources (NOR), i.e., classification schemes, thesauri, or
glossaries.

Search for
Domain

Ontologies

Domain
Ontology

Assesment

Search non-
ontological
resources

Evaluate
Terminology

ORSD suitable

candidate ?

statement reuse ?

sufficient

consensus ?

Identify the most
significant definitions

and axioms

Evaluate
Terminology

No

No

No

Set of selected
domain/general

ontologies

Set of selected
statements

Yes

Yes

Set of selected

NOR

Yes

Identifying the type of
general ontology to

be reused

Domain

 Ontology ?

No Yes

Figure 3.3.: Ontology Reuse Process.

General ontologies cover a broad range of concepts and entities not constrained to partic-
ular domains and can therefore be reused in different domain ontologies. Such ontologies
cover concepts like time, space, or events. Domain ontologies, on the other hand, focus
on a specific subject area. When reusing general or domain ontologies, it is sometimes
not practical to reuse the ontology as a whole, since it may contain a large amount
of knowledge that may not be needed when developing a particular ontology. In this
case, only some knowledge, e.g., statements, can be reused. Non-ontological resources
are highly heterogeneous in their data model and contents; nevertheless, they present
a good knowledge base to integrate into an ontology as they are usually related to sig-
nificant concepts in a specific domain. As they have not yet been formalized by an
ontology, they need to be re-engineered. The NeOn methodology offers a design pat-
terns library1 to re-engineering non ontological resources into ontologies. The library
includes 12 patterns that can be used to transform the most common non-ontological
resources. Figure 3.4 shows the process of re-engineering adapted for this work. Based

1http//ontologydesignpatterns.org

37

http//ontologydesignpatterns.org

on the ORSD from the previous stage, the reuse and re-engineering process for each of
the mentioned resources is discussed below. Note that the re-engineering process for on-
tological resources in the NeOn methodology is vague, and no clear steps are suggested.
In this work, most of the re-engineering of ontological resources is done by adapting the
definition of the terms to the current domain. This does not pose a problem; however,
this could prove different for other more complex ontology development processes.

Set of selected

NOR

Ontology

Search for a

suitable pattern for
reengineering non-

ontological resources

Is there a

suitable

pattern ?

Use the

pattern to guide

the transformation

Perform

an ad-hoc

transformation

 Manual

refinement Formalize

Implement

yes no

Non-Ontological
Resource

Reverse

Engineering

Non-Ontological
Resource

Transformation

Ontology

Forward

Engineering

Input Output

Information
exploration

Data
gathering

Search for a

suitable pattern

Use the

pattern to guide

the transformation

Figure 3.4.: Non-ontological resource re-engineering process. Source: Adapted from [50]

In the following, the selected general and domain ontologies, the selected non ontolog-
ical resources, as well as the ontologies from where only statements have been used,
are presented. The specifically chosen statements are discussed in the Design Phase
(3.1.3).

General Ontologies: Based on the identified terms in the ORSD, an assessment of
general ontologies is undertaken. Terms such as Author or Publisher suggest that
some kind of agents are responsible for a simulation model. One possible solution
is the Friend of a Friend (FOAF) ontology2. This small ontology describes people
and social relationships on the web. FOAF is descriptive vocabulary expressed
in RDF and OWL. Since FOAF is not only able to describe people, but also
organizations, it is used in the R4F ontology to identify and provide information
about relevant agents. In addition, it is used to provide metadata for documents
such as documentation of simulation models since FOAF does not distinguish
between physical and electronic documents. This additional information would
require an additional self-defined subclass. Another term that would need to be
self-defined, or use existing ontologies, such as the organization ontology3, is a
specific type of relationship between agents, such as affiliation, sub-organization,
or similar. As this is not the aim of the R4F ontology, this is not implemented.

2http://xmlns.com/foaf/0.1/
3https://www.w3.org/TR/vocab-org/

38

http://xmlns.com/foaf/0.1/
https://www.w3.org/TR/vocab-org/

Since the FOAF ontology also defines classes to model online accounts and personal
information, only some terms are reused and implemented in the R4F ontology.

Another general ontology that is reused by the R4F ontology is the Dublin Core
(DC) ontology4. DC is used to describe generic metadata and is divided into two
vocabularies: DC elements and DC terms. The DC elements defines 15 terms
published as a standard, e.g., ISO 15836. The DC terms not only extends these
15 terms with seven more, but also defines terms with the same names under
its own namespace. The main difference between those two vocabularies is that
the Element set namespace doesn’t have a range, and the 15 properties from the
Terms namespace are sub-properties of the 15 same-named terms from the Element
set. The DC recommends using the more precise Terms namespace, henceforth
called DCTERM. Although DCTERM also defines a Agent class, the R4F ontology
still uses the aforementioned FOAF ontology since DCTERM does not provide
specific terms for describing agents. Furthermore, the FOAF namespace declares
the DCTERMS Agent as an equivalent class. The DCTERMS ontology is weakly
constrained as it is not OWL2 DL ontology, which means it is particularly suitable
to reuse and redefine the terms.

As the FOAF ontology focuses more on describing people, agents, and social web
entities. The DCTERMS focuses on generic metadata, the vCard5 ontology can
be used to model contact information for people and organizations, i.e., addresses,
email addresses, and telephone numbers. There are some overlaps between these
ontologies, but each focuses on a different part of relationship modeling. vCard is
originally a specification developed by the Internet Engineering Task Force (IEFT)
and has been mapped to create the OWL ontology. From the vCard ontology, only
statements are reused.

From the competency questions, one can see that some describe concepts related
to Measurements. For this, a unit ontology can be reused. There are some unit
ontologies available such as the Quantity, Unit, Dimension and Type (QUDT)6

ontology, the Quantities, Units, Dimensions, Values (QUDV)7 ontology, the Units
Ontology (UO)-28 or the Ontology of units of Measure (OM)9. In order to reuse
one, the ontologies mentioned are compared and assessed if they satisfy the needs
in the R4F domain. Table 3.1 shows the assessed ontologies and the criteria used.
The assessment is based on the studies carried out from [51], [52], [53], and the
ontologies documentations.

4https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
5https://www.w3.org/TR/2014/NOTE-vcard-rdf-20140522/
6https://www.qudt.org/
7https://www.omgwiki.org/OMGSysML/doku.php?id=sysml-qudv:

quantities_units_dimensions_values_qudv
8https://www.ebi.ac.uk/ols/ontologies/uo
9http://www.ontology-of-units-of-measure.org/

39

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.w3.org/TR/2014/NOTE-vcard-rdf-20140522/
https://www.qudt.org/
https://www.omgwiki.org/OMGSysML/doku.php?id=sysml-qudv:quantities_units_dimensions_values_qudv
https://www.omgwiki.org/OMGSysML/doku.php?id=sysml-qudv:quantities_units_dimensions_values_qudv
https://www.ebi.ac.uk/ols/ontologies/uo
http://www.ontology-of-units-of-measure.org/

QUDT OM-2 QUDV UO
Unit
Implementation Individuals Individuals Individuals Classes

Number of Units >1500 >1300 <20 >200
Quantity
Implementation Individuals Classes Individuals Ambiguous

Number of
Quantities >900 >500 <10 >324

Implementation
Language OWL OWL OWL OWL

Unit Conversion Yes Yes Yes No

Application Area

Science,
biology,
physics,
engineering

Science,
engineering,
materials

Physics,
agriculture

Biology,
biomedicine

Last Updated March 2023 March 2023 October 2009 October 2022

Table 3.1.: Assessed Unit Ontologies

After the assessment, the QUDT ontology was chosen as the ontology to reuse for
the R4F ontology. This is because of its good documentation, ongoing develop-
ment, and support. The following paragraph briefly summarizes and explains the
QUDT ontology.

The QUDT ontology is a collection of ontologies used to model physical quantities,
units of measure, and their dimensions in various measurement systems. The QUD
ontology was initially developed for the NASA Exploration Initiatives Ontology
Models (NExIOM) project and is now maintained by the QUDT.org organization.
The core design pattern of the QUDT ontology is shown in Figure 3.5. Every unit
has an associated QuantityKind and QuantityKindDimensionVectors. A Quanti-
tyKind represents all kinds of things that could be measured, e.g., length, area,
torque, or velocity. Each unit is associated with at least one QuantityKind. For ex-
ample for a pascal (symbol: Pa) QUDT defines, among others, the QuantityKind:
ForcePerArea, ShearModulus and ModulusOfElasticity. The QuantityKindDimen-
sionVectors vocabulary can be used to determine whether one unit can be con-
verted into another or perform a dimensional analysis of equations. The QUDT
ontology is used to help describe the variables of a simulation model and can be
used to verify connections of different simulation models.

The Software Package Data Exchange (SPDX)10 ontology is an open standard
used for communicating software bill of material information. This includes li-

10https://spdx.org/rdf/terms/

40

https://spdx.org/rdf/terms/

Quantity

Quantity Value Quantity Kind

Unit

Quantity Kind Dimension Vector

System of Quantity Kinds

System of Units

Figure 3.5.: Core Design Pattern of the QUDT Ontology. Source: [54]

censes, copyrights, and security references. In the R4F ontology, SPDX is used for
additional information about the simulation model and supporting documents and
distributions. Such information includes any license info, checksum, and associated
checksum algorithm.

Domain Ontologies: Derived from the ORSD, the main domain is related to the simula-
tion model and the description of the variables. As already outlined in the Related
work section, there are not many domain ontologies covering that domain. Nor-
dahl et al. [46], Wiens et al. [35], and Mitterhofer et al. [48] present their respective
solution to model the collection between the simulation model and the correspond-
ing variables. However, none of the mentioned ontologies are publicly published,
and only part of the ontology is visualized in the referenced papers. Nevertheless,
some ideas have been taken from those papers, mainly from Mitterhofer et al. [48]
where the SemanticType class, which is used to give a precise meaning to input and
output variables, can be used to assist the automated generation of the simulation
topology and verify the manual model configuration. The VariableGroup concept
is taken from [46] and adapted to the needs of the R4F domain. Since those terms
lack a formal definition, they are re-engineered and implemented.

To model the distributed data sources and utilize some of the mentioned general
ontologies, the Data Catalog Vocabulary (DCAT)11 is used. The DCAT vocabulary
is intended to enhance the compatibility of data catalogs available on the Web and
enables publishers to describe datasets and data services. For the application in
the R4F domain, some terms for the vocabulary are re-engineered because the
initial definition is too specific to a traditional data catalog. However, this would
still allow us to recreate a data catalog in the future if needed. A data catalog
could enhance data discovery without centralizing the data itself.

Non ontological resources: As a non ontological resource the FMI specification12 ver-
sion 2.0.4 was chosen. This is due to using the standard in the R4F project to build
co-simulations. The reason why version 2 instead of the current version 3 is used

11https://www.w3.org/TR/vocab-dcat-3/
12https://github.com/modelica/fmi-standard/releases/download/v2.0.4/FMI-Specification-

2.0.4.pdf/

41

https://www.w3.org/TR/vocab-dcat-3/
https://github.com/modelica/fmi-standard/releases/download/v2.0.4/FMI-Specification-2.0.4.pdf/
https://github.com/modelica/fmi-standard/releases/download/v2.0.4/FMI-Specification-2.0.4.pdf/

is simply due to the fact that version 3 was only available as a beta version when
the project was started. However, since the terminology of version 3 hasn’t only
changed slightly compared to version 2, the ontology itself is version independent.
The terms specified in the standard match those of the ORSD. The re-engineering
process of those terms is discussed below.

Table 3.2 summarizes the used ontological and non ontological resources and provides
links to their respective specification.

Resource URL to specification
dcterms https://www.dublincore.org/specifications/dublin-core/dcmi-

terms/
foaf http://xmlns.com/foaf/0.1/
qudt https://www.qudt.org/
spdx https://spdx.org/rdf/terms/
vCard https://www.w3.org/TR/2014/NOTE-vcard-rdf-20140522/
dcat https://www.w3.org/TR/vocab-dcat-3/
FMI 2.0.4 https://github.com/modelica/fmi-standard/releases/download/

v2.0.4/FMI-Specification-2.0.4.pdf/

Table 3.2.: Used Ontology Summary

As already mentioned above, NeOn is vague when it comes to re-engineering ontological
resources. One defined process is the modularization of ontologies. The main task of
modularizing an ontology is to identify components of an ontology that can be used
independently from the others in that ontology. Hence "cut-down" large ontologies into
smaller, more manageable modules. This could benefit performance and facilitate the
development and maintenance of the ontology. NeOn recommends this activity as part
of scenario 3 (Reusing ontological resources), scenario 4 (Reusing and re-engineering
ontological resources.), and scenario 8 (Restructuring ontological resources). In this
work, the re-engineering of ontological resources is limited to adapting the selected terms
into the R4F namespace and modifying the terms’ definitions to fit the intended use.

Figure 3.4 shows the re-engineering process for non-ontological resources. This activity is
split into three main parts, non-ontological resource reverse engineering, non-ontological
resource transformation, and ontology forward engineering. The first part focuses on
analyzing the non-ontological resources to detect the relevant components and identify
the resource’s underlying schema and data model. For the non-ontological resource
transformation part, a conceptual model of the resource has to be developed. To this end,
NeOn recommends using Ontology Design Pattern (ODP) to improve the efficiency of the
re-engineering process and make the transformation easier. NeOn provides an ontology
design patterns library13 that includes 12 patterns used during the re-engineering process.
These patterns include:

13http//ontologydesignpatterns.org

42

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
http://xmlns.com/foaf/0.1/
https://www.qudt.org/
https://spdx.org/rdf/terms/
https://www.w3.org/TR/2014/NOTE-vcard-rdf-20140522/
https://www.w3.org/TR/vocab-dcat-3/
https://github.com/modelica/fmi-standard/releases/download/v2.0.4/FMI-Specification-2.0.4.pdf/
https://github.com/modelica/fmi-standard/releases/download/v2.0.4/FMI-Specification-2.0.4.pdf/
http//ontologydesignpatterns.org

• Re-engineering a classification scheme, which follows the adjacency list model, to
design an ontology schema

• Re-engineering a classification scheme, which follows the flattened model, to design
an ontology schema

• Ontological representation of a specific domain concept conceptualized using a
Faceted Classification Scheme (FCS).

• Re-engineering a term-based thesaurus that follows the record-based model to
design an ontology schema

• Re-engineering a term-based thesaurus, which follows the relation-based model, to
design an ontology schema

If a suitable pattern is found, the transformation can be conducted according to the
re-engineering procedure established in the pattern. The proposed patterns help with
the TBox as well as the ABox transformation. In short, the TBox (Terminology Box)
contains terms used to describe the concepts and their relationships in an ontology. The
ABox (Assertion Box) contains assertions or statements about individuals in a specific
domain. The Tbox Transformation transforms the resource content into an ontology
schema, while the ABox transforms the resource schema into an ontology schema and
the resource content into ontology instances. If no pattern is suitable for the selected
non-ontological resource, an ad-hoc procedure is needed to transform the non-ontological
resource into a conceptual model. The ad-hoc procedure may be generalized to create
a new ODP. The last activity, ontology forward engineering, generates a part of actual
ontology by formalizing and implementing the transformed resource.

The FMI standard presents all relevant information about the FMU in a text file called
modelDescription.xml in an XML structure. The structure of this XML file is defined in
the fmiModelDescription.xsd” XML Schema Definition (XSD) file. Although the ODP
catalog lists a pattern for re-engineering certain embedded structures within XSD file,
the pattern can not be used for this use case. Instead the ReDeFer14 approach is used.
This approach enables a mapping of XML schemes to OWL called XSD2OWL. Table
3.3 shows some of the translations from ReDeFer.

The fmiModelDescription.xsd utilizes some helper schemes to further define the base
concepts of the FMI standard. The fmi2ScalarVariable.xsd is the most relevant one,
as it defines one of the central concepts for the R4F domain, which is the information
about the exposed variables. With this, the re-engineered concepts can be created and
are further discussed in the Implementation Phase (3.1.4).

14https://rhizomik.net/redefer

43

https://rhizomik.net/redefer

XML Schema OWL Shared informal
semantics

complexType|group|
attributeGroup

owl:Class Relations and contextual
restrictions package

extension@base|
restriction@base

rdfs:subClassOf Package concretises the base
package

element|attribute rdf:Property
owl:DatatypeProperty
owl:ObjectProperty

Named relation between
nodes or nodes and values

element@substitutionGroup rdfs:subPropertyOf Relation can appear in place
of a more general one

element@type rdfs:range The relation range kind
sequence
choice

owl:intersectionOf
owl:unionOf

Combination of relations in a
context

Table 3.3.: XSD2OWL translations for the XML Schema constructs and shared
semantics with OWL constructs Source: [55, p.117]

3.1.3. Design Phase

The design phase mainly consists of the conceptualization activity. Besides that, NeOn
also defines two additional activities, ontology localization, and ontology evolution. The
first activity refers to the adaptation of an ontology to a particular language. In contrast,
the latter refers to facilitating the modification of an ontology by preserving its consis-
tency. As one of the non-functional requirements states that the ontology should be
multilingual, the localization activity is performed. However, as this mainly consists of
translating terms and definitions to German, it is not further explained. The translated
concepts and attributes can be found in Appendix B.2.2. Ontology evolution typically
occurs after the ontology has been deployed and needs to be updated/changed. Since
this is not the case, this activity is also not further discussed.

The main goal of ontology conceptualization is to structure the acquired domain knowl-
edge from the previous phases. NeOn suggests using other methodologies for this ac-
tivity, such as Methontology. Methontology itself refers to the guidelines developed by
Gómez-Pérez et al. [56]. Figure 3.6 illustrates the suggested steps to conceptualize a
domain ontology. Note that, although the steps are shown in chronological order, they
are not necessarily sequential in the sense of a waterfall life-cycle model, but can over-
lap each other. Not all suggested steps are performed in this work, since, for example,
formulas are not part of the ontology scope. In the following section, the relevant steps
are discussed.

44

Glossary of Terms Concept Classification

Trees

Binary-Relation
Diagrams

Concept Dictionary Binary Relation

Table

Instance Attribute

Table

Start

conceptualization

Figure 3.6.: Conceptualization according to Methontology. Source: Adapted from
[56],[57]

The first step is to build a Glossary of Terms. The glossary should include all terms used
in the ontology and its meaning. This step builds upon the pre-glossary terms identified
in the ORSD and is extended by additional terms. Table 3.4 shows an example of a
glossary entry. The complete glossary can be found in Appendix B.2.1 and Appendix
B.2.2, respectively.

Name Description in natural language
Connection The connection between variables refers to the

relationship between two or more variables.
Simulation Model A simulation model is a mathematical represen-

tation of a real-world process or system over
time. It is a simplified abstract view of the com-
plex reality. It can be used to compute its ex-
pected behavior under specified conditions.

Variable A variable represents a specific parameter or fac-
tor of a simulation model.

Table 3.4.: Part of the glossary of terms

After the glossary, containing most of the terms, is constructed a Concept-Classification
Tree is built to group domain concepts in taxonomies. A concept classification tree
organizes the concepts in a class-subclass relation and defines which concepts are linked
by special subclass relations, e.g., mutually-disjoint and exhaustive-subclass-of relation.
Within the R4F domain, there are not many concepts that are in a class-subclass relation
with other concepts. The main concepts evolve around the Real World Entity concept.
Figure 3.7 shows a part of the concept classification tree in the R4F domain. The
concepts are mutually-disjoint. The classification tree can be found in Appendix B.3.

45

Real World
Entity

Infrastructur Rollingstock

Track Tunnel Bridge

Figure 3.7.: Real World Entity Taxonomy.

The next step is to link the individual concepts and concept classification trees together
via a so-called Binary-Relations Diagram. With this diagram, the different concepts
are linked with other concepts of the same or other ontologies. A simplified example
of a binary-relations diagram can be seen in Figure 3.8. Here the Variable concept
is connected with the SimulationModel concept. One of the relations between these
concepts is called hasVariable and links the SimulationModel concept to the Variable
concept. There is also an inverse relation modeled; the isVariableOf links the Variable
to the SimulationModel. This is done for all the concepts listed in the glossary of terms.

Variable SimulationModel
hasVariable

isVariableOf

Figure 3.8.: Example for a binary relation diagram.

The Concept Dictionary contains concept names, class and instance attributes, and the
relations for each concept in the domain. The concept dictionary aims to guarantee the
completeness of the knowledge for each concept and to ensure there are no similar con-
cepts that can lead to redundancies. The complete dictionary can be found in Appendix
B.4.

The next step is to build the Binary-Relations Table, which contains the name of the
resource, the name of the source and target (range) concept, the inverse relation, and
so forth for each concept of the domain. For the R4F domain, the binary relation tables
can be seen in Appendix B.5.

The next step is to build a class and instance attribute table. Class attributes describe
concepts, not concept instances. This means that class attributes are shared by all
instances of a class. On the other hand, instance attributes are attributes that are
defined in the concept, but that take values in its instances. The attribute is unique
to each individual instance. The R4F domain does not contain any class attributes;
therefore, no class attribute table is constructed. The whole instance attribute table can
be in the Appendix B.6.

46

Methontology defines more steps to help the conceptualization process, such as the
construction of a formulas table, a logical axioms table, and a constants table. These
steps have not been performed in this work since instances are not part of the ontology
itself, and the other tables are not needed to model the R4F domain. However, the
relevant instances are listed in the connect classification tree. (Appendix B.3)

Note that in RDF, relationships are called properties, as already mentioned in Section
2.3.2, and are similar concepts as attributes, as discussed above, but differ in their
usage and scope. Attributes are used to represent property-value pairs associated with
a resource, such as its name, age, or color. On the other hand, properties are used to
describe relationships between resources. Properties are used to indicate how resources
are related to each other, and they can be shared by multiple resources.

3.1.4. Implementation Phase

The main goal of the implementation phase is to transform the conceptualized model
from the previous stage into a formal language, thus making it computable. As defined
in the ORSD, the implementation language is OWL. One of the key benefits of using
OWL to describe a domain in an ontology is that it is built on a decidable subset of
first-order logic, allowing for automated reasoning to be performed. In the following,
some considerations during the implementation phase are discussed.

URIs: One thing to consider when publishing an ontology on the web is the vocabulary
namespace, i.e., the URI that identifies the vocabulary. There are two solutions
that could be used: 303 URIs, also called slash URIs, and hash URIs. An example
of both can be seen in Listing 3.1. Which one to use depends on the situation;
both have advantages and disadvantages. With a hash URI, the server does not
need to 303 redirect from the URI for the thing to the document about the thing.
This means that a hash URI reduces the number of necessary Hypertext Transfer
Protocol (HTTP) round-trips, reducing access latency. On the downside, a client
has to always load the data for all other resources as well because they are in
the same file. 303 URIs, on the other hand, are very flexible because a redirect
can easily be configured for each target separately. However, for large data sets,
many redirects affect the performance considerably. [58] In the case of the R4F
ontology, the hash URI approach has been used because the number of terms is
rather small, and the number of terms to be added in the future is unlikely to grow
out of control.

Listing 3.1: Slash and Hash URIs
http :// purl.org/dc/ elements /1.1/ title

http :// www.w3.org /1999/02/22 - rdf -syntax -ns#type

47

Namespace: Another convention already used throughout this thesis is the namespace
declaration and prefix for the R4F ontology. With the consideration discussed
above, the proposed namespace for R4F is http://rail4future.at/ns/main# with
the preferred prefix being rff.

Naming conventions: The naming conventions in the R4F ontology concerning the
classes, the relations, and the attributes in the ontology, are as follows: class labels
are composed of one or more words, written with a capital first letter for each word
and without any space or alphanumerical symbols between the words if it is a two
word one, i.e., camel-case. An example of this is rff:SimulationModel. The same
rule applies for relations and attributes, except that they start with a non-capital
letter, e.g., rff:isConnectedWith. The concepts, relations, and attributes always
use the singular form.

Domain and Range: A common misconception when it comes to owl:domain and
owl:range is that they behave as constraints. Just like other properties, they are
axioms from which a reasoner can make inferences. This has already been shown
in Listing 2.9. The two axioms connect pairs of individuals rather than classes.
If one would need to express a relation between classes, one can use the OWL
restrictions. In the R4F context, the connection between the Simulation Model
and Variables has been modeled using OWL restrictions. Listing 3.2 shows the
connection between the two classes using a strict binding by declaring that all
values that are linked to the SimulationModel via the hasVariable property are of
the class Variable.

Listing 3.2: OWL restriction for the SimulationModel and Variable class
rff: SimulationModel

a owl: Class ;
rdfs: subClassOf

[a owl: Restriction ;
owl: onProperty rff: hasVariable ;
owl: allValuesFrom rff: Variable

].

With the same mechanism, one could define restrictions on cardinality or more
restrictions on specific values. In the R4F ontology, however, no restrictions are
set. Note that OWL restrictions are not meant to be used to validate RDF data
since its intent is to infer new knowledge. For validation, other standards, such as
the Shapes Constraint Language (Shacl)15, should be used.

As already mentioned in the Reuse and Re-engineering Phase (3.1.2), the FMI specifica-
tion is re-engineered to be used in the R4F ontology. For that process, the XSD2OWL
translation mechanism is chosen. This is used to re-engineer the Variable and parts of the
SimulationModel concepts. Both concepts are separated in their respective XSD files.

15https://www.w3.org/TR/shacl/

48

https://www.w3.org/TR/shacl/

The Variable concept is explained below as an example of the transformation process.
The schema can be seen in Figure 3.9, and the full XSD file can be found in Appendix
A. This re-engineering process contains an exception to the rules stated in Table 3.3
as the Real, Integer, Boolean, String and Enumeration which themselves represent a
complexType element are modeled as Instances of a newly created superclass Datatype
rather than separated classes. This is due to the fact that these elements would not add
value to the ontology if modeled otherwise. The specification states that exactly one of
those datatypes has to be present; this statement can be modeled as a owl:Restriction.
Other restrictions regarding those elements or classes, such as values restrictions, are
not integrated into the R4F ontology.

 ModelVariables ScalarVariable
type fmi2ScalarVariable

 Real

 Integer

 Boolean

String

Enumeration

Annotations
type fmi2Annotaton

attributes

valueReference
type xs:unsignedInt

name
type xs:normalizedString

description
type xs:unsignedInt

causality
type xs:normalizedString
enum
default

parameter calculatedParameter input output local independent

derivedBy
local
restriction

variability
type xs:normalizedString
enum
default

constant fixed tunable discrete continous

derivedBy
continuous
restriction

fmi2ScalarVariable

Figure 3.9.: ScalarVariable Schema. Source: Adapted from [59, p. 46]

The relevant attribute elements, i.e., name, description, and variability, are modeled as
properties. For the name property, the dc term dc:title is reused, and for the description,
the rdfs:comment property can be used. The causality element is also modeled as a class
where the input and output terms are reused and represented as instances of that class.
This concept is needed to link variables to one another; therefore, a separate class is
beneficial. The Annotations element is not required for the ontology and is therefore
not included. Listing 3.3 shows an example of a variable representation. The full OWL
ontology can be found in Appendix A.

49

Listing 3.3: Variable representation in turtle
rff: G_Scenario_Params_Track_Superelevation a rff: Variable ;

dcterms: description "Track superelevation "@en;
dcterms: description " Ueberhoehung der Gleise "@de;
rff: isVariableOf rff: ErlkoenigMKSModel ;
rff: hasCausality rff: InputCausality ;
rff: hasDatatype rff: Real;
rff: hasSemanticType rff: TrackCrossLevel ;
qudt: unit unit:M;
qudt: hasQuantityKind quantitykind: Height ;

.

3.2. Discussion

In this section, the R4F ontology is discussed, and the functional and non-functional
requirements in the ORSD (Appendix B.1) are analyzed to verify the developed ontology
meets those requirements. After that, the focus is on the implementation for some uses
mentioned in the ORSD.

The first non-functional requirement states that the ontology should support multilingual
scenarios in German and English. This is implemented in the ontology by translating
the class labels and the descriptions as can be seen in the Glossary of terms, in Appendix
B.2.2, the Concept Dictionary in Appendix B.4, as well as the Instance Attribute Tables
in Appendix B.6. The second non-functional requirement specifies that the ontology
should build and reuse standards that are used in the R4F project. The relevant standard
for describing simulation models and their respective variables is the FMI standard,
which is reused as discussed in the Reuse and Re-engineering Phase (3.1.2) as well as in
the Implementation Phase (3.1.4).

Figure 3.10 shows the structure of the R4F ontology. The majority of the competency
questions in the ORSD focus on describing the variable and simulation model. Therefore
these two are the main concepts of the R4F ontology. Both concepts have an instance
attribute title and description (QC1, QC9) as well as a short description to further as-
sist the human readability of the resource. To denote the creator and maintainer of
a simulation model (QC2, QC5), the Agent class has been utilized. Different versions
of a simulation model can be described using the three different object properties pre-
viousVersion, lastVersion, and nextVersion (QC3). The creation date of a simulation
model can be set with the instance attribute created (QC4), and the attribute modified
annotates the date of the last change to a model. Additional documents belonging to the
simulation model can be linked via the supportingDocument property and are instances
of the Document class (CQ6). The isLinkedTo property links two SimulationModels
together with the RealWorldEntity class and the corresponding subclasses. With the
property the specific domain which is covered by a simulation model can be expressed

50

(CQ7). Variables and simulation models are connected via the isVariableOf and its
inverse hasVariable property (QC8, QC14). The variable is described by the aforemen-
tioned title and description as well as its variability (QC11), unit (QC12), quantity,
semantic type (QC15), causality (QC10), and datatype. The terms to describe the vari-
ability of a variable are taken from the FMI standard. Units and quantities are reused
from the QUDT ontology. This has not only the advantage that these terms are stable
and well documented but also that the QUDT ontology provides ways of converting
different units (QC13). For this purpose two JAVA libraries16,17 and a Python library18

can be used. The SemanitcType plays an important role in connecting variables and
simulation models, i.e., the isConnectedWith property, and is discussed in detail in the
next section (QC16). The Causality of a variable is modeled using two instances of the
same name. Although the FMI standard defines six different causalities (e.g., param-
eter, local, independent) the R4F ontology only utilized two of them, the Input and
Output. As previously mentioned, the instances of the Datatype class correspond to
the datatypes supported by the FMI 2 standard. The FMI standard only allows for
the definition of scalar variables. To support variable collections that logically belong
together, e.g., the three dimensions of a force, the VariableGroup class has been defined
(QC17). To further extend the semantic description of different VariableGroups, the
subclasses VariableArray and VariableVector are created. To further fix the need of the
R4F project different subclasses can be added. However, the superclass VariableGroup
can also be used to group different variables together, creating complex hierarchies.

A dataset can consist of one to multiple variable groups and be published in distri-
butions (QC19). A specific distribution can have various different formats, such as a
Comma-separated values (CSV) file or a simple text file. The Internet Assigned Num-
bers Authority (IANA)19 media types should be used to define the media type of the
distribution (QC20). Like the simulation model, the different versions of a distribution
are described by the three object properties (QC22). In order to verify the integrity of a
dataset, the checksum value attribute can be used (QC21). To assist the communication
of licenses, copyrights, security references for distributions, and simulation models, the
SPDX ontology is suggested. The distribution can be accessed via its accessURL or
downloaded via the downloadURL (QC18). The service that provides these is described
by the DataService class (QC24, QC25) and contains information about the endpoint
of the service and access rights. With respect to different agents creating and main-
taining datasets and simulation models, the R4F ontology provides a way to model the
contact information for each agent (QC23). For this purpose, the Vcard ontology is
recommended.

16https://github.com/qudtlib/qudtlib-java
17https://github.com/egonw/jqudt
18https://github.com/eigendude/pyqudt
19https://www.iana.org/assignments/media-types/media-types.xhtml

51

https://github.com/qudtlib/qudtlib-java
https://github.com/egonw/jqudt
https://github.com/eigendude/pyqudt
https://www.iana.org/assignments/media-types/media-types.xhtml

Bo
ol

ea
n

In
te

ge
r

St
rin

g
En

um
er

at
io

n

rff
:m

ed
ia

Ty
pe

rff
:m

ed
ia

Ty
pe

rff
:s

up
po

rti
ng

D
oc

um
en

t

rff
:c

on
ta

ct
Po

in
t

dc
te

rm
s:

pu
bl

is
he

r

dc

te
rm

s:
cr

ea
to

r

rff

:m
ai

nt
ai

ne
r

rff
:p

re
vi

ou
sV

er
si

on

rff
:n

ex
tV

er
si

on

rff
:la

st
Ve

rs
io

n

qu
dt

:u
ni

t

rff
:is

C
on

ne
ct

ed
W

ith

rff
:d

is
tri

bu
tio

n
rff

:a
cc

es
sS

er
vi

ce

rff
:s

er
ve

sD
at

as
et

dc
te

rm
s:

pu
bl

is
he

r

dc

te
rm

s:
cr

ea
to

r rff
:d

es
cr

ib
es

rff
:is

Va
ria

bl
eM

em
be

rO
f

rff
:h

as
Va

ria
bl

eM
em

be
r

rff
:is

Va
ria

bl
eG

ro
up

M
em

be
rO

f

rff
:h

as
Va

ria
bl

eG
ro

up
M

em
be

r

rff
:is

Va
ria

bl
eO

f

rff
:h

as
Va

ria
bl

e

rff
:h

as
Se

m
an

tic
Ty

pe

rff
:h

as
D

at
at

yp
e

qu
dt

:h
as

Q
ua

nt
ity

Ki
nd

R
ea

l

rff
:S

em
an

tic
Ty

pe

qu
dt

:Q
ua

nt
ity

Ki
nd

qu
dt

:U
ni

t

rff
:D

at
as

et
dc

te
rm

s:
tit

le
dc

te
rm

s:
de

sc
rip

tio
n

dc
te

rm
s:

is
su

ed
dc

te
rm

s:
m

od
ifi

ed
dc

te
rm

s:
ac

ce
ss

R
ig

ht
rff

:D
at

aS
er

vi
ce

dc
te

rm
s:

tit
le

dc
te

rm
s:

ac
ce

ss
R

ig
ht

rff
:e

nd
po

in
tD

es
cr

ip
tio

n

rff
:D

is
tri

bu
tio

n
dc

te
rm

s:
tit

le
rff

:a
cc

es
sU

LR
rff

:d
ow

nl
oa

dU
R

L
sp

dx
:c

he
ck

su
m

Va
lu

e

rff
:R

ea
lW

or
ld

En
tit

y
dc

te
rm

s:
tit

le
dc

te
rm

s:
de

sc
rip

tio
n

rff
:S

im
ul

at
io

nM
od

el
dc

te
rm

s:
tit

le
dc

te
rm

s:
de

sc
rip

tio
n

dc
te

rm
s:

cr
ea

te
d

dc
te

rm
s:

m
od

ifi
ed

rff
:V

ar
ia

bl
e

dc
te

rm
s:

tit
le

dc
te

rm
s:

de
sc

rip
tio

n
rff

:v
ar

ia
bi

lit
y

rff
:V

ar
ia

bl
eG

ro
up

dc
te

rm
s:

tit
le

dc
te

rm
s:

de
sc

rip
tio

n

rff
:In

fra
st

ru
ct

ur
e

rff
:R

ol
lin

gs
to

ck

rff
:T

ra
ck

rff
:T

un
ne

l
rff

:B
rid

ge

fo
af

:A
ge

nt
fo

af
:n

am
e

vc
ar

d:
Vc

ar
d

rff
:D

at
at

yp
e

fo
af

:D
oc

um
en

t

dc
te

rm
s:

Fi
le

Fo
rm

at

N
om

en
cl

at
ur

e
:

ow
l:C

la
ss

at
tri

bu
te

In
st

an
ce

ow
l:O

bj
ec

tP
ro

pe
rty

rd
fs

:S
ub

C
la

ss
O

f
In

st
an

ce
 o

f

N
am

es
pa

ce
s

:
rff

:
ht

tp
://

ra
il4

fu
tu

re
.a

t/n
s/

m
ai

n#

dc
te

rm
s:

 h
ttp

s:
//w

w
w.

du
bl

in
co

re
.o

rg
/s

pe
ci

fic
at

io
ns

/d
ub

lin
-c

or
e/

dc
m

i-t
er

m
s/

fo
af

: h
ttp

://
xm

ln
s.

co
m

/fo
af

/0
.1

/

sp

dx
: h

ttp
s:

//s
pd

x.
or

g/
rd

f/t
er

m
s/

vC
ar

d:
 h

ttp
s:

//w
w

w.
w

3.
or

g/
TR

/2
01

4/
N

O
TE

-v
ca

rd
-rd

f-2
01

40
52

2/

qu
dt

: h
ttp

s:
//q

ud
t.o

rg
/2

.1
/s

ch
em

a/
qu

dt

rff
:p

re
vi

ou
sV

er
si

on

rff
:n

ex
tV

er
si

on

rff
:la

st
Ve

rs
io

n

rff
:is

Li
nk

ed
To

In
pu

tC
au

sa
lit

y

O
ut

pu
tC

au
sa

lit
y

rff
:h

as
C

au
sa

lit
y

rff
:C

au
sa

lit
y

O
ut

pu
tC

au
sa

lit
y

In
pu

tC
au

sa
lit

y

rff
:V

ar
ia

bl
eV

ec
to

r
rff

:V
ar

ia
bl

eA
rra

y

Fi
gu

re
3.

10
.:

T
he

st
ru

ct
ur

e
of

th
e

R
FF

D
om

ai
n.

52

3.2.1. Semantics for Modular FMI assembly

One problem when describing variables is that they can hardly be distinguished if they
have the same unit and quantity. In Listing 3.4, an example for that case can be seen.
Note that although the presented variables do not have the same unit, they use the same
base unit.

Listing 3.4: Variables with same unit and quantity
rff: Track_Superelevation a rff: Variable ;

dcterms: description "Track superelevation "@en;
rff: hasDatatype rff: Real;
qudt: unit unit: M;
qudt: hasQuantityKind quantitykind: Height ;

rff: Track_LongitudinalLevel a rff: Variable ;
dcterms: description "Track Longitudinal Level"@en;
rff: hasDatatype rff: Real;
qudt: unit unit: MilliM ;
qudt: hasQuantityKind quantitykind: Height ;

While both variables have the same unit and quantity, a domain expert can tell that
they do not represent the same variable by looking at the variable name, or URIs. The
first variable, Track_Superelevation, refers to the difference in height between the top
surfaces of two rails in a curve. The second variable Track_LongitudinalLevel refers to
the vertical deviation of the rails plain to its ideal mean line. Another problem is that
the same variable could have different names or URIs, as shown in Listing 3.5.

Listing 3.5: Same Variables with different names
rff: Track_Superelevation a rff: Variable ;

dcterms: description "Track superelevation "@en;
rff: hasDatatype rff: Real;
qudt: unit unit: M;
qudt: hasQuantityKind quantitykind: Height ;

rff: Track_CrossLevel a rff: Variable ;
dcterms: description "Track Cross level "@en;
rff: hasDatatype rff: Real;
qudt: unit unit: MilliM ;
qudt: hasQuantityKind quantitykind: Height ;

While this does not provide a significant challenge for domain experts, this does provide
a barrier when trying to connect simulation models or verify a given simulation setup
automatically. To solve this problem, the variable description is extended with the
SemanticType class as previously discussed by Mitterhofer et al. [47]. In conjunction
with the unit and quantity properties, the semantic type provides a unique description

53

of the variable. For this purpose, some semantic types were defined, as can be seen in
Figure 3.11. These Semantic types can be classified according to sub-systems. Since the
semantic description of the variable is independent from the description of the simulation
model, only the meaning of the interaction with the simulation is important. This can be
seen in the WheelRailInterface system; for the variable description, it is irrelevant if an
FMU represents the Track or RollingStock category. However, the granularity of a model
does play a role when providing semantic types. For example, the BoogieGeometrie can
be refined to the model’s needs.

RFFDomain

Track

RollingStock

TrackGeometrie

WheelRailInterface

VehicleGeometrie

LongitudalLevel

Crosslevel

Twist

Aligment

Friction

Force

VehicleLenght

Wheelbase

BogieGeometrie

rff:SemanticType

Nomenclature :

Instance

Class

SubClassOf
InstanceOf

Figure 3.11.: Semantic types for the R4F domain.

In order to integrate FMUs into a co-simulation, the information of the individual simu-
lation models and their respective variables are aggregated and combined into one KG.
For inferring the isConnectedWith property a rule, formulated in the Semantic Web Rule
Language (SWRL), is applied by a reasoner such as Pellet20 or HermiT 21. Listing 3.6
shows this rule to infer a connection between variables. The reasoner first collects the
semantic type, causality, unit, and quantity kind for each variable (lines 1 - 9). Dur-
ing the reasoning, these properties are compared for each variable pair (lines 10 - 13).
If the variable pair has the same semantic type, quantity, kind and unit but different
causalities, the variable pair is connected via the isConnectedWith property (line 14).

20https://github.com/lepfhty/pellet
21http://www.hermit-reasoner.com/

54

https://github.com/lepfhty/pellet
http://www.hermit-reasoner.com/

Listing 3.6: SWRL rule for infering the isConnectedWith property for variables
1 Variable (?v1) ∧ Variable (?v2) ∧
2 hasSemanticType (?v1,? v1SemT) ∧
3 hasSemanticType (?v2,? v2SemT) ∧
4 hasCausality (?v1,? v1Caus) ∧
5 hasCausality (?v2,? v2Caus) ∧
6 qudt: unit(?v1,? v1Unit) ∧
7 qudt: unit(?v2,? v2Unit) ∧
8 qudt: hasQuantityKind (?v1,? v1QKind) ∧
9 qudt: hasQuantityKind (?v2,? v2QKind) ∧

10 sameAs (? v1SemT ,? v2SemT) ∧
11 sameAs (? v1Unit ,? v2Unit) ∧
12 sameAs (? v1QKind ,? v2QKind) ∧
13 differentFrom (? v1Caus ,? v2Caus)
14 −→ isConnectedWith (?v1,?v2)

After running the SWRL rule and adding the inferred knowledge to the graph, the graph
can be queried to answer different questions. One possible question could be if a given
simulation topology is valid, as stated in the intended uses in the ORSD. To answer
this question, a combination of an additional SWRL rule and a simple SPARQL query
can be used. Listing 3.7 shows the additional rule. It establishes the isLinkedTo rela-
tion between simulation models whose input and output variables are related via the
isConnectedWith property. First, the reasoner collects all the variables that are con-
nected to a simulation via the hasVariable property and their respective causality (line 1
- 5). Then the reasoner evaluates if two variables are connected via the isConnectedWith
property (line 6). If those statements hold true, the reasoner sets the connection of the
two simulation models by setting the model of the output variable as the subject and
the model of the input variable as the object in the isLinkedTo statement (lines 7 - 9).
This ensures that only direct subsequent simulation models are linked, and the relation
is only valid in one direction.

Listing 3.7: SWRL rule for infering the isLinkedTo property for simulation models
1 rff: SimulationModel (?sim1) ∧ rff: SimulationModel (?sim2) ∧
2 rff: hasVariable (?sim1,?v1) ∧
3 rff: hasVariable (?sim2,?v2) ∧
4 rff: hasCausality (?v1,? v1Causality) ∧
5 rff: hasCausality (?v2,? v2Causality) ∧
6 rff: isConnectedWith (?v1,?v2) ∧
7 sameAs (? v1Causality ,rff: OutputCausality) ∧
8 sameAs (? v2Causality ,rff: InputCausality)
9 −→ rff: isLinkedTo (?sim1,?sim2)

In order to verify that a given simulation topology is valid, the query, as shown in
Listing 3.8, can be used. The query utilizes the ASK query form, which returns a

55

boolean indicating whether a query pattern matches. The statement in line 3 is a so-
called property path query that allows constructing complex path structure to be queried
instead of being limited to direct neighbors. In the shown example, the query looks for
a path between the simulation model "Sim1 " and the simulation model "Sim2 " via the
rff:isLinkedTo property by one or more matches of the property, indicated by the "+".
Property paths also allow for the search of inverse paths to match the nodes in reverse
order.

Listing 3.8: SPARQL query to validate simulation topology
PREFIX rff: <http: // rail4future .at/ns#>

ASK {rff: Sim1 rff: isLinkedTo + rff: Sim4 }

Unfortunately, with SPARQL, it is not possible to get the names of all the nodes in
such a path. For this purpose, a different query language must be used. In this work,
the graph path search functionality of Ontotext GraphDB22 is used. However, other
languages such as ArangoDB Query Language (AQL) should also be able to perform
such a task. GraphDB provides different path search algorithms to search for available
paths between two nodes. The shortest path algorithm is used in Listing 3.9. As the
name already suggests, it returns the shortest path between two nodes. If several paths
have the same length, all of them are returned.

Listing 3.9: Shortest path query in GraphDB
PREFIX path: <http: // www. ontotext .com/path#>
PREFIX rff: <http: // rail4future .at/ns#>

SELECT ?edge
WHERE {

Values (?src ?dst){
(rff: Var1 rff: Var2)

}
Service path: search {

[] path: findPath path: shortestPath ;
path: sourceNode ?src ;
path: destinationNode ?dst ;
path: resultBinding ?edge .

}
}

The example in Listing 3.9 returns all the edges between the sourceNode, Var1, and
the destinationNode, Var2, as a RDF-star statement. With this result, it is possible to
assist the generation of the simulation topology as defined in the intended uses in the
ORSD.

22https://www.ontotext.com/

56

https://www.ontotext.com/

3.2.2. Ontology Annotation

In the following section, the process of annotating information to the FMU, converting
it to a OWL file and using this file to realize the automated generation of a simulation
topology. Figure 3.12 shows the proposed workflow. The process starts with a domain
expert generating a simulation model compliant with the FMI standard. The resulting
FMU file is then extended with an OWL file. This is done by reading the modelDescrip-
tion.xml file, which already contains some metadata of the simulations variables and
the model itself. The domain expert then can add additional information and necessary
information not provided by the FMU file. This is done by the modelDescription.xml
file or directly importing the FMU file into an GUI. The GUI guides the agent through
the annotation process. The resulting .owl file is then stored alongside the original file
within the .fmu ZIP file. The extended FMU file can then be stored in a database
whit other extended files. To generate a simulation topology, the individual .owl files
are extracted from the database and are fed alongside the specified requirements to a
reasoner. The reasoner then infers the connections of the .fmu file as already discussed
in the previous section (3.2.1).

.owl

.owl
.xml
.dll

.fmu Reasoner

Specify
requirements

.owl.owl.owl.owl
.fmu .fmu

.fmu .fmu

Single FMU
File

infer
connection

Figure 3.12.: Proposed workflow to annotate an FMU and automatically generate a
simulation topology.

Figure 3.13 shows the Ontology Annotation User Interface (UI) used in the proposed
workflow and developed within this thesis. The UI was developed using the PyQt23

Framework. To transform the obtained data into an .owl file the Python library RD-
FLib24 has been used. The GUI is developed to enable domain experts with limited to
no ontological knowledge to annotate the relevant information. This is in accordance
with the intended end-users as stated in the ORSD. Figure 3.13a shows the general
information about the simulation model. Fields marked with an asterisk are obligatory
and checked before creating the OWL file. In Figure 3.13b and Figure 3.13c, the infor-
mation for the input and output variables can be set. From the drop-down menu, the
variables are selected, and the available information is automatically loaded. If the FMU
contains a unit definition, these must be transformed to match the QUDT syntax. As an

23https://pypi.org/project/PyQt5/
24https://rdflib.readthedocs.io/

57

https://pypi.org/project/PyQt5/
https://rdflib.readthedocs.io/

example, the FMU may contain the unit m/s as a unit of velocity, and the same QUDT
individual is represented as M-PER-SEC. This conversion has to be done by the agent.
For the definition of the quantity, the agent also has to follow the naming convention of
the QUDT ontology. For both fields, a link to the respective documentation is provided
in the help menu. A good way to start when assigning a quantity to a unit is to look
at the unit’s predefined quantity kinds. This process could be automated by querying
these predefined values. Listing 3.10 shows an example of such a query, including the
returned results. However, the predefined values of the QUDT ontology are incomplete,
meaning that not all possible quantity kinds are assigned to a unit. One example of this
is the results when querying the unit unit:M the only result is quantitykind:Length when
quantitykind:Height or quantitykind:Diameter would also be valid options.

Listing 3.10: Query predefined quantity kinds for a specific unit
PREFIX unit: <http: // qudt.org/vocab/unit/>
PREFIX rdf: <http: // www.w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX qudt: <http: // qudt.org/ schema /qudt/>
PREFIX quantitykind: <http: // qudt.org/vocab/ quantitykind />

SELECT ?qk
WHERE {

BIND (unit: PA AS ?arg1) .
?un rdf: type qudt: Unit .
FILTER (?un = ?arg1) .
?un qudt: hasQuantityKind ?qk

} ORDER BY ?un

Results:

quantitykind: BulkModulus
quantitykind: ForcePerArea
quantitykind: Fugacity
quantitykind: ModulusOfElasticity
quantitykind: ShearModulus
quantitykind: VaporPressure

In regards to the semantic type field the agent has to select the appropriate individual
from the R4F semantic type definition as shown in Figure 3.11. Note that the FMI
standard restricts the values for the variability of input and output variables. This
attribute is also optional and may not be automatically obtained form the FMU. For this
reason the agent should refer to these restrictions as discussed in the FMI specification
[59, p. 51]. For all other additional information provided by the agent there is no specific
format to which the annotation should comply to. After saving the annotation file it is
transformed into an RDF graph.

58

(a) General Information (b) Input Variables

(c) Output Variables.

Figure 3.13.: Ontlogy Annotation UI.

59

4. Conclusion and Future Work

In this thesis the development process of the R4F ontology and its possible applications in
Co-Simulation were presented. The main focus laid on the description of the simulation
model and its variables, while still provide a vocabulary to add additional information.
The research questions as defined in Chapter 1.2 are used to discuss the results and
identify future research directions.

RQ1 How are semantic technologies currently used to describe the railway domain?

Chapter 2.5.1 summarizes the current application of semantic technologies in the railway
domain. Most of the mentioned projects have already concluded and didn’t make it past
the academic research phase. The developed and proposed ontologies are not maintained
further or are no longer available online. However, newer undertakings such as the ERA
vocabulary advance the usage of semantic technologies in the railway domain. Another
activity in incorporating semantic technologies in the railway domain is the initiation
of a ontology subgroup within the railML community. They aim to interlink data from
various standards and use them in different processes. These projects could lead to a
wider use of ontologies in the railway domain.

RQ2 Are there applications of semantic technologies in multi-domain simulations?

The application of semantic technologies in multi-domain simulations is summarized in
Chapter 2.5.2. The different authors all use different approaches when it comes to defin-
ing the components of a simulation model and the model itself, from predefining fixed
ports or connectors and their relation to other connectors to inferring a connection via
various attributes of a variable. Some concepts have been implemented in the developed
ontology. The most significant one is the SemanticType. Even though the authors all
discuss their concepts in using ontologies in their respective fields, none of the mentioned
ontologies are published and available to the public.

RQ3 How can semantic technologies be used for metadata sharing of distributed het-
erogeneous data sources?

The presented literature in Chapter 2.5.2 focused on the description of simulation models
and their variables. However, a DT is often composed of distributed and heterogeneous
data sources from different stakeholders. For this, Moshrefzadeh et al. [44] presented a
distributed DT by leveraging on concepts of data catalogs. This approach is included
in the R4F ontology and enables the different stakeholders to provide additional infor-
mation for their assets. Although the terms in the R4F ontology are based on existing
vocabularies for data catalogs, the ontology defines its own terms to fit better the needs
of a distributed DT. This approach enables easy expansions of terms in the future, as

60

well as an independent development of the vocabulary without the dependency on the
original vocabulary.

RQ4 How can domain experts with limited knowledge of ontologies utilize these semantic
technologies?

Since most simulation and domain experts have little to no knowledge of ontologies, the
ontology annotation UI has been created. The simple GUI assists creators of simulation
models in annotating the required information and transforming them into a machine-
readable form. The GUI is part of the proposed workflow to annotate individual FMU
files and include them in a reasoning process to automatically generate and verify simu-
lation topologies. For this purpose, the necessary SWRL rules and example queries have
been presented in Chapter 3.2.1.

This work outlined the development and possible applications of an ontology for the
R4F project. One important part of the ontology is the SemanticType, which provides
a unique description of the variable. This concept, however, is still under development
and needs to be refined to fit the R4F domain. For this process, the domain experts
should be involved in determining how detailed the instances and classes have to be
modeled. Another aspect open to future work is the continued development of the
proposed workflow to automatically generate a simulation topology. The workflow could
be extended with the possibility of exporting an SSP file of the connected FMU files and
handing this file to an orchestrator to run the simulation setup.

61

List of Figures

2.1. Interfaces in Complex Systems. Source: Adapted from [1] 11
2.2. Example of an Ontology. Source: [1, p. 24] 13
2.3. Ontology Spectrum. Source: Adapted from [7] 14
2.4. Classification of different types of ontology. Source: [8, p. 145] 15
2.5. The Semantic Web Stack. Source: Adapted from [16, p. 7] 16
2.6. Relation among IRI, URI, URL and URN. Adapted from [22] 17
2.7. Basic RDF triple. 18
2.8. RDF-Graph. 20
2.9. Expressivity Characteristics of OWL Profiles. Source: [1, p. 14] 24
2.10. Digital Model. Source: [34, p. 1017] . 25
2.11. Digital Shadow. Source: [34, p. 1017] . 26
2.12. Digital Twin. Source: [34, p. 1017] . 26
2.13. Schematic view of data flow for each interface. Source: Adapted [38,

p. 17-18] . 27
2.14. Central concept of the MSMI ontology. Source: [46] 30
2.15. Structure of FMUont. Source: [48] . 31
2.16. Example for the system ontology and interaction of components. 32
2.17. Example Connector Instance . 33

3.1. Ontology development processes in the NeOn methodology. Source: [13] . 34
3.2. Ontology Requirements Specification Process. Source: Adapted from[49] 35
3.3. Ontology Reuse Process. 37
3.4. Non-ontological resource re-engineering process. Source: Adapted from

[50] . 38
3.5. Core Design Pattern of the QUDT Ontology. Source: [54] 41
3.6. Conceptualization according to Methontology. Source: Adapted from

[56],[57] . 45
3.7. Real World Entity Taxonomy. 46
3.8. Example for a binary relation diagram. 46
3.9. ScalarVariable Schema. Source: Adapted from [59, p. 46] 49
3.10. The structure of the RFF Domain. 52
3.11. Semantic types for the R4F domain. 54
3.12. Proposed workflow to annotate an FMU and automatically generate a

simulation topology. 57
3.13. Ontlogy Annotation UI. 59

B.1. Concept Classification Tree. 79

62

List of Listings
2.1. Example-1 XML Markup . 19
2.2. Example-2 XML Markup . 19
2.3. Example-3 RDF Markup (Pseudocode) 19
2.4. N-Triples . 21
2.5. Turtle . 21
2.6. JSON-LD . 21
2.7. RDF/XML . 22
2.8. RDFS example . 23
2.9. Demonstration of Inference based on rdfs:domain:and rdfs:range 23

3.1. Slash and Hash URIs . 47
3.2. OWL restriction for the SimulationModel and Variable class 48
3.3. Variable representation in turtle . 50
3.4. Variables with same unit and quantity 53
3.5. Same Variables with different names . 53
3.6. SWRL rule for infering the isConnectedWith property for variables . . . 55
3.7. SWRL rule for infering the isLinkedTo property for simulation models . . 55
3.8. SPARQL query to validate simulation topology 56
3.9. Shortest path query in GraphDB . 56
3.10. Query predefined quantity kinds for a specific unit 58

List of Tables

3.1. Assessed Unit Ontologies . 40
3.2. Used Ontology Summary . 42
3.3. XSD2OWL translations for the XML Schema constructs and shared se-

mantics with OWL constructs Source: [55, p.117] 44
3.4. Part of the glossary of terms . 45

B.1. Ontology Requirements Specification Document 71
B.2. Glossary of Terms. English Version . 73
B.3. Glossar der Begriffe. Deutsche Version 76
B.4. Concept dictionary . 80
B.5. Binary Relation Tables . 82
B.6. Attributes Table English . 83
B.7. Attributes Table German . 84

63

Bibliography
[1] J. Tutcher, “Development of semantic data models to support data interoperability

in the rail industry,” Ph.D. dissertation, University of Birmingham, UK, 2016.
[Online]. Available: http://etheses.bham.ac.uk/6774/.

[2] A. P. Sheth, “Changing focus on interoperability in information systems:from sys-
tem, syntax, structure to semantics,” in Interoperating Geographic Information
Systems, Springer US, 1999, pp. 5–29. doi: 10.1007/978-1-4615-5189-8_2.

[3] T. R. Gruber, “A translation approach to portable ontology specifications,” Knowl-
edge Acquisition, vol. 5, no. 2, pp. 199–220, Jun. 1993. doi: 10.1006/knac.1993.
1008.

[4] R. Studer, V. Benjamins, and D. Fensel, “Knowledge engineering: Principles and
methods,” Data & Knowledge Engineering, vol. 25, no. 1-2, pp. 161–197, Mar.
1998. doi: 10.1016/s0169-023x(97)00056-6.

[5] W. N. Borst, “Construction of engineering ontologies for knowledge sharing and
reuse,” Undefined, Ph.D. dissertation, University of Twente, Netherlands, Sep.
1997, isbn: 90-365-0988-2. [Online]. Available: https : / / research . utwente .
nl / en / publications / construction - of - engineering - ontologies - for -
knowledge-sharing-and-.

[6] M. Hepp, “Ontologies: State of the art, business potential, and grand challenges,”
in Ontology Management: Semantic Web, Semantic Web Services, and Business
Applications, M. Hepp, P. De Leenheer, A. De Moor, and Y. Sure, Eds. Boston,
MA: Springer US, 2008, pp. 3–22, isbn: 978-0-387-69900-4. doi: 10.1007/978-
0-387-69900-4_1. [Online]. Available: https://doi.org/10.1007/978-0-387-
69900-4_1.

[7] L. Obrst, “Ontological architectures,” in Theory and Applications of Ontology:
Computer Applications, R. Poli, M. Healy, and A. Kameas, Eds. Springer Nether-
lands, 2010, pp. 27–66, isbn: 978-90-481-8847-5. doi: 10.1007/978- 90- 481-
8847-5_2. [Online]. Available: https://doi.org/10.1007/978-90-481-8847-
5_2.

[8] N. Guarino, “Semantic matching: Formal ontological distinctions for information
organization, extraction, and integration,” in Information Extraction A Multidis-
ciplinary Approach to an Emerging Information Technology, Springer Berlin Hei-
delberg, 1997, pp. 139–170. doi: 10.1007/3-540-63438-x_8.

[9] M. Fernández-López, A. Gómez-Pérez, and N. Juristo, “Methontology: From on-
tological art towards ontological engineering,” in Proceedings of the Ontological
Engineering AAAI-97 Spring Symposium Series, Ontology Engineering Group ?
OEG, American Asociation for Artificial Intelligence, Mar. 1997. [Online]. Avail-
able: https://oa.upm.es/5484/.

64

http://etheses.bham.ac.uk/6774/
https://doi.org/10.1007/978-1-4615-5189-8_2
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1016/s0169-023x(97)00056-6
https://research.utwente.nl/en/publications/construction-of-engineering-ontologies-for-knowledge-sharing-and-
https://research.utwente.nl/en/publications/construction-of-engineering-ontologies-for-knowledge-sharing-and-
https://research.utwente.nl/en/publications/construction-of-engineering-ontologies-for-knowledge-sharing-and-
https://doi.org/10.1007/978-0-387-69900-4_1
https://doi.org/10.1007/978-0-387-69900-4_1
https://doi.org/10.1007/978-0-387-69900-4_1
https://doi.org/10.1007/978-0-387-69900-4_1
https://doi.org/10.1007/978-90-481-8847-5_2
https://doi.org/10.1007/978-90-481-8847-5_2
https://doi.org/10.1007/978-90-481-8847-5_2
https://doi.org/10.1007/978-90-481-8847-5_2
https://doi.org/10.1007/3-540-63438-x_8
https://oa.upm.es/5484/

[10] H. S. Pinto and J. P. Martins, “Ontologies: How can they be built?” Knowledge and
Information Systems, vol. 6, no. 4, pp. 441–464, Jul. 2004. doi: 10.1007/s10115-
003-0138-1.

[11] N. F. Noy and D. L. McGuinness, “Ontology development 101: A guide to creating
your first ontology,” Tech. Rep., Mar. 2001. [Online]. Available: http://www.ksl.
stanford.edu/people/dlm/papers/ontology- tutorial- noy- mcguinness-
abstract.html.

[12] M. A. Musen, “The protégé project: A look back and a look forward,” AI Matters,
vol. 1, no. 4, pp. 4–12, Jun. 2015. doi: 10.1145/2757001.2757003. [Online].
Available: https://doi.org/10.1145/2757001.2757003.

[13] M. C. Suárez-Figueroa, A. Gómez-Pérez, and M. Fernández-López, “The NeOn
methodology for ontology engineering,” in Ontology Engineering in a Networked
World, Springer Berlin Heidelberg, Dec. 2011, pp. 9–34. doi: 10.1007/978-3-
642-24794-1_2.

[14] WordWideWebConsortium, W3C semantic web FAQ, Accessed: 2023-01-03. [On-
line]. Available: https://www.w3.org/2001/sw/SW-FAQ.

[15] P. Hitzler, Foundations of Semantic Web technologies. CRC Press, 2010, p. 427,
isbn: 9781420090505.

[16] A. Hogan, “Linked data & the semantic webstandards,” in Linked Data Manage-
ment, A. Harth, K. Hose, and R. Schenkel, Eds., Taylor & Francis Group, 2016,
p. 576, isbn: 9781466582415.

[17] The Unicode Consortium, “The Unicode Standard,” Unicode Consortium, Moun-
tain View, CA, Tech. Rep. Version 15.0.0, Sep. 2022. [Online]. Available: http:
//www.unicode.org/versions/Unicode15.0.0/.

[18] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifier (URI):
Generic syntax,” Tech. Rep. 3986, Jan. 2005, 61 pp. doi: 10.17487/rfc3986.
[Online]. Available: https://www.rfc-editor.org/info/rfc3986.

[19] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform resource locators (URL),”
Tech. Rep. 1738, Dec. 1994, 25 pp. doi: 10.17487/rfc1738. [Online]. Available:
https://www.rfc-editor.org/info/rfc1738.

[20] L. Daigle, D. van, R. Iannella, and P. Faltstrom, “Uniform resource names (URN)
namespace definition mechanisms,” Tech. Rep. 3406, Oct. 2002, 22 pp. doi: 10.
17487 / rfc3406. [Online]. Available: https : / / www . rfc - editor . org / info /
rfc3406.

[21] M. Duerst and M. Suignard, “Internationalized resource identifiers (IRIs),” Tech.
Rep. 3987, Jan. 2005, 46 pp. doi: 10.17487/rfc3987. [Online]. Available: https:
//www.rfc-editor.org/info/rfc3987.

[22] P. Krauss, Mysid, Rjgodoy, and Surachit, File:uri venn diagram.svg, https://en.
wikipedia.org/wiki/File:URI_Venn_Diagram.svg, 2007. [Online]. Available:
https://en.wikipedia.org/wiki/File:URI_Venn_Diagram.svg.

65

https://doi.org/10.1007/s10115-003-0138-1
https://doi.org/10.1007/s10115-003-0138-1
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1007/978-3-642-24794-1_2
https://doi.org/10.1007/978-3-642-24794-1_2
https://www.w3.org/2001/sw/SW-FAQ
http://www.unicode.org/versions/Unicode15.0.0/
http://www.unicode.org/versions/Unicode15.0.0/
https://doi.org/10.17487/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://doi.org/10.17487/rfc1738
https://www.rfc-editor.org/info/rfc1738
https://doi.org/10.17487/rfc3406
https://doi.org/10.17487/rfc3406
https://www.rfc-editor.org/info/rfc3406
https://www.rfc-editor.org/info/rfc3406
https://doi.org/10.17487/rfc3987
https://www.rfc-editor.org/info/rfc3987
https://www.rfc-editor.org/info/rfc3987
https://en.wikipedia.org/wiki/File:URI_Venn_Diagram.svg
https://en.wikipedia.org/wiki/File:URI_Venn_Diagram.svg
https://en.wikipedia.org/wiki/File:URI_Venn_Diagram.svg

[23] W3C SPARQL Working Group, “SPARQL 1.1 overview,” W3C, W3C Recom-
mendation, Mar. 2013. [Online]. Available: https://www.w3.org/TR/2013/REC-
sparql11-overview-20130321/.

[24] M. Kifer and H. Boley, “RIF overview (second edition),” W3C, W3C Note, Feb.
2013. [Online]. Available: https://www.w3.org/TR/2013/NOTE-rif-overview-
20130205/.

[25] S. Sizov, “What makes you think that? the semantic web’s proof layer,” IEEE
Intelligent Systems, vol. 22, no. 6, pp. 94–99, Nov. 2007. doi: 10.1109/mis.2007.
120.

[26] D. Artz and Y. Gil, “A survey of trust in computer science and the semantic web,”
Journal of Web Semantics, vol. 5, no. 2, pp. 58–71, Jun. 2007. doi: 10.1016/j.
websem.2007.03.002.

[27] D. Wood, R. Cyganiak, and M. Lanthaler, “RDF 1.1 concepts and abstract syn-
tax,” W3C, W3C Recommendation, Feb. 2014. [Online]. Available: https://www.
w3.org/TR/2014/REC-rdf11-concepts-20140225/.

[28] G. Schreiber and Y. Raimond, “RDF 1.1 primer,” W3C, W3C Note, Jun. 2014.
[Online]. Available: https : / / www . w3 . org / TR / 2014 / NOTE - rdf11 - primer -
20140624/.

[29] P.-A. Champin, G. Kellogg, and D. Longley, “JSON-ld 1.1,” W3C, W3C Recom-
mendation, Jul. 2020. [Online]. Available: https://www.w3.org/TR/2020/REC-
json-ld11-20200716/.

[30] R. Guha and D. Brickley, “RDF schema 1.1,” W3C, W3C Recommendation, Feb.
2014. [Online]. Available: https://www.w3.org/TR/2014/REC-rdf-schema-
20140225/.

[31] W. O. W. Group, “OWL 2 web ontology language document overview (second
edition),” W3C, Tech. Rep., Dec. 2012. [Online]. Available: https://www.w3.
org/TR/2012/REC-owl2-overview-20121211/.

[32] I. Horrocks, Z. Wu, B. Motik, A. Fokoue, and B. C. Grau, “OWL 2 web ontology
language profiles (second edition),” W3C, W3C Recommendation, Dec. 2012. [On-
line]. Available: https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/.

[33] M. W. Grieves, “Virtually intelligent product systems: Digital and physical twins,”
in Complex Systems Engineering: Theory and Practice, American Institute of
Aeronautics and Astronautics, Inc., Jan. 2019, pp. 175–200. doi: 10.2514/5.
9781624105654.0175.0200.

[34] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital twin in manu-
facturing: A categorical literature review and classification,” IFAC-PapersOnLine,
vol. 51, no. 11, pp. 1016–1022, 2018. doi: 10.1016/j.ifacol.2018.08.474.

66

https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://www.w3.org/TR/2013/NOTE-rif-overview-20130205/
https://www.w3.org/TR/2013/NOTE-rif-overview-20130205/
https://doi.org/10.1109/mis.2007.120
https://doi.org/10.1109/mis.2007.120
https://doi.org/10.1016/j.websem.2007.03.002
https://doi.org/10.1016/j.websem.2007.03.002
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
https://doi.org/10.2514/5.9781624105654.0175.0200
https://doi.org/10.2514/5.9781624105654.0175.0200
https://doi.org/10.1016/j.ifacol.2018.08.474

[35] M. Wiens, T. Meyer, and P. Thomas, “The potential of FMI for the development
of digital twins for large modular multi-domain systems,” in Linköping Electronic
Conference Proceedings, Linköping University Electronic Press, Sep. 2021. doi:
10.3384/ecp21181235.

[36] C. Gomes, T. Blochwitz, C. Bertsch, et al., “The FMI 3.0 standard interface for
clocked and scheduled simulations,” in Linköping Electronic Conference Proceed-
ings, Linköping University Electronic Press, Sep. 2021. doi: 10.3384/ecp2118127.

[37] T. Blockwitz, M. Otter, J. Akesson, et al., “Functional mockup interface 2.0: The
standard for tool independent exchange of simulation models,” in Linköping Elec-
tronic Conference Proceedings, Linköping University Electronic Press, Nov. 2012.
doi: 10.3384/ecp12076173.

[38] A. Junghanns, C. Gomes, C. Schulze, et al., “The functional mock-up interface
3.0 - new features enabling new applications,” in Linköping Electronic Conference
Proceedings, Linköping University Electronic Press, Sep. 2021. doi: 10 . 3384 /
ecp2118117.

[39] J. A. Rojas, M. Aguado, P. Vasilopoulou, et al., “Leveraging semantic technologies
for digital interoperability in the european railway domain,” in The Semantic Web
– ISWC 2021, Springer International Publishing, 2021, pp. 648–664. doi: 10 .
1007/978-3-030-88361-4_38.

[40] S. Verstichel, F. Ongenae, L. Loeve, et al., “Efficient data integration in the railway
domain through an ontology-based methodology,” Transportation Research Part
C: Emerging Technologies, vol. 19, no. 4, pp. 617–643, Aug. 2011. doi: 10.1016/
j.trc.2010.10.003.

[41] J. Tutcher, J. M. Easton, and C. Roberts, “Enabling data integration in the rail
industry using RDF and OWL: The RaCoOn ontology,” ASCE-ASME Journal of
Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, vol. 3,
no. 2, Jun. 2017. doi: 10.1061/ajrua6.0000859.

[42] S. Bischof and G. Schenner, “Towards a railway topology ontology to integrate
and query rail data silos,” en, 2020. doi: 10.13140/RG.2.2.22571.98084.

[43] S. Bischof and G. Schenner, “Rail topology ontology: A rail infrastructure base
ontology,” in The Semantic Web – ISWC 2021, Springer International Publishing,
2021, pp. 597–612. doi: 10.1007/978-3-030-88361-4_35.

[44] M. Moshrefzadeh, T. Machl, D. Gackstetter, A. Donaubauer, and T. H. Kolbe,
“Towards a distributed digital twin of the agricultural landscape,” en, Journal of
Digital Landscape Architecture, no. 5, 2020. doi: 10.14627/537690019.

[45] L. Kasper, F. Birkelbach, P. Schwarzmayr, G. Steindl, D. Ramsauer, and R. Hof-
mann, “Toward a practical digital twin platform tailored to the requirements of
industrial energy systems,” Applied Sciences, vol. 12, no. 14, p. 6981, Jul. 2022.
doi: 10.3390/app12146981.

67

https://doi.org/10.3384/ecp21181235
https://doi.org/10.3384/ecp2118127
https://doi.org/10.3384/ecp12076173
https://doi.org/10.3384/ecp2118117
https://doi.org/10.3384/ecp2118117
https://doi.org/10.1007/978-3-030-88361-4_38
https://doi.org/10.1007/978-3-030-88361-4_38
https://doi.org/10.1016/j.trc.2010.10.003
https://doi.org/10.1016/j.trc.2010.10.003
https://doi.org/10.1061/ajrua6.0000859
https://doi.org/10.13140/RG.2.2.22571.98084
https://doi.org/10.1007/978-3-030-88361-4_35
https://doi.org/10.14627/537690019
https://doi.org/10.3390/app12146981

[46] H. Nordahl, M. Rindarøy, S. Skjong, L. T. Kyllingstad, D. Walther, and T. Brekke,
“An ontology-based approach for simplified FMU variable connections with auto-
matic verification of semantically correct configuration,” in Volume 6A: Ocean En-
gineering, American Society of Mechanical Engineers, Aug. 2020. doi: 10.1115/
omae2020-18135.

[47] M. Mitterhofer, G. F. Schneider, S. Stratbücker, and K. Sedlbauer, “An FMI-
enabled methodology for modular building performance simulation based on se-
mantic web technologies,” Building and Environment, vol. 125, pp. 49–59, Nov.
2017. doi: 10.1016/j.buildenv.2017.08.021.

[48] M. Mitterhofer, G. F. Schneider, S. Stratbu¨cker, and S. Steiger, “Semantics for
assembling modular network topologies in FMI-based building performance sim-
ulation,” in Building Simulation Conference Proceedings, IBPSA, Aug. 2017. doi:
10.26868/25222708.2017.418.

[49] A. Gómez-Pérez and M. C. Suárez-Figueroa, Ontology requirements specification.
[Online]. Available: http://neon-project.org/nw/book-chapters/Chapter-
05.pdf.

[50] B. Villazón-Terrazas and A. Gómez-Pérez, Re-engineering non-ontological re-
sources. [Online]. Available: http://neon- project.org/nw/book- chapers/
Chapter-08-1.pdf.

[51] X. Zhang, K. Li, C. Zhao, and D. Pan, “A survey on units ontologies: Architecture,
comparison and reuse,” Program, vol. 51, no. 2, pp. 193–213, Jul. 2017. doi: 10.
1108/prog-08-2015-0056.

[52] J. M. Keil and S. Schindler, “Comparison and evaluation of ontologies for units
of measurement,” Semantic Web, vol. 10, no. 1, B. Brodaric, Ed., pp. 33–51, Dec.
2018. doi: 10.3233/sw-180310.

[53] H. Rijgersberg, M. van Assem, and J. Top, “Ontology of units of measure and
related concepts,” Semantic Web, vol. 4, no. 1, pp. 3–13, 2013. doi: 10.3233/sw-
2012-0069.

[54] FAIRsharing Team, Fairsharing record for: Quantities, units, dimensions and
types, 2015. doi: 10.25504/FAIRSHARING.D3PQW7.

[55] R. García Gonzáles, “A semantic web approach to digital rights management,”
Ph.D. dissertation, Universitat Pompeu Fabra, Apr. 2006.

[56] A. Gómez-Pérez, M. Fernàndez, and A. de Vicente, “Towards a method to con-
ceptualize domain ontologies,” 1996.

[57] M. López, A. Gómez-Pérez, J. Sierra, and A. Pazos, “Building a chemical ontology
using methontology and the ontology design environment. ieee intelligent systems,”
Intelligent Systems and their Applications, IEEE, vol. 14, pp. 37–46, Feb. 1999.
doi: 10.1109/5254.747904.

[58] R. Cyganiak and L. Sauermann, “Cool URIs for the semantic web,” W3C, W3C
Note, Dec. 2008, https://www.w3.org/TR/2008/NOTE-cooluris-20081203/.

68

https://doi.org/10.1115/omae2020-18135
https://doi.org/10.1115/omae2020-18135
https://doi.org/10.1016/j.buildenv.2017.08.021
https://doi.org/10.26868/25222708.2017.418
http://neon-project.org/nw/book-chapters/Chapter-05.pdf
http://neon-project.org/nw/book-chapters/Chapter-05.pdf
http://neon-project.org/nw/book-chapers/Chapter-08-1.pdf
http://neon-project.org/nw/book-chapers/Chapter-08-1.pdf
https://doi.org/10.1108/prog-08-2015-0056
https://doi.org/10.1108/prog-08-2015-0056
https://doi.org/10.3233/sw-180310
https://doi.org/10.3233/sw-2012-0069
https://doi.org/10.3233/sw-2012-0069
https://doi.org/10.25504/FAIRSHARING.D3PQW7
https://doi.org/10.1109/5254.747904

[59] M. Association, “Functional mock-up interface for model exchange and co-
simulation,” Tech. Rep., Nov. 2022. [Online]. Available: https://github.com/
modelica/fmi-standard/releases/download/v2.0.4/FMI-Specification-
2.0.4.pdf.

69

https://github.com/modelica/fmi-standard/releases/download/v2.0.4/FMI-Specification-2.0.4.pdf
https://github.com/modelica/fmi-standard/releases/download/v2.0.4/FMI-Specification-2.0.4.pdf
https://github.com/modelica/fmi-standard/releases/download/v2.0.4/FMI-Specification-2.0.4.pdf

A. List of code and Ontologies hosted
online

Rather than providing full code and OWL listing in print, source code for the mentioned
application and the full ontology designed as part of this thesis are available online, and
can be accessed by the following URLs:

• Rail4Future (R4F) Ontology

– https://gitlab.tuwien.ac.at/mivp/rail4future/diplomarbeit_kern/
tree/main/RFFOntology

• Annotation Application Source Code

– https://gitlab.tuwien.ac.at/mivp/rail4future/diplomarbeit_kern/
tree/main/OntologyAnnotationGUI

• XSD Files from FMI 2.0.4 Specification

– https://github.com/modelica/fmi-
standard/releases/download/v2.0.4/FMI-Standard-2.0.4.zip

70

https://gitlab.tuwien.ac.at/mivp/rail4future/diplomarbeit_kern/tree/main/RFFOntology
https://gitlab.tuwien.ac.at/mivp/rail4future/diplomarbeit_kern/tree/main/RFFOntology
https://gitlab.tuwien.ac.at/mivp/rail4future/diplomarbeit_kern/tree/main/OntologyAnnotationGUI
https://gitlab.tuwien.ac.at/mivp/rail4future/diplomarbeit_kern/tree/main/OntologyAnnotationGUI
https://github.com/modelica/fmi-standard/releases/download/v2.0.4/FMI-Standard-2.0.4.zip
https://github.com/modelica/fmi-standard/releases/download/v2.0.4/FMI-Standard-2.0.4.zip

B. Ontology Development Documents

B.1. Ontology Requirements Specification Document

Table B.1.: Ontology Requirements Specification Document
R4F Reference Ontology Requirements Specification Document

1 Purpose
The purpose of the R4F Ontology is to provide a consensual knowledge model of
the R4F domain to be used by the operators of the R4F digital twin platform.

2 Scope
The ontology not only has to focus on the description of simulation models and
their respective input and output variables but also provide additional information
about relevant metadata about those variables and simulation model for easier
data exchange and data integration.

3 Implementation Language
The implementation of the ontology must be done using the OWL language in
order to utilize the first-order logic based reasoning capability.

4 Intended End-Users
User 1. Developer of the digital twin platform with limited knowledge about

ontologies
User 2. Ontology engineers for maintenance and enhancement of the ontology

network
User 3. Domain experts who submit simulations to the digital twin platform

with limited knowledge about ontologies
User 4. User of digital twin platform with no ontological knowledge

5 Intended Uses
Use 1. Publish information about a specific asset or asset group
Use 2. Searching for information about a specific asset or asset group
Use 3. Assist the automated generation of the simulation topology
Use 4. Automatically verify a given simulation setup

6 Ontology Requirements
a. Non-Functional Requirements
NFR1. The ontology must support a multilingual scenario in the following

languages: English, German
NFR2. The ontology must be based on standards used in the R4F project.

. . . continued on next page

71

. . . continued from previous page

b. Functional Requirements: Groups of Competency Questions
CQG1 Simulation Model & Variables
CQ1. What is the name of the simulation model ?
CQ2. Who created the simulation model ?
CQ3. What versions exist of the simulation model ?
CQ4. When i a simulation model created ?
CQ5. Who is responsible for maintaining the simulation model ?
CQ6. What additional documents do exists for a simulation model ?
CQ7. What aspect of the R4F domain does the simulation model model ?
CQ8. To which model does a variable belong ?
CQ9. What is the name of the variable ?
CQ10. What is the causality of a variable ?
CQ11. Does a variable change its value during the Simulation ?
CQ12. What is the unit of a variable ?
CQ13. Do variable A and variable B have the same the same base unit ?
CQ14. Which variable are input/output to the same simulation model ?
CQ15. What aspect of the R4F domain does the variable describe ?
CQ16. How are variable of different causality connected ?
CQ17. How can different variables be grouped ?

CQG2 Additional Metadata
CQ18. Where are Datasets published ?
CQ19. What Distribution do exist from a dataset ?
CQ20. What is the media type of a distribution ?
CQ21. How can be ensured that a distribution has not been modified ?
CQ22. Are there different versions of a distribution ?
CQ23. How can a Author/Maintainer/Publisher be contacted ?
CQ24. Where can an dataset be found ?
CQ25. How can Dataset be obtained ?

7 Pre-Glossary of Terms
Simulation Model Contact
Version Dataset
Document Distribution
Aspect of Domain Media Type
Variable Author
Causality Maintainer
(Base) Unit Publisher
Variable Group Agent
Connection Data Service

72

B.2. Glossary of terms

B.2.1. English Version

Term Definition in natural language
Agent A person, group or organization that can do stuff.

Aspect of Domain The aspect of a domain refers to a specific area of the R4F
domain which is modeled by the simulation model.

Bridge A bridge is constructed to traverse physical objects such as
a body of water, valley, or roadway, with the intention of
facilitating passage over the obstruction.

Causality Causality of a variable refers to the relationship between the
variable and the simulation model. (e.g., Input or Output
variable)

Connection The connection between variables refers to the relationship
between two or more variables.

Contact Relevant contact information for the cataloged resource. Use
of vCard1 is recommended.

Creator The agent responsible for for designing and developing the
resource.

DataService A collection of operations that provides access to one or more
datasets.

Dataset A collection of data, published or curated by a (multiple)
agents, and available for access or download in one or more
representations.

Datatype Specifies which type of value a variable has. This includes
integers, Boolean values and strings.

Distribution A specific representation of a dataset. The dataset might be
available in multiple serializations that may differ in various
ways, including natural language or media-type or format.

. . . continued on next page

1https://www.w3.org/TR/2014/NOTE-vcard-rdf-20140522/

73

https://www.w3.org/TR/2014/NOTE-vcard-rdf-20140522/

. . . continued from previous page

Term Definition in natural language
Document A resource that represents those things which are, broadly

conceived, ’documents’ (e.g. Documentation, License Docu-
ment).

Infrastructure Infrastructure is the set of facilities and systems that supports
the operation of the railway system. This includes the tracks,
bridges, tunnels, signaling systems, and other structures and
facilities that are necessary for the safe and efficient movement
of trains.

Maintainer The agent who is responsible to maintain and updating the
resource.

Media Type The file format of the resource. Use of the IANA 1media types
is recommended.

Publisher The agent responsible for making the resource (Simulation
Model, Dataset or Data Service) available.

Rolling Stock Rolling stock refers to railway vehicles, including both powered
and unpowered vehicles: for example, locomotives, freight and
passenger cars (or coaches), and non-revenue cars.

Simulation Model A simulation model is a mathematical representation of a a
real-world process or system over time. It is a simplified ab-
stract view of the complex reality. It can be used to compute
its expected behavior under specified conditions.

Track A railway track (British English and UIC terminology) or rail-
road track (American English), is the structure on a railway
or railroad consisting of the rails, fasteners, railroad ties and
ballast. It enables trains to move by providing a dependable
surface for their wheels to roll upon.

Tunnel A tunnel is an artificial passage that passes under mountains,
bodies of water or other obstacles.

Unit A unit of measure, or unit, is a particular quantity value that
has been chosen as a scale for measuring other quantities the
same kind (more generally of equivalent dimension).

. . . continued on next page

2https://www.iana.org/assignments/media-types/media-types.xhtml

74

https://www.iana.org/assignments/media-types/media-types.xhtml

. . . continued from previous page

Term Definition in natural language
Variable A variable represents a specific parameter or factor of a simula-

tion model.

Variable Array A variable array is collection of variables that represent a specific
array of values (e.g. Inertia tensor).

Variable Group A variable group is collection of variables that share a common
characteristic (e.g., causality, unit or aspect of a domain).

Variable Vector A variable vector is collection of variables that represent a vector
(e.g., force, acceleration).

Version The version indicator, usually an identifier, of a resource.

75

B.2.2. German Version

Term Definition in natürlicher Sprache
Agent Eine Person, Gruppe oder Organisation, die etwas tun kann.

Aspekt der Domäne Der Aspekt eines Bereichs bezieht sich auf einen bestimm-
ten Bereich des R4F Domäne, der durch das Simulations-
modell modelliert wird.

Betreuer Der Agent, der für die Pflege und Aktualisierung der Res-
source.

Brücke Eine Brücke wird gebaut, um physische Objekte zu wie bei-
spielsweise ein Gewässer, ein Tal oder eine Straße zu über-
queren, mit dem Ziel den Übergang über das Hindernis zu
erleichtern.

Datendienst Eine Sammlung von Vorgängen, die den Zugriff auf einen
oder mehrere Datensätze.

Datensatz Eine Sammlung von Daten, veröffentlicht oder kuratiert von
einem (mehreren) Agenten veröffentlicht oder kuratiert wer-
den und in einer oder mehreren Darstellungen.

Datentyp Gibt an, welche Art von Wert eine Variable hat. Dazu gehö-
ren Ganzzahlen (Integer), boolesche Werte (Boolean) und
Zeichenketten (Strings).

Distribution Eine spezifische Darstellung eines Datensatzes. Der Daten-
satz kann mehreren Serialisierungen verfügbar sein, die sich
in verschiedenen unterscheiden können, einschließlich natür-
licher Sprache, Medientyp oder Format.

Dokument Eine Ressource, die die Dinge repräsentiert, die im weitesten
Sinne Dokumenteßind (z. B. Dokumentation, Lizenzdoku-
mente).

Ersteller Der verantwortliche Agent für die Gestaltung und Entwick-
lung der Ressource

Gleis Ein Gleis ist die Struktur einer Eisenbahn, die aus Schienen,
Befestigungen, Schwellen und Schotter besteht. Es ermög-
licht die Fortbewegung von Zügen, indem es eine verlässli-
che Oberfläche bietet, auf der die Räder rollen können.

. . . Fortsetzung auf nächster Seite

76

. . . Fortsetzung

Term Definition in natürlicher Sprache
Herausgeber Der Agent, der für die Bereitstellung der Ressource (Simula-

tions Modell, Datensatz oder Datendienst) verfügbar zu ma-
chen.

Infrastruktur Infrastruktur ist die Gesamtheit der Einrichtungen und Syste-
me, die den den Betrieb des Eisenbahnsystems unterstützen.
Dazu gehören die Gleise, Brücken, Tunnel, Signalsysteme und
andere Strukturen und Einrichtungen Einrichtungen, die für
einen sicheren und effizienten Zugverkehr notwendig von Zü-
gen erforderlich sind.

Kausalität Die Kausalität einer Variablen bezieht sich auf die Bezie-
hung zwischen der Variable und dem Simulationsmodell (z.
B. Input- oder Output Variable).

Kontakt Relevante Kontaktinformationen für die katalogisierte Res-
source. Die Verwendung von von vCard1 wird empfohlen

Maßeinheit Eine Maßeinheit oder Einheit ist ein bestimmter Mengen-
wert, der als Maßstab für die Messung anderer Größen der
gleichen gleicher Art (im Allgemeinen von gleicher Größe) ge-
wählt wurde.

Medien Typ Das Dateiformat der Ressource. Die Verwendung der IANA
Media-Typen2 wird empfohlen.

Schienenfahrzeug Schienenfahrzeuge bezieht sich auf Eisenbahnfahrzeuge, so-
wohl auf angetriebene und nicht angetriebene Fahrzeuge: z.
B. Lokomotiven, Güter- und Personenwagen (oder Reisezug-
wagen) und andere Fahrzeuge.

Simulationsmodell Ein Simulationsmodell ist eine mathematische Darstellung ei-
nes realen Prozesses oder Systems im Zeitverlauf. Es ist ei-
ne vereinfachte abstrakte Ansicht der komplexen Realität. Es
kann verwendet werden zur Berechnung das erwartete Ver-
halten unter bestimmten Bedingungen zu berechnen.

Tunnel Ein Tunnel ist ein künstlicher Durchgang, der unter Bergen,
Gewässern oder anderen Hindernissen hindurchführt führt.

. . . Fortsetzung auf nächster Seite

1https://www.w3.org/TR/2014/NOTE-vcard-rdf-20140522/
2https://www.iana.org/assignments/media-types/media-types.xhtml

77

https://www.w3.org/TR/2014/NOTE-vcard-rdf-20140522/
https://www.iana.org/assignments/media-types/media-types.xhtml

. . . Fortsetzung

Term Definition in natural language
Variable Eine Variable stellt einen bestimmten Parameter oder Fak-

tor eines Simulationsmodells dar.

Variablen Auflistung Eine Variablen Auflistung ist eine Sammlung von Varia-
blen, die eine bestimmte Reihe von Werten darstellen (z.
B. Trägheitstensor).

Variablen Gruppe Eine Variablengruppe ist eine Sammlung von Variablen, die
ein gemeinsames Merkmal teilen (z. B. Kausalität, Einheit
oder Aspekt eines Bereichs).

Variablen Vektor Ein Variablen Vektor ist eine Sammlung von Variablen, die
einen Vektor darstellen (z. B. Kraft, Beschleunigung).

Version Der Versionsindikator, normalerweise ein Bezeichner, einer
Ressource.

Verbindung Die Verbindung zwischen Variablen bezieht sich auf die
Beziehung zwischen zwei oder mehr Variablen.

78

B
.3

.
Co

nc
ep

t
Cl

as
sifi

ca
tio

n
Tr

ee

Th
in

g

In
pu

tC
au

sa
lit

y

O
ut

pu
tC

au
sa

lit
y

C
au

sa
lit

y

Bo
ol

ea
n

En
um

er
at

io
n

D
at

at
yp

e

In
te

ge
r

St
rin

g

In
fra

st
ru

ct
ur

R
ol

lin
g

St
oc

k

R
ea

l W
or

ld
 E

nt
ity

Br
id

ge

Tr
ac

k

Tu
nn

el

Va
ria

bl
e

Se
m

an
tic

Ty
pe

Va
ria

bl
eG

ro
up

D
is

tri
bu

tio
n

D
at

aS
er

vi
ce

Si
m

ul
at

io
nM

od
el

D
at

as
et

Va
ria

bl
e

R
ea

l W
or

ld
 E

nt
ity

D
at

as
et

D
at

at
yp

e

N
om

en
cl

at
ur

e
:

C
on

ce
pt

In
st

an
ce

Va
ria

bl
eA

rra
y

Va
ria

bl
eV

ec
to

r

Fi
gu

re
B.

1.
:C

on
ce

pt
C

la
ss

ifi
ca

tio
n

Tr
ee

.

79

B.4. Concept Dictionary

Table B.4.: Concept dictionary
Concept Name
english

Concept Name
german

Instance
attributes Relations

Causality Kausalität - -

DataService Datendienst
title,
accessRights,
endpointDescription

servesDataset,
publisher,
creator

Dataset Datensatz

title,
description,
issued,
modified,
accessRights

distribution,
publisher,
creator,
hasVariableGroup-
-Member,
hasCausality

Datatype Datentyp - -

Distribution Distribution

title,
accessURL,
downloadURL,
checksumValue

accessService,
mediaType
previousVersion,
nextVersion,
lastVersion

RealWorldEntity RealWorldEntity title,
description -

SemanticType SemantischerTyp - -

SimulationModel Simulationsmodell

title,
description,
created,
modified

hasVariable,
describes,
previousVersion,
nextVersion,
lastVersion,
publisher,
creator,
maintainer,
supportingDocument,
isLinkedTo

. . . continued on next page

80

. . . continued from previous page

Concept Name
english

Concept Name
german

Instance
attributes Relations

Variable Variable
title,
description,
variability

hasCausality,
unit,
hasQuantityKind,
hasSemanticType,
hasDatatype,
isVariableOf,
isConnectedWith,
isVariableMemberOf,

VariableGroup VariablenGruppe title,
description

hasCausality,
isVariable-
GroupMember,
hasVariableMember

81

B.5. Binary Relation Tables

Table B.5.: Binary Relation Tables

Relation name Source
concept

Target
concept Inverse relation

accessService Distribution DataService -
contactPoint Agen Vcard -
describes SimulationModel RealWorldEntity -
distribution Dataset Distribution -

hasCausality VariableGroup,
Variable Causality -

hasDatatype Variable Datatyp -
hasSemanticType Variable SemanticType -
hasVariable SimulationModel Variable isVariableOf
isConnectedWith Variable Variable -
isLinkedTo SimulationModel SimulationModel -
isVariableGroup-
MemberOf VariableGroup Dataset hasVariableGroup-

Member
isVariableMember Variable VariableGroup hasVariableMember

lastVersion SimulationModel,
Distribution

SimulationModel,
Distribution -

maintainter SimulationModel Agent -

mediaType Document,
Distribution FileFormat -

nextVersion SimulationModel,
Distribution

SimulationModel,
Distribution -

previousVersion SimulationModel,
Distribution

SimulationModel,
Distribution -

servesDataset DataService Dataset -
supportingDocument SimulationMode Document -

82

B.6. Instance Attribute Tables

Table B.6.: Attributes Table English

Instance attribute
name Datatype Reused

Ontology Description

accessRights xsd:string dcterms Information about who can access
the resource or an indication of its
security status.

accessURL xsd:string - A URL of the resource that pro-
vides access to a distribution of the
dataset, e.g., a landing page.

checksumValue xsd:string spdx The checksumValue property pro-
vides a mechanism that can be used
to verify that the contents of a file
have not changed by provides a en-
coded digest value.

created xsd:date dcterms Date of creation of the resource.
description xsd:string dcterms An account of the resource.
downloadURL xsd:string - The URL of the downloadable file in

a given format.
endpointDescription xsd:string - A description of the services avail-

able via the end-points, including
their operations, parameters etc.

issued xsd:date dcterms Date of formal issuance of the re-
source.

modified xsd:date dcterms Date on which the resource was
changed.

name xsd:string foaf A name for an agent.
title xsd:string dcterms A name given to the resource.
variability xsd:string - Defines the time dependency of the

variable, i.e., weather a variable can
change its value (e.g., fixed, con-
stant, continuous...).

version xsd:float - Indicates the resources version

83

Table B.7.: Attributes Table German

Instance Attribut
Name Datentyp

Wieder-
verwendete
Ontology

Beschreibung

accessRights xsd:string dcterms Informationen darüber, wer auf
die Ressource zugreifen kann,
oder ein Hinweis auf ihren
Sicherheitsstatus.

accessURL xsd:string - Eine URL der Ressource, die
Zugang zu einer Distribution des
Datensatzes bietet, z. B. eine
Zielseite.

checksumValue xsd:string spdx Die Eigenschaft bietet einen
Mechanismus, mit dem überprüft
werden kann, ob sich der Inhalt
einer Datei nicht geändert hat,
indem ein kodierter Prüfwert
bereitgestellt wird.

created xsd:date dcterms Datum der Erstellung der
Ressource.

description xsd:string dcterms Ein Bericht über die Ressource.
downloadURL xsd:string - Die URL der herunterladbaren

Datei in einem bestimmten
Format.

endpointDescription xsd:string - Eine Beschreibung der über die
Endpunkte verfügbaren Dienste,
einschließlich ihrer Operationen,
Parameter usw.

issued xsd:date dcterms Datum an dem die Resource
herausgegeben wurde.

modified xsd:date dcterms Datum an dem die Ressource
geändert wurde.

name xsd:string foaf Der Name des Agents
title xsd:string dcterms Ein Name der Ressource.
variability xsd:string - Definiert die Zeitabhängigkeit der

Variablen, d. h., ob eine Variable
ihren Wert ändern kann (z. B.
fest, konstant, kontinuierlich...).

version xsd:float - Gibt die Version der Ressourcen
an.

84

	Acronyms
	Introduction
	Motivation and problem statement
	Aim of the work

	Theoretical foundations and related work
	Semantic Interoperability
	Ontology
	Ontology Types
	Methodologies for Ontology Development

	Semantic Web Stack
	Resource Description Framework
	RDF-Schema
	Web Ontology Language

	Digital Twins and Modular Simulation
	Related work
	Railway Domain
	Multi Domain Simulation and (distributed) Digital Twins

	Implementation
	Ontology Development
	Initiation Phase
	Reuse and Re-engineering Phase
	Design Phase
	Implementation Phase

	Discussion
	Semantics for Modular FMI assembly
	Ontology Annotation

	Conclusion and Future Work
	List of Figures
	List of Listings
	List of Tables
	Bibliography
	List of code and Ontologies hosted online
	Ontology Development Documents
	Ontology Requirements Specification Document
	Glossary of terms
	English Version
	German Version

	Concept Classification Tree
	Concept Dictionary
	Binary Relation Tables
	Instance Attribute Tables

